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ABSTRACT OF THESIS

KENTUCKY'S ADAPTER FOR PARALLEL EXECUTION AND RAPID 
SYNCHRONIZATION

As network hardware has become faster, inefficient communication and synchronization 
mechanisms often have proven to be “fast enough” – but better models are needed in 
order to support future systems. The aggregate function communication model, and the 
KAPERS design  and implementation  presented  in  this  thesis,  provide  more  efficient 
ways to  implement  a  wide range of  higher-level  communication and synchronization 
operations. The main contributions of this work center on a new way to use FPGA-based 
memory in an aggregate function network (AFN). The basic functions were designed and 
implemented with modal encoding to create a global memory that allows variable length 
objects and object addresses. New and enhanced algorithms were written for use with the 
new  AFN  architecture.  This  thesis  also  details  the  KAPERS  prototype  hardware 
implementation.

KEYWORDS:  Parallel  Processing,  Barrier  Synchronization,  Aggregate  Functions, 
VHDL, FPGA.
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Chapter1

INTRODUCTION

Amdahl’s law states that the operations that cannot be sped up are the ultimate limit on 

the  total  system  performance.  In  parallel  computer  systems,  communication  and 

synchronization overheads are the primary reasons that many code constructs cannot be 

sped up.

An Aggregate  Function Network  (AFN)[1]  is  an  architectural  model  that  can 

dramatically reduce interprocessor synchronization and communication time for a wide 

range  of  higher-level  operations.  It  does  this  by  using  the  network  as  dedicated 

computing hardware to implement functions of global state of parallel program, i.e. to 

perform the  functions  on  the  data  gathered  from the  nodes,  instead  of  just  routing 

messages and computing the desired functions in the nodes. Developing a new, higher 

performance, AFN model named KAPERS (Kentucky's Adapter for Parallel Execution 

and Rapid Synchronization) is the primary focus of this thesis. 

KAPERS is the newest evolution of AFN architectural implementations, preceded 

by  over  twenty  designs  built  since  February  1994.  Using  an  FPGA1 based  design 

incorporating a new memory mechanism KAPERS can directly implement a number of 

aggregate  functions  that  had  to  be  simulated  in  all  previous  designs.  For  example, 

although it contains no function units more complex than a 4-bit adder, KAPERS can 

perform double precision floating point summation internally with good efficiency.

1.1 Definitions

Although the concept of aggregate function communication is a dozen years old, it is not 

yet as common as message passing networks. Thus, it is useful to review some of the 

basic terminology and concepts associated with aggregate functions.

1 FPGA, Filed Programmable Gate Array, a semiconductor device containing programmable logic 
components and interconnects to realize desired functionality
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1.1.1 Barrier Synchronization

Synchronization  is  the  coordination  between  PEs2 connected  as  a  parallel  system to 

complete  a  task.  Barrier  synchronization  is  a  type  of  synchronization  mechanism in 

which no PE’s process is allowed to execute past the barrier until all PEs have reached 

the  barrier.  The  barrier  synchronization  can  be  a  hardware  or  software  generated. 

Hardware barrier synchronization needs some sort of dedicated hardware connected to all 

the nodes and the software generated barrier does synchronization by message broadcast 

between the nodes. 

Barrier Synchronization in the AFNs is basically implemented by the hardware 

capable  of  performing  an  AND  operation  of  processors  inputs.  Every  processor  on 

reaching the barrier outputs ‘1’ which previously was initialized to ‘0’ and then wait till 

the AND gate output is ‘1’ and then simultaneously resume execution past the barrier. In 

this new KAPERS model a function ‘BarOr’ is defined for synchronization; it sends out 

the  logical  OR  of  the  data  collected  from  the  processors  besides  doing  the  barrier 

synchronization.  This  barrier  synchronization is  sufficient  enough to  implement  fine-

grain MIMD, SIMD, VLIW3 executions with low latency in conventional processors as 

explained in [11] [12].

1.1.2 Communication

Communication operation is mainly influenced by including memory in KAPERS unit. 

The PEs have the access to data asynchronously and can work independently relative to 

others until there is a need for synchronization. Each PE can write and read information 

from the memory location assigned to processor, or group of processors it needs the data 

from. Thus, the sender PE only outputs data; it is up to the receiver PE to look for the 

data that the sender has made available to it in the memory.

2 Here PE (Processing Element) refers to a uniprocessor node

3 MIMD, SIMD, VLIW  refer to Multiple Instruction Multiple Data, Single Instruction Multiple Data, 
Very Long Instruction Word respectively
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1.1.3 Lock

Lock is  a  synchronization  mechanism where  access  to  global  resource  is  limited  or 

serialized to avoid concurrency. Only one process at a time may own the lock. The first 

process to acquire the lock sets it. Other process can attempt to acquire the lock but wait 

until  the  process  that  owns  the  lock  releases  it.  Lock requires  hardware  support  for 

efficient  implementation.  But  acquiring  the  lock  needs  to  be  done  in  single  atomic 

operation to avoid concurrency if multiple processes are involved. 

Locking is  currently  used in  the KAPERS design for  keeping data  safe  from 

unauthorized changes as there is a single shared memory resource for multi processors 

and is conceptually simply locking the address space. In this design, the lock mechanism 

is used to acquire the lock on the current nybble before access, and to acquire the lock on 

the next nybble before releasing the lock on the current nybble. There are several ways to 

implement the locking mechanism: 

 Insertion of an extra bit for each memory space, to signify whether it’s locked or 

not. Though this simple logic outwits other methods, it wastes memory space as 

there is a need for increment in the memory width by one. 

 Another  way  to  implement  lock  mechanism  is  to  design  a  lock  register 

exclusively for each processor and load it  with the address of location that is 

locked. Before accessing the memory space each processor needs to check with 

the other processor lock registers to know whether the address is locked or not. 

Need for the access of other processor lock registers breaks the processors nature 

of working independently relative to others. 

The second method described above, lock using dedicated registers is applied in 

the current design of AFN.

1.2 Background Information

From a  decade  there are  several  versions  of  AFNs that  were built  with  either  slight 

variations  in  architecture  or  hardware.  The  first  one  to  be  built  in  the  line  was 

PAPERS0[4] in February 1994 with emphasis  on dynamic barrier  implementation.  It 
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basically had one PAL4 per processor with group of TTL5 drivers for proper interface 

between  the  parallel  ports  of  PCs.  The  logic  was  basically  a  barrier  to  synchronize 

followed by an anti-barrier to ensure that all participating processors have detected that 

synchronization was achieved. The only communication supported by the hardware was 

a 1-bit multi-broadcast where each processor gets a bit mask containing one bit from 

each processor, intended to provide a means for voting on membership in a new barrier 

mask.

The next  was PAPERS1 prototype with features like dynamic partitionability, 

communication operations and improvements in speed up of barrier and data operations 

[5] in August1994. This used two PALs per processor one for barrier and the other for 

communication helping to perform both 1-bit and 4-bit multibroadcast. All the enhanced 

data communication operations developed for PAPERS1 required just 2 port operations 

compared to 4 cycles for the PAPERS0.

Then followed the series of TTL_PAPERS prototypes built with only TTL parts. 

TTL_PAPERS 951201[2], modularly scalable 8 processor prototype was one of them 

with  subsystems  in  architecture  for  synchronization,  parallel  signaling,  data 

communication and status display.  Scalable version of this  series was TTL_PAPERS 

960801[13].

1.3 Information on other interconnect networks

The Simultaneous Optical Multiprocessor Exchange Bus:

The  SOME-bus  architecture[6]  contains  a  dedicated  channel,  which  is  an  optical 

interconnect for each processor to eliminate global arbitration and to provide bandwidth 

that scales with the number of processors in the machine. The interconnection network is 

a ribbon of optical fibers carrying all the signals for the bus. Figure 1 shows the SOME-

bus interconnection scheme. Unlike electrical buses, this is not limited by the medium 

(fiber optics) used to connect the transmitters and receivers. Each processor has a single 

transmitter and an array of receivers. The transmitter is used for all communication with 

4 PAL, Programmable Array Logic, semiconductors used for implementing logic functions in digital 
circuits 

5  TTL, Transistor-Transistor Logic, class of digital circuits built from bipolar junction transistors and 
resistors 
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other  PEs and is  on the  dedicated  channel,  and  the  receivers  are  for  each  processor 

channel.  The architecture of  the receiver  array permits  a  variety  of  different  parallel 

programming models to be efficiently supported. The basic communication primitive in 

the SOME-Bus is a broadcast and all processors receive the  packet simultaneously.

Barrier mechanism in this architecture is a fuzzy barrier[13] that has two phases. 

In the first phase, a processor broadcasts a barrier to each processor through the channel; 

the receiver element may discard the message if it is not useful to its local processor. In 

the second phase, the processor samples the result of the AND tree, which determines the 

barrier  satisfaction. The processor waits until  the result  of  the AND tree is obtained, 

indicating that the barrier is complete, and when done the processor resets the receiver 

elements for the next barrier operation and the processor continues. This mechanism can 

perform the barrier operation in less than a 1µs for the developed hardware design.

QsNetII Network:

QsNetII[7] is the latest in generations of Quadrics interconnect products. Interconnect in 

this network is a PCI card with Elan4 communication processor in each computing node. 

The  processor  acts  as  the  interface  between  PE  and  a  high  performance  multistage 

network through standard PCI-X bus.  The network is constructed from Elite4 switch 

components that support point-to-point transfer between arbitrary nodes and broadcast 

across selected ranges of nodes. These Elite4 switches can be used to combine up to 

thousand of nodes, in a fat tree structure that scales up in the power of four. Barrier 

synchronization with scaling behavior can be implemented with the help of hardware 

broadcast.

5
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k  -ary   n  -cube network with wormhole routing:  

For k-ary n-cube network[16], n is the dimension of the network and k is the number of 

nodes in each dimension of the structure, with kn nodes in total. Bi-directional channels 

connect  every  node  to  all  of  its  nearest  neighbors.  In  this  network  node  location  is 

represented by a vector with two bit-vector fields; one represents the location of the node 

within the plane and the other node dimension location. 

Wormhole routing[15] differs in the way of storing the packet completely and 

then transmitting it to the next node which is usually done by ordinary store and forward 

routing schemes. Wormhole routing sends the head of the packet of which only few flow 

control digits (flits) get buffered at each node. As soon as a node examines the header 

flit(s) of a message, it selects the next channel on the route and begins forwarding flits 

down that channel. As the header advances along the specified route, the remaining flits 

follow in a pipeline fashion. By using wormhole routing in the k-ary n-cube structure, the 

latency can be diminished as the message increases in size as the majority of latency is 

hidden in the transfer of first packet. The remaining packets which follow the header 

packet introduce only wire transfer delay.

Some of the direct networks that use wormhole routing are Ncube-2 (hypercube), 

Intel Touchstone Delta (2D mesh), Paragon (2D mesh), MIT J-Machine (3Dmesh) and 

Cray T3D (3Dtorus). Another work and research on the wormhole directed networks for 

a fast, scalable synchronization scheme is a multi-destination wormhole mechanism [14].

