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ABSTRACT OF THESIS 
 
 
 
LINEAR AND NONLINEAR MODELING OF ASPERITY SCALE FRICTIONAL MELTING 

IN BRITTLE FAULT ZONES 
 
 
Study of pseudotachylytes (PT) (frictional melts) can provide information on the physical and 
chemical conditions at the earthquake source.  This study examines the influence of asperity-
scale fault dynamics on asperity temperature distribution, and therefore, the potential for 
frictional melting to occur.  Frictional melting occurs adiabatically, and is initiated between 
opposing asperity tips during fault slip.  Our model considers 2-D heat conduction in elastic, 
isotropic, hemispherical asperities, with temperature dependent thermal properties.  The only 
heat source is a point heat flux pulse at the asperity tip.  The non-linear problem was solved 
using the δ-form of Newton-Kantorovich procedure coupled with the δ-form of Douglas-Gunn 
two level finite difference scheme, while the linear problem required only the latter method.  
Results for quartz and feldspar indicate that peak temperatures can reach melting point values for 
typical asperity sizes (1-100 mm), provided that contact (frictional) shear stress is sufficiently 
high.  For any asperity size, the temperature distribution peak becomes insignificant by the time 
it reaches the asperity center.  These results imply that much of asperity scale melting is highly 
localized, which may explain why most PT veins in the field are usually very thin.  However, in 
some cases, successive asperity encounters may generate temperature increases large enough to 
trigger the massive melting inferred from typical PT exposures.  Significant differences were 
observed between the results of the linear and nonlinear models.   
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1.0 INTRODUCTION 
 

1.1 What are pseudotachylytes? 
 
Definition: The word pseudotachylyte refers to a rock having an appearance similar, but a origin 
distinct from, certain glassy basaltic rocks known as tachylytes.  The term has come to refer to a 
particular assemblage of mesoscale and microscale characteristics associated with fault, shear or 
impact zones, that include: typically dark, aphanitic veins showing intrusive behavior, sharp 
boundaries, and included clasts and crystals of the host.  The veins may contain glassy 
(amorphous) areas, microlites, spherulites, vesicles, amygdules, and embayed lithic fragments, 
newly grown high temperature minerals, and dendritic crystals; and show chilled margins and 
flow textures (at both the field and microscopic scale) (Magloughlin & Spray 1992, Spray 1992).   
 
Inferred Origin: Pseudotachylytes have been interpreted as frictional melts produced during 
high strain rates.  Spray (1995) argues that depending on shear velocity-stress-displacement 
relations prevailing during frictional slip, rocks produced in seismogenic zones (the brittle, upper 
10-12 kilometers of the earth’s crust) can be predominantly comminuted wall rock (“host-rock 
grounds”) or fragment-melt mixes (pseudotachylytes).  While melting contributes to much of the 
dark matrix mentioned above, comminution provides most of the clasts (macroscopic or 
microscopic).  Also, Shimamoto and Nagahama (1992) have argued that particles below about 
5µm are completely melted and are not typically observed in pseudotachylyte specimens.  
Indeed, particles at the lower end of the size distribution have a larger average surface area to 
volume ratio, making them highly susceptible to melting.  Pseudotachylytes are thus products of 
both fracture and fusion, containing a mix of both fragments and melt (Spray 1995).   
 
Formation Settings: Pseudotachylytes have been found to be very rare in nature.  Where 
observed, pseudotachylytes have been found to form under a variety of situations:  
•  In Normal, thrust, and strike-slip fault zones (Curewitz and Karson 1999, Spray 1995, 

Magloughlin & Spray 1992, Swanson 1992, Scholz 1990, Sibson 1975, McKinzie and Brune 
1972), and in connecting lateral ramps associated with them (O’Hara 1992).  They have been 
interpreted to have formed at relatively shallow crustal depths (2-10 km below the surface), 
or mid-crustal depths (10-20 km).  They have been associated with both brittle deformation 
within the “elasto-frictional” regime of the upper 10-12 km of the crust, and with ductile 
deformation within the “crystal-plastic” transition regime between 11-22 km of the crust.   

•  In meteorite impact structures (Spray 1997, Spray 1995, Magloughlin & Spray 1992), 
where they possibly form due to shock wave compression originating from a hypervelocity 
impact.   

•  In unconfined “superfaults” (Spray 1997).   
•  At the base of major landslides (Curewitz and Karson 1999, Masch et al. 1985, Erismann 

1979, Scott & Drever 1953). 
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1.2 Why study pseudotachylytes? 
 
Pseudotachylytes can be used to infer past behavior of fault zones.  They have been traditionally 
interpreted as an indicator of high-velocity slip (> 10 m/s), and therefore, as a fossil remnant of 
paleoseismic events (Spray 1995, Sibson 1975, McKinzie and Brune 1972).  Their presence may 
also be indicative of meteorite impact, in which case their distribution can help to determine the 
diameters of impact structures (Spray 1995).  The focus of this thesis is on pseudotachylyte 
formation in fault zones.  The goal is to improve our understanding of fault zones processes.  The 
practical implications of studying frictional melts in fault zones are: 

•  Inferring the temperature and depth of formation of pseudotachylytes.  Magloughlin and 
Spray (1992) argue that formation depth, in conjunction with lithology causes certain 
patterns in fault behavior.  Formation depths have been inferred from (a) structures in 
pseudotachylyte veins, including shapes and sizes of clasts (Swanson 1992, Shimamoto 
& Nagahama 1992, Grocott 1981); (b) inferred melt temperatures based on chemical 
composition of re-crystallized minerals and pseudotachylyte matrix (Curewitz and 
Karson 1999, O’Hara 1992, Magloughlin 1992, Sibson 1975); (c) wear-melt ratios 
(O’Hara 2001); and sometimes even (d) local stratigraphy and erosion rates (Killick and 
Roering 1998).  The latter information can be used to determine paleo-earthquake types, 
and tectonic settings.  Ultimately, at the megascopic scale, this information can be used to 
support or reconstruct past tectonic events (like continental rifting or collision).  An 
example of such an application is Curewitz and Karson’s (1999) study, which further 
supports earlier evidence of the Early Tertiary rifting of Eastern Greenland from 
Scandinavia and Western Europe.  

•  Earthquake rupturing is now viewed as a key structural process that contributes to the 
cumulative evolution of fault zones (Swanson 1992).  There is an association between 
pseudotachylyte generation and relatively long-lived, large displacement faulting and 
shearing (Magloughlin and Spray 1992).  Quantification of temperatures attained by 
melts can help determine the overall energy budgets for, and stress levels causing, 
faulting and shearing.  Grocott (1981) studied the fracture geometry associated with 
pseudotachylyte generation to understand the nature of fracturing during earthquake 
faulting.  He argued that a study of pseudotachylyte-bearing fault structures can provide 
information that cannot be obtained through indirect seismic studies – for instance, fault 
behavior at the earthquake source.  Swanson (1992) argued that the presence of 
pseudotachylyte along faults enables the distinction to be made between those seismic 
structures resulting directly from dynamic rupture propagation and aseismic structures 
that develop through plastic shearing, cataclastic flow or small-increment-cumulative-
displacements. 

•  Last but not the least, to develop a theoretical model of frictional melting, as is attempted 
in this thesis, is to better understand the mechanistic (kinematic and dynamic), energetic, 
as well as material and lithologic constraints on fault motion.  Melt volumes, wear-melt 
ratios, and clast size characteristics can be theoretically estimated from the total energy 
budget available for fault slip, and then compared to field, experimental, and chemical 
analysis data for calibration and/or revision. 
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1.3 Pseudotachylyte Constituents 
 
Pseudotachylyte constituents have been studied extensively by earlier researchers.  An enormous 
amount of data and information have been gathered from their geochemical and mineralogical 
analyses.  Detailed structural observations have been carried out from the sub-microscopic scale 
[Scanning Electron Microprobe (SEM) and Transmission Electron Microscope (TEM)] to the 
field scale.  A detailed overview is provided by Magloughlin and Spray (1992) and Sibson 
(1975), while specific regional analyses of pseudotachylyte matrix and clasts are provided in 
O’Hara (2001), O’Hara (1992), Curewitz and Karson (1999), Ray (1998), and Swanson (1992), 
amongst many others.  As discussed in Section 1.1, the main constitutents of pseudotachylytes 
are a dark aphanatic matrix with embedded clasts.  
 
Matrix: The pseudotachylyte matrix is typically dark (brown, black, sub-opaque to opaque), 
dense, and extremely fine-grained, but rarely contains optically recognizable glass (Sibson 
1975).  It is predominantly made up of recrystallized frictional melt, and makes up anywhere 
from 70-90% by volume (based on thin section analysis).  The dark color of the matrix is 
sometimes due to the presence of felsic minerals (either re-crystallized or surviving from the host 
rock) like epidote, clorite and sericite, and commonly, magnetite.  The matrix often displays 
either microlitic structures resulting from rapid chilling of a melt, or devitrification textures, both 
of which may be obliterated by recrystallization.  Where some glass is seen, it is typically dark in 
color, and displays flow structures.  Sometimes, the matrix contains dendritic crystal growths 
and/or stellate clusters of plagioclase microlites that have nucleated on porphyroclasts.  
Occasionally, microlites flow around porphyroclasts in a trachytic manner (microlites are aligned 
sub-parallel to melt flowlines), indicating that some crystallization had proceeded prior to melt 
solidification.  Where microlitic crystallization is absent, spherulitic structures characteristic of 
devitrification are commonly observed.  The margins of pseudotachylyte veins are often very 
sharp, dark, and fine-grained, cutting cleanly across quartz and feldspar grains.  Sometimes, 
veins have irregular color variations sub-parallel to their walls, which have been interpreted to be 
relics of flow banding.  But where the host rock contains an abundance of mafic minerals, 
especially biotite (a mica group mineral), these tend to be preferentially assimilated by the melt 
(Spray 1992, Sibson 1975) and the contact becomes ragged with cuspate offshoots of the 
pseudotachylyte into the host rock. Correspondingly, the composition of melt is enriched in those 
components comprising the melted minerals.  Intense cracking and fragmentation has been 
observed in the host rock wall, adjacent to veins, along with channel expansion.  Both effects 
have been linked to the dramatic rise in pressure of fluid inclusions due to the flash melting of 
the host rock that typically generates frictional melt. Sibson (1975) calculates that an increase in 
temperature of only 50° C can cause a fluid pressurization of 1 kbar.  That kind of 
overpressurization can cause either wall rock (or a clast containing a fluid inclusion) to spall 
explosively and thus produce fresh fragmentation products.  This type of fragmentation can be 
expected to exist in regions of both the wall rock and the clast which are above a critical 
temperature.  Below this critical temperature, fluid inclusions have not been overpressurized.  
Based on melting and recrystallization of the matrix (Swanson 1992, Sibson 1975) and 
experimental studies (Spray 1995, Logan and Tuefel 1986), it has been inferred that flash 
temperatures as high as 1100°-1200° C must have been attained in frictional melts.  
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Lithic clasts: Pseudotachylyte clasts can be either primary (generated by comminution of the 
host rock) or secondary (plucked from the fragmented wall rock by pressurized frictional melt, 
especially in injection veins).  The clast size distribution in pseudotachylytes has been also found 
to be fractal in nature (Ray 1998, Shimamoto and Nagahama 1992, Scholz 1990), with a fractal 
dimension close to 1.5.  Other researchers (Spray 1992) have obtained fractal dimensions close 
to 2.6.  Based on this fractal distribution “law”, both Ray (1998) and Shimamoto and Nagahama 
(1992) have argued that clasts smaller than 5µm do not typically survive frictional melting.  In 
consequence, the power spectrum of pseudotachylyte clast size distribution shows a corner 
frequency corresponding to this size.  Clasts can be classified into angular and rounded, based on 
the degree of their melting (Curewitz and Karson 1999).  Sibson (1975) argues that 
pseudotachylytes contain a roughly equal mixture of quartz and feldspar porphyroclasts, with 
occasional quartzo-feldspathic rock fragments.  Quartz porphyroclasts being the most resistant to 
melting, are typically angular and with an intensely cracked and strained appearance.  On the 
other hand, porphyroclasts of plagioclase feldspar, though often faulted internally with some 
development of strain induced twinning, tend to be sub-rounded and embayed with rather blurred 
outlines, perhaps resulting from partial melting.  The porphyroclasts are almost always randomly 
oriented, but occasionally, a shape alignment indicative of flow is apparent.   

1.4 Goals of this project 
 
The primary goal for this project is to understand if, and how, individual asperities contribute to 
frictional melting, and whether asperity scale interactions play an important role in frictional 
melt generation.  These are important questions since it is thought that frictional melting is 
initiated at asperity tips.  Another issue of interest is whether individual asperities can produce 
temperatures high enough for frictional melting to occur, or whether it would require multiple 
asperity interactions.   
 

1.5 Outline of Thesis 
 
Chapter 2 explores the characteristics of structures and fault surfaces within which 
pseudotachylytes are found.  Chapter 3 discusses pseudotachylyte formation mechanisms that 
have been inferred by earlier researchers.  It discusses both wear and melt processes, and 
attempts to provide a generalized sequence for pseudotachylyte generation.  It also presents a 
description of the proposed model, including a list of assumptions.  Chapter 4 presents a 
summary of results, discussion and conclusions.  Appendix A provides a detailed description of 
the numerical method, discretization, the FORTRAN 90 source code, COND2D, and code 
validation tests.  Appendix B contains the FORTRAN 90 source code.  Appendix C contains all 
rock and mineral property data relevant to modeling frictional melting, in the form of both tables 
and figures.  Appendix D contains four MATLAB codes for post-processing COND2D output 
files, and used to generate plots presented in Chapter 4 and Appendix A.    
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2.0 PHYSICAL CHARACTERISTICS OF 
PSEUDOTACHYLYTE BEARING FAULTS AND STRUCTURES 

 

2.1 Fault structures and rock associations in pseudotachylyte generation 
zones 

 
A fault is defined as a fracture with relative displacement between its two faces.  Fault structures 
are patterns of fracture, deformation, or shear found within and around faults zones. In this 
section, we are primarily interested in structures in pseudotachylyte-bearing faults that have been 
observed in the field.  These structures enable us to set structural controls and boundary 
conditions on the frictional melting model developed in Section 4.   
 
Rocks that occur within fault zones provide primary evidence for the processes that occurred 
there (Scholz 1990).  Therefore, studying fault structures (either at the field scale or at the 
microscopic scale) is useful in identifying the mechanistic processes that created them.  This in 
turn can be used to make a qualitative determination of the nature of the stress fields that 
instigated faulting, the direction of fault movement, and the extent of fault displacement.  In 
addition, a study of fault structures may provide information on the sequence of faulting, fault 
reactivation.  The extent of the deformation of certain rocks, or recrystalized minerals, can 
provide information on the energetics of faulting.  Further, studying the structures in 
pseudotachylyte-bearing faults also provides qualitative information on the viscocity of the melt, 
degree of overpressure, and the nature of melting of clasts trapped in the pseudotachylyte matrix.  
Finally, structures like gouge trails, cavities, and pits, formed in the fault block walls due to (a) 
the preferential deformation and/or melting of minerals with low strengths and melting points, 
and/or (b) the presence of fluids, can provide specific process information for that fault.   
 
Brittle faults are confined to the schizosphere (the brittle upper 12 km of the crust) and ductile 
shear zones are confined to the plastosphere (the plastic flow zone 10-15 km) (Figure 2-1).  The 
upper crust is characterized by a breccia, gouge, and cataclasites, formed by brittle processes, 
whereas the plastic lower crust is characterized by metamorphic rocks and mylonites (see Scholz 
1990 for textural classifications of fault rocks.  
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Figure 2-1. Profile through a conceptual strike-slip seismogenic zone, showing the brittle-
plastic transition, variation of deformation, and wear mechanisms with depth in the crust, 
and the distribution of selected pseudotachylyte occurrences (some from non strike-slip 
sources) within both mylonitic and cataclastic fault zones.  Reproduced from Swanson 
(1992). 
 
 Most pseudotachylytes have either been formed in the “shallow” brittle zone, or in the 
brittle-plastic transition zone (Figure 2-1).  Some of them might have possibly undergone 
multiple periods of displacement before reaching the surface, while most are now exhumed due 
to erosion.  Some pseudotachylytes might have formed deeper, in the transition zone, and have 
since been uplifted.  Characteristic structures in pseudotachylyte formed in the brittle and ductile 
zones is presented below.  
 
Brittle zone: The brittle cataclastic regime (or cataclasite regime, Figure 2-1) develops frictional 
melts in conjunction with active cataclasis (fragmentation) of the adjoining wall rocks from 
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abrasive wear in the brittle deformation regime.  The pseudotachylyte in some of these exposures 
shows multiple sequences of melting and cataclasis (Swanson 1992).  
 
Ductile zone: The ductile shear regime (or mylonite regime, Figure 2-1) produces frictional 
melts that are reworked by continued plastic deformation, expressed as intermittent brittle 
rupturing within a background of continuous plastic shearing (Swanson 1992).  Some 
pseudotachylyte veins produced in this regime show evidence of plastic deformation along with 
the adjoining host rock and development of internal foliations during shear.  Flattened, 
recrystallized porphyroclasts and mineral aggregates are aligned parallel to these internal fabrics.   
 
Pseudotachylyte bearing faults exposed at the surface are associated with a number of structures, 
including: fault and injection vein arrays, pseudotachylyte generation zones, reservoir zones, en 
echelon linkage duplexes, and side wall ripouts (Figure 2-2).  In addition, when viewed at a 
larger scale, several occurrences of multiple pseudotachylyte fault vein arrays are found in 
distinctive structural settings that indicate repeated rupturing with identical deformation 
mechanisms in successive earthquake events (Swanson 1992).  These arrays include en echelon 
arrays and complex brittle zones (Figure 2-2).  Each of the above structures is briefly discussed 
below. 
 
Fault veins and injection veins: Pseudotachylyte is most commonly found in fault veins and 
injection veins (Figure 2-2a & b) (Swanson 1992, Sibson 1975).  The fault veins are typically a 
few millimeters to a few centimeters thick and may show variations in thickness due to 
irregularities in the fault surfaces.  Injection veins are the most common reservoir for generated 
melts.  These veins typically lead the melt away from generating surfaces, at near-orthogonal 
angles to the fault veins, into the cooler wall rocks.  
Generation zones: Generation zones include paired slip surfaces that isolate tabular zones of 
host rock (Figure 2-2c, d & e) (Swanson 1992).  These distinctive parallel fault configurations 
are defined by pairs of overlapping layer-parallel slip surfaces that serve as the dominant 
displacement structures.  The fault bounded slabs between these overlapping surfaces exhibit a 
complex strain history.  Internal fracture assemblages consisting of orthogonal dilatant veins and 
conjugate shear fractures indicate fault parallel extension associated with the injection of 
pseudotachylyte.  
 
Reservoir zones: These are large, dike-like dark pseudotachylyte bodies that are commonly a 
few meters wide and occupy extensional voids in fault zones (Figure 2-2f).  They are embedded 
with considerable quantities of variably sized, angular and rounded clasts.  These tend to collect 
frictional melt that is squeezed out of the generation zones during fault displacement (Curewitz 
& Karson 1999, Scholz 1990, Sibson 1975).   
 
Strike-slip duplexes: Using detailed mapping, the paired tabular structures mentioned above 
have been shown  to be elongate areas of extensive overlap between the ends of en echelon 
strike-slip fault segments (Swanson 1992).  Internal deformation within the tabular zones (by 
conjugate faulting between the slip surfaces) serves as the mechanism of displacement transfer 
and finite strain accommodation between the coupled fault segments during slip (Figure 2-2g).  
Extensional and contractional geometries of internal fracturing within the fault-bounded slabs 
depend on the sense of slip and stepping direction between the overlapping slab segments.   
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(d) Scale ~ 1 m 
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(f) Scale ~ 10 m 
 

(g) Bar ~ 1 m 

 
 

(h) Bar ~ 1 m 
 

 
(i) Bar ~ 100 m 

 

 
(j) Bar ~ 100 m 
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Figure 2-2. (Previous page) Schematic diagram showing the geometry of pseudotachylyte 
bearing faults.  Basic structures: (a) & (b) Fault vein and injection veins; (c), (d) and (e) 
Generation zones; (f) Reservoir zone; (g) Strike-slip en echelon linkage duplex; (h) Sidewall 
ripouts.  Structures associated with repetitive rupturing with identical fault styles and 
deformation mechanisms: (i) en echelon arrays; (j) brittle zones.  Reproduced from 
Curewitz and Karson (1999), Swanson (1992), Grocott (1981), and Sibson (1975). 
 
 
Whereas contractional duplexes tend to thicken with displacement through internal imbrication, 
extensional duplexes with severe listric fault rotations may thin catastrophically and lead to the 
formation of breccia within pseudotachylyte.   
 
Sidewall ripouts: Associated with both the mylonitic (ductile) and cataclastic (brittle) fault 
zones, these consist of coupled extensional and contractional ramps that define tabular to plano-
convex fault lenses adjacent to the dominant slip surfaces (Figure 2-2h) (Swanson 1992).  They 
are interpreted as mesoscale examples of adhesive wear that were generated as tabular ripouts up 
to 35 m or more in length during slip along the main fault.   
Adhesion of the fault blocks during slip ruptures one of the walls, ripping out a lens, and 
translating it along strike during displacement.  This ripped out slab acts as an asperity 
temporarily, plowing its way through the adjoining wall rock, until (a) the cessation of slip 
occurs, or (b) it is broken up during continuing displacement.   
 
En echelon arrays:  These shear systems are indicative of intermittent coseismic slip (Figure 2-
2i) (Swanson 1992).  Individual shear elements occur as oblique slip surfaces or fault zones that 
re-orient themselves towards lower and lower angles with respect to the shear direction, and 
develop localized pseudotachylyte or ultramylonite shear bands.   
 
Brittle zones: Thin pseudotachylyte veins (mm thick) are commonly found in well-defined zones 
of intense shear fracturing up to several hundred meters in width, particularly within anisotropic 
(foliated) host rock (Figure 2-2j) (Swanson 1992).  These occur in complex, sub-parallel, 
overlapping arrays up to kilometers in length.  The brittle zone itself appears to have a paired 
shear or duplex structure, with slip localization occurring along the outer boundary zones.  
Repeated rupturing in these brittle zones suggests a history of paleoseismic activity and the 
structural similarity between events is due to the strong structural control exerted by host rock 
anisotropy.   
 

2.2 Fractal nature of fault surfaces 
 
All real surfaces have a surface topography. Friction can be visualized in terms of shearing of 
points of contact between surfaces, at the topographic highs.  These topographically high contact 
points, or protrusions on each of the contacting surfaces, have been termed asperities.  It has 
been shown that this topography is fractal (or self-similar) in nature, for both natural fractures as 
well as natural rock surfaces, over a wide range of scales (11 orders of magnitude) (Power & 
Tullis 1995, Scholz 1990, Power et. al 1988).  For statistically self-similar surfaces, a small 
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portion of the surface, when magnified, looks statistically the same as a larger portion of the 
surface (Mandelbrot 1983).  The procedure to determine this self similarity is as follows:  

•  Detrending the surface roughness profiles – i.e., remove any large scale (wavelength) 
features like slope or cyclicity 

•  Express the profile as a sum of sine and cosine waves using a suitable Fast Fourier 
Transform (FFT) algorithm   

•  Calculate the amplitudes of the waves as a function of their wavelengths (which represent 
different scales of the profile, or profile lengths)  

•  Calculate the point power spectral density as the square of the amplitude at each 
wavelength, and normalize with respect to profile length to allow for comparison of data 
from different profile lengths 

•  Finally, plot the point power spectral density as a function of wavelength 
 
A detailed account of the method used by the workers above is given in Power et al. (1988).  The 
absolute vertical level of the power spectrum indicates how rough or steep a surface is, while the 
slope of the spectrum tells how the roughness changes with scale.  For statistically self-similar 
surfaces, the power spectral density curve is a straight line with a slope of exactly 3 on a log-log 
plot (Figure 2-3) (Berry and Lewis 1980). 
 
It has also been found that fault surfaces are highly anisotropic.  For any surface, the profile 
amplitude-wavelength ratio is defined as the ratio of the average value (say, root mean square) of 
surface roughness (length units) to that of the wavelength of the roughness profile in any given 
direction.  Compared to the slip parallel direction, the profile amplitude-to-wavelength ratio is 1-
2 orders of magnitude larger in the direction perpendicular to fault displacement.  This means 
fault surfaces are much smoother parallel to the slip direction than perpendicular to it.  This has 
been observed for the San Andreas Fault (Scholz 1990).  Also, for fractal surfaces, the profile 
amplitude-wavelength ratio increases with wavelength (Scholz 1990).  As shown in Figure 2-3, 
the power spectrum of such a surface has a slope that is close to 3, indicating that natural fault 
surfaces are nearly self-similar.  The researchers above conclude that the fractal dimension of 
natural fault surfaces to be slightly over 1 [D = (5 - Slope)/2].   
 
It has been argued that contact between moving fault blocks occurs at a few distinct contacting 
asperities, whose area is much smaller than the total fault surface area (Section 3.1.1 below) 
(Scholz 1990, Power et al. 1988, Sibson 1975).  The implication of this is that as fault 
displacement progresses, contacting asperities at a lower scale (wavelength) get sheared off 
during slip and the contacts progressively shift to higher and higher wavelength asperities.  That 
means that no matter what the thickness of the gouge (wear particles from fault motion – 
products of comminution discussed earlier), there will always be places where asperities directly 
abut (Scholz 1990).  The fractal nature of fault surfaces provides a basis for assuming that 
asperity surfaces are always in contact and their contact areas are the primary sources of 
frictional heat generation.  This is discussed in more detain in Section 3.4. 
 



 11

 
Figure 2-3. Power spectra for natural fault surfaces over 11 orders of magnitude, 
calculated from (a) profiles measured parallel to the slip direction (PARA) and (b) 
perpendicular to the slip direction (PERP).  The spectra show a nearly self similar 
character, with a slope close to 3 (Berry & Lewis 1980).  Adapted from Power & Tullis 
(1995). 
 



 12

3.0 MECHANISMS FOR PSEUDOTACHYLYTE FORMATION 
 

3.1 Friction and deformation during slip 
 
The earliest understanding of friction came from Leonardo de Vinci, who discovered two main 
laws of friction through careful experimentation, and further observed that friction is less for 
smoother surfaces.  But his discoveries remained hidden, until they were rediscovered by 
Amontons, who, in his paper of 1699 (see Scholz 1990) described two laws of friction: 
 
•  Amontons’ first law: The frictional force is independent of the area of contacting surfaces.  
•  Amontons’ second law: Friction is proportional to the normal load.   
 
He also observed that frictional force is about one third the normal load, regardless of the surface 
type or material.  Rock friction is typically two-thirds the normal load (Scholz 1990).  In the 
years following his paper, a mechanism of friction was sought rigorously, and the importance of 
surface roughness on friction was subsequently recognized.  Friction was explained in terms of 
various kinds of interactions between protrusions on surfaces, or asperities, which were thought 
to act either as rigid or elastic springs.  During the next 100 years, the difference between static 
and kinetic friction was also recognized.   
 
The modern concept of friction is generally attributed to Bowden and Tabor (1950, 1964), who 
investigated many different frictional phenomena for a wide range of materials.  Central to their 
work was the adhesion theory for the friction of metals.  They envisioned that all real surfaces 
have a topography, so that when they are brought together, they only touch at a few points, or 
asperities (Figure 3-1).  The sum of all such contact areas is the real area of contact, Ar, which is 
generally much smaller than the total area of contact, AT.  It is this real area of contact that is 
responsible for friction.  They assumed that yielding occurs at the contacting asperities, causing 
the area of contact to increase, until it is just sufficient to support the normal load, LT.   
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(a) 

 
(b) 

 

Figure 3-1. Asperity contacts during sliding of two surfaces.  (a) Multiple Contacts of 
sliding surfaces, (b) A single idealized hemispherical contact. 
 
 
Therefore from the definitions of LT, Ar and AT from the last page, if σn is the “macroscopic” 
normal stress on the fault, then 
 
LT = H . Ar = σn . AT          (3-1) 
 
where, H is the penetration hardness, a measure of the strength of the material.  This deformation 
of asperities in response to normal load explains Amontons’ second law.  It must be realized that 
Equation 3-1 is a constitutive law describing contact between surfaces, based on plastic or elastic 
yielding.  They supposed that adhesion occurred at the contact points due to the very high 
compressive stresses there, welding the surfaces together at junctions.  In order to accommodate 
slip, these junctions have to sheared through, so that the friction force F is the sum of the shear 
strength of the junctions: 
 
F = τy . Ar           (3-2) 
 
where, τy  is the shear strength of the material.  Equation 3-2 describes a constitutive law for 
shearing.  Because any constitutive law governing this shear interaction of asperities is bound to 
predict a shear force proportional to Ar regardless of the exact mechanism assumed, Equation 3-1 
also implicitly satisfies Amontons’ first law, as long as the equation itself is linear in LT.  
Combining Equations 3-1 and 3-2, friction can be described by a single coefficient of friction, µ :  
 
µ ≡ F/ LT = τ /σn = τy /H ≡ constant         (3-3) 
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That is, as load increases, so does the real contact area, Ar, so that the ratio τ /σn ≡ µ  remains a 
constant.  It must be kept in mind that different mechanisms (elastic or plastic or both) might be 
involved in the two processes described in Equations 3-1 and 3-2, and the interaction between 
them could be complex.   
 
Logan and Teufel (1986) determined experimentally - using thermodyes and a triaxial test 
apparatus - that this real area of contact is strongly dependent on the applied normal stress, and 
that the single-asperity contact area increases roughly linearly with increasing normal stress (Ar 
∝  σn).  This is in agreement with the fractal asperity size distribution for fault surfaces, discussed 
in Section 2.2.  As the normal stress increases, asperities of larger wavelengths come in contact, 
leading to an increase in “single-asperity” contact area.  The asperity contact area is also 
inversely proportional to the strength of opposing asperities (Ar ∝  σn/H).  They also argue that 
the higher the material strength, the smaller the asperity contact area – contact area for limestone 
(calcite) is roughly 10 times that for sandstone (quartz), since quartz is about 20 times stronger 
than calcite (at room temperature).  They obtain maximum real contact areas of 16% and 18% 
for sandstone and limestone, respectively (in the presence of confining pressure, and when 
opposing asperities are made up of the same material).  Nadeau and Johnson (1998) used 
moment release rates to estimate earthquake source parameters for the Parkfield segment of the 
San Andreas Fault.  They argue that the real (or asperity) contact area there is less than 1%.  
Both sets of researchers obtained typical asperity dimensions of the order of a millimeter.   
 

3.1.1 Rock friction  
 
Much less work has been done on the frictional properties of minerals and rocks, but the 
observed phenomena are much the same, and therefore, adhesion theory is assumed to be valid, 
especially at deeper levels in the crust.  It has been postulated that frictional slip within the upper 
crust is dependent on the abrasion of a population of asperity contacts between sliding surfaces 
(Rabinowicz 1995, Swanson 1992, Scholz 1990).  The localized high stresses at the contacting 
asperities lead to either localized brittle fracturing, and/or plastic shearing.  Except at depths 
within the plastosphere, plastic shearing is unlikely (Figure 2-1).  In the schizosphere, as fault 
slip commences (i.e., as relative displacement occurs), fault surface refinement progresses 
through wear of contacting asperities, thereby increasing the real area of contact between the 
sliding surfaces (Scholz 1990, Logan and Teufel 1986).  It should be kept in mind, however, that 
the adhesion theory of friction can only be used as a conceptual framework.  Webster and Sayles 
(1986) argue that, although Bowden and Tabor (1954) described the proportionality between 
contact area and load by postulating that the applied normal load is entirely supported by plastic 
asperity contact, Archard (1957) later showed that the proportionality can also be achieved with 
elastic asperity deformation, i.e. it makes no difference what the deformation mechanism is!  In 
general abrasive wear is prevalent at lower temperatures (upper crust, Scholz 1990), and 
adhesive wear at higher temperatures (lower crust, Swanson 1992). 
 
For hard materials such as the silicates, contacts can be assumed to be highly elastic, and the 
contact area of an asperity can be obtained from Hertz’s solution for contact between an elastic 
sphere on an elastic substrate (Wang and Scholz 1994, Scholz 1990).  Hertzian contact theory for 
a spherical asperity predicts that the elastic deformation, and hence contact area (Ar), are both 
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proportional to LT
2/3 (Wang and Scholz 1994, Scholz 1990, Timoshenko and Goodier 1970), 

where LT is the total normal load on the fault surface.  That is: 
 
Ar = k1 LT

2/3            (3-4) 
 
For a large number of such self-similar hemispherical asperities (successively smaller scale 
spherical asperities superimposed on top of larger ones) in elastic contact with a flat substrate, a 
linear relationship between Ar and LT is obtained asymptotically (Archard 1957).  In other words, 
contact area Ar is proportional to LT (Equation 3-1) in the limit of a large number of 
superimposed scales.  Thus the microscopic and macroscopic constitutive friction laws are 
dramatically different.  While Equation 3-3 defines a constitutive law for µ at the macroscopic 
scale, the constitutive law for the microscopic scale becomes (from Equations 3-2, 3-3 and 3-4):  
 
µ = τy k1 (LT )-1/3 = τ /σn         (3-5) 
 
which has been shown to be true for hard materials (Scholz 1990).  It must be kept in mind that 
frictional shear resistance evolves during coseismic slip, from static to lower dynamic values, as 
the fault surfaces evolve.  Once friction is lowered to its dynamic value, further increases in 
strain rate or slip velocity cause it to decrease only a few percent more for an order of magnitude 
increase in slip velocity (Rabinowicz 1995, Scholz 1990). 
 
Contact geometry: The elastic contact surface, between ball and race of a ball bearing, as well as 
that between a ball and a flat surface, has been shown to be elliptical (Spence and Kaminski 
1996, Harris 1966).  Wang and Scholz (1994) used Timoshenko and Goodier’s (1970) results 
and postulated a circular contact area between two elastic, hemispherical fault surface asperities 
in contact with each other (Figure 3-1).  For simplicity (and for reasons elaborated in Chapter 
4.0), a circular asperity contact geometry is assumed in this thesis.   
 
In studying the friction of any class of materials over any given range of conditions, interfacial 
deformation mechanisms specific to the conditions and materials become important.  Analytical 
and numerical analyses of elastic asperity contacts have been undertaken in the field of tribology 
for the purposes of analyzing ball bearing frictional forces and deformations (using Finite 
Difference (FD), or Finite Element (FE) schemes – see Lowell and Khonsari 1999, Lowell et al. 
1997, Lowell et al. 1996, Webster and Sayles 1986, Harris 1966).  Analyses have even 
considered spheres in contact with highly anisotripic flat surfaces (Kuo and Keer 1992).  Singh 
and Paul (1974) have developed an analysis for “non-Hertzian” contact problems with 
frictionless surfaces containing asperities of arbitrary shape.  All these analysis were for 
lubricated metals, under controlled conditions more relevant to engineering applications.  Fault 
motion occurs under more chaotic and uncontrolled conditions.  Nonetheless, results from such 
analyses can be used as a starting point for better understanding of rock friction mechanisms.  
Such analysis of friction is beyond the scope of the current project.  As in studies by Archard 
(1953, 1957) and Scholz (1990), the adhesive theory of friction and Hertzian contact theory are 
the basis of the heat flux calculations of Section 3.4.  
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3.2 Wear and gouge formation during slip 
 
Since friction during slip within the upper crust is dependent on the abrasion of asperity contacts 
between sliding surfaces, surface damage during sliding results in wear due to the interlocking 
and ploughing of asperities (Rabinowicz 1995, Swanson 1992, Scholz 1990). The localized high 
stresses at the contacting asperities lead to either localized brittle fracturing and/or plastic 
shearing.  Abrasion dominated wear, characteristic of the brittle zone (up to a depth of about 12 
km), changes to adhesion dominated wear, and ultimately to continuous adhesion wear through 
plastic deformation at depths greater than about 18 km.   
 
The abrasive wear domain is characterized by brittle behavior and unstable frictional slip with 
fracturing of asperities, development of loose wear particles, and the production of a cushion of 
cataclasite.  The adhesive wear domain is characterized by semi-brittle behavior and stable 
frictional slip with plastic deformation of the asperities and material transfer to opposing faces of 
slip.  It is this surface refinement that produces a deformed layer of processed asperities that 
may, ultimately, lead to shear heating and frictional melting as the surface evolves.  As 
mentioned at the end of Section 2.2, it is important to remember that no matter what the gouge 
thickness predicted by the following models, asperities are always in contact.  Further, asperity 
size increases with increasing displacement and increasing gouge volume.   
 
One of the first empirical relationships between slip (D) and pseudotachylyte thickness (T) came 
from Sibson (1975), who obtained:  
 

436
D

T =             (3-4) 

 
where, T and D are in centimeters.  He made a case that the gneissic rocks he studied came from 
melts formed during seismic slip, and were therefore dimensionally controlled by frictional 
heating, rather than wear.  To argue this, he first calculated frictional shear stress τf: 
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where the number in the numerator of the middle equality is the energy required to melt a unit 
volume of acid gneiss.  He argued that if the melt were assumed to be a Newtonian fluid, further 
movement is opposed only by its viscous resistance to shear.  The resistance to shear would be 
directly proportional to the rate of shear straining.  The shear-strain rate would be inversely 
proportional to layer thickness (T).   
 
One of the earliest theoretical derivations of wear in fault zones was by Archard (1953), whose 
method is independent of the specific wear mechanism.  His method can be summarized as 
follows (Scholz 1990):  Assuming i) a linear relationship governs the relationship between the 
normal force and contact area, ii) a hardness parameter H, iii) a total normal force on the fault of 
LT, and iv) circular contacts of diameter d, then there are n contacts given by 
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Assuming that each contact junction exists for an effective working distance of de, i.e., de = αd, 
where α is a constant with a value near unity (Rabinowicz 1995), each junction must be 
replenished 1/ de times per unit of travel, so that the number of junctions per unit of travel is 
given by 
 

3

4
Hd
L

d
n

n T

e
D απ

==            (3-7) 

 
If the probability that any junction will shear off is k, and on the assumption that the fragment 
formed by shearing is a hemisphere of diameter d, the wear rate is given by:  
 

H
kL

n
dk

x
V T

D α
π

312

3

==
∂
∂

           (3-8) 

 
where, V is the volume of the gouge, x is the slip coordinate, and πd3/12 is the fragment volume.  
Therefore, the volume of gouge, or new material, formed per unit displacement, D is  
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which, neglecting the porosity change, produces a gouge zone of thickness T given by 
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where σn is the normal stress and κ = k/α is a dimensionless wear coefficient parameter.  This 
model predicts a linearly increasing gouge zone thickness with increasing fault displacement.  
One limitation is that this model cannot predict wear rates resulting from different materials on 
either side of the fault, as it does not consider the differences in grain boundary strength between 
the two rocks (Scholz 1990).  Another limitation is that the model applies only to steady-state 
wear.  A complete wear curve also contains an early “running-in” phase, in which high initial 
wear rates decay exponentially with sliding until a steady-state rate is finally achieved.  The 
usual explanation for running in wear is that the starting surfaces are rougher than those that are 
in equilibrium with the sliding conditions.  Fresh surfaces have an initially high wear rate that is 
proportional to this excess roughness (Scholz 1990, Power et al. 1988, Queener et al. 1965).   
 
The next advance in wear zone determination was by Power et al. (1988), who assumed that 
since natural fault surfaces are fractal, both the RMS roughness (root mean square roughness – 
the square root of the sum of squares of profile amplitudes along a particular direction) and the 
average centerline roughness of the fault increase with increasing slip (Section 2.2).  That is, the 
amplitude of the asperities, on average, increases with their wavelength.  No matter how thick 
the gouge becomes there will always be places where asperities directly abut.  In these regions, 
wear is expected to be high.  In Power et al. (1988) model, the surfaces are continually running-
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in because steady-state smoothness is never achieved.  Their model closely parallels that of 
Queener et al. (1965), except for the initial assumption of average asperity roughness increasing 
with fault displacement.  Since this thesis is concerned with heat generation at a single asperity 
contact, and is independent of wear, average roughness and wear were not considered.  The 
above discussion of wear was presented for the sake of completeness.  Because of its higher 
surface area to volume ratio, however, wear material may be easier to melt.   
 

3.3 A generalized frictional melting sequence for pseudotachylyte generation 
 
In Section 2.1, both brittle and ductile regimes for pseudotachylyte formation were discussed.  
This section summarizes the main events in the frictional melting sequence.  The summary will 
lay a foundation for the overall model developed in Section 3.4.  This section also indicates the 
current conceptual ideas about how frictional melting occurs during fault motion.  So, only the 
conceptual model outlines of current models are provided here.  Details of adhesion-dominated 
plastic zone frictional melt generation mechanisms are discussed first. 
 
As discussed in Section 2.1, adhesive wear-dominated melt generation operates at lower crustal 
levels.  The adhesive sequence develops within active mylonitic fault zones that may be 
dominated by anisotropy controlled shear fracture propagation (Swanson 1992).  In such rocks, 
the reactivation of pre-existing planar anisotropy during rupture provides a near-planar slip 
surface with few initial asperities and low initial wear rates during slip.  Rapid surface 
refinement with a transition to total adhesion, as the real area of contact approaches the total 
area, leads directly to plastic smearing and laminar plastic flow without the extensive 
development of cushions of cataclasite.  The surface refinement process is greatly accelerated, 
thereby enhancing adhesion, plastic flow, and frictional melting during slip.  This results in a 
much greater potential for pseudotachylyte generation (Swanson 1992).  
 
In the abrasive wear-dominant regime at the upper crustal levels, the abrasive wear sequence 
develops within active fault zones dominated by cataclasis.  The sequence of events can be 
described as follows (Swanson 1992, Sibson 1975) (also refer to Section 2-1): 

i. Initial rupture propagation consisting of oblique tension fracture arrays at shallow levels 
and en echelon R-shear arrays at deeper levels.   

ii. Surface refinement proceeds through forward clast rotation and comminution of the 
initiation breccia, or through P-shear linkages in the en echelon array.  Asperity reduction 
is through brittle fracture, brecciation, comminution with high initial wear rates 
(“running-in” wear of Section 3.2), frictional heating, and the initiation of melting of 
comminution products.  Friction will vary from static to lower dynamic values in case of 
development of a new throughgoing surface, and may drop suddenly due to melting and 
thermal pressurization of the fault zone.  However, the fault planes themselves remain 
thin (~ a few mm to 1 cm) keeping asperities in contact [see (iv) below] and allowing 
further melt to be generated.  Wall rocks are flash melted and, in some cases, superheated 
during shear.  Peak average temperatures of 1000° C and as much as 1520° C have been 
estimated from theoretical calculations (McKinzie and Brune 1972), host rock melt 
relations (Sibson 1975), and quartz glass compositions (Wenk and Weiss 1982).  Offset, 
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pseudotachylyte-generating shear fractures may be linked by a set of irregular injection 
veins in a ladder network (Figure 3-2(i)).   

iii. Continued slip leads to refined particulate flow within a cushion of cataclasite as it builds 
up along the fault surface. Grain size reduction proceeds to some critical level, where 
further strain becomes localized along oblique R-shears within the cataclasite layer, or 
along the wall rock / fault zone interface.  Pseudotachylyte in these active cataclasite fault 
zones tends to be thin fault veins sporadically developed along the margins of evolved 
cataclasite layers where shear strain has localized with high enough slip rates for 
frictional melting.  Some pseudotachylytes may develop from a comminuted precursor, 
particularly at shallow crustal levels (also see Jacques and Rice 2002).  

iv. As slip continues, pseudotachylyte from the bounding fault veins along the margins of the 
cataclasite are injected into the growing void (induced by slip, see Figure 3-2(ii)), while 
the fault planes themselves (on either side of the cataclasite) remain almost “barren”, 
thereby retaining the frictional resistance required for further pseudotachylyte generation.   

v. Continued injection of pseudotachylyte, tensional fracturing of breccia fragments within 
the fault zone, attrition brought about by rotational grinding, explosive decrepitation 
(spalling) from fluid inclusion overpressurization, and corrosion by melt, all contribute to 
the rounding of the clasts in the quasi-conglomerate that exists at this point (Figure        
3-2(iii)).   

vi. Melt lifetimes may range from microseconds to several minutes or hours (or even days), 
depending on slip velocity, slip duration, and reservoir dimensions.  Hydrated micas are 
preferentially melted, because of lower melting points, followed by feldspar and lastly, 
quartz.  The melt solidifies during post-seismic quiescence, but preserves features related 
to processes associated with the slip event.  While glassy veins and chill margins suggest 
rapid solidification, microlitic textures indicate slow, static crystallization.   

