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ABSTRACT OF THESIS 

 
 

POWER REDUCTION BY DYNAMICALLY VARYING 
SAMPLING RATE 

 
In modern digital audio applications, a continuous audio signal stream is sampled at a 
fixed sampling rate, which is always greater than twice the highest frequency of the input 
signal, to prevent aliasing. A more energy efficient approach is to dynamically change the 
sampling rate based on the input signal. In the dynamic sampling rate technique, fewer 
samples are processed when there is little frequency content in the samples. The 
perceived quality of the signal is unchanged in this technique. Processing fewer samples 
involves less computation work; therefore processor speed and voltage can be reduced. 
This reduction in processor speed and voltage has been shown to reduce power 
consumption by up to 40% less than if the audio stream had been run at a fixed sampling 
rate. 

 

KEYWORDS: Digital signal processors, Audio applications, Dynamic voltage scaling, 
frequency scaling, sampling rate 
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CHAPTER 1 

INTRODUCTION 
 
Many modern digital audio applications involve digital signal processing techniques, 

which increase the performance of consumer-level devices such as cell-phones, hearing 

aids and portable radios. The development of advanced digital signal processing 

techniques has allowed the reproduction of accurate sound with little distortion. These 

processing techniques are achieved through complex algorithms, which are computation 

intensive. Therefore the devices need to support very high performance Central 

Processing Units (CPUs). Apart from being high performance devices, these portable 

devices have stringent size and power requirements. Hence small batteries have emerged 

as the preferred power sources for such portable audio devices. The lifetime of the 

batteries is roughly proportional to the amount of energy drawn from them. In the case of 

hearing aids, digital hearing aids require more power than analog hearing aids because 

they have more complicated signal-processing algorithms than in an analog hearing aid. 

Typically, battery life can range anywhere from 5-7 days  [2]. This not only increases the 

final cost of the portable digital devices to many times the cost of conventional analog 

hearing aids but also necessitates frequent replacement of the battery. Therefore the 

inconvenience of short battery life has limited the popularity of digital hearing aids.  

The battery life is a very important consideration for the usefulness of these 

applications. By controlling the battery life through Digital Signal Processing (DSP) 

techniques, the operating cost of a hearing aid can be significantly reduced, thereby 

reaching a larger portion of the population with a lower price, while delivering the same 

sound quality. 

The battery life of any device is dependent on the power consumption of all its 

components. Various methods of minimizing power consumption have been explored at 

different levels of abstraction from sub-silicon level to application software level. 

At the silicon level the power consumed by a CMOS transistor is governed by the 

following equation  [38]: 

Pavg = Pswitching + Pshort-circuit + Pleakage = 
α 0->1 x (CL · V dd 

2 · fclk + Isc · Vdd )+ Ileakage · Vdd    (1) 
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The α 0->1 is the probability that a transition occurs (the activity factor). Any transition, 

whether high to low or low to high, involves power consumption. The first term inside the 

parenthesis represents the switching component of power, where CL is the load 

capacitance, fclk is the clock frequency and the second term in the parenthesis is due to the 

direct-path short circuit current, Isc, which arises when both the NMOS and PMOS 

transistors are simultaneously active, conducting current directly from supply (Vdd) to 

ground. Finally, leakage current, Ileakage, which can arise from substrate injection and sub-

threshold effects, is primarily determined by fabrication technology considerations. 

In current semiconductor devices Pswitching dominates the other power terms in 

Equation (1). Since the energy expended for each switching event in CMOS circuits is CL 

· V dd 
2 · fclk, decreasing the frequency of the device can subsequently decrease the power. 

Reducing the clock frequency also allows the supply voltage to be reduced. Therefore 

dynamically controlling both frequency and voltage can lead to increased power savings. 

In audio applications, the workload of the processing in the CPU varies from sample to 

sample. If the CPU needs to do more computations than average, then it must run at a 

higher frequency to correctly reproduce the sound. If the frequency and voltage can be 

dynamically changed with the varying amount of processing, greater power savings may 

be obtained. Also, since most embedded applications are real-time, they have deadline 

considerations to ensure good quality samples. There have been Dynamic Voltage 

Scaling (DVS) algorithms, which exploit this principle [11, 18, 21, 31, 37]. DVS 

algorithms can be applied, ensuring that the jobs can meet their deadlines and the 

frequencies and voltages can be reduced to meet the deadlines. This approach not only 

increases the utilization of the processor but also decreases power consumption of the 

device while ensuring correct reproduction of sound.  

In many DSP applications, a set of standard Finite Impulse Response (FIR) filters 

is used to do the processing work. A stream of data goes through the filters at a fixed 

sampling frequency. This sampling frequency is determined at design time by the 

Nyquist rate, which states, that DSP applications must sample their inputs at a frequency 

at least twice the highest frequency in the input signal to accurately reproduce the signal 

 [19]. Typically the sampling rate is set at a rate higher than the Nyquist rate to improve 
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signal quality. With a fixed sampling rate and a fixed set of FIR filters the demand for 

CPU processing varies little and therefore there is little scope for using DVS algorithms. 

Dynamically varying the sampling rate in response to the input signal provides 

opportunities to vary frequency and voltage and thereby decrease power consumption. 

When the input signal has little perceptible high frequency content, the sampling rate can 

be reduced. A lower sampling rate reduces the number of samples to be processed while 

running at a lower sampling rate, allowing CPU speed to be reduced. When perceptible 

high frequency content is present, the system samples it at a higher rate, preserving signal 

quality. Using this Dynamic Sampling Rate (DSR) technique in a hearing aid application 

can reduce power consumption to about 40% of that without DSR. 

 Chapter 2 describes the psychoacoustic model of the human ear and its use for 

determination of the highest frequency content in a frame in both frequency and time 

domain. Chapter 3 deals with the related work, which serves as a background for the 

thesis. Chapter 4 describes the overall system design. Chapter 5 describes the signal 

properties of an audio signal. Chapter 6 discusses the software and the hardware 

implementation details. Chapter 7 holds the conclusion and the direction of future work. 
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CHAPTER 2 

PSYCOACOUSTIC MODEL 
 
The psychoacoustic model is based on the perception of human auditory system. The 

human ear receives information in the form of audio signals. In a digital hearing aid these 

signals are digitally represented in form of bits. Audio compression algorithms  [22] have 

been used to obtain a minimum set of such bits representing audio signals. Audio 

compression is done to reduce processing and storage of data without any perceived 

distortion of the signal. The purpose of this kind of compression is to be able to 

reproduce a signal using less storage space or transmission bandwidth. These algorithms 

are derived from psychoacoustic principles. They identify imperceptible information and 

then compress the digital information by removing inaudible bits. The psychoacoustic 

principles that will be discussed in this thesis are equi-loudness curves, absolute threshold 

of hearing and masking principles associated with audio processing and critical band 

frequency analysis. Each property provides a way of determining which portions of a 

signal are inaudible to the average human, and can thus be removed from an incoming 

signal. These principles are needed to determine the maximum frequency content in a 

given frame of audio signals  [39]. 

2.1 EQUI-LOUDNESS CURVES AND ABSOLUTE HEARING 
THRESHOLD 

 
The average human ear does not hear all frequencies equally well. It is most sensitive to 

frequencies around 4 kHz with less sensitivity at higher and lower frequencies. The 

standard metric for measuring intensity of an audio signal is Sound Pressure Level            

(SPL). The SPL is defined as the intensity of sound pressure in decibels (dB) relative to a 

defined reference level, i.e, 

LSPL = 20 log10 
0

P
P

   (2) 

 

where LSPL is the SPL to be measured, P is the sound pressure of the stimulus in Newton 

per square meter (N/m2) and P0 is the standard reference level of 20 µN/m2. In case of the 
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human ear, sound pressure levels that are detectable at 4 KHz may not be heard at other 

frequencies. In general, two tones with equal SPL but different frequency will not sound 

equally loud. Equi-loudness curves at different loudness levels are shown in Figure 1. 

The x-axis shows the frequency in terms of Barks. Bark is a unit of measurement for 

frequency and is based on the perceptibility of a frequency by an ordinary human ear. We 

will discuss Barks in more details in Section  2.2. The dotted curve is the "hearing 

threshold in quiet" or the absolute threshold of hearing (ATH), which indicates the 

minimum level at which the ear can detect a tone at a given frequency. These curves 

indicate that the ear is more sensitive at some frequencies than it is at others. Therefore 

distortions will be more audible in the sensitive frequency ranges than in other frequency 

ranges. 

 

Figure 1: Equi-loudness curve 

 

2.2 CRITICAL FREQUENCY BANDS 
 
At the extreme frequencies, hearing a tone becomes more difficult. The human ear can 

detect differences in pitch better at lower frequencies than at higher frequencies. For 

example, a human has an easier time telling the difference between 500 Hz and 600 Hz 

than between 17,000 Hz or 18,000 Hz. The frequency range ranging from 20Hz to 20,000 
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Hz can be broken up into critical bands. Critical bands are a set of sub-bands of the 

audible frequency range. Critical bands occur when the sound signal hits the basilar 

membrane disturbing the membrane over a small area and exciting the nerve endings 

over that entire area. The entire range of critical bands has been determined according to 

different experiments. Frequencies within a critical band are similar in terms of the ear's 

perception, and are processed separately from other critical bands. The critical bands are 

much narrower at lower frequencies than at high frequencies; about, three quarters of the 

critical bands are located below 5 kHz. This indicates that the ear is more sensitive for 

low frequencies than for higher frequencies. In a particular critical band, a higher pitch of 

one frequency will mask the lower pitch of another frequency. Therefore the critical band 

can be considered as a “frequency selective channel of psychoacoustic processing”  [36]. 

Any noise falling within the critical bandwidth can contribute to the masking of a narrow 

band signal. The human ear consists of a whole series of critical bands, each selecting a 

specific portion of the audible audio spectrum. Figure 2 shows a graph of the responses of 

several critical bands.  

 

 

 

 

 
 
 
 

 

 

 

 

Figure 2: Critical Band Responses 
These bands are non-uniform, non-linear, and dependent on the sound heard. 

Signals within one critical bandwidth are hard to separate for a human ear. A more 

uniform measure of frequency based on critical bandwidths is the Bark  [39]. A Bark 

bandwidth is smaller at low frequencies (in Hz) and larger at high ones. The Bark scale is 

a psychoacoustical scale. This scale ranges from 1 to 24 and corresponds to the first 24 

critical bands of hearing. The subsequent band edges are (in Hz) 0, 100, 200, 300, 400, 
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510, 630, 770, 920, 1,080, 1,270, 1,480, 1,720, 2,000, 2,320, 2,700, 3,150, 3,700, 4,400, 

5,300, 6,400, 7,700, 9,500, 12,000 and 15,500. The Bark frequency scale can be 

approximated by the following equation:  

fBarks = 13 · arc tan (0.00076 · fhz) + 23.5 arctan(( ))
7500

hzf
⋅  (3) 

where fBarks  is the frequency in Barks and  fhz  is the frequency in Hertz scale. 

The equation (3) has been plotted in Figure 3. 

 

Figure 3: Relationship between bark and hertz scale 
The ATH curve is an ideal example where bark scale can be used. Figure 4 shows the 

ATH curve in Hertz scale. The ATH curve in this figure has 0 dB around 0.4 KHz before 

rising steeply around 1 KHz. 
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Figure 4: ATH curve in kHz 

The ATH curve as shown in Figure 5 is drawn in Bark scale. In this figure it can be 

observed, that the ATH curve in bark scale expands along the frequency scale for low 

frequencies and the curve contracts at higher frequencies. 

 

 

Figure 5: ATH curve in bark scale 
The ATH has been determined experimentally  [22]. In order to model the ATH into a 

mathematical equation, a sinusoidal tone was played at a very low power for many 

different listeners. The power was slowly raised until the tone was heard. This level at 

which the tone was heard was the threshold. The process was repeated for many 

frequencies in the human auditory range and with many test subjects. The experimental 

data gathered above can be modeled by the following equation, where f is frequency in 

Hertz:  

ATH (f) = 
3.3 20.6 (( ) )0.8 3 410003.64 ( ) 6.5 10 ( )

1000 1000

ff fe
−−− −− +ii i i   (dB SPL) (4) 
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2.3 MASKING PRINCIPLE 
 
Human ear does not have the ability to hear minute differences in frequency, especially 

when two signals are playing at the same time. This concept is known as simultaneous 

masking  [39]. If one signal is strong, it will mask signals at nearby frequencies, making 

them inaudible to the listener. From a frequency-domain point of view, the relative 

magnitude of the masker signal and the maskee signal determine how one sound signal 

will mask the other. From a time-domain perspective, phase relationships between the 

audio signals will determine the extent of masking of signals. Therefore masking 

becomes stronger as the two sounds get closer together in both time and frequency. For a 

masked signal to be heard, its power will have to be increased to a level greater than that 

of a threshold that is determined by the frequency of the masker tone and its intensity. 

