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ABSTRACT OF THESIS

DEVELOPMENT OF AN UNMANNED AERIAL VEHICLE FOR
LOW-COST REMOTE SENSING AND AERIAL

PHOTOGRAPHY.

The paper describes major features of an unmanned aerial vehicle, designed under

safety and performance requirements for missions of aerial photography and remote

sensing in precision agriculture.  Unmanned aerial vehicles have vast potential as

observation and data gathering platforms for a wide variety of applications.  The goal

of the project was to develop a small, low cost, electrically powered, unmanned aerial

vehicle designed in conjunction with a payload of imaging equipment to obtain

remote sensing images of agricultural fields.  The results indicate that this concept

was feasible in obtaining high quality aerial images.

KEYWORDS: Unmanned Aerial Vehicle, UAV, Remote Sensing, R/C Plane,
Precision Agriculture
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CHAPTER 1: INTRODUCTION

1.1 Introduction

Effective management of agricultural crops is critical.  Optimization of inputs, yield,

and quality is becoming of greater importance to all farmers.  Agrios (1988) estimated

that losses due to insects, diseases, weeds, fertility, water problems, and other factors

account for as much as 20 billion dollars annually in the United States.  To reduce

these losses, farmers are relying increasingly on diagnostics and subsequent

recommendations from crop scouts or by diagnosing problems within the fields

themselves.  Crop scouting is a service offered to farmers whereby trained personnel

diagnose agricultural problems and suggest localized solutions to farmers.  Crop

scouting is slow, laborious, expensive, and often inaccurate due to small sample size

and limited training of personnel.  Scouting inaccuracies often result in unnecessary

application of resources over large areas, improper timing, misplaced applications, or

unnecessary replications (Obermeyer, 2001).

Precision agriculture (PA) is the careful tailoring of soil and crop management to fit

the different conditions found in the field, and relies on precise diagnosis and

mapping of problems in conjunction with precisely applied solutions (Johannsen,

1995).  This is a new concept in farming that incorporates remote sensing, Geographic

Information Systems (GIS), and Global Positioning Systems (GPS).  The concept is

based on the ability to locate a position repeatedly within a field.  Increasingly,

precise diagnostics are performed via remotely sensed data.  One specific tool,

Remote Sensing (RS), has shown promise to enhance crop scouting efforts.  RS

consists of the interpretation of measurements of electromagnetic energy reflected

from or emitted by a target from a vantage-point that is distant from the target

(Eastman, 1996; Mather, 1999).  Earth observation is the interpretation and
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understanding of measurements of electromagnetic energy that is reflected from,

or emitted by the Earth’s surface or atmosphere (Mather, 1999).  RS has become a

widely used tool for various earth observation needs.  It is particularly useful for

monitoring natural resources (Verbyla, 1995).

Currently, RS images are primarily obtained using piloted aircraft or satellites

(Cochran, 2000).  RS imaging platforms can contain multi-sensor payloads including

daylight and low-light cameras, infrared sensors, long focal length lenses, and laser

rangefinders and designators.  The systems provide image stability through gyro-

stabilization:

Both these imaging platforms are capable of

• single and multi-spectral payloads

• short-range, mid-range and long-range lenses

• daylight, low-light and thermal sensor cameras.

There are several limitations to these collection techniques.  The quality and

resolution of the data can be inadequate for accurate diagnostics (Cochran, 2000).

Weather conditions such as cloud cover or a hazy atmosphere affect image quality

and availability.  Moreover, satellites are only in position to collect images every few

days, and data is often not available until weeks after data collection, so timing is an

additional problem.  These timeliness issues can prevent RS from being used for time-

critical management opportunities as required in agriculture.  Additionally, price is

often prohibitive.  For RS to be an effective diagnostics tool for PA, image quality,

timeliness and cost must be improved.
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Unmanned Aerial Vehicles (UAVs) are one possible alternative to current

remote sensing methods.  UAVs can reduce the expense and time involved in crop

diagnostics and mapping.  UAVs can be designed to carry payloads sufficient to hold

specialized equipment for RS, and fly at low altitudes, increasing image resolution,

enhancing image quality and eliminating some cloud interference problems

experienced by satellites and aircraft.  Higher resolution images facilitate more

precise diagnostics of agricultural lands.  Additionally, UAVs do not require

scheduling, which means that images can be obtained whenever a management

opportunity exists.  If properly designed, they can be rapidly deployed for small area

imaging and are relatively simple to operate.  Since no human pilot is on board,

authorization for UAV flights is typically simplified (Albers et al., 1996).  The use of

digital imaging equipment in the UAV will mean immediate availability of imagery.

The development of UAVs will eventually allow the airborne acquisition of

information in such a manner as to give users the ability to choose the spatial and time

resolution of the data to be acquired, define the appropriate geographical coverage,

and select the sensor system of relevance for a specific data-gathering mission, while

doing so at a more readily affordable cost (Elfes et al., 2000).  This will lead to the

expansion of scientific and civilian uses of aerial data and to significant social and

economic benefits deriving from this expansion (Elfes et al., 2000).

1.1.1 Applications

Advances in telecommunications and microelectronics and micro sensors give UAVs

an enormous potential in a wide variety of scenarios (Martínez-Val and Hernández

1999; Dovis et al., 2001).  UAVs have been proposed for a variety of applications

including:
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1. Military applications such as reconnaissance and conflict resolution

(Ashley, 1996).

2. Civilian applications such as traffic monitoring, urban planning and

inspections of large-scale man-made structures (Elfes et al., 2000).

3. Environmental monitoring such as agricultural and livestock studies, crop and

yield prediction (Yang, 2001; GopalaPillai, 1999), land use surveys, and

planning of harvest (Elfes et al., 2000; Dovis et al., 2001).

4. Missions of surveillance including boarder and coastline patrol, fire detection,

and search and rescue (Martínez-Val and Hernández 1999).

5. Scientific data collection missions in areas such as mineral and archaeological

prospecting, satellite mimicry for ground truth/remote sensor calibration,

environmental biodiversity, and climate research and monitoring (Elfes et al.,

2000).

UAVs are capable of flying at a range of speeds and altitudes, which makes them

desirable for scientific and commercial use (Schoenung and Wegener, 1999).  This

technology will be of great importance to farmers as PA becomes more widely used

and starts relying more on precise diagnostics.  Although the potential has been

realized and appreciated for some time (Stephens et al., 2000), demonstration of the

advantages of these platforms over manned aircraft under actual operating conditions

is lacking.

According to Nyquist (1996), UAVs can be used to take inexpensive, high quality

aerial photographs, which is one of many applications that are now possible with

UAVs. Several researchers have developed completely autonomous drones (UAVs)
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operated by on board computers (Ashley, 1996; Tirpak, 1997).  The United

States Department Of Energy (DOE) developed a UAV system to aid in the

characterization and monitoring of waste (Albers et al., 1996) and environmental sites

(Nyquist, 1994).  A variety of payloads can be carried by these aircraft (Schoenung

and Wegener, 1999); the most common are in situ atmospheric or imaging sensors.

Two possible agricultural scenarios for the UAV system exist: characterization and

monitoring of small sites typically within the pilot’s line of site (<50 acres), and

surveillance and monitoring of large tracts (50 to 1000 acres) (Albers et al., 1996).

The UAV has the potential to emerge as a viable alternative to manned aircraft and

satellites for industrial use.

UAV systems have tremendous innovative and attractive potential for use in precision

agriculture.  They can be rapidly deployed for small area imaging and are relatively

simple to operate.  Since no human pilot is on board, authorization for UAV flights is

typically simplified (Albers et al., 1996).  UAVs therefore have the potential to

compliment and extend the observations of satellites and piloted aircraft, providing a

unique vantage point.  These UAVs are capable of flying at a range of speeds and

altitudes that make them desirable for scientific and commercial use (Schoenung and

Wegener, 1999).

The potential applications for UAVs fall into the following categories defined by

Schoenung and Wegener (1999):

1. Very high altitude, which is useful primarily for in situ atmospheric

sampling. (Ozone depletion or climate change research).
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2. Mid-to-high altitude with relatively long endurance, which is ideal for

many types of remote sensing.

3. Low altitude, medium endurance, which has been the province of the military

and other specialized agencies

4. Low altitude, short endurance, which fill a niche for localized measurement,

such as in precision agriculture or utility monitoring.

When UAVs are used for remote sensing, the mission classifications could include

(Schoenung and Wegener, 1999):

• Meteorology, especially remote sensing and dropsonde measurement,

• Natural hazard and disaster detection, monitoring, and management,

• Loitering or frequent revisit, as in traffic monitoring or other surveillance,

• Mapping, where high altitudes give adequate field of view, or where long

duration is needed,

• Remote science (activities needing long range such as measurement of polar,

tropic, or ocean features),

• Diurnal science (>24 hour data showing changes or cyclic nature or man made

processes),

• Environmental monitoring,

• Agriculture and forestry management, especially where real time or near real

time data are needed for daily activities,
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In all afore mentioned missions, performance, safety, cost-effectiveness, data

quality, and ease of use are the primary concerns to the UAV developer.

1.1.2 UAV Performance Concerns

Nominal performance goals for the design of any UAV-based imaging system include

real-time imaging, navigation, and communication capabilities.  Other performance

concerns include safety, cost effectiveness, data quality, and ease of use (Albers et al.,

1996, and Nyquist, 1994).  Additionally, the aerodynamic and propulsive efficiencies

cannot be neglected as a performance parameter, as well as the flight envelope and

should be contemplated in any UAV design.  UAV platforms need to address these

concerns if they wish to be utilized in today’s busy airspace.

1.1.2.1 Safety

Worker and public safety are perhaps the most important concerns in the system

operation.  The UAV system must be proven safe for operation over populated areas.

This is particularly true for heavier UAVs (> 50lb), which pose a substantial risk to

people in the event of an accident (Albers et al., 1996).  Small UAVs (< 50lb) pose a

modest safety risk in crash situations (Albers et al., 1996).

On the other hand, no human crew is placed at risk for low level flights or flight in

unfriendly environments with the use of UAVs (Schoenung and Wegener, 1999).

Flights can be made extremely close to objects without placing the pilots at risk

(Daida et al., 1993) as pilots can control the UAV from ground sites.

1.1.2.2 Cost effectiveness

The use of innovative technologies has possibly held the greatest potential for the

reduction of costs associated with remote sensing.  UAV systems not only eliminate
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the need for a pilot and a large sized aircraft, they also eliminate the risk and

expense involved in flying and mapping large areas of cropland on a routine basis.

UAVs must prove to be less costly than comparable manned systems to be acceptable

and used in the community (Albers et al., 1996).  Nyquist, (1994) has demonstrated

that the low cost of using UAVs for aerial photography makes it economical to fly

repeated missions over the same site.  McCown, (1996) suggests that based on initial

cost analysis, UAVs appear to be less than half as expensive as manned systems.  This

is due in part to the fact that no human crew is placed at risk and thus reduces the

operational costs compared to traditional manned aircraft (Schoenung and Wegener,

1999).  Reducing the cost of the airborne part of the UAV system minimizes financial

liability for the portion of the system most prone to catastrophic failure (Daida.,

1993).

1.1.2.3 Data Quality

Data quality from the UAV system must satisfy user requirements and be of suitable

quality.  UAV systems could improve the quality of data collected from existing

sensors by flying lower and slower than is possible with current manned vehicles,

thereby increasing the data’s spatial resolution (Albers et al., 1996).  Nyquist (1994)

suggested a solenoid switch in the plane, activated by radio from the ground to trigger

the camera.  He also suggested that the camera be capable of shutter speeds of greater

than 1/1000th of a second.  The fast shutter speed is seen to be essential in reducing

“blur” created by the movement of the plane.  Aircraft platforms in turbulent

atmospheric conditions present unique challenges and can lead to severe image

distortions in the raw data (Lee and Bethel; 2001).  At a speed of 24km/h the plane

travels 6.6_10-3m in 1/1000th of a second (Nyquist, 1994).  There is a trade-off

between flight speed of the aircraft and payload; to carry more weight, the UAV
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needs to fly faster (approximately 5mph for each additional pound), which

reduces time over the target (Nyquist, 1994) and increases the likelihood of image

blur.

1.1.2.4 Ease of Use

New and innovative technologies need to be relatively easy to use and understand as

these are more readily accepted by the users.  Complex “black box” technologies,

which are not well documented, are not readily accepted (Albers et al., 1996).

1.2 Project Objectives

The goal of this project was to explore the use of UAV technology as a tool for cost

effectively capturing scientific quality remote sensed imagery for precision

agriculture.  The project focused primarily on remote sensing applications for

agriculture; however, many other applications could benefit from low cost UAV

technologies.  The project included the design, construction, and testing of a simple,

inexpensive UAV system, in conjunction with the selection and design of RS

equipment to be placed onboard.  The two tasks directly influence one another.  The

system had to be flexible in its flying characteristics (altitude, speed, direction), and

provide a stable platform free of vibration, allowing the capture of high quality RS

imagery.  It was also desirable for the system to be quickly and easily assembled and

prepared for flight on location.

The project was completed through implementation of the following sub-objectives:

1. Design of the UAV platform and control system to provide stable and reliable

flight.
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2. Selection of cameras, computers, software for the UAV platform.

3. Evaluation of the system effectiveness through real-time evaluation of sensor

data and constraints on the airborne system to its surroundings.

The successful completion of this project will provide many advances in the field of

precision agriculture and remote sensing including the ability to image large areas in a

short time, the capacity to image routinely on a convenient schedule, and to alter

imaging times and dates depending on the on-site conditions.  Other unique

advantages will be the ability to view and analyze images shortly after flight

completion even in remote locations via portable computing technology.  This will

provide near real time crop diagnostic information to farmers, crop scouts, and other

interested parties.
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CHAPTER 2: DESIGN OF LOW COST UAV

2.1 Introduction to UAV Design.

New and innovative technologies are needed to reduce the costs involved in the

characterization of small remote sites (Albers et al., 1996; Dovis et al., 2001).  Small

and medium sized areas provide a problem for the collection of remotely sensed data,

as imagery is not always available from satellites and manned aircraft in a timely and

detailed manner (Ashley, 1998; Dovis et al., 2001).  It is a known shortcoming of

optical satellite systems that their regular re-visit time of a few days, which is often

protracted by bad weather, does not allow sufficiently suitable earth monitoring for

those applications where promptness of action is most critical.  Additionally, cost may

prohibit the justification of imaging small sites in this manner.

UAVs provide an innovative alternative to satellite or manned aircrafts.  Interest in

UAV platforms has been stimulated by the availability of military equipment and

expertise and by the rapidly growing technologies that provide more reliable

operation of these aircraft through improved communication, navigation, and data

telemetry systems (Stephens et al., 2000).  Expansion of the payload carrying

capabilities of the UAVs added to the overall desirability of the system as observing

platforms for remote sensing research (Stephens et al., 2000).  Dovis et al. (2001)

expressed the major advantages as being less expensive, more flexible, movable on

demand, and suitable for a large class of applications.  It is also interesting to note that

the current United States administration is pushing to increase the use of UAVs in

United States airspace (http://www.fas.org).
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UAVs are defined as a powered aerial vehicle that does not carry an operator.