 

 
Figure 3-2. Mechanism for quasi-conglomerate and pseudotachylyte formation.  
Reproduced from Sibson (1975). 
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3.4 Proposed frictional melting model 
 

3.4.1 Background 
 
Although significant insights into the formation and mechanics of pseudotachylyte formation 
have been obtained over the last twenty years, not much research has focused on heat generation 
at the asperity scales and its implications on asperity-level frictional melting.  Although 
temperature rises have been “constrained” based on slip along fault surfaces modeled as semi-
infinite half-spaces (McKenzie and Brune 1972, Sibson 1975, Cardwell et al. 1978, Swanson 
1992, Killick and Roering 1998, Kanamori et al. 1998), such analyses do not have sufficient 
spatial resolution to consider asperity level mechanisms of frictional melting.  Archard (1958-59) 
analyzed the flash (maximum) temperatures attained during frictional sliding for a hemispherical 
asperity sliding over a flat surface, using physical rather than mathematical arguments.  He used 
a simple thermal resistance model for low velocities.  For intermediate and large velocities, he 
assumed one dimensional linear heat flow into a semi-infinite solid, thus neglecting asperity 
effects.  Barber (1967,1970), while analyzing the heat distribution between two sliding surfaces, 
developed an approximate transient heat flow solution for small times.  However, this analysis 
falls short of obtaining the complete transient temperature distribution.  This could become 
important at larger asperity scales.  Yovanovich (1966) investigated the problem of steady state 
heat transfer between metallic spheres constrained elastically between two semi-infinite half-
spaces, by arguing that symmetry reduces the problem to cylindrical coordinates.  Yovanovich 
(1966) also considered conductive heat transfer between the gas surrounding the sphere and the 
half spaces and radiative heat transfer between the sphere and the half spaces.  He assumes that 
the spheres do not experience any significant heating.  These two assumptions (steady state 
temperature distribution and a lack of significant heating) are not appropriate for asperity 
interactions during frictional melting.  This problem is a highly transient process and produces 
extremely large temperatures compared to the bulk rocks of the fault walls.   
 
Another body of work on frictional contact of asperities, carried out in engineering tribology, 
attempts to understand slip rate dependence of dry friction in metals at high rates [Bowden and 
Thomas (1954), Ettles (1986), Lim and Ashby (1987), and Molinari et al. (1999)].  These same 
concepts were applied by Rice (1999) to flash heating in rock with contacts of the order of a few 
micrometers in length.  This is near the lower bound of elastic asperity areas used in this study.  
However, the Rice (1999) model is 1-D and the slip weakening temperature is assumed to be 
900° C.  Above this temperature, shear stress is assumed to be negligible.  If the 900° C cap were 
correct, then no melt would be generated from frictional contact at asperity tips, based on the 
temperatures quoted in the previous section.  Also, this temperature cap is assigned without 
actually considering the thermal evolution of the asperity itself.   
 
Although Carslaw and Jaeger (1959) present solutions to the spherical heat conduction equation, 
the presented solutions are for linear problems.  Most are for symmetric boundary conditions.  
As described below, the boundary conditions for this problem are highly abrupt and asymmetric.  
We are concerned with a finite, hemispherical body (the asperity), which has an “instantaneous” 
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AND “point” heat source at its tip (Figures 3-6) instead of at its base.  In the latter case, the 
solution could be directly deduced from the results of the above authors. 
 

 
Figure 3-3. Problem setup for determining the temperature distribution within a single 
hemispherical asperity.   
 
 
Thus, there is a need for a model for estimating asperity scale temperature distribution from 
frictional heating.  A single asperity pair interaction is the simplest scenario for which this can be 
developed to understand asperity scale fault dynamics.  This model can be used to determine if 
high temperatures can be attained after a single contact “event” or if it requires multiple contacts.  
The presented model can also be used to check the temporal evolution of the flash temperature 
pulse, and to see if and how a sharp temperature pulse in one asperity affects adjacent asperity 
temperatures.  Although the overall energetics determine the presence or absence of frictional 
melt, we assume that it is the asperities that generate the bulk of the frictional heating and 
melting.  The main focus of this thesis is to understand PT formation in brittle fault zones.  We 
want to estimate the maximum attainable flash temperatures at the asperity scale, the effect of 
asperity size and contact shear stress on the evolution of the temperature distribution within an 
asperity, and understand inter-asperity thermal interactions (if any).   
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3.4.2 The Conceptual Model 
 

3.4.2.1 Model Outline and Assumptions 
 
Figure 3-4 summarizes some of the salient points of the model adopted here, and the following 
list provides a detailed outline of the model framework and assumptions: 
 
i. This analysis assumes a vertical strike-slip fault lying in the brittle crust.  Motion is purely 

strike-slip, such that gravitational work is negligible. 
ii. The materials on either side of the fault have identical mechanical and thermal properties.  

The properties are homogenous and isotropic.  The property values are assumed to be scale 
independent.  Thermal properties are strongly dependent on temperature (e.g., 
conductivity).   

iii. Asperities are hemispherical (Figures 3-1 to 3-4), and individual asperity contacts are 
assumed to be elastic (Hertzian), resulting in circular contact areas (Figure 3-4).  Barber 
(1970) and Cameron et al. (1964) concluded that the shape of the heat source has negligible 
effect on the temperature distribution for two sliding solids (for circular, square or band 
sources).   

iv. Individual asperity contact areas are small enough, and velocities large enough, that the 
contact duration is of the order of < 1-4 milliseconds.  Therefore, the asperity contact 
process can be considered adiabatic.  All frictional work at the contact is converted into 
heat energy input to the asperity.  This means that once the heat flux pulse vanishes (when 
the asperities separate), a zero heat flux boundary condition can be used for the rest of the 
duration of simulation. 

v. Interaction between the fault gouge and the asperity is ignored.  Deformation within the 
fault gouge is also neglected.   

vi. Because fault surfaces are fractal in nature (Power et. al, 1988, Scholz 1990, Power and 
Tullis, 1995), asperities are always in contact during fault slip.  As gouge is being produced 
by the shearing off of asperities of a particular wavelength, contacts at a larger wavelengths 
are exposed.  

vii. Friction (or shear stress) is assumed to be independent of fault slip rate.  
viii. For the linear problem (constant thermal properties), the superposition principle can be 

used to determine the temperature distribution at any depth can be computed from the 
average geothermal gradient added to (or subtracted from) that at a given depth.  This is not 
true for the non-linear problem. 

ix. A pure conduction heat transfer model can approximate the actual flash temperature 
profiles and their evolution with reasonable accuracy.  More complicated concepts like the 
effects of melt convection and radiation, different geometries, and melt fronts are ignored.  
Ignoring radiative heat transfer is reasonable because, except at discrete “points” 
(asperities) the bulk of the host rock does not attain considerable temperatures (see below) 
for typical durations of fault slip.  Convective heat transfer can be ignored since we are 
only interested in temperatures up to melting.   

x. It is assumed that the fault zone containing the asperities is bounded by two semi-infinite 
half slabs of low thermal conductivity (a realistic assumption for rocks).  Thus, the fraction 
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of heat that diffuses in a direction perpendicular to fault motion is small compared to the 
heat generated within the fault zone due to friction [Barber (1970)].  Heat diffusion 
perpendicular to the fault surfaces is characterized by a penetration depth given by (κh t0)1/2 
where k is the rock thermal diffusivity and t0 is the duration of faulting (Kanamori et al. 
1998).  Since Prandtl numbers (rc.Vslip/κ) for fault slip are typically greater than 1, the flash 
temperature pulse “penetration depth” into the asperity is very small.  In other words, as 
fault displacement progresses, the rate of increase of asperity size (from exposure of higher 
wavelength asperities) is larger than the rate at which heat penetration depth increases 
within the asperity.  Hence, as a first approximation, it seems reasonable that only a single 
asperity needs to be considered as the flash temperature pulse generated in it may not ever 
propagate out of its domain (i.e., neighboring asperities are not affected).  Also, for this 
same reason, it is reasonable to consider a full spherical domain, defined by adding an 
image of the hemispherical asperity within the bulk rock, for solving this problem.  Such an 
assumption will allow us to take advantage of the symmetry of a 2D spherical problem.  
This is illustrated in Figure 3-5.  The two θ  boundary conditions and the boundary 
condition at r = 0, shown in that figure, are now such symmetry conditions.  The fourth 
boundary condition is given by Equation (8) (see Figure 3-3).  These boundary conditions 
are less restrictive than prior studies. 

 
Data from earlier theoretical, field and experimental studies provide constraints for the model 
parameters used here.  These are presented in detail in Table C-1 (Appendix C)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3-4. Schematic representation of asperities on a real fault surface, and their 
hemispherical idealization.  The image at the bottom right shows an elevation view of two 
hemispherical asperities of identical radii R, in elastic contact with each other.  The contact 
results in a circular contact area, Ac, between them, with a contact radius, rc, as shown at 
the right of that figure.   
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(a) 

 
(b) 

Figure 3-5. (a) Full spherical domain used in solving the problem defined above.  (b) This 
shows a cross-section of the fault, along a plane passing through the centers of opposing 
asperities.  The 2D problem domain (cross-hatched area) is rotated 900 with respect to the 
asperity cross-section.  This assumption is valid because of the extremely low thermal 
diffusivities of rock materials. 
 

3.4.2.2 Asperity contact area, and duration of contact 
 
As mentioned in the previous section, we assume elastic deformation of hemispherical asperities.  
Elastic deformation implies that the two asperities are rigid (made up of extremely hard 
materials), and that the deformation produced is very small compared to the asperity dimensions.  
The elevation view of two such contacting asperities is shown in Figures 3-1 and 3-4.  Due to the 
fractal nature of the fault surfaces (Sections 2.2 and 3.1.1), it must be kept in mind that these 
asperities represent only one of the many scales of asperities present on a natural fault surface 
area.   
 
The expression for Hertzian contact between two hemispherical asperities of radii R1 and R2 
having different elastic properties is (Timoshenko and Goodier 1970):  
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where σmax, the maximum stress, is 1.5 times the average stress, σn.  E’ is defined as: 
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where E1 and E2 are the elastic moduli of the two fault surfaces and ν1 and ν2 are their Poisson’s 
ratios.  If the two asperities have the same radii, R, as shown in Figure 3-4, and are made up of 
the same material, then 
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and the contact area is defined as 
 

2
cc rA π=            (3-14) 

 
Logan and Teufel (1986) have shown experimentally that the contact area per asperity, Ac, as 
well as the total real contact area (= Ac x asperity density) increases nearly linearly with an 
increase in normal stress, although the asperity density saturates quickly with increasing normal 
stress.  For typical values of parameters in Equation (3-13), the ratio (rc/R) is roughly 6% 
(assuming: µ ∈  [0.6,0.85], ν ∈  [0.20,0.25], E ∈  [20,75] GPa, τ ∈  [0.001,1] GPa for quartz; ∈  is 
a symbol for “belonging to the range”).  Because this ratio is so small, it is also approximately 
equal to the angular contact extent in radians, θ0:, which can be defined from Figure 3-1 and 3-4 
as  
 
θ0 = Tan-1(rc/R) ≈ (rc/R)         (3-15) 
 
The duration of asperity contact is given by the time taken for either asperity to traverse a 
distance of twice the contact area diameter, 2dc, at the slip velocity, Vslip: 
 
t0 = 2dc/ Vslip:= 4rc/ Vslip:         (3-16) 
 
Equations (3-15) and (3-16) will be used in the next section to compute the heat flux boundary 
condition.   
 

3.4.2.3 Heat generation 
 
The contact area between the two asperities changes with time, as the upper asperity moves 
relative to the lower asperity due to fault motion (Figure 3-6).  The rate of work done per unit 
asperity surface area during a differential fault displacement ds, occurring in a time increment, 
dt, is 
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where A(s) is the instantaneous area of contact and s is the distance between the asperity centers 
in plan view.  As the fault motion continues at a constant velocity, U, this area first increases and 
then decreases.  It can be seen that the overlap area (shaded area in Figures 3-6 and 3-7) between 
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the asperities varies from 0 initially, to Ac [=πa2, see Equation (3-14)] at maximum overlap, to 0 
again, as the upper asperity first approaches, then completely covers, and finally leaves the lower 
asperity.  The overlap area at any distance s between the asperity centers is shown in gray shades 
in Figure 3-6 and black, in Figure 3-7.  For this moving boundary scenario, the boundary heat 
flux will vary as shown in the bar graphs below asperity contacts in Figure 3-7.  This boundary 
condition can be described in terms of time-dependent Heaviside functions (see below).  Using 
the moving boundary condition depicted in Figure 3-7, however, requires the solution of the heat 
conduction problem (next section) in a 3D domain.  Due to (1) the extremely fast interactions 
between the asperities (contact durations of the order of a few milliseconds), (2) the small 
asperity sizes, (3) extremely low thermal diffusivities in rocks, and (4) the assumption of 
homogeneous and isotropic material properties, it is possible that the additional development 
time and computational cost required for a 3D code will not yield results that are significantly 
different from those of a 2D code with a more symmetric boundary condition.  Therefore, a 2D 
(azimuthally symmetric) adiabatic boundary condition was developed for this problem, assuming 
a point heat flux pulse, qf at the hemispherical surface of the asperity.  This boundary condition is 
similar to Equation (3-17), but it is defined with respect to the hemispherical asperity spatio-
temporal domain: 
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where θ0 and t0 are given by Equations (3-15) and (3-16) respectively, and H is the Heaviside 
function defined as:  H(x-a) = 0 if x < a; H(x-a) = 1 if x ≥ a.   

 
Figure 3-6. Plan view of asperity motion depicts a change in overlapped contact area with 
distance between asperity centers.  The figure shows the two contact areas, Ac, of the 
asperities of the same size moving past each other.   
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Figure 3-7. Moving pulse boundary condition: Heat flux (height of gray rectangles) as a 
function of the relative motion between asperity contact areas (Plan view – similar to 
Figures 3-1 and 3-4).  The shaded area gives the total heat input to the contact area.  The 
pulse can be compactly expressed as a function of both space and time dependent Heaviside 
functions.  The two vertical gray lines “fix” the bottom contact area, while the top contact 
area moves relative to it from right to left.  Use of this boundary condition would require a 
full 3D solution of the heat conduction equation. 
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3.4.3  Mathematical statement of the problem and its solution 
 

3.4.3.1 Background 
 
The temperature distribution for a single hemispherical asperity (Section 2.1) can be obtained 
using energy conservation for the hemispherical asperity in the spherical coordinate system (r, θ, 
φ).  Spherical azimuthal symmetry is assumed (symmetrical in the φ direction about an axis 
passing through the centers of the two contacting asperities), as discussed in detail in Section 2.1.  
The assumptions were discussed in Section 1.4.2.1.  The nonlinear 2-D transient heat conduction 
problem in r and θ  can be stated as   
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where k is the thermal conductivity of the asperity material, CP, its specific heat, and ρ, its 
density.  It must be noted that the domain of solution of the 2D problem domain is shifted 900 
from the asperity cross-section, as discussed in assumption j of Section 2.1, and depicted in 
Figure 3-5.  Due to 2D spherical symmetry, the problem can be solved in the cross-hatched 
domain of Figure 3-5(b), and then replicated in the other semicircle, to obtain the complete 
cross-sectional temperature distribution (for instance, see surface plots in Chapter 4).   
 
Based on the assumptions of Section 1.4.2.1, the boundary conditions are:  
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The initial condition for this problem is the ambient host rock temperature: 
 
Tinitial (r, θ, 0) = T0     0 ≤ r ≤ R , 0 ≤ θ ≤ π    (3-21) 
 
where T0 is the ambient rock temperature in Kelvin, and R, the asperity radius.   
 

3.4.3.2 Solution Methods 
 
It must be kept in mind that the domain of solution for the 2D problem domain is shifted 900 
from the asperity cross-section, as depicted in Figure 3-5(a).  Due to 2D spherical symmetry, the 
problem can be solved in the cross-hatched domain shown in that figure.  The results can then be 
replicated in its complementary semicircle (non-cross-hatched part of the domain in Figure 3-
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5(a)), to obtain the complete cross-sectional temperature distribution (see temperature surface 
plots in Chapter 4).   
 
Analytical Solution: Only an outline of this procedure is given as an analytical solution has 
limited applicability to the problem being discussed (For details, see Strauss 1992 or Asmar 
2000).  A few generalizations can be made, however.  It is a (mathematical) property of any 
solution of the heat diffusion equation that its maximum (or minimum) value is attained either at 
the boundaries of the problem domain or at the initial time.  This is called the Maximum 
Principle.  For the conditions of this problem, the maximum temperature can be expected to 
occur around the heat source (i.e., on the contact surface and/ or at time t=0 ).  This temperature 
can be used to determine whether there will be any melting of the asperities.  A similar procedure 
was used by Cardwell, et al. (1978) and McKinzie and Brune (1972) to analyze melt zones in 
faults with “planar slips”.  If the maximum temperature exceeds the melting temperature of the 
gouge or asperity, then partial melting can be expected to occur.   
 
An analytical series solution was attempted first, using the separation of variables technique.  In 
order to do that, a transformation of variables has to be applied, in order to make the boundary 
conditions (3-20) homogeneous.  The series solution to this transformed equation is then 
expressed in the form of spherical Bessel functions and Legendre functions (Eigenfunction 
expansion).  The transformed equation contains a “source term” (a term on the RHS of equation 
(3-19), in addition to the standard first and second partial derivative terms that appear there.  
Therefore, the coefficients have to be determined by solving a system of ODEs in time, whose 
dependent variables are the coefficients.  FORTRAN 90 codes were written to compute these 
coefficients to any user defined accuracy (up to machine limit).  Due to the extremely non-
smooth boundary conditions, however, the “Fourier” coefficients are highly oscillatory and 
decayed very slowly with an increase in the number of terms.  In the end, time and system 
resource constraints made it impossible to compute the analytical solution.   
 
Numerical Solution: A very detailed explanation of the procedure used here is presented in 
Appendix A, and the code appears in Appendix B.  A brief outline is provided here for the sake 
of completeness.  Before outlining the problem handled in the actual code, it should be noted that 
the Heaviside functions (defined just below Equation 3-18) used in the boundary conditions have 
to be approximated for numerical computation.  The sharper these functions (i.e., the closer these 
functions are to a step function), the steeper the gradients at the boundary itself.  As the boundary 
becomes steeper, we run into resolution problems (Appendix A).  One way of approximating the 
Heaviside function is  
 
H(x-a) = (1/2)*[ 1 + TANH{n(x-a)} ]       (3-22) 
 
The larger the value of n, the sharper the step function (Figure 3-8).  All approximations are 
plotted as various types of lines, while the actual Step Function is displayed as dotted data.  As 
will be seen from the results in the next section, the typical time and length scales of this 
problem are less than 0.001 (seconds and meters, respectively).  So, a good approximation for n 
will have to be ≥ 100,000.  From Figure 3-8 we can see that the higher this value, the better the 
approximation, and the steeper the gradient at x = 0.  Details regarding the actual n-value chosen 
for the results presented in Chapter 4 is presented in Section 4.1.   
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Figure 3-8. Illustrating of the effect of n on the Heaviside function approximation given by Equation (3-22).  The Heaviside 
Step Function itself is plotted using circular data points, for clarity.  
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A FORTRAN 90 code was developed to solve a very general problem: non-linear, transient, pure 
conduction in 2 dimensions, in the variable u, with the self-adjoint form  
 

t
uuctyxufu

y
uktyxb

x
tyxb

x
uktyxa

x
tyxa Ptt ∂

∂=+

















∂
∂

∂
∂+









∂
∂

∂
∂ )(),,,()().().,,().,,().().,,().,,( 02121 ρ  (3-23) 

 
This can be compactly written in terms of the non-linear functional, N, as  
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with the general non-linear boundary conditions: 
 
L(u,ux) = fL(y,t)           (3-25a) 
R(u,ux) = fR(y,t)           (3-25b) 
B(u,uy) = fB(x,t)           (3-25c) 
Tu,uy) = fT(x,,t)           (3-25d) 
 
where, L, R, B, and T represent the left, right, bottom, and top (non-linear) boundary functionals.  
For most standard heat conduction applications, each of the above functionals further take the 
generalized Robin form  
 
F(u,uxi) = F1(u) . uxi + F2(u)         (3-26) 
 
where i = 1 or 2 (corresponding to the two principal problem coordinates, x and y).  The same 
code can be used to compute numerical solutions to corresponding linear problems.  The code 
can be used to solve problems in any of the three “standard” geometries, cartesian, cylindrical 
and spherical, without any modification to its core routines.  Of course, problem setup is very 
elaborate.  This is described in detail in Appendix A.  The next Chapter provides a summary and 
discussion of results, as well as conclusions based on the research conducted here.   
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4.0 RESULTS AND DISCUSSION 
 
 

4.1 Summary of Model Runs 
 
A summary of the model runs is presented in Table 4-1.  Table 4-2 presents a summary of the 
model parameters.  As discussed in Logan and Teufel (1986) and Sammis et. al (1999), small 
asperities (of the order of millimeters) may be subject to compressive stresses comparable to 
their ultimate compressive strength.  This is reasonable since small asperities are less likely to 
have zones of weakness.  Experimental confirmation of this result was compiled extensively in 
Touloukien et. al., (1981).  The strength of the small asperities increases (theoretically up to the 
ultimate compressive strength of the material), with decreasing asperity size.  Here, we consider 
asperities of sizes 1 mm to 10 cm.  Since we are only interested in the influence of shear stress 
on the temperature distribution generated by frictional heating, we do not attempt to predict or 
estimate the stresses for specific scenarios.  Therefore, for each asperity size, a range of shear 
stresses was used.  These ranges varied from 10-100 MPa (narrowest range, for a 1 cm asperity) 
to 10-1000 MPa (widest range, for a 1 mm asperity).  Larger asperities were assumed to 
experience a narrower range of shear stresses due to their larger contact areas.  Since 
pseudotachylytes (PT) are common in granitic rock, quartz and feldspar were used as typical 
asperity materials.   
 
Run Resolutions: In Table 4-1, each case was run for at least four resolution levels , or until the 
convergence rate predicted in Appendix A (numerical methodology) was obtained.  This 
sometimes required going up to five or six resolution levels.  Each resolution level increase 
corresponds to a halving of each of the two space steps and a halving of the time step.  This 
results in an overall increase in resolution of 8 times.  Correspondingly, the number of 
computations, and the run duration increase roughly 8 times with each increase in resolution 
level.  In some cases, optimal convergence was not achieved even at levels 5 or 6.  Time 
constraints did not permit running at even higher resolutions.   
 
Step function approximation: In addition to the resolution level for the problem domain, the 
resolution of the step function approximation for the boundary condition (Equations 3-18 and 3-
22, Figure 3-7) is also important.  The effect of n is further illustrated schematically in Figure    
4-1.  The larger the value of n, the smaller the dispersion outside the (contact duration or contact 
area boundaries, respectively, for time and length scales) shown in Figure 4-1.  The effect of this 
is that the higher values of n resulted in larger temperature maxima (as much of the energy that 
lay outside the ”contact rectangle” is now “concentrated” within it; see Figure 4-1).  Also, the 
larger the value of n, the higher the resolution required for solutions to converge, and therefore, 
the larger the run times.  Intuitively, maximum temperature is expected to occur at the time of 
asperity separation.  A value of n = 100,000 was found to be sufficient for convergence of the 
maximum temperature times to the asperity separation times.  From the foregoing discussion, the 
values obtained for n = 100,000 are actually lower-bounds on the “actual” maximum 
temperatures, but do not differ from them by more than the problem uncertainty range.  For this 
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study, this is a reasonable criterion since the exact values of peak temperature are not as critical 
as their order of magnitude.   
 

 
Figure 4-1. Effect of the parameter n on the “sharpness” of the temporal Heaviside 
function used in Equation 3-18.  As n gets larger, the TanH approximation (shaded profile) 
contains more of the heat input within the time of contact duration (represented by the 
transparent rectangle). This results in slightly higher maximum temperatures.   
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Table 4-1. Run Summary: About 330 runs were carried out, covering 75 different cases. 

Quartz, Nonlinear Runs (27 cases): 
Asperity Radius (mm) Shear Stresses (Mpa) Resolution Levels. 

1 10, 50, 100, 200, 500, 1000 1-4 (5 or 6 at high Shear Stresses) 
5 10, 50, 100, 200, 500 -do- 
10 10, 50, 100, 200, 500 -do- 
50 10, 50, 100 -do- 
100 10, 50, 100 -do- 

  
500, 1000 -do- 

Depth tests: 1 km and 2 km 
1 
10 100, 200 -do- 

Slip Velocity test: Vs
* =Vs/2  100 1-4 

Feldspar, Nonlinear Runs (26 cases) 
Asperity Radius (mm) Shear Stresses (Mpa) Resolution Levels. 

1 10, 50, 100, 200, 500, 1000 1-4 (5 or 6 at high Shear Stresses) 
5 10, 50, 100, 200, 500 -do- 
10 10, 50, 100, 200, 500 -do- 
50 10, 50, 100 -do- 
100 10, 50, 100 -do- 

  
500, 1000 -do- 

Depth tests: 1 km and 2 km 
1 
10 100, 200 -do- 

Quartz, Linear Runs (10 cases) 
Asperity Radius (mm) Shear Stresses (Mpa) Resolution Levels. 

1 10, 100, 500, 1000 1-4 (5 at high Shear Stresses) 
10 10, 100, 500 -do- 
100 10, 50, 100 -do- 

   
Feldspar, Linear Runs (10 Runs) 

Asperity Radius (mm) Shear Stresses (Mpa) Resolution Levels. 
1 10, 100, 500, 1000 1-4 (5 at high Shear Stresses) 
10 10, 100, 500 -do- 
100 10, 50, 100 -do- 
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Table 4-2: Fault and material parameters used in the runs. 

Material Property Quartz Feldspar 
Poisson’s Ratio, ν 0.2 0.3 
Young’s Modulus, E 94 GPa 40 GPa 
Density, ρ 2650 2620 
Thermal Conductivity Linear case: 4.3 W.m-1.K-1 

Nonlinear case: See Appendix C
Linear case: 1.35 W.m-1.K-1 

Nonlinear case: See Appendix C
Specific Heat  Linear case: 1123 J.kg-1.K-1 

Nonlinear case: See Appendix C
Linear case: 767 J.kg -1.K-1 

Nonlinear case: See Appendix C
Melting Point 20500 K 15000 K 
 
Fault Property 

 
Value 

Coefficient of friction,µ  0.6 
Relative slip velocity, Vslip  1 m/s (except as noted in Table 4-1 above) 
Shear Stress See Table 4-1 above 
 
A total of ~330 runs were carried out for the roughly 75 cases mentioned in Table 4-1.  Further 
details on convergence are presented in Section 4.2.  The output from the FORTRAN 90 code, 
COND2D (Appendix B), was processed using codes written in MATLAB (Appendix D) and 
MS-Excel.  Plots of thermal properties as a function of temperature are presented in Appendix C.   
 

4.2 Convergence of solutions. 
 
To visually check on convergence, the MATLAB codes DevolRuns.m, ConvTestPlots.m, and 
DsnapRuns.m (Appendix D) were written to generate several types of convergence plots for 
every one of the 73 cases presented in Table 4-1.  For illustrative purposes, one set of plots is 
presented below.  Figure 4-2 presents the temporal evolution of global maximum temperature 
(which occurs at the right boundary).  As discussed in Appendix A, the steep gradient resulting 
from a large boundary shear stress necessitates the use of very high spatial resolutions to obtain 
convergence.  This results in significant run times (typically 24 hours or longer per run).  To 
achieve convergence, and still complete the runs in a reasonable time, use is made of a specific 
characteristic of the solutions to the problem posed here.  Namely, due to the very small thermal 
diffusivities (~ 10-6 m2/s) of the minerals modeled here, a localized temperature pulse generated 
over a very short contact time at the boundary dissipates very close to the boundary.  These can 
be seen in the convergence plots of Figures 4-2 and 4-3.  Therefore, much of the asperity area 
(problem domain area) does not influence the problem solution.   
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Figure 4-2.  Demonstration of convergence of solution as a function of increasing 
resolution.  The code QR1T1000 denotes a quartz asperity of 1 mm radius experiencing a 
boundary shear stress of 1000 MPa (1 Gpa).   
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Figure 4-3. Demonstration of the effect of resolution on the base of the temperature pulse.  
As the resolution increases, the pulse is “drawn inward”, thus reducing its far-field effect.  
As the resolution increases from 3-6, the extent of the x-axis experiencing ambient 
temperatures remains nearly unchanged.  The data shown here are for a quartz asperity of 
1 mm radius experiencing a shear stress of 1000 MPa. 
 
 
Significant time savings can be obtained if the problem domain were to be cropped to as small a 
value as practical.  For the numerical method adopted here (Douglas-Gunn time splitting, 
Appendix A), the decrease in run time is directly proportional to the reduction in area achieved 
from “domain cropping”.  While successively reducing the domain size, all three flux boundary 
conditions, located within the body of the fault [Equations (3-20)] must still be satisfied to within 
the limits of the uncertainty in temperature due to parameter uncertainties.  Cropping also allows 
a concomitant increase in resolution, because the problem domain is much smaller.  Typical 
cropped area for the asperity being considered is shown for two resolution levels in Figure 4-4.  
For all the cases specified in Table 4-1, a cropped area was iteratively obtained from a low 
resolution (fast) run, such that the temperatures at the domain boundaries were less than 1% of 
the peak temperature at that resolution.   
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   (a)       (b) 
Figure 4-4. Cropping the problem domain:  The area in white is the domain for which the 
Fortran 90 code, COND2D, was run.  The dark gray area has temperatures that are a 
mirror image of the white area, about their common boundary.  The resolution level for (b) 
is one higher than (a), having nearly twice the grid points as the latter.   
 
 
The cropping process described above can be justified by looking at a snapshot of the 
temperature values at the asperity surface in the region of its contact area (Figure 4-3).  Based on 
several such runs, it was observed that:  
(a) Compared to those in the vicinity of the peak itself, grid nodes far from the peak of the 

temperature pulse (Figure 4-3) are not as sensitive to resolution increases.  This is a 
consequence of the low thermal diffusivities mentioned above.  

(b) The area occupied by the “base” of the temperature pulse (x-axis in Figure 4-3) remains 
nearly constant with changes in resolution.  In many cases it actually gets slightly smaller at 
higher resolutions (since it is better resolved), thus “drawing” in the temperature 
perturbation, and slightly reducing its far-field influence.   

 
Therefore, using a lower resolution run to iteratively determine this “minimum” area is 
reasonable.  This will become clearer in Section 4.1.3.1, where 3D temperature surface plots for 
the cropped domain are shown at specific times.  In a number of cases, although the theoretical 
(2nd order) convergence rate is not achieved for the range of resolutions attempted (limited due to 
the time constraints on this project), the plots indicate convergence to within 10° K (and more 
commonly to within about 1° K), which is probably within the parameter uncertainty range for 
this model. 
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4.3 Temperature Distribution - Nonlinear runs 
 

4.3.1 Temperature Surface Plots and area of potential melting 
 
As discussed in the previous section, the problem proposed here is solved on only a small area of 
the original problem domain.  The figures illustrated in this section represent a “zoom” of the 
asperity domain adjacent to the contact area/heat generation zone.  Figures 4-5 to 4-7 depict the 
surface temperature.  Each are color coded magnitude plots for the relevant sub-domains at each 
of four different times.  Figure 4-5 is a nonlinear run for a feldspar asperity, and Figures 4-6 and 
4-7 are nonlinear runs for quartz asperities.  In each figure, the yellow end of the color bar is 
scaled to the melting temperature of the corresponding mineral in °K (Table 4-2).  It must be 
noted that the fraction of asperity area represented by the sub domain in Figures 4-4 to 4-7 can be 
calculated from 
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where, fA is the fraction represented by the sub domain area, θ0 is the angle subtended by the sub- 
domain, Asb, at the geometrical center of the hemispherical asperity, ri is the inner radius of Asb, 
and r0 is the asperity radius (or outer radius of the sub-domain).  Typical values were θ0 = 10-2 to 
10-1 radians and (ri/r0) = 80-99%.  The largest value of fA, ~ 1%, corresponds to the maximum θ0 
and the minimum (ri/r0).  This value is for the smallest asperities (1 mm radius), as may be 
intuitively expected.  The area occupied by the pulse, the yellow region, can be computed from 
the area of the base of the pulse in the above figures.  This pulse area is only a fraction of this 
sub-domain area.  A typical value for this fraction is 3-5%, with a maximum of ~10%.  So, at 
best only 0.1% of the smallest asperities can melt during any single asperity encounter.   
 
Melting - Quartz vs. feldspar: To compare the results for quartz and feldspar, the following 
must be noted: the thermal conductivity for feldspar increases with increasing temperature, up to 
its melting temperature and is then assumed to decrease (Figure C-2).  At its maximum, it is ~ 
30% of the maximum quartz conductivity (at ambient temperature).  The specific heat of both 
minerals increases with increasing temperature (Figures C-3 and C-4).  The specific heat of 
feldspar is less than that of quartz over the range of temperatures depicted in the above figures.  
This means that the thermal diffusivity of quartz near its melting temperature of ~ 2050° K is 
much smaller than that for feldspar near its melting temperature (~1500 °K).  Therefore, all else 
being equal, we would expect the temperature maxima produced for quartz asperities to be much 
larger and more spatially restricted than that for feldspar, near their melting points.  This implies 
more melting for feldspar asperities, even though quartz asperities have the potential to produce 
much higher temperatures.  This can be observed by comparing Figures 4-5 (feldspar) and 4-6 
(quartz), which are for the same asperity sizes and boundary shear stresses.  Results suggest that 
for feldspar, the area around the temperature pulse that is perturbed by it is larger, the closer the 
surrounding temperature approaches to the melting temperature.  Given asperities of the same 
size, relative to quartz asperities, feldspar asperities are more likely to experience melting at 
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(a) t = 0.0001 s 
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(b) t = 0.00024 s 
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(d) t = 0.002 s 
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(c) t = 0.0008 s 

Figure 4-5.  Surface temperature plots for the NONLINEAR run: FR10T500 (10 mm feldspar asperity with 500 MPa 
boundary shear stress).  The color bar scales from black (360°°°° K ) through grays, blues, reds, and finally, yellows (1500°°°° K, the 
melting point for feldspar).  Axes RANGE: X = 9.6 to 10 mm; Y = -2 to 2 mm.  Compare with Figure 4-4. 
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(a) t = 0.0002 s 

9.4
9.7

10 −5

0

5

 

 

 

 

360

2360

4360

6360

y

x

T

400 600 800 1000 1200 1400 1600 1800 2000

9.4

9.5

9.6

9.7

9.8

9.9

10

x 10
−3

−5 0 5

x 10
−4

 
(b) t = 0.0006 s 
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(d) t = 0.001 s 
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(c) t = 0.003 s 

Figure 4-6.  Surface temperature plots for the NONLINEAR run: QR10T500 (10 mm quartz asperity with 500 MPa boundary 
shear stress).  The color bar scales from black (360°°°° K ) through grays, blues, reds, and finally, yellows (2050°°°° K, the melting 
point for quartz).  Axes RANGE: X = 9.4 to 10 mm; Y = -0.5 to 0.5 mm.  Compare with Figure 4-4. 
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(a) t = 0.0006 s 
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(b) t = 0.0015 s 
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(c) t = 0.0025 s 

Figure 4-7.  Surface temperature plots for the NONLINEAR run: QR50T100 (50 mm quartz asperity with 100 MPa boundary 
shear stress).  The color bar scales from black (360°°°° K) through grays, blues, reds, and finally, yellows (2050°°°° K, the melting 
point for quartz).  Axes RANGE: X = 48.74 to 50 mm; Y = -0.7 to 0.7 mm.  Compare with Figure 4-4. 
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lower shear stresses.  This agrees with observations from field samples – pseudotachylyte matrix 
is made up of melts derived from feldspars and micas, with embedded quartz clasts.   
 
Diffusion length scales: The characteristic linear 1D diffusion length is defined as 
 
L1D= √(κt)            (4-2) 
 
where κ is the material thermal diffusivity, and t, is the time scale of interest.  For feldspar 
(linear case: k (mean) = 1.5 Wm-1K-1, ρ = 2620 kg/m3, CP (mean) = 767 Jkg-1K-1; κ = 6.7 x 10-7 
m2/s) at time, t = 0.002 s, L1D,feldspar ~3.66 x 10-5 m.  In comparison, the characteristic penetration 
depths of the temperature pulses (non-black regions) for the nonlinear feldspar model run 
presented in Figure 4-5 is ~2.75 x 10-4 m (t = 0.002 s).  Similar comparisons suggest that the 
nonlinear penetration depths for feldspar are as much as an order of magnitude greater than the 
linear predictions for high shear stresses (Figure 4-6), , and at least twice the linear predictions 
for lower shear stresses.  For quartz (linear case: k (mean) = 3.3 Wm-1K-1, ρ = 2650 kg/m3, CP 
(mean) = 1123 Jkg-1K-1; κ = 1.2 x 10-6 m2/s) at time, t = 0.003 s, L1D,quartz ~5.98 x 10-5 m; at time 
, t = 0.0075 s, L1D,quartz ~1.1 x 10-4 m.  In comparison, the penetration depths for the two 
nonlinear quartz models presented in Figures 4-6 and 4-7 are 2.8 x 10-4 m (t = 0.003 s) and 2 x 
10-4 m (t = 0.0075 s), respectively, for the identical time scales.  Similar comparisons suggest 
that the nonlinear penetration depths for quartz are ~2 to 4 times greater than the linear 1-D 
predictions (larger deviation for higher shear stresses, Figures 4-6 and 4-7).   
 
In general, higher shear stresses lead to much larger temperature pulses and larger boundary 
thermal gradients compared to scenarios with lower shear stresses (due to the cubic relationship 
described in the next section).  For feldspar, higher temperatures lead to larger thermal 
conductivities (Figure C-2), and hence, larger penetration depths compared to quartz.  This is 
corroborated by the penetration depths obtained above from Figures 4-5 and 4-6.  It should be 
noted that although specific heat increases with temperature, its fractional change is much 
smaller for both minerals (Figures C-3 and C-4).  So, the larger fractional change in thermal 
conductivity influences thermal diffusivity more strongly than specific heat.  For quartz 
asperities, small temperature pulses diffuse farther into the asperity (Figure 4-7) due to higher 
thermal conductivities and lower specific heats at lower temperatures (Figure C-1).  The opposite 
happens for large temperature pulses (which typically occur at high stresses).  Since 
conductivities are lower and specific heats are higher, the temperature pulse is more concentrated 
(Figure 4-6).  Since the thermal conductivity is a maximum close to feldspar’s melting point, 
feldspar asperities, the pulse penetration depth is larger, the closer its magnitude is to the melting 
point, as indicated in Figure 4-5.  Figures 4-5 to 4-7 seem to imply that in the lateral (θ) 
direction, both the linear and non-linear cases show diffusion lengths that are an order of 
magnitude larger.  This result is, however, an artifact that arises because much of the 
circumferential extant of the heat pulse corresponds to the actual asperity contact area (or heat 
generation zone).   
 
On a real fault, each asperity may encounter a number of opposing asperities (depending on 
asperity size distribution on the fault surfaces), before it gets abraded or melted away.  This 
repetitive process potentially produces much more melt than predicted by this model.   
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The observation that the temperature pulse remains and dissipates locally helps to justify the 
assumption of a fully spherical geometry (Section 3.4.1, Figure 3-5) for a hemispherical asperity, 
which includes part of the fault rock.  In addition, unless there are repeated asperity encounters 
(when repeated temperature pulses at the boundary can potentially melt significant quantities the 
asperity), inter-asperity interaction can be safely ignored for the time scales of individual asperity 
interactions.  The above discussion provides one explanation for the rarity of pseudotachylytes – 
namely, that melting is so hard to initiate.   
 

4.3.2 Peak Temperatures 
 
Figures 4-8 depicts peak temperatures obtained for all the nonlinear quartz models as a function 
of shear stresses, for different asperity radii.  These figures also show the best fit trendlines to the 
data.  Before discussing the graph, it is illustrative to see how these two parameters affect 
temperature distribution in an asperity.  The temperature rise ultimately depends on the total heat 
input into the system.  For the 2D problem, this heat input, qf, is given by:  
 
qf = τ.rc.Vslip.t0           (4-3) 
 
where τ is the boundary shear stress, Vslip is the relative slip velocity between opposing 
asperities, and t0 is the asperity contact duration.  The contact duration is given by 
 
t0 = 2dc/ Vslip:= 4rc/ Vslip:         (3-16) 
 
Substituting (3-16) into (4-3) gives 
 
qf  ∝   τ.rc

2           (4-4) 
 
rc, the radius of the asperity contact area, can be obtained from the Hertzian solution [Equation 
(3-13)] 
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4
3          (4-5) 

 
where R is the asperity radius and the normal stress has been represented in terms of the shear 
stress and coefficient of friction in the proportionality.  Based on this result, the total heat input 
to the system is given by:  
 
qf  ∝   τ.3.R2           (4-6) 
 
Based on Equation (4-6), we would expect the temperature in the asperity to increase as the 
square of the asperity radius, and as the cube of the boundary shear stress. This behavior is 
observed in Figure 4-8, which can be used as an independent validation for the code (more 
mathematically rigorous validation tests are presented in Appendix A).  Since the coefficients are 
different for each fit, however, a power law fit may be more appropriate.   



 45

Figure 4-8. Peak temperatures for quartz (nonlinear runs) as a function of shear stress, for different asperity radii.  Where 
sufficient data points were available, the best fit trendlines (cubic polynomials) fit the data perfectly, in agreement with 
Equation 4-6.   
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4.3.3 Temperature evolution profiles 
 
Figure 4-9 presents sample temperature evolution profiles for nonlinear feldspar runs at different 
shear stresses.  Figure 4-10 presents sample temperature evolution profiles for nonlinear quartz 
runs for two combinations of asperity size and shear stress.  The curves shown in these two 
figures share certain similarities..  Each curve has a rapid temperature rise phase (phase 1), and a 
slow dissipation phase (phase 2).  The rate of temperature increase in phase 1 is limited by the 
rate of work done.  Time, t = 0, corresponds to the start of asperity contact.  Asperity separation 
time is denoted by the time at which maximum temperature occurs.  As dissipation progresses 
post asperity separation, the driving thermal gradient rapidly decreases, eventually leading to an 
asymptotic decay of the temperature (similar to exponential decay).  In general, the higher the 
temperature attained, the faster the initial decay in phase 2.  In consequence, the temperature 
pulses get sharper and more pointed as the magnitude of maximum temperature attained 
increases.  Lower temperatures generate a broader profile.  However, comparing Figures 4-9 and 
4-10, it can be seen that the “temperature plateau” observed for feldspar asperities at high shear 
stresses are absent in quartz at high stresses, for the same asperity sizes.  This can be attributed to 
two characteristics of feldspar: (1) the contact durations for feldspar are longer because of its 
lower Young’s modulus, which leads to a larger contact area, and (2) the conductivity of feldspar 
increases with temperature and does not decrease much from its peak value (Figure C-2) due to 
the assumed quadratic profile.  Therefore, once a certain high temperature is reached (~ 3000 °K, 
Figure 4-9), any further heat input is conducted away due to the high conductivity at that 
temperature.  The process is self-propagating as long as the heat source exists since conductivity 
does not change much for feldspar in the range 1500 – 3000 °K.  In contrast, the conductivity of 
quartz decreases dramatically with temperature, and owing to a high Young’s modulus typical 
quartz contact areas are half that of feldspar asperity contact areas (all else being equal).  
Therefore, no such “conduction plateau” is observed (Figure 4-10).  As discussed in the previous 
section, peak temperatures are usually attained for intermediate asperity sizes, for large shear 
stresses.  Since the contact duration increases with both shear stress and asperity size, the time of 
attainment of this peak temperature increases if either one, or both parameters increase.   
 
