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ABSTRACT OF THESIS

LINEAR AND NONLINEAR MODELING OF ASPERITY SCALE FRICTIONAL MELTING
IN BRITTLE FAULT ZONES

Study of pseudotachylytes (PT) (frictional melts) can provide information on the physical and
chemical conditions at the earthquake source. This study examines the influence of asperity-
scale fault dynamics on asperity temperature distribution, and therefore, the potential for
frictional melting to occur. Frictional melting occurs adiabatically, and is initiated between
opposing asperity tips during fault slip. Our model considers 2-D heat conduction in elastic,
isotropic, hemispherical asperities, with temperature dependent thermal properties. The only
heat source is a point heat flux pulse at the asperity tip. The non-linear problem was solved
using the &-form of Newton-Kantorovich procedure coupled with the d-form of Douglas-Gunn
two level finite difference scheme, while the linear problem required only the latter method.
Results for quartz and feldspar indicate that peak temperatures can reach melting point values for
typical asperity sizes (1-100 mm), provided that contact (frictional) shear stress is sufficiently
high. For any asperity size, the temperature distribution peak becomes insignificant by the time
it reaches the asperity center. These results imply that much of asperity scale melting is highly
localized, which may explain why most PT veins in the field are usually very thin. However, in
some cases, successive asperity encounters may generate temperature increases large enough to
trigger the massive melting inferred from typical PT exposures. Significant differences were
observed between the results of the linear and nonlinear models.

KEYWORDS:Frictional Melting, Nonlinear Thermal Modeling, Pseudotachylytes, 2-D Heat
Conduction, Douglas-Gunn Method
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1.0 INTRODUCTION

1.1  What are pseudotachylytes?

Definition: The word pseudotachylyte refers to a rock having an appearance similar, but a origin
distinct from, certain glassy basaltic rocks known as tachylytes. The term has come to refer to a
particular assemblage of mesoscale and microscale characteristics associated with fault, shear or
impact zones, that include: typically dark, aphanitic veins showing intrusive behavior, sharp
boundaries, and included clasts and crystals of the host. The veins may contain glassy
(amorphous) areas, microlites, spherulites, vesicles, amygdules, and embayed lithic fragments,
newly grown high temperature minerals, and dendritic crystals; and show chilled margins and
flow textures (at both the field and microscopic scale) (Magloughlin & Spray 1992, Spray 1992).

Inferred Origin: Pseudotachylytes have been interpreted as frictional melts produced during
high strain rates. Spray (1995) argues that depending on shear velocity-stress-displacement
relations prevailing during frictional slip, rocks produced in seismogenic zones (the brittle, upper
10-12 kilometers of the earth’s crust) can be predominantly comminuted wall rock (“host-rock
grounds”) or fragment-melt mixes (pseudotachylytes). While melting contributes to much of the
dark matrix mentioned above, comminution provides most of the clasts (macroscopic or
microscopic). Also, Shimamoto and Nagahama (1992) have argued that particles below about
Sum are completely melted and are not typically observed in pseudotachylyte specimens.
Indeed, particles at the lower end of the size distribution have a larger average surface area to
volume ratio, making them highly susceptible to melting. Pseudotachylytes are thus products of
both fracture and fusion, containing a mix of both fragments and melt (Spray 1995).

Formation_Settings: Pseudotachylytes have been found to be very rare in nature. Where

observed, pseudotachylytes have been found to form under a variety of situations:

. In Normal, thrust, and strike-slip fault zones (Curewitz and Karson 1999, Spray 1995,
Magloughlin & Spray 1992, Swanson 1992, Scholz 1990, Sibson 1975, McKinzie and Brune
1972), and in connecting lateral ramps associated with them (O’Hara 1992). They have been
interpreted to have formed at relatively shallow crustal depths (2-10 km below the surface),
or mid-crustal depths (10-20 km). They have been associated with both brittle deformation
within the “elasto-frictional” regime of the upper 10-12 km of the crust, and with ductile
deformation within the “crystal-plastic” transition regime between 11-22 km of the crust.

. In meteorite impact structures (Spray 1997, Spray 1995, Magloughlin & Spray 1992),
where they possibly form due to shock wave compression originating from a hypervelocity

impact.
. In unconfined “superfaults” (Spray 1997).
. At the base of major landslides (Curewitz and Karson 1999, Masch et al. 1985, Erismann

1979, Scott & Drever 1953).



1.2

Why study pseudotachylytes?

Pseudotachylytes can be used to infer past behavior of fault zones. They have been traditionally
interpreted as an indicator of high-velocity slip (> 10 m/s), and therefore, as a fossil remnant of
paleoseismic events (Spray 1995, Sibson 1975, McKinzie and Brune 1972). Their presence may
also be indicative of meteorite impact, in which case their distribution can help to determine the
diameters of impact structures (Spray 1995). The focus of this thesis is on pseudotachylyte
formation in fault zones. The goal is to improve our understanding of fault zones processes. The
practical implications of studying frictional melts in fault zones are:

Inferring the temperature and depth of formation of pseudotachylytes. Magloughlin and
Spray (1992) argue that formation depth, in conjunction with lithology causes certain
patterns in fault behavior. Formation depths have been inferred from (a) structures in
pseudotachylyte veins, including shapes and sizes of clasts (Swanson 1992, Shimamoto
& Nagahama 1992, Grocott 1981); (b) inferred melt temperatures based on chemical
composition of re-crystallized minerals and pseudotachylyte matrix (Curewitz and
Karson 1999, O’Hara 1992, Magloughlin 1992, Sibson 1975); (c) wear-melt ratios
(O’Hara 2001); and sometimes even (d) local stratigraphy and erosion rates (Killick and
Roering 1998). The latter information can be used to determine paleo-earthquake types,
and tectonic settings. Ultimately, at the megascopic scale, this information can be used to
support or reconstruct past tectonic events (like continental rifting or collision). An
example of such an application is Curewitz and Karson’s (1999) study, which further
supports earlier evidence of the Early Tertiary rifting of Eastern Greenland from
Scandinavia and Western Europe.

Earthquake rupturing is now viewed as a key structural process that contributes to the
cumulative evolution of fault zones (Swanson 1992). There is an association between
pseudotachylyte generation and relatively long-lived, large displacement faulting and
shearing (Magloughlin and Spray 1992). Quantification of temperatures attained by
melts can help determine the overall energy budgets for, and stress levels causing,
faulting and shearing. Grocott (1981) studied the fracture geometry associated with
pseudotachylyte generation to understand the nature of fracturing during earthquake
faulting. He argued that a study of pseudotachylyte-bearing fault structures can provide
information that cannot be obtained through indirect seismic studies — for instance, fault
behavior at the earthquake source. Swanson (1992) argued that the presence of
pseudotachylyte along faults enables the distinction to be made between those seismic
structures resulting directly from dynamic rupture propagation and aseismic structures
that develop through plastic shearing, cataclastic flow or small-increment-cumulative-
displacements.

Last but not the least, to develop a theoretical model of frictional melting, as is attempted
in this thesis, is to better understand the mechanistic (kinematic and dynamic), energetic,
as well as material and lithologic constraints on fault motion. Melt volumes, wear-melt
ratios, and clast size characteristics can be theoretically estimated from the total energy
budget available for fault slip, and then compared to field, experimental, and chemical
analysis data for calibration and/or revision.



1.3  Pseudotachylyte Constituents

Pseudotachylyte constituents have been studied extensively by earlier researchers. An enormous
amount of data and information have been gathered from their geochemical and mineralogical
analyses. Detailed structural observations have been carried out from the sub-microscopic scale
[Scanning Electron Microprobe (SEM) and Transmission Electron Microscope (TEM)] to the
field scale. A detailed overview is provided by Magloughlin and Spray (1992) and Sibson
(1975), while specific regional analyses of pseudotachylyte matrix and clasts are provided in
O’Hara (2001), O’Hara (1992), Curewitz and Karson (1999), Ray (1998), and Swanson (1992),
amongst many others. As discussed in Section 1.1, the main constitutents of pseudotachylytes
are a dark aphanatic matrix with embedded clasts.

Matrix: The pseudotachylyte matrix is typically dark (brown, black, sub-opaque to opaque),
dense, and extremely fine-grained, but rarely contains optically recognizable glass (Sibson
1975). It is predominantly made up of recrystallized frictional melt, and makes up anywhere
from 70-90% by volume (based on thin section analysis). The dark color of the matrix is
sometimes due to the presence of felsic minerals (either re-crystallized or surviving from the host
rock) like epidote, clorite and sericite, and commonly, magnetite. The matrix often displays
either microlitic structures resulting from rapid chilling of a melt, or devitrification textures, both
of which may be obliterated by recrystallization. Where some glass is seen, it is typically dark in
color, and displays flow structures. Sometimes, the matrix contains dendritic crystal growths
and/or stellate clusters of plagioclase microlites that have nucleated on porphyroclasts.
Occasionally, microlites flow around porphyroclasts in a trachytic manner (microlites are aligned
sub-parallel to melt flowlines), indicating that some crystallization had proceeded prior to melt
solidification. Where microlitic crystallization is absent, spherulitic structures characteristic of
devitrification are commonly observed. The margins of pseudotachylyte veins are often very
sharp, dark, and fine-grained, cutting cleanly across quartz and feldspar grains. Sometimes,
veins have irregular color variations sub-parallel to their walls, which have been interpreted to be
relics of flow banding. But where the host rock contains an abundance of mafic minerals,
especially biotite (a mica group mineral), these tend to be preferentially assimilated by the melt
(Spray 1992, Sibson 1975) and the contact becomes ragged with cuspate offshoots of the
pseudotachylyte into the host rock. Correspondingly, the composition of melt is enriched in those
components comprising the melted minerals. Intense cracking and fragmentation has been
observed in the host rock wall, adjacent to veins, along with channel expansion. Both effects
have been linked to the dramatic rise in pressure of fluid inclusions due to the flash melting of
the host rock that typically generates frictional melt. Sibson (1975) calculates that an increase in
temperature of only 50° C can cause a fluid pressurization of 1 kbar. That kind of
overpressurization can cause either wall rock (or a clast containing a fluid inclusion) to spall
explosively and thus produce fresh fragmentation products. This type of fragmentation can be
expected to exist in regions of both the wall rock and the clast which are above a critical
temperature. Below this critical temperature, fluid inclusions have not been overpressurized.
Based on melting and recrystallization of the matrix (Swanson 1992, Sibson 1975) and
experimental studies (Spray 1995, Logan and Tuefel 1986), it has been inferred that flash
temperatures as high as 1100°-1200° C must have been attained in frictional melts.



Lithic clasts: Pseudotachylyte clasts can be either primary (generated by comminution of the
host rock) or secondary (plucked from the fragmented wall rock by pressurized frictional melt,
especially in injection veins). The clast size distribution in pseudotachylytes has been also found
to be fractal in nature (Ray 1998, Shimamoto and Nagahama 1992, Scholz 1990), with a fractal
dimension close to 1.5. Other researchers (Spray 1992) have obtained fractal dimensions close
to 2.6. Based on this fractal distribution “law”, both Ray (1998) and Shimamoto and Nagahama
(1992) have argued that clasts smaller than 5um do not typically survive frictional melting. In
consequence, the power spectrum of pseudotachylyte clast size distribution shows a corner
frequency corresponding to this size. Clasts can be classified into angular and rounded, based on
the degree of their melting (Curewitz and Karson 1999). Sibson (1975) argues that
pseudotachylytes contain a roughly equal mixture of quartz and feldspar porphyroclasts, with
occasional quartzo-feldspathic rock fragments. Quartz porphyroclasts being the most resistant to
melting, are typically angular and with an intensely cracked and strained appearance. On the
other hand, porphyroclasts of plagioclase feldspar, though often faulted internally with some
development of strain induced twinning, tend to be sub-rounded and embayed with rather blurred
outlines, perhaps resulting from partial melting. The porphyroclasts are almost always randomly
oriented, but occasionally, a shape alignment indicative of flow is apparent.

1.4  Goals of this project

The primary goal for this project is to understand if, and how, individual asperities contribute to
frictional melting, and whether asperity scale interactions play an important role in frictional
melt generation. These are important questions since it is thought that frictional melting is
initiated at asperity tips. Another issue of interest is whether individual asperities can produce
temperatures high enough for frictional melting to occur, or whether it would require multiple
asperity interactions.

1.5 Outline of Thesis

Chapter 2 explores the characteristics of structures and fault surfaces within which
pseudotachylytes are found. Chapter 3 discusses pseudotachylyte formation mechanisms that
have been inferred by earlier researchers. It discusses both wear and melt processes, and
attempts to provide a generalized sequence for pseudotachylyte generation. It also presents a
description of the proposed model, including a list of assumptions. Chapter 4 presents a
summary of results, discussion and conclusions. Appendix A provides a detailed description of
the numerical method, discretization, the FORTRAN 90 source code, COND2D, and code
validation tests. Appendix B contains the FORTRAN 90 source code. Appendix C contains all
rock and mineral property data relevant to modeling frictional melting, in the form of both tables
and figures. Appendix D contains four MATLAB codes for post-processing COND2D output
files, and used to generate plots presented in Chapter 4 and Appendix A.



2.0 PHYSICAL CHARACTERISTICS OF
PSEUDOTACHYLYTE BEARING FAULTS AND STRUCTURES

2.1 Fault structures and rock associations in pseudotachylyte generation
zones

A fault is defined as a fracture with relative displacement between its two faces. Fault structures
are patterns of fracture, deformation, or shear found within and around faults zones. In this
section, we are primarily interested in structures in pseudotachylyte-bearing faults that have been
observed in the field. These structures enable us to set structural controls and boundary
conditions on the frictional melting model developed in Section 4.

Rocks that occur within fault zones provide primary evidence for the processes that occurred
there (Scholz 1990). Therefore, studying fault structures (either at the field scale or at the
microscopic scale) is useful in identifying the mechanistic processes that created them. This in
turn can be used to make a qualitative determination of the nature of the stress fields that
instigated faulting, the direction of fault movement, and the extent of fault displacement. In
addition, a study of fault structures may provide information on the sequence of faulting, fault
reactivation. The extent of the deformation of certain rocks, or recrystalized minerals, can
provide information on the energetics of faulting. Further, studying the structures in
pseudotachylyte-bearing faults also provides qualitative information on the viscocity of the melt,
degree of overpressure, and the nature of melting of clasts trapped in the pseudotachylyte matrix.
Finally, structures like gouge trails, cavities, and pits, formed in the fault block walls due to (a)
the preferential deformation and/or melting of minerals with low strengths and melting points,
and/or (b) the presence of fluids, can provide specific process information for that fault.

Brittle faults are confined to the schizosphere (the brittle upper 12 km of the crust) and ductile
shear zones are confined to the plastosphere (the plastic flow zone 10-15 km) (Figure 2-1). The
upper crust is characterized by a breccia, gouge, and cataclasites, formed by brittle processes,
whereas the plastic lower crust is characterized by metamorphic rocks and mylonites (see Scholz
1990 for textural classifications of fault rocks.
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Figure 2-1. Profile through a conceptual strike-slip seismogenic zone, showing the brittle-
plastic transition, variation of deformation, and wear mechanisms with depth in the crust,
and the distribution of selected pseudotachylyte occurrences (some from non strike-slip
sources) within both mylonitic and cataclastic fault zones. Reproduced from Swanson
(1992).

Most pseudotachylytes have either been formed in the “shallow” brittle zone, or in the
brittle-plastic transition zone (Figure 2-1). Some of them might have possibly undergone
multiple periods of displacement before reaching the surface, while most are now exhumed due
to erosion. Some pseudotachylytes might have formed deeper, in the transition zone, and have
since been uplifted. Characteristic structures in pseudotachylyte formed in the brittle and ductile
zones is presented below.

Brittle zone: The brittle cataclastic regime (or cataclasite regime, Figure 2-1) develops frictional
melts in conjunction with active cataclasis (fragmentation) of the adjoining wall rocks from



abrasive wear in the brittle deformation regime. The pseudotachylyte in some of these exposures
shows multiple sequences of melting and cataclasis (Swanson 1992).

Ductile zone: The ductile shear regime (or mylonite regime, Figure 2-1) produces frictional
melts that are reworked by continued plastic deformation, expressed as intermittent brittle
rupturing within a background of continuous plastic shearing (Swanson 1992). Some
pseudotachylyte veins produced in this regime show evidence of plastic deformation along with
the adjoining host rock and development of internal foliations during shear. Flattened,
recrystallized porphyroclasts and mineral aggregates are aligned parallel to these internal fabrics.

Pseudotachylyte bearing faults exposed at the surface are associated with a number of structures,
including: fault and injection vein arrays, pseudotachylyte generation zones, reservoir zones, en
echelon linkage duplexes, and side wall ripouts (Figure 2-2). In addition, when viewed at a
larger scale, several occurrences of multiple pseudotachylyte fault vein arrays are found in
distinctive structural settings that indicate repeated rupturing with identical deformation
mechanisms in successive earthquake events (Swanson 1992). These arrays include en echelon
arrays and complex brittle zones (Figure 2-2). Each of the above structures is briefly discussed
below.

Fault veins_and_injection_veins: Pseudotachylyte is most commonly found in fault veins and
injection veins (Figure 2-2a & b) (Swanson 1992, Sibson 1975). The fault veins are typically a
few millimeters to a few centimeters thick and may show variations in thickness due to
irregularities in the fault surfaces. Injection veins are the most common reservoir for generated
melts. These veins typically lead the melt away from generating surfaces, at near-orthogonal
angles to the fault veins, into the cooler wall rocks.

Generation _zones: Generation zones include paired slip surfaces that isolate tabular zones of
host rock (Figure 2-2c, d & e) (Swanson 1992). These distinctive parallel fault configurations
are defined by pairs of overlapping layer-parallel slip surfaces that serve as the dominant
displacement structures. The fault bounded slabs between these overlapping surfaces exhibit a
complex strain history. Internal fracture assemblages consisting of orthogonal dilatant veins and
conjugate shear fractures indicate fault parallel extension associated with the injection of
pseudotachylyte.

Reservoir zones: These are large, dike-like dark pseudotachylyte bodies that are commonly a
few meters wide and occupy extensional voids in fault zones (Figure 2-2f). They are embedded
with considerable quantities of variably sized, angular and rounded clasts. These tend to collect
frictional melt that is squeezed out of the generation zones during fault displacement (Curewitz
& Karson 1999, Scholz 1990, Sibson 1975).

Strike-slip _duplexes: Using detailed mapping, the paired tabular structures mentioned above
have been shown to be elongate areas of extensive overlap between the ends of en echelon
strike-slip fault segments (Swanson 1992). Internal deformation within the tabular zones (by
conjugate faulting between the slip surfaces) serves as the mechanism of displacement transfer
and finite strain accommodation between the coupled fault segments during slip (Figure 2-2g).
Extensional and contractional geometries of internal fracturing within the fault-bounded slabs
depend on the sense of slip and stepping direction between the overlapping slab segments.
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Figure 2-2. (Previous page) Schematic diagram showing the geometry of pseudotachylyte
bearing faults. Basic structures: (a) & (b) Fault vein and injection veins; (c), (d) and (e)
Generation zones; (f) Reservoir zone; (g) Strike-slip en echelon linkage duplex; (h) Sidewall
ripouts. Structures associated with repetitive rupturing with identical fault styles and
deformation mechanisms: (i) en echelon arrays; (j) brittle zones. Reproduced from
Curewitz and Karson (1999), Swanson (1992), Grocott (1981), and Sibson (1975).

Whereas contractional duplexes tend to thicken with displacement through internal imbrication,
extensional duplexes with severe listric fault rotations may thin catastrophically and lead to the
formation of breccia within pseudotachylyte.

Sidewall ripouts: Associated with both the mylonitic (ductile) and cataclastic (brittle) fault
zones, these consist of coupled extensional and contractional ramps that define tabular to plano-
convex fault lenses adjacent to the dominant slip surfaces (Figure 2-2h) (Swanson 1992). They
are interpreted as mesoscale examples of adhesive wear that were generated as tabular ripouts up
to 35 m or more in length during slip along the main fault.

Adhesion of the fault blocks during slip ruptures one of the walls, ripping out a lens, and
translating it along strike during displacement. This ripped out slab acts as an asperity
temporarily, plowing its way through the adjoining wall rock, until (a) the cessation of slip
occurs, or (b) it is broken up during continuing displacement.

En echelon arrays: These shear systems are indicative of intermittent coseismic slip (Figure 2-
21) (Swanson 1992). Individual shear elements occur as oblique slip surfaces or fault zones that
re-orient themselves towards lower and lower angles with respect to the shear direction, and
develop localized pseudotachylyte or ultramylonite shear bands.

Brittle zones: Thin pseudotachylyte veins (mm thick) are commonly found in well-defined zones
of intense shear fracturing up to several hundred meters in width, particularly within anisotropic
(foliated) host rock (Figure 2-2j) (Swanson 1992). These occur in complex, sub-parallel,
overlapping arrays up to kilometers in length. The brittle zone itself appears to have a paired
shear or duplex structure, with slip localization occurring along the outer boundary zones.
Repeated rupturing in these brittle zones suggests a history of paleoseismic activity and the
structural similarity between events is due to the strong structural control exerted by host rock
anisotropy.

2.2 Fractal nature of fault surfaces

All real surfaces have a surface topography. Friction can be visualized in terms of shearing of
points of contact between surfaces, at the topographic highs. These topographically high contact
points, or protrusions on each of the contacting surfaces, have been termed asperities. It has
been shown that this topography is fractal (or self-similar) in nature, for both natural fractures as
well as natural rock surfaces, over a wide range of scales (11 orders of magnitude) (Power &
Tullis 1995, Scholz 1990, Power et. al 1988). For statistically self-similar surfaces, a small



portion of the surface, when magnified, looks statistically the same as a larger portion of the
surface (Mandelbrot 1983). The procedure to determine this self similarity is as follows:

* Detrending the surface roughness profiles — i.e., remove any large scale (wavelength)
features like slope or cyclicity

* Express the profile as a sum of sine and cosine waves using a suitable Fast Fourier
Transform (FFT) algorithm

* Calculate the amplitudes of the waves as a function of their wavelengths (which represent
different scales of the profile, or profile lengths)

e (Calculate the point power spectral density as the square of the amplitude at each
wavelength, and normalize with respect to profile length to allow for comparison of data
from different profile lengths

* Finally, plot the point power spectral density as a function of wavelength

A detailed account of the method used by the workers above is given in Power et al. (1988). The
absolute vertical level of the power spectrum indicates how rough or steep a surface is, while the
slope of the spectrum tells how the roughness changes with scale. For statistically self-similar
surfaces, the power spectral density curve is a straight line with a slope of exactly 3 on a log-log
plot (Figure 2-3) (Berry and Lewis 1980).

It has also been found that fault surfaces are highly anisotropic. For any surface, the profile
amplitude-wavelength ratio is defined as the ratio of the average value (say, root mean square) of
surface roughness (length units) to that of the wavelength of the roughness profile in any given
direction. Compared to the slip parallel direction, the profile amplitude-to-wavelength ratio is 1-
2 orders of magnitude larger in the direction perpendicular to fault displacement. This means
fault surfaces are much smoother parallel to the slip direction than perpendicular to it. This has
been observed for the San Andreas Fault (Scholz 1990). Also, for fractal surfaces, the profile
amplitude-wavelength ratio increases with wavelength (Scholz 1990). As shown in Figure 2-3,
the power spectrum of such a surface has a slope that is close to 3, indicating that natural fault
surfaces are nearly self-similar. The researchers above conclude that the fractal dimension of
natural fault surfaces to be slightly over 1 [D = (5 - Slope)/2].

It has been argued that contact between moving fault blocks occurs at a few distinct contacting
asperities, whose area is much smaller than the total fault surface area (Section 3.1.1 below)
(Scholz 1990, Power et al. 1988, Sibson 1975). The implication of this is that as fault
displacement progresses, contacting asperities at a lower scale (wavelength) get sheared off
during slip and the contacts progressively shift to higher and higher wavelength asperities. That
means that no matter what the thickness of the gouge (wear particles from fault motion —
products of comminution discussed earlier), there will always be places where asperities directly
abut (Scholz 1990). The fractal nature of fault surfaces provides a basis for assuming that
asperity surfaces are always in contact and their contact areas are the primary sources of
frictional heat generation. This is discussed in more detain in Section 3.4.
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3.0 MECHANISMS FOR PSEUDOTACHYLYTE FORMATION

3.1 Friction and deformation during slip

The earliest understanding of friction came from Leonardo de Vinci, who discovered two main
laws of friction through careful experimentation, and further observed that friction is less for
smoother surfaces. But his discoveries remained hidden, until they were rediscovered by
Amontons, who, in his paper of 1699 (see Scholz 1990) described two laws of friction:

*  Amontons’ first law: The frictional force is independent of the area of contacting surfaces.
*  Amontons’ second law: Friction is proportional to the normal load.

He also observed that frictional force is about one third the normal load, regardless of the surface
type or material. Rock friction is typically two-thirds the normal load (Scholz 1990). In the
years following his paper, a mechanism of friction was sought rigorously, and the importance of
surface roughness on friction was subsequently recognized. Friction was explained in terms of
various kinds of interactions between protrusions on surfaces, or asperities, which were thought
to act either as rigid or elastic springs. During the next 100 years, the difference between static
and kinetic friction was also recognized.

The modern concept of friction is generally attributed to Bowden and Tabor (1950, 1964), who
investigated many different frictional phenomena for a wide range of materials. Central to their
work was the adhesion theory for the friction of metals. They envisioned that all real surfaces
have a topography, so that when they are brought together, they only touch at a few points, or
asperities (Figure 3-1). The sum of all such contact areas is the real area of contact, 4,, which is
generally much smaller than the total area of contact, A7. It is this real area of contact that is
responsible for friction. They assumed that yielding occurs at the contacting asperities, causing
the area of contact to increase, until it is just sufficient to support the normal load, L.

12
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Figure 3-1. Asperity contacts during sliding of two surfaces. (a) Multiple Contacts of
sliding surfaces, (b) A single idealized hemispherical contact.

Therefore from the definitions of L, 4, and Ay from the last page, if g, is the “macroscopic”
normal stress on the fault, then

Lr=H.A,=0,.Ar 3-1)

where, H is the penetration hardness, a measure of the strength of the material. This deformation
of asperities in response to normal load explains Amontons’ second law. It must be realized that
Equation 3-1 is a constitutive law describing contact between surfaces, based on plastic or elastic
yielding. They supposed that adhesion occurred at the contact points due to the very high
compressive stresses there, welding the surfaces together at junctions. In order to accommodate
slip, these junctions have to sheared through, so that the friction force F' is the sum of the shear
strength of the junctions:

F=1.4, (3-2)

where, T, is the shear strength of the material. Equation 3-2 describes a constitutive law for
shearing. Because any constitutive law governing this shear interaction of asperities is bound to
predict a shear force proportional to 4, regardless of the exact mechanism assumed, Equation 3-1

also implicitly satisfies Amontons’ first law, as long as the equation itself is linear in L.
Combining Equations 3-1 and 3-2, friction can be described by a single coefficient of friction, (/:

U=F/Lr=1/0,=T,/H =constant (3-3)

13



That is, as load increases, so does the real contact area, 4,, so that the ratio 7/0, = /4 remains a
constant. It must be kept in mind that different mechanisms (elastic or plastic or both) might be
involved in the two processes described in Equations 3-1 and 3-2, and the interaction between
them could be complex.

Logan and Teufel (1986) determined experimentally - using thermodyes and a triaxial test
apparatus - that this real area of contact is strongly dependent on the applied normal stress, and
that the single-asperity contact area increases roughly linearly with increasing normal stress (4,
[] ;). This is in agreement with the fractal asperity size distribution for fault surfaces, discussed
in Section 2.2. As the normal stress increases, asperities of larger wavelengths come in contact,
leading to an increase in ‘“‘single-asperity” contact area. The asperity contact area is also
inversely proportional to the strength of opposing asperities (4, [/ 0,/H). They also argue that
the higher the material strength, the smaller the asperity contact area — contact area for limestone
(calcite) is roughly 10 times that for sandstone (quartz), since quartz is about 20 times stronger
than calcite (at room temperature). They obtain maximum real contact areas of 16% and 18%
for sandstone and limestone, respectively (in the presence of confining pressure, and when
opposing asperities are made up of the same material). Nadeau and Johnson (1998) used
moment release rates to estimate earthquake source parameters for the Parkfield segment of the
San Andreas Fault. They argue that the real (or asperity) contact area there is less than 1%.
Both sets of researchers obtained typical asperity dimensions of the order of a millimeter.

3.1.1 Rock friction

Much less work has been done on the frictional properties of minerals and rocks, but the
observed phenomena are much the same, and therefore, adhesion theory is assumed to be valid,
especially at deeper levels in the crust. It has been postulated that frictional slip within the upper
crust is dependent on the abrasion of a population of asperity contacts between sliding surfaces
(Rabinowicz 1995, Swanson 1992, Scholz 1990). The localized high stresses at the contacting
asperities lead to either localized brittle fracturing, and/or plastic shearing. Except at depths
within the plastosphere, plastic shearing is unlikely (Figure 2-1). In the schizosphere, as fault
slip commences (i.e., as relative displacement occurs), fault surface refinement progresses
through wear of contacting asperities, thereby increasing the real area of contact between the
sliding surfaces (Scholz 1990, Logan and Teufel 1986). It should be kept in mind, however, that
the adhesion theory of friction can only be used as a conceptual framework. Webster and Sayles
(1986) argue that, although Bowden and Tabor (1954) described the proportionality between
contact area and load by postulating that the applied normal load is entirely supported by plastic
asperity contact, Archard (1957) later showed that the proportionality can also be achieved with
elastic asperity deformation, i.e. it makes no difference what the deformation mechanism is! In
general abrasive wear is prevalent at lower temperatures (upper crust, Scholz 1990), and
adhesive wear at higher temperatures (lower crust, Swanson 1992).

For hard materials such as the silicates, contacts can be assumed to be highly elastic, and the
contact area of an asperity can be obtained from Hertz’s solution for contact between an elastic
sphere on an elastic substrate (Wang and Scholz 1994, Scholz 1990). Hertzian contact theory for
a spherical asperity predicts that the elastic deformation, and hence contact area (4,), are both
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proportional to L7 (Wang and Scholz 1994, Scholz 1990, Timoshenko and Goodier 1970),
where Lz is the total normal load on the fault surface. That is:

A=k L7 (3-4)

For a large number of such self-similar hemispherical asperities (successively smaller scale
spherical asperities superimposed on top of larger ones) in elastic contact with a flat substrate, a
linear relationship between 4, and L7 is obtained asymptotically (Archard 1957). In other words,
contact area A, is proportional to Lr (Equation 3-1) in the limit of a large number of
superimposed scales. Thus the microscopic and macroscopic constitutive friction laws are
dramatically different. While Equation 3-3 defines a constitutive law for (/ at the macroscopic
scale, the constitutive law for the microscopic scale becomes (from Equations 3-2, 3-3 and 3-4):

u=1k (Lr)"" =1/0, (3-5)

which has been shown to be true for hard materials (Scholz 1990). It must be kept in mind that
frictional shear resistance evolves during coseismic slip, from static to lower dynamic values, as
the fault surfaces evolve. Once friction is lowered to its dynamic value, further increases in
strain rate or slip velocity cause it to decrease only a few percent more for an order of magnitude
increase in slip velocity (Rabinowicz 1995, Scholz 1990).

Contact geometry: The elastic contact surface, between ball and race of a ball bearing, as well as
that between a ball and a flat surface, has been shown to be elliptical (Spence and Kaminski
1996, Harris 1966). Wang and Scholz (1994) used Timoshenko and Goodier’s (1970) results
and postulated a circular contact area between two elastic, hemispherical fault surface asperities
in contact with each other (Figure 3-1). For simplicity (and for reasons elaborated in Chapter
4.0), a circular asperity contact geometry is assumed in this thesis.

In studying the friction of any class of materials over any given range of conditions, interfacial
deformation mechanisms specific to the conditions and materials become important. Analytical
and numerical analyses of elastic asperity contacts have been undertaken in the field of tribology
for the purposes of analyzing ball bearing frictional forces and deformations (using Finite
Difference (FD), or Finite Element (FE) schemes — see Lowell and Khonsari 1999, Lowell et al.
1997, Lowell et al. 1996, Webster and Sayles 1986, Harris 1966). Analyses have even
considered spheres in contact with highly anisotripic flat surfaces (Kuo and Keer 1992). Singh
and Paul (1974) have developed an analysis for “non-Hertzian” contact problems with
frictionless surfaces containing asperities of arbitrary shape. All these analysis were for
lubricated metals, under controlled conditions more relevant to engineering applications. Fault
motion occurs under more chaotic and uncontrolled conditions. Nonetheless, results from such
analyses can be used as a starting point for better understanding of rock friction mechanisms.
Such analysis of friction is beyond the scope of the current project. As in studies by Archard
(1953, 1957) and Scholz (1990), the adhesive theory of friction and Hertzian contact theory are
the basis of the heat flux calculations of Section 3.4.
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3.2 Wear and gouge formation during slip

Since friction during slip within the upper crust is dependent on the abrasion of asperity contacts
between sliding surfaces, surface damage during sliding results in wear due to the interlocking
and ploughing of asperities (Rabinowicz 1995, Swanson 1992, Scholz 1990). The localized high
stresses at the contacting asperities lead to either localized brittle fracturing and/or plastic
shearing. Abrasion dominated wear, characteristic of the brittle zone (up to a depth of about 12
km), changes to adhesion dominated wear, and ultimately to continuous adhesion wear through
plastic deformation at depths greater than about 18 km.

The abrasive wear domain is characterized by brittle behavior and unstable frictional slip with
fracturing of asperities, development of loose wear particles, and the production of a cushion of
cataclasite. The adhesive wear domain is characterized by semi-brittle behavior and stable
frictional slip with plastic deformation of the asperities and material transfer to opposing faces of
slip. It is this surface refinement that produces a deformed layer of processed asperities that
may, ultimately, lead to shear heating and frictional melting as the surface evolves. As
mentioned at the end of Section 2.2, it is important to remember that no matter what the gouge
thickness predicted by the following models, asperities are always in contact. Further, asperity
size increases with increasing displacement and increasing gouge volume.

One of the first empirical relationships between slip (D) and pseudotachylyte thickness (7) came
from Sibson (1975), who obtained:

D
- o

where, T and D are in centimeters. He made a case that the gneissic rocks he studied came from
melts formed during seismic slip, and were therefore dimensionally controlled by frictional
heating, rather than wear. To argue this, he first calculated frictional shear stress 1.

475x10" ergs/em® | D 5.4x107
TfZ%TZ ;rgs - B6- T dynes | cm* (3-5)

where the number in the numerator of the middle equality is the energy required to melt a unit
volume of acid gneiss. He argued that if the melt were assumed to be a Newtonian fluid, further
movement is opposed only by its viscous resistance to shear. The resistance to shear would be
directly proportional to the rate of shear straining. The shear-strain rate would be inversely
proportional to layer thickness (7).

One of the earliest theoretical derivations of wear in fault zones was by Archard (1953), whose
method is independent of the specific wear mechanism. His method can be summarized as
follows (Scholz 1990): Assuming 1) a linear relationship governs the relationship between the
normal force and contact area, ii) a hardness parameter H, iii) a total normal force on the fault of
Ly, and 1v) circular contacts of diameter d, then there are n contacts given by
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AL,
n= 2

TiHd
Assuming that each contact junction exists for an effective working distance of 4., i.e., d. = ad,
where @ is a constant with a value near unity (Rabinowicz 1995), each junction must be
replenished 1/ d, times per unit of travel, so that the number of junctions per unit of travel is
given by

(3-6)

_n _ 4L,
o = d, ~ antd’? (3-7)

If the probability that any junction will shear off is &, and on the assumption that the fragment
formed by shearing is a hemisphere of diameter d, the wear rate is given by:

o _kmd® kL,
12 P 3aH

(3-8)

where, V is the volume of the gouge, x is the slip coordinate, and 72°/12 is the fragment volume.
Therefore, the volume of gouge, or new material, formed per unit displacement, D is

kL, D

~ 3aH (3-9)
which, neglecting the porosity change, produces a gouge zone of thickness 7 given by

_ ko,D 3-10

ey (3-10)

where g, is the normal stress and k = k/a is a dimensionless wear coefficient parameter. This
model predicts a linearly increasing gouge zone thickness with increasing fault displacement.
One limitation is that this model cannot predict wear rates resulting from different materials on
either side of the fault, as it does not consider the differences in grain boundary strength between
the two rocks (Scholz 1990). Another limitation is that the model applies only to steady-state
wear. A complete wear curve also contains an early “running-in” phase, in which high initial
wear rates decay exponentially with sliding until a steady-state rate is finally achieved. The
usual explanation for running in wear is that the starting surfaces are rougher than those that are
in equilibrium with the sliding conditions. Fresh surfaces have an initially high wear rate that is
proportional to this excess roughness (Scholz 1990, Power et al. 1988, Queener et al. 1965).

The next advance in wear zone determination was by Power et al. (1988), who assumed that
since natural fault surfaces are fractal, both the RMS roughness (root mean square roughness —
the square root of the sum of squares of profile amplitudes along a particular direction) and the
average centerline roughness of the fault increase with increasing slip (Section 2.2). That is, the
amplitude of the asperities, on average, increases with their wavelength. No matter how thick
the gouge becomes there will always be places where asperities directly abut. In these regions,
wear is expected to be high. In Power et al. (1988) model, the surfaces are continually running-
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in because steady-state smoothness is never achieved. Their model closely parallels that of
Queener et al. (1965), except for the initial assumption of average asperity roughness increasing
with fault displacement. Since this thesis is concerned with heat generation at a single asperity
contact, and is independent of wear, average roughness and wear were not considered. The
above discussion of wear was presented for the sake of completeness. Because of its higher
surface area to volume ratio, however, wear material may be easier to melt.

3.3 A generalized frictional melting sequence for pseudotachylyte generation

In Section 2.1, both brittle and ductile regimes for pseudotachylyte formation were discussed.
This section summarizes the main events in the frictional melting sequence. The summary will
lay a foundation for the overall model developed in Section 3.4. This section also indicates the
current conceptual ideas about how frictional melting occurs during fault motion. So, only the
conceptual model outlines of current models are provided here. Details of adhesion-dominated
plastic zone frictional melt generation mechanisms are discussed first.

As discussed in Section 2.1, adhesive wear-dominated melt generation operates at lower crustal
levels. The adhesive sequence develops within active mylonitic fault zones that may be
dominated by anisotropy controlled shear fracture propagation (Swanson 1992). In such rocks,
the reactivation of pre-existing planar anisotropy during rupture provides a near-planar slip
surface with few initial asperities and low initial wear rates during slip. Rapid surface
refinement with a transition to total adhesion, as the real area of contact approaches the total
area, leads directly to plastic smearing and laminar plastic flow without the extensive
development of cushions of cataclasite. The surface refinement process is greatly accelerated,
thereby enhancing adhesion, plastic flow, and frictional melting during slip. This results in a
much greater potential for pseudotachylyte generation (Swanson 1992).

In the abrasive wear-dominant regime at the upper crustal levels, the abrasive wear sequence
develops within active fault zones dominated by cataclasis. The sequence of events can be
described as follows (Swanson 1992, Sibson 1975) (also refer to Section 2-1):

1. Initial rupture propagation consisting of oblique tension fracture arrays at shallow levels
and en echelon R-shear arrays at deeper levels.

ii.  Surface refinement proceeds through forward clast rotation and comminution of the
initiation breccia, or through P-shear linkages in the en echelon array. Asperity reduction
is through brittle fracture, brecciation, comminution with high initial wear rates
(“running-in” wear of Section 3.2), frictional heating, and the initiation of melting of
comminution products. Friction will vary from static to lower dynamic values in case of
development of a new throughgoing surface, and may drop suddenly due to melting and
thermal pressurization of the fault zone. However, the fault planes themselves remain
thin (~ a few mm to 1 cm) keeping asperities in contact [see (iv) below] and allowing
further melt to be generated. Wall rocks are flash melted and, in some cases, superheated
during shear. Peak average temperatures of 1000° C and as much as 1520° C have been
estimated from theoretical calculations (McKinzie and Brune 1972), host rock melt
relations (Sibson 1975), and quartz glass compositions (Wenk and Weiss 1982). Offset,
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pseudotachylyte-generating shear fractures may be linked by a set of irregular injection
veins in a ladder network (Figure 3-2(1)).

iii.  Continued slip leads to refined particulate flow within a cushion of cataclasite as it builds
up along the fault surface. Grain size reduction proceeds to some critical level, where
further strain becomes localized along oblique R-shears within the cataclasite layer, or
along the wall rock / fault zone interface. Pseudotachylyte in these active cataclasite fault
zones tends to be thin fault veins sporadically developed along the margins of evolved
cataclasite layers where shear strain has localized with high enough slip rates for
frictional melting. Some pseudotachylytes may develop from a comminuted precursor,
particularly at shallow crustal levels (also see Jacques and Rice 2002).

iv.  As slip continues, pseudotachylyte from the bounding fault veins along the margins of the
cataclasite are injected into the growing void (induced by slip, see Figure 3-2(ii)), while
the fault planes themselves (on either side of the cataclasite) remain almost “barren”,
thereby retaining the frictional resistance required for further pseudotachylyte generation.

v.  Continued injection of pseudotachylyte, tensional fracturing of breccia fragments within
the fault zone, attrition brought about by rotational grinding, explosive decrepitation
(spalling) from fluid inclusion overpressurization, and corrosion by melt, all contribute to
the rounding of the clasts in the quasi-conglomerate that exists at this point (Figure
3-2(iii)).

vi.  Melt lifetimes may range from microseconds to several minutes or hours (or even days),
depending on slip velocity, slip duration, and reservoir dimensions. Hydrated micas are
preferentially melted, because of lower melting points, followed by feldspar and lastly,
quartz. The melt solidifies during post-seismic quiescence, but preserves features related
to processes associated with the slip event. While glassy veins and chill margins suggest
rapid solidification, microlitic textures indicate slow, static crystallization.

INITIAL STRES3 SYSTEM (1) LADDER NETWORK
o
1
o
(i) BRECCIA
S TS N e T S S e e s

Figure 3-2. Mechanism for quasi-conglomerate and pseudotachylyte formation.
Reproduced from Sibson (1975).
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3.4 Proposed frictional melting model

3.4.1 Background

Although significant insights into the formation and mechanics of pseudotachylyte formation
have been obtained over the last twenty years, not much research has focused on heat generation
at the asperity scales and its implications on asperity-level frictional melting. Although
temperature rises have been “constrained” based on slip along fault surfaces modeled as semi-
infinite half-spaces (McKenzie and Brune 1972, Sibson 1975, Cardwell et al. 1978, Swanson
1992, Killick and Roering 1998, Kanamori et al. 1998), such analyses do not have sufficient
spatial resolution to consider asperity level mechanisms of frictional melting. Archard (1958-59)
analyzed the flash (maximum) temperatures attained during frictional sliding for a hemispherical
asperity sliding over a flat surface, using physical rather than mathematical arguments. He used
a simple thermal resistance model for low velocities. For intermediate and large velocities, he
assumed one dimensional linear heat flow into a semi-infinite solid, thus neglecting asperity
effects. Barber (1967,1970), while analyzing the heat distribution between two sliding surfaces,
developed an approximate transient heat flow solution for small times. However, this analysis
falls short of obtaining the complete transient temperature distribution. This could become
important at larger asperity scales. Yovanovich (1966) investigated the problem of steady state
heat transfer between metallic spheres constrained elastically between two semi-infinite half-
spaces, by arguing that symmetry reduces the problem to cylindrical coordinates. Yovanovich
(1966) also considered conductive heat transfer between the gas surrounding the sphere and the
half spaces and radiative heat transfer between the sphere and the half spaces. He assumes that
the spheres do not experience any significant heating. These two assumptions (steady state
temperature distribution and a lack of significant heating) are not appropriate for asperity
interactions during frictional melting. This problem is a highly transient process and produces
extremely large temperatures compared to the bulk rocks of the fault walls.

Another body of work on frictional contact of asperities, carried out in engineering tribology,
attempts to understand slip rate dependence of dry friction in metals at high rates [Bowden and
Thomas (1954), Ettles (1986), Lim and Ashby (1987), and Molinari et al. (1999)]. These same
concepts were applied by Rice (1999) to flash heating in rock with contacts of the order of a few
micrometers in length. This is near the lower bound of elastic asperity areas used in this study.
However, the Rice (1999) model is 1-D and the slip weakening temperature is assumed to be
900° C. Above this temperature, shear stress is assumed to be negligible. If the 900° C cap were
correct, then no melt would be generated from frictional contact at asperity tips, based on the
temperatures quoted in the previous section. Also, this temperature cap is assigned without
actually considering the thermal evolution of the asperity itself.

Although Carslaw and Jaeger (1959) present solutions to the spherical heat conduction equation,
the presented solutions are for linear problems. Most are for symmetric boundary conditions.
As described below, the boundary conditions for this problem are highly abrupt and asymmetric.
We are concerned with a finite, hemispherical body (the asperity), which has an “instantaneous”
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AND “point” heat source at its tip (Figures 3-6) instead of at its base. In the latter case, the
solution could be directly deduced from the results of the above authors.

[dv = r* 5B drdo a|

Figure 3-3. Problem setup for determining the temperature distribution within a single
hemispherical asperity.

Thus, there is a need for a model for estimating asperity scale temperature distribution from
frictional heating. A single asperity pair interaction is the simplest scenario for which this can be
developed to understand asperity scale fault dynamics. This model can be used to determine if
high temperatures can be attained after a single contact “event” or if it requires multiple contacts.
The presented model can also be used to check the temporal evolution of the flash temperature
pulse, and to see if and how a sharp temperature pulse in one asperity affects adjacent asperity
temperatures. Although the overall energetics determine the presence or absence of frictional
melt, we assume that it is the asperities that generate the bulk of the frictional heating and
melting. The main focus of this thesis is to understand PT formation in brittle fault zones. We
want to estimate the maximum attainable flash temperatures at the asperity scale, the effect of
asperity size and contact shear stress on the evolution of the temperature distribution within an
asperity, and understand inter-asperity thermal interactions (if any).
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3.4.2 The Conceptual Model

3.4.2.1 Model Outline and Assumptions

Figure 3-4 summarizes some of the salient points of the model adopted here, and the following
list provides a detailed outline of the model framework and assumptions:

11.

1il.

1v.

Vi.

Vil.
Viil.

iX.

This analysis assumes a vertical strike-slip fault lying in the brittle crust. Motion is purely
strike-slip, such that gravitational work is negligible.

The materials on either side of the fault have identical mechanical and thermal properties.
The properties are homogenous and isotropic. The property values are assumed to be scale
independent. Thermal properties are strongly dependent on temperature (e.g.,
conductivity).

Asperities are hemispherical (Figures 3-1 to 3-4), and individual asperity contacts are
assumed to be elastic (Hertzian), resulting in circular contact areas (Figure 3-4). Barber
(1970) and Cameron et al. (1964) concluded that the shape of the heat source has negligible
effect on the temperature distribution for two sliding solids (for circular, square or band
sources).

Individual asperity contact areas are small enough, and velocities large enough, that the
contact duration is of the order of < 1-4 milliseconds. Therefore, the asperity contact
process can be considered adiabatic. All frictional work at the contact is converted into
heat energy input to the asperity. This means that once the heat flux pulse vanishes (when
the asperities separate), a zero heat flux boundary condition can be used for the rest of the
duration of simulation.

Interaction between the fault gouge and the asperity is ignored. Deformation within the
fault gouge is also neglected.

Because fault surfaces are fractal in nature (Power et. al, 1988, Scholz 1990, Power and
Tullis, 1995), asperities are always in contact during fault slip. As gouge is being produced
by the shearing off of asperities of a particular wavelength, contacts at a larger wavelengths
are exposed.

Friction (or shear stress) is assumed to be independent of fault slip rate.

For the linear problem (constant thermal properties), the superposition principle can be
used to determine the temperature distribution at any depth can be computed from the
average geothermal gradient added to (or subtracted from) that at a given depth. This is not
true for the non-linear problem.

A pure conduction heat transfer model can approximate the actual flash temperature
profiles and their evolution with reasonable accuracy. More complicated concepts like the
effects of melt convection and radiation, different geometries, and melt fronts are ignored.
Ignoring radiative heat transfer is reasonable because, except at discrete ‘“points”
(asperities) the bulk of the host rock does not attain considerable temperatures (see below)
for typical durations of fault slip. Convective heat transfer can be ignored since we are
only interested in temperatures up to melting.

It is assumed that the fault zone containing the asperities is bounded by two semi-infinite
half slabs of low thermal conductivity (a realistic assumption for rocks). Thus, the fraction
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of heat that diffuses in a direction perpendicular to fault motion is small compared to the
heat generated within the fault zone due to friction [Barber (1970)]. Heat diffusion
perpendicular to the fault surfaces is characterized by a penetration depth given by (Kj, to)'
where k£ is the rock thermal diffusivity and ¢ is the duration of faulting (Kanamori et al.
1998). Since Prandtl numbers (r.. V;,/K) for fault slip are typically greater than 1, the flash
temperature pulse “penetration depth” into the asperity is very small. In other words, as
fault displacement progresses, the rate of increase of asperity size (from exposure of higher
wavelength asperities) is larger than the rate at which heat penetration depth increases
within the asperity. Hence, as a first approximation, it seems reasonable that only a single
asperity needs to be considered as the flash temperature pulse generated in it may not ever
propagate out of its domain (i.e., neighboring asperities are not affected). Also, for this
same reason, it is reasonable to consider a full spherical domain, defined by adding an
image of the hemispherical asperity within the bulk rock, for solving this problem. Such an
assumption will allow us to take advantage of the symmetry of a 2D spherical problem.
This is illustrated in Figure 3-5. The two € boundary conditions and the boundary
condition at » = (), shown in that figure, are now such symmetry conditions. The fourth
boundary condition is given by Equation (8) (see Figure 3-3). These boundary conditions
are less restrictive than prior studies.

Data from earlier theoretical, field and experimental studies provide constraints for the model
parameters used here. These are presented in detail in Table C-1 (Appendix C)
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Figure 3-4. Schematic representation of asperities on a real fault surface, and their
hemispherical idealization. The image at the bottom right shows an elevation view of two
hemispherical asperities of identical radii R, in elastic contact with each other. The contact
results in a circular contact area, 4., between them, with a contact radius, r., as shown at

the right of that figure.
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(a) (b)

Figure 3-5. (a) Full spherical domain used in solving the problem defined above. (b) This
shows a cross-section of the fault, along a plane passing through the centers of opposing
asperities. The 2D problem domain (cross-hatched area) is rotated 90° with respect to the
asperity cross-section. This assumption is valid because of the extremely low thermal
diffusivities of rock materials.

3.4.2.2 Asperity contact area, and duration of contact

As mentioned in the previous section, we assume elastic deformation of hemispherical asperities.
Elastic deformation implies that the two asperities are rigid (made up of extremely hard
materials), and that the deformation produced is very small compared to the asperity dimensions.
The elevation view of two such contacting asperities is shown in Figures 3-1 and 3-4. Due to the
fractal nature of the fault surfaces (Sections 2.2 and 3.1.1), it must be kept in mind that these
asperities represent only one of the many scales of asperities present on a natural fault surface
area.

The expression for Hertzian contact between two hemispherical asperities of radii R; and R,
having different elastic properties is (Timoshenko and Goodier 1970):

—_ ﬂo-max R1R2 —_ 3770—/1 RIRZ

T = ; (3-11)
2E' \R +R,) 4E |R +R,

where Opax, the maximum stress, is 1.5 times the average stress, 0,. E’ is defined as:

_ 2 _ 2
E' E E,
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where E; and E, are the elastic moduli of the two fault surfaces and v; and Vs are their Poisson’s
ratios. If the two asperities have the same radii, R, as shown in Figure 3-4, and are made up of
the same material, then

.2
" =37f+'"[1 EV JR (3-13)

and the contact area is defined as

A, =m} (3-14)
Logan and Teufel (1986) have shown experimentally that the contact area per asperity, 4., as
well as the total real contact area (= A. x asperity density) increases nearly linearly with an
increase in normal stress, although the asperity density saturates quickly with increasing normal
stress. For typical values of parameters in Equation (3-13), the ratio (./R) is roughly 6%
(assuming: (¢ [7/0.6,0.85], v [7[0.20,0.25], E [1[20,75] GPa, T [7[0.001,1] GPa for quartz; [/is
a symbol for “belonging to the range”). Because this ratio is so small, it is also approximately
equal to the angular contact extent in radians, 8):, which can be defined from Figure 3-1 and 3-4
as

6 = Tan™ (r/R) = (rs/R) (3-15)

The duration of asperity contact is given by the time taken for either asperity to traverse a
distance of twice the contact area diameter, 2d., at the slip velocity, V;,:

to=2d,/ Vslip-': 4r./ Vslip-' (3-16)

Equations (3-15) and (3-16) will be used in the next section to compute the heat flux boundary
condition.

3.42.3 Heat generation

The contact area between the two asperities changes with time, as the upper asperity moves
relative to the lower asperity due to fault motion (Figure 3-6). The rate of work done per unit
asperity surface area during a differential fault displacement ds, occurring in a time increment,
dt, is

aw.
1M peyds=1.E =ru (3-17)
A(s) di d

where A(s) is the instantaneous area of contact and s is the distance between the asperity centers
in plan view. As the fault motion continues at a constant velocity, U, this area first increases and
then decreases. It can be seen that the overlap area (shaded area in Figures 3-6 and 3-7) between
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the asperities varies from 0 initially, to 4, [=7T°, see Equation (3-14)] at maximum overlap, to 0
again, as the upper asperity first approaches, then completely covers, and finally leaves the lower
asperity. The overlap area at any distance s between the asperity centers is shown in gray shades
in Figure 3-6 and black, in Figure 3-7. For this moving boundary scenario, the boundary heat
flux will vary as shown in the bar graphs below asperity contacts in Figure 3-7. This boundary
condition can be described in terms of time-dependent Heaviside functions (see below). Using
the moving boundary condition depicted in Figure 3-7, however, requires the solution of the heat
conduction problem (next section) in a 3D domain. Due to (1) the extremely fast interactions
between the asperities (contact durations of the order of a few milliseconds), (2) the small
asperity sizes, (3) extremely low thermal diffusivities in rocks, and (4) the assumption of
homogeneous and isotropic material properties, it is possible that the additional development
time and computational cost required for a 3D code will not yield results that are significantly
different from those of a 2D code with a more symmetric boundary condition. Therefore, a 2D
(azimuthally symmetric) adiabatic boundary condition was developed for this problem, assuming
a point heat flux pulse, g at the hemispherical surface of the asperity. This boundary condition is
similar to Equation (3-17), but it is defined with respect to the hemispherical asperity spatio-
temporal domain:

[H(©) - H©O-8)]H(1) - H(t~1,) (3-18)

slip

oT
q, ={k(T} 51 - v

r=a

where 6 and ¢ are given by Equations (3-15) and (3-16) respectively, and H is the Heaviside
function defined as: H(x-a) = 0ifx <a, H(x-a) = 1 ifx 2a.
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Figure 3-6. Plan view of asperity motion depicts a change in overlapped contact area with

distance between asperity centers. The figure shows the two contact areas, A, of the
asperities of the same size moving past each other.
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Figure 3-7. Moving pulse boundary condition: Heat flux (height of gray rectangles) as a
function of the relative motion between asperity contact areas (Plan view — similar to
Figures 3-1 and 3-4). The shaded area gives the total heat input to the contact area. The
pulse can be compactly expressed as a function of both space and time dependent Heaviside
functions. The two vertical gray lines “fix” the bottom contact area, while the top contact
area moves relative to it from right to left. Use of this boundary condition would require a
full 3D solution of the heat conduction equation.
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3.4.3 Mathematical_statement of the problem and its solution

3.4.3.1 Background

The temperature distribution for a single hemispherical asperity (Section 2.1) can be obtained
using energy conservation for the hemispherical asperity in the spherical coordinate system (r, 6,
@). Spherical azimuthal symmetry is assumed (symmetrical in the @ direction about an axis
passing through the centers of the two contacting asperities), as discussed in detail in Section 2.1.
The assumptions were discussed in Section 1.4.2.1. The nonlinear 2-D transient heat conduction
problem in » and @ can be stated as

or(r,0,t) 1 0 ( X aTj 1 0 ( . OTJ
8.0 _ 1 9122 e 9 [ hr)sine e 319
Per—%, 2o KD S g ag| DS o 3-19)

where k is the thermal conductivity of the asperity material, Cp, its specific heat, and p, its
density. It must be noted that the domain of solution of the 2D problem domain is shifted 90°
from the asperity cross-section, as discussed in assumption j of Section 2.1, and depicted in
Figure 3-5. Due to 2D spherical symmetry, the problem can be solved in the cross-hatched
domain of Figure 3-5(b), and then replicated in the other semicircle, to obtain the complete
cross-sectional temperature distribution (for instance, see surface plots in Chapter 4).

Based on the assumptions of Section 1.4.2.1, the boundary conditions are:

ar| _,_or| _or
0r |- 08]p-, 005,

oT (3-20)
k(Ty— =¢q, [FromEq.(3-18)]

a]" r=R
The initial condition for this problem is the ambient host rock temperature:
Tinitiar (r, 6.0) = Tp 0srsR,0s0sm (3-21)

where T is the ambient rock temperature in Kelvin, and R, the asperity radius.

3.4.32 Solution Methods

It must be kept in mind that the domain of solution for the 2D problem domain is shifted 90"
from the asperity cross-section, as depicted in Figure 3-5(a). Due to 2D spherical symmetry, the
problem can be solved in the cross-hatched domain shown in that figure. The results can then be
replicated in its complementary semicircle (non-cross-hatched part of the domain in Figure 3-
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5(a)), to obtain the complete cross-sectional temperature distribution (see temperature surface
plots in Chapter 4).

Analytical Solution: Only an outline of this procedure is given as an analytical solution has
limited applicability to the problem being discussed (For details, see Strauss 1992 or Asmar
2000). A few generalizations can be made, however. It is a (mathematical) property of any
solution of the heat diffusion equation that its maximum (or minimum) value is attained either at
the boundaries of the problem domain or at the initial time. This is called the Maximum
Principle. For the conditions of this problem, the maximum temperature can be expected to
occur around the heat source (i.e., on the contact surface and/ or at time /=0 ). This temperature
can be used to determine whether there will be any melting of the asperities. A similar procedure
was used by Cardwell, et al. (1978) and McKinzie and Brune (1972) to analyze melt zones in
faults with “planar slips”. If the maximum temperature exceeds the melting temperature of the
gouge or asperity, then partial melting can be expected to occur.

An analytical series solution was attempted first, using the separation of variables technique. In
order to do that, a transformation of variables has to be applied, in order to make the boundary
conditions (3-20) homogeneous. The series solution to this transformed equation is then
expressed in the form of spherical Bessel functions and Legendre functions (Eigenfunction
expansion). The transformed equation contains a “source term” (a term on the RHS of equation
(3-19), in addition to the standard first and second partial derivative terms that appear there.
Therefore, the coefficients have to be determined by solving a system of ODEs in time, whose
dependent variables are the coefficients. FORTRAN 90 codes were written to compute these
coefficients to any user defined accuracy (up to machine limit). Due to the extremely non-
smooth boundary conditions, however, the “Fourier” coefficients are highly oscillatory and
decayed very slowly with an increase in the number of terms. In the end, time and system
resource constraints made it impossible to compute the analytical solution.

Numerical Solution: A very detailed explanation of the procedure used here is presented in
Appendix A, and the code appears in Appendix B. A brief outline is provided here for the sake
of completeness. Before outlining the problem handled in the actual code, it should be noted that
the Heaviside functions (defined just below Equation 3-18) used in the boundary conditions have
to be approximated for numerical computation. The sharper these functions (i.e., the closer these
functions are to a step function), the steeper the gradients at the boundary itself. As the boundary
becomes steeper, we run into resolution problems (Appendix A). One way of approximating the
Heaviside function is

H(x-a) = (1/2)*[ 1 + TANH{n(x-a)} ] (3-22)

The larger the value of n, the sharper the step function (Figure 3-8). All approximations are
plotted as various types of lines, while the actual Step Function is displayed as dotted data. As
will be seen from the results in the next section, the typical time and length scales of this
problem are less than 0.001 (seconds and meters, respectively). So, a good approximation for n
will have to be = 100,000. From Figure 3-8 we can see that the higher this value, the better the
approximation, and the steeper the gradient at x = ). Details regarding the actual n-value chosen
for the results presented in Chapter 4 is presented in Section 4.1.
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Figure 3-8. Illustrating of the effect of » on the Heaviside function approximation given by Equation (3-22). The Heaviside
Step Function itself is plotted using circular data points, for clarity.
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A FORTRAN 90 code was developed to solve a very general problem: non-linear, transient, pure
conduction in 2 dimensions, in the variable u, with the self-adjoint form

{al (5., t).a‘l(az (e y.0)k, (u)ij +b,(x, y”)'aax(bz s (u)é}}(u) * fur = o, (3-23)

This can be compactly written in terms of the non-linear functional, N, as

a—u=Nl(u,uv,uv,um,u_v)+ RACE0) =N@u,u ,u,,u, u,) (3-24)
ot T _ Pocyp (1) e

with the general non-linear boundary conditions:

L(uuy) =fr(y,t) (3-25a)
R(u,uy) = fr(y,t) (3-25b)
B(u,uy) = fp(x,1) (3-25c¢)
Tu,uy) = f(x,,1) (3-25d)

where, L, R, B, and T represent the left, right, bottom, and top (non-linear) boundary functionals.
For most standard heat conduction applications, each of the above functionals further take the
generalized Robin form

Fuuy) = Fi(w) . uy + F>(u) (3-26)

where i = 1 or 2 (corresponding to the two principal problem coordinates, x and y). The same
code can be used to compute numerical solutions to corresponding linear problems. The code
can be used to solve problems in any of the three “standard” geometries, cartesian, cylindrical
and spherical, without any modification to its core routines. Of course, problem setup is very
elaborate. This is described in detail in Appendix A. The next Chapter provides a summary and
discussion of results, as well as conclusions based on the research conducted here.
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4.0 RESULTS AND DISCUSSION

4.1 Summary of Model Runs

A summary of the model runs is presented in Table 4-1. Table 4-2 presents a summary of the
model parameters. As discussed in Logan and Teufel (1986) and Sammis et. al (1999), small
asperities (of the order of millimeters) may be subject to compressive stresses comparable to
their ultimate compressive strength. This is reasonable since small asperities are less likely to
have zones of weakness. Experimental confirmation of this result was compiled extensively in
Touloukien et. al., (1981). The strength of the small asperities increases (theoretically up to the
ultimate compressive strength of the material), with decreasing asperity size. Here, we consider
asperities of sizes 1 mm to 10 cm. Since we are only interested in the influence of shear stress
on the temperature distribution generated by frictional heating, we do not attempt to predict or
estimate the stresses for specific scenarios. Therefore, for each asperity size, a range of shear
stresses was used. These ranges varied from 10-100 MPa (narrowest range, for a 1 cm asperity)
to 10-1000 MPa (widest range, for a 1 mm asperity). Larger asperities were assumed to
experience a narrower range of shear stresses due to their larger contact areas. Since
pseudotachylytes (PT) are common in granitic rock, quartz and feldspar were used as typical
asperity materials.

Run Resolutions: In Table 4-1, each case was run for at least four resolution levels , or until the
convergence rate predicted in Appendix A (numerical methodology) was obtained. This
sometimes required going up to five or six resolution levels. Each resolution level increase
corresponds to a halving of each of the two space steps and a halving of the time step. This
results in an overall increase in resolution of 8 times. Correspondingly, the number of
computations, and the run duration increase roughly 8 times with each increase in resolution
level. In some cases, optimal convergence was not achieved even at levels 5 or 6. Time
constraints did not permit running at even higher resolutions.

Step function approximation: In addition to the resolution level for the problem domain, the
resolution of the step function approximation for the boundary condition (Equations 3-18 and 3-
22, Figure 3-7) is also important. The effect of n is further illustrated schematically in Figure
4-1. The larger the value of n, the smaller the dispersion outside the (contact duration or contact
area boundaries, respectively, for time and length scales) shown in Figure 4-1. The effect of this
is that the higher values of n resulted in larger temperature maxima (as much of the energy that
lay outside the “contact rectangle” is now “concentrated” within it; see Figure 4-1). Also, the
larger the value of n, the higher the resolution required for solutions to converge, and therefore,
the larger the run times. Intuitively, maximum temperature is expected to occur at the time of
asperity separation. A value of n = 100,000 was found to be sufficient for convergence of the
maximum temperature times to the asperity separation times. From the foregoing discussion, the
values obtained for n» = 100,000 are actually lower-bounds on the ‘“actual” maximum
temperatures, but do not differ from them by more than the problem uncertainty range. For this
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study, this is a reasonable criterion since the exact values of peak temperature are not as critical
as their order of magnitude.
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Figure 4-1. Effect of the parameter n on the “sharpness” of the temporal Heaviside
function used in Equation 3-18. As n gets larger, the TanH approximation (shaded profile)
contains more of the heat input within the time of contact duration (represented by the
transparent rectangle). This results in slightly higher maximum temperatures.
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Table 4-1. Run Summary: About 330 runs were carried out, covering 75 different cases.

Quartz, Nonlinear Runs (27 cases):

Asperity Radius (mm) Shear Stresses (Mpa) Resolution Levels.
1 10, 50, 100, 200, 500, 1000 | 1-4 (5 or 6 at high Shear Stresses)
5 10, 50, 100, 200, 500 -do-
10 10, 50, 100, 200, 500 -do-
50 10, 50, 100 -do-
100 10, 50, 100 -do-
Depth tests: 1 km and 2 km
1 500, 1000 -do-
10 100, 200 -do-
Slip Velocity test: V, =V,/2 100 1-4
Feldspar, Nonlinear Runs (26 cases)
Asperity Radius (mm) Shear Stresses (Mpa) Resolution Levels.
1 10, 50, 100, 200, 500, 1000 | 1-4 (5 or 6 at high Shear Stresses)
5 10, 50, 100, 200, 500 -do-
10 10, 50, 100, 200, 500 -do-
50 10, 50, 100 -do-
100 10, 50, 100 -do-
Depth tests: 1 km and 2 km
1 500, 1000 -do-
10 100, 200 -do-
Quartz, Linear Runs (10 cases)
Asperity Radius (mm) Shear Stresses (Mpa) Resolution Levels.
1 10, 100, 500, 1000 1-4 (5 at high Shear Stresses)
10 10, 100, 500 -do-
100 10, 50, 100 -do-
Feldspar, Linear Runs (10 Runs)
Asperity Radius (mm) Shear Stresses (Mpa) Resolution Levels.
1 10, 100, 500, 1000 1-4 (5 at high Shear Stresses)
10 10, 100, 500 -do-
100 10, 50, 100 -do-
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Table 4-2: Fault and material parameters used in the runs.

Material Property Quartz Feldspar
Poisson’s Ratio, v 0.2 0.3
Young’s Modulus, £ 94 GPa 40 GPa
Density, p 2650 2620

Thermal Conductivity

Linear case: 4.3 W.m" .K’
Nonlinear case: See Appendix C

Linear case: 1.35 W.m.K”’
Nonlinear case: See Appendix C

Specific Heat Linear case: 1123 J kg K Linear case: 767 J kg ' K
Nonlinear case: See Appendix C | Nonlinear case: See Appendix C

Melting Point 2050 K 1500° K

Fault Property Value

Coefficient of friction,U 0.6

Relative slip velocity, Vgip 1 m/s (except as noted in Table 4-1 above)

Shear Stress See Table 4-1 above

A total of ~330 runs were carried out for the roughly 75 cases mentioned in Table 4-1. Further
details on convergence are presented in Section 4.2. The output from the FORTRAN 90 code,
COND2D (Appendix B), was processed using codes written in MATLAB (Appendix D) and
MS-Excel. Plots of thermal properties as a function of temperature are presented in Appendix C.

4.2  Convergence of solutions.

To visually check on convergence, the MATLAB codes DevolRuns.m, ConvTestPlots.m, and
DsnapRuns.m (Appendix D) were written to generate several types of convergence plots for
every one of the 73 cases presented in Table 4-1. For illustrative purposes, one set of plots is
presented below. Figure 4-2 presents the temporal evolution of global maximum temperature
(which occurs at the right boundary). As discussed in Appendix A, the steep gradient resulting
from a large boundary shear stress necessitates the use of very high spatial resolutions to obtain
convergence. This results in significant run times (typically 24 hours or longer per run). To
achieve convergence, and still complete the runs in a reasonable time, use is made of a specific
characteristic of the solutions to the problem posed here. Namely, due to the very small thermal
diffusivities (~ 10 m*/s) of the minerals modeled here, a localized temperature pulse generated
over a very short contact time at the boundary dissipates very close to the boundary. These can
be seen in the convergence plots of Figures 4-2 and 4-3. Therefore, much of the asperity area
(problem domain area) does not influence the problem solution.
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Figure 4-2. Demonstration of convergence of solution as a function of increasing
resolution. The code QRIT1000 denotes a quartz asperity of 1 mm radius experiencing a
boundary shear stress of 1000 MPa (1 Gpa).
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Figure 4-3. Demonstration of the effect of resolution on the base of the temperature pulse.
As the resolution increases, the pulse is “drawn inward”, thus reducing its far-field effect.
As the resolution increases from 3-6, the extent of the x-axis experiencing ambient
temperatures remains nearly unchanged. The data shown here are for a quartz asperity of
1 mm radius experiencing a shear stress of 1000 MPa.

Significant time savings can be obtained if the problem domain were to be cropped to as small a
value as practical. For the numerical method adopted here (Douglas-Gunn time splitting,
Appendix A), the decrease in run time is directly proportional to the reduction in area achieved
from “domain cropping”. While successively reducing the domain size, all three flux boundary
conditions, located within the body of the fault [Equations (3-20)] must still be satisfied to within
the limits of the uncertainty in temperature due to parameter uncertainties. Cropping also allows
a concomitant increase in resolution, because the problem domain is much smaller. Typical
cropped area for the asperity being considered is shown for two resolution levels in Figure 4-4.
For all the cases specified in Table 4-1, a cropped area was iteratively obtained from a low
resolution (fast) run, such that the temperatures at the domain boundaries were less than 1% of
the peak temperature at that resolution.
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Figure 4-4. Cropping the problem domain: The area in white is the domain for which the
Fortran 90 code, COND2D, was run. The dark gray area has temperatures that are a
mirror image of the white area, about their common boundary. The resolution level for (b)
is one higher than (a), having nearly twice the grid points as the latter.

The cropping process described above can be justified by looking at a snapshot of the
temperature values at the asperity surface in the region of its contact area (Figure 4-3). Based on
several such runs, it was observed that:

(a) Compared to those in the vicinity of the peak itself, grid nodes far from the peak of the
temperature pulse (Figure 4-3) are not as sensitive to resolution increases. This is a
consequence of the low thermal diffusivities mentioned above.

(b) The area occupied by the “base” of the temperature pulse (x-axis in Figure 4-3) remains
nearly constant with changes in resolution. In many cases it actually gets slightly smaller at
higher resolutions (since it is better resolved), thus “drawing” in the temperature
perturbation, and slightly reducing its far-field influence.

Therefore, using a lower resolution run to iteratively determine this “minimum” area is
reasonable. This will become clearer in Section 4.1.3.1, where 3D temperature surface plots for
the cropped domain are shown at specific times. In a number of cases, although the theoretical
(2nd order) convergence rate is not achieved for the range of resolutions attempted (limited due to
the time constraints on this project), the plots indicate convergence to within 10° K (and more

commonly to within about 1° K), which is probably within the parameter uncertainty range for
this model.
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4.3  Temperature Distribution - Nonlinear runs

4.3.1 Temperature Surface Plots and area of potential melting

As discussed in the previous section, the problem proposed here is solved on only a small area of
the original problem domain. The figures illustrated in this section represent a “zoom” of the
asperity domain adjacent to the contact area/heat generation zone. Figures 4-5 to 4-7 depict the
surface temperature. Each are color coded magnitude plots for the relevant sub-domains at each
of four different times. Figure 4-5 is a nonlinear run for a feldspar asperity, and Figures 4-6 and
4-7 are nonlinear runs for quartz asperities. In each figure, the yellow end of the color bar is
scaled to the melting temperature of the corresponding mineral in °K (Table 4-2). It must be
noted that the fraction of asperity area represented by the sub domain in Figures 4-4 to 4-7 can be
calculated from

fi = 5{1 —(3] ] (4-1)
Vi I

where, f; is the fraction represented by the sub domain area, g is the angle subtended by the sub-
domain, A4, at the geometrical center of the hemispherical asperity, 7; is the inner radius of Ay,
and ry is the asperity radius (or outer radius of the sub-domain). Typical values were & = 10~ to
10”" radians and (r/ry) = 80-99%. The largest value of f;, ~ 1%, corresponds to the maximum 6,
and the minimum (7/ry). This value is for the smallest asperities (1 mm radius), as may be
intuitively expected. The area occupied by the pulse, the yellow region, can be computed from
the area of the base of the pulse in the above figures. This pulse area is only a fraction of this
sub-domain area. A typical value for this fraction is 3-5%, with a maximum of ~10%. So, at
best only 0.1% of the smallest asperities can melt during any single asperity encounter.

Melting - Quartz vs. feldspar: To compare the results for quartz and feldspar, the following
must be noted: the thermal conductivity for feldspar increases with increasing temperature, up to
its melting temperature and is then assumed to decrease (Figure C-2). At its maximum, it is ~
30% of the maximum quartz conductivity (at ambient temperature). The specific heat of both
minerals increases with increasing temperature (Figures C-3 and C-4). The specific heat of
feldspar is less than that of quartz over the range of temperatures depicted in the above figures.
This means that the thermal diffusivity of quartz near its melting temperature of ~ 2050° K is
much smaller than that for feldspar near its melting temperature (~1500 °K). Therefore, all else
being equal, we would expect the temperature maxima produced for quartz asperities to be much
larger and more spatially restricted than that for feldspar, near their melting points. This implies
more melting for feldspar asperities, even though quartz asperities have the potential to produce
much higher temperatures. This can be observed by comparing Figures 4-5 (feldspar) and 4-6
(quartz), which are for the same asperity sizes and boundary shear stresses. Results suggest that
for feldspar, the area around the temperature pulse that is perturbed by it is larger, the closer the
surrounding temperature approaches to the melting temperature. Given asperities of the same
size, relative to quartz asperities, feldspar asperities are more likely to experience melting at
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(d) t=0.002 s (c) t = 0.0008 s

Figure 4-5. Surface temperature plots for the NONLINEAR run: FRI0T500 (10 mm feldspar asperity with 500 MPa
boundary shear stress). The color bar scales from black (360° K ) through grays, blues, reds, and finally, yellows (1500° K, the
melting point for feldspar). Axes RANGE: X =9.6 to 10 mm; Y =-2 to 2 mm. Compare with Figure 4-4.
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(d) t=10.001 s (c) t=0.003 s

Figure 4-6. Surface temperature plots for the NONLINEAR run: QRI07T500 (10 mm quartz asperity with 500 MPa boundary
shear stress). The color bar scales from black (360° K ) through grays, blues, reds, and finally, yellows (2050° K, the melting
point for quartz). Axes RANGE: X =9.4 to 10 mm; Y =-0.5 to 0.5 mm. Compare with Figure 4-4.
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(d) t=10.0075 s

() t=0.0025s
Figure 4-7. Surface temperature plots for the NONLINEAR run: QR507100 (50 mm quartz asperity with 100 MPa boundary

shear stress). The color bar scales from black (360° K) through grays, blues, reds, and finally, yellows (2050° K, the melting
point for quartz). Axes RANGE: X =48.74 to 50 mm; Y =-0.7 to 0.7 mm. Compare with Figure 4-4.
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lower shear stresses. This agrees with observations from field samples — pseudotachylyte matrix
is made up of melts derived from feldspars and micas, with embedded quartz clasts.