Additionally they use aerodynamic forces to provide vehicle lift, can fly

autonomously or are piloted remotely, can be expandable or recoverable, and can

carry lethal or non-lethal payloads.  Generally, they differ from simple remote

controlled (R/C) aircraft with respect to their size and uses.  UAVs are designed and

constructed to carry payloads and perform tasks.  The tasks for which they will be

used guide the design, layout, and size of the overall system.  UAVs vary in size from

wingspans of 2m in small UAVs, to much larger vehicles such as the 14.8-m Predator

and 35.3-m Global Hawk, both US Air Force UAVs.  The cost of current UAVs is

vastly higher due to their specialized development, military applications, construction

and uses.  The Predator has a price tag of $40 million.  R/C planes on the other hand

are designed for recreational use, often being smaller versions of popular full-scale

aircraft.  R/C planes generally range in size from 1 to 5 meters in wingspan.

Recreational R/C planes can be as inexpensive as $1000 or less.

It is becoming increasingly difficult to distinguish between UAVs and R/C aircraft.

The size of operational UAVs is dropping as new missions and tasks are becoming

apparent.  Additionally, equipment is getting smaller reducing the need for larger

platforms.  R/C plane developers are now developing aircraft with imaging and other

capabilities aimed at recreational enthusiasts.

The use of large UAVs has rapidly advanced in the last few years, primarily in the

military arena (Tirpak, 1997), but also in agriculture.  UAVs can be designed to carry

payloads sufficient to hold specialized equipment for RS.  The ability of UAVs to fly

at altitudes ranging from ground level up increases image resolution, enhances image

quality, and eliminates some cloud interference problems experienced by satellites

and aircraft.  Higher resolution images facilitate more precise diagnostics of
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agricultural lands.  Additionally, UAVs do not require scheduling, which means

that images can be obtained whenever a management opportunity exists.  The use of

digital imaging equipment in the UAV will mean immediate availability of imagery.

Although the potential has been realized and appreciated for some time (Stephens et

al., 2000), demonstration of the advantages of these platforms over manned aircraft

under actual operating conditions is lacking.  Schoenung and Wegener (1999)

developed very sophisticated autonomous aircraft that offer a range of altitude,

duration, and payload carrying capabilities.  They expressed the advantages of these

autonomous aircraft as:

• Long range capability - can fly to remote places or cover large areas

• Long endurance capability - can fly longer than manned aircraft and revisit

frequently

• High altitude capability - can fly above weather, traffic or danger

• Slow speed flight - can loiter at or near one location

• Pilot exposure is eliminated - allows for long duration or dangerous flights.

The disadvantage of these systems was cost.  Reducing the cost would make the UAV

more appealing to a broader range of consumers.  Their capabilities are far higher

than what is needed for agricultural remote sensing.  A small, simple, low-cost

alternative to these large UAVs would be most beneficial in demonstrating and

applying this technology in the field.  Merging the lines between traditional UAVs

and R/C planes could provide a cost effective, simple solution.
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The major components of any UAV system are the same: aircraft platform,

communications and control system, sensor system, and data acquisition system

(Schoenung and Wegener, 1999).  The aircraft platform should be designed

sufficiently rugged to allow reuse following simple recoveries (Foch, 1996).  A

suitable, UAV platform for remote monitoring must also have adequate payload,

stability in flight, and have reasonable flight time between refueling (Pendergast and

Hofstetter, 1996).

Advances that have occurred over the last decade in areas of sensors, sensor analysis,

and control and navigation systems have supported the increasing use of unmanned

semi-autonomous land and sea vehicles (Elfes et al., 2000).  However, relatively little

progress has been made in the advancement and deployment of autonomous robotic

aerial vehicles (Elfes et al., 2000).  As mentioned earlier, UAVs play an important

role in military reconnaissance and surveillance missions.  Additionally agencies such

as NASA are developing airborne systems as platforms for environmentally and

climatologically focused research (Morring 2001; Daida et al., 1993.  Many of these

vehicles are flown using a combination of remote control and onboard navigation

(Elfes et al., 2000).
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2.2 Objectives

The goal of this portion of the project was to create a UAV specifically designed to

carry airborne image capture systems over agricultural fields in remote locations.

This goal was accomplished through completion of the following objectives.

1. Obtain a clear understanding of missions and performance requirements for

the UAV system.

2. Evaluate alternatives of a unique design or modification of commercially

available equipment.

3. Design and analyze UAV

a. Aerodynamic analysis.

b. Design and selection of hardware to meet the aerodynamic and

performance goals.

c. Sizing, design and arrangement of the fuselage to house all equipment.

4. Design launching mechanism.

5. Evaluate UAV system against performance and design constraints.
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2.3 UAV Design

2.3.1 Initial Design Progression

2.3.1.1 Mission and Performance Requirements of the UAV system.

Given the objectives of the project, several design parameters were identified for the

UAV system.  Features important to the missions that were to be performed were

considered high priority and were established as goals.  The platform would have to

meet the following criteria for all missions:

• Functionality: The system had to be able to acquire aerial images with a field of

view of at least 12 ha and minimum spatial resolution of 1 m/pixel.

• Portability: The platform had to be easily transportable to and from target areas.

The entire hardware platform had to fit easily in a full-sized pickup truck or

similar vehicle.  Modularization of the system would facilitate on-site assembly

and disassembly, which had to be accomplishable by one operator in no more than

10-15 minutes using only basic tools.

• Simplicity: The system had to be very simple to operate and maintain.  Operators

should be able to launch and fly the vehicle with minimal training and experience.

This means that the UAV should have a high degree of inherent stability.  The

airframe should be constructed of materials and components that can be easily

repaired or replaced in the event of minor damage or failure.

• Robustness: The UAV had to be deployable multiple times from terrain

conditions typically found around farm fields.  The launch and recovery areas

could be rather small and surrounded by obstacles such as standing crop, trees, or

power lines; therefore, the system had to have ample climb rate to avoid these
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obstacles.  Generally, no prepared runway areas are available near farm

fields.  The system had to be rugged enough to withstand landings in locations

with long grass or standing crop as well as on bare hard earth.  The sensing

equipment is usually the most delicate and expensive items onboard the platform.

The platform design had to provide ample protection for this equipment during

crashes caused either by operator error or component failure.

• Cost: The total capital cost of the system was to be less than $1000, and operating

costs were to be minimized.

2.3.1.2 Initial Design Specifications

Given the system design parameters, the platform needed to meet the following

performance specifications to successfully complete the image capturing missions.

Endurance: In remote sensing and aerial photography applications, the

operation needed to be maintained for periods long enough to obtain images.

Typically, a flight time of approximately seven to ten minutes was sufficient

to capture adequate images of a 12ha area.

Mission Range: The mission range is the maximum allowable distance

between the UAV and the operator.  This parameter is critical to the design of

the control and data transmission equipment.  A mission range of 450m was

deemed adequate for the proposed system functionality.

Maximum Altitude: The maximum altitude is a compromise between

operator limitations and maximum area captured per image.  As UAV

operating altitude increases, it becomes more difficult for the operator to

distinguish which direction the plane is heading, or if it is gaining or losing
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altitude.  However, the higher the altitude, the greater the field of view of the

camera and the greater the area captured per image.  The operational goal was

an altitude of 300m.

Payload: The UAV had to be capable of carrying a sensor payload with a

volume of approximately 100cm3 and a mass of 0.5kg.

Flight Speed: The UAV was to have a minimized stall and cruise speed with

small turn radius.  The slow stall and cruise speed were required to obtain

crisp images, to enable the UAV to loiter over the desired target long enough

to capture images, and to make landings easier.  The limited flight endurance

of 10 minutes also necessitated a relatively high maximum speed and climb

rate to allow the UAV to gain altitude and arrive at the target quickly.  The

desired cruise speed was approximately 40km/h, and the desired climb-rate

was 3m/s.

Safety and integrity of operation: Worker and public safety were perhaps

the most important concerns in the system operation.  The UAV system had to

be proven safe for operation near populated areas.

Operating conditions: Wind is the primary limiting weather condition for

UAV operation.  The platform was expected to be operable in average wind

speeds of up to 16km/h.  The platform was also to be operable under cloud

cover, in light mist or fog, and shortly after rainfall events.

Launch and recovery: The system was required to operate from a hand or

mechanically assisted launch, over unprepared terrain.  The system was also
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expected to be sufficiently durable to make belly landings on unprepared

surfaces or in vegetation.

2.3.2 Platform Design Alternatives

The design of small UAVs provides some significant engineering challenges.  The

platforms must be lightweight, yet have high power and high energy density

propulsion and power sources.  They must also have adequate lift generation and

stable flight control for aerodynamic environments with low Reynolds numbers.

These restrictions mean that UAVs must have low-power onboard electronic

processing and communications with sufficient bandwidth for real time image

processing, small onboard guidance systems, advanced lightweight structure, and

advanced sensing technologies (Ashley, 1998; Smith et al., 2000).  It is important to

note that the design of the UAV system can not be separated from design of the RS

system.  The payload size and weight influences the size and layout of the UAV

system.

A review of the current procedures for remote sensing and the possible alternatives to

the current methods was completed.  Four remote controlled (R/C) vehicle types were

compared on characteristics important to a remote sensing application (Table 2.1).

Following the evaluation, fixed-wing aircraft emerged as the most plausible solution

for the UAV platform and of a monoplane configuration.  Foch (1996) and Martinez-

Val and Hernandez (1999) recommended that the monoplane configuration achieves

good aerodynamic performance with the minimum number of drag-producing

junctures between the aero surface and the fuselage.
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After reviewing the current R/C technology, it was determined that an electrical

powered UAV could carry a payload of remote sensing equipment over agricultural

lands.  Electric power was selected over glow-fueled engines for several reasons:

• All equipment within the R/C plane could be powered from the electric flight

cells (or battery pack) thereby reducing the over all weight.

• The batteries could be prepared before field operation.

• Rechargeable batteries are clean and quick to change.

• An electrical propulsion system requires less maintenance and support

equipment than internal combustion powered aircraft.

• The motor could be shut off in flight to reduce vibration while collecting

images, then restarted reliably.

• There would be no image interference from exhaust smoke.

The disadvantage of electric power is limited flight duration.  Battery powered flight

offers high reliability and simple system integration according to Smith et al. (2000).

Two approaches for development of the RS platform were evaluated.  The first

approach was to design and build a custom-made UAV for this particular application.

The second approach was to modify a commercially available R/C aircraft to make it

suitable for carrying the RS equipment.  A custom-made UAV held many advantages

because it could have been optimally designed for RS operation to meet all design and

performance specifications.  The design could have featured an advanced composite

structure, and high energy density propulsion batteries.  The UAV would also have

the ability and capacity to accept a digital microprocessor autopilot and GPS
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navigator for autonomous flight after future development. This design would

produce a vehicle ideally suited for remote sensing applications.  However, it would

have been very expensive, and could not have been quickly and easily produced.

Thus, the decision was made to explore inexpensive commercially available kits that

could be modified to meet design and performance criteria.

Table 2.1:  Comparison of four UAV platform types with respect to the requirements
deemed critical for remote sensing in agricultural environments.  High compliance is
indicated by four marks (____), one mark (_) indicates low or no compliance.

Requirement Fixed-Wing
(Electric)

Fixed-Wing
(Internal

Combustion)

Helicopter Airship

Low speed , Low altitude
flight

__ __ ____ ____

Hovering capability _ _ ____ ____
Endurance _ __ __ ___
Vertical take-off/Landing _ _ ____ ____
Good maneuverability __ __ ____ ___
Payload to weight Ratio __ __ _ ____
Safe operation __ __ _ ____
Low Noise ___ _ _ ____
Operable Turbulence level __ __ _ _
Low vibration ___ _ _ ___
Low operational Cost ____ _ _ ____
Simplicity of operation ___ __ _ ____
Size ____ ____ ____ _
Deployment time ____ __ __ _
Time to target ____ ____ ___ _
Operation in adverse
conditions

____ ____ __ _

Manpower required ___ ____ ____ _
Stability ___ ___ _ ____
Controllability
(propulsion)

____ ___ ___ __

Controllability
(aerodynamic)

____ ____ _ __

Simplicity of repair ___ ___ __ _

The plane kit that was used in this study was a Lanier SloComet (Lanier RC,

Oakwood, GA), which was actually a sailplane (Fig. 2.1).  This product was selected

for its wide fuselage, stable flight characteristics, high potential payload carrying

capacity, ease of construction, and commercial availability.  The aircraft’s flight
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characteristics were very stable due in part to the dihedral design of the wings,

which allowed the aircraft to self correct to a straight and steady flight path.  The

airframe had only two control surfaces (rudder and elevator), simplifying operation

and complexity and allowing pilots with minimal flight experience to operate the

aircraft.

The dihedral wing provided sufficiently strong yaw-roll coupling to eliminate the

need for ailerons; therefore, the rudder commanded yaw included the roll required for

smooth turns.  The large wingspan allowed for the potential of a large payload, but

was still short enough to fit into a “pick-up” sized vehicle.  The UAV could be hand

launched and landed safely on the fuselage with no landing gear.  The airframe

components were sufficiently rugged to allow for reuse and repair in the event of

crash.  The fuselage was made from ABS plastic laid over plywood structural

reinforcement.  The wings were made of Styrofoam covered with plastic film and

reinforced with a 23mm _ 3mm plywood spar.  The kit could be optimized to achieve

the mission and performance specifications.

Cursory tests of the first generation UAV (Fig. 2.1) showed that the concept was

feasible.  The aircraft was built and flight tested with a payload of small board

cameras and microwave video transmitters.  This equipment enabled the transmission

of a real time video feed from the aircraft to the ground.  The pilot on the ground

viewed the video feed on a TV screen while the aircraft was in the air, and video was

recorded on VHS cassettes.  Single frame images were then captured from the VHS

tapes once this tape was converted into digital format.

Although the flights were successful, wind conditions severely limited operation.  The

propulsion system originally selected was inadequate for the application.  The
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propulsion system was unable to overcome breezy conditions, and the aircraft

was buffeted by the wind turbulence.  The flight characteristics were sluggish and

additional power was required for a reasonable climb rate.  The motor and propeller

combination also lacked the power/thrust required for additional payload, which

would later be required.

Figure 2.1:  First generation UAV with board camera transmission.

The second-generation aircraft, also a Lanier Hawk, was equipped with a larger more

powerful motor powered by a bigger battery pack.  The aircraft had better flight

characteristics, was less influenced by small gusts of wind, and allowed for an

increase in the payload carrying capacity.  This motor provided additional power

needed to meet the payload carrying capacity requirement of the UAV.