1.4 Thesis Outline

The new memory model architecture design for the AFN is explained in the Chapter 2. It 

also  explains  how  the  design  is  captured  in  VHDL6 for  programming  the  FPGA. 

Improvised  algorithms  for  the  aggregate  operations  --  associative  reductions,  scans, 

communication, voting and scheduling fitting the new model are talked in the Chapter 3. 

Chapter 4 describes the implementation of KAPERS hardware board design. Conclusion 

for the work done is in Chapter 5. 

6 VHDL, VHSIC (Very High Speed Integrated Circuit) Hardware Description Language, is used as a 
design entry for FPGAs 
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Chapter2

KAPERS ARCHITECTURE 

The primary difference between KAPERS and previous AFNs is that KAPERS uses a 

new architectural design. This design is not only new in terms of how various types of 

operations are constructed, but also differs from previous designs in that the high-level 

architectural  design is  more  completely separated  from the  implementation hardware 

details  than  had  been  the  case  for  earlier  AFNs.  In  this  chapter,  the  high-level 

architecture is  our focus; Chapter 4 discusses one implementation hardware structure 

supporting  this  new  architecture.  It  is  further  useful  to  divide  the  current  chapter’s 

architectural description into two sections:

1. The architectural overview, describing the programmer’s view of the system and 

its high-level functionality 

2. The VHDL design capture, detailing the functional decomposition into hardware 

modules and the complete logic-level design 

2.1 Architectural Overview

This section gives a brief description of the hardware interface, basic functions, memory 

model, and memory functions that constitute the KAPERs architecture.

2.1.1 Interface

The network interface plays the key role in determining the available bandwidth and 

latency  for  communication  in  message-passing  networks.  The  current  version  of 

KAPERS uses  the  parallel  port  as  the network interface.  The  parallel  port  used is  a 

standard parallel port (SPP). It has 8- bit data output, 4-bit open collector output, and 5-

bit input accessible through status, control, and data registers. Parallel port register access 

is  performed  as  a  direct  user  polled  I/O  by  setting  the  address  permission  mask  to 

minimize  the  system call  overhead  for  reducing  the  latency.  Though  the  latency  in 

accessing  any  port  register  is  approximately  1µs,  the  bandwidth  is  limited  to  few 
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megabytes per second in this case. The reason for using the parallel port as network 

interface despite its poor capability in regard to bandwidth is that none of other available 

interface units guarantee simple and cost effective design. 

Hopefully,  a  future  interface  with  very  similar  capabilities  will  provide 

comparable  or  better  latency  without  crippling  the  bandwidth.  Certainly,  commodity 

network  wire  transport  technologies  such  as  Cat5  Ethernet  fundamentally  provide  a 

comparable number of bits with a much faster transmission clock cycle, and there is no 

technical reason that such a physical interface could not be made directly accessible to 

the processor. 

The  interface  signals  between  PE’s  parallel  port  and  the  KAPERS  unit  are 

summarized in Table 1 followed by their brief functionality:

Table 1 Interface signals between PE and KAPERS

Pin # of DB25 Direction relative 

to PE

Direction relative to 

KAPERS unit
Pin2 – Pin9 Output from PE Input bits (D7 – D0)

Pin 10,11,12,13,15 Input to PE Output bits (O4 – O0)
Pin 1,14,16,17 Output from PE (Open 

Collector) 

PE number indicators

A simple data transfer requires minimum of 4 to 5 communication cycles; two 

cycles for input data and signaling, and two to three cycles for output data and signaling. 

These communication cycles can be reduced to 2 if the signaling bit is accompanied with 

the data. With the KAPERS unit the I/O operations for all data and barrier operations are 

achieved in 2 cycles(one for input and one for output) by setting a strobe bit that gets 

written in the same port register write that sets the other bits in both input and output 

directions. For the incoming data to KAPERS the topmost bit D7 is used as signaling bit, 

and bit O4 is used to indicate the readiness of data in bits O3 to O4, the computed output 

to be sent to the PE. 

The above method for reduction in I/O operations can be accomplished only if the 

FPGA is used for resolving the signal race condition between the strobe and data lines 

8



using the fact that the PC cannot initiate a new port operation any faster than once per 

microsecond. For this, in the case of incoming data to KAPERS, strobe bit is analyzed 

first and then data is processed only after a certain delay of about few clock cycles of 

FPGA in which it gets stabilized. In the case of outgoing data the signaling bit O4 is sent 

after a period of about 40ns from the time the computed data is sent to parallel port of PE 

for letting data to get stabilized for retrieving. 

Bits  D6  to  D4  from PE  to  KAPERS unit  indicate  the  basic  functions  to  be 

implemented and are explained in Section 2.1.3, while bits D3 to D0 specify the data to 

be processed.

2.1.2 Modal Instruction Encoding

In the aggregate function communication model, an aggregate operation is performed by 

each node writing a datum and opcode pair to the AFN hardware and then reading the 

AFN-computed result.  In  all  previous AFN implementations,  that  is  also an accurate 

description of how the hardware operated. However, with a  relatively narrow interface, a 

richer set of operations, and potentially much larger data objects, it becomes impractical 

to  encode  each  operation  as  a  self-contained  instruction.  Thus,  the  instructions  are 

transmitted to the KAPERS AFN in a simple contextually-compressed form: as modal 

operations.

For  example,  an opcode is  not  sent  with each instruction.  Instead,  an opcode 

context is defined such that a “default” opcode is  implicit  in each action within that 

context.  Setting  the  “add  mode”  essentially  makes  the  default  opcode  add  until  set 

otherwise. Note that this does not imply that every operation must be an add until the 

default is changed; rather, it simply implies that the operation is add for instructions that 

can have such an opcode and are executed in that context. For example, setting “add 

mode” and then sending address bits does not imply that the address bits are added – but 

subsequent memory access instructions would indeed use the implied add opcode.

The contextual mode concept is used throughout the KAPERS architecture, not 

only for memory operations. For example, this same mechanism is what allows KAPERS 

to have arbitrary-length memory addresses and variable-size data  objects  without the 

9



overhead of sending the maximum number of nybbles for each operation. Variable-size 

addresses  are  handled  by  the  concept  of  an  “address  setting”  mode  in  which  each 

subsequent nybble is  inserted in the modally next nybble position within the address 

register.  A  similar  modal  concept  sequences  through  nybbles  within  a  multi-nybble 

object in memory, without altering the base object address register. This modal structure 

not only dramatically reduces the bandwidth required to connect each node by avoiding 

extra bits in each transmission, but also allows even greater compression by deliberately 

truncating a transmission sequence as soon as the remaining references are known to be 

moot. For example, if the address register is to be set to a value that differs only in the 

lower bits from its current value, it is not necessary to send the higher bits.

As an example of  how useful  this  concept  is,  consider  the case of  votecount 

operation, where a node casts a vote for the PE it desires by adding ‘1’ at the memory 

location assigned for that particular PE and gets its count of votes gained from its allotted 

memory location. 

intp_votecount(register int d)

{

step1: p__address(D_ADDRESS + d*sizeof(NPROC)*2);

step2: p__setfunc(add,unlock);

step3: p__memfunc(1);

step4: p__baror(0);

step5: p__address(D_ADDRESS + IPROC*sizeof(NPROC)*2);

step6: return(p__memfunc(0));

}

The  algorithm  for  votecount  is  explained  further  in  Section  3.4.3;  here,  our 

concern  is  simply  the  improvement  due  to  modal  instruction  encoding.  Setting  the 

address,  in  steps  1  and  5,  is  done  by  entering  an  address-setting  mode  and sending 

nybbles in low to high order. If addresses take 16 bits, then one would expect to have to 

send 4 nybbles, but nearby addresses can be set by sending only the changed low nybbles 

– we need not specify an address position in which to place each nybble. The add mode 

set in step 2 is used in both steps 3 and 6, saving transmission of opcode for each nybble 

of  these  two  operations.   Note  that  the  intertwined  sequences  for  the  address  and 

memfunc operations do not affect the modal operations, since address-setting modes are 

10



disjoint from addition, both can be current at the same time. Likewise, the non-modal 

BarOr  causes no conflict.  Using these modal encodings easily reduces the number of 

bits that must be transferred to less than half.

2.1.3 Basic Functions

The basic instructions defined in KAPERS were intended to do barrier synchronization, 

set  memory operation,  specify  selected  low bits  of  an  address,  and  transmit  data  of 

variable  length.  Respectively,  these functions  are  implemented  by  BarOr,  AddrFirst,  

AddrNext, SetFunc, MemNext, and MemLast operations. Opcode space has been reserved 

for defining two more functions if experience with the system reveals that additional 

functions would be desirable.

The function  BarOr is defined for the barrier synchronization operation, where 

every PE waits at the barrier until all others arrive and returns with a logical OR of all the 

data from the PEs. If only a barrier synchronization operation is desired, the data can 

simply be ignored as “don’t care” values.

AddrFirst brings in the least-significant nybble (LSN) of the address where the 

operation needs to be carried out in the memory.  AddrNext does the same operation as 

AddrFirst, but installs the nybble it  receives in the next higher order bits of address. 

Thus, changing from one address to another only requires sending the low-order address 

bits that differ. Further, there is no inherent limit on the total number of address bits; the 

address  nybble  sequence  can  be  arbitrarily  long.  Both  the  AddrFirst and  AddrNext 

operations are grouped as Address for quick reference.

SetFunc specifies  the  modal  memory  function  to  be  carried  out  on  the 

forthcoming  data  coming  from  the  PE  until  changed  otherwise.  The  SetFunc also 

specifies whether the modal operation needs to be locked or not. 

MemNext does the already set operation on the data it brings in with the value in 

the memory. The return value will be the old value in memory before the operation was 

performed. If the function was to be implemented as locking, it locks the address it need 

to work on before performing the operation and then releases the lock after getting the 

lock on the next address.  MemLast is similar to the  MemNext  operation except that it 
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signifies  the  data  brought  is  the  last  byte  to  be  processed  with  additional  clearing 

operations on carry and offset.

The above discussed operations are tabulated below in Table 2 with their assigned 

bit patterns and functionality.  The input to the KAPERS unit is a 8 bit data D7 to D0. 

The low 4 bits, bits D3 to D0, of the input have a meaning which depends on the opcode 

in bits D6 to D4. For every opcode but  SetFunc,  low 4 bits contain a 4-bit  (nybble) 

datum.  In  the  case  of  SetFunc,  bits  D3  to  D0  specify  the  "modal  memory  function 

operation"  to  be  applied  to  data  when  memory  operations  are  performed  which  are 

explained in the next section. More precisely, bits D2 to D0 specify the operation and bit 

D3 specifies whether the operation locks memory or not.
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Table 2 Basic operations of KAPERS unit

AFN 

Operation
Opcodes

Return 

Value
Action Within AFN (after return)

BarOr(d) BarOr(d) result
unlockall(); carry=0; off=0; wait();

result=or(d from all PEs);

Address(d0.