Figure 6 shows the example of simultaneous masking. Here the signal b at 14 Barks has 

power level above the threshold of hearing (dotted line) but still it is masked by signal a 

at 13 Barks, which has higher amplitude within the same critical band. 

 

Figure 6: Simultaneous masking curve  
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CHAPTER 3 

RELATED WORK 
  

A number of power management techniques have been used in the audio applications. 

Most of these techniques are related to the device characteristics of the system or the 

hardware design of the integrated chips  [4]. Some power-aware software algorithms and 

compiler techniques have been exploited in case of real time embedded applications  [30]. 

Most of these systems have very tight temporal constraints. 

In CMOS technology the dynamic component in the power consumption is the 

switching component from eq (1)  

Pswitching = α 0->1 CL · V dd 
2 · fclk                      (5) 

 

From the above equation we need to determine which factor needs to be lowered by what 

amount to achieve maximum power reduction. Assume Vdd is scaled by a factor Sv,  

where the Sv can be any positive value  between 1 and 0, and F is scaled by a factor Sf, 

where the Sf can be any positive value between 1 and 0.  The dynamic power equation 

becomes: 

 

Pswitching  = α 0->1 CL · V dd 
2 · fclk  = α 0->1 CL · Sv

2 Vdd
 2 . Sf · fclk   

= Sp 
2 

 . α 0->1 CL · V dd 
2                (6)    

where dynamic power scaling factor Sp = Sv
2 Sf.  From the equation it can be observed 

that reducing the core operating voltage will be the most effective way to reduce power 

since a small change in voltage can decrease/increase the power consumed quadratically. 

 One of the basic approaches of power consumption is shutting down voltage 

supply or the clock when the processor is idle. But the power saving is insufficient for 

cases where the CPU does not shut down completely but has reduced processing load. In 

such cases, reducing the voltage will also result in major power savings. Simunic et 

al. [31] takes into consideration dynamic program management (DPM) policies and  

tradeoff power consumption with performance by selectively placing components in low 

power states for MP3 applications.  

One of the other power conserving mechanisms that dynamically reduces voltage 

and clock speed, is DVS [11, 18, 21, 31, 37].  In portable devices, performance and 
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energy are the two tradeoffs in designing the system, considering the area is constant. 

DVS ensures minimization of energy consumption while meeting performance 

considerations. In our audio application i.e. the hearing aid, the processing unit, which 

mainly comprises of filtering operation circuits, is the computational load of the circuit. 

When the computational load is high, the throughput of the CPU should be high so that 

the CPU can process the load within the deadline. The deadline for a job is the time 

period within which the execution of the job should be completed. Therefore, the high 

performance requirement for the CPU will be met but at higher energy cost per 

computation. However these occurrences of high computational load are few. Therefore 

the total energy consumed will be less when there is no high computational load. DVS is 

one mechanism that ensures that the CPU can consume optimum power as well as 

produce maximum utilization. In order to meet peak computational loads, the processor is 

operated at its normal voltage and frequency, which is also its maximum frequency. 

When the load is lower, the operating frequency and the voltage are reduced to meet the 

computational and deadline requirements. According to Padmanabhan and Shin [21], 

Real Time DVS (RT DVS) algorithms can be used to modify the operating systems’ real 

time scheduler and task management service to provide energy savings while maintaining 

Real Time deadline requirements. This is achieved by conducting schedulability test at 

certain intervals of the task. 

However, most of the DVS algorithms use worst-case execution time (WCET) to 

determine deadline of a system. The disadvantage of using WCET is that a major portion 

of time remains unused by the CPU. Therefore the use of slack to dynamically determine 

the voltage and frequency becomes important. At any time t, the slack for any job with 

deadline d is calculated as time period “d – t”. In DVS algorithms, the slack at each of the 

scheduling points is calculated and accordingly the clock frequency is updated to reduce 

speed a much as possible without violating any deadlines  [13]. In cases where the slack 

cannot be predicted statically due to run-time variations, this slack is known as the 

dynamic slack. The slack is static, when the difference between the deadline and the 

execution time is fixed for any job  [13], considering the release time between jobs to be 

fixed.  Dynamic or static slack is used for reducing the energy consumption for of the 

computing unit. Manzak and Chakrabarti  [14] give us an overview of the different 
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scheduling algorithms, which use the concepts of slack that can be used for energy 

efficient scheduling. In our method slack is introduced by changing the amount of 

processing work depending on the input to the CPU.  

Audio compression algorithms are used to occupy less memory space. Some of 

the recent work in multimedia applications takes the advantage of compression to achieve 

bandwidth reduction and as a result decrease power consumption of the system  [17]. 

Choi, Dantu et al.  [11] have proposed a method by which the processor decides the 

workload depending on the previous history of incoming frames and the computing 

power associated with each type of frame. Depending on the workload, the voltage and 

the frequency are scaled accordingly. Weiser et al. [37] describe a method which uses the 

information of energy consumption in the previous frame to set the future deadline. These 

are predictive algorithms and the frame is processed within the deadline requirements to 

maintain the quality of the data. It is a hard constraint for any real time system to 

maintain the quality of service. Therefore the CPU time to be allocated and the voltage 

profile on a variable voltage system are determined such that all the applications' 

requirements are satisfied and the total energy consumption of a system is minimized.  

 Im et al.  proposed a DVS technique for multimedia applications in which idle 

intervals of the processor are utilized  using buffers  [11]. The buffers are used so that the 

workload for many frames can be averaged and the slack time for multiple frame time 

periods can be used to process multiple input samples. This reduces the total energy 

consumption of the system. Each task period (frame period) is divided into time slots and 

the voltage level is adjusted such that the execution time is maximized to the WCET 

(worst case execution time). Maxiaguine and Chakraborty  [18] present another DVS 

algorithm for processing multimedia streams on architectures with restricted buffer sizes. 

The main advantage of this scheme is that it provides hard Quality of Service (QoS) 

guarantees apart from considerable power savings. Buffering of more than 20 ms frame 

cannot be applied to applications such as hearing aid because it introduces a perceivable 

delay in sound. 

 Compression algorithms are generally used to minimize the storage space of 

samples  [20]. In our case, compression is used to minimize the data so that less 

computation in performed. Nevertheless in our work it is ensured that compression of the 
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data does not introduce perceptible noise in the system and thereby does not distort the 

perceived sound quality. 
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CHAPTER 4 

OVERVIEW OF SYSTEM DESIGN 
 
A digital hearing aid model demonstrates our power saving mechanism. A simple digital 

hearing model aid consists of a microphone, A/D converter, DSP processor, D/A 

converter, and a speaker. 

 

 

 

 

 

D/A 
converter 

A/D 
converter 

DSP 
processor 

 Microphone Speaker 

Figure 7: Hearing Aid Model 
  The function of the microphone is to catch incoming audio signals. The A/D 

converter converts analog signals from the microphone into digital signals, which are sent 

to the DSP for processing. Finally the processed digital signals are sent to the D/A 

converter where they get converted to analog signals and output to the speaker as 

amplified audio signals.  

In modern digital hearing aids, the A/D converter samples the incoming audio 

signal at a fixed rate; typically 48 kHz or 44.1 kHz. This rate is fixed with consideration 

of the sampling theorem, which states that for a limited bandwidth signal with maximum 

frequency fmax, the equally spaced sampling frequency fs must be greater than twice of the 

maximum frequency fmax, i.e.,  

fs > 2·fmax                                                (7) 
 

in order to have the signal be uniquely reconstructed without aliasing. The frequency 

2·fmax is called the Nyquist sampling rate  [19].  

The human ear can hear sounds across the frequency range of 20 Hz to 20 KHz. 

According to the sampling theorem, the sound signals should be sampled at least at 

40 KHz in order for the reconstructed sound signal to be acceptable to the human ear. 

Signal components higher than 20 kHz cannot be detected, but they can still pollute the 
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sampled signal through aliasing  [26]. Therefore, frequency components above 20 kHz are 

removed from the sound signal before sampling by a low-pass filter. Ideally all signals 

above the cutoff frequency would be attenuated to 0, but real filters allow some signals. 

The sampling rate is typically set at 44 KHz (rather than 40 kHz) in order to avoid signal 

contamination from the filter rolloff  [30].  

As discussed in Chapter  0, not all signals within the audible range i.e. from 20Hz 

to 20 kHz range can be heard equally well, even by a person with normal hearing 

capability. The signal may be distorted, but the distortion might not be perceptible. 

Therefore the hearing aid needs to process only those signals that a person with normal 

hearing capability can perceive based on the psychoacoustic principles of human hearing. 

After the A/D converter samples the audio signal at a constant rate, the sampled 

audio is divided into frames and stored into a temporary input buffer. A frame is a fixed 

time period, Tframe . The CPU processes the data from the input buffer, one frame at a 

time, and transfers the processed frame to the output buffer. If the time taken to sample 

the input data is Tsamp, time required for CPU processing is Texec and the total time taken 

for data transfer from the A/D to input buffer and output buffer to the D/A converter is 

represented as Tdata transfer , then the total time taken for doing all these tasks must be less 

than or equal to Tframe. Otherwise data transfer buffers will overflow, causing distortion in 

sound. This relationship is defined by Equation (8) and is shown in Figure 8.  

Tsamp + Texec + Tdata transfer ≤ T frame (8) 

 

        

slackOutput data 
transfer 

CPU 
processing 

Sampling + 
Input data 
transfer 

 
 
 
 
 
 
 
 T frame   

Figure 8: Scheduling of an audio frame 
The time difference between Tframe and the last byte of output data transferred is 

known as slack  [13]. The slack is shown in Figure 8. Higher slack reduces utilization of 

the DSP. The slack can be utilized such that the CPU can run at slower speed and 
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complete all the tasks in time. Though the sampling rate in existing audio devices is 

fixed, it does not need to be for all frames. When no high frequency samples are present 

in a frame, the frame does not require as many samples to be processed. Fewer samples 

require less processing time. With less processing to do the processor can reduce its 

speed. The sampling frequency for that low frequency frame will be adjusted, such that 

the sum of Tsamp, Texec and Tdata transfer is equal to that of Tframe. This will increase the 

utilization of the DSP and as per Equation (8), the power consumption for a low speed 

CPU will be less than that of a normal CPU. Therefore a lower sampling rate should be 

used with frames containing low frequency components. 

 

 

        

Slack = 0Output data 
transfer 

CPU processing 

Sampling + 
Input data 
transfer 

 
 
 
 
 
 
 
 T frame   

Figure 9: Schedule of an audio frame (lower CPU frequency and slack =0) 
 

 Nevertheless, a frame with higher frequency components needs to be sampled at 

a higher rate so that no aliasing happens on the input frame. In using a variable sampling 

rate approach, the sampling frequency would be lowered for frames when the audio 

signal has inaudible high frequency components and increased when high frequency 

components are present. 

The CPU processing will go through the standard hearing aid processing steps 

like amplification and masking techniques as in normal hearing aid. These steps will be 

done by a set of digital filters. For each set of frequencies, there will be separate set of 

filters depending on the sampling frequency. The execution time will increase or decrease 

depending on the filter coefficients and the number of samples to be processed. Therefore 

the execution time in the filters is dependent on the sampling frequency determined 

earlier. By decreasing the sampling frequency, we also reduce the operating frequency of 
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the CPU, which results in less dynamic power consumption as in Equation (1). Due to the 

reduction in frequency, there is an increase in execution time of CPU. Nevertheless the 

sum of total execution time and buffer transfer time is below Tframe.

After the samples have gone through processing steps like filtering, amplification 

etc., the number of output samples is made equal to the number of input samples by a 

method called upsampling. The reason is that in our setup the same codec does both A/D 

conversion and D/A conversion. Therefore the number of output samples to the D/A 

converter needs to be same as the input samples from the A/D converter. Upsampling 

ensures that the D/A converter will have enough data to reproduce a new signal at a fixed 

sampling rate. In cases where the A/D converter is different from D/A converter, the 

number of output samples may be different from the input samples. 