The R/C platforms being used were designed for recreational flight and not to carry

increased payloads.  It became apparent that this unmodified commercial R/C planes

may not provide sufficient durability or payload carrying capabilities.  The frame of

the aircraft was not rugged enough to avoid complete failure as a result of minor

landing anomalies.  Additionally, there was little protection for the payload equipment

in the event of a crash landing.  The durability of the aircraft came into particular
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question following two initial crashes.  The crashes were due in some part to the

inexperience of the pilot but also to the airspeed of the aircraft.  Due to the increase in

payload, the minimum air speed or stall speed increased in order to generate sufficient

lift over the airfoil.  As discussed earlier, this increased speed made landings more

difficult.

Figure 2.2:  Front, top and side view of the SloComet platform (not to scale).

To overcome the limitations of the first platform, the researcher chose to use a Lanier

SloComet model airframe (Fig. 2.2 and Fig. 2.3), a slightly larger kit with a bigger

fuselage.  The model had the same wing design as the first generation UAV; thus, a

review of the aerodynamic characteristics was performed in order to determine if the

aircraft could be redesigned to reduce speed and be acceptable for the project.

Height: 0.127m

Wing Span: 2.44m

Length:
1.17m
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Figure 2.3:  SloComet Platform and transport vehicle.

2.3.3 UAV Design and Analysis

The ultimate goal of this analysis was to develop a useable platform from which

instrumentation can be used to obtain images.  The analysis revolved around the

desire to take a commercially available remote control plane, make modifications to

the structure, enabling the kit to carry a payload of imaging equipment at the correct

height and speed over the target.  Further goals were to do this with the least amount

of major modifications from the original kit, thereby reducing cost and time in

producing the system.  Finally, the system complexity could not be increased to the

point that it became difficult to operate the platform.

2.3.3.1 Aerodynamic Analysis of UAV Platform

The unacceptably high stall speed of the UAV platform prompted an aerodynamic

study of the wing and wing-body design.  A programmed spreadsheet developed by

Daniel Raymer (Conceptual Research Corporation, Playa del Rey, CA), which

included all the aircraft’s specifications, was used to examine the dynamics of the

aircraft (Fig. 2.4).  The effects of different platform characteristics were evaluated in
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an attempt to identify the simplest modification that would increase

performance.  The airfoil of the original kit was then modified to increase payload

capacity and decrease stall speed.  The analysis showed that increasing the airfoil span

33% by adding a second horizontal wing section from a second wing kit would

sufficiently increase performance.  The longer wing was reinforced with carbon fiber

tape along the cords of the wings and plastic covers on the leading and trailing edges

of the inner parts of the wings.  The increased wingspan accommodated the larger

payloads, but was still short enough to meet portability constraints.  Other options,

which were briefly entertained, included the addition of flaps to the wing, the addition

of a parachute, and an air brake.  The addition of flaps and the air brake were

abandoned due to the complexity these modifications would have brought to the

design and construction.  Furthermore, the benefits were not significantly greater than

increasing the wingspan.  A parachute system was not incorporated due to the

bulkiness and reliability of the system.  The parachute added considerable weight and

volume to the airframe, and there were questions regarding the functional

effectiveness.

Smith et al. (2000) suggested that small RC planes have potential problems with high

drag due to laminar separation and relatively low maximum lift values resulting from

low flight Reynolds numbers; therefore, a study of the airfoil was performed to

determine if it was suitable for the application.  The manufacturer selected a “Clark

Y” airfoil (Fig. 2.5), developed in the 1920’s and popularized due to the flat bottom

characteristic and relative thickness of the airfoil.  The flat bottom characteristic

simplifies fabrication and is thus a favorite amongst hobbyists.  The airfoil provided

favorable stalling characteristics (Fig. 2.6).
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Figure 2.4:  Spreadsheet model to predict aerodynamic and performance parameters
(www.aircraftdesign.com).

Figure 2.5:  Clark Y airfoil profile.

Figure 2.6:  Output from X-foil, airfoil analysis software for Clark Y airfoil.

The airfoil lift coefficients fell between 0.4437 – 1.399 range at Reynolds numbers in

the order of 0.25_106 and angles of attack of 0 - 12º, determined from use of the X-
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Foil (Drela, 1989) computer program (Fig. 2.6).    The airfoil stalls at an angle

of attack of approximately 12º (Fig 2.7).

Figure 2.7: Onset of separation at an angle of attack of 12º.

The coefficient of lift vs. drag of the Clark Y airfoil is shown in Figure 2.8, and the

coefficient of lift vs. angle of attack (alpha - _) is shown in Figure 2.9.

Cl vs Cd for Clark Y Airfoil
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Figure 2.8:  Coefficient of lift (Cl) vs. Coefficient of drag (Cd) for the Clark Y airfoil
at Re of 250000.

Cl vs. Cd for “Clark Y” Airfoil
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CL vs. Alpha for Clark Y Airfoil 
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Figure 2.9:  Coefficient of lift (Cl) vs. Angle of Attack (_) of the Clark Y airfoil.

At Reynolds numbers (Re) on the order of 100,000, the flow is laminar.  The laminar

flow over the suction surface of the wing cannot withstand an adverse pressure

gradient and will tend to separate at even low angles of attack.  At moderate values of

Re, the separated flow region may cause the flow to transition to turbulence, which

results in reattachment. In this case, the separated region is referred to as a separation

bubble. In this case, the lift is reduced and the drag is increased.  At low values of Re,

however, the flow may not transition to turbulence at all and the wing effectively

stalls, causing a dramatic drop in lift to drag ratio.  Great care is needed in the design

of airfoils in the low Reynolds numbers range to ensure that the flow over the wing

will not separate.

A dihedral wing arrangement of 6º, inflecting at the mid-span of each wing, was used

to provide natural inherent stability.  In addition, the dihedral can provided a

sufficiently strong yaw-roll coupling to help eliminate the need for ailerons.

Therefore, the rudder commanded yaw included the roll required for smooth turns.

The dimension and performance estimates for the aircraft are provided in Table 2.2.

Cl vs. _ for “Clark Y” Airfoil
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Table 2.2:  Main Features of the UAV platform.

Name of Variable Value
Maximum Height 0.127m
Maximum Length 1.17m
Wing Span 2.44m
Maximum Take-off Weight 3.75kg
Operating Empty Weight 3.29kg
Maximum power at take-off 0.4kW
Power /Weight Ratio 106.67W/kg
Wing Gross Area 0.6m2

Wing Loading 6.2Kg/m2

Mean aerodynamic cord .005m
Wing aspect ratio 1
Payload Capacity 0.01355m2 (±1_), 0.454kg
Endurance 0.167Hrs
Climb Rate 3.5m/s
Cruise Air Speed 35kph
Landing Speed 30kph

All payload components including antennas from the video transmitter and the R/C

receiver were placed inside the fuselage to further reduce the drag and increase

efficiency.  The GPS antenna, which needed an unobstructed vertical view, was

attached to the top of the fuselage behind the wing.  This location coupled with the

low profile of the antenna did not obstruct the airflow over the wing or past the

control surfaces of the platform and did not appreciably increase drag.  Landing gear

added weight and increased drag to the aircraft, which resulted in reducing the

payload capacity and thus was removed, enforcing hand launching and belly landings.

Upon initial testing, the extended airfoil was found to be susceptible to cracking and

failure at the restraint points to the fuselage at both the leading and trailing edges.

Cracks developed on the skin of the airfoil during a relatively gentle landing.  These

cracks were caused by momentum change as the aircraft came to a rapid stop.  The

outer shell of the airfoil split at the leading and trailing edges.  These cracks lowered

the strength of the airfoil and were difficult to repair.
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To gain a better understanding of the stresses and strains placed on the airfoil in

this region, an finite-element analysis was performed on the  airfoil.  A three-

dimensional representation of the airfoil was created with the SolidWorks (Concord,

Massachusetts) modeling package, and a finite element analysis of the airfoil was

conducted using the CosmosWorks addition to the SolidWorks package.  The

simulation fixed the airfoil to the fuselage at the center of the airfoil.  The restraint did

not allow displacement or rotation between the airfoil and the fuselage.  Forces

applied to the unrestrained portions of the airfoil simulated forces of an object

impacting the airfoil.  The resulting visualization can be seen in Figure 2.10.

Figure 2.10:  High airfoil stress concentrations during simulated landings.

Severe stress concentration areas were noted in the regions where the airfoil attached

to the fuselage.  Further simulation involved applying a uniformly distributed load

along the trailing edge of the airfoil.  This simulated the stresses placed on the airfoil

under abrupt deceleration.  The results showed concentrated stresses at the restraint

junction between the trailing edge and the fuselage.  Additionally, simulated flight

loads were placed on the bottom surface of the airfoil.  These loads simulated the

forces experienced by the airfoil during flight.  The result of the analysis
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demonstrated high stress concentrations (Fig. 2.10) in the region were the

fuselage joined the airfoil.  Furthermore, the airfoil’s geometry compounded the

stresses placed on it during flight.  Large bending loads were placed on the airfoil

during flight and especially during landings and turns.  These forces were strongest in

the middle of the airfoil were the airfoil was attached to the fuselage.

A solution was required to strengthen the airfoil from both the normal operating

stresses and the addition forces placed on the airfoil during landings.  The solution

was tri-fold.  First, the leading and trailing edges of the airfoil were strengthened by

extending plastic supports along the two edges (Fig. 2.11).  These supports were

manufactured from plastic sheeting, molded and bonded to the leading and trailing

edges of the airfoil.

Figure 2.11:  Additional molded support placed on leading and trailing edges.

Second, thin carbon fiber strips were affixed to both surfaces of the airfoil.  These

strips provided the necessary tension to counteract the bending during turns.  The

carbon fiber strips were placed along the main cord of the airfoil (Fig. 2.12).  Finally,

the lengths of the spars in the center of the airfoil were increased.  Each section of
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wing contained one main spar running down its length.  Additional spars were

used the join wing sections together and the lengths of the additional center spars

were increased to adequately distribute the loads (Fig. 2.13).

Figure 2.12:  Additional Carbon fiber support for extended airfoil.

Figure 2.13: Comparison of original and modified airfoil spans with additional spars.

2.3.3.2 Selection of Propulsion Components.

As mentioned earlier, the primary challenge in designing an electric propulsion

system was to maximize thrust and endurance while minimizing airborne weight.  A

computer program called ElecrtiCalc (SLK Electronics, Greensboro, NC), was used

as a tool to size and select components.  This program predicted aircraft performance

from pertinent technical data related to system components (Fig. 2.14).  The user

inputs information concerning battery pack, motor, airframe, and flight parameters.

Initial Airfoil
and Spars

   Modified Airfoil
and Extended Spars
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Figure 2.14:  Screen shot of input parameters and results obtained from ElecrtiCalc.

Initially, the size, weight and dimensions of the platform were introduced into the

ElecrtiCalc program.  The SloComet airframe was available in a database of current

platforms available in the software.   However, the parameters were adjusted to

account for additional payload and increased wingspan of the platform.  The program

data were further manipulated to include existing equipment in the platform.  The goal

was to use as much of the existing equipment as possible while still obtaining an

effective platform.  Battery pack information was inputted into the program.  This

information included number of cells, volts per cell, and capacity in mA-hr.

The majority of manipulation involved the motor and propeller sizing.  Electric flight

enthusiasts use a general rule of 50 to 100 Watts per pound of aircraft (or 50 to 100

Watts per 0.45kg).  Table 2.3 gave a good starting point for the estimations.  The

motor, gearbox and propeller sizes are largely dependant on the size of the aircraft

and the required performance of the system.  Motor data were selected from a

database of commercially available motors.  The program then calculated the best

combinations of propeller size and gear reductions for the given platform size, battery

pack and motor combinations.  This was determined through a series of graphical
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outputs (Fig. 2.15), where the main driving condition was the current drawn for

the propeller and diameter/pitch combination.  ElecrtiCalc was most beneficial at the

outset of the project, to determine values of the components.  This process was

iterative and better estimations of component size were obtained through repeated use

and trial and error.  The motor selection was based on availability from dealers,

performance and cost.  The output parameters for the final UAV design can be seen in

Figure 2.14, where the total system efficiency was estimated to be 65% at full throttle.

This gives an estimated flight time of 5.1 minutes and a climb rate of 519ft/min.

However, once airborne the throttle can be reduced, significantly increasing estimated

flight time of the platform.

Table 2.3:  Approximate guide to the motor size.

Wing Area Glow-Fueled Engine(in3) Electric Motor
200-300 in2   (0.13-0.2m2) 0.049 Speed 400
300-500 in2   (0.20-0.32m2) 0.100-0.150 05-15
500-600 in2   (0.32-0.39m2) 0.250-0.400 25
600-750 in2   (0.39-0.48m2) 0.600 40

ElecrtiCalc also generated a series of graphical outputs, which streamlined the

selection of the motor, propeller and gear combinations.  The first graph provided a

graphical estimation of the propeller dimensions (diameter and pitch), vs. the current

draw from the motor/propeller combination (Fig. 2.15).  This information was used in

the selection of propeller and battery packs sizes.  The larger the diameter and pitch,

the greater the current draw from the batteries.

The lower graph in figure 2.15 shows a few of the projected flight characteristics.

Following the drag line, the “best” operational speed is at the point of lowest drag,

27km/h.  Far left of this point we are in the unstable flight régime.  The maximum

speed is at the intersection of the drag and thrust lines.
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Figure 2.15:  Graphical outputs generated by ElectriCalc.

This gave an estimation of the motor run time given a certain battery pack capacity,

with different propeller sizes.  The second graph gave an estimation of thrust and drag

relative to the flight speed. The best motor for the UAV was found to be a Jeti Phasor

45/3 motor and 40-3P Opto speed controller (Jeti, Koprivnice, Czechoslovakian

Republic), for the 12-cell, 2400 mAH battery pack.  This was suitable for use in

model aircraft up to 2500g (5.51lbs) in weight and is 83% efficient according to the

manufacturer (80% according to EletriCalc).  This motor was brushless, and

developed as a direct drive motor (i.e. not requiring gearing between the motor and

propeller).  The motor was also sensorless, meaning that it requires a motor controller

Unstable Flight
Regime Optimal Speed

Maximum Speed
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to control the motor over the full range of power.  The best propeller option was

a Graupner CAM folding high performance propeller specially designed for electric

sailplanes.  The propeller had the ability to fold back when the motor stopped to

reduce drag and allow the UAV to land without landing gear.  Centrifugal motion

caused the propeller to resume its original position once the motor was restarted.

2.3.3.3 Mounting Propulsion and Payload Components

The mission and goal of the project imposed rigorous size and weight constraints on

the UAV platform.  Effort was expended on identifying reliable, inexpensive

components for the required flight and science payload.  The necessary systems

included flight control and GPS, data handling and transmission, and the cameras

used for scientific imaging.  The term “payload” refers to all systems and equipment

not directly linked to the airframe and propulsion system.

The fuselage had to accommodate both the propulsion components and payload

components.  The payload components included imaging equipment, and transmitters.