.dk)

AddrFirst(d0)
unlockall(); carry=0; off=0; addr[0]=d0;

++off;

AddrNext(d1)
addr[off]=d1;

++off;
...

AddrNext(dk)
addr[off]=dk;

++off;
SetFunc(d) SetFunc(d) unlockall(); carry=0; off=0; Func=d;

MemFunc(d

0..dk)

MemNext(d0) return

if (locking(Func)) lock(addr+off);

Func(mem[addr+off],d0);

if (locking(Func)) { lock(addr+off+1);

unlock(addr+off); }

++off;

MemNext(d1) return

if (locking(Func)) lock(addr+off);

Func(mem[addr+off],d1);

if (locking(Func)) { lock(addr+off+1);

unlock(addr+off); }

++off;
...

MemLast(dk) return

if (locking(Func)) lock(addr+off);

Func(mem[addr+off],dk);

unlock(addr+off); carry=0;

off=0;
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2.1.4 Memory Functions

The hardware memory functions were structured to cover the basic arithmetic and logical 

operations with minimal operations possible. They are Xchg, Or, Xor, Add, and Min. A 

point of note is for the order in which the nybbles are sent for these operations. The 

Xchg,  Or, and  Xor operations  are  order  independent  whether  the  least-significant  or 

most-significant nybble arrives first.  Add requires the low nybble first. However,  Min 

requires the high nybble first. This different ordering of nybbles for the  Add and  Min 

operations is not a problem because most data objects will be used for single operations 

across the parallel system.

In the hardware the Add operation has the capability for adding carry generated 

from previous nybbles in the current nybble addition. Thus useful for adding different 

sized data objects greater than nybble width. 

It  is highly desirable to have apparently atomic operations in case of multiple 

processors  units  sharing  a  single  memory,  but  the  low throughput  of  a  nybble-wide 

interface makes a simple locking mechanism highly inefficient: locking a 64-bit object 

would keep other processors from making accesses for 16 nybble-transmission cycles, 

each of which would take at  least  a microsecond. Fortunately,  the nybbles within an 

object  will  “always”  be  traversed  from the  low nybble  walking  up  toward  the  high 

nybble, so atomicity can be ensured if we simply make it impossible for a PE to "outrun" 

another PE that is ahead of it in the scan order. In this design, the lock mechanism is used 

to acquire the lock on the current nybble before access, and to acquire the lock on the 

next nybble before releasing the lock on the current nybble.

The return value to the nodes from these memory functions will be the previous 

value in the memory and it need not be delayed until the operation is implemented nor till 

the lock on next address is acquired. The following table (Table 3) lists out the memory 

functions with the bit pattern assignment and functionality:
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Table 3 List of modal memory functions

Modal Memory 

Function Name

Bit Pattern For Bits

 2, 1, 0
Func(m,d) Semantics

Xchg 000 return=m; m=d;
Or 001 return=m; m|=d;
Xor 010 return=m; m^=d;
Add 011 return=m; (carry,m)=m+carry+d;

Min 100
return=m; if (carry==0) 

{m=min(m,d); carry=(m!=d);}

2.1.5 Memory Model

KAPERS included a  memory model  that  could  be  extended in  length  as  needed by 

increasing complexity.  Each PE can asynchronously write,  read,  and perform atomic 

read-modify-write  operations  on  the  memory  locations.  Initially,  the  memory  was 

designed as a regular block of memory capable of writing and reading out the data; so 

each PE had to determine the operation to be performed on data in memory, wait for its 

turn to access the memory to get the value, execute the operation on the data, and then 

send the result back to memory.  Our original design thus associated an ALU with the 

interface for each PE.

However, concurrent attempts to access the same single-port memory module (of 

which the current design has only one) must be serialized. Thus, parallel execution of 

memory operations is constrained primarily by the number of memory modules, not by 

the number of PEs connected. Taking advantage of this fact, an ALU is associated with 

each  memory  module  instead  of  each  PE  connection.  This  not  only  simplifies  the 

circuitry, but also can save clock cycles: instead of a read, ALU modification, and then a 

write, each operation is done as a single-cycle read-ALU-write path within the memory 

module. This solution does require sending the ALU opcode to the memory module, thus 

adding a few signals to the memory interface. The block diagram in Figure 2  gives the 

interface overview of the two memory models.
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2.2 VHDL Design Capture

The logic level design for the KAPERS architecture discussed in the previous sections 

was small enough to be realized in a low-end FPGA. For this purpose, the complete 

design was expressed as VHDL code. The VHDL was written to be compatible with the 

Quartus  II  6.0  [22]  design  software  provided  by  Altera,  which  supports  synthesis, 

verification  and  programming  functions  for  FPGAs.  This  section  details  the  VHDL 

design. To simplify the design flow, the design was divided into the following blocks:

 Input Detection 

 Sequence Detection 

 FIFO (First In First Out) Input Buffer 

 Processing Unit to decode the operation requested

 Shared Resources Control Logic 

 Shared Memory, which incorporates an ALU in its interface

16

Figure 2: Models for memory implementation
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Figure  3 gives  the  diagrammatic  structure  of  the  interaction  of  the  hardware 

function blocks.

2.2.1 Input Detection Circuit

There is a difference in speed at which the data comes in from the nodes to the KAPERS 

unit and the internal clock speed in FPGA. A standards-compliant parallel port should 

not be generating signal transitions at a rate higher than a few megahertz, with about 1 

microsecond per signal transition typical. Because TTL logic level signaling is used over 
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Figure 3: Block diagram showing different sections in the VHDL design
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relatively  long cables,  signal  transitions  can  take  up  to  hundreds  of  nanoseconds.  In 

contrast, the FPGA clock ticks every few tens of nanoseconds. This situation corresponds 

to an asynchronous clock domain where the data has to be captured while it is stable for a 

reasonable time, rejecting glitches if any. 

For this, the input is checked for stability for a few clock cycles and only then it is 

sent  for  further  processing.  Figure  4 shows  the  state  diagram  of  the  circuitry 

implemented.

2.2.2 Next Sequence Detection

This hardware block is included in the design to detect the valid sequence in incoming 

data. For every new input data arrival, valid sequence is one which has the topmost bit 

flipped from previous data value. This logic was realized using a state machine shown in 

Figure 5, with one state for logic high and another for logic low value for the topmost bit 

position of input. Output is generated when in transition from one state to another.
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Figure 4: State diagram for the input detection block

 



2.2.3 FIFO Buffer

The FIFO queue is a temporary memory formed by a group of flip flops for buffering 

input  data.  It  was  used  in  this  design  to  cover  the  mismatch  in  frequency at  which 

incoming data arrives and the clock at which it is processed. One might assume that the 

relatively  high  clock  rate  for  processing  within  the  FPGA  would  make  buffering 

unnecessary, but locking of memory locations can cause longer delays. Even though the 

probability of finishing the task on incoming data before arrival of next sequence is quite 

high, the FIFO buffer is needed in the case where the processing unit could not finish the 

task in time. The FIFO is formed with a set of read, write pointer, storage and control 

logic. The depth of the FIFO is currently 8, but generally should be set  to cover the 

longest sequence that could be issued without handshake to a locked object in memory.

2.2.4 Processing Unit

The processing unit is a core block for the PE interface, responsible for interpreting each 

PE operation. It is fed by the FIFO buffer output and is allowed to access the shared 

resources by the arbitration control logic. It also includes control logic to send signals to 

a bi-color LED used for indicating the PE processing status. The color display from the 

LED is simple and intuitive:
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Figure 5: State diagram for next sequence detection block

 



• Green: running

• Red: waiting

• Black (dark): PE not active

2.2.5 Shared Resources Control Logic

In this design, multiple processors share access to a single memory module, so there is a 

need  to  arbitrate  among  the  contending  processors.  Several  methods  exist  to  decide 

which one of the processors gets access and which ones have to wait.

Token ring logic is one of the smarter methods for access control. In a token ring, 

the  processors  are  treated  as  though  they  were  organized  in  a  ring.  One  processor 

generates an original token, which is passed between processors to control access. The 

processor that holds the token is permitted to access the shared structure during that clock 

cycle. At the end of that clock cycle, the processor that holds the token passes it to the 

next processor. Because the literally next processor in the ring might not need to make an 

access, the token can instead be passed to the next processor that is requesting access – 

perhaps bypassing one or more idle processors. In this way, every clock cycle of the 

shared resource is allocated to useful work. If there are no processors requesting access, 

the token is logically passed through the entire ring, ending in the same processor that 

had it in the previous clock cycle.

A  somewhat  simpler,  although  potentially  less  efficient,  arbitration  policy  is 

round-robin scheduling.  This  arbitration method is  equivalent  to  the  ring mechanism 

described above in the case that all processors are always requesting access to the shared 

resource. However, by using a simple modular counter and giving access to the processor 

whose number matches the current count, round-robin always allocates a clock cycle to 

each processor even if the processor does not need access. The performance difference 

between round-robin and token ring arbitration is expected to be irrelevant in the current 

design given the large ratio between PE port speed and internal clock speed.
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2.2.6 Shared Memory

The shared memory is responsible not only for storing values, but also for performing 

atomic read-modify-write operations using an ALU in the memory interface. 

Fundamentally, there is no reason that the memory cannot be implemented using 

the block RAM of an Altera FPGA.  However, for single-cycle performance, the block 

RAM needs to be able to output the old value of the addressed memory cell and latch a 

new value at the end of the same clock cycle. The Altera FPGA used is capable of this 

functionality using the “mixed-port  read-during-write” memory feature,  however,  this 

feature is only accessible using the MegaWizard Plug-In Manager to configure the block 

RAM – and that software was not freely available. Thus, the memory was implemented 

using flip-flops, consuming a significant number of FPGA LEs (Logic Elements).  The 

resulting performance is essentially identical, but the amount of memory space and room 

for logic expansion differ dramatically. 

2.3 Results

As suggested in the previous section, the hardware design could make use of either the 

block RAM or  flip-flops  for  constructing  the  memory,  but  lack of  the  configuration 

software prevented us from making a functional block RAM version. The compilation 

report  for  the  complete  design  using  flip-flops  to  build  the  memory is  given  in  the 

screenshot of  Figure 6.  This design provided 256 nybbles of memory without using 

block RAM to implement any of the AFN memory. A simple variation using a (slightly 

non-functional) approximation to the block RAM-based memory design revealed that 

memory space could be expanded to about 13K nybbles using block RAM instead of 

flip-flops. The fully functional flip-flop version uses about 80% of the available logic 

circuitry, with only 252 bits of block RAM used (to implement the FIFO buffers).
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This hardware VHDL design was finalized for programming the FPGA. Top level 

entity  code  for  the  design  is  in  Appendix  B.  Figure  7 shows the  detailed  usage  of 

resources  by  entity.  The  ALU-augmented  memory  uses  the  majority  of  the  logic 

resources. Clock frequency was set at 50MHz (period = 20ns), which is the maximum 

allowable for correct operation of all the paths in the circuitry. The design was tested at 

the  block  level,  and  as  a  whole,  for  functionality.  Simulation  results  proving  the 

correctness of the design are in Appendix A.
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Figure 6: Compilation report for VHDL design
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Figure 7: FPGA resource utilization by each block



Chapter3

ALGORITHMS

Aggregate operations are computed inside the AFN, which collects data from all the PEs, 

performs the requested operation on that data, and sends the result to the requesting PEs. 

