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ABSTRACT OF THESIS 
 
 
 
 

MODELING AND TESTING ULTRA-LIGHTWEIGHT  

THERMOFORM-STIFFENED PANELS 

 
 

Ultra-lightweight thermoformed stiffened structures are emerging as a viable option for 
spacecraft applications due to their advantage over inflatable structures. Although 
pressurization may be used for deployment, constant pressure is not required to maintain 
stiffness. However, thermoformed stiffening features are often locally nonlinear in their 
behavior under loading.  
This thesis has three aspects: 1) to understand stiffness properties of a thermoformed 
stiffened ultra-lightweight panel, 2) to develop finite element models using a phased-
verification approach and 3) to verify panel response to dynamic loading. This thesis 
demonstrates that conventional static and dynamic testing principles can be applied to test 
ultra-lightweight thermoformed stiffened structures. Another contribution of this thesis is 
by evaluating the stiffness properties of different stiffener configurations. Finally, the 
procedure used in this thesis could be adapted in the study of similar ultra-lightweight 
thermoformed stiffened spacecraft structures.  
 
KEYWORDS: Thermoformed stiffened panels, conical stiffener units, modal testing 
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CHAPTER ONE 

 

Introduction  

 

1.1 Introduction 

 

Man’s explorations of the Solar System and search for life outside the Solar 

System have been significantly advanced with the recent developments in ultra-

lightweight structures technology. An ever-increasing demand for greater packaging 

efficiencies and extremely low mass for extremely large ultra-lightweight structures used 

in space applications has prompted the use of structural elements consisting thin, highly 

flexible sheets. Today, the applications for these structures in space include lunar and 

planetary habitats, radio frequency (RF) reflectors and waveguides, optical and infrared 

(IR) imaging, solar concentrators for solar power and propulsion, sun shades, solar sails 

and many others. For example, Figure 1.1 shows images of the 1996 inflatable antenna 

experiment (IAE) deploying from shuttle STS-77and in the deployed state. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Inflatable Antenna Experiment (IAE), deploying and deployed. 
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The IAE structure consisted of three 28-meter long inflatable booms with a 14-

meter diameter stiffened membrane reflector surface. Stiffness of the IAE reflector 

surface was provided by pressurization. Stiffening techniques for other large ultra-

lightweight spacecraft structures is provided by pressurization, chemical rigidization or 

thermoforming.  

 

Figure 1.2 presents some recent stiffened spacecraft structures. The first picture 

on the top left is the 15-meter wide solar array developed at ILC Dover, Inc. in support of 

the 2003 New Millennium Program ST4. The picture on the top right is a 7-meter 

rigidizing inflatable antenna prototype structure developed at L’Garde, Inc, and the 

picture on the bottom is an inflatable torus support structure developed at United Applied 

Technologies.   

  

  
 

 
 

Inflatable torus, United Applied Technologies 

7-m rigidizing inflatable antenna 
prototype, L’Garde, Inc. ST4 Solar Array, ILC Dover, Inc. 

Figure 1.2: Examples of rigidized inflatable structures 
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Ultra-lightweight spacecraft structures have made the concept of solar sails a 

reality. Figure 1.3 shows an artist’s concept of a solar sail using inflatable booms 

supporting a large surface area for propulsion. In the last five years, NASA’s solar sail 

program has seen ground-based testing of 10-meter and 20-meter quadrants in 

preparation for the first on-orbit flight test.  

 

 
Figure 1.3: Artist’s concept of a solar sail 

 

However, even with the recent advances in materials, manufacturing, testing and 

other technologies for ultra-lightweight spacecraft structures, a continuing challenge is 

the trade-off between weight and stiffness. While pressurization and chemical 

rigidization have received considerable attention, thermoformed stiffening of ultra-

lightweight spacecraft structures is a relatively unstudied concept.  One advantage of this 

stiffening approach is that it replaces the need to maintain pressurization for stiffening. 

With thermoformed stiffeners, pressurization is used for deployment only.  
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1.2 Motivation 

 

The recent development of thermoforming processes for lightweight film 

materials has opened the possibility of constructing ultra-lightweight panels and booms. 

Figure 1.4 shows an ultra-lightweight boom and ultra-lightweight panels  

 

 
Figure 1.4: Ultra-lightweight thermoform-stiffened boom and panels 

 

With the recent development of ultra-lightweight spacecraft structure technology 

and with the expense of flight experiments for technology demonstration, the need for 

ground-based understanding of these structures is essential. Efforts to understand the 

characteristics of these structures include static and dynamic testing and computer model 

development. The development of ultra-lightweight structures has pushed the 

development of new technologies such as photogrammetry and videogrammetry to 

measure respectively the static and dynamic behavior of large ultra-lightweight spacecraft 

structures. The area of ultra-lightweight thermoformed stiffened structures is new and 

consequently not much research has been done to date to understand their behavior in 

response to external static and dynamic loads.  
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1.3 Research Objectives and Approach 

 

The main objective of this thesis is to develop an understanding of static and 

dynamic characteristics of a thermoformed stiffened panel as a representative example of 

this class of structures. In order to accomplish this objective, new approaches for testing 

are also needed for phased development and verification of finite element models. 

Therefore to develop a general procedure for testing and for creating finite element 

models using the test results is also an objective. This procedure could be adapted for 

application to similar panel structures or to thermoformed boom structures.  

 

The objective is to be achieved using a phased-verification approach for testing 

and modeling. Static testing is first performed on individual stiffener elements, then on 

multiple-stiffener test sections. Based on these static test results, simple finite element 

models are developed and compared to the experimental results. The model is refined 

based on the static experiment results. Then the finite element model for the complete 

panel is developed. Finally, results of static and modal analysis performed on the finite 

element model of the complete panel are compared with the results of static and modal 

testing of the panel to evaluate the approach of using phased static testing for dynamic 

model development for thermoformed ultra-lightweight structures. 

 

1.4 Thesis Outline 

 

This thesis presents details of the research and results of the experimentation and 

analyses performed. Chapter 2 presents a review of the literature used during the course 

of this research work. Chapter 3 is a detailed description of the static testing and results 

for each of the different test articles from individual stiffener elements to the full panel. 

Details of developing the finite element model based on the static experiments are 

described in Chapter 4. Comparisons of the finite element analysis results with the static 

test results are also presented. Chapter 5 presents the modal testing including the test 

setup, procedure and results. The results of modal analysis with the finite element model, 
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the mode shapes and frequencies, are also presented. Chapter 6 is a summary of this 

thesis, with recommendations for future work also included.  
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CHAPTER TWO 

 

Literature Review 

 

2.1 Introduction 

 

Stiffened ultra-lightweight spacecraft structures have only recently emerged as 

concept designs, so an extensive collection of published articles is not available. 

However, two sources provide wide-ranging information from materials to analysis to 

testing programs: 

1) Gossamer Spacecraft: Membrane and Inflatable Structures Technology for 

Space Application referred to as “The Gossamer Handbook” published by the American 

Institute of Aeronautics and Astronautics (AIAA) in 2001 [1] and 

2) Proceedings of the Gossamer Spacecraft Forum held annually from 2000 to 

present collocated with the AIAA Structures, Structural Dynamics and Materials 

Conference [2-4]. 

 

“The Gossamer Handbook” is a collection of contributed chapters written by 

experts in the field of ultra-lightweight spacecraft structures. State-of-the-art technologies 

of ultra-lightweight structures are presented including a wide spectrum from basic 

mechanics to processing issues related to membranes used in Gossamer structures. It also 

provides valuable information about testing and modeling of these unique, flexible 

structures. The handbook includes contributions of major research organizations such as 

the Air Force Research Laboratory (AFRL), Jet Propulsion Laboratory (JPL) and others 

and from primary industrial participants such as ILC Dover, SRS Technologies, L’Garde 

and United Applied Technologies. This book provides a wealth of knowledge in the area 

of ultra-lightweight spacecraft structures with a new edition currently underway. 

 

The Gossamer Spacecraft Forum is a conference for university, industry and 

national laboratory researchers to exchange information on recent advances in Gossamer 

spacecraft technologies. Each year, the proceedings are a compilation of about 50 to 60 

 7



papers on topics such as spacecraft structures, membrane rigidization concepts, analytical 

dynamic modeling of inflatable structures, stability of inflatable structures and others. 

The seventh forum is scheduled for May 1-4, 2006 in Newport, RI.   

 

The remainder of this chapter presents a review of references that were used 

during this thesis research. It also highlights the various activities performed in field 

testing and modeling of ultra-lightweight space structures. 