These components are discussed in more detail in Chapter 3.  The propulsion and

other operational components included motor, motor controller, receiver, battery pack

and servos.  The key considerations in the arrangement of these components within

the airframe were balance, protection, reduction of EMI (electro magnetic

interference) between components, and ease of removal and exchange.  This

particular airframe performed best when balanced at 10º nose down when supported

at the aerodynamic center of lift of the wing.  This specification was provided by the

manufacturer and required the majority of the equipment to be placed ahead of the

center of lift of the platform.  Figure 2.16 shows the internal arrangement of the

components in relation to the center of lift within the fuselage.
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Figure 2.16:  Component layout within the fuselage.

The motor was mounted to the plywood structural components in the front of the

airframe with thin brass strips (Fig. 2.17).  In addition to holding the motor in position

during flight, the limited strength of the brass mounts also enable the motor to break

free from the fuselage in the event of a frontal impact to minimize damage to the

motor.

Figure 2.17:  Motor, mounted in front of fuselage and held in place with thin brass
straps.

The battery pack was positioned just behind the motor mounting frame, the forward

most practical position.  The wooden structure of the fuselage in this area provided

extra protection for the battery, which was held in position with Velcro on the floor of

Center of Lift
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the fuselage.  The motor controller and other small electronic devices were

stowed above the battery and ahead of the center of lift of the aircraft.

The camera was placed just forward of the center of lift of the wing.  This meant that

changes in camera configurations, positions, and attachments would not adversely

affect airframe balance.  This also provided maximum separation from electrically

noisy motor and motor controller.  The camera was positioned in the cargo bay so that

there was ample space to attach different lenses and optical filters to the camera if

required by the mission.  The camera was held in position by protective high density

foam mold inserted into a LEXAN® protective box (Fig. 2.18).  This box cushioned

the camera and protected it during hazardous periods.  This protective foam has

proven to be dependable in protecting the camera.  The camera lens does not protrude

through the airframe, making it less likely to be damaged if the components shift

position.

Figure 2.18: Digital Camera and Protective LEXAN® case

The telemetry system, which receives flight control data and transmits imagery data to

the ground station, was placed behind the camera.  The telemetry components are

small enough to be placed behind the center of lift without drastically affecting the
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UAV balance.  This location also achieved maximum separation from the

electrically noisy motor and controller.

The UAV was equipped with standard R/C servos as the actuators, and a standard

receiver.  The servos are controlled directly with an RC transmitter at the ground

station.  Every surface had its own control channel, which allowed the pilot to mix the

controls as needed to improve the flight handling of the aircraft.

The wing was attached to the fuselage by means of four rubber bands (Fig. 2.19).

This attachment technique is common to R/C plane construction, and allows the wing

to release or move during hard landings.

Figure 2.19:  Rubber bands attaching the airfoil to the fuselage.

2.3.4 UAV Performance.

Ground-based activities were timed to provide data for evaluation of system

deployment and operation.  An onboard GPS receiver was used to record flight data

for analysis of flight characteristics.  The GPS equipment is further described in

section 3.3.4.
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The system had a set-up time of approximately 7 - 10 minutes.  The bulk of that

time was spent installing the onboard hardware and checking operation of the system.

The speed at take off was found to be approximately 9km/h, allowing undemanding

hand launch of the system.  The platform had an operational speed of approximately

30km/h, ensuring adequate time over target and little image blur due to relative

ground speed.  The system had a climb rate of approximately 3.5m/s, allowing the

platform to reaches an operational height of 250m in approximately 180s (time to

operational height is affected by operational skill).  The landing speed of the aircraft

was approximately 17km/h allowing pilots with minimal experience to land the

system.  The operational height of the system was in the region of 250m depending on

the skill of the operator.  As pilot skill improves the operational height can be

increased.  To date the system has achieved altitudes of 300m.

Operation of the platform was best performed from a vantage point away from the

target area.  This is an operational choice and may vary between pilots.  Generally, the

system is difficult to control directly overhead, and is thus easier to operate from a

slight distance.  Once again the maximum operational rage of the aircraft is governed

by the pilot’s ability to see the aircraft and not by the transmitter or receiver distance

(1.45miles).  A range of approximately 400m is the maximum for the pilot to remain

in control of the aircraft.  The platform’s handling was sluggish as predicted, but this

ensured a stable platform.  The aircraft’s flight was steady and straight while the

motor was off.  The altitude loss during un-powered flight was sufficiently small to

allow the pilot to glide considerable distances.  The electric motor was very

dependable and allowed almost instantaneous throttling to full power.  The ability to

glide and then resume powered flight and gain altitude increased the flight time of

each mission.  The maximum duration of flights, from battery pack connection to
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disconnection, was approximately 15 minutes.  Of this time, the maximum time

spent aloft was approximately 10 minutes.  Most flights had a shorter duration, but

still enabled the operator to make numerous passes over the selected locality.  The

time taken between two successive flights depended on the quantity of battery packs

available.  Operating with two packs, ensured almost continuous operation, with

approximately 10 minutes taken between flights to download images and install new

batteries while recharging the old.

Damage during a mission (typically during landings) was generally minor and often

repairable within the field.  In the event of serious but recoverable damage, the

maintenance time was usually under a day and typically, less than the time taken to

build a new aircraft (15-25 hours).  Damage was normally limited to the fuselage and

wings, allowing reuse of all hardware components.  The UAV platform achieved most

operational goals set for the project, fulfilling the criteria for most missions:

• The modular construction allowed the system to be transported in a pick-up

truck or similarly-sized vehicle.  The modular platform facilitated easy

packing and unpacking of the system from the transport vehicle and quick

assembly at the site.

• The platform was easy to assemble, maintain and operate.  Initial assembly

was accomplished with rudimentary tools.  Initial construction time was

typically 15 – 25 hours.  Assembly time at the mission site was generally short

and in the region of 10 minutes.

• Operational damage was typically minor, with most damage reparable in the

field.  Operation was simplified through the utilization of two control surfaces,
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facilitating users with minimal experience to utilize the system, after

instruction.

• System costs were low, reducing the cost to obtain remote sensing imagery to

farmers, crop scouts, educators, and researchers (Table 2.4).

Table 2.4:  Components weight and cost for the UAV system.

Component Weight Price
Plane (Kit) 1950g  (4.29lb) $70.00
Motor and Prop (Kit) 267.4g  (0.589lb) $140.00
Motor Controller 51.5g  (0.114lb) $97.00
Battery 737.4g  (1.626lb) $100.00
Radio (Including: Servos and Receiver) 58g  (0.128lb) $125.00
Camera 268.6g  (0.636lb) $175.00 – 399.00
Video Transmitter 66.9g  (0.147lb) $100.00 – 500.00
Total 3399.8g  (7.5lb) $532.00(+last

two)

• The system achieved durability requirements allowing the platform to be

operated repeatedly in remote locations.  Repeated testing in ill-equipped and

unprepared locations demonstrated the platform’s durability and ability to

operate in these locations.

• Equipment protection was achieved through placing the delicate equipment

within the protective fuselage structure, allowing the components to detach in

break-away zones, and housing the equipment in custom-made protective

structures.

• Launch of the platform was achieved by hand, allowing one team member to

hand launch the platform while another guided the system.

• Equipment was recoverable and reusable in the event of a major crash.

Damage during successful flights was typically inconsequential.
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2.4 Conclusions

The UAV-based RS platform developed in this project was used and operated

successfully.  The system had the desired performance and flight characteristics to

make it a feasible platform for collection of RS imagery (Table 2.5).  Most of the

initial design specifications were met in the design of the system:

• Functionality: The system acquired images with a field of view of

approximately 10 ha.  This was below the desired field of view of

approximately 12 ha. Field of view could be increased with greater operator

skill and with the use of wide angle lenses.

• The storage volume encompassed 1.2m_1.5m_0.3m of space for the fuselage,

and 2.5m long area for the wing section.  This was sufficient to allow easy

portability, and transport in a van or pick-up.

• Simplicity: the system was reasonably simple to operate and maintain.

• Robustness: operation of the system over unprepared terrain showed the

system to be reasonably robust.

• Cost: total system cost was below the $1000.

• Flight times of 7 minutes were achieved through taking advantage of the good

gliding characteristics of the platform, and the sparing use of battery pack

power.

• Data transmissions at distances of 300m were verified with minimal

interference.
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• Altitudes of 250m were achieved, with higher altitudes possible with

greater operator skill.

• The payload capacity of the system was 100cm3 (or 1l) and 0.45kg (or 1lb.)

This was 0.227kg (or 0.5 lb) under the initial payload goal.

• Operational flight speeds of 27.35km/h (or 17mph) were achieved by the

platform, well less than the desired 48.3km/h (or 30mph).

• Safety and integrity of the system was acceptable in the hands of an

experienced pilot.

Table 2.5:  Performance Characteristics of the UAV Platform.

Characteristic Desired Result Result
Set-up Time Short duration 10 minutes
Payload: Mass and (Volume) 1.5 lbs (100cm3) 1 lbs or 0.5kg (100cm3)
System storage volume Pick-up Vehicle Pick-up vehicle
Endurance 10 minutes 10 minutes (max)
Mission Range 500ft (152m) 400m
Flight Speed 20mph (32km/h) 30km/h
Cruise Altitude 600ft (182m) 300m
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CHAPTER 3:  REMOTE SENSING IN PRECISION

AGRICULTURE

3.1 Introduction to Remote Sensing

Remote sensing (RS) can be defined as any process of gathering information about an

object, area or phenomenon without being in contact with it (Mather, 1999).  Human

eyes are examples of this; they are able to gather information about surroundings by

gauging the amount and nature of reflected visible light energy from an external

source (Eastman, 1996).  The science of remote sensing (RS) consists of the

interpretation of measurements of electromagnetic energy reflected from or emitted

by an object from a vantage-point that is distant from the object (Eastman, 1996;

Mather, 1999).  RS as defined in this thesis as the observation, interpretation, and

understanding of measurements of electromagnetic energy.  This is energy reflected

from or emitted by the Earth’s surface or atmosphere (Mather, 1999).  This thesis

refers to RS as the process of gathering information devices, from a vantage point

above the earth’s surface (Eastman, 1996).

RS and image diagnostics are not new to agriculture, but their use is still limited.  This

is due to the cost of imaging (using satellites, piloted aircraft and land-based sensors),

data analysis, time to receive the data, lack of accurate ground truthing, and

environmental conditions.  RS techniques have been available for fifty years, but only

recently is their full potential being realized in agriculture (Johannsen et al., 2000).

Piloted aircraft, satellites or land-based sensors can currently be used to obtain

remote-sensing images (Cochran, 2000).  The vast majority of RS research has

utilized satellite-based systems, but the techniques and principals involved in RS are
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the same irrespective of RS platform.  RS has become a widely used tool for

various earth observation needs and has become increasingly useful in agriculture,

particularly in the monitoring of natural resources (Verbyla, 1995).  However, it is

often difficult to differentiate between formations, that are floristically similar but

extremely heterogeneous with regard to the degree of land cover density and biomass

amount (Marchetti et al., 1995).

3.1.1 Background

Most objects including plants emit or reflect electromagnetic radiation.  The

electromagnetic spectrum (Fig. 3.1) range varies from very short wavelengths of less

than ten trillionths of a meter known as gamma rays, to radio wave lengths of several

hundred meters.  Due to lens and atmospheric absorption, the first significant window

of reflectance is that of the visible wavelengths (Verbyla, 1995).  The green, red and

near-infrared (NIR) wavelengths all provide good ability to gauge earth surface

interactions without significant atmospheric interference (Eastman, 1996).

Figure 3.1:  Electromagnetic Spectrum



48

The source of the electromagnetic spectrum is the sun’s radiant energy.  The

sun’s radiant energy strikes objects on the ground.  That energy can be absorbed,

scattered, or reflected back to the remote sensor.  The spectral response of an object is

the amount of energy reflected by the object and detected by the sensor.

3.1.2 Spectral Response of Vegetation due to Radiation

Spectral response patterns are also referred to as signatures (Verbyla, 1995).  A

simple example of a spectral response pattern or signature is a human’s concept of

color.  The eye is able to sense spectral response patterns because it is truly a multi-

spectral sensor.  In the early days of RS, it was hoped that each earth surface material

would have a distinctive spectral response pattern that would allow it to be accurately

detected by visual or digital means (Eastman, 1996).  However, in reality, this is not

often the case.  For example, two different trees might have quite a different

coloration at one time of the year and quite a similar one at another.  This may be

because chlorophyll primarily absorbs red and blue to violet wavelengths for use in

photosynthesis, which may vary in amount according to season.  Green light is not

readily absorbed and thus is reflected, giving vegetation a green appearance.  In

addition, NIR wavelengths are reflected due to scattering caused by the high air/cell

interface area in the leaf tissue called mesophyll (Gates, 1970; Verbyla, 1995).

Chlorophyll is transparent to NIR light.  The sharp increase in the reflected energy

just beyond the red region of visible light into the NIR region is not static and changes

over the life of the leaf.  This sharp increase is located around a wavelength of 0.7_m

(Fig. 3.2).

Environmental stress factors such as drought, disease, weed pressure, and insect

damage, cause physiological changes in the plant tissue.  These changes cause the

plants to have a different spectral response than healthy plants at the same growth
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stage.  Thus, RS can become a useful tool for the identification of plant stress.

Finding spectral response patterns is the key to most procedures for computer-assisted

interpretation of remotely sensed imagery.  An idealized spectral reflectance curve of

vigorous vegetation (Fig. 3.2) illustrates relatively low values in the red and blue

regions of the visible spectrum, with a minor peak in the green spectral band.

Figure 3.2:  Idealized spectral reflectance curves for vigorous vegetation, soil and

water (www.ucalgary.ca/.../SS/GEOG/ Virtual/remoteintro.html)

These peaks and troughs are caused by absorption of blue and red light by chlorophyll

and other pigments.  Typically, 70-90% of both the blue and the red light are absorbed

to provide energy for photosynthesis (Mather, 1999).  The slight reflectance peak

between 0.5 and 0.6 µm is the reason that actively growing vegetation appears green.

Reflectivity rises sharply at about 0.75 µm, and remains high in the near-infrared

region between 0.75 and 1.35µm because of internal leaf structure and the air/cell

interface area in the leaf tissue.  Between 1.35 and 2.5µm, the reflectance is controlled

by leaf-tissue water content.  As the plant ages, the level of reflectance in the NIR

region declines, while the reflectance in the visible part of the spectrum is not

NIR

Green Band
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significantly affected.  The reflectance curves of soils are generally

characterized by a rise in reflectivity as wavelength increases.  This is the opposite of

the spectral reflectance curve of clear water (Mather, 1999).

The middle-infrared region (MIR), 1.55 – 1.75 µm, is an area where significant

differences can arise between mature species.  As a result, applications looking for

optimal differentiation between species will typically involve both NIR and MIR

regions (Eastman, 1996).

Water reflection varies greatly according to the extent of turbidity of the water.  Clear

water, for instance, reflects very little in most spectral regions, while very turbid water

reflects significant amounts of radiation, especially in the red and NIR spectral

regions (Verbyla, 1995).  In short, the electromagnetic spectrum is broad and not all

wavelengths are equally effective for RS purposes.