 

Figure 10: Enhanced Human Hearing Aid Model 
 
Figure 10 shows the model of the variable sampling rate hearing aid. The fmax 

determination process determines the sampling rate of the CPU depending on the 

frequency content of the signal in a frame of fixed time period. The determined sampling 

rate is set for the subsequent filtering operations in the CPU. The downsampling and the 

upsampling stages depend on the sampling rate determined by the fmax determination 

process.  
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Figure 11: Steps in CPU processing 
 

Figure 11 shows all the steps in which data are processed by the CPU. The 

different data packets are shown in different shading patterns. The packets with the same 

pattern have data from the same input frame, which undergoes different steps of 

operation in different frames. In the first frame period the input data is transferred to the 

input buffer. In the second frame period, the frame undergoes DSR processing steps. In 

the third frame period the processed frame is transferred to the output buffer.  
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CHAPTER 5 

SIGNAL PROPERTIES 
 

We propose a method to decrease dynamic power consumption by processing a 

continuous audio stream after segregating it into frames. Each of these frames is 

processed separately at a speed depending on the frequency content in that frame. The 

sampling frequency and the voltage are adjusted according to the frequency content. 

The sequence of samples coming from the A/D converter is divided into frames. 

The number of samples produced by the A/D converter depends on the sampling rate of 

the codec. Each frame represents the same amount of time. A 20 ms frame size is 

sufficient to produce stationary signals and does not introduce a delay in the signal 

quality  [34]. The audio signals are transferred from the A/D converter where it had been 

sampled at the constant speed of 48 KHz. Each 20 ms of a frame should constitute 20 ms 

x 48 KHz = 960 digitized sound samples.  

 

5.1 DETERMINATION OF HIGHEST FREQUENCY CONTENT  
 

There are two ways in which the maximum audible frequency in a frame is 

calculated: frequency domain method and the time domain method. In the frequency 

domain method, the audio frame is transformed into the frequency domain using Fast 

Fourier Transforms (FFT). In our implementation we use 1024 samples or 21.33 ms 

frame size since we have wanted to use power of 2-FFT operations as suggested by 

Cooley-Tukey method  [26]. We may have used other FFT operations other than Cooley-

Tukey method but the clock cycles required for other FFT operations are more. Therefore 

power consumption is more for other FFT operations. The FFT determines the Power 

Spectral Density (PSD) of the signal for each frequency. The CPU checks for the highest 

frequency in the sampled signal with PSD value greater than the ATH curve value.  The 

dynamic sampling rate fs is set to at least 2 times the highest frequency determined fmax, 

so that no aliasing takes place.  

The fs  can be set to a range of frequencies - 48 KHz, 24 KHz, 12 KHz, 6 KHz, 

and 3 KHz as allowed by our implementation setup. The DSR algorithm selects the 
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lowest available dynamic sampling rate, which is at least two times greater than the 

maximum audible frequency in a frame. The FIR filters are designed to work at a 

particular sampling frequency. Depending on the selected sampling frequency, a set of 

filters is selected which supports operation with this sampling rate. Also, the audio signal 

has to be downsampled for subsequent filtering operations.  

The FFT is an accurate method for calculating PSD in a time frame but it is very 

expensive in terms of clock cycles. The second method for determining highest frequency 

content in a frame is by using a cascade of time domain FIR filters. These filters can be 

used to determine the power for a set of frequencies and will have cutoff frequencies 

depending on the critical bands of frequency. The frequency responses of the time 

domain filters are such that they emulate the ATH curve as closely as possible. The 

signals are first passed through a high pass filter comprising the highest critical band. The 

power under that curve is calculated using equation: 

P= 2

1

1n

i
i

X
n=

×∑     (9) 

 

Where Xi is the amplitude of a particular sample i and n is the number of samples 

calculated. In our implementation, n= 1024. This power is compared with the power 

under ATH curve in that region. If the total power of samples is greater than the ATH 

power in that critical band, then the computation for highest frequency stops there and the 

sampling frequency is set to the nearest available frequency which should be 

approximately equal to double the highest frequency for that filter. If the power is less 

than ATH power of that critical band, then the power computation and comparison takes 

place for the band pass filter of the next lower critical band and this process is repeated 

until the power becomes greater than the ATH curve for that critical band. 

 Mathematical modeling and implementation tests described later show that the 

FFT method is a superior method both in terms of accuracy and also power savings. 
  

5.2 MATLAB MODELLING FOR FEASIBILITY OF THE THEORY 
 
To determine the feasibility of the proposed theory of power savings using dynamic 

sampling rate, Matlab simulations were done to find the distribution of frequency in the 
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audio spectrum. Two different types of audio inputs were chosen, Voice and Music, to 

determine the difference in frequency spectrum of the two types of audio signals. Each of 

these audio inputs was categorized into three frequency bands - Low, Medium and High. 

The three frequency bands were defined as follows: 

Table 1: Frequency Bands 

Frequency Band Frequencies 

Low F < 5 KHz 

Medium 5 KHz < F < 12 KHz 

High F > 12 KHz 

 

The method of determination of the frequency bands as shown in Table 1 has been 

described in Section  6.1.1. The audio was divided into frames of 1024 samples. The 

highest frequency content sample with a PSD above the ATH curve is determined for 

each frame. The frequency determined for each frame is then categorized into one of the 

three bands in Table 1. 

 

Figure 12: Frequency distribution for voice samples 
Figure 12 shows the frequency distribution of highest frequencies of a voice sample  [1]. 

From this test it has been determined that about 19% of the samples are in the low 
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frequency range, 80% in medium frequency and the remaining 1% in the high frequency 

range. Therefore the CPU needs to run only for 1% of the time with maximum frequency 

and voltage and rest of the time at reduced frequency and voltage. 

 

Figure 13: Frequency distribution for music sample 
Similarly for the music sample  [6] in Figure 13, less than 1% of the samples are in low 

frequency range, 95% in medium frequency and about 2%-3% samples in the high 

frequency range. Therefore the CPU needs to run only for 2-3% of the time with 

maximum frequency and voltage and rest of the time at reduced frequency and voltage in 

case of music samples. The percent of time the sampling rate is set at low, high or 

medium have been determined from the frequency distribution of the voice samples 

(Figure 12) and music samples (Figure 13) and is collated in Table 2. 

Table 2: Power and frequency values used for power calculations 

Input Type Band Percent of time (%) 

Low 1 

Medium 95 

Music 

High 4 

Low 19 

Medium 80 

Voice 

High 1 
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Based on the data sheet of the TMS320C5510, the power is calculated based on 

the following equation: 

Paverage = Pstatic + Plow . Tlow + Pmed . Tmed + Phigh . Thigh      (10) 

where, Paverage  is the average power consumed by the CPU. Pstatic is the power consumed 

when all the CPU and the internal memory accesses are idle. Pstatic  has been measured as  

12.15 mW. Plow, Pmed and Phigh are the power values in mW consumed at low, medium 

and high frequency band respectively. Tlow, Tmed and Thigh are the percent to time the 

frequency is low, medium and high respectively. The values of Plow, Pmed and Phigh depend 

on the clock frequency of the CPU which also depends on the number of processed filters 

and the amount of time to do all the computations in a frame. 

The power consumed with worst-case current values for the CPU is calculated for 

different number of load filters. The number of coefficients required for each of the load 

filters is determined by analysis, which will be discussed in Section  6.1.1. The values of 

the clock cycles for different number of load filters are taken from TMS320C5510 

datasheet. The power values have been calculated based on the worst-case output load 

current in the datasheet.     

Table 3: Distribution of CPU clock cycles and power consumed in three different 
frequency bands (for Music samples) for different number of filters 

Low Medium High No of 

filters 
fclk  (Hz) Plow(mW) fclk  (Hz) Pmed(mW) fclk  (Hz) Phigh(mW) 

0 5,672,800 2.8 5,670,000 3.18 5,673,000 5.45 

2 5,790,700 8.53 16,670,000 9.67 6,138,000 16.55 

4 5,908,700 14.25 27,650,000 16.16 6,603,000 27.65 

6 6,026,700 19.98 38,630,000 22.65 7,067,000 38.75 

8 6,144,700 25.71 49,620,000 29.14 7,532,000 49.86 

10 6,262,600 31.43 60,610,000 35.62 7,997,000 60.96 

16 6,616,600 48.61 93,570,000 55.09 9,392,000 94.27 

20 6,852,500 60.06 115,550,000 68.06 10,321,000 116.47 

27 7,265,400 80.09 154,000,000 90.77 11,949,000 155.33 

30 7,442,400 88.68 170,480,000 100.51 12,646,000 171.99 

37 7,855,300 108.71 208,940,000 123.21 14,273,000 210.85 
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Table 3 shows the distribution of CPU clock cycles and power consumption in three 

different frequency bands for different number of filters for music samples and Figure 14 

shows the power consumption calculated for music samples for increasing number of 

filters. 

 

 

Figure 14: Calculated power consumption vs. number of load filters for music 

 
Table 4 shows the distribution of CPU clock cycles and power consumption in three 

different frequency bands for different number of filters for voice samples and Figure 15 

shows the power consumption calculated for voice samples. It can be observed that the 

voice samples have fewer frames with high frequency content. Therefore the power 

consumed for a large number of load filters is less. 
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Table 4: Distribution of CPU clock cycles and power consumed in three frequency 
bands for voice samples 

Low Medium High No of 

filters 
fclk (Hz) Plow(mW) fclk (Hz) Pmed(mW)  fclk (Hz) Phigh(mW) 

0 5,673,000 2.8 5,670,000 3.18 5,672,800 5.45 

2 7,219,000 6.83 12,180,000 7.74 5,756,400 13.25 

4 8,766,000 10.86 18,680,000 12.30 5,840,000 21.05 

6 10,312,000 14.88 25,190,000 16.87 5,923,600 28.86 

8 11,859,000 18.91 31,690,000 21.43 6,007,200 36.66 

10 13,406,000 22.93 38,190,000 25.99 6,090,900 44.45 

16 18,045,000 35.00 57,710,000 39.67 6,341,700 67.88 

20 21,138,000 43.05 70,720,000 48.79 6,509,000 83.49 

27 26,551,000 57.14 93,480,000 64.75 6,801,600 110.52 

30 28,871,000 63.17 103,240,000 71.60 6,927,100 122.52 

37 34,284,000 77.26 126,000,000 87.56 7,219,700 149.83 

 

 

Figure 15: Calculated power consumption vs. number of load filters for voice 
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5.3 DOWNSAMPLING AND UPSAMPLING 
 
After the frequency with highest audible SPL has been determined for a frame, the input 

samples to the filters are adjusted based on the output sampling rate of the frequency 

determination stage. The number of samples to be processed in the subsequent filters 

should be adjusted so that number of input samples from the A/D converter is same as the 

number of output samples to the D/A converter. Therefore if a lower sampling rate is set 

after frequency determination, the clock frequency for subsequent filtering operations is 

also reduced. The number of samples needs to decrease for CPU processing at a reduced 

frequency, since processing the original number of samples with a reduced operating 

frequency will take more execution time for the DSP. The number of samples will be 

reduced depending on the highest frequency component signal in a frame. The dropping 

of samples depending on the sampling rate is known as downsampling. The 

downsampling ratio is equal to A/D converter sampling frequency divided by fs. The 

downsampling ratio should be an integer to minimize downsampling overhead. For 

example, if the downsampling factor is two, then every other sample will be dropped. In 

this case the number of samples to undergo CPU processing is half of the original 

number. Similarly, if the sampling rate is decreased by a factor of three, then every third 

sample will be kept from the original input signal. The above relation has been 

represented by a general equation 

B [x] = A [Mx + (M – 1)]     (11) 
 

where A [] is the input array which consists of the original number of samples sampled 

by the A/D converter at 48 kHz sampling frequency, B[] is an array to store the result of 

the down sampling,  M is the factor by which the sampling rate has been reduced, x  =  0 

to K. K represents the size of the output buffer to the CPU. If N is the input buffer size, 

then K = N / M. 