 

2.2 Ultra-Lightweight Spacecraft Structures 

 

Ultra-lightweight spacecraft structures include inflatables, solar sails, sun shields, 

and stiffened ultra-lightweight panels, among others. Companies involved in testing and 

manufacturing of these structures include ILC Dover, Inc., L’Garde, United Applied 

Technologies, SRS Technologies and others. ILC Dover, Inc. [5] has built and tested 

several inflatable space structures including inflatable antennas and inflatable solar 

arrays. Several rigidization techniques have evolved over the years to provide stiffness to 

these structures. Some of the stiffening features include pressurization, rigidization and 

thermoforming. L’Garde [6] developed a 7-meter rigidizing inflatable antenna prototype 

structure. United Applied Technologies [7] have developed preformed inflatable torus 

structures and self-rigidizing thin film structures, curved thin film concentrators and 

others. SRS Technologies [8] developed a 5-meter diameter thin film antenna prototype, 

10-meter and 20-meter solar sail test articles, sun shields and others.  

 

Inflatable torus structures are important to spacecraft systems providing structural 

support to antennas such as the IAE and to optical systems such as thin membrane 

reflectors or solar collectors. The dynamic behavior of the torus structure is of primary 

interest in the design of these systems [9-13]. 
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2.3 Modal Testing of Ultra-Lightweight Inflatable Structures 

 

This main focus in this thesis was to test and model an ultra-lightweight panel 

structure with thermally-formed stiffener units. Standard modal testing principles were 

used to test the panel structure as described in classic references by Ewins [14] and 

McConnell [15].  

 

Griffith performed experimental and analytical modal analysis of an inflated thin 

film torus and demonstrated that conventional modal testing principles could be applied 

to ultra-lightweight inflatable structures. Griffith used a modified impact hammer for 

exciting the torus to prevent local deformations [16].   

 

Lassiter conducted modal tests on torus-supported solar concentrators. He 

demonstrated that inflatable structures are sensitive to extraneous disturbance and hence 

caution is required while performing dynamic tests on these structures. Also, the selection 

of proper boundary conditions is crucial in testing these structures as they need supports 

with extremely low stiffness [17].  

 

Lassiter and Slade performed modal tests on inflatable solar concentrators using a 

non-contacting laser vibrometer measurement system, measuring frequency response 

functions. They compared mode shapes and frequencies among thermal vacuum tests for 

different inflation pressures. They highlighted the need for performing in-vacuum tests of 

inflatable structures [18]. 

 

 Ruggiero and Inman evaluated the use of smart materials for vibration testing and 

control of a 1.8-meter diameter inflated torus structures with no thermoformed stiffeners. 

They advanced the idea that smart materials demonstrated flexibility and had high 

electromechanical coupling, and so concluded that smart materials were ideal for 

applications involving dynamics and control of inflatable structures [19]. 
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Inman and Sodano performed modal tests on a scaled inflatable macro-fiber 

composite torus without thermoformed stiffeners. They highlighted the advantages of 

using multiple sensors for controlling inflatable structures [20]. 

 

Song performed modal tests on a self-supporting thin-film torus structure with 

thermoformed domed hexagon pattern stiffeners using a speaker to provide acoustic 

excitation. The displacement response was measured using a laser displacement sensor. 

Together, these demonstrated that a non-contacting excitation and measurement approach 

is suitable and effective for modal testing of thermoformed stiffened structures. Figure 

2.2 shows a picture of modal testing on the stiffened torus structure [21].  

 

 
 

Laser sensor 

Speaker 

Figure 2.1: Inflatable torus structure tested by Song [21] 

 

These more traditional modal testing approaches serve as a viable alternative for 

stiffened ultra-lightweight structures, as opposed to unstiffened ultra-lightweight 

structures which require alternative and specially developed measurement technologies.  

 

 

 10



2.4 Emerging Techniques for Testing Ultra-Lightweight Structures 

 

Photogrammetry and videogrammetry are among other testing methods used to 

test ultra-lightweight structures. Black applied photogrammetry and videogrammetry 

methods for static and dynamic characterization of Gossamer structures [22]. Figure 2.1 

shows the test setup that was used for dynamic characterization, allowing comparison 

between results from laser vibrometry and videogrammetry.   

 

 

 
Figure 2.2: Test setup for dynamic characterization using photogrammetry [22] 

  

Thota applied the principles of photogrammetry and videogrammetry to measure 

in-plane displacements of thin-film structures using etched surface patterns. He 

demonstrated that the etching pattern does not have significant effect on the dynamic in-

plane displacement [23].  
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2.5 Modeling Ultra-Lightweight and Inflatable Structures 

 

One of the main objectives of this thesis was to develop a finite element model of 

the ultra-lightweight panel to accurately represent its properties. The size of the model 

was a concern, with so many stiffening elements in the design. Lore applied Automated 

Multi-Level Sub Structuring (AMLS), widely used in the automotive industry for modal 

analysis of extremely large models, to evaluate its use for designing thermoformed 

stiffened spacecraft. Lore found that using detailed models of individual stiffening 

elements was computationally prohibitive because the models created had too many 

degrees of freedom (dofs) for a solution to be computed. Even simplified models of 

thermoformed stiffeners produced models of the thermoformed stiffened torus with more 

than one million dofs [24].  

 

A study was conducted by the author of this thesis to understand the detail 

required in a thermoformed stiffener model in a large structure model. Note that a finely 

detailed mesh of the stiffeners of the 2-meter torus in Figure 2.2 was estimated to have 

8.9 million dofs. The simplest accurate model of the stiffeners would result in a torus 

model with approximately 2.9 million dofs. Further reduction of the number of dofs in 

the stiffener model could lead to loss of accuracy. The size of the stiffener relative to the 

size of the structure is an important factor in the ability to simplify the model of the 

stiffener element. As the size of the stiffener becomes smaller, the model can become 

simpler without losing the ability to accurately represent the dynamic response [19].  

 

Palisoc and Huang developed a geometric nonlinear finite element solver, Finite 

Element Analysis of Inflatable Membranes (FAIM) with nonlinear material capability. 

This provided an integrated set of tools for analysis and design of inflatable antennas 

[25].   
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2.6 Modeling Inflatable Booms 

 

 Inflatable booms are important for providing support to solar arrays, solar sails, 

reflectors and other ultra-lightweight spacecraft structures. Some of the efforts to 

understand the behavior of these structures to both static and dynamic loads are presented 

in this section.  

 

Herbeck and Eiden computed the stability behavior of inflatable boom structures 

used for solar sails applying conventional finite element methods. They computed the 

buckling limits of the structure using linear and nonlinear models [26]. 

 

Lou and Fang developed a finite element model of an inflatable boom and 

performed static analysis. They compared the results of this analysis with their 

experimental results for different internal pressures [27]. 

 

 Virgin developed finite element models of slender inflatable booms used for solar 

sails and verified the models with experimental results. Virgin analyzed specific 

structural aspects of the solar sail inflatable booms [28]. 

 

2.7 Summary 

 

 Various approaches to testing and modeling ultra-lightweight structures 

presented in this chapter provided insight and background knowledge to this thesis. The 

modal testing approach using a modified impact hammer was adapted and conventional 

testing principles highlighted in some references mentioned above have been applied in 

this thesis. Appropriate testing conditions have been applied to perform near free-free 

modal testing based on the lessons learned from reviewing the reference materials.  
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 CHAPTER THREE 

 

Static Experimentation 

 

3.1 Introduction 

 

This chapter introduces different panel types and develops classifications. It 

presents details of the panel geometry and construction that determine their overall 

properties along with static and dynamic response characteristics. Static experiments 

performed to understand the behavior of panels are also presented in this chapter, with 

details of the experimental setups and procedures. The progression of deformation is 

quantitatively described as observed during panel loading and unloading. Results of the 

tests are discussed. 

 

3.2 Panel Construction and Geometric Details 

 

The ultra-lightweight stiffened panels considered in this thesis are comprised of a 

number of layers of thermally-formed Kapton as shown in Figure 3.1. The 

thermoforming process induces permanent deformation in the Kapton sheet which acts as 

a stiffening substructure in the panel. For this thesis, the focus panel is hexagonal, as seen 

on the right in Figure 3.1, and has conical stiffeners (stiffening units) equally spaced in a 

hexagonal honeycomb fashion.  

 

The number of layers depends on the application which in turn defines 

requirements including physical strength, weight, size constraints etc. A one-layer panel 

has one layer; a two-layer panel has two layers bonded mirror image (Figure 3.2). The 

thickness of the assembled panel thus depends on the height of the cones. The area of the 

panel depends on the cone base radius and the spacing between them. The size and 

geometry of the cones varies for each panel depending on the desired stiffness and 

buckling stability. 
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0.5 m

Figure 3.1: Examples of thermally-formed Kapton panels representative of ultra-

lightweight stiffened spacecraft structures 

 

 

 
One-layer panel 

 
Two-layer panel 

Figure 3.2: One-layer and two-layer panels 

 

Individual stiffening units of the panel are conical in shape as seen in Figure 3.2. 

Circular cones and hexagonal cones are considered in this thesis, but other cross-section 

geometries are possible. The circular cones have a varying cross-section radius from top 

to bottom. Thermoformed straight-sided stiffeners are also possible. The conical 

configuration contributes significantly to the behavior of these units when subjected to 

loads. 
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The two-layer panel tested for this thesis consists of the two cones that are bonded 

to each other (as presented in Figure 3.3) at the contact surface to avoid relative lateral 

movement while being loaded.  