3.1.3 Sensor types

RS imaging sensors fall into two categories: active and passive sensors.  Passive

sensors measure only naturally occurring reflected solar energy.  These sensors make

up the majority of the sensors used for RS.  Active sensors provide their own

controlled source of electromagnetic energy, which is transmitted to the object and the

reflectance measured.

3.1.4 Resolution

An imaging/remote sensing instrument platform operating in the visible and infrared

spectral region is described in terms of its spectral, spatial, and temporal resolution

(Mather, 1999; Verbyla, 1995).
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3.1.4.1 Spectral Resolution

Spectral resolution is the ability of a sensor to respond to a specific frequency range.

A discrete frequency range that a sensor is able to detect is called a Band.  Spectral

resolution refers to the width of these bands across the total electromagnetic spectrum

span of the sensor.  A wide-band instrument would simply average out differences in

reflectance of various spectral regions (Mather, 1999).

Figure 3.3, is a representative plot of the reflection from healthy (dotted line) and

unhealthy (solid line) vegetation versus wavelength (Mather, 1999).  Most of the

difference occurs in the near-infrared region.  If the spectral resolution of the sensor is

relatively low (Fig. 3.4), information from the near-infrared region might be lumped

with the red information.  In this case, the differences in the vegetation would not be

apparent (Mather, 1999).  Landsat TM, a satellite based RS platform collects seven

bands: blue (0.45-0.52µm), green (0.52-0.60µm), red (0.63-0.69µm), near infrared

(0.76-0.90µm), mid-infrared (1.55-1.75µm) and far-infrared (2.08-2.35µm), and

thermal infrared (10.4-12.5µm) (Eastman, 1996).  To provide more reliable

identification of particular targets on a RS image, the spectral resolution of the sensor

must match as closely as possible the spectral reflectance curve of the intended target

(Mather, 1999).

3.1.4.2 Spatial Resolution

The term spatial resolution refers to the fineness of detail visible in an image and

generally corresponds to ground pixel size, or the amount of area covered on the

ground per pixel of resolution.  It is the ability of the sensor to identify the smallest

size detail (or pixel) of a pattern on an image.  However, this does not mean that an

object smaller than the pixel size will not be detected.  Each pixel is a representation
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of the weighted average of reflectance in that area.

Figure 3.3:  Spectral reflectance curve for healthy (dotted line) and senescing (solid
line) vegetation (Mather, 1999).

Figure 3.4:  Spectral reflectance curve recorded by an instrument with four spectral
bands of resolution (Mather, 1999).

The spatial resolution for Landsat TM images is 30 m and for NOAA-AVHRR

systems is 1.1 km, which are also Satellite based platforms (Eastman, 1996; Mather,

1999).
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3.1.4.3 Radiometric Resolution

Radiometric resolution or contrast, describes the ability of the sensor to measure the

signal strength or brightness of objects.  Radiometric resolution is often given in terms

of the number of bits of digital information.  An 8-bit sensor, for example, will report

one of 28 or 256 discreet intensity values for each band of spectral resolution.

Obviously, as spectral, spatial, and radiometric resolutions increase, data file sizes can

become quite large.

3.1.4.4 Temporal Resolution

Temporal resolution is the imaging revisit interval (Eastman, 1996); it is the time

elapsed between images taken of the same object at the same location.  The greater

the frequency the sensor can revisit the same location, the finer the temporal

resolution.  The temporal resolution of Landsat is 16 days, which is smaller than some

other sensors such as SPOT, which has an orbital cycle of 26 days.  NOAA-AVHRR

on the other hand, can show wide areas on a daily basis (Eastman, 1996).  Temporal

resolution of satellite imagery also generally improves at higher latitudes due to the

significant side lap between consecutive satellite passes.  Side lap is the area that is

digitized twice in two adjacent satellite passes; thus, the same area falls into two

images.  The percentage side lap for Landsat scenes ranges from 15% at the equator to

85% at extreme latitudes (Verbyla, 1995).

3.1.5  Image Processing

Digital image processing involves the manipulation and interpretation of digital

images with the aid of a computer.  This is the process whereby raw RS digital data is

processed into usable data.  This process aims to correct data distortions.  It refers to

four basic operations: image restoration, enhancement, classification and
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transformation (Eastman, 1996), and can be viewed in two major operations:

preprocessing and post processing.

3.1.5.1 Pre-processing

Preprocessing of RS data includes the correction of radiometric and geometric

distortions, which is referred to as image restoration.  Image restoration aims to

correct distorted or degraded image data to create a more faithful representation of the

original scene.  This typically involves the initial processing of raw image data to

correct geometric distortions, calibrating the data radiometrically and eliminating

noise present in the data (Lillesand & Kiefer, 1987).  Radiometric corrections are

made to raw data to correct for brightness of objects on the ground, which have been

distorted.  The distortion occurs because of scattering of reflected light due to

atmospheric conditions.  Geometric corrections are made to the raw data to correct the

inaccuracy between the location coordinates of the picture elements in the image data,

and the actual location of the feature on the ground.  Geometric corrections could

include a georeferencing operation where pixels are first assigned to a spatial

coordinate.

3.1.5.2 Post-processing

Image enhancement is the modification of images to make them more suited to

assessment by human vision (Eastman, 1996).  This process involves techniques for

increasing the visual distinction between features in a scene. The object is to create

“new” images from original image data that increase the amount of information that

can be visually or digitally interpreted from the data.
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3.1.5.3 Enhancements

Image enhancement techniques include contrast stretching, spatial filtering and

ratioing.  Contrast stretching changes the distribution and range of the digital numbers

assigned to each pixel in an image.  This is done to allow the user to visually discern

and interpret data.  Spatial filtering involves the use of mathematical algorithms to

either emphasize or de-emphasize brightness.  Ratios are computed by taking the

digital numbers for a given frequency band and dividing them by the values of

another band.  Manipulation of the ratios can highlight certain image qualities.

3.1.6  Remote Sensing and Vegetation Indices

Vegetation indices (VI) are one image enhancement technique designed to provide

valuable information about the density and greenness of vegetation and

simultaneously minimize the effects of soil background brightness and atmospheric

noise.  The index one uses depends on one’s image processing needs.  The choice

requires an understanding of the problem at hand and depends on whether the user

wants to retain the effect of background soil or remove it (Eastman, 1996; Mather,

1999).

The most commonly used vegetation index is the normalized difference vegetation

index (NDVI).  NDVI is calculated from the reflectance of red and NIR radiation

(Yoder and Waring, 1994).
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The NDVI works as a vegetation index on the following principles:  As discussed

earlier, chlorophyll absorbs red and blue wavelengths for use in photosynthesis.  NIR

wavelengths are reflected by the leaves at an amount relative to the air/cell interface



56

area in the leaf tissue.  Thus, the amount of chlorophyll in the leaves determines

the levels of red light reflection and the water level in the plant tissue determines the

amount of NIR wavelength reflection.  If the plant is healthy and contains high

quantities of chlorophyll, the red light reflectance will be low and the NIR reflection

will be at a normal level.  Thus, the difference between the two reflections will be

quite high.  On the other hand, if the plant is unhealthy, it will have low levels of

chlorophyll, hence high red light reflectance, and low moisture content, consequently

higher NIR wavelength reflection (Carter, 1993).  However, the NIR reflectance

increase will not be as substantial as the red light reflectance and thus the difference

between their reflectances will be low and often negative.

NDVI has been related to the amount of green leaf biomass by Tucker (1979) as

evidence of its general relation to vegetation biomass variations.  Spanner et al.

(1990) also related it to leaf area index (LAI).  The NDVI has been used to study

global vegetation using bands one and two of the NOAA AVHRR.  For example,

Justice et al., (1985) used the NDVI in a study of vegetation patterns on a continental

scale.

Another group of vegetation indices is distance-based VIs, which are essentially based

on the perpendicular vegetation index (PVI) suggested by Richardson and Wiegand

(1977).  The main objective of these VIs is to cancel the effect of soil brightness to

generate an image that only highlights the vegetation signal.  This effect is

particularly important in arid and semi-arid lands where vegetation is sparse.  The

procedure is based on the soil line concept.  The soil line is obtained through linear

regression of the NIR band against the red band for a sample of bare soil pixels.  In

analysis of the image data, pixels falling near to the soil line are assumed soils while

those far away are assumed to be vegetation (Eastman, 1996; Verbyla, 1995).  It is
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important to remember that in order to do any significant computations with

VIs, both visible and NIR bands need to be obtained.

3.1.6.1 Principal Components Analysis

Adjacent bands in a multispectral image are generally correlated.  Multi band

visible/NIR images of vegetated areas will show negative correlation between the

NIR and visible red bands and positive correlation among the visible bands because

the spectral characteristics of vegetation.  The presence of these correlations among

the bands of a multispectral image implies that there is a redundancy in the data

(Mather, 1999).  Principle component analysis is a technique to identify this

redundancy.

In order to describe the process of a principal components analysis (PCA), consider

the following simplification.  If two variables are perfectly correlated, then

measurements on x and y will plot as a straight line sloping upwards to the right (Fig.

3.5).  Since the positions of the points shown along line AB occupy only one

dimension, they could be represented equally well by using the line AB as a single

axis.  Even if x and y are not perfectly correlated there may be a dominant direction of

scatter or variability, such as that shown in Figure 3.6.  If this dominant direction of

variability (AB) is chosen as the major axis then a second minor axis, (CD) could be

drawn at right angles to it (Fig. 3.6) (Mather, 1999).

A plot using the axes AB and CD rather than the conventional axes x and y might in

some cases, prove more revealing of the structures that are present within the data.

This example shows that we must draw a close distinction between the number of

spectral bands (variables) in the image data set and the intrinsic dimensionality of that

data set.
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X

Y

Figure 3.5:  Plot of two variables x and y which are perfectly correlated (adapted from
Mather, 1999).

X

Y

Figure 3.6:  The two variables x and y show a high positive correlation (adapted from
Mather, 1999).

In both of the above examples, the use of the single axis AB rather than the axes x and

y accomplishes two aims:

1. a reduction in the size of the data set, and

A

B

C

D
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2. the information conveyed by the coordinates on AB is greater than the

information conveyed by the measurements on either the x or y axes

individually (Mather, 1999).

Multispectral image data sets generally have dimensionality that is less than the

number of spectral bands.  The purpose of PCA is to define the number of dimensions

that are present in the data set and to fix the coefficients that specify the positions of

the set of axes that point in the directions of greatest variability in the data (such as

the AB and CD axes in Figure 3.6).  A principal components transform of a

multispectral image might therefore be expected to perform the following operations:

• define the dimensionality of the data set, and

• identify the principal axes of variability within the data (Mather, 1999).

These properties allow for relationships between different groups of pixels,

representing different land cover types, to become clearer if they are viewed in the

principal axis reference system rather than in terms of the original spectral bands

(Mather, 1999).

3.1.7  Image Classification

Image classification is a process in which all the pixels in an image that have similar

spectral signatures are identified (Lillesand and Kiefer, 1994).  Specifically, it is the

process of grouping pixels that have similar spectral values.  Each group of similar

pixels is called a spectral class, which is assumed to correspond to a cover type class

such as wetland or production crop types.  The purpose of classification operations is

to replace visual analysis of the image data with quantitative techniques for

automating the identification of features within a scene (Eastman, 1996).
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The magnitude of the reflected or emitted energy measured in each waveband

for a single pixel is considered to be related to the characteristics of the material

forming the surface cover over the ground area corresponding to that pixel (Mather,

1990).  The overall objective of image classification is to automatically categorize all

the pixels in an image into land cover classes or themes (Lillesand & Kiefer, 1987).

However, in reality there are always complicating factors, which occur due to:

• the effects of interactions between electromagnetic energy and the

components of the atmosphere,

• the effects of the geometry of the imaging system, particularly when

compared with topography and

• the assumptions underlying the statistical techniques employed in the

classification process (Mather, 1990).

The detection of spectral signatures of land cover classes is the basis for the majority

of image classification.  The success of classification depends on two factors:

1. the presence of distinctive signatures for the land cover classes of interest

in the band set being used, and

2. the ability to reliably distinguish these signatures from other spectral

response patterns that may be present (Eastman, 1996).

There are two general approaches to image classification: supervised and

unsupervised.  They differ in how the classification is performed.  For instance,

supervised classification involves detecting already known specific types of land

cover, while unsupervised classification is where the analyst attempts to define all
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categories existing in the image (Eastman, 1996).  The type of classification

used depends on whether spectral response pattern data is available to the analyst.

3.1.7.1 Unsupervised Classification

The first step in a histogram-based procedure is to generate a histogram showing the

number of pixels within each digital number class (Verbyla, 1995).  Figure 3.7, shows

an example of a hypothetical NIR histogram from a region with water, broad-leafed

shrubs, coniferous trees and rock outcrops.

Figure 3.7:  Histogram from near-infrared digital numbers from a hypothetical image.

(Verbyla, 1995)

The histogram from pixels of a uniform cover type is often bell shaped.  Histogram-

based unsupervised classification relies on this bell-shaped assumption and follows a

series of rules to delineate spectral classes (Verbyla, 1995).  The procedure first

determines peaks within the histogram throughout the range of image digital values,

where, each peak in the histogram corresponds to a spectral class.  For example, the

histogram in Figure 3.7, has four distinct peaks (at approximately 20, 95, 150, and

F
R
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Y

              Hypothetical near-infrared numbers
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175), thus four spectral classes will be delineated.  The next step is to determine

the boundaries of each class.

One simple way of doing this is to assume that the boundaries between spectral

classes will be half the distance between class peaks (Verbyla, 1995).  The boundaries

for Figure 3.7, will be, 60, 125 and 162.5 (Table 3.1).

Table 3.1:  Classification thresholds based on histogram peaks (modified from
Verbyla, 1995)

Spectral Class Range of Digital Images Assigned Color
1 Less than 60 Blue
2 61 through 125 Dark green
3 126 through 162 Yellow green
4 Greater than 162 Brown

The final step is to classify the original image based on these classification rules.

Each pixel would be assigned to a class according to which range it falls into.  For

example, if a pixel has a value of 140, it would be assigned to class three and assigned

the color ‘yellow green.’  Histogram-based unsupervised classification can be applied

to multispectral images.  For example, with a two-band image, the peaks in the

histogram would be similar to the peaks of hills (two-dimension peaks).  With seven

spectral bands, there would be peaks in seven dimensions, where the spectral distance

could be calculated mathematically (Verbyla, 1995).

3.1.7.2 Supervised Classification

The basic strategy in supervised classification is to sample areas of known cover types

to determine representative spectral values of each cover type.  The sample areas used

are referred to as training areas and their representative values are called spectral

signatures (Verbyla, 1995).  This method of classification is regarded as being more

accurate than unsupervised methods.
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To explain this process, consider five bands of data from a Landsat image.

Figure 3.8; shows the location of a single line of the data collected over a landscape of

several land types.  Typical digital numbers (DNs) over six land cover types are

shown.  The vertical bars indicate the relative intensities in each spectral band;

therefore, the histograms represent a coarse description of the spectral response

patterns of the various terrain features along the scan line.  If these spectral patterns

are sufficiently distinct for each feature type, they may form the basis for image

classification (Lillesand & Kiefer, 1987; Mather, 1999).