Diffusion length scales: The characteristic linear 1D diffusion length is defined as

Lip= \/(Kt) (4-2)

where K is the material thermal diffusivity, and ¢, is the time scale of interest. For feldspar
(linear case: k (mean) = 1.5 Wm 'K, p= 2620 kg/m’, Cp (mean) = 767 Jkg'K'; k= 6.7 x 107
mz/s) at time, ¢ = 0.002 s, Lip feldspar ~3.66 X 10° m. In comparison, the characteristic penetration
depths of the temperature pulses (non-black regions) for the nonlinear feldspar model run
presented in Figure 4-5 is ~2.75 x 10* m (t = 0.002 s). Similar comparisons suggest that the
nonlinear penetration depths for feldspar are as much as an order of magnitude greater than the
linear predictions for high shear stresses (Figure 4-6), , and at least twice the linear predictions
for lower shear stresses. For quartz (linear case: k (mean) = 3.3 wm'K', p=2650 kg/m3, Cp
(mean) = 1123 Jkg'K''; k= 1.2 x 10° m%s) at time, = 0.003 s, Lip quartz ~5.98 x 10” m; at time
, t = 0.0075 s, Lipquarez ~1.1 X 10* m. In comparison, the penetration depths for the two
nonlinear quartz models presented in Figures 4-6 and 4-7 are 2.8 x 10 m (t = 0.003 s) and 2 x
10* m (t = 0.0075 s), respectively, for the identical time scales. Similar comparisons suggest
that the nonlinear penetration depths for quartz are ~2 to 4 times greater than the linear 1-D
predictions (larger deviation for higher shear stresses, Figures 4-6 and 4-7).

In general, higher shear stresses lead to much larger temperature pulses and larger boundary
thermal gradients compared to scenarios with lower shear stresses (due to the cubic relationship
described in the next section). For feldspar, higher temperatures lead to larger thermal
conductivities (Figure C-2), and hence, larger penetration depths compared to quartz. This is
corroborated by the penetration depths obtained above from Figures 4-5 and 4-6. It should be
noted that although specific heat increases with temperature, its fractional change is much
smaller for both minerals (Figures C-3 and C-4). So, the larger fractional change in thermal
conductivity influences thermal diffusivity more strongly than specific heat. For quartz
asperities, small temperature pulses diffuse farther into the asperity (Figure 4-7) due to higher
thermal conductivities and lower specific heats at lower temperatures (Figure C-1). The opposite
happens for large temperature pulses (which typically occur at high stresses). Since
conductivities are lower and specific heats are higher, the temperature pulse is more concentrated
(Figure 4-6). Since the thermal conductivity is a maximum close to feldspar’s melting point,
feldspar asperities, the pulse penetration depth is larger, the closer its magnitude is to the melting
point, as indicated in Figure 4-5. Figures 4-5 to 4-7 seem to imply that in the lateral (0)
direction, both the linear and non-linear cases show diffusion lengths that are an order of
magnitude larger. This result is, however, an artifact that arises because much of the
circumferential extant of the heat pulse corresponds to the actual asperity contact area (or heat
generation zone).

On a real fault, each asperity may encounter a number of opposing asperities (depending on

asperity size distribution on the fault surfaces), before it gets abraded or melted away. This
repetitive process potentially produces much more melt than predicted by this model.
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The observation that the temperature pulse remains and dissipates locally helps to justify the
assumption of a fully spherical geometry (Section 3.4.1, Figure 3-5) for a hemispherical asperity,
which includes part of the fault rock. In addition, unless there are repeated asperity encounters
(when repeated temperature pulses at the boundary can potentially melt significant quantities the
asperity), inter-asperity interaction can be safely ignored for the time scales of individual asperity
interactions. The above discussion provides one explanation for the rarity of pseudotachylytes —
namely, that melting is so hard to initiate.

4.3.2 Peak Temperatures

Figures 4-8 depicts peak temperatures obtained for all the nonlinear quartz models as a function
of shear stresses, for different asperity radii. These figures also show the best fit trendlines to the
data. Before discussing the graph, it is illustrative to see how these two parameters affect
temperature distribution in an asperity. The temperature rise ultimately depends on the total heat
input into the system. For the 2D problem, this heat input, g5 is given by:

qr = TreViip.to (4-3)

where 7 is the boundary shear stress, V;, is the relative slip velocity between opposing
asperities, and 7, is the asperity contact duration. The contact duration is given by

to=2d,/ Vslip-': 4r./ Vslip-' (3-16)
Substituting (3-16) into (4-3) gives
qr [ [1’52 (4_4)

r., the radius of the asperity contact area, can be obtained from the Hertzian solution [Equation
(3-13)]

]R 01R (4-5)

where R is the asperity radius and the normal stress has been represented in terms of the shear
stress and coefficient of friction in the proportionality. Based on this result, the total heat input
to the system is given by:

q 0 TR (4-6)

Based on Equation (4-6), we would expect the temperature in the asperity to increase as the
square of the asperity radius, and as the cube of the boundary shear stress. This behavior is
observed in Figure 4-8, which can be used as an independent validation for the code (more
mathematically rigorous validation tests are presented in Appendix A). Since the coefficients are
different for each fit, however, a power law fit may be more appropriate.
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4.3.3 Temperature evolution profiles

Figure 4-9 presents sample temperature evolution profiles for nonlinear feldspar runs at different
shear stresses. Figure 4-10 presents sample temperature evolution profiles for nonlinear quartz
runs for two combinations of asperity size and shear stress. The curves shown in these two
figures share certain similarities.. Each curve has a rapid temperature rise phase (phase 1), and a
slow dissipation phase (phase 2). The rate of temperature increase in phase 1 is limited by the
rate of work done. Time, t = 0, corresponds to the start of asperity contact. Asperity separation
time is denoted by the time at which maximum temperature occurs. As dissipation progresses
post asperity separation, the driving thermal gradient rapidly decreases, eventually leading to an
asymptotic decay of the temperature (similar to exponential decay). In general, the higher the
temperature attained, the faster the initial decay in phase 2. In consequence, the temperature
pulses get sharper and more pointed as the magnitude of maximum temperature attained
increases. Lower temperatures generate a broader profile. However, comparing Figures 4-9 and
4-10, it can be seen that the “temperature plateau” observed for feldspar asperities at high shear
stresses are absent in quartz at high stresses, for the same asperity sizes. This can be attributed to
two characteristics of feldspar: (1) the contact durations for feldspar are longer because of its
lower Young’s modulus, which leads to a larger contact area, and (2) the conductivity of feldspar
increases with temperature and does not decrease much from its peak value (Figure C-2) due to
the assumed quadratic profile. Therefore, once a certain high temperature is reached (~ 3000 °K,
Figure 4-9), any further heat input is conducted away due to the high conductivity at that
temperature. The process is self-propagating as long as the heat source exists since conductivity
does not change much for feldspar in the range 1500 — 3000 °K. In contrast, the conductivity of
quartz decreases dramatically with temperature, and owing to a high Young’s modulus typical
quartz contact areas are half that of feldspar asperity contact areas (all else being equal).
Therefore, no such “conduction plateau” is observed (Figure 4-10). As discussed in the previous
section, peak temperatures are usually attained for intermediate asperity sizes, for large shear
stresses. Since the contact duration increases with both shear stress and asperity size, the time of
attainment of this peak temperature increases if either one, or both parameters increase.

Effect of slip velocity: In Equation (4-4) above, slip velocity cancels out of the heat flux
boundary condition for the definition of individual asperity encounters. So, for linear problems,
it is reasonable to assume that slip velocity has no effect on temperature maxima. However, a
slower velocity will stretch the temperature evolution profile (like those shown in Figures 4-9
and 4-10). For the nonlinear problem, however, this assumption is not valid because the
evolution of temperature and thermal gradients is strongly dependent on the temperature
distribution over the entire domain at previous times. This “path dependence” of temperature
profile evolution is illustrated in Figure 4-11. For this particular case, doubling the slip rate from
0.5 to 1 m/s increases the peak temperature attained by ~ 30%. Due to the dependence of
gradients on shear stress, the nonlinear effect is expected to be much stronger for large shear
stresses.
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Nonlinear Run, Feldspar: T_peak vs. time for r = 1 mm, for different Shear Stresses.
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Figure 4-9. Temperature evolution profiles for different asperity radii and shear stresses
for a sample set of nonlinear feldspar runs.
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Nonlinear Runs, Quartz: T_peak vs. time for (i) r = 1 mm,TAU = 1000 MPa; and (ii) r = 10 mm,TAU =
500 MPa.
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Figure 4-10. Temperature evolution profiles for different asperity radii and shear stresses
for a sample set of nonlinear quartz runs.
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Fault depth: For the linear problem, thermal effects at depth can be simulated by adding or
subtracting a temperature increment determined by using the geothermal gradient (i.e.,
30° C/km). For the nonlinear problem, however, since the initial temperature effects the initial
domain diffusivity values, the same procedure cannot be used. In other words, changing the
initial condition changes the “path” taken by the peak temperature (as discussed above), and
therefore, the temperatures attained can be significantly different. In fact, the larger the driving
thermal gradients (say, due to large shear stresses), the greater expected nonlinear deviation from
this linear result. The results are illustrated in Figure 4-12, for sample low and high shear
stresses. These plots show that decreasing the initial temperature by 30° K causes the maximum
temperature to drop by a much higher value at a shear stress of 1000 MPa. At 500 MPa,
however, the peak temperature drops by roughly the same magnitude as the change in initial
temperature. For high shear stresses, however, the effect of changes in depth cannot be predicted
without considering nonlinear effects. Nonetheless, the temperature change is a small fraction of
the maximum temperature.
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4.4 Linear vs. nonlinear runs

As stated in Section 4.1, the published “constant” thermal conductivity value for quartz (4.3
W.m" K", see Table C-1) is 33% more than the temperature weighted average of the
temperature dependent conductivity (computed using the Trapezoidal rule and data shown in
Appendix C). On the other hand, the published “constant” value of thermal conductivity for
Feldspar (1.35 W.m" .K") is roughly 10% less than the temperature-weighted average. The
linear feldspar models were, therefore, run with a thermal conductivity that was less than that of
the nonlinear case on average. The resulting low diffusivity means that the peak temperatures
observed for the linear feldspar runs were higher than their nonlinear counterparts. On the other
hand, the conductivity of the linear quartz runs was higher on average than that for the nonlinear
runs. Therefore, the peak temperatures produced in the linear quartz model were less than those
in their nonlinear counterparts.

Unlike the linear case, a change in the initial condition (ambient temperature at fault depth) is
critical in estimating peak temperatures for the nonlinear case. This was discussed in detail in
the previous section.

The successful completion and convergence of the non-linear model runs is very sensitive to
gradients within the problem domain. Although convergence of the linear runs is sensitive to the
presence of steep gradients in the domain, they yield some result as long as all the parameters are
within reasonable ranges. Hence, before using the results, extra care must be taken to make sure
that the linear models do converge.

Based on the dramatic variation of thermal properties of most minerals (including the two used
in this study), results from the linear models can be misleading. It is important to generate and
use nonlinear modeling results when the relevant data is available. Temperature dependence of
other model parameters like elastic properties and coefficient of friction are expected to further
enhance nonlinear effects.

4.5 Conclusions

The main conclusions from this study are:

*  While back of the envelope calculations can be used to determine rough orders of magnitude
for parameters used to characterize heat conduction in asperities (like diffusion lengths), they
cannot estimate the actual fraction of the asperity that could be experiencing near-melt
temperatures. It is found for instance that the rate of propagation of the asperity temperature
pulse along the radial direction is ~2-4 times higher than the predictions from the 1-D
characteristic length scales for quartz, and roughly an order of magnitude higher than 1-D
scales for feldspar.

* The temperatures obtained for certain combinations of asperity size and shear stress indicate
that the local temperature rise can be as high as 8500° K for nonlinear quartz asperities, and
3200° K for feldspar asperities. In contrast, temperatures obtained from the infinite fault
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plane models of Cardwell et. al. (1978), Oxburg and Turcotte (1974), and McKenzie and
Brune (1972) were much higher, when calculated from their dimensionless plots. In fact in
those models the temperature rise is directly proportional to the length and duration of fault
slip, and yield extremely high values for the fault “plane” (~ 10°° K).

All else being equal, a larger volume of a feldspar asperity will melt compared to a quartz
asperity. This follows from the fact that thermal conductivity of feldspar increases with
increasing temperature, and is much higher than that of quartz, close to the feldspar melting
point. However the melt volumes are very small (~ 0.3%). Pseudotachylyte occurrence is
rare probably because it is very hard to initiate substantial frictional melting.

Given the localized nature of any asperity scale melting, only repeated inter-asperity contact
can create high enough temperatures to cause significant melting. Although rare, significant
melting is suggested by kilometer long pseudotachylyte veins like those found in the
Homestake Shear Zone (HSZ) in Colorado Rockies. Understanding the problem will require
a fresh look at asperity size distributions on a fault surface and improved characterization of
the surfaces. In conjunction with state-of-the-art thermal modeling, we suspect that the role
of wear will also become important at the fault/macroscopic scale.

For melting to occur, high shear stresses (500 — 1000 MPa) are required (due to the cubic
dependence of peak temperatures on shear stress). Larger asperities would attain higher
temperatures due to larger contact areas and contact durations compared to smaller asperities.
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APPENDIX A: DETAILS OF NUMERICAL APPROACH

NUMERICAL SOLUTION OF THE GENERAL NONLINEAR 2D
DIFFUSION EQUATION WITH GENERAL NONLINEAR BOUNDARY
CONDITIONS:

DELTA-FORM OF NEWTON-KANTOROVICH SCHEME, IN
CONJUNCTION WITH DELTA-FORM DOUGLAS-GUNN TIME
SPLITTING.
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A-1. INTRODUCTION

In order to understand global tectonics and its evolution, fully coupled modeling of the earth’s crust and
mantle are required. Realistic geodynamic modeling of the earth will require integration of thermal
transport (predominantly conduction/advection and convection), geo-hydrodynamics (ground water flow
through porous media), geochemistry, and the thermo-viscoelastic response (Maxwell’s solid) of the crust
and mantle (as in the case of post-glacial crustal rebound) (see for instance, Ranalli 1995, Turcotte and
Schubert 2001). Computing power exists today for such “full-spectrum” modeling. Within this
framework, there is a need to develop a robust and flexible code for solving a coupled nonlinear system of
generalized geo-thermal-hydrodynamic-viscoelastic equations. Towards this end, developing a general
single equation 2D diffusion code is merely a first step.

A-1.1 Problem Specification

The problem for which the solution is being attempted is that of a general nonlinear transient pure
conduction in 2 dimensions, in the variable u, with the self-adjoint form:

0 0 0 0 0
a\(x,, t).(az (5, 9,00, (u)j +by (r 0.2 | By (6, 1,00k, @) |1@0) + £, 0,00 = pye, () 5 (A18)
Ox Ox Ox oy ot
This can be compactly written in terms of the nonlinear functional, N, as follows:

a—u=N1(u,ux,u,,uw,uv)+ M =N@u,u ,u,,u, u,) (A-1b)
or N A T

with general nonlinear boundary conditions:

Liuu) = fy(.) (A-20)
R(u) = fult) (A-2b)
B(uu,) = fi(x,1) (A-2¢)
Tu,) = frfa) (A-2d)

where, L, R, B, and T represent the left, right, bottom, and top (nonlinear) boundary functionals. For most
standard heat conduction applications, each of the above functionals further take the generalized Robin
form:

Fuuy) = Fi(w). u,; + F>(u) (A-3)

It was the goal here to develop a code that can handle the problem represented by equations (A-1)-(A-3).
It will be shown later that the linear problems in any regular coordinate system are all special cases of the
respective nonlinear problems. Therefore, the same code can be used to compute numerical solutions for
linear or nonlinear problems - by setting the linear flag to 1 or 0, respectively. For most geological
applications it is sufficient to consider the three standard geometries: Cartesian, Cylindrical and Spherical.
The table below provides the values of a;, a,, b;, and b, for these three coordinate systems.
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Table A- 1. Definitions of coefficients in Equation (A-1a), for the three standard coordinate systems.

\ Parameter / Cartesian Cylindrical Spherical
System — (coord flag=1) (coord flag=12) (coord flag=3)

aj 1 1/x 1/x°
a 1 X X
b, 1 1/x° 1/{x".Sin(y)}
b, 1 1 Sin(y)
azy 0 1 2x
by, 0 0 Cos(y)

If required, however, the code is flexible enough to accommodate other user-defined geometries by
allowing the definition of appropriate analytic (non-singular) expressions for the coefficients defined
above. In this case coord flag = 0. Of course, if the defined coefficients are not analytic, then
appropriate modifications need to be made to approximate the PDE at the non-analytic points, and this
requires modifications to the subroutine computing the coefficients and RHS vector of the tridiagonal
system (see Sections A-2 and A-3). In this case, the code needs to be re-validated using known analytical
solutions.

A-1.2 Existence and uniqueness of solutions

Before discussing the numerical implementation, the first issue is to figure out if anything can be said
about the solutions to this general nonlinear equation, containing the second partial derivatives of the
dependent variable, u. To the best of the author’s knowledge, no such analysis exists for the particular
problem chosen above. There have been numerous publications on the existence, uniqueness and stability
of the solutions to the nonlinear heat conduction equation in various forms encountered in material
science, plasma physics, thermal physics, engineering, and numerical analysis of the same. However,
none that the author came across seem to discuss the appearance of second partial derivatives. As will be
shown below, for realistic physical problems, and in the coordinate systems mentioned above, the
derivatives of the functional w.r.t the second derivative of the dependent variable, u, i.e., Ny, and N,,,, at
least, are bounded. Although mathematically quite tenuous, this could imply that analyses similar to
those for N(u,u,,u,) may be still be applicable to this particular set of parabolic problems. In this respect,
it is pertinent to discuss results from four papers on the numerical analysis applied specifically to the heat
conduction problem, presented only as a sampling of how the analysis of nonlinear problems has evolved:

The first one is by Bellman (1948), who analyzed the existence and boundedness of solutions of the
nonlinear heat conduction equation on a rectangular domain:

0’u 0’u 0’u Oou
— t =+t L) ,t = ) zt N (A-4)
o o o Su,x, 1) =g(x,y )az

He analyzed the stability of this problem in the sense of Liapounoff-Poincare, and proved that if:
e BCs are Dirichlet,

e JC exists and is bounded, and

*  “RHS” function can be represented as a bounded series,
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then, a uniformly bounded solution exists, and is unique. He further goes on to extend this (albeit “hand-
wavingly”) to cylindrical polar coordinates, but cautions against extending the results to
spherical/elliptical domains until further work was carried out (by him).

The second one is that by Douglas and Rachford (1956). In this, the authors develop their well known,
alternating direction implicit time splitting scheme for /inear 2- and 3-D heat conduction problems (and
linear parabolic problems in general, along with an iterative scheme for the steady-state elliptic problem).
They prove, using Taylor’s series expansions for the derivatives, that for a any type of closed domain, if
the initial and boundary values are such that u,,.,, t,, U, and u, are bounded, then the solution of the
discrete split equations converges to that for the unsplit linear heat equation, to within ~ O(h” + k). So,
from arguments of the boundedness of the second derivatives presented above, a similar result may hold
for equation (1a).

The following two papers illustrate typical numerical analysis procedures for the nonlinear heat
conduction problem (and parabolic equations in general). The first one is by Dendy (1977), where the
heat conduction equation of the form:

0 0 0 0 0
{ax(a(x, y,u) Oxj + ax(b(x, y,u) ayj}(u) + f(x,y, t,u,ux,uy) = a—L; (A-5)

which is in some ways significantly different from Equation (A-1a), in structure — It does not have a heat
capacity term (in front of the time derivative), the “RHS” function is dependent on the first partial
derivatives of the dependent. However, it still retains the nonlinear self-adjoint form of Equation (A-1a),
and contains and since the “RHS” function does not contain any second derivatives, it may not influence
the solution properties significantly (since the self-adjoint operator has first derivatives appearing in it, if
they do not exist then the solution may not be easily computed). This is very close to the problem at
hand, and its significance lies in the fact that, upon rewriting Equation (A-5) in its discretized self-adjoint
form, it can be cast in the standard Douglas-Gunn time split form, with each step containing the discrete
adjoint operator in a single direction. Dendy then goes on to prove (something not proven in Douglas and
Gunn 1964) that for this nonlinear case, if:
* a,and b, are uniformly bounded,

a,, b, are Lipschitz continuous w.r.t. u, and
» fis Lipschitz continuous w.r.t. u,u, and u,,

then, for a sufficiently small time step, the norm of the error varies as ~ O’ + IF), i.e.., 2™ order
convergence rate can be obtained even in this nonlinear case! A more recent paper by Broadbridge et al.
(1999) carries out a background study in terms of the qualitative properties of the solution of the radiant
plasma heat conduction equation of the form:

a( ,o(x).D(u).au) + () = ou (A-6)
Ox Ox ot

for scale-invariant solutions, symmetries, and existence of solutions. One of the relevant conclusions
from that paper to this project is that they find that if all the functions appearing in the above equation are
“smooth”, the initial profile of u is compatible with the boundary data, and all these data AND the
coefficients are strictly positive, then Equation (A-6) possesses a “classical solution” for small enough
time, and under further restrictive conditions, the number of local extrema of the solution, # do not
increase with time.
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Of course, Equation (A-1a) is more general than any of the equations presented above. In fact, Equations
(A-4), (A-5) and (A-6) are special cases of that equation. From the above analyses, however, it seems
reasonable to expect that the self-adjoint form of the heat conduction equation will have a unique,
bounded solution, under restrictions of smoothness of all pertinent data.

A-1.3 Solution Method adopted

The method used here is the d-form of the Newton-Kantorovich (N-K) procedure (or Quasi-linearization,
which is actually a misnomer, since the nonlinear equations are fully linearized in this procedure) (see for
instance, Kantorovich and Akilov 1964 & 1982), in conjunction with the d-form of the Douglas-Gunn (D-
G) scheme (Douglas and Gunn 1964, McDonough 2002). This combination renders the discretization in
a form that is very efficient to implement. If it works at all, the Newton-Kantorovich scheme yields
quadratic (or near quadratic) convergence, making it an easy choice from amongst direct substitution or
Picard iteration methods for solving a nonlinear equation (or systems of equations). The D-G procedure
is more general and robust (especially for non-smooth source functions, and at higher resolutions, more
accurate), compared to the Peaceman-Rachford ADI method, which cannot be extended to more than 2
dimensions, or the Douglas-Rachford method, which is only first order accurate in time (McDonough
2002).

The solution procedure implemented here is limited by the machine specific maximum allowable array
sizes, as it is designed to use global solves in each direction. This pitfall can be avoided by using some
kind of Domain Decomposition and/or Multi-grid algorithms for the spatial discretization in conjunction
with some form of Time Splitting for the temporal discretization. The state-of-the-art in computing
Parabolic PDEs focuses on such methods in order to obtain solutions at higher grid resolutions. A recent
example is a paper by Yu (2001), who has developed a local space-time adaptive scheme for solving 2-D
parabolic problems, based on multiplicative Schwarz Domain Decomposition. He uses an a posteriori
error estimator to determine the resolution of the grid required in each region of the problem domain —
high “activity” results in finer space-time meshes, and vice versa. He solves an equation identical in form
to (5) above, with mixed boundary conditions, assuming that the system is well posed. So, even for a 2-D
code, what is being attempted here is merely a “starting” point. More complex issues involving
integration of the 3D Finite Difference heat conduction and Finite Element viscoelastic codes will have to
be ultimately resolved before this code can be used for realistic geophysical modeling.
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A-2. DISCRETIZATION OF THE GENERAL DIFFUSION EQUATION.

Using Trapezoidal rule to integrate Equation (A-1b) between time levels n and n+1, we end up with:
Z/lnH(WI) — un +I;(Nn+l(”'”) + Nn) (A_7)

where m denotes the iteration counter. If the time step size, &, is small enough, then the first guess at the
advanced time step will be the value at the previous time step. For the linear case, the iteration counter m
is dropped, and the equivalent of Equation (7) is:

w'™ =u"+ g (L(Lt)"+1 +L(u)" ) (A-7")

Here L is a linear operator (in the case of the heat conduction equation, this will be the /inear form of the
self adjoint operator and the “RHS” function, f, presented in Equation (A-la): see Equation (A-15a’)
below). The nonlinear terms on the RHS of Equation (A-7) can be linearized by expanding N at
(m+1)" iteration, in terms of N"*/ at the m” iteration, to get:

k
u =u" + SN 4N, @ + N, " +N, P&+ N, Ca, "+ N, P " N
2 x v J xx y y
(A-8)

where, for notational convenience, the n+/ advanced time level superscript has been suppressed. Also,
we introduced the new term,

J™ = MY _ (A-9)

(m+1)

Substituting for u™ ", and rearranging Equation (A-9), we get:

(m) (m)
I—k N, +N ™p 4N mp 2 +N“7+N ™p 4N ™p 2
2 2 u, 0,x Uy, 0,x 2 uy, 0.y Uyy 0,y

The right hand side is nothing but the residual of the original semi-discrete equation (A-7). So, as R™ -
0, u™" _u™ and therefore, ™ - 0. The convergence tolerance for R™ must be at least k°, for the
iterations to converge (McDonough 2002), and £ must be very small for the linearization to be applicable,
unless u is known to be extremely smooth. Also, the functional N,”” has been split between the two
directional operators equally, simply for preserving symmetry between the two directions. For the linear
case, an equivalent relation to (A-10) will be:

™ ={un +§(N(m) +Nn)}_u(m) —R™

(A-10)

n+l)

1 —k{(alazquDo.A + ala2ktD0<xz)+ (bleJle(Lv +b]b2ktD0<v2 )} "t = k (fn+1 + fn)+ k (a‘a2~“D0~“ * alaZDO,xz +b]b2,JDU~}’ + bleD(LJ’Z)( u”

2 Poce 2.Picp + (alaZ,x‘D(),x‘ + alazDo,xz + b]bZ,yDU,y + bleD(),yZ )('”
(A-10")
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Now, comparing Equation (A-10) with the standard form of the Douglas-Gunn algorithm:
(d+4) ™ =1 +4) " —u™] =5" ~ Bu" =" (A-11)

where it has been assumed that du" [10 (previous time step has converged to within the tolerance specified
above), it can be seen that:

(m) (m)
A:_k{[Nu +N (”’)DO +N (m)DO 2J+(Nu +N (m)DO , +N (W)DO ,2]}
2 u, , X Uy X 2 u, .y uy, Ly

2
A-12
B} (A-12)
Sn - E(N(m) + Nn) _ u(m)
2

So, the two level Douglas-Gunn scheme for this problem can be written as:

(m)
|:I _I;(Nuz +Nu (m)DO’X + Nu (m)DO’XZJ 5‘)(»1) :{un +§(N(m) +N" )} _u(m) :R(m) (A-13a)
and,

(m)
{1 - E(Nz +N, "D, , +N, _('")Do,yzj = (A-13b)
and the value of the next iterate is given by a re-arrangement of Equation (A-9),
U = M 4 ™ (A-14)

For the linear case, the corresponding Douglas-Gunn scheme and the delta-form of the stages are
represented by:

A+A"™).v=T+A4"").v-u")=s"—{I+A"" + B").u") (A-11")

Leading to:

n+l
1 k [alahktDo,x + alaZktDO,xz ]

aa, D, +aa,D,  +bb, D, +bb,D ,ZM
5 k |:(f,,ﬂ+f,,)+kt.{ (1 2o T AL, 102, T 00,0, ) o
+

2 Pocr i 2.Pocy (alaZ,xDO,x +a1a2DO,x2 +bb, D, +b1b2D0,y2)n
(A-13a’)
5 n+l
_ k| biby KDy, + bk D, 5= (A-13b")
2 PoCp
where the superscripts denote time levels, and the value at the next time level is given by:
u"=du+ " (A-14")

Thus, the primed equations above show that the delta-form time-splitting scheme for the linear problem
(linear PDE + linear BCs) is very similar in form to the delta-form time-split scheme for the
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quasilinearized nonlinear equation. NOTE: In order to obtain Equation (A-13a’) from Equation (A-13a),
we need to set u™ = u", since the RHS of the first stage is computed from the previous time step, instead
of the previous iterate as in the linear case. Before expanding the difference operators, it should be noted
that the LHS and RHS of (A-13a) and the LHS of (A-13b) contain functional derivatives evaluated with
the last iterate of the advanced time step, and in case of the RHS of (A-13a), the nonlinear functional has
to be evaluated at the previous time step, n. It will be easier to figure these terms out first, before any
formal discretization of the time-split scheme itself is carried out. To do this, we have to first expand the
self-adjoint form of the functional », defined in (A-1b) and differentiate it according to the subscripts, to
obtain:

ou —N :{{kt.(alaz’x.ux taa,u  + blbzgy.uy +b,b, .uyy)+ k,, .(alaz.ux2 +b,b, .uyz} +f (A-152)

o PoCs

where, the “independent” variables have been suppressed for clarity. For the linear case, we have:

‘L“ - {{kt.(alazsx.ux taa,u  + blbz’y u, +b,b, U, )} + f} (A-15a")
o Py

Therefore, differentiating (A-15a) with respect to u, u,, u,, u,, and u,,, we obtain, (for both the linear and
nonlinear cases):

N = {{(k,’u cp—k,cp, ).(alaz,‘_.u‘_ taa,u,  + blbz,y u, + bb, U, ) + (k,_w cp—k,, cp, ).(alaz.ux2 +b,b, .uy2 )}+ (f,cp=fcp,)

:OoCP2
(A-15b)

L, = 0 (since all the derivatives w.r.t u, of k; and c,, are all equal to 0). (A-15b")

N, = a, .(ktaz’x +2k,, .az.ux) (A-15¢)
’ PoCp

L =8 kas.) (A-15¢")
’ PoCp

Nu - bl '(kzbZ,_v + 2'k1‘u 'b2 'uy ) (A—15d)
PoCp

L - b \kb,,) (A-15d")
’ PoCp

N, =4k (A-15¢)
"’ PoCp

Lu, — al'aZ'kt (A—15€ ’)
' PoCp

N bk, (A-150)
PoCp
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I = b,.b, .k, (A-15f)

PoCp

Thus, except as noted under Equations (A-13), all the linear expressions can be derived from their
nonlinear counterparts by setting the derivatives of the thermal properties w.r.t temperature, u, to zero —
i.e., the linear problem can be solved using the nonlinear code as a special (built-in) case.

For realistic values of k, and c,, the last two functional derivatives (A-15e & f) are always bounded, since
¢, cannot be 0. This will become important in analyzing the discrete equations for determining the
coefficients, as shown below. Since these values are always computed with the previous iterate, they are
always available at the advanced iteration. In order to compute Equations (A-15), we need to compute
w™, u,™, u,™ and u,"™, since u™ is already available (via storage). Although higher order methods
can be used here, for higher accuracy (McDonough 2002), 2™ order centered differencing will be used
here, for simplicity. The computation of these partial derivatives at interior grid points (i=2:N,-1, j=2,
N,-1) is straightforward. However, the boundaries require special treatment. The added complication
here is that the boundaries could be nonlinear, as shown in Equation (A-2) and (A-3) above. If the BC is
linear-Dirichlet, then, it does not matter what the derivative value is, as no computations will be carried
out at that boundary — values are just assigned for each time step, that remain fixed as the nonlinear
iterations progress. However, if the BC is nonlinear-Dirichlet, or any other type of boundary, it will have
to be dealt with through the use of image points outside the problem domain in the BC as well as the
PDE, as illustrated for boundary value problems in McDonough (2001). Only, here, if the BCs are
nonlinear, the “linearized” BCs have to be used instead of the actual BCs. Given a set of BCs, and
previous iteration grid functions, these derivatives can be computed in a straightforward manner — this
will be indicated below when considering the different boundaries during the point-by-point
discretization. Once functional values and functional derivatives are computed at all the grid points, the
coefficients and RHS vectors for the interior, boundary, and corner points can be computed.

A-2.1 Interior Points

Expanding the difference operators in each element of the matrix equations (A-13a) and (A-13b), by
using standard centered-difference approximations, we get:

21 2 2.h, h’

X Jui

[ (m) (m) _ (m) (m) _ (m) (m)
5. ™ _E N, RN S RS VO] d’/ﬂ,: 5"/‘71,: N (m | d’/ﬂ,: 2'5’/,: +d’rl,t =y +5(N(m> +Nn) —y ™ =g
joi 5 Y e, - 5, e, ) i i

(A-13a”)
qnd,

(m) (m) _ (m) (m) _ (m) (m) ’
. _(m) _ k[N" joi 79 ‘(m) +N (m) [dlj,ﬁl d‘j,m ] +N (m) [d’l/‘,fﬂ 2-54/',,- + 54/,,-,1 ]J (A-13b )
N Jsi u, ‘| Uy, ‘|

=, ™
2 2.h, /"

Collecting like terms, we obtain:

h.N, " kN, h.N, "
_ k | N" (m) _ [ 7x7uy d}j [_l(m) + LZ ZNM (m) + 1_'7,4 d)j [(m) _ LZ i NM (m) I I S T 5[/’/. H—l(,,,)
2.h, " 2 7 2.h, " 4 I ' 2.h, " 2 '
Joi ! Jsi

= {u" +§(N‘”’) +N”)} -u, ™

Jhi

(A-13a”)
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h ,.N m (m) h ,.N (m)
B [2/11{ 2 }{Nuu " - [ : 2”‘ } au, "+ {[2:2 }ZNN” “ + [1 - LJ\Z‘ J} &, " - [2: 2}{1\&” o 4 [) 2"‘ a,, " =0, "
y i v joi Y jii

(A-13b7)
Substituting p, = k/2h,’ into the first equation and dividing it throughout by g, then substituting p =

k/2hy2 into the second equation and dividing it throughout by g,, we obtain the following “compact form”
after rearrangement:

n k (m) n (m)
N ™ A—pN ™ hoN ™ {” +E(N +N )},._u""
- IV d}jvl_il(m) o+ AV, d)j’i(m) +11+ x 5‘)],,41('") -_ A
Joi Joi Joi

2’Nu“ “ 4px 'Nu“ o L 2’N“n o px ']vuAY J l-(m)
(A-16a)
h N, ™ - m h,.N, "™ o, " -
1_ Yy u, d,[j_“(m) _ 2+ 4 k.Nu d/lji(m) + 1+ Yy uy, d/lj+li('n) o Jsi (A 16b)
2.N, ™ ’ 4p,.N, " ’ 2.N, ™ ’ p,.N, "
w i B! W i w i w i

where, the indexing notation used follows the Fortran 90 rules, i.e., (row#, column#), for ease of
implementation. NOTE: Unless otherwise indicated, ALL nonlinear functionals (N & its derivatives) are
evaluated at the advanced time step, n+1.

For the linear case, from the definition of the Linear Operator and its derivatives (Equations (A-157)
above), along with Equations (A-13), these expressions become:

k ( +1 n}
Bl +r)u,,
h.L h L { i ,
T T B S § PN S YL Y i B P (A-16a’)
2'Lu“ i ’ px 'Luu Joi ’ 2'Lu“ ji ’ px 'LuA .

h L, h L, & O ,
LT N S RN SN O P e B (A-16b")
2'Lu o py ‘Lu o 2'Lu pv ’Lu .

»w Joi w w P ] v j,

—
|

Jii

NOTE: These linear expressions can also be obtained by “replacing” the functional N and its derivatives
by the corresponding linear versions (since L is a special case of N) in Equations (A-16), then using the
fact that uj,i(’") =u ;;". However, the linear functional L and its derivatives must still be computed at the
next time level, n+1, in order to obtain 2™ order convergence of grid functions.

The coefficients of du & v on the LHS of both sets of equations form tri-diagonal systems that can be
efficiently solved using LU-Decomposition. From the expressions presented above in (A-15e and f), and
comments presented below these, the denominator of either set of coefficients should not vanish, for real
systems. So, in order to guarantee diagonal dominance of the system represented by Equations (A-16),
we need, for Equation (A-16b), for instance:

4-knN,, "
4p,.N

(m)
hoN,

J>t

2+

(A-17)

(m) 2N (m)

Use i

U j i
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Taking LCMs and rearranging, this gives a relationship between N,” and Nuy('”) , of the form:
N,’ <(a.N, - B’ (A-18)

where, 0 and S are constant once £, k, k, Cp, b; and b, are fixed. So, for unconditional stability of the
LU-Decomposition scheme, from the definition of N,, , Equation (A-15d), we need to have EITHER a
constant k; (so k,,=0) OR u,=0; AND be in the Cartesian system (so a,,=0)! Since the problem proposed
to be solved here is the solution of the spherical heat conduction equation with a temperature dependent
thermal conductivity, Equation (A-18) may be satisfied for only certain locations in the domain, or
maybe, nowhere in the domain! Also, it must be noted that all the functional derivatives change with the
location of the grid point, and with time. So, in general, any relation of the form (A-18) cannot hold for
the entire spatio-temporal domain of the problem unless N,,=0 AND N, < 4/k (from Equation (A-17)) in
the entire domain. Similar relations will hold for Equation (A-16a), for the second orthogonal direction.
Hence, we are not guaranteed a solution to the NONLINEAR problem selected in the previous
chapter. On the other hand, the linear problem is guaranteed a solution since diagonal dominance is
assured [see Equations (A-167)].

A-2.2 Corner Points

The implementation of corner points can be tricky, but here the methodology adopted is as follows:
» If adjacent BCs at a corner are Dirichlet, then the average of the two values is chosen.
* If one of the adjacent BCs at a corner is Dirichlet, the its value over-rides that of the other.

* If both BCs at a corner point are non-Dirichlet, then quite arbitrarily, it is assigned the value of the
relevant left or right BC, ignoring the corresponding top or bottom BC.

A-2.3 Boundary Points

A-2.3.1 Left Boundary & Left Corner Points
Consider the general nonlinear BC presented in Equation (A-2) above:

Lituuy) = fr(y.tu+1) (A-19)

If the BC is non-Dirichlet, it can be linearized by expanding the LHS functional, Lf, to the third term in
the Frechet-Taylor’s series about the previous iterate, to get:

Lf(m) +qu(m)‘d/[(m) +qux(m)‘d/[x(m) DanH (A-20)
Rearranging,
(L, + 17, "D, Jau 01, =1 (A21)

Expanding the centered difference approximation, we can obtain an estimate for the value of the “image
point”, 54130('") , and thus, be able to solve the split step equations (A-16), at the left boundary.
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Substituting the expression for Dy, into Equation (A-21), we get:

m m m d‘ i 2(m) - &/l j O(m) n+l m
{qu< ).d/l}j’l( ) +{quf } ‘,-,1[ L o L of," =Lf," (A-22)
Rearranging (A-22), we get:
(m) (m) (m) (m) (m) (m) n+l (m)
2n e, auf, 0 +inf, a0 A, ) a, e 02 (- 1, ) (A-23)

We now use the same notation as in Equations (A-16) for the purpose of substitution - noting that only the
left and right boundaries need be considered in the first step of (A-16), and only the top and bottom
boundaries need be considered in the second step of (A-16). Therefore, we adopt the same notation for
the unknown variables at each stage: v for the first stage, and u for the second stage, for the sake of
consistency and minimizing confusion. We thus have:

2h .Lf"™
Lf (m)

n+l (m)
-L
>, "+, =2h,. /A (A-24)

(m)
d/jso D L (m)
f;'l/\'

Jil Jsl

For the linear case, we get correspondingly:

;o =2h . u;)" Fu " =20 f) )" (A-25a)
and,

Vo =2h.a.w, +v,,=2h.f, " (A-25b)
Therefore,

oo =i~y D2k, By, + v, =20 (f, " = f,,") (A-24")

NOTE: For deriving Equation (A-24"), use has been made of the definitions of the image points for both v
and u,,. fL”” corresponds to the former next time level, and f;" corresponds to the last time level, n. Also,
a, is the linear Robin BC parameter (as in: u, + a,.u), and will be 0 (zero) for the linear Neumann BC.
The linear Equation (A-24") can also be obtained from the nonlinear Equation (A-24) as a special case, by
setting L™ = £, ", Lf,™ = a,,, and Lf,,™ = 1. Thus, (A-24’) is a special case of (A-24).

Setting i=/ in both (A-16a and b), and substituting (A-24) into Equation (A-16a) we finally get, for the
left boundary:

K (o 4o m
4=kN" ) (2n.L5" h.N, " {” +§(N( N )} T £ Wy
_ 2+ AV - x . 1_ X u, d)”(m) +2d’j>2(m) - _ Al +2hx_ L y ) 1 . w
A Jil Jil Jil Jil

4p.N, L, ™ 2N, " PN, " L, " 2N, "
(A-262)

and,
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h,.N, "™ 4— kN ™ h,.N, ™ o, ™ A-26b
1_[ ) o ] B 292 +[ v " A+ = ) " == - o ( )
2N, N 4p,.N, N 2N, r PN, |

NOTE: Unless otherwise indicated, ALL nonlinear functionals (N & its derivatives) are evaluated at the
advanced time step, n+/. For a nonlinear problem with a nonlinear Dirichlet left boundary
condition, we consider the expansion in (A-21) to only the 2™ term:

(qu(m).)&(m) DanH _Lf(m) (A-27)
and the left grid points are assigned as follows:
n+l _ (m)
d/l.l(m) :vil(mﬂ) —vl.l(m) D[—fL L J (A-28a)
Js Js Js Lf (m)
u jil

For a nonlinear problem with a linear or nonlinear Dirichlet left boundary condition, this reduces to:

o, 00 for all m > 0 (A-28b)

Irrespective of the linearity of the boundary condition, if the PDE is nonlinear, all functional values for
the first iteration (m = 0, according to the notation used here) have to be evaluated at the previous time
level in order to take into account the time dependence of the Dirichlet condition. This also follows
naturally from the fact that the first guess for the advanced time step is the converged value at the end of
the last time step. If these were evaluated at the advanced time level n+1, then the boundary value will
remain the same as at t =t,. So, v =u", Lf” = Lf", and Lf,/” = Lf;":

n+l n
5‘}],1(0) = v.}',l(l) _v‘j’l(O) D[fL _’1Lf ] (A-29)
Lf, i

It must be kept in mind that for the particular class of problems being considered, as shown in Equation
(A-3), the boundary functional takes on the form of a generalized Robin BC:

Lftuuy) = Lfi(w) . ux + Lf>(u) (A-30)

In this case, Equations (A-23) through (A-29) can be modified accordingly and everything expressed in
terms of Lf; and Lf>.

For the linear problem, the corresponding expressions can be obtained by substituting Equation (A-24")
into Equation (A-/6a’) or using “linear substitutions” in Equations (A-26), namely: L™ =f,", Lf,™ =
a,,, and qux(’") =]

5

1 h,.L {E S )”1} h.L
-2+ —2ha 41 -—*% w2 e =420 (f, ) - )
Jol Jol

2L, p..L, 2L

A Uy

(A-26a")

h,.L, h,.L, o, 0 26h7

-0 42+ ! A Al —2 by = — 2 (A-26b")
2.L, = o, L, " 2L, ah oL,
P ' P '

w1 Wl
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NOTE: Unless otherwise indicated, ALL linear functionals (L & its derivatives) are evaluated at the
advanced time step, n+1. So, Equations (A-26") are special cases of Equations (A-26) above. Here, for a
Neumann BC, @, = 0. For a Robin BC, a, #0. For a linear Dirichlet BC, Lf™" = £;", and Lf,"" = I in
(A-29). That gives:

& =fi" 0 (A-29")
Only when f; is a constant with respect to time, would we have for the linear problem:
&= 0. (A31)

Spherical or Cyvlindrical Coordinates: In case of spherical or cylindrical coordinates, the forms of a;
presented in the Table A-1 imply that the PDE is not analytic at x = 0. In both these cases, however,
symmetry arguments require: u(r=0) = 0, u,(r=0) = 0, u,,(r=0) = 0, u,(r=0) = 0, u,.(r=0) = 0, u,,(r=0)
= 0, uy(r=0) = 0. Therefore, the limiting value of the PDE as x - 0 can b e evaluated using
L’Hospital’s rule. For the general nonlinear functional, we have:

Lin() = Lin

2 2
|:{kt'(ala2,x u taa,u +b1b2’y u, +bb, .uyy)+k,’u .(alaz.u)C +b,b, u, } +f:| (A-322)
PoCp

For the spherical system, using the expressions for coefficients a;, a,, b;, and b, from Table A-1 above,
we obtain:

u 1 u, , U ,2
k)2~ +u, +— S—tu, ||tk u S
x x \Tan(y) ~ ’ X (A-32b)

If all the symmetry conditions above are met, then we obtain:

P PoCpr

PoCr

2 2
le(NS) = {kt '(2'uxx + uxx ) + kt,u 'ux } + f = 3 'kt 'uxx + kt,u 'ux + f (A—3ZC)
=0 PoCr _ PoCr _
x=0 x=0
Similarly, for the cylindrical system, we get:
u uyy 2 uvz
kt' 7x+uxx +72 +kt,u' ux + >2 +f
, , x X x 2k, +k, ul+f (A-33)

le(NC):le = - —

x=0

So, for the general form of the functional presented in Equation (A-15a), we can generalize (A-32c) and
(A-33) as:

PoCp

N =

x-0

N, (A-34a)
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with Cp,,=2 for the spherical system and /, for the cylindrical system. Note that the result is obtained
with the assumption that ALL mixed derivatives are zero (by symmetry), so none of the terms originally
containing the y derivative remains. Therefore, the derivatives required in the indicial form of (A-34a)
(equivalent to Equations (A-15)) are:

Nou, =0=N,, (A-34b)
and

2
— (cPkt,u - cP,u kt )‘(Cfacmr + 1)'uxx + (cPkt,uu - kt,u ‘CP,u )‘ux + (cPfu - f‘cP,u )

Noa - (A-34c)
PoCp
Similarly,
2k, u
N,, =—*— (A-34d)
) PoCp
k\C.. *1
No,u — t ( Jfactor ) (A_34e)
h PoCp

Thus, for either spherical or cylindrical coordinate system, at x = 0, the implementation of the PDE (A-
34a) becomes:

4—kN. ™ 2hLf,™ N, ™ {“” +§(No(m +N0”)} _uf"(m) f, —Lf™ h N, "
sl Jil Js1 x sl

4p,.N,, " L, " 2.N,,, "

oooooo

NOTE: Unless otherwise indicated, ALL nonlinear functionals (N & its derivatives) are evaluated at the
advanced time step, n+1. Since the nonlinear operator in (A-34a) is now devoid of functional derivatives
in the y-direction, the solution after the second split step is the same as the “intermediate solution”, dv,
obtained after the first step:

o " = ;" (A-35b)
Equations (34) are still valid for the linear case. However, Equation (34c) and (34d) become:

L,,=0=1L

U 0,u

(A-34¢’/d)

Therefore, the linear version of Equation (35a) will be:

ﬁ(Lonn +L0n)uj,ln}

- {2 P LN 2hxax}5v U2 = {2 +2h.(f," = 1) (A-35a’)
1

Py 'Lo’un il

X0, s
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NOTE: Unless otherwise indicated, ALL nonlinear functionals (L & its derivatives) are evaluated at the
advanced time step, n+1. Again, for the second stage:

Ay = Oy (A-35b")

Again, the linear case is a special case of the nonlinear case. Now, in order to compute the
coefficients and RHS terms of Equations (A-26 / 26 ) and (A-35/ 35" ), we need to be able to compute
the values of the derivatives u,, u., u, and u,,, at all points on the left boundary. These derivatives are
evaluated at the left boundary only if the Left BC is non-Dirichlet. If the Left BC is Dirichlet, the values
as assigned as per Equations (A-28), (A-29 / 29°), and (A-31) above. For calculating the derivatives at
the boundaries, use can be made of the basic form of heat transfer boundary conditions [Equation (A-3)].

Thus, for non-Dirichlet BCs, andj=1, 2, 3, ...., N,, these derivatives can be expressed as:
(my . (m) n+l (m)
u . u . -
(1), 0lp, ), =R [f P £ ] (A-36)
X Lfl il
Therefore,
(m) (m) =™
ujo  =u;, —2h,. ) (A-37)
Lfl jl
and,

(m) (m) (m)

U, -2u; +u. )

(m) 2 (m) _ "Jj.2 Jil 7,0 _ , -
(), D(DO,X )/,1 = . = = (A-38)

X x

The y-derivatives at the left boundary can be computed as in Equations (A-/3”), except at the corner

points (j=1 and j=N,). So, forj=2,3, ...., (N,—1):

(m) (m)
U,

A-39
2.h, (A9

u.
(m) ( ) (m) _ “j
(uy )j,l O DO,y Jil

If the bottom boundary condition is not Dirichlet (in which case, it must be assigned that value), then for
J=1,

(m) _ (m) n+l (m)
u u -B
(m) (m _ Y2, o _[Js 2 i
(w,), ™ alpy, ), == —[ o J (A-40)
oy 1 1.1
Therefore,
n+l (m)
(m) _ (m) _ fB _BZ
Upyp — —Uy, 2.h, (TJ (A-41)
B
1 1,1
and,
n+l (m)
-B
(m) (m) (m) 2atyy ™ =2 (m)_zhy(fB e J
(), ™ Dy, ), = 2T AN S/ (A-42)
N ’ h h
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Similarly, if the top boundary condition is not Dirichlet (in which case, it must be assigned that value),
then for j=N,,

(m) — (m) +1 (m)
Un +11 Uy -1, T
(uy) (m) D(DO y) (m) - b y = fT 2 (A'43)
Nyl VIN Zhy Tl(m) N
b
Therefore,
n+l (m)
— (m) fT TZ
Uy +1,1 Uy -1 +2'hv( ) J (A-44)
n N,
and,
n+l _ g (m)
z'hy fT#)TZ —2uy, l(m) +2uy 1(m)
2 Uy +1 1<m) —2uy 1(m) tuy 1(m) 1 N,.1 . o A-4
(uyy)N 1(”’) D(Do,y )N 1(m) = — h)é —— = - V’h 2 ( i 5)

All derivatives at time level n can be obtained by replacing the iteration superscript (m) by the time level
superscript, 7, and then changing all £"*' to £, in Equations (A-36)-(A-45). In the linear non-Dirichlet
cases, the following substitutions will make Equations (A-36)-(A-45) consistent: (a) Linear Neumann —
Lf; = 0 (zero), and Lf; = 1, and (b) Linear Robin — Lf; = a.u", and Lf; = 1. In addition, all RHS terms
containing u are evaluated at time level n, for these cases. Therefore, f; is evaluated at time level n
(instead of at n+1). So, the left boundary and corner points are completely taken care of, for all three
coordinate systems.

A-2.3.2 Right Boundary & Right Corner Points

NOTE: Since the coefficients of the spherical PDE are not analytic at y = 0 or y = 77 the following
analysis does not apply to the right corner points (both top & bottom) for a spherical coordinate system
problem. Consider the general nonlinear BC presented in Equation (A-2) above:

R(u,uy) = fa(tus1) (A-46)

If the BC is non-Dirichlet, it can be linearized by expanding the LHS functional about the previous
iterate, to the third term in the Frechet-Taylor’s series, to get:

R™ +R ™ .u™ +R . 0Of"" (A-47)
Rearranging,
(R, +R, "D, Jau™ 0" =R (A-48)

Expanding the centered difference approximation, we can obtain an estimate for the value of the image
point, O ny+ ™ and thus, be able to solve the split step equations (A-16), at the right boundary.
Substituting the expression for Dy, into Equation (A-48), we get:
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(m) _ (m)
&’IJ,NXH &’ILNX‘I

v 2.h

X

{r,™ 5} o 4 R, o} . e, =R,y (A-49)

Rearranging (A-49), we get:

th{Ru(m 'dl}j’Nx(m +{Rux(m)} X 'd’lj,NXH(m) ‘{Rux (m)}

JiN.

_'d‘j,zvx—l(m) 02h, (fR,jnH “R; N, (m)) (A-50)

j’N/\

Adopting the same notation as above for the unknown variables at each stage: v for the first stage, and u
for the second stage, we thus have:

2h. R "™ fo" =R
(m) —_| xMu (m) (m) R
Wy U o W,y AW,y 2, = (A-51)
JiN J.N,
For the linear case, we get correspondingly:
o - O O M +l ,
NN+t VN _uj,Nx+1n O=2h,.a,.0v;y "+, y 4 +2h (fr,” = fr,") (A-51")

NOTE: Just as for the Left BC, @, is the linear Robin BC parameter (as in: u, + a;.u), and will be 0 (zero)
for the linear Neumann BC. The linear Equation (A-5/’) can also be obtained from the nonlinear
Equation (A-51) as a special case, by setting R™ = f", R, = a.,, and R,,™ = 1.

Setting =N, in both (A-16a and b), and substituting (A-51) into Equation (A-16a) we obtain for the right
boundary:

n k (m) n _ (m)
b=k N ™ 2 R™ AN ™ {u +5(N +N )} , Ujn, £ - AN ™
Zd/jN 71(711)_ 2+ N, + I8, Sy Bt 5V.V m) _ _ J.N, -2k, Jr I Bt
N, 4p.N ™ R ™ SN ™ i, o.N ) R ™ SN ™
¥ N, e Ny U )N, X e s IR e N,

' (A-52a)

and,

(m) m (m) (m)
_| BN, (m) _ 4-knN,"™ (m) hy-N., m___ P, (A-52b)
1 (m) d’lj—l]\/ 2+ (m) d'{/N I+ (m) d'tj-ﬂ-l N (m)
2'Nu m Ny 4px'Nu m JiNy 2'Nu n JHLN, o,.N, m
» JoN, » JiN, 7Ny ’ N

NOTE: Unless otherwise indicated, ALL nonlinear functionals (N & its derivatives) are evaluated at the
advanced time step, n+/. For a nonlinear problem with a nonlinear Dirichlet right boundary
condition, we consider the expansion in (A-47) to only the 2™ term:

(R, Jov Of " = R (A-53)

and the right grid points are assigned as follows:

n+l (m)

m o Ja —R

W,y D(—R NG ] (A-54a)
u j.N
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For a nonlinear problem with a linear or nonlinear Dirichlet right boundary condition, this reduces
to:

(m) _
, Nx - V. -
o 0 forallm > 0 (A-54b)

Irrespective of the linearity of the boundary condition, if the PDE is nonlinear, all functional values for
the first iteration (m = 0, according to the notation used here) have to be evaluated at the previous time
level in order to take into account the time dependence of the Dirichlet condition. This also follows
naturally from the fact that the first guess for the advanced time step is the converged value at the end of
the last time step. If these were evaluated at the advanced time level n+1, then the boundary value will
remain the same as at t =t,. So, v” =u",R” =R", and R,” = R

R}’l

u

n+l
— Rn
R R U DK—fR ] (A-55)
J,N

4V x

It must be kept in mind that for the particular class of problems being considered, as shown in Equation
(A-3), the boundary condition takes on the form of a generalized Robin BC:

R(u,ux) = Ri(w) . ux + Ra(u) (A-56)

In this case, Equations (A-47) through (A-55) can be modified accordingly and everything expressed in
terms of R; and R,. For the special case of a linear problem with linear right boundary condition, the
substitutions: R™ = 1z R,™ = @, and R,™ = I, can be made in Equations (A-52), just as for the left
boundary condition, along with the appropriate linear functional substitutions.

Unlike the left boundary, the modified equations for the right boundary hold for all three coordinate
systems (Cartesian and Cylindrical — all along the right boundary; for Spherical - all along the right
boundary, except at y = 0 or y = 7). In order to evaluate Equations (A-52), we need to evaluate the
functional derivatives at the right boundary, and these in turn depend on the first and second derivatives
of the dependent variable: u,, u,, u, and u,,, at all points on the right boundary. Again, these derivatives
are evaluated at the right boundary only if the Right BC is non-Dirichlet. 1f the Right BC is Dirichlet, the
values as assigned as per Equations (A-54) and (A-55) above. For calculating the derivatives at the
boundaries, use can be made of the basic form of heat transfer boundary conditions [Equation (A-3)].

Thus, for non-Dirichlet BCs, forj =1, 2, 3, ...., N,, the derivatives can be expressed as:
(m) _ (m) n+l (m)
u . U\ _ -R
(m) (m) _ 7 J.N,+1 J-N, -1 _ fR 2
(u,),,. ™ O(D,, )j,N)_ = o —( 0 J (A-57)
x 1 iN
Therefore,
m m f i _R o
™ Fugy " 2R (A-58)
R, joN,

-~ n+l (m)

(m) _ (m) fR -R

Z'M.I,Nx -1 Z.M‘/’Nx +2.h, [ R ]

(), ™ D(DO 2)_ m = Mjnen 2 Nl ! i, (A-59)
xx/j,N, X Jj,N, h 2 h 2

x x
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The y-derivatives at the right boundary can be computed as for the left boundary [Equations (A-39) -
(A-45)], except at the corner points (=1 and j=N,). So, forj=2,3, ....,(N,—1):

(my _ (m)

Ujnn Ujn
) ™ ol,,) ™= Umtit (A-60)
o B 2.h,
Forj=1,
(m) _ (m) 1
W) ™ 0lp,,),, @ = e T [ B (A-61)
yILN, oyiN, 2 = B
o 1 LN,
Therefore,
n+l (m)
f -B
—_ B 2
uO,Nx(nl) = uz,Nr("’) —2h)| —————— (A62)
B (m)
1 1N,
and,
n+l (m)
-B
(m) (m) m 2N (M)_Z'MI’N"(W)_zh"{fB - J
u,) D(D ,2) S A R A A B - (A-63)
WILN, 0,y LN, i B P 5
' v 'y
Similarly, for j=N,,
(m) _ (m) atl (m)
), , " ol,,), ,m=2mn e oy o (A-64)
Y INy N Ny Ny 2.h 7.
y 1 Nl NX
Therefore,
w4l _ o (m)
(m) — (m) fr T,
Unoi, Sl 2, [TJ (A-65)
1 N,.N,
and,
M -2 (m) +2 (m)
R P N W L A T A
(“yv), . (m) D(DO vz)v . (m) = UN LN, N, N, NLN NN, ( -66)

h? h}

As with the left boundary, all derivatives at time level n can be obtained by replacing the iteration
superscript (m) by the time level superscript, n, and then changing all "' to /", in Equations (A-57)-(A-
66). In the linear non-Dirichlet cases, the following substitutions will make Equations (A-57)-(A-66)
consistent: (a) Linear Neumann — R, = 0 (zero), and R; = 1, and (b) Linear Robin — R; = a,.u", and R; =
1. In addition, for these cases, all RHS terms containing u are evaluated at time level n. Therefore, f is
evaluated at time level n (instead of at n+1). So, the right boundary and corner points (except for
spherical) are completely taken care of, for all three coordinate systems.
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A-2.3.3 Bottom Boundary

NOTE: For the spherical system, the right bottom corner point will be considered here. For the other two
coordinate systems, we do not consider the corner points here since they were considered under the left
and right boundaries described above. Consider the general nonlinear BC presented in Equation (A-2)
above:

B(u,u,) = fo(x,tu+1) (A-67)

If the BC is non-Dirichlet, it can be linearized by expanding the LHS functional about the previous
iterate, to the third term in the Frechet-Taylor’s series, to get:

B +Bu(m).d/l(m) +Buy(rn)'d/ly(m) DanH (A-68)
Rearranging,
(8, +B, "D, Jau™ 0 f,"" -5 (A-69)

Expanding the centered difference approximation, we can obtain an estimate for the value of the image
point, duy; ™ , and thus, be able to solve the split step equations (A-16), at the bottom boundary.
Substituting the expression for Dy, into Equation (A-69), we get:

ou ~(M)_d/l (m)
{Bu(“)dt}l,f”)+{Bu,‘,(“)}“( Syl | VAR T (A-70)
Ny

Rearranging (A-70), we get:

2h, 4B, " &l +AB, "} e, 7 -1, "} ey, 020, (1, - B, ) (A-71)

i
We now use the same notation as in Equations (A-16) for the unknown variables at each stage: v for the
first stage, and u for the second stage. We thus have, fori =2, 3, ...., N.-1I:

2h,.B,™ £, - g
(m) yoTu (m) (m) _ B
Ouy, " U o Ouy ;" +0uy = 2h,. T m (A-72)
u‘v 1,[ u)’ 1,[
For the linear case, we get correspondingly:
M (m) 024 T (m) +u (m) —2h n+l _ n ,
0,i .oy 2. y'(fB,i fB,i ) (A-72)

NOTE: a, is the linear Robin BC parameter (as in: u, + a;.u), and will be 0 (zero) for the linear Neumann
BC. The linear Equation (A-72) was obtained from the nonlinear Equation (A-72) as a special case, by
setting B = f;", B,"” = a,,, and B, = 1. Setting j=1I in both (A-16a and b), and substituting (A-72)
into Equation (A-16b), we finally get, for the bottom boundary:
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n k (m) n (m)
h N (m) (m) h N (m) {u t (N +N )} Uy
xtVu (m) 4-k.N, (m) xtu (m) _ 2 1,i
1- o e P e ol B L AR L ) Wy = OB
Z'N“Ax Li ’ 4px'N“.w Li ’ Z'N“Ax Li ’ px.NuAle

(A-73a)

m m (m) (m) m (m)
4-kN™ 2h,.B," h,.N, ” " o, —gm h,.N,
-2+ u(m) - . (m) A )(m) a i( '+ 20u, i( =- - (m) + 2hy' Jo (m) 1= = \(m)
4p1’-Nu BH 2’Nu ' ' py'Nu Li BH 2-NH
J w 1Li y 1Li w Li Wi y 1,i » 1,i

(A-73b)

NOTE: Unless otherwise indicated, ALL nonlinear functionals (N & its derivatives) are evaluated at the
advanced time step, n+/. For a nonlinear problem with a nonlinear Dirichlet bottom boundary
condition, we consider the expansion in (A-68) to only the 2™ term:

B, & Of,"" -B™ (A-74)

and the bottom grid points are assigned as follows:
n+l _ p(m)
&1, D{fg B J (A-75a)
1

For a nonlinear problem with a linear or nonlinear Dirichlet bottom boundary condition, this
reduces to:

au, = 0. forall m > 0 (A-75b)

Irrespective of the linearity of the boundary condition, if the PDE is nonlinear, all functional values for
the first iteration (m = 0, according to the notation used here) have to be evaluated at the previous time
level in order to take into account the time dependence of the Dirichlet condition. This also follows
naturally from the fact that the first guess for the advanced time step is the converged value at the end of
the last time step. If these were evaluated at the advanced time level n+1, then the boundary value will
remain the same as at t =t,. So, u” =u", BY =B", and B,” = B,"

n+l

_Bn

&’ll,i(O) e ul,l‘(l) _ ul’i(o) D£](BT] (A-76)
1,i

u

It must be kept in mind that for the particular class of problems being considered, as shown in Equation
(A-3), the boundary condition takes on the form of a generalized Robin BC:

B(u,u,) = B(u) . u, + B>(u) (A-77)

In this case, Equations (A-67)-(A-73) and (A-75)-(A-78) can be modified accordingly and everything
expressed in terms of B; and B,.

Spherical coordinate system: Now, the form of Equations (A-73) is identical for both Cartesian and
Cylindrical coordinate systems. But for spherical coordinates, the PDE is not analytic as y — 0, due to the
presence of the function Sin(y) in the denominator of ;. In this case, the PDE becomes (analogous to (A-
34) above), after applying L’Hospital’s rule to the y-component of Equation (A-15a) as y -0
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(A-78a)

ar PyCs

Again, we have assumed the symmetry condition u,(6=0) = 0. So, Equation (A-73a) is still applicable in
the x direction (since the x-derivative terms remain unchanged from Eq. (A-34a), except that N must be
replaced by Ns), but not Equation (A-73b). In this case, the derivatives required in the indicial form of
(A-78a) (equivalent to Equations (A-15)) are:

ou _ N :{{kt.(alaz’x.ux taa,u, +2blb2.uw)+ kt,u .(alaz.ux2 +blb2.uy2} +f}
S

| 2u, 2 ]
{(kt,u 'CP - kt 'CP,u )( 2‘”* + u)oc + u;}’ j + (kt.uu 'CP - kt,u 'CP,u )'[uxz + uyz J} + (fu 'CP - f'cP,u )
_ x X X (A-78b)
NS,u - 2
PoCp
Z(k’ +k,, .ux)
Ny, =—%  J=-N (A-78¢)
PoCp '
2k, u,
Sy, =5 (A-78d)
B
k[
NS,u = = Nu (A_786)
T PoCh '
2.k
Ns, = - (A-78f)
Y pyepx

sincea; Xa=1,a;Xay, =2/x, by x b, = 1/4°, in spherical coordinates. NOTE: We do not consider the
case when x = 0 since it has already been considered under the left boundary condition. So, aty = 0, and
for x Z 0, the implementation of the PDE (A-73) becomes:

7 k (m) n
u"+—\N," + N —-u
hx 'NS,u\ o (m) 4 - k'NS,u(m) (m) hx 'NS,uY(M) (m) _ { 2 ( s : )}l,x :
1- (m) 5‘}],1—] —32+ (m) 5‘}],1‘ +ql+ (m) Jvl,z-t-l - (m)
Z'NS,u“ L 4p, 'NS,u” 1 Z-Ns,u” L Py 'NS,u“ Li

(m)
S

(A-79a)
4-kN (m) 24 B (m) h,.N , (m) 5 V(m) _ p(m) h,.N , (m)
N +[ s,u(m)J _[ ; (:‘W) 1= v ‘(m) d’ll,[(M) + Zd’lz,[(’n) == .- (m) +2h}” fB (B;) 1- v ‘(m)
4py'NS,u”. Li Bu‘ Li 2‘NS,1:”. Li py'Nu” Li Bu, Li 2'NS,1:” Li
(A-79b)

The linear versions of Equations (A-79) can be deduced as a special case, by using the linear boundary
conditions (Equation (A-72) and setting N, = 0 and Ns,. /2. Ng . = 1/x, from Equations(A-78):
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(m) {]; (NS(M) N )}

{1 - hx}d’l ‘—1<m> -2+ 71 ov, "+ {1 + hx}é\/l i - L (A-
)i (m) o o (m)
X; p.Ng, y X; P, Ns., y

79a’)
1 5V .(m)
24— | =2h,.a, 0, 428, = 2R (f, " - ) (A-
pyNs, ™) Py Nsa, .,
79b°)

Finally we can determine the values of the derivatives along the bottom boundary, excluding the corner
points (corner points were considered separately under the left and right boundary conditions), i.e., i = 2,
3, ... N.- I:

(m) (m)

m my _ Ui+ U
(ux)l,i( : D(Do,x)l’i( ): -~ Zh = (A-SO)

X

" 20y ™ ™

(m) 2\ m) _ Yrin _
(”xx )1,:‘ D(DO,X )1[ - 2 (A-81)
il hx
(m) _ (m) n+l (m)
m m Uy U, _B
(uy )1;'( ) |](Do,y )11'( = 2.h - =(fB (m) : J (A_SZ)
' ’ oy Bl Li
Therefore,
n+l (m)
(m) — (m) _ J5 —B
ug, ™ =uy, " =20, (TJ (A-83)
1 1,
and,
f n+l -B (m)
(m) (m) (m) 2a0y, " =20, =2, %
u, " =2u "y ' ’ : B\ .
(MW )li(m) D(DO,}’2)1i(m) = le = = 2 1 = (A_84)
’ ’ hy hy

As with the left and right boundaries, all derivatives at time level n can be obtained by replacing the
iteration superscript (m) by the time level superscript, n, and then changing all /" to /', in Equations (A-
80)-(A-84). In the linear non-Dirichlet cases, the following substitutions will make Equations (A-80)-(A-
84) consistent: (a) Linear Neumann — B, = 0 (zero), and B; =1, and (b) Linear Robin — R, = a,.u", and B,
=1. In addition, for these cases, all RHS terms containing u are evaluated at time level n. Therefore, f3 is
evaluated at time level n (instead of at n+7). This completes the derivations for the bottom boundary.

A-2.3.4 Top Boundary

The derivations for the top boundary closely follow those for the bottom boundary in the previous section.
Again, except for the spherical coordinate system, we do not consider the corner points here since they
were considered under the left and right boundaries described above. Consider the general nonlinear BC
presented in Equation (A-2) above:
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T(u,u,) = fifte1) (A-85)

If the BC is non-Dirichlet, it can be linearized by expanding the LHS functional about the previous
iterate, to the third term in the Frechet-Taylor’s series, to get:

T+, e 4T, ", 0 (A-86)

Rearranging,
T4 Op |y Ot —7m A-87
u u, 0,y fT ( )

Expanding the centered difference approximation, we can obtain an estimate for the value of the image
point, yy:;; ™ and thus, be able to solve the split step equations (A-16), at the bottom boundary.
Substituting the expression for Dy, into Equation (A-87), we get:

o . i(m) - ~ i(m) . .
{le)dl}]vy’i(m) +{Tuy<m>}Ny’i N, 4, 0 N, P (A-88)
Rearranging (A-88), we get:
2hy{Tu(m)'&/l}Ny,i(m) +{Tuv(m)}N”i'&’lNyH,i(m) _{Tu,,(m)}N”i'&lzvv—l,i(m) Dzhy (fT,inﬂ _TN‘,,i(m)) (A-89)

We now use the same notation as in Equations (A-16) for the unknown variables at each stage: v for the
first stage, and u for the second stage. We thus have, fori =2, 3, ...., N,-1:

2h,.T,"™ n*l_(m)
&JN"H’[('") D—[HJ ley’[(m) + &N‘,—l,[(m) + 2hy [fT(m) (A-90)
N,,i N, i

For the linear case, we get correspondingly:
(m) (m) (m) n+l n y
d"/vy +L,i O _2hy a, 'd’[N),,i + d’[Ny—l,i + 2hy -(fT,i - fT,i ) (A-90”)

NOTE: @, is the linear Robin BC parameter (as in: u, + a;.u), and will be 0 (zero) for the linear Neumann
BC. The linear Equation (A-90) was obtained from the nonlinear Equation (A-90) as a special case, by
setting T™ = £, T,”” = a,,, and T,,"” = I. Setting j=N, in both (A-16a and b), and substituting (A-90)
into Equation (A-16b), we finally get, for the top boundary:

ao K (m) n (m)
(m) (m) (m) {M + E (N +N )} - uN‘ S
hx‘Nu (m) 4-k.N, (m) hx-Nu (m) Nyt
1- Y(,n) 5VN - T2t "(m 5VN ;talt Y(,n) 5VN o= (m)
Z’Nun N " 4pX,NuM v " Z'Nun N " ,OX.NMYr Ny
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_ (m) (m) h N (m) e (m) _ p(m) h N (m)
2d’lN -1 i(’n) - 2% u k.Nu(m) + Zhy.](":l) A+ - u‘(m) le f(m) == o= (m) - 2h} .fT (Yr/:) 1+ - uy(m)
. 4'0"’"N“” N i T’“ N, Z'N“” N : ’Q"'N“HN.,,‘ T“' N, i Z'N"“‘ N,.i

(A-91b)

For a nonlinear problem with a nonlinear Dirichlet top boundary condition, we consider the
expansion in (A-86) to only the 2™ term:

T“(m).&/l(m) DfT”"'l _T(m) (A—92)

and the top grid points are assigned as follows:

n+l __(m)
T D[fT—TJ (A-932)
N, i

For a nonlinear problem with a linear or nonlinear Dirichlet top boundary condition, this reduces to:

Ay, ™ =0 for all m > 0 (A-93b)
Irrespective of the linearity of the boundary condition, if the PDE is nonlinear, all functional values for
the first iteration (m = 0, according to the notation used here) have to be evaluated at the previous time
level in order to take into account the time dependence of the Dirichlet condition. This also follows
naturally from the fact that the first guess for the advanced time step is the converged value at the end of
the last time step. If these were evaluated at the advanced time level n+1, then the boundary value will
remain the same as att=t,. So,u” =u", 7" =T7", and T,/ = T,

n+l

_T”

ey O D(—f d = J (A-94)
N,.i

u

0) —
d’lN‘,,i —Uy

It must be kept in mind that for the particular class of problems being considered, as shown in Equation
(A-3), the boundary condition takes on the form of a generalized Robin BC:

Tluu) = Tifw) . u, + To(u) (A-95)

In this case, Equations (A-85)-(A-94) can be modified accordingly and everything expressed in terms of
T] and Tg.

Spherical coordinate system: Now, the form of Equations (A-92) is identical for both Cartesian and
Cylindrical coordinate systems. But for spherical coordinates, the PDE is not analytic as y — 7T due to the
presence of the function Sin(y) in the denominator of b;. The computation of the functional at the top
boundary and deducing the resultant top boundary equations is identical to that for the bottom boundary,
and Equations (A-78) and (A-79) can be used for the top boundary, after changing the y-index to N,
instead of /.

Finally we can determine the values of the derivatives along the top boundary, excluding the corner points
(corner points were considered separately under the left and right boundary conditions), i.e., i = 2, 3, ..,
N,-1I:
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(m) (m)

U, —u .
(m) ( ) (m) _ N+l N, i-1 )
(ux )N),,l' I:l DO,X N),,i - 2hh (A 96)
(m) (m) (m)
Uy . —2u, . tu, .
(m) 2 (m) _ T N,itl Ny.i N,,i-1
(U xx )Ny,i D (DO,x )Ny,i - h 2 (A-97)
X
(m) (m)
u X —-u ) n+l _ T (m)
(m) my _ My e A i >
(uy )Nv,i O (Do,y )Nv,i =— 2 : = o (A-98)
‘ ‘ I I N,.i
Therefore,
n+l (m)
(m) _ (m) Sr T
Uy v Uy T 2.h, (TJ (A-99)
1 Ny.i
and,
n+l (m)
m m T
(m) (m w T2 o 2 +2.hy[fr o ]
T B o L B ) ] A-100
(m) 2 (m) _ N, *Li N,.i N,-Li _ N
(“w)w, i D(Dw )w i h’ - I ( )

As with the bottom boundary, all derivatives at time level n can be obtained by replacing the iteration
superscript (m) by the time level superscript, #, and then changing all /""" to £, in Equations (A-98)-(A-
102). In the linear non-Dirichlet cases, the following substitutions will make Equations (A-98)-(A-102)
consistent: (a) Linear Neumann — T, = 0 (zero), and T ; =1, and (b) Linear Robin — T ;= @,.u",and T ; =
1. In addition, for these cases, all RHS terms containing u are evaluated at time level n. Therefore, f7 is
evaluated at time level n (instead of at n+1). This completes the derivations for the top boundary.