 

  Two-layer sample 

Top cone  

 
Bottom cone  

 

 

Figure 3.3: Top cone and bottom cone of two-layer panel 

 

Each panel is characterized by several dimensional parameters which are 

controlled during the manufacturing process. These parameters are critical to their 

performance when subjected to loading. The parameters are illustrated in Figure 3.4 in 

which 

t is the thickness of the Kapton sheet,  

T is the assembled panel thickness, 

r is the smallest radius of the cone,  

R is the largest radius of the cone, 

h is the cone height, and 

d is the center-to-center distance between adjacent cones in a layer. 
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Figure 3.4: Dimensional parameters of a panel 

d

r

t
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3.3 Static Experiments of Single-Unit Stiffeners 

 

A series of static experiments were conducted on stiffening units and on panels of 

varying configurations. These experiments were aimed mainly at understanding the 

stiffness characteristics of the stiffener units and of the assembled panels. Table 3.1 

presents the different samples that were tested to develop an understanding of unit 

conical stiffener behavior. 

 

Table 3.1: Unit stiffener samples and four-unit sample tested 

Sample designation Configuration Dimensions Picture 

Sample A1 

One-unit, one-

layer panel, top 

cone 

r= 3.17mm 

h=7.93mm 

R = 15.87mm 

 

Sample A2 

One-unit, one-

layer panel, 

bottom cone 

r=3.17mm 

h=7.93mm 

R=15.87mm 

 

Sample B 
One-unit, two-

layer panel 
T=15.87mm 

 

Sample C 
Four-unit, two-

layer panel 
d=25.4mm 
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The experimental setup for one-unit and four-unit samples consists of a sensitive 

weighing scale (Ohaus model EP4102 C) and a precision movable platform (Newport 

model 340RC) used to displace the samples. As seen in Figure 3.5, the sample is mounted 

securely to the platform and then lowered until it is just in contact with the scale. The 

scale is then set to zero and the test is started from this point. 

 

                                
 

 

 

 

 

Weighing 
scale 

Sample 
under test 

Slide block 
(used to apply 
displacement 

R

F

+ 

Figure 3.5: Experimental schematic and setup for static test of panel units.  
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The loading cycle consisted of a series of precise displacements, first increasing 

the vertical force on the sample and then decreasing it. The free body diagram is also 

presented in Figure 3.5 with the sign convention for displacement. Displacements in steps 

of 0.05mm were used. The corresponding reaction force displayed on the scale was 

recorded. The load was then slowly released by reversing the displacement sequence by 

raising the slide block in increments of 0.05mm. Again, the corresponding reaction force 

was recorded for each step. The force-displacement results were consistent. The results of 

this test are presented in Section 3.4 and the test data is presented in Appendix 1. 

 

Figure 3.6 shows the load-displacement plot for a single loading cycle of the one-

unit, one-layer top cone, sample A1. The vertical axis is the force in Newtons. The 

horizontal axis is the corresponding displacement in mm. The slope of the curve is 

approximately 3 N/mm. The loading and unloading sequences are not identical, forming a 

hysteresis loop. Both the loading and unloading cycles show a slight stiffening trend (an 

increasing slope with increasing displacement).  
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Figure 3.6: Force-displacement plot for Sample A1 

 

The load-displacement plot for a single loading cycle of the one-unit, one-layer bottom 

cone, sample A2 is presented in Figure 3.7. It should be noted that sample A1 and A2 

have the same height. However, in sample A1, the conical area is thinner for greater 

sections of the cone compared to sample A2. Here, the loading and unloading results are 
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similar to those of sample A1, also forming a hysteresis loop. The slope of the curve is 

approximately 5 N/mm and is about 66% stiffer than the sample A1. Both loading and 

unloading cycles show a slight stiffening trend, although less than that seen in sample A1. 
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Figure 3.7: Force-displacement plot for Sample A2 

 

Following the static test on samples A1 and A2, the one-unit, two-layer sample B 

was tested. The same test procedure and test setup as for samples A1 ad A2 were used. 

Two sample B units were tested. Results for both are included in Appendix 1. Force-

displacement results for one sample are presented in Figure 3.8. This loading and 

unloading sequence was repeated three times. Here, the force-displacement plots indicate 

that the slope increases significantly beyond a certain load. For small loads, the 

deformation of the top cone appeared to be more prominent. With higher loads, the top 

cone had deformed up to a certain point beyond which deformation of the bottom cone 

was noticed. The slope of the lower portion of this plot is approximately 1.5 N/mm and 

that of the steeper portion of this plot is approximately 3 N/mm compared to the 

calculated combined slope of approximately 2 N/mm with top cone and bottom cone 

modeled as springs in series.  
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Figure 3.8: Force-displacement plot for sample B1 

 

 Figure 3.9 illustrates the progression of local deformations of the two-layer, one-

unit panel (Sample B) unit as observed during the loading cycle. It is described in six-

steps. Step 1 indicates the sample condition at the time of applying the loads. As the load 

is applied gradually, the top cone of the sample begins to twist as indicated in step 2. The 

top cone twists up to a particular point beyond which further application of load causes 

the bottom cone to twist. This process is initiated by signs of buckling of the top cone as 

can be seen in step 3. Beyond this point, the bottom cone begins to deform as in step 4. 

Further loading causes the two cones to buckle. This sequence of progression is observed 

for every load cycle of the samples. The twisting of the cones was more prominent to the 

naked eye in the two-layer, one-unit samples. 
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Figure 3.9: Schematic representation of progression of deformation for two-layer, one-

unit sample under loading 
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Figure 3.10 presents the force-displacement results for the four-unit-two-layer panel 

(Sample C). The stiffness of the lower portion of this plot is approximately 2 N/mm and 

the steeper portion of this plot is approximately 10 N/mm compared with the calculated 

slope of 7.5 N/mm with four two-layer-one-unit samples in parallel. The transition point 

of the curve occurs approximately at 0.25 N. It can be seen that the sharper bilinear 

property of the individual units as seen in Figure 3.8 is smoothed for the four-unit-two-

layer sample where four stiffener units are combined together in parallel. The force-

displacement plot of the four-unit-two-layer sample in Figure 3.10 shows a smoother 

transition from the lower less-stiff slope to the steeper portion compared to the one-unit-

two-layer stiffeners in which case the transition can be approximated as a bilinear 

stiffness. The approximate calculated stiffness of four series springs in parallel is 7.5 

N/mm based on the static test experiments on samples A1 and A2.  

 

 
Figure 3.10: Force-displacement plot for sample C 

 

3.4 Static Experiments of One-Layer Panels 

 

Tests were also performed on a set of one-layer panels. Several one-layer panels 

made of circular cone stiffeners (referred to as Samples C1-C4) and hexagonal cone 

stiffeners (referred to as Sample H) were tested. Stiffener geometries are seen in Figure 

3.11.  
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Figure 3.11: Circular cone and hexagonal cone samples 

 

Four configurations for sample C were tested. The details of the configurations 

and dimensional details are presented in Table 3.2. A pictorial comparison of different 

configurations of sample C is presented in Figure 3.12. 

 

 

Table 3.2: Dimensional variations of the one-layer samples 

Sample Radius ‘r’ Height ‘h’ 

C 1 3.175 mm 4.96 mm 

C 2 3.175 mm 4.96 mm 

C 3 3.175 mm 11.9 mm 

C 4 12.7 mm 9.9 mm 

H 1 12.7 mm 11.9 mm 

H 2  12.7 mm 11.9 mm 
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Sample C1

Sample C3

Sample C4

Figure 3.12: Height and radius comparison of conical stiffener 

 

As the one-layer conical and hexagonal samples were much less stiff than the 

samples described in Table 3.1, a different test procedure was used. Figure 3.13 shows 

the experimental test setup that was used to perform this test. Samples were mounted on a 

flat surface and loads were applied on a flat plate placed on top of the stiffener cones on 

the samples. The displacement of the cones due to the applied load was measured from 

the bottom using a laser sensor. The test data is presented in Appendix 2. 

 

 
Figure 3.13: Experimental setup for testing round samples 

Laser sensor  
used to measure 
displacement 

Circular sample 
mounted for 
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Loads applied  
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Figure 3.14 shows the force-displacement plots for samples C1, C2, C3, C4 and 

sample H (refer to table 3.2). The displacements are plotted only for the loading cycle. It 

was not possible to record the displacements for the unloading cycle because only very 

minor variations were noticed during unloading and the experimental setup was not 

accurate to capture these small variations. The loads were applied using 20g, 50g, 100g, 

and 200g masses respectively. As it was difficult to get accurate results for each load, the 

tests were repeated three times. As only three displacements were recorded for each data 

set, the plots in Figure 3.13 are the curve fit for the data points recorded. Samples C1 and 

C2 are plotted together and samples H1 and H2 are plotted together. Based on the results 

seen, the test procedure adopted to test these samples was questioned and also, varying 

bilinear trends were seen. More study with a different experimental procedure is 

recommended for these samples.  