Figure 3.8:  Selected Landsat measurements made along one scan line (Lillesand &
Kiefer, 1987).

There are three basic steps involved in a typical supervised classification procedure

(Fig. 3.9).  In the training stage (1), the analyst identifies representative training areas

and develops a numerical description of the spectral attributes of each land cover type

of interest in the scene.
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Figure 3.9:  Basic steps in supervised classification (Lillesand & Kiefer, 1987).

The classification stage (2) consists of categorizing each pixel in the image data set,

into the land cover class it most closely resembles.  If the pixel is insufficiently

similar to any training data set, it is usually labeled as ‘unknown.’  The category label

of each pixel is then recorded in the corresponding cell of an interpreted data set.  The

final step (3) is the output stage where the results are presented.  This is done in

various ways such as thematic maps, tables of statistics and digitally for the inclusion

into GIS (Lillesand & Kiefer, 1987).

3.1.8  Acquiring Remote Sensing Data

3.1.8.1 Sensors

Remote sensors are grouped according to the number of bands and the frequency

range of those bands.  Categories of RS sensors include panchromatic, multispectral,

and hyperspectral.

Panchromatic sensors cover a single wide band of wavelengths in the visible and/or

infrared spectrum.  An example of a sensor of this type is a black and white camera.

Multispectral sensors are capable of covering two or more spectral bands
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simultaneously.  Hyperspectral sensors cover bands narrower than multispectral

sensors; often several hundred bands are collected at the same time.  Hyperspectral

sensors offer a much greater spectral resolution than sensors covering wider bands;

however, image size and subsequent data storage requirements can be large.

With recent developments in digital photography, high-resolution cameras can

provide a true alternative to researchers (Ries et al., 2003).  High-resolution cameras

can now be obtained in ever-smaller packages, reducing the overall volume and

weight of the cameras and increasing the practicalility of their applications in UAVs.

Additionally, as popularity, sales and technology mature, the cost of these

technologies will drop fueling their use in unconventional applications.  Blimps,

balloons, kites, model airplanes, and helicopters have been used before by scientists

as unmanned platforms for photographic and video cameras (Burkert et al., 1996;

Palacio-Prieto and López-Blanco, 1994; Walker and De Vore, 1995; Ries et al.,

2003).

3.1.8.2 RS Platforms

3.1.8.2.1 Aircraft

From the advent of powered flight, airplanes have served as RS platform, carrying the

first camera into the air.  Aircraft have the advantage as a platforms for RS of being

able to fly at relatively low altitudes (<1524m or 5000ft) allowing sub-meter sensor

spatial resolution.  Additionally, aircraft can change their schedule to avoid weather

problems such as clouds, which may block a passive sensor's view of the ground.

Timing changes to adjust for illumination from the sun, the location of the area to be

visited, and additional revisits to the location can be made.  Sensor maintenance,

repair and configuration changes to the aircraft platforms can be made on the ground.
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However, the low altitude flown by aircraft narrows the field of view of the

sensor requiring many passes to cover a large area.  Time to deliver data to the user is

delayed due to the necessity of returning the aircraft to the airport before transferring

the raw image data to the data provider's facility for preprocessing.  Furthermore,

costs of hiring pilot and aircraft can be high.

3.1.8.2.2 Satellite

Several satellite systems are currently in operations that collect imagery, which is

subsequently distributed to the general public.  Each type of satellite data offers

specific characteristics that make them more or less appropriate for a particular

application.  Satellite platforms provide wide fields of view for the sensor and offer

regular and systematic re-visit.  However, resolution is limited due to the satellite's

fixed altitude and orbital flight path.  Satellites do not have operational boundaries,

which give them global coverage, but they require expensive ground support

facilities.  Data from the following satellite-based RS platforms are available to the

general public.

• Landsat Thematic Mapper (TM),

• SPOT (Syste’me Pour L’Oservation de la Terre) which is a system operated

and developed by the French Centre National d'Etudes Spatiales (CNES),

• NOAA-AVHRR (Advanced Very High Resolution Radiometer), operated by

the U.S. National Geographic Oceanic and Atmospheric Administration

(NOAA) (Lillesand & Kiefer, 1987; Eastwood et al., 1998)

There are several limitations to satellite collection techniques.  The quality and

resolution of the images can be inadequate for accurate diagnostics (Cochran, 2000).
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Image quality of all satellite platforms is affected by adverse weather conditions

such as cloud cover or a hazy atmosphere.  Moreover, although re-visit is systematic,

satellites are only in position to collect images every few days, so timing is an

additional problem.  Many commercial satellite systems such as LandSat and SPOT

provide insufficient resolution and the revisit time is too long for many agricultural

applications.

3.1.8.2.3 Terrestrial

Terrestrial RS systems are ground-based sensor systems.  Research has been done

using remote sensors attached to booms, hoisted above the crop canopy from the

ground.  Images collected from such a close distance have resolutions that are much

greater than images from aircraft or satellites; however it is more difficult to produce

images of larger areas.

3.1.9  Remote Sensing in Precision Agriculture

RS is one potential component of a larger integrated technology known as Precision

Agriculture.  Before RS becomes a widely used tool for everyday farmers, the

economic benefits of RS need to be demonstrated.  One way of achieving this goal is

to reduce the costs involved in the collection of RS imagery.  Currently, RS is an

expensive endeavor.  Satellite companies will deliver NDVI maps for approximately

$0.47 per acre, while commercial aerial images tend to be more expensive at

approximately $0.75¢ per acre (http://www.amesremote.com).  However, images

cover vast areas, dramatically increasing costs.  In addition, it is not guaranteed that

the area of interest will be located entirely on one image.  Due these concerns, few

farmers obtain RS images.  Development of inexpensive platforms and image

capturing systems will help drive the use of RS in agriculture.  Unmanned Aerial
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Vehicle (UAV) platforms are one option that could help drive adoption of RS

imagery.

In the last decades, Dovis et al. (2001), reported that governmental and private

organizations increased their demand of earth observation data defining a new

research and commercial trend.  This was highlighted at the 2001 Fifth Framework

Program of the European Union (http://europa.eu.int), which addressed the need for

enhancement of RS systems, as well as the development of new ones.
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3.2 Objectives

The goal of this part of the project was to create a cost effective camera imaging

system to capture RS imagery that would be valuable to a wide range of users and

suitable for use in a UAV platform.  This project was accomplished through the

implementation of the following objectives:

1. Identification imaging hardware alternatives.

2. Evaluation of the alternatives through testing.

3. Selection of the best alternative.

4. Demonstration of the quality of image obtainable.

5. Testing of additional Equipment for UAV platform.

The design of the remote sensing equipment was closely linked to the design of the

UAV (Chapter 2), as sizes and weights of the imaging equipment affected UAV

design.  The ultimate imaging capturing system would provide high resolution,

georeferenced, hyperspectral images from a small light weight package.  In addition,

it would be available at a low cost.  Unfortunately, systems of this nature are not

available and thus compromises between cost, size and image quality were evaluated.
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3.3  Methods and Equipment

Three different imaging equipment options were explored in the pursuit of the desired

imaging system: specialized multispectral cameras, single board cameras with

wireless video transmitters, and digital still cameras.  All of these systems were

explored in the context of the project’s goals and constraints.

3.3.1  Multispectral Sensors.

At the outset, multispectral camera were explored as imaging devices (Fig. 3.10).

These image capturing systems are designed specifically for agricultural remote

sensing.

Figure 3.10: Multispectral camera initially explored for integration into the platform.

Unfortunately, the commercially available multispectral cameras are relatively heavy

and expensive.  The goal to develop an inexpensive platform, in addition to the weight

restrictions of the imaging sensors, made the use of these cameras impractical.  Thus,

multispectral cameras were discarded as a viable alternative in a low cost system.
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3.3.2  Single Board Camera System.

A small single board camera and wireless video transmitter system were tested in the

UAV (Fig. 3.11).  This system consisted of a board camera from Edmond Optics®

(Barrington, NJ) and a wireless video transmitter from Wireless Video Cameras

L.L.C. (Rancho Santa Margarita, California).

3.3.2.1 Board Camera

The board camera (Table 3.2) was extremely small and light allowing easy

incorporation into the imaging platform.

Table 3.2:  Board Camera specifications.

Signal Format NTSC, YC Min. Sensitivity
(without  lens)

3 lux

Interline Transfer CCD 1/4" format S/N Ratio >48 dB
Pixels (H x V) 768 x 494 Electronic Shutter

Speed
1/60 -
1/10,000
sec.

Pixel Size (H x V) 4.75 x 5.55µm Gamma 0.6 / 1.0
selectable

Horizontal Resolution 480 TV Lines Auto Gain Control On 20 dB /
Off Select

Sensing Area (H x V) 3.6 x 2.7mm Operating Temperature -10°C to
60°C

Video Output Via 10" wire leads Power Requirement 12V DC,
130 mA

Lens Mount CS-Mount or M13
x 1mm

Dimensions (W x H x
L)

42 x 42 x
30mm

Back Flange Distance 12.5mm (CS-
Mount)

Weight 42g

Power was supplied to the camera by regulating power from the main flight battery

pack.  Due to the camera’s small size (42 x 42 x 30mm), placement within the

fuselage was easy.  During operation, the camera was wrapped within a protective

foam covering to prevent damage.  The board camera output was an NTSC signal,

with 480 TV lines of resolution.
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3.3.2.2 Microwave Transmitter

The transmitter was originally marketed for use in RC airplanes; its transmission

range of 2.4km or 1.5miles exceeded the normal operational range of radio control

transmitters.  For system integration, the transmitter was removed from its protective

casing to reduce the weight and size of original transmitter package.  Velcro was

adhered to the underside of the transmitter and to the floor of the platform to enable

the position of the transmitter to be altered as needed and to restrain the transmitter

during flight.

Specifications of this transmitter can be seen in Table 3.3, and further detail is given

in section (3.3.4.3).  The transmitter was powered by regulating power from the main

flight battery pack of the platform.  The camera was connected to the transmitter

through RCA jacks.

Table 3.3:  Specifications for the microwave video transmitter.

Range: 1.45 Mile
Power Output: 100mW
Modulation: FM
Frequency: 2 channels, 2.434GHz & 2.411GHz
Transmitter Antenna: 21" end feed dipole, omni directional
Receiver Antenna: Built-in patch
Transmitter Dimensions: 2.5" (d) x 3.0" (w) x 1.0" (h)
Video Bandwidth: 6MHz
Video Format: NTSC or PAL
TV Lines Max: 525
Connectors: RCA jacks - yellow video, red right audio, white left

audio
Mounting: Aircraft grade Velcro
Power Required - Transmitter: 12vdc @ 240mA (without camera)
Power Required - Receiver: 12vdc @ 360mA
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Figure 3.11:  Board camera and wireless video transmitter, tested in the UAV
platform

3.3.2.3 Board Camera System Operation

The board camera system was tested in the UAV on several missions.  Live video

streams were transmitted from the platform to the ground station via the on-board

video transmitter discussed above (Fig. 3.12).

Figure 3.12: Ground Station, receiving live video stream transmitted from UAV.

At the ground station, the live video feed was received through a receiver supplied

with the video transmitter and recorded onto VHS video cassettes.  Thus, the system
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was capable of displaying a real time video feed to the operators.  Following the

mission, the analog VHS video was digitized through a digital camcorder.  Once in

digital form, still images were extracted from the digital video.

3.3.3  Digital Still Cameras

Next, digital still camera systems were tested.  Integration of this option was more

complicated than the board camera system.  The cameras were physically bigger and

heavier than the board cameras placing increased space and payload demands on the

platform.  Additionally, the digital still cameras required a method of triggering the

shutter to capture images at the correct time.  The system transmitted live images back

to the ground station in the same manner as the board cameras.  However, the system

was able to capture high resolution still images onboard the platform at high shutter

speeds.

3.3.3.1 Camera Descriptions

A search was conducted of current cameras fulfilling cost, weight, and resolution

requirements.  Two digital cameras were evaluated for possible integration into the

platform: a Nikon Coolpix 800 (Fig. 3.14) and a Canon PowerShot A60 (Fig. 3.15).

Both cameras had the capability to include additional filters, and had manual control

of the image capturing process.
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Figure 3.13:  Nikon Coolpix 800 digital camera with additional filters.

Figure 3.14:  Canon PowerShot A60 Digital Camera with additional filters.

The digital still cameras offered NTSC video output of the LCD screen image.  This

output was passed through the wireless video transmitter system as described in

section 3.3.2.2.  Both cameras stored captured images within the camera on compact

flash cards at a resolution of 2.1 mega-pixels (1600 _ 1200 pixels maximum image

size).  Camera operation in both cases was controlled via an additional onboard servo

that pressed the image capture button.
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The cameras were encased within protective boxes made from Lexan®.  The

servos used to trigger the camera were mounted to these protective cases.

Additionally, both cameras had the capacity to be supplied power from the onboard

battery pack.  Table 3.4 gives some additional specifications of the two cameras

evaluated, including weight and dimensions of the units.

Table 3.4.  Specifications of the Nikon and Canon Digital Cameras.

Nikon Coolpix 800
Specifications

Canon PowerShot A60
Specifications

CCD _ in CCD 1/2.7 in. CCD
Camera
effective pixels

2.11 million pixels 2.1 million pixels

Shutter Mechanical and charge coupled
electronic shutter

Mechanical and electronic

Exposure
Control

Programmed auto exposure
(AE), Manual exposure
compensation

Program AE, Shutter-priority
AE, Aperture-priority AE or
Manual exposure

Sensitivity ISO 100
Auto-ISO or ISO 100, 200 or
400 settings

AUTO/ISO 50/100/200/400
equivalent

Image
Recording

File Format TIFF RGB
(uncompressed) or JPEG (Exif
2.1); 24-bit RGB

Still images : JPEG (Exif 2.2)

Storage CompactFlash Type I card CompactFlash Type I card
Video Output NTSC standard for output to TV NTSC standard for output to

TV
Power Source 4 x alkaline, 1.2v NiCd or

NiMH or 1.5V FR-6 lithium AA
batteries, AC adapter (optional)

Four AA alkaline batteries
(included)  Four AA
rechargeable NiMH batteries
(optional)  AC Adapter Kit
ACK600 (optional)

Dimensions (W x H x D) 4.7 x 2.7 x 2.4
inches

101.0 x 64.0 x 31.5 mm (4.0 x
2.5 x 1.2 in.)
excluding protrusions

Weight Approx 9.5 oz. without batteries Approx. 7.6 oz. without
batteries

3.3.3.2 Digital Still Camera System Operation.

Both cameras offered a video output port allowing the transmission of the LCD screen

of the camera to the ground.  This transmitted live video feed enabled the operator to

frame and select the correct shot and monitor the camera operation while in flight.
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This framing was done by displaying the real-time video feed on a monitor at

the ground station.  This allowed the operator and ground crew to trigger the camera

at the appropriate time in order to capture the desired image.  The cameras were

triggered using a servo and a spare channel on the RC radio.  This channel controlled

the additional servo placed onboard the platform, and was situated to depress the

image capture button of the camera.