A-2.4 Computational procedure summary

At each time level, the coefficients of the tridiagonal systems (Equations (16), (26), (35),
(52), (73), (79), (91)) are first computed using an initial guess for u (converged value at the
previous time step or initial condition). The tri-diagonal system of equations involving both the
interior and boundary points can be solved by an LU-Decomposition scheme, once in each of x-
and y-directions, to get a new iterate. Then new coefficients based on the last iterate are
computed to generate subsequent iterates. This process is continued until the difference in the
norms of two successive iterates becomes smaller than a specified tolerance. Once convergence
is achieved at a time level, the algorithm moves to the next one, taking this value as the initial
guess for that level. Section A-2.5 below outlines the algorithm for implementing this
procedure. A detailed explanation for the code is given in Chapter A-3.
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A-2.4.1 Algorithm for Implementation

» Load/Specify the following (INPUTS):

Flags for problem specification: linear flag (problem linearity specification), coord flag (geometry
specification), smooth_flag (type of smoothing — None/1D/2D), exact_sol_flag (whether exact solution
is known); Boundary condition (BC) type flags — lefi bc_flag, right bc_flag, bottom_bc_flag,
top_bc flag; BC linearity flags — lefi lin_flag, right lin flag, bottom lin flag, top lin flag;

PDE Specification: Initial Condition - u,; Coefficients of adjoint form of PDE (for user specified
problem geometry, other than standard Cartesian, Cylindrical or Spherical systems: coord flag = 0) —
aj, ay by, by; Linear or nonlinear functionals, L or N, and their derivatives w.r.t. temperature and its
derivatives - u, u,, u,, Uy, U,,. Expressions for BCs —f}, fx /5 f7; BC functionals that define the Left
Hand Side (LHS) of the BC — Lf;, Lf>, R;, R,, B, B, T}, T>, and their derivatives w.r.t u, u,, u,;
linear/nonlinear Right Hand Side (RHS) function or Source function of PDE — f,,,, and its derivative
w.r.t. temperature, u.

Problem data: Values of thermal and elastic properties of rock and fault surfaces being modeled —
Thermal conductivity, k, Specific Heat, C,, Density, 0, Young’s Modulus of elasticity, £, Poisson’s
ratio, V, Coefficient of friction, 4 Shear stress, T, Asperity radius, r,, Slip velocity, V;,, Angular
contact, 6, and Contact duration, #,. Expressions for nonlinear variation of these properties with
temperature (if variation is significant, and or relevant), and their derivatives (as required) — for
instance, k1), k; . ki Co(u), C,,. Smoothing flag - smooth_factor, if smoothing flag was non-zero.
Spatio-temporal domain boundaries —x;, x,, ¥, 5 %, and ¢

Resolution/Step sizes - k,, h,, and k (time step)

Newton-Kantorovich (N-K) nonlinear iterations convergence tolerance — quasi_epsilon

Max allowed N-K iterations — quasi_iterations.

Output File parameters (for convergence tests and validation plots): Format of each file, Header
information, data sampling resolutions, times and locations, output data definition or calculation.

» Main Program — nonlin_parabolic_pde - Time Loop:

For t=1,t steps

Ift>1 - CALL quasilinear subroutine — delta_glin_dgts

0 store the previous time step value u, in u"
0 set the initial grid function guess to the converged value at the end of last time step: u
0 Perform Newton-Kantorovich Iterations until convergence:
For iter = 1, quasi_iterations ! NEWTON-KANTOROVICH iteration loop
Ifiter > 1 - Check for Convergence:
If convergence occurs:
Store relevant data,
Return to Main Program: go to next time step.
Otherwise - Compute next iterate:
For stage=1, 2 ! DOUGLAS-GUNN x- and y-direction passes
= (Call Coeff RHS routine gldgts_coeff rhs, to compute Coefficients at
time level (n+1), using grid function values at the previous iteration.
= Compute RHS vector using both time levels as well as the grid
function values at previous time step as well as previous iteration.
= Call the routine Jud_trid to compute estimate at current stage - ov at
the end of stage 1, and du at the end of stage 2.
Repeat stage
Update grid function values for current iteration: 1™ = du + u™"
Compute errors, if exact solution is not known, or error estimates
Store u™ for use in the next iteration.

O —

Repeat iter

Repeat t
» Print output once marching in time is completed.
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A-3. COND2D - FORTRAN 90 CODE DESCRIPTION, SETUP &
VALIDATION

A-3.1 Scope of COND2D: Current capabilities, their potential extension, and code
limitations

The goal here was to develop a very general, reliable, and modular 2D diffusion code, that can be applied
to either linear or nonlinear PDEs, with any combination of linear/nonlinear boundary conditions, and in
any geometry, that can be extended without significant modifications to a 3D. COND2D is such a general
code, and can be applied with minor modifications to any 2D parabolic partial differential equation
(PDE). Its different loops and flow pathways have been thoroughly tested using over 35 different linear
and nonlinear problems with known solutions of varying complexity and smoothness — with almost all
possible combinations of coordinate systems, linear and nonlinear boundary conditions, and parameter
ranges. This led to about 10 versions of the code that were successively “purged” (of numerous
numerical, input/output, and formatting bugs) to produce this current reliable version. Some details of
these validation tests are presented in Section A-3.4 below. It is the author’s experience that if this
version of the code did not work for a particular problem, more often than not, the issue was with the
myriad inputs that the code requires in terms of flags, parameter values, and boundary conditions. Before
using COND2D, it is recommended that this chapter be carefully read and the organization of the code be
understood (Figure 1 and Section A-2.4 above), before trying to implement it for a problem of interest.

Minor modifications — like changing the values of any of a number of parameters and/or modifying the
algebraic expressions for various linear/nonlinear functional subroutines in the code - have to be made
implementing this code for a problem of interest. In addition, some advanced level (major) modifications
that can be made to the code without significant rewriting of the COND2D source code are (roughly in
increasing order of difficulty, and quantity of additional code to be appended):

*  General Boundary Conditions: COND2D can be made to accept very general boundary conditions,
instead of being restricted to only conductive Neumann/Robin conditions. This can be accomplished
by a simple change in the expressions for the appropriate (a) boundary condition functionals (e.g., for
the left boundary condition, subroutines /bcl! & [bc2 may have to be replaced by a single subroutine
Ibc, and appropriate modifications made to existing /bc_u and lbc_ux subroutines), and (b) boundary
condition right hand side (RHS) functions (e.g., subroutine f* left for the left boundary). In addition,
appropriate changes have to be made to the derivative subroutines, u_x, u_y, u_xx, and u_yy, as well
as to the coefficients and RHS terms for boundary grid points in subroutine glindgts coeff rhs (see
Section A-3.2 below). The relevant theory for this was discussed in Section A-2.3 above. However,
if the boundary conditions for a problem of interest can be cast in the form of Equation (3)
(Chapterl), then no changes need to be made to COND2D.

*  User Defined Geometry/Coefficients: COND2D can be applied to a geometry different from the
three standard coordinate systems (Cartesian, Cylindrical, and Spherical). This can be accomplished
by setting the coordinate system flag (coord flag) to 0, and then specifying appropriate expressions
for the coefficients of the PDE — a;, a,, b;, b,. 1f these expressions are not analytic at some point(s) in
the spatial domain, then appropriate modifications need to be made to the subroutine
qlindgts coeff rhs (see Section A-3.2 below). So, this code can be applied to a PDE in other
“regular” coordinate systems like: conical, ellipsoidal, elliptic cylindrical, oblate spheroidal,
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parabolic, parabolic cylindrical, paraboloidal, and prolate spheroidal (in the order of increasing
symmetry — see, for instance Moon and Spencer 1988).

Including Advection/Transport terms: COND2D can be modified relatively easily to include
advection terms in a Conduction/Advection equation. Again, suitable modifications need to be made
to the subroutine glindgts coeff rhs (see Section A-3.2 below).

Parallelizing COND2D: This is an important issue with linear or nonlinear problems with non-
smooth data (boundary conditions, source functions, coefficients, etc.) - the more non-smooth the
data, the higher the required spatial and/or temporal resolution at which the problem has to be solved.
That is, below a certain resolution, the numerical problem is under-resolved, and cannot accurately
represent the smaller scale physics characterized by the non-smooth data. This critical resolution has
to be determined on a case-by-case basis by testing for grid function convergence with increasing
resolution. While the problem is under-resolved, the solution my not be stable and may vary widely
with uniform resolution increases. But above the critical resolution, the solution starts converging
with increasing resolution (and not necessarily to any of the under-resolved solutions). Parallelization
of the code may be required to improve the odds of being able to compute the solution in reasonable
time as well as stay within machine array size limits, parallelization is important.

Extension from 2D to 3D problems: COND2D can be extended to a parallelizable 3D form, by
considering a 3D spatial domain as a stack of 2D domain slices (McDonough and Dong 2001). In
this case, each 2D slice can be solved independently of the others at every iteration, and the 2D
Douglas-Gunn scheme itself can be parallelized. At each iteration, the original 3D solve is reduced to
a 2D solve (which can be carried out with COND2D) and a 1D solve, which requires the addition of a
loop that is very similar in structure and content to that for each stage of the two level scheme used
here, in the subroutine delta glin_dgts (Section 3.2 below). As shown in the aforementioned
reference, the whole process can be efficiently implemented on parallel architecture machines.

Extension to systems of 2D or 3D PDEs: The most complex of adaptations for COND2D, involving
significant code modifications, involves applying it to systems of PDEs. As shown in McDonough
(2002), the underlying linear algebra is similar but more general, in that, at each grid point of the
domain we have to solve for a system of variables, instead of a single variable.

After any of the modifications suggested above are made to the code, and compilation errors corrected,
the code has to be re-validated using a problem with a known solution, to test the modified parts of the
code, as illustrated below in Section A-3.4.

Needless to say, the algorithm used here, and therefore COND2D, has a number of limitations:

Irregular geometry: One major limitation is that of the finite difference approach itself: it cannot
easily accommodate irregular or complex geometries that cannot be mapped (one-to-one) to a
rectangular grid. In this case, a number of tricks may be used. For instance, some form of domain
splitting can be implemented to create a number of subdomains of simple geometry, and then
applying the code to these different subdomains. Of course, when the problem domain is split into
subdomains, another level of iterations has to be introduced to ensure compatibility of solutions at the
boundaries of these subdomains, while satisfying the overall boundary conditions of the problem.
This would definitely involve not only a complete rewriting of parts of the current code, but also
adding additional modules and “book-keeping” subroutines.
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*  Symmetry requirements: Another limitation of this code is the symmetry requirements on the
solution at » = 0, for both spherical and cylindrical coordinate systems, and at € = 0 or 7z for the
spherical system. If the symmetry requirements cannot be assumed, L Hospital’s rule approximations
cannot be made to the PDE at these non-analytic points and no solution can be computed at those
points.

* Storage: COND2D uses a number of storage variables, so that all relevant data sampled at different
time levels can be output at one time, at the completion of the “time-marching”. This was done to
minimize file writes, which are very inefficient. However, this limits the resolution at which the code
can be run — especially on a shared machine like the HP Superdome supercomputer cluster on the
University of Kentucky campus - due to the overall memory allocation limits (cache limits) for each
user.

A-3.1.1 Organization of the source code

As described above, COND2D was developed as a highly modular code to provide users with a lot of
flexibility in defining and setting up 2D heat conduction problems. A self-explanatory organizational and
data flow chart of the code appears in Figure A- 1. It is suggested that this figure be used in conjunction
with the procedure description and algorithm outline presented in Section A-2.4 above, and the example
run setup illustrated in Section A-3.3. A description of contents of the code appears in the following
section.

A-3.2 Brief description of modules, subroutines and key variables

The COND2D source code contains a large number of comment statements and the user is referred to it
for any specific details. The objective of this section is to provide a brief overview of each subroutine,
define its input and output variables, and discuss the importance of certain key variables that require user
input, within the subroutine where they are encountered first. Section A-3.3 actually goes through the
process of setting up a run, compiling the code and running it. In the subsections that follow, all modules
are briefly described, and key variables are discussed where appropriate. A table (or tables) listing and
describing the key variables in that module (or each individual subroutine in that module) is (are) also
presented, if needed. Use of this section in conjunction with Section A-2.4 and Figure A-1 is
recommended.

A-3.2.1 MODULE const_params

This module specifies constants and sets the values of machine limit parameters needed by the rest of the
subroutines, basic partial differential equation (PDE) flags, output file unit numbers and names, specifies
output sampling point information, and defines global variables. It is important to check this module over
carefully before running the code as it contains several key parameters for the run — from the very
definition of the type of PDE, to whether it has an exact solution, to PDE domain definition and minimum
run resolution, to output sampling points and output resolution — that have to be set by the user. Its the
author’s experience that in cases where COND2D does not work for a specific problem, more often than
not the issue was misrepresentation/overlooking of a parameter value within this module. It is
recommended that the user follow a suitable data checking procedure before attempting to run the code,
given the number parameters that may need to be modified for a given problem. Key variables in this
module are described in Table A-2.
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MODULE const params

Figure A- 1. Organizational chart for COND2D. Refer Section A-2.4 for an outline of the
algorithm

Constants:

PRECISION (Real & Integer)
TI(=3.1415926535...)
Maximum array dimension
Minimum floating point #

PDE Specifications /flags:
Linearity

Coordinate System
Smoothing

Domain

Maximum step sizes

Output File Parameters:

Sampling points for:

Grid convergence Tests
Solution profile snapshots
Solution evolution check

Global Variable Definitions

MODULE fault params

) LU-Decompostion Subroutine — lud_trid:

MODULE pde_routines L
Thermal Properties & their Derivatives:
kt f bottom
kt u bbel
kt uu bbc2
cp bbc u
cp u bbc_ux
f top
PDE exact solution and Initial Condition: tbel
f exact tbbc2
f initial tbbc_u
tbbc_ux
PDE RHS function (source term) & Derivative:
f rhs PDE coefficients:
f rhs u al
a2
PDE boundary conditions and functionals: a2 x
f left bl
Ibcl b2
Ibc2 b2 y
Ibc_ u
Ibc_ux Derivatives:
f right u X
rbel uy
rbe2 u_ XX
rbc_u uyy
rbc_ux
Continued —

CORE ROUTINES: MODULE solver routines

Solves the Tridiagonal system for each pass through the Douglas-Gunn
routine below.

Tridiagonal System LHS Coefficient and RHS vector computing

Ranges:

Asperity minimum size
Asperity maximum size
Maximum Specific Heat
Minimum Specific Heat
Maximum Conductivity
Minimum Conductivity
Maximum Friction Coeff.
Minimum Friction Coeff.
Poisson’s Ratio
Maximum Density
Minimum Density
Maximum Slip Velocity
Minimum Slip Velocity
Maximum Shear Stress
Minimum Shear Stress

Constants/Values for]

Current Problem:

Linear problem defaults:
Specific Heat
Conductivity

Friction Coefficient

Density

Slip Velocity

Shear Stress

Calculations:
Asperity Contact Radius
Asperity Contact Time

Subroutine — gldgts coeff rhs:
Computes the values of (N, x N, x 3) coefficients and (N, x N, ) RHS vectors {

for each pass through the Douglas-Gunn routine below, while accounting for
boundary condition corrections. Computes the bulk of the expressions
described in Section 2.3 above.

Delta form of Douglas-Gunn with delta form of Newton-Kantorovich
iteration scheme — delta glin_dgts:

Computes each iterate of the solution -with two passes through the Douglas-
Gunn loop, for the x- and y-directions - and continues this until convergence.
Once convergence is achieved. it outputs the solution to the Main Program.

MAIN PROGRAM nonlin_parabolic pde

—_

iii.

Read resolution and smoothing level command line arguments (4)
Open and write header information to output files and screen

Compute and store Output file data sampling indices and parameters to be used later for data

storage
Compute spatio-temporal resolutions for the specified resolution levels
Allocate all arrays — Print errors if space is not available

Main time marching loop: (Number of passes depends on time step size computed in step 4

above).
Call delta_qglin_dgts routine to obtain converged value of solution at each time step

Compute errors & store relevant information at each time step in data arrays for later output.

Update time level
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Table A- 2. Key variables in MODULE const_params.

Variable Description or Comment

p Precision of all real variables and constants in the run

ip Precision of all integer variables and constants in the run

out Array containing output file unit numbers (5 for the present implementation)

outfile Array containing the names of output files (See Section A-3.2.5 for description)
(GRID, ERROR, SNAP, EVOLUTION, and CONVERGENCE)

max_points Machine array dimension limit — This is the maximum number of grid points permitted in
each spatial direction in COND2D.

epsilon Smallest numerical approximation to zero — useful sometimes in avoiding floating point
exceptions (or divide-by-zero errors).

linear flag = 1 if the PDE of interest is linear; = 0 if nonlinear.

coord flag = ( if user defined system (see section 3.1 above for code modifications in this case); =1 if
the coordinate system of interest is Cartesian; = 2 if Cylindrical; = 3 if Spherical;

smooth flag COMMAND LINE ARGUMENT # 3.

(DEFINED ONLY) = 0 if no smoothing of grid functions is required (in case of non-smooth data);

=1 for 1D smoothing; = 2 for 2D smoothing.

smooth_factor

COMMAND LINE ARGUMENT # 4.

(DEFINED ONLY) Range 000000-999999. Degree of smoothing is non-zero if smooth_flag is non-zero (see
under Main Program, Section A-3.2.5 for a description).

x_left Domain left boundary coordinates.

x_right Domain right boundary coordinates.

y_bottom Domain bottom boundary coordinates.

y_top Domain top boundary coordinates.

t_initial Initial/start time of run.

t_final Final/end time of run.

hx_max Maximum x-step size (Minimum resolution in x-direction)

hy max Maximum y-step size (Minimum resolution in y-direction)

out x grid spacing

x-direction resolution in the GRID and ERROR output files.

out y grid spacing

y-direction resolution in the GRID and ERROR output files.

t_evol_spacing

Output temporal resolution in the temperature EVOLUTION output file.

t_snap

Array containing time levels at which GRID and ERROR data are output.

y_xsnap, t_xsnap

Y-coordinate and time level for snapshot of a solution profile parallel to the x-axis

X_ysnap, t_ysnap

X-coordinate and time level for snapshot of a solution profile parallel to the y-axis

X_time, y_time

X- and Y-coordinates for a single temperature plot data (output to EVOLUTION file)

grid_conv

2D Array containing X- and Y-coordinates as well as time levels at which grid convergence
tests have to be performed (to be output to CONVERGENCE file)

verbose flag

= 0 if no diagnostic screen output is needed; = 1 if diagnostic screen output - containing the
number of nonlinear iterations to convergence, maximum and minimum temperatures, and
maximum error (if computable), as well as their grid locations — is needed.

quasi_epsilon
(DEFINED ONLY)

SPECIFIED IN MAIN PROGRAM (Section 3.2.5).
Convergence tolerance for nonlinear iterations, chosen as the cube of time step size, k’ (see
McDonough 2002).

Quasi_iterations
(DEFINED ONLY)

SPECIFIED IN MAIN PROGRAM (Section 3.2.5).
Maximum number of nonlinear (Newton-Kantorovich) iterations allowed for the run —
typically a low number (10-15 or lower).
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A-3.2.2 MODULE fault params

This module specifies fault and rock material parameters to be used in the run. Data in this module are
derived from (or from fits to thermal property data in) Touloukian et al. (1981) or Byrelee (1978), Logan
and Teufel (1986), and Nadeau and Johnson (1998). All the variables in this module are specified in
Figure A-1, and the relevant data appears in Appendix C of Kanda (2003). Therefore, no data table
appears in this section. This module can be modified by the user in accordance with problem
requirements. It is, however, recommended that the information in the source code and the
aforementioned appendix be reviewed before modifying the default data or ranges in this module. Just as
a reminder, the angular area of contact, 8, is approximated by the expression for Hertzian (elastic) contact
between two spheres (Timoshenko and Goodier 1970), and is given by:

O=TAN " (r. /ro) O (v. /ro) = {3.71(1-V°). T}/{4.Ey. 11}

where 7. is the radius of the asperity contact surface, r, is the asperity radius, V is the Poisson’s ratio, Tis
the shear stress at the contact surface, Ey is the Young’s modulus for the rock material, and 4 is the
coefficient of friction. The duration of asperity contact is computed as: t) = 4.7, /V;,. Sources for the
ranges of values for the above parameters are presented in Appendix C of Kanda (2003).

A-3.2.3 MODULE pde_routines

This module contains all the subroutines needed to define the PDE — nonlinear thermal properties, exact
solution, initial condition, RHS or source function and its derivatives, all four boundary LHS functionals
and RHS functions, PDE coefficients and their derivatives, and first and second derivatives of
temperature. This is also a module that can be extensively modified to suit the user’s needs. Extreme
care must be taken, however, in making sure that all the parameters and expressions that the user modifies
in this module, to implement a problem of interest, are accurately represented. Its the author’s experience
that in cases where COND2D does not work for a specific problem, more often than not the issue was
misrepresentation of an expression or a sign in an expression within this module. It is recommended that
the user follow a suitable quality control and data checking procedure before attempting to run the code,
given the number of subroutines that may need to be modified for a given problem. Each of the
subroutines in this module is briefly described below, along with any key variables that the user may need
to modify. Since the number of variables in each routine is fairly small, no tables are included in this
section.

A-3.2.3.1 Thermal conductivity & its derivatives: kt, kt_u, kt uu

The data and the final functional relationship chosen for the thermal dependence of thermal
conductivity are presented in Appendix C of Kanda (2003). Since the coefficients of the tri-
diagonal system - defined in Sections A-2.2 & A-2.3 above - are themselves dependent on the
nonlinear functional N and its derivatives (and therefore, on the temperature, u), the stability of
the scheme is strongly dependent on the type of thermal property temperature dependencies
chosen, and has to be dealt with on a case-by-case basis. No amount of testing will guarantee the
stability of the non-linear problem. However, as discussed in Chapter A-1 above, a “rule of
thumb” criterion is to make sure that these temperature dependencies are Lipschitz continuous in
the expected temperature range of the problem. It was with these considerations that an
exponential relationship was chosen for the maximum temperature range of the problem (300 K
to 3000 K, or above).
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A-32.3.2 Specific Heat & its derivative: cp, cp_u

The data and the final functional relationship chosen for the thermal dependence of specific heat are
presented in Appendix C of Kanda (2003). Since the coefficients of the tri-diagonal system - defined in
Section A-2.2 & 2.3 above - are themselves dependent on the nonlinear functional N and its derivatives
(and therefore, on the temperature, u), the stability of the scheme is strongly dependent on the type of
thermal property temperature dependencies chosen, and has to be dealt with on a case-by-case basis. No
amount of testing will guarantee the stability of the non-linear problem. However, as discussed in
Chapter A-1 above, a “rule of thumb” criterion is to make sure that these temperature dependencies are
Lipschitz continuous in the expected temperature range of the problem. It was with these considerations
that an exponential relationship was chosen for the maximum temperature range of the problem (300 K to
3000 K, or above).

A-3.233 Exact solution: f exact (Optional)

This routine is for test problems, in which case, a known exact solution can be input to COND2D, so it
can compute exact errors. Exact errors are used to conduct convergence tests. The presence of an exact
solution is indicated by setting the value of exact sol flag to 1 in the module const params above. If its
value is 0 (zero), then the program assumes that there is no exact solution, and does not call this routine.
In case of nonlinear problems, it estimates an error, based on iteration errors.

A-3.234 PDE Initial Condition: f initial

This routine specifies the initial condition to a problem and is required for every problem. Note that the
initial condition needs to be defined over the entire spatial domain of the problem.

A-3.23.5 PDE RHS or source function and its derivative: f rhs

These routines define the linear or nonlinear RHS or source function of the PDE, and its derivative. f rhs
can be easily computed for a test problem having a known solution — by direct substitution of that
solution into the PDE. For problems of interest to scientists and engineers, when exact solutions are
rarely known, it has to be based on the physics of the problem. For heat conduction problems, its units
are energy per unit volume (for 3D problems) or energy per unit area (for 2D problems). An example is
the radiogenic heat source in the lithosphere.

A-3.2.3.6 Left boundary condition (LBC): RHS function, and LHS functional & derivatives:
f left, Ibcl, Ibc2, Ibc_u, Ibc_ux

Required for all problems, these routines help define the form of the left boundary condition. Each
boundary condition consists of two components — an LHS functional and an RHS function, as illustrated
below for the current implementation of COND2D:

Lftuuy) =Lfi(w) + Lfo(w) . e = fien(y,1)

In the above standard form of the left boundary condition for general conduction problems (Equation (3),
Chapter A-1), Lf, Lf; and Lf are the LHS functionals, and f,.; is the RHS function. For a general Dirichlet
BC, Lf; = 0; for a general Neumann BC, Lf; = 0; and for a general Robin BC, both are non-zero functions
of the temperature, u. By definition, the RHS function does not depend on the temperature, u, but only on
the y coordinate and time level. While the form of the functionals are defined by the type of boundary
heat source/sink — conductive, convective, radiative or assorted combinations — the RHS function is
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fixed/specified by the user, and takes the form of an analytical expression, or a single constant value. So,
Lf; needs to be specified if the left boundary condition is radiative (Lf; 7u’) or convective (Lf; (7 h(u). u).
Similarly, Lf; needs to be specified if the left boundary condition is conductive (Lf; 7 k(u)) or a
combination of conductive and convective/radiative sources/sinks (Robin BC). The corresponding linear
cases are: Dirichlet — Lf; = u, Lf; = 0; Neumann — Lf; = 0, Lf; = I; and Robin — Lf; = a.u, Lf; = 1. In
order to incorporate a radiative BC in a linear problem, a nonlinear equation solver (Newton method) has
to be used to compute the value of the temperature, thereby converting it to a Dirichlet condition. Once
the form of the functional is fixed, computation of its derivatives w.r.t. temperature is straightforward, and
these expressions have to be included in the appropriate subroutine.

For the current implementation of COND2D, Lf, = k,(u) for either nonlinear Neumann or nonlinear Robin
left boundary condition, and Lf; = u(1+u)/2 (arbitrary function) for either nonlinear Dirichlet or nonlinear
Robin left boundary condition.

A-3.2.3.7 All other boundary conditions (RBC, BBC, & TBC): RHS functions, and LHS
functionals & derivatives: f right, rbcl, rbc2, rbc_u, rbc_ux, f bottom, bbcl, bbc2,
bbc_u, bbc_uy, f top, bbcl, bbc2, bbc_u, bbc_uy

The treatment of the rest of the boundary conditions is identical to that for the left boundary condition
described in Section A-3.2.3.6 above.

A-3.2.3.8 PDE coefficients and their derivatives: al, a2, a2 x, bl, b2, b2 y

These coefficients have been defined in Table A-1 above, for coord flag = 1-3. If coord _flag = 0, then
the user has to specify expressions for these coefficients in terms of the coordinate system and time.
NOTE: These coefficients are not dependent on temperature, u, and therefore, cannot be nonlinear by

definition. Expressions for the derivatives must be included in the subroutines a2 x and b2 y, if
coord_flag = 0.

A-3.2.3.9 Temperature Derivatives: u_x, u_y, u_xx, u_yy

The derivatives are all computed as discussed in Section A-2.3 above. They are used in the computation
of the coefficients and RHS vector of the tridiagonal system to be solved at each pass of the Douglas-
Gunn algorithm described in Sections A-2.2 and A-2.3. If the form of any boundary condition functional
is changed (as when coord flag = 0, or if more general boundary conditions are used), then expressions
for these derivatives must be changed. The procedure outlined in Section A-2.3 can be used to compute
these new expressions.

A-3.2.4 MODULE solver_routines: The core routines

This module contains the main driver and 2 workhorse routines of COND2D, and is the main numerical
computation kernel. Unless modifications listed in Section A-3.1 above are being made, no routine in this
module needs user modifications. Thus, almost all 2D pure heat conduction problems can be solved with
appropriate minor modifications to the modules const params, fault params and pde routines. This
structure minimizes the chances of accidental modification/deletion of any key core numerical
components of COND2D (see also Figure A-1 above).
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A-3.2.4.1 LU Decomposition for tridiagonal systems: lud_trid

This routine solves the tridiagonal system (see, for instance, McDonough 2001) generated by the
discretization of the general nonlinear 2D diffusion/transport equation, discussed in Sections A-2.2 & A-
2.3. Itis called at every pass of the two stage Douglas-Gunn loop, which itself occurs twice per nonlinear
iteration (for the 2D problem). /lud trid solves a system of linear equations (any number, up to machine
memory limit):

Ax=0>b

where A4 is a "compact" tri-diagonal coefficient matrix, of dimension N, x N, x 3 (N, is the number of grid
nodes in the x-direction, N, is the number of grid nodes in the y-direction), and b is the RHS vector of
dimension N, x N,. This routine gets arrays A, and b as inputs. It returns the solution in vector b, to
conserve storage space. It uses the space allocated for the 4 to simultaneously store the elements of the
lower (L) and upper (U) triangular matrices into which 4 is decomposed. It does this by not storing or
using the diagonal elements of U, which are all equal to /.

A-3.24.2 Computing tridiagonal system coefficients and RHS vector: glindgts coeff rhs

This routine computes all the coefficient and RHS vector elements in the arrays 4 and b, respectively
(discussed in the previous section). Essentially, it computes all of the expressions discussed in Sections
A-2.2 & A-2.3 above. For most of the modifications discussed in Section A-3.1, it is here that all the
linear or nonlinear PDE functionals have to be appropriately modified, and if necessary, to the boundary
condition functionals that appear in calculating the elements of 4 and b. The tridiagonal coefficient
matrix, A, is generated in the “compact” form described in the previous section.

A-3.243 Driver routine: delta_glin_dgts

This is the driver routine for the numerical solution procedure adopted here — namely &-form of
“quazilinear” (Newton-Kantorovich) iterations coupled with the d-form of the two level Douglas-Gunn
(D-G) Scheme. The data flow within this subroutine is illustrated in the algorithm presented in Section
A-2.4.1 above. Here, for each iteration of the quasilinearization process, the "imporved" iterate is
constructed using two stages corresponding to the 2-step D-G scheme. Using an initial guess for
temperature, ", provided by the Main Program (Section 3.2.5) for EACH time step (Initial Condition,
finitial, for the 1% time step, and the converged value at the previous time step, for subsequent ones) to
iterate to a converged value for that time step. It outputs the grid function values for the current time step,
u", to the main program. As discussed in detail in Sections A-2.2 & A-2.3, the grid functions at each
Douglas-Gunn stage of a single nonlinear iteration, are related to those at the previous iteration by the
compact time-split matrix formulae:

A ™ t,). v = b(u('”), ty w1, and
Ay(u(m), 1,1) . &/’2 = d’]

where n denotes the time level index, m denotes the iteration counter, and A, and A, are the split
coefficient arrays in the x- and y-direction, respectively, but having the same dimensions as 4 (N, x N, x
3). In each D-G stage, the routine first calls glindgts coeff rhs, to obtain the coefficient and RHS vector
arrays for that stage. The routine then calls the LU decomposition routine to compute Jv; at that stage.
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After making both D-G passes, the routine updates the solution at the current iteration (in case of
a nonlinear problem) or the current time step as follows:

u™ =™ 1 B, for the nonlinear problem, at iteration m, or
" =u"+ for the linear problem, at time level n.

In the nonlinear case, it stores grid function values both at the last time step, u™’ , and for the last
iteration, u™ ", as they are both required for every Newton-Kantorovich iteration.

A-3.2.5 MAIN PROGRAM nonlin_parabolic_pde

The main program contains the main time marching loop, and boundary condition flags, and performs
almost all input/output (I/O) functions. The boundary condition flags were moved into the main program
primarily to allow for changes in boundary condition (BC) types partway through a run. When this
happens, the initial condition for the new set of BCs will be the same as the temperature, u, at the
previous time step — but changes need to be made to this “initial” temperature, if any of the new BCs is
Dirichlet. The chief functions of the Main Program are outlined in Figure A-1 above, and include:

* Read the four command line arguments (for the current version of COND2D).

e Compute the actual gird resolutions at which all calculations will be performed: use the minimum
resolutions computed in the module const params (Section 3.2 1 above), in conjunction with the
spatial and temporal resolution flags from the command line (1* and 2™, respectively). Then
compute the grid node and time level indices for the problem domain defined in the module
const_params.

» If the problem is nonlinear, define the convergence tolerance for nonlinear iterations, quasi_epsilon,
and the maximum number of iterations allowed, quasi iterations. If the problem is linear, set
quasi_epsilon to a very large value and quasi_iterations to 1, so that the subroutine delta_glin _dgts
makes only the two required D-G passes at each time step.

*  Compute any fault parameters that could not be computed in the module fault params (due to Fortran
90 limitations — namely no expression containing a function call can appear in a parameter definition
statement).

* Open all 5 output files outlined in Table A-2 above (and described below), and print out header
information to all the output files and the screen.

*  Compute all indicial information required for output data storage.

* Allocate all arrays needed in the run.

* March through time: AT THE FIRST TIME LEVEL, ASSIGN ALL BOUNDARY CONDITIONS.
IF BOUNDARY CONDITION TYPE CHANGES AFTER A CERTAIN TIME, t,, CHANGE IT
THE FIRST TIME t > t,. At each time level, (@) obtain the values of the solution at each time step,
by calling the subroutine delta_glin_dgts (described in the previous section); (b) Compute errors if
exact solution is knows; (¢) Store any relevant output data for later use; (d) smooth data if specified
by the smooth flag, using the given smooth factor (3™ and 4™ command line arguments,
respectively); and (e) go to the next time level.

* At the end of the run, write all stored output data to the appropriate output files. Close output files
and de-allocate all arrays before exiting.

In the following sections, three important features of the Main Program are described.
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A-3.2.5.1 Command line arguments: Choosing optimal resolution

COND2D was designed to be run in batch mode, from a script file. Therefore, it accepts certain run
specifications as command line arguments. Of course, the form and content of these arguments can be
easily changed to the user’s specifications. For the current version of CONDZ2D, the program executable
(created after compilation of source code and linking of object codes) must be followed by THREE 1-
digit arguments, and ONFE 6-digit argument, separated by spaces:

Argument # 1 — Spatial Resolution Flag (res_flag 1): A ONE character argument, it can have a value
between 1 and 9. The actual spatial resolution of the run is determined as follows:

res flag 1 =1 implies x-step size, hx = hx_max/2’, y-step size, hy = hy max/2’;
res _flag 1 =2 implies x-step size, ix = hx_max/2',  y-step size, hy = hy max/2';
res_flag 1 =3 implies x-step size, ix = hx_max/2’,  y-step size, hy = hy max/2’;
res_flag 1 =1 implies x-step size, hx = hx_max/2"',  y-step size, hy = hy_max/2"".

So, all else being equal, an increase in spatial resolution by 1 level results in a 4-fold increase in the
number of grid-points, and a corresponding increase in the size of the coefficient, RHS, and solution
arrays. Therefore, the arithmetic per D-G stage increases roughly 4 fold with each increase in spatial
resolution level.

Argument # 2 — Temporal Resolution Flag (res flag 2): A ONE character argument, it can have a
value between 1 and 5 (due to machine size limitations, and huge time step increases with increasing
resolution). The actual temporal resolution of the run is determined as follows:

res_flag 2 =1 implies t-step size, k = MIN(hx,hy) /10°;
res flag 2 =2 implies t-step size, k = MIN(hx,hy) /10';
res_flag 2 =3 implies t-step size, k = MIN(hx,hy) /10°;
res flag 2 =j implies t-step size, k = MIN(hx,hy) /107"

So, all else being equal, an increase in temporal resolution by 1 level results in a 10-fold increase in the
number of time steps at which the problem solution is computed, and so does the corresponding
arithmetic for the entire run. Due to the coupling of the temporal resolution to the spatial resolution, each
increase in temporal resolution level by 1 along with a spatial resolution level increase by 1, increases the
arithmetic required for the run by a factor of 40! So, care has to be taken in determining the optimal
resolution for the problem. One way to check this is to carry out convergence tests on the grid function
values at successively smaller resolutions (keeping the ratio Ax:hy:k constant) and then computing the rate
of reduction in error. If this rate shows the expected 2™ order convergence of the solution, then no further
increases in resolution are required. A useful strategy is to fix the temporal resolution at one level, then
vary the spatial resolution as this strategy results in a smaller increase in arithmetic per change in level.

Another parameter to check for is the number of nonlinear iterations to convergence. Since the Newton-
Kantorovich procedure converges quadratically (McDonough 2002), values for this number range
between 3 and 5, typically. Of course, higher values may be reached for very non-smooth problems.
This is also a good indicator of the stability of the run. If the maximum number of iterations is greater
than about 10, and the nonlinear iterations do not converge within this limit, then it is possible that the
problem my be under-resolved, and this requires an increase in the spatio-temporal resolution until
quadratic convergence is observed. The number of iterations to convergence is output on the screen, if
verbose flag = 1, in the module const _params (Section 3.2.5.3).
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A-32.52 Command line arguments: Smoothing and the under-resolution problem

The 3™ and the 4™ command line arguments mentioned in the previous section pertain to
smoothing, which may be required when a nonlinear problem possesses “extremely” steep gradients.
Though it is optional to perform smoothing of the PDE problem data (including the solution) at each time
step, the arguments are expected to be present. Therefore, there is an option to set the 3™ and 4"
arguments to 0 (zero), each in their own format.

Argument # 3 — Smoothing Flag (smooth _flag): A ONE character argument, it can have values of 0, 1
or 2, with the following consequences:

smooth_flag = 0, implies NO smoothing
smooth_flag = 1, implies 1D smoothing
smooth_flag = 2, implies 2D smoothing

1D smoothing should be used when steep gradients exist ONLY along one of the principal directions of
the problem domain. 2D smoothing should be used in the more general case, where the gradients are not
aligned with only one of the principal directions. The actual smoothing procedure is outlined under the
4™ argument below.

Argument # 4 — Smoothing Factor (smooth factor): A SIX-character argument, it can have values
ranging from 000000 to 999999 (~ 1 million). If smooth flag (3 command line argument) is 0 (zero),
then this argument does not matter. For clarity, it should be set to 000000. If smooth_flag is non-zero,
then either 1D or 2D smoothing needs to be performed on the solution at the end of every time step.
Smoothing is essentially the application of a low-pass filter to the solution, to “smooth” out any steep
gradients. The larger the value of this factor, the lesser the smoothing, and the lesser the solution deviates
from its actual value at each time step. So, over the duration of the run, any such deviations can add up to
give an erroneous result. Therefore, smoothing must be applied with caution. In the case of heat
conduction in geologic settings, the thermal diffusivity is so low that the noise added by smoothing can
erase the extremely slow conduction signature. So, for most geologic problems, smoothing might not be
a good idea (actually, it is not recommended) — except as a desperate measure. Usually, the steep
gradients do not cause problems if the resolution of the problem is sufficient. So, one way to get around
smoothing in geologic problems is to try to use as small a domain size as practical, and then keep
reducing the resolution until under-resolution problems (called the Reynolds cell problem in the
computational fluid dynamics literature) vanish. This point is further illustrated in Test Problem #32
discussed in Section A-3.4 below. In the rest of this Chapter, all tests and runs were carried out without
employing any smoothing. The smoothing filters incorporated in COND2D are as follows:

Shuman filter for 1D smoothing: Applied to a user-defined range of rows OR columns. Here its
application to a particular column is shown:

u(j, N—1) = [u(j, N—2) + (smooth_factor). u(j, N-1) + u(j, Nx)]/(2 + smooth_factor), Jj=1:N,

Shuman filter for 2D smoothing: Applied to a user-defined range of rows AND columns. Here its
application to a specific problem subdomain is shown:

u@, i) = [u@, i-1) + u(j-1, i) + (smooth_factor). u(j, i) + u(j, i+1) + u(j+1, i)]/(4 + smooth_factor),
j=1:10,i= (N;-3):N..
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A-3.253 Output files and screen output

COND?2D offers great flexibility in terms of the kind, and quantity of output that can be written to output
files or screen. In addition to (optional) diagnostic screen output, the current version writes output to 5
different files. Illustrations of how data in these files can be used are presented under A-3.3.1. In what
follows, these files are briefly described. NOTE: Grid functions or grid function values refer to the
numerical solution (temperature) at specific grid nodes, corresponding to a specific grid resolution:

1. DGRID: This file contains grid function data in 2D, at the spatial resolution specified by the value of
the variables out x_grid spacing, and out y grid spacing, at time levels specified in the array ¢ _snap, all
of which are assigned in the module const params. 1If either step size used for a run is at a lower
resolution compared to the respective output resolution in that direction, the data are output at the step
size resolution for that direction. Data in this file can be used to plot 2D surface plots using post-
processing software such as MATLAB. A sample of this output file appears in Figure A-2.

2. DERRG: This file, formatted identically to the previous one, contains exact or estimated grid function
errors depending on whether the exact solution is known or unknown.

3. DCONV: This file contains grid function values at the coordinates (in the problem domain) and time
levels specified in the array grid comv, which is assigned in the module const params. The grid
functions are output in a row, at the end of the file, for easy import into a spreadsheet software such as
MS-EXCEL, for performing grid convergence tests at these spatio-temporal sampling points. A sample
of this output file appears in Figure A-3.

4. DSNAP: This file contains grid function values along TWO profiles, each parallel to one of the
principal axis. For the profile parallel to the x-axis, the y coordinate is set in the variable y_xsnap, and the
time level is set in the variable ¢ xsnap, both assigned in the module const params. Similarly, the
corresponding variables for the profile parallel to the y-axis are: x_ysnap, and ¢ _ysnap. A sample of this
output file appears in Figure A-4.

5. DEVOL: This file contains four sets of data: (a) grid function values at the point x_time and y_time, as
a function of time and for the duration of the run, at a temporal resolution specified by the variable
t evol spacing (all these variables are assigned in the module const params); (b) Evolution of the peak
domain temperature, and its location, as a function of time - at “logarithmically” equidistant points (i.e.,
equidistant points on a logarithmic scale) - for the duration of the run; (c) Evolution of the maximum
domain error (if available — exact or estimated), and its location, as a function of time - at
“logarithmically” equidistant points (i.e., equidistant points on a logarithmic scale) - for the duration of
the run; and (d) Evolution of the minimum domain temperature, and its location, as a function of time - at
“logarithmically” equidistant points (i.e., equidistant points on a logarithmic scale) - for the duration of
the run. A sample of this output file appears in Figure A-5.

6. SCREEN OUTPUT: Diagnostic messages can be output to the screen at each iteration and or time
step of the entire run (this can quickly become a large amount of screen write data, and must be cautiously
used — for instance, only for lower resolution runs for diagnostic purposes). The messages include the
time level, maximum, and minimum domain temperature, and maximum domain error at the end of each
time step, along with the corresponding errors or temperature, respectively; the number of nonlinear
iterations till convergence at each time step, and the residual at the end of each iteration (this can be used
to check if a problem is yielding the expected quadratic convergence). Usually the screen output can be
redirected to another file for viewing later, especially when running the program in the background or in
batch mode. So, if care is not taken, this file can exceed the storage capacity of a user’s account! A
sample of the screen output appears in Figure A-6.
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Figure A- 2. Sampling of output file DGRID
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001

% Programto conpute the solution evolution of a GENERALI ZED NON- LI NEAR, 2D

% HEAT CONDUCTI ON PDE, with GENERALI ZED NON- LI NEAR BCs, using the DELTA- FORM of

% QUASI LI NEARI ZATI ON ( NEWION- KANTOROVI CH PROCEDURE) W TH DOUGLAS- GUNN TI ME SPLI TTI NG SCHEME:
% - by RAVI KANDA (July, 2002).

% Precision: KIND = 8 for FORTRAN9O Conpiler v2.4 for HP-UX 11i on HP- Super Done.

X-Limts: (x_left, x_right) (0. 00000000E+00, 1. 00000000E- 01)
Y-Linmits: (y_bottom y_top) (0. 00000000E+00, 3. 14159265E+00)
t-Limts: (t_initial, t_final) = (0.00000000E+00, 1. 00000000E+00)
The val ue of x-step, hx = 1.00000000E- 02

The val ue of y-step, hy 1. 00000000E- 02

The value of t-step, Kk 1. 00000000E- 03

L
% This problemis indicated to be NON-LI NEAR. New on- Kant or ovi ch

% iterations will be performed up to a convergence tol erance of 1.000000E-09.
% The maxi mum nunber of iterations, max_iter, was set to: 25.

OB = = = = m e e e e e e e e e e e eeeaeaa

% SMOOTHI NG FLAG = 0: NO SMOOTHI NG W LL BE PERFORVED.

O/ = = m m o m e m e e e e e e emeeeeeaaas

% COORDI NATE SYSTEM SPHERI CAL.

O = = mm o m e e eeeeae

Anbi ent Tenper at ure, U0 = 300 K

Asperity Radi us, r0 = 0.100 m

Young's Modul us, E = 20.00 GPa.

Poi sson's Rati o, nu = 0.20 (di nmensionless).
Coefficient of Friction, mu = 0. 60 (dinmensionless).
Density of asperity material, rho = 3000. 00 kg/ nt*3.

Anbi ent average shear stress, TAU = 1. 00E+08 Pa.

Asperity slip velocity, U= 1.000 nlsec.

The rati o, rc/r0 = 1.88495559E-02 (di nensionl ess).
Maxi mum radi us of circular asperity contact area, rc = 1.885E-03 m

Asperity slip duration, TO = 7.540E- 03 sec.

Maxi mum Asperity contact, THETA_O0 = 0. 01884732 Radi ans.
Specific Heat, Cp & Coeff. of Thermal Conductivity, k are NON-LI NEAR FUNCTI ONS OF TEMPERATURE.
OB = = m = mm e e e e e e e e e e e e e e
x =0.06y =0.31t =0.15

x =0.06y =1.57t =0.15

x =0.07y =2.83¢t =0.15

Xx =0.07y =0.47t =0.15

x = 0.08y =298t =0.20

x = 0.08y =1.57t = 0.20

x =0.09y =1.26t = 0.20

x =0.07y =1.41t = 0.20

% For time <= To = 7.54E-03: LEFT BC = Linear Neumann; RI GHT BC = Non-Li near Neumann; BOTTOM BC = Li near Neumann; TOP BC = Li near Neumann;

% For time > To = 7.54E-03: LEFT BC = Linear Neumann; RIGHT BC = Non-Li near Neumann; BOTTOM BC = Li near Neumann; TOP BC = Linear Neumann;

k hx hy UL U2 U3 U4 U5 Us U7 U8
0. 001000 0.010000 0.010000 3.1825474843E+02 5.9452271006E+02 6.8465079677E+02 3.6498895873E+02 1.1636252311E+03 7.4486672902E+02 1.0209691616E+03 6.9312879805E+02

ANODA 31y ndyno jo Surdureg *¢ -y d.an3y



Figure A- 4. Sampling of output file DSNAP

% Program to conpute the solution evolution of a GENERALI ZED NON- LI NEAR, 2D

% HEAT CONDUCTI ON PDE, with GENERALI ZED NON- LI NEAR BCs, using the DELTA- FORM of

% QUASI LI NEARI ZATI ON ( NEWTON- KANTOROVI CH PROCEDURE) W TH DOUGLAS- GUNN TI ME SPLI TTI NG SCHEME:
% - by RAVI KANDA (July, 2002).

% Precision: KIND = 8 for FORTRANGO Conpiler v2.4 for HP-UX 11i on HP- Super Done.

X-Limts: (x_left, x_right) (0. 00000000E+00, 1. 00000000E- 01)
Y-Linmits: (y_bottom y_top) = (0.00000000E+00, 3. 14159265E+00)
t-Limts: (t_initial, t_final) = (0.00000000E+00, 1. 00000000E+00)
The val ue of x-step, hx = 1.00000000E- 02

The value of y-step, hy = 1. 00000000E- 02

The value of t-step, k = 1.00000000E-03

% This problemis indicated to be NON-LI NEAR New on- Kant orovi ch
%iterations will be performed up to a convergence tol erance of 1.000000E-09.
% The maxi mum nunber of iterations, max_iter, was set to: 25.

Anbi ent Tenperature, U0 = 300 K

Asperity Radius, r0 = 0.100 m

Young' s Modul us, E = 20.00 GPa.

Poi sson's Rati o, nu = 0.20 (dinensionless).
Coefficient of Friction, nmu = 0.60 (dinensionless).
Density of asperity material, rho = 3000.00 kg/ mt*3.

Anbi ent average shear stress, TAU = 1. 00E+08 Pa.

Asperity slip velocity, U= 1.000 n sec.

The ratio, rc/r0 = 1.88495559E- 02 (di mensi onl ess).
Maxi mum radi us of circular asperity contact area, rc = 1.885E-03 m

Asperity slip duration, TO = 7.540E-03 sec.

Maxi mum Asperity contact, THETA 0 = 0.01884732 Radi ans.

Specific Heat, Cp & Coeff. of Thermal Conductivity, k are NON- LI NEAR FUNCTI ONS OF TEMPERATURE.

Linear Neumann; RIGHT BC = Non-Linear Neumann; BOTTOM BC = Li near Neumann; TOP BC = Linear Neumann;

7.54E-03: LEFT BC = Linear Neunmann; RIGHT BC = Non-Linear Neumann; BOTTOM BC = Li near Neumann; TOP BC = Linear Neumann;

X U_xsnap(x)
0. 00 3. 4453633924E+02
0.01 3. 0003438239E+02
0.02 3.0028477287E+02
0.03 3. 0096070256E+02
0.04 3. 0227699229E+02
0. 05 3. 0444697231E+02
0.06 3.0768389827E+02
0.07 3. 1220092251E+02
0.08 3.1821107109E+02
0.09 3.2592722156E+02
0.10 3. 3556182637E+02

SNAPSHOT at x = 0.090000 &t = 0.200000:

y U_ysnap(y)
0.00  3.0000000382E+02
0.01  3.0006215552E+02
0.02  3.0024859726E+02
0.03  3.0055928388E+02
0.04  3.0099414080E+02
0.05  3.0155306367E+02
0.06  3.0223591840E+02
0.07  3.0304254120E+02
0.08  3.0397273861E+02
0.09  3.0502628759E+02
0.10  3.0620293555E+02
0.11  3.0750240047E+02
0.12  3.0892437096E+02
0.13  3.1046850639E+02
0.14  3.1213443696E+02
0.15  3.1392176384E+02
0.16  3.1583005930E+02
0.17  3.1785886681E+02
0.18  3.2000770125E+02
0.19  3.2227604900E+02
0.20 3

. 2466336812E+02

- 5289862861E+03

3 1

3.01 1.5287236793E+03
3.02 1.5284748321E+03
3.03 1.5282406429E+03
3.04 1.5280220017E+03
3.05 1.5278197899E+03
3.06 1.5276348799E+03
3.07 1.5274681351E+03
3.08 1.5273204101E+03
3.09 1.5271925500E+03
3.10 1.5270853907E+03
3.11 1.5269997576E+03
3.12 1. 5269364242E+03
3.13 1.5268938218E+03
3.14 1.5268938218E+03
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Figure A- 5. Sampling of output file DEVOL

% Program to conpute the solution evolution of a GENERALI ZED NON- LI NEAR, 2D

% HEAT CONDUCTI ON PDE, with GENERALI ZED NON- LI NEAR BCs, using the DELTA- FORM of

% QUASI LI NEARI ZATI ON ( NEWTON- KANTOROVI CH PROCEDURE) W TH DOUGLAS- GUNN TI ME SPLI TTI NG SCHEME:
% - by RAVI KANDA (July, 2002).

% Precision: KIND = 8 for FORTRANGO Conpiler v2.4 for HP-UX 11i on HP- Super Done.

% - --
%

X-Limts: (x_left, x_right) = (0.00000000E+00, 1. 00000000E- 01)

Y-Linmits: (y_bottom y_top) = (0.00000000E+00, 3. 14159265E+00)

t-Limts: (t_initial, t_final) = (0.00000000E+00, 1. 00000000E+00)

The val ue of x-step, hx = 1. 00000000E- 02
The value of y-step, hy = 1. 00000000E- 02
The val ue of t-step, k = 1.00000000E- 03
% - -
% This problemis indicated to be NON-LI NEAR Newt on- Kant orovi ch
%iterations will be performed up to a convergence tol erance of 1.000000E-09.
% The maxi mum nunber of iterations, max_iter, was set to: 25.

Anbi ent Tenperature, U0 = 300 K

Asperity Radius, r0 = 0.100 m

Young' s Modul us, E = 20.00 GPa.

Poi sson's Rati o, nu = 0.20 (dinensionless).
Coefficient of Friction, nu = 0.60 (dinensionless).
Density of asperity material, rho = 3000.00 kg/ mt*3.

Anbi ent average shear stress, TAU = 1. 00E+08 Pa.

Asperity slip velocity, = 1.000 m sec.

The ratio, rc/r0 = 1.88495559E- 02 (di mensi onl ess).
Maxi mum radi us of circular asperity contact area, rc = 1.885E-03 m

Asperity slip duration, TO = 7.540E-03 sec.

Maxi mum Asperity contact, THETA 0 = 0.01884732 Radi ans.

Specific Heat, Cp & Coeff. of Thermal Conductivity, k are NON- LI NEAR FUNCTI ONS OF TEMPERATURE.

Li near Neumann; RI GHT BC Non- Li near Neunan BOTTOM BC Li near Neumann; TOP BC = Li near Neumann;

7.54E-03: LEFT BC = Linear Neunmann; RIGHT BC = Non-Linear Neumann; BOTTOM BC = Linear Neumann; TOP BC = Linear Neunmann;

TI ME LAG BETVWEEN TI ME CORRESPONDI NG TO U_max AND TI ME AT ASPERI TY SEPARATI ON = -7.539822E- 03
RELATIVE TIME LAG (w.r.t. TO) BETWEEN TI ME CORRESPONDI NG TO U_max AND TI ME AT ASPERI TY SEPARATI ON = - 1. 000000E+00

Gid
t Ux_tinme, y_tine)
0. 00 3. 00000000E+02
0. 05 3. 14959791E+02
0.10 3. 29815126E+02
0.15 3. 44575958E+02
0. 20 3.59251274E+02
0.25 3. 73849201E+02
0.30 3.88377106E+02
0. 65 4.88603243E+02
0.70 5. 02767062E+02
0.75 5. 16903338E+02
0.80 5. 31014956E+02
0. 85 5. 45104546E+02
0. 90 5.59174506E+02
0. 95 5. 73227023E+02
1.00 5. 87264087E+02

Step # t j i U_nmax Rel ative Error U_norm
1 0. 000000E+00 261 11 2. 37648033E+03 0. 00000000E+00 4. 99013634E+04
2 1. 000000E- 03 261 11 2. 37440606E+03 2.34352267E- 08 4.98658172E+04
3 2. 000000E- 03 261 11 2. 37233386E+03 4. 68591915E- 08 4. 98303108E+04
4 3. 000000E- 03 261 11 2.37026373E+03 7.02718750E- 08 4.97948442E+04
5 4. 000000E- 03 261 11 2.36819566E+03 9. 36732581E- 08 4.97594174E+04
6 5. 000000E- 03 261 11 2.36612967E+03 1.17063321E- 07 4. 97240303E+04
7 6. 000000E- 03 261 11 2.36406573E+03 1. 40442046E- 07 4. 96886828E+04
8 7. 000000E- 03 261 11 2. 36200386E+03 1. 63809411E- 07 4. 96533751E+04
9 8. 000000E- 03 261 11 2. 35994405E+03 1. 87165400E- 07 4.96181070E+04
10 9. 000000E- 03 261 11 2.35788629E+03 2.10509991E- 07 4. 95828784E+04
501 5. 000000E- 01 261 11 1.55981016E+03 9. 91678708E- 06 3. 64205649E+04
601 6. 000000E- 01 261 11 1. 43998956E+03 1. 13627838E- 05 3. 45856177E+04
701 7. 000000E- 01 261 11 1. 33156513E+03 1.25987185E- 05 3. 29806529E+04
801 8. 000000E- 01 261 11 1. 23345290E+03 1.36186910E- 05 3. 15850174E+04
901 9. 000000E- 01 261 11 1. 14467202E+03 1. 44215454E- 05 3. 03795897E+04
1001 1. 000000E+00 261 11 1. 06433495E+03 1.50110361E- 05 2.93466368E+04
TEMPORAL GLOBAL TEMPERATURE MAXI MA:
1 0. 00 261 11 2. 37648033E+03 0. 00000000E+00
Donai n Maxi mum Error evol ution:
t j i Max. Rel. Error U U_norm
0. 000000E+00 0 0 0. 00000000E+00 0. 00000000E+00 . 99013634E+04

1. 000000E- 03

4
1 6. 02200492E- 06 3. 00300292E+02 4. 98658172E+04
2. 000000E- 03 4

1 1.20516672E- 05 3. 00600538E+02 . 98303108E+04

9. 000000E-01

1 8. 53125075E- 03 5. 59175897E+02 3. 03795897E+04
1. 000000E+00 261 1 9. 78870380E- 03 5. 87265536E+02 2.93466368E+04
TEMPORAL GLOBAL ABSOLUTE ERROR MAXI MA:
1001 1.00 261 1 2. 87265536E+02 5. 87265536E+02

Step # t i U nin Rel ative Error U_norm
1 0. 000000E+00 1 1 3. 00000000E+02 0. 00000000E+00 4. 99013634E+04
2 1. 000000E- 03 1 11 3. 00000000E+02 4.18345432E- 13 4.98658172E+04
3 2. 000000E- 03 1 11 3. 00000000E+02 8. 29096533E- 13 4. 98303108E+04
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Figure A- 6. Sampling of SCREEN OUTPUT

Programto conpute the solution of a GENERAL NON- LI NEAR, 2D, HEAT CONDUCTI ON EQUATION (in Cartesian/
Cylindrical/Spherical coordinates), with general NON- LI NEAR BOUNDARY CONDI TI ONS USI NG THE DELTA- FORM
OF QUASI LI NI ARI ZATI ON ( NEWION- KANTOROVI CH PROCEDURE) | N CONJUNCTI ON W TH THE DELTA- FORM OF THE
DOUGLAS- GUNN TI ME SPLI TTI NG SCHEME (2-STEP). THI'S CODE CAN ALSO BE USED FOR LI NEAR PROBLEMS W THOUT
ANY CHANGES TO THE CORE SUBROUTI NES OF THI S | MPLEMENTATI ON. - by RAVI KANDA (November, 2002).

WARNING Gid output has been requested at a higher resolution than hx! Setting this to equal hx.
X-Limts: (x_left, x_right) =(00, 01

Y-Limts: (y_bottom vy_top) ( 0.0, 3.14159265358979 )

t-Limts: (t_initial, t_final) (00, 1.0)

. 000000000000000E- 02
. 000000000000000E- 02

The val ue of x-step, hx 1
1
1. 000000000000000E- 03
0
0

The val ue of y-step, hy
The value of t-step, k
Snoot hi ng Fl ag

Snoot hi ng Fact or 0

Anbi ent Tenperature, U = 300 K

Asperity Radius ro= 0.1 m

Young''s Modul us, E = 20.0 GPa.

Poi sson's Rati o, nu = 0.2 (dinensionless).
Coefficient of Friction, mu = 0.6 (dinensionless).

Density of asperity material, rho = 3000.0 kg/n¥*3.

Anbi ent average shear stress, TAU = 100000000.0 Pa.

Asperity slip velocity, U= 1.0 nisec.

The ratio, rc/r0 = 1.884955592153876E-02 (di mensi onl ess).
Maxi mum radi us of circular asperity contact area, rc = 1.884955592153876E-03 m
Asperity slip duration, TO = 7.539822368615504E-03 sec.

Maxi mum Asperity contact THETA O = 1.884732394541884E-02 Radi ans.

Specific Heat, Cp & Coeff. of Thermal Conductivity, k are NON- LI NEAR FUNCTI ONS OF TEMPERATURE.
ALL grid ARRAYS SUCCESSFULLY ALLOCATED.

ALL xsnap ARRAYS SUCCESSFULLY ALLOCATED.

ALL ysnap ARRAYS SUCCESSFULLY ALLOCATED.

ALL t_evol ARRAYS SUCCESSFULLY ALLOCATED.

ALL tenperature evol uti on ARRAYS SUCCESSFULLY ALLOCATED.

ALL non-output-file ARRAYS SUCCESSFULLY ALLOCATED.

row= 261 , col= 11 : DOVAIN MAXI MUM TEMPERATURE = 2376. 480334151895
row= 1, col=1: DOVAIN M N MUM TEMPERATURE = 300.0
row= 0, col=0 : DOVAIN MAXI MUM ERROR = 0.0, TEMPERATURE = 0.0 .
TIME = 1. 000E-03. Newton-Kantorovich Iterations Converged after 5 iterations. Final value of L2-normof Dn: 5.274812E-12.
t( 2) = 1.000000000000000E-03 :

row= 261 , col= 11 : DOVAIN MAXI MUM TEMPERATURE = 2374. 406060328647

row= 1, col= 11 : DOVMAIN M Nl MUM TEMPERATURE = 299. 9999999791389

row= 261 , col=1 : DOVAIN MAXI MUM ERROR = 6.022004915908457E-06 , TEMPERATURE = 300.3002921960209 .
TIME = 2. 000E-03. Newton-Kantorovich Iterations Converged after 5 iterations. Final value of L2-normof Dn: 5.169939E-12.
t( 3) = 2.000000000000000E-03 :

row= 261 , col= 11 : DOVAI N MAXI MUM TEMPERATURE = 2372. 333858685076

row= 1, col= 11 : DOVAIN M Nl MUM TEMPERATURE = 299. 9999999586859

row= 261 , col=1 : DOVAIN MAXI MUM ERROR = 1.205166717114302E-05 , TEMPERATURE = 300.600538320344 .
TIME = 3. 000E-03. Newton-Kantorovich Iterations Converged after 5 iterations. Final value of L2-normof Dn: 5.043072E-12.
t( 4) = 3.000000000000000E-03 :

row= 261 , col= 11 : DOVAIN MAXI MUM TEMPERATURE = 2370. 263727150852

row= 1, col= 11 : DOVAIN M Nl MUM TEMPERATURE = 299. 999999938641

row= 261 , col=1 : DOVAIN MAXI MUM ERROR = 1.808899054919657E-05 , TEMPERATURE = 300.9007384656672 .
TIME = 4. 000E-03. Newt on-Kantorovich Iterations Converged after 5 iterations. Final value of L2-normof Dn: 5.536911E-12.

TIME = 9.970E-01. Newton-Kantorovich Iterations Converged after 5 iterations. Final value of L2-normof Dn: 2.123085E-12.
t( 998 ) = 0.997000000000001 :

row= 261 , col= 11 : DOVAI N MAXI MUM TEMPERATURE = 1066. 630072141645

row= 1, col=2: DOVAIN M Nl MUM TEMPERATURE = 299.6511006798737

row= 261 , col=1 : DOVAIN MAXI MUM ERROR = 286.4237120681518 , TEMPERATURE = 586.4237120681518 .
TIME = 9. 980E-01. Newton-Kantorovich Iterations Converged after 5 iterations. Final value of L2-normof Dn: 2.110874E-12.
t( 999 ) = 0.998000000000001 :

row= 261 , col= 11 : DOVAIN MAXI MUM TEMPERATURE = 1065. 864266173153

row= 1, col=2: DOVAIN M N MUM TEMPERATURE = 299. 6501421966552

row= 261 , col=1 : DOVAIN MAXI MUM ERROR = 286.7043253797016 , TEMPERATURE = 586.7043253797016 .
TIME = 9.990E-01. Newton-Kantorovich Iterations Converged after 5 iterations. Final value of L2-normof Dn: 2.103206E-12.
t( 1000 ) = 0.999000000000001 :

row= 261 , col= 11 : DOVAI N MAXI MUM TEMPERATURE = 1065.099225166071

row= 1, col=2: DOVAIN M Nl MUM TEMPERATURE = 299.6491821133234

row= 261 , col=1 : DOVAIN MAXI MUM ERROR = 286.9849332115966 , TEMPERATURE = 586.9849332115966 .
TIME = 1. 000E+00. Newt on- Kantorovich Iterations Converged after 5 iterations. Final value of L2-normof Dn: 2.036867E-12.
t( 1001 ) = 1.0 :

row= 261 , col= 11 : DOVAI N MAXI MUM TEMPERATURE = 1064. 33494835625

row=1, col=2: DOVAIN M N MUM TEMPERATURE = 299. 648220429031

row= 261 , col=1 : DOVAIN MAXI MUM ERROR = 9.788703799522402E-03 , TEMPERATURE = 587.2655355776843 .

FI Nl SHED DEALLOCATI NG ALL ARRAYS.

QUTPUT FILE, Dgrid, CLOSED

QUTPUT FILE, Derrg, CLOSED

QUTPUT FI LE, Dsnap, CLOSED

QUTPUT FI LE, Devol, CLOSED

QUTPUT FILE, Dconv, CLOSED

Program executi on conpl eted successful ly. EXITING
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A-3.3 Implementing COND2D: An example run

Two examples are presented in this section, illustrating how to implement COND2D for a given problem.
The process involves setting up the problem, compiling & linking the code, running the code, and
processing the data in output files to check for convergence of grid functions and actual surface plots.

A-3.3.1 Example: Setting up multiple runs for a nonlinear test problem in the spherical coordinate
system

Problem setup: The first stage of implementation is to setup the problem. In order to set up numerous
types of test problems while minimum the scope for user error, a standard input format sheet was created
for inputting the problem into COND2D. Such input sheets for the setup of three Test Problems are
shown in Tables A-3, A-4 and A-5.

Compiling and linking: Once all relevant data and expressions have been introduced into the source
code, the next step is to compile and link the code to create an executable file. This is a very platform and
machine specific process, and users should contact their system administrator to obtain information
regarding Fortran 90 compile options available at their facility. Compilers may differ widely in how
strictly they interpret some fundamental Fortran 90 syntax rules. For instance, the syntax for defining the
KIND parameter (that determines the precision of both real and integral variables for the run) - while
some compilers accept the short or abridged form of definition, others will accept only the unabridged
definition. All runs here were conducted on a HP-UX (HP Unix) platform. The runs were carried out in
serial mode (since sufficient time was not available for parallelizing the code), on a single processor (with
2 Gigabytes of memory) of a 224 processor HP Superdome supercomputer cluster!

Several compiler optimization options were tested on COND2D, making sure that the accuracy of the
program output was not compromised (this is sometimes an issue when using very high levels of
optimization). The best compiler optimization option was found to be the at the highest possible on HP-
UX — the +Oall option (see HP Fortran 90 Users Guide 1998), which reduced the program run time by
about 70-80%, when compared with the non-optimized run! It was found using profiling software like
gprof (available for use with HP-UX Fortran and C compilers) that this optimization option was inlining
all subroutines into one big serial object code, and then applying parallelization to the code. It is to
facilitate this maximum level of optimization that all diagnostic write statements from all subroutines
were disabled (the optimizer ignores any subroutine that contains an I/O statement, thus reducing the
effects of optimizing the entire code — see HP Fortran 90 Users Guide 1998). So, the optimal command
line compilation & linking is obtained by using the following command:

$ f90 —o cond2d_test +Call cond2d.f90

This generates an object file, cond2d.o, and an executable file, cond2d test. Due to the high level of
optimization being applied, compilation takes some time to be accomplished (~ a few minutes). After any
reported compilation errors are corrected, and the code recompiled without further errors, it is ready to be
used.
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Table A- 3. Problem input sheet for Test Problem #27: Nonlinear spherical PDE with nonlinear
Neumann/Robin boundary conditions. In all, over 30 different test problems were designed to
validate COND2D (Table A-7). Input expressions for the code are in bold.

Solution: u = ¢”.  {x-Sin(x)}.{y*/2 + y.Sin(y) + Sin’ ()}

=h@®. fx). g0 (Exact Sol Flag =1) (1)
ue = h(t). gy) . {I-Cos(x)} = h(t) . [ '(x) .g(y) (1a)
U = h(t). g(v) . {Sin(x)}  =h(1).["(x).g») (1b)
uy = h(t). f(x). {y+Siny) +y.Cosy) + Sin(2y) }  =h1).[f(x).g() (Ic)
uy = h(t). f(x) . { 1 =y.Sin(y) + 2.[Cos(y) + Cos(2y)] } = h(1) . f(x) .g"'(¥) (1d)
w=-h(t) . fx). gv) = -u (le)
Initial Condition: u(t = 0) = uy = {x-Sin(x)}.{y’/2 + y.Sin(y) + Sin’(y)} 2)
p=1 (In module fault params) (3a)
kp=1+u, k, =1,k =0 (Linear Flag = 0) (3b)
C=1+u, C,,=1 (Linear Flag = 0) (3¢)
a; =1/ a;=x" ar, = 2x (Spherical, Coord. Flag = 3) (3d)
b, = 1/{x’.Sin(y)}, by = Sin(y), b,, = Cos(y) (Spherical, Coord. Flag = 3) (3e)
Boundary Conditions: (BC Flags: L/R/=1,T/B=2), (BC Linearity Flags: L/T/B/R = 0)
Li(w) . uy + La(w) = ki(u).u 0, 0 =fLyp) (4a)
Ri(w) . uy + Ro(u) = ki(w).uxl 1) ={I+h@®) .gW) . (I-Sin(1)} . h(¥) . g(y) .{I-Cos(1)} = fr(y,1)(4D)
Bi(w) . u, + By(u) = {k(w).u,+ u(1+u)/2}| 0 = 0 = fp(x,t) (4c)
Ti(w) . uy, + To(u) = {k(u).uy, + u.(1+u)/2)| 5 = LI+ (T82).h(0) . f(x)} . (TT/4) . h(@®) . f(x) = fr(x,1) (4d)
Source Function, f;:
f=pcpu, — {kt .(alaz’x u, +aa,u, +bb, u, +bb,u, ) +k,, .(ala2 u +bbyu’ )} (5a)
OR

2
f=pcpu, {kl .{Zu;ﬂtnj +i (Talj;éy) +uw}+/ﬂ,u [uxz + Z;}Z J] (5b)

Therefore for x # 0, and y # 0 or 11,

fE=p(+uu - h(t){(l + u).{g(y)[z{l - st(x)} + Sin(x)) +L ;j‘) [Tg ((y )) +g"( y)J} +h() [( f'0)g(») [f (x )] (e'») H (5¢)

forx#0,andy=0or T

F==p+uwu- h(z){a . u).{g@)(z@ esinte) |+ L2 (g 0) ¢ (y))} +h0) [(f g0 +(L2) )j (¢ '(y))ZH D
and for x =0,
f=0 (5e)
and, forx#0,andy Z0 or Tg

f=-p+2) - h(r){g(y)(z{l"c"s(x)} + Sin(x )] /) [ £0) , g”(y)j} (62)

x x* | Tan(y)

forx#0,andy=0or T

f==p+2m)- h(r>.{g(y)[2 fLoCotl, Sin(x)] L gy eg <y))} (6b)
and, for x =0,
Ju=-p (6¢)
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Table A- 4. Problem input sheet for Test Problem #32: Nonlinear spherical PDE with
linear/nonlinear Neumann boundary conditions. In all, over 30 different test problems were
designed to validate COND2D (Table A-7). Input expressions for the code are in bold.

Solution: u = 300 + (2.5x10°).¢". {x-Sin(x)}.{y’/2 + y.Sin(y) + Sin’(y)}

=300 + h@ . fx). g0 (Exact Sol Flag =1) (N
ue = h(t). gy) . {I-Cos(x)} = h(t) . [ '(x) .g(y) (1a)
uw = h(t).g) . {Sin(x)} =h@).f"(x).g() (1b)
wy, = h@). f(x). {y+Sin(y) +y.Cos(y) + Sin(2y) }  =h(1).[f(x).g'(») (Ic)
uy = h(t) . fix). { 1 =y.Sin(y) + 2.[Cos(y) + Cos(2y)] } = h() . f(x) .&"(¥) (1d)
=-h@). fix). g(y) =300 -u (e)
Initial Condltlon. u(t = 0) = uy =300 + (2.5x10°. {x-Sin(x)}.{y"/2 + y.Sin(y) + Sin’(y)} ()
P = Prnax (In module fault params) (3a)
ke =k, k., = ku(w), ki = k(i) (Defaults for Linear Flag = 0) (3b)
C,=Cyu), C,,= C,u(u) (Defaults for Linear Flag = 0) (3¢)
a; =1/ a;=x" ar, = 2x (Spherical, Coord. Flag = 3) (3d)
b, = 1/x°.Sin(y)}, b, = Sin(y), b,, = Cos(y) (Spherical, Coord. Flag = 3) (3e)
Boundary Conditions: (BC Flags: L/R/T/B =1), (BC Linearity Flags: L/T/B=1,R=0)
Liw) . uy + Lo(w) = Luy(0,y) + 0 = 0 =100 (4a)
Ri(w) . ux + Ro(u) = k(u).ux(Ly) + 0 = h(@ . g(y) .{1-Cos(1)} =frY) (4b)
Bi(u) . u, + By(u) = Luy(x,0) + 0= 0 = f3(x,2) (4¢c)
Tiw) . u, + To(w) = Luy(x, 79 +0 = 0 = fr(x,t) (4d)

Source Function, f;:

f=pcpu, —{kt .(alaz’x.ux +aa,u, +bb, u, +b1b2.uw)+k,,u .(alaz.ux2 +b1b2.uy2)} (5a)
OR

2
- u, 1 u, U, sh
S Epert _[kt {(2 X +MXXJ+XZ{Tany(y) +uyy)}+km,(”x2 + xyz J} (5b)

Therefore for x # 0, and y # 0 or 11,

1= pep(300-u) - h(t){k, -{g(y)[z{l'cos(")} + Sz'n(x)j + I [ CACURp (y)} +k,, h(0) ((f (x).20)) [f x )j (¢ '(y))zﬂ(sc)
X X Tan(y)

forx#0,andy=0or T
B} N (sd
1= e, (300-u) - h(z){k,-{g(y)[z‘“i”(’”} + Sz'n(x)j T () + g (y))} +k,<u-h(t>.[(f 020 [f x )] ) H (5d)

and for x =0,
f=300.p.Cp (Se)

and, forx #0,and y # 0 or TO,

_ , 6
f.=pe,. (300-u) - pe, - h(z){km.{ a( y)(2 A= Cosx)} Sin(x)) I {L 0, g"(y)j} + K, h() [(f ().g) + (f(x)) (g ) H (62)
’ b b Tan(y)

forx#0,andy=0or T
) 6b
1= Py, (300-u) - pe, -h(z){ku,{g<y>[2“:‘w . Sin(x)j L0 (er )+ g (y))} + k,,u,,h(t).((f ©20)) + (f ff)J (e '(y))zﬂ( )

and, for x =0,

Ju=-p.Cp (6¢)
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Table A- 5. Problem input sheet for Thesis problem: Nonlinear spherical PDE with linear/nonlinear
Neumann boundary conditions. Input expressions for the code are in bold.