Basic aggregate operations are grouped into associative reductions and scans, collective 

communications, voting and scheduling. These operations are well defined in the AFAPI 

(Aggregate  Function  Application  Program  Interface)[8][9]  for  all  the  previously 

developed  versions  of  AFNs[3].  In  order  to  take  advantage  of  the  new higher-level 

architectural memory model in the KAPERS AFN, new algorithms for these operations 

needed to be defined. The following sections briefly describe the new algorithms that 

were developed. Portions of the C code used to construct these algorithms is included for 

better understanding. Additional details for the code can be found in Appendix C.

3.1 Associative Reduction Operations

Reduction is an aggregate function in which all the data from the nodes is reduced to a 

single value using the operation specified. Aggregate operations that come under this 

category are bitwise logical operations such as OR and XOR, and arithmetic operations 

like minimum, maximum, addition (summation), and multiplication (product) that are 

associative in nature, implying their ability to execute in parallel even if rearranged.

3.1.1 Logical Reductions

OR reduction can be basically implemented with the barrier operation BarOr, which, in 

addition to synchronization, does the logical OR of the data from the PEs and sends it as 

the result. This operation needs only two I/O communication cycles for any number of 

PEs, but is limited by the data path size. The other way to do the reduction is by using the 

unlocked memory operation Or, where each PE sends outs its data to get it ORed with 

the current value at the assigned memory location. This will result in the OR operation of 

all the data from PEs by the time every one finishes up. A point to be noted is that all 

relevant memory locations should be cleared before performing the  Or operation; it is 
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sufficient to select one particular PE to clear the memory instead of all PEs clearing. The 

clear operation will be followed by a barrier synchronization signifying the completion of 

memory initialization operation to all other PEs. 

Reduction for XOR can be done in the same way as OR by setting the memory 

operation to  Xor instead of  Or. This reduction algorithm can be used for any type and 

size of data, but is limited to one nybble at a time by the parallel port interface.  XOR 

reduction  was  not  implemented  in  hardware  in  previous  AFNs,  nor  was  the  data 

permitted to be of arbitrarily many nybbles precision.
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#define P_DECLARE(type)\

p_##type \

p_reduceor##type(register p_##type d)\

{\ register p_##type t;\

p__address(D_ADDRESS);\

if (IPROC == CPROC) {

p_setfunc(xchg, unlock);

p_memfunc(0);}

p__setfunc(or,unlock);\

p__memfunc(d);\

p__baror(0);\

t = p__memfunc((p_##type) 0);\

p__baror(0);\

return(t);\

}

P_DECLARE(8)

P_DECLARE(8u)

P_DECLARE(16)

P_DECLARE(16u)

P_DECLARE(32)

P_DECLARE(32u)

P_DECLARE(64)

P_DECLARE(64u)

#undef P_DECLARE

Algorithm 1: Associative OR operation



3.1.2 Minimum and Maximum Reductions

Minimum and maximum operations in AFN memory can be accomplished somewhat 

similarly to OR and XOR, however, there is a major difference.  Bitwise reductions are 

not sensitive to nybble order of evaluation; it makes no difference whether the low or 

high nybble of each object is sent first. In minimum and maximum, it is necessary to 

consider the nybbles in high-to-low order, disabling transmission of data for a node once 

that node's value is known not to be the answer.

Each nybble sent from a PE is  compared with the value in the corresponding 

memory location and the unsigned minimum of these values gets placed in the location. 

The old value from memory is sent to the PE as the result before writing the memory 

with the minimum value. Thus, the result can be compared with the data sent by the node 

and, if the result is same as the sent data, there is a need for sending the next nybble;  if it 

is less, there isn’t a need for sending any further nybbles and the node must wait for the 

end result to be read from memory formed by other nodes in the group. The problem is 

that, without locking, this method requires synchronization of the nodes for every nybble 

sent before going to next nybble, thus adding an unwanted delay in the execution. 

A more efficient way to do this reduction is by using the locking feature of the 

KAPERS  hardware.   A  PE  is  allowed  to  lock  (reserve)  a  memory  location,  have 

exclusive access to that memory location for one operation, and then unlocks the memory 

cell after it has been updated. The first PE to reach the assigned memory cell will write 

its data, whereas the following PEs will do the memory Min operation with locking to 

line up the PEs for getting appropriate results. The nybble operations by a PE are entirely 

asynchronous to other PEs in group. Within each node, each sent nybble is compared 

with the result to decide if sending further data for processing is necessary. However, 

there is  a need to barrier  synchronize for the first  sent nybble to make sure that  the 

processor  to  arrive  first  is  ahead  of  all  others  in  writing  the  data  in  memory.  This 

algorithm can be used as such for any size of unsigned integer. 

For signed integers the above unsigned algorithm can be used with addition of a 

bias value (which is 2K-1 for a signed K bit number) to the signed integer before sending 

the data and subtracting the same from the result later.
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#define P_DECLARE(type)\

p_##type \

p_reducemin##type(register p_##type d)\

{\

register p_##type r,t;\

register p_##type prv_r = 0;\

register int n = (sizeof(d) * 2);\

p__address(D_ADDRESS);\

p__setfunc(xchg,unlock);\

r = p__memnext(prv_r+1);\

if(r == prv_r) {\

p__setfunc(xchg,lock);\

p__address(D_ADDRESS + 1);\

p__memnext((d >> 4*(n-1)) & 0xf);\

p__baror(0);\

p__address(D_ADDRESS + 2);\

do {

p__memnext((d >> 4*(n-1)) & 0xf);\

n--;\

} while(n != 1);\

p__memlast(d & 0xf);\

}\

else {\

p__setfunc(min,lock);\

p__baror(0);\
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Table 1: Bit format for floating point numbers

SIGN EXPONENT MANTISSA
Single Precision 1[31] 8[30-23] 23[22-0]
Double Precision 1[63] 11[62-52] 52[51-0]
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p__address(D_ADDRESS + 1);\
register prv_value = p__memnext((d >> 4*(n-1)) & 0xf);\

do {\
if (prv_value >= ((d >> 4*(n-1)) & 0xf)) {\
if (n != 1) {

prv_value = p__memnext((d >> 4*(n-1)) & 0xf);\

n--;\

}\

else {\

prv_value  =  p__memlast((d  >>  4*(n-1))  &  0xf);\
}\

}\

else {\

break;\

}\

} while(n != 1);\

p__setfunc(xchg,unlock);\

}\

p__baror(0);\

t = p__memfunc(0);\

p__baror(0);\

return(t);\

}

P_DECLARE(8u)

P_DECLARE(16u)

P_DECLARE(32u)

P_DECLARE(64u)

#undef P_DECLARE

Algorithm 2: Associative minimum reduction for integer numbers



The IEEE representation for floating point numbers can be treated as ordinary 

binary representation as it has the layout of sign bit followed by exponent bits, and then 

by the mantissa bits – all of which are in the order of significance needed for comparison. 

To use the above algorithm, the changes that  need to  be done on the  floating point 

numbers to map them as unsigned integer numbers are that the sign bit  needs to be 

flipped in case of positive numbers and all the bits for negative numbers. The result will 

be an integer number that must be transformed in the inverse way to get back to the 

standard  floating  point  format.  Maximum  reductions  can  be  implemented  using  the 

Minimum routines by sending bits inverted and reformatting the final result.
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p_reducemin32f(p_32f d)

{
register float *fptr;

fptr = &d;

register unsigned int *iptr;

iptr = (unsigned int *) fptr;

register int a = *iptr;

 /* adjusting the exponent and sign bits */

if ((a >> 31) == 0) {

a ^= 0x80000000;}

else {

a = ~a;}

 /* finding minimum value */

 int float_min = p_reducemin32u(a);

 /* getting back the old value */

if ((float_min >> 31) == 1) {

float_min ^= 0x80000000;}

else {

float_min = ~float_min;}

return(*(float *)&float_min);}

Algorithm 3: Associative minimum reduction for floating point numbers



3.1.3 Addition Reduction

As for minimum and maximum, nybble order in AFN memory is significant for addition 

– but the desired nybble order is the reverse: from low nybble to high nybble. Addition 

can be done using the memory function Add which can operate on nybble-wide data at 

one time. Multi-nybble data also can be added without any overhead for keeping track of 

carry from earlier addition operations. The carry generated from adding the nybbles is 

recorded  by  the  hardware  using  one  carry  bit  per  node  interface,  thus  correctly 

implementing carry independent of the number of nodes participating. 
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#define P_DECLARE(type)\

p_##type \

p_reduceadd##type(p_##type d)\

{\

register p_##type t;\

p__address(D_ADDRESS);\

p__setfunc(add,unlock);\

p__memfunc(d);\

p__baror(0);\

p__setfunc(xchg,unlock);\

t = p__memfunc((p_##type) 0);\

return(t);\

}

P_DECLARE(8u)

P_DECLARE(16u)

P_DECLARE(32u)

P_DECLARE(64u)

P_DECLARE(8)

P_DECLARE(16)

P_DECLARE(32)

P_DECLARE(64)

#undef P_DECLARE

Algorithm 4: Reduction for addition



Signed integers are stored in two’s compliment notation in the processors, and so 

the unsigned integer algorithm for addition can be used for the signed integers.  Addition 

of a pair of integers in two’s compliment notation is functionally equivalent as addition 

of  unsigned integers  except  for  overflow detection  – which is  not  required  by most 

programming languages and is not performed in the KAPERS AFN.