Effect of slip velocity: In Equation (4-4) above, slip velocity cancels out of the heat flux 
boundary condition for the definition of individual asperity encounters.  So, for linear problems, 
it is reasonable to assume that slip velocity has no effect on temperature maxima.  However, a 
slower velocity will stretch the temperature evolution profile (like those shown in Figures 4-9 
and 4-10).  For the nonlinear problem, however, this assumption is not valid because the 
evolution of temperature and thermal gradients is strongly dependent on the temperature 
distribution over the entire domain at previous times.  This “path dependence” of temperature 
profile evolution is illustrated in Figure 4-11.  For this particular case, doubling the slip rate from 
0.5 to 1 m/s increases the peak temperature attained by ~ 30%.  Due to the dependence of 
gradients on shear stress, the nonlinear effect is expected to be much stronger for large shear 
stresses.   
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Nonlinear Run, Feldspar: T_peak vs. time for r = 1 mm, for different Shear Stresses.
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Nonlinear Run, Feldspar: T_peak vs. time for r = 10 mm, for different Shear Stresses.
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Figure 4-9. Temperature evolution profiles for different asperity radii and shear stresses 
for a sample set of nonlinear feldspar runs. 
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Nonlinear Runs, Quartz: T_peak vs. time for (i) r = 1 mm,TAU = 1000 MPa; and (ii) r = 10 mm,TAU = 
500 MPa.
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Figure 4-10. Temperature evolution profiles for different asperity radii and shear stresses 
for a sample set of nonlinear quartz runs. 
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Figure 4-11. Effect of halving the slip velocity on the evolution of peak temperatures, on a 1 
mm asperity experiencing a boundary shear stress of 100 MPa.  Difference in Global 
Maximum Temperatures = 1.120 K ~ 1 0 K 
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Fault depth: For the linear problem, thermal effects at depth can be simulated by adding or 
subtracting a temperature increment determined by using the geothermal gradient (i.e.,            
30° C/km).  For the nonlinear problem, however, since the initial temperature effects the initial 
domain diffusivity values, the same procedure cannot be used.  In other words, changing the 
initial condition changes the “path” taken by the peak temperature (as discussed above), and 
therefore, the temperatures attained can be significantly different. In fact, the larger the driving 
thermal gradients (say, due to large shear stresses), the greater expected nonlinear deviation from 
this linear result.  The results are illustrated in Figure 4-12, for sample low and high shear 
stresses.  These plots show that decreasing the initial temperature by 30° K causes the maximum 
temperature to drop by a much higher value at a shear stress of 1000 MPa.  At 500 MPa, 
however, the peak temperature drops by roughly the same magnitude as the change in initial 
temperature.  For high shear stresses, however, the effect of changes in depth cannot be predicted 
without considering nonlinear effects.  Nonetheless, the temperature change is a small fraction of 
the maximum temperature.   
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Figure 4-12. Effect of initial temperature on peak temperature evolution for the nonlinear 
quartz problem (1 mm asperity).  Blue curve is for 2 km depth (T0 = 360°°°° K), Red curve for 
1 km depth (T0 = 330°°°° K).  (a) Shear Stress, 500 MPa: Global Maximum Temperature 
Difference = 33.470 K, (b) Shear Stress, 1 GPa: Global Maximum Temperature Difference 
= 63.780 K.  Note that the temperature scales are not the same in (a) and (b). 
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4.4 Linear vs. nonlinear runs 
 
As stated in Section 4.1, the published “constant” thermal conductivity value for quartz  (4.3 
W.m-1.K-1, see Table C-1) is 33% more than the temperature weighted average of the 
temperature dependent conductivity (computed using the Trapezoidal rule and data shown in 
Appendix C).  On the other hand, the published “constant” value of thermal conductivity for 
Feldspar (1.35 W.m-1.K-1) is roughly 10% less than the temperature-weighted average.  The 
linear feldspar models were, therefore, run with a thermal conductivity that was less than that of 
the nonlinear case on average.  The resulting low diffusivity means that the peak temperatures 
observed for the linear feldspar runs were higher than their nonlinear counterparts.  On the other 
hand, the conductivity of the linear quartz runs was higher on average than that for the nonlinear 
runs.  Therefore, the peak temperatures produced in the linear quartz model were less than those 
in their nonlinear counterparts.   
 
Unlike the linear case, a change in the initial condition (ambient temperature at fault depth) is 
critical in estimating peak temperatures for the nonlinear case.  This was discussed in detail in 
the previous section.   
 
The successful completion and convergence of the non-linear model runs is very sensitive to 
gradients within the problem domain.  Although convergence of the linear runs is sensitive to the 
presence of steep gradients in the domain, they yield some result as long as all the parameters are 
within reasonable ranges.  Hence, before using the results, extra care must be taken to make sure 
that the linear models do converge. 
 
Based on the dramatic variation of thermal properties of most minerals (including the two used 
in this study), results from the linear models can be misleading.  It is important to generate and 
use nonlinear modeling results when the relevant data is available.  Temperature dependence of 
other model parameters like elastic properties and coefficient of friction are expected to further 
enhance nonlinear effects.   
 

4.5 Conclusions 
 
The main conclusions from this study are:  
 
•  While back of the envelope calculations can be used to determine rough orders of magnitude 

for parameters used to characterize heat conduction in asperities (like diffusion lengths), they 
cannot estimate the actual fraction of the asperity that could be experiencing near-melt 
temperatures.  It is found for instance that the rate of propagation of the asperity temperature 
pulse along the radial direction is ~2-4 times higher than the predictions from the 1-D 
characteristic length scales for quartz, and roughly an order of magnitude higher than 1-D 
scales for feldspar.   

•  The temperatures obtained for certain combinations of asperity size and shear stress indicate 
that the local temperature rise can be as high as 8500° K for nonlinear quartz asperities, and 
3200° K for feldspar asperities.  In contrast, temperatures obtained from the infinite fault 
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plane models of Cardwell et. al. (1978), Oxburg and Turcotte (1974), and McKenzie and 
Brune (1972) were much higher, when calculated from their dimensionless plots.  In fact in 
those models the temperature rise is directly proportional to the length and duration of fault 
slip, and yield extremely high values for the fault “plane” (~ 105° K). 

•  All else being equal, a larger volume of a feldspar asperity will melt compared to a quartz 
asperity.  This follows from the fact that thermal conductivity of feldspar increases with 
increasing temperature, and is much higher than that of quartz, close to the feldspar melting 
point.  However the melt volumes are very small (~ 0.3%).  Pseudotachylyte occurrence is 
rare probably because it is very hard to initiate substantial frictional melting.   

•  Given the localized nature of any asperity scale melting, only repeated inter-asperity contact 
can create high enough temperatures to cause significant melting.  Although rare, significant 
melting is suggested by kilometer long pseudotachylyte veins like those found in the 
Homestake Shear Zone (HSZ) in Colorado Rockies.  Understanding the problem will require 
a fresh look at asperity size distributions on a fault surface and improved characterization of 
the surfaces.  In conjunction with state-of-the-art thermal modeling, we suspect that the role 
of wear will also become important at the fault/macroscopic scale.   

•  For melting to occur, high shear stresses (500 – 1000 MPa) are required (due to the cubic 
dependence of peak temperatures on shear stress).  Larger asperities would attain higher 
temperatures due to larger contact areas and contact durations compared to smaller asperities.   



APPENDIX A: DETAILS OF NUMERICAL APPROACH 
 
 
 
 
 
 
 

NUMERICAL SOLUTION OF THE GENERAL NONLINEAR 2D 
DIFFUSION EQUATION WITH GENERAL NONLINEAR BOUNDARY 

CONDITIONS:  
DELTA-FORM OF NEWTON-KANTOROVICH SCHEME, IN 

CONJUNCTION WITH DELTA-FORM DOUGLAS-GUNN TIME 
SPLITTING. 
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A-1. INTRODUCTION 
 
 
In order to understand global tectonics and its evolution, fully coupled modeling of the earth’s crust and 
mantle are required.  Realistic geodynamic modeling of the earth will require integration of thermal 
transport (predominantly conduction/advection and convection), geo-hydrodynamics (ground water flow 
through porous media), geochemistry, and the thermo-viscoelastic response (Maxwell’s solid) of the crust 
and mantle (as in the case of post-glacial crustal rebound) (see for instance, Ranalli 1995, Turcotte and 
Schubert 2001).  Computing power exists today for such “full-spectrum” modeling.  Within this 
framework, there is a need to develop a robust and flexible code for solving a coupled nonlinear system of 
generalized geo-thermal-hydrodynamic-viscoelastic equations.  Towards this end, developing a general 
single equation 2D diffusion code is merely a first step.   
 
 
A-1.1 Problem Specification  
 
The problem for which the solution is being attempted is that of a general nonlinear transient pure 
conduction in 2 dimensions, in the variable u, with the self-adjoint form:  
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This can be compactly written in terms of the nonlinear functional, N, as follows: 
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with general nonlinear boundary conditions: 
 
L(u,ux) = fL(y,t)            (A-2a) 
R(u,ux) = fR(y,t)            (A-2b) 
B(u,uy) = fB(x,t)            (A-2c) 
Tu,uy) = fT(x,,t)            (A-2d) 
 
where, L, R, B, and T represent the left, right, bottom, and top (nonlinear) boundary functionals.  For most 
standard heat conduction applications, each of the above functionals further take the generalized Robin 
form:  
 
F(u,uxi) = F1(u). uxi + F2(u)         (A-3) 
 
It was the goal here to develop a code that can handle the problem represented by equations (A-1)-(A-3).  
It will be shown later that the linear problems in any regular coordinate system are all special cases of the 
respective nonlinear problems.  Therefore, the same code can be used to compute numerical solutions for 
linear or nonlinear problems - by setting the linear_flag to 1 or 0, respectively.  For most geological 
applications it is sufficient to consider the three standard geometries: Cartesian, Cylindrical and Spherical.  
The table below provides the values of a1, a2, b1, and b2, for these three coordinate systems.  
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Table A- 1. Definitions of coefficients in Equation (A-1a), for the three standard coordinate systems. 

↓↓↓↓  Parameter /  
System→→→→ 

Cartesian 
(coord_flag = 1) 

Cylindrical 
(coord_flag = 2) 

Spherical 
(coord_flag = 3) 

a1 1 1/x 1/x2 
a2 1 x x2 
b1 1 1/x2 1/{x2.Sin(y)} 
b2 1 1 Sin(y) 
a2,x 0 1 2x 
b2,y 0 0 Cos(y) 

 
If required, however, the code is flexible enough to accommodate other user-defined geometries by 
allowing the definition of appropriate analytic (non-singular) expressions for the coefficients defined 
above.  In this case coord_flag = 0.  Of course, if the defined coefficients are not analytic, then 
appropriate modifications need to be made to approximate the PDE at the non-analytic points, and this 
requires modifications to the subroutine computing the coefficients and RHS vector of the tridiagonal 
system (see Sections A-2 and A-3).  In this case, the code needs to be re-validated using known analytical 
solutions. 
 
 
A-1.2 Existence and uniqueness of solutions 
 
Before discussing the numerical implementation, the first issue is to figure out if anything can be said 
about the solutions to this general nonlinear equation, containing the second partial derivatives of the 
dependent variable, u.  To the best of the author’s knowledge, no such analysis exists for the particular 
problem chosen above.  There have been numerous publications on the existence, uniqueness and stability 
of the solutions to the nonlinear heat conduction equation in various forms encountered in material 
science, plasma physics, thermal physics, engineering, and numerical analysis of the same.  However, 
none that the author came across seem to discuss the appearance of second partial derivatives.  As will be 
shown below, for realistic physical problems, and in the coordinate systems mentioned above, the 
derivatives of the functional w.r.t the second derivative of the dependent variable, u, i.e., Nuxx, and Nuyy, at 
least, are bounded.  Although mathematically quite tenuous, this could imply that analyses similar to 
those for N(u,ux,uy) may be still be applicable to this particular set of parabolic problems.  In this respect, 
it is pertinent to discuss results from four papers on the numerical analysis applied specifically to the heat 
conduction problem, presented only as a sampling of how the analysis of nonlinear problems has evolved: 
 
The first one is by Bellman (1948), who analyzed the existence and boundedness of solutions of the 
nonlinear heat conduction equation on a rectangular domain:  
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He analyzed the stability of this problem in the sense of Liapounoff-Poincare, and proved that if: 
•  BCs are Dirichlet,  
•  IC exists and is bounded, and  
•  “RHS” function can be represented as a bounded series,  
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then, a uniformly bounded solution exists, and is unique.  He further goes on to extend this (albeit “hand-
wavingly”) to cylindrical polar coordinates, but cautions against extending the results to 
spherical/elliptical domains until further work was carried out (by him). 
The second one is that by Douglas and Rachford (1956).  In this, the authors develop their well known, 
alternating direction implicit time splitting scheme for linear 2- and 3-D heat conduction problems (and 
linear parabolic problems in general, along with an iterative scheme for the steady-state elliptic problem).  
They prove, using Taylor’s series expansions for the derivatives, that for a any type of closed domain, if 
the initial and boundary values are such that uxxxx, uxxyy, uyyyy, and utt are bounded, then the solution of the 
discrete split equations converges to that for the unsplit linear heat equation, to within ~ O(h2 + k).  So, 
from arguments of the boundedness of the second derivatives presented above, a similar result may hold 
for equation (1a).   
 
The following two papers illustrate typical numerical analysis procedures for the nonlinear heat 
conduction problem (and parabolic equations in general).  The first one is by Dendy (1977), where the 
heat conduction equation of the form: 
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which is in some ways significantly different from Equation (A-1a), in structure – It does not have a heat 
capacity term (in front of the time derivative), the “RHS” function is dependent on the first partial 
derivatives of the dependent.  However, it still retains the nonlinear self-adjoint form of Equation (A-1a), 
and contains and since the “RHS” function does not contain any second derivatives, it may not influence 
the solution properties significantly (since the self-adjoint operator has first derivatives appearing in it, if 
they do not exist then the solution may not be easily computed).  This is very close to the problem at 
hand, and its significance lies in the fact that, upon rewriting Equation (A-5) in its discretized self-adjoint 
form, it can be cast in the standard Douglas-Gunn time split form, with each step containing the discrete 
adjoint operator in a single direction.  Dendy then goes on to prove (something not proven in Douglas and 
Gunn 1964) that for this nonlinear case, if: 
•  ay and bx are uniformly bounded,  
•  au, bu are Lipschitz continuous w.r.t. u, and  
•  f is Lipschitz continuous w.r.t. u,ux and uy, 
 
then, for a sufficiently small time step, the norm of the error varies as ~ O(h2 + k2), i.e.., 2nd order 
convergence rate can be obtained even in this nonlinear case!  A more recent paper by Broadbridge et al. 
(1999) carries out a background study in terms of the qualitative properties of the solution of the radiant 
plasma heat conduction equation of the form:  
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for scale-invariant solutions, symmetries, and existence of solutions.  One of the relevant conclusions 
from that paper to this project is that they find that if all the functions appearing in the above equation are 
“smooth”, the initial profile of u is compatible with the boundary data, and all these data AND the 
coefficients are strictly positive, then Equation (A-6) possesses a “classical solution” for small enough 
time, and under further restrictive conditions, the number of local extrema of the solution, u do not 
increase with time.   
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Of course, Equation (A-1a) is more general than any of the equations presented above.  In fact, Equations 
(A-4), (A-5) and (A-6) are special cases of that equation.  From the above analyses, however, it seems 
reasonable to expect that the self-adjoint form of the heat conduction equation will have a unique, 
bounded solution, under restrictions of smoothness of all pertinent data.   
 
 
A-1.3 Solution Method adopted  
 
The method used here is the δ-form of the Newton-Kantorovich (N-K) procedure (or Quasi-linearization, 
which is actually a misnomer, since the nonlinear equations are fully linearized in this procedure) (see for 
instance, Kantorovich and Akilov 1964 & 1982), in conjunction with the δ-form of the Douglas-Gunn (D-
G) scheme (Douglas and Gunn 1964, McDonough 2002).  This combination renders the discretization in 
a form that is very efficient to implement.  If it works at all, the Newton-Kantorovich scheme yields 
quadratic (or near quadratic) convergence, making it an easy choice from amongst direct substitution or 
Picard iteration methods for solving a nonlinear equation (or systems of equations).  The D-G procedure 
is more general and robust (especially for non-smooth source functions, and at higher resolutions, more 
accurate), compared to the Peaceman-Rachford ADI method, which cannot be extended to more than 2 
dimensions, or the Douglas-Rachford method, which is only first order accurate in time (McDonough 
2002).   
 
The solution procedure implemented here is limited by the machine specific maximum allowable array 
sizes, as it is designed to use global solves in each direction.  This pitfall can be avoided by using some 
kind of Domain Decomposition and/or Multi-grid algorithms for the spatial discretization in conjunction 
with some form of Time Splitting for the temporal discretization.  The state-of-the-art in computing 
Parabolic PDEs focuses on such methods in order to obtain solutions at higher grid resolutions.  A recent 
example is a paper by Yu (2001), who has developed a local space-time adaptive scheme for solving 2-D 
parabolic problems, based on multiplicative Schwarz Domain Decomposition.  He uses an a posteriori 
error estimator to determine the resolution of the grid required in each region of the problem domain – 
high “activity” results in finer space-time meshes, and vice versa.  He solves an equation identical in form 
to (5) above, with mixed boundary conditions, assuming that the system is well posed.  So, even for a 2-D 
code, what is being attempted here is merely a “starting” point.  More complex issues involving 
integration of the 3D Finite Difference heat conduction and Finite Element viscoelastic codes will have to 
be ultimately resolved before this code can be used for realistic geophysical modeling.  
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A-2. DISCRETIZATION OF THE GENERAL DIFFUSION EQUATION. 
 
 
Using Trapezoidal rule to integrate Equation (A-1b) between time levels n and n+1, we end up with: 
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where m denotes the iteration counter.  If the time step size, k, is small enough, then the first guess at the 
advanced time step will be the value at the previous time step.  For the linear case, the iteration counter m 
is dropped, and the equivalent of Equation (7) is: 
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Here L is a linear operator (in the case of the heat conduction equation, this will be the linear form of the 
self adjoint operator and the “RHS” function, f, presented in Equation (A-1a): see Equation (A-15a’) 
below).  The nonlinear terms on the RHS of Equation (A-7) can be linearized by expanding Nn+1 at 
(m+1)th  iteration, in terms of N n+1 at the mth iteration, to get:  
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where, for notational convenience, the n+1 advanced time level superscript has been suppressed.  Also, 
we introduced the new term,   
 
δu(m) = u(m+1) – u(m)           (A-9) 
 
Substituting for u(m+1), and rearranging Equation (A-9), we get: 
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            (A-10) 
 
The right hand side is nothing but the residual of the original semi-discrete equation (A-7).  So, as R(m) → 
0, u(m+1)→u(m), and therefore, δu(m) →0.  The convergence tolerance for R(m) must be at least k3, for the 
iterations to converge (McDonough 2002), and k must be very small for the linearization to be applicable, 
unless u is known to be extremely smooth.  Also, the functional Nu

(m) has been split between the two 
directional operators equally, simply for preserving symmetry between the two directions.  For the linear 
case, an equivalent relation to (A-10) will be:  
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Now, comparing Equation (A-10) with the standard form of the Douglas-Gunn algorithm:  
 
(I + A) δu(m) = (I + A) [u(m+1) – u(m)] = s(m) – Bun = S(m)      (A-11) 
 
where it has been assumed that δun ≅  0 (previous time step has converged to within the tolerance specified 
above), it can be seen that: 
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So, the two level Douglas-Gunn scheme for this problem can be written as:  
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and the value of the next iterate is given by a re-arrangement of Equation (A-9),    
 
u(m+1) = δu(m) +  u(m)           (A-14) 
 
For the linear case, the corresponding Douglas-Gunn scheme and the delta-form of the stages are 
represented by: 
 
(I + A n+1).δv = (I + A n+1).(v - u n ) = sn – {(I+A n+1 + B n).u n }     (A-11’) 
 
Leading to: 
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where the superscripts denote time levels, and the value at the next time level is given by: 
 
un+1 = δu +  un            (A-14’) 
 
Thus, the primed equations above show that the delta-form time-splitting scheme for the linear problem 
(linear PDE + linear BCs) is very similar in form to the delta-form time-split scheme for the 
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quasilinearized nonlinear equation.  NOTE: In order to obtain Equation (A-13a’) from Equation (A-13a), 
we need to set u(m) = un, since the RHS of the first stage is computed from the previous time step, instead 
of the previous iterate as in the linear case.  Before expanding the difference operators, it should be noted 
that the LHS and RHS of (A-13a) and the LHS of (A-13b) contain functional derivatives evaluated with 
the last iterate of the advanced time step, and in case of the RHS of (A-13a), the nonlinear functional has 
to be evaluated at the previous time step, n.  It will be easier to figure these terms out first, before any 
formal discretization of the time-split scheme itself is carried out.  To do this, we have to first expand the 
self-adjoint form of the functional N, defined in (A-1b) and differentiate it according to the subscripts, to 
obtain:  
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where, the “independent” variables have been suppressed for clarity.  For the linear case, we have:  
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Therefore, differentiating (A-15a) with respect to u, ux, uy, uxx, and  uyy, we obtain, (for both the linear and 
nonlinear cases): 
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Lu = 0 (since all the derivatives w.r.t u, of kt and cp, are all equal to 0).     (A-15b’) 
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Thus, except as noted under Equations (A-13), all the linear expressions can be derived from their 
nonlinear counterparts by setting the derivatives of the thermal properties w.r.t temperature, u, to zero – 
i.e., the linear problem can be solved using the nonlinear code as a special (built-in) case.   
 
For realistic values of kt and cp, the last two functional derivatives (A-15e & f) are always bounded, since 
cp cannot be 0.  This will become important in analyzing the discrete equations for determining the 
coefficients, as shown below.  Since these values are always computed with the previous iterate, they are 
always available at the advanced iteration.  In order to compute Equations (A-15), we need to compute 
ux

(m), uy
(m), uxx

(m),and  uyy
(m), since u(m) is already available (via storage).  Although higher order methods 

can be used here, for higher accuracy (McDonough 2002), 2nd order centered differencing will be used 
here, for simplicity.  The computation of these partial derivatives at interior grid points (i=2:Nx-1, j=2, 
Ny-1) is straightforward.  However, the boundaries require special treatment.  The added complication 
here is that the boundaries could be nonlinear, as shown in Equation (A-2) and (A-3) above.  If the BC is 
linear-Dirichlet, then, it does not matter what the derivative value is, as no computations will be carried 
out at that boundary – values are just assigned for each time step, that remain fixed as the nonlinear 
iterations progress.  However, if the BC is nonlinear-Dirichlet, or any other type of boundary, it will have 
to be dealt with through the use of image points outside the problem domain in the BC as well as the 
PDE, as illustrated for boundary value problems in McDonough (2001).  Only, here, if the BCs are 
nonlinear, the “linearized” BCs have to be used instead of the actual BCs.  Given a set of BCs, and 
previous iteration grid functions, these derivatives can be computed in a straightforward manner – this 
will be indicated below when considering the different boundaries during the point-by-point 
discretization.  Once functional values and functional derivatives are computed at all the grid points, the 
coefficients and RHS vectors for the interior, boundary, and corner points can be computed.  
 
 
A-2.1 Interior Points 
 
Expanding the difference operators in each element of the matrix equations (A-13a) and (A-13b), by 
using standard centered-difference approximations, we get:  
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Collecting like terms, we obtain: 
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Substituting ρρρρx = k/2hx

2 into the first equation and dividing it throughout by ρρρρx, then substituting ρρρρy = 
k/2hy

2 into the second equation and dividing it throughout by ρρρρy, we obtain the following “compact form” 
after rearrangement:  
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where, the indexing notation used follows the Fortran 90 rules, i.e., (row#, column#), for ease of 
implementation.  NOTE: Unless otherwise indicated, ALL nonlinear functionals (N & its derivatives) are 
evaluated at the advanced time step, n+1. 
 
For the linear case, from the definition of the Linear Operator and its derivatives (Equations (A-15’) 
above), along with Equations (A-13’), these expressions become: 
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NOTE: These linear expressions can also be obtained by “replacing” the functional N and its derivatives 
by the corresponding linear versions (since L is a special case of N) in Equations (A-16), then using the 
fact that uj,i

(m) = u j,i
 n.  However, the linear functional L and its derivatives must still be computed at the 

next time level, n+1, in order to obtain 2nd order convergence of grid functions.  
 
The coefficients of δu & δv on the LHS of both sets of equations form tri-diagonal systems that can be 
efficiently solved using LU-Decomposition.  From the expressions presented above in (A-15e and f), and 
comments presented below these, the denominator of either set of coefficients should not vanish, for real 
systems.  So, in order to guarantee diagonal dominance of the system represented by Equations (A-16), 
we need, for Equation (A-16b), for instance:  
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Taking LCMs and rearranging, this gives a relationship between Nu
(m) and Nuy

(m), of the form:  
 
Nuy 

2  ≤ (α.Nu  - β)2          (A-18) 
 
where, α and β are constant once hy, k, kt, CP, b1 and b2 are fixed.  So, for unconditional stability of the 
LU-Decomposition scheme, from the definition of Nuy , Equation (A-15d), we need to have EITHER a 
constant kt (so kt,u=0) OR uy=0; AND be in the Cartesian system (so a2,x=0)!  Since the problem proposed 
to be solved here is the solution of the spherical heat conduction equation with a temperature dependent 
thermal conductivity, Equation (A-18) may be satisfied for only certain locations in the domain, or 
maybe, nowhere in the domain!  Also, it must be noted that all the functional derivatives change with the 
location of the grid point, and with time.  So, in general, any relation of the form (A-18) cannot hold for 
the entire spatio-temporal domain of the problem unless Nuy=0 AND Nu ≤ 4/k (from Equation (A-17)) in 
the entire domain.  Similar relations will hold for Equation (A-16a), for the second orthogonal direction.  
Hence, we are not guaranteed a solution to the NONLINEAR problem selected in the previous 
chapter.  On the other hand, the linear problem is guaranteed a solution since diagonal dominance is 
assured [see Equations (A-16’)].   
 
 
A-2.2 Corner Points 
 
The implementation of corner points can be tricky, but here the methodology adopted is as follows:  
 
•  If adjacent BCs at a corner are Dirichlet, then the average of the two values is chosen. 
•  If one of the adjacent BCs at a corner is Dirichlet, the its value over-rides that of the other. 
•  If both BCs at a corner point are non-Dirichlet, then quite arbitrarily, it is assigned the value of the 

relevant left or right BC, ignoring the corresponding top or bottom BC. 
 
 
A-2.3 Boundary Points 
 
A-2.3.1 Left Boundary & Left Corner Points 
 
Consider the general nonlinear BC presented in Equation (A-2) above:  
 
Lf(u,ux) = fL(y,tn+1)           (A-19) 
 
If the BC is non-Dirichlet, it can be linearized by expanding the LHS functional, Lf, to the third term in 
the Frechet-Taylor’s series about the previous iterate, to get: 
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Rearranging,  
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Expanding the centered difference approximation, we can obtain an estimate for the value of the “image 
point”, δuj,0

(m) , and thus, be able to solve the split step equations (A-16), at the left boundary.   
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Substituting the expression for D0,x into Equation (A-21), we get:  
 

{ } { } )(
1,

1
,

)(
0,

)(
2,

1,
)()(

1,
)(

.2
. m

j
n

jL
x

m
j

m
j

j
m

u
m

j
m

u Lff
h

uu
LfuLf

x
−≅



























 −
+ +δδ

δ     (A-22) 

 
Rearranging (A-22), we get: 
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We now use the same notation as in Equations (A-16) for the purpose of substitution - noting that only the 
left and right boundaries need be considered in the first step of (A-16), and only the top and bottom 
boundaries need be considered in the second step of (A-16).  Therefore, we adopt the same notation for 
the unknown variables at each stage: v for the first stage, and u for the second stage, for the sake of 
consistency and minimizing confusion.  We thus have:  
 

1,

)(

)(1
)(

2,
)(

1,

1,

)(

)(
)(

0, .2
.2

j

m
u

mn
L

x
m

j
m

j

j

m
u

m
uxm

j

xx
Lf

Lffhvv
Lf

Lfh
v













 −
−+














≅

+

δδδ     (A-24) 

 
For the linear case, we get correspondingly:  
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and, 
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NOTE: For deriving Equation (A-24’), use has been made of the definitions of the image points for both v 
and un.  fL

n+1 corresponds to the former next time level, and fL
n corresponds to the last time level, n.  Also, 

αx is the linear Robin BC parameter (as in: ux + αx.u), and will be 0 (zero) for the linear Neumann BC.  
The linear Equation (A-24’) can also be obtained from the nonlinear Equation (A-24) as a special case, by 
setting Lf(m) = fL 

n , Lfu
(m) = αx,, and Lfux

(m) = 1.  Thus, (A-24’) is a special case of (A-24).   
 
Setting i=1 in both (A-16a and b), and substituting (A-24) into Equation (A-16a) we finally get, for the 
left boundary: 
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and, 
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NOTE: Unless otherwise indicated, ALL nonlinear functionals (N & its derivatives) are evaluated at the 
advanced time step, n+1.  For a nonlinear problem with a nonlinear Dirichlet left boundary 
condition, we consider the expansion in (A-21) to only the 2nd term:  
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L
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and the left grid points are assigned as follows:  

1,
)(

)(1
)(

1,
)1(

1,
)(

1,

j
m

u

mn
Lm

j
m

j
m

j Lf
Lff

vvv












 −
≅−=

+
+δ       (A-28a) 

 
For a nonlinear problem with a linear or nonlinear Dirichlet left boundary condition, this reduces to:  
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jvδ   for all m > 0        (A-28b) 
 
Irrespective of the linearity of the boundary condition, if the PDE is nonlinear, all functional values for 
the first iteration (m = 0, according to the notation used here) have to be evaluated at the previous time 
level in order to take into account the time dependence of the Dirichlet condition.  This also follows 
naturally from the fact that the first guess for the advanced time step is the converged value at the end of 
the last time step.  If these were evaluated at the advanced time level n+1, then the boundary value will 
remain the same as at t = t0.  So, v(0) = un, Lf(0) = Lf n, and Lfu

(0) = Lfu
n:  

 

1,

1
)0(

1,
)1(

1,
)0(

1,

j
n

u

nn
L

jjj Lf
Lffvvv 












 −
≅−=

+

δ        (A-29) 

 
It must be kept in mind that for the particular class of problems being considered, as shown in Equation 
(A-3), the boundary functional takes on the form of a generalized Robin BC:  
 
Lf(u,ux) = Lf1(u) . ux + Lf2(u)         (A-30) 
 
In this case, Equations (A-23) through (A-29) can be modified accordingly and everything expressed in 
terms of Lf1 and Lf2.   
 
For the linear problem, the corresponding expressions can be obtained by substituting Equation (A-24’) 
into Equation (A-16a’) or using “linear substitutions” in Equations (A-26), namely:  Lf(m) = fL 

n , Lfu
(m) = 

αx,, and Lfux
(m) = 1:  
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NOTE: Unless otherwise indicated, ALL linear functionals (L & its derivatives) are evaluated at the 
advanced time step, n+1.  So, Equations (A-26’) are special cases of Equations (A-26) above.  Here, for a 
Neumann BC, αx = 0.  For a Robin BC, α x ≠ 0.  For a linear Dirichlet BC, Lf(m),n = fL

n, and Lfu
(m),n = 1 in 

(A-29).  That gives: 
 
δvj,1

 = fL
n+1- fL

n.            (A-29’) 
 
Only when fL is a constant with respect to time, would we have for the linear problem: 
 
δvj,1

 = 0.             (A-31) 
 
Spherical or Cylindrical Coordinates:  In case of spherical or cylindrical coordinates, the forms of a1 
presented in the Table A-1 imply that the PDE is not analytic at x = 0.  In both these cases, however, 
symmetry arguments require: ux(r=0) = 0, uy(r=0) = 0, uyy(r=0) = 0, uyx(r=0) = 0, uyxx(r=0) = 0, uyyx(r=0) 
= 0, uyyxx(r=0) = 0.  Therefore, the limiting value of the PDE as x→ 0 can b e evaluated using 
L’Hospital’s rule.  For the general nonlinear functional, we have: 
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For the spherical system, using the expressions for coefficients a1, a2, b1, and b2 from Table A-1 above, 
we obtain: 
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If all the symmetry conditions above are met, then we obtain: 
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Similarly, for the cylindrical system, we get: 
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So, for the general form of the functional presented in Equation (A-15a), we can generalize (A-32c) and 
(A-33) as: 
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with Cfactor=2 for the spherical system and 1, for the cylindrical system.  Note that the result is obtained 
with the assumption that ALL mixed derivatives are zero (by symmetry), so none of the terms originally 
containing the y derivative remains.  Therefore, the derivatives required in the indicial form of (A-34a) 
(equivalent to Equations (A-15)) are:  
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and 
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Similarly,  
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Thus, for either spherical or cylindrical coordinate system, at x = 0, the implementation of the PDE (A-
34a) becomes:  
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            (A-35a) 
 
NOTE: Unless otherwise indicated, ALL nonlinear functionals (N & its derivatives) are evaluated at the 
advanced time step, n+1.  Since the nonlinear operator in (A-34a) is now devoid of functional derivatives 
in the y-direction, the solution after the second split step is the same as the “intermediate solution”, δv, 
obtained after the first step: 
 
δuj,1

(m) = δvj,1
(m)           (A-35b) 

 
Equations (34) are still valid for the linear case.  However, Equation (34c) and (34d) become:  
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Therefore, the linear version of Equation (35a) will be:  
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NOTE: Unless otherwise indicated, ALL nonlinear functionals (L & its derivatives) are evaluated at the 
advanced time step, n+1.  Again, for the second stage: 
 
δuj,1 = δvj,1           (A-35b’) 
 
 Again, the linear case is a special case of the nonlinear case.  Now, in order to compute the 
coefficients and RHS terms of Equations (A-26 / 26’ ) and (A-35 / 35’ ), we need to be able to compute 
the values of the derivatives ux, uxx, uy, and uyy, at all points on the left boundary.  These derivatives are 
evaluated at the left boundary only if the Left BC is non-Dirichlet.  If the Left BC is Dirichlet, the values 
as assigned as per Equations (A-28), (A-29 / 29’ ), and (A-31) above.  For calculating the derivatives at 
the boundaries, use can be made of the basic form of heat transfer boundary conditions [Equation (A-3)].  
Thus, for non-Dirichlet BCs, and j = 1, 2, 3, …., Ny, these derivatives can be expressed as:  
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Therefore,  
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and,  
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The y-derivatives at the left boundary can be computed as in Equations (A-13”), except at the corner 
points (j=1 and j=Ny).  So, for j = 2, 3, …., (Ny –1): 
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If the bottom boundary condition is not Dirichlet (in which case, it must be assigned that value), then for 
j=1,  
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Therefore, 
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Similarly, if the top boundary condition is not Dirichlet (in which case, it must be assigned that value), 
then for j=Ny,  
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Therefore, 
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and, 
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All derivatives at time level n can be obtained by replacing the iteration superscript (m) by the time level 
superscript, n, and then changing all f n+1 to f n, in Equations (A-36)-(A-45).  In the linear non-Dirichlet 
cases, the following substitutions will make Equations (A-36)-(A-45) consistent: (a) Linear Neumann – 
Lf2 = 0 (zero), and Lf1 = 1, and (b) Linear Robin – Lf2 = ααααx.un, and Lf1 = 1.  In addition, all RHS terms 
containing u are evaluated at time level n, for these cases.  Therefore, fL is evaluated at time level n 
(instead of at n+1).  So, the left boundary and corner points are completely taken care of, for all three 
coordinate systems.   
 
 
A-2.3.2 Right Boundary & Right Corner Points 
 
NOTE: Since the coefficients of the spherical PDE are not analytic at y = 0 or y = π, the following 
analysis does not apply to the right corner points (both top & bottom) for a spherical coordinate system 
problem.  Consider the general nonlinear BC presented in Equation (A-2) above:  
 
R(u,ux) = fR(y,tn+1)           (A-46) 
 
If the BC is non-Dirichlet, it can be linearized by expanding the LHS functional about the previous 
iterate, to the third term in the Frechet-Taylor’s series, to get: 
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Rearranging,  
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Expanding the centered difference approximation, we can obtain an estimate for the value of the image 
point, δuj,Nx+1 

(m) , and thus, be able to solve the split step equations (A-16), at the right boundary.  
Substituting the expression for D0,x into Equation (A-48), we get:  
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Rearranging (A-49), we get: 
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Adopting the same notation as above for the unknown variables at each stage: v for the first stage, and u 
for the second stage, we thus have:  
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For the linear case, we get correspondingly:  
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NOTE: Just as for the Left BC, αx is the linear Robin BC parameter (as in: ux + αx.u), and will be 0 (zero) 
for the linear Neumann BC.  The linear Equation (A-51’) can also be obtained from the nonlinear 
Equation (A-51) as a special case, by setting R(m) = fR 

n , Ru
(m) = αx,, and Rux

(m) = 1.   
 
Setting i=Nx in both (A-16a and b), and substituting (A-51) into Equation (A-16a) we obtain for the right 
boundary: 
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and, 
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  (A-52b) 

 
NOTE: Unless otherwise indicated, ALL nonlinear functionals (N & its derivatives) are evaluated at the 
advanced time step, n+1.  For a nonlinear problem with a nonlinear Dirichlet right boundary 
condition, we consider the expansion in (A-47) to only the 2nd term:  
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and the right grid points are assigned as follows: 
 

x

x

Nj
m

u

mn
Rm

Nj R
Rfv

,
)(

)(1
)(

, 








 −≅
+

δ          (A-54a) 



 76

For a nonlinear problem with a linear or nonlinear Dirichlet right boundary condition, this reduces 
to:  
 
δvj,Nx

(m) = 0.    for all m > 0        (A-54b) 
 
Irrespective of the linearity of the boundary condition, if the PDE is nonlinear, all functional values for 
the first iteration (m = 0, according to the notation used here) have to be evaluated at the previous time 
level in order to take into account the time dependence of the Dirichlet condition.  This also follows 
naturally from the fact that the first guess for the advanced time step is the converged value at the end of 
the last time step.  If these were evaluated at the advanced time level n+1, then the boundary value will 
remain the same as at t = t0.  So, v(0) = un, R(0) = R n, and Ru

(0) = Ru
n:  

 

x

xxx

Nj
n

u

nn
R

NjNjNj R
Rfvvv

,

1
)0(

,
)1(

,
)0(

, 








 −≅−=
+

δ       (A-55) 

 
It must be kept in mind that for the particular class of problems being considered, as shown in Equation 
(A-3), the boundary condition takes on the form of a generalized Robin BC:  
 
R(u,ux) = R1(u) . ux + R2(u)         (A-56) 
 
In this case, Equations (A-47) through (A-55) can be modified accordingly and everything expressed in 
terms of R1 and R2.  For the special case of a linear problem with linear right boundary condition, the 
substitutions: R(m) = fR

n, Ru
(m) = αx, and Rux

(m) = 1, can be made in Equations (A-52), just as for the left 
boundary condition, along with the appropriate linear functional substitutions.  
 
Unlike the left boundary, the modified equations for the right boundary hold for all three coordinate 
systems (Cartesian and Cylindrical – all along the right boundary; for Spherical - all along the right 
boundary, except at y = 0 or y = ππππ.).  In order to evaluate Equations (A-52), we need to evaluate the 
functional derivatives at the right boundary, and these in turn depend on the first and second derivatives 
of the dependent variable: ux, uxx, uy, and uyy, at all points on the right boundary.  Again, these derivatives 
are evaluated at the right boundary only if the Right BC is non-Dirichlet.  If the Right BC is Dirichlet, the 
values as assigned as per Equations (A-54) and (A-55) above.  For calculating the derivatives at the 
boundaries, use can be made of the basic form of heat transfer boundary conditions [Equation (A-3)].  
Thus, for non-Dirichlet BCs, for j = 1, 2, 3, …., Ny, the derivatives can be expressed as:  
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Therefore,  
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The y-derivatives at the right boundary can be computed as for the left boundary [Equations (A-39) -    
(A-45)], except at the corner points (j=1 and j=Ny).  So, for j = 2, 3, …., (Ny –1): 
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For j=1,  
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Therefore, 
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Similarly, for j=Ny,  
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Therefore, 
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and, 
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As with the left boundary, all derivatives at time level n can be obtained by replacing the iteration 
superscript (m) by the time level superscript, n, and then changing all fn+1 to fn, in Equations (A-57)-(A-
66).  In the linear non-Dirichlet cases, the following substitutions will make Equations (A-57)-(A-66) 
consistent: (a) Linear Neumann – R2 = 0 (zero), and R1 = 1, and (b) Linear Robin – R2 = ααααx.un, and R1 = 
1.  In addition, for these cases, all RHS terms containing u are evaluated at time level n.  Therefore, fR is 
evaluated at time level n (instead of at n+1).  So, the right boundary and corner points (except for 
spherical) are completely taken care of, for all three coordinate systems.   
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A-2.3.3 Bottom Boundary 
 
NOTE: For the spherical system, the right bottom corner point will be considered here.  For the other two 
coordinate systems, we do not consider the corner points here since they were considered under the left 
and right boundaries described above.  Consider the general nonlinear BC presented in Equation (A-2) 
above:  
 
B(u,uy) = fB(x,tn+1)           (A-67) 
 
If the BC is non-Dirichlet, it can be linearized by expanding the LHS functional about the previous 
iterate, to the third term in the Frechet-Taylor’s series, to get: 
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Rearranging,  
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Expanding the centered difference approximation, we can obtain an estimate for the value of the image 
point, δu0,i 

(m) , and thus, be able to solve the split step equations (A-16), at the bottom boundary.  
Substituting the expression for D0,y into Equation (A-69), we get:  
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Rearranging (A-70), we get: 
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We now use the same notation as in Equations (A-16) for the unknown variables at each stage: v for the 
first stage, and u for the second stage.  We thus have, for i = 2, 3, ...., Nx -1:  
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For the linear case, we get correspondingly:  
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NOTE: αy is the linear Robin BC parameter (as in: uy + αy.u), and will be 0 (zero) for the linear Neumann 
BC.  The linear Equation (A-72’) was obtained from the nonlinear Equation (A-72) as a special case, by 
setting B(m) = fB

n , Bu
(m) = αy,, and Buy

(m) = 1.  Setting j=1 in both (A-16a and b), and substituting (A-72) 
into Equation (A-16b), we finally get, for the bottom boundary: 



 79

( )
)(

,1

)(
,1

,1

)(

)(
1,1

,1

)(

)(
)(

,1

,1

)(

)(
)(

1,1

,1

)(

)(

.
2

.2

.
1

.4
.42

.2

.
1 m

iux

m
i

i

nmn

m
i

i

m
u

m
uxm

i

i

m
ux

m
um

i

i

m
u

m
ux

xxxx

x

xxxx

x

N

uNNku
v

N
Nh

v
N
Nkv

N
Nh

ρ
δδ

ρ
δ

−






 ++

−=



























++



























 −+−



























− +−

 

            (A-73a) 
 






























−













 −+−=+













































−














−













 −+−
i

m
u

m
uy

i

m
u

m
B

ym

iuy

m
im

i
m

i

i

m
u

m
uy

i

m
u

m
uy

i

m
uy

m
u

yy

y

yyyyy

y

yyy
N

Nh

B
Bfh

N
v

uu
N

Nh

B
Bh

N
Nk

,1

)(

)(

,1

)(

)(

)(

,1

)(
,1)(

,2
)(

,1

,1

)(

)(

,1

)(

)(

,1

)(

)(

.2

.
1.2

.
2

.2

.
1.

.2
.4
.42

ρ
δ

δδ
ρ

            (A-73b) 
 
NOTE: Unless otherwise indicated, ALL nonlinear functionals (N & its derivatives) are evaluated at the 
advanced time step, n+1.  For a nonlinear problem with a nonlinear Dirichlet bottom boundary 
condition, we consider the expansion in (A-68) to only the 2nd term:  
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and the bottom grid points are assigned as follows: 
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For a nonlinear problem with a linear or nonlinear Dirichlet bottom boundary condition, this 
reduces to:  
 
δu1,i

(m) = 0.    for all m > 0        (A-75b) 
 
Irrespective of the linearity of the boundary condition, if the PDE is nonlinear, all functional values for 
the first iteration (m = 0, according to the notation used here) have to be evaluated at the previous time 
level in order to take into account the time dependence of the Dirichlet condition.  This also follows 
naturally from the fact that the first guess for the advanced time step is the converged value at the end of 
the last time step.  If these were evaluated at the advanced time level n+1, then the boundary value will 
remain the same as at t = t0.  So, u(0) = un, B(0) = B n, and Bu

(0) = Bu
n: 
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It must be kept in mind that for the particular class of problems being considered, as shown in Equation 
(A-3), the boundary condition takes on the form of a generalized Robin BC:  
 
B(u,uy) = B1(u) . uy + B2(u)         (A-77) 
 
In this case, Equations (A-67)-(A-73) and (A-75)-(A-78) can be modified accordingly and everything 
expressed in terms of B1 and B2. 
 
