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ABSTRACT OF THESIS

SECURE IMAGE PROCESSING

In todays heterogeneous network environment, there is a growing de-
mand for distrusted parties to jointly execute distributed algorithms on
private data whose secrecy needed to be safeguarded. Platforms that
support such computation on image processing purposes are called
secure image processing protocols. In this thesis, we propose a new se-
curity model, called quasi information theoretic (QIT) security. Under
the proposed model efficient protocols on two basic image processing
algorithms – linear filtering and thresholding – are developed. For both
problems we consider two situations: 1) only two parties are involved
where one holds the data and the other possesses the processing algo-
rithm; 2) an additional non-colluding third party exists. Experiments
show that our proposed protocols improved the computational time
significantly compared with the classical cryptographical couterparts
as well as providing reasonable amount of security as proved in the
thesis.

KEYWORDS: Communication system security, Image Processing, Dis-



tributed Algorithms, Cryptography, Secure Multiparty Computation
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Chapter 1

Introduction

1.1 Motivation

The proliferation of imaging and storage devices and the ubiquitous

presence of computer networks make sharing of digital data easier than

ever. Such casual exchange of data, however, has increasingly raised

questions on how sensitive information can be protected. Consider

the scenario in which a user of a cellular-phone camera wants to send

his/her pictures to an online photo-processing laboratory for image

enhancement such as red-eye removal. The user would be concerned

about the privacy of his/her pictures while the online store would need

to protect the proprietary enhancement technologies against reverse-

engineering. Consider another scenario that a law enforcement agency

wants to search for possible suspects in a surveillance video owned

by private company A, using a proprietary software from yet another

private company B. The three parties involved (agency, company A,

company B) all have information they do not want to share with each

other (criminal biometric database from the agency, surveillance tape

1



from company A and proprietary software from company B).

One way of solving this problem is the Trusted Computing (TC)

Platform where the software is executed in a secure memory space of

the client machine equipped with a cryptographic co-processor [34].

Besides the high cost of overhauling the existing PC platform, the TC

concept remains highly controversial due to its unbalanced protection

of the software companies over the consumers [3]. To balance the pre-

tection for both the clients and the servers, another solution is then

proposed by establishing a joint computation and communication plat-

form that can guarantee the secrecy of private data and algorithms,

and at the same time achieve a well-defined objective that benefits all

parties involved. Platforms that provide security to the joint image

processing algorithms are called secure image processing protocols.

The secure joint computation aforementioned is, however, not a new

problem. Such type of secure computation in a distributed environ-

ment is a well-known problem in cryptography, and is referred to as

the Secure Multiparty Computation (SMC) problem. The goal of a

SMC protocol is to allow multiple distrusted parties jointly compute a

function without complete sharing of their own information [15]. Like

many other cryptographic protocols, the security of SMC protocols

can be guaranteed under two different security models — information-

theoretical security and computational security. Information-theoretically

secure protocols protects privacy in such a way that the information ex-
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changed in the protocol provides no additional information, measured

in entropy, about the private data. In computationally secure pro-

tocols, private information is first transformed before transmitting to

other parties. The security is based on the huge computational burden

of performing the inverse transformation. Although the information-

theoretic security model provides the ideal level of security, it has been

shown that many simple operations like inner product or thresholding

cannot be securely computed between two distrusted parties [22]. As a

result, most existing SMC protocols are built under the computational

security model [38, 15, 4].

There has been little work in applying SMC to image processing

problems. The only work known to us is by S. Avidan et. al. [4] on

applying classical SMC protocols for two-party face detection. In a

typical classification task such as face detection, a significant portion

of an image is transformed into feature vectors, which in most cases

cannot be used to recover the original image. The manipulation of fea-

ture vectors is thus secure by definition and no special SMC protocols

are required. As a result, the complex SMC protocols do not signif-

icantly affect the overall performance of the classification task. On

the other hand, many common image processing applications require

pixel-by-pixel processing. The high compuational compexity of most

SMC protocols becomes a major drawback and hence useless when

applied to pixel level image processing algorithms. For example, the
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classical solution to the thresholding problem1, or comparing two pri-

vate numbers a and b, is to use Oblivious Transfer (OT) primitive [37]

– one party (Bob) creates a series of tables by bitwise comparing b with

every possible value of a, encrypts the tables using a public-key cipher,

and transfers them to Alice. Alice decrypts the entries in the tables

that correspond to his own number a and deduces the result. Most

public-key ciphers use modular exponentiations on very large finite

field which is complex to compute. As a result, it is difficult to scale

these protocols to signal processing applications that requires handling

a large amount of data and satisfying the real-time constraint.

As a result, it is imperative to develop fast computation techniques

for these applications. Among all image processing techniques, lin-

ear filtering and thresholding are arguably the most basic and useful

ones. As mathematically simple as they are, they have been used in

most of the complex and advanced image processing, computer vision

and pattern recognition applications such as enhancement, denoising,

halftoning, 3-D reconstruction and varies detection algorithms. Hence,

we focus in this thesis on solving the secure linear filtering and thresh-

olding problems only. Even though linear filtering by itself is inherently

insecure as we will demostrate in Section 1.3, we expect it when used

in combination with other types non-linear processing algorithms such

as thresholding to provide security.

1This problem is commonly referred to as the Secure Millionaire Problem in SMC literature.
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1.2 Contributions

Our major contribution in this thesis is the mathematical formation

of a new security model, called Quasi-Information-Theoretic (QIT) se-

curity model and the corresponding QIT linear filtering and threshold-

ing protocols which is a key step in building secure pattern recognition

applications. The proposed QIT secure model is a framework that

is expected to enable the development of more efficient secure image

processing protocols besides those developed in this theis. Hence, our

work could be deemed as an introduction to a relatively new inter-

disciplinary research area between security engineering and image pro-

cessing. The QIT model is a weaker form of information-theoretic

security. Its security is provided by using non-invertible transforma-

tions on private data. Though not explicitly defined, QIT-secure pro-

tocols have already been developed for inner product computation [11].

Compared with existing SMC protocols, our proposed linear filtering

protocol provides QIT security to both parties and our thresholding

protocol is more secure to one party (Alice) but not as secure to the

other (Bob) – Alice can deduce Bob’s number to be among n distinct

numbers spread through the entire range of the input. n is a design

parameter that can be changed based on the target level of security.

All our proposed protocols executes significantly faster than existing

protocols.
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1.3 Problem Description

In this section, we will introduce the problem definitions and some of

the notations used throughout this thesis. Specifically, we will explain

the reason for linear filtering to be inherently insecure.

1.3.1 Linear Filtering

Given an image {x(µ, ν) : 0 ≤ µ ≤ N1, 0 ≤ ν ≤ N2} and a

filtering operation f(·) described by a set of parameters Θ, we define

the output y(µ, ν) of applying this filter to x as follows:

y(t) = f(x; Θ) (1.1)

In the secure image filtering model, we have two parties, Alice and Bob,

who own the signal x and the filter parameter Θ respectively. Our goal

is to establish a computation protocol between Alice and Bob so that

1. Alice obtains f(x; Θ) without any knowledge of Θ, and

2. Bob does not know anything about x.

For linear filtering, the filter parameters are specified as a filter mask

h defined as {h(i, j) : − l1
2 ≤ i ≤ l1

2 , − l2
2 ≤ j ≤ l2

2 }. The linear filtering

operation can then be written as

y(µ, ν) = x⊗ h =

l1/2
∑

i=−l1/2

l2/2
∑

j=−l2/2

h(i, j)x(µ− i, ν − j). (1.2)
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It is easy to see that Equation (1.2) is a scalar product between two

(l1 + 1)(l2 + 1) dimensional vectors.

Our secure linear filtering protocol use the following conceptual

model: Alice first forms a N1N2 × (l1 + 1)(l2 + 1) matrix Xw whose

rows are the signal data needed for the inner product operation. The

total number of rows of Xw is the total number of pixels in the output

image2. If we denote the ith row of Xw as Xw(i, :), the output image as

a vector y = [y(1, 1) · · · y(N1, N2)]
T , and the filter mask as a vector

h = [h(− l1
2 ,− l2

2 ) · · · h( l1
2 , l2

2 )]T , then the linear image filtering could

be written as

y = Xwh (1.3)

A secure linear filtering protocol decomposes every y(i) = Xw(i, :) · h

into y(i) = ya +yb such that Alice computes ya without any knowledge

of h and Bob computes yb without any knowledge of Xw(i, :).