A simple procedure to add floating point numbers is by sending them as integer 

values nybble by nybble, but a better way to do addition is by reducing the dynamic 

range for the floating addition by scaling down the integer to the maximum exponent in 

the group. For this, first the exponent values of the floating point numbers to be added 

from all PEs are sent to the AFN and maximum value is computed, then it is followed by 

adjustment of the mantissa to the maximum exponent. Next a reduction addition of all 

the  mantissas  that  were  scaled  will  follow  in  the  AFN.  Finally  resultant  sum  is 

normalized and adjusted for the exponent, to get back to the floating point notation. This 

is a very different algorithm from those used in earlier AFN designs, which essentially 

performed  only  integer  addition  in  the  network  or,  for  the  simpler  AFN  designs, 

performed addition on the nodes themselves.

p_32f p_reduceadd32f(p_32f d)

{

register int s_mant, b_mant;

register int s = 0;

register int incr_exp,decr_exp = 0;

int float_add;

register int max_exp = 0;

register int e_d = 0;

register int j = 0;

register float *fptr;

register unsigned int *iptr;

register int data;

fptr = &d;

iptr = (unsigned int *) fptr;

data = *iptr;

register int sign = (data >> 31) & 0x1;

register int exp = (data >> 23) & 0xff;
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register int mantissa = (data & 0x007fffff) | 0x00800000;

/* adjusting the mantissa to the maximum exponent in common */

max_exp = p_reducemax16u(exp);

register int un_exp = exp - max_exp;

while (un_exp < 0) {

mantissa = (mantissa >> 1) & 0xffffffff;
un_exp++;}

/* adding value by biasing the mantissa */

if(!sign) {

s_mant = ((sign << 25) & (0x01000000)) 

| (mantissa & 0x00ffffff);

b_mant = s_mant + 0x01ffffff;

}

else {

s_mant = ((sign << 25) & (0x01000000)) 

| (mantissa & 0x00ffffff);

b_mant = ~s_mant & 0x01ffffff;

}

/* unbiasing the sum */

register int add_mant = p_reduceadd32u(b_mant) - (NPROC * 0x01ffffff);

if(((add_mant >> 31) & (0x00000001)) == 1) {

add_mant = ~add_mant + 0x00000001;

s = 1;

}

/* normalizing the mantissa */

register int e_i = ((add_mant >> 23) & (0x07f));

if (e_i != 0) {

register int i = 30;

do {

e_i = ((add_mant >> i) & (0x1));

incr_exp = i – 23;

I = I-1;

} while (e_i == 0 & i >=24);
}
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else if (incr_exp == 0) {

e_d = (add_mant >> 22) & 0x001;

j = 21;

if (e_d == 0) {

do {

e_d = ((add_mant >> j) & (0x00000001));

if (e_d == 0 & j == 0) {

/* For zero mantissa case*/

decr_exp = 0;}

else {

decr_exp = decr_exp + 1;}

j = j – 1;

}while(e_d == 0 & j >= 0);

}

}

/* making up the float result */

register int result_exp = max_exp + incr_exp – decr_exp;

if(incr_exp > 0) {

float_add = (((s << 31) & (1 << 31)) |

((result_exp << 23) & (0x7f800000)) |

((add_mant >> incr_exp) & ((1 << 31) - 1))); }
else if (decr_exp > 0) {

float_add = (((s << 31) & (1 << 31)) |

((result_exp << 23) & (0x7f800000)) |

((add_mant << decr_exp) & ((1 << 31) - 1))); }
else {

float_add = (((s << 31) & (1 << 31)) |

((result_exp << 23) & (0x7f800000)) |

((add_mant >> incr_exp) & ((1 << 31) - 1))); }

return(*(float *)&float_add);}

Algorithm 5: Floating point Addition



3.1.4 Multiplication Reduction

Although  addition  and  minimum  have  been  implemented  in  some  earlier  AFNs, 

multiplication never was. For performing multiplication operations using multipliers we 

need to add more circuitry in the hardware and the system tends to become complex. 

Further, multiplication cannot be performed using traditional methods on a nybble-at-a-

time  basis;  the  hardware  would  need  to  know  the  size  of  the  result.  However, 

multiplication  can  be  done  in  logarithmic  number  system (LNS)  with  simple  adders 

which usually fit in the hardware with less complexity. Better still, the multiply then has 

the incremental properties of addition, making nybble-at-a-time processing possible no 

matter how high the precision of the values.

This method of multiplication using LNS was chosen for the current AFN as it 

has the adders already defined in the hardware and the nodes contain relatively powerful 

processors that easily can perform conversions between conventional integer or floating-

point values and LNS representations in a small fraction of the network communication 

time. Each PE sends out the normalized logarithmic value of the data to be multiplied, 

the hardware does the reduction addition of all the values, the result is returned. The 

result  is  then  converted  from  LNS  into  the  node's  native  format  using  the  node's 

relatively fast and powerful processor.

The primary concern here is the ability for product operations performed on LNS 

values  to  yield  precisely  the  same  values  that  conventional  integer  or  floating-point 

product  would  have  yielded.  Appropriate  scaling  methods  and  precisions  using  an 

empirical search procedure were determined to ensure that integer results would be exact 

despite any conversion or rounding errors. Fundamentally, this was a matter of finding a 

scaling  method by  which  LNS values  can  be  converted  into  unsigned  integers  with 

sufficient  precision.  In  general,  the  unsigned integers  coding  LNS values  must  have 

somewhat higher precision than the conventionally represented values in order to obtain 

identical product values.

LNS representations have two complications. The first is the representation of the 

value zero, which has no logarithmic value. Actually, representation of zero is a special 

case in floating-point too, because zero cannot be normalized to have a 1 in the most 
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significant mantissa bit. For the KAPERS AFN, zero does not need to be represented  at 

all; instead, we can first check if any operand to the product is zero, which makes the 

result  trivially zero.  The other LNS complication is  representation of the sign of the 

value. The sign of the product is equal to the XOR of the signs of the operands, so a 

simple 1-bit XOR aggregate function is used to determine the sign of the result for signed 

integers or floating-point values; only the absolute values are converted to LNS. The 

other way to compute the sign is by the least significant bit of the sum of the sign bits.

Floating point number multiplication is also done using LNS but data is sent in 

two steps first the exponent and then the normalized logarithmic mantissa because the 

data range for floating point  numbers is  too high to be normalized at  once for good 

precision.
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#define P_DECLARE(type) \

p_##type p_reducemul##type(p_##type d)\

{\

register p_##type t;\

register int n;\

if (d == 0) {\

p_bcastput##type(0);\

return(0);\

}\

if (p_bcastget##type() != 0) {\

n = (log2(d) * 10000000);\

t = p_reduceadd64u(n);\

return(ceil(pow(2.0, t/10000000)));\

}\

}

P_DECLARE(8u)

P_DECLARE(16u)

P_DECLARE(32u)

P_DECLARE(64u)

#undef P_DECLARE

Algorithm 6: Multiplication reduction for integers
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p_reducemul32f(p_32f d)

{
register float *fptr;

register unsigned int *iptr;

register int data;

fptr = &d;

iptr = (unsigned int *) fptr;

data = *iptr;

register int expo = (data >> 23) & 0xff;

register long long int mant = (data & 0x007fffff);

register long long int mant_norm = (1 + mant/8388608)*10000000.0;

/* Sending the exponent for addition */

register int sum_exp = p_reduceadd32u(expo);

p__baror(0);

/* Sending the mantissa for addition */

register long long int sum_mant = p_reduceadd64u(mant_norm);

p__baror(0);

return(powf(2.0, sum_exp)+ powf(2.0, sum_mant/10000000.0));

}

Algorithm 7: Multiplication reduction for floating point numbers



3.2 Scan operations

Scan  operations  are  very  similar  to  reduction  operations  and  are  sometimes  called 

parallel prefix operations. A scan operation for a particular PE returns the value from the 

associative reduction of all the data from the first PE to that particular PE, i.e. the value 

returned to node N is the result  of applying the specified associative operator on the 

values submitted by nodes 0 to N. Thus, each PE gets a different value for the same 

operation.  Scan operations are  similar  to  reduction operations  when considered for  a 

single PE.

Scans can be efficiently done using the new lock feature for the memory that can 

impose an ordering on nybble accesses. The lowest numbered PE will be writing the data 

into the memory first  and all  others will  do the required operations either logical or 

arithmetic in an orderly fashion with the aid of an extra memory location specifying the 

number of PE. The reference memory location signifying the PE number to follow is 

updated by each PE when it finishes its turn. The algorithm is very similar to those used 

for reduction operations except in that the order of PEs acquiring locks is forced for 

scans.
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#define P_DECLARE(type)\

p_##type \

p_scanor##type(p_##type d)\

{\

int mem_ref = 0;\

p_##type result;\

p__address(D_ADDRESS);\

p__setfunc(xchg,unlock);\

mem_ref = p__memfunc(0);\

do {\

if (IPROC == 0 & mem_ref == 0) {\

mem_ref = p__memfunc(mem_ref+1);\

p__setfunc(xchg,lock);\

p__address(D_ADDRESS + 1);\

p__memnext(d & 0xf);\

 p__baror(0);\ 

p__address(D_ADDRESS + 2);\

p__memfunc(d >> 4);\

}\

else if (IPROC == mem_ref) {\

mem_ref = p__memfunc(mem_ref+1);\

p__setfunc(or,lock);\

 p__baror(0);\

p__address(D_ADDRESS + 1);\

p__memfunc(d);\

}\

}while(mem_ref == (NPROC - 1));\

if (NPROC == 1) {\

p__address(D_ADDRESS + 1);\

result = p__memfunc(0);\}\

else {\

result = p__memfunc(0);\}\

return(result);\

}
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3.3 Communication Operations

These operations are intended for sending or receiving data in between processors. With 

the  addition  of  shared  memory  to  hardware  these  operations  can  now be  efficiently 

implemented  by  storing  and  retrieving  the  value  from  the  memory  asynchronously. 

These algorithms are relatively straightforward, essentially mimicking the behavior of a 

more conventional shared memory communication.  Alternatively, the algorithms used 

by TTL_PAPERS can be applied with BarOr substituted for p__nand.

3.3.1 Broadcast put and get

Broadcast put operation places the data in a specific memory location, from which the 

value is subsequently read by all other nodes.
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P_DECLARE(1u)

P_DECLARE(8)

P_DECLARE(8u)

P_DECLARE(16)

P_DECLARE(16u)

P_DECLARE(32)

P_DECLARE(32u)

P_DECLARE(64)

P_DECLARE(64u)

#undef P_DECLARE

Algorithm 8: Scan Operation
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p_8u

p_bcastget8u(void)

{

p__address(D_ADDRESS);

p__setfunc(or,unlock);

return(p__memfunc((p_8u) 0));

}

#define P_DECLARE(type)\

p_##type \

p_bcastget##type(void)\

{\

register p_##type d = 0;\

register int n = sizeof(p_##type)-1;\

d = p_bcastget8u();\

while (n > 0) {\

d = (d << 8) | p_bcastget8u();\

n--;\

}\

return(d);\

}

P_DECLARE(16u)

P_DECLARE(32u)

P_DECLARE(64u)

P_DECLARE(8)

P_DECLARE(16)

P_DECLARE(32)

P_DECLARE(64)

#undef P_DECLARE

Algorithm 9: Broadcastget Operation
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void 

p_bcastput8u(register p_8u d)

{

p__address(D_ADDRESS);

p__setfunc(xchg,unlock);

p__memfunc(d);

p__baror(0);

}

#define P_DECLARE(type)\

void \

p_bcastput##type(register p_##type d)\

{\

register int n = sizeof(d) - 1;\

p_bcastput8u(d & 0xff);\

while (n > 0) {\

p_bcastput8u((d >> 8) & 0xff);\

}\

}

P_DECLARE(16u)

P_DECLARE(32u)

P_DECLARE(64u)

P_DECLARE(8)

P_DECLARE(16)

P_DECLARE(32)

P_DECLARE(64)

#undef P_DECLARE

Algorithm 10: Broadcastput Operation



3.3.2 Putget

Involves writing the data to the memory location assigned to the PE and reading back the 

data from the desired PE's assigned memory location.
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p_##type \

p_putget##type(register p_##type d,register int source) \

{\

register int n = sizeof(d)*2;\

p__address(D_ADDRESS + IPROC*n);\

p__setfunc(xchg,unlock);\

p__memfunc(d);\

p__baror(0);\

p__address(D_ADDRESS + source*n);\

p__setfunc(or,unlock);\

return(p__memfunc((p_##type) 0));\

}

P_DECLARE(bar)

P_DECLARE(8)

P_DECLARE(8u)

P_DECLARE(16)

P_DECLARE(16u)

P_DECLARE(32)

P_DECLARE(32u)

P_DECLARE(64)

P_DECLARE(64u)

P_DECLARE(32f)

P_DECLARE(64f)

#undef P_DECLARE

Algorithm 11: Putget Operation



3.4 Voting and Scheduling Operations

Voting and Scheduling methods include operations that can be used by a PE to know the 

status of other PEs relative to its own. 