Solution: u = UNKNOWN (Exact Sol Flag = 0) (D
Initial Condition: u(t = 0) = u, = 300 2)

P = Prnax (In module fault params) (3a)
ke =k, ki, = ku(w), ki = k(i) (Defaults for Linear Flag = 0) (3b)
C,=Cyu), C,,= C,u(u) (Defaults for Linear Flag = 0) (3¢)
a; =1/ a;=x" ar, = 2x (Spherical, Coord. Flag = 3) (3d)
b, = 1/{x’.Sin(y)}, by = Sin(y), b,, = Cos(y) (Spherical, Coord. Flag = 3) (3e)
Boundary Conditions: (BC Flags: L/R/T/B=1), (BC Linearity Flags: L/T/B=1, R=0)
Liw) . uc + Lo(uw) = Luy0y) + 0 = 0 =fit) (4a)

R;(w) . u, + Ry(u) = ky(u).u(0.1,y) + 0

= (T.Vy/4).[Tanh{1000.(y - yy)} — Tanh(1000.y)].[Tanh{1000.(t - t,)} — Tanh(1000.0)] = fr(y,t) (4b)
Bi(w) . u, + Bo(u) = Luy(x,0) + 0 = 0 =fa(x,0) (4c)
Ti(w) . uy, + To(u) = Lu,(x,79 + 0 = 0 = fr(x,¢) (4d)

Source Function, £

f=0 (5a)
and,
Ju=0 (5b)

107



Running the executable file: To run the code for short duration runs (reasonably small domain size,
short temporal range, and coarse resolutions — typically, taking less than 2 hours to run to completion)
type the name of the executable generated above, followed by the four arguments as discussed in Sections
A-3.2.5.1 and A-3.2.5.2. It may be better to run the code in the background, piping the screen output to
another file for later use, and leaving the terminal free for other things. In addition, the command itself
can be timed, by using the UNIX time command. So, a very general run command for background
execution is:

$ time cond2d test 1 2 0 000000 > OUT_1_2 0 000000 &

The above command is useful when the run time for the code is small. Most large shared systems place a
limit on the length of time a program job can be run from a user terminal. So, most extensive runs of the
code (especially higher resolutions runs that can take days in serial mode) need to be submitted through a
utility called Load Sharing Facility or LSF. This allows multiple user jobs of any length to be submitted
to a serial or parallel queue, and the jobs are executed in the background even when the user is not logged
on. In addition, LSF has options for emailing the user when the job starts and ends. When submitting a
job via LSF, the first step is to create a script file containing commands to move the code, and relevant
files to the scratch space (a common workspace allocated for all users for temporary storage of job
output) and then execute the code from there. Commands to copy all relevant output back to the user
directory can be included to automate the whole process. This is especially useful when a large number
of runs are submitted in multiple jobs, and the script file can be automated to do all the bookkeeping,
sorting and moving the files, saving a significant amount of time.

A typical UNIX script file, 727script, for submitting a multi-run job via LSF is presented in Figure A-7.
This script was created to run Test Problem #27, presented in Table A-3 above, for testing convergence at
successive higher resolution runs. Once the file is created and is given execute permission by the user (by
using the chmod UNIX command), the following command submits the script file to the LSF serial
queue, and sends email at the start and end of the job:

$ bsub -B —N -0 RUN_QUTPUT —q serial T27script &

The file RUN_OUTPUT will contain all error messages, and code runtime information (if specified using
the time UNIX command).

Processing and analyzing code output: The code output can be processed and analyzed in a number of
ways. Analysis of grid function convergence involves checking how fast the errors - at each one of
successively higher resolutions - are getting smaller (see McDonough 2001 for a description of grid
function convergence tests). Convergence, evolution, and profile data can be imported to a spreadsheet
program like MS-EXCEL and more advanced post-processing programs like MATLAB. The most
rigorous convergence test is shown in Table A-6, for Test Problem #27 (presented in Table A-3), at grid
nodes specified in the array grid conv in the module const_params (Sections 3.2.1 and 3.2.5.3 above).
This data is output to the Dconv file. This table also shows typical convergence metrics (headings for the
last four columns). Once it has been determined from such a test that COND2D is converging for the
problem of interest, other visual aids can be used to record this convergence for different parts of the
problem domain. Figures A-8, A-9, and A-10 are profile and evolution plots that can be used to check
convergence of grid functions along different “slices” of the spatio-temporal domain of the problem.
Figure A-8 was generated using output data in the Dsnap file. Figures A-9 and A-10 were generated from
data in the Devol file. Data in the Dgrid and Derrg files can be used to generate surface/contour plots - as
shown for grid functions in Figure A-11 (using MATLAB, here). NOTE: All the above tests can be
carried out even when the exact solution is not known. In that case, it must be checked that successively
higher resolutions produce converging sequences of grid functions (numerical solutions).
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Figure A- 7. UNIX script, T27script, for submitting multiple runs for Test Problem #27 (Table 3) as
an LSF job:

nkdir /scratch/rvkand2/ T27_Snt F_05

cp ./qgldgts /scratch/rvkand2/ T27_Smt F_05
cp ./*.mod /scratch/rvkand2/ T27_Snt F_05

cp ./qI i ndgts. o /scratch/rvkand2/ T27_Snt F_05

cd /scratch/rvkand2/ T27_Snt F_05
time ./gldgts 2 4 > ScreenQutput_05_4

cd
[ u/ honel/ r vkand2/ al gori t hns/ PDE_SOLVERS/ PARABOLI C_PDE/ 2D_Par abol i ¢/ QLi n_DGTS_Li n_NonLi n/ TESTS/ T27_Snt F_Nonl i nSp
hNeuRob

cp /scratch/rvkand2/ T27_Snt F_05/ Scr eenCut put _05_4
cp /scratch/rvkand2/ T27_Snt F_05/ Dconv ./ Dconv_0.0
cp /scratch/rvkand2/ T27_Snt F_05/ Devol ./
cp /scratch/rvkand2/ T27_Snt F_05/Dgrid ./
cp /scratch/rvkand2/ T27_Snt F_05/ Dpl ot ./
cp /scratch/rvkand2/ T27_Snt F_05/ Dsnap ./

rm-rf /scratch/rvkand2/ T27_Snt F_05
echo " "

EChO "****kkkkkkkkkkkkkkkkkkkkkkkkkk*k* R q_ws 05 COI'Tpl eted, **kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk kK

echo " "

nkdlr / scratch/rvkand2/ T27_Snt F_025

cp . /qI dgts /scratch/rvkand2/ T27_Snt F_025

cp . mod /scrat ch/ rvkand2/ T27_Snt F_025

cp . /qI indgts. o /scratch/rvkand2/ T27_Snt F_025

cd /scratch/rvkand2/ T27_Smt F_025
time ./gldgts 3 4 > ScreenCutput_025_4

cd

/ u/ honel/ r vkand2/ al gori t hns/ PDE_SOLVERS/ PARABOLI C_PDE/ 2D_Par abol i ¢/ QLi n_DGTS_Li n_NonLi n/ TESTS/ T27_Snt F_Nonl i nSp
hNeuRob

cp /scratch/rvkand2/ T27_Snt F_025/ Scr eenCut put _025_4 ./

cp /scratch/rvkand2/ T27_Snt F_025/ Dconv ./ Dconv_0. 025_4
cp /scratch/rvkand2/ T27_Snt F_025/ Devol ./ Devol _0.025_4
cp /scratch/rvkand2/ T27_Sm F_025/Dgrid ./ Dgri d_0.025_4
cp /scratch/rvkand2/ T27_Snt F_025/ Dpl ot ./ Dpl ot _0.025_4
cp /scratch/rvkand2/ T27_Snt F_025/ Dsnap ./ Dsnap_0. 025_4

rm —rf /scratch/rvkanleT27 Snt F_025

echo

echo IEEEEEEE RS R R R R EEEEEEEEESERES Run q_mTS 025 cbrrpl eted LR EEEEEEEEEEEEEEEREEEEEREEREEERERESRESSES
eChO " " -

nkdl r /scratch/rvkand2/ T27_Snt F_0125
cp . /qI dgts /scratch/rvkand2/ T27_Snt F_0125
cp . mod /scrat ch/ rvkand2/ T27_Snt F_0125
cp . /qI indgts.o /scratch/rvkand2/ T27_Snt F_0125

cd /scratch/rvkand2/ T27_Snt F_0125
time ./qgldgts 4 4 > ScreenCut put_0125_4

cd

[ u/ honel/ r vkand2/ al gori t hns/ PDE_SOLVERS/ PARABOLI C_PDE/ 2D_Par abol i ¢/ QLi n_DGTS_Li n_NonLi n/ TESTS/ T27_Snt F_Nonl i nSp
hNeuRob

cp /scratch/rvkand2/ T27_Snt F_0125/ Scr eenCut put _0125_4 ./

cp /scratch/rvkand2/ T27_Snt F_0125/ Dconv ./ Dconv_0. 0125_4

cp /scratch/rvkand2/ T27_Snt F_0125/ Devol ./ Devol _0.0125_4
cp /scratch/rvkand2/ T27_Snt F_0125/Dgrid ./ Dgrid_0.0125_4
cp /scratch/rvkand2/ T27_Snt F_0125/ Dpl ot ./ Dpl ot _0.0125_4
cp /scratch/rvkand2/ T27_Smt F_0125/ Dsnap ./ Dsnap_0.0125_4

rm-rf /scratch/rvkand2/ T27_Snt F_0125

EChO "****kkkkkkkkkkkkkkkkkkkkkkkkkk*k* R q_ws 0125 COI'Tpl eted, **kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk kK
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Table A- 6. Grid function convergence tests for the nonlinear problem in Spherical system, Test
Problem #27, generated from the output of the Dconv files produced after executing the script file
T27script (Figure 7).

Newton-Kantorovich with Douglass-Gunn Time Sblitting: Grid Convergence Tests for T27 NonlinSphNeuRob: Utx.n.t) = (¢”).fx - SIN(x)L{ (v'/2) + v.SIN(v) + SIN*(v) }

Grid function Absolute "Cauchy" Grid Theoretical Computationally Observed
Grid Resolution Resolutions & U(x,y) Absolute Grid Function Errors Function Errors (Based on Absolute Errors) | (Based on "Cauchy" errors):|
Relationships Coordinates (W.R.T Exact Solution) (W.R.T Next Lower H Value) R=E/E,, R'=ey/ey,
E= ABS{U.....(i.i) - u(i.i)} e = ABS{u™(i.i) - u™ (i)} R=2"1 R' =%
x=]0.20
y=]0.10
t=]0.25
0.1 2.05699284E-03 2.03114E-03 1.53474E-03 4.09 4.1
0.05 5.22251308E-04 4.96395E-04 3.73212E-04 4.03 4.1
0.025 1.49039017E-04 1.23183E-04 9.20911E-05 3.96
0.0125 5.69478855E-05 3.10915E-05
k=0.001*hx=0.01*hy | 0.00625
EXACT SOLUTION | 2.58563938E-05
v=| nan
v=1030
t=]0.25
k=0.001*hx=0.01*hy | 0.1 6.53711900E-03 4.51883E-04 3.38814E-04 4.00 4.0
k=0.001*hx=0.01*hy | 0.05 6.19830516E-03 1.13069E-04 8.43551E-05 3.94 4.0
k=0.001*hx=0.01*hy | 0.025 6.11395001E-03 2.87137E-05 2.12237E-05 3.83
k=0.001*hx=0.01*hy | 0.0125 6.09272634E-03 7.49003E-06
k=0.001*hx=0.01*hy | 0.00625
EXACT SOLUTION | 6.08523631E-03
v=| nzn
v=1050
t=]0.25
k=0.001*hx=0.01*hy | 0.1 1.03313012E-02 8.04399E-04 6.02856E-04 3.99 4.0
0.05 9.72844501E-03 2.01542E-04 1.50601E-04 3.96 4.0
0.025 9.57784421E-03 5.09417E-05 3.78312E-05 3.89
0.0125 9.54001304E-03 1.31105E-05
k=0.001*hx=0.01*hy | 0.00625
EXACT SOLUTION | 9.52690256E-03
v=[ 070
v=10280
t=]0.25
k=0.001*hx=0.01*hy | 0.1 6.16307285E-02 4.41495E-04 3.29636E-04 3.95 4.0
k=0.001*hx=0.01*hy | 0.05 6.13010921E-02 1.11859E-04 8.31279E-05 3.89 3.9
k=0.001*hx=0.01*hy | 0.025 6.12179641E-02 2.87311E-05 2.11303E-05 3.78
k=0.001*hx=0.01*hy | 0.0125 6.11968338E-02 7.60086E-06
k=0.001*hx=0.01*hy | 0.00625
EXACT SOLUTION | 6.11892330E-02
v=| nan
0.60
0.50
0.1 6.62660127E-03 1.25076E-03 9.39176E-04 4.01 4.0
0.05 5.68742569E-03 3.11583E-04 2.32832E-04 3.96 4.0
0.025 5.45459387E-03 7.87511E-05 5.83731E-05 3.86
0.0125 5.39622080E-03 2.03780E-05
k=0.001*hx=0.01*hy | 0.00625
EXACT SOLUTION | 5.37584281E-03
v=[n1n
v=1040
t=] 0.50
k=0.001*hx=0.01*hy | 0.1 2.43444623E-03 2.39530E-03 1.80100E-03 4.03 4.0
k=0.001*hx=0.01*hy | 0.05 6.33447862E-04 5.94304E-04 4.45441E-04 3.99 4.0
k=0.001*hx=0.01*hy | 0.025 1.88006894E-04 1.48863E-04 1.10923E-04 3.92
k=0.001*hx=0.01*hy | 0.0125 7.70838936E-05 3.79404E-05
k=0.001*hx=0.01*hy | 0.00625
EXACT SOLUTION | 3.91434995E-05
v=[nan
v=1090
t=] 0.50
k=0.001*hx=0.01*hy | 0.1 1.22306655E-01 3.35046E-04 2.50567E-04 3.97 4.0
0.05 1.22056088E-01 8.44790E-05 6.23371E-05 3.82 3.9
0.025 1.21993751E-01 2.21419E-05 1.59770E-05 3.59
0.0125 1.21977774E-01 6.16484E-06
k=0.001*hx=0.01*hy | 0.00625
EXACT SOLUTION | 1.21971609E-01
v=[ ngn
v=10.70
t=] 0.50
k=0.001*hx=0.01*hy | 0.1 5.61258534E-02 4.37359E-04 3.27684E-04 3.99 4.0
k=0.001*hx=0.01*hy | 0.05 5.57981690E-02 1.09675E-04 8.13212E-05 3.87 3.9
k=0.001*hx=0.01*hy | 0.025 5.57168478E-02 2.83533E-05 2.06636E-05 3.69
k=0.001*hx=0.01*hy | 0.0125 5.56961841E-02 7.68971E-06
k=0.001*hx=0.01*hy | 0.00625
EXACT SOLUTION | 5.56884944E-02
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Figure A- 8. Snapshots of profiles along the principal axes, for the nonlinear problem in Spherical
system, Test Problem #27 (Table 3). (a) Snapshot profile parallel to the x-axis, at y = 0.60, t = 0.25.
(b) Snapsheot profile parallel to the y-axis, at x = 0.30, t = 0.50. Data from Dsnap output file.
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Figure A- 9. Evolution of grid functions with time, for the nonlinear problem in Spherical system,
Test Problem #27 (Table 3): x = 0.5, y = 0.5. Data from Devol output file.
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Figure A- 10. Evolution of maximum grid function error with time, for the nonlinear problem in
Spherical system, Test Problem #27 (Table 3), at a resolution of hx = hy = 0.05. (a) Peak Error (at
the origin, x = 0): For this spherical system problem the peak error is primarily made up of
truncation error at x=0, since the value of the solution here is 0 (zero). (b) Grid function maxima
(at the boundary, x =1 & y = 2.6): As a comparison, the temporal grid-function domain maximum
occurs at £ = 0, and has a magnitude of ~0.790433.. at (x,y) = (1.0, 2.6). The grid-function domain
maximum at the time of peak error is ~0.615556.. at (x,y) = (1.0, 2.6). Thus, even though the
maximum error and maximum grid-function value do not coincide in space, the former is still only
~0.16% of this value. The maximum error at the peak grid function values is, however, much
smaller, ~0.01% at its maximum. Thus, as expected, where the value of the grid function is
comparable to the grid resolution, the accuracy of the numerical solution is affected. That is why,
an optimal grid resolution is important for any problem. All data for these plots were obtained
from the Devol output file.
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Figure A- 11. Surface contour plots comparing the analytical (exact) and numerical solutions at
specific times, for the nonlinear problem in Spherical system, Test Problem #27 (Table 3). As can be

seen, at the resolution of these plots, the analytical and numerical solutions are identical at time =
0.0, 0.50 and 0.75.
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A-3.4 COND2D validation tests

In order to test the validity of COND2D, three levels of test problems were designed — constant solution
problems, linear solution problems, and “smooth” solution problems. So, using a limited set of solutions,
a large number of different test problems can be generated by changing the boundary conditions, and the
nonlinear thermal property functionals.

The variation of thermal conductivity, k;, and specific heat, Cp, of quartz (the chief type of mineral in
which frictional melts are found) with temperature were found to be well fitted by straight lines of
different slopes in thermal zones corresponding to the two quartz phases. So, some of these tests used
just a general linear function for these parameters. The one was added to make sure these functions do
not become zero inside the domain, which is not realistic. For the nonlinear problem, such an abrupt
profile for k, and Cp meant using much higher resolutions. So, another alternative was sought that would
vary both parameters smoothly over the temperature range of most geological conduction problems (300-
3000 K), and at the same time, be Lipschitz continuous in this range (as discussed in Chapter A-1). This
led, after some trial and error, to the two curves presented in Figures C-1 and C-2 of Appendix C.

The first two sets of tests — constant and linear solution problems - make it easier to identify any
fundamental bugs in the code by, ensuring that either all the derivatives, or all but the first derivatives
(respectively) of the solution are 0 (zero). The smooth solutions were designed to test convergence rates
using “well-behaved” solutions. Different smooth solutions were generated to satisfy the symmetry
conditions for cylindrical and spherical coordinate systems. In order to confirm that the code really works
for the range of coordinate systems and BCs, for both linear and non-linear problems, a number of tests
were conducted, that tested different loops in various CONDZ2D subroutine. The total number of tests
required was considerably reduced by taking advantage of the generality of the problem posed, {Equation
(15a)}, and recognizing the following relationships between the three different parts of the code:

* The linear functional (PDE), Equation (152a”) is a special case of the nonlinear functional (15a) — so
attempting a linear problem with identical solution and boundary conditions (BCs) first can identify
any basic problems with the code. The additional loops and subroutines for the nonlinear problem
can then be tested “on top” of the linear test.

* Similarly, the Cartesian coordinate system yields the simplest PDE. Once the code has been tested
for this system, for different linear/nonlinear BCs, most of the basic coordinate independent loops and
most of the BC loops will have been tested.

* The boundary condition loops and subroutines are completely independent of the coordinate system
specific loops and subroutines — so every combination of boundary condition and coordinate system
need not be tested.

*  The Robin and Neumann BC loops, as well as the cylindrical and spherical system loops have a lot in
common — so as long as each one of them is tested once (or twice), only one of each pair need be
tested thoroughly in subsequent runs. So, the tests shown in Table A-7 do not have as many Robin
BC runs or Cylindrical system runs, but they do appear at least twice, to make sure that the code
specific to these components does indeed work.

Tests conducted based on these very general rules are summarized in Table A-7. To limit the size
of this document, only some key test results are shown here, as indicated by bolded rows in Table A-7.
As the problem complexity increased, bugs were frequently detected in the new parts of the code that was
being tested for the first time. When this happened, the bugs were rectified, and the code was re-run, or
new problems generated — so a large number of tests had to be conducted in the end. Thus, in Table A-
7, some runs share nearly identical problem data. The convergence tests appear in Tables A-8 to A-12,
and relevant plots in Figures A-12 to A-23. Detailed results from Test Problem #27 were presented in
Section A-3.3 (and discussed in Figure A-10).
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Table A- 7. Summary of validation tests conducted on COND2D. Second order convergence of
Douglas-Gunn scheme, and quadratic convergence of the nonlinear iterations, were observed. In all

cases. Rows in bold indicate tests for which convergence test data is presented in this document.

Coordinate Boundary Boundary
# (TP®|PDE Type| System Conditions Condition ki & Exact Solution, u = f(x,y,t)
Type Ce
101 Linear Cartesian All: Dirichlet Linear k, & Cp: Constants
2 2 Nonlinear | Cartesian All: Dirichlet Nonlinear k,=1+u, Cp=1+u
33 Linear Cartesian All: Neumann Linear k, & Cp: Constants
4 |4 Nonlinear | Cartesian All: Neumann Nonlinear k,=1+u, Cp = 1+u
55 Linear Cartesian All: Robin Linear k, & Cp: Constants
6 |6 Nonlinear | Cartesian All: Robin Nonlinear k,=1+u, Cp=1+u 1
77 Linear | Cylindrical | All: Neumann Linear k, & Cp: Constants
8 8 Nonlinear | Cylindrical | All: Neumann Nonlinear k,=1+u, Cp = 1+u
9 9 Linear Spherical All: Dirichlet Linear k, & Cp: Constants
10 {10 | Nonlinear | Spherical All: Dirichlet Nonlinear k,=1+u, Cp=1+u
1111 Linear Spherical All: Neumann Linear k, & Cp: Constants
12 |12 | Nonlinear | Spherical All: Neumann Nonlinear k,=1+u, Cp = 1+u
13 [13 Linear Cartesian All: Dirichlet Linear k, & Cp: Constants
14 |14 | Nonlinear | Cartesian All: Dirichlet Nonlinear k,=1+u, Cp = 1+u (x+y)t
15 (15 Linear Cartesian All: Neumann Linear k, & Cp: Constants
16 {16 | Nonlinear | Cartesian All: Neumann Nonlinear k,=1+u, Cp=1+u
17 (17 |Nonlinear | Cartesian | L/R: Dirichlet Nonlinear k,=1+u, Cp=1+u
T/B: Neumann - .. .
18 21 AlL: Dirichlet I-e = .Sin(1).Sin(19)
19 |22 Linear Cartesian | All: Neumann Linear k, & Cp: Constants
20 [25 | Nonlinear | Cartesian All: Dirichlet Nonlinear k,=1+u, Cp=1+u
21|18 | Nonlinear | Cylindrical | L/R: Neumann
T/B: Dirichlet Nonlinear k,=1+u, Cp=1+u 1-¢'X2 Cos(y)
22 |19 | Nonlinear | Spherical L/R: Dirichlet
T/B: Neumann
23 23 Linear |Cylindrical -t . .
i ba Tinoar Spherical All: Neumann Linear k, & Cp: Constants I- e_t -4 Sin(9)}.Sin(y)
1-e . {x-Sin(x)}.Cos(y)
25 26 | Nonlinear | Cylindrical | L/R:Neumann Nonlinear -t . .
' T/B:Dirichlet k= 1+u, Cp=I1+u € x-Sin(x)j. {y -Sin(y)}
26 (27 | Nonlinear | Spherical L{rl{/isl:lﬁlol:)l?:n Nonlinear e ’. & -Sin()}. {/2) +y.Sin(y) + Sin* ()}
27 28 Linear | Cartesian | All: Dirichlet Linear Solution from Carslaw & Jaegar 1959:
k, & Cp: Constants Sec. 5.6, p. 1 73."
28 29 Linear Spherical L/T/B: Linear Solution from Carslaw & Jaegar 1959:
Neumann Sec. 9.11, p. 248-250."
R: Dirichlet
29 [30a Nonlinear k= AnC,
Cp=B.Ln(u) + C
30 [30c Nonlinear Figures C-1 & C-2: 300 + [ (2.5x10°). e’ fx -Sin(x)).
31 [30b, ki=1+4.e™, {0°/2) +v.Sin(y) + Sin’ (¥)} ]
30g, All: Neumann | L/T/B: Linear | Cp = C.{1 - D.e™)
31 R: Nonlinear |Non Differentiable at
u= 300K
32 [30d | Nonlinear | Spherical Nonlinear
33 [30f L/T/B: Linear
R: Nonlinear | k = I+u, Cp = Itu | o™ n _Sinpop. f5/2) +y.Sin(y) + Sin’ ()}
34 30e L/T/B: Neumann Linear
R: Dirichlet
Figures C-1 & C-2:
L/T/B: Linear | k=1+d.e™, 300+ (2.5x109. €' .fx -Sin(v)}.
35 |32 All: Neumann | R: Nonlinear CP.= C.{1 - D.e™) [6°/2) +p.Sin(y) + Si* ()} ]
Differentiable at
u=300K
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Table A-7. (Continued)

$ TP = Test Problem Number. This was the sequence in which actual tests were done.

* 2~ min _é{(y)zﬂ%)z}"(‘t n+l).r.x m+1).1T.
55 e o] corfengy)

S el L) ncone it A, = S I I{f (1,0).1, (%=5).P, {Cos(6) }.r>drSin(6).d6
n=0 m=1 1 (@m)

Jj» = spherical Bessel function of order n, a,,, = m" root of the n™ order spherical Bessel function, and P, = Legendre function of order n.
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Table A- 8. Grid function convergence tests for the nonlinear problem in Cartesian system, Test
Problem #17 (Table 7), generated from the output of the corresponding Dconv files.

Newton-Kantoravich with Douglass-Gunn Time Snlitting: Grid Conversence Tests for T27 NonlinSnhNenRoh: /ix.v.f) = 1 - (). SIN(7iv).

IN(w)

Grid function Absolute "Cauchy" Grid Theoretical Computationally Observed
Grid Resolution Resolutions & U(x,y) Absolute Grid Function Function Errors (Based on Absolute Errors) | (Based on "Cauchy" errors);|
Relationships Coordinates Errors (W.R.T Next Lower H R=E,/Ey, R'=¢y/ey,
E= ABS{U.....(i.i) - u(i.i)} e = ABSTu™"(i.i) - u™(i.i)} R=2" R'=2""
x=]0.20
y=]0.10
t=1]0.25
k=0.001*hx=0.01*hy | 0.1 0.9835007143 1.09568E-03 8.38531E-04 4.26 4.1
k=0.001*hx=0.01*hy | 0.05 0.9843392449 2.57150E-04 2.04260E-04 4.86 4.5
k=0.001*hx=0.01*hv | 0.025 0.9845435045 5.28907E-05 4.55489E-05 7.20 0.0
k=0.001*hx=0.01*hv | 0.0125 0.9845890534 7.34182E-06 9.84589E-01 0.00
k=0.001*hx=0.01*hv | 0.00625 0.0000000000 9.84596E-01
EXACT SOLUTION 0.9845963952
v=| nan
v=1030
t=1]0.25
k=0.001*hx=0.01*hy | 0.1 0.9320613431 2.68794E-03 2.04978E-03 4.21 4.1
k=0.001*hx=0.01*hy | 0.05 0.9341111237 6.38159E-04 4.98404E-04 4.57 4.3
k=0.001*hx=0.01*hv | 0.025 0.9346095281 1.39755E-04 1.14884E-04 5.62 0.0
k=0.001*hx=0.01*hv | 0.0125 0.9347244117 2.48714E-05 9.34724E-01 0.00
k=0.001*hx=0.01*hv | 0.00625 0.0000000000 9.34749E-01
EXACT SOLUTION 0.9347492831
v=| nzn
v=10.50
t=1]0.25
k=0.001*hx=0.01*hy | 0.1 0.9119633595 3.23167E-03 2.46252E-03 4.20 4.1
k=0.001*hx=0.01*hy | 0.05 0.9144258823 7.69145E-04 5.98337E-04 4.50 4.3
k=0.001*hx=0.01*hv | 0.025 0.9150242195 1.70808E-04 1.38973E-04 5.37 0.0
k=0.001*hx=0.01*hv | 0.0125 0.9151631929 3.18346E-05 9.15163E-01
k=0.001*hx=0.01*hv | 0.00625 0.0000000000 9.15195E-01 9.15195E-01
EXACT SOLUTION 0.9151950275
v=| 070
v=]0.80
t=1]0.25
k=0.001*hx=0.01*hy | 0.1 0.9577475607 1.92528E-03 1.46998E-03 4.23 4.1
k=0.001*hx=0.01*hy | 0.05 0.9592175378 4.55301E-04 3.57727E-04 4.67 4.4
k=0.001*hx=0.01*hv | 0.025 0.9595752647 9.75745E-05 8.15031E-05 6.07 0.0
k=0.001*hx=0.01*hy | 0.0125 0.9596567677 1.60714E-05 9.59657E-01 0.00
k=0.001*hx=0.01*hv | 0.00625 0.0000000000 9.59673E-01
EXACT SOLUTION 0.9596728392
v=| nan
v=]0.60
t=10.50
k=0.001*hx=0.01*hy | 0.1 0.9911336094 2.36127E-03 1.81400E-03 4.31 4.2
k=0.001*hx=0.01*hy | 0.05 0.9929476081 5.47272E-04 4.32255E-04 4.76 4.4
k=0.001*hx=0.01*hv | 0.025 0.9933798636 1.15017E-04 9.71800E-05 6.45 0.0
k=0.001*hx=0.01*hv | 0.0125 0.9934770435 1.78369E-05 9.93477E-01 0.00
k=0.001*hx=0.01*hv | 0.00625 0.0000000000 9.93495E-01
EXACT SOLUTION 0.9934948804
v=|n1n
v=1040
t=10.50
k=0.001*hx=0.01*hy | 0.1 0.9971208136 7.65545E-04 5.88067E-04 4.31 4.2
k=0.001*hx=0.01*hv | 0.05 0.9977088803 1.77478E-04 1.40176E-04 4.76 4.4
k=0.001*hx=0.01*hv | 0.025 0.9978490560 3.73025E-05 3.15171E-05 6.45 0.0
k=0.001*hx=0.01*hv | 0.0125 0.9978805731 5.78538E-06 9.97881E-01 0.00
k=0.001*hx=0.01*hv | 0.00625 0.0000000000 9.97886E-01
EXACT SOLUTION 0.9978863585
v=| non
v=10.90
t=10.50
k=0.001*hx=0.01*hy | 0.1 0.9985802503 7.32986E-04 5.63404E-04 4.32 4.2
k=0.001*hx=0.01*hy | 0.05 0.9991436543 1.69582E-04 1.34211E-04 4.79 4.5
k=0.001*hx=0.01*hv | 0.025 0.9992778652 3.53711E-05 3.00520E-05 6.65 0.0
k=0.001*hx=0.01*hv | 0.0125 0.9993079172 5.31909E-06 9.99308E-01 0.00
k=0.001*hx=0.01*hv | 0.00625 0.0000000000 9.99313E-01
EXACT SOLUTION 0.9993132363
v=| ngn
v=10.70
t=10.50
k=0.001*hx=0.01*hy | 0.1 0.9951373375 1.44272E-03 1.10844E-03 4.32 4.2
k=0.001*hx=0.01*hy | 0.05 0.9962457768 3.34279E-04 2.64143E-04 4.77 4.5
k=0.001*hx=0.01*hv | 0.025 0.9965099194 7.01369E-05 5.93331E-05 6.49 0.0
k=0.001*hx=0.01*hv | 0.0125 0.9965692524 1.08038E-05 9.96569E-01 0.00
k=0.001*hx=0.01*hv | 0.00625 0.0000000000 9.96580E-01
EXACT SOLUTION 0.9965800562
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Figure A- 12. Snapshots of profiles along the principal axes, for the nonlinear problem in Cartesian
system, Test Problem #17 (Table 7). (a) Snapshot profile parallel to the x-axis, at y = 0.60, t = 0.25.
(b) Snapsheot profile parallel to the y-axis, at x = 0.30, t = 0.50. Data from Dsnap output file.
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Figure A- 13. Evolution of grid functions with time, for the nonlinear problem in Cartesian system,
Test Problem #17 (Table 7): x= 0.5, y = 0.5. Data from Devol output file.
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Table A- 9. Grid function convergence tests for the nonlinear problem in Cylindrical system, Test
Problem #23 (Table 7), generated from the output of the corresponding Dconv files.

Newton-Kantorovich with Douglass-Gunn Time Splitting: Grid Convergence Tests for T27 NonlinSphNeuRob: Utx.v.t) = I - (¢”). {x - SIN(x)3. SIN(v)
Grid function Absolute "Cauchy" Grid Theoretical Computationally Observed
Grid Resolution Resolutions & U(x,y) Absolute Grid Function Errors Function Errors (Based on Absolute Errors) | (Based on "Cauchy" errors);|
Relationships Coordinates (W.R.T Exact Solution) (W.R.T Next Lower H R=E,/Ey, R'=¢y/ey,
E= ABS{U.....(i.i) - u(i.i)} e = ABS{u™(i.i) - R=2" R'=2""
x=]0.20
y=]0.10
t=1]0.25
k=0.001*hx=0.01*hv | 0.1 0.9995343341 3.62206E-04 2.72068E-04 4.02 4.0
k=0.001*hx=0.01*hv | 0.05 0.9998064025 9.01375E-05 6.80253E-05 4.08 4.1
k=0.001*hx=0.01*hv | 0.025 0.9998744278 2.21122E-05 1.67471E-05 4.12 4.1
k=0.001*hx=0.01*hv | 0.0125 0.9998911749 5.36509E-06 4.11608E-06 4.30
k=0.001*hx=0.01*hv | 0.00625 0.9998952910 1.24901E-06
EXACT SOLUTION 0.9998965400
v=| nan
v=1030
t=1]0.25
k=0.001*hx=0.01*hv | 0.1 0.9917860339 7.63830E-05 5.81611E-05 4.19 4.1
k=0.001*hx=0.01*hv | 0.05 0.9918441950 1.82218E-05 1.41088E-05 4.43 4.3
k=0.001*hx=0.01*hv | 0.025 0.9918583039 4.11302E-06 3.29129E-06 5.01 0.0
k=0.001*hx=0.01*hv | 0.0125 0.9918615951 8.21730E-07 4.56014E-04 0.00
k=0.001*hx=0.01*hv | 0.00625 0.9923176090 4.55192E-04
EXACT SOLUTION 0.9918624169
v=| nzn
v=10.50
t=1]0.25
k=0.001*hx=0.01*hv | 0.1 0.9921702579 1.47712E-04 1.11731E-04 4.11 4.1
k=0.001*hx=0.01*hv | 0.05 0.9922819885 3.59811E-05 2.74741E-05 4.23 4.2
k=0.001*hx=0.01*hv | 0.025 0.9923094627 8.50698E-06 6.60197E-06 4.47 4.3
k=0.001*hx=0.01*hv | 0.0125 0.9923160646 1.90501E-06 1.54437E-06
k=0.001*hx=0.01*hv | 0.00625 0.9923176090 3.60638E-07 3.60638E-07
EXACT SOLUTION 0.9923179696
v=| 070
v=]0.80
t=10.25
k=0.001*hx=0.01*hv | 0.1 0.9688150881 2.05897E-05 1.69568E-05 5.67 4.9
k=0.001*hx=0.01*hv | 0.05 0.9688320448 3.63297E-06 3.49279E-06 25.92 7.4
k=0.001*hx=0.01*hv | 0.025 0.9688355376 1.40180E-07 4.73090E-07 0.42 7.5
k=0.001*hx=0.01*hv | 0.0125 0.9688360107 3.32910E-07 6.26900E-08 1.23
k=0.001*hx=0.01*hv | 0.00625 0.9688359480 2.70220E-07
EXACT SOLUTION 0.9688356778
v=| nan
v=]0.60
t=10.50
k=0.001*hx=0.01*hv | 0.1 0.9961467876 2.29281E-04 1.73527E-04 4.11 4.0
k=0.001*hx=0.01*hv | 0.05 0.9963203150 5.57533E-05 4.30297E-05 4.38 4.3
k=0.001*hx=0.01*hv | 0.025 0.9963633447 1.27235E-05 1.00516E-05 4.76 4.4
k=0.001*hx=0.01*hv | 0.0125 0.9963733963 2.67190E-06 2.26866E-06 6.63
k=0.001*hx=0.01*hv | 0.00625 0.9963756650 4.03243E-07
EXACT SOLUTION 0.9963760682
v=|n1n
v=1040
t=10.50
k=0.001*hx=0.01*hv | 0.1 0.9995462942 4.14360E-04 3.11325E-04 4.02 4.0
k=0.001*hx=0.01*hv | 0.05 0.9998576191 1.03035E-04 7.85002E-05 4.20 4.2
k=0.001*hx=0.01*hv | 0.025 0.9999361192 2.45348E-05 1.88692E-05 4.33 4.2
k=0.001*hx=0.01*hv | 0.0125 0.9999549884 5.66558E-06 4.50060E-06 4.86
k=0.001*hx=0.01*hv | 0.00625 0.9999594890 1.16498E-06
EXACT SOLUTION 0.9999606540
v=| non
v=10.90
t=10.50
k=0.001*hx=0.01*hv | 0.1 0.9446106557 4.34162E-05 2.98951E-05 3.21 3.5
k=0.001*hx=0.01*hv | 0.05 0.9445807606 1.35211E-05 8.44768E-06 2.67 2.8
k=0.001*hx=0.01*hv | 0.025 0.9445723129 5.07340E-06 3.02779E-06 2.48 2.7
k=0.001*hx=0.01*hv | 0.0125 0.9445692851 2.04561E-06 1.13912E-06 2.26
k=0.001*hx=0.01*hv | 0.00625 0.9445681460 9.06493E-07
EXACT SOLUTION 0.9445672395
v=| ngn
v=10.70
t=10.50
k=0.001*hx=0.01*hv | 0.1 0.9676890410 1.88615E-05 1.64452E-05 7.81 5.1
k=0.001*hx=0.01*hv | 0.05 0.9677054862 2.41630E-06 3.25299E-06 2.89 114.8
k=0.001*hx=0.01*hv | 0.025 0.9677087392 8.36686E-07 2.83300E-08 0.97 0.1
k=0.001*hx=0.01*hv | 0.0125 0.9677087675 8.65016E-07 3.14540E-07 1.57
k=0.001*hx=0.01*hv | 0.00625 0.9677084530 5.50476E-07
EXACT SOLUTION 0.9677079025
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Figure A- 14. Snapshots of profiles along the principal axes, for the nonlinear problem in
Cylindrical system, Test Problem #23 (Table 7). (a) Snapshot profile parallel to the x-axis, at y =
0.60, t = 0.25. (b) Snapshot profile parallel to the y-axis, at x = 0.30, t = 0.50. Data from Dsnap
output file.
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Figure A- 15. Evolution of grid functions with time, for the nonlinear problem in Cylindrical
system, Test Problem #23 (Table 7): x = 0.5,y = 0.5. Data from Devol output file.
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Table A- 10. Grid function convergence tests for the linear problem in Cartesian system, Test
Problem #28 (Table 7), generated from the output of the corresponding Dconv files.

Newton-Kantorovich with Douglass-Gunn Time Splitting: Grid Convergence Tests for T27 NonlinSphNeuRob: Urx.v.t) from Carslaw & Jaeg

r 1959

Grid function Absolute "Cauchy" Grid Theoretical Computationally Observed
Grid Resolution Resolutions & Ux,y) Absolute Grid Function Function Errors (Based on Absolute Errors) | (Based on "Cauchy" errors);|
Relationships Coordinates Errors (W.R.T Next Lower H Value) R=E,/Ey, R'=¢y/ey,
E= ABS{U.....(i.i) - u(i.i)} e = ABSI™ (i) - (i} R=2" R'=2""
x=]0.20
y=]0.10
t=10.20
k=0.01*hx=0.01*hv | 0.1 0.0000000000
k=0.01*hx=0.01*hy | 0.05 0.0057046101 2.26853E-05 1.70091E-05 4.00 4.0
k=0.01*hx=0.01*hy | 0.025 0.0056876010 5.67623E-06 4.25688E-06 4.00
k=0.01*hx=0.01*hv | 0.0125 0.0056833441 1.41936E-06
k=0.01*hx=0.01*hv | 0.00625 0.0000000000
EXACT SOLUTION | 0.0056819248
v=| nan
v=1030
t=10.20
k=0.01*hx=0.01*hv | 0.1 0.0000000000 2.40690E-02 2.41651E-02
k=0.01*hx=0.01*hy | 0.05 0.0241651094 9.60948E-05 7.20503E-05 4.00 4.0
k=0.01*hx=0.01*hy | 0.025 0.0240930592 2.40446E-05 1.80321E-05 4.00
k=0.01*hx=0.01*hv | 0.0125 0.0240750270 6.01244E-06 2.40750E-02
k=0.01*hx=0.01*hv | 0.00625 0.0000000000 2.40690E-02
EXACT SOLUTION | 0.0240690146
v=| nzn
v=10.50
t=10.20
k=0.01*hx=0.01*hv | 0.1 0.0000000000 3.12820E-02 3.14069E-02
k=0.01*hx=0.01*hy | 0.05 0.0314068766 1.24891E-04 9.36415E-05 4.00 4.0
k=0.01*hx=0.01*hv | 0.025 0.0313132351 3.12500E-05 2.34358E-05 4.00
k=0.01*hx=0.01*hv | 0.0125 0.0312897993 7.81419E-06 3.12898E-02
k=0.01*hx=0.01*hv | 0.00625 0.0000000000 3.12820E-02 3.12820E-02
EXACT SOLUTION | 0.0312819851
v=| 070
v=]0.80
t=10.20
k=0.01*hx=0.01*hv | 0.1 0.0000000000 1.48755E-02 1.49349E-02
k=0.01*hx=0.01*hy | 0.05 0.0149348610 5.93904E-05 4.45299E-05 4.00 4.0
k=0.01*hx=0.01*hv | 0.025 0.0148903311 1.48605E-05 1.11446E-05 4.00
k=0.01*hx=0.01*hv | 0.0125 0.0148791866 3.71596E-06 1.48792E-02
k=0.01*hx=0.01*hv | 0.00625 0.0000000000 1.48755E-02
EXACT SOLUTION | 0.0148754706
v=| nan
v=]0.60
t=10.40
k=0.01*hx=0.01*hv | 0.1 0.0000000000 5.45985E-04 5.52625E-04
k=0.01*hx=0.01*hy | 0.05 0.0005526250 6.63954E-06 4.98520E-06 4.01 4.0
k=0.01*hx=0.01*hv | 0.025 0.0005476398 1.65434E-06 1.24110E-06 4.00
k=0.01*hx=0.01*hv | 0.0125 0.0005463987 4.13239E-07 5.46399E-04
k=0.01*hx=0.01*hv | 0.00625 0.0000000000 5.45985E-04
EXACT SOLUTION | 0.0005459855
v=| 010
v=1040
t=10.40
k=0.01*hx=0.01*hv | 0.1 0.0000000000 1.77401E-04 1.79559E-04
k=0.01*hx=0.01*hy | 0.05 0.0001795588 2.15732E-06 1.61979E-06 4.01 4.0
k=0.01*hx=0.01*hy | 0.025 0.0001779390 5.37527E-07 4.03258E-07 4.00
k=0.01*hx=0.01*hv | 0.0125 0.0001775357 1.34269E-07 1.77536E-04
k=0.01*hx=0.01*hv | 0.00625 0.0000000000 1.77401E-04
EXACT SOLUTION | 0.0001774014
v=| non
v=10.90
t=10.40
k=0.01*hx=0.01*hv | 0.1 0.0000000000 5.76412E-05 5.83422E-05
k=0.01*hx=0.01*hy | 0.05 0.0000583422 7.00955E-07 5.26302E-07 4.01 4.0
k=0.01*hx=0.01*hy | 0.025 0.0000578159 1.74653E-07 1.31026E-07 4.00 0.0
k=0.01*hx=0.01*hv | 0.0125 0.0000576848 4.36267E-08 5.76848E-05
k=0.01*hx=0.01*hv | 0.00625 0.0000000000 5.76412E-05
EXACT SOLUTION | 0.0000576412
v=| ngn
v=10.70
t=10.40
k=0.01*hx=0.01*hv | 0.1 0.0000000000 2.87042E-04 2.90532E-04
k=0.01*hx=0.01*hy | 0.05 0.0002905322 3.49061E-06 2.62088E-06 4.01 4.0
k=0.01*hx=0.01*hy | 0.025 0.0002879113 8.69737E-07 6.52485E-07 4.00 0.0
k=0.01*hx=0.01*hv | 0.0125 0.0002872588 2.17252E-07 2.87259E-04
k=0.01*hx=0.01*hv | 0.00625 0.0000000000 2.87042E-04
EXACT SOLUTION | 0.0002870416
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Figure A- 16. Snapshots of profiles along the principal axes, for the linear problem in Cartesian
system, Test Problem #28 (Table 7). (a) Snapshot profile parallel to the x-axis, at y = 0.60, t = 0.20.
(b) Snapsheot profile parallel to the y-axis, at x = 0.30, t = 0.40. Data from Dsnap output file.
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Figure A- 17. Evolution of grid functions with time, for the linear problem in Cartesian system, 7Test
Problem #28 (Table 7): x=0.5, y = 0.5. Data from Devol output file.
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Figure A- 18. Surface contour plots comparing the analytical (exact) and numerical solutions at
specific times, for the linear problem in Cartesian system, Test Problem #28 (Table 7). As can be
seen, at the resolution of these plots, the analytical and numerical solutions are identical for times
0.0, 0.4, and 0.8.
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Table A- 11. Grid function convergence tests for the linear problem in Spherical system, Test
Problem #29 (Table 7), generated from the output of the corresponding Dconv files.

Newton-Kantorovich with Douglass-Gunn Time Splitting: Grid Convergence Tests for T27 NonlinSphNeuRob: Urx.v.t) from Carslaw & Jaeg

r 1959

Grid function Absolute "Cauchy" Grid Theoretical Computationally Observed
Grid Resolution Resolutions & Ux,y) Absolute Grid Function Function Errors (Based on Absolute Errors) | (Based on "Cauchy" errors);|
Relationships Coordinates Errors (W.R.T Next Lower H Value) R=E,/Ey, R'=¢y/ey,
E= ABS{U.....(i.i) - u(i.i)} e = ABSI™ (i) - (i} R=2" R'=2""
x=]0.20
y=]0.10
t=10.20
k=0.01*hx=0.01*hv | 0.1 0.0000000000
k=0.01*hx=0.01*hy | 0.05 0.1976762349 1.55057E-03 1.16117E-03 3.98 4.3
k=0.01*hx=0.01*hy | 0.025 0.1965150662 3.89406E-04 2.67851E-04 3.20
k=0.01*hx=0.01*hv | 0.0125 0.1962472151 1.21555E-04
EXACT SOLUTION 0.1961256600
v=| nan
v=1030
t=10.20
k=0.01*hx=0.01*hv | 0.1 0.0000000000
k=0.01*hx=0.01*hy | 0.05 0.2719819163 3.08096E-03 2.31175E-03 4.01 4.1
k=0.01*hx=0.01*hv | 0.025 0.2696701658 7.69214E-04 5.69816E-04 3.86
k=0.01*hx=0.01*hv | 0.0125 0.2691003495 1.99398E-04
EXACT SOLUTION 0.2689009520
v=| nzn
v=10.50
t=10.20
k=0.01*hx=0.01*hv | 0.1 0.0000000000
k=0.01*hx=0.01*hy | 0.05 0.2744022733 2.96548E-03 2.22464E-03 4.00 4.1
k=0.01*hx=0.01*hy | 0.025 0.2721776344 7.40838E-04 5.44935E-04 3.78
k=0.01*hx=0.01*hv | 0.0125 0.2716326990 1.95903E-04
EXACT SOLUTION 0.2714367960
v=| 070
v=]0.80
t=10.20
k=0.01*hx=0.01*hv | 0.1 0.0000000000
k=0.01*hx=0.01*hy | 0.05 0.1599398572 1.86779E-03 1.40168E-03 4.01 4.1
k=0.01*hx=0.01*hv | 0.025 0.1585381806 4.66115E-04 3.43987E-04 3.82
k=0.01*hx=0.01*hv | 0.0125 0.1581941935 1.22127E-04
EXACT SOLUTION 0.1580720660
v=| nan
v=]0.60
t=10.40
k=0.01*hx=0.01*hv | 0.1 0.0000000000
k=0.01*hx=0.01*hy | 0.05 0.0045194926 8.48274E-05 6.37044E-05 4.02 5.3
k=0.01*hx=0.01*hv | 0.025 0.0044557883 2.11230E-05 1.20638E-05 2.33
k=0.01*hx=0.01*hv | 0.0125 0.0044437245 9.05927E-06
EXACT SOLUTION 0.0044346652
v=| 010
v=]040
t=10.40
k=0.01*hx=0.01*hv | 0.1 0.0000000000
k=0.01*hx=0.01*hy | 0.05 0.0017170299 1.43174E-05 1.06705E-05 3.93 4.1
k=0.01*hx=0.01*hy | 0.025 0.0017063595 3.64694E-06 2.63327E-06 0.58
k=0.01*hx=0.01*hv | 0.0125 0.0017089927 6.28021E-06
EXACT SOLUTION 0.0017027125
v=| non
v=10.90
t=10.40
k=0.01*hx=0.01*hv | 0.1 0.0000000000
k=0.01*hx=0.01*hy | 0.05 0.0008418041 1.78854E-05 1.34411E-05 4.02 4.8
k=0.01*hx=0.01*hy | 0.025 0.0008283630 4.44429E-06 2.81037E-06 2.72
k=0.01*hx=0.01*hv | 0.0125 0.0008255526 1.63393E-06
EXACT SOLUTION 0.0008239187
v=| ngn
v=10.70
t=10.40
k=0.01*hx=0.01*hv | 0.1 0.0000000000
k=0.01*hx=0.01*hy | 0.05 0.0021283932 4.54215E-05 3.41352E-05 4.02 4.6
k=0.01*hx=0.01*hv | 0.025 0.0020942580 1.12863E-05 7.36746E-06 2.88
k=0.01*hx=0.01*hv | 0.0125 0.0020868906 3.91889E-06
EXACT SOLUTION 0.0020829717
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Figure A- 19. Snapshots of profiles along the principal axes, for the linear problem in Spherical
system, Test Problem #29 (Table 7). (a) Snapshot profile parallel to the x-axis, at y = 0.60, t = 0.20.
(b) Snapsheot profile parallel to the y-axis, at x = 0.30, t = 0.40. Data from Dsnap output file.
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Figure A- 20. Evolution of grid functions with time, for the linear problem in Spherical system, Test
Problem #29 (Table 7): x=0.5, y = 0.5. Data from Devol output file.
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Figure A- 21. Surface contour plots comparing the analytical (exact) and numerical solutions at
specific times, for the linear problem in Spherical system, Test Problem #29 (Table 7). As can be
seen, at the resolution of these plots, the analytical and numerical solutions are identical for times
0.0, 0.4, and 0.8.
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Table A- 12. Grid function convergence tests for the linear problem in Spherical system, Test
Problem #32 (Table 7), generated from the output of the corresponding Dconv files.

Newton-Kantorovich with Douglass-Gunn Time Splitting: Grid Convergence Tests for T27 NonlinSohNeuRob: Urx.v.t)_from Carslaw & Jaegar 1959
Grid function Absolute "Cauchy" Grid Theoretical Computationally Observed
Grid Resolution Resolutions & U(x,y) Absolute Grid Function Errors Function Errors (Based on Absolute Errors) | (Based on "Cauchy" errors);|
Relationships Coordinates (W.R.T Exact Solution) (W.R.T Next Lower H Value) R=E,/Ey, R'=¢y/ey,
E= ABS{U.....(i.i) - u(i.i)} e = ABSfu™(i.i) - u™(i.i)} R=2" R'=2""
x=]0.20
y=]0.10
=10.20
0.1 | 0.314159265 1.10102454E+0 3.14079E+03 3.50764E+03 8.56 133102.3
0.05 | 0.157079633 1.45178893E+0 3.66849E+02 2.63530E-02 1.00
0.025 | 0.078539816 1.45178630E+0 3.66823E+02
0.0125 | 0.039269908 0.00000000E+0
0.00625 | 0.019634954 0.00000000E+0
EXACT SOLUTION | 1.41510403E+0
v=| nan
v=]157
=1015
0.1 | 0.314159265 2.89753100E+0 1.57988E+02 1.08659E+00 1.01 2.0
0.05 | 0.157079633 2.89752013E+0 1.56901E+02 5.43010E-01 1.00
0.025 | 0.078539816 2.89751470E+0 1.56358E+02
0.0125 | 0.039269908 0.00000000E+0
0.00625 | 0.019634954 0.00000000E+0
EXACT SOLUTION | 2.89595112E+0
v=| nas
v=] 283
=1015
0.1 | 0.314159265 3.78153294E+0 1.01015E+05 1.01052E+05 2760.81 112552.4
0.05 | 0.157079633 4.79205125E+0 3.65890E+01 8.97820E-01 1.03
0.025 | 0.078539816 4.79204227E+0 3.56912E+01
0.0125 | 0.039269908 0.00000000E+0
0.00625 | 0.019634954 0.00000000E+0
EXACT SOLUTION | 4.79168536E+0
v=| 070
v=1047
=1015
0.1 | 0.314159265 2.93380528E+0 3.43877E+04 3.47079E+04 107.39 291193.2
0.05 | 0.157079633 6.40459535E+0 3.20224E+02 1.19192E-01 1.00
0.025 | 0.078539816 6.40458343E+0 3.20105E+02
0.0125 | 0.039269908 0.00000000E+0
0.00625 | 0.019634954 0.00000000E+0
EXACT SOLUTION | 6.37257293E+0
v=| ngn
v=] 298
=1 0.20
0.1 | 0.314159265 8.40414630E+0 3.53829E+03 3.62332E+03 41.61 1733.3
0.05 | 0.157079633 8.36791311E+0 8.50335E+01 2.09041E+00 0.98
0.025 | 0.078539816 8.36789220E+0 8.71239E+01
0.0125 | 0.039269908 0.00000000E+0
0.00625 | 0.019634954 0.00000000E+0
EXACT SOLUTION | 8.36876344E+0
v=|n7s
v=]157
=1 0.20
0.1 | 0.314159265 4.34689386E+0 9.76630E+04 9.79523E+04 337.67 73586.4
0.05 | 0.157079633 5.32641652E+0 2.89227E+02 1.33112E+00 1.00
0.025 | 0.078539816 5.32640320E+0 2.87896E+02
0.0125 | 0.039269908 0.00000000E+0
0.00625 | 0.019634954 0.00000000E+0
EXACT SOLUTION | 5.32352425E+0
v=| nan
v=1]126
t=10.20
0.1 | 0.314159265 6.90277968E+0 2.54839E+03 3.45008E+00 1.00 2.0
0.05 | 0.157079633 6.90274518E+0 2.55184E+03 1.72499E+00 1.00
0.025 | 0.078539816 6.90272793E+0 2.55357E+03
0.0125 | 0.039269908 0.00000000E+0
0.00625 | 0.019634954 0.00000000E+0
EXACT SOLUTION | 6.92826363E+0
v=[ 070
v=1]141
t=10.20
0.1 | 0.314159265 3.30183838E+0 5.37760E+04 5.50235E+04 43.11 57166.7
0.05 | 0.157079633 3.85207371E+0 1.24753E+03 9.62510E-01 1.00
0.025 | 0.078539816 3.85206409E+0 1.24657E+03
0.0125 | 0.039269908 0.00000000E+0
0.00625 | 0.019634954 0.00000000E+0
EXACT SOLUTION | 3.83959841E+0
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Figure A- 22. Snapshots of profiles along the principal axes, for the linear problem in Spherical
system, Test Problem #32 (Table 7). (a) Snapshot profile parallel to the x-axis, at y = 0.15, t = 0.20.
(b) Snapshot profile parallel to the y-axis, at x = 0.09, t = 0.20. Data from Dsnap output file. It
must be noted that for the solution used to generate this problem, errors are magnified by a factor
2.5 x 10° (see Table A-7). Therefore the errors are extremely magnified at x=0, as shown here and
in Figure A-23.
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Figure A- 23. Evolution of grid functions with time, for the linear problem in Spherical system, Test
Problem #32 (Table 7): x = 0.0, y =1t Data from Devol output file. It must be noted that for the
solution used to generate this problem, errors are magnified by a factor 2.5 x 106 (see Table A-7).
Therefore, the errors are extremely magnified at x=0, as shown here and in Figure A-22a.
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A-3.4.1 Brief summary of validation tests

From the tests conducted (Table 7), it was deduced that the performance of COND2D was as predicted by
theory, for “well behaved” problem data (BCs, thermal properties). The code can be used for a large
number of problem types and coordinate systems. However, as seen from Table A-12 above, and Figures
A-22(a) and A-23, when the thermal properties are highly nonlinear as was the case for Tests Problem
#30 onwards, and steep gradients exist in the solution (as simulated by the large, 2.5x 10°, factor in those
solutions), very high resolutions are required to observe the second order convergence predicted by
theory. In fact the solution chosen for these problems is a tough one since the gradients are everywhere
extremely large due to the uniform domain-wise multiplication factor. Also, the truncation error at x=0
gets magnified by this multiplicative factor and therefore leads to large errors at the origin. So, what was
observed in the last table and last set of figures was an artifact of the type of solution chosen, and not a
problem with the code, as illustrated for the “well behaved” nonlinear case of Test Problem #27. So, if
COND?2D is to be applied to highly nonlinear problems, it seems imperative that very high resolutions be
used — which means very long run times. This can be practically accomplished either by parallelizing the
code to distribute the work load due to a large increase in time steps, or by finding ways of subdividing
the domain of interest to reduce array sizes at a given resolution (and hence the arithmetic). In a typical
application, a combination of these two approaches might have to be used.
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APPENDIX B: COND2D -FORTRAN 90 CODE

Program for the solution of a GENERAL NON-LINEAR, 2D, TI ME DEPENDENT HEAT CONDUCTI ON EQUATION (in Cartesian/
Cylindrical/Spherical coordinates ORin ANY USER DEFI NED ANALYTI C SYSTEM, with general NON-LI NEAR BOUNDARY CONDI TI ONS
USI NG DELTA- FORM OF QUASI LI NI ARI ZATI ON ( NEWION- KANTOROVI CH PROCEDURE) | N CONJUNCTI ON W TH THE DELTA- FORM OF THE
DOUGLAS- GUNN TI ME SPLI TTI NG SCHEME (2- STEP). THI S CODE CAN ALSO BE USED FOR LI NEAR PROBLEMS W THOUT ANY CHANGES TO
THE CORE ALGORI THM | MPLEMENTED HERE. This code was witten as part of the devel opment of an "Asperity scale frictional
nelting nodel” for ny MS. Thesis Research. This work was supported by NSF grant: XXXXX-XXXXX. - Ravi Kanda (Novenber, 2002).
This program sol ves an equation of the form
W = {1/(rho*cp)}*

[al*{kt*(a2_x*U x + a2*U xx) + a2*kt_u*(U x)"2} + bl*{kt*(b2_y*Uy + b2*U yy) + b2*kt_u*(Uy)"2} + f(Ux,y,t)],
where the "_" denotes partial differentiation, obtained by expanding the ADJO NT formof the |inear, but very general
Pure Conduction Equation. The values of functions al, a2, bl, b2, kt(U) and cp(U can be changed to match any
"regul ar closed domain" (i.e.. Cartesian, Cylindrical, Spherical, Elliptical or ANY USER DEFI NED ANALYTI C SYSTEM donai ns),
in either of the three coordinate systens nentioned above. In addition, the treatment of the boundary conditions is very
general in that any type of convective/conductive/radiative heat transfer boundary condition can be applied at any of the
boundaries. The code adjusts the formof the equation in Spherical AND Cylindrical coordinates as r -> 0 ("left boundary”
in an equivalent cartesian grid representation), and in Spherical coordinates, as THETA -> 0 or Pl. In these cases, the
coefficients of Ux (or Uy) in the generalized equation above (i.e., a2_x*al and b2_y*bl) are not ANALYTIC. The form
of the coordinate systemcan be specified using a "coord_flag" in the nodul e "const_parans”. This program conputes
the number of points in the spatial and tinme donmains based on user supplied values of hx, hy & k, and conputes the
"evloution" of the grid functions, Ui, for each "grid node" with tine.

NOTE: |F A USER DEFINED SYSTEM IS CHOSEN, with NON-ANALYTIC {al, a2, bl, b2}, THESE FUNCTI ONS AND THEI R DERI VATI VES MUST
BE DEFI NED CORRECTLY I N THE SUBROUTI NES OF THE MODULE "pde_routines”. CARE MJUST ALSO BE TAKEN TO APPROPRI ATELY
I MPLEMENT THE "I NTERI OR' LOOP AND ALL THE "BOUNDARY CONDI TI ON' LOOPS, |IN THE SUBROUTI NE "gl dgts_coeff _rhs".

NOTE: For use with highly non-linear problens, a snoothing flag and paraneter can be prescribed by the user, in the command

line, following the executable nanme. Either 1D or 2D Snoothing can be carried out using the sinple Shuman filter, a |ow pass
filter, that basically smoths out gradients in the domain at the end of each time step, at points (determned explicitly by

the user). IF SMOOTH FLAG | S NON- ZERO, THEN APPROPRI ATE CHANGES NEED TO BE MADE BELOW | N THE MAIN PROGRAM TO MODI FY APPROPRI ATE
GRID VALUES OF U.

!
]
!
]
|
!
]
|
]
|
!
]
|
]
|
!
]
|
]
|
!
]
|
]
]
|
]
|
]
]
!
! The boundary conditions are specified in separate functions, as are the forcing function, f_rhs and the

! exact solution, if known. f_rhs can be conbined into the function f appearing in the general formof the equation

! above to sinplify the inplenentation and nake it nore flexible in incorporating certain non-linearities. Boundary

! condition flags can be specified at two levels - linearity & type of BC (Dirichlet, Neumann or Robin) in the MAIN PROGRAM

! but defined in the nodul e "Const_Parans". This allows for SEVERAL changes in Boundary Condition types,

! with time [as when an Initial Neumann BC changes later to a Dirichlet BC]. Further details of boundary condition

! inplementation are presented under the subroutine "qldgts_coeff_rhs", above. The initial condition is specified under a

! separate function, and is passed on to the "qgldgts" subroutine for the first time step. Time stepping is controlled by the

! mai n program which outputs data at selected tine |evels (user specified in the main progran) to various output files to

! facilitate easy post-processing. Subroutine "qldgts" outputs the values of the grid function Ui, at each tine step, in a

! two dinmensional array in yj, and xi. The nunber of tine steps to be plotted or gridded, as well as the nunber of output

! files can be changed (by changing the "out" paraneter array size and adding/renoving file name el ements in the "const_parans"”
! nodul e) can be changed in the main program The program allows the output of grid function and plot data at any resol ution

! that the user chooses, with the maxi num ALLOAED resol ution, of course, being hx*hy. If l|ower resolutions of hx and hy than

! all owed by the machine array limtations are needed, the code can be nodified later to conpletely elimnate storage

! inlarge arrays, and instead, directly print out only the required plot data to output files. Evolution of maxinum

! tenperature is output to the screen at a few specified tinme |evels. EXTENSI VE checks have been added to all subroutines

! to inprove ERROR TRAPPI NG

MODULE const _par anms

IMPLICI T NONE

SAVE

! Set precision and exponent required:
I NTEGER, PARAMETER :: rp = SELECTED_REAL_KI ND(P=15, R=307), ip = SELECTED | NT_KI NI( 8)

! | NPUT/ QUTPUT FI LES: Specifying Qutput file pointers and output file nanes:

I NTEGER(KIND=i p) :: io
| NTEGER( KI ND=i p), DI MENS| ON(5), PARAMETER :: out = (/ (io, i0=1,5) /)
CHARACTER(LEN=5), DI MENS| ON( Sl ZE(out)), PARAMVETER :: outfile = (/ "Dgrid", “Derrg", "Dsnap", “Devol", "Dconv" /)

! Mat hemati cal Constants:
REAL(KI ND=rp), PARAMETER :: pi = 3.1415926535897932_rp, pi_sq = pi *pi
! PDE AlgorithmLinits: Coefficient magnitude linmit; Gid size limt (usu. machi ne dependent):

| NTEGER( KI ND=i p), PARAMETER :: nmax_points = 1000001
REAL(KI ND=r p), PARAMETER :: epsilon = 1.0E-30_rp ! This paraneter is for the LU Deconposition Routine.

PDE Par aneters:

PDE LINEARITY FLAG : 1 for Linear, 0 (ZERO for Non-Linear.

This will deternmine if the Newt on-Kantorowich loop will be executed, or ONLY the Dougl as-Gunn Time splitting
algorithminplenented, as is required for linear problens. Depending on the value of the LINEAR FLAG the grid
convergence tolerance is set in the MAIN PROGRAM |f LINEAR FLAG = 1, this nunber is set to a very |arge nunber,
so the "glindgts" loop is exited after one run:

| NTEGER( KI ND=i p), PARAMETER :: linear_flag = 0

! PDE COORDI NATE SYSTEM FLAG 0= User Specified PDE Coeffs, 1= Cartesian, 2= Cylindrical, and 3= Spherical.
! If this flag is set to 0, the user needs to specify the functional formof the PDE coefficients al, a2, bil,
! b2, and their derivatives a2_x & b2_y, in MODULE "pde_routines":

| NTEGER( KI ND=i p), PARAMETER :: coord_flag = 3

SMOOTHI NG FLAG  THI RD ARGUMENT AFTER THE PROGRAM EXECUTABLE. For highly non-linear problens, this smooths out the solution at the end

of each iteration at points (determined explicitly by the user) using either 1D or 2D snoothing. |F TH S VALUE | S NON- ZERO, THEN APPROPRI ATE
CHANGES NEED TO BE MADE TO THE SUBRCUTINE “"glin_dgts" TO MODI FY THE APPROPRI ATE GRID VALUES OF U. Values for this flag are:

smooth_flag = 0, no snoothing, smooth_flag = 1, 1D snoothing, snooth_flag = 2, 2D snoot hi ng.

NOTE: |f snmooth_flag is NON-ZERO, then a degree of snoothing between 2 and 1000 as the |ast argunment after the program executable.

The larger the snoothing factor, the I esser the snoothing. The larger this value, the greater this snoothing.

DEFI NE THESE TWD PARAMVETERS GLOBALLY.

I NTEGER(KI ND=i p) :: smooth_flag
REAL(KIND=rp) :: snooth_factor

! PDE BOUNDARY CONDI TI ON FLAGS: SPECI FI CATI ON HAS BEEN MOVED TO MAIN PROGRAM TO ACCOMODATE TI ME VARYI NG BC Types (once or several tines -
! as prescribed in the MAIN PROGRAM Neumann to Dirichlet, and back, for instance). However, the flags have to be defined globally, for access
! by various subroutines.
I NTEGER(KIND=i p) :: left_bc_flag, right_bc_flag, bottombc_flag, top_bc_flag, &
& left_lin_flag, right_lin_flag, bottomlin_flag, top_lin_flag
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! RBC Tenper at ure SPECI FI CATI ON.: FOR TEST PROBLEM ONLY!
REAL(KI ND=rp), PARAVETER :: u_right = 300.0_rp

! OPTI ONAL Li near Robin Parameters, ALPHA x & ALPHA y for each of the two directions. Eg., in: L = Ux + alpha_x * U
REAL(KIND=rp) :: al pha_x, alpha_y

PDE BOUNDARY CONDI TI ON FLAGS: 0 for DIRICHLET {i.e., Bbc(U = B2bc(U)},
1 for NEUMANN {i.e., Bbc(U = Ux*Blbc(U)},
2 for ROBIN {i.e., Bbc(u) = U x*Blbc(U)}.
Al BCs are represented in the generalized non-linear forms encountered in heat conduction problens:
Bbc(U) = U x*Blbc(U)+ B2bc(U) or U y*Blbc(U)+ B2bc(U). This formcan be used to represent either NON-LI NEAR or
LI NEAR BCs. PROVI DE ALL BOUNDARY OPERATORS, B, in this SPLIT FORM using separate functions for Bl and B2, for
EACH BC. These classifications and their inplenmentations are discussed under the separate functions in the nodule
"pde_routines", below, and ESPECI ALLY UNDER THE SUBROUTI NE "ql dgts_coeff _rhs", where they are used:

OPTI ONAL Linear Robin Paraneters, ALPHA x & ALPHA y for each of the two directions. Eg., in: L = Ux + alpha_x * U
REAL( KI ND=r p), PARAMETER :: alpha_x = 0.0_rp, alpha_y = 0.0_rp

1
]
]
!
]
!
!
]
|
! | NTEGER( KI ND=i p), PARAMETER :: left_bc_flag = 1, right_bc_flag =1, bottombc_flag =1, top_bc_flag =1
H :
!
i
! BOUNDARY CONDI TION LINEARITY FLAGS: 1 if linear, O if non-linear.

! These will affect the forns and val ues of the corresponding boundary condition functionals (lbcl, bbcl, tbhc2, etc.)
! below. If any of these flags is O (non-linear BC) then the fornms of these functionals have to be defined in the

! respective subroutines in MODULE "pde_routines":

]

!

| NTEGER( KI ND=i p), PARAMETER :: left_lin_flag = 1, right_lin_flag = 0, bottomlin_flag = 1, top_lin_flag = 1

PDE EXACT SOLUTION FLAG Set this flag to 1 if the closed formof the exact analytical solution to this problemis
known. Then set it up under the function "f_exact". If no exact solution exists, or is not available, set this flag
to 0. This will affect the type of diagnostic information the programoutputs for this problem |f exact solution
exists, the program conputes and outputs the exact error, otherwise, it outputs an estinated val ue based on
iteration errors and the "asynptotic spectral radius" of the spatial discretization matrix.

I NTEGER( KI ND=i p), PARAMETER :: exact_sol _flag = 1

PDE DOVAI N DECLARATI ON AND LOWEST PERM TTED GRI D RESOLUTI ON:

(a) PDE DOVAI N SPECI FI CATI ON:
NOTE: Changi ng x-range affects x_snap and x_time & grid_conv(:,1) bel ow
Sinmlarly, y-range affects y_snap and y_ti i :,2) bel ow

REAL( KI ND=r p), PARAMETER :: x_left =0.0_rp, x_right =0.1_rp, &
& y_bottom= 0.0_rp, y_top = pi, &
& t_initial = 0.0_rp, t_final = 1.0_rp

! (b) SMALLEST CGRI D RESOLUTI ON: Define the maxi mum al |l owabl e grid spacings. The main program specifies different resolutions
! using the grid resolution flag, "res_flag" (see Main Progran):

REAL(KI ND=r p), PARAMETER :: hx_nmax = (x_right - x_left)/10.0_rp, hy_max = (y_top - y_botton)/10.0_rp
! | NPUT/ QUTPUT PARAMETERS: Specify output grid spacings for solution evolution, grid and plot files defined above. Note that
! the grid and plot grid spacings can be reassigned in the main programif these resolutions are finer than hx or hy. A so
! specify the time levels at which the plot and grid output is witten out to the corresponding output files.

REAL(KI ND=rp), PARAMETER :: tf = t_final
REAL(KIND=rp) :: out_x_grid_spacing = hx_max/2.0_rp, out_y_grid_spacing = 0.010_rp, t_evol _spacing = tf/20.0_rp

REAL(KI ND=rp), DI MENSI ON(11), PARAMETER :: t_snap = (/ t_initial, 0.15_rp*tf, 0.20_rp*tf, 0.30_rp*tf, 0.40_rp*tf, &
0.50_rp*tf, 0.60_rp*tf, 0.70_rp*tf, 0.80_rp*tf, 0.90_rp*tf, &
t_final /)

! CONVERGENCE & EVOLUTI ON PARAMETERS:
! (a) SNAPSHOT OF PROFILE ALONG A LINE PARALLEL TO x-axis:

REAL(KI ND=r p), PARAMETER :: y_xsnap = 0.20_rp, t_xsnap = t_snap(2)
! (b) SNAPSHOT OF PROFILE ALONG A LINE PARALLEL TO y-axis:
REAL(KI ND=r p), PARAMETER :: x_ysnap = 0.90_rp*x_right, t_ysnap = t_snap(3)
! (c) EVOLUTION OF GRID FUNCTION VALUES AT A SINGLE GRID PONT AS A FUNCTION OF TIME, t:
REAL(KI ND=rp), PARAMETER :: x_time = x_left, y_ time = y_top
! (d) PO NT GRID CONVERGENCE TEST LOCATIONS - 8 points, at different space & tine coordinates:
REAL(KI ND=rp), PARAMETER :: xr = x_right, yt =y_top
REAL(KI ND=rp), DI MENSI ON(8, 3), PARAMETER :: grid_conv = RESHAPE( &
(/0.55_rp*xr, 0.60_rp*xr, 0.65_rp*xr, 0.70_rp*xr, 0.80_rp*xr, 0.75_rp*xr, 0.90_rp*xr, 0.70_rp*xr, &
0.10_rp*yt, 0.50_rp*yt, 0.90_rp*yt, 0.15_rp*yt, 0.95_rp*yt, 0.50_rp*yt, 0.40_rp*yt, 0.45_rp*yt, &
t_snap(2), t_snap(2), t_snap(2), t_snap(2), t_snap(3), t_snap(3), t_snap(3), t_snap(3)/), &
(/ 831))

! (e) SET THE LEVEL OF DETAIL | N SCREEN OUTPUT: Set verbose_flag = 1 if detailed output is required at every tine step on grid function maxi ma
! as wel | as non-linear iteration convergence information at each tine step:

| NTEGER( KI ND=i p), PARAMETER :: verbose_flag = 1
! GLOBAL VARI ABLES:

! Define the variables "quasi_epsilon" for iteration tolerance, and "quasi_iterations" for the max nunber of
! Newt on- Kant orovich iterations. Due to the quadratic convergence expected if this nethod works, this number
! need not be large (about 10-15 is "quite sufficient").
REAL(KI ND=rp) :: quasi_epsilon
| NTEGER(KI ND=i p) :: quasi_iterations
! Declare all arrays required by subroutine "delta_glin_dgts" here, and allocate themthrough the MAIN program
REAL(KI ND=r p), ALLOCATABLE, DI MENSION(:,:) :: coeff, u_n, u_old
REAL(KI ND=rp), ALLOCATABLE, DIMENSION(:) :: rhs, rs
! Save one of the FUNCTI ONAL DERI VATI VE VALUES globally to conserve arithnetic in the "qldgts_coeff_rhs" routine, as
! they are used in both time stages of the DG discretization.
REAL(KI ND=r p), ALLOCATABLE, DI MENSION(:,:) :: NSu_m Nu_m

END MODULE const _par ans
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MODULE f aul t _parans
USE const _par ans
I MPLICI T NONE

Set the values of the physical fault paraneters and/or thei

Were indicated, the tenperature dependence of paraneters,

and Roy, R F., "Physical Properties of Rocks and Mnerals.",

r ranges: All units in Sl system and for QUARTZ.

and their extrena are adapted from Toul oukian, Y.S., Judd, WR ,
in Touloukian, Y.S., and Ho, C.Y., Ed., "McGawH ||/C NDAS Data

Series on Material Properties", Volume I|1-2, McGaw HiIl, New York, 1981.
DEFI NI TI ONS:
asp_rad asperity radius (m

ey Young's Modulus for asperity material (GPa)
kappa thernmal diffusivity (m2/s)
kt = thermal conductivity (WmK). [MAX & M N val ues

m = Coefficient of rock friction (di nensionless)

]

|

]

]

|

]

|

!