After the samples have gone through processing steps like filtering, amplification 

etc., the number of samples fed into the D/A converter should be equal to the original 

number of samples produced by the A/D converter. The reason is that in our 

implementation, the same codec does both A/D and D/A conversion and it requires the 

input and output rate to be the same. In cases where separate A/D and D/A converters are 
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used, the input frequency need not be equal to the output frequency. Therefore, in our 

implementation setup if a frame has undergone downsampling before the processing 

stage, it needs to be upsampled and converted back into analog signals to be transmitted 

by the speaker. Up sampling ensures that the D/A converter will have enough data to 

reproduce a new signal at a fixed sampling rate.  Upsampling is done by predicting the 

value between two samples and inserting the predicted value between the two samples in 

order to increase the number of samples. We use linear interpolation to determine the 

data between two adjacent signals  [9]. There are other interpolation methods like 

convolution with sinc function or bilinear interpolation that can be used for data 

interpolation but linear interpolation has been used because it is computationally 

inexpensive and is easy to use. Linear interpolation averages the two sample values 

weighting them by the ratio of the distance of the point to each sample. Linear 

interpolation assumes that the rate of change between any two points is constant. 

Linear interpolation may introduce noise into the system because linear 

interpolation introduces a fairly large amount of aliased signals at higher frequencies 

 [32]. Therefore it must be ensured that upsampling and downsampling does not affect any 

perceivable quality of the signals. 

5.4 DYNAMIC FREQUENCY AND VOLTAGE SCALING 
 
The amount of computation required to filter each frame is directly proportional to the 

number of samples in a frame. When the samples below the ATH curve are discarded, the 

difference in the signal output should be indistinguishable from a frame in which all 

samples were processed, so that the discarded work had zero value. It has been observed 

that operating the DSP with DSR technique utilizes the slack more effectively than if the 

DSP runs at a fixed sampling rate  [21]. This behavior is governed by equation (8). In this 

equation Texec can be defined as 

Texec    = _

clk

clock cycles
f

 (12)

In order to utilize the slack, the execution time for that low frequency frame is 

adjusted, so that the sum of the processing time and frequency determination time uses up 

the whole 20 ms frame. With change in frequency, the voltage gets dynamically changed. 
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The actual operating voltages and the frequencies will depend on the operating ranges the 

hardware can support. In some hardware, a particular voltage will support only a set of 

frequencies. The CPU should operate such that it fully utilizes the slack and at the same 

time operates at the lowest possible frequency. This will not only ensure that the CPU 

consumes less power but also meets the no deadline requirements. Thus, by dynamically 

scaling both voltage and frequency of the processor based on computation load, DVS can 

provide the performance to meet the computational demands. 
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CHAPTER 6 

IMPLEMENTATION 
 
A Texas Instrument DSP kit TMS320C5510 was used to simulate the psychoacoustic 

functions of a hearing aid and do the variable sampling rate measurements  [7]. The 

TMS320C5510 chip is a low power DSP  [6]. This kit consists of a TMS320C5510 DSP 

processor and an AIC23 stereo codec. The codec acts as A/D and D/A converter and 

supports a range of sampling rates from 32 kHz to 96 kHz. However, adjusting the codec 

speed takes considerably longer than one frame period; hence the codec was operated at a 

fixed sampling rate. The core processor allows voltage scaling and frequency scaling. 

The voltages supported are 1.1 V and 1.6 V. The frequency can be scaled from 6 MHz to 

200 MHz. Not all voltages support all the frequencies. Table 5 summarizes the 

frequencies supported by each of the voltages  [33]. 

Table 5: Supported frequencies for voltages in TMS320C5510 DSP core processor 

Voltages Frequencies 

1.1 V 6 MHz to 72 MHz 

 

1.6 V 72 MHz to 200 MHz  

 
The audio data moves from the codec A/D to memory, is processed, and moves 

back to the codec D/A in a pipelined fashion. The audio data is transferred back and forth 

between the AIC23 codec and memory using a Multichannel Bidirectional Serial Port 

number 2 (McBSP2). The DMA transfers the data from the McBSP2 to the input buffer 

and from the output buffer to McBSP2. The McBSP2 is a serial port, which is capable of 

full duplex communication. The McBSP2 has double-buffered transmit and receive data 

registers, which allow continuous data stream. A DMA controller moves the entire frame, 

while CPU is processing the data. The DMA takes every 16-bit signed audio sample from 

the McBSP2 and stores it in a buffer in memory. In parallel, the highest frequency of the 

last 20ms sampled frame is computed and the audible data is stored in an intermediate 

buffer, which can be processed by the DSP core.  Once the CPU core has processed the 
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input data, it is sent back out through McBSP2 to the codec for output. DMA channel 0 is 

used for transmitting data to the codec and channel 1 is used to simultaneously receive 

data from the codec. The Multichannel Bidirectional Serial Port number 1 (McBSP1) is 

used to control/configure the codec.  

The constant sampling rate of the codec was set to fmax = 48 KHz with a frame 

size of 1024 samples because reconfiguring the codec takes more than the total time 

between samples. The downsampling was implemented by dividing the fmax by factors of 

2. Therefore the effective sampling rates used were 48 KHz, 24 KHz, 12 KHz, 6 KHz, 3 

KHz, and so on. 

The hearing aid uses ping-pong buffering for transmitting and receiving data 

samples for both left and right ears. This technique is used to make data transfer seem 

stationary. There are two groups of buffers - “PING” buffer and “PONG” buffer for each 

of the following combinations- receive, transmit, left and right. Two for transmit left and 

transmit right channels and two for receive left and receive right channels. Totally there 

are eight buffers-4 “PING” and 4 “PONG”.  The DMA controller is configured such that 

when data is transferred to or from the codec to the PING buffer, the CPU moves data out 

of the PONG buffer possibly processing it at the same time. At the end of the frames, the 

data transfer roles are reversed and the PING buffer is processed by the DSP while the 

PONG buffer is involved in data transfer and vice-versa. This system of using alternate 

buffers provides a processing window of time equal to an entire buffer size instead of a 

single sample time. 

One of the major challenges in our implementation was that the frequency change 

in the hearing aid interferes with the transfer of data samples in the DMA. The 

workaround for this limitation is to break the transfer of each frame into two parts. 

During the first part, the DMA controller fills part of the current buffer the next 

frequency is computed. Then the DMA stops and the frequency is changed. During the 

remaining time data is removed from the buffer. The hearing aid computations are 

performed while the second part of the buffer is filled. After frequency scaling, the 

second state reconfigures the DMA and continues to fill up the rest of the empty buffer 

space from the point where it stopped previously.  
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The experimental setup consists of the TMS320C5510 starter kit, a PC sound 

card, a Tektronix current probe, a Tektronix TDS 3012B digital oscilloscope and the 

AM503B current probe amplifier. The PC sound card supplies audio inputs to the “line 

in" on the starter kit. The Tektronix current probe and AM503B current probe amplifier 

are connected to the digital oscilloscope and measures the current through the DSP 

supply pins and the voltage at the DSP supply pins. The power consumed by the DSP is 

computed using the oscilloscope multiply and RMS function. The audio inputs were a 

CD recording of music  [29] and voice  [1] data sets. The block diagram for the 

implementation is shown in Figure 16. 

 

 

DIGITAL  VOLTAGE
OSCILLOSCOPETMS320C5510 

DSP CODEC 

 

Figure 16: Block Diagram for the Implementation Setup 
 

The filters used for processing the audio signals were a set of dummy filters with 

similar number of coefficients as those filters used in real hearing aids. This load varies 

from 1 to 50 filters having 50 to 200 coefficients to emulate the load for a frequency 

shaping filters  [22]. Real hearing aids use adaptive noise reduction, interaural time delay, 

and multichannel amplitude compression  [22], though they should have similar power 

consumption characteristics.   

6.1 TIME DOMAIN IMPLEMENTATION  
 
The frequency determination in time domain implementation is achieved through the use 

of a set of Finite Impulse Response (FIR) filters. These FIR filters function as bandpass 

PC 
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filters for several frequency bands. The highest audible frequency is determined by 

calculating the cumulative power of the signals in each band and comparing them against 

the power under the ATH curve in the same frequency range. If the power in any higher 

frequency band is greater than the ATH power, then the highest audible frequency is set, 

otherwise the power comparison is done iteratively for lower frequency bands. In order to 

implement the FIR filter, we must select an optimum set of filter coefficients for each of 

the filters used. For a higher number of filter coefficients, the frequency response for the 

filter is very sharp and the filter efficiently removes signals outside the pass band. The 

execution time increases linearly with the number of filter coefficients. However, 

increasing execution time leads to more power consumption for the CPU. Ideally the 

resultant frequency response of all the FIR filters used for frequency determination 

should be equal to the ATH curve. Therefore there is a tradeoff between number of 

coefficients and execution time.  

We also need to determine the ranges of cutoff frequencies for each of these FIR 

filters. In this case the range of the cutoff frequencies should be determined based on the 

critical bands as described in Section  2.2. The following section demonstrates the method 

used in determining the FIR filter coefficients. 

6.1.1 SELECTION OF FIR COEFFICIENTS 
 
 FIR filters have several characteristics that make them ideal for DSP implementation. 

1. Ease of implementation 

2. Linear phase response, which helps prevent distortion.  

3. Easy to represent as matrices of coefficients. 

When a frame of samples is collected, the highest audible frequency will be 

determined by applying a cascade of time domain FIR filters. The first filter applied to 

the incoming audio frame is a high pass filter and the total power of the signals is 

compared against the ATH power in the high pass band to determine if there is any 

significant high frequency content present above the ATH curve. If the high frequency 

content is below the ATH, then a bandpass filter is applied and the power is checked for 

any frequency content over the ATH curve in the bandpass zone. If only a  high pass 

filter were used instead of a bandpass filter, the number of coefficients would be fewer,  
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but the energy of the filtered signals  would include energy of both the high pass zone ( 

>12 KHz) and the medium zone (5 KHz – 12 KHz). The ATH curve rises sharply near 

the extreme higher frequency end of the hearing range. Therefore the high frequency 

energy (>12 KHz) would be enough to trigger the medium band high pass filter, even 

though the high frequency component is inaudible and below the ATH curve.  

The coefficients of these time domain FIR filters are determined on the cutoff 

frequencies. The cutoff frequencies of the filters are determined by concatenating the 

voice and music samples after sampling them at 48 KHz. A histogram was generated 

from the merged audio samples. The histogram is the sum of Figure 12 and Figure 13. 

After adding the cumulative area under the curve of the histogram, the total sample count 

for the merged audio sample was determined. The area under the curve was divided into 

equal portions of 3 bands. The boundary values of the 3 equal bands were set to be the 

cutoff frequencies of the FIR filters. The cutoff frequencies determined by the above 

method for the three filters are as follows: 

• Low pass filter 5 KHz 

• Band pass filter 5 KHz – 12 KHz 

• High pass filter 12 KHz 

Since there were not any samples above 16 KHz, an additional low pass filter 

with cut off frequency around 16 KHz should be applied. This can additionally serve as 

an anti-aliasing filter. The frequency response and the coefficients of the filter were 

determined using the Matlab filter design tool. The filters are of type equiripple because 

any other type of supported FIR filter needs more coefficients. 

 The number of coefficients for each filter was determined experimentally. We 

started by analyzing the response of the filter with very few numbers of coefficients 

because as mentioned in Section  6.1, the more the number of coefficients a filter has, the 

more computation overhead it will add. The magnitude responses for filters with fewer 

coefficients were not very sharp. The number of coefficients was increased to sharpen the 

falloff response until we got the desired magnitude response. This experiment was done 

for all the 3 filters - low pass, band pass and high pass. The numbers of coefficients for 

all the 3 types of filters, found experimentally, are in Table 6. 
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Table 6: Number of coefficients for each type of filter 

Filter type Number of coefficients  

Low pass 20 

Band pass 60 

High pass  35 

 

Figure 17 shows the response of a high pass filter with order 35. An ideal high pass filter 

would block all signals below the cutoff frequency but setting closer to ideal behavior 

requires more coefficients. We do not always require a perfect filter response. Once the 

signal is attenuated to a level below the ATH curve, it does not need to be suppressed 

further. Thus the filter response can have any shape that suppresses frequencies below the 

cutoff frequency to a level below the ATH curve. For lower orders of filter coefficient the 

magnitude response was not as sharp as the magnitude response of ATH curve. The filter 

order is adjusted depending on the magnitude response of the filters. The same approach 

is used in the determination of the response of the Bandpass and low pass filters. 
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Figure 17: Magnitude response of high pass filter (order =35) with cutoff frequency 
=12 kHz 

 

Figure 18 shows the frequency response of a low pass filter. In this case the filter order 

20 is less since the response is not so steep in this case. 
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Figure 18: Magnitude response of a lowpass filter (order =20) with cutoff frequency 
nearing 5 kHz 

 

Figure 19 shows the frequency response of a bandpass filter with pass band being 

frequency between 5 kHz to 12 kHz. In this case the order of the filter is 60 and is higher 

than the other two filters because we need to match the frequency responses of the curve 

at two ends of the band and not at just one end as for other filters. 
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Figure 19: Magnitude response of a bandpass filter (order =60) with cutoff 

frequency with 5 kHz - 12 kHz 
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From the above analysis of frequency response curves, we determined the number of 

filters and their respective coefficients according to the computation load at each of the 

three sub-bands. 