3.4.1 First

This operation should return the minimum PE number which has first  arrived with a 

value '1', and is done by sending the “PE number” instead of the data if PE has a value of 

'1' and performing the memory minimum operation on them in the hardware. Barrier 

synchronization is done to make sure everyone is finished before reading the result.

3.4.2 Count and Quantify

Count operation has to get the total number of the PEs that have the value '1'. This is 

done by using the addition function in the memory, where the PEs increment the count in 

the memory only if they have a '1'. Quantify is same as the 'Count' operation but outputs 

the result as generalized statement (none/one/greater than one) instead of exact count. 

The result could be categorized at nodes after the count operation gets finished.
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int

p_first(register p_1u d)

{

p__address(D_ADDRESS);

p__setfunc(min,unlock);

if (d == 1) {

p__memfunc(IPROC);

}

p__baror(0);

return(p__memfunc(NPROC+1));

}

Algorithm 12: First



3.4.3 Votecount

Votecount has to count the number of PEs who voted for the PE that is performing the 

operation. Implemented by assigning separate memory location for each PE where the 

votes are summed by memory addition operation. PEs go to the corresponding location 

where the counter is set for the PE it is supposed to vote and increment the value. Barrier 

synchronization is done to make sure all PEs are finished with voting before the retrieval 

of count from the location where PE's votes are cast.
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int

p_votecount(register int d)

{

p__address(D_ADDRESS + d*sizeof(NPROC)*2);

p__setfunc(add,unlock);

p__memfunc(1);

p__baror(0);

p__address(D_ADDRESS + IPROC*sizeof(NPROC)*2);

return(p__memfunc(0));

}

Algorithm 14: Votecount

int

p_count(register p_1u d)

{

p__address(D_ADDRESS);

p__setfunc(add,unlock);

if (d == 1) {

p__memfunc(d);

}

p__baror(0);

return(p__memfunc(0)); 
}

Algorithm 13: Count and Quantify operations



3.4.4 Vote

Result for this operation is a vector formed by all PEs signifying votes for the PE doing 

the vote operation. This vector will have a value '1' positioned corresponding to the PE 

which voted for this PE. For this, each PE is allocated a memory space enough to fit the 

vector that needs to be formed. Every PE goes to the memory location of the vote vector 

of the PE it wants to vote for and ORs in a '1' in its position in the vector. The result is 

obtained by reading the appropriate memory location after barrier synchronization.
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p_bar

p_vote(register int d)

{

register int x = 0;

register p_bar mask;

p__address(D_ADDRESS + d*ceil(NPROC/4) +ceil((IPROC+1)/4) - 1);

p__setfunc(or,unlock);

p__memnext(1 << (IPROC % 4));

p__baror(0);

p__address(D_ADDRESS + IPROC*ceil(NPROC/4));

return(p__memfunc((p_bar) 0));

}

Algorithm 15: Vote operation



Chapter4

HARDWARE IMPLEMENTATION

This chapter describes a prototype board implementation(Figure 9) supporting the new 

architectural model. The Altera Cyclone[23] FPGA was the central component on the 

board, planned to work at a maximum clock frequency of 50MHz. This is not fast by 

current  logic  standards,  but  is  more  than  sufficient  in  comparison  to  the  effectively 

~1MHz rate at which new commands and data can be transmitted by a node via the 

parallel port connection. The schematic for the board was captured initially to check for 

the functionality and then layout  for two layers was drawn with signal traces routed 

manually. PCBs were ordered with the Gerber and drill  files generated by the layout 

software. 

4.1 Overview

The  following  sections  detail  the  significance  of  components  used  in  the  prototype 

design. The schematic and layout information for the board are in next sections.

4.1.1 FPGA

This prototype of the KAPERS AFN hardware is built with the Altera’s Cyclone EP1C3 

series[18] FPGA as the key component. Cyclone devices contain a two-dimensional row- 

and  column-based  architecture  to  implement  custom  logic.  Column  and  row 

interconnects  of  varying  speeds  provide  signal  interconnects  between  LABs  and 

embedded memory blocks. The logic array consists of LABs, with 10 LEs in each LAB. 

An LE is a small unit of logic consisting of a 4-input lookup table (LUT) and flip-flop 

intended  primarily  for  efficient  implementation  of  user  logic  functions.  M4K  RAM 

blocks are true dual-port memory blocks with 4K bits of memory plus parity (4,608 bits) 

that are grouped into columns across the device in between certain LABs. Each Cyclone 

device I/O pin is fed by an I/O element (IOE) located at the ends of LAB rows and 

columns around the periphery of the device. Each IOE contains a bidirectional I/O buffer 

and three registers for registering input, output, and output-enable signals.
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Based on the requirement of logic, I/O pins, memory and soldering method, the 

EP1C3T144 seemed to provide the most cost-effective solution using a TQFP (Thin-

quad flat package). This particular FPGA takes 22 mm x 22 mm of board space and has 

2910 LEs and 13 blocks of M4K RAM memory blocks totaling 59,904 bits of  RAM. 

This device has 144 pins, of which a maximum of 104 are available for user IO pins 

supporting LVTTL (3.3V low-voltage TTL-compatible) signaling. It provides one PLL 

for clock multiplication and phase shifting. This device has a global clock network with 

eight global clock lines that drive throughout the entire device: clocking for all resources 

within the  device,  such as  IOEs,  LEs,  and memory blocks.  There  are  various  speed 

grades of the part available, with a  maximum internal clock frequency of 275MHz for 

the -8 speed grade part used in KAPERS.
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Figure 9: KAPERS prototype unit

 
 



4.1.2 Configuration Device

There are  three standard ways to  configure an FPGA. We can use a cable  from PC 

running the required software for sending the data to FPGA, a microcontroller on board 

with firmware to send data to the FPGA, or a flash memory device connected to the 

FPGA that  automatically configures at  power up.  The flash memory method is most 

convenient for our purposes.  The configuration device used is a serial, low cost, EPCS1 

device with 1M bit of flash memory and in-system reprogramming capabilities. It only 

needs a four pin interface for communication.  The configuration is done through AS 

(Active  Serial)  configuration  mode  in  which  the  FPGA  controls  the  configuration 

interface. The block diagram in the Figure 10 shows the AS configuration scheme. 

4.1.3 Decoupling Capacitors

Decoupling  capacitors  are  a  necessary  part  of  the  design  for  reliable  operation.  The 

placement and type of decoupling capacitors used in this design are shown in Figure 11:
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Figure 10: Serial configuration device and FPGA pins 
interface [18]

 



4.1.4 Level Shifters

The need for level shifters is obvious as there are two different logic levels in the design. 

The parallel port PC interface signals using TTL levels, while the FPGA IO signals use 

LVTTL. The best option for a cost effective solution for translating between 5V and 3V, 

in both input and output directions, was to employ LVC series level shifters.

4.1.5 Voltage regulators

The Cyclone  FPGA needed two voltage  levels,  1.5V for  the  core  and  3.3V for  I/O 

standard to  be  LVTTL. All  other  components  in  the  design worked at  3.3V.  Linear 

regulators from the LM317 series were chosen to regulate from 9V(drawn from a wall 

mount  AC/DC  adapter)  to  required  voltage  levels.  These  were  not  the  parts 

recommended by Altera, but seemed a more effective solution; as discussed later, this 

choice might be responsible for the apparent power supply problems we encountered 

with the prototype hardware.

4.1.6 Byte Blaster II Cable replacement

To  program  and  configure  the  Cyclone  FPGA  in  AS  configuration  mode  the  only 

recommended and available download cable is Byte Blaster II from Altera, which is a bit 

expensive and not  very common to find.  The block diagram in  Figure 12 shows the 

details of the Byte Blaster II cable whose only function is to drive the configuration data 

from a standard parallel printer port on the PC to the device on the PCB which is a serial 
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Figure 11: Decoupling capacitors
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configuration device in this particular case. The functionality of Byte Blaster II cable was 

met with an ordinary parallel cable with few modifications in the board layout. 

4.2 Schematic

The schematic diagram for the KAPERS prototype shown in Figure 13 was captured in 

EAGLE 4.16r1 freeware software from CadSoft Online[20] to solidify the design and to 

facilitate electrical rule check.
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Figure 12: Byte Blaster II block diagram [19]
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Figure 13: Schematic of KAPERS board



4.3 Layout

The EAGLE freeware software used for the schematic capture could not be used for 

layout as the board size was exceeding the allowable limits. The layout was done using 

the freely available  PCB[21]  design software for  X11 window systems.  A two-layer 

board with size 6” x 4” was sufficient to fit all components with about 500 plated through 

holes and 150 solder pads for surface mount parts.

4.4 Results

Soldering the components was easy -- except for the FPGA and the configuration device, 

which are surface mount parts with a tiny pitch between the pins. The parallel cable used 

as  a  replacement  for  the  Byte  Blaster  II  cable  worked  well  and  was  successful  in 

downloading the Programmer Object File(.pof) into the memory of configuration device 

with  Quartus  II  programming  hardware.  Figure  14 shows  the  picture  of  successful 

verification of the serial configuration device by blank checking and downloading a file 

into it. The next step is for the FPGA to get the data from the configuration device; it 

apparently was not successful in configuring. Measurements on the prototype revealed  a 

problem with core voltage supplied to the FPGA.

In  fact,  three  prototypes  were  assembled  and  tested.  The  first  prototype  had 

damage to one of the FPGA pins, rendering the board non-functional. The second failed 

spectacularly,  literally  causing  the  FPGA  to  burst  into  flames.  More  precisely,  this 

second prototype revealed strange fluctuations in the power supply voltages on board. It 

was in attempt to remedy this  by using a “beefier” switching power supply that  the 

FPGA suffered its dramatic failure. This was tried because measurements showed the 

wall-mount AC adapter was regularly exceeding its maximum current ratings. The third 

prototype was the unit that successfully loaded the configuration device, but there were 

still problems with the 1.5V power supply on board. 