! =
! cp = Specific Heat at constant Pressure (J/kg-K). [M
] =
|

!

]

|

]

|

!

nu_ps Poi sson's Rati o (di mensionl ess)

rho Density of asperity material (kg/m3). [
slip_v = slip velocity (m's)

tau = shear stress (Pa) [MAX & M N val ues based

REAL( KI ND=r p), PARAMETER asp_rad_nmin = 0.001_rp, &
asp_rad_max = 1.00_rp, &
cp_mn = 447.50_rp + 1.025_rp* 300.0_rp, &
cp_nmax = 1093.80_rp + 0.100_rp*1700.0_rp, &
ey = 20.0_rp, &
kt_mn = 0.9452102585026962_r p, &
Kkt _max = 7.5420193400746197_rp, &
nm_mn 0.60_rp, &
nmu_max = 0.85_rp, &
nu_ps =0.20_rp, &
rho_min = 2500.0_rp, &
rho_max = 3000.0_rp, &
slip_v_nin =0.1_rp, &
slip_v_max = 1.0_rp, &
tau_nin = 1.0E6_rp, &
tau_max = 1.0E9_rp
! ASSI GN VALUES for Fault Paraneters for this run: Paraneters defined here for the first tine are:
! rc = Radius of circular contact area between two ELASTI C spheres.
! t0 = Tine taken for the two contacting spheres to pass each other - time duration of heat flux input fromfrictional contact.
! NOTE: THE CONST VALUES FOR LI NEAR PROBLEM ARE TEMPERATURE WEI GHTED AVERAGES.
REAL( KI ND=r p), PARAMETER :: cp_const = 1167.95_rp, &
kt _const = 3.03_rp, &
m = mu_nin, &
rho = rho_nax, &
slip_v = slip_v_max, &
tau = tau_nmax, &
rc_by r0 = 3.0_rp*pi *(1.0_rp - nu_ps*nu_ps)*tau/ (4.0_rp*e_y*1. 0E9_rp*nu), &
rc = rc_by_r0*x_right, &
to = 4.0_rp*rc/slip_v
! DEFI NE FAULT PARAMETERS THAT NEED TO BE ACCESS|I BLE GLOBALLY:
! y0 = Half the angle (theta) subtended at the center of either asperity, by the circular contact area.
REAL(KIND=rp) :: yo
END MODULE f aul t _par ans
leecececececececccccccccccccccccccccccccccancanscascancncncncncsososeasecsccacsasasasasecscccncnanansansanencncncnenosasasnacacasanannnns
MODULE pde_routi nes
USE const _par ans
USE faul t _parans
CONTAI NS
leecececececececcccccccccccccccaccccccccancancnscancncncncncnccoceacseacccasasasasasenacccnanansansansancncncnosasasasasanannns
FUNCTI ON kt (u, X, y, t)
I MPLICI T NONE
! This function conputes the value of the tenperature dependent THERVAL conducti y, kt, that appears in the
! PDE: al*(a2*kt*U x)_x + bl*(b2*kt*Uy)_y + f(UXx,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative.
! Functional expression is assigned for the NON-LINEAR case. Otherwise, it is set to the constant val ue
! prescribed in the nodul e "fault_params" above. Since kt appears in Nuxx_m & Nuyy_m which are part of coeff denonminators,
! cannot have a zero val ue.
! FUNCTI ONAL FORM OF kt is a BEST FIT CURVE (kt = 1 + a/(U**b)) TO THE data for QUARTZ adapted from Toul oukian, Y.S., Judd, WR ,
! and Roy, R F., "Physical Properties of Rocks and Mnerals.", in Touloukian, Y.S., and Ho, C. Y., Ed., "McGawH | |/Cl NDAS Data
! Series on Material Properties", Volume I[1-2, McGaw HiIl, New York, 1981.
! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: u
REAL(KIND=rp), INTENT(IN), CPTIONAL :: x,y,t
REAL(KIND=rp) :: kt
IF (linear_flag == 1) THEN
kt = kt_const
ELSE
kt = 1.0_rp + 14.2920_r p*( EXP(- 0. 0030_r p*u))
! ! R2 fit value = 0.9953 in the range 300-1000K; U in DEGREES KELVIN. kt has a slope > 1 for u <~ -1050
! kt = 1.0_rp +u
1 IF (u < 0.0_rp) THEN
1 kt = 15.2920_rp
! ELSE
! kt = 1.0_rp + 14.2920_r p*( EXP(- 0. 0030_r p*u)) ! R2 fit value = 0.9953 in the range 300-1000K; U in DEGREES KELVIN.
! END I F
! IF( u<=0.0_rp) THEN ! Based on functional limtation in Cp expression.
1 Kt = 1.0_rp + (162144. 4558_rp)*(20.0_rp**(-1.7559_rp))
! ELSE
1 Kt = 1.0_rp + (162144.4558_rp)*(u**(-1.7559_rp)) ! R'2 fit value = 0.9838 in the range 300-1000K; U in DEGREES KELVI N.
! END | F
END I F

END FUNCTI ON kt

N & MAX val ues based on anbi ent T=300K, and QUARTZ nelting tenp, 1700k,

based on anbi ent T=300K, and QUARTZ nelting tenp, 1700k, respectively.]

. [MN & MAX val ues based on Byrelee's results: 0.6-0.85]

MAX & M N val ues based on Variation in conposition of FELSIC rocks.]

on Nadeau and Johnson, 1998 & Logan & Teufel, 1986 - See Thesis References]
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FUNCTI ON
IMPLICT
1

kt_u(u, x,y,t)
NONE

This function conputes the value of the FIRST tenperature derivative of THERVAL conductivity, kt, that
appears in the PDE: al*(a2*kt*U x)_x + bl*(b2*kt*Uy)_y + f(Ux,y,t) = rho*cp*U_t, where the "_" denotes a
partial derivative. Functional expression is assigned for the NON-LINEAR case. It is equal to O for the LI NEAR

CASE.

Function & Argunents
REAL(KIND=rp), INTENT(IN) :: u

REAL(KI ND=rp), | NTENT(IN), CPTIONAL ::

X, ¥, t

REAL(KIND=rp) :: kt_u

IF (linear_flag == 1) THEN
kt _u .0_rp

END FUNCTI ON kt _u

FUNCTI ON Kkt _uu(u, X, y, t)
INPLICI T NONE

ELSE
kt _u = 14.2920_rp*(-0.0030_rp)*( EXP(-0.0030_rp*u)) ! Based on the Definition of kt above.
kt _u =1.0_rp
IF (u < 0.0_rp) THEN
kt_u =0.0_rp
ELSE
kt _u = 14.2920_rp*(-0.0030_rp)*( EXP(-0.0030_rp*u)) ! Based on the Definition of kt above.
END | F
IF (u <= 20.0_rp) THEN ! Based on functional limitation in Cp expression.
kt_u =0.0_rp
ELSE
kt _u = ( (162144.4558 rp)*(-1.7559_rp) )*(u**(-1.7559 rp - 1.0_rp)) ! Based on the Definition of kt above.
END | F
END | F
This function conputes the value of the SECOND tenperature derivative of THERMVAL conductivity, kt, that
appearsin the PDE: al*(a2*kt*U x)_x + bl*(b2*kt*Uy)_y + f(Ux,y,t) = rho*cp*U_t, where the "_" denotes a

partial derivative. Functional expression is assigned for the NONLINEAR case. It is equal to O for the LINEAR

CASE.

Function & Argunents
REAL(KIND=rp), INTENT(IN) :: u

REAL(KIND=rp), |NTENT(IN), CPTIONAL ::
REAL( KI ND=r p)

Xy, t
kt _uu

IF (linear_flag == 1) THEN

END FUNCTI ON kt _uu

FUNCTI ON ¢cp(u, X, y, 1)
INPLICI T NONE

partial deri

cannot have

kt _uu = 0.0_rp

ELSE
kt _uu = 14.2920_r p*(-0.0030_rp)*(-0.0030_r p) *( EXP(-0. 0030_r p*u) ) ! Based on the Definition of kt above.
kt _uu = 0.0_rp
IF (u < 0.0_rp) THEN
kt _uu = 0.0_rp
ELSE
kt _uu = 14.2920_r p*(-0.0030_rp)*(-0.0030_r p) *( EXP(-0. 0030_r p*u) ) ! Based on the Definition of kt above.
END | F
IF (u <= 20.0_rp) THEN ! Based on functional limitation in Cp expression.
kt _uu = 0.0_rp
ELSE
kt _uu = ( (162144.4558_rp)*(-1.7559_rp)*(-1.7559_rp) )*(u**(-1.7559_rp - 2.0_rp)) ! Based on the Definition of kt above.
END | F
END I F
This function conmputes the value of the tenperature dependent SPECI FI C HEAT ( THERVAL HEAT CAPACI TY), c, that
appears in the PDE: al*(a2*kt*U x)_x + bl*(b2*kt*Uy)_y + f(x,y,t) = rho*cp*U_t, where the "_" denotes a

vative. Functional expression is assigned for the NON-LI NEAR case. Gtherwise, it is set to the
constant val ue prescribed in the nodul e "const_parans" above. Since Cp appears in in the denominators of ALL Functionals, it

a zero val ue.

FUNCTIONAL FORM OF &t is a BEST FIT CURVE (Cp = a*LN(U) + b) TO THE data for QUARTZ adapted from Toul oukian, Y.S., Judd, WR,

and Roy, R F., "Physical Properties of Rocks and Mnerals.",

in Toul oukian, Y.S., and

Series on Material Properties”, Volume I1-2, McGraw Hill, New York, 1981.
Function & Argunents
REAL(KIND=rp), INTENT(IN) :: u

REAL(KIND=rp), | NTENT(IN), CPTIONAL ::

X,y t

REAL(KIND=rp) :: cp

IF (linear_flag == 1) THEN

ELSE

END | F

END FUNCTI ON cp

cp = cp_const

cp = 1500.0_rp*( 1.0_rp - 0.5105_rp*EXP(-0.0008_rp*u) )

Ho, C. Y., Ed., "McGaw H ||/Cl NDAS Data

! R2 fit value = 0.84 in 300-1500K; U in DEGREES KELVIN. Cp has a slope > 1 for u<~ -9755, and is NEGATIVE for u<~ -841.

cp =1.0_rp +u
IF (u < 0.0_rp) THEN

cp = 734.25_rp
ELSE

cp = 1500.0_rp*( 1.0_rp - 0.5105_r p*EXP(-0.0008_rp*u) ) ! R'2 fit value = 0.84 in 300-1500K; U in DEGREES KELVIN.

END | F
IF (u <= 20.0_rp) THEN

cp = 299.24_rp*(LO3X20.0_rp)) - 891.19_rp
ELSE

cp = 299.24_rp*(LOXu)) - 891.19_rp ! R'2 fit value = 0.90 in 300-1500K; U in DEGREES KELVIN.

END | F

FUNCTI ON cp_u(u, X, ¥, t)
I MPLICI T NONE
This function conputes the value of the FIRST tenperature derivative of SPECI FI C HEAT ( THERVAL HEAT CAPACITY),

cp, that appears in the PDE: al*(a2*kt*U x)_x + bl*(b2*kt*Uy)_y + f(x,y,t) = rho*cp*U_t, where the "_

" denotes

a partial derivative. Functional expression is assigned for the NON-LINEAR case. It is equal to O for the

LI NEAR CASE.

Function & Argunents
REAL(KIND=rp), INTENT(IN) :: u

REAL(KI ND=rp), | NTENT(IN), CPTIONAL ::

X, ¥, t

REAL(KIND=rp) :: cp_u

IF (linear_flag == 1) THEN

ELSE

cp_u 0.0_rp

cp_u =

cp_u = 1.0_rp

IF (u < 0.0_rp) THEN
cp_u =0.0_rp
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ELSE
cp_u = 1500.0_rp*(- 0.5105_rp)*(-0.0008_rp)*EXP(-0.0008 rp*u) ! Fromthe expression for
END | F
IF (u <= 20.0_rp) THEN
cp_u = 299.24 rp/(20.0_rp)
ELSE

Cp defined above.

cp_u = 299.24_rp/(u) ! Fromthe expression for Cp defined above.

END | F
END | F

END FUNCTI ON cp_u

FUNCTI ON f_exact (x,y,t)
I MPLICI T NONE

Function & Argunents
REAL(KIND=rp), INTENT(IN) :: t,x,y
REAL(KI ND=rp) :: f_exact

Local Variabl es
REAL(KIND=rp) :: sy

sy = SIN(y)
f_exact = 300.0_rp + 2500000.0_rp*(EXP(-t))*(x - SIN(x))*( (y*y/2.0_rp) + y*sy + sy*sy )

END FUNCTI ON f _exact

FUNCTI ON f

_initial(x,y)

I MPLICI' T NONE

Function & Argunents
REAL(KIND=rp), DIMENSION(:), INTENT(IN) :: x, y
REAL(KI ND=rp), DI MENSI ON(SI ZE(y), SIZE(x)) :: f_initial

Local Vari abl es
I NTEGER( KI ND=i p) V)
REAL(KIND=rp) :: sxi, syj, xi, yj

DO =1, SIZE(x)
DOj =1, SIZE(y)
sxi

= 300.0_rp + 2500000.0_rp*(xi - sxi)*( (yj*yj/2.0_rp) + yj*syj + syj*syj
END DO
END DO

END FUNCTION f_initial

FUNCTI ON f

_rhs(u,x,y, t)

I MPLICI' T NONE

In entering this function, and its overall sign, keep in nmind its location in the general PDE being solved here:
W = {1/(rho*cp)}*
al*{kt*(a2_x*UXx + a2*U xx) + a2*kt_u*(U x)"2} + bl*{kt*(b2_y*Uy + b2*U_yy) + b2*kt_u*(U_y)"2} + f(Ux,y,t)]

Function & Argunents
REAL(KIND=rp), INTENT(IN) :: t, u, X, y
REAL(KIND=rp) :: f_rhs

Local Variables
REAL(KIND=rp) :: cy, e2t, et, fx, fx1, fx2, gy, gyl, gy2, rho_cp, sy

cy = Co8(y)

et 2500000. 0_r p* EXP(- t)

e2t et*et

fx X - SIN(x)

fx1 1.0_rp - CO8(x)

fx2 SIN(x)

sy SIN(y

gy (y*yl2.0_rp) + y*sy + sy*sy

gyl y*(1.0_rp + cy) + sy*(1.0_rp + 2.0_rp*cy)
agy2 1.0_rp - y*sy + 2.0_rp*( cy + COS(2.0_rp*y) )

rho_cp = rho*cp(u, x,y,t)

IF (x /= 0.0_rp) THEN

0.0_rp) .OR (y == pi) ) THEN

(300.0_rp - u)*rho_cp - ( kt(uxyt)) et *( gy*( (2.0_rp*fx1/x) + fx2 ) + (fx/(x*x))*(
& (kt

)

+gy2)

_u(u, x,y, t))*e2t*( fx1*fxl*gy*gy + (fx*fx*gyl*gyl/(x* x)) )

ELSE
f_rhs = (300.0_rp - u)*rho_cp - ( kt(ux,y,t))*et *( gy*( (2.0_rp*fx1/x) + fx2 ) + (fx/(x*x))*( (cy*gyl/sy) + gy2)
& - (kt_u(u,x,y, t))*e2t*( fx1*fxl*gy*gy + (fx*fx*gyl*gyl/ (x*x)) )
END I F
ELSE
f_rhs = 300.0_rp*rho_cp
END I F

END FUNCTION f _rhs

FUNCTI ON f

_rhs_u(u,x,y,t)

I MPLICI' T NONE

This is the derivative of the right hand side function defined in the |ast subroutine with respect to the
dependent variable U The RHS function appears in the general PDE being sol ved here as shown:

W = {1/ (rho*cp)}*

al*{kt*(a2_x*Ux + a2*U xx) + a2*kt_u*(U x)"2} + bl*{kt*(b2_y*Uy + b2*U_yy) + b2*kt_u*(U_y)"2} + f(Ux,y,t)]

Function & Argunents
REAL(KIND=rp), INTENT(IN) :: t, u, X, y
REAL(KIND=rp) :: f_rhs_u

Local Vari abl es
REAL(KIND=rp) :: cy, e2t, et, fx, fx1, fx2, gy, gyl, gy2, rho_cp, rho_cp_u, sy

cy = Co8(y)

et = 2500000. 0_r p* EXP(-t)

e2t = et*et

fx = x - SIN(X)

fx1 = 1.0_rp - COS(x)

fx2 = SIN(x)

sy = SIN(y)

ay = (y*y/2.0_rp) + y*sy + sy*sy

gyl = y*(1.0_rp + cy) + sy*(1.0_rp + 2.0_rp*cy)
gy2 = 1.0_rp - y*sy + 2.0_rp*( cy + COS(2.0_rp*y) )
rho_cp = rho* cp(u,x,y,t)
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ho*cp_u(u, x,y, t)
p) THEN

0.0_rp) .OR (y == pi) ) THEN
= -rho_cp - u*rho_cp_u - (kt_u(u,x,y,t))*et *( gy*( (2.0_rp*fx1/x) + fx2 ) + (fx/(x*x))*( agy2 +gy2) ) &
& -(kt_uu(u, x,y,t))*e2t*( fx1*fxl*gy*gy + (fx*fx*gyl*gyl/(x*x)) )

ELSE
f_rhs_u = -rho_cp - u*rho_cp_u - (kt_u(u,x,y,t))*et *( gy*( (2.0_rp*fx1/x) + fx2 ) + (fx/(x*x))*((cy*gyl/sy) + gy2) ) &
& -(kt_uu(u, x,y,t))*e2t*( fx1*fxl*gy*gy + (fx*fx*gyl*gyl/ (x*x))
END | F
ELSE
f_rhs_u = -rho_cp
END I F

END FUNCTI ON f _rhs_u

FUNCTI ON f _left(y,t)

I MPLICI' T NONE

! Define LEFT BC - Just enter the functional representation. The type of BC (Dirichlet/Neumann/Robin) will be
! determined fromthe value of the paraneter "left_bc_flag" in the nodul e CONST_PARAMS above.

! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: t, y
REAL(KIND=rp) :: f_left

f_left =0.0_rp

END FUNCTION f _left

FUNCTION | bc1(u_j1,yj,tn)
I MPLICI' T NONE
! First component of the left BC operator, Lbc(U x,y,t) {= Ux*Lbcl(U x,y,t) + Lbc2(U x,y,t) =f_left(y,t)}
! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: tn, u_j1,yj

REAL(KIND=rp) :: |bcl
IF (left_lin_flag == 1) THEN ! Linear BC
IF (left_bc_flag == 0) THEN
I'bcl = 0.0_rp ! Linear Dirichlet
ELSE
Ibcl = 1.0_rp ! Linear Neumann or Robin
END I F
ELSE ! Non-Linear BC
IF (left_bc_flag == 0) THEN
bcl = 0.0_rp ! Non-Linear Dirichlet
ELSE
I'bcl = kt(u_j1,x_left,yj,tn) ! Non-Li near Neumann or Robin.
IF (Ibcl == 0.0_rp) Ibcl = epsilon ! Ibcl appears in the denoninator of Ibc_u for Non-Linear Neumann/Robin BCs.
END | F ! Can be any function of U as required by BC.

END | F

END FUNCTI ON | bcl

FUNCTION | bc2(u_j1,yj,tn)
I MPLICI T NONE
! Second conponent of the left BC operator, Lbc(U, x,y,t) {= Ux*Lbcl(U,x,y,t) + Lbc2(U x,y,t) =f_left(y,t)}
! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: tn,u_j1,vyj
REAL(KIND=rp) :: Ibc2

IF (left_lin_flag == 1) THEN ! Linear BC
IF (left_bc_flag == 0) THEN
I'bc2 = f_left(yj,tn)

Linear Dirichlet

ELSE IF(left_bc_flag == 1) THEN
I'bc2 = 0.0_rp ! Linear Neumann
ELSE
I'bc2 = al pha_x*u_j 1 ! Linear Robin
END I F
ELSE ! Non-Linear BC
IF (left_bc_flag == 1) THEN
bc2 = 0.0_rp ! Non-Li near Neumann
ELSE
I'bc2 = 0.5_rp*u_j1*(1.0_rp + u_j1) ! Non-Linear Dirichlet or Robin.
END | F ! Can be any function of U as required by BC.

END | F
END FUNCTI ON | bc2
FUNCTI ON | be_u(u_j 1,yj , tn)
I MPLICI' T NONE
! Derivative w.r.t U of the ENTIRE left BC operator, Lbc(U x,y,t) {= Ux*Lbcl(U, x,y,t) + Lbc2(Ux,y,t) =f_left(y,t)}.
! The derivatives of the two individual conponents of the boundary operator (lbcl and |bc2) are not required
! separately by the algorithmused here.

! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: tn,u_j1,yj

REAL(KIND=rp) :: lbc_u
IF (left_lin_flag == 1) THEN ! Linear BC
IF (left_bc_flag == 0) THEN
bc_u = 1.0_rp ! Linear Dirichlet
ELSE IF(Teft_bc_flag == 1) THEN
Ibc_u =0.0_rp ! Linear Neumann
ELSE
I'bc_u = al pha_x ! Linear Robin
END | F
ELSE ! ANY Non-Linear BC

! For the above choices of Ibcl & Ibc2 (both = U), this will take on the value Ux + 1. Ux can be obtained from
! the left boundary condition as shown bel ow.

IF (left_bc_flag == 0) THEN ! NonLinear Dirichlet

Ibc_u = 0.5_rp*(1.0_rp + 2.0_rp*u_j 1)
ELSE I F (left_bc_flag == 1) THEN ! NonLi near Neumann

Ibc_u = ( (kt_u(u_j1,x_left,yj,tn))*(f_left(yj,tn) - Ibc2(u_ji1,yj,tn)) )/Ibcl(u_ji1,yj,tn)
ELSE ! NonLi near Robin

Ibc_u = 0.5_rp*(1.0_rp + 2.0_rp*u_j1) &
+ ( (kt_u(u_j1,x_left,yj,tn))*(f_left(yj,tn) - Ibc2(u_ji1,yj,tn)) )/Ibcl(u_jl1,yj,tn)
END I F
END I F

END FUNCTI ON | bc_u
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FUNCTI ON | bc_ux(u_j 1,yj,tn)
I MPLICI' T NONE
! Derivative w.r.t ux, of the left BC operator, Lbc(U x,y,t) {= W*Lbcl(U x,y,t) + Lbc2(U,x,y,t) =f_left(y,t)}
! i.e., Lbcl.
! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: tn, u_j1, yj

REAL(KIND=rp) :: |bc_ux
IF (left_lin_flag == 1) THEN ! Linear BC
IF (left_bc_flag == 0) THEN
I'bc_ux = 0.0_rp ! Linear Dirichlet
ELSE
I'bc_ux = 1.0_rp ! Linear Neumann or Robin
END | F
ELSE ! ANY Non-Linear BC

! For the above choices of Ibcl & Ibc2, this will take on the value kt.

I'bc_ux = kt(u_j1,x_left,yj,tn)

I'F (I'bc_ux == 0.0_rp) lIbc_ux = epsilon ! Ibc_ux appears in the denominator in one of the terms of LBC coeff/rhs conputations
END | F

END FUNCTI ON | be_ux

FUNCTION f _right(y,t)

I MPLICI T NONE

! Define RIGHT BC - Just enter the functional representation. The type of BC (Dirichlet/Neumann/ Robin) will be
! determ ned fromthe value of the paraneter "right_bc_flag" in the nodul e CONST_PARAMS above.

! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: t, y
REAL(KIND=rp) :: f_right

! Local Vari abl es
REAL(KIND=rp) :: et, gy, k_cond, sy, u_sol

et = EXP(-t)

sy = SIN(y)

gy = (y*y/2.0_rp) + y*sy + sy*sy

f_right = 2500000.0_rp*et*gy*( 1.0_rp - COS(x_right) )

u_sol = 300.0_rp + 2500000.0_rp*et*gy*(x_right - SIN(x_right))
k_cond = 1.0_rp + 14.2920_rp*(EXP(-0.0030_rp*u_sol))

f_right = f_right*k_cond

END FUNCTI ON f_ri ght

FUNCTI ON rbcl(u_jnx,yj,tn)
I MPLICI' T NONE
! First conponent of the right BC operator, Rbc(U, x,y,t) {= W*Rbcl(U x,y,t) + Rbc2(U x,y,t) =f_right(y,t)}
! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: tn,u_jnx,yj
REAL(KIND=rp) :: rbcl

IF (right_lin_flag == 1) THEN ! Linear BC
(right_bc_flag == 0) THEN
rbcl = 0.0_rp ! Linear Dirichlet
ELSE
rbcl = 1.0_rp ! Linear Neumann or Robin
END | F
ELSE ! Non-Linear BC
IF (right_bc_flag == 0) THEN
rbcl = 0.0_rp ! Non-Linear Dirichlet
ELSE
rbcl = kt(u_jnx,x_right,yj,tn) ! Non-Linear Neumann or Robi n.
IF (rbcl == 0.0_rp) rbcl = epsilon ! rbcl appears in the denominator of rbc_u for Non-Linear Neunann/ Robin BCs.
END | F ! Can be any function of U as required by BC.
END | F

FUNCTI ON rbc2(u_j nx,yj, tn)
I MPLICI T NONE
! Second conponent of the right BC operator, Rbc(U x,y,t) {= UWx*Rbcl(U x,y,t) + Roc2(U x,y,t) = f_right(y,t)}
! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: tn,u_jnx,yj
REAL(KIND=rp) :: rbc2

IF (right_lin_flag == 1) THEN ! Linear BC
IF (right_bc_flag == 0) THEN
rbc2 = f_right(yj,tn) ! Linear Dirichlet
ELSE IF(right_bc_flag == 1) THEN
rbc2 = 0.0_rp ! Linear Neumann
ELSE
rbc2 = al pha_x*u_j nx ! Linear Robin
END | F
ELSE ! Non-Linear BC
IF (right_bc_flag == 1) THEN
rbc2 = 0.0_rp ! Non-Li near Neumann
ELSE
rbc2 = 0.5_rp*u_jnx*(1.0_rp + u_jnx) ! Non-Linear Dirichlet or Robin.
END | F ! Can be any function of U as required by BC.
END | F

END FUNCTI ON rbc2

FUNCTI ON rbe_u(u_jnx,yj,tn)
I MPLICI T NONE
! Derivative w.r.t U, of the ENTIRE right BC operator, Rbc(U x,y,t) {= UWx*Rbcl(U, x,y,t) + Rbc2(U x,y,t) ;f_right(y,t)}.

! The derivatives of the two individual conponents of the boundary operator (rbcl and rbc2) are not required
! separately by the algorithmused here.

! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: tn,u_jnx,yj
REAL(KIND=rp) :: rbc_u

IF (right_lin_flag == 1) THEN ! Linear BC
(right_bc_flag == 0) THEN

rbc_u = 1.0_rp ! Linear Dirichlet
ELSE I F(right_bc_flag == 1) THEN

rbc_u = 0.0_rp ! Linear Neumann
ELSE

rbc_u = al pha_x ! Linear Robin
END I F
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ELSE ! ANY Non-Linear BC
! For the above choices of rbcl & rbc2 (both = U), this will take on the value Ux + 1. Ux can be obtained from
! the right boundary condition as shown bel ow.

IF (right_bc_flag == 0) THEN ! NonLinear Dirichlet

rbc_u = 0.5_rp*(1.0_rp + 2.0_rp*u_jnx)
ELSE IF (right_bc_flag == 1) THEN ! NonLi near Neunann

rbc_u = ( (kt_u(u_jnx,x_right,yj,tn))*(f_right(yj,tn) - rbc2(u_jnx,yj,tn)) )/rbcl(u_jnx,yj,tn)
ELSE ! NonLi near Robin

rbc_u = 0.5_rp*(1.0_rp + 2.0_rp*u_jnx) &
+ ( (kt_u(u_jnx,x_right,yj,tn))*(f_right(yj,tn) - rbc2(u_jnx,yj,tn)) )/rbcl(u_jnx,yj,tn)
END | F
END I F

END FUNCTI ON rbc_u

FUNCTI ON rbc_ux(u_j nx,yj, tn)

I MPLICI' T NONE

! Derivative w.r.t ux, of the right BC operator, Rbc(U x,y,t) {= Ux*Rbcl(U, x,y,t) + Rbc2(U x,y,t) =f_right(y,t)},
i.e.. Rbcl!

Function & Argunents

REAL(KIND=rp), INTENT(IN) :: tn, u_jnx, yj

REAL(KIND=rp) :: rbc_ux

IF (right_lin_flag == 1) THEN ! Linear BC
IF (right_bc_flag == 0) THEN
rbc_ux = 0.0_rp ! Linear Dirichlet
ELSE
rbc_ux = 1.0_rp ! Linear Neumann or Robin
END I F
ELSE ! ANY Non-Linear BC

! For the above choices of rbcl & rbc2 (both = U), this will take on the value U.
rbc_ux = kt(u_jnx,x_right,yj,tn)
I'F (rbc_ux == 0.0_rp) rbc_ux = epsilon ! rbc_ux appears in the denoninator in one of the terns of RBC coeff/rhs
conput ati ons.
END | F

END FUNCTI ON r bc_ux
FUNCTI ON f _bot t on( x, )
I MPLICI T NONE
! Define BOTTOM BC - Just enter the functional representation. The type of BC (Dirichlet/Neumann/ Robin) will be
! deternmined fromthe value of the parameter "bottombc_flag" in the nodul e CONST_PARAMS above.
! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: t, x
REAL(KIND=rp) :: f_bottom
f_bottom=0.0_rp

END FUNCTI ON f_bottom

FUNCTI ON bbei(u_1i,
I MPLICI T NONE
! First conponent of the bottom BC operator, Bbc(U x,y,t) {= W*Bbcl(U,x,y,t) + Bbc2(U x,y,t) =f_botton(x,t)}
! Function & Argunents

REAL(KIND=rp), INTENT(IN) :: tn,u_1i,x

REAL(KIND=rp) :: bbcl

.tn)

IF (bottomlin_flag == 1) THEN ! Linear BC
|F (bottombc_flag == 0) THEN
bbcl = 0.0_rp ! Linear Dirichlet
ELSE
bbcl = 1.0_rp ! Linear Neumann or Robin
END | F
ELSE ! Non-Linear BC
I'F (bottombc_flag 0) THEN
bbcl = 0.0_rp ! Non-Linear Dirichlet
ELSE
bbcl = kt(u_1li,xi,y_bottomtn) ! Non-Linear Neumann or Robin.
IF (bbcl == 0.0_rp) bbcl = epsilon ! bbcl appears in the denominator of bbc_u for Non-Linear Neunann/ Robin BCs.
END | F ! Can be any function of U as required by BC
END I F
END FUNCTI ON bbc1l
| e o e e e e e e e e e e e e e e e e e e e e e
FUNCTI ON bbe2(u_1i, xi , tn)

I MPLICI T NONE
! Second conponent of the bottom BC operator, Bbc(U, x,y,t) {= U*Bbcl(U x,y,t) + Bbc2(U,x,y,t) = f_botton(x,t)}
! Function & Argunents

REAL(KIND=rp), INTENT(IN) :: tn,u_1i,x

REAL(KIND=rp) :: bbc2

IF (bottomlin_flag == 1) THEN ! Linear BC
|F (bottombc_flag == 0) THEN
bbc2 = f_botton(xi,tn)

Linear Dirichlet

ELSE | F(bottom bc_flag == 1) THEN

bbc2 = 0.0_rp ! Linear Neumann
ELSE

bbc2 = al pha_y*u_1i ! Linear Robin
END | F

ELSE ! Non-Linear BC

IF (bottombc_flag == 1) THEN

bbc2 = 0.0_rp ! Non-Li near Neumann
ELSE

bbc2 = 0.5_rp*u_1i*(1.0_rp + u_1i) ! Non-Linear Dirichlet or Robin.
END | F ! Can be any function of U as required by BC.

END | F
END FUNCTI ON bbc2

FUNCTI ON bbc_u(u_1i, xi, tn)

I MPLICI' T NONE

! Derivative wr.t U of the ENTIRE bottom BC operator, Bbc(U,x,y,t) {= W*Bbcl(U,x,y,t) + Bbc2(U,x,y,t) = f_bottom(x,t)}.
! The derivatives of the two individual conponents of the boundary operator (bbcl and bbc2) are not required

! separately by the algorithmused here.
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! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: tn,u_1i,x
REAL(KIND=rp) :: bbc_u

|F (bottomlin_flag == 1) THEN ! Linear BC
IF (bottombc_flag == 0) THEN
bbc_u = 1.0_rp ! Linear Dirichlet
ELSE | F(bottom bc_flag == 1) THEN
bbc_u = 0.0_rp ! Linear Neumann
ELSE
bbc_u = al pha_y ! Linear Robin
END | F
ELSE ! ANY Non-Linear BC

! For the above choices of bbcl & bbc2 (both = U), this will take on the value Uy + 1. Uy can be obtained from
! the bottom boundary condition as shown bel ow.

IF (bottombc_flag == 0) THEN ! NonLinear Dirichlet

bbc_u = 0.5_rp*(1.0_rp + 2.0_rp*u_1i)
ELSE | F (bottombc_flag == 1) THEN ! NonLi near Neumann

bbc_u = ( (kt_u(u_1i,xi,y_bottomtn))*(f_botton(xi,tn) - bbc2(u_1i,xi,tn)) )/bbci(u_1i,xi,tn)
ELSE ! NonLi near Robin

bbc_u = 0.5_rp*(1.0_rp + 2.0_rp*u_li) &
+ ( (kt_u(u_1i,xi,y_bottomtn))*(f_bottom(xi,tn) - bbc2(u_li,xi,tn)) )/bbcl(u_1i,xi,tn)
END I F
END | F

END FUNCTI ON bbc_u

FUNCTI ON bbc_uy(u_1i, xi, tn)

I MPLICI T NONE

! Derivative w.r.t Uy, of the bottom BC operator, Bbc(U, x,y,t) {= W*Bbcl(U x,y,t) + Bbc2(U,x,y,t) = f_bottonm(x,t)},
! i.e., Lbcl.

! Function & Argunents

REAL(KIND=rp), INTENT(IN) :: tn, u_1i, xi

REAL(KI ND=rp) :: bbc_uy

IF (bottomlin_flag == 1) THEN ! Linear BC
|F (bottombc_flag == 0) THEN
bbc_uy = 0.0_rp ! Linear Dirichlet
ELSE
bbc_uy = 1.0_rp ! Linear Neumann or Robin
END | F
ELSE ! ANY Non-Linear BC

! For the above choices of bbcl & bbc2 (both = U), this will take on the value U,
bbc_uy = kt(u_1i,xi,y_bottomtn)
I'F (bbc_uy == 0.0_rp) bbc_uy = epsilon ! bbc_uy appears in the denoninator in one of the terns of BBC coeff/rhs
conput ations.
END I F

END FUNCTI ON bbc_uy

FUNCTI ON f _top(x, t)

I MPLICI T NONE
! Define TOP BC - Just enter the functional representation. The type of BC (Dirichlet/Neumann/ Robin) will be
! determined fromthe value of the parameter "top_bc_flag" in the nodul e CONST_PARAMS above.

! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: t, x
REAL(KIND=rp) :: f_top

f_top = 0.0_rp

END FUNCTI ON f_top

FUNCTI ON t bc1(u_nyi, xi, tn)

I MPLICI T NONE

! First conponent of the top BC operator, Thc(U, x,y,t) {= W*Tbcl(U x,y,t) + Tbc2(U,x,y,t) = f_top(x,t)}
! Function & Argunents

REAL(KIND=rp), INTENT(IN) :: tn,u_nyi,xi

REAL(KIND=rp) :: tbcl

IF (top_lin_flag == 1) THEN ! Linear BC
IF (top_bc_flag == 0) THEN
thcl 0.0_rp ! Linear Dirichlet
ELSE
thcl = 1.0_rp ! Linear Neumann or Robin
END | F
ELSE ! Non-Linear BC
IF (top_bc_flag == 0) THEN
thcl = 0.0_rp ! Non-Linear Dirichlet
ELSE
tbcl = kt(u_nyi,xi,y_top,tn) ! Non-Linear Neumann or Robi n.
IF (thcl == 0.0_rp) tbcl = epsilon ! thcl appears in the denoninator of tbc_u for Non-Linear Neumann/Robin BCs.
END | F ! Can be any function of U as required by BC.

END | F
END FUNCTI ON tbcl

FUNCTI ON tbc2(u_nyi, xi, tn)

I MPLICI T NONE
! Second conponent of the top BC operator, Thc(U, x,y,t) {= W*Tbcl(U, x,y,t) + Thc2(U x,y,t) = f_top(x,t)}
! Function & Argunents

REAL(KIND=rp), INTENT(IN) :: tn,u_nyi,x

REAL(KIND=rp) :: tbhc2

IF (top_lin_flag == 1) THEN ! Linear BC
IF (top_bc_flag == 0) THEN
thc2 = f_top(xi,tn) ! Linear Dirichlet
ELSE I F(top_bc_flag == 1) THEN
thc2 = 0.0_rp ! Linear Neumann
ELSE
thc2 = al pha_y*u_nyi ! Linear Robin
END | F
ELSE ! Non-Linear BC
IF (top_bc_flag == 1) THEN
thc2 = 0.0_rp ! Non-Li near Neumann
ELSE
thc2 = 0.5_rp*u_nyi *(1.0_rp + u_nyi) ! Non-Linear Dirichlet or Robin.
END | F ! Can be any function of U as required by BC.
END | F



FUNCTI ON tbc_u(u_nyi, xi, tn)

I MPLICI' T NONE

! Derivative w.r.t U, of the ENTIRE top BC operator, Thc(U, x,y,t) {= W*Thcl(U x,y,t) + Thc2(U, x,y,t) = f_top(x,t)}.
! The derivatives of the two individual conponents of the boundary operator (tbcl and tbhc2) are not required

! separately by the algorithmused here.

! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: tn,u_nyi,x
REAL(KIND=rp) :: thc_u

IF (top_lin_flag 1) THEN ! Linear BC
IF (top_bc_flag == 0) THEN
thc_u =1.0_rp ! Linear Dirichlet
ELSE I F(top_bc_flag == 1) THEN
thc_u =0.0_rp ! Linear Neumann
ELSE
tbhc_u = al pha_y ! Linear Robin
END | F
ELSE ! ANY Non-Linear BC

! For the above choices of tbcl & thc2 (both = U), this will take on the value Uy + 1. Uy can be obtained from
! the top boundary condition as shown bel ow.

IF (top_bc_flag == 0) THEN ! NonLinear Dirichlet
thc_u = 0.5 rp*(1.0_rp + 2.0_rp*u_nyi)
ELSE IF (top_bc_flag == 1) THEN ! NonLi near Neunann
thc_u = ( (kt_u(u_nyi,xi,y_top,tn))*(f_top(xi,tn) - tbc2(u_nyi,xi,tn)) )/tbcl(u_nyi,xi,tn)
ELSE ! NonLi near Robin

thc_u = 0.5_rp*(1.0_rp + 2.0_rp*u_nyi) &
+ ( (kt_u(u_nyi,xi,y_top,tn))*(f_top(xi,tn) - tbhc2(u_nyi,xi,tn)) )/tbcl(u_nyi,xi,tn)
END | F
END I F

END FUNCTI ON tbc_u

FUNCTI ON tbc_uy(u_nyi, xi, tn)
I MPLICI T NONE
! Derivative w.r.t Uy, of the top BC operator, Thc(U,x,y,t) {= W*Thcl(U, x,y,t) + Thc2(U x,y,t) = f_top(x,t)},
! i.e., Lbcl.
! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: tn, u_nyi, xi
REAL(KIND=rp) :: tbhc_uy

IF (top_lin_flag 1) THEN ! Linear BC
IF (top_bc_flag == 0) THEN
thc_uy = 0.0_rp ! Linear Dirichlet
ELSE
thc_uy = 1.0_rp ! Linear Neumann or Robin
END I F
ELSE ! ANY Non-Linear BC

! For the above choices of tbcl & thc2 (both = U), this will take on the value U.

tbhc_uy = kt(u_nyi,xi,y_top,tn)

IF (thc_uy == 0.0_rp) tbhc_uy = epsilon ! tbc_uy appears in the denoninator in one of the terms of TBC coeff/rhs computations
END | F

END FUNCTI ON t bc_uy

FUNCTI ON al(x,y,t)
I MPLICI T NONE
! This function conmputes the value of the inner coefficient of x derivatives in the adjoint formof the HEAT
! CONDUCTI ON' EQUATI ON:
! al*(a2*kt*U x)_x + bl*(b2*kt*U.y)_y + f(Ux,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative. For
! the Cartesian system al = 1, for the Cylindrical system al = 1/x, and for Spherical the system al = 1/x"2.
! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: t, x, y
REAL(KIND=rp) :: al

! I f needed, a specific function al(x,y,t) can be defined, instead of the standard forms for Cartesian, Cylindrical,
! or Spherical coordinate systens, that are defined bel ow, by setting coord_flag = 0 in the MODULE "const_parans”.

SELECT CASE (coord_fl ag)

CASE (0)
al = SIN(x - t) ! This can be any function al(x,y,t).
CASE (1)
al = 1.0_rp
CASE (2)
IF (x /=0.0_rp) THEN ! al is independent of y in Cylindrcal coordinates.
al = 1.0_rp/x
ELSE
! This really does not natter as x=0 is the axis of cylindrical symretry or point of spherical
! symmetry. So, at x=0, the PDE itself has a different form as determ ned using L' Hospital's
! rule (see routine "gldgts_coeff_rhs"). This value is just assigned as a "safety trap" val ue
! and SI MULATES the fact that in computing the coefficients at x=0 in the routine
! "qgldgts_coeff_rhs", al and a2 occur as a paired product and will cancel each other out.
al = 1.0_rp
END I F
CASE (3)
IF (x /=0.0_rp) THEN ! al is independent of y in Spherical coordinates.
al = 1.0_rp/ (x*x)
ELSE

This really does not matter as x=0 is the axis of cylindrical symretry or point of spherical
symmetry. So, at x=0, the PDE itself has a different form as determined using L' Hospital's
rule (see routine "qldgts_coeff_rhs"). This value is just assigned as a "safety trap" val ue
and SI MULATES the fact that in conputing the coefficients at x=0 in the routine
"ql dgts_coeff_rhs", al and a2 occur as a paired product and will cancel each other out.

al = 1.0_rp

END | F
CASE DEFAULT
PRINT *, "Coordinate Flag should be an integer fromO to 3. Exiting program"

END SELECT

END FUNCTI ON al
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FUNCTI ON a2(x,vy,t)
I MPLICI' T NONE
! This function conputes the value of the outer coefficient of x derivatives in the adjoint formof the HEAT
! CONDUCTI ON' EQUATI ON:
! al*(a2*kt*U x) _x + bl*(b2*kt*Uy)_y + f(Ux,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative. For
! the Cartesian system a2 = 1, for the Cylindrical system a2 = x, and for the Spherical system a2 = x"2.
! Function & Argunents
REAL(KIND=rp), INTENT(IN) :: t, x, y
REAL(KIND=rp) :: a2

! I'f needed, a specific function a2(x,y,t) can be defined, instead of the standard fornms for Cartesian, Cylindrical,
! or Spherical coordinate systems, that are defined below, by setting coord_flag = 0 in the MODULE "const_params".

SELECT CASE (coord_fl ag)

CASE (0)
a2 = SIN(y +t) ! This can be any function a2(x,y,t).
CASE (1)
a2z = 1.0_rp
CASE (2)
IF (x /=0.0_rp) THEN ! a2 is independent of y in Cylindrcal coordinates.
a2 = x
ELSE
! This really does not nmatter as x=0 is the axis of cylindrical symretry or point of spherical
! symmetry. So, at x=0, the PDE itself has a different form as determined using L' Hospital's
! rule (see routine "qldgts_coeff_rhs"). This value is just assigned as a "safety trap" val ue
! and SIMJLATES the fact that in conputing the coefficients at x=0 in the routine
! "qgldgts_coeff_rhs", al and a2 occur as a paired product and will cancel each other out.
a2 = 1.0_rp
END | F
CASE (3)
IF (x /=0.0_rp) THEN ! a2 is independent of y in Spherical coordinates.
a2 = x*x
ELSE
! This really does not matter as x=0 is the axis of cylindrical symetry or point of spherical
! symmetry. So, at x=0, the PDE itself has a different form as determined using L' Hospital's
! rule (see routine "qldgts_coeff_rhs"). This value is just assigned as a "safety trap" val ue
! and SIMJLATES the fact that in conputing the coefficients at x=0 in the routine
! "gldgts_coeff_rhs", al and a2 occur as a paired product and will cancel each other out.
a2 = 1.0_rp
END | F

END SELECT
! CASE DEFAULT statement is not needed here since "coord_flag" value has already been checked in the
! subroutine al above.

END FUNCTI ON a2

FUNCTI ON a2_x(x,y,t)

I MPLICI T NONE

! This function conputes the value of the FIRST DERI VATIVE of the outer coefficient of x derivatives in the

! adj oi nt formof the HEAT CONDUCTI ON EQUATI ON:

! al*(a2*kt*U x) _x + bl*(b2*kt*U.y)_y + f(Ux,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative. For
! the values of a2 defined above, the value of this function for the Cartesian systemis, a2_x = 0, for the

! Cylindrical system a2_x =1, and for the Spherical system a2_x = 2x.

! Function & Argunents

REAL(KIND=rp), INTENT(IN) :: t, x, y

REAL(KIND=rp) :: a2_x

I f needed, a specific function a2(t,x,y) can be defined above, instead of the standard forns for Cartesian,
Cylindrical, or Spherical coordinate systens, that are defined below In that case, its partial derivative
a2_x can be easily conputed anal ytically, and specified below. This value is conputed independently of whether
x =0 or y =0 because it is not needed for the spherical and cylindrical PDE functionals defined there.

SELECT CASE (coord_flag)

CASE (0)
a2_x =0.0_rp ! Based on the Function a2(x,y,t), above.
CASE (1)
a2_x = 0.0_rp
CASE (2)
a2_x = 1.0_rp
CASE (3)
a2_x = 2.0_rp*x

END SELECT
! CASE DEFAULT statement is not needed here since "coord_flag" value has already been checked in the
! subroutine al above.

END FUNCTI ON a2_x

FUNCTI ON b1(x, Y, t)

I MPLICI' T NONE

! This function conputes the value of the inner coefficient of y derivatives in the adjoint formof the HEAT
CONDUCTI ON' EQUATI ON:
al*(a2*kt*U x) _x + bl*(b2*kt*Uy)_y + f(Ux,y,t) = rho*c*U_t, where the "_" denotes a partial derivative. For

bl = 1/ (x"2*SIN(y)).
Function & Argunents
REAL(KIND=rp), INTENT(IN) :: t, x, y
REAL(KIND=rp) :: bl

!

! _

! the Cartesian system bl = 1, for the Cylindrical system bl = 1/x"2, and for Spherical the system
!

]

! I f needed, a specific function bl(x,y,t) can be defined, instead of the standard forms for Cartesian, Cylindrical,
! or Spherical coordinate systens that are defined below, by setting coord_flag = 0 in the MODULE "const_parans”.

SELECT CASE (coord_fl ag)

CASE (0)

bl = COS(y - t) ! This can be any function bl(x,y,t).
CASE (1)

bl = 1.0_rp ! bl is independent of y in Cylindrcal coordinates.
CASE (2)

IF (x /=0.0_rp) THEN
bl = 1.0_rp/ (x*x)

ELSE
This really does not matter as x=0 is the axis of cylindrical symwetry or point of spherical
symetry. So, at , the PDE itself has a different form as determ ned using L' Hospital's
rule (see routine "qgldgts_coeff_rhs"). This value is just assigned as a "safety trap" value
and SI MULATES the fact that in conputing the coefficients at x=0 in the routine
“qgl dgts_coeff_rhs", bl and b2 occur as a paired product and will cancel each other out.

bl =1.0_rp

END | F
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CASE (3)
IF (x /= 0.0_rp) THEN
IF (y /=0.0_rp) THEN
bl = 1.0_rp/ (x*x*SIN(y))
ELSE
bl = 1.0_rp/ (x*x) ! bl depends on BOTH x & y in Spherical coordinates.
END | F
ELSE
This really does not matter as x=0 is the axis of cylindrical symwetry or point of spherical
symetry. So, at x=0, the PDE itself has a different form as determined using L' Hospital's
rule (see routine "qgldgts_coeff_rhs"). A simlar argunent applies to y=0 in the spherical
symmetry case. This value is just assigned as a "safety trap" value and S| MILATES the fact
that in computing the coefficients at y=0 in the routine "qgldgts_coeff_rhs", bl and b2 occur
as a paired product and will cancel each other out. In conputing the coefficients at x=0, the
nodi fied PDE (via. L' Hospital's rule) does not have any y dependent ternmns.
bl =1.0_rp

END I F
END SELECT
! CASE DEFAULT statement is not needed here since "coord_flag" value has already been checked in the
! subroutine al above.

END FUNCTI ON bl

FUNCTI ON b2(x, y, )
INPLIGI T NONE

This function conmputes the value of the outer coefficient of y derivatives in the adjoint formof the HEAT
CONDUCTI ON' EQUATI ON:

al*(a2*kt*U x) _x + bl*(b2*kt*U.y)_y + f(Ux,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative. For
the Cartesian system b2 = 1, for the Cylindrical system b2 = 1, and for the Spherical system b2 = SIN(y).
Function & Argunents

REAL(KIND=rp), INTENT(IN) :: t, x, y

REAL(KIND=rp) :: b2

I f needed, a specific function b2(x,y,t) can be defined, instead of the standard forms for Cartesian, Cylindrical,
or Spherical coordinate systens that are defined below, by setting coord_flag = 0 in the MODULE "const_parans”.

SELECT CASE (coord_flag)

CASE (0)
b2 = COS(x + t) ! This can be any function b2(x,y,t).
CASE (1:2)
2= 1.0_rp
CASE (3)
IF (y /=0.0_rp) THEN
b2 = SIN(y) ! b2 depends ONLY on y in Spherical coordinates.
ELSE
! This really does not matter as the PDE itself has a different format y=0, as determ ned
! using L'Hospital's rule (see routine "gldgts_coeff_rhs"). A sinilar argunent applies to y=0
! in the spherical symetry case. This value is just assigned as a "safety trap" value and
! SIMULATES the fact that in conputing the coefficients at y=0 in the routine "qldgts_coeff_rhs",
! bl and b2 occur as a paired product and will cancel each other out. In conputing the
! coefficients at x=0, the nodified PDE (via. L'Hospital's rule) does not have any y dependent
! ternms. Even when x /=0, bl*b2 = 1/(x*x). So, b2=1 works fine for this systemof coordinates.
b2 =1.0_rp
END | F

END SELECT
! CASE DEFAULT statement is not needed here since "coord_flag" value has already been checked in the
! subroutine al above.

END FUNCTI ON b2

FUNCTI ON b2_y(x, y, 1)
INPLICI T NONE

This function conmputes the value of the FI RST DERI VATIVE of the outer coefficient of x derivatives in the

adj oi nt formof the HEAT CONDUCTI ON EQUATI ON:

al*(a2*kt*U x) _x + bl*(b2*kt*U.y)_y + f(Ux,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative. For
the values of b2 defined above, the value of this function for the Cartesian systemis, b2_y = 0, for the
Cylindrical system b2_y = 0, and for the Spherical system b2_y = COS(y).

Function & Argunents

REAL(KIND=rp), INTENT(IN) :: t, x, y

REAL(KIND=rp) :: b2_y

I f needed, a specific function b2(x,y,t) can be defined above, instead of the standard forns for Cartesian,
Cylindrical, or Spherical coordinate systenms, that are defined below. In that case, its partial derivative
b2_y can be easily conputed anal ytically, and specified bel ow. This value is conputed independently of whether
x =0 or y =0 because it is not needed for the spherical and cylindrical PDE functionals defined there.

SELECT CASE (coord_fl ag)

CASE (0)

b2_y = 0.0_rp ! Based on Function b2(x,y,t) above.
CASE (1:2)

b2_y = 0.0_rp
CASE (3)

b2_y = Co8(y)

END SELECT
! CASE DEFAULT statement is not needed here since "coord_flag" value has already been checked in the
! subroutine al above.

END FUNCTI ON b2_y

FUNCTI ON u_x(j , i, Uj , X, y, tn)
INPLIGI T NONE

This function conputes the value of the FIRST PARTIAL DERI VATIVE of u w.r.t x, for conputing the
Frechet-Tayl or Coefficients of the Linearlized formof the original adjoint form PDE

al*(a2*kt*U x)_x + bl*(b2*kt*U.y)_y + f(U x,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative.
Function & Argunents
REAL(KIND=rp), DIMENSION(:), INTENT(IN) :: uj,x,y ! Only the corresponding row is needed.

REAL(KIND=rp), INTENT(IN) :: tn
| NTEGER(KI ND=i p), INTENT(IN) :: i,j
REAL(KIND=rp) :: u_x

! Local Variables
REAL(KIND=rp) :: hx
I NTEGER( KI ND=i p) :: nx

! Mai n Cal cul ations.

nx = SI ZE(x)
hx = (x(nx) - x(1))/REAL(nx - 1)
IF (i>1 .AND. i<nx ) THEN ! Interior point (including the TOP/ BOTTOM boundary). Use Centered Differencing.

u_x = (uj(i+1) - uj(i-1))/(2.0_rp*hx)
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ELSE I F (i==1) THEN ! Left boundary point.
! If Left BCis non-"Dirichlet" (see notes in MODULE "const_params"), then use BC to conpute u_x
! Qtherw se, the assignnent of the left Dirichlet BCto the grid function obviates the need for u_x.
IF (left_bc_flag /= 0) THEN
ux = ( f_left(y(j),tn) - I'bc2(uj(1),y(j),tn) )/Ibcl(uj(1),y(j),tn)

END | F
ELSE
! If Right BCis non-"Dirichlet" (see notes in MODULE "const_parans"), then use BC to conpute u_x
! Otherwi se, the assignnent of the right Dirichlet BCto the grid function obviates the need for u_x.
IF (right_bc_flag /= 0) THEN
= ( f_right(y(j),tn) - rbe2(uj(nx),y(j).tn) )/rbei(uj(nx),y(j),tn)
END I F
END I F

END FUNCTI ON u_x

FUNCTION u_y(j,i,ui,x,y,tn)

I MPLICI T NONE

! This function conmputes the value of the FI RST PARTI AL DERI VATIVE of u wr.t y, for conputing the
Frechet-Tayl or Coefficients of the Linearlized formof the original adjoint form PDE

]
! al*(a2*kt*U x) _x + bl*(b2*kt*U.y)_y + f(Ux,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative.
! Function & Argunents

REAL(KIND=rp), DIMENSION(:), INTENT(IN) :: ui,Xx,y ! Only the corresponding colum is needed.

REAL(KIND=rp), INTENT(IN) :: tn
| NTEGER(KI ND=i p), INTENT(IN) :: i,]j
REAL(KIND=rp) :: u_y

! Local Variables
REAL(KIND=rp) :: hy
| NTEGER(KI ND=i p) :: ny

Mai n Cal cul ati ons.

!
ny = SIZE(y)
hy = (y(ny) - y(1))/REAL(ny - 1)
IF (j>1 .AI\D. j<ny ) THEN ! Interior point (including the LEFT/RI GHT boundary). Use Centered Differencing.
= (ui(j+1) - ui(j-1))/(2.0_rp*hy)
ELSE IF (j= l) TI—EN ! Left boundary point.
! If BottomBC is non-"Dirichlet" (see notes in MODULE "const_parans"), then use BC to conpute u_y
! Ctherwise, the assignnent of the bottomDirichlet BCto the grid function obviates the need for u_y.
IF (bottombc_flag /= 0) THEN
= ( f_bottom(x(i),tn) - bbc2(ui(1),x(i),tn) )/bbcl(ui(1),x(i),tn)
END I F
ELSE
! If Top BCis non-"Dirichlet" (see notes in MODULE "const_parans"), then use BC to conpute u_y
! Otherwi se, the assignnent of the top Dirichlet BCto the grid function obviates the need for u_y.
IF (top_bc_flag /= 0) THEN
uy = ( f_top(x(i),tn) - tbc2(ui(ny),x(i),tn) )/tbcl(ui(ny),x(i),tn)
END | F
END | F

END FUNCTI ON u_y

FUNCTI ON u_xx(j,i,u, x,y,tn)
I MPLICI T NONE
! This function conputes the value of the SECOND PARTI AL DERI VATIVE of u w.r.t x, for conputing the
! Frechet-Tayl or Coefficients of the Linearlized formof the original adjoint form PDE
! al*(a2*kt*U x) _x + bl*(b2*kt*U.y)_y + f(U x,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative.
! Function & Argunents

REAL(KIND=rp), DIMENSION(:,:), INTENT(IN) :: u

REAL(KI ND=r p), DI MENSI ON\( INTENT(IN) :: X,y

REAL(KIND=rp), INTENT(IN) :: tn

| NTEGER(KI ND=i p), INTENT(IN) :: i,j

REAL(KIND=rp) :: u_xx

! Local Variables
REAL(KIND=rp) :: hx, a
I NTEGER(KI ND=i p) :: nx

! Mai n Cal cul ati ons.
nx = Sl ZE(x)
hx = (x(nx) - x(1))/REAL(nx - 1)
IF (i>1 .AND. i<nx ) THEN
! Imerior point (including the TOP/ BOTTOM boundary). Use 2nd order Centered Differencing.
u_xx = (u(j,i-1) - 2.0_rp*u(j,i) + u(j,i+1))/(hx*hx)
ELSE I F (i==1) THEN ! Left boundary point.
! If Left BCis Dirichlet, then u_xx values are not needed for any cal cul ations due to the
! assignment of the left Dirichlet BCto the grid function values at this boundary. O herwi se,
! use the boundary value to conpute the inage el ement (corresponding to the Oth colum), and
! thus conpute the centered difference estinmation.
IF (left_bc_flag /= 0) THEN
a = ( f_left(y(j),tn) - Ibc2(u(j,1),y(j),tn) )/Ibcl(u(j,1),y(j),tn)
u_xx = (2.0_rp/(hx*hx))*(u(j,2) - u(j,1) - hx*a)

END | F
ELSE
! If Right BCis Dirichlet, then u_xx values are not needed for any cal culations due to the
! assignment of the right Dirichlet BCto the grid function values at this boundary. Ctherwise,
! use the boundary value to conpute the image el ement (corresponding to the Nx + 1st colum),
! and thus conpute the centered difference estimation.
I'F (right_| bc flag /= 0) THEN
( f_flght(y(l) tn) - rbe2(u(j,nx),y(j),tn) )/rbcl(u(],nx) y(j).tn)
= (2.0_rp/ (hx*hx))*(u(j,nx-1) - u(j,nx) + hx*
END | F
END | F

END FUNCTI ON u_xx

I MPLICI T NONE
! This function conputes the value of the SECOND PARTI AL DERI VATIVE of u w.r.t y, for conputing the

! Frechet-Tayl or Coefficients of the Linearlized formof the original adjoint form PDE

! al*(a2*kt*U x) _x + bl*(b2*kt*U.y)_y + f(Ux,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative.

! Function & Argunents
REAL(KIND=rp), DIMENSION(:,:), INTENT(IN) :: u
REAL(KIND=rp), DIMENSION(:), INTENT(IN) :: X,y
REAL(KIND=rp), INTENT(IN) :: tn
| NTEGER(KI ND=i p), INTENT(IN) :: i,j
REAL(KIND=rp) :: u_yy

! Local Variabl es
REAL(KIND=rp) :: hy, a
| NTEGER(KI ND=i p) :: ny
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! Mai n Cal cul ations.
ny = SIZE(y)
hy = (y(ny) - y(1))/REAL(ny - 1)
IF (j>1 .AND. j<ny ) THEN
! Interior point (including the TOP/ BOTTOM boundary). Use 2nd order Centered Differencing.
uyy = (u(j-1,i) - 2.0_rp*u(j,i) + u(j+1,i))/(hy*hy)
ELSE | F (j==1) THEN ! Left boundary point.
! If BottomBCis Dirichlet, then u_yy values are not needed for any calcul ations due to the
! assignment of the bottomDirichlet BCto the grid function values at this boundary. O herwi se,
! use the boundary value to conpute the inage el ement (corresponding to the Oth row), and thus
! conpute the centereddifference estimation.
|F (bottombc_flag /= 0) THEN
a = ( f_bottom(x(i),tn) - bbc2(u(1,i),x(i),tn) )/bbei(u(1,i),x(i), tn)
uyy = (2.0_rp/(hy*hy))*(u(2,i) - u(1,i) - hy*a)

END I F
ELSE
! If Top BCis Dirichlet, then u_yy values are not needed for any cal cul ations due to the
! assignment of the top Dirichlet BCto the grid function values at this boundary. Ctherwise,
! use the boundary value to conpute the image el ement (corresponding to the Ny + 1st row), and
! thus conpute the centereddifference estimation.
IF (top_bc_flag /=0) THEN
a = ( f_top(x(i),tn) - tbc2(u(ny,i),x(i),tn) )/tbcl(u(ny,i),x(i),tn)
u_yy = (2.0_rp/(hy*hy))*(u(ny-1,i) - u(ny,i) + hy*a)
END | F
END I F

END FUNCTI ON u_yy

MODULE sol ver _routines
USE const _par ans
USE faul t _parans
USE pde_routines

CONTAI NS

SUBROUTI NE | ud_trid(a, b)
INPLICI T NONE

! A subroutine that solves a TRI-DI AGONAL system of |inear equations (ANY NUVBER upto MACH NE MEMORY LIMT)

! Ax = b: where Ais a "conpressed" tri-diagonal matrix, of dimension n X 3, and b is a vector of dinension n.
! This routine gets matrices A, and b as INPUTS. It RETURNS the solution in vector b. This algorithmuses the
! space allocated for the A matrix to sinultaneously store the el enents of the lower (L) and upper (U

! triangular matrices into which Ais deconposed. It does this by not storing or using the diagonal elenents

]

of U which are all equal to 1.
| e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e memeeaaan

! Function & Argunents
REAL(KI ND=rp), DI MENSION(:,:), |NTENT(INOUT)
REAL(KI ND=rp), DI MENSION(:), | NTENT(INOUT) ::

! Local variables
I NTEGER(KI ND=i p) :: i, numsteps

! I nput checks for argument consistency.

IF (SIZE(a, 1) == 0) THEN
PRINT*, "ERROR |Input array A should be a square matrix w th AT LEAST ONE el enent."
STOP

END | F

IF (SIZE(a, 1) /= SIZE(b)) THEN
PRINT*, "ERROR |nput array dinmensions for A and b do not match. Please check your inputs."
STOP

END | F

! Mai n Cal cul ations.
num steps = Sl ZE(a, 1)

Conpute the elements of L and U, within the three colums of A The sub-diagonal elements of L are in the
first colum of A the diagonal elements of L are in the second colum of A, and the super-diagonal elenents
of Uare in the third colum of A The diagonal elements of Uare all equal to 1 and are neither stored, nor
explicitly used. The first colum of A are identical to the sub-diagonal elenments of L. So, only the second
and third colums of A need be explicitly conputed. Also, the first el enent of the second colum is identical
to the first diagonal elenent of L. Also, the first elenent of the first colum of A as well as the |last
elenment of its third (last) colum, are both ZERO

DO i = 1, numsteps
IF (i >1) a(i,2) =a(i,2) - a(i,1)*a(i-1, 3)
IF (ABS(a(i,2)) < epsilon) THEN

RINT *, "ERROR Coefficient of the diagonal elenment corresponding to ROM ", i, " is very small."
PRINT *, "This Tridiagonal algorithmcannot handle TINY or ZERO di agonal el enents. EXI TI NG PROGRAM "
STOP

END I F
IF (i < numsteps) a(i,3) = a(i, 3)/a(i,?2)
END DO

! Forward Substitution Step - Solving the systemLy = b, where, y = Ux. The vector y is stored in b:
DO i = 1, numsteps
IF (i == 1) THEN
b(i) = b(i)/a(i,2)
ELSE
b(i) = (b(i) - a(i, 1)*b(i-1))/a(i,2)
END | F
END DO

! Backward Substitution - Ux = b. The RHS vector (b=y) is REPLACED by the solution vector, x:
DOi = numsteps-1, 1, -1
b(i) = b(i) - a(i,3)*b(i+1)
END DO

END SUBROUTINE |ud_trid
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SUBROUTI NE ql dgts_coeff _rhs(x, y, t, k, stage_flag, iter, u, u_m residual)
I MPLICI' T NONE

! This function conputes a predefined coefficient matrix "coeff", and the "rhs" vector that are needed to
! construct the tri-diagonal systemat each each of the time split stages of the DOUGLAS- GUNN TI ME SPLI TTI NG
! al gorithm applied to the PDE:

1 W = {1/(rho*cp)}*

! [al*{kt*(a2_x*U x + a2*U xx) + a2*kt_u*(U x)"2} + bl*{kt*(b2_y*Uy + b2*U yy) + b2*kt_u*(U_y)"2} + f(Ux,y,t)],
! where the "_" denotes partial differentiation, obtained by expanding the ADJO NT formof the linear, but very
! general Pure Conduction Equation. The values of functions al, a2, bl, b2, kt(U) and cp(U can be changed to
! match any regul ar, closed domain. TH' S ROUTI NE ACCOUNTS FOR ALL 4 BOUNDARY CONDI TIONS, OF ANY TYPE
! (LI NEAR/ NON- LI NEAR - Dirichl et/ Neumann/ Robi n). Appropriate boundary condition flags nust be set in the nodul e
! "const _paranms" above, and boundary condition values are conputed using about 30 different functions that preceed
! this subroutine. Depending on the value of the stage_flag, either the first or the second stage arrays are
! constructed, as follows:

! {coeff_1(n+1)}*{Us(n+l)} = {rhs_1(n)} &
1 {coeff _2(n+1)}*{Un+1)} = U(n+l)

! where n denotes the tinme step and "coeff_i" are tridiagonal matrices of dinension nx*ny (=n).

! Only the band diagonal elements of the tridiagonal systens are conputed & stored in this program to mininize
! storage. They are stored in the formof n X 3 matrices, where the three colums are, respectively, the

! sub-di agonal , di agonal, and super-di agonal elenments of the original n X n systemmatrix.

|

!

]

|

]

|

!

]

NOTE: THI' S SAME ROUTI NE CAN BE USED FOR LI NEAR OR NON- LI NEAR PDE (W TH LI NEAR/ NON- LI NEAR BCs). It can be shown
that the same functional expression applies to BOTH the linear and non-linear cases of the generalized PDE being
sol ved here (See docunentation for all proofs/derivations). Wile linear cases are automatically accounted for by
the subroutines in the MODULE "pde_routines", the specific non-linear functional conponents have to be defined
for each problem as required. This neans that the LI NEAR CASE CAN BE TREATED AS A SPECI AL CASE OF THE NON-LI NEAR
CASE, and one conpact notation can be used throughout.

! Argunent Variabl e Declarations
REAL(KIND=rp), DIMENSION(:), INTENT(IN) :: X, y
REAL(KIND=rp), INTENT(IN) :: k, t

REAL( KI ND=rp), DI MENSION(:, : INTENT(IN) :: u, u_m

| NTEGER(KI ND=i p), INTENT(IN) :: iter, stage_flag

REAL(KI ND=rp), DI MENSION(:), | NTENT(QUT), OPTIONAL :: residual

! Local Variable Declarations. NOTE variable Nu_mis defined G obally under the MODULE "const_parans".
REAL(KIND=rp) :: hx, hy, Bm Bu_m Buy_m L_m Lu_m Lux_m nl, n2, n3, n4, n5 n6, n7, n8, n9, nl0, NO_m NO_n, &
& Nou_m NOoux_m NOuxx_m NOouxx_n, N.n, N.m NS_.m NS_n, NSux_m NSuxx_m NSuy_m NSuyy_m Nux_m &
& Nuy_m Nuxx_m Nuyy_m rb, Rm rt, RuUm Rux_m rx, ry, T_m Tu_m Tuy_m t_npl, t_n, ux, uy
REAL(KI ND=rp), DI MENSI ON(SI ZE(y), SIZE(X)) :: ri

REAL(KI ND=rp), DI MENSI ON(SI ZE(y), SIZE(x), 3) :: cf
REAL(KI ND=rp), DI MENSION(SI ZE(x)) :: uj, uj_n

I NTEGER(KIND=i p) :: alloc_error, dealloc_error, i, i_end, i_start, j, j_end, j_start, I, m n, nt, nx, ny
! Mai n Cal cul ati ons.

nx S| ZE( x)

ny S| ZE(y)

hx (x(nx) - x(1))/REAL(nx - 1)

hy = (y(ny) - y(1))/REAL(ny - 1)

n nx*ny

t_npl =t

tn =t -k

rx = k/(2.0_rp*hx*hx)

ry = k/(2.0_rp*hy*hy)

! NOTE: For BOTH stages , LHS is conputed at the previous iteration (n), and current tinme |evel n.

! For stage 1, RHS is conputed at both n & n-1 levels. For stage 2, the RHS depends on the internediate
! "solution" at the end of stage 1, dv(1), and the previous iterate, Um and current tine |level n.

! Values at different tinme |evels are conputed separately.

! If the PDE in question is NON-LINEAR, first conpute the derivative of the NON-LINEAR FUNCTIONAL w.r.t u,
! Nu_m which was defined GLOBALLY in the MODULE “"const_parans”. This is used in both tinme stages of this
! routine, and saving this cuts down a considerable anpunt of arithnetic. In the LINEAR case, this

! becomes 0 (ZERO) identically, since kt and cp are CONSTANTS and f_rhs is independent of U, as defined

! in the MODULE pde_routines above, and all their derivatives w.r.t. U are zero.

STEP 1: GRID INTERI OR - Conputing LHS Coefficients and RHS values for all grid points (INTERI OR for NON-Cartesian):
(1la) COVPUTI NG THE TRI DI AGONAL CCEFFI Cl ENT MATRI X FOR BOTH STAGES, " COEFF

ALL the coefficients will be first conputed as a 3-D array cf(j,i,3), i.e., three coefficients
for each grid node, for clarity, and to mininize any calculation errors. This array will then be
converted to the 2D "coeff" array (Dinension: Nx 3 = N\x*Ny x 3), after all BCs have been accounted for.
(1b) RESI DUAL:

THE ARRAY "r1" STORES THE RESI DUAL VECTOR AT EACH | TERATI ON.
(1c) COWPUTING THE RHS VECTOR, "rhs", FOR THE FI RST STAGE:

ALL the RHS coefficients will be computed as a 2-D array r(j,i), for clarity and to nininize any
notational errors. This array will later be converted to the 1-D "rhs" vector, after all BCs have been
accounted for.