If linear filtering is the end goal of the processing, Bob sends back

his portion to Alice to compute the output y. Using both the input x

and y, Alice can estimate h using the least square estimate

ĥ = (XT
wXw)−1Xwy.

In other words, linear filtering is intrinsically insecure to Bob no matter

how secure the protocol is. General non-linear filtering, on the other

hand, is much harder to invert based on limited number of input and

2X can be made to have N1N2 rows with appropriate boundary handling.
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output pairs. If linear filtering is used as part of a secure non-linear

processing system, it is thus important that neither Alice nor Bob has

the entire output of the linear filtering protocol.

1.3.2 Thresholding

Thresholding is secrete comparision, i.e. Alice holds a secret scaler

a, and Bob holds another secret scaler b. They want to find out who

has a bigger number without disclosing their private data. We propose

to convert this problem into a special polynomial evaluation problem.

Alice first randomly generate a (n − 1)th-degree real polynomial f(x)

such that (f(a) − f(b))(a − b) ≥ 0 for ∀a, b ∈ R. Without loss of

generality, let f(x) takes the form f(x) = an−1x
n−1 + · · · + a1x + a0.

Then it is straightforward to see that b is greater than a if and only if

f(b) > 0. Thus if Bob knows the value of f(b), he can easily solve the

problem without any knowledge of a. To compute f(b), we note that

f(b) can be computed as an inner product:

f(b) , an−1b
n−1 + · · ·+ a1b + a0 , xT

1 x2 (1.4)

where x1 = [ an−1 · · · a1 a0 ]T and x2 = [ bn−1 · · · b 1 ]T .

At the end of the protocol, f(b) is separated into two parts f(b) =

ra + rb, where Alice holds the partial result ra and Bob holds the other

partial result rb. After the protocol, if Bob want to know whether his

number is larger, Alice needs to send her portion ra to Bob, and Bob

8



compute f(b). Bob can infer the relationship of a and b from the sign

of f(b)

Although the linear filtering protocol, whatever it is, is intrisically

insecure as discussed in Section 1.3.1, when we combine linear filter-

ing and thresholding together, such as in a denoising algorithm, this

problem will no longer exist. Since the partial outputs of the linear

filtering need not to be summed together to conduct a threholding.

Assume the threshold Bob has is t0, and the intention of thresholding

is to compare whether a + b is larger than t0 or not. This is the same

as compare a with t0 − b. Thus, what Bob needs to do is to substract

b from t0 and perform the thresholding protocol with Alice to find the

relationship between a + b and t0.

1.4 Organization Of The Thesis

The remaining chapters of the thesis is organized as follows: In

Chapter 2, we will review the exisiting related research work. We will

then introduce the existing security models before we mathematically

form the QIT security model of our own in Chapter 4. In Chapter 5,

the security of the proposed linear filtering and thresholding protocols

will be proved and comparison of the performance of our protocols with

existing SMC protocols will be shown in Chapter 6 together with a brief

discussion of several possible weak point of our protocols. Finally, the

thesis is concluded in Chapter 7.

9



Chapter 2

Related Research Work

In this chapter, we will review several related area about the secure

image processing project. One is the cryptographic counterpart, i.e.

the secure multiparty computation (SMC) and the oblivious transfer

(OT) primitive. Another is the previous work that have applied the

SMC protocols on image processing algorithms. The third is the ex-

isting research work on the protocols that satisfies our proposed quasi

information theoretic (QIT) security. We will review these in separated

sections.

2.1 SMC and OT

The general problem of secure multiparty computation (SMC) can

be traced back to the classical paper by Yao [37]. In that paper, he

introduced the millionaire problem and it was then further extended

by Goldreich, Micali, and Wigderson [16] and many others to form

the concept of SMC. In a general setting of a SMC protocol [15], we

have a given number of participants p1, p2, · · · , pN , each having a

10



private data, respectively d1, d2, · · · , dN . The participants want

to compute the value of a public function F on N variables at the

point (d1, d2, · · · , dN). A SMC protocol is dubbed secure if no

participant can learn more from the description of the public function

and the result of the global calculation than what he/she can learn

from his/her own entry - under particular conditions depending on the

model used.

There are basically two types of security models for a SMC protocol

as briefly introduced in Chapter 1. One is called computational secu-

rity, which is based on the hardness of some mathematical problem,

like factoring and discrete logarithm. The other one, unconditional

security which is often referred to as information theoretic security, is

usually with some probability of error which can be made arbitrar-

ily small. Different SMC protocols have been developed under both

models [8, 23, 29, 35]. The assumptions used in a SMC prtocol could

be that participants use a synchronised network (a message sent at a

“tick“ always arrives at the next “tick“), that a secure and reliable

broadcast channel exists, that a secure communication channel exists

between every pair of participants (an adversary cannot read, modify

or generate messages in the channel), etc.. The centrally controlled

adversary considered can be passive (only allowed to read the data

of a certain number of participants) or active (can corrupt the exe-

cution protocol or a certain number of participants). An adversary

11



can be static (chooses its victims before the start of the multiparty

computation) or dynamic (can chose its victims during the course of

execution of the multiparty computation). Specially, the protocol is

said to be secure in a semi-honest environment if all parties respect

the protocol and are not able to derive more information than what

can be deduced fro mthe final results. While most of the SMC proto-

cols, including those descibed in this theis, are developed under this

assumption, there some work extending the assumption to malicious

environment when participants can do whatever to know as much as

possible [10, 18, 13, 9, 25].

One of the basic tools used in Perfectly Secure Multiparty Compu-

tation (PSMC) is secret sharing. A t-out-of-m secret-sharing scheme

breaks a secret number x into m shares r1, r2, . . . , rm such that x can-

not be reconstructed unless an adversary obtains more than t − 1

shares with t ≤ m. The importance of a secret-sharing scheme in

PSMC is illustrated by the following example: in a 2-party secure

computation of f(x1, x2), party Pi will use a 2-out-of-2 secret-sharing

scheme to break xi into ri1 and ri2, and share rij with party Pj. Each

party then computes the function using the shares received, resulting

in y1 , f(r11, r21) at P1 and y2 , f(r12, r22) at P2. If the secret sharing

scheme is homomorphic under the function f(), that is y1 and y2 are

themselves secret shares of the desired function f(x1, x2), f(x1, x2) can

then be easily computed by exchanging y1 and y2 between the two par-

12



ties. Under our computational model, all SMC problems can be solved

if the secret-sharing scheme is doubly homomorphic – it preserves both

addition and multiplication. Adi Shamir [31] invented such a t-out-

of-m scheme called Shamir’s Secrety Sharing scheme. In this scheme,

the secrete number x is hidden as the constant term of randomly gen-

erately polynomial of degree t − 1 and the values of the polynomial

evaluated at m different points are distributed among the m partici-

pating parties. To recover the secret, i.e. the constant term, at least t

parties need to share their information.

It is unsatisfactory that PSMC cannot even provide secure two-

party computation [22]. Instead of relying on perfect security, modern

cryptographical techniques primarily use the so-called computational

security model. Under this model, secrets are protected by encod-

ing them based on a mathematical function whose inverse is difficult

to compute without the knowledge of a secret key. Such a function

is called one-way trapdoor function and the concept is used in many

public-key cipher: a sender who wants to send a message m to party

P will first compute a ciphertext c = E(m, k) based on the publicly

known encryption algorithm E() and P ’s advertised public key k. The

encryption algorithm acts as a one-way trapdoor function because a

computationally-bounded eavesdropper will not be able to recover m

given only c and k. On the other hand, P can recover m by apply-

ing a decoding algorithm D(E(m, k), s) = m using her secret key s.