Images were stored on compact flash cards inserted into the cameras.  These cards

could then be downloaded directly to a computer upon retrieval of the platform.  In

addition, all transmissions to the ground station were recorded, allowing for the

capacity to extract images in the same manner as that of board cameras.

3.3.4  Additional Equipment for UAV platform.

Several other pieces of hardware were necessary for platform operation and data

collection: GPS receiver, On Screen Display (OSD), ground station equipment and

R/C controller.

3.3.4.1 Global Positioning System and On Screen Display.

A Swift B2 ™ GPS receiver with WAAS differential correction capabilities (Axiom

Navigation Inc., Anaheim, CA) was installed on the UAV to track platform position

for performance evaluation.  Communication with the GPS receiver is through an

RS232 interface.  An external antenna mounted on the upper side of the airframe

using Velcro give an unobstructed receiving path for the GPS signal.  The maximum

solution up-date rate of the GPS receiver was 1Hz, and the published accuracy was

7m horizontal with WAAS correction.  The system had a power usage of 150mA at

3.3V.
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Data from the GPS receiver were passed through an OSD (On Screen Display),

which overlaid GPS position information onto the transmitted image (Fig. 3.15).  The

combined data is then sent via the video transmitter to the ground station.

Figure 3.15:  GPS data superimposed on images sent to ground station.

3.3.4.2 Ground Station

The ground station was housed in the rear of a van.  The vehicle provided ample

equipment storage and transportation space, and was equipped with a power outlet.

The ground equipment was composed of wireless video receivers, TV/VCR, imaging

equipment, maintenance equipment, spare equipment and computers (Fig. 3.16).
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Figure 3.16:  Ground Station with power supplies, TV, receiver, and other equipment.

3.3.4.3 Telemetry System

Communication between the aircraft and the ground station was done via radio links

and transmitters.  These operate in analog mode to transmit video imagery from the

platform to the ground station, and control information from the ground station to the

platform.  Live image data were communicated from the aircraft to the ground station

via the wireless video link for framing purposes.  Flight control communications from

the ground station to the platform were sent via a Futaba ® (Schaumburg, IL) radio

controller.  Separate channels were used to control electronic servos for flight control

and to trigger the camera shutter.
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3.4 Results

3.4.1 Single Board Camera

The single board camera system explored was a very attractive option for several

reasons.  The cameras were light, inexpensive and relatively rugged.  In addition, they

allowed for simple integration into the platform.  However, the images exposed

several limiting drawbacks to the system.  First, the resolution of the board camera

was too low to obtain the desired quality images.  The highest resolution of a readily

available single board camera is 480 TV lines, which is insufficient to achieve the

desired spatial resolution and field of view.  Second, the camera optics caused severe

image distortion and intensity graduation from the center to outside of image (Fig.

3.17).

Figure 3.17:  Image captured from board camera system (approximate area of 2.5 ac).

Third, the motion of the UAV coupled with the relatively slow shutter speed of the

camera caused the image to be fuzzy.  Finally, the wireless video link was susceptible

to electromagnetic interference causing further image quality degradation.  This was

of concern due to the user relying on these transmitted images to obtain still images.
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The single board camera systems were therefore ruled out as a viable alternative

for UAV RS equipment.

3.4.2 Digital Still Camera

Digital still cameras provided good performance within the platform.  Images

collected with this RS platform (Fig. 3.18) showed that the system was capable of

obtaining clear, high resolution aerial images of agricultural fields.  This image shows

areas within a field that has been partially harvested; the image quality is good and

free from distortion.

Figure 3.18:  Image captured with Canon PowerShot A60 digital camera.

The digital cameras were capable of imaging areas of approximately 10 acres

(4.04 ha), which was achieved at a platform height of between 200 and 300m.  Table

3.5 gives area information vs. flight height for the Nikon and Canon cameras.

Table 3.5:  Flight heights to achieve required image area.
Flying Height above the ground (m) Scale Area(ac)
25 1:715 0.1
50 1:1428 0.4
100 1:2857 1.7
200 1:5714 6.9
300 1:8620 15.7
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A significant advantage of the digital cameras was the amount of flexibility

allowed to the user.  These cameras allowed the user to manually control many

camera settings such as aperture opening, shutter speed, and exposure control.

Adjustments to these parameters could be made for the ambient light conditions.  This

gave greater flexibility in the type of image captured.

The on-board data storage eliminated data quality degradation caused by the wireless

video link.  Therefore, the wireless video link was utilized only to help the ground

crew position the platform above the target and frame the photograph.  The video link

sent to the ground could be recorded as back-up data.

Initially, power consumption was a problem due to the automatic focusing of the

cameras.  This problem was eliminated by turning off the automatic focusing features

of the cameras and setting the focal distance to infinity.  Setting the shutter speed to

1/60s or faster insured that images were not blurred due to movement of the UAV.

The cameras provided ample pixel resolution to achieve desired image spatial

resolution; however, the desired field of view was not achieved.  As seen from the

above table, altitudes of greater than 200m are required to obtain images of greater

then 7ac (2.8 ha).  The desired field of view could be achieved by using a wide-angle

converter lens on the cameras and by flying the imaging platform higher as operator

skill increases.  Figure 3.19 illustrates an image captured with a wide angle converter

lens.  The image distortion increases towards the perimeter of the image.  This is due

to the "fisheye distortion" of wide angle lenses.
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Figure 3.19:  Digital still camera image with wide angle conversion lens.

Though digital cameras are heavier than board cameras, they are relatively

inexpensive.  Additionally this sector of technology is rapidly developing, and new

lightweight cameras with exceptional image resolution are becoming more cost

effective.

Some digital still cameras can also be used to obtain NIR images.  The CCD (charge-

coupled device) sensing elements used by most camera manufacturers are sensitive to

NIR light.  Some higher-quality cameras utilize filters to prevent NIR wavelengths

from entering the camera.  Other cameras rely on software compensation or increased

sensitivity to red, green, and blue information to eliminate NIR input.  On these

cameras, it is possible to obtain NIR images by placing optical filters that block

visible light in front of the lens.  Unfortunately, this capability could not be verified

with the test cameras and it was suspected that NIR filters were present within the

cameras.
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3.5 Discussion and Conclusion

The hardware most suitable for the remote sensing missions was the consumer digital

camera.  This was shown through testing each alternative in the platform.  High-end

multispectral cameras proved to be heavy, bulky and expensive.  These cameras did

not suit the low cost goals of the project.  Board cameras were a good low cost

alternative.  Their size and cost made these cameras desirable for use in the RS

platform; however, the image quality was not at the desired level.

Consumer digital cameras, proved to be the best alternative through testing.  The

cameras fell within the payload carrying capacity of the platform.  Additionally the

cameras provided good image quality at an affordable price.  The only point of

concern was the ability to obtain the desired field of view from the system.  This

aspect needs to be improved in order to make this technology more appealing.

The image capturing system developed in this project achieved its imaging and cost

goals.  The system was developed at low cost while still offering good resolution and

picture quality.  Unfortunately, the capacity of the imaging systems to detect NIR

wavelengths was not verified.

Although technologically advanced RS systems are not yet economically viable, there

is still a need for low cost aerial imagery for farmers.  Low cost digital cameras can

provide useful visible images to farmers and with the addition of NIR filters, may be

able to provide information about vegetation health.  Although the causes of plant

stress cannot be determined through these low cost alternatives, the existence of crop

stress can be predicted.  The causes of this stress can be later diagnosed through direct

crop scouting.  In addition to plant stress, farmers, through the unique vantage point

offered by the platform system, can examine management practices.  Areas of low
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plant density, skipped planting, missed fertilizer application, and under

irrigation can be easily determined.
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CHAPTER 4: OPERATIONAL TESTING OF UAV

PLATFORM

4.1 Introduction

Aerial crop scouting is one of many possible applications of UAVs in agriculture.

UAVs carrying RS equipment can provide a unique vantage point to farmers.  If

images were available from these alternate vantage points, the farmer could gain a

better understanding of farming practices, possible problem areas, or size of harvest

expected.  The opportunities for farmers to obtain aerial images is limited, but not due

to a lack of demand.

Additionally, low cost aerial imagery on demand has broad appeal.  Construction

sites, development planning, law enforcement, and naturalists (to name a few) all

require aerial images from time to time.  Images of construction sites can reveal

information about construction progress, layout, impact the construction will have on

its surroundings, and progress of construction.  The development of a low cost aerial

photography method would attract many interested parties.
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4.2 Objectives

The goal of this part of the project was to demonstrate and evaluate the operation of a

UAV-based image capturing system to be used by crop scouts, farmers, researchers,

or other interested parties.  This goal was met through the establishment and

completion of the following specific objectives:

1. Establish the set-up and operational procedures for the system before and after

flight.  This includes the selection of base site, preparation of equipment, and

retrieval of platform and data.

2. Apply the imaging system to a range of aerial photography applications and

evaluate its ability of the system to transmit imaging information and capture

the desired target image.

3. Examine the system’s image capturing ability and quality through imaging of

targets such as construction sites, research plots, livestock fields, and

agricultural fields.

4. Examine additional uses of the platform such as use in conjunction with GIS

packages, and use with NIR filters.

The fulfillment of these objectives would give a clear understanding of the system’s

capabilities as a low cost and convenient platform for aerial imaging.
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4.3 Methods and Procedures

4.3.1  Pre-flight Operational Procedures

Operational procedures were established during initial flight tests to aid in the

selection of base sites, the set-up of equipment, the operation of the equipment, and

the retrieval of both the platform and the images.

4.3.1.1 Base Station Site Selection

Assuming the target has been selected, the first step upon arrival at the site is to select

the base station site.  The base station site refers to the ground operational area of the

system, and combines the base station (transport vehicle and accompanying

equipment) and the take-off and landing areas of the UAV.  The base station site

should be thoughtfully selected with numerous factors determining the site’s position

and orientation with relation to the target area.  These factors include position of the

target or area of interest, hazardous obstacles in the target vicinity, surface conditions

in the area, wind direction, sun orientation, surrounding gradient and the availability

of an open clearing.  Selecting the base station site upon arrival at a new site takes a

few minutes and selection is based upon the amalgamation of factors.

• Position relative to target:  Effective platform operation required that the base

station be at a distance away from the target area (60-100m).  This location

allowed the pilot to operate the aircraft while keeping the target area in

peripheral vision.  Positioning the base site too close to the target forced the

pilot to look directly upward.  This body position is uncomfortable and

difficult to sustain.  In addition, it hinders the ability to position the aircraft

over the target, and limits the ability of the pilot to detect changes in

orientation and direction of the platform relative to the target position.
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In addition, the layout of the target can determine the position of the base site

relative to the target.  If the target is significantly longer in one direction

relative to another, positioning the base site in-line with the length of the target

area can be helpful.  This allows the pilot to operate the platform

longitudinally over the length of the target.  The pilot can thus make straight

passes over the length of the target while capturing images and reducing the

number of maneuvers required.

• Hazardous obstacles:  The base site was to be positioned away from obstacles

that may obstruct or threaten operation, interfere with the radio control or

transmission, or obstruct the pilot’s view of the aircraft.  Trees and other

obstacles threaten operation primarily during takeoff and landing.  At take-off

speed (9km/hr), the platform can achieve a climb rate of approximately

2.5m/s.  Higher climb rates can be achieved once airspeed increases.  This

suggests that the platform could clear a 20m obstacle if launched from 25m

away.  However, this distance should be doubled for additional safety.

Obstacles (such as trees) are far more threatening during landing as airspeeds

are much higher (17km/hr).  A distance of at least 50m from the base of a 20m

obstacle is required for landing.  Take-off and landing directions should be

established upon arrival at the site, thus the base station should be positioned

away from these areas.  The position of the target should not affect the take-

off and landing directions; these are more significantly influenced by

surrounding obstacles and the following factors.

• Surface conditions:  The surface conditions of the base site should be amiable

for belly landings of the aircraft.  Grassy areas were most suitable for belly

landing, and hard, wet, and rough areas should be avoided if possible.
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• Wind direction:  It is easier to fly the aircraft directly into the wind and

precisely over the target than to attempt to fly the aircraft over the target in a

crosswind.  Although operation in heavy winds (>16km/hr) is not foreseen or

advised, moderate winds can still hamper operation.  Additionally, to

maximize lift during take-off, the launch should be directly into the wind.

Moreover, if possible the landing direction should also be into the wind

allowing for a slower approach.

• Sun orientation:  An important factor in determining the base site is the

position of the sun.  The sun position should be at the pilots back with

reference to the desired target.  Flight between the pilot’s position and the sun

can cause the pilot to loose visual contact with the aircraft and hence place the

platform at risk.  Additionally, the base station contains monitors, which

become difficult to view under direct sunlight.  Consideration to the position

of the sun should be given when selecting the orientation and position of the

vehicle around the base site.

• Slope:  During take-off and landing, the slope of the site can make operation

challenging.  A flat area is most desirable but not very common.  Take-off is

assisted by a slope as the aircraft can be launched from a high point.

However, landings can be come hazardous (but not impossible) when

attempted on a site with a slope.

• Open clearings:  As suggested above, the most desirable base site is a flat open

area slightly removed from the target.  An open clearing of about 150_300ft is

ideal; however, this size can be reduced as operator skill increases.
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4.3.1.2 Equipment Set-up

Once the base station site was selected, the next step was to prepare the equipment for

the mission (Fig. 4.1).  It is important to note that a few tasks were completed prior to

arrival at the site.  These tasks primarily consisted of charging the battery packs and

radio controllers, but may include many other tasks depending on changes, alterations

or repairs that were made to the system.

• The aircraft fuselage and wing were retrieved from the van and placed clear of

the transport vehicle.  Toolboxes, imaging, and sensing equipment were also

retrieved from the vehicle.

• Base station equipment were retrieved from the vehicle and prepared.  This

included TV monitors and video receivers.  The TV monitor was setup in the

rear of the vehicle and connected to a video receiver placed on the roof of the

vehicle.  Both the TV and video receiver were powered through supplies

housed in the rear of the transport vehicles.

• Essential flight equipment were then unpacked from the vehicle and

toolboxes.  These include pre-charged battery packs, camera, radio transmitter,

and operational wiring.

• The equipment was then installed into the platform.  First, the battery pack

was installed, followed by the camera, and then the transmitting equipment.

The wiring was placed into the platform but was not connected.

• The power supply and battery charger were set-up in anticipation of re-

charging the battery pack after flight.
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• Power was supplied to the TV and video receiver, and the wiring inside

the platform was connected.  Reception of a clear transmitted signal to the

base station from the aircraft was verified, and the camera was tested to verify

operation.

• The wing was then attached to the airframe.  Radio communication between

the platform and the receiver was re-verified, and the control surfaces and

motor operation confirmed.