6.1.2 FREQUENCY DETERMINATION 
 
Figure 20 shows the process by which the sampling rate is determined by time domain 

filters.  

 
 

 
Figure 20: Flowchart showing fmax determination in Time Domain method 

 
The frequency responses of the time domain filters are kept in such a way that it emulates 

the ATH as closely as possible. The frequency is determined in the following way. The 

signals are first passed through a high pass filter comprising the highest critical band. The 

power under that curve for that band is calculated as: 
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where Wi is the ith filtered buffer values. This power is compared with the power under 

ATH curve in that region. If the total power of samples in that band is greater than the 

ATH power in that band, then the computation for highest frequency stops there and the 

sampling frequency is set to the nearest available frequency which should be 

approximately equal to double the highest frequency for that filter. If the power is less 

than ATH power of that band, then the power computation and comparison takes place 

for the band pass filter of the next lower band and this process is repeated until the power 

becomes greater than the ATH curve for that band. 

The number of clock cycles that each of the stages takes has been summarized in 

Table 7. These number of clock cycles were determined from the TMS320C5510 DSP 

library reference documentation [35].  

Table 7: Average clock cycles using time domain for maximum frequency 
determination 

Operation Clock cycles 

Frequency determination using total number of FIRs  37000 

CPU processing load/filter (208 coefficients)  110000 

Post processing (upsampling of samples)  57000 

 

The FIR filters used as CPU processing load have been coded in assembly 

instructions. These functions were supplied by library functions. This increases the 

execution speed of the CPU since it uses efficient pipelining which gives optimized code 

and low power throughput  [35]. 

6.2 FREQUENCY DOMAIN IMPLEMENTATION  
 

In the frequency domain applications, FFT operation was used to determine the 

maximum frequency content with audible PSD in the input audio signal. The input audio 

signal is broken up into frames, each containing 1024 samples. The FFT operation is used 

to determine the Power Spectral density of the signal for each frequency in a frame. The 

CPU checks for the highest frequency in the sampled frame with Power Spectral Density 

greater than the ATH curve value. After determination of the highest frequency, the 
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sampling rate is set to the nearest value greater than twice the highest audible frequency 

content in that frame. 

  

Figure 21: Graph showing fmax determination in Frequency Domain method 

Figure 21 shows the frequency spectrum of a 20ms frame of audio. The dotted line is the 

ATH curve and any tone below the ATH curve is suppressed. The highest audible 

frequency where the tone is above the ATH curve is around 17 Barks (around 4500 Hz) 

and is determined as the fmax for this frame. 

The TI TMS320C55x DSP library  [35] supports the FFT function. The number of clock 

cycles that each of the stages took has been summarized in Table 8. 

Table 8: Average clock cycles using frequency domain for maximum determination 

Operation Clock cycles 

Frequency determination using FFT  64000 

Constant CPU processing load (208 coefficients)  110000 

Post processing (upsampling of samples)  57000 

 

Table 8 shows the number of clock cycles required for FFT operation is more than the 

frequency determination using time domain FIR filters. In the time domain case the 

power determination is a cruder method to compress audio signals in order to determine 
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the highest audible frequency in a frame while the FFT method is far more accurate 

method and therefore more performance intensive. 

6.3 RESULTS   
 

The power consumption in a standard hearing aid using both variable sampling rate and 

constant sampling rate is as shown in Figure 22 for music input. In this figure the power 

for both the normal and DSR methods is plotted against the number of filters the CPU 

had processed. In the DSR method, the sampling frequency for each frame was adjusted 

to twice the highest frequency determined for a frame and then rounded off to the next 

highest frequency the hardware can support. For the normal constant sampling rate 

method, the chip was run at a constant sampling rate such that the CPU processing time is 

within the frame time period. 

 From the graph, it can be seen that for fewer filters the power consumption for 

both normal and DSR method is almost equal because the hearing aid runs at a low 

frequency in both cases. Therefore the core voltage always remains at 1.1 V and never 

switches to 1.6 V. As the number of filters increase, the difference in power consumption 

is appreciable. In this case the normal hearing aid runs at 1.6 V almost all the time 

whereas the DSR hearing aid now switches voltage depending on the frequency content 

of the frame.  
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Figure 22: Power consumption vs. no. of filters for music samples 
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In Figure 23, the comparative power consumption for voice samples is shown. The power 

consumed in case of voice samples is much lower because most of the frames containing 

the voice inputs have lower frequency content than frames containing music inputs. The 

power consumption shown in both the figures will vary depending on the type of music 

or voice samples but the results shown are indicative of the difference in power 

consumption for music and voice samples.  
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Figure 23: Power consumption vs. No. of filters for voice samples 
 
From Figure 22 and Figure 23, it can be seen that the power saving is more for time 

domain method than for FFT method. It is quite contradictory from the data in Table 7 

and Table 8 since the FIR filters ideally take fewer clock cycles to execute than FFT 

operations. The contradiction can be explained by the fact that in about 30% of cases, the 

FIR filters do not accurately measure the highest frequency in a frame as observed from 

the discrepancy from Figure 24 for music samples and Figure 25 for voice samples. In 

these figures it can be seen that the distribution of sampling rate determined from the 

time domain method is different from the distribution in the case of FFT method.  In most 

cases the highest audible frequency determined is higher than actual value, therefore the 

sampling rate set to a higher value. Therefore in the case of time domain method, the 

CPU runs at higher clock frequency in most cases and hence the core voltage rarely drops 

from 1.6 V to 1.1 V. In the case of FFT, the frequency determined is accurate and since 

the frequency content is in low or medium frequency bands in most of the cases, 

therefore the DSR hearing aid runs at 1.1 V more frequently than at 1.6 V. This leads to 
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greater power savings. The difference is marked in the case of the music stream where 

the high frequency component is predominant.  
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Figure 24: percentage of samples vs. set sampling frequency for music 

 

0
10

20
30

40
50

60
70

80
90

3 6 12 24 48
Sampling Frequency(in KHz)

Pe
rc

en
t o

f F
ra

m
es

Time Domain Frequency Domain

 

Figure 25: percentage of samples vs. set sampling frequency for voice 
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Therefore the major advantage of the Frequency domain FFT method is that there is 

marked improvement in the power consumption with respect to the time domain method 

but at the cost of higher overhead in clock cycles for FFT operation. It can also been seen 

that when the number of load filters is 0, the power consumed by normal non-DSR 

method is around 19mW and for both time-domain DSR and frequency-domain DSR, the 

power consumed is about 21mW.  In this case the load is the high pass anti-aliasing FIR 

filter which is required to remove the high frequency components from the signal. 

Comparing Figure 14 and Figure 22 for music samples and Figure 15 and Figure 

23 for voice samples, we observe that the implementation results are different from 

theoretical power consumption. The first discrepancy is the mismatch between the power 

consumption without using DSR. The theoretical calculations are higher compared to 

implementation results. This can be attributed to the fact that we use worst-case values 

for theoretical calculations where the values are higher than normal. Another discrepancy 

is that in case of DSR power consumption results, the implementation values are higher 

than theoretical results. This is because, in case of DSR, a major portion of the power is 

used up during frequency and voltage switching, which is not accounted for in the 

theoretical results. For example, switching from 1.1V to 1.6V takes about 10 - 15mW. 

6.4 HARDWARE LIMITATIONS 
  
The TMS320C5510 DSP starter kit has several hardware limitations. The first limitation 

is related to the transfer of data by the DMA controller. In the case of the constant 

sampling rate method, the frequency remains the same and the DMA controller can work 

in parallel with the DSP processing of frames. Therefore the rate at which the data is 

transferred is equal to the rate at which the DSP processes the data. In the case of 

dynamic sampling rate, the DMA transfers data at a different rate than the DSP processes 

data. There will be no problem if the frequency switching takes place within the frame 

time period (around 20 ms in this case) or if the DSP can independently work while the 

frequency is being changed. But according to experimentation the frequency locking by 

the Phase Locked Loops (PLL) takes between 20 us to 80 us. If there is a change in 

voltage along with frequency switching it takes on the order of 500 ms to 2 ms for the 

system to stabilize. Therefore the time required to stabilize the PLL is more than the time 
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between two samples. This causes some of the audio samples to be dropped causing 

deterioration in the signal quality. 

The frequency switching interferes with the transfer of samples in the DMA from 

McBSP2 to the buffer or vise-versa. Therefore the DMA needs to stop transferring data 

while frequency or voltage changes. The library functions are modified such that the 

ping-pong buffers will break into two states. In the first state the fmax is determined while 

in the second state the clock frequency is switched and the samples are processed. Thus 

the voltage scaling is made independent of the transfer of buffers such that the DMA 

continues data transfer during voltage change. This makes the DMA data transfer 

dependent only on frequency scaling. The DVS function is executed only when the 

current core voltage is 1.1 V and the computed clock frequency is greater than 72 MHz or 

when the current core voltage is 1.6 V and the clock frequency becomes less then 72 

MHz. 

 However the problems could be easily solved if the hardware could support a 

frequency divider instead of a PLL so that the frequency switching can take less time to 

switch speeds. Also another PLL could be added such that while one PLL acts as clock to 

the CPU the other can sync to the switched frequency and the CPU can be switched 

between these two PLLs depending on a multiplexed input as shown in Figure 26.  

The TMS320C5510 DSP supports only two levels of voltage 1.1 V and 1.6 V. 

The DSR method will show better results for a wider range of voltage supporting 

different frequencies. 
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Figure 26: Two-PLL model for separate clock inputs 
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For a wide range of voltage the power consumed by samples in the intermediate 

frequency bands will be lesser. This method has a distinct advantage over the constant 

sampling rate method in case of low frequency content frames where it operates at a 

lower voltage. Ideally, each sampling rate should have its own voltage, which runs with a 

fixed set of frequencies. 

 

6.5 AUDIO QUALITY TESTING  
 

In case of frame-based DSR method, if any of the deadlines for the samples are 

missed, it might cause buffer overflow in the hardware, which will in turn deteriorate the 

signal quality. It is also possible that errors could cause noise. Therefore it is important to 

test the quality of the audio that is produced from the test setup. The audio quality was 

tested two ways: 

1. Taking the frequency spectrum of the input and output signal and then subtracting 

one from the other without any amplification. The resultant spectrum is noise 

signal caused due to various steps of processing like frequency determination, 

filtering, upsampling and downsampling. The noise signal should be below the 

ATH curve showing that the noise added is imperceptible. 

2. Using human ear to compare the output without any processing and the output 

with processing. In this case, the input was a PC sound card and the output was a 

PC speaker. A continuous stream of music was played to discern any perceptible 

difference in the audio quality. 

In the first case, we use Matlab to read the input and the output signals, carry the 

subtraction operation and then plot the frequency spectrum of the resultant noise signal. It 

was verified that the noise introduced in the output signal after subtracting the input 

signal from the output signal is well below the ATH curve. This test was carried out for 

both music and voice samples using both time domain method and frequency domain 

method of frequency determination. For both the time domain and frequency domain 

method it was ensured that the FIR filters and the FFT operations respectively do not 

contribute to any noise over the ATH curve in the system.  

 44



In the second case, we made an informal quality check on the output music and voice 

samples from the PC speaker to make sure that there was no perceived quality 

deterioration compared to the original sound. Two people listened to the output and could 

not distinguish between the original signal and the DSR output. 
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CHAPTER 7 

CONCLUSION 
 
The DSR technique for an audio application involves dynamically changing the sampling 

rate in response to the input audio signal. The variations in the input audio are of types - 

high frequency e.g. music and low frequency e.g. voice. The sampling rate is set based on 

the highest audible frequency content in an audio frame. This highest frequency has been 

determined by using two methods: time domain method and frequency domain method. 

The sampling rate provides opportunities to vary frequency and voltage and thereby 

decrease power consumption.  