13



Unlike perfectly secured protocols in which the adversary simply does

not have any information about the secret, the adversary in the com-

putationally secured model is unable to decrypt the secret due to the

computational burden in solving the inverse problem. Even though it is

still a conjecture that true one-way trapdoor functions exist and future

computation platforms like quantum computer may drastically change

the landscape of these functions, many one-way function candidates

exist and are routinely used in practical security systems 1.

One important SMC primitive under the computational security

model is oblivious transfer (OT), which is a protocol by which a sender

sends some information to the receiver, but remains oblivious as to

what is sent. The first form of oblivious transfer was introduced in

1981 by M. Rabin [30]. Even et al. [12] then extended the work and

developed a more useful form of OT, called “1 out of 2 oblivious trans-

fer“ and denoted by OT 2
1 , for the purpose of SMC. Later, the concept

of OT is further extended to “1 out of n oblivious tranfer“ denoted by

OT n
1 in [28, 2]. Further work has revealed oblivious transfer to be a

fundamental and important problem in cryptography. It is considered

one of the critical problems in the field, because of the importance of

the applications that can be built based on it. In particular, it is a

‘complete’ for secure multiparty computation: that is given an imple-

mentation of oblivious transfer it is possible to securely evaluate any

polynomial time computable function without any additional primi-

1A list of one-way function candidates can be found in [17, ch.1].
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tive [21]. Because of the importance of OT in Cryptography as well

as in this thesis, the OT 2
1 protocol is detailed in Algorithm 1 [4] as an

example of OT.

Algorithm 1 OT2
1()

Require: Alice has σ ∈ {0, 1}, and Bob has two messages M0, M1.
1: Bob sends Alice two different public encryption keys K0, K1.
2: Alice generates a key K and encrypts it with K0 or K1 according to her σ.

Without loss of generality, let’s say σ = 1. She sends Bob E(K,K1), i.e. she
encrypts K with Bob’s K1 since σ = 1.

3: Bob does not know which public key Alice used, so he decrypts with both of his
private keys. He thus obtains both the real key K, and a bogus one K ′.

4: Bob sends Alice E(M0, K
′) and E(M1, K), in the SAME order he sent the keys

K0 and K1 in step 1. Alice decrypts the second of these messages with the key
K and obtains M1.

5: return Alice knows M1.

Let’s consider the security here. Can Alice know more than M1?

She would need to know K ′ which requires the knowledge of K0. Can

Bob know which one Alice has selected? He would need to differentiate

K and K ′ and find which one is the real key. But these two keys both

look like random strings.

While most of the above-mentioned results are established in 1980s,

SMC continues to be a very active research area in cryptography and

its applications begin to appear in many other disciplines. Recent

advances focus on better understanding of the security strength of

individual protocols and their composition, improving CSMC protocols

in terms of their computation complexity [28, 26] and communication

cost [6, 27, 1, 5], relating SMC to error correcting coding [14, 33], and

introducing SMC to a variety of applications [24, 11, 7, 4, 19, 20].
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2.2 Applications of SMC in image processing

The only work known to us in the application of SMC protocols on

image processing algorithms is by S. Avidan et al. [4]. They converted

the Viola-Jones type face detector [36] by rewriting the detector using

cryptographic primitives. Basically, a Viola-Jones type face detector is

a AdaBoost based detector combining a series of weak classifiers in a

’Cascade’ manner to form a strong classifier. Mathematically, the weak

classifiers are built on vector inner product between feature vector ex-

tracted and the classifier parameters followed by a thresholding on the

result. The only mathematical computation involved here are vector

inner product and thresholding. Hence, SMC protocols for vector inner

product and thresholding are formed by utilizing the oblivious transfer

(OT) primitive. In addition, the authors incorperate image hashing by

histograms of oriented gradients to accelerate the processing.

Since the feature vectors were extracted before the classifiers were

applied, the feature extraction process was not involved in the secure

detection stage, which tremendously reduced the computation burden.

However, as in our problems of image filtering and thrsholding, the

computation is on pixel-by-pixel basis. The sheer number of pixels in

common images requires far more computation than simply the classi-

fiers do. Therefore, it is impossible for us to employ the methods used

in [4].
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2.3 QIT Secure Inner Product

Du et. al. proposed a vector inner product protocol in 2004 [11],

which is the only known exsting inner product protocol that satisfies

our proposed security model. We briefly describe this protocol using

the pseudo-code InnerProductAlice and InnerProductBob listed be-

low. Alice has a m-dimensional vector x and Bob has a m-dimensional

vector y. They both know an invertible matrix P and its inverse

P−1. P is broken down into top and bottom halves T ∈ R
⌊n

2
⌋×n and

B ∈ R
(n−⌊n

2
⌋)×n, while P−1 into left and right halves L ∈ R

n×⌊n

2
⌋ and

R ∈ R
n×(n−⌊n

2
⌋). The inner product xTy can then be decomposed as

follows:

xTy = xTP−1Py = xTLTy + xTRBy (2.1)

Alice then sends xTR to Bob who computes xTRBy while Bob sends

Alice Ty so that she can compute xTLTy.

Algorithm 2 InnerProductAlice(x, P−1)

Require: x ∈ R
n. P−1 = (L R) is a n × n invertible matrix where n ≥ 2;

L ∈ R
n×⌊n/2⌋ and R ∈ R

n×(n−⌊n/2⌋).
1: x1 ← LTx
2: x2 ← RTx
3: Transmit x2 to Bob.
4: Receive y1 from Bob.
5: return x1

Ty1

The security of the protocol comes from the observation that xTR

and Ty project x and y into lower-rank subspaces, and thus the com-

ponents of the original vectors inside the null spaces of the matrices are
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Algorithm 3 InnerProductBob(y, P )

Require: y ∈ R
n. P T = (T T BT ) is a n × n invertible matrix where n ≥ 2;

T ∈ R
⌊n/2⌋×n and B ∈ R

(n−⌊n/2⌋)×n.
1: y1 ← Ty
2: y2 ← By
3: Receive x2 from Alice.
4: Transmit y1 to Alice.
5: return x2

Ty2

irrecoverably lost. In [11], the authors proposed a design of P based

on decoding matrices used in error control coding so as to spread the

projections of the neighboring vectors as far as possible. Unlike the

OT procotol which requires complex long-integer modular exponentia-

tion and random key generation, this protocol requires only the highly

optimized matrix multiplications.

Although, technically speaking, linear filtering is just a series of

vector inner product, the above proposed method cannot be directly

applied. The reason is because of the overlapping between adjacent

vectors make the reverse engineering possible, and hence comprised

the security as was explained in Chapter 1.
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Chapter 3

Security Models

Following the convention used in cryptography, we refer the private

information as plaintext and the information exchanged among dis-

trusted parties as ciphertext. All existing cryptographic protocols are

based on one of the two security models – information theoretic security

and computational security. In the following sections, the definition of

these two security models will be breifly introduced. However, as dis-

cussed in Chapter 1, the two models are not suitable for pixel level

computation because either there are no solution (for information the-

oretic security) or it is too computationally expensive to be applied in

the pixel level applications (for computational security). Thus, a new

security model is proposed here and based on the proposed new secu-

rity model protocols to solve the linear convolution and thresholding

problems are designed and will be discussed in Chapter 4.
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3.1 Information Theoretic Security

A cryptosystem satisfies information theoretic security if its security

derives purely from information theory. That is, it makes no unproven

assumptions such as the hardness of mathematical problems such as

discrete logarithm, and is hence secure even when the adversary has

unbounded computing power [15].

The normally referred information theoretic security is also called

perfect security. Shannon originally formulated this security, though

defined in a different, but equivalent way [32]. Thus, Perfect Secrecy

is also sometimes called Shannon Secrecy.

DEFINITION 1. Let A be a cryptographic protocol, P be the plaintext set,

and C be the ciphertext set. ∀ x ∈ P, let y ∈ C be the corresponding

ciphertext. Let P (·) be the probability function. Then, A is said to

satisfy information theoretic security if

P (x|y) = P (x),

From the definition, we could see that information theoretic security

means the a posteriori probability of the plaintext being x, given that

the ciphertext y is observed, is identical to the a priori probability of

the plaintext being x, i.e. knowing y gives no help in knowing x.
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3.2 Computational Security

Unlike the information theoretic security, which makes no unproven

assumption of the hardness of some mathematical problems, Compu-

tational Security, also know in the cryptographic society as Semantic

Security makes necessary assumptions on the hardness of some mathe-

matical problems such as factoring and discrete logarithm for compu-

tationally bounded adversaries.