Figure 4.1:  Preparation of UAV for mission at the base station.

4.3.2 Launch and Recovery Procedures.

A typical flight lasted about 7-14 minutes and consisted of hand launching the

airplane, flying to an altitude of about 200m, making several passes over the target

area while performing the desired mission, landing the platform and extracting the

data.

The platform was hand launched into the wind by the helper, and then piloted away

from obstacles and over the target area.  The platform was held aloft and the helper

simply takes a few running steps and throws the platform into the air.  The platform is
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thrown at a slight upward angle.  The launch angle is approximately the angle

made by the length of ones hand, above the horizon at an arm’s length away (Fig.

4.2).  Full power is applied to the motor prior to the launch.

Figure 4.2:  Launch trajectory angle

Upon retrieval of the platform, the camera was exhumed from the fuselage.  Images

from the memory storage card were then downloaded onto a portable computer.  The

battery was then removed from the fuselage and connected to a battery charger.  A

spare battery could then be used to repeat the set-up and launch procedures.

4.3.3 Operational testing

The platform was put through a series of operational tests, with every test increasing

in operational and technical complexity.

4.3.3.1 Initial System testing

Initial testing was conducted at one of the University of Kentucky’s research farms.

The goal was to set up the ground station, launch the platform, capture aerial images

of a target, and retrieve the platform and the images.

The platform operation and image capture was successful.  However, once specific

targets were desired for image capture, problems with the platform operation were

discovered.  Difficulty was experienced in capturing the target within the image.  This

difficulty was due to the manner in which the image capturing was performed.

Line of Sight
(Horizon)

Launch
Line

Launch Angle

Hand at arms length
from eye
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Initially, the system configuration was such that the pilot was responsible for the

control of the platform and the triggering of the imaging device.  The helper launched

the platform and signaled the pilot to capture the image at the correct time by

watching the live video feedback from the platform.  This method, while successful in

obtaining images, had a few fundamental flaws.  Delays between the helper viewing

the target in the viewfinder, signaling the pilot to trigger the camera, and then the pilot

physically triggering the camera were too great.  The delay in triggering the camera,

along with the normal movement of the platform, caused the target to move out of the

center of the image and thus the desired coverage was not obtained.  Most of the

images obtained contained 70-90% of the desired target as seen in an image of a

construction area (Fig. 4.3).

Figure 4.3: Missed target due to lag time in image capturing.

This method did not facilitate timely imaging of the target area.  Numerous missions

were performed to obtain the desired image of the target area.

The solution to the image capture delay problem was to modify the controller by

adding an external button.  This button was operated by the helper watching the live

video feed from the platform.  The helper could then capture images as seen in real
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time through the data link.  Thus the responsibilities of the platform crew

altered.  The pilot maneuvered and positioned the platform over the target area, while

the helper triggered the camera.  This had numerous advantages, including:

• Eliminating the delay in capturing the image,

• Enabling operation at lower altitudes, while capturing required target,

• Improving picture quality and resolution.

The helper’s responsibilities were thus to launch the aircraft, trigger the camera at the

appropriate time, and aid in the positioning the platform over the target area.  This

method expedited the process and enabled much quicker imaging of the site.

Typically, using the old method, two or more flights over the target were needed to

ensure the target was sufficiently captured.  Now numerous images could be obtained

in one flight.

4.3.3.2 Aerial Photography Applications

Aerial photography is a low cost form of remote sensing, as it usually implies visible

light images and little or no post processing.  The UAV system was utilized for

numerous applications at the University of Kentucky to collect visible aerial images.

In one example, researchers requested aerial images of test plot area, to verify that the

layout and construction were correct.  Plots constructed for the experiment were not

on existing aerial images of the area.  The site proved an ideal subject for testing of

the system and in establishing a procedure for future aerial surveys.  The desired

result was to capture high quality aerial images of the construction site using the aerial

platform.  Numerous passes would be made over the target area while capturing

images.  This would ensure numerous good quality images of the target.
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Aerial images of a rainfall simulation facility were also collected in a similar

application.  The method used was the same; however, in this application, the goal

was to arrive at the site and make one launch over the desired target in order to

capture the required image.  Numerous passes were made over the target area within

the single launch.  This demonstration hoped to show that many images could be

obtained with ample resolution and image quality, which required a stable platform.

It should be noted that in both of these examples, the image area was small enough to

be captured in a single frame of the RS system.  Thus, the ability of the system to

capture a specific target was under scrutiny and not the ability to image a large area.

4.3.3.3 Site Categorization and Mapping of a Large Area with GIS

Through creation of ample control points, mosaics of large target areas become

possible.  One role of UAVs may be in updating conventional aerial photography over

sites which may have changed.  Raw aerial images are helpful, but aerial images can

become especially useful once the images have been rectified and placed within a

geographic information system (GIS).  Once the new image of the site has been

obtained they can be superimposed onto the existing maps to give a more up-to-date

coverage of the area.

An aerial survey was performed on a cattle pasture at the University of Kentucky’s

Woodford county farm.  Researchers required current aerial photography shots of the

pasture to be added to an existing Geographic Information System (GIS) database of

the site.  In order to complete image georeferencing, ground control points needed to

be established in advance.  Control points were established along field boundaries,

tree lines, lone trees, water troughs, and river crossings.  The idea was to create many

evenly spaced control points throughout the area at locations which would be easily
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identifiable.  These control points were then mapped using a GPS, and imported

into the GIS software (Fig. 4.4).  The uniform squares indicate experimental fertilizer

and herbicide applications; the “round” shapes are the positions of the trees; the long

thin shape in the middle of the pasture is a stream.  Once within the GIS software, the

images can be used to analyze roads, streams, field boundaries, buildings,

management practices, and land use classifications.  The images can also be used as a

base to superimpose and layout further plans and projects.

Figure 4.4: Control Point information collected at the site.

4.3.3.4 Agricultural Monitoring of Nitrogen with use of GIS

In a second case, images of a research plot concerning studies of subsurface drip

irrigation and variable rate nitrogen application were collected.  In the study, varying

rates of nitrogen and subsurface drip irrigation were applied to corn, tobacco and

alfalfa in the different plots.  The goal for the UAV imaging system was first to

distinguish between the crop types, and then to analyze the ability to discriminate

nitrogen application rates within the field through visible aerial images of the fields.

GIS databases of the actual applied nitrogen, and crop types were available.
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The total area of the nitrogen plots was greater than could be captured with a

single image from the RS system.  On sites too large to obtain one image covering the

entire site, it was possible to combine numerous smaller images into a composite

mosaic image of the site by georeferencing each image.  Each digital image was

rectified within the GIS package using the procedure outlined in the previous section.

As each image requires reference points, high concentrations of reference points are

needed throughout the target area.  A minimum of three points were required at the

extremities of each image in order to georeference it; however, more control points

increased georeferencing accuracy.
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4.4 Results

4.4.1  Pre-Flight procedures

The platform was relatively easy to set-up, operate, and retrieve.  This facilitated

timely operation.  Table 4.1 gives a detailed estimation of the time taken to complete

the required pre-flight tasks.  The maximum time taken in setting up the ground

station, setting up the equipment, operating the platform and retrieving the data is less

than one hour.  This enables the platform to be rapidly deployed over unprepared

terrain to obtain aerial imagery.

Table 4.1:  Approximates times to complete mission tasks.

Task Time (minutes)
Site selection 2-10
Set up
    Base Station 3-5
    Aircraft 7-10
Testing
    Signal quality 1-2
    Flight controls 1
Final preparation 1
Flight
    Launchand accent 1-3
    Mission 5-9
    Landing 1-2
Retrieval
    Aircraft 1-5
    Data from aircraft 1-5
TOTAL <60

Table 4.2 gives a detailed explanation of the tasks performed on the platform during

the flight.  Different tasks are performed throughout the various stages of the flight

profile.
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Table 4.2:  Operational tasks during distinct mission functions.

Tasks Takeoff Ascent Cruise Mission Cruise Decent Landing
Monitoring _ _ _ _ _ _ _
Positioning for liftoff _
Avoidance of Objects _ _ _ _
Ground Turbulence _ _ _ _
Ascent to Target _ _
Attaining Altitude _ _ _
Information Gathering _ _ _ _ _ _ _
Active Sensing _ _ _ _ _ _ _
Adaptive flight re-
planning

_ _ _ _ _

Identify landing site _ _
Positioning for landing _ _
Retrieval _

4.4.2  Operational Testing

4.4.2.1 Aerial Photography Applications

Aerial photography tests with the platform resulted in good quality images of the

target area.  The platform was able to make numerous passes over the target area in

each flight capturing images.  Additional flights could be made to recapture images of

the target if the first flight was unsuccessful.  As can be seen, the platform was

capable of capturing high quality and distortion free images (Fig.4.5).

Figure 4.5:  Subsurface sediment plots at the University of Kentucky.
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In the subsequent test, the platform was used to capture images of the rainfall

simulation plots (Fig 4.6).  Numerous images were obtained of the research area

during one flight.

Figure 4.6: Rainfall simulation plots.

4.4.2.2 Site mapping with GIS

High quality coverage cannot always be achieved by mosaicing multiple images.

Failure to obtain complete image coverage of the target leaves blank areas in the

mosaic (Fig. 4.7).  In addition, the image quality is affected by non-uniformity of

irradiance and camera settings.  In figure 4.7, the camera settings were not uniform;

hence, the mosaic image quality was poor.  In addition, the images were collected on

different days and at different times.  Thus, the sun’s illumination of the target area

was different and its position was not the identical.
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Figure 4.7:  Mosaic of cow pasture created in a GIS software package.

The purpose of the images obtained by this platform is not to equal the quality of a

geo-referenced satellite or aerial images; however, as discussed earlier, there is

tremendous management value in these aerial images.  An aerial view of a field can

reveal problems and patterns that cannot be easily seen from the ground.  From these

aerial images, informed management decisions can be made.

4.4.2.3 Agricultural Monitoring of Nitrogen with GIS

At the nitrogen/irrigation site, full coverage was obtained of the target area, enabling

the generation of a complete mosaic of the target area (Fig. 4.9).  From the mosaic

and individual images (Fig. 4.8), researchers were able to clearly distinguish the

different nitrogen application rates in conjunction with different irrigation treatments.

In addition, crop type was easily identifiable.
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Figure 4.8:  Nitrogen Application Plots.

The differing nitrogen application was especially prevalent at low application rates,

leading to the possibility of the system’s usefulness at diagnosing inadequate nitrogen

application.  The nitrogen application rates of 0, 40, and 80lb/acre were clearly visible

(Fig. 4.9), however application rates of 105lb/acre and above showed little variation.

Figure 4.9:  Mosaic image of Nitrogen Application plots.

This may give an early season indication of where the nitrogen response curve begins

to flatten out based on observation of biomass color.  The original GIS data were then
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superimposed onto the mosaic image (Fig. 4.10), lining up near perfectly and

verifying what was seen visually.

Figure 4.10:  Mosaic of nitrogen application plots with GIS data superimposed.
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CHAPTER 5: CONCLUSIONS

The UAV-based RS system developed in this project was used to successfully collect

visible aerial images.  The design produced a UAV capable of stable and reliable

flight.  The platform displayed inherently stable flight due to the dihedral wings, and

was not hampered by vibration.  Operation of the platform was simplified due to

utilizing only two control surfaces, and through the reduction of stall speed to 17km/h

(or 10.5mph).  The electric motor provided sufficient thrust to carry a 1lb (or 0.45kg)

payload, and was reliably stopped and started in flight.

The platform was capable of climb rates of 3.5 m/s (or 11.4ft/s), offering good

potential obstacle avoidance, and allowing operation in relatively confined locations.

The platform was suitably robust, allowing landings on unprepared terrain (such as in

cornfields), while maintaining the integrity of the airframe.  In the event of serious

accident, expensive equipment was generally undamaged and reusable.  The platform

structure absorbed the majority of the impact, and offered protection to the internal

equipment.

Modularization of the platform allowed it to be disassembled, transported and stored,

and then reassembled from the rear of a conventional full-sized pickup truck or

similar vehicle.  Construction was kept simple, with only basic tools needed.

Materials and components were common and readily available at hobby shops.

Preparation time after arrival at the site was approximately 10 minutes, allowing for

quick deployment of the system.

The system was capable of imaging an area of ±12ac (or 48562.47m2) in a 7-minute

flight, capturing approximately 50 images during the flight.  The maximum

operational range from the pilot was approximately 300m, limited by the pilot not the
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platform.  The operational altitude was approximately 220m, offering an image

area of 7ac.

The weight of each component of the UAV system is summarized in Table 5.1.  The

total weight of the platform was 3.4kg (or 7.5lbs) with the fuselage and battery being

the majority of the weight.  The imaging and video transmitting equipment comprised

the largest proportion of the systems cost.  A typical flight lasted 7-14 minutes, and

consisted of launching the airplane, ascending to the desired altitude, making several

passes over the target while collecting data, landing, and extracting the data.  If the

data were not satisfactory, the system was re-prepared and the process repeated.  With

the current system, two people were required to operate the system - one to fly the

aircraft and another to launch the plane and trigger the camera shutter via remote

switch through the flight radio.

The UAV has proven to be very rugged.  Damage caused by operator error during

landing (the most perilous point in the mission) was usually minor and repairable in

less than 30 minutes.  Even during major crashes, the camera, servos, radio receiver,

and motors rarely were damaged.  Extensive damage from a bad crash was repairable

overnight or during the following day, but presumably, less than the 15-25 hours

required to build a new plane.

Table 5.1:  UAV, RS system component weight and cost.

Component Weight Price
Plane (Kit) 1950g  (4.29lb) $70.00
Motor and Prop (Kit) 267.4g  (0.589lb) $140.00
Motor Controller 51.5g  (0.114lb) $97.00
Battery 737.4g  (1.626lb) $100.00
Radio (Including: Servos and
Receiver)

58g  (0.128lb) $125.00

Camera 268.6g  (0.636lb) $175.00
Video Transmitter 66.9g  (0.147lb) $249.00
Total 3399.8g  (7.5lb) $956.00
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The system easily met cost constraints imposed by the project with a total

platform cost of $956.  The images collected with the system met resolution

constraints, and showed that the system was capable of obtaining useful images for

farm management purposes.  The images were available within minutes of the

platform landing through a portable computer.  Further refinement will be necessary

to achieve a greater field of view.

Further plans to improve the system’s effectiveness are to place a microcontroller into

the triggering system to cause continuous, periodic image acquisition during flight.

With the current system, 20 – 30 images are obtainable per flight.  A 256MB compact

flash card can hold on the order of 200 - 215 images in highest resolution mode.

Thus, the storage capacity of the camera is underutilized.  As the images can be

viewed, downloaded, and discarded if unwanted, full utilization of the storage

capacity should be a priority.  The camera has the capacity to capture an image every

±2 seconds, a faster rate than is possible with the helper triggering the camera.  The

camera can be triggered continuously while over the target and the unwanted images

discarded.  The pilot could initiate the continuous acquisition function from the R/C

radio once the UAV is over the target area.
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