Spherical coordinate system: Now, the form of Equations (A-73) is identical for both Cartesian and 
Cylindrical coordinate systems.  But for spherical coordinates, the PDE is not analytic as y→0, due to the 
presence of the function Sin(y) in the denominator of b1.  In this case, the PDE becomes (analogous to (A-
34) above), after applying L’Hospital’s rule to the y-component of Equation (A-15a) as y→0 
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Again, we have assumed the symmetry condition uy(θθθθ=0) = 0.  So, Equation (A-73a) is still applicable in 
the x direction (since the x-derivative terms remain unchanged from Eq. (A-34a), except that N must be 
replaced by NS), but not Equation (A-73b).  In this case, the derivatives required in the indicial form of 
(A-78a) (equivalent to Equations (A-15)) are:  
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since a1 x a2 = 1, a1 x a2,x = 2/x, b1 x b2 = 1/x2, in spherical coordinates.  NOTE: We do not consider the 
case when x = 0 since it has already been considered under the left boundary condition.  So, at y = 0, and 
for x ≠ 0, the implementation of the PDE (A-73) becomes:  
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The linear versions of Equations (A-79) can be deduced as a special case, by using the linear boundary 
conditions (Equation (A-72’) and setting NS,u = 0 and NS,ux /2. NS,uxx = 1/x, from Equations(A-78):  
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Finally we can determine the values of the derivatives along the bottom boundary, excluding the corner 
points (corner points were considered separately under the left and right boundary conditions), i.e., i = 2, 
3, ....., Nx - 1: 
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Therefore, 
 

i
m

mn
B

y
m

i
m

i
B

Bf
huu

,1
)(

1

)(
2

1
)(

,2
)(

,0 .2












 −
−=

+

       (A-83) 

and, 

( ) ( )
2

,1
)(

1

)(
2

1
)(

,1
)(

,2

2

)(
,0

)(
,1

)(
,2)(

,1
2

,0
)(

,1

.2.2.2
.2

y

i
m

mn
B

y
m

i
m

i

y

m
i

m
i

m
im

iy
m

iyy
h

B
Bf

huu

h

uuu
Du













 −
−−

=
+−

=≅

+

  (A-84) 

 
As with the left and right boundaries, all derivatives at time level n can be obtained by replacing the 
iteration superscript (m) by the time level superscript, n, and then changing all fn+1 to fn, in Equations (A-
80)-(A-84).  In the linear non-Dirichlet cases, the following substitutions will make Equations (A-80)-(A-
84) consistent: (a) Linear Neumann – B2 = 0 (zero), and B1 = 1, and (b) Linear Robin – R2 = ααααy.un, and B1 
= 1.  In addition, for these cases, all RHS terms containing u are evaluated at time level n.  Therefore, fB is 
evaluated at time level n (instead of at n+1).  This completes the derivations for the bottom boundary. 
 
A-2.3.4 Top Boundary 
 
The derivations for the top boundary closely follow those for the bottom boundary in the previous section.  
Again, except for the spherical coordinate system, we do not consider the corner points here since they 
were considered under the left and right boundaries described above.  Consider the general nonlinear BC 
presented in Equation (A-2) above:  
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T(u,uy) = fT(x,tn+1)           (A-85) 
 
If the BC is non-Dirichlet, it can be linearized by expanding the LHS functional about the previous 
iterate, to the third term in the Frechet-Taylor’s series, to get: 
 

1)()()()()( .. +≅++ n
T

m
y

m
u

mm
u

m fuTuTT
y

δδ        (A-86) 
 
Rearranging,  
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Expanding the centered difference approximation, we can obtain an estimate for the value of the image 
point, δuNy+1,i 

(m), and thus, be able to solve the split step equations (A-16), at the bottom boundary.  
Substituting the expression for D0,y into Equation (A-87), we get:  
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Rearranging (A-88), we get: 
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We now use the same notation as in Equations (A-16) for the unknown variables at each stage: v for the 
first stage, and u for the second stage.  We thus have, for i = 2, 3, ...., Nx -1:  
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For the linear case, we get correspondingly:  
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NOTE: αy is the linear Robin BC parameter (as in: uy + αy.u), and will be 0 (zero) for the linear Neumann 
BC.  The linear Equation (A-90’) was obtained from the nonlinear Equation (A-90) as a special case, by 
setting T(m) = fT

n , Tu
(m) = αy,, and Tuy

(m) = 1.  Setting j=Ny in both (A-16a and b), and substituting (A-90) 
into Equation (A-16b), we finally get, for the top boundary: 
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For a nonlinear problem with a nonlinear Dirichlet top boundary condition, we consider the 
expansion in (A-86) to only the 2nd term:  
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and the top grid points are assigned as follows: 
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For a nonlinear problem with a linear or nonlinear Dirichlet top boundary condition, this reduces to:  
 
δuNy,i

(m) = 0    for all m > 0        (A-93b) 
 
Irrespective of the linearity of the boundary condition, if the PDE is nonlinear, all functional values for 
the first iteration (m = 0, according to the notation used here) have to be evaluated at the previous time 
level in order to take into account the time dependence of the Dirichlet condition.  This also follows 
naturally from the fact that the first guess for the advanced time step is the converged value at the end of 
the last time step.  If these were evaluated at the advanced time level n+1, then the boundary value will 
remain the same as at t = t0.  So, u(0) = un, T(0) = T n, and Tu

(0) = Tu
n: 

 

iN
n

u

nn
T

iNiNiN

y

yyy T
Tfuuu

,

1
)0(

,
)1(

,
)0(

, 








 −≅−=
+

δ       (A-94) 

It must be kept in mind that for the particular class of problems being considered, as shown in Equation 
(A-3), the boundary condition takes on the form of a generalized Robin BC:  
 
T(u,uy) = T1(u) . uy + T2(u)         (A-95) 
 
In this case, Equations (A-85)-(A-94) can be modified accordingly and everything expressed in terms of 
T1 and T2.   
 
Spherical coordinate system: Now, the form of Equations (A-92) is identical for both Cartesian and 
Cylindrical coordinate systems.  But for spherical coordinates, the PDE is not analytic as y→→→→ ππππ, due to the 
presence of the function Sin(y) in the denominator of b1.  The computation of the functional at the top 
boundary and deducing the resultant top boundary equations is identical to that for the bottom boundary, 
and Equations (A-78) and (A-79) can be used for the top boundary, after changing the y-index to Ny, 
instead of 1.   
Finally we can determine the values of the derivatives along the top boundary, excluding the corner points 
(corner points were considered separately under the left and right boundary conditions), i.e., i = 2, 3, ..,  
Nx - 1: 
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As with the bottom boundary, all derivatives at time level n can be obtained by replacing the iteration 
superscript (m) by the time level superscript, n, and then changing all f n+1 to f n, in Equations (A-98)-(A-
102).  In the linear non-Dirichlet cases, the following substitutions will make Equations (A-98)-(A-102) 
consistent: (a) Linear Neumann – T2 = 0 (zero), and T 1 = 1, and (b) Linear Robin – T 2 = ααααy.un, and T 1 = 
1.  In addition, for these cases, all RHS terms containing u are evaluated at time level n.  Therefore, fT is 
evaluated at time level n (instead of at n+1).  This completes the derivations for the top boundary. 
 
 
A-2.4 Computational procedure summary 
 
 At each time level, the coefficients of the tridiagonal systems (Equations (16), (26), (35), 
(52), (73), (79), (91)) are first computed using an initial guess for u (converged value at the 
previous time step or initial condition).  The tri-diagonal system of equations involving both the 
interior and boundary points can be solved by an LU-Decomposition scheme, once in each of x- 
and y-directions, to get a new iterate.  Then new coefficients based on the last iterate are 
computed to generate subsequent iterates.  This process is continued until the difference in the 
norms of two successive iterates becomes smaller than a specified tolerance.  Once convergence 
is achieved at a time level, the algorithm moves to the next one, taking this value as the initial 
guess for that level.  Section A-2.5 below outlines the algorithm for implementing this 
procedure.  A detailed explanation for the code is given in Chapter A-3.   
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A-2.4.1 Algorithm for Implementation 
 
� Load/Specify the following (INPUTS):  

•  Flags for problem specification: linear_flag (problem linearity specification), coord_flag (geometry 
specification), smooth_flag (type of smoothing – None/1D/2D), exact_sol_flag (whether exact solution 
is known); Boundary condition (BC) type flags – left_bc_flag, right_bc_flag, bottom_bc_flag, 
top_bc_flag; BC linearity flags – left_lin_flag, right_lin_flag, bottom_lin_flag, top_lin_flag;  

•  PDE Specification: Initial Condition - u0; Coefficients of adjoint form of PDE (for user specified 
problem geometry, other than standard Cartesian, Cylindrical or Spherical systems: coord_flag = 0) – 
a1, a2, b1, b2; Linear or nonlinear functionals, L or N, and their derivatives w.r.t. temperature and its 
derivatives - u, ux, uy, uxx, uyy.  Expressions for BCs – fL, fR, fB, fT; BC functionals that define the Left 
Hand Side (LHS) of the BC – Lf1, Lf2, R1, R2, B1, B2, T1, T2, and their derivatives w.r.t u, ux, uy; 
linear/nonlinear Right Hand Side (RHS) function or Source function of PDE – frhs, and its derivative 
w.r.t. temperature, u. 

•  Problem data: Values of thermal and elastic properties of rock and fault surfaces being modeled – 
Thermal conductivity, kt, Specific Heat, Cp, Density, ρ, Young’s Modulus of elasticity, E, Poisson’s 
ratio, ν, Coefficient of friction, µ, Shear stress, τ , Asperity radius, r0, Slip velocity, Vslip, Angular 
contact, θ0, and Contact duration, t0. Expressions for nonlinear variation of these properties with 
temperature (if variation is significant, and or relevant), and their derivatives (as required) – for 
instance, kt(u), kt,u, kt,uu, Cp(u), Cp,u.  Smoothing flag - smooth_factor, if smoothing flag was non-zero. 

•  Spatio-temporal domain boundaries – xl, xr, yt, yb, ti, and tf 
•  Resolution/Step sizes - hx, hy, and k (time step)  
•  Newton-Kantorovich (N-K) nonlinear iterations convergence tolerance – quasi_epsilon 
•  Max allowed N-K iterations – quasi_iterations.  
•  Output File parameters (for convergence tests and validation plots): Format of each file, Header 

information, data sampling resolutions, times and locations, output data definition or calculation. 
 

� Main Program – nonlin_parabolic_pde - Time Loop: 
For  t = 1, t_steps 

If t > 1 - CALL quasilinear subroutine – delta_qlin_dgts 
o store the previous time step value u, in un 
o set the initial grid function guess to the converged value at the end of last time step: u(0) = un 
o Perform Newton-Kantorovich Iterations until convergence: 

 For iter = 1, quasi_iterations ! NEWTON-KANTOROVICH iteration loop 
 If iter > 1 - Check for Convergence: 

If convergence occurs:   
Store relevant data,  
Return to Main Program: go to next time step. 

Otherwise - Compute next iterate: 
For stage = 1, 2  ! DOUGLAS-GUNN x- and y-direction passes 
� Call Coeff_RHS routine qldgts_coeff_rhs, to compute Coefficients at 

time level (n+1), using grid function values at the previous iteration.  
� Compute RHS vector using both time levels as well as the grid 

function values at previous time step as well as previous iteration.  
� Call the routine lud_trid to compute estimate at current stage - δv at 

the end of stage 1, and δu at the end of stage 2.  
Repeat stage 
Update grid function values for current iteration: u(m) = δu + u(m-1) 
Compute errors, if exact solution is not known, or error estimates 
Store u(m) for use in the next iteration. 

Repeat iter 
Repeat t 
� Print output once marching in time is completed.  
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A-3. COND2D – FORTRAN 90 CODE DESCRIPTION, SETUP & 
VALIDATION 

 
 
A-3.1 Scope of COND2D: Current capabilities, their potential extension, and code 
limitations  
 
The goal here was to develop a very general, reliable, and modular 2D diffusion code, that can be applied 
to either linear or nonlinear PDEs, with any combination of linear/nonlinear boundary conditions, and in 
any geometry, that can be extended without significant modifications to a 3D.  COND2D is such a general 
code, and can be applied with minor modifications to any 2D parabolic partial differential equation 
(PDE).  Its different loops and flow pathways have been thoroughly tested using over 35 different linear 
and nonlinear problems with known solutions of varying complexity and smoothness – with almost all 
possible combinations of coordinate systems, linear and nonlinear boundary conditions, and parameter 
ranges.  This led to about 10 versions of the code that were successively “purged” (of numerous 
numerical, input/output, and formatting bugs) to produce this current reliable version.  Some details of 
these validation tests are presented in Section A-3.4 below.  It is the author’s experience that if this 
version of the code did not work for a particular problem, more often than not, the issue was with the 
myriad inputs that the code requires in terms of flags, parameter values, and boundary conditions.  Before 
using COND2D, it is recommended that this chapter be carefully read and the organization of the code be 
understood (Figure 1 and Section A-2.4 above), before trying to implement it for a problem of interest.   
 
Minor modifications – like changing the values of any of a number of parameters and/or modifying the 
algebraic expressions for various linear/nonlinear functional subroutines in the code - have to be made 
implementing this code for a problem of interest.  In addition, some advanced level (major) modifications 
that can be made to the code without significant rewriting of the COND2D source code are (roughly in 
increasing order of difficulty, and quantity of additional code to be appended):  
 
•  General Boundary Conditions: COND2D can be made to accept very general boundary conditions, 

instead of being restricted to only conductive Neumann/Robin conditions.  This can be accomplished 
by a simple change in the expressions for the appropriate (a) boundary condition functionals (e.g., for 
the left boundary condition, subroutines lbc1 & lbc2 may have to be replaced by a single subroutine 
lbc, and appropriate modifications made to existing lbc_u and lbc_ux subroutines), and (b) boundary 
condition right hand side (RHS) functions (e.g., subroutine f_left for the left boundary).  In addition, 
appropriate changes have to be made to the derivative subroutines, u_x, u_y, u_xx, and u_yy, as well 
as to the coefficients and RHS terms for boundary grid points in subroutine qlindgts_coeff_rhs (see 
Section A-3.2 below).  The relevant theory for this was discussed in Section A-2.3 above.  However, 
if the boundary conditions for a problem of interest can be cast in the form of Equation (3) 
(Chapter1), then no changes need to be made to COND2D.   
 

•  User Defined Geometry/Coefficients: COND2D can be applied to a geometry different from the 
three standard coordinate systems (Cartesian, Cylindrical, and Spherical).  This can be accomplished 
by setting the coordinate system flag (coord_flag) to 0, and then specifying appropriate expressions 
for the coefficients of the PDE – a1, a2, b1, b2.  If these expressions are not analytic at some point(s) in 
the spatial domain, then appropriate modifications need to be made to the subroutine 
qlindgts_coeff_rhs (see Section A-3.2 below).  So, this code can be applied to a PDE in other 
“regular” coordinate systems like: conical, ellipsoidal, elliptic cylindrical, oblate spheroidal, 
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parabolic, parabolic cylindrical, paraboloidal, and prolate spheroidal (in the order of increasing 
symmetry – see, for instance Moon and Spencer 1988).   
 

•  Including Advection/Transport terms: COND2D  can be modified relatively easily to include 
advection terms in a Conduction/Advection equation.  Again, suitable modifications need to be made 
to the subroutine qlindgts_coeff_rhs (see Section A-3.2 below).   
 

•  Parallelizing COND2D:  This is an important issue with linear or nonlinear problems with non-
smooth data (boundary conditions, source functions, coefficients, etc.) - the more non-smooth the 
data, the higher the required spatial and/or temporal resolution at which the problem has to be solved.  
That is, below a certain resolution, the numerical problem is under-resolved, and cannot accurately 
represent the smaller scale physics characterized by the non-smooth data.  This critical resolution has 
to be determined on a case-by-case basis by testing for grid function convergence with increasing 
resolution.  While the problem is under-resolved, the solution my not be stable and may vary widely 
with uniform resolution increases.  But above the critical resolution, the solution starts converging 
with increasing resolution (and not necessarily to any of the under-resolved solutions).  Parallelization 
of the code may be required to improve the odds of being able to compute the solution in reasonable 
time as well as stay within machine array size limits, parallelization is important.   
 

•  Extension from 2D to 3D problems: COND2D can be extended to a parallelizable 3D form, by 
considering a 3D spatial domain as a stack of 2D domain slices (McDonough and Dong 2001).  In 
this case, each 2D slice can be solved independently of the others at every iteration, and the 2D 
Douglas-Gunn scheme itself can be parallelized.  At each iteration, the original 3D solve is reduced to 
a 2D solve (which can be carried out with COND2D) and a 1D solve, which requires the addition of a 
loop that is very similar in structure and content to that for each stage of the two level scheme used 
here, in the subroutine delta_qlin_dgts (Section 3.2 below).  As shown in the aforementioned 
reference, the whole process can be efficiently implemented on parallel architecture machines.   
 

•  Extension to systems of 2D or 3D PDEs: The most complex of adaptations for COND2D, involving 
significant code modifications, involves applying it to systems of PDEs.  As shown in McDonough 
(2002), the underlying linear algebra is similar but more general, in that, at each grid point of the 
domain we have to solve for a system of variables, instead of a single variable.  

 
After any of the modifications suggested above are made to the code, and compilation errors corrected, 
the code has to be re-validated using a problem with a known solution, to test the modified parts of the 
code, as illustrated below in Section A-3.4.   
 
Needless to say, the algorithm used here, and therefore COND2D, has a number of limitations: 
 
•  Irregular geometry: One major limitation is that of the finite difference approach itself: it cannot 

easily accommodate irregular or complex geometries that cannot be mapped (one-to-one) to a 
rectangular grid.  In this case, a number of tricks may be used.  For instance, some form of domain 
splitting can be implemented to create a number of subdomains of simple geometry, and then 
applying the code to these different subdomains.  Of course, when the problem domain is split into 
subdomains, another level of iterations has to be introduced to ensure compatibility of solutions at the 
boundaries of these subdomains, while satisfying the overall boundary conditions of the problem.  
This would definitely involve not only a complete rewriting of parts of the current code, but also 
adding additional modules and “book-keeping” subroutines.   
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•  Symmetry requirements: Another limitation of this code is the symmetry requirements on the 
solution at r = 0, for both spherical and cylindrical coordinate systems, and at θ = 0 or π, for the 
spherical system.  If the symmetry requirements cannot be assumed, L’Hospital’s rule approximations 
cannot be made to the PDE at these non-analytic points and no solution can be computed at those 
points.   

•  Storage: COND2D uses a number of storage variables, so that all relevant data sampled at different 
time levels can be output at one time, at the completion of the “time-marching”.  This was done to 
minimize file writes, which are very inefficient.  However, this limits the resolution at which the code 
can be run – especially on a shared machine like the HP Superdome supercomputer cluster on the 
University of Kentucky campus - due to the overall memory allocation limits (cache limits) for each 
user.   

 
A-3.1.1 Organization of the source code 
 
As described above, COND2D was developed as a highly modular code to provide users with a lot of 
flexibility in defining and setting up 2D heat conduction problems.  A self-explanatory organizational and 
data flow chart of the code appears in Figure A- 1.  It is suggested that this figure be used in conjunction 
with the procedure description and algorithm outline presented in Section A-2.4 above, and the example 
run setup illustrated in Section A-3.3.  A description of contents of the code appears in the following 
section. 
 
 
A-3.2 Brief description of modules, subroutines and key variables 
 
The COND2D source code contains a large number of comment statements and the user is referred to it 
for any specific details.  The objective of this section is to provide a brief overview of each subroutine, 
define its input and output variables, and discuss the importance of certain key variables that require user 
input, within the subroutine where they are encountered first.  Section A-3.3 actually goes through the 
process of setting up a run, compiling the code and running it.  In the subsections that follow, all modules 
are briefly described, and key variables are discussed where appropriate.  A table (or tables) listing and 
describing the key variables in that module (or each individual subroutine in that module) is (are) also 
presented, if needed.  Use of this section in conjunction with Section A-2.4 and Figure A-1 is 
recommended.   
 
 
A-3.2.1 MODULE const_params 
 
This module specifies constants and sets the values of machine limit parameters needed by the rest of the 
subroutines, basic partial differential equation (PDE) flags, output file unit numbers and names, specifies 
output sampling point information, and defines global variables.  It is important to check this module over 
carefully before running the code as it contains several key parameters for the run – from the very 
definition of the type of PDE, to whether it has an exact solution, to PDE domain definition and minimum 
run resolution, to output sampling points and output resolution – that have to be set by the user.  Its the 
author’s experience that in cases where COND2D does not work for a specific problem, more often than 
not the issue was misrepresentation/overlooking of a parameter value within this module.  It is 
recommended that the user follow a suitable data checking procedure before attempting to run the code, 
given the number parameters that may need to be modified for a given problem.  Key variables in this 
module are described in Table A-2.   
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Figure A- 1. Organizational chart for COND2D.  Refer Section A-2.4 for an outline of  the 
algorithm 

 
 

MODULE const params 
Constants: 
PRECISION (Real & Integer) 
π (= 3.1415926535…) 
Maximum array dimension  
Minimum floating point # 
 
PDE Specifications /flags: 
Linearity 
Coordinate System 
Smoothing 
Domain 
Maximum step sizes  
 
Output File Parameters: 
Sampling points for: 
Grid convergence Tests 
Solution profile snapshots 
Solution evolution check 
 
Global Variable Definitions 

MODULE fault_params

Ranges: 
Asperity minimum size 
Asperity maximum size 
Maximum Specific Heat 
Minimum Specific Heat 
Maximum Conductivity 
Minimum Conductivity 
Maximum Friction Coeff. 
Minimum Friction Coeff. 
Poisson’s Ratio 
Maximum Density 
Minimum Density 
Maximum Slip Velocity 
Minimum Slip Velocity 
Maximum Shear Stress 
Minimum Shear Stress 
 
Constants/Values for
Current Problem: 
Linear problem defaults: 

Specific Heat  
Conductivity  

Friction Coefficient 
Density 
Slip Velocity 
Shear Stress 
 
Calculations: 
Asperity Contact Radius 
Asperity Contact Time 

Thermal Properties & their Derivatives: 
kt 
kt_u 
kt_uu 
cp 
cp_u 
 
PDE exact solution  and Initial Condition:  
f_exact 
f_initial 
 
PDE RHS function (source term) & Derivative: 
f_rhs 
f_rhs_u 
 
PDE boundary conditions and functionals: 
f_left 
lbc1 
lbc2 
lbc_u 
lbc_ux 
f_right 
rbc1 
rbc2 
rbc_u 
rbc_ux 
                                                            Continued →→→→ 

MODULE  pde_routines

 
f_bottom 
bbc1 
bbc2 
bbc_u 
bbc_ux 
f_top 
tbc1 
tbbc2 
tbbc_u 
tbbc_ux 
 
PDE coefficients:  
a1 
a2 
a2_x 
b1 
b2 
b2_y 
 
Derivatives: 
u_x 
u_y 
u_xx 
u_yy 
 

CORE ROUTINES: MODULE solver routines

LU-Decompostion Subroutine – lud_trid: 
Solves the Tridiagonal system for each pass through the Douglas-Gunn 
routine  below. 
 
Tridiagonal System LHS Coefficient and RHS vector computing 
Subroutine – qldgts_coeff_rhs: 
Computes the values of (Nx x Ny x 3) coefficients and (Nx x Ny ) RHS vectors –
for each pass through the Douglas-Gunn routine below, while accounting for 
boundary condition corrections.  Computes the bulk of the expressions 
described in Section 2.3 above.   
 
Delta form of Douglas-Gunn with delta form of Newton-Kantorovich 
iteration  scheme – delta_qlin_dgts: 
Computes each iterate of the solution -with two passes through the Douglas-
Gunn loop, for the x- and y-directions - and continues this until convergence.  
Once convergence is achieved, it outputs the solution to the Main Program. 

MAIN PROGRAM  nonlin_parabolic_pde

1. Read resolution and smoothing level command line arguments (4) 
2. Open and write header information to output files and screen  
3. Compute and store Output file data sampling indices and parameters to be used later for data 

storage 
4. Compute spatio-temporal resolutions for the specified resolution levels 
5. Allocate all arrays – Print errors if space is not available 
6. Main time marching loop: (Number of passes depends on time step size computed in step 4 

above). 
i. Call delta_qlin_dgts routine to obtain converged value of solution at each time step 

ii. Compute errors & store relevant information at each time step in data arrays for later output. 
iii. Update time level
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Table A- 2. Key variables in MODULE const_params.  
Variable Description or Comment 
rp Precision of all real variables and constants in the run 
ip Precision of all integer variables and constants in the run 
out Array containing output file unit numbers (5 for the present implementation) 
outfile Array containing the names of output files (See Section A-3.2.5 for description) 

(GRID, ERROR, SNAP, EVOLUTION, and CONVERGENCE) 
max_points Machine array dimension limit – This is the maximum number of grid points permitted in 

each spatial direction in COND2D.   
epsilon Smallest numerical approximation to zero – useful sometimes in avoiding floating point 

exceptions (or divide-by-zero errors). 
linear_flag = 1 if the PDE of interest is linear; = 0 if nonlinear. 
coord_flag = 0 if user defined system (see section 3.1 above for code modifications in this case); = 1 if 

the coordinate system of interest is Cartesian; = 2 if Cylindrical; = 3 if Spherical;  
smooth_flag 
(DEFINED ONLY) 

COMMAND LINE ARGUMENT # 3.  
= 0 if no smoothing of grid functions is required (in case of non-smooth data);  
= 1 for 1D smoothing; = 2 for 2D smoothing. 

smooth_factor 
(DEFINED ONLY) 

COMMAND LINE ARGUMENT # 4. 
Range 000000-999999.  Degree of smoothing is non-zero if smooth_flag is non-zero (see 
under Main Program, Section A-3.2.5 for a description).  

x_left Domain left boundary coordinates. 
x_right Domain right boundary coordinates. 
y_bottom Domain bottom boundary coordinates. 
y_top Domain top boundary coordinates. 
t_initial Initial/start time of run. 
t_final Final/end time of run. 
hx_max Maximum x-step size (Minimum resolution in x-direction) 
hy_max Maximum y-step size (Minimum resolution in y-direction) 
out_x_grid_spacing x-direction resolution in the GRID and ERROR output files. 
out_y_grid_spacing y-direction resolution in the GRID and ERROR output files. 
t_evol_spacing Output temporal resolution in the temperature EVOLUTION output file. 
t_snap Array containing time levels at which GRID and ERROR data are output. 
y_xsnap, t_xsnap Y-coordinate and time level for snapshot of a solution profile parallel to the x-axis 
x_ysnap, t_ysnap X-coordinate and time level for snapshot of a solution profile parallel to the y-axis 
x_time, y_time X- and Y-coordinates for a single temperature plot data (output to EVOLUTION file) 
grid_conv 2D Array containing X- and Y-coordinates as well as time levels at which grid convergence 

tests have to be performed (to be output to CONVERGENCE file) 
verbose_flag = 0 if no diagnostic screen output is needed; = 1 if diagnostic screen output -  containing the 

number of nonlinear iterations to convergence, maximum and minimum temperatures, and 
maximum error (if computable), as well as their grid locations – is needed. 

quasi_epsilon 
(DEFINED ONLY) 

SPECIFIED IN  MAIN PROGRAM (Section 3.2.5). 
Convergence tolerance for nonlinear iterations, chosen as the cube of time step size, k3 (see 
McDonough 2002).  

Quasi_iterations 
(DEFINED ONLY) 

SPECIFIED IN  MAIN PROGRAM (Section 3.2.5). 
Maximum number of nonlinear (Newton-Kantorovich) iterations allowed for the run – 
typically a low number (10-15 or lower).   
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A-3.2.2 MODULE fault_params 
 
This module specifies fault and rock material parameters to be used in the run.  Data in this module are 
derived from (or from fits to thermal property data in) Touloukian et al. (1981) or Byrelee (1978), Logan 
and Teufel (1986), and Nadeau and Johnson (1998).  All the variables in this module are specified in 
Figure A-1, and the relevant data appears in Appendix C of Kanda (2003).  Therefore, no data table 
appears in this section.  This module can be modified by the user in accordance with problem 
requirements.  It is, however, recommended that the information in the source code and the 
aforementioned appendix be reviewed before modifying the default data or ranges in this module.  Just as 
a reminder, the angular area of contact, θ, is approximated by the expression for Hertzian (elastic) contact 
between two spheres (Timoshenko and Goodier 1970), and is given by:  
 
θ = TAN -1(rc  /r0) ≅   (rc  /r0) = {3.π.(1-ν 2).τ}/{4.EY.µ} 
 
where rc is the radius of the asperity contact surface, r0 is the asperity radius, ν is the Poisson’s ratio, τ is 
the shear stress at the contact surface, EY is the Young’s modulus for the rock material, and µ is the 
coefficient of friction.  The duration of asperity contact is computed as: t0 = 4.rc /Vslip.  Sources for the 
ranges of values for the above parameters are presented in Appendix C of Kanda (2003).   
 
A-3.2.3 MODULE pde_routines 
 
This module contains all the subroutines needed to define the PDE – nonlinear thermal properties, exact 
solution, initial condition, RHS or source function and its derivatives, all four boundary LHS functionals 
and RHS functions, PDE coefficients and their derivatives, and first and second derivatives of 
temperature.  This is also a module that can be extensively modified to suit the user’s needs.  Extreme 
care must be taken, however, in making sure that all the parameters and expressions that the user modifies 
in this module, to implement a problem of interest, are accurately represented.  Its the author’s experience 
that in cases where COND2D does not work for a specific problem, more often than not the issue was 
misrepresentation of an expression or a sign in an expression within this module.  It is recommended that 
the user follow a suitable quality control and data checking procedure before attempting to run the code, 
given the number of subroutines that may need to be modified for a given problem.  Each of the 
subroutines in this module is briefly described below, along with any key variables that the user may need 
to modify.  Since the number of variables in each routine is fairly small, no tables are included in this 
section.   
 
A-3.2.3.1 Thermal conductivity & its derivatives: kt, kt_u, kt_uu 
 
The data and the final functional relationship chosen for the thermal dependence of thermal 
conductivity are presented in Appendix C of Kanda (2003).  Since the coefficients of the tri-
diagonal system - defined in Sections A-2.2 & A-2.3 above - are themselves dependent on the 
nonlinear functional N and its derivatives (and therefore, on the temperature, u), the stability of 
the scheme is strongly dependent on the type of thermal property temperature dependencies 
chosen, and has to be dealt with on a case-by-case basis.  No amount of testing will guarantee the 
stability of the non-linear problem.  However, as discussed in Chapter A-1 above, a “rule of 
thumb” criterion is to make sure that these temperature dependencies are Lipschitz continuous in 
the expected temperature range of the problem.  It was with these considerations that an 
exponential relationship was chosen for the maximum temperature range of the problem (300 K 
to 3000 K, or above).   
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A-3.2.3.2  Specific Heat  & its derivative: cp, cp_u 
 
The data and the final functional relationship chosen for the thermal dependence of specific heat are 
presented in Appendix C of Kanda (2003).  Since the coefficients of the tri-diagonal system - defined in 
Section A-2.2 & 2.3 above - are themselves dependent on the nonlinear functional N and its derivatives 
(and therefore, on the temperature, u), the stability of the scheme is strongly dependent on the type of 
thermal property temperature dependencies chosen, and has to be dealt with on a case-by-case basis.  No 
amount of testing will guarantee the stability of the non-linear problem.  However, as discussed in 
Chapter A-1 above, a “rule of thumb” criterion is to make sure that these temperature dependencies are 
Lipschitz continuous in the expected temperature range of the problem.  It was with these considerations 
that an exponential relationship was chosen for the maximum temperature range of the problem (300 K to 
3000 K, or above).   
 
A-3.2.3.3  Exact solution: f_exact (Optional) 
 
This routine is for test problems, in which case, a known exact solution can be input to COND2D, so it 
can compute exact errors.  Exact errors are used to conduct convergence tests.  The presence of an exact 
solution is indicated by setting the value of exact_sol_flag to 1 in the module const_params above.  If its 
value is 0 (zero), then the program assumes that there is no exact solution, and does not call this routine.  
In case of nonlinear problems, it estimates an error, based on iteration errors.   
 
A-3.2.3.4  PDE Initial Condition: f_initial 
 
This routine specifies the initial condition to a problem and is required for every problem.  Note that the 
initial condition needs to be defined over the entire spatial domain of the problem. 
 
A-3.2.3.5  PDE RHS or source function and its derivative: f_rhs 
 
These routines define the linear or nonlinear RHS or source function of the PDE, and its derivative.  f_rhs 
can be easily computed for a test problem having a known solution – by direct substitution of that 
solution into the PDE.  For problems of interest to scientists and engineers, when exact solutions are 
rarely known, it has to be based on the physics of the problem.  For heat conduction problems, its units 
are energy per unit volume (for 3D problems) or energy per unit area (for 2D problems).  An example is 
the radiogenic heat source in the lithosphere.   
 
A-3.2.3.6  Left boundary condition (LBC): RHS function, and LHS functional & derivatives:  

f_left, lbc1, lbc2, lbc_u, lbc_ux 
 
Required for all problems, these routines help define the form of the left boundary condition.  Each 
boundary condition consists of two components – an LHS functional and an RHS function, as illustrated 
below for the current implementation of COND2D: 
 
Lf(u,ux) ≡ Lf1(u) + Lf2(u) . ux = fleft(y,t) 
 
In the above standard form of the left boundary condition for general conduction problems (Equation (3), 
Chapter A-1), Lf, Lf1 and Lf2 are the LHS functionals, and fleft is the RHS function.  For a general Dirichlet 
BC, Lf2 = 0; for a general Neumann BC, Lf1 = 0; and for a general Robin BC, both are non-zero functions 
of the temperature, u.  By definition, the RHS function does not depend on the temperature, u, but only on 
the y coordinate and time level.  While the form of the functionals are defined by the type of boundary 
heat source/sink – conductive, convective, radiative or assorted combinations – the RHS function is 
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fixed/specified by the user, and takes the form of an analytical expression, or a single constant value.  So, 
Lf1 needs to be specified if the left boundary condition is radiative (Lf1 ∝  u4) or convective (Lf1 ∝  h(u). u).  
Similarly, Lf2 needs to be specified if the left boundary condition is conductive (Lf2 ∝  kt(u)) or a 
combination of conductive and convective/radiative sources/sinks (Robin BC).  The corresponding linear 
cases are: Dirichlet – Lf1 = u, Lf2 = 0; Neumann – Lf1 = 0, Lf2 = 1; and Robin – Lf1 = αx.u, Lf2 = 1.  In 
order to incorporate a radiative BC in a linear problem, a nonlinear equation solver (Newton method) has 
to be used to compute the value of the temperature, thereby converting it to a Dirichlet condition.  Once 
the form of the functional is fixed, computation of its derivatives w.r.t. temperature is straightforward, and 
these expressions have to be included in the appropriate subroutine.   
 
For the current implementation of COND2D, Lf2 = kt(u) for either nonlinear Neumann or nonlinear Robin 
left boundary condition, and Lf1 = u(1+u)/2 (arbitrary function) for either nonlinear Dirichlet or nonlinear 
Robin left boundary condition.  
 
A-3.2.3.7  All other boundary conditions (RBC, BBC, & TBC): RHS functions, and LHS 

functionals & derivatives:  f_right, rbc1, rbc2, rbc_u, rbc_ux, f_bottom, bbc1, bbc2, 
bbc_u, bbc_uy, f_top, bbc1, bbc2, bbc_u, bbc_uy 

 
The treatment of the rest of the boundary conditions is identical to that for the left boundary condition 
described in Section A-3.2.3.6 above.   
 
A-3.2.3.8  PDE coefficients and their derivatives: a1, a2, a2_x, b1, b2, b2_y 
 
These coefficients have been defined in Table A-1 above, for coord_flag = 1-3.  If coord_flag = 0, then 
the user has to specify expressions for these coefficients in terms of the coordinate system and time.  
NOTE: These coefficients are not dependent on temperature, u, and therefore, cannot be nonlinear by 
definition.  Expressions for the derivatives must be included in the subroutines a2_x and b2_y, if 
coord_flag = 0.   
 
A-3.2.3.9  Temperature Derivatives: u_x, u_y, u_xx, u_yy 
 
The derivatives are all computed as discussed in Section A-2.3 above.  They are used in the computation 
of the coefficients and RHS vector of the tridiagonal system to be solved at each pass of the Douglas-
Gunn algorithm described in Sections A-2.2 and A-2.3.  If the form of any boundary condition functional 
is changed (as when coord_flag = 0, or if more general boundary conditions are used), then expressions 
for these derivatives must be changed.  The procedure outlined in Section A-2.3 can be used to compute 
these new expressions.   
 
 
A-3.2.4 MODULE solver_routines: The core routines 
 
This module contains the main driver and 2 workhorse routines of COND2D, and is the main numerical 
computation kernel.  Unless modifications listed in Section A-3.1 above are being made, no routine in this 
module needs user modifications.  Thus, almost all 2D pure heat conduction problems can be solved with 
appropriate minor modifications to the modules const_params, fault_params and pde_routines.  This 
structure minimizes the chances of accidental modification/deletion of any key core numerical 
components of COND2D (see also Figure A-1 above).   
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A-3.2.4.1  LU Decomposition for tridiagonal systems: lud_trid 
 
This routine solves the tridiagonal system (see, for instance, McDonough 2001) generated by the 
discretization of the general nonlinear 2D diffusion/transport equation, discussed in Sections A-2.2 & A-
2.3.  It is called at every pass of the two stage Douglas-Gunn loop, which itself occurs twice per nonlinear 
iteration (for the 2D problem).  lud_trid solves a system of linear equations (any number, up to machine 
memory limit):  
 
A.x = b  
 
where A is a "compact" tri-diagonal coefficient matrix, of dimension Nx x Ny x 3 (Nx is the number of grid 
nodes in the x-direction, Ny is the number of grid nodes in the y-direction), and b is the RHS vector of 
dimension Nx x Ny.  This routine gets arrays A, and b as inputs.  It returns the solution in vector b, to 
conserve storage space.  It uses the space allocated for the A to simultaneously store the elements of the 
lower (L) and upper (U) triangular matrices into which A is decomposed.  It does this by not storing or 
using the diagonal elements of U, which are all equal to 1. 
 
A-3.2.4.2  Computing tridiagonal system coefficients and RHS vector: qlindgts_coeff_rhs 
 
This routine computes all the coefficient and RHS vector elements in the arrays A and b, respectively 
(discussed in the previous section).  Essentially, it computes all of the expressions discussed in Sections 
A-2.2 & A-2.3 above.  For most of the modifications discussed in Section A-3.1, it is here that all the 
linear or nonlinear PDE functionals have to be appropriately modified, and if necessary, to the boundary 
condition functionals that appear in calculating the elements of A and b.  The tridiagonal coefficient 
matrix, A, is generated in the “compact” form described in the previous section.   
 
A-3.2.4.3  Driver routine: delta_qlin_dgts 
 
This is the driver routine for the numerical solution procedure adopted here – namely δ-form of 
“quazilinear” (Newton-Kantorovich) iterations coupled with the δ-form of the two level Douglas-Gunn 
(D-G) Scheme.  The data flow within this subroutine is illustrated in the algorithm presented in Section 
A-2.4.1 above.  Here, for each iteration of the quasilinearization process, the "imporved" iterate is 
constructed using two stages corresponding to the 2-step D-G scheme.  Using an initial guess for 
temperature, un-1, provided by the Main Program (Section 3.2.5) for EACH time step (Initial Condition, 
f_initial, for the 1st time step, and the converged value at the previous time step, for subsequent ones) to 
iterate to a converged value for that time step.  It outputs the grid function values for the current time step, 
un, to the main program.  As discussed in detail in Sections A-2.2 & A-2.3, the grid functions at each 
Douglas-Gunn stage of a single nonlinear iteration, are related to those at the previous iteration by the 
compact time-split matrix formulae:  
 
Ax(u(m), tn) . δv1 = b(u(m), tn, un-1, tn-1) and 
Ay(u(m), tn) . δv2 = δv1 
 
where n denotes the time level index, m denotes the iteration counter, and Ax and Ay are the split 
coefficient arrays in the x- and y-direction, respectively, but having the same dimensions as A (Nx x Ny x 
3).  In each D-G stage, the routine first calls qlindgts_coeff_rhs, to obtain the coefficient and RHS vector 
arrays for that stage.  The routine then calls the LU decomposition routine to compute δvi at that stage.   
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After making both D-G passes, the routine updates the solution at the current iteration (in case of 
a nonlinear problem) or the current time step as follows: 
 
u(m) = u(m-1) + δv2  for the nonlinear problem, at iteration m, or  
un = un-1 + δv2   for the linear problem, at time level n.  
 
In the nonlinear case, it stores grid function values both at the last time step, un-1, and for the last 
iteration, u(m-1), as they are both required for every Newton-Kantorovich iteration.  
 
A-3.2.5 MAIN PROGRAM nonlin_parabolic_pde 
 
The main program contains the main time marching loop, and boundary condition flags, and performs 
almost all input/output (I/O) functions.  The boundary condition flags were moved into the main program 
primarily to allow for changes in boundary condition (BC) types partway through a run.  When this 
happens, the initial condition for the new set of BCs will be the same as the temperature, u, at the 
previous time step – but changes need to be made to this “initial” temperature, if any of the new BCs is 
Dirichlet.  The chief functions of the Main Program are outlined in Figure A-1 above, and include:   
 
•  Read the four command line arguments (for the current version of COND2D).   
•  Compute the actual gird resolutions at which all calculations will be performed: use the minimum 

resolutions computed in the module const_params (Section 3.2 1 above), in conjunction with the 
spatial and temporal resolution flags from the command line (1st and 2nd, respectively).  Then 
compute the grid node and time level indices for the problem domain defined in the module 
const_params. 

•  If the problem is nonlinear, define the convergence tolerance for nonlinear iterations, quasi_epsilon, 
and the maximum number of iterations allowed, quasi_iterations.  If the problem is linear, set 
quasi_epsilon to a very large value and quasi_iterations to 1, so that the subroutine delta_qlin_dgts 
makes only the two required D-G passes at each time step.   

•  Compute any fault parameters that could not be computed in the module fault_params (due to Fortran 
90 limitations – namely no expression containing a function call can appear in a parameter definition 
statement). 

•  Open all 5 output files outlined in Table A-2 above (and described below), and print out header 
information to all the output files and the screen. 

•  Compute all indicial information required for output data storage.   
•  Allocate all arrays needed in the run. 
•  March through time: AT THE FIRST TIME LEVEL, ASSIGN ALL BOUNDARY CONDITIONS.  

IF BOUNDARY CONDITION TYPE CHANGES AFTER A CERTAIN TIME, t0, CHANGE IT 
THE FIRST TIME t > t0.  At each time level, (a) obtain the values of the solution at each time step, 
by calling the subroutine delta_qlin_dgts (described in the previous section); (b) Compute errors if 
exact solution is knows; (c) Store any relevant output data for later use; (d) smooth data if specified 
by the smooth_flag, using the given smooth_factor (3rd and 4th command line arguments, 
respectively); and (e) go to the next time level.   

•  At the end of the run, write all stored output data to the appropriate output files.  Close output files 
and de-allocate all arrays before exiting.   

 
In the following sections, three important features of the Main Program are described. 