 

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4

Displacement (mm)

Fo
rc

e 
(N

)

C1
C2

C3

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3

Displacement (mm)

Fo
rc

e 
(N

)

C3

 
Sample C 1 and C2            Sample C 3 

C4

0

2

4

6

8

10

12

0 0.02 0.04 0.06 0.08 0.1 0.12

Displacement (mm)

Fo
rc

e 
(N

)

C4

 

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6

Displacement (mm)

Fo
rc

e 
(N

)

H1
H2

 
    Sample C 4           Sample H 1 and H2   

Figure 3.14: Force-displacement plots for samples C1, C2, C3, C4, H1 and H2 
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3.5 Static Experiments of Two-Layer Full Panel 

 

A different test procedure was adopted for performing the static test on the full 

panel. The panel was mounted in such a way to approximate a standard beam bending 

test with simply supported boundary condition on two sides using circular supports. 

Double-sided tapes lightly secured the panel to the supports to ensure that it did not lose 

contact with the surface while applying loads. This is presented in Figure 3.15. 

 

 

132 mm 

Point B 

Point A 

Mid point (where 
load was applied) 

Figure 3.15: Panel setup for static test 

The center of the panel was located and static loads were applied at this point. 

Laboratory hanging masses were used to apply the load from 0.0981 N (10 g mass) 

through 0.981 N (100g mass) in increments of 0.0981 N. Two points A and B were 

located 132 mm from the center as shown in figure 3.14. The vertical displacement of A 

was measured for each load step with a laser sensor. The laser sensor was mounted above 

the panel and adjusted so that the beam was focused on point A. The same was repeated 

for point B. A computer based data acquisition system was used to record the output of 

the laser sensor. Figure 3.15 presents the entire setup that was used to perform this test.  
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Figure 3.16: Experimental setup for full panel static test 
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As can be seen in Figure 3.16, the panel was supported on two sides on the 

stiffener units and not on the flanges. This was done because the bending property of the 

panel was the main focus of the experiment and not the flange bending properties.  

 

The maximum loading range was limited to 0.981 N for this test. For higher loads 

(1.2 N and higher), a distinct click sound was heard from the panel stiffener units 

indicating local buckling of the stiffener units. The test was repeated three times for each 

point with no appreciable difference in results.  

  

The force-displacement plots for the panel are presented in Figure 3.17 and all the 

test data is presented in Appendix 3. Plots of the data for both points are compared in 

Figure 3.17. It can be seen that at Point A, the panel behaved approximately linearly over 

the entire range of loading. However at Point B, the panel tends to soften approximately 

after a load of 0.6 N.  
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Figure 3.17: Force-displacement plots for points A and B for full panel 
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3.6 Results Summary 

 

The force-displacement plots in Figures 3.6 and 3.7 indicate that the single layer 

conical stiffener units exhibit approximately linear stiffness. However, Figure 3.8 shows 

that the two-layer stiffener unit exhibits hardening characteristics that can be 

approximated as a bilinear static response. This, combined with the qualitative 

observation of deformation of the stiffener unit suggests that they could be modeled using 

spring elements, either a single spring with experimental force-displacement 

characteristics of the two-layer stiffener unit or two springs in series with experimental 

force-displacement characteristics of the individual single layer conical stiffener units. It 

is also seen from Figure 3.8 that the stiffness of the two layer stiffener unit in the steeper 

part of the curve is higher than the calculated stiffness using the top and bottom cone in 

series. A similar behavior is seen in Figure 3.10 where the stiffness of the four-unit panel 

is about 20% more than the calculated value.  

 

Further, the plots in Figure 3.17 indicate that the panel behaves approximately 

linearly over the entire load range for both points tested. Apparently, the bilinear 

behavior of the individual stiffener units is diminished when a number of individual units 

act in parallel. Details of the finite element modeling process and the comparison of the 

model behavior with the tested sample behavior, along with further discussion of the 

nonlinear characteristics of the structure, are presented in Chapter 4. 
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CHAPTER FOUR 

 

Finite Element Modeling 

 

4.1 Introduction 

 

This chapter presents a description of the process of developing finite element 

(FE) models of the panel units discussed in the previous chapter. It presents the approach 

used to arrive at a FE model for the complete panel. Sections of this chapter present the 

types of elements used for the model and their characteristics. The boundary conditions 

and the type of loading applied to the model are also discussed. Finally, the results of the 

static analysis performed on the FE model of the two-layer panel are presented.  

 

4.2 Finite Element Modeling 

 

As seen in the previous chapter, the stiffening units display nonlinear 

characteristics when subjected to loading. One approach to modeling these stiffeners 

would be to develop detailed models including material complexities and other intricate 

details. However, this could lead to a model with too many dofs to be useful for design. 

The second approach would be to model the stiffeners as nonlinear spring elements. This 

approach would be a more practical and simplistic approach.  

 

The second approach was chosen to develop finite element models of the 

individual stiffener units. Based on this approach, the panels units are modeled as 

nonlinear springs with either two or three nodes. The outer-surface Kapton sheets 

connecting the stiffener units are modeled as shell elements with corner nodes. The 

thinner sheet of Kapton present in between the two cones in the tested sample (refer to 

Figure 3.3) is not represented in the corresponding FE model as its primary purpose is to 

provide a surface for bonding the two cones together. The full panel does not include this 

thin intermediate sheet. A detailed description of the panel modeling based on this 

approach is presented in the following sections. 
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4.3 Modeling Individual Stiffener Units 

 

Based on the static displacement experiments that were conducted on different 

sets of individual stiffener elements described in Chapter 3, two FE models were 

developed to represent the panel stiffener units. Two approaches were considered for 

modeling the stiffener elements: 1) Model 1 was to model the top and bottom cones using 

different nonlinear spring elements and then use a serial combination of these springs to 

represent the two-layer, one-unit stiffener and 2) Model 2 was to model the two-layer, 

one-unit stiffener as a single nonlinear spring.  

 

4.3.1 Description of Two-Spring and One-Spring Models of Stiffener Unit 

 

Figure 4.1 presents a representation of the two-spring and the one-spring models. 

A pictorial representation of stiffener unit is also presented. The two-spring model has 

three nodes and the one-spring model has two nodes. The FE model of the two-layer, 

one-unit stiffener using Model 1 is presented in Figure 4.2 and the FE model using  

Model 2 is presented in Figure 4.3.  

 

 

 

 

 

 

           
          Model 1                          Model 2 
   Two-spring model                  One-spring model 

 

Bottom cone 
(Larger)Middle thinner 

Kapton sheet

Top cone 

2 

1 

3 

2 

1 

Figure 4.1: Two-spring model (left) and one-spring model (right) of two-layer, one-unit 
stiffener 
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 Bottom cone Top cone 

 

  
Stiffness See Fig 3.7 for force-disp. relationship See Fig 3.6 for force-disp. relationship 

Two-spring 

FE model 

 

Top cone 

Bottom cone 

Figure 4.2: FE model of two-layer, one-unit stiffener using Model 1 

 

  One unit sample (bottom and top cones together) 

 

 
Stiffness see Fig 3.8 for force-disp. relationship 
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Figure 4.3: FE model of two-layer, one-unit stiffener using Model 2 
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The ANSYS version 8.0 nonlinear spring element (COMBIN39) was used to 

model the individual panel units. COMBIN39 is a unidirectional element with nonlinear 

generalized force-deflection capability that can be used in any analysis. The element has 

longitudinal or torsional capability in 1-D, 2-D, or 3-D applications. The element has one 

dof at each node in the axial direction. Experimental results obtained from static 

deflection tests performed on different sets of individual stiffener units were used to 

define the element properties in the axial direction. Refer to Section 3.4.1 for details of 

how the spring properties were measured. 

 

4.4 Modeling a Multiple-Stiffener Sample 

 

For each model of the individual stiffener units (Model 1 and Model 2), a four-

unit panel model was developed. This was done by using parallel combinations of Model 

1 and Model 2 respectively. Two surfaces were generated to connect the top spring nodes 

and the bottom spring nodes respectively. The top and the bottom surface surfaces were 

meshed using the auto-mesh feature in ANSYS to generate shell elements representing 

the Kapton sheets connecting the cones.  For static analysis of the four-unit-two-layer 

model, the shell elements did not contribute to the stiffness behavior as loads were 

applied to the top spring nodes only. Results of static analysis of the four-unit model were 

compared to the results of static testing on the four-unit sample. This intermediate step 

was performed to provide phased validation of the FE model with respect to the tested 

sample. Figure 4.4 presents a pictorial representation of the four-unit panel and the 

corresponding FE models. 
FE model of panel 

Multi-unit sample C 
Model 1: two-spring model Model 2: one-spring model 

 
  

Figure 4.4: Physical model and FE model of four-unit panel 
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In addition to the spring elements in Section 4.3.1, the model includes shell elements 

(SHELL 63) for the top and bottom layers of the multi-unit sample. SHELL 63 has both 

bending and membrane capabilities. The element has six degrees of freedom at each 

node. A thickness of 0.127 mm (5 mil) was used for the shell elements composing the top 

and bottom Kapton layers of the sample. This was obtained by measuring the thickness of 

the Kapton sheet in the tested sample.  Table 4.1 lists the physical properties of Kapton 

that were used for the model.  