DEFINITION 2. Let P (·) be the probability function, and l(n) be any

polynomial over n. Then, a cryptographic protocol A is said to sat-

isfy computational security if for all polynomial-time algorithm G, and

large enough n0 ∈ N, ∀ n > n0,

P (G(y, n) = x) <
1

l(n)
,

Computational Security means given the ciphertext y and any pub-

lic information, no polynomial-time algorithm can compute the correct

plaintext x with a non-trivial probability. In another word, a crypto-

graphic protocol is Computationally Secure, if it is infeasible or takes

forever (long enough time in realistic) for a computationally bounded

adversary to derive significant information about the message (plain-

text) from the given ciphertext.
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3.3 Quasi Information Theoretic (QIT) Security

As popular as the above introduced security models, they are not

suitable for pixel level computation tasks as we are dealing with. In-

stead, we propose our new notion of security which is based on non-

invertible mappings. Hence, it is necessary to define non-invertibility

first.

DEFINITION 3. Let g : X → Y be a mapping from a probability sample

space1 X to another probability sample space Y. ∀ x ∈ X with P (x) >

0, define g−1 ◦ g(x) = { α | α ∈ X , g(α) = g(x), and P (α) > 0}.

1. Given α, β ∈ X with non-trivial probability, they are called QIT-

indistinguishable if g(α) = g(β).

2. Given x ∈ X with P (x) > 0, g−1 ◦ g(x) is called the QIT indistin-

guishable set of x under g.

3. g is called noninvertible, if the probability of finding a x ∈ X

whose QIT indistinguishable set has no element besides x is zero,

i.e. P
(

{ α | α ∈ X , |g−1 ◦ g(x)| < 2}
)

= 0. In particular,

we call g(x) N-noninvertible if the probability of finding a QIT

indistinguishable set smaller than N is zero.

Notice that given α ∈ g−1 ◦ g(x), there is no relative increase in the

knowledge about α and x based on y = g(x). This can be easily

1We assume the probability space discrete. If it is continuous, then X and Y will be the collection
of measurable sets.
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shown by using the Bayes rule:

P (x|g(x) = y)

P (α|g(α) = y)
=

P (g(x) = y|x)P (x)/P (y)

P (g(α) = y|α)P (α)/P (y)
=

P (x)

P (α)
(3.1)

Any cryptographic protocol A can be viewed as a mapping from the

plaintext P to the ciphertext C. As such, we introduce the following

definition:

DEFINITION 4. A cryptographic protocol A satisfies called QIT security

if the underlying mapping A from plaintext space to ciphertext space is

non-invertible. A is N-QIT secure if the mapping is N-noninvertible.

It is obvious that the QIT security is weaker than the information

theoretic security as g can be any noninvertible mapping which can

certainly provide additional information about the plaintext x ∈ P

given the ciphertext y = g(x) ∈ C, i.e. P (x|y) > P (x). On the

other hand, based on Equation 3.1, the QIT model guarantees that

the relative relationship between two plaintexts x and α that map

to the same ciphertext y remains unchanged, though the individual

conditional probability may increase.

QIT security is also different from computational security. The

classic computational security model depends solely on the compu-

tational hardness of computing the plaintext x given the ciphertext

y = g(x). However, for a given y, it is guaruanteed that there is only

one x that satisfies g(x) = y. In QIT security, computing the QIT
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indistinguishable set g−1 ◦ g(x) of x for a given mapping if often quite

straightforward. However, the cardinality of g−1 ◦ g(x) could be large

and the true identity of x will remain hidden. It can also be seen from

Equation 3.1 that, if P (α) = P (x), then P (α|g(α)) = P (x|g(x)), i.e.

if the plaintext is uniformly distributed, the a posteriori probability is

also uniform within the QIT indistinguishable set of x. In this special

case, there is no algorithm that can distinguish between α and x.
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Chapter 4

Protocols

In this chapter, we will describe our protocols in detail of how to solve

the linear filtering and thresholding problem. Here we assume both

Alice and Bob are semi-honest, as defined in cryptography, i.e., both

parties are going to respect the protocol, but they are curious when

the protocol is finished, which means they are going to do whatever to

compute the other party’s information from what they have recieved

during the execution of the protocol. In addition, during the design

of the protocols, we assume that Bob is the server or the image pro-

cessing algorithm provider, who possesses more computational power

than Alice which is client or the image holder. As a result, we try to

assign the computational jobs to Bob whenever possible as long as it

does not detroy the security of the protocols.

4.1 Linear Filtering

In this section, we will develop two types of secure filtering protocol:

1) a two party protocol based on rank deficient matrix transform and
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2) a three-party protocol based on random permutation of the data.

Before we introducing the new protocols, we first review the classic

two-party protocol based on OT, the details of which is introduced in

Chapter 2.

4.1.1 Classical Two-party Solution

As introduced in Chapter 2, oblivious transfer allows Alice to select

one element from the whole dataset Bob holds without revealing to Bob

which element Alice has selected and without knowing any othe ele-

ment in the dataset rather than the one selected. Thus, a secure scalar

product protocol can be implemented based on the above-mentioned

property of oblivious transfer and is detailed in Algorithm 4.

Algorithm 4 OTInnerProd(x,h)

Require: x,h ∈ Fm, F is some finite field and |F | = MF .
1: Bob computes for each hi a table of MF entries, where the j-th enthy of the table

is j · hi − ri and ri, 1 ≤ i ≤ m are the random numbers generated by Bob and
known only to him.

2: Alice and Bob engage in m rounds of OTMF

1 protocols in which Alice selects the
j-th entry of the table in the i-th round if xi = j.

3: Alice takes the sum of the m quatities a =
∑m

i=1(xi·hi−ri) =
∑m

i=1 xi·hi−
∑m

i=1 ri.

4: Bob computes the sum of all ri’s, b =
∑m

i=1 ri.

Alice and Bob each hold a m-dimensional vector, and it is obvious

that after the protocol Alice and Bob each hold a number a and b as

described respectively and

a + b =
m

∑

i=1

xi · hi
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makes sure the correctness of the protocol and the property of Oblivi-

ous Transfer and randomness of ri’s guarantee the security of the whole

protocol.

4.1.2 QIT Two-party Solution

It may seem intuitive to implement secure linear filtering by apply-

ing the inner product algorithm [11] as described in Chapter 2 on Xw

row by row. However, it is not secure as adjacent rows in Xw overlap

with each other. As a result, the redundancy in the rank-reduced data

sent to Bob allows him to form a least-square estimation of the original

image. This least square problem involves solving a least-square data

matrix of size N⌊ (l+1)
2 ⌋ × N . To achieve the QIT secrecy, Alice and

Bob need to carefully designed matrix P . The proposed protocol is

described below in Algorithm 5 and 6.

Algorithm 5 FilterAlice(Xw,m)

Require: Xw ∈ R
n×m, which is reformated from the original image.

1: Receive P−1 = (L R) from Bob.
2: X1 ← XwL.
3: X2 ← XW R.
4: Transmit X2 to Bob.
5: Receive h1 from Bob.
6: return X1h1

At the end of FilterAlice and FilterBob, Alice and Bob each

hold the quantity X1h1 and X2h2 respectively. The correctness of the

protocol can be easily tested by

X1h1 + X2h2 = XwLTh1 + XwRBh2 = XwP−1Ph = Xwh. (4.1)
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Algorithm 6 FilterBob(h,m)

Require: h ∈ R
m×1.

1: Generate matrix L ∈ R
m×⌊m

2
⌋ and form P−1 = (L R) ∈ R

m×m where R⊥L.
Computer P T = (T T BT ) under the constrain PP−1 = I, where I is the identity
matrix.

2: Send Alice the matrix P−1.
3: h1 ← Th.
4: h2 ← Bh.
5: Receive X2 from Alice.
6: Transmit h1 to Alice.
7: return X2h2

Algorithm 5 and 6 may seem similar to Algorithm 2 and 3 introduced

in Chapter 2. However, as discussed before because of the specialty of

linear convolution, the design of the matrix P should be different. We

do not give the form of P here and will leave the design together with

the proof of QIT security to the security analysis in Chapter 5.