In our implementation, the hearing aid prototype using DSR method gives us 

power savings of up to 26% for Time domain method and 40% for FFT method of its 

normal power consumption i.e. without using DSR. There is no perceptible output quality 

degradation. The power consumption for this prototype is based on the filter processing 

load and the profile of the input signal. If the number of coefficients is higher for a filter, 

the power consumed is more. Also, in case of music samples the power consumed is 

more because of higher number of high frequency frames.  For higher frequency content 

frames, the sampling frequency set is high.  According to the simulation calculations, the 

maximum percentage of power saving possible is around 65%. Improvement in the 

power numbers can be achieved by supporting more voltage options for different 

frequencies and by reducing the settling time for the frequency and voltage scaling 

method. This method may apply to any other portable DSP application where battery life 

is critical. 

 

7.1 FUTURE WORK  
 
In order to determine the highest frequency content of a frame, the compression method 

used in our method is removal of audio bits, which are otherwise inaudible to a normal 

human ear and therefore below the ATH curve. There are a lot of other audio 

compression methods like simultaneous masking, temporal masking, tone masking, noise 

masking  [20], which can help in the determination of a global threshold of hearing. Some 
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of these compression methodologies can be complex and can take more computation 

clock cycles. This ultimately leads to more power consumption on the part of the DSP. 

On the other hand the compression methods can reduce the number of samples to be 

processed in the later stages. Therefore extensive research needs to be performed to 

determine which of the audio compression methods should be used to get maximum 

power savings. On average the time required for determining the sampling frequency 

should be significantly lower than the CPU processing time, otherwise the effectiveness 

of the technique decreases. 

 The technique for reducing power using dynamic sampling rate and DVS 

principles can be used for other DSP applications, which have a repeatable set of inputs. 

As discussed earlier, this methodology will be very effective for applications where a 

large percentage of the power savings can be obtained by reducing the number of 

samples. Also, we can have adaptive filtering based on the sampling rate. There are load 

filters which may consume less power at particular operating frequencies depending on 

the hearing aid functions they may be performing. An extensive analysis on the audio 

algorithms and the coefficients in the filters will give us a better understanding of the 

scope of power reduction techniques in such audio devices. 

 There are many interpolation methods, which can be used during upsampling after 

the CPU has processed the samples  [20] that produce superior quality output sound. In 

this case too, a judicious decision needs to be made on the choice of interpolation 

algorithms based on complexity of the algorithm and the output sound quality. 
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CHAPTER 8 

APPENDICES 

8.1 MATLAB CODE 
 
Main.m 
clc; 
clear; 
 
%s gives the intensity of the sound,fs-sampling frequency 
% default sampling rate=48khz //depends on sampling rate of the sound file 
 
[s, Fs,nbits] = wavread('OyeComoVa.wav'); 
    
frame_strt=0;        % starting index of a frame 
low_freq=0;          %no of times the audio signal goes in low frequency zone 
mid_freq=0;          %no of times the audio signal goes in mid frequency zone 
high_freq=0;         %no of times the audio signal goes in high frequency zone 
 
point=1024;%FFT points(there will be 513 points between 0khz to 24khz) 
 
%process till end-of-file, whichever comes first 
frame_size = 20*Fs*10^-3; 
frame_size = point; 
hist = zeros(floor(frame_size/2)+1,1); 
while( (frame_strt + frame_size) < size(s,1) ) 
     % extract out a frame of 20 ms 
     frame=s(frame_strt + 1 : frame_strt + frame_size); 
      
     psd_val=(abs(fft(frame,point))).^2; 
     for psd_size=1:1:1024 
        if(psd_val(psd_size)==0.0000) 
            Pxx(psd_size)=powernormconst; 
        else 
           % extract out PSD for particular frequecies 
           Pxx(psd_size)=powernormconst + 10.*log10(psd_val(psd_size)); 
        end 
    end 
 
     Pxx1=Pxx(1:512);% extract out PSD for particular frequecies 
       
     audible = Pxx1 >= ath(F); 
     freq_content(i)=F(max_freq); 
     i=i+1; 
     for max_freq = size(F):-1:1 
  if (audible(max_freq)) 
       break 
  end 
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     end 
     hist(max_freq) = hist(max_freq) + 1; 
 
     disp(sprintf('max freq = %f', F(max_freq))); 
           
     if  (F(max_freq) < Fs/8) 
          low_freq=low_freq+1;       
     elseif (F(max_freq) <Fs/4)  
           mid_freq=mid_freq+1;    
     else 
           high_freq=high_freq +1 ; 
     end 
                  
    frame_strt = frame_strt + frame_size;         %increment to new frame no. 
end 
 
disp('Frequency density'); 
 
total = low_freq + mid_freq + high_freq; 
disp(sprintf('of %d samples %f %% were low, %f %% were mid-range, and %f %% were high 
frequency\n', total, 100*low_freq/total, 100*mid_freq/total, 100*high_freq/total)); 
 
int_content=round(freq_content); 
sat_un = unique(freq_content); 
for val = 1 : length(sat_un) 
fprintf('Value %d, Occurences %d\n', sat_un(val), ... 
sum(freq_content== sat_un(val))); 
occur(val)=sum(freq_content== sat_un(val)); 
end 
 
bar(sat_un,occur) 
 
ath.m  
function a = ath(f) 
% ATH  Audible threshold level.  Return the audible threshold at a particular 
%      frequency. 
%  
a  = 3.64*((f/1000).^-0.8) - 6.5*exp(-0.6*((f/1000)-3.3).^2) + 10^-3*(f/1000).^4; 

8.2 C CODE 
Hearing_Aid.c 
#include "hearing_aid.h" 
#include "processing.h" 
 
/*  The 5510 DSK Board Support Library is divided into several modules, each of which has its 
own include file.  The file dsk5510.h must be included in every program that uses the BSL. This 
example also uses the DIP, LED and AIC23 modules.  */ 
 
#include "dsk5510.h" 
#include "dsk5510_led.h" 
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#include "dsk5510_dip.h" 
#include "dsk5510_aic23.h" 
#include "psl.h" 
#include "ath.h"    //ATH array values imported from ath.m 
#include “filter_low.h”   //low pass filter coefficients values imported from MATLAB filter 
toolbox 
#include “filter_med.h”   //band pass filter coefficients values imported from MATLAB filter 
toolbox 
#include “filter_high.h”   //high pass filter coefficients values imported from MATLAB filter 
toolbox 
 
/* This program uses Code Composer's Chip Support Library to access C55x peripheral registers 
and interrupt setup.  The following include files are required for the CSL modules.  */ 
  
#include <csl.h> 
#include <csl_irq.h> 
#include <csl_dma.h> 
#include <csl_mcbsp.h> 
#include <csl_pwr.h> 
#include <csl_icache.h> 
#include <csl_pll.h> 
#include <dsplib.h> 
 
/* Function prototypes */ 
void initIrq(void); 
void initDma(void); 
void copyData(Int16 *inbuf, Int16 *outbuf, Int16 length); 
void setDMAdata_addr(int); 
void DVS(void); 
void downsamples(void); 
void upsamples(void); 
void processBuffer(void);  
void switchfrequency(void); 
long Maxfrequency(void); 
void computenextfrequency(void); 
void dmaHwi(void);  
 
/* Constants for the buffered ping-pong transfer */ 
#define BUFFSIZE          1024 
#define BUFFOFFSETinit   21 
#define PING              0x00 
#define PONG            0x02 
#define LEFT  0x00 
#define RIGHT 0x01 
 
/* Initial it for the 200MHz operate */ 
Uint16 BUFFOFFSET =BUFFOFFSETinit; 
 
/* Ping pong state variable */ 
Int16 pingPong; 
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/* power mode indicator */ 
int highpower = 1; 
 
/* frequency switch indicator */ 
int changefrequency = 0; 
 
/* upsampling last samples */ 
Int16 lastLs = 0; 
Int16 lastRs = 0; 
 
/* dynamic sampling frequency scaling rate */ 
int step; 
 
Int16 switch3; 
 
/* PSL data */ 
#define SETPOINT72MHZ 5 
#define SETPOINT200MHZ 15 
#define INITSETPOINT SETPOINT200MHZ 
#define ORDER           208 
#define samp_freq    48000 
 
PSL_Setpoint setPoint; 
PSL_Setpoint prevSetPoint = 15; 
PSL_ClkID clk = PSL_CPU_CLK; 
 
/* Clock cycle computation data */ 
#define other_CC  30 
#define UPDN_sampling 60 
#define RTDX_OH   1000 
 
int timeleft = 0; 
 
// speeds available in MHz, index == setpoint 
long gSpeedTbl[] = { 
 6, 12, 24, 48, 60, 72, 84,  
 96, 108, 120, 132, 144, 156, 168, 180, 200 
}; 
 
// gFFT must be 2x as big as sample buffers to accomodate complex data 
#pragma DATA_SECTION(gFFT, ".input"); 
Int16 gFFT[BUFFSIZE*2]; 
int step; 
 
/* Codec configuration settings */ 
DSK5510_AIC23_Config config = { \ 
    0x0017,  /* 0 DSK5510_AIC23_LEFTINVOL  Left line input channel volume */ \ 
    0x0017,  /* 1 DSK5510_AIC23_RIGHTINVOL Right line input channel volume */\ 
    0x01f9,  /* 2 DSK5510_AIC23_LEFTHPVOL  Left channel headphone volume */  \ 
    0x01f9,  /* 3 DSK5510_AIC23_RIGHTHPVOL Right channel headphone volume */ \ 
    0x0010,  /* 4 DSK5510_AIC23_ANAPATH    Analog audio path control */      \ 
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    0x0000,  /* 5 DSK5510_AIC23_DIGPATH    Digital audio path control */     \ 
    0x0002,  /* 6 DSK5510_AIC23_POWERDOWN  Power down control */             \ 
    0x0043,  /* 7 DSK5510_AIC23_DIGIF      Digital audio interface format */ \ 
    0x0081,  /* 8 DSK5510_AIC23_SAMPLERATE Sample rate control */            \ 
    0x0001   /* 9 DSK5510_AIC23_DIGACT     Digital interface activation */   \ 
}; 
 
/* 
 * Data buffer declarations  
 * gBufferRcv[PONG|RIGHT] selects the right, pong recieve buffer, or 
 * gBufferXmt[PING|LEFT] selects the left, ping transmit buffer. 
 */ 
Int16 gBufferRcv[4][BUFFSIZE];  // Top of receive buffer 
Int16 gBufferXmt[4][BUFFSIZE];  // Top of transmit buffer 
 
/* Event IDs, global so they can be set in initIrq() and used everywhere */ 
Uint16 eventIdRcv; 
Uint16 eventIdXmt; 
 
/* initIrq() - Initialize and enable the DMA receive interrupt using the CSL. The interrupt service 
routine for this interrupt is hwiDma. The interrupt enable and flag bits of this interrupt is bit 9 of 
the DSP's IER0 and IFR0 registers. The transmit interrupt is configured but not enabled so the 
program can detect when a block has been fully transmitted. */ 
void initIrq(void) 
{ 
 // Get Event ID associated with DMA channel interrupt.  Event IDs are a CSL //abstraction that 
lets code describe a logical event that gets mapped to a real physical //event at run time.  This 
helps to improve code portability. 
    eventIdRcv = DMA_getEventId(hDmaRcv); 
    eventIdXmt = DMA_getEventId(hDmaXmt); 
     
    // Clear any pending receive channel interrupts (IFR) 
    IRQ_clear(eventIdRcv); 
    IRQ_clear(eventIdXmt); 
  
    // Enable receive DMA interrupt (IMR) 
    IRQ_enable(eventIdRcv);  
     
    // Make sure global interrupts are enabled 
    IRQ_globalEnable(); 
} 
 
 
/* initDma()- Initialize the DMA controller. The actual DMA register              configuration is 
done in the DSP/BIOS configuration under Chip Support Library --> DMA --> DMA 
Configuration Manager and loaded at run time in the auto-generated file 
dsk_app1cfg_c.  initDma() initializes some registers not normally set in the DSP/BIOS config 
like CEI and CFI.  It also sets frame count based on BUFFSIZE.  */ 
 
void initDma(void) 
{ 
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    volatile Int16 i; 
 
    // Set indices and lengths for receive channel sorting. 
    DMA_RSETH(hDmaRcv, DMACEI, (2*BUFFSIZE) - 1); 
    DMA_RSETH(hDmaRcv, DMACFI, -((2*BUFFSIZE) - 1)); 
    DMA_RSETH(hDmaRcv, DMACFN, BUFFSIZE); 
 