 

Table 4.1: Physical properties of Kapton 
Property Value 

Tensile Modulus 2.5 G Pa 

Poisson’s ratio 0.34 

Density 1.42 E3 Kg/m³ 

 

The bottom nodes of the four-unit model were constrained in all directions while the top 

nodes were free to translate in only the vertical direction. Loads were applied in the 

vertically downward direction as presented in Figure 4.5 and the corresponding 

displacements were recorded. A two-spring representation of the panel stiffeners is 

shown in this figure. 

 

               
Figure 4.5: FE model of four unit panel showing loads and boundary conditions 

All dofs constrained

Shell elements  

Force applied to top 
surface nodes 
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Figure 4.6 shows the results of the static analysis with the four-unit models using 

a two-spring stiffener (Model 1) and a one-spring stiffener (Model 2) plotted with the 

static test results. The displacement in mm is plotted in the horizontal axis and the force 

in Newtons is plotted in the vertical axis. From Figure 4.6 it can be seen that the results of 

FE Model 2 show more pronounced nonlinear behavior in the region from 0 to 0.2 mm 

displacement than FE Model 1. FE Model 2 has a distinctly changing slope from a 

stiffness less than that of FE Model 1 to a stiffness approximately 33% greater than that 

of FE Model 1. The experimental results also exhibit a distinct change in slope, but in the 

region 0 to 0.4 mm displacement. The results of FE Model 1 exhibit a less-changing 

slope, with the final stiffness more parallel to the experimental result.  

 

 
Figure 4.6:  FE model results compared to static test results for four-unit panel. 

 

The stiffness of the lower portion of the experimental results plot in Figure 4.6 is 

approximately 2 N/mm and the steeper portion of this plot is approximately 10 N/mm 

compared with slopes of 1.5 N/mm and 3 N/mm of the one-unit stiffener in Figure 3.8 

respectively. In parallel, the stiffness of the four-unit panel should be about 4 times the 

stiffness of one-unit stiffener. From the results of the static experiment performed on the 

four-unit test sample, it is noted that the structure stiffens beyond a certain load. A similar 
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behavior is also seen in the FE results of Model 2 (one-spring model). To include this 

nonlinear behavior, Model 2 was selected for use in the full-panel FE model. Additional 

efforts are needed to better correlate the four-unit models to the experimental results.  

 

4.5 Modeling the Complete Panel 

 

Based on the observation from the four-unit sample model, the complete panel was 

modeled using multiple one-spring stiffener units spaced in a hexagonal honeycomb-

pattern. Figure 4.7 shows the FE model of the full panel. The nonlinear spring elements 

and the shell elements used to connect them are highlighted. The FE model is comprised 

of 241 spring elements and 10,801 shell elements. The batch file (ANSYS data input file) 

used to create the model of the full panel is presented in Appendix 5. The flanges of the 

panel were not included in the model at first, as the bending characteristics of the flanges 

was thought not to be of interest. The nodes on two parallel edges 1 and 2 of the lower 

surface were constrained in translation. Loads were applied to the center node of the top 

surface and the vertical deflection of the nodes corresponding to points A and B in the 

actual panel (see Figure 3.15) were recorded. 

 

Shell element 

Edge 1 
(bottom 
surface) 

Edge 2 

Nonlinear spring 
elements 

  Figure 4.7: FE model of complete panel using one-spring model  

      (Model 2) for each stiffener unit 
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The results of the static analysis on the full panel are presented in Figure 4.8 in 

comparison with the results of the static experiment. The data for the static analysis on 

the full panel is presented in Appendix 6. The deflection in mm is plotted on the 

horizontal axis and the force in Newtons is plotted on the vertical axis. The plot indicates 

that the FE model results and the test results follow a linear trend. The FE model was 

considered a sufficiently accurate representation of the full panel in static 

analysis to continue to the dynamic analysis effort.  

 

The nonlinearly increasing stiffness observed from the data of the four unit panel 

model seems to have diminished significantly in the full panel model and in the full panel 

experiment. However, the test results still show a slight softening trend of the panel as the 

load increases. From these results it is theorized that in thermoform-stiffened panel 

structures the effect of nonlinearities localized in individual stiffeners is diminished when 

many such stiffeners combine to form the complete panel.  
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Dynamic testing was performed to further compare the behavior of the model 

when subjected to dynamic loads. The following chapter describes the details of dynamic 

testing and dynamic analysis performed on the complete model.  

 40



CHAPTER FIVE 

 

Dynamic Experimentation and Modeling 

 

5.1 Introduction  

 

This chapter presents the details of modal testing that was performed on the panel. 

The experimental setup and test procedure are explained in detail. The second part of this 

chapter includes details of the finite element modal analysis that was performed with 

several full panel models. Plots for different mode shapes are presented. The results of 

the physical testing and the FE model analysis are then compared.  

 

5.2 Modal Tests on Full Panel 

 

Modal testing was performed on the panel using standard modal testing practices as 

possible, with modifications as needed. Figure 5.1 shows the test setup that was used to 

perform the modal testing. The panel was suspended by two mono-filament lines, each 

400 mm long. This was to approximate free-free boundary conditions and to minimize 

the effect of rigid body modes on the elastic mode response between 0-100 Hz.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1: Modal testing setup 
 

Figure 5.1: Test setup for panel modal testing 
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A conventional single point impact hammer (PCB 086B01) was modified by 

attaching a rectangular aluminum plate measuring 38.1 mm in width and 101.6 mm in 

length to its tip in order to mitigate local deformation on the panel at the point of impact. 

Griffith recognized the effect of local deformation when testing an inflatable torus with 

impact hammer excitation and used a similar modification for his hammer input [14]. 

Figure 5.2 shows the impact hammer and plate used to excite the panel for modal testing.  

 

 

Figure 5.2: Impact hammer and aluminum plate 

 

The vibration response of the panel was measured at 24 different points using a 2-

g small-mass accelerometer (PCB Model A353A16) with a nominal voltage sensitivity of 

10mV/g and a frequency range between 1 – 10,000 Hz. A second accelerometer was used 

as a reference. The reference accelerometer was located in the center of the panel behind 

the point where excitation impact was applied. The location of the response 

accelerometer was changed to different predefined points during the course of testing to 

be able to compute the frequency response for different points on the panel. Figure 5.3 

shows the location of the predefined points numbered in the clockwise direction starting 

from the inner blue points to the outer red points. 
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Figure 5.3: Pre-defined accelerometer locations 

 

The input force time history data from the impact hammer and the output response time 

history from the accelerometer were recorded by a multi-channel mobile dynamic signal 

analyzer. A sampling rate of 200 samples per second was used. Preliminary testing 

showed that five averages were sufficient for this test. The frequency response functions 

were determined at 24 points using by the single-input single-output (SISO) method. The 

panel was excited in the center for each test and the response was measured at points 1 

through 24 in turn. For each location of the response accelerometer, the panel was excited 

five times and the average of the five readings was recorded as the final FRF. Averaging 

reduces the noise producing a more accurate FRF. FRF plots for response measured at 13 

points are presented in Appendix 7. Figure 5.4 presents the FRF plots for location points 

1, 3, 12 and 14. 
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Figure 5.4: Typical better FRF for locations 1, 3, 12 and 14 

 

Frequency in Hertz is plotted on the horizontal axis and amplitude in G^2/Hz is plotted 

on the vertical axis. Significant peaks are highlighted in the figure with dotted lines to 

show the comparison. The first peak in each plot is expected to be the pendulum mode of 

the panel swinging on the monofilament lines. This frequency was estimated using the 

panel dimension of 0.250 m from the top edge to the center and compared to the 

measured values in the FRFs. Table 5.1 presents the calculated and measured values of 

natural frequency for the pendulum mode.  

 

Table 5.1: Comparison of natural frequency for pendulum mode 

Measured natural frequency in pendulum mode Calculated natural frequency 

in pendulum mode Point  1 Point 3 Point 7 Point 12 

0.63 Hz 1.4 Hz 1.5 Hz 1.4 Hz 1.4 Hz 
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After the pendulum mode, the next peaks seen in the FRFs are approximately at 

12-12.5 Hz, 21-23 Hz, 29-35 Hz and 39-40 Hz respectively.  Figure 5.5 presents two 

examples of low-quality FRF plots that were also recorded during the test. In these plots 

and others like them the averaged FRF does not show clear peaks typical of modal 

response. 