Multiple stages of linear filtering are often used in image processing

such as separable filtering (horizontal and vertical filtering) or wavelet

transform (multiple stages of subband filtering). One advantage of our

designed protocol is that it can be directly applied to multiple stage

linear filtering.

4.1.3 QIT Three-party Solution

In this part, we will show how to implement the secure linear iflteirng

with the help of a third party Clark, who we assume will not collude

with either Bob or Alice. With the help of a third party, the protocol

for linear filtering can be made Information Theoretically Secure. On

the other hand, however, its application is comparatively limited as a
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non-colluding third party may not be always present. The basic idea is

that, instead of using matrix transforms, we randomly inject random

noise into the rows of Xw and h for each inner product operation. The

dependency between successive rows vanishes as random noise is used

each time.

The proposed protocol is shown Algorithm 7, 8, and 9. The problem

notation is the same as in Section 4.1.1 where Alice holds Xw and

Bob holds h and they want to jointly compute Xwh. Alice generates

a random n × m-dimensional matrix Xa and computes Xb = Xw −

Xa. Similarly, Bob generate a random m-dimensional vector ha and

compute hb = h− ha. Then the inner product can be rewritten as

Xwh = Xaha + Xahb + Xbha + Xbhb, (4.2)

Note Xa or Xb alone provides no information about Xw as proved

in Chapter 5. Neither does ha or hb alone about h. Unfortunately,

it is impossible for Bob and Alice to compute all the four items in

Equation 4.2 by just receiving one component of the vector from each

other. For example, if Alice sends Bob Xa, he can computer the first

and second terms rb = Xaha + Xahb. If then Bob send Alice ha,

Alice can then compute the fourth but not the third. To solve this

conundrum, we introduce a third party Clark. If Bob sends Alice

ha an Alice computes ra = Xbha, Alice and Bob can send Clark Xb

and hb so that Clark can compute the remaining term in Equation
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4.2, i.e. rc = Xbhb. Provided that no two parties collude with each

other, the information Alice, Bob and Clark have are all random data

which disclose no information about either Xw and h. Therefore, the

protocol does achieve Information Theoretic Security (Since the proof

is obvious, it is omitted in Chapter 5.).

Algorithm 7 3PartyInnerProductAlice(Xw)

Require: Xw ∈ R
n×m, which is reformated from the original image.

1: Generate random matrix Xa.
2: Xb ← Xw −Xa.
3: Transmit Xa to Bob.
4: Transmit Xb to Clark.
5: Receive ha from Bob.
6: return ra = Xbha

Algorithm 8 3PartyInnerProductBob(h)

Require: h ∈ R
m.

1: Generate random matrix ha.
2: hb ← hw − ha.
3: Transmit ha to Alice.
4: Transmit hb to Clark.
5: Receive Xa from Bob.
6: return rb = Xaha + Xahb

Algorithm 9 3PartyInnerProductClark()

1: Receive Xb from Alice.
2: Receive hb from Bob.
3: return ra = Xbhb

At the end of the protocol, Alice, Bob and Clark will have ra, rb,

and rc respectively such that the output image is y = ra + rb + rc.

The correctness of our protocol can be easily seen from Equation 4.2.

To perform a second stage filtering with, say Bob’ g, Clark can first

generate a random vector rc1, and send it to Alice, while on the other
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hand, send rc2 = rc − rc1 to Bob. Alice and Bob add the received

vector to the quantity they already hold to have r′a = rr + cc1 and

r′b = rb + rc2 respectively. Then we can simply apply the distribution

rule for convolution y ⊗ g = r′a ⊗ g + r′b ⊗ g. Since Bob knows r′b and

g, he can computer r′b⊗g himself. r′a⊗g can then be computed using

the three-party linear filtering protocol Among Alice, Bob, and Clark.

4.2 Thresholding

4.2.1 Classical Two-Party Solution

Research on secure thresholding problem in the cryptographic soci-

ety gave it a different name, called Secure Millionaire problem, though

essentially the same problem. Computationally secure protocols solv-

ing this problem was done by utilizing the concept of Oblivious Trans-

fer. The original solution to this problem is given by Andrew Yao

[37] in 1982. Shai Avidan used this protocol as part of his blind face

detection algorithm in [4].

Alice and Bob each hold a secrete number a and b respectively and

they want to compare who has a larger number. The classical solution

utilizing the OT primitive is to first have Alice and Bob individually

represent their number in binary format. The two numbers are then

checked through OT bit by bit from the highest significant bit (HSB)

to the lowest significant bit (LSB). Both parties will not know the final

answer until the LSB has been checked. For each bit, Bob prepares a

31



look-up table based on his current bit and all the two possible values

of Alice’s bit. The details are shown in Algorithm 10 [4].

Algorithm 10 SecureMillionaire(a, b)

Require: a, b ∈ F , where F is some finite field. Suppose m-bit is long enough to
represent a and b, and let ai, bi be the i-th bit of a, b.

1: Bob defines three states {A,B, C}, which corresponding to Alice’s number is
larger, Bob’s number is larger, and the relationship is Undecided respectively.
For each round of communication, Bob encrypt the three states using a random
permutation of the numbers {1, 2, 3}.

2: For the Bob’s HSB bm, He constructs a 2-entry table from the following lookup
table.

bm = 0 bm = 1
am = 0 U B
am = 1 A U

The lookup table is built according to Bob’s possible bm and Alice’s possible am.
If bm = 0 Bob should extract the left column as the 2-entry table, otherwise, Bob
should use the right column.

3: Alice communicates with Bob through OT 2
1 to obtain the state sn according to

her am.
4: for i← m− 1 to 1 do
5: Bob construct a 6-entry table from the following lookup table which is indexed

by si+1 and ai.
bi = 0 bi = 1

si+1 = A ∧ ai = 0 A A
si+1 = B ∧ ai = 0 B B
si+1 = U ∧ ai = 0 U B
si+1 = A ∧ ai = 1 A A
si+1 = B ∧ ai = 1 B B
si+1 = U ∧ ai = 1 U U

where si+1 is the stata obtained from previous round of communication. If
Bob’s ai = 0 he should use the left column as the 6-entry table, otherwise he
should use the right column.

6: Alice communicates with Bob through OT 6
1 with the combination of si+1 and

ai as her index to obtain si from the table.
7: end for
8: Bob send Alice the meaning of the three states of s1 corresponding to the LSB

and Alice knows which number is larger.
9: If she wants, Alice can send the final result to Bob.

10: return Alice win, Bob win or Equal.

Note it is quite possible that in some intermediate bit, the relation-
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ship between a and b can be decided. However, if the protocol stops

right after the relationship is decided, given the round number, it will

leave much information about the opposite party’s number since both

of them knows the number they have. For example, if the relationship

is decided at the first round and Bob’s bm = 1, then he knows that

am = 0 for sure and Alice’s number cannot be larger than 2m, which

is much different if at the last round Bob knows that he has a larger

number, then any number less than Bob’s b is possible for Alice’s a.

On the other hand, to prevent Alice from interpreting the meaning

of the states {A,B,U}, each round Bob should encrypt the three state

with a regenerated random permutation of the numbers {1, 2, 3}. For

example, if for the 1st round, Bob use 1 to represent the state A, at

the 2nd round after regeneration of the random permutation, he could

use 3 to represent the state A. Thus, as each round even after Alice

received a number from the set {1, 2, 3}, she won’t be able to know

which state the number represents.

4.2.2 QIT Two-Party Solution

Assume we have two distrusted parties: Alice and Bob. Alice holds

a secret scaler a, and Bob holds another secret scaler b. They want to

find out who has a bigger number without disclosing their private data.