 96

A-3.2.5.1  Command line arguments: Choosing optimal resolution 
 
COND2D was designed to be run in batch mode, from a script file.  Therefore, it accepts certain run 
specifications as command line arguments.  Of course, the form and content of these arguments can be 
easily changed to the user’s specifications.  For the current version of COND2D, the program executable 
(created after compilation of source code and linking of object codes) must be followed by THREE 1-
digit arguments, and ONE 6-digit argument, separated by spaces:   
 
Argument # 1 – Spatial Resolution Flag (res_flag_1): A ONE character argument, it can have a value 
between 1 and 9.  The actual spatial resolution of the run is determined as follows: 
res_flag_1 = 1  implies x-step size, hx = hx_max/20,  y-step size, hy = hy_max/20; 
res_flag_1 = 2  implies x-step size, hx = hx_max/21,  y-step size, hy = hy_max/21; 
res_flag_1 = 3  implies x-step size, hx = hx_max/22,  y-step size, hy = hy_max/22; 
…………………………………………………………………………………… 
res_flag_1 = i   implies x-step size, hx = hx_max/2i-1,  y-step size, hy = hy_max/2i-1. 
 
So, all else being equal, an increase in spatial resolution by 1 level results in a 4-fold increase in the 
number of grid-points, and a corresponding increase in the size of the coefficient, RHS, and solution 
arrays.  Therefore, the arithmetic per D-G stage increases roughly 4 fold with each increase in spatial 
resolution level.  
 
Argument # 2 – Temporal Resolution Flag (res_flag_2): A ONE character argument, it can have a 
value between 1 and 5 (due to machine size limitations, and huge time step increases with increasing 
resolution).  The actual temporal resolution of the run is determined as follows:  
res_flag_2 = 1  implies t-step size, k = MIN(hx,hy) /100; 
res_flag_2 = 2  implies t-step size, k = MIN(hx,hy) /101; 
res_flag_2 = 3  implies t-step size, k = MIN(hx,hy) /102; 
…………………………………………………………………………………… 
res_flag_2 = j  implies t-step size, k = MIN(hx,hy) /10 j-1; 
 
So, all else being equal, an increase in temporal resolution by 1 level results in a 10-fold increase in the 
number of time steps at which the problem solution is computed, and so does the corresponding 
arithmetic for the entire run.  Due to the coupling of the temporal resolution to the spatial resolution, each 
increase in temporal resolution level by 1 along with a spatial resolution level increase by 1, increases the 
arithmetic required for the run by a factor of 40!  So, care has to be taken in determining the optimal 
resolution for the problem.  One way to check this is to carry out convergence tests on the grid function 
values at successively smaller resolutions (keeping the ratio hx:hy:k constant) and then computing the rate 
of reduction in error.  If this rate shows the expected 2nd order convergence of the solution, then no further 
increases in resolution are required.  A useful strategy is to fix the temporal resolution at one level, then 
vary the spatial resolution as this strategy results in a smaller increase in arithmetic per change in level.   
 
Another parameter to check for is the number of nonlinear iterations to convergence.  Since the Newton-
Kantorovich procedure converges quadratically (McDonough 2002), values for this number range 
between 3 and 5, typically.  Of course, higher values may be reached for very non-smooth problems.  
This is also a good indicator of the stability of the run.  If the maximum number of iterations is greater 
than about 10, and the nonlinear iterations do not converge within this limit, then it is possible that the 
problem my be under-resolved, and this requires an increase in the spatio-temporal resolution until 
quadratic convergence is observed.  The number of iterations to convergence is output on the screen, if 
verbose_flag = 1, in the module const_params (Section 3.2.5.3).   
 
 



 97

A-3.2.5.2  Command line arguments: Smoothing and the under-resolution problem 
 
 The 3rd and the 4th command line arguments mentioned in the previous section pertain to 
smoothing, which may be required when a nonlinear problem possesses “extremely” steep gradients.  
Though it is optional to perform smoothing of the PDE problem data (including the solution) at each time 
step, the arguments are expected to be present.  Therefore, there is an option to set the 3rd and 4th 
arguments to 0 (zero), each in their own format.   
 
Argument # 3 – Smoothing Flag (smooth_flag): A ONE character argument, it can have values of 0, 1 
or 2, with the following consequences:  
smooth_flag = 0,   implies NO smoothing 
smooth_flag = 1,   implies 1D smoothing 
smooth_flag = 2,   implies 2D smoothing 
 
1D smoothing should be used when steep gradients exist ONLY along one of the principal directions of 
the problem domain.  2D smoothing should be used in the more general case, where the gradients are not 
aligned with only one of the principal directions.  The actual smoothing procedure is outlined under the 
4th argument below.   
 
Argument # 4 – Smoothing Factor (smooth_factor): A SIX-character argument, it can have values 
ranging from 000000 to 999999 (~ 1 million).  If smooth_flag (3rd command line argument) is 0 (zero), 
then this argument does not matter.  For clarity, it should be set to 000000.  If smooth_flag is non-zero, 
then either 1D or 2D smoothing needs to be performed on the solution at the end of every time step.  
Smoothing is essentially the application of a low-pass filter to the solution, to “smooth” out any steep 
gradients.  The larger the value of this factor, the lesser the smoothing, and the lesser the solution deviates 
from its actual value at each time step.  So, over the duration of the run, any such deviations can add up to 
give an erroneous result.  Therefore, smoothing must be applied with caution.  In the case of heat 
conduction in geologic settings, the thermal diffusivity is so low that the noise added by smoothing can 
erase the extremely slow conduction signature.  So, for most geologic problems, smoothing might not be 
a good idea (actually, it is not recommended) – except as a desperate measure.  Usually, the steep 
gradients do not cause problems if the resolution of the problem is sufficient.  So, one way to get around 
smoothing in geologic problems is to try to use as small a domain size as practical, and then keep 
reducing the resolution until under-resolution problems (called the Reynolds cell problem in the 
computational fluid dynamics literature) vanish.  This point is further illustrated in Test Problem #32 
discussed in Section A-3.4 below.  In the rest of this Chapter, all tests and runs were carried out without 
employing any smoothing.  The smoothing filters incorporated in COND2D are as follows:  
 
Shuman filter for 1D smoothing: Applied to a user-defined range of rows OR columns.  Here its 
application to a particular column is shown: 
 
u(j, Nx–1) = [u(j, Nx–2) + (smooth_factor). u(j, Nx-1) + u(j, Nx)]/(2 + smooth_factor),          j = 1: Ny 
 
Shuman filter for 2D smoothing: Applied to a user-defined range of rows AND columns.  Here its 
application to a specific problem subdomain is shown: 
 
u(j, i) = [u(j, i–1) + u(j-1, i) + (smooth_factor). u(j, i) + u(j, i+1) + u(j+1, i)]/(4 + smooth_factor), 

            j = 1: 10, i = (Nx –3):Nx. 
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A-3.2.5.3  Output files and screen output 
 
COND2D offers great flexibility in terms of the kind, and quantity of output that can be written to output 
files or screen.  In addition to (optional) diagnostic screen output, the current version writes output to 5 
different files.  Illustrations of how data in these files can be used are presented under A-3.3.1.  In what 
follows, these files are briefly described.  NOTE: Grid functions or grid function values refer to the 
numerical solution (temperature) at specific grid nodes, corresponding to a specific grid resolution:  
 
1. DGRID: This file contains grid function data in 2D, at the spatial resolution specified by the value of 
the variables out_x_grid_spacing, and out_y_grid_spacing, at time levels specified in the array t_snap, all 
of which are assigned in the module const_params.  If either step size used for a run is at a lower 
resolution compared to the respective output resolution in that direction, the data are output at the step 
size resolution for that direction.  Data in this file can be used to plot 2D surface plots using post-
processing software such as MATLAB.  A sample of this output file appears in Figure A-2.   
 
2. DERRG: This file, formatted identically to the previous one, contains exact or estimated grid function 
errors depending on whether the exact solution is known or unknown.   
 
3. DCONV: This file contains grid function values at the coordinates (in the problem domain) and time 
levels specified in the array grid_conv, which is assigned in the module const_params.  The grid 
functions are output in a row, at the end of the file, for easy import into a spreadsheet software such as 
MS-EXCEL, for performing grid convergence tests at these spatio-temporal sampling points.  A sample 
of this output file appears in Figure A-3.   
 
4. DSNAP: This file contains grid function values along TWO profiles, each parallel to one of the 
principal axis.  For the profile parallel to the x-axis, the y coordinate is set in the variable y_xsnap, and the 
time level is set in the variable t_xsnap, both assigned in the module const_params.  Similarly, the 
corresponding variables for the profile parallel to the y-axis are: x_ysnap, and t_ysnap.  A sample of this 
output file appears in Figure A-4.   
 
5. DEVOL: This file contains four sets of data: (a) grid function values at the point x_time and y_time, as 
a function of time and for the duration of the run, at a temporal resolution specified by the variable 
t_evol_spacing (all these variables are assigned in the module const_params); (b) Evolution of the peak 
domain temperature, and its location, as a function of time - at “logarithmically” equidistant points (i.e., 
equidistant points on a logarithmic scale) - for the duration of the run; (c) Evolution of the maximum 
domain error (if available – exact or estimated), and its location, as a function of time - at 
“logarithmically” equidistant points (i.e., equidistant points on a logarithmic scale) - for the duration of 
the run; and (d) Evolution of the minimum domain temperature, and its location, as a function of time - at 
“logarithmically” equidistant points (i.e., equidistant points on a logarithmic scale) - for the duration of 
the run.  A sample of this output file appears in Figure A-5.   
 
6. SCREEN OUTPUT: Diagnostic messages can be output to the screen at each iteration and or time 
step of the entire run (this can quickly become a large amount of screen write data, and must be cautiously 
used – for instance, only for lower resolution runs for diagnostic purposes).  The messages include the 
time level, maximum, and minimum domain temperature, and maximum domain error at the end of each 
time step, along with the corresponding errors or temperature, respectively; the number of nonlinear 
iterations till convergence at each time step, and the residual at the end of each iteration (this can be used 
to check if a problem is yielding the expected quadratic convergence).  Usually the screen output can be 
redirected to another file for viewing later, especially when running the program in the background or in 
batch mode.  So, if care is not taken, this file can exceed the storage capacity of a user’s account!  A 
sample of the screen output appears in Figure A-6.   
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Figure A- 2. Sampling of output file DGRID 
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% Program to compute the solution evolution of a GENERALIZED NON-LINEAR, 2D
% HEAT CONDUCTION PDE, with GENERALIZED NON-LINEAR BCs, using the DELTA-FORM of
% QUASILINEARIZATION (NEWTON-KANTOROVICH PROCEDURE) WITH DOUGLAS-GUNN TIME SPLITTING SCHEME:
% - by RAVI KANDA (July, 2002).
% Precision: KIND = 8 for FORTRAN90 Compiler v2.4 for HP-UX 11i on HP-SuperDome.
% -----------------------------------------------------------------------------
%
X-Limits: (x_left, x_right) = (0.00000000E+00,1.00000000E-01)
Y-Limits: (y_bottom, y_top) = (0.00000000E+00,3.14159265E+00)
t-Limits: (t_initial, t_final) = (0.00000000E+00,1.00000000E+00)
The value of x-step, hx = 1.00000000E-02
The value of y-step, hy = 1.00000000E-02
The value of t-step, k = 1.00000000E-03
% -----------------------------------------------------------------------------
% This problem is indicated to be NON-LINEAR. Newton-Kantorovich
% iterations will be performed up to a convergence tolerance of 1.000000E-09.
% The maximum number of iterations, max_iter, was set to: 25.
% -----------------------------------------------------------------------
% SMOOTHING FLAG = 0: NO SMOOTHING WILL BE PERFORMED.
% ---------------------------------------------------
% COORDINATE SYSTEM: SPHERICAL.
% --------------------------------
Ambient Temperature, U0 = 300 K.
Asperity Radius, r0 = 0.100 m.
Young's Modulus, E = 20.00 GPa.
Poisson's Ratio, nu = 0.20 (dimensionless).
Coefficient of Friction, mu = 0.60 (dimensionless).
Density of asperity material, rho = 3000.00 kg/m**3.
Ambient average shear stress, TAU = 1.00E+08 Pa.
Asperity slip velocity, U = 1.000 m/sec.
The ratio, rc/r0 = 1.88495559E-02 (dimensionless).
Maximum radius of circular asperity contact area, rc = 1.885E-03 m.
Asperity slip duration, T0 = 7.540E-03 sec.
Maximum Asperity contact, THETA_0 = 0.01884732 Radians.
Specific Heat, Cp & Coeff. of Thermal Conductivity, k are NON-LINEAR FUNCTIONS OF TEMPERATURE.
% -----------------------------------------------------------------------------------------------
x = 0.06 y = 0.31 t = 0.15
x = 0.06 y = 1.57 t = 0.15
x = 0.07 y = 2.83 t = 0.15
x = 0.07 y = 0.47 t = 0.15
x = 0.08 y = 2.98 t = 0.20
x = 0.08 y = 1.57 t = 0.20
x = 0.09 y = 1.26 t = 0.20
x = 0.07 y = 1.41 t = 0.20

-------------------------------------------------------------------------------
% For time <= To = 7.54E-03: LEFT BC = Linear Neumann; RIGHT BC = Non-Linear Neumann; BOTTOM BC = Linear Neumann; TOP BC = Linear Neumann;
% ---------------------------------------------------------------------------------------------------------------------------------------
% For time > To = 7.54E-03: LEFT BC = Linear Neumann; RIGHT BC = Non-Linear Neumann; BOTTOM BC = Linear Neumann; TOP BC = Linear Neumann;
% ---------------------------------------------------------------------------------------------------------------------------------------

Grid Function Convergence Data at the following grid points:
-------------------------------------------------------------------------------
k hx hy U1 U2 U3 U4 U5 U6 U7 U8
0.001000 0.010000 0.010000 3.1825474843E+02 5.9452271006E+02 6.8465079677E+02 3.6498895873E+02 1.1636252311E+03 7.4486672902E+02 1.0209691616E+03 6.9312879805E+02
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% Program to compute the solution evolution of a GENERALIZED NON-LINEAR, 2D
% HEAT CONDUCTION PDE, with GENERALIZED NON-LINEAR BCs, using the DELTA-FORM of
% QUASILINEARIZATION (NEWTON-KANTOROVICH PROCEDURE) WITH DOUGLAS-GUNN TIME SPLITTING SCHEME:
% - by RAVI KANDA (July, 2002).
% Precision: KIND = 8 for FORTRAN90 Compiler v2.4 for HP-UX 11i on HP-SuperDome.
% -----------------------------------------------------------------------------
%
X-Limits: (x_left, x_right) = (0.00000000E+00,1.00000000E-01)
Y-Limits: (y_bottom, y_top) = (0.00000000E+00,3.14159265E+00)
t-Limits: (t_initial, t_final) = (0.00000000E+00,1.00000000E+00)
The value of x-step, hx = 1.00000000E-02
The value of y-step, hy = 1.00000000E-02
The value of t-step, k = 1.00000000E-03
% -----------------------------------------------------------------------------
% This problem is indicated to be NON-LINEAR. Newton-Kantorovich
% iterations will be performed up to a convergence tolerance of 1.000000E-09.
% The maximum number of iterations, max_iter, was set to: 25.
% -----------------------------------------------------------------------
% SMOOTHING FLAG = 0: NO SMOOTHING WILL BE PERFORMED.
% ---------------------------------------------------
% COORDINATE SYSTEM: SPHERICAL.
% --------------------------------
Ambient Temperature, U0 = 300 K.
Asperity Radius, r0 = 0.100 m.
Young's Modulus, E = 20.00 GPa.
Poisson's Ratio, nu = 0.20 (dimensionless).
Coefficient of Friction, mu = 0.60 (dimensionless).
Density of asperity material, rho = 3000.00 kg/m**3.
Ambient average shear stress, TAU = 1.00E+08 Pa.
Asperity slip velocity, U = 1.000 m/sec.
The ratio, rc/r0 = 1.88495559E-02 (dimensionless).
Maximum radius of circular asperity contact area, rc = 1.885E-03 m.
Asperity slip duration, T0 = 7.540E-03 sec.
Maximum Asperity contact, THETA_0 = 0.01884732 Radians.
Specific Heat, Cp & Coeff. of Thermal Conductivity, k are NON-LINEAR FUNCTIONS OF TEMPERATURE.
% -----------------------------------------------------------------------------------------------
% For time <= To = 7.54E-03: LEFT BC = Linear Neumann; RIGHT BC = Non-Linear Neumann; BOTTOM BC = Linear Neumann; TOP BC = Linear Neumann;
% ---------------------------------------------------------------------------------------------------------------------------------------
% For time > To = 7.54E-03: LEFT BC = Linear Neumann; RIGHT BC = Non-Linear Neumann; BOTTOM BC = Linear Neumann; TOP BC = Linear Neumann;
% ---------------------------------------------------------------------------------------------------------------------------------------
SNAPSHOT at y = 0.200000 & t = 0.150000:
----------------------------------------------------------------------

x U_xsnap(x)
0.00 3.4453633924E+02
0.01 3.0003438239E+02
0.02 3.0028477287E+02
0.03 3.0096070256E+02
0.04 3.0227699229E+02
0.05 3.0444697231E+02
0.06 3.0768389827E+02
0.07 3.1220092251E+02
0.08 3.1821107109E+02
0.09 3.2592722156E+02
0.10 3.3556182637E+02

----------------------------------------------------------------------
SNAPSHOT at x = 0.090000 & t = 0.200000:
----------------------------------------------------------------------

y U_ysnap(y)
0.00 3.0000000382E+02
0.01 3.0006215552E+02
0.02 3.0024859726E+02
0.03 3.0055928388E+02
0.04 3.0099414080E+02
0.05 3.0155306367E+02
0.06 3.0223591840E+02
0.07 3.0304254120E+02
0.08 3.0397273861E+02
0.09 3.0502628759E+02
0.10 3.0620293555E+02
0.11 3.0750240047E+02
0.12 3.0892437096E+02
0.13 3.1046850639E+02
0.14 3.1213443696E+02
0.15 3.1392176384E+02
0.16 3.1583005930E+02
0.17 3.1785886681E+02
0.18 3.2000770125E+02
0.19 3.2227604900E+02
0.20 3.2466336812E+02

:::::::::::::::::………..
:::::::::::::::::……………………

3.00 1.5289862861E+03
3.01 1.5287236793E+03
3.02 1.5284748321E+03
3.03 1.5282406429E+03
3.04 1.5280220017E+03
3.05 1.5278197899E+03
3.06 1.5276348799E+03
3.07 1.5274681351E+03
3.08 1.5273204101E+03
3.09 1.5271925500E+03
3.10 1.5270853907E+03
3.11 1.5269997576E+03
3.12 1.5269364242E+03
3.13 1.5268938218E+03
3.14 1.5268938218E+03

----------------------------------------------------------------------
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Figure A- 5. Sampling of output file DEVOL 

 % Program to compute the solution evolution of a GENERALIZED NON-LINEAR, 2D
% HEAT CONDUCTION PDE, with GENERALIZED NON-LINEAR BCs, using the DELTA-FORM of
% QUASILINEARIZATION (NEWTON-KANTOROVICH PROCEDURE) WITH DOUGLAS-GUNN TIME SPLITTING SCHEME:
% - by RAVI KANDA (July, 2002).
% Precision: KIND = 8 for FORTRAN90 Compiler v2.4 for HP-UX 11i on HP-SuperDome.
% -----------------------------------------------------------------------------
%
X-Limits: (x_left, x_right) = (0.00000000E+00,1.00000000E-01)
Y-Limits: (y_bottom, y_top) = (0.00000000E+00,3.14159265E+00)
t-Limits: (t_initial, t_final) = (0.00000000E+00,1.00000000E+00)
The value of x-step, hx = 1.00000000E-02
The value of y-step, hy = 1.00000000E-02
The value of t-step, k = 1.00000000E-03
% -----------------------------------------------------------------------------
% This problem is indicated to be NON-LINEAR. Newton-Kantorovich
% iterations will be performed up to a convergence tolerance of 1.000000E-09.
% The maximum number of iterations, max_iter, was set to: 25.
% -----------------------------------------------------------------------
% SMOOTHING FLAG = 0: NO SMOOTHING WILL BE PERFORMED.
% ---------------------------------------------------
% COORDINATE SYSTEM: SPHERICAL.
% --------------------------------
Ambient Temperature, U0 = 300 K.
Asperity Radius, r0 = 0.100 m.
Young's Modulus, E = 20.00 GPa.
Poisson's Ratio, nu = 0.20 (dimensionless).
Coefficient of Friction, mu = 0.60 (dimensionless).
Density of asperity material, rho = 3000.00 kg/m**3.
Ambient average shear stress, TAU = 1.00E+08 Pa.
Asperity slip velocity, U = 1.000 m/sec.
The ratio, rc/r0 = 1.88495559E-02 (dimensionless).
Maximum radius of circular asperity contact area, rc = 1.885E-03 m.
Asperity slip duration, T0 = 7.540E-03 sec.
Maximum Asperity contact, THETA_0 = 0.01884732 Radians.
Specific Heat, Cp & Coeff. of Thermal Conductivity, k are NON-LINEAR FUNCTIONS OF TEMPERATURE.
% -----------------------------------------------------------------------------------------------
% For time <= To = 7.54E-03: LEFT BC = Linear Neumann; RIGHT BC = Non-Linear Neumann; BOTTOM BC = Linear Neumann; TOP BC = Linear Neumann;
% ---------------------------------------------------------------------------------------------------------------------------------------
% For time > To = 7.54E-03: LEFT BC = Linear Neumann; RIGHT BC = Non-Linear Neumann; BOTTOM BC = Linear Neumann; TOP BC = Linear Neumann;
% ---------------------------------------------------------------------------------------------------------------------------------------
TIME LAG BETWEEN TIME CORRESPONDING TO U_max AND TIME AT ASPERITY SEPARATION = -7.539822E-03
RELATIVE TIME LAG (w.r.t. T0) BETWEEN TIME CORRESPONDING TO U_max AND TIME AT ASPERITY SEPARATION = -1.000000E+00
-------------------------------------------------------------------------------------------------
Grid Function evolution at grid point: ( 0.000000, 3.141593).
----------------------------------------------------------------------------------

t U(x_time, y_time)
0.00 3.00000000E+02
0.05 3.14959791E+02
0.10 3.29815126E+02
0.15 3.44575958E+02
0.20 3.59251274E+02
0.25 3.73849201E+02
0.30 3.88377106E+02

::::::::::::::::
0.65 4.88603243E+02
0.70 5.02767062E+02
0.75 5.16903338E+02
0.80 5.31014956E+02
0.85 5.45104546E+02
0.90 5.59174506E+02
0.95 5.73227023E+02
1.00 5.87264087E+02

----------------------------------------------------------------------
Domain Maximum Temperature evolution:
--------------------------------------------------------------------------------------------------

Step # t j i U_max Relative Error U_norm
1 0.000000E+00 261 11 2.37648033E+03 0.00000000E+00 4.99013634E+04
2 1.000000E-03 261 11 2.37440606E+03 2.34352267E-08 4.98658172E+04
3 2.000000E-03 261 11 2.37233386E+03 4.68591915E-08 4.98303108E+04
4 3.000000E-03 261 11 2.37026373E+03 7.02718750E-08 4.97948442E+04
5 4.000000E-03 261 11 2.36819566E+03 9.36732581E-08 4.97594174E+04
6 5.000000E-03 261 11 2.36612967E+03 1.17063321E-07 4.97240303E+04
7 6.000000E-03 261 11 2.36406573E+03 1.40442046E-07 4.96886828E+04
8 7.000000E-03 261 11 2.36200386E+03 1.63809411E-07 4.96533751E+04
9 8.000000E-03 261 11 2.35994405E+03 1.87165400E-07 4.96181070E+04
10 9.000000E-03 261 11 2.35788629E+03 2.10509991E-07 4.95828784E+04

::::::::::::::::::::::::::::
501 5.000000E-01 261 11 1.55981016E+03 9.91678708E-06 3.64205649E+04
601 6.000000E-01 261 11 1.43998956E+03 1.13627838E-05 3.45856177E+04
701 7.000000E-01 261 11 1.33156513E+03 1.25987185E-05 3.29806529E+04
801 8.000000E-01 261 11 1.23345290E+03 1.36186910E-05 3.15850174E+04
901 9.000000E-01 261 11 1.14467202E+03 1.44215454E-05 3.03795897E+04
1001 1.000000E+00 261 11 1.06433495E+03 1.50110361E-05 2.93466368E+04

TEMPORAL GLOBAL TEMPERATURE MAXIMA:
------------------------------------

1 0.00 261 11 2.37648033E+03 0.00000000E+00
-------------------------------------------------------------------------------------------------
Domain Maximum Error evolution:
--------------------------------------------------------------------------------------------------

Step # t j i Max. Rel. Error U U_norm
1 0.000000E+00 0 0 0.00000000E+00 0.00000000E+00 4.99013634E+04
2 1.000000E-03 261 1 6.02200492E-06 3.00300292E+02 4.98658172E+04
3 2.000000E-03 261 1 1.20516672E-05 3.00600538E+02 4.98303108E+04

:::::::::::::::::::::::::::::::::::
901 9.000000E-01 261 1 8.53125075E-03 5.59175897E+02 3.03795897E+04
1001 1.000000E+00 261 1 9.78870380E-03 5.87265536E+02 2.93466368E+04

TEMPORAL GLOBAL ABSOLUTE ERROR MAXIMA:
------------------------------

1001 1.00 261 1 2.87265536E+02 5.87265536E+02
-------------------------------------------------------------------------------------------------
Domain Minimum Temperature evolution:
--------------------------------------------------------------------------------------------------

Step # t j i U_min Relative Error U_norm
1 0.000000E+00 1 1 3.00000000E+02 0.00000000E+00 4.99013634E+04
2 1.000000E-03 1 11 3.00000000E+02 4.18345432E-13 4.98658172E+04
3 2.000000E-03 1 11 3.00000000E+02 8.29096533E-13 4.98303108E+04

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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Figure A- 6. Sampling of SCREEN OUTPUT 

 Program to compute the solution of a GENERAL NON-LINEAR, 2D, HEAT CONDUCTION EQUATION (in Cartesian/
Cylindrical/Spherical coordinates), with general NON-LINEAR BOUNDARY CONDITIONS USING THE DELTA-FORM
OF QUASILINIARIZATION (NEWTON-KANTOROVICH PROCEDURE) IN CONJUNCTION WITH THE DELTA-FORM OF THE
DOUGLAS-GUNN TIME SPLITTING SCHEME (2-STEP). THIS CODE CAN ALSO BE USED FOR LINEAR PROBLEMS WITHOUT
ANY CHANGES TO THE CORE SUBROUTINES OF THIS IMPLEMENTATION. - by RAVI KANDA (November, 2002).
----------------------------------------------------------------------------------------------------

WARNING: Grid output has been requested at a higher resolution than hx! Setting this to equal hx.
X-Limits: (x_left, x_right) = ( 0.0 , 0.1 )
Y-Limits: (y_bottom, y_top) = ( 0.0 , 3.14159265358979 )
t-Limits: (t_initial, t_final) = ( 0.0 , 1.0 )
The value of x-step, hx = 1.000000000000000E-02
The value of y-step, hy = 1.000000000000000E-02
The value of t-step, k = 1.000000000000000E-03
Smoothing Flag = 0
Smoothing Factor = 0.0
---------------------------------------------------------------------------------------
Ambient Temperature, U0 = 300 K.
Asperity Radius r0 = 0.1 m.
Young''s Modulus, E = 20.0 GPa.
Poisson's Ratio, nu = 0.2 (dimensionless).
Coefficient of Friction, mu = 0.6 (dimensionless).
Density of asperity material, rho = 3000.0 kg/m**3.
Ambient average shear stress, TAU = 100000000.0 Pa.
Asperity slip velocity, U = 1.0 m/sec.
The ratio, rc/r0 = 1.884955592153876E-02 (dimensionless).
Maximum radius of circular asperity contact area, rc = 1.884955592153876E-03 m.
Asperity slip duration, T0 = 7.539822368615504E-03 sec.
Maximum Asperity contact THETA_0 = 1.884732394541884E-02 Radians.
Specific Heat, Cp & Coeff. of Thermal Conductivity, k are NON-LINEAR FUNCTIONS OF TEMPERATURE.
---------------------------------------------------------------------------------------
ALL grid ARRAYS SUCCESSFULLY ALLOCATED.
ALL xsnap ARRAYS SUCCESSFULLY ALLOCATED.
ALL ysnap ARRAYS SUCCESSFULLY ALLOCATED.
ALL t_evol ARRAYS SUCCESSFULLY ALLOCATED.
ALL temperature evolution ARRAYS SUCCESSFULLY ALLOCATED.
ALL non-output-file ARRAYS SUCCESSFULLY ALLOCATED.
----------------------------------------------------------------------------------------------------------------
t( 1 ) = 0.0 :

row= 261 , col= 11 : DOMAIN MAXIMUM TEMPERATURE = 2376.480334151895
row= 1 , col= 1 : DOMAIN MINIMUM TEMPERATURE = 300.0
row= 0 , col= 0 : DOMAIN MAXIMUM ERROR = 0.0 , TEMPERATURE = 0.0 .

TIME = 1.000E-03. Newton-Kantorovich Iterations Converged after 5 iterations. Final value of L2-norm of Dn: 5.274812E-12.
t( 2 ) = 1.000000000000000E-03 :

row= 261 , col= 11 : DOMAIN MAXIMUM TEMPERATURE = 2374.406060328647
row= 1 , col= 11 : DOMAIN MINIMUM TEMPERATURE = 299.9999999791389
row= 261 , col= 1 : DOMAIN MAXIMUM ERROR = 6.022004915908457E-06 , TEMPERATURE = 300.3002921960209 .

TIME = 2.000E-03. Newton-Kantorovich Iterations Converged after 5 iterations. Final value of L2-norm of Dn: 5.169939E-12.
t( 3 ) = 2.000000000000000E-03 :

row= 261 , col= 11 : DOMAIN MAXIMUM TEMPERATURE = 2372.333858685076
row= 1 , col= 11 : DOMAIN MINIMUM TEMPERATURE = 299.9999999586859
row= 261 , col= 1 : DOMAIN MAXIMUM ERROR = 1.205166717114302E-05 , TEMPERATURE = 300.600538320344 .

TIME = 3.000E-03. Newton-Kantorovich Iterations Converged after 5 iterations. Final value of L2-norm of Dn: 5.043072E-12.
t( 4 ) = 3.000000000000000E-03 :

row= 261 , col= 11 : DOMAIN MAXIMUM TEMPERATURE = 2370.263727150852
row= 1 , col= 11 : DOMAIN MINIMUM TEMPERATURE = 299.999999938641
row= 261 , col= 1 : DOMAIN MAXIMUM ERROR = 1.808899054919657E-05 , TEMPERATURE = 300.9007384656672 .

TIME = 4.000E-03. Newton-Kantorovich Iterations Converged after 5 iterations. Final value of L2-norm of Dn: 5.536911E-12.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
 
TIME = 9.970E-01. Newton-Kantorovich Iterations Converged after 5 iterations. Final value of L2-norm of Dn: 2.123085E-12.
t( 998 ) = 0.997000000000001 :

row= 261 , col= 11 : DOMAIN MAXIMUM TEMPERATURE = 1066.630072141645
row= 1 , col= 2 : DOMAIN MINIMUM TEMPERATURE = 299.6511006798737
row= 261 , col= 1 : DOMAIN MAXIMUM ERROR = 286.4237120681518 , TEMPERATURE = 586.4237120681518 .

TIME = 9.980E-01. Newton-Kantorovich Iterations Converged after 5 iterations. Final value of L2-norm of Dn: 2.110874E-12.
t( 999 ) = 0.998000000000001 :

row= 261 , col= 11 : DOMAIN MAXIMUM TEMPERATURE = 1065.864266173153
row= 1 , col= 2 : DOMAIN MINIMUM TEMPERATURE = 299.6501421966552
row= 261 , col= 1 : DOMAIN MAXIMUM ERROR = 286.7043253797016 , TEMPERATURE = 586.7043253797016 .

TIME = 9.990E-01. Newton-Kantorovich Iterations Converged after 5 iterations. Final value of L2-norm of Dn: 2.103206E-12.
t( 1000 ) = 0.999000000000001 :

row= 261 , col= 11 : DOMAIN MAXIMUM TEMPERATURE = 1065.099225166071
row= 1 , col= 2 : DOMAIN MINIMUM TEMPERATURE = 299.6491821133234
row= 261 , col= 1 : DOMAIN MAXIMUM ERROR = 286.9849332115966 , TEMPERATURE = 586.9849332115966 .

TIME = 1.000E+00. Newton-Kantorovich Iterations Converged after 5 iterations. Final value of L2-norm of Dn: 2.036867E-12.
t( 1001 ) = 1.0 :

row= 261 , col= 11 : DOMAIN MAXIMUM TEMPERATURE = 1064.33494835625
row= 1 , col= 2 : DOMAIN MINIMUM TEMPERATURE = 299.648220429031
row= 261 , col= 1 : DOMAIN MAXIMUM ERROR = 9.788703799522402E-03 , TEMPERATURE = 587.2655355776843 .

----------------------------------------------------------------------------------------------------------------------
FINISHED DEALLOCATING ALL ARRAYS.
OUTPUT FILE, Dgrid, CLOSED
OUTPUT FILE, Derrg, CLOSED
OUTPUT FILE, Dsnap, CLOSED
OUTPUT FILE, Devol, CLOSED
OUTPUT FILE, Dconv, CLOSED
Program execution completed successfully. EXITING.
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A-3.3 Implementing COND2D: An example run  
 
Two examples are presented in this section, illustrating how to implement COND2D for a given problem.  
The process involves setting up the problem, compiling & linking the code, running the code, and 
processing the data in output files to check for convergence of grid functions and actual surface plots.   
 
A-3.3.1 Example: Setting up multiple runs for a nonlinear test problem in the spherical coordinate 
system  
 
Problem setup: The first stage of implementation is to setup the problem.  In order to set up numerous 
types of test problems while minimum the scope for user error, a standard input format sheet was created 
for inputting the problem into COND2D.  Such input sheets for the setup of three Test Problems are 
shown in Tables A-3, A-4 and A-5.   
 
Compiling and linking: Once all relevant data and expressions have been introduced into the source 
code, the next step is to compile and link the code to create an executable file.  This is a very platform and 
machine specific process, and users should contact their system administrator to obtain information 
regarding Fortran 90 compile options available at their facility.  Compilers may differ widely in how 
strictly they interpret some fundamental Fortran 90 syntax rules.  For instance, the syntax for defining the 
KIND parameter (that determines the precision of both real and integral variables for the run) - while 
some compilers accept the short or abridged form of definition, others will accept only the unabridged 
definition.  All runs here were conducted on a HP-UX (HP Unix) platform.  The runs were carried out in 
serial mode (since sufficient time was not available for parallelizing the code), on a single processor (with 
2 Gigabytes of memory) of a 224 processor HP Superdome supercomputer cluster!   
 
Several compiler optimization options were tested on COND2D, making sure that the accuracy of the 
program output was not compromised (this is sometimes an issue when using very high levels of 
optimization).  The best compiler optimization option was found to be the at the highest possible on HP-
UX – the +Oall option (see HP Fortran 90 Users Guide 1998), which reduced the program run time by 
about 70-80%, when compared with the non-optimized run!  It was found using profiling software like 
gprof (available for use with HP-UX Fortran and C compilers) that this optimization option was inlining 
all subroutines into one big serial object code, and then applying parallelization to the code.  It is to 
facilitate this maximum level of optimization that all diagnostic write statements from all subroutines 
were disabled (the optimizer ignores any subroutine that contains an I/O statement, thus reducing the 
effects of optimizing the entire code – see HP Fortran 90 Users Guide 1998).  So, the optimal command 
line compilation & linking is obtained by using the following command:  
 
$ f90 –o cond2d_test +Oall cond2d.f90
 
This generates an object file, cond2d.o, and an executable file, cond2d_test.  Due to the high level of 
optimization being applied, compilation takes some time to be accomplished (~ a few minutes).  After any 
reported compilation errors are corrected, and the code recompiled without further errors, it is ready to be 
used.   
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Table A- 3. Problem input sheet for Test Problem #27: Nonlinear spherical PDE with nonlinear 
Neumann/Robin boundary conditions.  In all, over 30 different test problems were designed to 
validate COND2D (Table A-7).  Input expressions for the code are in bold. 
 

Solution: u = e-t.   {x-Sin(x)}.{y2/2 + y.Sin(y) + Sin2(y)}  
     = h(t) .     f(x).                       g(y)    (Exact Sol Flag = 1)  (1) 
    ux  =  h(t) . g(y) . {1-Cos(x)} = h(t) . f ’(x) .g(y)      (1a) 
    uxx =  h(t) . g(y) . {Sin(x)}     = h(t) . f ’’(x) .g(y)      (1b) 
    uy  =  h(t) . f(x) . { y + Sin(y) + y.Cos(y) + Sin(2y) }        = h(t) . f(x) .g’(y)   (1c) 
    uyy =  h(t) . f(x) . { 1 – y.Sin(y) + 2.[Cos(y) + Cos(2y)] } = h(t) . f(x) .g’’(y)   (1d) 
    ut = - h(t) . f(x) . g(y) =  - u        (1e) 

Initial Condition: u(t = 0) = u0 = {x-Sin(x)}.{y2/2 + y.Sin(y) + Sin2(y)}     (2) 
 

ρρρρ = 1      (In module fault_params)    (3a) 
kt = 1+u, kt,u = 1, kt,uu = 0     (Linear Flag = 0)   (3b) 
Cp= 1+u, Cp,u= 1      (Linear Flag = 0)   (3c) 
a1 = 1/x2, a2 = x2, a2,x = 2x    (Spherical, Coord. Flag = 3)   (3d) 
b1 = 1/{x2.Sin(y)}, b2 = Sin(y), b2,y = Cos(y)  (Spherical, Coord. Flag = 3)   (3e) 
 
 

Boundary Conditions:   (BC Flags: L/R/ = 1, T/B = 2),  (BC Linearity Flags: L/T/B/R = 0) 
L1(u) . ux + L2(u) = kt(u).ux|(0,y)                         =   0    = fL(y,t) (4a) 
R1(u) . ux + R2(u) = kt(u).ux|(1,y)                        = {1+ h(t) . g(y) . (1-Sin(1)} . h(t) . g(y)  .{1-Cos(1)}  = fR(y,t) (4b) 
B1(u) . uy + B2(u) = {kt(u).uy+ u.(1+u)/2}|(x,0)  =    0    = fB(x,t)  (4c) 
T1(u) . uy + T2(u) = {kt(u).uy + u.(1+u)/2)|(x,π)  = .{1+ (ππππ2/2).h(t) . f(x)} . (ππππ2/4) . h(t) . f(x) = fT(x,t) (4d) 
 
 

Source Function, f  rhs: 
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for x ≠≠≠≠ 0, and y = 0 or ππππ, 
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and for x = 0, 
f = 0            (5e) 
 

and, for x ≠≠≠≠ 0, and y ≠≠≠≠ 0 or ππππ, 
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for x ≠≠≠≠ 0, and y = 0 or ππππ, 
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and, for x = 0, 
fu = -ρρρρ            (6c) 



 106

Table A- 4. Problem input sheet for Test Problem #32: Nonlinear spherical PDE with 
linear/nonlinear Neumann boundary conditions.  In all, over 30 different test problems were 
designed to validate COND2D (Table A-7).  Input expressions for the code are in bold. 
 

Solution: u = 300 + (2.5x106).e-t.{x-Sin(x)}.{y2/2 + y.Sin(y) + Sin2(y)}  
     = 300 +        h(t) .            f(x).                       g(y)   (Exact Sol Flag = 1)  (1) 
    ux  =  h(t) . g(y) . {1-Cos(x)} = h(t) . f ’(x) .g(y)      (1a) 
    uxx =  h(t) . g(y) . {Sin(x)}     = h(t) . f ’’(x) .g(y)      (1b) 
    uy  =  h(t) . f(x) . { y + Sin(y) + y.Cos(y) + Sin(2y) }        = h(t) . f(x) .g’(y)   (1c) 
    uyy =  h(t) . f(x) . { 1 – y.Sin(y) + 2.[Cos(y) + Cos(2y)] } = h(t) . f(x) .g’’(y)   (1d) 
    ut = - h(t) . f(x) . g(y) = 300 - u        (1e) 

Initial Condition: u(t = 0) = u0 = 300 + (2.5x106).{x-Sin(x)}.{y2/2 + y.Sin(y) + Sin2(y)}   (2) 
 

ρρρρ = ρρρρmax      (In module fault_params)    (3a) 
kt = kt(u), kt,u = kt,u(u), kt,uu = kt,uu(u)   (Defaults for Linear Flag = 0)   (3b) 
Cp= Cp(u), Cp,u= Cp,u(u)    (Defaults for Linear Flag = 0)   (3c) 
a1 = 1/x2, a2 = x2, a2,x = 2x    (Spherical, Coord. Flag = 3)   (3d) 
b1 = 1/{x2.Sin(y)}, b2 = Sin(y), b2,y = Cos(y)  (Spherical, Coord. Flag = 3)   (3e) 
 
 

Boundary Conditions:   (BC Flags: L/R/T/B = 1),   (BC Linearity Flags: L/T/B = 1, R = 0) 
L1(u) . ux + L2(u) = 1.ux(0,y) + 0 =    0    = fL(y,t)  (4a) 
R1(u) . ux + R2(u) = kt(u).ux(1,y) + 0  =   h(t) . g(y)  .{1-Cos(1)}    = fR(y,t)  (4b) 
B1(u) . uy + B2(u) = 1.uy(x,0) + 0 =     0    = fB(x,t)   (4c) 
T1(u) . uy + T2(u) = 1.uy(x,π) + 0  =    0   = fT(x,t)   (4d) 
 
 

Source Function, f  rhs: 
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for x ≠≠≠≠ 0, and y = 0 or ππππ, 
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and for x = 0, 
f = 300 .ρρρρ .CP           (5e) 
 

and, for x ≠≠≠≠ 0, and y ≠≠≠≠ 0 or ππππ, 
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for x ≠≠≠≠ 0, and y = 0 or ππππ, 
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and, for x = 0, 
fu = -ρρρρ .CP           (6c) 
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Table A- 5. Problem input sheet for Thesis problem: Nonlinear spherical PDE with linear/nonlinear 
Neumann boundary conditions.  Input expressions for the code are in bold. 
 

 
Solution: u = UNKNOWN     (Exact Sol Flag = 0)  (1) 
Initial Condition: u(t = 0) = u0 = 300        (2) 
 
ρρρρ = ρρρρmax      (In module fault_params)    (3a) 
kt = kt(u), kt,u = kt,u(u), kt,uu = kt,uu(u)   (Defaults for Linear Flag = 0)   (3b) 
Cp= Cp(u), Cp,u= Cp,u(u)    (Defaults for Linear Flag = 0)   (3c) 
a1 = 1/x2, a2 = x2, a2,x = 2x    (Spherical, Coord. Flag = 3)   (3d) 
b1 = 1/{x2.Sin(y)}, b2 = Sin(y), b2,y = Cos(y)  (Spherical, Coord. Flag = 3)   (3e) 
 
 
Boundary Conditions:   (BC Flags: L/R/T/B = 1),   (BC Linearity Flags: L/T/B = 1, R = 0) 
L1(u) . ux + L2(u) = 1.ux(0,y) + 0 =    0                = fL(y,t) (4a) 
R1(u) . ux + R2(u) = kt(u).ux(0.1,y) + 0   

= (τ .Vslip/4).[Tanh{1000.(y - y0)} – Tanh(1000.y)].[Tanh{1000.(t - t0)} – Tanh(1000.t)]  = fR(y,t) (4b) 
B1(u) . uy + B2(u) = 1.uy(x,0) + 0 =     0                 = fB(x,t)  (4c) 
T1(u) . uy + T2(u) = 1.uy(x,π) + 0  =    0                = fT(x,t)  (4d) 
 
 
Source Function, f  rhs: 
 
f = 0            (5a) 
and,  
fu = 0            (5b) 
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Running the executable file:  To run the code for short duration runs (reasonably small domain size, 
short temporal range, and coarse resolutions – typically, taking less than 2 hours to run to completion) 
type the name of the executable generated above, followed by the four arguments as discussed in Sections 
A-3.2.5.1 and A-3.2.5.2.  It may be better to run the code in the background, piping the screen output to 
another file for later use, and leaving the terminal free for other things.  In addition, the command itself 
can be timed, by using the UNIX time command.  So, a very general run command for background 
execution is: 
 
$ time cond2d_test 1 2 0 000000 > OUT_1_2_0_000000 &

The above command is useful when the run time for the code is small.  Most large shared systems place a 
limit on the length of time a program job can be run from a user terminal.  So, most extensive runs of the 
code (especially higher resolutions runs that can take days in serial mode) need to be submitted through a 
utility called Load Sharing Facility or LSF.  This allows multiple user jobs of any length to be submitted 
to a serial or parallel queue, and the jobs are executed in the background even when the user is not logged 
on.  In addition, LSF has options for emailing the user when the job starts and ends.  When submitting a 
job via LSF, the first step is to create a script file containing commands to move the code, and relevant 
files to the scratch space (a common workspace allocated for all users for temporary storage of job 
output) and then execute the code from there.  Commands to copy all relevant output back to the user 
directory can be included to automate the whole process.  This is especially useful when a large number 
of runs are submitted in multiple jobs, and the script file can be automated to do all the bookkeeping, 
sorting and moving the files, saving a significant amount of time.   
 