 

 

Figure 5.5: Bad FRF plots  

 

Measured frequency response function data can be loaded into X-Modal software 

(modal analysis software) which can be used to identify modal quantities including 

natural frequencies, mode shapes and damping. The frequencies and mode shapes 

identified using X-Modal can be compared to those obtained from the modal analysis of 

the finite element model. However, the results of X-modal analysis are not available as 

this part of the original thesis plan was not completed. Another, less accurate method to 

compare the experimental response to that of the finite element model is to compare 
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natural frequencies. However, without mode shapes to compare, frequency matching is 

uncertain. 

 

5.3 Modal Analysis of Finite Element Model of Full Panel 

 

Modal analysis was performed using the finite element model of the full panel. For this 

analysis, the panel was not constrained at any boundary, but considered free-free. Natural 

frequencies and mode shapes were extracted with the Block Lanzcos method. From the 

modal testing results, several frequencies of interest were observed in the range of 0-50 

Hz. Therefore, the first 20 modes in the frequency range of 0 – 100 Hz were computed. 

The frequency list included six rigid body modes, elastic bending modes and modes with 

relative movement between top and bottom surfaces. Modes 1 to 11 are rigid body modes 

combined with relative movement between top and bottom surfaces. Modes 13, 17 and 

19 are distinct bending modes. Mode 13 and 14, 15 and 16 are orthogonal pairs. The 

frequencies of modes 13 to 20 are presented in Table 5.2. The frequencies and mode 

shapes of all 20 modes extracted are presented in Appendix 8. In modes 15, 16, 18 and 

20, relative movement between the top and bottom surfaces occurs. This will not happen 

in reality because of the presence of the flanges connecting the top and bottom surfaces. 

 

Table 5.2: Natural frequencies from modal analysis 
Mode number Frequency (Hz) Description 

13 33.5 Bending mode – saddle shaped 

14 33.5 Orthogonal to 13 

15 39.7 Relative movement between top and bottom surfaces 

16 39.7 Orthogonal to 15 

17 57.9 Bending mode 

18 61.7 Relative movement between top and bottom surfaces 

19 71.6 Bending mode 

20 74.9 Relative movement between top and bottom surfaces 

 

The mode shapes 13, 17 and 19 are presented in Figure 5.6. Mode 13 is a saddle-shaped 

bending mode at 33.5 Hz, Mode 17 is a breathing mode with a frequency of 57.9 Hz and 
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Mode 19 is another bending mode at 71.6 Hz. Modes 10, 11 and 18 are presented in 

Figure 5.7. In these modes, relative movement between the top and bottom surfaces 

occurs.  

 

 

 MODE 19 – 71.6 Hz 

MODE 17 – 57.9 Hz MODE 13 – 33.5 Hz 

Figure 5.6: Mode shapes 13, 17 and 19 
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MODE 10 –20.1Hz MODE 11 – 20.8 Hz 

MODE 18 – 61.7 Hz 

Figure 5.7: Mode shapes 10, 11 and 18 

 

Although static analysis of the full panel without the flanges resulted in accurate 

results, the modes showing out-of-phase motion of the top and bottom surfaces seen from 

modal analysis indicated that the presence of the flanges are needed to stabilize the top 

and the bottom surfaces. Thus, the FE model of the panel was modified to include the 

flanges connecting the top and bottom areas. Figure 5.8 shows the FE model with the 

flanges highlighted. The flanges were modeled with shell elements with thickness 0.254 

mm, twice that of the top and bottom surfaces. The actual panel was comprised of two 

layers of Kapton glued together at the flanges. Modal analysis was performed on this 

modified model. However, except for the rigid body modes, all computed frequencies 

were above 100 Hz. The first elastic mode frequency occurred at 112 Hz. The modal test 

results of the panel seemed to indicate that some modal frequencies are between  
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0-100 Hz. The addition of the flanges to the FE model made it much stiffer than the 

actual panel. Since the frequencies of the panel model with the flanges were much higher 

than the actual frequencies, the flanges were not included. 

 

 

 

FLANGE 

FLANGE 

Figure 5.8: FE model of panel with flange 

 

Another approach was tried to avoid the relative out-of-phase motion between the 

top and bottom surfaces. Springs with high stiffness (500 times the actual model spring, 

2500 N/mm) were used to connect the top and bottom surfaces at the six corner nodes. 

This was done so that the top and bottom surfaces of the panel would move together. 

However, because the spring lacked stiffness in the lateral directions, this approach did 

not prevent all out-of-phase motions between the top and bottom areas.  
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5.4 Modal Analysis Summary 

 

Table 5.3 presents a comparison of the frequencies from the FRFs and modal analysis. 

The pendulum mode (frequency 1.3 – 1.5 Hz) was seen in the testing due to the 

monofilament strings. These could also be added to the model for better comparison. 

Frequencies from the FRFs were obtained by the peak-picking method. As can be seen, 

the frequencies are comparable in terms of their numerical values, but without comparing 

the actual mode shapes, the comparison is not complete.  

 

Table 5.3: Frequency comparison from FRF and modal analysis 
Frequencies from FRF Frequencies from modal analysis 

1.3-1.5 Hz - 

21-23 Hz 20.110, 20.825 Hz 

29-35 Hz 33.505 Hz 

39-40 Hz 39.724 Hz 
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CHAPTER SIX 

 

Thesis Summary 

 

6.1 Summary and Conclusions 

 

This chapter presents a comprehensive summary of this thesis. Recommendations 

for future work in the area of thermoformed stiffened panel structures are also included. 

The main objective of this thesis was to develop an understanding of the behavior of a 

thermoformed stiffened panel and to develop a finite element model of the panel based on 

static experimentation. The evaluation of the dynamic behavior of the panel was also of 

interest.  

 

First, the smallest stiffener unit was tested. Static tests were performed and unit 

stiffness properties were established. Static tests were performed on each cone element of 

the unit stiffener to understand their individual properties and on the combined stiffener 

consisting of two cones. During the course of static testing, the mechanisms of 

deformation were also studied, providing a better understanding of the deformation 

phenomenon. Although each of the two cones behaves linearly in static tests of their 

stiffness under axial loading, the combination of these cones in a unit stiffener was seen 

to have a bi-linear stiffness. However, from the static test on a four-unit panel it was seen 

that bi-linear behavior diminishes when multiple unit stiffeners were combined. Both, 

hexagonal and circular configurations of the stiffener cone elements were tested.  

 

Based on the results of static tests, two FE models were developed for the 

stiffener units using nonlinear springs; 1) one-spring model, 2) two-spring model. In the 

one-spring model, the stiffener unit was modeled as a single spring and in the two-spring 

model, two springs were used each representing the individual cones of the stiffener unit. 

A four-unit stiffener was modeled using the two modeling approaches. The analysis 

results of this model were compared with test results obtained by testing a four-unit panel 
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to find that the one-spring unit model produced a result with better qualitative correlation 

to test results. Neither model provided good qualitative correlation.  

 

Based on this comparison, a full-panel model was developed using the one-spring 

model for each stiffener unit. Static tests were performed on the full panel and static 

analysis was done on the FE model of the full panel. The results of these tests and 

analysis were compared to find that the full panel model produced a result qualitatively 

and quantitatively comparable to the test results. 

 

Modal testing was performed on the full panel and frequency response functions 

were determined. The frequencies of the analysis and the frequencies from frequency 

response function (obtained by peak picking) were compared. Modal testing revealed 

bending modes between frequencies 0-100 Hz.  

 

Modal analysis was performed on the FE model and mode shapes and natural 

frequencies were extracted. Based on the analysis, the FE model was modified to include 

the side flanges connecting the two layers of the panel and this resulted in higher stiffness 

of the panel than indicated by the experimental results. 

 

6.2 Conclusions 

 

 Although this thesis demonstrates that conventional testing principles could be 

applied to testing thermoformed stiffener panels. The phased-verification approach used 

in this thesis - where the full panel was broken down into smaller units and properties 

were established for these smaller units and then used to develop FE models for the full 

panel – can be extended to modeling and testing similar structures. The concept of using 

nonlinear springs to represent stiffener units for thermoformed stiffening units has been 

established during the course of this work. This reduces the need for in-depth modeling 

of similar structures thus making the idea of modeling extremely large structures feasible 

due to the limited number of nodes needed for such models compared to complicated 

models. This concept can be applied to similar stiffening structures.  
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6.3 Recommendations for Future Work 

 

There are five main recommendations for future work related to thermoformed 

stiffener panels similar in construction to the panel discussed in this thesis.  

 

First, a selection of stiffener units needs to be tested to document the range of 

behavior more completely. Further, the unit stiffeners should be tested with shear and 

torsional loading as well as axial loading as was done herein.  

 

Second, a better way to represent the effect of the flanges connecting the top and 

bottom surfaces on the stiffness of the panel needs to be developed. The addition of the 

flange would stabilize the top and bottom surfaces and would eliminate the relative 

movement between them.  