Under our new notion of security, we propose to convert this problem

into a special polynomial evaluation problem. Let n be an even num-
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ber. Alice first randomly generates a (n− 1)th-degree polynomial f(x)

that has only one real root: Alice’s secret number a. In addition,

we require that the derivative of f(x) at a is non-negative. Alice can

easily generate this polynomial by first randomly selecting (n − 2)/2

complex conjugate numbers as the roots of the polynomial, and then

multiplying the resulting polynomial by a negative random number if

the derivative of f at a is negative or a positive random number oth-

erwise. We will refine this procedure for better security in Chapter 5.

The key property of f(x) is that for any b > a, we have f(b) > 0 and

for all b < a, we have f(b) < 0. An example of such a f(x) is shown

in Figure 4.1(a). Thus if Bob knows only the value of f(b) without

knowing the actual polynomial, he can easily solve the problem with-

out any knowledge of a. Given f(x) = an−1x
n−1 + · · · + a1x + a0, we

can evaluate f(b) as an inner product between two vectors x1 and x2:

f(b) , an−1b
n−1 + · · ·+ a1b + a0 , xT

1 x2 (4.3)

where Alice has x1 = [ an−1 · · · a1 a0 ]T and Bob has x2 = [ bn−1 · · · b 1 ]T .

Thus, the evaluation of a polynomial becomes that of an inner prod-

uct. Our secure inner product evaluation is based on [11]. The idea

is to linearly map x1 and x2 into a lower-dimensional space such that

given the transformed results, it is impossible to exactly recover a and

b. We use an invertible matrix M ∈ Rn×n, and vertically divide it
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Figure 4.1: (a) Random polynomial with a single real root at a = 1. (b) Chebyshev’s
polynomials of degree one (blue solid), degree two (red dash), degree three (green
dast-dot) and degree four (black dot).

into two parts Ml ∈ Rn×k and Mr ∈ Rn×(n−k). On the other hand, we

horizontally divide M−1 into two parts Mt ∈ Rk×n and Mb ∈ R(n−k)×n.

Well the readers may have noticed that we basicaly use the same

idea of matrix transformation for linear filtering and thresholding.

However, the notation of the transformation matrices are different.

The reason we use different notations is because the design of these

matrices are different for different problems. Hence, different notations

are used for better correspondences to Chapter 5 when we analyze the

security of the proposed protocols.

The design of M and its submatrices is critical to the security of

the protocol and the details will be discussed in Chapter 5. Given M

and the submatrices, our protocol of secure thresholding is described

in Algorithm 11 and 12.
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Algorithm 11 ThresholdingAlice(x1,M)

Require: x1 = [ an−1 · · · a1 a0 ]T ∈ R
n. M = (Ml Mr) is a n×n invertible matrix

where n ≥ 2; Ml ∈ R
n×k and Mr ∈ R

n×(n−k).
1: x11 ← xT

1 Ml

2: x12 ← xT
1 Mr

3: Transmit x12 to Bob.
4: Receive x21 from Bob.
5: Send xT

11x21 to Bob.

Algorithm 12 ThresholdingBob(x2,M
−1)

Require: c = [ bn−1 · · · b 1 ]T ∈ R
n. M−1 =

( Mt

Mb

)

is a n × n invertible matrix

where n ≥ 2; Mt ∈ R
k×n and Mb ∈ R

(n−k)×n.
1: x21 ←Mtx2

2: x22 ←Mbx2

3: Transmit x21 to Alice.
4: Receive x12 from Alice.
5: Receive xT

11x21 from Alice.
6: Compute f(b) = xT

12x22 + xT
11x21

7: Return f(b) > 0.

The correctness of this protocol can be easily verified.

f(b) = xT
1 x2

= xT
1 MM−1x2

= xT
1

(

Ml Mr

)( Mt

Mb

)

x2

= xT
11x21 + xT

12x22

For a three-party case, given the non-colluding third party Clark,

the solution to this problem becomes obvious. Alice and Bob can just

send their numbers to Clark, and he compares the two number and

tell them who has a larger number.
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Chapter 5

Security Analysis

In this section, we will show that our proposed protocols (linear filter-

ing and thresholding) is QIT secure.

5.1 Linera Filtering Protocol

Under our assumption of semi-honest parties, the security of the

protocol depends solely on how much information Alice and Bob can

learn from the data they receive during the process of the protocol.

Let’s review Algorithm 5 and 6. Alice received h1 = Th from Bob, and

Bob received X2 = XwR from Alice. To satisfy our QIT security model,

by DEFINITION 3 and DEFINITION 4, it is enough to show that ∀Xw ∈

Rn×m, ∃X ′w ∈ Rn×m, where Xw and X ′w are QIT indistinguishable

under the mapping function R, which is true iff R are noninvertable.

Yet on the other hand, we need also to have T be to noninvertible to

make the protocol QIT secure. The property of T to be rank deficient,

however, makes the statement automatically true, i.e. it is always QIT

secure for Bob.
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To make the protocol QIT secure for Alice, we need to consider

the essense of the problem, linear convolution. Remember Xw is con-

structed by sliding a window (size of the filter) across the image to

form rows of the matrix. Hence, Xw ∈ R
n×m cannot span the whole

space of R
n×m because of the overlapping between adjacent rows. To

simplify the problem, instead of a 2-D linear convolution, we will first

discuss a 1-D linear convolution.

For any 1-D discrete signal x(u), and a given filter h(v), let the

matrix after reformating x(u) be Xu ∈ R
n×m1 and the vector form of

h(v) be hv ∈ R
m×1. Then, the 1-D linear convolution can be written

into a matrix product form as

y = Xuhv. (5.1)

Then, for the Xu formed by 1-D discrete signal x(u), we have the

following theorem.

THEOREM 1. Let γ1, γ2, · · · , γd be d random numbers, and

L = span





















1
γ1
...

γm−1
1





















1
γ2
...

γm−1
2











· · ·











1
γ⌊m

2
⌋

...
γm−1
⌊m

2
⌋





















∈ R
m×d.

Let x(u) be any 1-D discrete signal and Xu be the matrix reformat-

ted from x(u) as in Equation 5.1. If R⊥L, then f(Xu) = XuR is

noninvertible for Xu.

1Boundary handling is not a concern of us.
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Proof Let Xu(µ, :) be the µth row of Xu.

Xu(µ, :) =











x(µ)
x(µ + 1)

...
x(µ + m− 1)











T

. (5.2)

Since

L = span
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∈ R
m×d.

and R⊥L, the vectors [1 γi · · · γm−1
i ], 1 ≤ i ≤ d are the left null space

vectors of R. Then we have

Xu(µ, :)R = Xu(µ, :)R + β1γ
µ
1











1
γ1

1
...

γm−1
1











T

R + · · ·+ βdγ
µ
d











1
γ1

d
...

γm−1
d











T

R.

(5.3)

Hence, if X ′u is the matrix reformatted by x′(u) = x(u) + β1γ
u
1 + · · ·+

βdγ
u
d , from Equation (5.3), we know that

XuR = X ′uR. (5.4)

As a result, x′(u) is in the QIT indistinguishable set of x(u) under

f(Xu) = XuR. Q.E.D.

Furthermore, we have the following corollary.

COROLLARY 1. For 1-D discrete signal x(u), If Q = (L R), where L

and R are as constructed in THEOREM 1, such that Q has an inverse
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and is denoted as Q−1, then Algorithm 5 and 6 are QIT secure under

the transformation matrix P = Q−1.

It is easy to see the correctness of COROLLARY 1. Hence, the proof

is omitted here.

For a 2-D image, the method to construct such P and P−1 is very

much similar to that in THEOREM 1. Therefore, we write it as another

corollary of THEOREM 1.

COROLLARY 2. Let x(µ, ν) and Xw be the image and corresponding

reformatted matrix, and h be the reformatted filter vector. The (iN +

j)th row of Xw is reformatted from the window










x(i, j) x(i, j + 1) · · · x(i, j + l2)
x(i + 1, j) x(i + 1, j + 1) · · · x(i + 1, j + l2)

...
... . . . ...

x(i + l1, j) x(i + l1, j + 1) · · · x(i + l1, j + l2)











,

such that

Xw(iN + j, :) =

































x(i, j)
...

x(i, j + l2)
...
...
...

x(i + l1, j)
...

x(i + l1, j + l2)

































(5.5)
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Let γ1, · · · , γd1
and η1, · · · , ηd2

be random numbers, and

L = span

































































































































1
γ1η1

...