    // Set indices for transfer channel unsorting 
    DMA_RSETH(hDmaXmt, DMACEI, (2*BUFFSIZE) - 1); 
    DMA_RSETH(hDmaXmt, DMACFI, -((2*BUFFSIZE) - 1)); 
    DMA_RSETH(hDmaXmt, DMACFN, BUFFSIZE); 
         
    // Clear the DMA status registers to receive new interrupts 
    i = DMA_RGETH(hDmaRcv, DMACSR); 
    i = DMA_RGETH(hDmaXmt, DMACSR); 
} 
 
/* copyData() - Copy one buffer with length elements to another.  */ 
void copyData(Int16 *inbuf, Int16 *outbuf, Int16 length) 
{ 
    Int16 i = 0; 
     
    for (i = 0; i < length; i++) {                       
        outbuf[i]  = inbuf[i]; 
    } 
} 
 
/* SetDMA () -  Configure the DMA data memory location. Set the receive and transmit buffer 
destination addresses */ 
 
void setDMAdata_addr(int secondStates) 
{ 
 Uint32 addr; 
  
 
 if(switch3){ 
  // Configure the receive channel for second state input data 
     addr = ((Uint32)gBufferRcv[pingPong])<<1; 
     DMA_RSETH(hDmaRcv, DMACDSAL, addr & 0xffff); 
     DMA_RSETH(hDmaRcv, DMACDSAU, (addr >> 16) & 0xffff); 
     DMA_RSETH(hDmaRcv, DMACFN, BUFFSIZE); 
 
     // Configure the transmit channel for second state output data 
     addr = ((Uint32)gBufferXmt[pingPong])<<1;    
     DMA_RSETH(hDmaXmt, DMACSSAL, addr & 0xffff); 
     DMA_RSETH(hDmaXmt, DMACSSAU, (addr >> 16) & 0xffff);  
     DMA_RSETH(hDmaXmt, DMACFN, BUFFSIZE); 
    } 
    else{ 
  if(!secondStates){ 
   // Configure the transmit channel for first state input data 
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      addr = ((Uint32)gBufferRcv[pingPong])<<1; 
      DMA_RSETH(hDmaRcv, DMACDSAL, addr & 0xffff); 
      DMA_RSETH(hDmaRcv, DMACDSAU, (addr >> 16) & 0xffff); 
      //reset the receive channel buffer size 
       DMA_RSETH(hDmaRcv, DMACFN, BUFFOFFSET); 
 
      // Configure the transmit channel for first state output data 
      addr = ((Uint32)gBufferXmt[pingPong])<<1;     
      DMA_RSETH(hDmaXmt, DMACSSAL, addr & 0xffff); 
      DMA_RSETH(hDmaXmt, DMACSSAU, (addr >> 16) & 0xffff);  
       //reset the transmit channel buffer size    
      DMA_RSETH(hDmaXmt, DMACFN, BUFFOFFSET); 
     } 
     else{ 
      // Configure the receive channel for second state input data 
      addr = ((Uint32)gBufferRcv[pingPong]+BUFFOFFSET)<<1; 
       DMA_RSETH(hDmaRcv, DMACDSAL, addr & 0xffff); 
      DMA_RSETH(hDmaRcv, DMACDSAU, (addr >> 16) & 0xffff); 
      DMA_RSETH(hDmaRcv, DMACFN, BUFFSIZE-BUFFOFFSET); 
 
      // Configure the transmit channel for second state output data 
      addr = ((Uint32)gBufferXmt[pingPong]+BUFFOFFSET)<<1;    
      DMA_RSETH(hDmaXmt, DMACSSAL, addr & 0xffff); 
      DMA_RSETH(hDmaXmt, DMACSSAU, (addr >> 16) & 0xffff);  
      DMA_RSETH(hDmaXmt, DMACFN, BUFFSIZE-BUFFOFFSET); 
      } 
     } 
     
} 
 
/*  DVS() -            Dynamic Voltage Scaling 
 *   It will scale the voltage down to 1.1 V if the current  
 *   frequency is less of equal to 72 MHz. And it will scale the 
 *   voltage back to the 1.6 V before the frequency get higher than  
 *   72 MHz. highpower is a variable to indicate the current power state 
 *   when the highpower = 1, it means 1.6V, otherwise it will be 1.1 V. 
 *   Some delay were added, when the voltage switch from 1.1V to    
 *   1.6V in order to avoid the interference to the frequency switch.  
 *   The frequency switch will happen right after the voltage scaling 
 *   Thus it need make sure that the core voltage is stable before  
 *   running  the switch frequency. 
 */    
void DVS() 
{ 
 
 if(highpower){ 
  if(setPoint<6){ 
   PSL_gpioVoltRegScale_DSK5510(1.6,1.1,72000,0); 
   highpower=0; 
  } 
 } 
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 else{ 
  if(setPoint>5){ 
   PSL_gpioVoltRegScale_DSK5510(1.1,1.6,gSpeedTbl[prevSetPoint],1); 
   highpower=1; 
  } 
 } 
} 
 
/* 
 *  downsamples - It will reduce the number of samples to be process in order to 
 *   implement the dynamic sampling frequency scaling. It will ensure  
 *   that all the samples will still have the same time interval between 
 *   samples after the number of samples reduction. It will reduce the  
 *   samples base on the rate given by the computefrequency process         
 *    which is step. if step = 1,it mean the samples size shift letf by 1,    
 *   shift then half of the samples will be reduce. if step = 2, it mean the  
 *   samples size shift letf by 2 then the number samples will be reduce  
 *   to the orginal size divided by four. It will take the samples from the  
 *   gBufferRcv. Drop the samples alternately base on the rate if  
 *   nessacery and put it back to gBufferRcv. samples[i-1] =  
 *   samples[i*(div)-1]where div=1<<step, and i = 1 to (samples   
 *   size>>step) 
 */ 
void downsamples() 
{ 
 int j; 
 int i; 
 int div; 
  
 div=(1<<step); 
 if(div>1) 
  for(i = div-1, j = 0; i < BUFFSIZE ; i += div, j++) { 
   gBufferRcv[pingPong|LEFT][j]  = gBufferRcv[pingPong|LEFT][i];  
       
 gBufferRcv[pingPong|RIGHT][j]=gBufferRcv[pingPong|RIGHT][i]; 
  } 
} 
 
/* 
 * upsamples - The upsamples process will ensure that D/A converter will receive  
 *   the same number of samples produced by the A/D converter, since  
 *   both of the converters have the same sampling rate. It will  
 *   responsible to bring back the number of samples back to the  
 *   original number of samples. Upsamples predict the value between   
 *   two samples in order to increase the number of samples by assume   
 *   the rate of change is consistent. This method is called linear  
 *   interpolation. it will increase the number of output result 
 *   which is store in the gBufferXmt, base on the step computed from  
 *   the computenextfrequency function. After increment number of  
 *   output result, they will be stored back to the gBufferXmt array. 
 *   lastLs and lastRs are variables where they store the last left and  
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 *   right signal as reference for next upsamples process in next frame  
 *   if needed. 
 */ 
void upsamples() 
{ 
 int j; 
 int i; 
 int k; 
 int div; 
 int size = (BUFFSIZE>>step)-1; 
  
 div=(1<<step); 
  
 for(i = BUFFSIZE-1, j = size; i > div ; i -= div, j--) {  
  for(k = 0 ; k < div ; k++) { 
   gBufferXmt[pingPong|LEFT][i-k] = (((div-
k)*gBufferXmt[pingPong|LEFT][j] + k*gBufferXmt[pingPong|LEFT][j-1])) >> step; 
   gBufferXmt[pingPong|RIGHT][i-k] = (((div-
k)*gBufferXmt[pingPong|RIGHT][j] + k*gBufferXmt[pingPong|RIGHT][j-1])) >> step; 
  } 
 } 
 
 for(k = 0 ; k < div ; k++) { 
  gBufferXmt[pingPong|LEFT][div-k]  = ((k*lastLs + (div-
k)*gBufferXmt[pingPong|LEFT][0])) >> step; 
  gBufferXmt[pingPong|RIGHT][div-k] = ((k*lastRs + (div-
k)*gBufferXmt[pingPong|RIGHT][0])) >> step; 
 } 
  
 lastLs = gBufferXmt[pingPong|LEFT][BUFFSIZE-1]; 
 lastRs = gBufferXmt[pingPong|RIGHT][BUFFSIZE-1]; 
} 
 
/* 
 *  processBuffer() - Process audio data once it has been received, then 
 *                     set the DMA configuration registers up for the next 
 *                     transfer.  If DIP switch #3 is up, the audio passes 
 *                     straight through.  If DIP switch #3 is down, this will  
 *  be in the power reduction by varying the dynamic  
 *  sampling rate mode   
 *                     
 */ 
 
void processBuffer(void) 
{ 
    Int16 switch3; 
 
    // Wait until transmit DMA is finished too 
    while(!IRQ_test(eventIdXmt)); 
     
 // Determine which ping-pong state we're in 
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    // Toggle LED #3 as a visual cue 
    DSK5510_LED_toggle(pingPong ? 3 : 2); 
          
    // Read DIP switch 3 
    switch3 = DSK5510_DIP_get(3); 
    if (switch3) { 
  // Switch 3 is up, normal hearing aid 
       hearingAid(gBufferRcv[pingPong|LEFT], gBufferRcv[pingPong|RIGHT], 
               gBufferXmt[pingPong|LEFT],gBufferXmt[pingPong|RIGHT],  
               BUFFSIZE);         
    } else { 
     // Switch 3 is down, DVS hearing aid 
       downsamples(); 
       LOG_printf(&logTrace,"DVS"); 
     hearingAid(gBufferRcv[pingPong|LEFT], gBufferRcv[pingPong|RIGHT], 
               gBufferXmt[pingPong|LEFT],gBufferXmt[pingPong|RIGHT],   

       BUFFSIZE>>step);  
       upsamples();   
    }    
} 
 
/* 
 * switchfrequency - switch to a new frequency according the frequency   
 *    computed by computenextfrequency function. Stop the  
 *    DMA data transfering before the frequency change and   
 *    resume the DMA when the new clock frequency  
 *    is stable. Set the new BUFFOFFSET value, which is the   
 *    execution time for for the first state of each frame.  
 *    BUFFOFFSET has to be big enough, so that  all the thread  
 *    in the first state will met their deadline in time.   
 *    BUFFOFFSET value will be vary according to the clock   
 *    frequency. 
 */ 
 
void switchfrequency(void) 
{ 
 PSL_Status status;  
 volatile DSK5510_AIC23_CodecHandle hCodec; 
 
  
 //send a message to message log to indicate frequency switch 
 //LOG_printf(&logTrace, "switch frequency"); 
  
 //Puase DMA for frequency switch  
 DSK5510_LED_on(0); 
 DMA_stop(hDmaRcv); 
 DMA_stop(hDmaXmt); 
 
 status = PSL_changeSetpoints(1, &clk, &setPoint, 
          TRUE, TRUE, NULL, 
NULL); 
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 //Restort DMA   
 DMA_start(hDmaRcv); 
 DMA_start(hDmaXmt); 
 DSK5510_LED_off(0); 
  
 DVS(); 
 
 
   /*Set a new Buffer size for the first state due to the  
    *change of the frequency 
    */ 
 BUFFOFFSET = (( BUFFOFFSETinit * 100 ) / gSpeedTbl[setPoint])*2; 
 BUFFOFFSET = BUFFOFFSET + 30; 
  
/* reset the flag to zero */ 
 changefrequency = 0; 
  
} 
 
/* 
 *  Maxfrequency_FD - Search for the highest audible frequency component in a   
 *    frame base on the ATH. Apply FFT on the input samples  
 *    from the gBufferRcv and store in to gFFT. compute the  
 *    power for each frequency in the frequency domain, and  
 *    look for the highest frequency with the power is greater   
 *    than the ATH value. note: since the highest audible   
 *    frequency is 20KHz, thus those frequency greater than  
 *    20KHz will have an infinite value.  
 */ 
long Maxfrequency_FD(void) 
{ 
 int i; 
 long max_freq = samp_freq / 2; 
 long pwr; 
  