After  literally  several  months  (November  2006  through  January  2007)  of 

attempting to find a simple fix, we have come to the conclusion that the power supply 

design is somehow inadequate, and a major redesign of the power handling (and hence 

the board) is appropriate. Perhaps we should have used the Altera-recommended parts 
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rather than making a “clever” substitution...?  In discussions with Professor Dietz, it was 

agreed that such a redesign was beyond the scope of this thesis and was not of critical 

relevance  –  the  primary  contributions  of  this  thesis  involve  the  architecture  and 

algorithm, not problems with the (analog) power supply design. After simulations and 

other  testing,  we still  have no reason to  believe that  other  aspects  of  the  design are 

flawed.
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Figure 14: Screenshot showing the successful configuration of EPCS1 device 
in active serial mode



Chapter5

CONCLUSION AND FUTURE WORK

This thesis has presented a new architecture and direction for future AFNs. 

The hardware capture of the design resulted in less circuitry than expected. The 

FPGA-based  implementation  architecture  also  has  the  benefit  of  allowing  further 

research  enhancements  of  the  protocols,  operations,  and  internal  AFN  architecture 

without changing the physical hardware design.

Newly developed algorithms are in many ways more efficient and offer enhanced 

functionality (within the AFN) when compared to previous ones. The logical reduction 

functions  and  arithmetic  addition  are  directly  implemented  in  hardware;  the 

multiplication  reduction  using  LNS  is  a  major  advance  that  does  not  require  any 

specialized  hardware  dedicated  to  that  function.  The  scan  operations  are  efficiently 

implemented using the lock feature. Communication and voting operations also benefit 

from the AFN memory. Perhaps best of all, the hardware's nybble-width does not prevent 

apparently atomic treatment of data objects of arbitrary size – a first for AFN hardware.

There is an obvious need for future work:

● The power supply circuitry must be redesigned.

● A number of configuration variables have been discussed as being appropriate for 

the KAPERS to pre-load or map into memory (NPROC, IPROC, memory size, 

performance registers, global time, etc.), but none have been implemented yet.

● Scaling of the design to larger numbers of PEs will be necessary.

● Ways to move to a higher-performance PE interface must be found. The parallel 

port is still viable, but a higher-bandwidth interface could dramatically increase 

the importance of AFNs. Currently, there is no standard PC interface with the 

right characteristics, but perhaps Hypertransport or another standard will evolve 

to provide a better answer. The architecture of the KAPERS AFN is well suited to 

such future interface options.
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APPENDIX

A. Simulation Results

This section shows the gate level simulation results of the various sections of the design 

implemented in the Cyclone FPGA. These simulations are run in Quartus II 6.0 with 

ModelSim Altera as third party EDA tool.
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Figure 15: Simulation result for input detection section
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Figure 16: Simulation results for detection of next valid 
sequence
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Figure 17: Simulation outputs for the processing unit
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Figure 18: Simulation results for arbitration logic  
implementation with a counter
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Figure 19: Simulation results for FIFO buffer
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Figure 20: Simulation runs for memory with operations
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Figure 21: Final simulation run of VHDL design for 
KAPERS unit as a whole



B. VHDL code

kapers1.vhd
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity kapers1 is

generic(bits:integer:=4; -- nybble wide bits

d:integer:=7;

size:integer:=256; -- size of memory

n:integer:=4; -- buffer size

k:integer:=2); -- no of nybbles of address

port(

clk: in std_logic;

inp1:in std_logic_vector(7 downto 0); --inputs from processing nodes

inp2:in std_logic_vector(7 downto 0);

inp3:in std_logic_vector(7 downto 0);

inp4:in std_logic_vector(7 downto 0);

o1:out std_logic_vector(4 downto 0);  --outputs to the processing nodes

o2:out std_logic_vector(4 downto 0);

o3:out std_logic_vector(4 downto 0);

o4:out std_logic_vector(4 downto 0);

ledr1:out std_logic;

ledg1:out std_logic;

ledr2:out std_logic;

ledg2:out std_logic;

ledr3:out std_logic;

ledg3:out std_logic;

ledr4:out std_logic;

ledg4:out std_logic

);

end kapers1;

architecture struct of kapers1 is
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component inp_detect is

port(

input : in std_logic_vector(7 downto 0);

output : out std_logic_vector(7 downto 0);

clk : in std_logic

);

end component;

component nxt_seq is

port(

a:in std_logic_vector(7 downto 0);

clk:in std_logic;

x:out std_logic_vector(6 downto 0);

enable:out std_logic

);

end component;

component fifo_buffer_nsize is

port(

datain : in std_logic_vector(6 downto 0);

dataout : out std_logic_vector(6 downto 0);

clk : in std_logic;

en_out : in std_logic;

en_in : in std_logic

);

end component;

component pu1 is

generic(k:integer:=2);-- no of nybbles for address

port(

out1_buff : in std_logic_vector(6 downto 0);

out2_buff : in std_logic_vector(3 downto 0);

out3_buff : in std_logic_vector(3 downto 0);

out4_buff : in std_logic_vector(3 downto 0);

clk : in std_logic;

carry : out std_logic;
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out_pe1: out std_logic_vector(3 downto 0);

mem_out: in std_logic_vector(3 downto 0);

mem_in : out std_logic_vector(3 downto 0);

mem_addr : out std_logic_vector(4*k-1 downto 0);

mem_fnc :out std_logic_vector(2 downto 0);

token : in std_logic;

lck_reg1: inout std_logic_vector(8 downto 0);

lck_reg2: in std_logic_vector(8 downto 0);

lck_reg3: in std_logic_vector(8 downto 0);

lck_reg4: in std_logic_vector(8 downto 0);

en_buffer: out std_logic;

ledr:out std_logic;

ledg:out std_logic

);

end component;

component pu2 is

generic(k:integer:=2);-- no of nybbles for address

port(

out1_buff : in std_logic_vector(3 downto 0);

out2_buff : in std_logic_vector(6 downto 0);

out3_buff : in std_logic_vector(3 downto 0);

out4_buff : in std_logic_vector(3 downto 0);

clk : in std_logic;

carry : out std_logic;

out_pe2: out std_logic_vector(3 downto 0);

mem_out: in std_logic_vector(3 downto 0);

mem_in : out std_logic_vector(3 downto 0);

mem_addr : out std_logic_vector(4*k-1 downto 0);

mem_fnc :out std_logic_vector(2 downto 0);

token: in std_logic;

lck_reg1: in std_logic_vector(8 downto 0);

lck_reg2: inout std_logic_vector(8 downto 0);

lck_reg3: in std_logic_vector(8 downto 0);

lck_reg4: in std_logic_vector(8 downto 0);

en_buffer: out std_logic;

67



ledr:out std_logic;

ledg:out std_logic

);

end component;

component pu3 is

generic(k:integer:=2);-- no of nybbles for address

port(

out1_buff : in std_logic_vector(3 downto 0);

out2_buff : in std_logic_vector(3 downto 0);

out3_buff : in std_logic_vector(6 downto 0);

out4_buff : in std_logic_vector(3 downto 0);

clk : in std_logic;

carry : out std_logic;

out_pe3: out std_logic_vector(3 downto 0);

mem_out: in std_logic_vector(3 downto 0);

mem_in : out std_logic_vector(3 downto 0);

mem_addr : out std_logic_vector(4*k-1 downto 0);

mem_fnc :out std_logic_vector(2 downto 0);

token: in std_logic;

lck_reg1: in std_logic_vector(8 downto 0);

lck_reg2: in std_logic_vector(8 downto 0);

lck_reg3: inout std_logic_vector(8 downto 0);

lck_reg4: in std_logic_vector(8 downto 0);

en_buffer: out std_logic;

ledr:out std_logic;

ledg:out std_logic

);

end component;

component pu4 is

generic(k:integer:=2);-- no of nybbles for address

port(

out1_buff : in std_logic_vector(3 downto 0);

out2_buff : in std_logic_vector(3 downto 0);

out3_buff : in std_logic_vector(3 downto 0);
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out4_buff : in std_logic_vector(6 downto 0);

clk : in std_logic;

carry : out std_logic;

out_pe4: out std_logic_vector(3 downto 0);

mem_out: in std_logic_vector(3 downto 0);

mem_in : out std_logic_vector(3 downto 0);

mem_addr : out std_logic_vector(4*k-1 downto 0);

mem_fnc :out std_logic_vector(2 downto 0);

token: in std_logic;

lck_reg1: in std_logic_vector(8 downto 0);

lck_reg2: in std_logic_vector(8 downto 0);

lck_reg3: in std_logic_vector(8 downto 0);

lck_reg4: inout std_logic_vector(8 downto 0);

en_buffer: out std_logic;

ledr:out std_logic;

ledg:out std_logic

);

end component;

component token_assign is

port(

clk : in std_logic;

mem_out1: out std_logic_vector(3 downto 0);

mem_out2: out std_logic_vector(3 downto 0);

mem_out3: out std_logic_vector(3 downto 0);

mem_out4: out std_logic_vector(3 downto 0);

mem_in1 : in std_logic_vector(3 downto 0);

mem_in2 : in std_logic_vector(3 downto 0);

mem_in3 : in std_logic_vector(3 downto 0);

mem_in4 : in std_logic_vector(3 downto 0);

mem_fnc1 :in std_logic_vector(2 downto 0);

mem_fnc2 :in std_logic_vector(2 downto 0);

mem_fnc3 :in std_logic_vector(2 downto 0);

mem_fnc4 :in std_logic_vector(2 downto 0);

mem_addr1 : in std_logic_vector(7 downto 0);

mem_addr2 : in std_logic_vector(7 downto 0);
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mem_addr3 : in std_logic_vector(7 downto 0);

mem_addr4 : in std_logic_vector(7 downto 0);

carry1 : in std_logic;

carry2 : in std_logic;

carry3 : in std_logic;

carry4 : in std_logic;

en_i1 : out std_logic;

en_i2 : out std_logic;

en_i3 : out std_logic;

en_i4 : out std_logic;

m_in : out std_logic_vector(3 downto 0);

m_out : in std_logic_vector(3 downto 0);

mem_addr :out std_logic_vector(7 downto 0);

carry : out std_logic;

opcode : out std_logic_vector(2 downto 0)