γ1η
l2
1

...

...
γk

1

γk
1η1
...

γk
1η

l2
1

...

...

γl1
1

γl1
1 η1
...

γl1
1 ηl2

1

































































· · ·

































































1
γiηj
...

γiη
l2
j

...

...
γk

i

γk
i ηj
...

γk
i η

l2
j

...

...

γl1
i

γl1
i ηj
...

γl1
i ηl2

j

































































· · ·

































































1
γd1

ηd2

...

γd1
ηl2

d2

...

...
γk

d1

γk
d1

ηd2

...

γk
d1

ηl2
d2

...

...

γl1
d1

γl1
d1

ηd2

...

γl1
d1

ηl2
d2

































































































































∈ R
(l1+1)(l2+1)×d1d2

(5.6)

Then if Q = (L R), where R⊥L, has an inverse and is denoted as

Q−1, then Algorithm 5 and 6 is QIT secure under the transformation

matrix P = Q−1.

Proof By the same rationale as in THEOREM 1, let

x′(µ, ν) = x(µ, ν) + β11γ
µ
1 ην

1 + · · ·+ βijγ
µ
i ην

j + · · ·+ βd1d2
γµ

d1
ην

d2
,

and the corresponding reformatted matrix be X ′w. Then, we know that

XwR = X ′wR. (5.7)

Hence, x′(µ, ν) is in the QIT indistinguishable set of x(µ, ν) under the
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mapping f(Xw) = XwR, such that the algorithm is QIT secure to

Alice. Since the mapping for h automatically satisfies the QIT model,

we conclude that the algorithm is QIT secure to both parties. Q.E.D.

5.2 Threholding Procotol

To analyze how secure our thresholding protocol is, we need to find

out how much Alice and Bob can know from the data they send to

each other. First, let us consider the information Bob sent to Al-

ice. Bob sends Alice x21 = Mtx2. Since Mt is a k × n matrix and

x2 = [ bn−1 · · · b 1 ]T , Mtx2 is equivalent to evaluating k different

polynomials at b, whose coefficients are defined by the row vectors of

Mt. The cryptosystem induced by Mt is m-QIT secure if and only if

there are at least m distinct values in the QIT indistinguishable set of

b. This is equivalent to saying that the (n − 1)th degree polynomials

with coefficients [Mt(i, 1) Mt(i, 2) . . . Mt(i, n− 1) Mt(i, n)− x(i)] for

i = 1, 2, . . . , k share m distinct roots. To maximize the security, we

would to have m as large as n − 1 which is the degree of the polyno-

mials. As shown below, this constraint impose a maximum value on

k, the number of rows in Mt, one can use. To show this, let us start

from the following lemma:

LEMMA 1. Given two polynomials g(x) and h(x) of degree n − 1 and

a scalar b. If equations g(x) = g(b) and h(x) = h(b) share exactly the

same roots, then g(x) = k1h(x)+k2, where k1 6= 0 and k2 are constants.
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Proof Since g(x) = g(a) and h(x) = h(a) share the same set of

roots, we have [g(x)−g(a)] = k1[h(x)−h(a)] or g(x) = k1h(x)+[g(a)−

k1h(a)] for some k1 6= 0. Set k2 = g(a) − k1h(a) and results follow.

Notice that as long as g(x) is not a constant, the coefficient vector of

f(x) is linear independent of the coefficient vector of g(x). Q.E.D.

THEOREM 2. If the proposed thresholding protocol is (n−1)-QIT secure

with respect to Bob, then the number of rows k in Mt is at most two.

Proof Since the full matrix M−1 invertible, the k row vectors of Mt

must be linearly independent. k is at least two based on LEMMA 1. If k

is larger than two, select any three row vectors and formulate the three

corresponding polynomials f1(x), f2(x) and f3(x). Using LEMMA 1, we

have f1(x) = k0f3(x) + k1 and f2(x) = k3f3(x) + k4. Thus, the co-

efficient vectors of both f1(x) and f2(x) lie in the subspace spanned

by the coefficient vector of f3(x) and [ 0 · · · 0 1 ]T and we obtain a

contradiction. Q.E.D.

Next, we come to the actual design of Mt. Even though Alice may

not know the precise value of b, she can usually assume b to be within

a certain range. Without loss of generality, assume that b ∈ [−1, 1].

Thus, we need to find a polynomial g(x) such that for any b ∈ [−1, 1],

all the n − 1 roots of g(x) = g(b) are real and fall within the range

[−1, 1]. An example of such function is the (n−1)th order Chebyshev’s
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polynomial2: Tn−1(x) = cos[(n− 1) cos−1(x)]. Figure 4.1(b) shows the

first four Chebyshev’s polynomials. We state the following fact without

proof about the Chebyshev’s polynomials though it is QITe obvious

based on the figure.

FACT 1. Except for at most n+1 distinct points within [−1, 1], the nth

order Chebyshev’s polynomial Tn(x) is n-noninvertible on [−1, 1]

The n+1 distinct points forms a measure-zero set in [−1, 1]. Thus,

the mapping Mtx2 will be (n − 1)-QIT secure to Bob if we can set

Mt =

(

C[Tn−1(x)]
C[k0Tn−1(x) + k1]

)

where the operator C[·] denotes the co-

efficient vector of a polynomial. Given Mt, we can easily compute Mb

by extending the two row vectors in Mt to a full set of basis in Rn.

We now show that the proposed thresholding protocol is also QIT-

secure to Alice. Bob receives x12 = xT
1 Mr from Alice. Bob also knows

that x1 corresponds to the coefficient vector of a (n− 1)th degree poly-

nomial f(x) with a single real root and non-negative derivative at that

root. To show that the protocol is QIT-secure to Alice, we need to

find x′1 that corresponds to a polynomial with the same features and

x12 = x′T1 Mr. Given Mt is defined based on the Chebyshev’s polyno-

mials, we have the following theorem:

THEOREM 3. Given that x1 is the coefficient vector of a polynomial

f(x) with only a single real root and non-negative derivative at that

2Though stated in its general form, Chebyshev’s polynomials can be easily computed as a true
polynomial based on the recurrence relation Tn+1(x) = 2xTn(x) − Tn−1(x) with T

−1(x) = 0 and
T0(x) = 1.
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root and Ml =

(

tT
1

tT
2

)

, there exists x′1 6= x1 such that x′T1 Mr = xT
1 Mr

and x′1 corresponds to the coefficients of f ′(x) which also has a single

real root with non-negative derivative at that root.

Proof Recall that M−1 =

(

Mt

Mb

)

and M = (Ml Mr). Thus, Mt

and Mr relate to each other by the following relationship:

Mt ·Mr = 0

As Mr and Mt are a part of an invertible matrix, the rank of Mt is 2 and

the rank of Mr is n−2. Thus, if vTMr = 0, vT must be in the subspace

S spanned by the row vectors of Mt. Note that (x1 + v)TMr = xT
1 Mr.

Our strategy is to find an appropriate v that can satisfy the conditions.

On the other hand, the row vectors of Mt denote the coefficients of

the Chebyshev’s polynomial Tn−1(x) and k0Tn−1(x)+k1 for arbitrary k0

and k1 6= 0. It is obvious that the vector [ 0 · · · 0 1 ]T is in the subspace

S. Define v = [ 0 · · · 0 ǫ/2 ]T where −ǫ is the largest local maximum

in (−∞, a] of Alice polynomial f(x). If no such local maximum exists,

ǫ can be chosen arbitrarily. The vector x′1 = x+v then corresponds to

a polynomial f ′(x) = f(x) + ǫ/2. Note that this polynomial still has

a single real root because the large local maximum on the left hand

side of the root is still ǫ/2 from zero. Furthermore, the derivative at

the root must be non-negative otherwise a local maxima would have

crossed the x-axis. Q.E.D.