 

Third, the lateral stiffness of the panel needs to be measured by testing and this 

can be used to define lateral spring stiffness in the FE model. Lateral stiffness of the 

springs would add constraints on the movement of the spring nodes in the lateral 

direction.  

 

Fourth, the damping characteristics of the panel need to be analyzed and 

measured. During this thesis, the damping properties of the panel were not measured. 

They were not accounted for in the finite element model. The effect of damping will 

affect the dynamic characteristics of the panel significantly.  

 

Fifth, future testing of similar thermoform-stiffened ultra-lightweight panels 

should include static test on multiple-stiffener sample followed by static testing of 

individual stiffener unit cut from the multi-stiffener unit tested. Then the stiffener cones 

of the single-stiffener unit sample tested should be taken apart and tested separately. The 

results of these tests must then be compared. With this process, the elements comprising 

the tested assembly will be tested, rather than assuming similarity of unit stiffeners 

throughout.  
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APPENDIX 1 

 

1. Force-displacement results for sample A1 (Fig. 3.6 a) 

 
Force (N) Displacement 

(mm) Loading 
cycle 

Unloading 
cycle 

0.0000 0.0000 0.0000 
0.0500 0.1711 0.0164 
0.1000 0.3273 0.1023 
0.1500 0.4978 0.2380 
0.2000 0.6856 0.3849 
0.2500 0.8682 0.5385 
0.3000 1.0553 0.6804 
0.3500 1.2558 0.8478 
0.4000 1.4539 1.0176 
0.4500 1.6563 1.2090 
0.5000 1.8433 1.3711 
0.5500 2.0470 1.5731 
0.6000 2.2615 1.7791 
0.6500 2.4834 2.0077 
0.7000 2.6920 2.2201 
0.7500 2.8990 2.4450 
0.8000 3.0886 2.6742 
0.8500 3.3003 2.9028 
0.9000 3.4824 3.1463 
0.9500 3.6715 3.3835 
1.0000 3.8682 3.6399 
1.0500 3.9091 3.9091 
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2. Force-displacement results for sample A2 (Fig. 3.6 b) 

 
 

Force (N) Displacement 
(mm) Loading 

cycle 
Unloading 

cycle 
0.0000 0.0000 0.0000 
0.0500 0.2673 0.0314 
0.1000 0.5246 0.2192 
0.1500 0.7774 0.4496 
0.2000 1.0468 0.6768 
0.2500 1.3191 0.8916 
0.3000 1.5970 1.1220 
0.3500 1.8816 1.3988 
0.4000 2.1670 1.6666 
0.4500 2.4396 1.9286 
0.5000 2.6907 2.2261 
0.5500 2.9244 2.4753 
0.6000 3.1798 2.7626 
0.6500 3.4357 3.0391 
0.7000 3.6801 3.3252 
0.7500 4.0009 3.6021 
0.8000 4.2626 3.9200 
0.8500 4.5182 4.2213 
0.9000 4.8067 4.4846 
0.9500 5.0640 4.8289 
1.0000 5.2881 5.1308 
1.0500 5.5272 5.5156 
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3. Force-displacement results for sample B (Fig. 3.7) 
 

  
Sample B 1 Sample B 2 
Force (N) Force (N) Displacement 

(mm) Loading 
cycle 

Unloading 
cycle 

Loading 
cycle 

Unloading 
cycle 

0 0.0012 0.0000 0.0000 0.0000 
0.05 0.0841 0.0000 0.0688 0.0000 
0.1 0.1664 0.0368 0.1787 0.0032 

0.15 0.2744 0.0867 0.2909 0.0674 
0.2 0.3925 0.1589 0.4290 0.1490 

0.25 0.5289 0.2592 0.5929 0.2511 
0.3 0.6793 0.4034 0.7676 0.3857 

0.35 0.8491 0.5532 0.9347 0.5397 
0.4 1.0379 0.7151 1.1082 0.6449 

0.45 1.2173 0.8579 1.2883 0.7794 
0.5 1.3921 1.0287 1.4744 0.9261 

0.55 1.5810 1.2091 1.5953 1.0422 
0.6 1.7688 1.4116 1.7795 1.1339 

0.65 1.9622 1.5661 1.9817 1.2708 
0.7 2.1545 1.7657 2.1474 1.4022 

0.75 2.3109 1.9639 2.2949 1.5217 
0.8 2.4808 2.1650 2.4283 1.6618 

0.85 2.6482 2.3915 2.5387 1.7653 
0.9 2.8326 2.5794 2.6527 1.8937 

0.95 3.0012 2.7907 2.6907 2.0169 
1 3.1330 3.0199 2.7036 2.1572 

1.05 3.2511 3.2428 2.7718 2.3123 
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4. Force-displacement results for sample C (Fig. 3.8) 

 
 

Force (N) Displacement 
(mm) Loading 

cycle 
Unloading 

cycle 
0.0000 0.0000 0.0000 
0.0500 0.0767 0.0000 
0.1000 0.1745 0.0000 
0.1500 0.3244 0.0362 
0.2000 0.5213 0.1289 
0.2500 0.7598 0.2896 
0.3000 1.0353 0.4740 
0.3500 1.3073 0.7204 
0.4000 1.6243 0.9616 
0.4500 1.9293 1.1982 
0.5000 2.2047 1.4997 
0.5500 2.4939 1.8217 
0.6000 2.7780 2.1598 
0.6500 3.0812 2.5226 
0.7000 3.4729 2.9376 
0.7500 3.7960 3.3410 
0.8000 4.1718 3.7679 
0.8500 4.5669 4.2128 
0.9000 4.9553 4.6845 
0.9500 5.3797 5.1470 
1.0000 5.8022 5.6197 
1.0500 6.2082 6.2003 
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APPENDIX 2 

 

1. Force-displacement results for sample C1 (Fig. 3.13) 

 
Displacement 

(mm) 
Force 

(N) 
0.02 0.1962 
0.245 0.981 
0.38 1.962 

 
2. Force-displacement results for sample C2 
 

Displacement 
(mm)  

Force 
(N) 

0.14 0.1962 
0.21 0.981 
0.25 1.962 

 
3. Force-displacement results for sample C3 

 
 

Displacement 
(mm) 

Force 
(N) 

0.055 0.1962 
0.285 0.4905 

 
 

4. Force-displacement results for sample C4 
 
 

Displacement 
(mm) 

Force 
(N) 

0 0.1962 
0.08 4.905 
0.11 9.81 

 
 

5. Force-displacement results for sample H1 
 
 

Displacement 
(mm) 

Force 
(N) 

0 0.1962 
0.13 0.4905 
0.53 1.962 
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6. Force-displacement results for sample H2 

 

Displacement 
(mm)  

Force 
(N) 

0.125 0.1962 
0.131 0.4905 
0.525 1.962 

 59



APPENDIX 3 

 

1.  Force-displacement results for full panel at point A (Fig. 3.16) 
  

Displacement (mm) Force 
(N) Trial 1 Trial 2 Trial 3 
0 0.0000 0.0000 0.0000 

0.0981 0.0015 0.0010 0.0010 
0.1962 0.0027 0.0018 0.0022 
0.2943 0.0038 0.0028 0.0030 
0.3924 0.0052 0.0041 0.0044 
0.4905 0.0068 0.0051 0.0056 
0.5886 0.0082 0.0065 0.0071 
0.6867 0.0093 0.0077 0.0083 
0.7848 0.0108 0.0092 0.0099 
0.8829 0.0119 0.0104 0.0109 
0.981 0.0132 0.0118 0.0122 

 
 
2. Force-displacement results for full panel at point B  

 
Displacement (mm) Force 

(N) Trial 1 Trial 2 Trial 3 
0 0.0000 0.0000 0.0000 

0.0981 0.0009 0.0009 0.0011 
0.1962 0.0022 0.0021 0.0010 
0.2943 0.0032 0.0032 0.0019 
0.3924 0.0044 0.0043 0.0030 
0.4905 0.0055 0.0054 0.0041 
0.5886 0.0067 0.0055 0.0055 
0.6867 0.0077 0.0073 0.0065 
0.7848 0.0094 0.0088 0.0075 
0.8829 0.0101 0.0103 0.0087 
0.981 0.0112 0.0114 0.0097 
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APPENDIX 4 

 

1. Force-displacement analysis results for model 1 four-unit test panel (Fig. 4.6) 

 
 

Force 
(N) 

Displacement 
(mm) 

0 0 
0.0767 0.0166 
0.3244 0.0704 
0.7598 0.1488 
1.3073 0.2264 
1.9293 0.307 
2.4939 0.3782 
3.0812 0.4519 
3.7960 0.5399 
4.5669 0.6315 
5.3797 0.7248 

 
 

2. Force-displacement analysis results for model 2 four-unit test panel 
 
 

Force 
(N) 

Displacement 
(mm) 

0 0 
0.0767 0.0281 
0.3244 0.0913 
0.7598 0.1549 
1.3073 0.2142 
1.9293 0.2694 
2.4939 0.3145 
3.0812 0.3618 
3.7960 0.423 
4.5669 0.4823 
5.3797 0.5594 

 61



APPENDIX 5 

 

The ANSYS batch file to model the full panel is included in this section. 