SELECT CASE (coord_fl ag)
CASE (0)
! For a User Defined System ASSUME ALL COEFFI Cl ENTS ARE ANALYTIC I N THE PROBLEM DOVAI N. Hence, conpute BOTH Interior & Boundary
! points for Neumann or Robin BCs, as in the Cartesian system
IF (left_bc_flag == 0) THEN

i_start =2
ELSE
i_start =1
END | F
IF (right_bc_flag == 0) THEN
i_end = nx-1
ELSE
i_end = nx
END | F
|F (bottombc_flag == 0) THEN
j_start =2
ELSE
j_start =1
END | F
IF (top_bc_flag == 0) THEN
j_end = ny-1
ELSE
j_end = ny

END | F
CASE (1) ! For Cartesian System Conpute BOTH Interior & Boundary points for Neumann or Robin BCs.
IF (left_bc_flag == 0) THEN
i_start =2
ELSE
i_start =1
END | F
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IF (right_bc_flag == 0) THEN
i_end

= nx-1
ELSE
i_end = nx
END I F
IF (bottombc_flag == 0) THEN
j_start =2
ELSE
j_start =1
END I F
IF (top_bc_flag == 0) THEN
j_end = ny-1
ELSE
j_end = ny
END I F
CASE (2) ! For Cylindrical System Conpute Interior & Boundary Points, EXCEPT LEFT x-BC, for Neumann or Robin BCs.
i_start =

IF (right_bc_flag == 0) THEN
i_end = nx-1

ELSE
i_end = nx
END I F
|F (bottombc_flag == 0) THEN
j_start =2
ELSE
j_start =1
END I F
IF (top_bc_flag == 0) THEN
j_end = ny-1
ELSE
j_end = ny
END | F
CASE (3) ! For Spherical System Conpute Interior & only M DDLE PORTION OF RI GHT x-BC, for Neumann or Robin BCs.
i_start =2
IF (right_bc_flag == 0) THEN
i_end = nx-1
ELSE
i_end = nx
END | F
j_start = 2
j_end = ny-1
END SELECT
IF (stage_flag == 1) THEN | FIRST STAGE.
! FOR ALL GRID PO NTS: Conpute Nu_mand store it for use in the second stage of this iteration.
! Conmpute N.m Nux_m Nuxx_m and N_n; Then conpute the LHS Coefficient array, the residual array
! for the current iteration, AND the RHS vector for the FIRST stage.
DOj = j_start, j_end
DOm= 1, nx
uj(m = u_n(j,m
uj_n(m = u(j,m
END DO
DOi = i_start, i_end
ux = u_x(j,i,u,x,y, t_npl)
Uy:U_Y(J-' un:, i), xy,t npl)
nl = (kt_uCu_n(j,i)))*cp(u_n(j.i)) - (cp_u(u_m(j,i)))*kt(u_n(j,i))
n2 = (al(x(i), y(j). t npl)) ( az2_x(x(i), y(j), t_npl))*ux
n3 = (al(x(i), y(j), t_npl))*( a2(x(i), y(j), t_npl))*u_xx(j,i,u_mx,y,t_npl)
n4 = (bl(x(i), y(j), t_npl))*(b2_y(x(i), y(j). t_npl))*uy
ns = (hl(x(l) y(i), t_npl))*(  b2(x(i), y(j), t_npl))*u_yy(j,i,u_mx,y,t_npl)
n6 = (kt_uu(u_n(j,i)))*cp(u_n(j,i)) - (cp_u(u_n(j,i)))*kt_u(u_n(j,i))
n7 = (al(x(i), y(j), t_npl))*(a2(x(i), y(j), t_npl))*ux*ux
ng = (b1(x(i), y(i), t_npl))*(b2(x(i). y(j), t_npl))*uy*uy
n9 = (f_rhs_u(u_n(j,i), x(i), y(j), t_npl))* cp(un(j,i)) &
& - (f th(U_l‘f(lv')- x(i), y(j), t_npl))*cp_u(u_n(j,i))
Nu_n(j,i) = (nl*(n2 + n3 + n4 + n5) + n6*(n7 + n8) + n9)/( rho*(cp(u_m(j,i)))*cp(u_mij,i)) )
nl = kt(u_n(j,i))
n6 = kt_u(u_n(j,i))
n9 = f_rhs(u_n(j,i), x(i), y(j), t_npl)
N.m= (n1*(n2 + n3 + n4 + n5) + n6*(n7 + n8) + n9)/( rho*cp(u_n(j,i)) ) ! Use n2-n5,n7,n8 fromNu_m
n4 = (al(x(i), y(i), t npl))/( rho*ep(u_ntj,i)) )
n2 = n1*a2_x(x(i), y(j), t_npl) ! Use nl from N_m cal cul ation.
n3 = 2.0_rp*(a2(x(i), y(j), t_npl))*n6*ux ! Use n6 from N_m cal cul ation.
Nux_m = n4*(n2+n3)
Nuxx_m = n4*(a2(x(i), y(j), t_npl))*nl ! Use n4 from Nux_m cal culation, nl from N_m cal cul ation.
n2 = hx*Nux_n (2. 0_r p* Nuxx_m)
n3 = L0_rp - k*Nu_m(j,i) )/(4.0_rp*rx*Nuxx_m
cf(j,i,1) =1.0_rp - n2 ! First LHS Coefficient.
cf (j.i -(2.0_rp + n3) ! Second LHS Coefficient.
cf (j 1.0_rp + n2 ! Third LHS Coefficient.
ux = u_x(j,i ul n, x,y,t_n)
uy = u_y(j,i,u(:,i),x,y, t_n)
nl =kt(u(|,|))
n2 = (al(x(i), y(j), t_n))*(a2_x(x(i), y(j), t_n))*ux
n3 = (al(x(i), y(j), t_m)*( a2(x(i), y(j), t_n))*u_xx(j,i,u,x,y, t_n)
n4 = (b1(x(i), y(i), t_m)*(b2_y(x(i), y(j), t_n))*uy
n5 = (b1(x(i), y(j), t_n))*( b2(x(i), y(j), t_n))*u_yy(j,i,u,x,y,t_n)
n6 = kt_u(u(j,i))
n7 = (al(x(i), y(j), t_n)*( a2(x(i), y(j), t_n))*ux*ux
n8 = (b1(x(i), y(i), t_n))*( h2(><(l) y(i). t_n))*uy*uy
n9 = f_rhs(u_n(j,i), x(i), y(i).
= (n1*(n2 + n3 + n4 + n5) + nﬁ*(n7 + n8) + n9)/( rho*cp(u(j,i)) )
IF (linear_flag == 1) THEN ! Linear PDE. FIRST STAGE RHS VECTOR
r(|,|) =-(Cu(j,i) - u_n(j,i) + 0.5_rp*k*(N_m+ N_n) )/ (rx*Nuxx_m
ELSE ! Non-Linear PDE.
ri(j,i) = U(],I) -u n(],|) + 0.5_rp*k*(N_m + N_n) ! NON- LI NEAR RESI DUAL.
r(j,i) = -ri(j, i)/ (rx*Nuxx_m | FIRST STAGE RHS VECTOR
END | F
END DO
END DO
ELSE ! SECOND STAGE.
DOj =j_start, j_end
DOi =i_start, iiend
nl = (b1(x(i), y(j), t_npl))/( rho*cp(u_ l‘r(lvl)) )
n2 (kt(u_n(j,i)))*b2_y(x(i), y(j). t .
n3 2.0_rp*(b2(x(1), y(i), t_npl))*(kt U(U m(j L)) uy(j, i un(:, i), x,y, t_npl)

Nuy_m = nl*(n2+n3)
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Nuyy_m = n1*(b2(x(i), y(j), t_npl))*(kt(u_nm(j,i))) ! Use nl from Nuy_m cal cul ation.

n4 = hy*Nuy_ni (2. 0_r p*Nuyy_n)

n5 = ( 4.0_rp - k*Nu_n(j,i) )/(4.0_rp*ry*Nuyy_n

cf(j,i, 1) n4 ! First LHS Coefficient.
cf(j,i,2) ! Second LHS Coefficient.
cf(j,i,3) =1.00p +n4 ! Third LHS Coefficient.

P, i) = -u(iL i)/ (ry*Nayy_m SECOND STAGE RHS VECTCR
END DO
END DO

END | F

STEP 2: GRID BOUNDARI ES - Conpute the Coeff & RHS array values for BOUNDARY grid points:

This step is carried out for any conbination of GENERAL (i.e., Linear/Non-Linear) Dirichlet/ Neumann/ Robin BCs.
This is determined fromthe BC flags in the nodul e "const_parans". Also, at this stage, corner points are

adj usted based on type of BCs along intersecting boundaries.

STEP 2(a): LEFT BOUNDARY (i = 1) & LEFT CORNER POINTS (i = 1, WTH | = 1 OR ny).

The generalized BCis given by: L_mU = Wx*L1(U) + L2(U = f_left(y,t(m). Therefore, Lu_m= Ux*Llu + L2u;
and Lux_m = L1. Also, for a generalized Dirichlet BC, L1 = 0 => L1lu = 0. So, in this case, L_m= L2,

Lu_m = L2u, and Lux_m= 0. For the linear case, L_m=f_left(y,t(n)), Lu_m= alpha_x (= 0 for |inear
Neumann BC), and Lux_m= 1. In terns of components, for linear Neumann, L1_m= 1, L2_m= 0; for |inear
Robin BC, L1_m= 1, L2_m = alpha_x*U.n. Al these values are taken care of, in the nodule "pde_routines",
above, where separate subroutines are defined for each conponent of the left BC.

IF (left_bc_flag == 0) THEN | GENERAL LI NEAR/ NON-LINEAR Dirichlet Left BC.
j =1 ny
cf(j,1,1) =0.0_rp
cf(j,1,2) = 1.0_rp
cf(j,1,3) =0.0_rp

1) THEN
I'be2(u_n(j,1),y(j). t_n)

I'F (linear_flag
Lm =
Lu_m = Ibe_u(u_m(j,1),y(j),t_n)

ELSE
IF (iter == l) THEN
_m = Ibe2(u_n(j,1),y(j),t_n)
Lu m= Ibc_u(u_n(j,1),y(j).t_n)
ELSE
L.m = lIbc2(u_nm(j,1), y(]) _npl)
Lu m= Ibc_u(u_n(j,1),y(j),t_npl)
END | F
END I F
r(j,1) = (f_left(y(j),t_npl) - L_m)/Lu_m ! RHS value if Left BCis Linear/Non-Linear Dirichlet.
|F (stage_flag == 1) THEN
IF (linear_flag /= 1) ri1(j,1) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END | F

END DO
IF (bottombc_flag == 0) THEN
IF (linear_flag == 1) THEN
B m bbc2(u_n(1,1),x(1),t_n)
Bu_m = bbc_u(u_n(1,1),x(1),t_n)

ELSE
IF (iter == 1) THEN
B m=  bbc2(u_n(1,1),x(1),t_n)
Bu_m = bbc_u(u_n(1, 1), x(1),t_n)
ELSE
B m= bbc2(u_m(1, 1), x(1),t_npl)
Bu_m = bbc_u(u_m(1, 1), x(1),t_npl)
END | F
END I F
= (f_bottom(x(1),t_npl) - B.m)/Bu_m
r(1,1)= 0.5_rp*(r(1,1)+ rb) ! BOTH Left & Bottom BCs are General Dirichlet.
|F (stage_flag == 1) THEN
IF (linear_flag /= 1) r1(1,1) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END | F

END | F
IF (top_bc_flag == 0) THEN

IF (linear_flag 1) THEN

T_m thc2(u_n(ny, 1), x(1),t_n)
Tu_m = tbc_u(u_nm(ny, 1), x(1),t_n)
ELSE
IF (iter == 1) THEN
—m= tbc2(u_m(ny, 1), x(1),t_n)
Tu_m = tbc_u(u_n(ny, 1), x(1),t_n)
ELSE
T_m= thc2(u_n(ny, 1), x(1),t_npl)
Tu_m = tbc_u(u_n(ny, 1), x(1),t_npl)
END I F
END | F
rt = (f_top(x(1),t_npl) - T_m)/Tu_m
r(ny,1) = 0.5_rp*( r(ny,1) + rt) ! BOTH Left & Top BCs are General Dirichlet.
IF (stage_flag == 1) THEN
IF (linear_flag /= 1) ri(ny,1) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END | F
ENDI F
ELSE ! GENERAL LI NEAR/ NOV- LI NEAR Neunmann OR Robin Left BC.
j_start =1
j_end = ny
IF (bottombc_flag == 0) THEN
cf(1,1,1) = 0.0_rp
cf(1,1,2) = 1.0_rp
cf(1,1,3) = 0.0_rp
IF (linear_flag 1) THEN
B.m = bbc2(u_n(1,1),x(1),t_n)
Bu_m = bbc_u(u_m(1, 1), x(1),t_n)
ELSE
IF (iter == 1) THEN
B.m = bbc2(u_n(1,1),x(1),t_n)
Bu_m = bbc_u(u_n(1, 1), x(1),t_n)
ELSE
B.m = bbc2(u_nm(1,1),x(1),t_npl)
Bu_m = bbc_u(u_n(1, 1), x(1),t_npl)
END I F
END | F
r(1,1) = (f_botton{x(1),t_npl) - B_.m)/Bu_m ! ONLY Bottom BC is General Dirichlet.
|F (stage_flag == 1) THEN
IF (linear_flag /= 1) r1(1,1) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END | F
j_start =2
END | F
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IF (top_bc_flag == 0) THEN
cf(ny,1,1) = 0.0_rp
cf(ny, 1,2) 1.0_rp
cf(ny,1,3) = 0.0_rp

IF (linear_flag == 1) THEN
T_m thc2(u_n(ny, 1), x(1),t_n)
Tu_m = tbc_u(u_n(ny, 1), x(1),t_n)
ELSE
IF (iter == 1) T}—EN
—m = thc2(u_n(ny,1),x(1),t_n)
Tu_m = tbc_u(u_n(ny, 1),x(1),t_n)
ELSE
T_m = tbc2(u_n(ny,1),x(1),t_npl)
Tu_m = tbc_u(u_n(ny, 1), x(1),t_npl)
END | F
END | F
r(ny,1) = (f_top(x(1), t npl) - T_m)/Tu_m ! ONLY Top BCis General Dirichlet.
|F (stage_flag == 1)
IF (Ilnear_flag /=1) ri(ny,1) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END | F
j_end = ny-1
END I F
DOj =j_start, j_end
I F (stage_ flag = 1) THEN
DO m= 1, nx
uji(m = u_n(j,m
END DO
IF (linear_flag /= 1) THEN ! This is different, unlike for Dirichlet BCs above.
L.m = (ux(j,1,u,x,y,t_npl))*Ibci(u_n(j,1), y(j), t_npl) + Ibc2(u_n(j,1), y(j), t_npl)
ELSE

Lm = (ux(j,1,u,x,y,t_n))* Ibcl(u_n(j,1), y(j), t_n) + Ibc2(u_n(j,1), y(j), t_n)
END I F
Lu_m= Ibc_u(u_n(j, 1), y(j), t_npl)
Lux_m = Ibcl(u_n(j,1), y(j), t_npl)
nl 2.0_rp*hx*Lu_m Lux_m
n2 = 2.0_rp*hx*( f_left(y(j),t_npl) - L_m)/Lux_m
IF (coord_flag <= 1) THEN ! CARTESI AN COORDI NATES.
"3 = (al(x(1), y(j), t_npl))/( rho*cp(u_n(j,1)) )
= (a2_x(x(1), y(j), t_npL))*kt(u_n(j,1))
"5 =2.0_rp* (aZ(x(l) y(i), t_npl))*(kt_u(u_n(j,1)))*u_x(j, 1, uj,x,y,t_npl)
Nux_m = n3*(n4+n5)

Nuxx_m = n3*(a2(x(1), y(j), t_npl))*(kt(u_n(j,1))) ! Use n3 from Nux_m cal cul ation.

né = hx*Nux_m (2. 0_r p* Nuxx_m)

cf(j,1,1) 0.0_rp
cf(j,1,2) cf(j,1,2) + n1*(1.0_rp-n6)
cf(j,1,3) =2.0_rp
r(j,1) = r(j,1) + n2*(1.0_rp-n6)
ELSE ! CYLINDRI CAL or SPHERI CAL COORDI NATES. ADJUST as r -> 0.
DO m= 1, nx
uj(m = u_n(j,m
_n(m = u(j,m
END DO

= (al(x(1), y(j), t_npl))*(a2(x(1), y(i), t_npl))
= (al(x(1), y(J) t a))*(aZ(x(l), y(i)., t_n)

IF(coord flag == 2) T

n5 = 1.0 rp
ELSE

2.0_rp

END | F
ux = u_x(j,1,uj,x,y,t_npl)
né = (kt_u(u_n(j,1)))*cp(u_n(j,1)) - (cp_u(u_n(j,1)))*kt(u_n(j,1))
n7 = (n5 + n3)*u_xx(j,1,u_mx,y,t_npl)
ng = (kt_uu(u_n(j,1)))*cp(u_nmj,1)) - (cp_u(u_n(j,1)))*kt_u(u_n(j, 1))
n9 = n3*ux*ux

n10 = (f_rhs_u(u_n(j, 1), x(1), y(j), t_npl))* cp(u_ W(l,l)) &
& - (f_rhs(u_n(j, 1), x(1), y(j), t_npl))*cp_u(u_n(j,
NOu_m = (n6*n7 + n8*n9 + n10)/( rho*(cp(u_n(j,1)))* cp(u n(],l)) )

né = kt(u_n(j, 1))

n8 = kt_u(u_n(j,1))

n10 = f_rhs(u_n(j, 1), x(1), y(j), t_npl)

NO_m = (n6*n7 + n8*n9 + nl10)/( rho*cp(u_n(j,1)) ) ! Use n7 and n9 from NOu_m cal cul ati on.

NOux_m = 2. 0_rp*n3*n8*ux/ ( rho*cp(u_n(j,1)) ) ! Use n8 from NO_m cal cul ation.
Nouxx_m = (n5 + n3)*(kt(u_nm(j,1)))/( rho*cp(u_n(j,1)) )

ux = u_x(j,l,u_nx,y, t_n)

n6 = kt(u(j,1))

n7 = (n5 + n4)*u_xx(j,1,u,x,y, t_n)
n8 = kt_u(u(j, 1))

ng = n4*u>< ux

n10 = f_rhs(u(j, 1), x(1), y(j).

t_n)
NO_n = (nG*n? + n8*n9 + nl0)/( rho*cp(u(],l)) )

n5 = hx*NOux_ni (2. O_r p* NOuxx_mn)
n6 = ( 4.0_rp - k*NOou_m )/ (4.0_rp*rx*Nouxx_m)
cf(j,1,1) =0.0_rp
cf(j,1,2) = -(2.0_rp + n6) + n1*(1.0_rp-n5)
cf(j,1,3) =2.0_rp
IF (linear_flag 1) THEN ! Linear PDE. FIRST STAGE RHS VECTOR
r(j,1) =-C (Cu(j,1) - un(j,1) + 0.5_rp*k*(NO_m+ NO_n) )/(rx*Nouxx_m)) ) + n2*(1.0_rp-n5)
ELSE ! Non-Linear PDE.
ri1(j,1) = u(j.1) - u_n(j,1) + 0.5_rp*k*(NO_m + NO_n) I NON- LI NEAR RES| DUAL.
r(j,1) =-( r1(j,1)/(rx*Nouxx_m ) + n2*(1.0_rp-n5) ! FIRST STAGE RHS VECTOR
END | F
END | F
ELSE
! For stage 2, conpute cf and r elements at the left boundary, ONLY for Cylindrical OR Spherical Systems. In these
! cases, the L'Hospital Rule adjusted PDE at the |eft boundary DOES NOT CONTAIN any y derivative terms, due to the
! symmetry requirenent for the Rule to be applied (i.e., Uy, Uyy have to be BOTH 0 (ZERO as x --> 0.
IF ( (coord_flag == 2) .OR (coord_flag == 3) ) THEN
cf(j,1,1) =0.0_rp
cf(j,1,2) =1.0_rp
cf(j,1,3) =0.0_rp
r(,1) = u(,1
END I F
END I F
END DO

END | F
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STEP 2(b):
For spherical
functionals are different fromthe one in t

Ri ght
coordi nate system

Boundary (i = nx) & Right

corner points (i =nx, WTHj =1 ORny).

he interior.

*RI(U + R(U) =f_right(y,t(m). Therefore,

the corner points are NOT considered here since the top and bottom boundary

Ru_m = W*Rlu + R2u;

and Rux_m =R1. Also, for a generalized Dirichlet BC, RL = 0 => Rlu = 0. So, in this case, R.m= R2,
Ru_m = R2u, and Rux_m = 0. For the linear case, Rm= f_right(y,t(n)), Ru_m = al pha_x 0 for linear
Neumann BC), and Rux_m = 1. In ternms of conponents, for linear Neumann, RI_m= 1, R2_m= 0; for linear

Al
where separate subroutines are defin

Robin BC, RL_m =1, R2_m = al pha_x*U_n.

]

!

]

!

! The generalized BCis given by: Rnm(U = W
]

!

]

!

| above,

IF (right_bc_flag == 0) THEN

these val ues are taken care of,
ed for each conponent of the right BC.

! GENERAL LI NEAR/NON-LINEAR Dirichlet Left BC

in the nodul e "pde_routines",

DO j 1, ny
cf(j,nx,1) = 0.0_rp
cf(j,nx,2) = 1.0_rp
cf(j,nx,3) =0.0_rp
IF (linear_flag 1) THEN
Rm=  rbc2(u_n(j,nx),y(j),t_n)
Ru_m = rbc_u(u_nm(j,nx),y(j).t_n)
ELSE
IF (iter == 1) THEN
Rm=  rbc2(u_n(j,nx),y(j),t_n)
Ru_m = rbc_u(u_n(j,nx),y(j),t_n)
ELSE
Rm=  rbc2(u_n(j,nx),y(j),t_npl)
Ru_m = rbc_u(u_n(j,nx),y(j),t_npl)
END | F
END | F
r(j,nx) = (f_right(y(j),t_npl) - Rm)/Ru_m !
|F (stage_flag == 1) THEN
IF (linear_flag /= 1) r1(j,nx) = 0.0_rp
END | F
END DO

IF (bottombc_flag == 0) THEN

END | F
IF (top_bc_f

ENDI F
ELSE

j_start =1
j_end = ny
|

IF (linear_flag == 1) THEN
B_| bbc2(u_nm(1, nx), x(nx),t_n)
Bu_m = bbc_u(u_n(1, nx), x(nx),t_n)

ELSE
IF (iter == 1) THEN
B m= bbc2(u_m(1, nx), x(nx),t_n)
Bu_m = bbc_u(u_n(1, nx), x(nx),t_n)
ELSE
B m= bbc2(u_m(1, nx), x(nx),t_npl)
Bu_m = bbc_u(u_n(1, nx), x(nx),t_npl)
END | F
END | F

rb = (f_bottonm(x(nx),t_npl) -
r(1,nx)= 0.5_rp*(r(1,nx) + rb)
IF (stage_flag == 1) THEN

IF (linear_flag /= 1) ri1(1, nx)

B m)/Bu_m

=0.0_rp
END | F

lag == 0) THEN
I'F (linear_flag 1) THEN

T m tbc2(u_n(ny, nx), x(nx),t_n)
Tu_m = tbc_u(u_n(ny, nx), x(nx),t_n)

RHS value if Right

BC is Linear/Non-Linear Dirichlet.

! Calculate residual for the 1st stage of a Non-Linear

! RHS value if Right & Bottom BCs are Dirichlet.

! Calculate residual for the 1st stage of a Non-Linear

ELSE
IF (iter == 1) THEN
T_m=  thc2(u_n(ny, nx), x(nx),t_n)
Tu_m = tbc_u(u_n(ny, nx), x(nx),t_n)
ELSE
T_m=  thc2(u_n(ny, nx), x(nx),t_npl)
Tu_m = tbc_u(u_n(ny, nx), x(nx),t_npl)
END | F
END | F

rt = (f_top(x(nx),t_npl) - T_m)/Tu_m

r(ny,nx) = 0.5_rp*( r(ny,nx) +rt) !

|F (stage_flag == 1) THEN
IF (linear_flag /= 1)

ri(ny,nx) = 0.0_rp !

END | F

! GENERAL LI NEAR/ NON-LI NEAR Neumann OR Robin Left

F (bottombc_flag == 0) THEN

ELSE

END | F
IF (top_bc_f

cf(1,nx,1) = 0.0_rp
cf(1,nx,2) 1.0_rp
cf(1,nx,3) = 0.0_rp
IF (linear_flag 1) THEN
B.m bbc2(u_m(1, nx), x(nx),t_n)
Bu_m = bbc_u(u_m(1, nx), x(nx),t_n)
ELSE
IF (iter == 1) THEN
B_.m=  bbc2(u_n(1, nx),x(nx),t_n)
Bu_m = bbc_u(u_n(1, nx), x(nx),t_n)
ELSE
B_.m=  bbc2(u_n(1, nx), x(nx),t_npl)
Bu_m = bbc_u(u_n(1, nx), x(nx),t_npl)
END | F
END | F
r(1,nx) = (f_bottom(x(nx),t_npl) - B.m)/Bu_m !

|F (stage_flag == 1) THEN

IF (linear_flag /= 1) r1(1,nx) = 0.0_rp
END | F
j_start =2
! For spherical system and non-Dirichlet
! formof the functional changes for THETA = 0 or
IF (coord_flag == 3) j_start = 2

lag == 0) THEN
cf(ny,nx,1) = 0.0_rp
cf(ny,nx,2) = 1.0_rp
cf(ny,nx,3) = 0.0_rp

1) THEN
0 tbc2(u_n(ny, nx), x(nx), t_n)
Tu_m = tbc_u(u_n(ny, nx), x(nx),t_n)

I'F (linear_flag
T

ELSE
IF (iter == 1) THEN
T_m=  thc2(u_n(ny, nx), x(nx),t_n)
Tu_m = tbc_u(u_n(ny, nx), x(nx),t_n)
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Cal cul ate residual

ONLY Bottom BC i s General

RHS value if Right & Top BCs are Dirichlet.

for the 1st stage of a Non-Linear PDE.

BC.

Dirichlet.

! Calculate residual for the 1st stage of a Non-Linear

BCs, do not conpute right-bottom corner point because the

Pl (corresponding to "bottont and “top" BCs).

PDE.

PDE.

PDE.



END | F

| F (bottombc_flag ==
DO i

ELSE

ELSE
T m= tbc2(u_n(ny, nx), x(nx),t_npl)
Tu_m = tbc_u(u_n(ny, nx), x(nx),t_npl)

END | F

END I F

r(ny,nx) = (f_top(x(nx),t_l
|F (stage_flag == 1) N
IF (linear_flag /= 1)

npl) - T_m)/Tu_m !

ri(ny,nx) = 0.0_rp !
END | F
j_end = ny-1
ELSE
! For spherical
form of the functional
IF(coordeag = 3) j_end = ny-1
END I F
DOj = j_start, j_en
I F (stage_ flag == 1) THEN !

ONLY Top BC is General

Cal cul ate residual

For the RI GHT Boundary,

Dirichlet.

for the 1st stage of a Non-Linear PDE.

system and non-Dirichlet BCs, do not conpute right-bottom corner point because the
changes for THETA = 0 or Pl

(corresponding to "bottont and "top" BCs).

STAGE 2 NEED NOT be nodified fromthat above.

DO m= 1, nx
uji(m = u_n(j,m
END DO
IF (linear_flag /= 1) THEN ! This is different, unlike for Dirichlet BCs above.
Rm = (u_x(j,nx,uj,x,y,t_npl))*rbci(u_n(j,nx), y(j), t_npl) + rbc2(u_n(j,nx), y(j), t_npl)
ELSE
R.m = (u_x(j,nx,uj,x,y,t_n))* rbcl(u_nm(j,nx), y(j), t_n) + rbe2(u_n(j,nx), y(j), t_n)
END I F
Ru_m = rbc_u(u_nm(j,nx), y(j), t_npl)
Rux_m = rbcl(u_n(j,nx), y(j), t_npl)
nl = 2.0_rp*hx*Ru_n Rux_m
n2 = 2.0_rp*hx*( f_right(y(j).t_npl) - Rm)/Rux_m
"3 = (al(x(nx), y(j), t_npl))/( rho*cp(u_n(j,nx)) )
= (@2 x(x(nx), y(j), t_npl))*kt(u_mj, nx))
n5 = 2.0_rp*(a2(x(nx), y(j), t_npl))*(kt_u(u_m(j,nx)))*u_x(j,nx,uj,x,y,t_npl)

Nux_m = n3*(n4+n5)
Nuxx_m = n3*(a2(x(nx), y(j), t_npl))*(kt(u_n(j,nx)))

= hx*Nux_ni (2. 0_r p* Nuxx_m)

! Use n3 from Nux_m cal cul ation.

cf(j,nx, 1) 2.0_rp
cf(j,nx,2) cf(j,nx,2) n1*(1.0_rp + n6)
cf(j,nx,3) =0.0_r
r(j,nx) r(j,nx) n2*(1.0_rp + n6)
END I F
END DO
STEP 2(c): Bottom Boundary: Corners have been taken care of under the left and right boundary |oops.
The generalized BCis given by: B mU = Wx*Bl(U) + B2(U) = f_botton(x,t(n)). Therefore, Bu_m = W*Blu + B2u;
and Bux_m =Bl. Also, for a generalized Dirichlet BC, Bl = 0 => Blu = 0. So, in this case, B_.m= B2,
Bu_m = B2u, and Bux_m = 0. For the linear case, B_.m= f_botton(x,t(n)), Bu_m= alpha_y (= 0 for linear
Neunann BC), and Bux_m= 1. In terns of conponents, for linear Neumann, Bl_m= 1, B2_m= 0; for linear
Robin BC, Bl_m= 1, B2_m = al pha_x*U n. Al these values are taken care of, in the nodule "pde_routines",

System

above, where separate subroutines are defined for each conponent of the bottom BC.
0) THEN ! GENERALI ZED LI NEAR/ NON- LI NEAR Dirichl et Bottom BC.
=2, nx ! i_end=nx: Right-Bottom Corner Point was not included in Right BC for Spher.
cf(1,i,1) =0.0_rp
cf(1,i,2) =1.0_rp
cf(1,i,3) =0.0_rp

IF (linear_flag == 1) THEN

B m bbc2(u_n(1,i), x(i), t_n)
Bu_m = bbc_u(u_nm(1,i), x(i), t_n)
ELSE
IF (iter == 1) T}—EN
= bbe2(u_m(1,i), x(i), t_n)
Buim: bbc_u(u_m(1,i), x(i), t_n)
ELSE
B m = bbc2(u_m(1,i), x(i), t_npl)
Bu_m = bbc_u(u_n(1,i), x(i), t_npl)
END I F
END I F
r(Li) =(f bottorr(x(l) t _npl) B m)/Bu_m ! RHS value i
IF (stage flag == 1)
IF(I|near_fIagl=1) ri(1,i) =0.0_rp !

END | F
END DO

f Bottom BC is Linear/Non-Linear Dirichlet.

Cal culate residual for the 1st stage of a Non-Linear PDE.

For the BOTTOM Boundary, STAGE 1 NEED NOT
coordinate system (coord_flag = 3).
RHS vector are identical
! replaced by the spherical
F (stage_flag == 1) THEN

non-1linear funct

In that case,
in formto the Non-spherical

! GENERALI ZED LI NEAR/ NON- LI NEAR Neumann OR Robi n Bottom BC.
be nodified fromthat above, EXCEPT for the Spherical
for all i, the bottom LHS coefficients and
cases, except that N and its derivatives are

ional at the bottom boundary, Ns, in both stages.

I F (coord_flag == 3) THEN ! For Spherical Coordinate System
DO m= 1, nx
uji(m = u_n(1,m
u_n(m = u(lmnm
END
DOi =i_start, i_end
ux = u_x(1,i,uj,x,y, t_npl)
uy = u_y(l,i,u_n(:,i),x,y, t_npl)
nl = (kt_u(u_n(1,i)))*cp(u_n(1,i)) - (cp_u(u_m(1,i)))*kt(u_n(1,i))
n2 = (al(x(i), y(1), t_npl))*(a2_x(x(i), y(1), t_npl))*ux
n3 = (al(x(i), y(1), t_npl))*( a2(x(i), y(1), t_npl))*u_xx(1,i,u_mx,y,t_npl)
n4d = 2.0_rp*(bLl(x(i), y(1), t_npl))*( b2(x(i), y(1), t_npl))*u_yy(l,i,u_mx,y,t_npl)
n5 = (kt_uu(u_n(1,i)))*cp(u_n(l,i)) (cp_u(u_n(1,i)))*kt _u(u_n(1,i))
né = (al(x(i), y(1), t_npl))*( a2(x(i), y(l), t_npl))*ux*ux
n7 = (bL(x(i), y(1), t_npL))*( b2(x(i), y(1), t_npl))*uy*uy
n8 = (f_rhs_u(u_m(1,i), x(i), y(1), t_npl))* cp(u_m1l,i)) &
& - (f_rhs(u_n(1,i), x(i), y(1), t_npl))*cp_u(u_n(1,i))
NSu_n(1,i) = ( nl*(n2 + n3 + n4) + n5*(n6 + n7) + n8 )/ ( rho*(cp(u_m(1,i)))*cp(u_m(l,i)) )
nl = kt(u_n(1,i))
n5 = kt_u(u_nm(1,i))
n8 = f_rhs(u_n(1,i), x(i), y(1), t_npl)
NS m= ( nl*(n2 + n3 + n4) + n5*(n6 + n7) + n8 )/( rho*cp(u_n(1,i)) ) ! Use n2-n4 & n6-n7 from NSu_m
n4 = (al(x(i), y(1), t npl))/( rho*ep(u_n(1,i)) )

n2 = n1*a2_x(x(i), y(1), t_npl)

n3 = 2.0_rp*n5*(a2(x(i), y(l) t_npl))*ux
NSux_m = n4*(n2+n3)
NSuxx_m = n4*(a2(x(i), y(1), t_npl))*nl

n2 = hx*NSux_ni (2. 0_r p* NSuxx_mn)

156

! Use nl from NS_m cal cul ation.
! Use n5 from NS_m cal cul ation.

! Use n4 fromNSux_mcalc., nl fromNS_mcalc.



END | F

IF (top_bc_flag == 0) THEN I
DO i

ELSE

n3 = *NSu_n(1,i) )/ (4.0_rp*rx*NSuxx_m
cf(1,i,1) - n2

cf(1,i,2)

cf (1,i,

ux =

uy =

nl =

n2 = t_n))*(a2_x(x(i), y(1),
n3 = t_m)*( a2(x(i), y(1),
n4 = 2.0_rp*(bl(x(i), y(1), t_n))*( b2(x(i), y(1),
n5 = kt_u(u(1,i))

né = (al(x(i), y(1), t_n)*( a(x(i), y(1),
n7 = (b1(x(i), y(1), t_m)*( b2(x(i), y(1),
n8 = f_rhs(u(1,i), x(i), y(1), t_n)

NS n = ( n1*(n2 + n3 + n4) + n5*(n6

IF (linear_flag

Linear PDE. FI

1) THEN !

! First LHS Coefficient.
! Second LHS Coefficient.
! Third LHS Coefficient.

t_n))*ux
t_n))*u_xx(1,i,u,x,y,t_n)
t_n))*u_yy(L,i,ux,y,t_n)
t_n))*ux*ux

t_n))*uy*uy

+ n7) + n8 )/( rho*cp(u(l,i)) )

RST STAGE RHS VECTCR

r(1,i) =-(C u(l,i) - u_n(1,i) + 0.5_rp*k*(NS_m+ NS_n) )/ (rx*NSuxx_m
ELSE ! Non-Linear PDE.
r1(1,i) = u(l,i) - um1,i) + 0.5_rp*k*(NS_m + NS_n) I NON-LI NEAR RES| DUAL.
r(1,i) = -r1(1,i)/(rx*NSuxx_m | FIRST STAGE RHS VECTOR
END | F
END DO
END I F
ELSE ! Second Stage
DOi =i_start, i_end ! Any coordinate system For Cart. or Cyl. system no calculation for i=nx.
IF (linear_flag /= 1) THEN
Bm = (uy(l,i,um:,i),x,y,t_npl))*bbcl(u_m(1,i), x(i), t_npl) + bbc2(u_m(1,i), x(i), t_npl)
ELSE
Bm = (uy(l,i,um:,i),x,y,t_n))*bbcl(u_m(1,i), x(i), t_n) + bbc2(u_m(1,i), x(i), t_n)
END | F
Bu_m = bbc_u(u_nm(1,i), x(i), t_npl)
Buy_m = bbcl(u_n(1,i), x(i), t_npl)
nl = 2.0_rp*hy*Bu_nf Buy_m
n2 = 2.0_rp*hy*( f_botton(x(i),t_npl) - B_.m)/Buy_m
n3 = (b1(x(i), y(1), t_npl))/( rho*cp(u_nm(1,i)) )
n4 = (b2_y(x(i), y(1), t_npl))*kt(u_n(1,i))
n5 = 2.0_rp*(b2(x(i), y(1), t_npl))*(kt_u(u_nm(1,i)))*u_y(1,i,u_n(:,i),x, y, t_npl)
IF (coord_flag <= 2) THEN ! FOR USER DEFI NED ANALYTIC SYSTEM CARTESI AN AND CYLINDRI CAL COORDI NATES,
IF (i /=nx) THEN ! Right-Bottom Corner Point Al ready Conputed under Right BC.
Nuy_m = n3*(n4+n5)
Nuyy_m = n3*(b2(x(i), y(1), t_npl))*(kt(u_n(1,i)))
n6 = hy*Nuy_ni (2. 0_r p*Nuyy_m)
cf(1,i,1) =0.0_rp
cf(1,i,2) = cf(1,i,2) + nl*(1.0_rp-n6)
cf(1,i,3) =2.0_r
r(1,i) =r(1,i) + n2*(1.0_rp-n6)
END | F
ELSE ! FOR SPHERI CAL COORDI NATES. I ncludes Ri ght-Bottom Corner point.
NSuy_m = n3*n5
NSuyy_m = 2.0_rp*n3*(b2(x(i), y(1), t_npl))*(kt(u_m(1,i)))
né = ( 4.0_rp - k*NSu_n(1,i) )/(4.0_rp*ry*NSuyy_m
n7 = hy*NSuy_nT (2. 0_r p*NSuyy_n)
cf(1,i,1) =0.0_rp
cf(1,i,2) -(2.0_rp + n6) + nl*(1.0_rp-n7)
cf(1,i,3) =2.0_rp
r(1,i) =-(u(l,i))/(ry*NSuyy_m + n2*(1.0_rp-n7)
END | F
END DO
END I F
STEP 2(d): Top Boundary: Corners have been taken care of under the left and right boundary | oops.
The generalized BCis given by: T _nmU = W*T1(U) + T2(U) = f_top(x,t(m). Therefore, Tu_m = Wx*Tlu + T2u;
and Tux_m =T1. Also, for a generalized Dirichlet BC, T1 = 0 => Tlu = 0. So, in this case, T_m= T2,
Tu_m = T2u, and Tux_m= 0. For the linear case, T_m= f_top(x,t(n)), Tu_m= alpha_y (= 0 for linear
Neunann BC), and Tux_m= 1. In terns of conponents, for linear Neumann, T1_m= 1, T2_m= 0; for linear

Robin BC, T1_m= 1, T2_m = al pha_x*U.n. Al

above,

2, nx ! i_end=nx: Right-Top Corner Point was not included in Right BC for Spherical System
cf(ny,i,1) = 0.0_rp
cf(ny,i,2) = 1.0_rp
cf(ny,i,3) =0.0_rp
IF (linear_flag 1) THEN
T_m the2(u_n(ny,i), x(i), t_n)
Tu_m = tbc_u(u_nm(ny,i), x(i), t_n)
ELSE
IF (iter == 1) THEN
T_m = thc2(u_n(ny,i), x(i), t_n)
Tu_m = tbc_u(u_nm(ny,i), x(i), t_n)
ELSE
T_m = tbhc2(u_m(ny,i), x(i), t_npl)
Tu_m = tbc_u(u_nm(ny,i), x(i), t_npl)
END I F
END | F
r(ny,i) = (f_top(x(i),t_npl) - T_m)/Tu_m
|F (stage_flag == 1) THEN
IF (linear_flag /= 1) ri(ny,i) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.

END | F
END DO

these val ues are taken care of,
where separate subroutines are defined for each conponent of the top BC.

in the nodul e "pde_routines”,

GENERALI ZED LI NEAR/ NON- LI NEAR Dirichl et Top BC.

! GENERALI ZED LI NEAR/ NON- LI NEAR Neumann OR Robin Top BC.

For the TOP Boundary, STAGE 1 NEED NOT be nodified fromthat above,

EXCEPT for the Spherical

coordinate system (coord_flag = 3).
RHS vector are identical

In that case,
in formto the Non-spherical

for all i,
cases,

the top LHS coefficients and
except that N and its derivat

ives are

repl aced by the spherical

non-1inear functional

at the top boundary,

Ns,

in both stages.

F (stage_flag == 1) THEN

I F (coord_flag == 3) THEN ! For Spherical Coordinate System
DO m= 1, nx
uj (m = u_n(ny, m
ui_n(m = u(ny, m
END DO
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DOi =i_start, i_end

ux = u_x(ny,i,uj,x,y, t_npl)

uy = u_y(ny,i,u_n(:,i),x,y,t_npl)

nl = (kt_u(u_n(ny,i)))*cp(u_ntny,i)) - (cp_u(u_nm(ny,i)))*kt(u_n(ny,i))

n2 = (al(x(i), y(ny), t_npl))*(a2_x(x(i), y(ny), t_npl))*ux

n3 = (al(x(i), y(ny), t_npl))*( a2(x(i), y(ny), t_npl))*u_xx(ny,i,u_mx,y,t_npl)
n4 = 2.07rp*(bl(x(i), y(ny), tinpll))*( b2(x(i), y(ny), t_npl))*u_yy(ny,i,u_mx,y,t_npl)
n5 = (kt_uu(u_n(ny,i)))*cp(u_n(ny,i)) - (cp_u(u_n(ny,i)))*kt_u(u_n(ny,i))

né = (al(x(i), y(ny), t_npl))*( a2(x(i), y(ny), t_npl))*ux*ux

n7 = (b1(x(i), y(ny), t_npl))*( b2(x(i), y(ny), t_npl))*uy*uy

n8 = (f_rhs_u(u_n(ny,i), x(i), y(ny), t_npl))* cp(u_m(ny,i)) &

& - (f_rhs(u_n(ny,i), x(i), y(ny), t_npl))*cp_u(u_n(ny,i))
NSu_n(2,i) = ( n1*(n2 + n3 + n4) + n5*(n6 + n7) + n8 )/( rho*(cp(u_mny,i)))*cp(u_m(ny,i)) )

nl = kt(u_m(ny,i))

n5 = kt_u(u_n(ny,i))

n8 = f_rhs(u_m(ny,i), x(i), y(ny), t_npl)

NS_m= ( nl*(n2 + n3 + n4) + n5*(n6 + n7) + n8 )/(rho*cp(u_n(ny,i))) ! Use n2-n4 & n6-n7 from NSu_m
n4 = (al(x(i), y(ny), t_npl))/( rho*cp(u_n(ny,i)) )

n2 = nl1*a2_x(x(i), y(ny), t_npl) ! Use nl from NS_m cal cul ation.

n3 = 2.0_rp*n5*(a2(x(i), y(ny), t_npl))*ux ! Use n5 from NS_m cal cul ation.

NSux_m = n4*(n2+n3)
NSuxx_m = n4*(a2(x(i), y(ny), t_npl))*nl ! Use n4 from NSux_mcalc., nl fromNS_mcalc.

n2 = hx*NSux_ni (2. 0_r p* NSuxx_m)
n3 = ( 4.0_rp - k*NSu_n(2,i) )/(4.0_rp*rx*NSuxx_m

cf(ny,i,1) = 1.0_rp - n2 ! First LHS Coefficient.
cf(ny,i,2) =-(2.0_rp + n3) ! Second LHS Coefficient.
cf(ny,i,3) =1.0_rp + n2 ! Third LHS Coefficient.
ux = u_x(ny,i,uj_n,x,y,t_n)
uy = u_y(ny,i,u(:,i),x,y,t_n)
nl = kt(u(ny,i))
n2 = (al(x(i), y(ny), t_n))*(a2_x(x(i), y(ny), t_n))*ux
n3 = (al(x(i), y(ny), t_n))*( a2(x(i), y(ny), t_n))*u_xx(ny,i,u,x,y,t_n)
n4 = 2.0_rp*(bl(x(i), y(ny), t_n))*( b2(x(i), y(ny), t_n))*u_yy(ny,i, u x,y,t_n)
n5 = kt_u(u(ny,i))
né = (al(x(i), y(ny), t_nm)*( a2(x(i), y(ny), t_n))*ux*ux
n7 = (bL(x(i), y(ny), t_n)*(  b2(x(i), y(ny), t_n))*uy*uy
n8 = f_rhs(u(ny,i), x(i), y(ny), t_n)
NS n = ( nl*(n2 + n3 + n4) + n5%(n6 + n7) + n8 )/( rho*cp(u(ny,i)) )
IF (linear_flag == 1) THEN Linear PDE. FI RST STAGE RHS VECTOR
r(ny,i) =-( u(ny,i) - u n(ny i) + 0.5_rp*k*(NS_m+ NS_n) )/ (rx*NSuxx_m
ELSE ! Non-Li near PDE.
ri(ny,i) = u(ny,i) - u_n(ny,i) + 0.5_rp*k*(NS_m + NS_n) ! NON- LI NEAR RES| DUAL.
r(ny,i) = -r1(ny,i)/(rx*NSuxx_m ! FIRST STAGE RHS VECTOR
END | F
END DO
END I F
ELSE
DOi = i_start, i_end ! Any coordinate system For Cart. or Cyl. system no calculation for i=nx.
IF (linear_flag /= 1) THEN
T_m = (u_y(ny,i,u_n(:,i),x,y, t_npl))*tbci(u_nm(ny,i), x(i), t_npl) + thc2(u_n(ny,i), x(i), t_npl)
ELSE
T_m = (u_y(ny,i,u_n(:,i),x,y,t_n))*tbcl(u_nm(ny,i), x(i), t_n) + tbc2(u_m(ny,i), x(i), t_n)
END | F
Tu_m = tbc_u(u_n(ny,i), x(i), t_npl)
Tuy_m = tbcl(u_n(ny,i), x(i), t_npl)
nl = 2.0_rp*hy*Tu_nm Tuy_m
n2 = 2.0_rp*hy*( f_top(x(i),t_npl) - T_m)/Tuy_m
n3 = (b1(x(i), y(ny), t_np1))/( rho*cp(u_ l‘r(ny i)
n4 = (b2_y(x(i), y(ny), t_npl))*kt(u_n(ny,i)
n5 = 2.0_rp*(b2(x(i), y(ny), t_npl))* (ktiu(uin(ny i)))*u_y(ny,i,u_n(:,i),x,y,t_npl)
IF (coord_flag <= 2) THEN ! FOR USER DEFI NED ANALYTI C SYSTEM CARTESI AN AND CYLI NDRI CAL COORDI NATES,
IF (i /= nx) THEN ! Right-Top Corner Point Already Conputed under Right BC
Nuy_m = n3*(n4+n5)
Nuyy_m = n3*(b2(x(i), y(ny), t_npl))*(kt(u_n(ny,i)))
= hy*Nuy_n1 (2.0, TP Nuyy_m
cf(ny i,1) =2.0_r
cf(ny,i,z) = cf(ny,i,2) - nl*(1.0_rp+n6)
cf(ny,i,3) =0.0_r p
r(ny,i) =r(ny,i) - n2*(1.0_rp+n6)
END | F
ELSE ! FOR SPHERI CAL COORDI NATES. I ncludes Ri ght-Top Corner point.
NSuy_m = n3*n5
NSuyy_m = 2.0_rp*n3*(b2(x(i), y(ny), t_npl))*(kt(u_n(ny,i)))
né = ( 4.0_rp - k*NSu_nm(2,i) )/(4.0_rp*ry*NSuyy_m
n7 = hy*NSuy_ni (2. 0_r p*NSuyy_m)
cf(ny,i, 1) .0_rp
cf(ny,i,2) -(2.0_rp + n6) - nl*(1.0_rp+n7)
cf(ny,i,3) =0.0_rp
r(ny,i) = -(u(ny,i))/(ry*NSuyy_n - n2*(1.0_rp+n7)
END I F
END DO
END | F

STEP 3. FINALLY, CONVERT the 3-D CF array into the 2-D COEFF array AND
CONVERT the 2-D R array into the RHS vector:
| MPORTANT NOTE: stage_flag = 1: CONVERT BY ROAS TO MAI NTAI N TRI - DI AGONALI TY.
stage_flag = 2: CONVERT BY COLUWNS TO MAI NTAIN TRI - DI AGONALI TY.

=1
F (stage_flag == 1) THEN ! STAGE 1: CONVERT BY ROAS (Lines // x-direction).
DOj =1, ny
DOi =1, nx
coeff(l,1) =cf(j,i,1)
coeff(1,2) =cf(j,i,2)
coeff(1,3) =cf(j,i,3)
rhs(l) =r(j,i)
IF (linear_flag /= 1) THEN
residual (I') = ri1(j,i) ! For NON- LI NEAR PROBLEMS, cal cul ate Residual here.
END | F
=1 +1
END DO
END DO
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ELSE ! STAGE 2: CONVERT BY COLUMNS (Lines // y-direction).

DOi =1, nx
DOj =1, n
coeff(l,1)
coeff(l,2)
coeff(l,3)
rhs(l) =r(j,i)
=1 +1
END DO
END DO

END | F

END SUBROUTI NE gl dgts_coeff_rhs

SUBROUTI NE delta_glin_dgts(x, y, t, k, u, en_est, dn, srad)
I MPLICI T NONE

This routine conputes the solution at A SINGLE TIME STEP, of a generalized heat conduction equation of the form

W = {1/(rho*cp)}*

[al*{kt*(a2_x*U x + a2*U_xx) + a2*kt_u*(U_x)"2} + bl*{kt*(b2_y*Uy + b2*U yy) + b2*kt_u*(Uy)"2} + f(Ux,y,t)],
where the "_" denotes partial differentiation, obtained by expanding a general ADJO NT form of the Conduction

Equation. The values of functions al, a2, bl, b2, kt(u) and cp(u) can be changed to match any regul ar, closed

donmai n. This routine uses the DELTA- FORM of QUASI LI NI ARI ZATI ON ( NEWION- KANTOROVI CH PROCEDURE) i n conj uncti
with the DELTA- FORM of DOUGLAS- GUNN TI ME SPLI TTI NG SCHEME (2- STEP). Here, for each iteration of the
quasi | i nearization process, the "inporved" iterate is constructed using two stages corresponding to the

on

2-step Dougl as-Gunn scheme. It uses the initial guess, U provided by the MAIN PROGRAM for EACH time step, to

iterate to a converged value for that time step. It outputs the grid function values for the input tinme

step, u(x,y,t(n)), back to the main program The grid function at each time stage of a SINGLE iteration is

{coeff_1(n+1)}*dv(1l) = {rhs_1(n+l, n)} &

{coef f_2(n+1)}*dv(2) = dv(1)

where n denotes the time step, and "coeff_i" are tridiagonal natrices of dinmension nx*ny (=n).

Only the band diagonal elenments of the tridiagonal systens are conputed & stored in this program (in the

subroutine "qgl dgts_coeff_rhs", to mininize storage. They are stored in the formof n X 3 matrices, where the
three colums are, respectively, the sub-diagonal, diagonal, and super-diagonal elements of the original n X n
system matrix. The programcalls the LU deconposition routine to conpute the grid-functions, u, after each tine

step. It also stores the grid function values at the last tinme step, as they are required for New on-Kantorovich

]

|

]

|

!

]

|

]

|

!

!

! related to the previous one by the conpact time-split matrix fornul ae:
]

|

!

]

|

]

]

|

! iterations. |F SMOOTHI NG FLAG | S NON- ZERO, APPROPRI ATE SMOOTHI NG OF GRI D FUNCTI ON VALUES IS CARRI ED QUT.
|

HONEVER,
THI'S IS H GHLY CASE- SPECI FI C AND THE SUB- SET OF U VALUES TO BE SMOOTHED W LL BE DI FFERENT FOR EACH PROBLEM BC COVBO.

! Argunents
REAL(KI ND=rp), DI MENSI ON(:),
REAL(KIND=rp), INTENT(IN) :
REAL( KI ND=rp), DI MENSI ON( : INTENT(INOUT) :: u

REAL(KI ND=rp), DI MENSIO\(:, : I NTENT(OUT), OPTIONAL :: en_est
REAL(KI ND=rp), DI MENSION (:), INTENT(OUT), OPTIONAL :: dn, srad

NTENT(IN) :: X, Yy
t

! Local Variable Declarations
REAL(KI ND=r p), DI MENSI O\(quasi _iterations) :: dn_norm rs_norm
REAL(KIND=rp) :: hx, hy

| NTEGER(KIND=ip) :: i, iter, j, I, n, nx, ny, stage_flag
nx = Sl ZE(x)

ny = Sl ZE(y)

n = nx*ny

hx (x_right - x_left)/(nx - 1)
hy = (y_top - y_botton)/(ny - 1)

! Save incomng value of u at last tine step, as well as set the initial guess u_old to u at the

! last tine step.

un=u ! This is necessary since u_n WLL BE NEEDED AT EVERY | TERATION, for the first D G stage.

IF (linear_flag /= 1) THEN

u_old = u_n! This assignes the first guess of the iterations as the value at the last tine step.

END | F

Start the iteration | oop. The convergence linit, "quasi_epsilon", is calculated in the MAIN Program
based on the value of the time step, k, and generally assigned a value of at |east k"3, to ensure
that DELTA u is less than the maxi numtruncation error. This variable is, however, defined globally

global ly defined variable "quasi_iterations”, in the Main Program NOTE: These iterations solve for

the solution to the fully LINEARI ZED (Frechet-Taylor) formof the original non-linear PDE |If
sufficiently small, the value of the first iterate can be reasonably taken to be the value at
previous time step.

!
]
!
! in the nodul e "const_parans” above. The maxi num nunber of iterations should also be set in the
]
!
]
!

DO iter = 1, quasi_iterations
IF (iter > 1) THEN
IF (linear_flag /= 1) THEN

kis
the

! If the PDE is non-linear, then beginning with the second iteration, check for convergence before
! starting any calculations for this iteration. Can use either residual or Dn for testing convergence.
! Sinply renove the comment synbol, and CHANGE between "rs_norn and "dn_nornt in the PRI NT statenent.

| F (exact_sol _flag == 0) THEN
IF (rs_norn(iter-1) < quasi_epsilon) THEN
IF (dn(iter-1) < quasi_epsilon) THEN
en _est = (dn(iter-1))/(1.0_rp - srad(iter-1))
CPTI CNAL PRI NT STATEMENTS:
IF (verbose flag == 1) THEN

PRINT ' (A7, ES9. 3, A48,12, A43,ES12. 6, Al)', "TIME =", &
& ". Newton-Kantorovich Iterations Converged after ",iter-1, &
& " iterations. Final value of L2-normof Dn: ", dn(iter-1),"."
& " iterations. Final value of L2 residual: ", rs_norn(iter-1),"
END I F
RETURN
END | F
ELSE
IF (rs_norn(iter-1) < quasi_epsilon) THEN
I'F (dn_| norn(lter-l) < quasi _epsilon) THEN
CPTICNAL PRI NT STATENENTS
IF(verbosefIag ) THE
PRINT ' (A7, ESQ3AA8I2A43 ES12.6, Al)', "TIME = ", t, &
& ". Newton-Kantorovich Iterations Oanverged after ",iter-1, &
& terations. Final value of L2-normof Dn: ", dn_norn(iter-1),"
& " iterations. Final value of L2 residual: ", rs_norn(iter-1),"
END | F
RETURN
END | F
END I F

END | F
END | F
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! | f convergence is not observed, proceed to the next iteration:
! Every DOUGLAS-GUNN time step for the LI NEARI ZED NON-LI NEAR PDE has two stages, each correspondi ng
! to one of the spatial directions. START THE STAGE LOOP FOR THE TWO STAGES AT EACH | TERATION, m
DO stage_flag = 1, 2
! Cal | Subroutine "qgldgts_coeff_rhs" to cal cul ate POST- DI SCRETI ZATI ON BC- ADJUSTED PDE
! Coefficient matrix and PDE RHS vector, as defined by the above PDE. The stage flag
! deternines which of the two sets of coefficients will be conputed by the
! "dgts_coeff_rhs" routine. If stage_flag = 1, grid function values from BOTH the previous
! time step (u_n), and the last iteration (u_old) are used to calculate the RHS vector,
! and COEFF matrix is conputed at time n+l. If stage_flag = 2, the internediate val ues,
! dv(1)/F(m) becones the RHS vector, and the COEFF matrix is again conputed at time n+l &
! using mth iterate. The solution is updated at the end of the SECOND STAGE for each iteration,
! and allows for testing the convergence of the Newt on-Kantorovich procedure. Al so, the OPTI ONAL
! rs vector conputed at the end of the first stage gives the residual at the current iteration.
! L2 NORMS are used to estimate its magnitude and test for convergence at the beginning of the
! next iteration. If the PDE is linear, then in order to use the functional notation and setup
! of subroutine "qldgts_coeff_rhs", the value of "u_old" is set to "u_n" or "u", for each stage
! respectively.
I'PRINT *, "ITERATION, STAGE: ", Iter, stage_flag
|F (stage_flag == 1) THEN
IF (linear_flag == 1) THEN
CALL gl dgts_coeff_rhs(x, y, t, k, stage_flag, iter, u_n, u_n)

ELSE
CALL gl dgts_coeff _rhs(x, y, t, k, stage_flag, iter, u_n, u_old, rs)
rs_norn(iter) = 0.0_rp
DOi =1, n
rs_norn(iter) = rs_norn(iter) + (rs(i))*rs(i)
END DO
rs_norn(iter) = SQRT(rs_norn(iter))
END | F
ELSE
IF (linear_flag == 1) THEN
CALL gl dgts_coeff_rhs(x, y, t, k, stage flag, iter, u, u_n)
ELSE
CALL gl dgts_coeff _rhs(x, y, t, k, stage_flag, iter, u, u_old)
END | F
END | F

! Cal | LU Deconposition Routine to conpute the grid function at the current time
! STAGE. These | NTERMEDI ATE grid function DELTAs, dU*, are returned in the "rhs" vector.
CALL lud_trid(coeff, rhs)

NOTE: In this case, the values obtained in the RHS vector above are the dU (DELTA_U)

values after each stage (dV after first stage and dU after second, notationally).

Since the direction of evaluation changes from colum-wi se (for each row) in the 1st

stage, to roww se (for each colum) in the 2nd stage, we have to RE- ORDER the RHS vector
output by the lud_trid routine into the Giid Function deltas (dUs) at EACH STAGE of the

time step m In order to MN MZE STORAGE, the internediate values are overwitten in the
second stage of this time step, to give the FINAL grid function delta values at the end of
the current iteration, m

| MPORTANT NOTE:

stage_flag = 1: CONVERT BY ROWS (col utm-wi se eval uations) TO MAI NTAIN SYSTEM TRI - DI AGONALI TY.

!
]
]
|
]
!
]
]
!
! =
! stage_flag = 2: CONVERT BY COLUWMNS (row w se eval uations) TO MAI NTAIN SYSTEM TRI - DI AGONALI TY.
|

|

=1
F (stage_flag == 1) THEN ! 1st STAGE: Convert RHS= dv(1)= dV by Rows(Lines//x-axis)
DOj =1, ny
DOi =1, nx
u(j,i) = rhs(l)
I =1 +1
END DO
END DO
ELSE ! 2nd STAGE: Convert RHS= dv(2)= dU, by Col urms(Lines//y-axis)
DOi =1, nx
DOj =1, ny
u(j.i) = rhs(l)
=1 +1
END DO
END DO
END I F
END DO | Stage Loop.

! Now update the grid functions to the the value at the CURRENT tinme step: u(m) = U (=dU) + u_old.
! Here, dU (U stored in the rhs vector, OR dv(2)) is the reordered formof the |ast RHS vector

! output fromthe lud_trid subroutine, corresponding the output for stage flag = 2.
DOi =1, nx
DOj =1, ny
I'F (linear_flag 1) THEN
u(j,i) =u(i,i) +un(j,i)
ELSE
u(j,i) =u(j,i) +u_old(j,i)
END | F
END DO
END DO

! For NON- LI NEAR PROBLEMS, if exact solution is NOT available, conpute the iteration error norm
! tenporarily storing the iteration error in the estimated error array, en_est. If the exact solution
! is known, conpute the relative error Dn = u_(n) - u_(n-1) to use for convergence tests. Finally, save the
! current iteration grid function values for use in the next iteration.
IF (linear_flag /= 1) THEN
I F (exact_sol _flag == 0) THEN
en_est = u - u_old

dn(iter) 0.0_rp
DOj =1, ny
DOi =1, nx
dn(iter) = dn(iter) + (en_est(j,i))*en_est(j,i)
END DO
END DO
dn(iter) = SQRT(dn(iter))
|F (verbose_flag == 1) PRINT *, “Dn = ", dn(iter) ! OPTI ONAL

IF (iter > 1) THEN
srad(iter) = dn(iter)/dn(iter-1)

END | F
IF (iter == quasi_iterations) THEN ! Final iteration Wrning.
en_est = (dn(iter))/(1.0_rp - srad(iter))
! OPTI ONAL PRI NT STATEMENTS:
| F (verbose_flag == 1) N
PRINT ' (A20, ES9. 3, A1, A38, 12, A30, ES12.6)", "*** WARNING TIME = ", t,".", &
& "N-K Iterations DID NOT Converge after ",iter," iterations. L2-normof Dn: ", dn(iter)
& "N-K Iterations DID NOT Converge after ",iter," iterations. LAST L2 residual:",rs_norn{iter)
END | F
END | F
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ELSE ! Conpute Dn to assess the decrease in relative error with iterations.
uold =u- u_old
dn_norn(iter) = 0.0_rp
DOj =1, ny
DOi =1, nx
dn_norm(iter) = dn_norn(iter) + (u_old(j,i))*u_old(j,i)
END DO
END DO
dn_nornm(iter) = SQRT(dn_norn(iter))
! WHEN USI NG "rs_norni' > I'F (verbose_flag 1) PRINT *, "Dn =", dn_norn{iter)
IF (iter == quasi _iterations) THEN ! Final iteration Wrning.
! OPTI ONAL PRI NT STATEMENTS:
I F (verbose_flag == 1) THEN

PRINT ' (A20, ES9. 3, A1, A38, 12, A30, ES12.6)"', "*** WARNING TIME = ", t,".",
& "N-K Iterations DID NOT Converge after ",iter," iterations. L2-normof Dn: ", dn_norn(iter)
! & "N-K Iterations DID NOT Converge after ",iter," iterations. LAST L2 residual:",rs_norn{iter)
END | F
END | F
END I F
u_old =u

END | F
! | F (exact_sol _flag == 0) THEN
1 IF (iter == 1) PRINT *,

IF (iter == 1) PRINT *, "-- ceeees
L2 RESI DUAL= *

! PRINT *, "Newton-Kantorovich Iteration# ",iter,". L2-normof Dn = dn(iter)
! ELSE

1 IF (iter == 1) PRINT *,

! PRINT *, "Newton-Kantorovich Iteration# ",iter,". L2-normof Dn =

! END I F

]

!

PRINT *, "Newt on-Kantorovich Iteration#
END DO ! lterations Loop

END SUBROUTI NE del ta_gl i n_dgts

PROGRAM nonl i n_par abol i ¢c_pde
USE const _par ans

USE faul t _parans

USE pde_routi nes

USE sol ver _routines

I MPLICI T NONE

Program for the solution of a GENERAL NON-LINEAR, 2D, TI ME DEPENDENT HEAT CONDUCTI ON EQUATION (in Cartesian/
Cylindrical/Spherical coordinates ORin ANY USER DEFI NED ANALYTI C SYSTEM, with general NON-LI NEAR BOUNDARY CONDI TI ONS
USI NG DELTA- FORM OF QUASI LI NI ARI ZATI ON ( NEWION- KANTOROVI CH PROCEDURE) | N CONJUNCTI ON W TH THE DELTA- FORM OF THE
DOUGLAS- GUNN TI ME SPLI TTI NG SCHEME (2- STEP). THI' S CODE CAN ALSO BE USED FOR LI NEAR PROBLEMS W THOUT ANY CHANGES TO
THE CORE ALGORI THM | MPLEMENTED HERE. This code was witten as part of the devel opnment of an "Asperity scale frictional
nelting nodel” for ny MS. Thesis Research. This work was supported by NSF grant: XXXXX-XXXXX. - Ravi Kanda (Novenber, 2002).
This program sol ves an equation of the form
W = {1/ (rho*cp)}*

[al*{kt*(a2_x*U x + a2*U xx) + a2*kt_u*(U x)"2} + bl*{kt*(b2_y*Uy + b2*U yy) + b2*kt_u*(Uy)"2} + f(Ux,y,t)],
where the "_" denotes partial differentiation, obtained by expanding the ADJONT formof the linear, but very general
Pure Conduction Equation. The values of functions al, a2, bl, b2, kt(U) and cp(U can be changed to match any
“regul ar closed domain" (i.e.. Cartesian, Cylindrical, Spherical, Elliptical or ANY USER DEFI NED ANALYTI C SYSTEM domai ns),
in either of the three coordinate systens nentioned above. In addition, the treatnment of the boundary conditions is very
general in that any type of convective/conductive/radiative heat transfer boundary condition can be applied at any of the
boundaries. The code adjusts the formof the equation in Spherical AND Cylindrical coordinates as r -> 0 ("left boundary"
in an equivalent cartesian grid representation), and in Spherical coordinates, as THETA -> 0 or Pl. In these cases, the
coefficients of Ux (or Uy) in the generalized equation above (i.e., a2_x*al and b2_y*bl) are not ANALYTIC. The form
of the coordinate systemcan be specified using a "coord_flag" in the nodule "const_parans". This program conputes
the nunmber of points in the spatial and tinme donains based on user supplied values of hx, hy & k, and conputes the
"evloution" of the grid functions, Ui, for each "grid node" with tine.

NOTE: | F A USER DEFI NED SYSTEM IS CHOSEN, with NON-ANALYTIC {al, a2, bl, b2}, THESE FUNCTI ONS AND THEI R DERI VATI VES MJST
BE DEFI NED CORRECTLY I N THE SUBROUTI NES OF THE MODULE "pde_routines". CARE MUST ALSO BE TAKEN TO APPROPRI ATELY
| MPLEMENT THE "I NTERI OR' LOOP AND ALL THE “BOUNDARY CONDI TION' LOOPS, | N THE SUBRQUTINE “ql dgts_coeff _rhs".

NOTE: For use with highly non-linear problens, a snoothing flag and paraneter can be prescribed by the user, in the command

line, followi ng the executable nane. Either 1D or 2D Snpothing can be carried out using the sinple Shuman filter, a | ow pass
filter, that basically snooths out gradients in the domain at the end of each tinme step, at points (deternined explicitly by

the user). IF SMOOTH FLAG | S NON- ZERO, THEN APPROPRI ATE CHANGES NEED TO BE MADE BELOW I N THE MAIN PROGRAM TO MODI FY APPROPRI ATE
GRID VALUES OF U.

This program conputes the nunber of points in the spatial and time domains based on user supplied values of hx, hy

& k, and conputes the "evloution" of the grid functions, Ui, for each "grid node" with time. It allocates arrays,

prior to these conputations. The boundary conditions are specified in separate functions, as are the forcing

function, f_rhs, as well as the exact solution (if known). IN TH S VERSI ON, boundary condition flags HAVE TO BE DEFI NED in

the nodul e CONST_PARAMS, but SPECIFIED in the MAIN PROGRAM This al lows for SEVERAL changes in Boundary Condition types,

with tine [as when an Initial Neumann BC changes later to a Dirichlet BC]. Further details of boundary condition inplenmentation
are presented under the subroutine "qgldgts_coeff_rhs", above. The initial condition is specified under a separate function,
and is passed on to the "gl dgts" subroutine. Time stepping is controlled in the main program which outputs data at sel ected
time levels to the output files. The latter subroutine outputs the values of the grid function u, at each tine step, in

a two dinensional array in y(j), and x(i). The plot data are printed out in separate output files to facilitate easy
post - processing, for each of the time steps specified by the user. The number of tinme steps to be plotted or gridded

and the nunber of output files, along with their names can be changed by changing the "out" parameter array size, and

the array's elenments, in the "const_parans” npdul e. EXTENS|I VE checks have been added to all algorithms to inprove

ERROR TRAPPI NG The program all ows the output of grid function and plot data at any resolution that the user chooses,

with the naxi mum ALLOAED resol ution, of course, being hx*hy. If |ower resolutions of hx and hy than allowed by the

machine array linitations are needed, the code can be nodified later to conpletely elininate storage in large arrays,

and instead, directly print out only the required plot data to output files. Evolution of maxinmumtenperature is output to the
screen at a few specified tine |evels.

REAL(KI ND=r p), ALLOCATABLE, DI MENSI ON(:, u_errg, u_grid

REAL( KI ND=rp), ALLOCATABLE, DI MENSION(:, :) :: en, error_maxevol, u, u_evol, u_naxevol, u_ninevol, u_xsnap, u_ysnap

REAL(KI ND=r p), ALLOCATABLE, DIMENSION(:) :: dn, srad, t_max_evol, Xx, y

REAL( KI ND=rp), DI MENSION( SIZE(grid_conv,1) ) :: u_conv

REAL( KI ND=rp), DI MENSION( SIZE(t_snap) ) :: u_grid_norm

REAL(KIND=rp) :: dtdec, en_max, en_norm global _nmax_error, global _max_error_u, global_max_u, global _nmax_u_error, &
& gl obal max_u_norm hx, hy, jr, k, Ir, Isx, |sy, naxdec, max_error, max_error_u, max_u, max_u_error, min_u, &
& mn_u_error, nr, nr, steps, t, t_evol, t_global _max, t_global _max_error, tm t_out, t_steps, u_norm x_steps, &
& y_steps, yl, y2

| NTEGER( KI ND=i p), ALLOCATABLE, DIMENSION(:) :: i_grid, i_xsnap, j_grid, j_ysnap, nt_evol, nt_max_evol
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| NTEGER( KI ND=i p), DI MENSI ON( Sl ZE(t _snap)) :: nt_snap
| NTEGER( KI ND=i p), DI MENSI ON(SI ZE(grid_conv, 1)) :: nt_gridconv, nx_gridconv, ny_gridconv

I NTEGER(KI ND=i p) :: alloc_error, bcout_flag, close_status, dealloc_error, decsteps, evol _count, i, i_evol, ifgl, ifg2, ifg3, &
& ifg4, i_max, i_max_global, int_res_flag_1, int_res_flag_2, int_snflag, i_tmax, i_tmax_global, i_tnmin, &
& i_tmn_global, i_ysnap, j, j_evol, j_max, j_max_global, j_tmax, j_tmax_global, j_tmin, j_xsnap, I, Ik, &

&It, Ix, ly, m maxintt, ntO, n, n_c_r, ne, n_evol, nk, normflag, n_t, n_tout, nt_global max, &
& nt_gl obal max_error, nt_xsnap, nt_ysnap, numtmaxevol, n_xgrid, n_xout, n_xsnap, n_ygrid, n_yout, n_ysnap, &
& open_status, out_count, out_time_steps, p, sl, tevol _count, t_points, x_points, xsnap_count, &
& ysnap_count, y_points
res_flag_1, res_flag_2, snflag
snfact

CHARACTER( LEN=1)
CHARACTER( LEN=6)

! Program Screen Header.