A typical UNIX script file, T27script, for submitting a multi-run job via LSF is presented in Figure A-7.  
This script was created to run Test Problem #27, presented in Table A-3 above, for testing convergence at 
successive higher resolution runs.  Once the file is created and is given execute permission by the user (by 
using the chmod UNIX command), the following command submits the script file to the LSF serial 
queue, and sends email at the start and end of the job:  
 
$ bsub –B –N –o RUN_OUTPUT –q serial T27script &
 
The file RUN_OUTPUT will contain all error messages, and code runtime information (if specified using 
the time UNIX command).  
 
Processing and analyzing code output:  The code output can be processed and analyzed in a number of 
ways.  Analysis of grid function convergence involves checking how fast the errors - at each one of 
successively higher resolutions - are getting smaller (see McDonough 2001 for a description of grid 
function convergence tests).  Convergence, evolution, and profile data can be imported to a spreadsheet 
program like MS-EXCEL and more advanced post-processing programs like MATLAB.  The most 
rigorous convergence test is shown in Table A-6, for Test Problem #27 (presented in Table A-3), at grid 
nodes specified in the array grid_conv in the module const_params (Sections 3.2.1 and 3.2.5.3 above).  
This data is output to the Dconv file.  This table also shows typical convergence metrics (headings for the 
last four columns).  Once it has been determined from such a test that COND2D is converging for the 
problem of interest, other visual aids can be used to record this convergence for different parts of the 
problem domain.  Figures A-8, A-9, and A-10 are profile and evolution plots that can be used to check 
convergence of grid functions along different “slices” of the spatio-temporal domain of the problem.  
Figure A-8 was generated using output data in the Dsnap file.  Figures A-9 and A-10 were generated from 
data in the Devol file.  Data in the Dgrid and Derrg files can be used to generate surface/contour plots - as 
shown for grid functions in Figure A-11 (using MATLAB, here).  NOTE: All the above tests can be 
carried out even when the exact solution is not known.  In that case, it must be checked that successively 
higher resolutions produce converging sequences of grid functions (numerical solutions).   
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Figure A- 7. UNIX script, T27script, for submitting multiple runs for Test Problem #27 (Table 3) as 
an LSF job:   

 
mkdir /scratch/rvkand2/T27_SmtF_05
cp ./qldgts /scratch/rvkand2/T27_SmtF_05
cp ./*.mod /scratch/rvkand2/T27_SmtF_05
cp ./qlindgts.o /scratch/rvkand2/T27_SmtF_05

cd /scratch/rvkand2/T27_SmtF_05
time ./qldgts 2 4 > ScreenOutput_05_4

cd
/u/home1/rvkand2/algorithms/PDE_SOLVERS/PARABOLIC_PDE/2D_Parabolic/QLin_DGTS_Lin_NonLin/TESTS/T27_SmtF_NonlinSp
hNeuRob
cp /scratch/rvkand2/T27_SmtF_05/ScreenOutput_05_4 ./
cp /scratch/rvkand2/T27_SmtF_05/Dconv ./Dconv_0.05_4
cp /scratch/rvkand2/T27_SmtF_05/Devol ./Devol_0.05_4
cp /scratch/rvkand2/T27_SmtF_05/Dgrid ./Dgrid_0.05_4
cp /scratch/rvkand2/T27_SmtF_05/Dplot ./Dplot_0.05_4
cp /scratch/rvkand2/T27_SmtF_05/Dsnap ./Dsnap_0.05_4

rm -rf /scratch/rvkand2/T27_SmtF_05
echo " "
echo "******************************* Run QLDGTS_05 Completed. ***********************************"
echo " "

#------------------------------------------------------------------------------------------------
mkdir /scratch/rvkand2/T27_SmtF_025
cp ./qldgts /scratch/rvkand2/T27_SmtF_025
cp ./*.mod /scratch/rvkand2/T27_SmtF_025
cp ./qlindgts.o /scratch/rvkand2/T27_SmtF_025

cd /scratch/rvkand2/T27_SmtF_025
time ./qldgts 3 4 > ScreenOutput_025_4

cd
/u/home1/rvkand2/algorithms/PDE_SOLVERS/PARABOLIC_PDE/2D_Parabolic/QLin_DGTS_Lin_NonLin/TESTS/T27_SmtF_NonlinSp
hNeuRob
cp /scratch/rvkand2/T27_SmtF_025/ScreenOutput_025_4 ./
cp /scratch/rvkand2/T27_SmtF_025/Dconv ./Dconv_0.025_4
cp /scratch/rvkand2/T27_SmtF_025/Devol ./Devol_0.025_4
cp /scratch/rvkand2/T27_SmtF_025/Dgrid ./Dgrid_0.025_4
cp /scratch/rvkand2/T27_SmtF_025/Dplot ./Dplot_0.025_4
cp /scratch/rvkand2/T27_SmtF_025/Dsnap ./Dsnap_0.025_4

rm -rf /scratch/rvkand2/T27_SmtF_025
echo " "
echo "******************************* Run QLDGTS_025 Completed. ***********************************"
echo " "

#------------------------------------------------------------------------------------------------
mkdir /scratch/rvkand2/T27_SmtF_0125
cp ./qldgts /scratch/rvkand2/T27_SmtF_0125
cp ./*.mod /scratch/rvkand2/T27_SmtF_0125
cp ./qlindgts.o /scratch/rvkand2/T27_SmtF_0125

cd /scratch/rvkand2/T27_SmtF_0125
time ./qldgts 4 4 > ScreenOutput_0125_4

cd
/u/home1/rvkand2/algorithms/PDE_SOLVERS/PARABOLIC_PDE/2D_Parabolic/QLin_DGTS_Lin_NonLin/TESTS/T27_SmtF_NonlinSp
hNeuRob
cp /scratch/rvkand2/T27_SmtF_0125/ScreenOutput_0125_4 ./
cp /scratch/rvkand2/T27_SmtF_0125/Dconv ./Dconv_0.0125_4
cp /scratch/rvkand2/T27_SmtF_0125/Devol ./Devol_0.0125_4
cp /scratch/rvkand2/T27_SmtF_0125/Dgrid ./Dgrid_0.0125_4
cp /scratch/rvkand2/T27_SmtF_0125/Dplot ./Dplot_0.0125_4
cp /scratch/rvkand2/T27_SmtF_0125/Dsnap ./Dsnap_0.0125_4

rm -rf /scratch/rvkand2/T27_SmtF_0125
echo " "
echo "******************************* Run QLDGTS_0125 Completed. ***********************************"
echo " "
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Table A- 6. Grid function convergence tests for the nonlinear problem in Spherical system, Test 
Problem #27, generated from the output of the Dconv files produced after executing the script file 
T27script (Figure 7).   

Newton-Kantorovich with Douglass-Gunn Time Splitting: Grid Convergence Tests for T27 NonlinSphNeuRob:  U(x,y,t) = (e-t).{x - SIN(x)}.{ (y2/2) + y.SIN(y) + SIN2(y) }
 

Grid Resolution 
Relationships 

Grid function 
Resolutions & 
Coordinates 

 
U(x,y) 

 
Absolute Grid Function Errors 

(W.R.T Exact Solution) 

Absolute "Cauchy" Grid 
Function Errors 

(W.R.T Next Lower H Value) 

Theoretical 
(Based on Absolute Errors) 

R = Eh/Eh/2 

Computationally Observed 
(Based on "Cauchy" errors): 

R' = eh/eh/2 
   E= ABS{Uexact(j,i) - u(j,i)} e = ABS{u(m+1)(j,i) - u(m)(j,i)} R = 2N_theo R' = 2N_comp

x = 0.20   
y = 0.10       
t =  0.25     

k=0.001*hx=0.01*hy 0.1 2.05699284E-03 2.03114E-03 1.53474E-03 4.09 4.1
k=0.001*hx=0.01*hy 0.05 5.22251308E-04 4.96395E-04 3.73212E-04 4.03 4.1
k=0.001*hx=0.01*hy 0.025 1.49039017E-04 1.23183E-04 9.20911E-05 3.96
k=0.001*hx=0.01*hy 0.0125 5.69478855E-05 3.10915E-05
k=0.001*hx=0.01*hy 0.00625  

  EXACT SOLUTION 2.58563938E-05 

x = 0 60
y = 0.30   
t =  0.25 

k=0.001*hx=0.01*hy 0.1 6.53711900E-03 4.51883E-04 3.38814E-04 4.00 4.0
k=0.001*hx=0.01*hy 0.05 6.19830516E-03 1.13069E-04 8.43551E-05 3.94 4.0
k=0.001*hx=0.01*hy 0.025 6.11395001E-03 2.87137E-05 2.12237E-05 3.83
k=0.001*hx=0.01*hy 0.0125 6.09272634E-03 7.49003E-06
k=0.001*hx=0.01*hy 0.00625  

  EXACT SOLUTION 6.08523631E-03 

x = 0 50
y = 0.50   
t =  0.25 

k=0.001*hx=0.01*hy 0.1 1.03313012E-02 8.04399E-04 6.02856E-04 3.99 4.0
k=0.001*hx=0.01*hy 0.05 9.72844501E-03 2.01542E-04 1.50601E-04 3.96 4.0
k=0.001*hx=0.01*hy 0.025 9.57784421E-03 5.09417E-05 3.78312E-05 3.89
k=0.001*hx=0.01*hy 0.0125 9.54001304E-03 1.31105E-05
k=0.001*hx=0.01*hy 0.00625  

  EXACT SOLUTION 9.52690256E-03   

x = 0 70
y = 0.80   
t =  0.25 

k=0.001*hx=0.01*hy 0.1 6.16307285E-02 4.41495E-04 3.29636E-04 3.95 4.0
k=0.001*hx=0.01*hy 0.05 6.13010921E-02 1.11859E-04 8.31279E-05 3.89 3.9
k=0.001*hx=0.01*hy 0.025 6.12179641E-02 2.87311E-05 2.11303E-05 3.78
k=0.001*hx=0.01*hy 0.0125 6.11968338E-02 7.60086E-06
k=0.001*hx=0.01*hy 0.00625  

  EXACT SOLUTION 6.11892330E-02 

x = 0 40
y = 0.60   
t =  0.50 

k=0.001*hx=0.01*hy 0.1 6.62660127E-03 1.25076E-03 9.39176E-04 4.01 4.0
k=0.001*hx=0.01*hy 0.05 5.68742569E-03 3.11583E-04 2.32832E-04 3.96 4.0
k=0.001*hx=0.01*hy 0.025 5.45459387E-03 7.87511E-05 5.83731E-05 3.86
k=0.001*hx=0.01*hy 0.0125 5.39622080E-03 2.03780E-05
k=0.001*hx=0.01*hy 0.00625  

  EXACT SOLUTION 5.37584281E-03 

x = 0 10
y = 0.40   
t =  0.50 

k=0.001*hx=0.01*hy 0.1 2.43444623E-03 2.39530E-03 1.80100E-03 4.03 4.0
k=0.001*hx=0.01*hy 0.05 6.33447862E-04 5.94304E-04 4.45441E-04 3.99 4.0
k=0.001*hx=0.01*hy 0.025 1.88006894E-04 1.48863E-04 1.10923E-04 3.92
k=0.001*hx=0.01*hy 0.0125 7.70838936E-05 3.79404E-05
k=0.001*hx=0.01*hy 0.00625  

  EXACT SOLUTION 3.91434995E-05 

x = 0 90
y = 0.90   
t =  0.50 

k=0.001*hx=0.01*hy 0.1 1.22306655E-01 3.35046E-04 2.50567E-04 3.97 4.0
k=0.001*hx=0.01*hy 0.05 1.22056088E-01 8.44790E-05 6.23371E-05 3.82 3.9
k=0.001*hx=0.01*hy 0.025 1.21993751E-01 2.21419E-05 1.59770E-05 3.59
k=0.001*hx=0.01*hy 0.0125 1.21977774E-01 6.16484E-06
k=0.001*hx=0.01*hy 0.00625  

  EXACT SOLUTION 1.21971609E-01 

x = 0 80
y = 0.70   
t =  0.50 

k=0.001*hx=0.01*hy 0.1 5.61258534E-02 4.37359E-04 3.27684E-04 3.99 4.0
k=0.001*hx=0.01*hy 0.05 5.57981690E-02 1.09675E-04 8.13212E-05 3.87 3.9
k=0.001*hx=0.01*hy 0.025 5.57168478E-02 2.83533E-05 2.06636E-05 3.69
k=0.001*hx=0.01*hy 0.0125 5.56961841E-02 7.68971E-06
k=0.001*hx=0.01*hy 0.00625  

  EXACT SOLUTION 5.56884944E-02 
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Figure A- 8. Snapshots of profiles along the principal axes, for the nonlinear problem in Spherical 
system, Test Problem #27 (Table 3).  (a) Snapshot profile parallel to the x-axis, at y = 0.60, t = 0.25. 
(b) Snapshot profile parallel to the y-axis, at x = 0.30, t = 0.50.  Data from Dsnap output file.   
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x

U

U(x,0.60,0.25), EXACT U(x,0.60,0.25) @ hx = 0.1, hy= 0.1, k = 0.0001

U(x,0.60,0.25) @ hx = 0.05, hy= 0.05, k = 0.00005 U(x,0.60,0.25) @ hx = 0.025, hy= 0.025, k = 0.000025

U(x,0.60,0.25) @ hx = 0.0125, hy= 0.0125, k = 0.0000125
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U(0.30,y,0.50) , EXACT U(0.30,y,0.50)  @ hx = 0.1, hy= 0.1, k = 0.0001

U(0.30,y,0.50)  @ hx = 0.05, hy= 0.05, k = 0.00005 U(0.30,y,0.50) @ hx = 0.025, hy= 0.025, k = 0.000025
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Figure A- 9. Evolution of grid functions with time, for the nonlinear problem in Spherical system, 
Test Problem #27 (Table 3): x = 0.5, y = 0.5.  Data from Devol output file.   
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Figure A- 10. Evolution of maximum grid function error with time, for the nonlinear problem in 
Spherical system, Test Problem #27 (Table 3), at a resolution of hx = hy = 0.05.  (a) Peak Error (at 
the origin, x = 0): For this spherical system problem the peak error is primarily made up of 
truncation error at x=0, since the value of the solution here is 0 (zero).  (b) Grid function maxima 
(at the boundary, x = 1 & y = 2.6):  As a comparison, the temporal grid-function domain maximum 
occurs at t = 0, and has a magnitude of ~0.790433.. at (x,y) = (1.0, 2.6).  The grid-function domain 
maximum at the time of peak error is ~0.615556.. at (x,y) = (1.0, 2.6).  Thus, even though the 
maximum error and maximum grid-function value do not coincide in space, the former is still only 
~0.16% of this value.  The maximum error at the peak grid function values is, however, much 
smaller, ~0.01% at its maximum.  Thus, as expected, where the value of the grid function is 
comparable to the grid resolution, the accuracy of the numerical solution is affected.  That is why, 
an optimal grid resolution is important for any problem.  All data for these plots were obtained 
from the Devol output file.   
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Figure A- 11. Surface contour plots comparing the analytical (exact) and numerical solutions at 
specific times, for the nonlinear problem in Spherical system, Test Problem #27 (Table 3).  As can be 
seen, at the resolution of these plots, the analytical and numerical solutions are identical at time = 
0.0, 0.50 and 0.75.   
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A-3.4 COND2D validation tests 
 
In order to test the validity of COND2D, three levels of test problems were designed – constant solution 
problems, linear solution problems, and “smooth” solution problems.  So, using a limited set of solutions, 
a large number of different test problems can be generated by changing the boundary conditions, and the 
nonlinear thermal property functionals.   
 
The variation of thermal conductivity, kt, and specific heat, CP, of quartz (the chief type of mineral in 
which frictional melts are found) with temperature were found to be well fitted by straight lines of 
different slopes in thermal zones corresponding to the two quartz phases.  So, some of these tests used 
just a general linear function for these parameters.  The one was added to make sure these functions do 
not become zero inside the domain, which is not realistic.  For the nonlinear problem, such an abrupt 
profile for kt and CP meant using much higher resolutions.  So, another alternative was sought that would 
vary both parameters smoothly over the temperature range of most geological conduction problems (300-
3000 K), and at the same time, be Lipschitz continuous in this range (as discussed in Chapter A-1).  This 
led, after some trial and error, to the two curves presented in Figures C-1 and C-2 of Appendix C.   
 
The first two sets of tests – constant and linear solution problems - make it easier to identify any 
fundamental bugs in the code by, ensuring that either all the derivatives, or all but the first derivatives 
(respectively) of the solution are 0 (zero).  The smooth solutions were designed to test convergence rates 
using “well-behaved” solutions.  Different smooth solutions were generated to satisfy the symmetry 
conditions for cylindrical and spherical coordinate systems.  In order to confirm that the code really works 
for the range of coordinate systems and BCs, for both linear and non-linear problems, a number of tests 
were conducted, that tested different loops in various COND2D subroutine.  The total number of tests 
required was considerably reduced by taking advantage of the generality of the problem posed, {Equation 
(15a)}, and recognizing the following relationships between the three different parts of the code: 
 
•  The linear functional (PDE), Equation (15a’) is a special case of the nonlinear functional (15a) – so 

attempting a linear problem with identical solution and boundary conditions (BCs) first can identify 
any basic problems with the code.  The additional loops and subroutines for the nonlinear problem 
can then be tested “on top” of the linear test.   

•  Similarly, the Cartesian coordinate system yields the simplest PDE.  Once the code has been tested 
for this system, for different linear/nonlinear BCs, most of the basic coordinate independent loops and 
most of the BC loops will have been tested.   

•  The boundary condition loops and subroutines are completely independent of the coordinate system 
specific loops and subroutines – so every combination of boundary condition and coordinate system 
need not be tested.   

•  The Robin and Neumann BC loops, as well as the cylindrical and spherical system loops have a lot in 
common – so as long as each one of them is tested once (or twice), only one of each pair need be 
tested thoroughly in subsequent runs.  So, the tests shown in Table A-7 do not have as many Robin 
BC runs or Cylindrical system runs, but they do appear at least twice, to make sure that the code 
specific to these components does indeed work.   

 
 Tests conducted based on these very general rules are summarized in Table A-7.  To limit the size 
of this document, only some key test results are shown here, as indicated by bolded rows in Table A-7.  
As the problem complexity increased, bugs were frequently detected in the new parts of the code that was 
being tested for the first time.  When this happened, the bugs were rectified, and the code was re-run, or 
new problems generated  –  so a large number of tests had to be conducted in the end.  Thus, in Table A-
7, some runs share nearly identical problem data.  The convergence tests appear in Tables A-8 to A-12, 
and relevant plots in Figures A-12 to A-23.  Detailed results from Test Problem #27 were presented in 
Section A-3.3 (and discussed in Figure A-10).   
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Table A- 7. Summary of validation tests conducted on COND2D.  Second order convergence of 
Douglas-Gunn scheme, and quadratic convergence of the nonlinear iterations, were observed. In all 
cases.  Rows in bold indicate tests for which convergence test data is presented in this document. 
 
# 

 
TP$ 

 
PDE Type 

Coordinate 
System 

Boundary 
Conditions 

 

Boundary 
Condition 

Type 

 
kt & 
CP 

 
Exact Solution, u = f(x,y,t) 

1 1 Linear Cartesian All: Dirichlet Linear kt & CP: Constants 
2 2 Nonlinear Cartesian All: Dirichlet Nonlinear kt = 1+u, CP = 1+u 
3 3 Linear Cartesian All: Neumann Linear kt & CP: Constants 
4 4 Nonlinear Cartesian All: Neumann Nonlinear kt = 1+u, CP = 1+u 
5 5 Linear Cartesian All: Robin Linear kt & CP: Constants 
6 6 Nonlinear Cartesian All: Robin Nonlinear kt = 1+u, CP = 1+u 
7 7 Linear Cylindrical All: Neumann Linear kt & CP: Constants 
8 8 Nonlinear Cylindrical All: Neumann Nonlinear kt = 1+u, CP = 1+u 
9 9 Linear Spherical All: Dirichlet Linear kt & CP: Constants 
10 10 Nonlinear Spherical All: Dirichlet Nonlinear kt = 1+u, CP = 1+u 
11 11 Linear Spherical All: Neumann Linear kt & CP: Constants 
12 12 Nonlinear Spherical All: Neumann Nonlinear kt = 1+u, CP = 1+u 

 
 
 
 
 

1 
 

13 13 Linear Cartesian All: Dirichlet Linear kt & CP: Constants 
14 14 Nonlinear Cartesian All: Dirichlet Nonlinear kt = 1+u, CP = 1+u 
15 15 Linear Cartesian All: Neumann Linear kt & CP: Constants 
16 16 Nonlinear Cartesian All: Neumann Nonlinear kt = 1+u, CP = 1+u 

 
(x+y)t 

17 17 Nonlinear Cartesian L/R: Dirichlet 
T/B: Neumann 

Nonlinear kt = 1+u, CP = 1+u 

18 21 All: Dirichlet 
19 22 

 
Linear 

 
Cartesian All: Neumann 

 
Linear 

 
kt & CP: Constants 

20 25 Nonlinear Cartesian All: Dirichlet Nonlinear kt = 1+u, CP = 1+u 

 

1 - te .2π− .Sin(ππππx).Sin(ππππy) 
 

21 18 Nonlinear Cylindrical L/R: Neumann  
T/B: Dirichlet 

22 19 Nonlinear Spherical L/R: Dirichlet  
T/B: Neumann 

 
Nonlinear 

 
kt = 1+u, CP = 1+u 

 
1 – e-t.x2.Cos(y) 

23 23 Linear Cylindrical 1 - te− .{x -Sin(x)}.Sin(y) 
24 24 Linear Spherical 

 
All: Neumann 

 
Linear 

 
kt & CP: Constants 

1 - te− .{x -Sin(x)}.Cos(y) 
25 26 Nonlinear Cylindrical L/R:Neumann 

T/B:Dirichlet 
Nonlinear te− .{x -Sin(x)}. {y -Sin(y)} 

26 27 Nonlinear Spherical L/R: Neumann 
T/B: Robin 

Nonlinear 

 
kt = 1+u, CP = 1+u 

te−
.{x -Sin(x)}. {(y2/2) +y.Sin(y) + Sin2(y)} 

27 28 Linear Cartesian All: Dirichlet Linear Solution from Carslaw & Jaegar 1959: 
Sec. 5.6, p. 173.* 

28 29 Linear Spherical  L/T/B: 
Neumann 

R: Dirichlet 

Linear 

 
kt & CP: Constants 

Solution from Carslaw & Jaegar 1959: 
Sec. 9.11, p. 248-250.** 

29 30a Nonlinear kt = A/uα,  
CP = B.Ln(u) + C 

30 30c Nonlinear 
31 
 

30b, 
30g, 
31 

 
L/T/B: Linear 
R: Nonlinear 

Figures C-1 & C-2: 
kt = 1 + A.e-Bu,  

CP = C.{1 - D.e-Eu) 
Non Differentiable at 

u= 300 K 

 
 

300 + [ (2.5x106).
te−

.{x -Sin(x)}. 
                  {(y2/2) +y.Sin(y) + Sin2(y)} ] 

32 30d Nonlinear 
33 30f 

 
 
 
 

All: Neumann 

L/T/B: Linear 
R: Nonlinear 

34 30e L/T/B: Neumann
R: Dirichlet 

Linear 

 
 

kt = 1+u, CP = 1+u 

 
 

te−
.{x -Sin(x)}. {(y2/2) +y.Sin(y) + Sin2(y)}

 
 
35 

 
 
32 

 
 
 
 
 
 
 

Nonlinear 

 
 
 
 
 
 
 

Spherical 

 
 

All: Neumann 

 
L/T/B: Linear
R: Nonlinear

Figures C-1 & C-2: 
kt = 1 + A.e-Bu,  

CP = C.{1 - D.e-Eu) 
Differentiable at     

u = 300 K 

 

300 + [ (2.5x106).
te−

.{x -Sin(x)}. 
                  {(y2/2) +y.Sin(y) + Sin2(y)} ] 



 117

Table A-7. (Continued) 
 
$ TP = Test Problem Number.  This was the sequence in which actual tests were done.  
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   jn = spherical Bessel function of order n, αnm = mth root of the nth order spherical Bessel function, and Pn = Legendre function of order n. 
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Table A- 8. Grid function convergence tests for the nonlinear problem in Cartesian system, Test 
Problem #17 (Table 7), generated from the output of the corresponding Dconv files.   

Newton-Kantorovich with Douglass-Gunn Time Splitting: Grid Convergence Tests for T27 NonlinSphNeuRob: U(x,y,t) = 1 - (e-ππππ2.t). SIN(ππππx). SIN(ππππy)
 

Grid Resolution 
Relationships 

Grid function 
Resolutions & 
Coordinates 

 
U(x,y) 

 
Absolute Grid Function 

Errors 

Absolute "Cauchy" Grid 
Function Errors 

(W.R.T Next Lower H 

Theoretical 
(Based on Absolute Errors) 

R = Eh/Eh/2 

Computationally Observed 
(Based on "Cauchy" errors): 

R' = eh/eh/2 
   E= ABS{Uexact(j,i) - u(j,i)} e = ABS{u(m+1)(j,i) - u(m)(j,i)} R = 2N_theo R' = 2N_comp

x = 0.20   
y = 0.10       
t =  0.25       

k=0.001*hx=0.01*hy 0.1 0.9835007143 1.09568E-03 8.38531E-04 4.26 4.1
k=0.001*hx=0.01*hy 0.05 0.9843392449 2.57150E-04 2.04260E-04 4.86 4.5
k=0.001*hx=0.01*hy 0.025 0.9845435045 5.28907E-05 4.55489E-05 7.20 0.0
k=0.001*hx=0.01*hy 0.0125 0.9845890534 7.34182E-06 9.84589E-01 0.00
k=0.001*hx=0.01*hy 0.00625 0.0000000000 9.84596E-01

  EXACT SOLUTION 0.9845963952 

x = 0 60
y = 0.30   
t =  0.25   

k=0.001*hx=0.01*hy 0.1 0.9320613431 2.68794E-03 2.04978E-03 4.21 4.1
k=0.001*hx=0.01*hy 0.05 0.9341111237 6.38159E-04 4.98404E-04 4.57 4.3
k=0.001*hx=0.01*hy 0.025 0.9346095281 1.39755E-04 1.14884E-04 5.62 0.0
k=0.001*hx=0.01*hy 0.0125 0.9347244117 2.48714E-05 9.34724E-01 0.00
k=0.001*hx=0.01*hy 0.00625 0.0000000000 9.34749E-01

  EXACT SOLUTION 0.9347492831 

x = 0 50
y = 0.50   
t =  0.25   

k=0.001*hx=0.01*hy 0.1 0.9119633595 3.23167E-03 2.46252E-03 4.20 4.1
k=0.001*hx=0.01*hy 0.05 0.9144258823 7.69145E-04 5.98337E-04 4.50 4.3
k=0.001*hx=0.01*hy 0.025 0.9150242195 1.70808E-04 1.38973E-04 5.37 0.0
k=0.001*hx=0.01*hy 0.0125 0.9151631929 3.18346E-05 9.15163E-01
k=0.001*hx=0.01*hy 0.00625 0.0000000000 9.15195E-01 9.15195E-01

  EXACT SOLUTION 0.9151950275   
          

x = 0 70
y = 0.80   
t =  0.25   

k=0.001*hx=0.01*hy 0.1 0.9577475607 1.92528E-03 1.46998E-03 4.23 4.1
k=0.001*hx=0.01*hy 0.05 0.9592175378 4.55301E-04 3.57727E-04 4.67 4.4
k=0.001*hx=0.01*hy 0.025 0.9595752647 9.75745E-05 8.15031E-05 6.07 0.0
k=0.001*hx=0.01*hy 0.0125 0.9596567677 1.60714E-05 9.59657E-01 0.00
k=0.001*hx=0.01*hy 0.00625 0.0000000000 9.59673E-01

  EXACT SOLUTION 0.9596728392 
     

x = 0 40
y = 0.60   
t =  0.50   

k=0.001*hx=0.01*hy 0.1 0.9911336094 2.36127E-03 1.81400E-03 4.31 4.2
k=0.001*hx=0.01*hy 0.05 0.9929476081 5.47272E-04 4.32255E-04 4.76 4.4
k=0.001*hx=0.01*hy 0.025 0.9933798636 1.15017E-04 9.71800E-05 6.45 0.0
k=0.001*hx=0.01*hy 0.0125 0.9934770435 1.78369E-05 9.93477E-01 0.00
k=0.001*hx=0.01*hy 0.00625 0.0000000000 9.93495E-01

  EXACT SOLUTION 0.9934948804 

x = 0 10
y = 0.40   
t =  0.50   

k=0.001*hx=0.01*hy 0.1 0.9971208136 7.65545E-04 5.88067E-04 4.31 4.2
k=0.001*hx=0.01*hy 0.05 0.9977088803 1.77478E-04 1.40176E-04 4.76 4.4
k=0.001*hx=0.01*hy 0.025 0.9978490560 3.73025E-05 3.15171E-05 6.45 0.0
k=0.001*hx=0.01*hy 0.0125 0.9978805731 5.78538E-06 9.97881E-01 0.00
k=0.001*hx=0.01*hy 0.00625 0.0000000000 9.97886E-01

  EXACT SOLUTION 0.9978863585 
     

x = 0 90
y = 0.90   
t =  0.50   

k=0.001*hx=0.01*hy 0.1 0.9985802503 7.32986E-04 5.63404E-04 4.32 4.2
k=0.001*hx=0.01*hy 0.05 0.9991436543 1.69582E-04 1.34211E-04 4.79 4.5
k=0.001*hx=0.01*hy 0.025 0.9992778652 3.53711E-05 3.00520E-05 6.65 0.0
k=0.001*hx=0.01*hy 0.0125 0.9993079172 5.31909E-06 9.99308E-01 0.00
k=0.001*hx=0.01*hy 0.00625 0.0000000000 9.99313E-01

  EXACT SOLUTION 0.9993132363 

x = 0 80
y = 0.70   
t =  0.50   

k=0.001*hx=0.01*hy 0.1 0.9951373375 1.44272E-03 1.10844E-03 4.32 4.2
k=0.001*hx=0.01*hy 0.05 0.9962457768 3.34279E-04 2.64143E-04 4.77 4.5
k=0.001*hx=0.01*hy 0.025 0.9965099194 7.01369E-05 5.93331E-05 6.49 0.0
k=0.001*hx=0.01*hy 0.0125 0.9965692524 1.08038E-05 9.96569E-01 0.00
k=0.001*hx=0.01*hy 0.00625 0.0000000000 9.96580E-01

  EXACT SOLUTION 0.9965800562 
 



 119

Figure A- 12. Snapshots of profiles along the principal axes, for the nonlinear problem in Cartesian 
system, Test Problem #17 (Table 7).  (a) Snapshot profile parallel to the x-axis, at y = 0.60, t = 0.25. 
(b) Snapshot profile parallel to the y-axis, at x = 0.30, t = 0.50.  Data from Dsnap output file.   
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Figure A- 13. Evolution of grid functions with time, for the nonlinear problem in Cartesian system, 
Test Problem #17 (Table 7): x = 0.5, y = 0.5.  Data from Devol output file.   
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Table A- 9. Grid function convergence tests for the nonlinear problem in Cylindrical system, Test 
Problem #23 (Table 7), generated from the output of the corresponding Dconv files.   

Newton-Kantorovich with Douglass-Gunn Time Splitting: Grid Convergence Tests for T27 NonlinSphNeuRob:  U(x,y,t) = 1 - (e-.t). {x - SIN(x)}. SIN(y) 
 

Grid Resolution 
Relationships 

Grid function 
Resolutions & 
Coordinates 

 
U(x,y) 

 
Absolute Grid Function Errors 

(W.R.T Exact Solution) 

Absolute "Cauchy" Grid 
Function Errors 

(W.R.T Next Lower H 

Theoretical 
(Based on Absolute Errors) 

R = Eh/Eh/2 

Computationally Observed 
(Based on "Cauchy" errors): 

R' = eh/eh/2 
   E= ABS{Uexact(j,i) - u(j,i)} e = ABS{u(m+1)(j,i) - R = 2N_theo R' = 2N_comp

x = 0.20   
y = 0.10       
t =  0.25       

k=0.001*hx=0.01*hy 0.1 0.9995343341 3.62206E-04 2.72068E-04 4.02 4.0
k=0.001*hx=0.01*hy 0.05 0.9998064025 9.01375E-05 6.80253E-05 4.08 4.1
k=0.001*hx=0.01*hy 0.025 0.9998744278 2.21122E-05 1.67471E-05 4.12 4.1
k=0.001*hx=0.01*hy 0.0125 0.9998911749 5.36509E-06 4.11608E-06 4.30
k=0.001*hx=0.01*hy 0.00625 0.9998952910 1.24901E-06

  EXACT SOLUTION 0.9998965400 

x = 0 60
y = 0.30   
t =  0.25   

k=0.001*hx=0.01*hy 0.1 0.9917860339 7.63830E-05 5.81611E-05 4.19 4.1
k=0.001*hx=0.01*hy 0.05 0.9918441950 1.82218E-05 1.41088E-05 4.43 4.3
k=0.001*hx=0.01*hy 0.025 0.9918583039 4.11302E-06 3.29129E-06 5.01 0.0
k=0.001*hx=0.01*hy 0.0125 0.9918615951 8.21730E-07 4.56014E-04 0.00
k=0.001*hx=0.01*hy 0.00625 0.9923176090 4.55192E-04

  EXACT SOLUTION 0.9918624169 

x = 0 50
y = 0.50   
t =  0.25   

k=0.001*hx=0.01*hy 0.1 0.9921702579 1.47712E-04 1.11731E-04 4.11 4.1
k=0.001*hx=0.01*hy 0.05 0.9922819885 3.59811E-05 2.74741E-05 4.23 4.2
k=0.001*hx=0.01*hy 0.025 0.9923094627 8.50698E-06 6.60197E-06 4.47 4.3
k=0.001*hx=0.01*hy 0.0125 0.9923160646 1.90501E-06 1.54437E-06
k=0.001*hx=0.01*hy 0.00625 0.9923176090 3.60638E-07 3.60638E-07

  EXACT SOLUTION 0.9923179696   

x = 0 70
y = 0.80   
t =  0.25   

k=0.001*hx=0.01*hy 0.1 0.9688150881 2.05897E-05 1.69568E-05 5.67 4.9
k=0.001*hx=0.01*hy 0.05 0.9688320448 3.63297E-06 3.49279E-06 25.92 7.4
k=0.001*hx=0.01*hy 0.025 0.9688355376 1.40180E-07 4.73090E-07 0.42 7.5
k=0.001*hx=0.01*hy 0.0125 0.9688360107 3.32910E-07 6.26900E-08 1.23
k=0.001*hx=0.01*hy 0.00625 0.9688359480 2.70220E-07

  EXACT SOLUTION 0.9688356778 

x = 0 40
y = 0.60   
t =  0.50   

k=0.001*hx=0.01*hy 0.1 0.9961467876 2.29281E-04 1.73527E-04 4.11 4.0
k=0.001*hx=0.01*hy 0.05 0.9963203150 5.57533E-05 4.30297E-05 4.38 4.3
k=0.001*hx=0.01*hy 0.025 0.9963633447 1.27235E-05 1.00516E-05 4.76 4.4
k=0.001*hx=0.01*hy 0.0125 0.9963733963 2.67190E-06 2.26866E-06 6.63
k=0.001*hx=0.01*hy 0.00625 0.9963756650 4.03243E-07

  EXACT SOLUTION 0.9963760682 

x = 0 10
y = 0.40   
t =  0.50   

k=0.001*hx=0.01*hy 0.1 0.9995462942 4.14360E-04 3.11325E-04 4.02 4.0
k=0.001*hx=0.01*hy 0.05 0.9998576191 1.03035E-04 7.85002E-05 4.20 4.2
k=0.001*hx=0.01*hy 0.025 0.9999361192 2.45348E-05 1.88692E-05 4.33 4.2
k=0.001*hx=0.01*hy 0.0125 0.9999549884 5.66558E-06 4.50060E-06 4.86
k=0.001*hx=0.01*hy 0.00625 0.9999594890 1.16498E-06

  EXACT SOLUTION 0.9999606540 
     

x = 0 90
y = 0.90   
t =  0.50   

k=0.001*hx=0.01*hy 0.1 0.9446106557 4.34162E-05 2.98951E-05 3.21 3.5
k=0.001*hx=0.01*hy 0.05 0.9445807606 1.35211E-05 8.44768E-06 2.67 2.8
k=0.001*hx=0.01*hy 0.025 0.9445723129 5.07340E-06 3.02779E-06 2.48 2.7
k=0.001*hx=0.01*hy 0.0125 0.9445692851 2.04561E-06 1.13912E-06 2.26
k=0.001*hx=0.01*hy 0.00625 0.9445681460 9.06493E-07

  EXACT SOLUTION 0.9445672395 

x = 0 80
y = 0.70   
t =  0.50   

k=0.001*hx=0.01*hy 0.1 0.9676890410 1.88615E-05 1.64452E-05 7.81 5.1
k=0.001*hx=0.01*hy 0.05 0.9677054862 2.41630E-06 3.25299E-06 2.89 114.8
k=0.001*hx=0.01*hy 0.025 0.9677087392 8.36686E-07 2.83300E-08 0.97 0.1
k=0.001*hx=0.01*hy 0.0125 0.9677087675 8.65016E-07 3.14540E-07 1.57
k=0.001*hx=0.01*hy 0.00625 0.9677084530 5.50476E-07

  EXACT SOLUTION 0.9677079025 
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Figure A- 14. Snapshots of profiles along the principal axes, for the nonlinear problem in 
Cylindrical system, Test Problem #23 (Table 7).  (a) Snapshot profile parallel to the x-axis, at y = 
0.60, t = 0.25. (b) Snapshot profile parallel to the y-axis, at x = 0.30, t = 0.50.  Data from Dsnap 
output file.   
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Figure A- 15. Evolution of grid functions with time, for the nonlinear problem in Cylindrical 
system, Test Problem #23 (Table 7): x = 0.5, y = 0.5.  Data from Devol output file.   
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Table A- 10. Grid function convergence tests for the linear problem in Cartesian system, Test 
Problem #28 (Table 7), generated from the output of the corresponding Dconv files.   

Newton-Kantorovich with Douglass-Gunn Time Splitting: Grid Convergence Tests for T27 NonlinSphNeuRob:  U(x,y,t)  from Carslaw & Jaegar 1959 
 

Grid Resolution 
Relationships 

Grid function 
Resolutions & 
Coordinates 

 
U(x,y) 

 
Absolute Grid Function 

Errors 

Absolute "Cauchy" Grid 
Function Errors 

(W.R.T Next Lower H Value) 

Theoretical 
(Based on Absolute Errors) 

R = Eh/Eh/2 

Computationally Observed 
(Based on "Cauchy" errors): 

R' = eh/eh/2 
   E= ABS{Uexact(j,i) - u(j,i)} e = ABS{u(m+1)(j,i) - u(m)(j,i)} R = 2N_theo R' = 2N_comp

x = 0.20   
y = 0.10       
t =  0.20   

k=0.01*hx=0.01*hy 0.1 0.0000000000 
k=0.01*hx=0.01*hy 0.05 0.0057046101 2.26853E-05 1.70091E-05 4.00 4.0
k=0.01*hx=0.01*hy 0.025 0.0056876010 5.67623E-06 4.25688E-06 4.00
k=0.01*hx=0.01*hy 0.0125 0.0056833441 1.41936E-06
k=0.01*hx=0.01*hy 0.00625 0.0000000000 

  EXACT SOLUTION 0.0056819248 
     

x = 0 60
y = 0.30   
t =  0.20   

k=0.01*hx=0.01*hy 0.1 0.0000000000 2.40690E-02 2.41651E-02
k=0.01*hx=0.01*hy 0.05 0.0241651094 9.60948E-05 7.20503E-05 4.00 4.0
k=0.01*hx=0.01*hy 0.025 0.0240930592 2.40446E-05 1.80321E-05 4.00
k=0.01*hx=0.01*hy 0.0125 0.0240750270 6.01244E-06 2.40750E-02
k=0.01*hx=0.01*hy 0.00625 0.0000000000 2.40690E-02

  EXACT SOLUTION 0.0240690146 
     

x = 0 50
y = 0.50   
t =  0.20   

k=0.01*hx=0.01*hy 0.1 0.0000000000 3.12820E-02 3.14069E-02
k=0.01*hx=0.01*hy 0.05 0.0314068766 1.24891E-04 9.36415E-05 4.00 4.0
k=0.01*hx=0.01*hy 0.025 0.0313132351 3.12500E-05 2.34358E-05 4.00
k=0.01*hx=0.01*hy 0.0125 0.0312897993 7.81419E-06 3.12898E-02
k=0.01*hx=0.01*hy 0.00625 0.0000000000 3.12820E-02 3.12820E-02

  EXACT SOLUTION 0.0312819851 

x = 0 70
y = 0.80   
t =  0.20   

k=0.01*hx=0.01*hy 0.1 0.0000000000 1.48755E-02 1.49349E-02
k=0.01*hx=0.01*hy 0.05 0.0149348610 5.93904E-05 4.45299E-05 4.00 4.0
k=0.01*hx=0.01*hy 0.025 0.0148903311 1.48605E-05 1.11446E-05 4.00
k=0.01*hx=0.01*hy 0.0125 0.0148791866 3.71596E-06 1.48792E-02
k=0.01*hx=0.01*hy 0.00625 0.0000000000 1.48755E-02

  EXACT SOLUTION 0.0148754706 
     

x = 0 40
y = 0.60   
t =  0.40   

k=0.01*hx=0.01*hy 0.1 0.0000000000 5.45985E-04 5.52625E-04
k=0.01*hx=0.01*hy 0.05 0.0005526250 6.63954E-06 4.98520E-06 4.01 4.0
k=0.01*hx=0.01*hy 0.025 0.0005476398 1.65434E-06 1.24110E-06 4.00
k=0.01*hx=0.01*hy 0.0125 0.0005463987 4.13239E-07 5.46399E-04
k=0.01*hx=0.01*hy 0.00625 0.0000000000 5.45985E-04

  EXACT SOLUTION 0.0005459855 

x = 0 10
y = 0.40   
t =  0.40   

k=0.01*hx=0.01*hy 0.1 0.0000000000 1.77401E-04 1.79559E-04
k=0.01*hx=0.01*hy 0.05 0.0001795588 2.15732E-06 1.61979E-06 4.01 4.0
k=0.01*hx=0.01*hy 0.025 0.0001779390 5.37527E-07 4.03258E-07 4.00
k=0.01*hx=0.01*hy 0.0125 0.0001775357 1.34269E-07 1.77536E-04
k=0.01*hx=0.01*hy 0.00625 0.0000000000 1.77401E-04

  EXACT SOLUTION 0.0001774014 
     

x = 0 90
y = 0.90   
t =  0.40   

k=0.01*hx=0.01*hy 0.1 0.0000000000 5.76412E-05 5.83422E-05
k=0.01*hx=0.01*hy 0.05 0.0000583422 7.00955E-07 5.26302E-07 4.01 4.0
k=0.01*hx=0.01*hy 0.025 0.0000578159 1.74653E-07 1.31026E-07 4.00 0.0
k=0.01*hx=0.01*hy 0.0125 0.0000576848 4.36267E-08 5.76848E-05
k=0.01*hx=0.01*hy 0.00625 0.0000000000 5.76412E-05

  EXACT SOLUTION 0.0000576412 

x = 0 80
y = 0.70   
t =  0.40   

k=0.01*hx=0.01*hy 0.1 0.0000000000 2.87042E-04 2.90532E-04
k=0.01*hx=0.01*hy 0.05 0.0002905322 3.49061E-06 2.62088E-06 4.01 4.0
k=0.01*hx=0.01*hy 0.025 0.0002879113 8.69737E-07 6.52485E-07 4.00 0.0
k=0.01*hx=0.01*hy 0.0125 0.0002872588 2.17252E-07 2.87259E-04
k=0.01*hx=0.01*hy 0.00625 0.0000000000 2.87042E-04

  EXACT SOLUTION 0.0002870416 
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Figure A- 16. Snapshots of profiles along the principal axes, for the linear problem in Cartesian 
system, Test Problem #28 (Table 7).  (a) Snapshot profile parallel to the x-axis, at y = 0.60, t = 0.20. 
(b) Snapshot profile parallel to the y-axis, at x = 0.30, t = 0.40.  Data from Dsnap output file.   
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Figure A- 17. Evolution of grid functions with time, for the linear problem in Cartesian system, Test 
Problem #28 (Table 7): x = 0.5, y = 0.5.  Data from Devol output file.   
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Figure A- 18. Surface contour plots comparing the analytical (exact) and numerical solutions at 
specific times, for the linear problem in Cartesian system, Test Problem #28 (Table 7).  As can be 
seen, at the resolution of these plots, the analytical and numerical solutions are identical for times 
0.0, 0.4, and 0.8.   
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Table A- 11. Grid function convergence tests for the linear problem in Spherical system, Test 
Problem #29 (Table 7), generated from the output of the corresponding Dconv files.   