);

end component;

component ram_opcode is 

generic(bits:integer:=4;--size of data bus

size:integer:=256);--size of memory

port(clk: in std_logic;

opcode : in std_logic_vector(2 downto 0);

m_addr : in std_logic_vector(7 downto 0);

m_in: in std_logic_vector(bits-1 downto 0);

m_out:out std_logic_vector(bits-1 downto 0);

carry : in std_logic

);

end component;

component nbit_reg is

port(reg_in :in std_logic_vector(8 downto 0);

wr_en,clk: in std_logic;

reg_out: out std_logic_vector(8 downto 0));

end component;
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component out_buffer is

port(

datain : in std_logic_vector(4 downto 0);

dataout : out std_logic_vector(4 downto 0);

clk : in std_logic;

en_in : in std_logic);

end component;

signal en_i1,en_i2,en_i3,en_i4 : std_logic:='1';

signal out1,out2,out3,out4 : std_logic_vector(3 downto 0);

signal en_in1,en_in2,en_in3,en_in4:std_logic:='1';

signal en_out1,en_out2,en_out3,en_out4:std_logic:='1';

signal inp1_buff,inp2_buff,inp3_buff,inp4_buff : std_logic_vector(6 downto 0);

signal out1_buff,out2_buff,out3_buff,out4_buff : std_logic_vector(6 downto 0);

signal mem_fnc1,mem_fnc2,mem_fnc3,mem_fnc4:std_logic_vector(2 downto 0);

signal 
m_in,mem_in1,mem_in2,mem_in3,mem_in4,m_out,mem_out1,mem_out2,mem_ou
t3,mem_out4:std_logic_vector(3 downto 0);

signal 
mem_addr,mem_addr1,mem_addr2,mem_addr3,mem_addr4:std_logic_vector(7 
downto 0);

signal opcode: std_logic_vector(2 downto 0);

signal lck_reg1,lck_reg2,lck_reg3,lck_reg4:std_logic_vector(8 downto 0);

signal lck_reg1_in,lck_reg2_in,lck_reg3_in,lck_reg4_in:std_logic_vector(8 downto 
0);

signal carry,carry1,carry2,carry3,carry4:std_logic;

signal wr_en:std_logic:='0';

signal op1,op2,op3,op4:std_logic;

signal inp_det1,inp_det2,inp_det3,inp_det4:std_logic_vector(7 downto 0);

begin

--Input detection circuit

i1: inp_detect port map(inp1,inp_det1,clk);

i2: inp_detect port map(inp2,inp_det2,clk);

i3: inp_detect port map(inp3,inp_det3,clk);
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i4: inp_detect port map(inp4,inp_det4,clk);

--Valid input pattern

a1: nxt_seq port map (inp_det1,clk,inp1_buff,en_in1);

a2: nxt_seq port map (inp_det2,clk,inp2_buff,en_in2);

a3: nxt_seq port map (inp_det3,clk,inp3_buff,en_in3);

a4: nxt_seq port map (inp_det4,clk,inp4_buff,en_in4);

--FIFO buffer

b1: fifo_buffer_nsize port map (inp1_buff,out1_buff,clk,en_out1,en_in1);

b2: fifo_buffer_nsize port map (inp2_buff,out2_buff,clk,en_out2,en_in2);

b3: fifo_buffer_nsize port map (inp3_buff,out3_buff,clk,en_out3,en_in3);

b4: fifo_buffer_nsize port map (inp4_buff,out4_buff,clk,en_out4,en_in4);

--Registers for lock bits

wr_en <= '1';

r1:nbit_reg port map (lck_reg1_in,wr_en,clk,lck_reg1);

r2:nbit_reg port map (lck_reg2_in,wr_en,clk,lck_reg2);

r3:nbit_reg port map (lck_reg3_in,wr_en,clk,lck_reg3);

r4:nbit_reg port map (lck_reg4_in,wr_en,clk,lck_reg4);

--Processing Unit

c1: pu1 port map(out1_buff,out2_buff(3 downto 0),out3_buff(3 downto 
0),out4_buff(3 downto 
0),clk,carry1,out1,mem_out1,mem_in1,mem_addr1,mem_fnc1,en_i1,lck_reg1_in,lc
k_reg2,lck_reg3,lck_reg4,en_out1,ledr1,ledg1);

c2: pu2 port map(out1_buff(3 downto 0),out2_buff,out3_buff(3 downto 
0),out4_buff(3 downto 
0),clk,carry2,out2,mem_out2,mem_in2,mem_addr2,mem_fnc2,en_i2,lck_reg1,lck_r
eg2_in,lck_reg3,lck_reg4,en_out2,ledr2,ledg2);

c3: pu3 port map(out1_buff(3 downto 0),out2_buff(3 downto 
0),out3_buff,out4_buff(3 downto 
0),clk,carry3,out3,mem_out3,mem_in3,mem_addr3,mem_fnc3,en_i3,lck_reg1,lck_r
eg2,lck_reg3_in,lck_reg4,en_out3,ledr3,ledg3);

c4: pu4 port map(out1_buff(3 downto 0),out2_buff(3 downto 0),out3_buff(3 downto 
0),out4_buff,clk,carry4,out4,mem_out4,mem_in4,mem_addr4,mem_fnc4,en_i4,lck_
reg1,lck_reg2,lck_reg3,lck_reg4_in,en_out4,ledr4,ledg4);

--Memory

mem: ram_opcode port map (clk,opcode,mem_addr,m_in,m_out,carry);
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--Token assignment for shared resources

tok: token_assign port map(clk,

mem_out1,mem_out2,mem_out3,mem_out4,

mem_in1,mem_in2,mem_in3,mem_in4,

mem_fnc1,mem_fnc2,mem_fnc3,mem_fnc4,

mem_addr1,mem_addr2,mem_addr3,mem_addr4,

carry1,carry2,carry3,carry4,

en_i1,en_i2,en_i3,en_i4,

m_in,m_out,mem_addr,carry,opcode);

process(clk)

begin

if clk'event and clk = '1' then

count <= count + 1;

if count = "010" then 

en <= '1';

en_t <= '0';

elsif count = "100" then

en <= '0';

en_t <= '1';

count <= "000";

else

en <= '0';

en_t <= '0';

end if;

end if;

end process;

b5: fifo_buffer_out port map(out1,dataout1,clk,en,ob1);

b6: fifo_buffer_out port map(out2,dataout2,clk,en,ob2);

b7: fifo_buffer_out port map(out3,dataout3,clk,en,ob3);

b8: fifo_buffer_out port map(out4,dataout4,clk,en,ob4);

process(en_t)

begin

if en_t = '1' then

if op1 = '1' then
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op1 <= '0';

else 

op1 <= '1';

end if;

o1(4) <= op1;

if op2 = '1' then

op2 <= '0';

else 

op2 <= '1';

end if;

o2(4) <= op2;

if op3 = '1' then

op3 <= '0';

else 

op3 <= '1';

end if;

o3(4) <= op3;

if op4 = '1' then

op4 <= '0';

else 

op4 <= '1';

end if;

o4(4) <= op4;

end if;

end process;

o1(3 downto 0) <= dataout1;

o2(3 downto 0) <= dataout2;

o3(3 downto 0) <= dataout3;

o4(3 downto 0) <= dataout4;

end struct;
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C. Algorithms
inline.h

/* inline.h

*/

#define BarOr 0x00

#define SetFunc 0x20

#define AddrFirst 0x40

#define AddrNext 0x50

#define MemNext 0x60

#define MemLast 0x70

#define toggle 0x80

#define Xchg 0x00

#define Or 0x01

#define Xor 0x02

#define Add 0x03

#define Min 0x04

#define lock 0x08

#define unlock 0x00

#define dataadjust(d) ((d>>4) & 0x0f)

#define ready 0x10

#define DATAOUTPORT 0x000

#define STATUSINPORT 0x001

unsigned char p_outlast=0;

unsigned int p_inlast=0;

unsigned int p_addrlast=0;

#include "afapi.h"
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/* p__inb() and p__outb()...

Defined here so as to eliminate any delays of port settle time,

which is caused in codes from predifined libraries.

*/

#ifdef P_DEBOUNCE

static inline unsigned int 

p___inb (unsigned short port)

{

unsigned char _v;

__asm__ __volatile__ ("inb %w1,%b0"

:"=a"(_v)

:"d" (port), "0" (0));

return _v;

}

static inline unsigned int

p__inb (unsigned short port)

{

register unsigned int t = p___inb(port);

while( t != p_inlast) {

p_inlast = t;

t = p___inb(port);

}

return(t);

}

#else

static inline unsigned int 

p__inb (unsigned short port)

{

unsigned char _v;

__asm__ __volatile__ ("inb %w1,%b0"
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:"=a"(_v)

:"d" (port), "0" (0));

return _v;

}

#endif

static inline void

p__outb (unsigned char value, unsigned short port)

{

__asm__ __volatile__ ("outb  %b0, %w1"

:

:"a" (value), "d" (port));

}

static inline int

p__baror(register int d)

{

register int to = (((p_outlast ^ toggle) & toggle) |

BarOr|

(d & 0x0f));

register int ti;

p__outb(to,DATAOUTPORT);

p_outlast = to;

do {

ti = p__inb(STATUSINPORT);

} while(((ti ^ p_inlast) & ready) == 0);

p_inlast = ti;

return(dataadjust(ti));

}

static inline void

p__address(register int d)

{

/* Address that needs to be sent is first compared with the 
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previous value and only the nybbles that differ are sent. */

register int diff = (d ^ p_addrlast);

if (diff != 0) {

register int t = (((p_outlast ^ toggle) & toggle) |

AddrFirst|

(d & 0x0f));

p_addrlast = d;

p__outb(t,DATAOUTPORT);

p_outlast = t;

diff >>= 4;

while (diff != 0) {

d >>= 4;

t = (((p_outlast ^ toggle) & toggle) |

AddrNext|

(d & 0x0f));

p__outb(t,DATAOUTPORT);

p_outlast = t;

diff >>= 4;

}

}

}

static inline void

p__setfunc(register int d, register int l)

{

register int t = (((p_outlast ^ toggle) & toggle) |

SetFunc|

 l |

(d & 0x0f));

p__outb(t,DATAOUTPORT);

p_outlast = t;

}
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static inline int

p__memfunc(register int d)

{

register int n = sizeof(d)*2;

register int ti;

register int result = 0;

while (n > 1) { 

register int t = (((p_outlast ^ toggle) & toggle) |

MemNext |

(d & 0x0f));

p__outb(t,DATAOUTPORT);

p_outlast = t;

d >>= 4;

n -= 1;

do {

ti = p__inb(STATUSINPORT);

} while(((ti ^ p_inlast) & ready) == 0);

p_inlast = ti;

result = (result << 4) | (dataadjust(ti));

}

int t = (((p_outlast ^ toggle) & toggle) |

MemLast |

(d & 0x0f));

p__outb(t,DATAOUTPORT);

p_outlast = t;

do {

ti = p__inb(STATUSINPORT);

} while(((ti ^ p_inlast) & ready) == 0);

p_inlast = ti;

return((result << 4) | (dataadjust(ti)));

}
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static inline char

p__memnext(register char d)

{

register int ti;

register int result = 0;

register int t = (((p_outlast ^ toggle) & toggle) |

MemNext |

(d & 0x0f));

p__outb(t,DATAOUTPORT);

p_outlast = t;

do {

ti = p__inb(STATUSINPORT);

} while(((ti ^ p_inlast) & ready) == 0);

p_inlast = ti;

result = dataadjust(ti);

}

static inline char

p__memlast(register char d)

{

register int ti;

register int result = 0;

register int t = (((p_outlast ^ toggle) & toggle) |

MemLast |

(d & 0x0f));

p__outb(t,DATAOUTPORT);

p_outlast = t;

do {

ti = p__inb(STATUSINPORT);

} while(((ti ^ p_inlast) & ready) == 0);

p_inlast = ti;

result = dataadjust(ti);

}

}
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D. Layout of KAPERS board
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Figure 22: Top view of the layout for the KAPERS board
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Figure 23: Bottom view of layout for KAPERS board
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