PRINT *, "

PRINT *, "Programto conpute the solution of a GENERAL NON- LI NEAR, 2D, HEAT CONDUCTI ON EQUATION (in Cartesian/ "
PRINT *, "Cylindrical/Spherical coordinates), with general NON-LI NEAR BOUNDARY CONDI TI ONS USI NG THE DELTA- FORM "
PRINT *, "OF QUASI LI NI ARl ZATI ON ( NEWION- KANTOROVI CH PROCEDURE) | N CONJUNCTI ON W TH THE DELTA- FORM OF THE "

PRINT *, "DOUGLAS- GUNN TI ME SPLI TTI NG SCHEME (2-STEP). TH S CODE CAN ALSO BE USED FOR LI NEAR PROBLEMS W THOUT "
PRINT *, "ANY CHANGES TO THE CORE SUBROUTINES OF THI' S | MPLEMENTATI ON. - by RAVI KANDA (November, 2002)."

o S S "
PRINT *, " "

SPATI AL Resol ution Flag can be any nunber between 1 and 6. Each higher integer halves the grid spacing in space, in equal proportions.
EXAMPLE: If x_right = 1.0,

res_flag_1 _res_flag_1 = 49: hx = hy = 0.1
res_flag_1 int_res_flag_2 = 50: hx = hy = 0.05
res_flag_1 = 3: int_res_flag_3 = 51: hx = hy = 0.025
............... And soon ......... .. ifgl = IGETAR1,res_flag_1,1)

IF (ifgl < 0) THEN

PRINT *, "Error Reading FI RST ARGUMENT: SPATI AL Resol ution Flag! Check that the program executable is followed by FOUR "
PRINT *, "argunments, SEPARATED BY SPACES. The first argument (1-9) specifies the SPATIAL resol ution. The second argunent (l— 5"
PRINT *, "specifies the TEMPORAL resolution. The third argunent (0-2) specifies SMOOTH NG FLAG The fourth (000000-999999) "
PRINT *, " ies the SMOOTHI NG FACTOR, if snmoothing flag is NCNZERQ The SPATIAL resolutions are deternined as fol l ows: "
PRINT *, "ecevcccmmncnannnnns FIRST ARGUMENT - -----mmmmmmmmamm e oo
PRINT *, "FIRST ARGUMENT = 1: RES 1: hx1 hx_nax, hyl = hy_nmax "
PRINT *, "FIRST ARGUMENT = 2: RES 2: hx2 hx1/ 2, hy2
PRINT *, "FIRST ARGUMENT = 3: RES 3: hx3 = hx2/ 2, hy3 =
PRINT *, AND SO ON'
PRINT *,
STOP
ELSE
int_res_flag_1 = | CHAR(res_| flag_l)
IF ( ((int_res flag_l - 48) == 0) .OR ((int_res_flag_1 - 48) > 9) ) THEN
PRINT *, "xkxxs RRGC Due to MACHI NE LI M TATIONS, the FIRST argunment nust be between 1 and 6! EXI TI NG PROGRAM "
STOP
END I F
hx = hx_max/(2.0_rp**(int_res_flag_1 - 49))
hy = hy_max/(2.0_rp**(int_res_flag_1 - 49))
Check that the output grid spacings are reasonable.
IF (out _x grld spam ng < hx) THEN
"WARNING: Grid output has been requested at a higher resolution than hx! Setting this to equal hx."
out_x_grl d_spacing = hx
END | F
I'F (out_y_ grld spacing < hy) THEN
RINT *, "WARNI NG Gld output has been requested at a higher resolution than hy! Setting this to equal hy."
outiyigrl d_spacing = hy
END | F
END | F

TEMPORAL Resol ution Flag can be any nunber between 1 and 5. Each higher integer cuts the time resolution by a 10th.

fg2 = IGETARGZ res_flag_2,1)
F (ifg2 < 0) THEN

]

! res_flag_2 int_res_flag_2 = k = M N(hx, hy) =0.1 For the above SPATIAL resol ution exanpl e
! res_flag_2 int_res_flag_2 = 50: k = M N(hx, hy)/ 10 =0.01 For the above SPATIAL resol ution exanpl e

! res_flag_2 int_res_flag_2 = 51: k = M N(hx, hy)/100 = 0.001 For the above SPATIAL resol ution exanple

! res_flag_2 = int_res_flag_2 = 52: k = M N(hx, hy)/1000 = 0.0001 For the above SPATIAL resol ution exanpl e

! res_flag_2 int_res_flag_2 = 52: k = M N(hx, hy)/10000 = 0.00001 For the above SPATIAL resol ution exanple

i

|

PRINT *, "Error Reading SECOND ARGUVENT: TEMPORAL Resol ution Flag! Check that the program executable is followed by FOUR "
PRINT *, "arguments, SEPARATED BY SPACES. The first argunment (1-9) specifies the SPATIAL resolution. The second argunment (1-5)"
PRINT *, "specifies the TEMPORAL resolution. The third argunent (0-2) specifies SMOOTH NG FLAG The fourth (000000-999999)
PRINT *, " ies the SMOOTHI NG FACTOR, if smoothing flag is NON-ZERO The TEMPORAL resol utions are determned as follows: "
PRINT *, "ecevcccmmncnannnnann SECOND ARGUMENT - ------mmmmmmmamae e "
PRINT *, "SECOND ARGUVENT : TIME RES 1: k = MN(hx, hy)"
PRINT *, " SECOND ARGUVENT TIME RES 2: k = M N(hx, hy)/10"
PRINT *, "SECOND ARGUVENT TIME RES 3: k = M N(hx, hy)/100"
PRINT *, " SECOND ARGUVENT TIME RES 4: k = M N(hx, hy)/1000"
PRINT *, " SECOND ARGUVENT TIME RES 5: k = M N(hx, hy)/10000"
L L "
STOP
ELSE
int_res_flag_2 = ICHAR(res_fl ag_2)
IF ( ((int_res_flag_2 - 48) == 0) .OR ((int_res_flag_2 - 48) > 5) ) THEN
PRINT *, "***** FRROR Due to MACHI NE LI M TATIONS, the SECOND argunent nust be between 1 and 5! EXI TI NG PROGRAM "
STOP
END | F
k = ( MNChx, hy) )/( 10.0_rp**(int_res_flag_2 - 49) )
! Set Tol erance for Non-Linear Iterations.
IF (linear_flag /= 1) THEN
quasi _epsilon = k*k*k
quasi _iterations = 25
ELSE
quasi _epsilon = 1. 0E30
quasi _iterations = 1
END I F
END | F

SMOOTHI NG FLAG THI RD ARGUMENT AFTER THE PROGRAM EXECUTABLE. For highly non-linear problens, this smooths out the gradients
in the domain, at the end of each tine step, at points (deternmined explicitly by the user) using either 1D or 2D Shuman Filter.
IF TH'S VALUE | S NON-ZERO, THEN APPROPRI ATE CHANGES NEED TO BE MADE BELOW | N THE MAIN PROGRAM TO MODI FY THE APPROPRI ATE
GRID VALUES OF U. Values for this flag are:
smooth_flag = 0, no snoot hi ng
snoot h_f | ag 1, 1D snoothing
smooth_flag = 2, 2D snoot hi ng.
g3 = | GETARG 3, snfl ag, 1)
F (ifg3 < 0) THEN

PRINT *, "Error Reading THI RD ARGUMENT: SMOOTHI NG Fl ag! Check that the program executable is followed by FOUR argunents, "
PRINT *, "SEPARATED BY SPACES. The first argunent (1-9) specifies the SPATIAL resolution. The second argument (1-5) "
PRINT *, "specifies the TEMPORAL resolution. The third argunent (0-2) specifies SMOOTHI NG FLAG The fourth (000000-999999)
PRINT *, "specifies the SMOOTH NG FACTOR, if smoothing flag is NO\I—ZERQ The SMOOTH NG FLAGS are as fol lows: "

PRINT *, "-c-ccccmncnnnnnnns TH RD ARGUMENT --------mmmmmmmm oo oo -



PRINT *, "TH RD ARGUMENT = snooth_flag = 0, No snoot hi ng"
PRINT *, "TH RD ARGUMENT = snooth_flag = 1, 1D snoot hi ng"
PRINT *, "TH RD ARGUMENT = snooth_flag = 2, 2D snoot hi ng"
PRI NT e e e e e e e oo "
STOP
ELSE
snmooth_flag = | CHAR(snfl ag) - 48
IF (smooth_flag > 2) THEN
PRINT *, "***** ERROR This program can handl e only 1D or 2D problens. The TH RD argunent nust be between 0 and 2!"
PRINT *, "EXI TI NG PROGRAM "
STOP
END I F
END I F

NOTE: I|f the TH RD argunent, SMOOTH NG FLAG is NON-ZERO then specify a degree of snpothing between {2 or 4} to 9999
as the last argunent for the executable file, for 1D or 2D SMOOTH NG respectively.
g4 = | GETARGE 4, snf act, 6)
(ifgd < 0) THEN
PRINT *, "Error Reading FOURTH ARGUVENT: SMOOTH NG FACTOR Check that the program executable is followed by FOUR argunents,

PRINT *, "SEPARATED BY SPACES. The first argunent (1-9) specifies the SPATIAL resol ution. The second argunment (1-5)
PRINT *, "specifies the TEMPORAL resolution. The third argunent (0-2) specifies SMOOTH NG FLAG The fourth (000000-999999)
PRINT *, "specifies the SMOOTH NG FACTOR, if snpothing flag is NONZERO. SMOOTH NG FACTOR has a range of 0-999999, and "
PRINT *, "MJST BE 6 characters |ong. FORMAT: 000002, 000038, 000125, 001525, 085792, & 850000."
PRINT *, "IF NO SMOOTHI NG IS NEEDED, nmke sure that the TH RD ARGUMENT, SMOOTHI NG FLAG is ZERO, & SET this value to 000000!"
PRINT * " "
PRINT *, "Check al so that the program executable is followed by THREE 1-digit argunents, SEPARATED BY SPACES, prior to this one."
L R e e LR L LR "
STOP
ELSE IF (ifgd < 6) THEN
PRINT *, "Error Reading FOURTH Input! This argunent specifies the SMOOTH NG FACTOR FOR NON- LI NEAR TEMPERATURE CORRECTI ONS. "
PRINT *, "This argunment has a range of 0-999999, and MJST be 6 characters |ong. FORMAT: "
PRINT *, "000002, 000038, 000125, 001525, 085792, & 850000."
PRINT *, "I F NO SMOOTHI NG | S NEEDED, nmke sure that the THI RD ARGUVENT, SMOOTHI NG FLAG is 0 (ZERO, & SET this value to 000000!"
PRINT *, " "
PRINT *, "Check al so that the program executable is followed by THREE 1-digit, and ONE 6-digit argunents, SEPARATED BY SPACES."
LU B "
STOP
ELSE
smoot h_factor = (ICHAR(snfact(l 1)) - 48)*100000.0_rp + (I CHAR(snfact(2:2)) - 48)*10000.0_rp &
(1 CHAR(snfact (3:3)) - 48)*1000.0_rp + (I CHAR(snfact(4:4)) - 48)%100.0_rp &
& + (I CHAR(snfact (5:5)) - 48)*10.0_rp + (I CHAR(snfact (6:6)) - 48)*1.0_rp
IF ( (smooth_flag == 0) .AND. (snooth_factor > 0) ) THEN
PRINT *, "SMOOTHI NG FLAG = 0: For NO snoot hi ng, SMOOTHI NG FACTOR MJST BE 0000 (ZERO)!"
PRINT *, "EXI TI NG PROGRAM "
STOP
END | F
END | F

! Connect to output files, and type in the headings. Report opening errors.
DO m= 1, SIZE(out)
OPEN (UNI T=out (m), FILE=outfile(n), STATUS="REPLACE', |CSTAT=open_st at us)

DOi =1,3
| F (open_status==0) THEN
EXIT ! Exit on successful opening/connection
ELSE
PRINT *, "Unable to open file - ", outfile(m, ". Trying again."
ENDI F
PRINT *, outfile(m, " cannot be opened! Check your source directory contents."
STOP
END DO

WRI TE (UNI T=out (m), FMI=' ("% Programto conpute the solution evolution of a GENERALI ZED NON-LI NEAR, 2D "/ &
& "% HEAT CONDUCTI ON PDE, with GENERALI ZED NON- LI NEAR BCs, using the DELTA- FORM of "/ &
& "% QUASI LI NEARI ZATI ON ( NEWTON- KANTOROVI CH PROCEDURE) W TH DOUGLAS- GUNN Tl ME&
& SPLITTING SCHEME: "/"% - by RAVI KANDA (July, 2002)."

WRI TE (UNI T=out (m) "% Precision: KIND =",12," for FORTRANGO Conpiler v2.4 for HP-UX 11i on HP-SuperDone.")') rp
WRI TE (UNI % “I%))

WRI TE (UNI "X-Limts: (x_left, x_right) (",ES14.8,",",ES14.8,")")") x_left, x_right

VR TE (UNI "Y-Limts: (y_bottom y_top) (",ES].4.8,“,“ ESl4 8,")")") y_bottom y_top

WRI TE (UNI "t-Limts: (t_initial, t_final) = (", ES14.8,", " ES14.8,")")") t_initial, t_final

WRI TE (UNI "The value of x-step, hx =", ES14.8)') hx

VWRI TE (UNI "The val ue of y-step, hy =", ES14.8)') hy

WRI TE (UNI "The value of t-step, k =", ES14.8)') k

VR TE (UNI T=out () | O - - - m e e iiiiiaiiiioioo- "))

IF (linear_flag /= 1) THEN
WRI TE (UNI T=out (nm), FMI=' ("% This problemis indicated to be NON-LI NEAR. Newton-Kantorovich "/&

& "%iterations will be performed up to a convergence tol erance of ES12.6,"."/ &
& "% The maxi mum nunber of iterations, nmax_iter, was set to: ",12,".")") qua5| _epsilon, quasi _iterations
VR TE (UNET=0UL (1), FMI=' (" 0f = < = = == = = = = = == m o m o mm o m o oo o e o e oo e oo D)

| F (snooth_flag == 0) THEN
WRI TE (UNI T=out (1,
WRI TE (UNI T=out (),
ELSE I F (smooth_flag == 1) THEN
WRI TE (UNI T=out (n), FMI=" ("% SMOOTHI NG FLAG = 1: 1D SMOOTHI NG W LL BE PERFORMED, with SMOOTHI NG FACTOR = ", &
& F7.2,".")") snooth_factor

VR TE (UNET=0UL (1), FMI=' (" 06 = = == = = - = = = = == m = m o m o o m o o o e o e m o o e o oo oo e oo "y
ELSE
WRI TE (UNI T=out (n), FMI=" ("% SMOOTHI NG FLAG = 2: 2D SMOOTHI NG W LL BE PERFORMED, with SMOOTHI NG FACTOR = ", &
& F7.2,".")") snooth_factor
WRI TE (UNITZ0UL (1), FMI=' (" Qb - - - = = = = = = = = = m o oo e o e m e o e o e o e o e o e oo e e o e e e oo e et oo "))
END | F
ELSE
WRI TE (UNI T=out (m), FMTI=' ("% This problemis indicated to be LINEAR No iterations need to be "/&
& "% perfornmed. Douglas-Gunn Tinme splitting will be directly inplenented.")")
WRI TE (UNIT=out (n), FMI='("%-- "))
END | F

|F (coord_flag == 1) THEN

VRI TE (UNI T=out (), FMI=

"% COORDI NATE SYSTEM CARTESI AN.")* )

WRI TE (UNI FMI=" ("% - - D)
ELSE | F (coord_fl ag

WRI TE (UNI u FMI'=" (" % COORDI NATE SYSTEM CYLINDRICAL.")")

VR TE (UNIT=0UL (1)) FME=" ("0 = - o - = = mmm e o mmmmmmmmmm e e e e o "y
ELSE

WRI TE (UNI T=out (1, "% COORDI NATE SYSTEM SPHERI CAL.")"')

WRITE (UNIT=0Ut (1), FMI=" ("0 <« == w = wmmmmmmmmemeemeeeee o ")
END | F

END DO
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I F (exact_sol _flag == 0) THEN ! No exact solution avail able.
IF (linear_flag /= 1) THEN
PRINT *, "Exact solution not available for Non-Linear Problem Using Error Estinates.”
WRI TE (UNI T=out (2), FMI='(

WRI TE (UNI T=out (2), FMI= )
ELSE

PRINT *, "Exact solution not available for Linear Problem No Error Estimate available."

WRI TE (UNI T=out (2), FMI='("% LI NEAR PDE: Exact solution not available. No Error Estimates Available.")")

WRI TE (UNI ut (2), FM: % LI NEAR PDE: ERRORS W LL BE ARBI TRARILY SET TO 1000.0_rp!")")

WRI TE (UNITZ0UL (2), FMI=" (" Qb - - = - = == == == == = = % = x m ottt m ot ot ot e oot ettt e e el "))
END | F

END | F

! Conpute the RADI AN MEASURE of the RADIUS OF ASPERI TY CONTACT AREA. QUTPUT FAULT DATA TO ALL FILES & SCREEN. This cannot be conputed
! under FAULT PARAMS because the Paraneter statenent does not accept any intrinsic function evaluations.
y0 = ATAN(rc_by_r0)

! Print out all the Fault Parameters Being used for this run:
DO m= 1, SIZE(out)
WRI TE (UNI T=out (),
WRI TE (UNI T=out (),
WRI TE (UNI T=out (),

" Anbi ent Tenperature, uo
"Asperity Radius, ro
"Young' 's Mbdul us, E

300 K.")")
", F6.3, " m")") x_right
" F6.2, " GPa.")') ey

WRI TE (UNI T=out (m), "Poi sson''s Ratio, nu ", F4.2, " (dinmensionless).")"') nu_ps
WRI TE (UNI T=out (), "Coef ficient of Friction, m =", F4.2, " (dinensionless).")")

VWRI TE (UNI ut (m, "Density of asperity material, rho ", F7.2, " kg/nm*3.")') rho

WRI TE (UNI T=out (), " Anbi ent average shear stress, TAU = ", ES8.2," Pa.")') tau

WRI TE (UNI T=out (m),
WRI TE (UNI T=out (m),
WRI TE (UNI ut (m,

“Asperity slip velocity, U
"The ratio, rc/ro
"Maxi mum radi us of circular asperity contact area, rc
WRI TE (UNI T=out (m), "Asperity slip duration, TO
WRI TE (UNI T=out (), (" Maxi num Asperity contact, THETA O
IF (linear_flag == 1) THEN

F6.3, " msec.")"') slip_v

ES14.8," (dinmensionless).")') rc_by r0
ES9.3, " m")') rc

ES9.3, " sec.")') tO

F10.8," Radians.")') y0

WRI TE (UNI T=out (), FMI=' (" Thernal Conductivity, kt =", ESB.2, " W(nm*2.K).")') kt_const
WRI TE (UNI T=out (m), FMr='("Specific Heat, Cp =", ES8.2, " J/kg")') cp_const
(" Thermal Conductivity, KAPPA = ", ES8.2, " nr*2/sec.")') &

WRI TE (UNI T=out (n), FMI=
&
kt _const/ (rho*cp_const)
ELSE

WRI TE (UNI T=out (n), FMI='("Specific Heat, Cp & Coeff. of Thermal Conductivity, k are NON-LINEAR FUNCTI ONS OF TEMPERATURE.")')
IF

END
WRI TE (UNETZ0UL (1), FIMITZ" (" 0b - = = = = - = = = = = = = = = x = x = m o n @ m o o o e o o o o o e o @ @ e o o e e oo e e ")
END DO
PRINT *, "X-Limits: (x_left, x_right) = (",x_left," " x_right,")"
PRINT *, "Y-Linits: (y_bottom y_top) y_bottom™",",y top,")"
PRINT *, "t-Limits: (t_initial, t_final) Jt_initial,", "t _final,")"
PRINT *, "The val ue of x-step, hx , hx
PRINT *, "The val ue of y-step, hy , hy
PRINT *, "The value of t-step, k "k
PRINT *, "Snoothing Flag ", snooth_flag
PRINT *, "Snpot hi ng Factor ", smoot h_factor
23T """ """ """"-—====e—=—-—m"n "
PRINT *, "Anbient Tenperature, w = 300 K"
PRINT *, "Asperity Radius ro =", x_right, " m"
PRINT *, "Young''s Modul us, E=", ey, " GPa."
PRINT *, "Poisson's Ratio, nu =", nu_ps, " (di mensionl ess)."
PRINT *, "Coefficient of Friction, m =", nu, " (dinmensionless)."
PRINT *, "Density of asperity material, rho =", rho, " kg/m*3."
PRINT *, "Anbient average shear stress, TAU = ", tau, " Pa."
PRINT *, "Asperity slip velocity, u=", slip_v, " nmsec.”
PRINT *, "The ratio, rc/r0 =", rc_by_r0," (dinensionless)."
PRINT *, "Maxi mumradius of circular asperity contact area, rc =", rc, " m"
PRINT *, "Asperity slip duration, TO =", tO, " sec.”
PRINT *, "Maxi mum Asperity contact THETA O = ", yO, " Radians. "
IF (linear_flag == 1) THEN
PRINT *, “"Thermal Conductivity, kt =", kt_const, " W(m*2.K)."
PRINT *, "Specific Heat, Cp , cp_const, " J/kg"
PRINT *, "Thernmal Conductivity, KAPPA , kt_const/(rho*cp_const), " n¥*2/sec.”
ELSE
PRINT *, "Specific Heat, Cp & Coeff. of Thermal Conductivity, k are NON- LI NEAR FUNCTI ONS OF TEMPERATURE. "
END I F
G R et R "
IF (10 < k) THEN
PRINT * " "
PRINT *, "WARNING TO, the asperity separation tine, is LESS THAN THE TEMPORAL RESOLUTION FOR THI'S RUNI! "
PRINT * " "
END I F

IF (t0 > t_final) THEN
PRI NT *

PRI NT *: "WARNING TIME RANGE for this run is LESS THAN the asperity separation time, TO!!"
PRINT * * "

! QUTPUT FILES #1 & 2: GRID FUNCTIONS at tines corresponding to those defined in the array t_snap in the MODULE CONST_PARAMS.
! Convert tinme levels for outputting GRID FUNCTI ONS and ERRORS into time step nunbers for the given value of k, the step size.
! Al so conpute the output grid size, and the grid indices for outputting to these files, given hx and hy.
DO n = 1, SIZE(t_snap)
nr = (t_snap(n) - t_initial)/k + 1.0_rp
I'F ( ABS(nr-INT(nr)) > 0.5_rp ) THEN
nt_snap(n) = INT(nr) + 1

ELSE
nt_snap(n) = INT(nr)

END | F
END DO
I'sx = (x_right - x_left)/(out_x_grid_spacing) + 1.0_rp
IF ( ABS(lsx-INT(Isx)) > 0.5_rp ) THEN

n_xgrid = INT(Isx) + 1
ELSE

n_xgrid = I NT(Isx)
END | F
I'sy = (y_top - y_bottom)/(out_y_grid_spacing) + 1.0_rp
IF ( ABS(Isy-INT(Isy)) >0.5_rp) N

n_ygrid = INT(lsy) + 1
ELSE

n_ygrid = I NT(Isy)
END I F
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! Allocate grid 1D index arrays i _grid, and j_grid. At the same tine, allocate the 3D arrays, u_grid and u_errg.
ALLCCATE (i_grid(n_xgrid), j_grid(n_ygrid), u_errg(n_ygrid,n_xgrid,SIZE(t_snap)), u_grid(n_ygrid, n_xgrid, Sl ZE(t_snap)), &
& STAT=al | oc_error)
IF (alloc_error /=0) THEN

RINT *, "ERROR Sonme/All GRID arrays could not be allocated! Not enough storage space."

STOP
ELSE

PRINT *, "ALL grid ARRAYS SUCCESSFULLY ALLOCATED. "
END | F
yl = x_left

DOi = 1,n_xgrid
Ir = (yl - x_left)/hx + 1.0_rp
IF ( ABS(Ir-INT(Ir)) > 0.5 rp ) THEN
i_grid(i) = INT(Ir) +1

ELSE
i_grid(i) = INT(Ir)
END I F
yl =yl + out_x_grid_spacing
END DO
yl = y_bottom
DOj = 1,n_ygrid
m = (yl - y_bottom)/hy + 1.0_rp
IF ( ABS(mr-INT(mr)) > 0.5rp ) THEN
j_grid(j) = INT(nr) + 1
ELSE
j_grid(j) = INT(nr)
END | F
yl =yl + out_y_grid_spacing
END DO
| e e e e e e e e e e memeeaaas
! QUTPUT FI LE #3: SNAPSHOTS.
! QUTPUT FILE #3a: SNAPSHOT OF PROFILE ALONG A LINE PARALLEL TO x-axis - Convert to time level, i, int(i):
n (t_xsnap - t_initial)/k + 1.0_rp
|

ro=
F ( ABS(nr-INT(nr)) > 0.5_rp ) THEN
nt_xsnap = INT(nr) + 1

nt_xsnap = | NT(nr)
END | F
! Conput e y-index of snap al ong x-axis:
m = (y_xsnap - y_botton)/hy + 1.0_rp
IF ( ABS(mr-INT(nT)) > 0.5_rp ) THEN

j_xsnap = INT(nr) + 1
ELSE

j_xsnap = I NT(nr)
END | F
! Al so conpute/specify the nunber of x spatial steps for output generation. ALLOCATE i _xsnap array, along wth u_xsnap.
! Conpute the index contents of i_xsnap:
n_xsnap = n_xgrid
ALLCCATE (i _xsnap(n_xsnap), u_xsnap(n_xsnap,2), STAT=alloc_error)
IF (alloc_error /=0) THEN

PRINT *, "ERROR All/Sone XSNAP arrays coul d not be allocated! Not enough storage space."”

STOP
ELSE
PRINT *, "ALL xsnap ARRAYS SUCCESSFULLY ALLOCATED. "
END | F
yl = x_left
DOi = 1, n_xsnap
Ir = (yl - x_left)/hx + 1.0_rp
IF ( ABS(Ir-TNT(It)) > 0.5rp ) THEN
i_xsnap(i) = INT(lIr) +1
ELSE
i_xsnap(i) = INT(Ir)
END | F
yl =yl + out_x_grid_spacing
END DO

! QUTPUT FILE #3b: SNAPSHOT OF PROFILE ALONG A LINE PARALLEL TO y-axis - Convert to time level, i, int(i):
nr = (t_ysnap - t_initial)/k + 1.0_rp
IF ( ABS(nr-INT(nr)) > 0.5_rp ) THEN

nt_ysnap = INT(nr) + 1
ELSE

nt_ysnap = I NT(nr)
END I F
! Conput e x-index of snap al ong y-axis:
Ir = (x_ysnap - x_left)/hx + 1.0_rp
IF ( ABS(Ir-INT(IT)) > 0.5_rp ) THEN

i_ysnap = INT(Ir) + 1
ELSE

i_ysnap = INT(Ir)
END | F
! Al so conpute/specify the nunber of y spatial steps for output generation. ALLOCATE j_ysnap array, along with u_ysnap.
! Conpute the index contents of j_ysnap:
n_ysnap = n_ygrid
ALLCCATE (j _ysnap(n_ysnap), u_ysnap(n_ysnap,?2), STAT=alloc_error)
IF (alloc_error /=0) THEN

PRINT *, "ERROR All/Sone YSNAP arrays could not be allocated! Not enough storage space."

STOP
ELSE
PRINT *, "ALL ysnap ARRAYS SUCCESSFULLY ALLOCATED. "
END | F
yl = y_bottom
DOj =1, n_ysnap
m = (yl - y_bottom)/hy + 1.0_rp
IF ( ABS(mr-TNT(mr)) > 0.5_rp ) THEN
j_ysnap(j) = INT(nr) + 1
ELSE
j_ysnap(j) = INT(nT)
END | F
yl =yl + out_y_grid_spacing
END DO

QUTPUT FILE #4: TEMPERATURE & ERROR EVOLUTI ON OUTPUT.
tinme evolution output steps based on the value for t_evol _spacing defined in the MODULE
CONST_PARAMS:

r = (x_time - x_left)/hx + 1.0_rp
F ( ABS(Ir-INT(Ir)) > 0.5_rp ) THEN
i_evol = INT(Ir) + 1
ELSE
i_evol = INT(Ir)
END I F
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m = (y_time - y_bottom)/hy + 1.0_rp
IF ( ABS(mr-INT(mr)) > 0.5 rp ) THEN
j_evol = INT(nr) + 1
ELSE
j_evol = INT(nr)
END | F
nr = (t_final - t_initial)/t_evol _spacing + 1.0_rp
I'F ( ABS(nr-INT(nr)) > 0.5_rp ) THEN
n_evol = INT(nr) + 1
ELSE
n_evol = INT(nr)

END I F
! Allocate the time evolution index array, nt_evol, as well as u_evol. Conpute the index el enents of nt_evol.
ALLOCATE (nt_evol (n_evol ), u_evol (n_evol,2), STAT=alloc_error)
|F (alloc_error /=0) THEN
PRINT *, "ERROR All/Sone T_EVOL arrays could not be allocated! Not enough storage space.”
STOP
ELSE
PRINT *, "ALL t_evol ARRAYS SUCCESSFULLY ALLOCATED."
END I F
t_evol =t_initial
DO m= 1, n_evol
nr = (t_evol - t_initial)/k + 1.0_rp
I'F ( ABS(nr-INT(nr)) > 0.5_rp ) THEN
nt_evol (m) = INT(nr) + 1
ELSE
nt_evol (m) = INT(nr)
END I F
t_evol = t_evol + t_evol _spacing

! MAX. TEMPERATURE & ERROR EVOLUTI ON.
Det er mi ne Maxi mum Tenperature (and Maxi mum Error, if applicable) Evolution tine levels. The tinme levels are distributed at
equi di stant points on a log-scale - i.e., appropriate points in the decades containing the tine step, k, and the final tine,
t_final, and 10 points in each of the internedi ate decades.

t = INT(LOGLO(t final))

k = I NT(LOGLO(k))

IF (t_final == maxdec) THEN ! Deternine the nunber of ternms in the decade containing t_final
mexintt = 0

ELSE
maxi ntt= I NT( t_final/maxdec )

END | F

dtdec = 10.0_rp**( Ik )

! Determine the nunber of terns in the decade containing time step size, k: Exclude the last value, which falls into the next higher decade.
nk = INT(dtdec/k) - 1

! For the internediate tine range (between the decades contiaining t_final and k), each decade will have 9 points.
decsteps = It - |k
num t maxevol = 1 + nk + 9*decsteps + maxintt + 1

! Al locate al |l TEMPERATURE EVOLUTI ON arrays.
ALLCCATE (error_maxevol (num t naxevol ,7), t_max_evol (num tmaxevol ), nt_max_evol (num tmaxevol ), u_maxevol (num t maxevol ,7), &
& u_nmi nevol (num t maxevol , 7), STAT=al | oc_error)
|F (alloc_error /=0) THEN
PRINT *, "ERROR All/Sone TEMPERATURE EVOLUTI ON arrays could not be allocated! Not enough storage space."

STOP
ELSE
PRINT *, "ALL tenperature evol ution ARRAYS SUCCESSFULLY ALLOCATED. "
END I F
! Fill the t_nmax_evol array with appropriate output time |evels.
m= 0
i=1
DOj = 1, numtmaxevol
IF (j <= 1+nk) THEN
IF (j == 1) THEN
t_max_evol (j) = t_initial
ELSE
t_max_evol (j) = (j-1)*k ! If nk =0, there are no terns in this block.
END I F
ELSE I F (j <= 1+nk+9*decsteps ) THEN
t_max_evol (j) = i*dtdec*(10.0_rp**m
i=i+1
IF (i >9) THEN
m=m+ 1
i
END I F
ELSE | F (nmaxintt /= 0) THEN I If maxintt = 0, t_final corresponds to a decadal "margin", then no terns here.
IF (j <= (numtmaxevol - 1) ) THEN
t_max_evol (j) = ( j - (1 + nk + 9*decsteps) )*nmaxdec
END | F
ELSE ! j = num_t maxevol
t_max_evol (j) = t_final
END | F
END DO

! Now convert the maxi numtenperature evolution tine levels to the corresponding integral tine steps, for the given k.
DO m = 1, numtmaxevol
tm= (t_max_evol (n) - t_initial)/k + 1.0_rp
IF ( ABS(tmrINT(tm)) > 0.5_rp ) THEN
nt_nax_evol (m) = INT(tm) + 1
ELSE
nt _max_evol (m = INT(tm
END | F

! QUTPUT FI LE #5: PO NT GRI D CONVERGENCE TEST LOCATIONS - 8 points, at different space & tine coordinates:
! DEFINE TH' S ARRAY | N THE MODULE "const _parans" W TH THE REQUI RED DI MENSI ON! Convert grid convergence tine |evels
! into time levels for the given value of k, the step size. Also, print out all the grid convergence data points.
DO n =1, SIZE(grid_conv, 1)
Ir = (grid_conv(n,1) - x_left)/hx + 1.0_rp
IF ( ABS(IT-INT(Ir)) > 0.5rp ) THEN
nx_gridconv(n) = INT(Ir) + 1
ELSE
nx_gridconv(n) = INT(Ir)
END | F
m = (grid_conv(n,2) - y_bottom)/hy + 1.0_rp
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IF ( ABS(mr-INT(nr)) > 0.5_rp ) THEN
ny_gridconv(n) = INT(nr) + 1

ELSE
ny_gridconv(n) = INT(nr)

END I F

= (grid_conv(n,3) - t_initial)/k + 1.0_rp

IF ( ABS(nr-INT(nr)) > 0.5_rp ) THEN

nt_gridconv(n) = INT(nr) + 1

ELSE
nt_gridconv(n) = INT(nr)

END | F

WRI TE (UNI T=out (5), FMr='(1X "x = ",F4.2,1X "y = ", F4.2,1X,"t =" ,F4.2)") grid_conv(n,1), grid_conv(n,2), grid_conv(n,3)
END DO
wre| TE (UNIT=0UE (5), FMT=' (/"= - = < == mm o m o m o m o m m o m o o o e o m e o e o e oo e oo "))
| e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e e e e e s
! COVPUTE/ | NI TI ALl ZE RUN PARAMETERS, AND ALLOCATE ALL OTHER ARRAYS NEEDED FOR THI S RUN:
T e T T NN
! Cal cul ate the Nunber of Points in the space and tine donains. Check that the number of points do not
! exceed machine linmtations.
x_steps = 1.0_rp + (x_right - x_left)/hx
y_steps = 1.0_rp + (y_top - y_botton)/hy
t_steps = 1.0_rp + (t_final - t_initial)/k

I'F ( ABS(x_: steps |NT(>< steps)) > 0.5_rp ) THEN
Xx_points = INT(x_steps) + 1

ELSE
Xx_poi nts = | NT(x_steps)
END I F
I'F (x_points > max_points) THEN
PRI NT*, "****x%x% FRROR Nunber of x grid points exceeds maxi numallowed grid points, ", max_points
PRI NT* " ABORTI NG PROGRAM "
STOP
END I F

IF ( ABS(y_steps-INT(y_steps)) > 0.5_rp ) THEN
y_points = INT(y_steps) + 1

ELSE
y_points = I NT(y_steps)
END I F
I'F (y_points > max_points) THEN
PRI NT*, "***xxxxx ERROR Number of y grid points exceeds maxi numallowed grid points, ", max_points
PRI NT*, " ABORTI NG PROGRAM "
STOP
END IF

Unlike the x and y grid points above, "t_points" has a maxi numval ue determined only by the machine DO LOOP counter |imit.*****
IF( ABS(t _steps- INT(t _steps)) > 0.5_rp ) THEN
t_points = INT(t_steps) + 1

ELSE
t_points = INT(t_steps)
END | F
n_c_r = x_points*y_points ! This is used in for defining the coeff & rhs arrays in the ALLOCATE statenent bel ow.

! Allocate arrays and vectors. Arrays coeff, NSu_m Nu_m rhs, rs, u_n, u_old are used in other nodules, and MJST BE
DEFI NED GLOBALLY, in the nodul e "const_parans" above.
IF (linear_flag /= 1) THEN
ALLCCATE (coeff(n_c_r,3), dn(quasi_iterations), en(y_points,x_points), NSu_m(2,x_points), Nu_m(y_points,x_points), &
& srad(quasi _iterations), rhs(n_c_r), rs(n_c_r), u(y_points,x_points), u_n(y_points,x_points), &
& u_ol d(y_points, x_points), x(x_points), y(y_points), STAT=alloc_error)
ELSE
ALLOCATE (coeff(n_c_r,3), en(y_points,x_points), NSu_n(2, x_points), Nu_n(y_points,x_points), rhs(n_c_r), &
& u(y_points,x_points), u_n(y_points,x_points), x(x_points), y(y_points), STAT=alloc_error)
END | F
|F (alloc_error /=0) THEN
PRINT *, "ERROR All/Sone NON- QUTPUT- FI LE arrays coul d not be allocated! Not enough storage space."

STCP

ELSE
PRINT *, "ALL non-output-file ARRAYS SUCCESSFULLY ALLOCATED."
PRI NT ¥, - o o e o @ f f et e il .
PRINT *, " *

END I F

! Initialize all arrays that are not being used in the MAIN Program
coeff = 0.0_rp
NJ m= 0.0 rp ! This array is used for the Non-Linear/Linear Functional in "qlindgts_coeff_rhs" routine.

_m=0.0_r ! This array is used for the bottom boundary Non-Linear/Linear Functional in "qglindgts_coeff_rhs" routine.
rh = 0 O_rp
rs =0.0_rp
u_n = 0 O_rp
u_old = 0.0_rp
! Conpute the spatial grid coordinate vectors, X & Y, and assign the initial tine:
x = (I ((x_left + (i-1)*hx), i =1, x_points) /)
y = (/ ((y_bottom + (i-1)*hy), i =1, y_points) /)

! INITIALI ZE time and ot her flags/counters.
t =t_initial

t_evol =t_initial

ne =1

out_count = 1

gl obal _max_error = 0.0_rp

gl obal _max_u = 0.0_rp

evol _count =1 Screen output tine level index
bcout _flag = 0 For outputting BC types each time there is a change.
normflag = For saving U_normeach tine global maxinumtenperature is updated.

Xsnap_count
ysnap_count
tevol _count =1

Count for output level for FILE #3a
Count for output |evel for FILE #3b
Count for output level for FILE #4

! START THE TI ME STEPPING LOOP, with n¥l as the initial tine.
DO n_t =1, t_points
IF (n_t == 1) THEN
! Conpute the initial values for the problem and output them
u="f_initial(x,y)
max_u = 0.0_rp
nmin_u = 1/epsilon
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DOj =1, y_| p0| nts
DOi =1, x_points
IF (ABS(LI(],I)) > max_u) THEN
= ABS(u(j,i))
maxiuierror =en(j,i)
i_tmax =i
j _tmax =j
END | F
I'F (ABS(u(j,i)) < min_u) THEN
mn_u = ABS(u(j,i))
mn_u_error = en(j,i)
i_tnin =i
j_tnin =j
END | F
I'F (ABS(u(j,i)) > global _nmax_u) THEN
gl obal _max_u = ABS(u(j,i))
gl obal _max_u_error en(j,i)
i _t max_gl obal i
j _tmax_gl obal =j
t_gl obal _nax =t
nt _gl obal max =n_t
END | F
END DO

END DO

DEFI NE THE | NI TI AL BC FLAGS.

PDE BOUNDARY CONDI TI ON FLAGS: These are being noved here from CONST_PARAMS to offer flexibility in ternms of

time varying BC TYPES (for

type change can happen any nunber of tines,

different DO LOOPS for each BC set.
NOTATI ON FOR BOUNDARY CONDI TI ON FLAGS:

0 for DIRICHLET {i.e.,
NEUMANN {i . e.,
2 for ROBIN {i.e

instance a change froman initial
and the case-specific handling of these changes will

1 for

Neunann BC to a subsequent Dirichlet BC. The BC

be dealt with

Bbc(U) = B2bc(U)},

Bbc(U) = U x*Blbc(U)},
Bbc(u) = U x*Blbc(U)}.

Al BCs are represented in the generalized non-linear forms encountered in heat conduction problens:

Bbc(U) = U x*Blbc(U)+ B2bc(U) or

LI NEAR BCs. PROVI DE ALL BOUNDARY OPERATCRS, B,

U y*Blbc(U)+ B2bc(U). This formcan be used to represent either
inthis SPLIT FORM using separate functions for Bl and B2, for

NON- LI NEAR or

EACH BC. These classifications and their inplenmentations are discussed under the separate functions in the nodul e

“pde_routines",

left_bc_flag =1
right_bc_flag =1
bottombc_flag =1
top_bc_flag =1

OPTI ONAL Li near Robin Paraneters,
alpha_x = 0.0_rp
alpha_y = 0.0_rp

BOUNDARY CONDI TI ON LI NEARITY FLAGS: 1 if
These will
bel ow.

l'inear,

respective subroutines in MODULE "pde_routines":

_fl
rightJ _f
bottomlin
| a

top_li

:O

left_lin_f
i g
| ag=

ag =
n_fl a
in_fl
n_flag
ConfirmALL BC types for this tinme range.
DO m= 1, SIZE(out)

WRI TE (UNI T=out (m),

IF (left_lin_flag == 1) THEN
IF (left_bc_flag == 0) THEN
WRI TE (UNI T=out (n),
ELSE IF (left_bc_flag 1) TH
WRI TE (UNI T=out (m),
ELSE
WRI TE (UNI T=out (m),
END | F
ELSE
IF (left_bc_flag == 0) THEN
WRI TE (UNI T=out (n),
ELSE IF (left_bc_flag 1) THEN
WRI TE (UNI T=out (n),
ELSE
WRI TE (UNI T=out (m),
END | F
END I F

IF (right_lin_flag == 1) THEN

IF (right_bc_flag ==

WRI TE (UNI T=out (m),
_bc_flag
WRI TE (UNI T=out (m),

ELSE I F (right
ELSE

VRI TE (UNI T=out (1),

END | F
ELSE

IF (right_bc_flag ==

WRI TE (UNI T=out (),
_bc_flag
WRI TE (UNI T=out (n),

ELSE I F (right
ELSE

VRI TE (UNI T=out (1,

END | F
END | F
|F (bottomlin_flag ==

ELSE
WRI TE (UNI T=out (),
END I F
ELSE
I'F (bottombc_flag 0) THEN
VR TE (UNI T=out (),
ELSEIF(bottomhcfl ag == 1)
E (UNI T= om(
ELSE
WRI TE (UNI T=out (),
END | F
END | F

1) THEN
IF (bottombc_flag ==

WRI TE (UNI T=out (m),
ELSE I F (bottom bc_flag
WRI TE (UNI T=out (),

0) THEN

0) THEN

0) THEN
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bel ow, and ESPECI ALLY UNDER THE SUBROUTI NE " gl dgt s_coef f

FMI=' ("% For time <= To =

0 if non-linear.
affect the forns and val ues of the correspondi ng boundary condition functionals (lbcl, bbcl,
If any of these flags is O (non-linear BC) then the forms of these functionals have to be defined in the

",ES8.2, ": ")’

FMT=' ("LEFT BC =
FMr=' ("LEFT BC =
FMT=' ("LEFT BC =

FMT=' ("LEFT BC =

FMT=' ("LEFT BC =
FMT=" ("LEFT BC =

FMT'=' ("R GHT BC =

1) THEN

FMT=' ("R GHT BC =

FMI=' ("R GHT BC =

FMr=" ("Rl GHT BC =

1) THEN

FMT=' ("R GHT BC =
FMT=' ("Rl GHT BC =

FMr=" (*BOTTOM BC

= 1) THEN

FMr=" (" BOTTOM BC
FMr=" (" BOTTOM BC

FMr=" (*BOTTOM BC

THEN
m, FMr='("BOTTOM BC

FMr=" (" BOTTOM BC

ALPHA x & ALPHA y for each of the two directions.

_rhs", where they are used:

Eg., in: L =Ux + alpha_x * U

thc2, etc.)

ADVANCE="NO') tO

Linear Dirichlet; ")', ADVANCE="NO')
Li near Neunmann; ")', ADVANCE="NOJO')
Linear Robin; ")', ADVANCE="NO')
Non-Linear Dirichlet; ")', ADVANCE="NO')
Non- Li near Neumann; ")', ADVANCE="NO')
Non- Li near Robin; ")', ADVANCE="NOJO')
Linear Dirichlet; ")', ADVANCE="NO')
Li near Neumann; ")', ADVANCE="NO')
Linear Robin; ")', ADVANCE="NO')
Non-Li near Dirichlet; ")', ADVANCE="NO')
Non- Li near Neumann; ")', ADVANCE="NOJO')
Non- Li near Robin; ")', ADVANCE="NOJO')
= Linear Dirichlet; ")', ADVANCE="NO')
= Linear Neumann; ")', ADVANCE="NO')
= Linear Robin; ")', ADVANCE="NO')
= Non-Linear Dirichlet; ")', ADVANCE="NO')
= Non-Linear Neumann; ")', ADVANCE="NO')
= Non-Linear Robin; ")', ADVANCE="NO')



"))

"))

"))

"))

"))

"))

ELSE

IF (top_lin_flag == 1) THEN
IF (top_bc_flag == 0) THEN
WRI TE (UNI T=out (n), FMI='("TOP
WRI TE (UNI T=out (m), FMI=' ("% -
&

Linear Dirichlet

"))

ELSE IF (top_bc_flag == 1) THEN
WRI TE (UNI T=out (n), FMI='("TOP BC = Linear Neumann
WRI TE (UNI T=out (m), FMI='("%-

&

ELSE
WRI TE (UNI T=out (n), FMI='("TOP BC = Linear Robin; ")')
VR TE (UNIET=0Ut (1), FMI=' (" 06 = = == = = == = = = = m - m o m o mm o m e o oo m o e e e oo &
= = m mmm e m e e e e e e e e e e e e e e e memaaan
END | F
ELSE
IF (top_bc_flag == 0) THEN
WRI TE (UNI T=out (n), FMI='("TOP BC = Non-Linear Dirichlet.")")
WRI TE (UNI T=out (m), FMI='("%-
& ----
ELSE IF (top_bc_flag == 1) THEN
WRI TE (UNI T=out (m), FMI='("TOP BC = Non-Linear Neumann.")')
WVRI TE (UNET=0UL (1), FMI=" (" 0b -« = = = - = == == == = = = = = = x o m et e ot ot e e et e i e e &
ELSE
WRI TE (UNI T=out (n), FMI='("TOP BC = Non-Linear Robin.")")
WRI TE (UNI T=out (), FMI=' ("%
&
END | F
END | F
END DO
! CALL DOUGLAS- GUNN ROUTI NE TO COMPUTE THE EVOLUTION OF GRID FUNCTIONS. |f exact solution is not
! avail abl e, request error estimation fromthe quasilinear Douglas-Gunn routine. Conput e exact errors,
! if known, otherwise, use the error estinmate obtained from"delta_glin_dgts".
!
IF ( (t >t0) .AND. (bcout_flag == 0) ) THEN ! Set BCs & Print to Qutput files on the FIRST PASS post the tinme of BC change.

DEFI NE BC TYPE VARI ATI ONS FOR SUBSEQUENT TI ME(S).
NOTE: In the case of hemispherical asperity frictional nmelting, if time is less than or equal to the duration of
asperity separation, the right BCis the frictional heat flux (Neumann) into the asperity. Ctherwise, the asperity
is surrounded by air at anbient tenperature (Dirichlet).
PDE BOUNDARY CONDI TI ON FLAGS: These are being noved here from CONST_PARAMS to offer flexibility in terns of
tinme varying BC TYPES (for instance a change froman initial Neumann BC to a subsequent Dirichlet BC. The BC
type change can happen any nunber of tines, and the case-specific handling of these changes will be dealt with
different DO LOOPS for each BC set.
NOTATI ON FOR BOUNDARY CONDI TI ON FLAGS: 0 for DIRICHLET {i.e., Bbc(U = B2bc(U)},
1 for NEUMANN {i.e., Bbc(U) = U x*Blbc(U)},
2 for ROBIN {i.e., Bbc(u) = U x*Blbc(U)}.
Al BCs are represented in the generalized non-linear forms encountered in heat conduction problens:
Bbc(U) = U x*Blbc(U)+ B2bc(U) or U y*Blbc(U)+ B2bc(U). This formcan be used to represent either NON LI NEAR or
LI NEAR BCs. PROVI DE ALL BOUNDARY OPERATORS, B, in this SPLIT FORM using separate functions for Bl and B2, for
EACH BC. These classifications and their inplenmentations are discussed under the separate functions in the nmodule
“pde_routines", below, and ESPECI ALLY UNDER THE SUBROUTI NE "ql dgts_coeff_rhs", where they are used:

left_bc_flag =1
right_bc_flag =1
bottombc_flag =1
top_bc_flag =1

OPTI ONAL Linear Robin Paraneters, ALPHA x & ALPHA y for each of the two directions. Eg., in: L = Ux + alpha_x * U
al pha_x 0.0_rp
alpha_y = 0.0_rp

BOUNDARY CONDI TION LI NEARITY FLAGS: 1 if linear, 0 if non-linear.

These will affect the forms and val ues of the correspondi ng boundary condition functionals (lbcl, bbcl, tbhc2, etc.)
below. If any of these flags is O (non-linear BC) then the forms of these functionals have to be defined in the
respective subroutines in MODULE "pde_routines":

left_lin_flag =
right_lin_flag
bottomlin_flag = 1
top_lin_flag = 1

ConfirmALL BC types for this tinme range.
DO m= 1, SIZE(out)
WRI TE (UNI T=out (), FMI=' ("% For time > To = ", ES8.2, ": ")', ADVANCE="NO') tO
IF (left_lin_flag == 1) THEN
IF (left_bc_flag == 0) THEN
WRI TE (UNI T=out (n), FMI=' ("LEFT BC = Linear Dirichlet; ")', ADVANCE="NO')
ELSE IF (left_bc_flag == 1) THEN
WRI TE (UNI T=out (n), FMI=' ("LEFT BC = Linear Neumann; ")', ADVANCE="NO')

ELSE
WRI TE (UNI T=out (n), FMr='("LEFT BC = Linear Robin; ")', ADVANCE="NO')
END | F
ELSE
IF (left_bc_flag == 0) THEN
WRI TE (UNI T=out (m), FMI=' ("LEFT BC = Non-Linear Dirichlet; ")', ADVANCE="NO')
ELSE IF (left_bc_flag == 1) THEN
WRI TE (UNI T=out (n), FMI=' ("LEFT BC = Non-Li near Neumann; ")', ADVANCE="NO')
ELSE
WRI TE (UNI T=out (n), FMI='("LEFT BC = Non-Linear Robin; ")', ADVANCE="NO')
END | F
END I F

IF (right_lin_flag 1) THEN
IF (right_bc_flag == 0) THEN
WRI TE (UNI T=out (), FMI=' ("RIGHT BC = Linear Dirichlet; ")', ADVANCE="NO')
ELSE IF (right_bc_flag == 1) THEN
WRI TE (UNI T=out (n), FMI=' ("RIGHT BC = Linear Neumann; ")', ADVANCE="NO')

LSE
VR TE (UNI T=out (n), FMT='("RIGHT BC = Linear Robin; ")', ADVANCE="NO')
END I F
ELSE
IF (right_bc_flag == 0) THEN
VR TE (UNI T=out (), FMT='("RI GHT BC = Non-Linear Dirichlet; ")', ADVANCE="NO')
ELSE IF (right_bc_flag == 1) THEN
VR TE (UNI T=out (m), FMT='("RIGHT BC = Non-Linear Neumann; ")', ADVANCE="NO')
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"))

"))

"))

"))

"))

"))

END | F

END | F

LSE
WRI TE (UNI T=out (), FMI='("RI GHT BC = Non-Linear Robin; ")', ADVANCE="NO')
END | F

|F (bottomlin_flag == 1) THEN

IF (bottombc_flag == 0) THEN

VR TE (UNI T=out (n), FMI='("BOTTOM BC = Linear Dirichlet; ")', ADVANCE="NO')
ELSE I F (bottombc_flag 1) THEN

VR TE (UNI T=out (n), FMI='("BOTTOM BC = Li near Neurmann; ")', ADVANCE="NO')
ELSE

WRI TE (UNI T=out (n), FMr='("BOTTOM BC = Linear Robin; ")', ADVANCE="NO')
END | F

ELSE
IF (bottombc_flag == 0) THEN
WRI TE (UNI T=out (n), FMr='("BOTTOM BC = Non-Linear Dirichlet; ")', ADVANCE="NO')
ELSE IF (bottombc_flag == 1) THEN
WRI TE (UNI T=out (), FMr='("BOTTOM BC = Non- Li near Neumann; ")', ADVANCE="NO')
ELSE
WRI TE (UNI T=out (n), FMI='("BOTTOM BC = Non- Li near Robin; ")', ADVANCE="NO')
END I F
END I F

IF (top_lin_flag == 1) THEN

I F (exact_sol _flag == 1) THEN

SMOOTHING | f snmooth_flag is non-zero,

IF (top_bc_flag == 0) THEN
WRI TE (UNI T=out (n), FMI="("TOP BC = Linear Dirichlet; ")")
WRI TE (UNI T=out (), FMI=' ("% -

ELSE IF (top_bc_flag == 1) THEN
WRI TE (UNI T=out (n), FMI="("TOP BC = Li near Neumann; ")')
WRI TE (UNI T=out (), FMI=' ("% -

ELSE
VR TE (UNI T=out (m), FMI='("TOP
VR TE (UNI T=out (n), FMI=" ("% -

Li near Robin; ")')

END I F
ELSE
IF (top_bc_flag == 0) THEN
WRI TE (UNI T=out (n), FMI='("TOP BC = Non-Linear Dirichlet.")")
WRITE (UNI T=out (m), FMI="("%-
ELSE IF (top_bc_flag == 1) THEN
WRI TE (UNI T=out (n), FMI='("TOP BC = Non-Linear Neumann.")')
VR TE (UNI T=out (n), FMI='(
ELSE
WRI TE (UNI T=out (n), FMI=' ("TOP BC = Non-Linear Robin.")')
WRITE (UNI T=out (m), FMI="("%-
END | F
END I F
END DO
bcout _flag = 1
CALL delta_glin_dgts(x, vy, t, k, u)

then apply appropriate snoothing to grid functions.

NOTE: SMOOTHI NG | S PROBLEM SPECI FI C

AND THE GRI D FUNCTI ONS TO BE SMOOTHED HAVE TO BE DETERM NED, SOVETI MES THROUGH MANUAL | TERATI ONS OF WHAT WORKS BEST. Bel ow, two
smoot hi ng functions are provided for the case of a steep gradient at the right boundary of the probl em domain. The snoot hing

factor is defined globally in the MODULE CONST_PARAMS,
1) THEN

X_points-2, x_points-1 ! 1D snoot hing: DI R CHLET BC - Snpoth colums nx-2 to nx-1.
DO i = x_points-3, x_points

|F (snooth_flag
DO i

and is SPECIFIED on the command |ine along with the executable file.

! 1D snoot hi ng: NEUMANN BC - Snpoth col urms nx-3 to nx, i.e., |NCLUDE BDRY. NODE.

IF (i x_points) u(j,i+1) = 2.0_rp*hx*f_right(y(j).t) + u(j, i-1) ! For NEUVANN RI GHT BC.
DOj =1, y_points ! Since TOP & BOTTOM BCs are NEUMANN.
u(j,i) = ( u(j,i-1) + smoth_factor*u(j,i) + u(j,i+1) )/(2.0_rp + snooth_factor)
END DO
END DO
ELSE I F (smooth_flag == 2) THEN
DO i = x_points-sl+l, x_points-1 ! 2D snoot hing: DI RICHLET BC - Snpoth col umms nx-2 to nx- 1.
DO i = x_points-sl, x_points ! 2D snpot hi ng: NEUMANN BC - Smpoth col umns nx-1 to nx, i.e., |NCLUDE BDRY. NODE.
sl = 3 + INT(yO0/hy) ! Location of the flux-RBC input edge with respect to the current grid.
IF (i == x_points) u(j,i+1) = 2.0_rp*hx*f_right(y(j),t) + u(j,i-1) ! For NEUMANN RI GHT BC.
DO j 1, sl ! Since the BOTTOM BC i s NEUVANN.
! For NEUMANN BOTTOM BC.
IF(j ==1) u(j-1,i) = u(j+1,i) - 2.0_rp*hy*f _bottonm(x(i),t)
u(j,i) u(j,i-1) +u(j-1,i) + snmooth_factor*u(j,i) + u(j,i+1) + u(j+1,i) )
u(j,i) =wu(j,i)/(4.0_rp + smooth_factor)
END DO
END DO
END I F
max_u = 0.0_rp
nmin_u = 1/epsilon
max_error = 0.0_rp
DOj = y_points
DOi =1, x_points
en(j,i) = ABS( f_exact(x(i),y(j).t) - u(j,i) )
I F (verbose_flag == 1) THEN

IF (en(j,i) > max_error) THEN
max_error = en(j,i)
max_error_u = u(j,i)
i_max i
j_mex = j

END | F
I'F (u(j,i) > max_u) THEN
max_u =u(j,i
max_u_error (j
i_tmax
j _tmax

END | F
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I'F (u(j,i) < nmin_u) THEN
mn_u =u(j,i)
nin_u_error
i_tmn
j_tmn

END | F
END I F
I'F (u(j,i) > global _nmax_u) THEN
gl obal _max_u =u(j,i)
gl obal _max_u_error
i _tmax_gl obal
j _t max_gl obal

t_gl obal _nax t

nt _gl obal max =n_t
END I F
IF (en(j,i) > global _max_error) THEN

gl obal _max_error =en(j,i)

gl obal _max_error_u u(j,i)

i _max_gl obal i

j _max_gl obal

t_gl obal _max_error

nt _gl obal max_error = n_t
END I F

END DO
END DO
ELSE
IF (linear_flag /= 1) THEN
CALL delta_glin_dgts(x, y, t, k, u, en, dn, srad)

SMOOTHI NG I f snooth_flag is non-zero, then apply appropriate smoothing to grid functions. NOTE: SMOOTHI NG | S PROBLEM SPECI FI C
AND THE GRI D FUNCTI ONS TO BE SMOOTHED HAVE TO BE DETERM NED, SOVETI MES THROUGH MANUAL | TERATI ONS OF WHAT WORKS BEST. Bel ow, two
snoot hi ng functions are provided for the case of a steep gradient at the right boundary of the problem domain. The snoot hi ng
factor is defined globally in the MODULE CONST_PARAMS, and is SPECI FIED on the command |line along with the executable file.

IF (smooth_flag == 1) THEN

DO i = x_points-2, x_points-1 ! 1D snoot hing: DI RI CHLET BC - Snpoth col umms nx-2 to nx- 1.
DO i = x_points-3, x_points ! 1D snoot hi ng: NEUVANN BC - | NCLUDE BOUNDARY NCDES.
IF (i x_points) u(j,i+1) = 2.0_rp*hx*f_right(y(j).t) + u(j, i-1) ! For NEUVANN RI GHT BC.
DOj =1, y_points ! Since both the TOP & BOTTOM BCs are NEUVANN.
u(j,i) = ( u(j,i-1) + smooth_factor*u(j,i) + u(j,i+1) )/(2.0_rp + snooth_factor)
END DO
END DO
ELSE I F (smooth_flag == 2) THEN
DO i = x_points-sl+l, x_points-1 ! 2D snoot hing: DI RICHLET BC - Snpoth col utms nx-2 to nx- 1.
DO i = x_points-sl, x_points ! 2D snoot hi ng: NEUVANN BC - | NCLUDE BOUNDARY NCDES.
sl = 3 + INT(y0/hy) ! Location of the flux-RBC input edge with respect to the current grid.
IF (i == x_points) u(j,i+l) = 2.0_rp*hx*f_right(y(j),t) + u(j,i-1) ! For NEUVANN RI GHT BC.
DOj =1, s1 ! Since the BOTTOM BC i s NEUVANN.
! For NEUMANN BOTTOM BC.
IF(j ==1) u(j-1,i) =u(j+1,i) - 2.0_rp*hy*f_botton{x(i),t)
u(j,i) (u(j,i-1) +u(j-1,i) + smoth_factor*u(j,i) + u(j,i+1) + u(j+1,i) )
u(j,i) =wu(j,i)/(4.0_rp + snooth_factor)
END DO
END DO
END | F
max_u = 0.0_rp
nmin_u = 1/epsilon
max_error = 0.0_rp
DOj =1, y_points
DOi =1, x_points
| F (verbose_flag == 1) THEN
IF (en(j,i) > max_error) THEN
max_error = en(j,i)
max_error_u = u(j,i)
i _max i
j_max = j
END | F
I'F (u(j,i) > max_u) THEN
max_u =u(j,i)
(. i)
END | F
I'F (u(j,i) < nin_u) THEN
mn_u =
mn_u_error
i_tmn
j_tnin =j
END | F
END | F
I'F (u(j,i) > global _max_u) THEN
gl obal _max_u =u(j,i)
gl obal _max_u_error j.i
i _tmax_gl obal
j _tmax_gl obal =j
t_gl obal _nax =t
nt _gl obal nmax = n_t
END I F
IF (en(j,i) > global _max_error) THEN
gl obal _max_error =en(j,i)
gl obal _max_error _u u(j,i)
i _max_gl obal
j _max_gl obal =j
t_global _max_error =t
nt _gl obal nax_error = n_t
END I F
END DO
END DO
ELSE
CALL delta_qglin_dgts(x, vy, t, k, u)
max_u = 0.0_rp
nmin_u = 1/epsilon
DOj =1, y_points
DOi =1, x_points
I F (verbose_flag == 1) THEN
I'F (u(j,i) > max_u) THEN
max_u = u(j,i)
i_tmax
j_tmax = j
END | F
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I'F (u(j,i) < nmin_u) THEN
mn_u =u(j,i)
i_tmn
j_tmin =j

END I F
END | F
IF (u(j,i) > global _max_u) THEN

global _max_u = u(j,i)
i_tmax_gl obal =i
j _tmax_global = j
t_global _max =1t
nt_global max = n_t
END I F
END DO
END DO
END | F
END | F

END I F

| e e e e e e e e e e e eeeaas

! STORE QUTPUT FI LE & SCREEN OUTPUT DATA | N DATA ARRAYS.

| e e e e e e e e e e e eeeaas

! SCREEN QUTPUT:

IF( (verbose flag /=1) .AND. (n_t == nt_max_evol (evol _count)) ) THEN

! Opti onal RINT *, “STARTII\KBEVO_UTIO\I DATA PROCESSI NG FOR t (", P I S
END | F

! QUTPUT FILES 1 & 2: Qutput data if this the correct time level.

]
IF( n_t == m _snap(out_count) ) THEN
u_grid_norn{out_count) = 0.0_rp

DO j 1, y_points
DOi =1, x_points
I F (exact_sol _flag 1) THEN
en(j,i) ABS( f_exact (x(i),y(j),t) - u(j,i) )
ELSE
IF (linear_flag == 1) en(j,i) = 1.0E30_rp
END I F
u_grid_norn(out_count) = u_grid_norn(out_count) + (u(j,i))*u(j,i)
END DO
END DO

u_grid_norn{out_count) = SQRT( u_grid_norn{out_count) )
DOj = 1,n_ygrid
DOi = 1,n_xgrid
u_grid(j,i,out_count) = u(j_grid(j),i_grid(i))
| F (exact _sol _flag 1) THEN
u_errg(j,i,out_count) = en(j_grid(j),i_grid(i))/u_grid_norn{out_count)

ELSE
IF (linear_flag == 1) THEN
u_errg(j,i,out_count) = en(j_grid(j),i_grid(i))
ELSE
u_errg(j,i,out_count) = en(j_grid(j),i_grid(i))/u_grid_norn{out_count)
END I F
END | F

END DO
END DO
out_count = out_count + 1
END I F

! QUTPUT FILE 3: Snapshot data, if this is the correct tine level.
I e e e e e e e e e e e eemeeeemmme e
IF (n_t == nt xsnap) THEN
DOi = 1, n_xsnap
u_xsnap(i,1) = x(i_xsnap(i))
u_xsnap(i,2) = u(j_xsnap,i_xsnap(i))
END DO
END | F
IF (n_t == nt ysnap) THEN
DOj =1, n_ysnap
u_ysnap(j,1) = y(j_ysnap(j))
u_ysnap(j,2) = u(j_ysnap(j),i_ysnap)
END DO
END | F

! QUTPUT FILE 4: TEMPERATURE EVOLUTI ON AT A SINGLE (x,y) grid point in the probl em donai n; EVOLUTI ON OF MAXI MUM DOVAI N
! TEMPERATURE & MAXI MUM DOMAI N ERRCR :
b e e e e e e e e e e e e e m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e me— oo
DO m= 1, n_evol
IF (n_t == nt_evol (m) TI—EN

u_evol (m1) =
uievol (m2) = u(j _evol ,i_evol)
END | F
END DO
IF (n_t == nt_max_evol (evol _count)) THEN

I F (exact_sol _flag == 1) THEN

max_error = 0.0_rp

max_u = 0.0_rp

nmin_u = 1/epsilon

en_norm= 0.0_rp

u_norm= 0.0_rp

DOj =1, y_points

DOi =1, x_points

en(j,i) = ABS( f_exact(x(i),y(j),t) - u(j.i) )
en_norm = en_norm+ (en(j,i))*en(j,i
u_norm = u_norm+ (u(j,i))*u(j,i)
IF (en(j,i) > max_error) THEN

max_error =en(j,i)
max_error_u = u(j,i)
i_max =i
j_mex = j

END I F

I'F (u(j,i) > max_u) THEN
max_u =u(j,i)
max_u_error = en(j,i)
i_tmax =i
j _tmax =j

END I F
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ELSE

IF (u(j,i) < _n'in_u) THEN

mn_u =u(j,i)
mn_u_error = en(j,i)
i_tmn =i
j_tnin =j
END | F
END DO
END DO
en_norm = SQRT(en_nor m
u_norm = SQRT(u_norm
en = en/u_norm
mBX_error = max_error/u_norm
MBX_U_error = mex_u_error/u_norm
nmin_u_error = nin_u_error/u_norm
u_maxevol (evol _count, 1) = n_t
u_naxevol (evol _count, 2) =t
u_maxevol (evol _count, 3) = j_tmx
u_maxevol (evol _count, 4) = i_tmx
u_naxevol (evol _count, 5) = u(j_tmax, i_tmax)
u_maxevol (evol _count, 6) = max_u_error
u_naxevol (evol _count, 7) = u_norm
u_mi nevol (evol _count, 1) = n_t
u_mi nevol (evol _count, 2) =t
u_ni nevol (evol _count, 3) =j_tnin
u_mi nevol (evol _count, 4) =i _tnmn
u_ni nevol (evol _count, 5) = u(j_tnmin, i_tnin)
u_mi nevol (evol _count, 6) = min_u_error
u_mi nevol (evol _count, 7) = u_norm
error_maxevol (evol _count, 1) = n_t
error_maxevol (evol _count, 2) =t
error_maxevol (evol _count, 3) j _max
error_maxevol (evol _count, 4) i_max
error_maxevol (evol _count, 5) max_error
error_maxevol (evol _count, 6) u(j _max, i_max)
error_maxevol (evol _count, 7) u_norm
IF (linear_flag /= 1) THEN
max_error = 0.0_rp
max_u = 0.0_rp
mn_u = 1/epsilon
en_norm= 0.0_rp
u_norm= 0.0_rp
DOj =1, y_points
DOi =1, x_points
en_norm = en_norm+ (en(j,i))*en(j,i)
u_norm = u_norm+ (u(j,i))*u(j,i)
IF (en(j,i) > max_error) Tl
max_error = en(j,i)
max_error_u = u(j,i)
i_max =i
j_mex = j
END I F
I'F (u(j,i) > max_u) THEN
max_u =u(j,i)
max_u_error = en(j,i)
i_tmax =i
j _tmax =]
END | F
IF (u(j,i) < mn_u) THEN
mn_u =u(j,i)
mn_u_error = en(j,i)
i_tnin =i
j_tmn =j
END | F
END DO
END DO
en_norm = SQRT(en_nor
u_norm = SQRT(u_norm
en = en/u_norm
mBX_error = max_error/u_norm
MBX_U_error = max_u_error/u_norm
mn_u_error = min_u_error/u_norm
u_naxevol (evol _count, 1) = n_t
u_maxevol (evol _count, 2) =t
u_maxevol (evol _count, _tmax
u_naxevol (evol _count, _tmax
u_maxevol (evol _count, 5) = u(j_tmax, i_tmax)
u_naxevol (evol _count, 6) = nax_u_error
u_maxevol (evol _count, 7) u_norm
u_mi nevol (evol _count, 1) n_t
u_ni nevol (evol _count, 2)
u_ni nevol (evol _count, 3) _tmin
u_ni nevol (evol _count, 4) _tmin
u_ni nevol (evol _count, 5) = u(j_tnmin, i_tnin)
u_ni nevol (evol _count, 6) mn_u_error
u_ni nevol (evol _count, 7) = u_norm
error_maxevol (evol _count, 1) = n_t
error_maxevol (evol _count, 2) =t
error_maxevol (evol _count, 3) = j_nax
error_maxevol (evol _count, 4) = i_nmax
error_maxevol (evol _count, 5) = max_error
error_maxevol (evol _count, 6) = u(j_nax, i_nax)
error_maxevol (evol _count, 7) = u_norm
ELSE
max_u = 0.0_rp
nmin_u = 1/epsilon
DOj =1, y_points
DOi =1, x_points
I'F (u(j,i) > max_u) THEN
mx_u = u(j,i)
i_tmax i
j_tmax = j
END | F
I'F (u(j,i) < nmin_u) THEN
mn_u =u(j,i)
i_tmn =i
j_tmin =j
END I F
END DO
END DO
u_naxevol (evol _count, 1)
u_maxevol (evol _count, 2)
u_maxevol (evol _count, 3)
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u_naxevol (evol _count,
u_maxevol (evol _count,
u_naxevol (evol _count,
u_naxevol (evol _count,
ni nevol (evol _count,
ni nevol (evol _count,
ni nevol (evol _count,
ni nevol (evol _count,
ni nevol (evol _count,
_mi nevol (evol _count,

END | F

evol _count = evol _count + 1

DOj =1, SIZE(grid_conv, 1)
IF (n_t == nt_gridconv(j)) THEN
u_conv(j) = u(ny_gridconv(j),nx_gridconv(j))
END | F
END DO

| F (verbose_fl ag

PRINT *, "t(
PRINT *, " ", col=",i_tmax,": DOMAIN MAXI MM TEMPERATURE = ", u(j_tmax, i_tnmax)
PRINT *, " ", col=",i_tmn,": DOMAIN M N MM TEMPERATURE = ", u(j_tmn, i_tmn)
IF (linear_flag /= 1) THEN
PRINT *, " row=",j _max, ", col=",i_max," : DOVAIN MAXI MUM ERROR =", max_error,", &
&TEMPERATURE = ", u(j_max, i_max),"."
END | F
END | F

! DATE TI ME TO NEXT STEP.
t =t +k

DO m= 1, SIZE(t_snap)
WRI TE (UNI T=out (1),

WRI TE (UNI T=out (1),
WRI TE (UNI T=out (1),
DOi = 1,n_xgrid ! Print out X-coordinate headings.
I'F (i == n_xgrid) THEN
WRI TE (UNIT=out (1), FMI='(1X, F9.6)') x(i_grid(i))
EXIT
END I F
WRI TE (UNIT=out (1), FMI='(1X, F9.6,",")"', ADVANCE="NO') x(i _grid(i))
END DO
DOj = 1,n_ygrid ! Print out each row vector (y-row) of the solution.
IF ( (coord_flag == 2) .OR (coord_flag == 3) )THEN
IF (j == n_ygrid) THEN ! If y top = Pl, then repeat last value within domain for top boundary point
WRI TE (UNI T=out (1), FMI='("y(",15,")=",F9.6,",")", ADVANCE="NO') j _grid(j), &
& ( y(j_grid(j-1)) + out_y_grid_spacing )
ELSE
WRI TE (UNI T=out (1), FMI='("y(",15,")=",F9.6,",")", ADVANCE="NO') j_grid(j), y(j_grid(j))
END | F
ELSE
WRI TE (UNI T=out (1), FMI="("y(",15,")=",F9.6,",")", ADVANCE="NO') j_grid(j), y(j_grid(j))
END I F
DOi = 1,n_xgrid
IF (i == n_xgrid) THEN
IF ( (coord_flag 2) .OR (coord_flag == 3) ) THEN
F(j n_ygrid) THEN ! If y_top = Pl, then repeat last value in domain for top bdry. point
WRI TE (UNI T=out (1), FMI='(1X, ES18.8)') u_grid(j-1,i,m
ELSE
WRI TE (UNIT=out (1), FMI='(1X, ES18.8)') u_grid(j,i,m
END I F
ELSE
WRI TE (UNIT=out (1), FMI='(1X, ES18.8)') u_grid(j,i,m
END | F
EXIT
END I F
IF ( (coord_flag 2) .OR (coord_flag == 3) ) THEN
IF (j == n_ygrid) THEN ! If y top = Pl, then repeat last value within domain for top boundary point
WRI TE (UNI T=out (1), FMI='(1X, ES18.8,",")', ADVANCE="NO') u_grid(j-1,i,m
ELSE
WRI TE (UNIT=out (1), FMr='(1X, ES18.8,",")', ADVANCE="NO') u_grid(j,i,m
END | F
ELSE
WRI TE (UNI T=out (1), FMr='(1X, ES18.8,",")', ADVANCE="NO') u_grid(j,i,m
END I F
END DO
END DO
N A I e T T TP = L (e YYN—_————————- )

END DO

]
! QUTPUT FILE 2: Print ERROR data at required resol ution.

! Exact error distribution, en(yj,xi), at the current tine step if exact solution is known;

! ESTI MATED Error distribution, en_est(yj,xi), at the current time step when exact solution is not available.
]

bO m= 1, SIZE(t_snap)
| F (exact_sol _flag == 1) THEN
WRI TE (UNI T=out (2), FMI='("TIME STEP",16,": The RELATIVE error en(x,y) at time =", F10.6,&
8"

WRITE (UNET=0UL (2), FMI=' (" 0 < - - < - = - = =« = o m o o e m o m ot o ot o et et oot it ii o iiDaaiiil s
ELSE
WRI TE (UNI T=out (2), FMI='("TIME STEP",16,": The ESTI MATED RELATIVE error en_est(x,y) at tinme =", F10.6, &
& ": Unorm= ", ES18.8)') nt_snap(m, t_snap(m, u_grid_norm(m
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WRI TE (UNETZ0UL (2), FMI=' (" 0f = = = = = = = = = = == = = = m o m m o m o m o o o e o o e o e o o o o e oo "))
END I F
WRI TE (UNIT=out (2), FMI='("%Xx = ")', ADVANCE="NO')
DOi = 1,n_xgrid ! Print out X-coordinate headings.
IF (i == n_xgrid) THEN
WRI TE (UNIT=out (2), FMI='(1X, F9.6)') x(i_grid(i))
EXIT
END | F
WRI TE (UNIT=out (2), FMI='(1X, F9.6,",")"', ADVANCE="NO') x(i_grid(i))
END DO
DOj = 1,n_ygrid ! Print out each row vector (y-row) of the solution.
IF ( (coord_flag == 2) .OR (coord_flag == 3) ) THEN
IF (j == n_ygrid) THEN ! If y top = Pl, then repeat last value within domain for top boundary point
WRI TE (UNI T=out (2), FMI='("y(",15,")=",F9.6,",")", ADVANCE="NO') j _grid(j), &
& ( y(j_grid(j-1)) + out_y_grid_spacing )
ELSE
WRI TE (UNI T=out (2), FMI='("y(",15,")=",F9.6,",")", ADVANCE="NO') j _grid(j), y(j_grid(j))
END | F
ELSE
WRI TE (UNI T=out (1), FMI='("y(",15,")=",F9.6,",")", ADVANCE="NO') j _grid(j), y(j_grid(j))
END | F
DOi = 1,n_xgrid
IF (i == n_xgrid) THEN
IF ( (coord_flag 2) .OR (coord_flag == 3) ) THEN
IF (j == n_ygrid) THEN ! If y top = Pl, then repeat last value in domain for top bdry. point
WRI TE (UNI T=out (2), FMI='(1X, ES18.8)') u_errg(j-1,i,m
ELSE
WRI TE (UNI T=out (2), FMI='(1X, ES18.8)') u_errg(j,i,m
END | F
ELSE
WRI TE (UNI T=out (2), FMI='(1X, ES18.8)') u_errg(j,i,m
END | F
EXIT
END | F
IF ( (coord_flag == 2) .OR (coord_flag == 3) ) THEN
n_ygrid) THEN ! If y_top = Pl, then repeat last value within donain for top boundary point
WRI TE (UNI T=out (2), FMI='(1X, ES18.8,",")', ADVANCE="NO') u_errg(j-1,i,m
ELSE
WRI TE (UNI T=out (2), FMI='(1X, ES18.8,",")', ADVANCE="NO') u_errg(j,i,m
END | F
ELSE
WRI TE (UNI T=out (2), FMI='(1X, ES18.8,",")', ADVANCE="NO') u_errg(j,i,m
END | F
END DO
END DO
R I e T TP = L (e YYYYY_—— ")
END DO
!
! QUTPUT FILE 3: Snapshot data.
]
! 3a. Plot the profile parallel to x-axis (corresponding to y_xsnap and t_xsnap).
o
WRI TE (UNI T=out (3), F )') y_xsnap, t_xsnap
WRI TE (UNI T=out (3), F
WRI TE (UNI T=out (3), FMI='(5X,"x",8X, "U xsnap(x)")")
i

1, n_xsna

VRI TE (UNI T=out (3),

WRI TE (UNI T=out (3), FMr='("

! 3b. Plot the profile parallel

I e
WRI TE (UNI T=out (3), FM:
WRI TE (UNI T=out (3), FM:

("SNAPSHOT at x =

WRI TE (UNI T=out (3), FMI='(5X,"y",8X "U_ysn
DOj =1, n_ysnap
IF (j == n_ysnap) THEN
WRI TE (UNI T=out (3)
ELSE
WRI TE (UNI T=out ( 3)
END | F
END DO

VRI TE (UNI T=out (3),

FMr=" ( 3X, F4. 2, 3X, ES17.10)") u_xsnap(i, 1),

u_xsnap(i, 2)

to y-axis (corresponding to x_ysnap and t_ysnap).

", F9.6," &t ,F9.6,":")") x_ysnap, t_ysnap

ap(y)")")

, FMI='(3X, F4.2,3X ES17.10)') ( u_ysnap(j-1,1) +

, FMr='(3X F4.2,3X ES17.10)"') u_ysnap(j,1),

out _y_grid_spacing ), u_ysnap(j-1,2)

u_ysnap(j, 2)

! QUTPUT FILE 4: TEMPERATURE EVOLUTI ON AT A SINGLE (x,y) grid point,

MAX. & M N.

TEMPERATURE, and MAX. ERROCR in the probl em donai

! First,
WRI TE (UNI T=out (4),
WRI TE (UNI T=out (4),

VIRI TE (UNI T=out (4), FMI=' (/"

! 4a. Gid Function Evolution at
I -
WRI TE (UNI T=out (4), FMT:
WRI TE (UNI T=out (4),

ju

FMr=" (" RELATI VE TIME LAG (w.r.t.