 //Copy the gBufferRcv to the gFFT 
 for(i = 0 ; i < BUFFSIZE ; i++) { 
     gFFT[i] = 
((long)(int)gBufferRcv[pingPong|LEFT][i]+(long)(int)gBufferRcv[pingPong|LEFT][i])/2;  
    } 
   
 // Find the max frequency  
 // note: It only work between 6k - 22k  
 rfft(gFFT, BUFFSIZE, SCALE);    
 for(i=BUFFSIZE-2; i > 0 ; i -= 2) { 
  pwr = (long)(int)gFFT[i] * (long)(int)gFFT[i]  
    + (long)(int)gFFT[i+1] * (long)(int)gFFT[i+1]; 
  if(pwr <= (long)ATH_pwr[i/2]*4) { 
   gFFT[i] = 0; 
   gFFT[i+1] = 0; 

 58



  } else { 
   max_freq = i*(samp_freq/2)/BUFFSIZE; 
   break; 
  } 
 }  
 return max_freq;   
} 
 
/* 
 *  Maxfrequency_FD - Search for the highest audible frequency component in a   
 *    frame base on the ATH. Apply FFT on the input samples  
 *    from the gBufferRcv and store in to gFFT. compute the  
 *    power for each frequency in the frequency domain, and  
 *    look for the highest frequency with the power is greater   
 *    than the ATH value. note: since the highest audible   
 *    frequency is 20KHz, thus those frequency greater than  
 *    20KHz will have an infinite value.  
 */ 
long Maxfrequency_TD(void) 
{ 
 int i; 
 long max_freq = samp_freq / 2; 
 long pwr_high, pwr_med, pwr_low; 
 Int16 gFIR[BUFFSIZE*2]; 

Int16 outFIR_high[BUFFSIZE*2], outFIR_med[BUFFSIZE*2],    
                                                            outFIR_low[BUFFSIZE*2] ; 

 
 //Copy the gBufferRcv to the gFIR 
 for(i = 0 ; i < BUFFSIZE ; i++) { 
     gFIR[i] = 
((long)(int)gBufferRcv[pingPong|LEFT][i]+(long)(int)gBufferRcv[pingPong|LEFT][i])/2;  
    } 
   
 // Find the max frequency  
 fir2(gFIR, COEFFS_HIGH, outFIR_high, size, ORDER_HIGH); 
 fir2(gFIR, COEFFS_MED, outFIR_med, size, ORDER_MED); 
 fir2(gFIR, COEFFS_LOW, outFIR_low,  size, ORDER_LOW); 
 
  for(i=BUFFSIZE-2; i > 0 ; i -= 2) { 
  pwr_high = pwr_high + (long)(int) outFIR_high [i] * (long)(int) outFIR_high [i]  
    + (long)(int)outFIR_high[i+1] * (long)(int) outFIR_high [i+1]; 
  pwr_med = pwr_med + (long)(int) outFIR_med [i] * (long)(int) outFIR_med [i]  
    + (long)(int)outFIR_med[i+1] * (long)(int) outFIR_med [i+1]; 
  pwr_low = pwr_low + (long)(int) outFIR_low [i] * (long)(int) outFIR_low [i]  
    + (long)(int)outFIR_low[i+1] * (long)(int) outFIR_low [i+1]; 
 } 
 
 
  if(pwr_high > (long)ATH_pwr_high[i/2]*4) { 
   max_freq = i*(samp_freq)/BUFFSIZE; 
  } else { 
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   if(pwr_med > (long)ATH_pwr_med[i/2]*4) 
    max_freq = i*(samp_freq/2)/BUFFSIZE; 
   else 
    max_freq = i*(samp_freq/4)/BUFFSIZE; 
  } 
   
 return max_freq;   
} 
 
 
/* 
 * computenextfrequency - compute the new lowest clock frequency for the  
 *    next state base on the highest frequency component  
 *    in a frame where is fast enough for all the threads 
 *    meet their deadline. The new frequency will be compute 
 *    base on the fir_OH,fir_CC,ther_CC and UPDN_sampling. 
 */ 
  
void computenextfrequency(void) 
{ 
 int div; 
 long max_freqs; 
 long Total_CC2; 
 long fir_CC; 
 long fir_OH; 
 long fremin;   // minimum acceptable frequency 
  
 
 if(!switch3){ 
  max_freqs = Maxfrequency(); 
  //compute the ratio 
  for(step = 1 ; (samp_freq >> (step+1)) > max_freqs ; step++); 
  step--; 
   
  if (step > 3) {  
   step = 3; 
  } 
 
  div = (1<<step); 
  
 /* compute the timeleft for state 2 in m second */ 
     timeleft =  ( BUFFSIZE - BUFFOFFSET )  / 48 - 1; 
 
     /* Note: the  "- 1" in the above equation is the RTDX overhead */      
     /* Compute the clock cycle needed for N numbers of fir filter 
      * in 1000 units base on Buffer size, down sample rate and the number of  
     * the coefficient. 
       */ 
 

fir_CC = ( ( ( BUFFSIZE / ( 16 * div ) ) * ( 9 + ( ORDER - 2 ) ) ) / 125 + 1) * NFIRS; 
     fir_OH = (32 * NFIRS )/1000 + 1; 
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     /* Compute the total clock cycle needed for second state in K unit */ 
     Total_CC2 = fir_OH + fir_CC + other_CC + UPDN_sampling + RTDX_OH;  
    } 
  else{ 
   
  timeleft = BUFFSIZE /48 - 1; 
   
           /* Compute the clock cycle needed for N numbers of fir filter 
      * in 1000 units base on Buffer size, down sample rate and the number of  
         * the coefficient. 
       */ 
     fir_CC = ( ( ( BUFFSIZE / ( 16 * div ) ) * ( 9 + ( ORDER - 2 ) ) ) / 125 + 1) * NFIRS; 
     fir_OH = (32 * NFIRS )/1000 + 1; 
     
     
     /* Compute the total clock cycle needed for second state in K unit */ 
     Total_CC2 = fir_OH + fir_CC + other_CC + RTDX_OH;  
 } 
   
    /* Compute the minimum frequency where all thead can meet their deadline */ 
 fremin = Total_CC2 / timeleft; 
 fremin = fremin; 
 
 /* Compare the list of CPU frequency from the gSpeedTbl to get a new minimum  
  * CPU frequency which is greater than fremin 
  */  
 for(setPoint = 0 ;( gSpeedTbl[setPoint] < (int)fremin) && (setPoint < 16) ;     

setPoint++); 
  if (setPoint > 15) { 
   setPoint = 15; 
 } 
 
    LOG_printf(&logTrace,"setpoint = %d",setPoint); 
    
    //check the change of the frequency  
    if (setPoint != prevSetPoint){  
     DVS(); 
     changefrequency=1; 
      
     prevSetPoint = setPoint; 
    } 
     
} 
/* ---------------------- Interrupt Service Routines -------------------- */ 
/* 
 *  dmaHwi() - Interrupt service routine for the DMA transfer.  It is triggered 
 *             when a DMA complete receive frame has been transferred.   The 
 *             hwiDma ISR is inserted into the interrupt vector table at 
 *             compile time through a setting in the DSP/BIOS configuration 
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 *             under Scheduling --> HWI --> HWI_INT9.  dmaHwi uses the DSP/BIOS 
 *             Dispatcher to save register state and make sure the ISR 
 *             co-exists with other DSP/BIOS functions. If DIP switch #3 is up,  
 *     the audio passes straight through.  If DIP switch #3 is down, 
 *     this will be in the power reduction by varying the dynamic  
 *     sampling rate mode.   
 *                     
 */ 
void dmaHwi(void) 
{ 
    // Ping-pong state.  Initialized to PING initially but declared static so 
    // contents are preserved as dmaHwi() is called repeatedly like a global. 
    static Int16 pingOrPong = PING; 
    static int secondState = 0; 
 
    
  /* The ping or pong buffer were broke down to two part in order to  
   * do the frequency scaling without affecting the Data transfer from  
   * the codec 
   * The first part is used to calculate the new frequency for the second  
   * state. At the begining of the second state DMA will be stopped  
   * before the frequency change. The rest of the second state will do the  
   * filtering process. 
   */  
  
    if (!secondState){ 
     // First state 
     DSK5510_LED_on(0); 
     //Search for max frequency 
     computenextfrequency(); 
      
     secondState = 1; 
    } 
   else { 
  // second state    
     DSK5510_LED_on(1); 
    
  // change frequency 
  if(changefrequency) 
   switchfrequency(); 
  
      
     // Determine if current state is PING or PONG 
     if (pingOrPong == PING) { 
         // Post SWI thread to process PING data 
         pingPong = PING; 
         processBuffer(); 
  
         // Set new state to PONG 
         pingOrPong = PONG;    
     } 
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     else { 
  
         // Post SWI thread to process PONG data 
         pingPong = PONG; 
         processBuffer();  
 
         // Set new state to PING 
         pingOrPong = PING; 
     } 
       
  switch3 = DSK5510_DIP_get(3); 
  if(switch3){ 
   computenextfrequency(); 
  } 
     else{ 
      //set it back to first state 
      secondState = 0; 
     } 
 } 
  
 setDMAdata_addr(secondState); 
    // Read the DMA status register to clear it so new interrupts will be seen 
    DMA_RGETH(hDmaRcv, DMACSR);  
    DSK5510_LED_off(0); 
    DSK5510_LED_off(1);   
} 
 
 
 
/* --------------------------- main() function -------------------------- */ 
/* 
 *  main() - The main user task.  Performs application initialization and 
 *           starts the data transfer. 
 */ 
void main() 
{ 
    volatile DSK5510_AIC23_CodecHandle hCodec; 
    PSL_Status status; 
    unsigned initFreqIndex = INITSETPOINT; 
 
 
    // Initialize the board support library, must be called first 
    DSK5510_init(); 
     
    // Initialize LEDs and DIP switches 
    DSK5510_LED_init(); 
    DSK5510_DIP_init(); 
  
  
 status = PSL_initialize(1, &clk, &initFreqIndex, 1.6f); 
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    // Clear buffers 
    memset((void *)gBufferRcv, 0, BUFFSIZE * 8); 
    processing_init(); 
     
    // Start the codec 
    hCodec = DSK5510_AIC23_openCodec(0, &config); 
 
    // Start the DMA controller for the receive transfer 
    initDma(); 
 
    // Set up interrupts 
    initIrq(); 
 
 CHIP_FSET(ST3_55, CLKOFF, 1); 
 
    // Start the DMA 
    DMA_start(hDmaRcv); 
    DMA_start(hDmaXmt); 
 
    //set the pong state in order to come back in between the frame;  
    pingPong = PONG; 
    // configure the DMA data address register 
    setDMAdata_addr(0);  
   
} 
 
Hearing_Aid.h 
 
#ifndef HEARING_AID_H 
#define HEARING_AID_H 
 
void SetSpeed(int nx, int nfirs); 
 
#endif 
 
Processing.h 
 
#ifndef PROCESSING_H 
#define PROCESSING_H 
#define NFIRS  30 
 
void processing_init(void); 
 
void hearingAid(Int16 *inL, Int16 *inR, Int16 *outL, Int16 *outR, int size); 
      
#endif 
 
Processing.c 
 
#include <dsplib.h> 
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// should #include <time.h>, but headers are broken badly 
#include <linkage.h> 
typedef unsigned long clock_t; 
_CODE_ACCESS clock_t    clock(void);   
 
#include "hearing_aidcfg.h" 
#include "processing.h" 
#include "highpass.h"        // high pass filter coefficients 
 
#define ORDER       208 
#define BUFFSIZE  1024 
 
Int16 delayBufferL[ORDER+2]={0};     
Int16 delayBufferR[ORDER+2]={0}; 
 
void processing_init(void) 
{  
} 
 
/* 
 * hearingAid- suppose the heading aid coding will be adder here 
 *    but right now the fir filter just act like a load for  
 *    the normal hearing aid process. 
 *    the input size might vary from BUFFSIZE  to BUFFSIZE/8 
 *    provided the max value for step is 3. 
 */ 
void hearingAid(Int16 *inL, Int16 *inR, Int16 *outL, Int16 *outR, int size) 
{           
 int i; 
 
 // insert real filter code here 
 for(i =0; i < (NFIRS/2); i++){ 
  fir2(inL, COEFFS, outL, delayBufferL, size, ORDER); 
                  fir2(inR, COEFFS, outR, delayBufferL, size, ORDER); 
    } 
   
  
    copyData(inL, outL, size); 
    copyData(inR, outR, size); 
} 
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