Newton-Kantorovich with Douglass-Gunn Time Splitting: Grid Convergence Tests for T27 NonlinSphNeuRob:  U(x,y,t)  from Carslaw & Jaegar 1959 
 

Grid Resolution 
Relationships 

Grid function 
Resolutions & 
Coordinates 

 
U(x,y) 

 
Absolute Grid Function 

Errors 

Absolute "Cauchy" Grid 
Function Errors 

(W.R.T Next Lower H Value) 

Theoretical 
(Based on Absolute Errors) 

R = Eh/Eh/2 

Computationally Observed 
(Based on "Cauchy" errors): 

R' = eh/eh/2 
   E= ABS{Uexact(j,i) - u(j,i)} e = ABS{u(m+1)(j,i) - u(m)(j,i)} R = 2N_theo R' = 2N_comp

x = 0.20   
y = 0.10       
t =  0.20       

k=0.01*hx=0.01*hy 0.1 0.0000000000 
k=0.01*hx=0.01*hy 0.05 0.1976762349 1.55057E-03 1.16117E-03 3.98 4.3
k=0.01*hx=0.01*hy 0.025 0.1965150662 3.89406E-04 2.67851E-04 3.20
k=0.01*hx=0.01*hy 0.0125 0.1962472151 1.21555E-04

  EXACT SOLUTION 0.1961256600 
     

x = 0 60
y = 0.30   
t =  0.20   

k=0.01*hx=0.01*hy 0.1 0.0000000000 
k=0.01*hx=0.01*hy 0.05 0.2719819163 3.08096E-03 2.31175E-03 4.01 4.1
k=0.01*hx=0.01*hy 0.025 0.2696701658 7.69214E-04 5.69816E-04 3.86
k=0.01*hx=0.01*hy 0.0125 0.2691003495 1.99398E-04

  EXACT SOLUTION 0.2689009520 
     

x = 0 50
y = 0.50   
t =  0.20   

k=0.01*hx=0.01*hy 0.1 0.0000000000 
k=0.01*hx=0.01*hy 0.05 0.2744022733 2.96548E-03 2.22464E-03 4.00 4.1
k=0.01*hx=0.01*hy 0.025 0.2721776344 7.40838E-04 5.44935E-04 3.78
k=0.01*hx=0.01*hy 0.0125 0.2716326990 1.95903E-04

  EXACT SOLUTION 0.2714367960   
          

x = 0 70
y = 0.80   
t =  0.20   

k=0.01*hx=0.01*hy 0.1 0.0000000000 
k=0.01*hx=0.01*hy 0.05 0.1599398572 1.86779E-03 1.40168E-03 4.01 4.1
k=0.01*hx=0.01*hy 0.025 0.1585381806 4.66115E-04 3.43987E-04 3.82
k=0.01*hx=0.01*hy 0.0125 0.1581941935 1.22127E-04

  EXACT SOLUTION 0.1580720660 
     

x = 0 40
y = 0.60   
t =  0.40   

k=0.01*hx=0.01*hy 0.1 0.0000000000 
k=0.01*hx=0.01*hy 0.05 0.0045194926 8.48274E-05 6.37044E-05 4.02 5.3
k=0.01*hx=0.01*hy 0.025 0.0044557883 2.11230E-05 1.20638E-05 2.33
k=0.01*hx=0.01*hy 0.0125 0.0044437245 9.05927E-06

  EXACT SOLUTION 0.0044346652 
     

x = 0 10
y = 0.40   
t =  0.40   

k=0.01*hx=0.01*hy 0.1 0.0000000000 
k=0.01*hx=0.01*hy 0.05 0.0017170299 1.43174E-05 1.06705E-05 3.93 4.1
k=0.01*hx=0.01*hy 0.025 0.0017063595 3.64694E-06 2.63327E-06 0.58
k=0.01*hx=0.01*hy 0.0125 0.0017089927 6.28021E-06

  EXACT SOLUTION 0.0017027125 
     

x = 0 90
y = 0.90   
t =  0.40   

k=0.01*hx=0.01*hy 0.1 0.0000000000 
k=0.01*hx=0.01*hy 0.05 0.0008418041 1.78854E-05 1.34411E-05 4.02 4.8
k=0.01*hx=0.01*hy 0.025 0.0008283630 4.44429E-06 2.81037E-06 2.72
k=0.01*hx=0.01*hy 0.0125 0.0008255526 1.63393E-06

  EXACT SOLUTION 0.0008239187 

x = 0 80
y = 0.70   
t =  0.40   

k=0.01*hx=0.01*hy 0.1 0.0000000000 
k=0.01*hx=0.01*hy 0.05 0.0021283932 4.54215E-05 3.41352E-05 4.02 4.6
k=0.01*hx=0.01*hy 0.025 0.0020942580 1.12863E-05 7.36746E-06 2.88
k=0.01*hx=0.01*hy 0.0125 0.0020868906 3.91889E-06

  EXACT SOLUTION 0.0020829717 
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Figure A- 19. Snapshots of profiles along the principal axes, for the linear problem in Spherical 
system, Test Problem #29 (Table 7).  (a) Snapshot profile parallel to the x-axis, at y = 0.60, t = 0.20. 
(b) Snapshot profile parallel to the y-axis, at x = 0.30, t = 0.40.  Data from Dsnap output file.   
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Figure A- 20. Evolution of grid functions with time, for the linear problem in Spherical system, Test 
Problem #29 (Table 7): x = 0.5, y = 0.5.  Data from Devol output file.   
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Figure A- 21. Surface contour plots comparing the analytical (exact) and numerical solutions at 
specific times, for the linear problem in Spherical system, Test Problem #29 (Table 7).  As can be 
seen, at the resolution of these plots, the analytical and numerical solutions are identical for times 
0.0, 0.4, and 0.8.   
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Table A- 12. Grid function convergence tests for the linear problem in Spherical system, Test 
Problem #32 (Table 7), generated from the output of the corresponding Dconv files.   

Newton-Kantorovich with Douglass-Gunn Time Splitting: Grid Convergence Tests for T27 NonlinSphNeuRob:  U(x,y,t)  from Carslaw & Jaegar 1959 
 

Grid Resolution 
Relationships 

Grid function 
Resolutions & 
Coordinates 

 
U(x,y) 

 
Absolute Grid Function Errors 

(W.R.T Exact Solution) 

Absolute "Cauchy" Grid 
Function Errors 

(W.R.T Next Lower H Value) 

Theoretical 
(Based on Absolute Errors) 

R = Eh/Eh/2 

Computationally Observed 
(Based on "Cauchy" errors): 

R' = eh/eh/2 
   E= ABS{Uexact(j,i) - u(j,i)} e = ABS{u(m+1)(j,i) - u(m)(j,i)} R = 2N_theo R' = 2N_comp

x = 0.20   
y = 0.10       
t =  0.20     
0.1 0.314159265 1.10102454E+0 3.14079E+03 3.50764E+03 8.56 133102.3

0.05 0.157079633 1.45178893E+0 3.66849E+02 2.63530E-02 1.00
0.025 0.078539816 1.45178630E+0 3.66823E+02

0.0125 0.039269908 0.00000000E+0
0.00625 0.019634954 0.00000000E+0

  EXACT SOLUTION 1.41510403E+0
     

x = 0 60
y = 1.57   
t =  0.15 
0.1 0.314159265 2.89753100E+0 1.57988E+02 1.08659E+00 1.01 2.0

0.05 0.157079633 2.89752013E+0 1.56901E+02 5.43010E-01 1.00
0.025 0.078539816 2.89751470E+0 1.56358E+02

0.0125 0.039269908 0.00000000E+0
0.00625 0.019634954 0.00000000E+0

  EXACT SOLUTION 2.89595112E+0
     

x = 0 65
y = 2.83   
t =  0.15 
0.1 0.314159265 3.78153294E+0 1.01015E+05 1.01052E+05 2760.81 112552.4

0.05 0.157079633 4.79205125E+0 3.65890E+01 8.97820E-01 1.03
0.025 0.078539816 4.79204227E+0 3.56912E+01

0.0125 0.039269908 0.00000000E+0
0.00625 0.019634954 0.00000000E+0

  EXACT SOLUTION 4.79168536E+0   
        

x = 0 70
y = 0.47   
t =  0.15 
0.1 0.314159265 2.93380528E+0 3.43877E+04 3.47079E+04 107.39 291193.2

0.05 0.157079633 6.40459535E+0 3.20224E+02 1.19192E-01 1.00
0.025 0.078539816 6.40458343E+0 3.20105E+02

0.0125 0.039269908 0.00000000E+0
0.00625 0.019634954 0.00000000E+0

  EXACT SOLUTION 6.37257293E+0

x = 0 80
y = 2.98   
t =  0.20 
0.1 0.314159265 8.40414630E+0 3.53829E+03 3.62332E+03 41.61 1733.3

0.05 0.157079633 8.36791311E+0 8.50335E+01 2.09041E+00 0.98
0.025 0.078539816 8.36789220E+0 8.71239E+01

0.0125 0.039269908 0.00000000E+0
0.00625 0.019634954 0.00000000E+0

  EXACT SOLUTION 8.36876344E+0

x = 0 75
y = 1.57   
t =  0.20 
0.1 0.314159265 4.34689386E+0 9.76630E+04 9.79523E+04 337.67 73586.4

0.05 0.157079633 5.32641652E+0 2.89227E+02 1.33112E+00 1.00
0.025 0.078539816 5.32640320E+0 2.87896E+02

0.0125 0.039269908 0.00000000E+0
0.00625 0.019634954 0.00000000E+0

  EXACT SOLUTION 5.32352425E+0

x = 0 90
y = 1.26   
t =  0.20 
0.1 0.314159265 6.90277968E+0 2.54839E+03 3.45008E+00 1.00 2.0

0.05 0.157079633 6.90274518E+0 2.55184E+03 1.72499E+00 1.00
0.025 0.078539816 6.90272793E+0 2.55357E+03

0.0125 0.039269908 0.00000000E+0
0.00625 0.019634954 0.00000000E+0

  EXACT SOLUTION 6.92826363E+0

x = 0 70
y = 1.41   
t =  0.20 
0.1 0.314159265 3.30183838E+0 5.37760E+04 5.50235E+04 43.11 57166.7

0.05 0.157079633 3.85207371E+0 1.24753E+03 9.62510E-01 1.00
0.025 0.078539816 3.85206409E+0 1.24657E+03

0.0125 0.039269908 0.00000000E+0
0.00625 0.019634954 0.00000000E+0

  EXACT SOLUTION 3.83959841E+0
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Figure A- 22. Snapshots of profiles along the principal axes, for the linear problem in Spherical 
system, Test Problem #32 (Table 7).  (a) Snapshot profile parallel to the x-axis, at y = 0.15, t = 0.20. 
(b) Snapshot profile parallel to the y-axis, at x = 0.09, t = 0.20.  Data from Dsnap output file.  It 
must be noted that for the solution used to generate this problem, errors are magnified by a factor 
2.5 x 106 (see Table A-7).  Therefore the errors are extremely magnified at x=0, as shown here and 
in Figure A-23.  
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Figure A- 23. Evolution of grid functions with time, for the linear problem in Spherical system, Test 
Problem #32 (Table 7): x = 0.0, y =ππππ.  Data from Devol output file.  It must be noted that for the 
solution used to generate this problem, errors are magnified by a factor 2.5 x 106 (see Table A-7).  
Therefore, the errors are extremely magnified at x=0, as shown here and in Figure A-22a.  
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A-3.4.1 Brief summary of validation tests 
 
From the tests conducted (Table 7), it was deduced that the performance of COND2D was as predicted by 
theory, for “well behaved” problem data (BCs, thermal properties).  The code can be used for a large 
number of problem types and coordinate systems.  However, as seen from Table A-12 above, and Figures 
A-22(a) and A-23, when the thermal properties are highly nonlinear as was the case for Tests Problem 
#30 onwards, and steep gradients exist in the solution (as simulated by the large, 2.5x 106, factor in those 
solutions), very high resolutions are required to observe the second order convergence predicted by 
theory.  In fact the solution chosen for these problems is a tough one since the gradients are everywhere 
extremely large due to the uniform domain-wise multiplication factor.  Also, the truncation error at x=0 
gets magnified by this multiplicative factor and therefore leads to large errors at the origin.  So, what was 
observed in the last table and last set of figures was an artifact of the type of solution chosen, and not a 
problem with the code, as illustrated for the “well behaved” nonlinear case of Test Problem #27.  So, if 
COND2D is to be applied to highly nonlinear problems, it seems imperative that very high resolutions be 
used – which means very long run times.  This can be practically accomplished either by parallelizing the 
code to distribute the work load due to a large increase in time steps, or by finding ways of subdividing 
the domain of interest to reduce array sizes at a given resolution (and hence the arithmetic).  In a typical 
application, a combination of these two approaches might have to be used.   
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APPENDIX B: COND2D -FORTRAN 90 CODE 
 
!--------------------------------------------------------------------------------------------------------------------------
! Program for the solution of a GENERAL NON-LINEAR, 2D, TIME DEPENDENT HEAT CONDUCTION EQUATION (in Cartesian/
! Cylindrical/Spherical coordinates OR in ANY USER DEFINED ANALYTIC SYSTEM), with general NON-LINEAR BOUNDARY CONDITIONS
! USING DELTA-FORM OF QUASILINIARIZATION (NEWTON-KANTOROVICH PROCEDURE) IN CONJUNCTION WITH THE DELTA-FORM OF THE
! DOUGLAS-GUNN TIME SPLITTING SCHEME (2-STEP). THIS CODE CAN ALSO BE USED FOR LINEAR PROBLEMS WITHOUT ANY CHANGES TO
! THE CORE ALGORITHM IMPLEMENTED HERE. This code was written as part of the development of an "Asperity scale frictional
! melting model" for my M.S. Thesis Research. This work was supported by NSF grant: XXXXX-XXXXX. - Ravi Kanda (November, 2002).
! This program solves an equation of the form:
! Ut = {1/(rho*cp)}*
! [a1*{kt*(a2_x*U_x + a2*U_xx) + a2*kt_u*(U_x)^2} + b1*{kt*(b2_y*U_y + b2*U_yy) + b2*kt_u*(U_y)^2} + f(U,x,y,t)],
! where the "_" denotes partial differentiation, obtained by expanding the ADJOINT form of the linear, but very general
! Pure Conduction Equation. The values of functions a1, a2, b1, b2, kt(U) and cp(U) can be changed to match any
! "regular closed domain" (i.e.. Cartesian, Cylindrical, Spherical, Elliptical or ANY USER DEFINED ANALYTIC SYSTEM domains),
! in either of the three coordinate systems mentioned above. In addition, the treatment of the boundary conditions is very
! general in that any type of convective/conductive/radiative heat transfer boundary condition can be applied at any of the
! boundaries. The code adjusts the form of the equation in Spherical AND Cylindrical coordinates as r -> 0 ("left boundary"
! in an equivalent cartesian grid representation), and in Spherical coordinates, as THETA -> 0 or PI. In these cases, the
! coefficients of U_x (or U_y) in the generalized equation above (i.e., a2_x*a1 and b2_y*b1) are not ANALYTIC. The form
! of the coordinate system can be specified using a "coord_flag" in the module "const_params". This program computes
! the number of points in the spatial and time domains based on user supplied values of hx, hy & k, and computes the
! "evloution" of the grid functions, Uji, for each "grid node" with time.
!
! NOTE: IF A USER DEFINED SYSTEM IS CHOSEN, with NON-ANALYTIC {a1, a2, b1, b2}, THESE FUNCTIONS AND THEIR DERIVATIVES MUST
! BE DEFINED CORRECTLY IN THE SUBROUTINES OF THE MODULE "pde_routines". CARE MUST ALSO BE TAKEN TO APPROPRIATELY
! IMPLEMENT THE "INTERIOR" LOOP AND ALL THE "BOUNDARY CONDITION" LOOPS, IN THE SUBROUTINE "qldgts_coeff_rhs".
!
! NOTE: For use with highly non-linear problems, a smoothing flag and parameter can be prescribed by the user, in the command
! line, following the executable name. Either 1D or 2D Smoothing can be carried out using the simple Shuman filter, a low-pass
! filter, that basically smooths out gradients in the domain at the end of each time step, at points (determined explicitly by
! the user). IF SMOOTH FLAG IS NON-ZERO, THEN APPROPRIATE CHANGES NEED TO BE MADE BELOW, IN THE MAIN PROGRAM, TO MODIFY APPROPRIATE
! GRID VALUES OF U.
!
! The boundary conditions are specified in separate functions, as are the forcing function, f_rhs and the
! exact solution, if known. f_rhs can be combined into the function f appearing in the general form of the equation
! above to simplify the implementation and make it more flexible in incorporating certain non-linearities. Boundary
! condition flags can be specified at two levels - linearity & type of BC (Dirichlet, Neumann or Robin) in the MAIN PROGRAM,
! but defined in the module "Const_Params". This allows for SEVERAL changes in Boundary Condition types,
! with time [as when an Initial Neumann BC changes later to a Dirichlet BC]. Further details of boundary condition
! implementation are presented under the subroutine "qldgts_coeff_rhs", above. The initial condition is specified under a
! separate function, and is passed on to the "qldgts" subroutine for the first time step. Time stepping is controlled by the
! main program, which outputs data at selected time levels (user specified in the main program) to various output files to
! facilitate easy post-processing. Subroutine "qldgts" outputs the values of the grid function Uji, at each time step, in a
! two dimensional array in yj, and xi. The number of time steps to be plotted or gridded, as well as the number of output
! files can be changed (by changing the "out" parameter array size and adding/removing file name elements in the "const_params"
! module) can be changed in the main program. The program allows the output of grid function and plot data at any resolution
! that the user chooses, with the maximum ALLOWED resolution, of course, being hx*hy. If lower resolutions of hx and hy than
! allowed by the machine array limitations are needed, the code can be modified later to completely eliminate storage
! in large arrays, and instead, directly print out only the required plot data to output files. Evolution of maximum
! temperature is output to the screen at a few specified time levels.EXTENSIVE checks have been added to all subroutines
! to improve ERROR TRAPPING.
!--------------------------------------------------------------------------------------------------------------------------
MODULE const_params
IMPLICIT NONE
SAVE

! Set precision and exponent required:

INTEGER, PARAMETER :: rp = SELECTED_REAL_KIND(P=15, R=307), ip = SELECTED_INT_KIND(8)

! INPUT/OUTPUT FILES: Specifying Output file pointers and output file names:

INTEGER(KIND=ip) :: io
INTEGER(KIND=ip), DIMENSION(5), PARAMETER :: out = (/ (io, io=1,5) /)
CHARACTER(LEN=5), DIMENSION(SIZE(out)), PARAMETER :: outfile = (/ "Dgrid", "Derrg", "Dsnap", "Devol", "Dconv" /)

! Mathematical Constants:

REAL(KIND=rp), PARAMETER :: pi = 3.1415926535897932_rp, pi_sq = pi*pi

! PDE Algorithm Limits: Coefficient magnitude limit; Grid size limit (usu. machine dependent):

INTEGER(KIND=ip), PARAMETER :: max_points = 1000001
REAL(KIND=rp), PARAMETER :: epsilon = 1.0E-30_rp ! This parameter is for the LU-Decomposition Routine.

! PDE Parameters:
! -----------------
! PDE LINEARITY FLAG : 1 for Linear, 0 (ZERO) for Non-Linear.
! This will determine if the Newton-Kantorowich loop will be executed, or ONLY the Douglas-Gunn Time splitting
! algorithm implemented, as is required for linear problems. Depending on the value of the LINEAR_FLAG, the grid
! convergence tolerance is set in the MAIN PROGRAM. If LINEAR_FLAG = 1, this number is set to a very large number,
! so the "qlindgts" loop is exited after one run:

INTEGER(KIND=ip), PARAMETER :: linear_flag = 0

! PDE COORDINATE SYSTEM FLAG: 0= User Specified PDE Coeffs, 1= Cartesian, 2= Cylindrical, and 3= Spherical.
! If this flag is set to 0, the user needs to specify the functional form of the PDE coefficients a1, a2, b1,
! b2, and their derivatives a2_x & b2_y, in MODULE "pde_routines":

INTEGER(KIND=ip), PARAMETER :: coord_flag = 3

! SMOOTHING FLAG: THIRD ARGUMENT AFTER THE PROGRAM EXECUTABLE. For highly non-linear problems, this smooths out the solution at the end
! of each iteration at points (determined explicitly by the user) using either 1D or 2D smoothing. IF THIS VALUE IS NON-ZERO, THEN APPROPRIATE
! CHANGES NEED TO BE MADE TO THE SUBROUTINE "qlin_dgts" TO MODIFY THE APPROPRIATE GRID VALUES OF U. Values for this flag are:
! smooth_flag = 0, no smoothing, smooth_flag = 1, 1D smoothing, smooth_flag = 2, 2D smoothing.
! NOTE: If smooth_flag is NON-ZERO, then a degree of smoothing between 2 and 1000 as the last argument after the program executable.
! The larger the smoothing factor, the lesser the smoothing. The larger this value, the greater this smoothing.
! DEFINE THESE TWO PARAMETERS GLOBALLY.

INTEGER(KIND=ip) :: smooth_flag
REAL(KIND=rp) :: smooth_factor

! PDE BOUNDARY CONDITION FLAGS: SPECIFICATION HAS BEEN MOVED TO MAIN PROGRAM, TO ACCOMODATE TIME VARYING BC Types (once or several times -
! as prescribed in the MAIN PROGRAM: Neumann to Dirichlet, and back, for instance). However, the flags have to be defined globally, for access
! by various subroutines.

INTEGER(KIND=ip) :: left_bc_flag, right_bc_flag, bottom_bc_flag, top_bc_flag, &
& left_lin_flag, right_lin_flag, bottom_lin_flag, top_lin_flag
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! RBC Temperature SPECIFICATION: FOR TEST PROBLEM ONLY!
REAL(KIND=rp), PARAMETER :: u_right = 300.0_rp

! OPTIONAL Linear Robin Parameters, ALPHA_x & ALPHA_y for each of the two directions. Eg., in: L = U_x + alpha_x * U
REAL(KIND=rp) :: alpha_x, alpha_y

! PDE BOUNDARY CONDITION FLAGS: 0 for DIRICHLET {i.e., Bbc(U) = B2bc(U)},
! 1 for NEUMANN {i.e., Bbc(U) = U_x*B1bc(U)},
! 2 for ROBIN {i.e., Bbc(u) = U_x*B1bc(U)}.
! All BCs are represented in the generalized non-linear forms encountered in heat conduction problems:
! Bbc(U) = U_x*B1bc(U)+ B2bc(U) or U_y*B1bc(U)+ B2bc(U). This form can be used to represent either NON-LINEAR or
! LINEAR BCs. PROVIDE ALL BOUNDARY OPERATORS, B, in this SPLIT FORM, using separate functions for B1 and B2, for
! EACH BC. These classifications and their implementations are discussed under the separate functions in the module
! "pde_routines", below, and ESPECIALLY UNDER THE SUBROUTINE "qldgts_coeff_rhs", where they are used:
!
! INTEGER(KIND=ip), PARAMETER :: left_bc_flag = 1, right_bc_flag = 1, bottom_bc_flag = 1, top_bc_flag = 1
! OPTIONAL Linear Robin Parameters, ALPHA_x & ALPHA_y for each of the two directions. Eg., in: L = U_x + alpha_x * U
! REAL(KIND=rp), PARAMETER :: alpha_x = 0.0_rp, alpha_y = 0.0_rp
!
! BOUNDARY CONDITION LINEARITY FLAGS: 1 if linear, 0 if non-linear.
! These will affect the forms and values of the corresponding boundary condition functionals (lbc1, bbc1, tbc2, etc.)
! below. If any of these flags is 0 (non-linear BC) then the forms of these functionals have to be defined in the
! respective subroutines in MODULE "pde_routines":
!
! INTEGER(KIND=ip), PARAMETER :: left_lin_flag = 1, right_lin_flag = 0, bottom_lin_flag = 1, top_lin_flag = 1

! PDE EXACT SOLUTION FLAG: Set this flag to 1 if the closed form of the exact analytical solution to this problem is
! known. Then set it up under the function "f_exact". If no exact solution exists, or is not available, set this flag
! to 0. This will affect the type of diagnostic information the program outputs for this problem. If exact solution
! exists, the program computes and outputs the exact error, otherwise, it outputs an estimated value based on
! iteration errors and the "asymptotic spectral radius" of the spatial discretization matrix.

INTEGER(KIND=ip), PARAMETER :: exact_sol_flag = 1

! PDE DOMAIN DECLARATION AND LOWEST PERMITTED GRID RESOLUTION:
! (a) PDE DOMAIN SPECIFICATION:
! NOTE: Changing x-range affects x_snap and x_time & grid_conv(:,1) below!
! Similarly, y-range affects y_snap and y_time & grid_conv(:,2) below!
! ------ ------ --------------
! THIS ALSO AFFECTS t0, the pulse duration, and hence, t_snap values below!
! -- ------

REAL(KIND=rp), PARAMETER :: x_left = 0.0_rp, x_right = 0.1_rp, &
& y_bottom = 0.0_rp, y_top = pi, &
& t_initial = 0.0_rp, t_final = 1.0_rp

! (b) SMALLEST GRID RESOLUTION: Define the maximum allowable grid spacings. The main program specifies different resolutions
! using the grid resolution flag, "res_flag" (see Main Program):

REAL(KIND=rp), PARAMETER :: hx_max = (x_right - x_left)/10.0_rp, hy_max = (y_top - y_bottom)/10.0_rp

! INPUT/OUTPUT PARAMETERS: Specify output grid spacings for solution evolution, grid and plot files defined above. Note that
! the grid and plot grid spacings can be reassigned in the main program if these resolutions are finer than hx or hy. Also
! specify the time levels at which the plot and grid output is written out to the corresponding output files.

REAL(KIND=rp), PARAMETER :: tf = t_final
REAL(KIND=rp) :: out_x_grid_spacing = hx_max/2.0_rp, out_y_grid_spacing = 0.010_rp, t_evol_spacing = tf/20.0_rp

REAL(KIND=rp), DIMENSION(11), PARAMETER :: t_snap = (/ t_initial, 0.15_rp*tf, 0.20_rp*tf, 0.30_rp*tf, 0.40_rp*tf, &
0.50_rp*tf, 0.60_rp*tf, 0.70_rp*tf, 0.80_rp*tf, 0.90_rp*tf, &
t_final /)

! CONVERGENCE & EVOLUTION PARAMETERS:
! (a) SNAPSHOT OF PROFILE ALONG A LINE PARALLEL TO x-axis:

REAL(KIND=rp), PARAMETER :: y_xsnap = 0.20_rp, t_xsnap = t_snap(2)

! (b) SNAPSHOT OF PROFILE ALONG A LINE PARALLEL TO y-axis:

REAL(KIND=rp), PARAMETER :: x_ysnap = 0.90_rp*x_right, t_ysnap = t_snap(3)

! (c) EVOLUTION OF GRID FUNCTION VALUES AT A SINGLE GRID POINT AS A FUNCTION OF TIME, t:

REAL(KIND=rp), PARAMETER :: x_time = x_left, y_time = y_top

! (d) POINT GRID CONVERGENCE TEST LOCATIONS - 8 points, at different space & time coordinates:

REAL(KIND=rp), PARAMETER :: xr = x_right, yt = y_top
REAL(KIND=rp), DIMENSION(8,3), PARAMETER :: grid_conv = RESHAPE( &

(/0.55_rp*xr, 0.60_rp*xr, 0.65_rp*xr, 0.70_rp*xr, 0.80_rp*xr, 0.75_rp*xr, 0.90_rp*xr, 0.70_rp*xr, &
0.10_rp*yt, 0.50_rp*yt, 0.90_rp*yt, 0.15_rp*yt, 0.95_rp*yt, 0.50_rp*yt, 0.40_rp*yt, 0.45_rp*yt, &
t_snap(2), t_snap(2), t_snap(2), t_snap(2), t_snap(3), t_snap(3), t_snap(3), t_snap(3)/), &

(/ 8,3 /))

! (e) SET THE LEVEL OF DETAIL IN SCREEN OUTPUT: Set verbose_flag = 1 if detailed output is required at every time step on grid function maxima
! as well as non-linear iteration convergence information at each time step:

INTEGER(KIND=ip), PARAMETER :: verbose_flag = 1

! GLOBAL VARIABLES:

! Define the variables "quasi_epsilon" for iteration tolerance, and "quasi_iterations" for the max number of
! Newton-Kantorovich iterations. Due to the quadratic convergence expected if this method works, this number
! need not be large (about 10-15 is "quite sufficient").

REAL(KIND=rp) :: quasi_epsilon
INTEGER(KIND=ip) :: quasi_iterations

! Declare all arrays required by subroutine "delta_qlin_dgts" here, and allocate them through the MAIN program:
REAL(KIND=rp), ALLOCATABLE, DIMENSION(:,:) :: coeff, u_n, u_old
REAL(KIND=rp), ALLOCATABLE, DIMENSION(:) :: rhs, rs

! Save one of the FUNCTIONAL DERIVATIVE VALUES globally to conserve arithmetic in the "qldgts_coeff_rhs" routine, as
! they are used in both time stages of the D-G discretization.

REAL(KIND=rp), ALLOCATABLE, DIMENSION(:,:) :: NSu_m, Nu_m

END MODULE const_params

!--------------------------------------------------------------------------------------------------------------------------
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MODULE fault_params
USE const_params
IMPLICIT NONE
SAVE
!----------------------------------------------------------------------------------------------------------------------------
! Set the values of the physical fault parameters and/or their ranges: All units in SI system, and for QUARTZ.
!
! Where indicated, the temperature dependence of parameters, and their extrema are adapted from: Touloukian, Y.S., Judd, W.R.,
! and Roy, R.F., "Physical Properties of Rocks and Minerals.", in Touloukian, Y.S., and Ho, C.Y., Ed., "McGraw-Hill/CINDAS Data
! Series on Material Properties", Volume II-2, McGraw Hill, New York, 1981.
!
! DEFINITIONS:
! ------------
! asp_rad = asperity radius (m)
! cp = Specific Heat at constant Pressure (J/kg-K). [MIN & MAX values based on ambient T=300K, and QUARTZ melting temp, 1700k, respectively.]
! e_y = Young's Modulus for asperity material (GPa)
! kappa = thermal diffusivity (m^2/s)
! kt = thermal conductivity (W/m-K). [MAX & MIN values based on ambient T=300K, and QUARTZ melting temp, 1700k, respectively.]
! mu = Coefficient of rock friction (dimensionless). [MIN & MAX values based on Byrelee's results: 0.6-0.85]
! nu_ps = Poisson's Ratio (dimensionless)
! rho = Density of asperity material (kg/m^3). [MAX & MIN values based on Variation in composition of FELSIC rocks.]
! slip_v = slip velocity (m/s)
! tau = shear stress (Pa) [MAX & MIN values based on Nadeau and Johnson, 1998 & Logan & Teufel, 1986 - See Thesis References]
!----------------------------------------------------------------------------------------------------------------------------

REAL(KIND=rp), PARAMETER :: asp_rad_min = 0.001_rp, &
asp_rad_max = 1.00_rp, &
cp_min = 447.50_rp + 1.025_rp* 300.0_rp, &
cp_max = 1093.80_rp + 0.100_rp*1700.0_rp, &
e_y = 20.0_rp, &
kt_min = 0.9452102585026962_rp, &
kt_max = 7.5420193400746197_rp, &
mu_min = 0.60_rp, &
mu_max = 0.85_rp, &
nu_ps = 0.20_rp, &
rho_min = 2500.0_rp, &
rho_max = 3000.0_rp, &
slip_v_min = 0.1_rp, &
slip_v_max = 1.0_rp, &
tau_min = 1.0E6_rp, &
tau_max = 1.0E9_rp

! ASSIGN VALUES for Fault Parameters for this run: Parameters defined here for the first time are:
! rc = Radius of circular contact area between two ELASTIC spheres.
! t0 = Time taken for the two contacting spheres to pass each other - time duration of heat flux input from frictional contact.
! NOTE: THE CONST VALUES FOR LINEAR PROBLEM ARE TEMPERATURE WEIGHTED AVERAGES.

REAL(KIND=rp), PARAMETER :: cp_const = 1167.95_rp, &
kt_const = 3.03_rp, &
mu = mu_min, &
rho = rho_max, &
slip_v = slip_v_max, &
tau = tau_max, &
rc_by_r0 = 3.0_rp*pi*(1.0_rp - nu_ps*nu_ps)*tau/(4.0_rp*e_y*1.0E9_rp*mu), &
rc = rc_by_r0*x_right, &
t0 = 4.0_rp*rc/slip_v

! DEFINE FAULT PARAMETERS THAT NEED TO BE ACCESSIBLE GLOBALLY:
! y0 = Half the angle (theta) subtended at the center of either asperity, by the circular contact area.

REAL(KIND=rp) :: y0

END MODULE fault_params

!----------------------------------------------------------------------------------------------------------------------------
MODULE pde_routines
USE const_params
USE fault_params

CONTAINS

!-------------------------------------------------------------------------------------------------------------------
FUNCTION kt(u,x,y,t)
IMPLICIT NONE
! This function computes the value of the temperature dependent THERMAL conductivity, kt, that appears in the
! PDE: a1*(a2*kt*U_x)_x + b1*(b2*kt*U_y)_y + f(U,x,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative.
! Functional expression is assigned for the NON-LINEAR case. Otherwise, it is set to the constant value
! prescribed in the module "fault_params" above. Since kt appears in Nuxx_m & Nuyy_m, which are part of coeff denominators, it
! cannot have a zero value.
! FUNCTIONAL FORM OF kt is a BEST FIT CURVE (kt = 1 + a/(U**b)) TO THE data for QUARTZ adapted from: Touloukian, Y.S., Judd, W.R.,
! and Roy, R.F., "Physical Properties of Rocks and Minerals.", in Touloukian, Y.S., and Ho, C.Y., Ed., "McGraw-Hill/CINDAS Data
! Series on Material Properties", Volume II-2, McGraw Hill, New York, 1981.
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: u
REAL(KIND=rp), INTENT(IN), OPTIONAL :: x,y,t
REAL(KIND=rp) :: kt

IF (linear_flag == 1) THEN
kt = kt_const

ELSE
kt = 1.0_rp + 14.2920_rp*(EXP(-0.0030_rp*u))

! ! R^2 fit value = 0.9953 in the range 300-1000K; U in DEGREES KELVIN. kt has a slope > 1 for u <~ -1050
! kt = 1.0_rp + u
! IF (u < 0.0_rp) THEN
! kt = 15.2920_rp
! ELSE
! kt = 1.0_rp + 14.2920_rp*(EXP(-0.0030_rp*u)) ! R^2 fit value = 0.9953 in the range 300-1000K; U in DEGREES KELVIN.
! END IF

! IF ( u <= 0.0_rp ) THEN ! Based on functional limitation in Cp expression.
! kt = 1.0_rp + (162144.4558_rp)*(20.0_rp**(-1.7559_rp))
! ELSE
! kt = 1.0_rp + (162144.4558_rp)*(u**(-1.7559_rp)) ! R^2 fit value = 0.9838 in the range 300-1000K; U in DEGREES KELVIN.
! END IF

END IF

END FUNCTION kt

!-------------------------------------------------------------------------------------------------------------------
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FUNCTION kt_u(u,x,y,t)
IMPLICIT NONE
! This function computes the value of the FIRST temperature derivative of THERMAL conductivity, kt, that
! appears in the PDE: a1*(a2*kt*U_x)_x + b1*(b2*kt*U_y)_y + f(U,x,y,t) = rho*cp*U_t, where the "_" denotes a
! partial derivative. Functional expression is assigned for the NON-LINEAR case. It is equal to 0 for the LINEAR
! CASE.
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: u
REAL(KIND=rp), INTENT(IN), OPTIONAL :: x,y,t
REAL(KIND=rp) :: kt_u

IF (linear_flag == 1) THEN
kt_u = 0.0_rp

ELSE
kt_u = 14.2920_rp*(-0.0030_rp)*(EXP(-0.0030_rp*u)) ! Based on the Definition of kt above.

! kt_u = 1.0_rp
! IF (u < 0.0_rp) THEN
! kt_u = 0.0_rp
! ELSE
! kt_u = 14.2920_rp*(-0.0030_rp)*(EXP(-0.0030_rp*u)) ! Based on the Definition of kt above.
! END IF
! IF (u <= 20.0_rp) THEN ! Based on functional limitation in Cp expression.
! kt_u = 0.0_rp
! ELSE
! kt_u = ( (162144.4558_rp)*(-1.7559_rp) )*(u**(-1.7559_rp - 1.0_rp)) ! Based on the Definition of kt above.
! END IF

END IF

END FUNCTION kt_u

!-------------------------------------------------------------------------------------------------------------------
FUNCTION kt_uu(u,x,y,t)
IMPLICIT NONE
! This function computes the value of the SECOND temperature derivative of THERMAL conductivity, kt, that
! appearsin the PDE: a1*(a2*kt*U_x)_x + b1*(b2*kt*U_y)_y + f(U,x,y,t) = rho*cp*U_t, where the "_" denotes a
! partial derivative. Functional expression is assigned for the NON-LINEAR case. It is equal to 0 for the LINEAR
! CASE.
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: u
REAL(KIND=rp), INTENT(IN), OPTIONAL :: x,y,t
REAL(KIND=rp) :: kt_uu

IF (linear_flag == 1) THEN
kt_uu = 0.0_rp

ELSE
kt_uu = 14.2920_rp*(-0.0030_rp)*(-0.0030_rp)*(EXP(-0.0030_rp*u)) ! Based on the Definition of kt above.

! kt_uu = 0.0_rp
! IF (u < 0.0_rp) THEN
! kt_uu = 0.0_rp
! ELSE
! kt_uu = 14.2920_rp*(-0.0030_rp)*(-0.0030_rp)*(EXP(-0.0030_rp*u)) ! Based on the Definition of kt above.
! END IF
! IF (u <= 20.0_rp) THEN ! Based on functional limitation in Cp expression.
! kt_uu = 0.0_rp
! ELSE
! kt_uu = ( (162144.4558_rp)*(-1.7559_rp)*(-1.7559_rp) )*(u**(-1.7559_rp - 2.0_rp)) ! Based on the Definition of kt above.
! END IF

END IF

END FUNCTION kt_uu

!-------------------------------------------------------------------------------------------------------------------
FUNCTION cp(u,x,y,t)
IMPLICIT NONE
! This function computes the value of the temperature dependent SPECIFIC HEAT (THERMAL HEAT CAPACITY), c, that
! appears in the PDE: a1*(a2*kt*U_x)_x + b1*(b2*kt*U_y)_y + f(x,y,t) = rho*cp*U_t, where the "_" denotes a
! partial derivative. Functional expression is assigned for the NON-LINEAR case. Otherwise, it is set to the
! constant value prescribed in the module "const_params" above.Since Cp appears in in the denominators of ALL Functionals, it
! cannot have a zero value.
! FUNCTIONAL FORM OF Ct is a BEST FIT CURVE (Cp = a*LN(U) + b) TO THE data for QUARTZ adapted from: Touloukian, Y.S., Judd, W.R.,
! and Roy, R.F., "Physical Properties of Rocks and Minerals.", in Touloukian, Y.S., and Ho, C.Y., Ed., "McGraw-Hill/CINDAS Data
! Series on Material Properties", Volume II-2, McGraw Hill, New York, 1981.
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: u
REAL(KIND=rp), INTENT(IN), OPTIONAL :: x,y,t
REAL(KIND=rp) :: cp

IF (linear_flag == 1) THEN
cp = cp_const

ELSE
cp = 1500.0_rp*( 1.0_rp - 0.5105_rp*EXP(-0.0008_rp*u) )

! ! R^2 fit value = 0.84 in 300-1500K; U in DEGREES KELVIN. Cp has a slope > 1 for u<~ -9755, and is NEGATIVE for u<~ -841.
! cp = 1.0_rp + u
! IF (u < 0.0_rp) THEN
! cp = 734.25_rp
! ELSE
! cp = 1500.0_rp*( 1.0_rp - 0.5105_rp*EXP(-0.0008_rp*u) ) ! R^2 fit value = 0.84 in 300-1500K; U in DEGREES KELVIN.
! END IF
! IF (u <= 20.0_rp) THEN
! cp = 299.24_rp*(LOG(20.0_rp)) - 891.19_rp
! ELSE
! cp = 299.24_rp*(LOG(u)) - 891.19_rp ! R^2 fit value = 0.90 in 300-1500K; U in DEGREES KELVIN.
! END IF

END IF
END FUNCTION cp
!-------------------------------------------------------------------------------------------------------------------
FUNCTION cp_u(u,x,y,t)
IMPLICIT NONE
! This function computes the value of the FIRST temperature derivative of SPECIFIC HEAT (THERMAL HEAT CAPACITY),
! cp, that appears in the PDE: a1*(a2*kt*U_x)_x + b1*(b2*kt*U_y)_y + f(x,y,t) = rho*cp*U_t, where the "_" denotes
! a partial derivative. Functional expression is assigned for the NON-LINEAR case. It is equal to 0 for the
! LINEAR CASE.
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: u
REAL(KIND=rp), INTENT(IN), OPTIONAL :: x,y,t
REAL(KIND=rp) :: cp_u

IF (linear_flag == 1) THEN
cp_u = 0.0_rp

ELSE
cp_u = 1500.0_rp*(- 0.5105_rp)*(-0.0008_rp)*EXP(-0.0008_rp*u) ! From the expression for Cp defined above.