(x_time, y_tinme):

output the tine |ag between the maxi mumtenperature and the tine of separation.
FMT=' (" TI ME LAG BETWEEN TI ME CORRESPONDI NG TO U_max AND TI ME AT ASPERI TY SEPARATION = ", ES13.6)') &

& (t_gl obal _max - tO0)

TO) BETWEEN TI ME CORRESPONDI NG TO U_max AND TI ME AT ASPERITY &

&SEPARATI ON = ", ES13.6)') (t_gl obal _max - t0)/t0
"))

WRI TE (UNI T=out (4), FMI='(5X,"t", 5X "Ux_time, y_time)")')
DO m= 1, n_evol

WRI TE (UNI T=out (4), FMI='(3X, F4.2, 3X, ES15.8)') u_evol (m1), u_evol (m2)
END DO
VR TE (UNETZ0UL (4), FMI=' ("= - o o oo o mm o e oo o e o s e e o e o oo e e e e e ")
! 4b. Maxi num Tenperature Evol ution:
L
WRI TE (UNI T=out (4), F (" Domai n Maxi mum Tenperat ure evol ution:")")
A S T I e T = Y e """ " "> "))
| F (exact_sol _flag == 1) THEN

WRI TE (UNI T=out (4), FMI='(4X "Step #",8X" t",6 8X" joomex it U_max ",3X "Relative Error", &

& 3X," Unorm ")')

ELSE

WRI TE (UNI T=out (4), FMI='(4X "Step #",8X" t", 8X" joomex it U_max ",3X "Est. Relative Error", &

3X " U_norm 1Y)

END | F
DO m = 1, numtmaxevol

WRI TE (UNI T=out (4), FMI='(3X, 17, 3X, ES12. 6, 3X, 2(16, 3X), 3(ES15. 8, 3X))') u_maxevol (m 1), u_maxevol (m2), u_naxevol (m3), &

& u_nmaxevol (m 4), u_maxevol (m5), u_nmaxevol (m6), u_ninevol (m?7)

END DO

VIRI TE (UNI T=out (4),
VRI TE (UNI T=out (4),

FM=" (*

FMI=" (/" TEMPORAL GLOBAL TEMPERATURE NAXI NA:

_____________________ ")

)
")
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I F (exact _sol flag == 1) THEN
E (UNI T=out (4), FMI='(3X, 17, 3X, F4.2,3X, 2(16,3X), 2(ES15.8,3X))"') nt_gl obal max, t_global _max, j_tmax_global, &
& i _tmax_gl obal, gl obal _max_u, gl obal _max_u_error

ELSE
IF (linear_flag /= 1) THEN
WRI TE (UNI T=out (4), FMI='(3X,17,3X, F4.2,3X, 2(16,3X),2(ES15.8,3X))"') nt_gl obal max, t_global _max, j_tmax_global, &
& i _tmax_gl obal, global _max_u, global _max_u_error
ELSE
WRI TE (UNI T=out (4), FMI='(3X,17,3X, F4.2,3X,2(16,3X),2(ES15.8,3X))"') nt_gl obal max, t_global _max, j_tmax_global, &
& i _tmax_gl obal, global nmax_u, 1.0E30_rp
END | F
END | F
WRI TE (UNETZ0UL (4), FMI=' (M- - - - - o m o m m o m o e o o o e o e o e o o e o e e oo e oo e o oot e D)

! 4c. Maximum Error Evol ution:
I eeeeeeeaeas
WRI TE (UNI T=out (4), F
WRI TE (UNI T=out (4), FMI='("
I F (exact_sol _flag == 1) THEN
WRI TE (UNI T=out (4), FMI='(4X, "Step #",8X " t",8X" jooteX i ",1X," Max. Rel. Error ",1X" u " &
& 3X," U_norm "))

ELSE

WRI TE (UNI T=out (4), FMI='(4X "Step #",8X " t",6 8X" joomex i ",1X "Max. Est. Rel. Err.", 1X" V] " &

& 3X," Unorm ")')

END | F
DO m = 1, num tmaxevol

WRI TE (UNI T=out (4), FMr='(3X 17, 3X, ES12. 6, 3X, 2(16, 3X), 3(ES15.8,3X))"') error_maxevol (m 1), error_maxevol (m2), &

& error_maxevol (m 3), error_naxevol (m4), error_maxevol (m5), error_naxevol (m 6), u_ninevol (m 7)

END DO
WRI TE (UNI T=out (4), FMI=' (/" TEMPORAL GLOBAL ABSOLUTE ERRCR MAXI MA: ") ")
WRI TE (UNI T=out (4), FMI=' ("= -ncmmmmm e mm e ae e "))
| F (exact_sol _flag == 1) THEN

WRI TE (UNI T=out (4), FMI='(3X,17,3X, F4.2,3X,2(16,3X),2(ES15.8,3X))"') nt_gl obal max_error, t_global _max_error, j_nax_global, &

& i _max_gl obal, global _max_error, global _max_error_u

ELSE
IF (linear_flag /= 1) THEN
WRI TE (UNI T=out (4), FMr='(3X 17, 3X, F4.2,3X 2(16,3X), 2(ES15.8,3X))"') nt_global max_error, t_global nax_error, j_max_global, &
& i _max_gl obal, global _max_error, global _nax_error_u
ELSE
WRI TE (UNI T=out (4), FMI='(3X,17,3X, F4.2,3X,2(16,3X),2(ES15.8,3X))"') nt_gl obal max_error, t_global _max_error, j_nax_global, &
& i _max_gl obal , global _max_error, 1.0E30_rp
END I F
END | F
WRI TE (UNITZ0UL (4), FMI=' (M- - - - - o oo m m o m o e o o o e o e e o o e o o e oo o oo e e oo e o e e "1yt

! 4d. M ni num Tenperature Evol ution:
I .
WRI TE (UNI T=out (4),
WRI TE (UNI T=out (4), = ("
I F (exact_sol _flag == 1) THEN

WRI TE (UNI T=out (4), FMI='(4X, "Step #",8X " t",8X" jomeX [INC) o U_nin ",3X," Relative Error", 3X" U_norm "))

ELSE
WRI TE (UNI T=out (4), FMI='(4X, "Step #",8X " t",8X" i3 [INC) o U_nin ",3X "Est. Relative Error", 3X" U_norm "))
END I F
DO m = 1, num_tnmaxevol
WRI TE (UNI T=out (4), FMr='(3X,17,3X, ES12. 6, 3X, 2(16, 3X), 3(ES15.8,3X))') u_ninevol (m1), u_minevol (m2), u_mnevol(m3), &
& u_minevol (m4), u_ninevol (m5), u_ninevol(m6), u_ninevol(m?7)

END DO

WRI TE (UNITZ0UL (4), FMI=' (" - - - - - o m o m m o m o e o o o e o m o e o o e o o e o oo oo e oo e e e "Iyt

L e e e e e e e e e e e e e e e e e e e e e e
! QUTPUT FILE 5: GRID FUNCTI ON CONVERGENCE DATA.

! - -
WRI TE (UNI T=out (5), F

WRI TE (UNI T=out (5), F

WRI TE (UNI T=out (5), F (1X "k", 1X, "hx", 1X, "hy", 1X, "UL", 1X, "U2", 1X, "U3", 1X, "u4", 1X,"Us", 1X, "U6", 1X

WRI TE (UNI T=out (5), FMI='(3(1X, F8.6))', ADVANCE="NO') k, hx, hy

DOm=1, S ZE(grl d_conv,

1)
VR TE (UNI T=out (5), FMI='(ES17.10,1X)', ADVANCE="NO') u_conv(nm)
END DO
I TE (UNI T=out (5), FMT='(/"-

! PROGRAM CLOSI NG SEQUENCE: Deal | ocate arrays, and lose all files.

Deal | ocate ALL arrays.
IF (linear_flag /= 1) THEN
DEALLOCATE (coeff, dn, en, error_maxevol, i_grid, i_xsnap, j_grid, j_ysnap, NSu_m Nu_m nt_evol, nt_nax_evol, srad, &
&rhs, rs, t_max_evol, u, u_errg, u_evol, u_grid, u_n, u_old, u_naxevol, u_m nevol, u_xsnap, u_ysnap, X, y, &
& STAT=deal | oc_error)
ELSE
DEALLOCATE (coeff, en, error_maxevol, i_grid, i_xsnap, j_grid, j_ysnap, NSu_m Nu_m nt_evol, nt_max_evol, &
& rhs, t_max_evol, u, u_errg, u_evol, u_grid, u_n, u_naxevol, u_ninevol, u_xsnap, u_ysnap, X, Yy, STAT=dealloc_error)
END I F
I F (dealloc_error /=0) THEN
PRINT *, "WARNING SOME OR ALL Arrays coul d not be DEALLOCATED! "
END | F
PRINT *, "FI Nl SHED DEALLOCATI NG ALL ARRAYS. "

Close output files.
DO m= 1, SIZE(out)
CLOSE (UNI T=out (n), STATUS="KEEP"', |OSTAT=cl ose_st atus)
I F (cl ose_status==0) THEN
PRINT *, "QUTPUT FILE, “,outfile(m,", CLOSED"
ELSE
PRINT *, "WARNING The file, ",outfile(m, ", could not be disconnected!"
END | F
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APPENDIX C: PROPERTIES OF ROCKS & MINERALS:
TABLES AND FIGURES

Table C- 1. Data relavant to frictional melting from literature survey.

Parameter Data (Units, Comments, Reference)
# | Symbol Definition
e Scholz (1990): for dry granitic frictional melt: 10’-10% poise
(p- 137).
1|n Viscocity of frictional melt Sibson (1975): For basaltic andesite at 1100 °C and 1 bar: 10°-
10* poise (p. 783).
*  Killick & Roering (1998): 1x10° — 1.9x10™ m’/sec for most
rock materials (p. 254)
2 |k Thermal diffusivity of host | «  Sibson (1975): 7.0x107 m*/sec (p. 784)
rock *  Lachenbruch & Sass (1980): 1x10” m’/sec (p. 6187).
3|\ u Coefficient of  friction | «  Killick & Roering (1998): 0.6 — 0.85; 0.85, for g, < 200 MPa
between fault/slip surfaces (p. 253) — : Byrelee’s (1978) results.
*  Jaegar & Cook (1979): W. Granite: 0.11 (Table 6.2.1, p. 146);
*  Wang & Scholz (1994): 0.21 (p. 6793)
*  Touloukinan et. al. (1981): In Gpa (Table 6.1, p. 135)
4 v Poisson’s Ratio Quartzite 0.10-0.30
Granite/ 0.09-0.48
Diorite 0.05-0.29
Gneiss 0.06-0.13
Schist 0.01-0.15
»  Killick & Roering (1998): 2700-2820 kg/m’.(p. 254)
o Sibson (1975): 2800 kg/m’® (p. 786)
5|p Density of host rock o Cardwell et al. (1978): 2800 kg/m’ (p. 527)
o McKinzie and Brune (1972): 3000 kg/m’ (p. 74)
e Kanamori (1994):
= Static drop: 30-100 bars (p. 209);
= Static drop: 10-100 bars over large scales (or profile
lengths, p. 215); 300-2000 bars for the 1990 Pasadena,
CA earthquake, over a profile length of about 0.5 km;
6 | Ao, Stress Drop (static/dynamic) 150-300 bars for the Sierra Madre, CA earthquake, over
a profile length of about 4 km (p. 218).
o Dynamic drop: Average over whole quake area: 12-40
bars; Local range: 22-84 bars; point range: 40-200 bars.
e Lachenbruch & Sass (1980): Stress drop based on heat flow
calculations and seismic observations: 0-100 bars (p. 6206).

(CONTINUED)
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Table C-1. Data relavant to frictional melting from literature survey. (CONTINUED)

Parameter Data (Units, Comments, Reference)
# Symbo | Definition
1
7 . Compressive strength Scholz (1990).— Uniaxial compressive strength: Quartz: 2200
MPa; Calcite: 200 MPa (p. 61).
e Sibson (1975): o0, = 1.6 pgz, for optimal thrust faulting;
Differential stress approx. = 3.2 kbar (p. 790)
e  McKinzie and Brune (1972): >10 bars for frictional melting
8 o,, 0, | Normal or vertical stresses on (p. 74)
the fault (average) *  Kanamori (1994): About 200 bars or even less than 100 bars
for the San Andreas Fault system.
e Turcotte & Tag (1980): About 100 bars.
Spray (1992): In MPa (Table 1, p. 210):
Micas (Muscovite & Biotite) 167-333
Serpentine (lizardite & chrysotile) 200
Amphiboles: actinolite & tremolite 567-833
horneblende & parg 750
Pyroxenes: clinopyroxene 750-1083
Yield strength in shear, for orthopyroxene 567-833
host rock. Feldspar: Orthoclase 833
9 | H=(nM)’=30, = 61, Albite & Anorthite 833-1083
n=1.3 - 1.6 Silicon Dioxide (Quartz): 1400
Olivine (Forsterite) 1083-1400
Zircon 1667
Soda-Lime glass 1800
Rutile 1083
Corundum 3333
Diamond 25,000
Titanium 85
e Sibson (1975): For Gneiss, ANISOTROPIC strengths: 045 =
4.2 kbar; 0gy = 8.4 kbar (p. 779)
e Spray (1992): In Mpa (Table 1, p. 210):
Micas (Muscovite & Biotite) 333-666
Serpentine (lizardite & chrysotile) 400
Amphiboles: actinolite & tremolite 1133-1666
horneblende & parg 1500
Pyroxenes: clinopyroxene 1500-2166
. . . orthopyroxene 1133-1666
10 o, Yield strength in tension, for Feldspar: Orthoclase 1666
host rock Albite & Anorthite 1666-2166
H=(nM)"=30, = 6T, Silicon Dioxide (Quartz): Natural 2800
n=1.3- 1.6 Synthetic
Olivine (Forsterite) 2166-2800
Zircon 3333
Soda-Lime glass 3600
Rutile 2166
Corundum 6666
Diamond 50,000
Titanium 170
(CONTINUED)
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Table C-1. Data relavant to frictional melting from literature survey. (CONTINUED)

Parameter Data (Units, Comments, Reference)

# Symbol | Definition

o Spray (1992): 10* — 1 for coseismic slip; >10° for meteorite
11 | & Strain rate for fault impact (Figure 2, p. 209)
*  Kanamori (1994): 10

12 | C Cohesive strength of the fault | Killick & Roering (1998): 1-54 Mpa (= 28, Figure 6, p. 256, and
also below).
13 | Cp Specific heat at constant |«  Killick & Roering (1998): 1200 JKg'K™' (p. 254).
pressure for host rock o Cardwell et al. (1978): 1050 JKg'K™" (p. 527).

e McKinzie and Brune (1972): 1000 JKg'K™" (p. 74)

*  Swanson (1992): 0-18 km below the surface (Fig.1);
Crystalline PT: < 5 km; Glassy PT: >5 km; Mylonitic zone,
plastically deformed PT: 10-15 km.

e Killick & Roering (1998): 1.9-6.6 km below paleo land

14 | d Crustal depth of surface. 3.3-6.1 km under lithostatic loading, and 9.3-17.2
pseudotachylyte formation km under hydrostatic loading. The values depend on the mole
fraction of water and mass fraction of CO, in host rock.

(p.250-1)

e Sibson (1975): 1-10 km (p. 784); > 2-3 km (p. 786); most
likely depth at 4-5 km (p. 791).

o Jaegar & Cook (1979): Quartz Diorite: 3 x 10° psi (=
0.0068915%3000000 Mpa = 20.67 Gpa), Granite: 2 3 x 10° psi
(= 13.78 GPa) [p. 188, Sec. 6.14, Fig. 6.15.1]; W. Granite: 8.1
x 10° psi (55.81 Gpa) {Table 6.2.1, p. 146];

e Wang & Scholz (1994): Westerly Granite 69 Gpa (p. 6793)

e http://'www.almazoptics.com/homepage/Quartz.htm:
Quartz: 76 GPa (perp.), and 97 GPa (para.) — optical quality.

e http://www.tosoh.com/EnglishHomePage/tqg/genprop.htm:

IS | E E, Young’s Modulus Quartz glass: 70-74 GPa.
*  Touloukinan et. al. (1981): In Gpa (Table 6.1, p. 135; Fig.
6.27,p. 168)
Quartzite 14.34-68.95
Granite/ Peont = 0 Mpa: 5.52 — 64.10
Westerly Peont = 500 Mpa: 75 (from slope in above figure, at
Granite 25°C,), 55 at 300°C, & 40 at 500°C.
Granodiorite | 45.10-70.80
Diorite 4.09-103.1
Gneiss 12.68-67.22
Schist 39.30-80.67

(CONTINUED)
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Table C-1. Data relavant to frictional melting from literature survey. (CONTINUED)

Parameter Data (Units, Comments, Reference)
# Symbol | Definition
e Scholz (1990):— Calcite: 600 MPa; Sandstone: 2000 MPa —
Logan and Teufel’s results (p. 61).
o Spray (1992): In kg/mm™ (= Mpa) (Table 1, p. 210):
Micas (Muscovite & Biotite) 100-200
Serpentine (lizardite & chrysotile) 120
Amphiboles: actinolite & tremolite 340-500
horneblende & parg 450
16 | H Indentation / Penetration | Pyroxenes: clinopyroxene 450-650
orthopyroxene 340-500
hardness Feldspar: Orthoclase 500
H=(nM)’=3 o, = 61, _ ' Al'bite & Anorthite 500-650
n=1.3-1.6 Silicon Dioxide (Quartz): Natural 840
Synthetic
Olivine (Forsterite) 650-840
Zircon 1000
Soda-Lime glass 840
Rutile 650
Corundum 2000
Titanium 50
o Sibson (1975): 2 W/m™" °C™ (p. 786)
e McKinzie & Brune (1972): 2 W/m™" °C™! (p. 74).
e Killick & Roering (1998): Quartzites: 3.45-6.42 W/m" °C’
(p. 254)
o Lachenbruch & Sass (1980): 2.5 W/m™ °C™ (p. 6187).
e Spray (1992): Tn W/m™" °C™ (Table 1, p. 210):
Micas: Muscovite 1.3
Biotite 0.8
Serpentine: lizardite 1.34
chrysotile 3.0
Amphiboles: actinolite 1.22
17 | k Thermal conductivity of host ggrmngll)llt:n de ?47518
rock Pyroxenes: clinopyroxene 2.4-3.1
orthopyroxene 2.4-2.86
Feldspar: Orthoclase 1.35
Albite 1.35
Anorthite 0.85
Silicon Dioxide (Quartz): Natural 4.3
Synthetic
Olivine (Forsterite) 2.96
Zircon 2.6
Soda-Lime glass 1.0
Rutile 2.9
Corundum 13.0
Diamond 63-93
Titanium 22

180

(CONTINUED)




Table C-1. Data relavant to frictional melting from literature survey. (CONTINUED)

Parameter Data (Units, Comments, Reference)
# Symbol | Definition
Spray (1992): In MPa/m™"”* (Table 1, p. 210):
Feldspar 1.3 001
(orthoclase)
Natural quartz 2.4 perp. to the <c> direction
Synnthetic quartz | 0.8-1.0 | perpendicular to » and z directions.
18 | K. Fracture toughness Olivine 0.59 010
0.73 001
Soda-Lime glass 0.7
Corundum 3.0
Diamond 3.4-39 | 111
Titanium =50!
e Swanson (1992): 1-10 m long
19 | Ly Length of fault veins »  Curewitz & Karson (1999): Sometimes >20 m (p. 1695)
e Grocott (1981): up to 1 km long! (p. 169)
e Sibson (1975): Approx. 10 cm. (p. 778)
e Curewitz & Karson (1999). Typically, 1 m (p. 1695)
20 | I Length of injection veins o Sibson (1975): Approx. 0.1-1 cm. (p. 778)
Spray (1992): (Table 1, p. 210):
Micas (Muscovite & Biotite) 2.5-4
Serpentine (lizardite & chrysotile) 3
Amphiboles: actinolite & tremolite 5-6
horneblende & parg 5.5
Pyroxenes: clinopyroxene 5.5-6.5
orthopyroxene 5-6
21 M Mobhs hardness Feldspar: Orthoclase 6
H=(nM)’=30, = 61, Albite & Anorthite 6-6.5
n=1.3 - 1.6 Silicon Dioxide (Quartz): Natural 7
Synthetic
Olivine (Forsterite) 6.5-7
Zircon 7.5
Soda-Lime glass 7
Rutile 6.5
Corundum 9
Diamond 10
Titanium 2
M Killick & Roering (]998) Pconﬁning = f(\A[H2O)> Pconﬁning =
2(Wco2). Based on PT without any vesicles or bubbles, the
confining pressures must counter the solubility pressure given
by these relations. Depending on water and CO, content in
local rocks, these pressures were hypothesized to vary
22 | P Pressure in pore fluid at between 92 MPa and 142 MPa. (p. 250-251). Also P approx.

pseudotachylyte  formation

depths

= 0.335 0, (for hydrostatic conditions) and 0.9¢, (for
lithostatic conditions).

Sibson (1975): Pore fluid pressure rise = (Temperature
rise/47) kbars, for water initially at 140 °C (close to
homogenization), and depth of 4-5 km. 50 °C rise in temp
corresponds to a 1kbar overpressurization.

(CONTINUTED)
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Table C-1. Data relavant to frictional melting from literature survey. (CONTINUED)

Parameter

Data (Units, Comments, Reference)

Symbol

Definition

23

0

Heat flux

Scholz (1990).— 0= 1;.
typically. Good chunk of W, (p. 114)

U =50Mpa x 1 cm/sec; OR 0.016 Wi’

24

Clast size (radius/major axis)

Curewitz & Karson (1999): 10um — Im (p. 1696 & 99)
Shimamoto & Nagahama (1992): 5 — 2000 pum (graphs)

25

Tensile strength of the fault

Killick & Roering (1998): 0.5-27 Mpa (Figure 6, p. 256).

26

ty

Time duration for melting/
duration of fault motion

Swanson (1992): Melting duration approx.= 10" sec; Rupture
duration approx. = 1.2-12 sec. (Figure 2)

Sibson (1975): Cooling times = 0.4 — 40 s (p. 778).

Cardwell et al. (1978): Duration of faulting approx. = 1 sec
(p. 527).

27

Maximum frictional melt
temperatures

Swanson (1992): (p. 227)
Tpldb[lc trdnsmon (Quartz) =300 C Tpldb[lc transition (Feldspar)

=450°C
5 Tpeak estimate of 1000 °C from hotrock melt
temperatures and theoretical calculations (Cardwell, et
al.(1978), and McKinzie & Brune (1972));
Tpeax estimate of 1520 °c from SiO, glass compositions;
o Tk estimate of 1400 °C from flash melting during
welding;
o Tpeak estimate of 1180 °C from thermal dye
measurements by Logan and Teufel (1986);
Curewitz & Karson (1999): Thomalogous (sintering temperature)
= 0.6-0.7 Tpe; About 700-900 °C for granitic melts with
rounded clasts in PT (p. 1705); >900 °C for glassy PT (p.
1707).
Killick & Roering (1998): From Carslaw & Jaegar (1959) and
Sibson (1975): Tax- Tambien = F(Q/t"?) ; and gives, about 1000
°C (p. 255).
Sibson (1975): 1100-1200 °C, from embayment of plagioclase
porphyroclasts (p. 783).
Cardwell et al. (1978): Tambient
529).
McKinzie & Brune (1972): Tpe:= 1000 °c (p. 74).

=400 °C; Tper = 800 °C (p.

28

Tr

Thickness of fault veins

Curewitz & Karson (1999): < 2 cm; Reservoir zones, > 10 m
(p. 1695).

Grocott (1981): Distance between paired shears: Typical: .15-
1.5 m; Actual, field: 2-3 cm —3 m. (p. 169 & 171)

29

t

Thickness of injection veins

Curewitz & Karson (1999): About 2 cm (p. 1695).

(CONTINUTED)
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Table C-1. Data relavant to frictional melting from literature survey. (CONTINUED)

Parameter Data (Units, Comments, Reference)
# Symbol | Definition
Spray (1992): In °C (Table 1, p. 210):
Micas: (Muscovite & Biotite) 650
Serpentine: (lizardite & chrysotile) 400
Amphiboles: actinolite 750
tremolite 850
horneblende 750
parg 1000
Pyroxenes: clinopyroxene 1400
orthopyroxene 1425
30 | 7, Mineral melt temperatures Feldspar: Orthoclase 1150
Albite 1100
Anorthite 1550
Silicon Dioxide (Quartz): Natural 1730
Synthetic
Olivine (Forsterite) 1890
Zircon 1695
Soda-Lime glass 1000
Rutile 1825
Corundum 2000
Diamond 3727
Titanium 1667
e Swanson (1992): <1 m/s (p. 227).
e Curewitz & Karson (1999): >0.1 m/s for coseismic slip (from
Magloughlin & Spray (1992) and Spray (1995)) (p. 1694).
e Spray (1992): 0.1-2 m/s for coseismic slip (p. 212).
] ) e Sibson (1975): > 0.1 m/s; typically, .5 m/s (p. 786).
31| U Fault displacement  (slip) |« Grocor (1981): 0.1-1 m/s (based on Sibson (1975)).
velocities e Kanamori (1994): Typically < 1m/s; (1-92 cm/sec observed in
field): Maximum about 2 m/s (p. 219).
e Turcotte & Tag (1980): For San Andreas, plate velocity = 5.0-
5.5 cm/yr (1) (p. 6224 & 6229).
e Lachenbruch & Sass (1980): Plate velocity for San Andreas =
4.0-5.0 cm/yr.
32 | Weos CO, wt % in host rock Killick & Roering (1998): 0.1 % (w/w) (p. 250-251).
33 | Wy Total fault energy o Scholz (1990):—W¢=W,+ W,+ W + Q (p. 114)
34 | W, Gravitational work *  Scholz (1990):— Negligible (p. 114)
35 | Wo H,0 wt % Killick & Roering (1998): 0.48-2.33 % (w/w) (p. 250-1).
36 | Wi Seismic (Reflected) energy e Scholz (1990).— varies from fault to fault (p. 114)
37 | W, Surface energy e Scholz (1990):— approximately 107 - 10" of Wy (p. 114).

«  Lachenbruch & Sass (1980): 107 of W;. (p. 6218)
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Figure C- 1. QUARTZ: Specific Heat, /1 - {C,,(T)/1500}] as a function of Temperature, T. The value
at 300 K, or typical ambient conditions, is marked with the dotted line. In some of the runs
illustrated in Table A-7, this cutoff was assumed, resulting in a discontinuity at 300 K.
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Figure C- 2. QUARTZ: Thermal Conductivity, (k(7) - 1) as a function of Temperature, T. The
value at 300 K, or typical ambient conditions, is marked with the dotted line. In some of the runs
illustrated in Table A-7, this cutoff was assumed, resulting in a discontinuity at 300 K.
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Figure C- 3. FELDSPARS: Specific Heat, /1 - {C,(T)/1000}] as a function of Temperature,
T. The value at 300 K, or typical ambient conditions, is marked with the dotted line
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Figure C- 4. FELDSPAR: Thermal Conductivity, k(7) as a function of Temperature, T. The value
at 300 K, or typical ambient conditions, is marked with the dotted line.
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APPENDIX D:MATLAB POST-PROCESSING CODES

FOUR MATLAB POST PROCESSING CODES
FOR FORTRAN 90 OUTPUT FILES (APPENDIX A)

186



CODE D-1. DevolRuns.m: Matlab code for processing FORTRAN 90 output file DEVOL (temporal evolution of
peak temperatures).

% This programreads tinme evolution data for the specified nunmber of resolutions, and creates a space delinmited file for each time
% step. This file can be subsequently for plotting X-Y sem -log scatter plot where the axes for each data set are for the sane

% paraneters, but of different |engths. The program acconplishes this using string searches for key words, to identify the

% start and end of data at each resol ution.

format short e

evol data = zeros(50, 10);
inpfilebeg = ' Devol _";
inpfilemd ="'_2";

% Ask for nunber of input files:
inpath = input(' Type the absolute path to the directory containing the input files (use backslashes):', 's');
firstfile = input(' Type the resolution nunber (1-2, typically) of the FIRST input file for this set of runs:');
lastfile = input(' Type the resolution nunber (3-5, typically) of the LAST input file for this set of runs:');
nunfiles = lastfile - firstfile + 1;
inpfileend = input('Type the ending for this set of runs (e.g., qr5T100, fr1T1000, qri1T50_Lin,...):"',"'s");
basetenp = input (' Type the value of the anbient tenperature - 360, usually, but 330 if Dlkm');
for res = firstfile:lastfile % FOR LOOP to conbine snapution data for all "nunfile" resolutions.

inpfile = [inpath,"\"',inpfilebeg,int2str(res),inpfilend,inpfileend];

fid = fopen(inpfile, "r");

lcount =0

while |count <= 12

line = fgetl (fid);

di sp(line)
I count = lcount + 1;
if lcount == 8 % lgnore lines 1-7.
string = line(32:45); % Read x-left fromline 8.
string = lower(string);
x| = str2nun(string);
string = line(47:60); % Read x-right fromline 8.
string = lower(string);
Xr = str2nun(string);
end
if lcount == 9
string = line(32:45); % Read y-bottomfromline 9.
string = lower(string);
yb = str2nun(string);
string = |ine(47:60); % Read y-top fromline 9.
string = lower(string);
yt = str2nun(string);
end
if lcount == 10
string = line(35:48); % Read t_initial fromline 10.
string = lower(string);
ti = str2nun(string);
string = line(50:63); % Read t_final fromline 10.
string = lower(string);
tf = str2nun(string);
end
if lcount == 11
string = line(27:40); % Read hx fromline 11.
string = lower(string);
hx = str2nun{string);
end
if lcount == 12
string = line(27:40); % Read hy fromline 12.
string = lower(string);
hy = str2nun{string);
end
if lcount == 13
string = line(27:40); % Read k fromline 13.
string = lower(string);
ht = str2nun{string);
end

end
% Conpute the total nunber of time steps based on the time step size and tine limts for this run:
steps = ( (tf - ti)/ht ) + 1.0;
nunst eps = round(steps)
if abs(nunsteps - steps) >= 0.5
t_steps = nunsteps + 1;
el se
t_steps = nunsteps;
end
% Begi nning |line 14, start reading each line. If it contains the string "Maximum Tenperature", it marks the begi nning of EVOL Data.
while feof (fid) ==
line = fgetl (fid);
if isenpty(findstr('Maxinmm Tenperature',line)) == 1
di sp(line)
I count = lcount + 1;
el se
% READ EVOLUTI ON DATA.
di sp(line)
| count = lcount + 1;
for i =1:2 % | GNORE THE NEXT TWO HEADER LI NES.
line = fgetl (fid);
| count = lcount + 1;
di sp(line)
end
row = 0; % Ilnitialize Data Row counter.
endstr = [' ', nunRstr(t_steps),' '];
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while isempty(findstr(endstr,line)) ==1 % Read evol ution data.
line = fgetl (fid);

I count = lcount + 1;
row = row + 1;
for i =1:2 % Do |oop for the two data fields, time and T_nax.
if i ==
col = 2*res - 1;
string = line(14:25); % Read tine field
string = lower(string);
el se
col = 2*res;
string = line(48:61); % Read Max. Tenperature field
string = lower(string);
end
evol data(row, col) = str2nun(string);

end

end

while isempty(findstr(' GLOBAL TEMPERATURE MAXI MA' | |ine)) ==
line = fgetl (fid);

| count = lcount + 1;
di sp(line)
end
line = fgetl (fid); % Once the Header for the global nax. Tenperature is found, ignore the next I|ine.
I count = lcount + 1;
di sp(line)
line = fgetl (fid); % FI NAL DATA LI NE.
I count = lcount + 1;
row = row + 1; % FI NAL DATA ROW
for i =1:2 % Do | oop for the two data fields, time and GLOBAL T_nmx.
if i ==
col = 2*res - 1;
string = line(14:25); % Read tine field
string = lower(string);
el se
col = 2*res;
string = line(48:61); % Read Max. Tenperature field
string = lower(string);
end
evol data(row, col) = str2nun(string);
end
end % | F LOOP for Data entry into "evol data" array.
end % EOF WHI LE LOOP for each resolution file.
end % Data assimlation FOR LOOP

% Since the G obal naxinma is output separately by the FORTRAN 90 Code, evoldata needs to be sorted first before it can be used.
tenmpcount = 0;
for res = firstfile:lastfile
for j = 1:size(evol data, 1)
if evoldata(j,2*res) ~= 0.0 % COUNT THE NUMBER OF ROAS W TH NON- ZERO TEMPERATURE.
tenpcount = tenpcount + 1;
end
end
tenp = zeros(tenpcount, 2);
tenpcount = 0;
for j = 1:size(evol data, 1)
if evoldata(j,2*res) ~= 0.0 % MAKE SURE THE O (Zero) ELEMENTS ARE NOT SORTED AND REMAI N AT THE BOTTOM
tenpcount = tenpcount + 1;
tenp(tenpcount, 1) = evoldata(j,2*res-1);
tenp(tenpcount, 2) = evoldata(j,2*res );
end
end
[tnp,idcol] = sort(tenp(:,1));
tenp = tenp(idcol,:);
evol data(:,2*res-1) = zeros(size(evoldata,1),1);
evol data(:,2*res) = zeros(size(evoldata,1),1);
tenpcount = 0;
for j = 1:size(tenp, 1)
tenpcount = tenpcount + 1;
evol data(j,2*res-1) = tenp(tenpcount, 1);
evol data(j,2*res ) = tenp(tenpcount, 2);
end
tenpcount = 0;
end
% FI NALLY, SAVE THE SORTED AND | NI TI AL- TI ME " CORRECTED' PEAK TEMPERATURE EVOLUTI ON DATA I N A SEPARATE FILE. Cear array from
wor kspace.
eval ( ['save ',inpfilebeg,inpfileend,'.dat evoldata -ascii'], ['Error saving EVOLUTION Data file!'] )
eval ( 'clear evoldata','Error deleting tenporary GRI D DATA array from Wrkspace!"')

% Now read in the evoldata file:
inpdata = dl nread([inpfilebeg,inpfileend,'.dat'], ' ");

% Separate into X and Y arrays for ease of sorting, and plotting data:

X = [inpdata(:,1) inpdata(:,3) inpdata(:,5) inpdata(:,7) inpdata(:, 9)];
Y = [inpdata(:,2) inpdata(:,4) inpdata(:,6) inpdata(:,8) inpdata(:,10)];
% Conput e maxi ma and/or minina as required, for determining axes limts:

[ymax,i] = max(Y(:));

[xmax,i] = max(X(:));

%xmin,i] = mn(X(:));

x = X(:); % Since there are a nunber of O (Zero) valued terns in inpdata array, the minimum CANNOT be found with the "min" function.
xmn = 1;

for j = 1:size(x,1)
if (x(j) > eps) & (x(j) < xmin)
xmin = x(j);
end
end
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xmax = ceil (1 0gl0(xnex)); % Round towards +I NFI NI TY.

xmax = 10. 0"(xnex);

xmn = floor(logl0(xmin)) - 1; % Round towards -1 NFINITY.

xmn = 10. 0"(xmin);

X(1,:) = xmin; % The Fortran 90 code begins at initial time = 0, so for the semi-log plot, set this to a small
val ue.

% Estimate a y plot grid spacing, based on the current data file.
yincr = (ynax-baset enp)/ 10. 0;
if yincr > 1.0
order = fix(logl0(yincr)); % Round exponent towards O (ZERO) (to get the order of nmgnitude of "yincr") if increnent is > 1
el se
order = floor(loglO(yincr)); % Round exponent towards -INFINITY (to get the order of magnitude of "yincr") if increment is <

end
yincr = (10.0%order)*round(yi ncr/10. 0"order);

% NOW PLOT THE SORTED DATA:
semilogx(X(:,1),Y(:,1), " b:x'",X(:,2),Y(:,2)," g™, X:,3),Y(:,3),"'m.s", X(:,4),Y(:,4)," k--d",X(:,5),Y(:,5),'r-0");
x_label ="'Tine (s)';
y_label = "'Maxi num Tenperature (K)';
set(gca, ' Title' ,text('String' ,inpfileend),...
‘GidLineStyle' ,'-", ...
' Layer','top',...
'XColor',[0.5,0.5,0.5],...
‘YColor',[0.5,0.5,0.5],...
CXLim, [xmin xmex], ...
"YLinm,[basetenp (ymax + yincr)],...
' YTick', [ baset enp:yincr: (ymax + yincr)]);
grid on;
x| abel (" Time (s)'), ylabel (' Maxi mum Tenperature (K)');
| egend(' Resolution 1',' Resolution 2',' Resolution 3','Resolution 4',"'Resolution 5',-1);

% Save Plots in different formats:
% (1) Save current figure in Matlab readable format:

% saveas(gcf, [filestart,' _image_',int2str(res),'.fig])
% (2) Export current figure to unconpressed tiff format (at specified dpi):
dpi = 300;

print(['-r',int2str(dpi)], '-dtiff', [inpfilebeg,inpfileend,'.tif'])
% (3) POSTSCRI PT FI LES FOR CONVERTI NG TO PDF FORNAT:
print(['-r',int2str(dpi)], '-dpsc', [inpfilebeg,inpfileend,'.ps'])
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CODE D-2. DevolPlots.m: Matlab code for extracting and plotting convergence data from the files generated by
the previous code DevolRuns.m. .

% This programreads tinme evolution data files already created using the MATLAB file "Devol Runs.ni', input in the formof a list file,
% and plots and stores convergence rate netrics. These are output to data, ps and tiff files. It also stores data for the highest

% resolution runs in a separate array for the entire list of files, using the specified Thesis run paraneters (r and Tau). This
%array is output as a space delinted data file.

format long e

filemax = 25;

filenanes = cell (filenmax, 1); % Define cell array for storing input file nanes.

tmax_out = zeros(5,6); % Define and Initialize the array containing max tenperature data.

% Ask for nunber of input files:

dbfile = input(' Type the name of the file containing data file nanes to be processed in this run:', 's');
fid = fopen(dbfile,'r");
filecount = 0;
while feof (fid) == 0 % Read fil enanes, count and store them

filecount = filecount + 1;

line = fgetl (fid);

if filecount ==

m nrockcode = line(7:7); % Sel ect mineral/rock code.
end
line debl ank(line); % Renpve any trailing or |eading blanks fromthe filenane string.

line = fliplr(line);
line = debl ank(line);
line = fliplr(line);
filenames{filecount,1} = line;
di sp([' Processed Filenane: ',line])
end
status = fclose(fid);
for file = 1:fil ecount % FOR LOOP for processing input "Devol" files.
TenpRes = dl nread(filenanes{file, 1}, ' ");

% First determine the row and colum of array "tmax_out" into which the peak tenperature value fromthis file should be input.

tauend = 0;

line = filenanes{file,1};

len = length(line);

run_id = line(7:1en-4);

rstart H

for i = 1:1ength(run_id)
if run_id(i:i) =="_"

tauend = i-1;

end

end
if tauend == 0
tauend = length(run_id);
end
for i = 1:1ength(run_id)
if run_id(izi) =="'T
taustart = i+1;
rend = i-1;
end
end
len_r =rend - rstart + 1;
len_tau = tauend - taustart + 1;

if len_r == 1
if (str2nun(run_id(rstart:rend)) - 1.0) < 1.0e-6
datrow = 1;
el se
datrow = 2;
end
elseif len_r == 2
if (str2nun(run_id(rstart:rend)) - 10.0) < 1.0e-6
datrow = 3;
el se
datrow = 4;
end
el se
datrow = 5;
end
if len_tau ==
if (str2nun(run_id(taustart:tauend)) - 10.0) < 1.0e-6
datcol = 1;
el se
datcol = 2;
end

elseif len_tau ==
if (str2nun({run_id(taustart:tauend)) - 100.0) < 1.0e-6

datcol = 3;
elseif (str2nun({run_id(taustart:tauend)) - 200.0) < 1.0e-6
datcol = 4;
el se
datcol = 5;
end
el se
datcol = 6;
end

%Initialize all data arrays and vari abl es.
nunres = (size(TenpRes,2))/2;

Tmax = zeros(nunres, 1);

t_Tmax = zeros(nunres, 1);
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dTmax = zeros(nunres, 1);
dTratio = zeros(nunres,1);
TnaxOrder = zeros(nunres, 1);

% Mai n cal cul ati ons for convergence tests.
for res = l:nunres
[Tmex(res),i] = max(TenpRes(:, 2*res));
t_Tmax(res) = TenpRes(i,(2*res-1));

end

% Det ernmi ne the nunber of resolutions at which output exists for each file.
res = 2;

flag = 0;

while flag == 0
if Tmax(res) < eps
nunpl otdata = res-1;
flag = 1;
end
res = res + 1;
if (res == numres + 1) & (flag == 0)
nunpl otdata = nunres;
flag = 1;
end
end
% Now conput e the convergence netrics.
for res = 1:(nunpl ot dat a-1)
dTmax(res) = abs(Tnax(res+1) - Tmax(res));
end
for res = 1:(nunpl ot dat a- 2)
dTratio(res) = (dTmax(res))/dTnex(res+1);
TrnaxOrder (res) = (1 ogl0(dTratio(res)))/(lo0gl0(2.0));
end

% Store the above convergence data for each file in its corresponding cell array, and save it to a file.
tmax_conv_data = [t_Trmax Tmax dTmax dTratio TmaxOrder];

% SAVE THE PEAK TEMPERATURE CONVERGENCE DATA I N A SEPARATE FILE. Cear array from workspace.
eval ( ['save TmaxConvData_',run_id,'.dat tmax_conv_data -ascii -double'], ['Error saving EVOLUTION Data file!'] )
eval ( 'clear tnmax_conv_data',' Error deleting tenporary CONV DATA array from Wrkspace!')

% Save maximum tenperature to the tmax_out CELL ARRAY DEFI NED ABOVE.
t max_out (datrow, dat col ) = Tmax(nunpl otdata, 1) ;

% 1. PLOT RAW ERROR DATA.

subplot(2,1,1)

X = [2:1: nunpl otdata] ;

y_mex = y_nax + y_incr;
plot(x,y,'r-o','LineWdth',2)

set(gca, ' Title' ,text('String' ,['(a). ',run_id]),...
‘GidLineStyle ,"'-", ...
‘Layer','top', ...
" XColor',[0.5,0.5,0.5],...
' XTick', x

‘YColor',[0.5,0.5,0.5],...
‘YLim,[y_min,y_max],...
‘YTick',[y_mn:y_incr:y_max]);
grid on;
x| abel (' Resol ution Level, i'), ylabel ("dT_{max,i} = T_i - T_{i-1} (K)"');

% 2. PLOT convergence order.
subplot (2,1, 2)
x = [3:1:nunpl otdata];
y = TmaxOrder (1: nunpl ot dat a- 2) ;
if length(y) ~= 1
y_max = max(y);
y_mn = nin(y);
y_incr = (y_max - y_nin)/10.0;
y_max = y_nmex + y_incr;
plot(x,y,'r-o','LineWdth',2)
set(gca, ' Title' ,text('String' ,["(b). ',run_id]),...
‘GridLineStyle ,'-",...

‘Layer','top', ...
'XColor',[0.5,0.5,0.5],...
" XTick', x

‘YColor',[0.5,0.5,0.5],...
‘YLim, [y_min,y_max],...
"YTick',[y_mn:y_incr:y_nex]);
grid on;
x| abel (' Resol ution Level, i'), ylabel (' Order of Convergence');
end
% Save Plots in different formats:
% (1) Save current figure in Matlab readable format:

% saveas(gcf, [' TmaxConvData_',run_id,'.fig])
% (2) Export current figure to unconpressed tiff format (at specified dpi):
dpi = 300;

print(['-r',int2str(dpi)], '-dtiff', ['TmaxConvData_',run_id,'.tif'])
% (3) POSTSCRI PT FI LES FOR CONVERTI NG TO PDF FORNAT:
print(['-r',int2str(dpi)], '-dpsc', [' TmaxConvData_',run_id,'.ps'])

di sp([' Finished Processing Run ID: ',run_id,', file# ',int2str(file),' of ',int2str(filecount),'."])
Y%ause

end

% Finally, save the max tenperature data in "tmax_out" into a file.

if tauend < I ength(run_id) % Add suffix if the run is linear.
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fileend = ' _Lin'

eval ( ['save TpeakRTauData_', m nrockcode, fileend,'.dat tmax_out -ascii -double'], ['Error saving PEAK TEMPERATURE Data file!'] )
el se

eval ( ['save TpeakRTauData_', mi nrockcode,'.dat tmax_out -ascii -double'], ['Error saving PEAK TEMPERATURE Data file!'] )
end
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CODE D-3. DsnapRuns.m: Matlab code for processing FORTRAN 90 output file DSNAP (temperature profiles
along transects parallel to x- and y-axes).

% This programreads tinme x-snap data for the specified nunber of resolutions, and creates a space delinited file for each tinme
% step. This file can be subsequently for plotting X-Y scatter plots where the axes for each data set are for the sane

% paraneters, but of different |engths. The program acconplishes this using string searches for key words, to identify the

% start and end of data at each resol ution.

format short e
snapdata = zeros(21, 10);
inpfilebeg = 'Dsnap_';

inpfilemd ="'_2";
% Ask for nunber of input files:
inpath = input(' Type the absolute path to the directory containing the input files (use backslashes):', 's');

firstfile = input(' Type the resolution nunber (1-2, typically) of the FIRST input file for this set of runs:');
lastfile = input(' Type the resol ution nunber (3-5, typically) of the LAST input file for this set of runs:');
nunfiles = lastfile - firstfile + 1;

inpfileend = input(' Type the ending for this set of runs (e.g., qr5T100, fr1T1000, qr1T50_Lin,...):"',"'s");
basetenp = input (' Type the value of the anbient tenperature - 360, usually, but 330 if Dikm');
for res = firstfile:lastfile % FOR LOOP to conbine snapution data for all "nunfile" resolutions.

inpfile = [inpath,"\"',inpfilebeg,int2str(res),inpfilenmid,inpfileend];
fid = fopen(inpfile, 'r");
lcount =0
while [ count <= 12
line = fgetl (fid);

di sp(line)
| count = lcount + 1;
if lcount == 8 % lgnore lines 1-7.
string = line(32:45); % Read x-left fromline 8.
string = lower(string);
x| = str2nun(string);
string = |ine(47:60); % Read x-right fromline 8.
string = lower(string);
Xr = str2nun(string);
end
if lcount == 9
string = line(32:45); % Read y-bottomfromline 9.
string = lower(string);
yb = str2nun(string);
string = line(47:60); % Read y-top fromline 9.
string = lower(string);
yt = str2nun(string);
end
if lcount == 10
string = line(35:48); % Read t_initial fromline 10.
string = lower(string);
ti = str2nun(string);
string = line(50:63); % Read t_final fromline 10.
string = lower(string);
tf = str2nun(string);
end
if lcount == 11
string = line(27:40); % Read hx fromline 11.
string = lower(string);
hx = str2nun{string);
end
if lcount == 12
string = line(27:40); % Read hy fromline 12.
string = lower(string);
hy = str2nun{string);
end
if lcount == 13
string = line(27:40); % Read k fromline 13.
string = lower(string);
ht = str2nun{string);
end
end
% Begi nni ng Line 14, start reading each line until the string " y U ysnap(y)" is found, which nmarks the beginning

% of x_snap dat a.
while feof (fid) ==
line = fgetl (fid);
if isenpty(findstr(’ y U ysnap(y)',line)) ==
di sp(line)
| count = lcount + 1;
el se
% READ x_snap DATA.
row = 0; % Ilnitialize Data Row counter.
while isempty(findstr('---------------“-“c--- ‘Lline)) == % Read x_snap dat a.
line = fgetl (fid);
%di sp([' PROCESSING THI'S LINE: ', line])
I count = lcount + 1;
row = row + 1;
for i =1:2 % Do |oop for the two data fields, time and T_max.
if i ==
col = 2*res - 1;
string line(4:15); % Read y (THETA) data field
string | ower (string);
el se
col =2
string
string
end

*

res;
l'ine(20:35); % Read Tenperature field
| ower (string);
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if row<=1
snapdat a(row, col ) = str2nun(string);

el seif (snapdata(row1,2*res - 1) ~= yt)
snapdat a(row, col ) = str2nun(string);
end
end
end
end %I F LOOP for Data entry into "snapdata" array.
end % EOF WHI LE LOOP for each resolution file.

end % Data assimilation FOR LOOP
% FINALLY, SAVE THE SORTED AND | NI TI AL- TI ME " CORRECTED" TEMPERATURE DATA at RI GHT BOUNDARY I N A SEPARATE FILE. Clear array from
wor kspace.
eval ( ['save ',inpfilebeg,inpfileend,'.dat snapdata -ascii'], ['Error saving x_snap Data file!'] )

eval ( 'clear snapdata','Error deleting tenporary GRI D DATA array from Wrkspace!')

% Now read in the snapdata file:
inpdata = dl nread([inpfilebeg,inpfileend,'.dat'], ' ");

% Separate into X and Y arrays for ease of sorting, and plotting data:
X = [inpdata(:,1) inpdata(:,3) inpdata(:,5) inpdata(:,7) inpdata(:, 9)];
Y = [inpdata(:,2) inpdata(:,4) inpdata(:,6) inpdata(:,8) inpdata(:,10)];

% NOW PLOT THE SORTED DATA:

% Conput e maxi ma and/or minina as required, for determining axes limts:
[ymax,i] = max(Y(:));

%Estimate a y plot grid spacing, based on the current data file.

yincr = (ynax-basetenp)/10.0;

if yincr > 1.0

order = fix(logl0(yincr)); % Round exponent towards O (ZERO) (to get the order of nmgnitude of "yincr") if increment is > 1
el se

order = floor(logl0(yincr)); % Round exponent towards -INFINITY (to get the order of nmmgnitude of "yincr") if increnent is <
1
end

yincr = (10.0"order)*round(yi ncr/10. 0"order);
Xmax
xm n yb;

xincr = X(2,1) - X(1,1);

yt;

plot (X(:,1),Y(:,1), " b:x", X(:,2),Y(:,2)," g™, X(:,3),Y(:,3),"m.s" , X(:,4),Y(:,4)," k--d",X(:,5),Y(:,5),'r-0");
set(gca, ' Title' ,text('String' ,inpfileend),...
‘GidLineStyle ,'-", ...
' Layer','top',...
" XColor',[0.5,0.5,0.5],...
‘YColor',[0.5,0.5,0.5],...
"XLim, [xmin xmex], ...
' XTick', [xmi n:xincr:xmax], ...
"YLinm, [basetenp (ymax + yincr)],...
' YTick', [ basetenp:yincr: (ymax + yincr)]);
grid on;
x| abel (' Theta (radians)'), ylabel (' Tenperature at Right Boundary (K)');
| egend(' Resolution 1',' Resolution 2',' Resolution 3',' Resolution 4','Resolution 5',-1);

% Save Plots in different formats:
% (1) Save current figure in Matlab readable format:

% saveas(gcf, [filestart,' _image_',int2str(res),'.fig])
% (2) Export current figure to unconpressed tiff format (at specified dpi):
dpi = 300;

print(['-r',int2str(dpi)], '-dtiff', [inpfilebeg,inpfileend,'.tif'])
% (3) POSTSCRI PT FI LES FOR CONVERTI NG TO PDF FORNAT:
print(['-r',int2str(dpi)], '-dpsc', [inpfilebeg,inpfileend,'.ps'])
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CODE D-4. Matlab code for processing FORTRAN 90 output file DGRID (temperature distribution data at the
resolution specified in the FORTRAN 90 code COND2D) into 3D temperature surface plots and AVI movies.

% FOR HANDLING T

% This programreads data in the formof grid data over a rectangul ar domain for each tinme step,

for each time st

% This file can be subsequently read by MFiles that can plot the data into Surface/ Contour

string searches
% for key words,
global z_min

format short e
rowbegi n_NuntChar
inpfilebeg = 'Dg

% Ask for

inpfileend = inp
inpfile = [inpat
di sp(' Next input

HE THESI S PROBLEM WHEN hx = hy = 0. 1*R

ep.

to identify the start and end of data at each tinme step.

I gnore = 19;
rid_5_2_";

input file nane:
inpath = input(' Type the absolute path to the directory containing the input files (use backslashes): ',
fr1T1000, qr1T50_DlkmlLin...): ", *

ut (' Type the ending for this set of
h,"\',inpfilebeg,inpfileend];
the z-axis aspect ratio, which determines its relative size w.r.t.

runs (e.g., qr5T100,

the x- and y- axes,

and creates a space delinmted file

plots. The program acconplishes this using

and hence the shape')

disp('of the 3D plots. If the z-axis seenms scrunched up, keep reducing this value till its size is comarable to the x- and y- axes.')
disp(' On the other hand, if z-axis is so big that it dominates that other two yielding a columar or vertical line plot,")
di sp('then do the opposite - Increase this value till the other two axes are restored.');
zaspect = input(' Type the aspect ratio for z-axis. Default = 5000000 (5 million). RANGE = 0.01 to 1000000000 (1 billion): ");
log_flag = input('Do you want z data to be converted to log scale (for widely varying orders of magnitude over tine)? State y/n: ',
's');
if log_flag == 'y’

| ogzero = -10.0; % Define how to deal with ZERO or NEGATI VE nunbers when using the LOG SCALE for Z-AXIS.
end
max_t = input (' Type the naxi mum nunber of time levels used in this run. Estimate will do as it is used to initialize the tine array:

t =
fid = fopen(inpf
lcount =0
while | count <=
line = fgetl
di sp(line)
I count = Ico
if |count
string
string
x|
ng
ng
Xr

stri
stri

end
ifl

count

string
string
yb
string
string
yt

end
if

count =
string
string

ti
string
string

tf

end
if lcount =
string
string

hx

end
if

count =
string
string

hy

end
if

count =
string
string

ht

end
end
% Conpute the di
%for all resolu
Xx_grid_spacing =
y_grid_spacing =
steps = ( (yt -
nrows = round(st
if abs(nrows - s

grid_rows =
el se

grid_rows =
end
st eps
ncol s

( (xr -

round( st

zeros(1, max_t);

% Ilnitialize tine level array

ile, 'r');

12

(fid);

unt + 1;

8 % lgnore lines 1-7.
line(32:45); % Read x-left fromline 8.

| ower (string);
str2nun(string);
line(47:60);

| ower (string);
str2nun(string);

% Read x-right fromline 8.

9

= line(32:45);

| ower (string);
str2nun(string);
l'ine(47:60);

| ower (string);
str2nun(string);

% Read y-bottomfromline 9.

% Read y-top fromline 9.

10

l'ine(35:48);

| ower (string);
str2nun(string);
i ne(50:63);

| ower (string);
str2nun(string);

% Read t_initial fromline 10.

% Read t_final fromline 10.

11

l'ine(27:40);

| ower (string);
str2nun(string);

% Read hx fromline 11.

12

line(27:40);

| ower (string);
str2nun(string);

% Read hy fromline 12.

13

l'ine(27:40);

| ower (string);

= str2nun(string);

% Read k fromline 13.

nensions of the grid data. For these runs,
tions except the first one,
0.5*((xr - xI)/10.0);
0.5*((yt - yb)/10.0);
yb)/y_grid_spacing ) + 1.0;
eps)

teps) >= 0.5

nrows + 1;

nrows;

xl)/x_grid_spacing ) + 1.0;
eps)
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the grid spacings chosen were MAX(hx, hx_max/2) or MAX(hy, hy_max/2).
this results in the latter values being chosen for grid spacing.

SO,



if abs(ncols - steps) >= 0.5
grid_colums = ncols + 1;
el se
grid_colums = ncols;
end

% Begi nning |line 14, start reading each line. If it contains the string "TIME STEP", it is the beginning of the next tinme step grid
dat a.

tscount = 1; % Initialize tine |evel counter

max_z = -(1.0/eps); % Initialize max and min z values. It is optinal to find these values at the same
tine

mn_z = (1.0/eps); %as reading in grid data.

griddata = zeros(grid_rows, grid_colums)
while feof (fid) == 0
line = fgetl (fid);
if isenpty(findstr(' TIME STEP' ,line)) ==
di sp(line)
I count = lcount + 1;
el se
% READ TI ME LEVEL.
di sp(line)
| count | count + 1;
string line(48:57);
string = lower(string);
t(tscount) = str2nun(string); % Conpute tine |evel fromstring.
tscount = tscount + 1; % Update time | evel counter
% READ DATA FOR THI'S TI ME LEVEL.
for i =1:2 % Read HEADER LINES (TWO) for each time step data segment.
line = fgetl (fid);
I count = lcount + 1;
di sp(line)
end
for j = 1:grid_rows % Read grid data.
line = fgetl (fid);
| count = lcount + 1;
% THE NEXT TWO STATEMENTS DEAL W TH THE FORTRAN OUTPUT LI NES W TH THE FORMAT FMr='(1X, ES18.8,","): So, ignore the blank at
% the beginning and the "," at the end of each data entry.
strbegi n = rowbegi n_NunChar | gnor e+2;
strend = strbegin + 18;

for i = 1:grid_colums
string = line(strbegin:strend);
string = lower(string);

griddata(j,i) = str2nun(string);
if griddata(j,i) > max_z

max_z = griddata(j,i); % Store current maxi mum z val ue
end
if griddata(j,i) < mn_z

mn_z = griddata(j,i); % Store current mnimum z val ue
end

strbegin = strend + 2;
strend = strbegi n+18;

end
end
% The FORTAN 90 CODE DOES NOT GENERATE DATA FOR yt = 3.15. So, copy data fromy= 3.10 into the last row of griddata.
if yt == pi
for i = 1:grid_colums
griddata(grid_rows, i) = griddata(grid_rows-1, i);
end
end
for i =1:1 % Read FOOTER LINES for each tinme step data segment. This includes the |ast data line which is a repeat.
line = fgetl (fid);
I count = lcount + 1;
di sp(line)
end
% SAVE DATA AT THI'S TIME LEVEL IN A SEPARATE FI LE.
eval ( ['save ',inpfile,' _",int2str(tscount-1),' griddata -ascii'], ['Error saving file for tinme |loop# ,int2str(tscount),'!'] )

eval ( 'clear data','Error deleting tenporary GRI D DATA array from Wrkspace!")
end
end

% Now read in the space-delinmited GRID data in a rectangular grid representing [r, THETA] space (r = 0-1, THETA=0-PI)

% and (a) extend the data symmetrically over the FULL circle, (b) then plot a POLAR MESH CONTOUR plot & a COLOR plot of the data, AND
% (c) save the figures in FIGfiles along with exporting themto TIFF inages for word processing applications.

% REQUI RES " MESHC_ZCONTOUR. ni', A VARI ANT OF THE MATLAB FUNCTI ON "MESHC', TO CONTROL THE DI STANCE BETWEEN THE MESH PLOT AND

% CONTOUR MAP PLANE. This is acconplished using the global variable, "z_min".

% | NPUT FI LE SEPCS.
max_files = tscount-1;
filestart = [inpfile,' _'];

% CGenerate the x,y grid for the POLAR DATA ABOVE, and redefine the lower limt of the y axis to -yt. This will nean redefining
% the nunber of y grid points on the extended axis.

yb = yb - yt;

grid_rows = grid_rows + (grid_rows - 1);

[th,r] = meshgrid(yb:y_grid_spacing:yt, xl:x_grid_spacing:xr);

[X,Y] = pol2cart(th,r); % Convert Pol ar coordinates to Cartesian Coordinates for creating the plots.

% Define Rows/2 which will be used in reshaping the data array, and in extending the THETA field.

grid_rows_by 2 = (grid_rows + 1)/2 %"grid_rows" is always ODD.

% Conpute the limts & tick marks along the x- and y- axes for POLAR plot representation. Define the coordinat lints so they
% conpl etely encl ose the segnent of the disc being considered: x_left = r_mn*COS(Theta_max) & |y_max| = r_max*SI N( Thet a_nax)
x_right = xr;

epxflag = 0O;

epx = 0O;
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while epxflag == 0
if abs(xl*10.0%epx - fix(xl*10.0%epx)) < 1.0e-6

epxflag = 1;
el se
epx = epx + 1;
end
end
x_left = (10.07-epx)*fix((10.0"epx)*x| *cos(yt)); % Round x_| eft towards O.
x_incr = (x_right-x_left)/2.0;
x_tick = [x_left:x_incr:x_right];
if (xr < 0.001)
epxt = abs( floor(logl0(xr)) ); % Round mul tiplicative exponent towards -1NFINTY.

x_tick_label = ([x_left:x_incr:x_right]*10.0"epxt)";
el seif abs( 10g10(xr) - floor(loglO(xr)) ) < 1.0e-6

epxt = abs( floor(logl0(xr)) ) + 1; % Round mul tiplicative exponent towards -INFINITY. Add 1 if exactly .001, .0001, etc.
x_tick_label = ([x_left:x_incr:x_right]*10.0"epxt)";

el se
x_tick_label = [x_left:x_incr:x_right]";

end

y_top = xr*sin(yt); % Round y_top towards | NFINTY.

epyflag = 0O;

epy = 0;

whil e epyflag ==
if fix(y_top*10.0%epy) >= 1

epyflag = 1;
el se
epy = epy + 1;
end
end
y_top = (10.07-(epy+1))*floor ((10.0"(epy+1l))*y_top) % To ensure representation of y top (& all y-axis ticks) to 2 significant
digits.
y_bottom = -y_top;
y_incr = (y_top-y_botton)/2.0;
y_tick = [y_bottomy_incr:y_top];
if (epy > 3) % Use y_top instead of yt here since y_top = r*SIN(yt) ~ r*yt could becone snall for snall yt!
y_tick_label = ([y_bottomy_incr:y_top]*10.0"epy)";
el se
y_tick_label = [y_bottomy_incr:y_top]';
end

x_| abel _xl oc
x_| abel _yl oc
y_l abel _xl oc
y_l abel _yl oc

x_left + (x_right-x_left)/2.0;
y_bottom - 0.25*y_incr;

x_right + 0.25*x_incr;

y_bottom + (y_top-y_bottom/2.0;

% Conpute the limts & tick marks along the z-axis for POLAR MESH CONTOUR pl ot representation. It is being assuned that the
tenperature decays with tine.

% So, for uniformity in representation of plots and colornap at different tines, BOTH the axes AND the colornap are scaled with
respect to the earliest tine-|level,

% corresponding to "t(1)". Also, adjust this z_min value so that the lower z-axis linmt is "well" below the minimmvalue. This is the
z-level (or plane)
% at which contours will be drawn in the 3D plot. ALways set z_nmax to one z_increnent above the nax z value. Use "FIX(X)" instead of

"ROUND(X)" to round to the
% | ower integer (i.e., round towards 0) always, in determining z_incr to be used for the plots.

if log_flag =="y' % Use | og scal e when z data varies by orders of magnitude.
if mx_z >0.0
z_max = | 0gl0(max_z);
el se
z_max = | ogzero; % Finite Approximtion for Log(0) for plotting.
end
if mn_z >0.0
z_mn = 10gl0(mn_z);
el se
z_mn = | ogzero; % Fi nite Approximation for Log(0) for plotting.
end
el se
z_max = 10. 0*round(nax_z/ 10. 0) ; % Round to nearest 10 K.
z_min = 10. 0*round(m n_z/ 10. 0); % Round to nearest 10 K.
end
if log_flag =="y

incr = (z_max-z_nin)/10.0;
z_incr = 0.01*fix(incr*100)
if z_incr >= (10gl0(max_z))
z_incr = z_incr/5.0;
end
else %If z increment is larger thant he original maxinumvalue, reduce it by a factor of 5.
z_incr = (z_max-z_nin)/10.0;
if z_incr > 1.0

order = fix(logl0(z_incr)); % Round exponent towards 0 (ZERO) (to get the order of nmgnitude of "yincr") if increnment
is>1
el se
order = floor(logl0(z_incr)); % Round exponent towards -INFINITY (to get the order of nagnitude of "yincr") if increment
is<1
end
z_incr = (10.0"order)*round(z_i ncr/10. 0"order);
% _incr = 20.0*fix((z_max-z_mnin)/100.0); % Round towards nearest 10 K.

%f z_incr >= (max_z - min_z)
% z_incr = z_incr/5.0;
%end

end
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if log_flag =="y'
z_max = fix(z_max) + z_incr; % Use for |og scale.
if z_max < | oglO(max_z)
while z_max < | 0gl0(max_z)
zZ_max = z_max + z_incr;

end
end
el se % Make sure that the max tick value is one increment above the max z data.
if z_max < max_z % Can happen when z_incr is very small.
while z_max < max_z
Z_max = z_max + z_incr;
end
end
end
if log_flag == "'y’
z_steps = (fix((z_max - z_min)/z_incr)) + 1;
el se
z_steps = (fix((z_max - z_min)/z_incr)) + 1;
%_steps = (fix((max_z - min_z)/z_incr)) + 1;
end
base_steps = z_steps; % Use for |og scale.
%f nod(z_steps,2) == 0 % Use when using absol ute tenperatures.
% base_steps = z_steps/2.0;
%l se
% base_steps = (z_steps+1)/2.0;
%end

% Save z_nin at this stage for use in caxis conmand bel ow, before changing it to adjust the floor |evel of the contour map.
z_min_colormap = z_mn

z_mn = z_nmn - base_steps*z_incr;

z_tick = [z_min:z_incr:z_nmax];

% _tick = [z_min:2*z_incr:z_nmax]; % CGenerate z ticks at twice the z_increnent for plotting & deternmining range, |F z_incr is snall.
% Use | og scal e when z data varies by orders of magnitude. In any case, the tick |abels can still retain their original values.
if log_flag == "'y’

% _tick_| abel _char = nunRstr(10.”z_tick);
z_tick_|l abel _char = nun@str(z_tick);

el se
z_tick_|l abel _char = nunRstr(z_tick);

end
bl ankpos = findstr(' ',z_tick_|label _char);
bl ankl et = i sspace(z_tick_| abel _char);

% " bl ankl et" above is an array of the sane size as "z_tick_|abel _char", with 1(ONE)s at bl ank positions, and Os at other places.
% "findstr" does not output information about the 1st and |ast character strings in the z_tick_|abel _char array, since they do not
%start with a blank. Therefore, separate | oops nust be used to identify, and |ater conpute, these end val ues.
% The followi ng | oops mark the | ength of each tick mark label in z_tick_|abel _char:
k = 1; %k is the Tick Mark Label Index - the final value of k is the total # of tick nmark |abels.
if blankpos(1l) ~=1 % First character string.
strbegin(1) = 1;
strend(1) = blankpos(1) - 1;
len(1l) = strend(1l) - strbegin(l) + 1;
k =k +1;
end
i =1;
while (i+1) <= size(blankpos, 2)
if (blankpos(i+1) - blankpos(i)) > 1
strbegi n(k) = blankpos(i) + 1;
strend(k) = bl ankpos(i+1) - 1;
len(k) = strend(k) - strbegin(k) + 1;

k =k + 1,

end

=i +1 % | ncrenment inside array "BLANKPGS'.
end
if == size(z_tick,2) % Last character string.

strbegi n(k) = bl ankpos(size(bl ankpos, 2)) + 1;

strend(k) = size(z_tick_|label _char,2);

len(k) = strend(k) - strbegin(k) + 1;
el se

di sp(' WARNI NG Nunber of tick |abels does not match the nunmber of ticks!")
end
z_tick_label = cell(1,size(z_tick,2)); % Create and I NI TIALI ZE a CELL ARRAY for storing each of the tick |abels (string arrays).

for k = 1:size(z_tick,2)
disp(['TICK LABEL # ',int2str(k)])
pos = strbegin(k);

string ="' '; % Initialize string
for i = 1:1en(k)
string(i:i) = z_tick_label _char (1, pos);
pos = pos + 1;
end
z_tick_label (1,k) = {string}; % ADD each tick mark |abel string to the Cell array.
end
if log_flag == "'y’
% Since tick mark increment is 2 times z_incr, the nunber of tick marks to be erased is only about half as much.
if nod(base_steps,2) ==
base_steps = base_steps/2.0;
el se
base_steps = (base_steps+1)/2.0;
end
end
for i = 1:base_steps
z_tick_label (1,i) ={" "}; % Set the tick nmarks outside the z data range to blanks, in the Cell Array.
end

z_tick_| abe
x_| abel _zl oc
y_l abel _zl oc

z_tick_| abel"; % Convert the tick |abel vector into a colum vector for use in Meshc plots.
z_mn - z_incr;
z_mn - z_incr;
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if log_flag =="y'

z_|label _zloc = z_min + (z_max - z_min)/2.0;
el se

z_label _zloc = min_z + (max_z - mn_z)/2.0;
end
z_|abel _xloc = x_left - 0.5*x_incr;
z_| abel _yloc = y_bottom- 0.5*y_incr;

% FI NALLY CREATE MESH- CONTOUR AS WELL AS POLAR COLOR PLOTS FOR EACH FI LE.
% First,
%in the AVI file.

outfile [inpfilebeg,inpfileend];

avi obj avifile([outfile,' _novie.avi'], fps', 4, ' conpression','None');

for nf = 1:max_files
% Open the data input files and obtain plot tenperatures.
71 = dinread([filestart,int2str(nf)], ' ');

% Extend the tenperatures symetrically across to the other seni-circle.
Z = zeros(grid_rows, grid_colums);

open an AVl file to store the novie generated. Then create the nmesh plots at each tinme step (one frane),

and store each frame

HEAARHH KA AR R IR AKX R IR KA AT )

for j = 1:grid_rows
for i = 1:grid_colums
if j <grid_rows_by_2
if ren(grid_rows,2) ==
di sp(' *xxxxxxrrkxkxkrxrxrx WARNING Variable GRID ROAS is even!
pause
%f (grid_rows-j) >0
%Z(j,i) = Z1( (grid_rows_by_2-j), i );
%l se
% SATI SFY PERIODICITY: Set the z data at the top of the y-axis range (if 2*Pl) the same as that at the bottom (0)
% Z(j,i) = Z1(1,i);
%end
el se
Z(j,i) = Z1( (grid_rows_by 2-j+1), i );
end
el se
Z(j,i) = Z1(j-grid_rows_by_2+1,i);
end
end
end
if log_flag =="y % Use | og scal e when z data varies by orders of nagnitude.
for j = 1:grid_rows
for i = 1:grid_colums
if z(j,i) >0.0
Z(j, 1) =10g10(Z(j.i));
el se
Z(j,i) = logzero; % Appr oxi mati ng Log(0), for plotting purposes.
end
end
end
end

subplot(2,1,1) % ROW 1
hl = meshc_zcontour (X ,Y',2);

| oad thesis_col ormap - nat

col or map(tenper at ur e_col or map)
canproj perspective

view(24.0,12.0)

daspect ([1 1 zaspect]) % For thesis problem when using absol ute tenperatures.

if log_flag =="'y
%axi s([z_m n_col ormap z_max])
caxis([0 4])
el se % Set colormap scale for the first time |evel,
% caxis([mn_z nmax_z])
% caxi s([m n_z 2050]) % max_z based on T_nelt of Quartz, ~2050 K.
caxis([mn_z 1500]) % max_z based on T_nelt of Feldspar, ~1500 K.
end
% Set background col or and axes properties for current figure.
set (gcf, 'Color' , "white'
' Def aul t AxesCol or" , "white'
* Def aul t AxesFont Name* , "tinmes' S
' Def aul t AxesFont Si ze' , 8 )
t_text = {['Fig ,int2str(nf),'. POLAR Col or Mesh-Contour Plots for: ',inpfileend,' at tine
["(k=",nun2str(ht),"' *hx=", nun2str(hx),"' *hy=", nun2str(hy),"')"1};
h_title = text('String',t_text, ' Color', 'black', 'FontAngle', 'normal', 'FontName', 'tines'
x_| abel = text(x_| abel _xloc, x_| abel _yl oc, x_| abel _zl oc,"' x"," Color',"'blue',' FontAngle', 'itali
y_label = text(y_| abel _xloc,y_| abel _yloc,y_label _zloc,'y"," Color',"blue'," FontAngle', "itali
z_| abel = text(z_label _xloc,z_|abel _yloc,z_|abel _zloc,'T ,'Color','blue','FontAngle', 'itali
set(gca, ' Title' , h_title
' Font Name' , 'tines' s
‘FontSize' , 8 s
t XL m , [x_left x_right] s
' XTi ck' , x_tick
' XTi ckLabel ', x_tick_| abel S
b YL m , [y_bottomy_top] s
' YTi ck' , y_tick ,
' YTi ckLabel ', y_tick_| abel s
tZLim , [z_mn z_max] s
' ZTi ck' , z_tick
' ZTi ckLabel ', z_tick_| abel )
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and HOLD I T ON for next plot.

t,nun@str(t(nf))," s.'],...

, ' Font Wi ght', ' Font Size', 9);
c',' FontWight','bold,'FontSize', 8);
c',' Font Wi ght','bold','FontSize',8);

c',' FontWight','bold','FontSize', 8);

"bold',



subplot(2,1,2) % ROW 2
h2 = pcolor (X ,Y',2);
col or map(tenper at ur e_col or map)
daspect ([1 1 1]) % For thesis problem when using absol ute tenperatures.
% "pcolor" plots data in plan view (El evation = 90 Deg). Rotate the plot by 90 Deg. along the Azinuth, for proper orientation:
%0 Deg. at bottom & 180 Deg. at top.
view( 90.0, 90.0) % Azi nut h, El evation.
shadi ng faceted
set (h2,' LineStyle', "' none')
if log_flag =="y'
%axi s([z_m n_col ormap z_max])
caxis([0 4])

el se % Set colormap scale for the first time level, and HOLD IT ON for next plot.
% caxis([mn_z nmax_z])
% caxi s([m n_z 2050]) % max_z based on T_nelt of Quartz, ~2050 K.
caxis([mn_z 1500]) % max_z based on T_nelt of Feldspar, ~1500 K.
end
% set(gca,' FontName' , 'tines' ..
% ' Font Si ze' , 8 V.
% t XL m , [x_left x_right] V.
% ' XTi ck' , x_tick ..
% ' XTi ckLabel ', x_tick_| abel ..
% Y YL m , [y_bottomy_top] V.
% ' YTi ck' , y_tick
% ' YTi ckLabel ', y_tick_| abel )
set (gca, ' Font Nane' , "tinmes' .
‘FontSize' , 8
*XLi m , [x_left x_right]
Y YL m , [y_bottomy_top])

col orbar (' horiz")

% Save current figure and export it to unconpressed tiff fornmat (at specified dpi).

Y%aveas(gcf, [outfile,' _image_',int2str(nf),'.fig])

dpi = 200;

print(['-r',int2str(dpi)], '-dtiff', [outfile,' _image_',int2str(nf),'.tif'])

print(['-r',int2str(dpi)], '-dpsc', [outfile,' _inage_',int2str(nf),'.ps']) % THESE TWD POSTSCRI PT FI LES ARE FOR USI NG
THESE PLOTS | N POSTERS.

O%print(['-r',int2str(dpi)], '-dpsc2', [outfile,' _inmage_',int2str(nf),' _L2.ps'])

% Create and save as a novie frame for the current tinme step.

F(nf) = getframe(gcf);

avi obj = addf rane(aviobj, F(nf));

disp (['Time Step = ',int2str(nf),': Plot and Myvie Qutput SAVED.'])

Y%ause
end
avi obj = close(aviobj);
% Save the novie frame to a "MAT" file, using the save command. The command | oad <filename> X Y,Z can be used to | oad the above "NAT"
file later. This allows for the
% novie to be stored in a MATLAB readabl e fornat.
novfile = [outfile,' _novie.nmat'];
eval ( ['save ',novfile," F'], ['Error saving MATLAB novie file!'] )
% PLAY MOVIE "nuni' TIMES. The |oading procedure shown is redundant here. But it is being used to test the frame saving and retrieval
process. Just using the novie
% command will do the job, as in the next two |ines.
num = input (' Nunmber of times you want to play the nmovie: ');
fps = input('Input speed in franes per second, fps: ');
| oad(novfile, ' -mat'
novi e(gcf, F,numfps, [0 0 0 0])
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