In the unfortunate case when the largest local maximum left of a
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and the smallest local minimum right of a are both small, we can only

shift f(x) by a small amount before it starts to have more than one real

root. In other words, it is possible for Bob to roughly estimate a despite

the fact that the protocol is QIT-secure. The security, however, can

be significantly improved by imposing some constraints on the random

complex roots of f(x). Without loss of generality, we again assume

that Alice’s number a ∈ [−1, 1]. We have the following result:

THEOREM 4. The thresholding protocol is INFORMATION THEO-

RETICALLY secure to Alice if Alice first generates an auxiliary poly-

nomial

g(x) = (x− 1)

(n−2)/2
∏

i=1

(x− ci)(x− c̄i) (5.8)

with random ci under the constraint Real(ci) > 1 for all i and then let

f(x) = g(x)− g(a).

Proof For any real x, if we rewrite each term in Equation (5.8) in

polar form, the complex exponential terms for the conjugate roots will

cancel each other and g(x) will become

g(x) = sign(x− 1) · |x− 1| ·

(n−2)/2
∏

i=1

|x− ci| · |x− c̄i| (5.9)

Equation (5.9) shows that a) g(x) is negative for x < 1 and positive

for x > 1 and b) g(x) is strictly increasing or dg
dx > 0 for x ≤ 1. This

is because as the real parts of all the complex roots are larger than

one, every modulus term in Equation (5.9) decreases as x approaches

1 from −∞. As sign(x − 1) is negative, g(x) is strictly increasing.
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Clearly f(x) = g(x) − g(a) for a ∈ [−1, 1] satisfies our requirements

of having a single real root and non-negative derivative at a. Recall

that the coefficient vector of f ′(x) = f(x) + c for any constant c is

in the null space of Mr. By choosing c ∈ [g(a), g(a) − g(−1)], f ′(x)

can have its single real root anywhere in [−1, 1]. Thus, based on the

information sent by Alice, Bob has no information about a and the

protocol is information theoretically secure to Alice. Q.E.D.

In closing, we have developed a linear filtering protocol that is

QIT security to both Alice and Bob, and a thresholding protocol that

achieves perfect security for Alice but leaks some information about

Bob’s secret number (only QIT secure).
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Chapter 6

Experiments and Discussion

In this chapter, we will show the experimental results and discuss some

possible problems of our proposed protocols.

6.1 Experimental Results

In this section, comparison of the time used between our proposed

protocols and the classic protocols will be presented. As will be seen,

our proposed protocols speed up the computation significantly.

6.1.1 Linear Filtering

Our proposed linear filtering protocol is computationally efficient as

expected compared with the classical OT based protocols. As a com-

parison, we have implemented a classic two-party protocol based on the

decription from [4], using our own 512-bit RSA public-key cryptosys-

tem (PKCS). We then compare its performance with the algorithm de-

scribed in Chapter 4 on a dual Wintel CPU (P4-3.4GHz) desktop with

1GB memory. The reason we did not test the classic protocol on real
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images is because it will take hours to do a linear filtering on a single

image. The oblivious transfer based technique takes about 20 minutes

to compute the inner product of two 20-dimensional vectors while our

two-party protocol uses only 30 milliseconds and our three-party pro-

tocol uses 47 milliseconds. Despite our non-optimal implementation of

the oblivious transfer protocol, its slow performance can be attributed

to the handling of very long integers in the encryption/decryption pro-

cess as well as the large amount of information exchanged between

Alice and Bob. For linear filtering using a 7 × 7 Gaussian mask on

the same computing platform, our two-party solution takes on average

0.7 seconds to denoise a 128× 128 image and our three party solution

takes around 0.6 seconds. We summarize the timing in Table 6.1.

Table 6.1: Average time used for linear filtering.

OT Based Two-party Three-party

Inner Product of 20-D vectors 20 minutes 30 milliseconds 47 milliseconds

Image Linear Filtering N/A 0.7 seconds 0.6 seconds

6.1.2 Thresholding

To compare the computational performance of the proposed thresh-

olding protocol with existing schemes, we use the cryptographic secure

millionaire protocol described in [4]. We have implemented both pro-

tocols in Matlab 7.0.1 on a Pentium 4 Dual Core 3.4GHz machine with

1GB memory. To ensure the validity of the protocols, the protocols

for Bob and Alice are run separately in two processes and the two
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protocols exchange information using TCP/IP.

For the cryptographic protocol, Bob creates a series of tables by

bitwise comparing his secret number b with every possible value of

Alice’s secret number a, encrypts the tables using a public-key cipher,

and then transfers them to Alice. Alice decrypts the only entry of

the table that is corresponding to his own number a and extracts the

results. We have implemented our own 512-bit RSA public-key cipher

using the long-integer operations provided by the Maple kernel within

Matlab. We have run a series of comparison between random pairs of

64-bit floating point numbers. The average computation time per pair

on Bob’s side is 84.70 seconds. Excluding the time spent on network

operations, this number reduces to 83.73 seconds. The computation

times per pair for Alice are 10.72 seconds with networking and 10.43

without. Alice is faster because she does not need to generate large

tables. We have pre-generated a set of random public keys used in

the protocol and have excluded the time for key generation in the

measurement.

On the other hand, our proposed technique runs significantly faster.

On average, Alice takes 35.40 milliseconds with network and 1.31 mil-

liseconds without for each comparison. Bob takes 35.41 milliseconds

with network and 0.23 milliseconds without. Alice takes longer as she

needs to generate a 19th order random polynomial. Compared with the

cryptographic protocols, this is a factor of 104 improvement in com-
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putation time. In summary, we listed the timing of both protocols in

Table 6.2.

Table 6.2: Average time used for thresholding.
Time Used

OT Based with Network 84.70 seconds
OT Based without Network 83.73 seconds
QIT with Network 35.40 milliseconds
QIT without Network 1.31 milliseconds

6.2 Discussion

Although our proposed protocols improve the computational time

significantly, there are still points that need to be further investi-

gated. One problem with our two-party linear filtering protocol is

on the discontinuities of the images (edges). Since as can be seen

in Chapter 5, for x(µ, ν) the QIT indistinguishable set is given by

x′(µ, ν) = x(µ, ν) + β11γ
µ
1 ην

1 + · · ·+ βijγ
µ
i ην

j + · · ·+ βd1d2
γµ

d1
ην

d2
. Notice

that βijγ
µ
i ην

j is continuous for i, j. Therefore, the discontinuity points

is contributed soly by x(µ, ν). This is a possible weak point of leaking

edge information about the image, which sometimes is very important.

One possible remedy of this problem is to use original inner product

protocol in [11], but before applying it, Alice need to random permute

the rows of Xw as is proposed in [19]. This, however, arises another

problem as the security of this protocol is still kept unproven.

Another problem is about the proposed thresholding protocol. At

the end of the protocol, Alice or Bob needs to send her/his share to the
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opposite side. Definitely, Bob cannot send his share to Alice, because

Alice generated the polynomial f(x), and if given Bob’s share, Alice

will know the value of f(b), then she will know what b is simply by

solving the equation f(x) = f(b). This will tell everything about Bob’s

b. Hence, the only possible way is to have Alice send her share to Bob,

and let Bob know f(b). We know that Alice’s f(x) is transformed by

matrix Mt and Mb, then it is decomposed to f(x) = fb(x)+ft(x), where

fb(x) is the polynomial in the space spanned by Mb and ft(x) in the

space spanned by Mt. Receiving x12 = xT
1 Mr and xT

11x21 = xT
1 MlMtx2

from Alice, Bob can estimate fb(x) and ft(x) respectively. Thus, the

perfect secrecy for Alice is compromised.
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Chapter 7

Conclusion

In this thesis, we proposed a novel security model called Quasi Informa-

tion Theoretic (QIT) model. Compared with the two existing classical

cryptographic security models, namedly Information Theoretic Secu-

rity and Computational Security, our proposed model provides less

security than the former model in the information sense while enable

us to develop protocols that are significantly faster than those under

the latter model. Under the proposed QIT security model, protocols

to solve two problems, linear filtering and thresholding, are developed.

The rigorous analysis of the security of the protocols for both parties

were also presented. The experimental results showed that our pro-

posed protocols improved the computational time largely. While there

are some potential insecure point in our proposed protocols as is dis-

cussed in Chapter 6, we need further improvement and analysis in the

future. Other future work includes extending the QIT framework to

more signal and image processing algorithms.
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