 

 
/filenam,full_panel_static_analysis 
/prep7 
et,1,39 
et,2,63 
r,1,0,0.0000,0.05,0.0376,0.1,0.1016 
rmore,0.15,0.1805,0.2,0.2757,0.25,0.3940 
rmore,0.3,0.5414,0.35,0.7011,0.4,0.8765 
rmore,0.45,1.0376,0.5,1.2104,0.55,1.3950 
rmore,0.6,1.5902,0.65,1.7641,0.7,1.9601 
rmore,0.75,2.1374,0.8,2.3229,0.85,2.5199 
rmore,0.9,2.7060,0.95,2.8959 
keyopt,1,1,0 
keyopt,1,2,0 
keyopt,1,3,2 
keyopt,1,6,0 
r,2,0.127,,, 
csys,0 
mp,ex,2,2.5E9 
nuxy,2,.34 
dens,2,1.42E-6 
n,1,0,0,0 
k,1,0,0,0 
n,2,0,17.145,0 
k,2,0,17.145,0 
e,1,2 
ngen,7,2,1,2,1,43.9940,0,0,, 
kgen,7,1,2,1,43.9940,0,0,2,, 
ngen,15,14,1,14,1,0,0,-25.4 
kgen,15,1,14,1,0,0,-25.4,14 
egen,7,2,1,,,,,,,,43.9940,0,0 
egen,15,14,1,7,,,,,,,0,0,-25.4 
n,211,21.9964,0,12.7 
k,211,21.9964,0,12.7 
n,212,21.9964,17.145,12.7 
k,212,21.9964,17.145,12.7 
e,211,212 
ngen,6,2,211,212,1,43.9940,0,0 
kgen,6,211,212,1,43.9940,0,0,2 
ngen,16,12,211,222,1,0,0,-25.4 
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kgen,16,211,222,1,0,0,-25.4,12 
egen,6,2,106,,,,,,,,43.9940,0,0 
egen,16,12,106,111,,,,,,,0,0,-25.4 
n,403,43.9928,0,25.4 
k,403,43.9928,0,25.4 
n,404,43.9928,17.145,25.4 
k,404,43.9928,17.145,25.4 
e,403,404 
ngen,5,2,403,404,1,43.9940,0,0 
kgen,5,403,404,1,43.9940,0,0,2 
egen,5,2,202,,,,,,,,43.9940,0,0 
n,413,43.9928,0,-381 
k,413,43.9928,0,-381 
n,414,43.9928,17.145,-381 
k,414,43.9928,17.145,-381 
e,413,414 
ngen,5,2,413,414,1,43.9940,0,0 
kgen,5,413,414,1,43.9940,0,0,2 
egen,5,2,207,,,,,,,,43.9940,0,0 
n,423,-21.997,0,-38.0999 
k,423,-21.997,0,-38.0999 
n,424,-21.997,17.145,-38.0999 
k,424,-21.997,17.145,-38.0999 
e,423,424 
ngen,12,2,423,424,1,0,0,-25.4 
kgen,12,423,424,1,0,0,-25.4,2 
egen,12,2,212,,,,,,,,0,0,-25.4 
ngen,2,24,423,446,1,307.95,0,0 
kgen,2,423,446,1,307.95,0,0,24 
egen,2,24,212,223,,,,,,,307.95,0,0 
n,471,-43.9940,0,-76.2 
k,471,-43.9940,0,-76.2 
n,472,-43.9940,17.145,-76.2 
k,472,-43.9940,17.145,-76.2 
e,471,472 
ngen,9,2,471,472,1,0,0,-25.4 
kgen,9,471,472,1,0,0,-25.4,2 
egen,9,2,236,,,,,,,,0,0,-25.4 
ngen,2,18,471,488,1,351.952,0,0 
kgen,2,471,488,1,351.952,0,0,18 
egen,2,18,236,244,,,,,,,351.952,0,0 
n,507,-65.991,0,-114.3 
k,507,-65.991,0,-114.3 
n,508,-65.991,17.145,-114.3 
k,508,-65.991,17.145,-114.3 
e,507,508 

 63



ngen,6,2,507,508,1,0,0,-25.4 
kgen,6,507,508,1,0,0,-25.4,2 
egen,6,2,254,,,,,,,,0,0,-25.4 
ngen,2,12,507,518,1,395.946,0,0 
kgen,2,507,518,1,395.946,0,0,12 
egen,2,12,254,259,,,,,,,395.946,0,0 
n,531,-87.988,0,-152.4 
k,531,-87.988,0,-152.4 
n,532,-87.988,17.145,-152.4 
k,532,-87.988,17.145,-152.4 
e,531,532 
ngen,3,2,531,532,1,0,0,-25.4 
kgen,3,531,532,1,0,0,-25.4,2 
egen,3,2,266,,,,,,,,0,0,-25.4 
ngen,2,6,531,536,1,439.94,0,0 
kgen,2,531,536,1,439.94,0,0,6 
egen,2,6,266,268,,,,,,,439.94,0,0 
n,543,-117.988,0,-177.8 
k,543,-117.988,0,-177.8 
n,544,-117.988,17.145,-177.8 
k,544,-117.988,17.145,-177.8 
n,545,381.952,0,-177.8 
k,545,381.952,0,-177.8 
n,546,381.952,17.145,-177.8 
k,546,381.952,17.145,-177.8 
n,547,256.9964,0,-394.28 
k,547,256.9964,0,-394.28 
n,548,256.9964,17.145,-394.28 
k,548,256.9964,17.145,-394.28 
n,549,6.9964,0,37.98 
k,549,6.9964,0,37.98 
n,550,6.9964,17.145,37.98 
k,550,6.9964,17.145,37.98 
n,551,256.9964,0,37.98 
k,551,256.9964,0,37.98 
n,552,256.9964,17.145,37.98 
k,552,256.9964,17.145,37.98 
n,553,6.9964,0,-394.28 
k,553,6.9964,0,-394.28 
n,554,6.9964,17.145,-394.28 
k,554,6.9964,17.145,-394.28 
edele,202,212,1 
edele,7,, 
edele,244,245,1 
edele,268,269,1 
edele,259,260,1 
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edele,223,224,1 
edele,235,236,1 
edele,253,254,1 
edele,265,266,1 
edele,1,, 
edele,99,, 
edele,271,, 
edele,105,, 
a,221,539,401,391,533,211 
a,222,540,402,392,534,212 
lsel,all 
lesize,all,,,30,,,,, 
type,2 
real,2 
mat,2 
mshape,1,2-D 
mshkey,0 
amesh,all 
nummrg,node,8e-3 
allsel 
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APPENDIX 6 

 

1. Force-displacement analysis results for full panel (Fig. 4.8). 

 
 

Force 
(N) 

Displacement 
(mm) 

0.0000 0.0000 
0.0981 0.0009 
0.1962 0.0018 
0.2943 0.0027 
0.3924 0.0036 
0.4905 0.0045 
0.5886 0.0053 
0.6867 0.0062 
0.7848 0.0071 
0.8829 0.0080 
0.9810 0.0089 
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APPENDIX 7 

 

1. FRF measured at point 1: 
 
 

 
 
 

2. FRF measured at point 2:  
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3. FRF measured at point 3: 
 
 

 
 
 
4. FRF measured at point 4:  
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5. FRF measured at point 5:  
 
 

 
 

 
6. FRF measured at point 6 
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7. FRF measured at point 7:  
 

 

 
 
 

8. FRF measured at point 9 (FRF for point 8 not available): 
 
 

 
 
 
 
 

 70



 
9. FRF measured at point 10:  
 
 

 
 
 

10. FRF measured at point 12 (FRF for point 11 not available):  
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11. FRF measured at point 13: 
 
 

 
 
 

12. FRF measured at point 14: 
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13. FRF measured at point 15: 

 
 

 
 
 

Note: FRFs for points 16 – 24 not available.
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APPENDIX 8 
 
 

1. Mode shape 1 from modal analysis 
 

 
2. Mode 2: 
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3. Mode 3:  
 

 
4. Mode 4: 
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5. Mode 5: 
 

 
 

6. Mode 6: 
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7. Mode 7: 
 

 
8. Mode 8: 
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9. Mode 9:  
 

 
10. Mode 10:  
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11. Mode 11:  
 

 
12. Mode 12:  
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13. Mode 13:  
 

 
14. Mode 14:  
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15. Mode 15:  
 

 
16. Mode 16: 
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17. Mode 17: 
 

 
18. Mode 18: 
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19. Mode 19: 
 

 
20. Mode 20:  
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