! cp_u = 1.0_rp
! IF (u < 0.0_rp) THEN
! cp_u = 0.0_rp
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! ELSE
! cp_u = 1500.0_rp*(- 0.5105_rp)*(-0.0008_rp)*EXP(-0.0008_rp*u) ! From the expression for Cp defined above.
! END IF
! IF (u <= 20.0_rp) THEN
! cp_u = 299.24_rp/(20.0_rp)
! ELSE
! cp_u = 299.24_rp/(u) ! From the expression for Cp defined above.
! END IF

END IF

END FUNCTION cp_u

!-------------------------------------------------------------------------------------------------------------------
FUNCTION f_exact(x,y,t)
IMPLICIT NONE
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: t,x,y
REAL(KIND=rp) :: f_exact

! Local Variables
REAL(KIND=rp) :: sy

sy = SIN(y)
f_exact = 300.0_rp + 2500000.0_rp*(EXP(-t))*(x - SIN(x))*( (y*y/2.0_rp) + y*sy + sy*sy )

END FUNCTION f_exact

!-------------------------------------------------------------------------------------------------------------------
FUNCTION f_initial(x,y)
IMPLICIT NONE
! Function & Arguments

REAL(KIND=rp), DIMENSION(:), INTENT(IN) :: x, y
REAL(KIND=rp), DIMENSION(SIZE(y), SIZE(x)) :: f_initial

! Local Variables
INTEGER(KIND=ip) :: i,j
REAL(KIND=rp) :: sxi, syj, xi, yj

DO i = 1, SIZE(x)
DO j = 1, SIZE(y)

sxi = SIN(x(i))
syj = SIN(y(j))
xi = x(i)
yj = y(j)
f_initial(j,i) = 300.0_rp + 2500000.0_rp*(xi - sxi)*( (yj*yj/2.0_rp) + yj*syj + syj*syj )

END DO
END DO

END FUNCTION f_initial

!-------------------------------------------------------------------------------------------------------------------
FUNCTION f_rhs(u,x,y,t)
IMPLICIT NONE
! In entering this function, and its overall sign, keep in mind its location in the general PDE being solved here:
! Ut = {1/(rho*cp)}*
! a1*{kt*(a2_x*U_x + a2*U_xx) + a2*kt_u*(U_x)^2} + b1*{kt*(b2_y*U_y + b2*U_yy) + b2*kt_u*(U_y)^2} + f(U,x,y,t)]

! Function & Arguments
REAL(KIND=rp), INTENT(IN) :: t, u, x, y
REAL(KIND=rp) :: f_rhs

! Local Variables
REAL(KIND=rp) :: cy, e2t, et, fx, fx1, fx2, gy, gy1, gy2, rho_cp, sy

cy = COS(y)
et = 2500000.0_rp*EXP(-t)
e2t = et*et
fx = x - SIN(x)
fx1 = 1.0_rp - COS(x)
fx2 = SIN(x)
sy = SIN(y)
gy = (y*y/2.0_rp) + y*sy + sy*sy
gy1 = y*(1.0_rp + cy) + sy*(1.0_rp + 2.0_rp*cy)
gy2 = 1.0_rp - y*sy + 2.0_rp*( cy + COS(2.0_rp*y) )
rho_cp = rho*cp(u,x,y,t)
IF (x /= 0.0_rp) THEN

IF ( (y == 0.0_rp) .OR. (y == pi) ) THEN
f_rhs = (300.0_rp - u)*rho_cp - ( kt(u,x,y,t))*et *( gy*( (2.0_rp*fx1/x) + fx2 ) + (fx/(x*x))*( gy2 + gy2 ) ) &

& - (kt_u(u,x,y,t))*e2t*( fx1*fx1*gy*gy + (fx*fx*gy1*gy1/(x*x)) )
ELSE

f_rhs = (300.0_rp - u)*rho_cp - ( kt(u,x,y,t))*et *( gy*( (2.0_rp*fx1/x) + fx2 ) + (fx/(x*x))*( (cy*gy1/sy) + gy2 ) ) &
& - (kt_u(u,x,y,t))*e2t*( fx1*fx1*gy*gy + (fx*fx*gy1*gy1/(x*x)) )

END IF
ELSE

f_rhs = 300.0_rp*rho_cp
END IF

END FUNCTION f_rhs

!-------------------------------------------------------------------------------------------------------------------
FUNCTION f_rhs_u(u,x,y,t)
IMPLICIT NONE
! This is the derivative of the right hand side function defined in the last subroutine with respect to the
! dependent variable U. The RHS function appears in the general PDE being solved here as shown:
! Ut = {1/(rho*cp)}*
! a1*{kt*(a2_x*U_x + a2*U_xx) + a2*kt_u*(U_x)^2} + b1*{kt*(b2_y*U_y + b2*U_yy) + b2*kt_u*(U_y)^2} + f(U,x,y,t)]

! Function & Arguments
REAL(KIND=rp), INTENT(IN) :: t, u, x, y
REAL(KIND=rp) :: f_rhs_u

! Local Variables
REAL(KIND=rp) :: cy, e2t, et, fx, fx1, fx2, gy, gy1, gy2, rho_cp, rho_cp_u, sy

cy = COS(y)
et = 2500000.0_rp*EXP(-t)
e2t = et*et
fx = x - SIN(x)
fx1 = 1.0_rp - COS(x)
fx2 = SIN(x)
sy = SIN(y)
gy = (y*y/2.0_rp) + y*sy + sy*sy
gy1 = y*(1.0_rp + cy) + sy*(1.0_rp + 2.0_rp*cy)
gy2 = 1.0_rp - y*sy + 2.0_rp*( cy + COS(2.0_rp*y) )
rho_cp = rho* cp(u,x,y,t)
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rho_cp_u = rho*cp_u(u,x,y,t)
IF (x /= 0.0_rp) THEN

IF ( (y == 0.0_rp) .OR. (y == pi) ) THEN
f_rhs_u = -rho_cp - u*rho_cp_u - (kt_u(u,x,y,t))*et *( gy*( (2.0_rp*fx1/x) + fx2 ) + (fx/(x*x))*( gy2 + gy2) ) &

& -(kt_uu(u,x,y,t))*e2t*( fx1*fx1*gy*gy + (fx*fx*gy1*gy1/(x*x)) )
ELSE

f_rhs_u = -rho_cp - u*rho_cp_u - (kt_u(u,x,y,t))*et *( gy*( (2.0_rp*fx1/x) + fx2 ) + (fx/(x*x))*((cy*gy1/sy) + gy2) ) &
& -(kt_uu(u,x,y,t))*e2t*( fx1*fx1*gy*gy + (fx*fx*gy1*gy1/(x*x)) )

END IF
ELSE

f_rhs_u = -rho_cp
END IF

END FUNCTION f_rhs_u

!-------------------------------------------------------------------------------------------------------------------
FUNCTION f_left(y,t)
IMPLICIT NONE
! Define LEFT BC - Just enter the functional representation. The type of BC (Dirichlet/Neumann/Robin) will be
! determined from the value of the parameter "left_bc_flag" in the module CONST_PARAMS above.

! Function & Arguments
REAL(KIND=rp), INTENT(IN) :: t, y
REAL(KIND=rp) :: f_left

f_left = 0.0_rp

END FUNCTION f_left

!-------------------------------------------------------------------------------------------------------------------
FUNCTION lbc1(u_j1,yj,tn)
IMPLICIT NONE
! First component of the left BC operator, Lbc(U,x,y,t) {= Ux*Lbc1(U,x,y,t) + Lbc2(U,x,y,t) = f_left(y,t)}
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: tn,u_j1,yj
REAL(KIND=rp) :: lbc1

IF (left_lin_flag == 1) THEN ! Linear BC
IF (left_bc_flag == 0) THEN

lbc1 = 0.0_rp ! Linear Dirichlet
ELSE

lbc1 = 1.0_rp ! Linear Neumann or Robin
END IF

ELSE ! Non-Linear BC
IF (left_bc_flag == 0) THEN

lbc1 = 0.0_rp ! Non-Linear Dirichlet
ELSE

lbc1 = kt(u_j1,x_left,yj,tn) ! Non-Linear Neumann or Robin.
IF (lbc1 == 0.0_rp) lbc1 = epsilon ! lbc1 appears in the denominator of lbc_u for Non-Linear Neumann/Robin BCs.

END IF ! Can be any function of U as required by BC.
END IF

END FUNCTION lbc1

!-------------------------------------------------------------------------------------------------------------------
FUNCTION lbc2(u_j1,yj,tn)
IMPLICIT NONE
! Second component of the left BC operator, Lbc(U,x,y,t) {= Ux*Lbc1(U,x,y,t) + Lbc2(U,x,y,t) = f_left(y,t)}
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: tn,u_j1,yj
REAL(KIND=rp) :: lbc2

IF (left_lin_flag == 1) THEN ! Linear BC
IF (left_bc_flag == 0) THEN

lbc2 = f_left(yj,tn) ! Linear Dirichlet
ELSE IF(left_bc_flag == 1) THEN

lbc2 = 0.0_rp ! Linear Neumann
ELSE

lbc2 = alpha_x*u_j1 ! Linear Robin
END IF

ELSE ! Non-Linear BC
IF (left_bc_flag == 1) THEN

lbc2 = 0.0_rp ! Non-Linear Neumann
ELSE

lbc2 = 0.5_rp*u_j1*(1.0_rp + u_j1) ! Non-Linear Dirichlet or Robin.
END IF ! Can be any function of U as required by BC.

END IF
END FUNCTION lbc2
!-------------------------------------------------------------------------------------------------------------------
FUNCTION lbc_u(u_j1,yj,tn)
IMPLICIT NONE
! Derivative w.r.t U, of the ENTIRE left BC operator, Lbc(U,x,y,t) {= Ux*Lbc1(U,x,y,t) + Lbc2(U,x,y,t) = f_left(y,t)}.
! The derivatives of the two individual components of the boundary operator (lbc1 and lbc2) are not required
! separately by the algorithm used here.

! Function & Arguments
REAL(KIND=rp), INTENT(IN) :: tn,u_j1,yj
REAL(KIND=rp) :: lbc_u

IF (left_lin_flag == 1) THEN ! Linear BC
IF (left_bc_flag == 0) THEN

lbc_u = 1.0_rp ! Linear Dirichlet
ELSE IF(left_bc_flag == 1) THEN

lbc_u = 0.0_rp ! Linear Neumann
ELSE

lbc_u = alpha_x ! Linear Robin
END IF

ELSE ! ANY Non-Linear BC
! For the above choices of lbc1 & lbc2 (both = U), this will take on the value Ux + 1. Ux can be obtained from
! the left boundary condition as shown below.
IF (left_bc_flag == 0) THEN ! NonLinear Dirichlet

lbc_u = 0.5_rp*(1.0_rp + 2.0_rp*u_j1)
ELSE IF (left_bc_flag == 1) THEN ! NonLinear Neumann

lbc_u = ( (kt_u(u_j1,x_left,yj,tn))*(f_left(yj,tn) - lbc2(u_j1,yj,tn)) )/lbc1(u_j1,yj,tn)
ELSE ! NonLinear Robin

lbc_u = 0.5_rp*(1.0_rp + 2.0_rp*u_j1) &
+ ( (kt_u(u_j1,x_left,yj,tn))*(f_left(yj,tn) - lbc2(u_j1,yj,tn)) )/lbc1(u_j1,yj,tn)

END IF
END IF

END FUNCTION lbc_u

!-------------------------------------------------------------------------------------------------------------------
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FUNCTION lbc_ux(u_j1,yj,tn)
IMPLICIT NONE
! Derivative w.r.t ux, of the left BC operator, Lbc(U,x,y,t) {= Ux*Lbc1(U,x,y,t) + Lbc2(U,x,y,t) = f_left(y,t)}
! i.e., Lbc1.
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: tn, u_j1, yj
REAL(KIND=rp) :: lbc_ux

IF (left_lin_flag == 1) THEN ! Linear BC
IF (left_bc_flag == 0) THEN

lbc_ux = 0.0_rp ! Linear Dirichlet
ELSE

lbc_ux = 1.0_rp ! Linear Neumann or Robin
END IF

ELSE ! ANY Non-Linear BC
! For the above choices of lbc1 & lbc2, this will take on the value kt.
lbc_ux = kt(u_j1,x_left,yj,tn)
IF (lbc_ux == 0.0_rp) lbc_ux = epsilon ! lbc_ux appears in the denominator in one of the terms of LBC coeff/rhs computations.

END IF

END FUNCTION lbc_ux

!-------------------------------------------------------------------------------------------------------------------
FUNCTION f_right(y,t)
IMPLICIT NONE
! Define RIGHT BC - Just enter the functional representation. The type of BC (Dirichlet/Neumann/Robin) will be
! determined from the value of the parameter "right_bc_flag" in the module CONST_PARAMS above.

! Function & Arguments
REAL(KIND=rp), INTENT(IN) :: t, y
REAL(KIND=rp) :: f_right

! Local Variables
REAL(KIND=rp) :: et, gy, k_cond, sy, u_sol

et = EXP(-t)
sy = SIN(y)
gy = (y*y/2.0_rp) + y*sy + sy*sy
f_right = 2500000.0_rp*et*gy*( 1.0_rp - COS(x_right) )
u_sol = 300.0_rp + 2500000.0_rp*et*gy*(x_right - SIN(x_right))
k_cond = 1.0_rp + 14.2920_rp*(EXP(-0.0030_rp*u_sol))
f_right = f_right*k_cond

END FUNCTION f_right

!-------------------------------------------------------------------------------------------------------------------
FUNCTION rbc1(u_jnx,yj,tn)
IMPLICIT NONE
! First component of the right BC operator, Rbc(U,x,y,t) {= Ux*Rbc1(U,x,y,t) + Rbc2(U,x,y,t) = f_right(y,t)}
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: tn,u_jnx,yj
REAL(KIND=rp) :: rbc1

IF (right_lin_flag == 1) THEN ! Linear BC
IF (right_bc_flag == 0) THEN

rbc1 = 0.0_rp ! Linear Dirichlet
ELSE

rbc1 = 1.0_rp ! Linear Neumann or Robin
END IF

ELSE ! Non-Linear BC
IF (right_bc_flag == 0) THEN

rbc1 = 0.0_rp ! Non-Linear Dirichlet
ELSE

rbc1 = kt(u_jnx,x_right,yj,tn) ! Non-Linear Neumann or Robin.
IF (rbc1 == 0.0_rp) rbc1 = epsilon ! rbc1 appears in the denominator of rbc_u for Non-Linear Neumann/Robin BCs.

END IF ! Can be any function of U as required by BC.
END IF

END FUNCTION rbc1
!-------------------------------------------------------------------------------------------------------------------
FUNCTION rbc2(u_jnx,yj,tn)
IMPLICIT NONE
! Second component of the right BC operator, Rbc(U,x,y,t) {= Ux*Rbc1(U,x,y,t) + Rbc2(U,x,y,t) = f_right(y,t)}
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: tn,u_jnx,yj
REAL(KIND=rp) :: rbc2

IF (right_lin_flag == 1) THEN ! Linear BC
IF (right_bc_flag == 0) THEN

rbc2 = f_right(yj,tn) ! Linear Dirichlet
ELSE IF(right_bc_flag == 1) THEN

rbc2 = 0.0_rp ! Linear Neumann
ELSE

rbc2 = alpha_x*u_jnx ! Linear Robin
END IF

ELSE ! Non-Linear BC
IF (right_bc_flag == 1) THEN

rbc2 = 0.0_rp ! Non-Linear Neumann
ELSE

rbc2 = 0.5_rp*u_jnx*(1.0_rp + u_jnx) ! Non-Linear Dirichlet or Robin.
END IF ! Can be any function of U as required by BC.

END IF

END FUNCTION rbc2

!-------------------------------------------------------------------------------------------------------------------
FUNCTION rbc_u(u_jnx,yj,tn)
IMPLICIT NONE
! Derivative w.r.t U, of the ENTIRE right BC operator, Rbc(U,x,y,t) {= Ux*Rbc1(U,x,y,t) + Rbc2(U,x,y,t) = f_right(y,t)}.
! The derivatives of the two individual components of the boundary operator (rbc1 and rbc2) are not required
! separately by the algorithm used here.

! Function & Arguments
REAL(KIND=rp), INTENT(IN) :: tn,u_jnx,yj
REAL(KIND=rp) :: rbc_u

IF (right_lin_flag == 1) THEN ! Linear BC
IF (right_bc_flag == 0) THEN

rbc_u = 1.0_rp ! Linear Dirichlet
ELSE IF(right_bc_flag == 1) THEN

rbc_u = 0.0_rp ! Linear Neumann
ELSE

rbc_u = alpha_x ! Linear Robin
END IF
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ELSE ! ANY Non-Linear BC
! For the above choices of rbc1 & rbc2 (both = U), this will take on the value Ux + 1. Ux can be obtained from
! the right boundary condition as shown below.
IF (right_bc_flag == 0) THEN ! NonLinear Dirichlet

rbc_u = 0.5_rp*(1.0_rp + 2.0_rp*u_jnx)
ELSE IF (right_bc_flag == 1) THEN ! NonLinear Neumann

rbc_u = ( (kt_u(u_jnx,x_right,yj,tn))*(f_right(yj,tn) - rbc2(u_jnx,yj,tn)) )/rbc1(u_jnx,yj,tn)
ELSE ! NonLinear Robin

rbc_u = 0.5_rp*(1.0_rp + 2.0_rp*u_jnx) &
+ ( (kt_u(u_jnx,x_right,yj,tn))*(f_right(yj,tn) - rbc2(u_jnx,yj,tn)) )/rbc1(u_jnx,yj,tn)

END IF
END IF

END FUNCTION rbc_u

!-------------------------------------------------------------------------------------------------------------------
FUNCTION rbc_ux(u_jnx,yj,tn)
IMPLICIT NONE
! Derivative w.r.t ux, of the right BC operator, Rbc(U,x,y,t) {= Ux*Rbc1(U,x,y,t) + Rbc2(U,x,y,t) = f_right(y,t)},
! i.e.. Rbc1!
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: tn, u_jnx, yj
REAL(KIND=rp) :: rbc_ux

IF (right_lin_flag == 1) THEN ! Linear BC
IF (right_bc_flag == 0) THEN

rbc_ux = 0.0_rp ! Linear Dirichlet
ELSE

rbc_ux = 1.0_rp ! Linear Neumann or Robin
END IF

ELSE ! ANY Non-Linear BC
! For the above choices of rbc1 & rbc2 (both = U), this will take on the value U.
rbc_ux = kt(u_jnx,x_right,yj,tn)
IF (rbc_ux == 0.0_rp) rbc_ux = epsilon ! rbc_ux appears in the denominator in one of the terms of RBC coeff/rhs

computations.
END IF

END FUNCTION rbc_ux

!-------------------------------------------------------------------------------------------------------------------
FUNCTION f_bottom(x,t)
IMPLICIT NONE
! Define BOTTOM BC - Just enter the functional representation. The type of BC (Dirichlet/Neumann/Robin) will be
! determined from the value of the parameter "bottom_bc_flag" in the module CONST_PARAMS above.

! Function & Arguments
REAL(KIND=rp), INTENT(IN) :: t, x
REAL(KIND=rp) :: f_bottom

f_bottom = 0.0_rp

END FUNCTION f_bottom

!-------------------------------------------------------------------------------------------------------------------
FUNCTION bbc1(u_1i,xi,tn)
IMPLICIT NONE
! First component of the bottom BC operator, Bbc(U,x,y,t) {= Uy*Bbc1(U,x,y,t) + Bbc2(U,x,y,t) = f_bottom(x,t)}
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: tn,u_1i,xi
REAL(KIND=rp) :: bbc1

IF (bottom_lin_flag == 1) THEN ! Linear BC
IF (bottom_bc_flag == 0) THEN

bbc1 = 0.0_rp ! Linear Dirichlet
ELSE

bbc1 = 1.0_rp ! Linear Neumann or Robin
END IF

ELSE ! Non-Linear BC
IF (bottom_bc_flag == 0) THEN

bbc1 = 0.0_rp ! Non-Linear Dirichlet
ELSE

bbc1 = kt(u_1i,xi,y_bottom,tn) ! Non-Linear Neumann or Robin.
IF (bbc1 == 0.0_rp) bbc1 = epsilon ! bbc1 appears in the denominator of bbc_u for Non-Linear Neumann/Robin BCs.

END IF ! Can be any function of U as required by BC.
END IF

END FUNCTION bbc1

!-------------------------------------------------------------------------------------------------------------------
FUNCTION bbc2(u_1i,xi,tn)
IMPLICIT NONE
! Second component of the bottom BC operator, Bbc(U,x,y,t) {= Uy*Bbc1(U,x,y,t) + Bbc2(U,x,y,t) = f_bottom(x,t)}
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: tn,u_1i,xi
REAL(KIND=rp) :: bbc2

IF (bottom_lin_flag == 1) THEN ! Linear BC
IF (bottom_bc_flag == 0) THEN

bbc2 = f_bottom(xi,tn) ! Linear Dirichlet
ELSE IF(bottom_bc_flag == 1) THEN

bbc2 = 0.0_rp ! Linear Neumann
ELSE

bbc2 = alpha_y*u_1i ! Linear Robin
END IF

ELSE ! Non-Linear BC
IF (bottom_bc_flag == 1) THEN

bbc2 = 0.0_rp ! Non-Linear Neumann
ELSE

bbc2 = 0.5_rp*u_1i*(1.0_rp + u_1i) ! Non-Linear Dirichlet or Robin.
END IF ! Can be any function of U as required by BC.

END IF

END FUNCTION bbc2

!-------------------------------------------------------------------------------------------------------------------
FUNCTION bbc_u(u_1i,xi,tn)
IMPLICIT NONE
! Derivative w.r.t U, of the ENTIRE bottom BC operator, Bbc(U,x,y,t) {= Uy*Bbc1(U,x,y,t) + Bbc2(U,x,y,t) = f_bottom(x,t)}.
! The derivatives of the two individual components of the boundary operator (bbc1 and bbc2) are not required
! separately by the algorithm used here.
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! Function & Arguments
REAL(KIND=rp), INTENT(IN) :: tn,u_1i,xi
REAL(KIND=rp) :: bbc_u

IF (bottom_lin_flag == 1) THEN ! Linear BC
IF (bottom_bc_flag == 0) THEN

bbc_u = 1.0_rp ! Linear Dirichlet
ELSE IF(bottom_bc_flag == 1) THEN

bbc_u = 0.0_rp ! Linear Neumann
ELSE

bbc_u = alpha_y ! Linear Robin
END IF

ELSE ! ANY Non-Linear BC
! For the above choices of bbc1 & bbc2 (both = U), this will take on the value Uy + 1. Uy can be obtained from
! the bottom boundary condition as shown below.
IF (bottom_bc_flag == 0) THEN ! NonLinear Dirichlet

bbc_u = 0.5_rp*(1.0_rp + 2.0_rp*u_1i)
ELSE IF (bottom_bc_flag == 1) THEN ! NonLinear Neumann

bbc_u = ( (kt_u(u_1i,xi,y_bottom,tn))*(f_bottom(xi,tn) - bbc2(u_1i,xi,tn)) )/bbc1(u_1i,xi,tn)
ELSE ! NonLinear Robin

bbc_u = 0.5_rp*(1.0_rp + 2.0_rp*u_1i) &
+ ( (kt_u(u_1i,xi,y_bottom,tn))*(f_bottom(xi,tn) - bbc2(u_1i,xi,tn)) )/bbc1(u_1i,xi,tn)

END IF
END IF

END FUNCTION bbc_u

!-------------------------------------------------------------------------------------------------------------------
FUNCTION bbc_uy(u_1i,xi,tn)
IMPLICIT NONE
! Derivative w.r.t Uy, of the bottom BC operator, Bbc(U,x,y,t) {= Uy*Bbc1(U,x,y,t) + Bbc2(U,x,y,t) = f_bottom(x,t)},
! i.e., Lbc1.
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: tn, u_1i, xi
REAL(KIND=rp) :: bbc_uy

IF (bottom_lin_flag == 1) THEN ! Linear BC
IF (bottom_bc_flag == 0) THEN

bbc_uy = 0.0_rp ! Linear Dirichlet
ELSE

bbc_uy = 1.0_rp ! Linear Neumann or Robin
END IF

ELSE ! ANY Non-Linear BC
! For the above choices of bbc1 & bbc2 (both = U), this will take on the value U.
bbc_uy = kt(u_1i,xi,y_bottom,tn)
IF (bbc_uy == 0.0_rp) bbc_uy = epsilon ! bbc_uy appears in the denominator in one of the terms of BBC coeff/rhs

computations.
END IF

END FUNCTION bbc_uy

!-------------------------------------------------------------------------------------------------------------------
FUNCTION f_top(x,t)
IMPLICIT NONE
! Define TOP BC - Just enter the functional representation. The type of BC (Dirichlet/Neumann/Robin) will be
! determined from the value of the parameter "top_bc_flag" in the module CONST_PARAMS above.

! Function & Arguments
REAL(KIND=rp), INTENT(IN) :: t, x
REAL(KIND=rp) :: f_top

f_top = 0.0_rp

END FUNCTION f_top

!-------------------------------------------------------------------------------------------------------------------
FUNCTION tbc1(u_nyi,xi,tn)
IMPLICIT NONE
! First component of the top BC operator, Tbc(U,x,y,t) {= Uy*Tbc1(U,x,y,t) + Tbc2(U,x,y,t) = f_top(x,t)}
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: tn,u_nyi,xi
REAL(KIND=rp) :: tbc1

IF (top_lin_flag == 1) THEN ! Linear BC
IF (top_bc_flag == 0) THEN

tbc1 = 0.0_rp ! Linear Dirichlet
ELSE

tbc1 = 1.0_rp ! Linear Neumann or Robin
END IF

ELSE ! Non-Linear BC
IF (top_bc_flag == 0) THEN

tbc1 = 0.0_rp ! Non-Linear Dirichlet
ELSE

tbc1 = kt(u_nyi,xi,y_top,tn) ! Non-Linear Neumann or Robin.
IF (tbc1 == 0.0_rp) tbc1 = epsilon ! tbc1 appears in the denominator of tbc_u for Non-Linear Neumann/Robin BCs.

END IF ! Can be any function of U as required by BC.
END IF

END FUNCTION tbc1

!-------------------------------------------------------------------------------------------------------------------
FUNCTION tbc2(u_nyi,xi,tn)
IMPLICIT NONE
! Second component of the top BC operator, Tbc(U,x,y,t) {= Uy*Tbc1(U,x,y,t) + Tbc2(U,x,y,t) = f_top(x,t)}
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: tn,u_nyi,xi
REAL(KIND=rp) :: tbc2

IF (top_lin_flag == 1) THEN ! Linear BC
IF (top_bc_flag == 0) THEN

tbc2 = f_top(xi,tn) ! Linear Dirichlet
ELSE IF(top_bc_flag == 1) THEN

tbc2 = 0.0_rp ! Linear Neumann
ELSE

tbc2 = alpha_y*u_nyi ! Linear Robin
END IF

ELSE ! Non-Linear BC
IF (top_bc_flag == 1) THEN

tbc2 = 0.0_rp ! Non-Linear Neumann
ELSE

tbc2 = 0.5_rp*u_nyi*(1.0_rp + u_nyi) ! Non-Linear Dirichlet or Robin.
END IF ! Can be any function of U as required by BC.

END IF
END FUNCTION tbc2
!-------------------------------------------------------------------------------------------------------------------
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FUNCTION tbc_u(u_nyi,xi,tn)
IMPLICIT NONE
! Derivative w.r.t U, of the ENTIRE top BC operator, Tbc(U,x,y,t) {= Uy*Tbc1(U,x,y,t) + Tbc2(U,x,y,t) = f_top(x,t)}.
! The derivatives of the two individual components of the boundary operator (tbc1 and tbc2) are not required
! separately by the algorithm used here.

! Function & Arguments
REAL(KIND=rp), INTENT(IN) :: tn,u_nyi,xi
REAL(KIND=rp) :: tbc_u

IF (top_lin_flag == 1) THEN ! Linear BC
IF (top_bc_flag == 0) THEN

tbc_u = 1.0_rp ! Linear Dirichlet
ELSE IF(top_bc_flag == 1) THEN

tbc_u = 0.0_rp ! Linear Neumann
ELSE

tbc_u = alpha_y ! Linear Robin
END IF

ELSE ! ANY Non-Linear BC
! For the above choices of tbc1 & tbc2 (both = U), this will take on the value Uy + 1. Uy can be obtained from
! the top boundary condition as shown below.
IF (top_bc_flag == 0) THEN ! NonLinear Dirichlet

tbc_u = 0.5_rp*(1.0_rp + 2.0_rp*u_nyi)
ELSE IF (top_bc_flag == 1) THEN ! NonLinear Neumann

tbc_u = ( (kt_u(u_nyi,xi,y_top,tn))*(f_top(xi,tn) - tbc2(u_nyi,xi,tn)) )/tbc1(u_nyi,xi,tn)
ELSE ! NonLinear Robin

tbc_u = 0.5_rp*(1.0_rp + 2.0_rp*u_nyi) &
+ ( (kt_u(u_nyi,xi,y_top,tn))*(f_top(xi,tn) - tbc2(u_nyi,xi,tn)) )/tbc1(u_nyi,xi,tn)

END IF
END IF

END FUNCTION tbc_u

!-------------------------------------------------------------------------------------------------------------------
FUNCTION tbc_uy(u_nyi,xi,tn)
IMPLICIT NONE
! Derivative w.r.t Uy, of the top BC operator, Tbc(U,x,y,t) {= Uy*Tbc1(U,x,y,t) + Tbc2(U,x,y,t) = f_top(x,t)},
! i.e., Lbc1.
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: tn, u_nyi, xi
REAL(KIND=rp) :: tbc_uy

IF (top_lin_flag == 1) THEN ! Linear BC
IF (top_bc_flag == 0) THEN

tbc_uy = 0.0_rp ! Linear Dirichlet
ELSE

tbc_uy = 1.0_rp ! Linear Neumann or Robin
END IF

ELSE ! ANY Non-Linear BC
! For the above choices of tbc1 & tbc2 (both = U), this will take on the value U.
tbc_uy = kt(u_nyi,xi,y_top,tn)
IF (tbc_uy == 0.0_rp) tbc_uy = epsilon ! tbc_uy appears in the denominator in one of the terms of TBC coeff/rhs computations.

END IF

END FUNCTION tbc_uy

!-------------------------------------------------------------------------------------------------------------------
FUNCTION a1(x,y,t)
IMPLICIT NONE
! This function computes the value of the inner coefficient of x derivatives in the adjoint form of the HEAT
! CONDUCTION EQUATION:
! a1*(a2*kt*U_x)_x + b1*(b2*kt*U_y)_y + f(U,x,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative. For
! the Cartesian system, a1 = 1, for the Cylindrical system, a1 = 1/x, and for Spherical the system, a1 = 1/x^2.
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: t, x, y
REAL(KIND=rp) :: a1

! If needed, a specific function a1(x,y,t) can be defined, instead of the standard forms for Cartesian, Cylindrical,
! or Spherical coordinate systems, that are defined below, by setting coord_flag = 0 in the MODULE "const_params".

SELECT CASE (coord_flag)
CASE (0)

a1 = SIN(x - t) ! This can be any function a1(x,y,t).
CASE (1)

a1 = 1.0_rp
CASE (2)

IF (x /= 0.0_rp) THEN ! a1 is independent of y in Cylindrcal coordinates.
a1 = 1.0_rp/x

ELSE
! This really does not matter as x=0 is the axis of cylindrical symmetry or point of spherical
! symmetry. So, at x=0, the PDE itself has a different form, as determined using L'Hospital's
! rule (see routine "qldgts_coeff_rhs"). This value is just assigned as a "safety trap" value
! and SIMULATES the fact that in computing the coefficients at x=0 in the routine
! "qldgts_coeff_rhs", a1 and a2 occur as a paired product and will cancel each other out.

a1 = 1.0_rp
END IF

CASE (3)
IF (x /= 0.0_rp) THEN ! a1 is independent of y in Spherical coordinates.

a1 = 1.0_rp/(x*x)
ELSE
! This really does not matter as x=0 is the axis of cylindrical symmetry or point of spherical
! symmetry. So, at x=0, the PDE itself has a different form, as determined using L'Hospital's
! rule (see routine "qldgts_coeff_rhs"). This value is just assigned as a "safety trap" value
! and SIMULATES the fact that in computing the coefficients at x=0 in the routine
! "qldgts_coeff_rhs", a1 and a2 occur as a paired product and will cancel each other out.

a1 = 1.0_rp
END IF

CASE DEFAULT
PRINT *, "Coordinate Flag should be an integer from 0 to 3. Exiting program!"
STOP

END SELECT

END FUNCTION a1

!-------------------------------------------------------------------------------------------------------------------
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FUNCTION a2(x,y,t)
IMPLICIT NONE
! This function computes the value of the outer coefficient of x derivatives in the adjoint form of the HEAT
! CONDUCTION EQUATION:
! a1*(a2*kt*U_x)_x + b1*(b2*kt*U_y)_y + f(U,x,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative. For
! the Cartesian system, a2 = 1, for the Cylindrical system, a2 = x, and for the Spherical system, a2 = x^2.
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: t, x, y
REAL(KIND=rp) :: a2

! If needed, a specific function a2(x,y,t) can be defined, instead of the standard forms for Cartesian, Cylindrical,
! or Spherical coordinate systems, that are defined below, by setting coord_flag = 0 in the MODULE "const_params".

SELECT CASE (coord_flag)
CASE (0)

a2 = SIN(y + t) ! This can be any function a2(x,y,t).
CASE (1)

a2 = 1.0_rp
CASE (2)

IF (x /= 0.0_rp) THEN ! a2 is independent of y in Cylindrcal coordinates.
a2 = x

ELSE
! This really does not matter as x=0 is the axis of cylindrical symmetry or point of spherical
! symmetry. So, at x=0, the PDE itself has a different form, as determined using L'Hospital's
! rule (see routine "qldgts_coeff_rhs"). This value is just assigned as a "safety trap" value
! and SIMULATES the fact that in computing the coefficients at x=0 in the routine
! "qldgts_coeff_rhs", a1 and a2 occur as a paired product and will cancel each other out.

a2 = 1.0_rp
END IF

CASE (3)
IF (x /= 0.0_rp) THEN ! a2 is independent of y in Spherical coordinates.

a2 = x*x

ELSE
! This really does not matter as x=0 is the axis of cylindrical symmetry or point of spherical
! symmetry. So, at x=0, the PDE itself has a different form, as determined using L'Hospital's
! rule (see routine "qldgts_coeff_rhs"). This value is just assigned as a "safety trap" value
! and SIMULATES the fact that in computing the coefficients at x=0 in the routine
! "qldgts_coeff_rhs", a1 and a2 occur as a paired product and will cancel each other out.

a2 = 1.0_rp
END IF

END SELECT
! CASE DEFAULT statement is not needed here since "coord_flag" value has already been checked in the
! subroutine a1 above.

END FUNCTION a2

!-------------------------------------------------------------------------------------------------------------------
FUNCTION a2_x(x,y,t)
IMPLICIT NONE
! This function computes the value of the FIRST DERIVATIVE of the outer coefficient of x derivatives in the
! adjoint form of the HEAT CONDUCTION EQUATION:
! a1*(a2*kt*U_x)_x + b1*(b2*kt*U_y)_y + f(U,x,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative. For
! the values of a2 defined above, the value of this function for the Cartesian system is, a2_x = 0, for the
! Cylindrical system, a2_x = 1, and for the Spherical system, a2_x = 2x.
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: t, x, y
REAL(KIND=rp) :: a2_x

! If needed, a specific function a2(t,x,y) can be defined above, instead of the standard forms for Cartesian,
! Cylindrical, or Spherical coordinate systems, that are defined below. In that case, its partial derivative
! a2_x can be easily computed analytically, and specified below. This value is computed independently of whether
! x = 0 or y = 0 because it is not needed for the spherical and cylindrical PDE functionals defined there.

SELECT CASE (coord_flag)
CASE (0)

a2_x = 0.0_rp ! Based on the Function a2(x,y,t), above.
CASE (1)

a2_x = 0.0_rp
CASE (2)

a2_x = 1.0_rp
CASE (3)

a2_x = 2.0_rp*x
END SELECT
! CASE DEFAULT statement is not needed here since "coord_flag" value has already been checked in the
! subroutine a1 above.

END FUNCTION a2_x

!-------------------------------------------------------------------------------------------------------------------
FUNCTION b1(x,y,t)
IMPLICIT NONE
! This function computes the value of the inner coefficient of y derivatives in the adjoint form of the HEAT
! CONDUCTION EQUATION:
! a1*(a2*kt*U_x)_x + b1*(b2*kt*U_y)_y + f(U,x,y,t) = rho*c*U_t, where the "_" denotes a partial derivative. For
! the Cartesian system, b1 = 1, for the Cylindrical system, b1 = 1/x^2, and for Spherical the system,
! b1 = 1/(x^2*SIN(y)).
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: t, x, y
REAL(KIND=rp) :: b1

! If needed, a specific function b1(x,y,t) can be defined, instead of the standard forms for Cartesian, Cylindrical,
! or Spherical coordinate systems that are defined below, by setting coord_flag = 0 in the MODULE "const_params".

SELECT CASE (coord_flag)
CASE (0)

b1 = COS(y - t) ! This can be any function b1(x,y,t).
CASE (1)

b1 = 1.0_rp ! b1 is independent of y in Cylindrcal coordinates.
CASE (2)

IF (x /= 0.0_rp) THEN
b1 = 1.0_rp/(x*x)

ELSE
! This really does not matter as x=0 is the axis of cylindrical symmetry or point of spherical
! symmetry. So, at x=0, the PDE itself has a different form, as determined using L'Hospital's
! rule (see routine "qldgts_coeff_rhs"). This value is just assigned as a "safety trap" value
! and SIMULATES the fact that in computing the coefficients at x=0 in the routine
! "qldgts_coeff_rhs", b1 and b2 occur as a paired product and will cancel each other out.

b1 = 1.0_rp
END IF
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CASE (3)
IF (x /= 0.0_rp) THEN

IF (y /= 0.0_rp) THEN
b1 = 1.0_rp/(x*x*SIN(y))

ELSE
b1 = 1.0_rp/(x*x) ! b1 depends on BOTH x & y in Spherical coordinates.

END IF
ELSE
! This really does not matter as x=0 is the axis of cylindrical symmetry or point of spherical
! symmetry. So, at x=0, the PDE itself has a different form, as determined using L'Hospital's
! rule (see routine "qldgts_coeff_rhs"). A similar argument applies to y=0 in the spherical
! symmetry case. This value is just assigned as a "safety trap" value and SIMULATES the fact
! that in computing the coefficients at y=0 in the routine "qldgts_coeff_rhs", b1 and b2 occur
! as a paired product and will cancel each other out. In computing the coefficients at x=0, the
! modified PDE (via. L'Hospital's rule) does not have any y dependent terms.

b1 = 1.0_rp
END IF

END SELECT
! CASE DEFAULT statement is not needed here since "coord_flag" value has already been checked in the
! subroutine a1 above.

END FUNCTION b1

!-------------------------------------------------------------------------------------------------------------------
FUNCTION b2(x,y,t)
IMPLICIT NONE
! This function computes the value of the outer coefficient of y derivatives in the adjoint form of the HEAT
! CONDUCTION EQUATION:
! a1*(a2*kt*U_x)_x + b1*(b2*kt*U_y)_y + f(U,x,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative. For
! the Cartesian system, b2 = 1, for the Cylindrical system, b2 = 1, and for the Spherical system, b2 = SIN(y).
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: t, x, y
REAL(KIND=rp) :: b2

! If needed, a specific function b2(x,y,t) can be defined, instead of the standard forms for Cartesian, Cylindrical,
! or Spherical coordinate systems that are defined below, by setting coord_flag = 0 in the MODULE "const_params".

SELECT CASE (coord_flag)
CASE (0)

b2 = COS(x + t) ! This can be any function b2(x,y,t).
CASE (1:2)

b2 = 1.0_rp
CASE (3)

IF (y /= 0.0_rp) THEN
b2 = SIN(y) ! b2 depends ONLY on y in Spherical coordinates.

ELSE
! This really does not matter as the PDE itself has a different form at y=0, as determined
! using L'Hospital's rule (see routine "qldgts_coeff_rhs"). A similar argument applies to y=0
! in the spherical symmetry case. This value is just assigned as a "safety trap" value and
! SIMULATES the fact that in computing the coefficients at y=0 in the routine "qldgts_coeff_rhs",
! b1 and b2 occur as a paired product and will cancel each other out. In computing the
! coefficients at x=0, the modified PDE (via. L'Hospital's rule) does not have any y dependent
! terms. Even when x /= 0, b1*b2 = 1/(x*x). So, b2=1 works fine for this system of coordinates.
b2 = 1.0_rp

END IF
END SELECT
! CASE DEFAULT statement is not needed here since "coord_flag" value has already been checked in the
! subroutine a1 above.

END FUNCTION b2

!-------------------------------------------------------------------------------------------------------------------
FUNCTION b2_y(x,y,t)
IMPLICIT NONE
! This function computes the value of the FIRST DERIVATIVE of the outer coefficient of x derivatives in the
! adjoint form of the HEAT CONDUCTION EQUATION:
! a1*(a2*kt*U_x)_x + b1*(b2*kt*U_y)_y + f(U,x,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative. For
! the values of b2 defined above, the value of this function for the Cartesian system is, b2_y = 0, for the
! Cylindrical system, b2_y = 0, and for the Spherical system, b2_y = COS(y).
! Function & Arguments

REAL(KIND=rp), INTENT(IN) :: t, x, y
REAL(KIND=rp) :: b2_y

! If needed, a specific function b2(x,y,t) can be defined above, instead of the standard forms for Cartesian,
! Cylindrical, or Spherical coordinate systems, that are defined below. In that case, its partial derivative
! b2_y can be easily computed analytically, and specified below. This value is computed independently of whether
! x = 0 or y = 0 because it is not needed for the spherical and cylindrical PDE functionals defined there.

SELECT CASE (coord_flag)
CASE (0)

b2_y = 0.0_rp ! Based on Function b2(x,y,t) above.
CASE (1:2)

b2_y = 0.0_rp
CASE (3)

b2_y = COS(y)
END SELECT
! CASE DEFAULT statement is not needed here since "coord_flag" value has already been checked in the
! subroutine a1 above.

END FUNCTION b2_y

!-------------------------------------------------------------------------------------------------------------------
FUNCTION u_x(j,i,uj,x,y,tn)
IMPLICIT NONE
! This function computes the value of the FIRST PARTIAL DERIVATIVE of u w.r.t x, for computing the
! Frechet-Taylor Coefficients of the Linearlized form of the original adjoint form PDE:
! a1*(a2*kt*U_x)_x + b1*(b2*kt*U_y)_y + f(U,x,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative.
! Function & Arguments

REAL(KIND=rp), DIMENSION(:), INTENT(IN) :: uj,x,y ! Only the corresponding row is needed.
REAL(KIND=rp), INTENT(IN) :: tn
INTEGER(KIND=ip), INTENT(IN) :: i,j
REAL(KIND=rp) :: u_x

! Local Variables
REAL(KIND=rp) :: hx
INTEGER(KIND=ip) :: nx

! Main Calculations.
nx = SIZE(x)
hx = (x(nx) - x(1))/REAL(nx - 1)
IF (i>1 .AND. i<nx ) THEN ! Interior point (including the TOP/BOTTOM boundary). Use Centered Differencing.

u_x = (uj(i+1) - uj(i-1))/(2.0_rp*hx)
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ELSE IF (i==1) THEN ! Left boundary point.
! If Left BC is non-"Dirichlet" (see notes in MODULE "const_params"), then use BC to compute u_x
! Otherwise, the assignment of the left Dirichlet BC to the grid function obviates the need for u_x.
IF (left_bc_flag /= 0) THEN

u_x = ( f_left(y(j),tn) - lbc2(uj(1),y(j),tn) )/lbc1(uj(1),y(j),tn)
END IF

ELSE
! If Right BC is non-"Dirichlet" (see notes in MODULE "const_params"), then use BC to compute u_x
! Otherwise, the assignment of the right Dirichlet BC to the grid function obviates the need for u_x.
IF (right_bc_flag /= 0) THEN

u_x = ( f_right(y(j),tn) - rbc2(uj(nx),y(j),tn) )/rbc1(uj(nx),y(j),tn)
END IF

END IF

END FUNCTION u_x

!-------------------------------------------------------------------------------------------------------------------
FUNCTION u_y(j,i,ui,x,y,tn)
IMPLICIT NONE
! This function computes the value of the FIRST PARTIAL DERIVATIVE of u w.r.t y, for computing the
! Frechet-Taylor Coefficients of the Linearlized form of the original adjoint form PDE:
! a1*(a2*kt*U_x)_x + b1*(b2*kt*U_y)_y + f(U,x,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative.
! Function & Arguments

REAL(KIND=rp), DIMENSION(:), INTENT(IN) :: ui,x,y ! Only the corresponding column is needed.
REAL(KIND=rp), INTENT(IN) :: tn
INTEGER(KIND=ip), INTENT(IN) :: i,j
REAL(KIND=rp) :: u_y

! Local Variables
REAL(KIND=rp) :: hy
INTEGER(KIND=ip) :: ny

! Main Calculations.
ny = SIZE(y)
hy = (y(ny) - y(1))/REAL(ny - 1)
IF (j>1 .AND. j<ny ) THEN ! Interior point (including the LEFT/RIGHT boundary). Use Centered Differencing.

u_y = (ui(j+1) - ui(j-1))/(2.0_rp*hy)
ELSE IF (j==1) THEN ! Left boundary point.

! If Bottom BC is non-"Dirichlet" (see notes in MODULE "const_params"), then use BC to compute u_y
! Otherwise, the assignment of the bottom Dirichlet BC to the grid function obviates the need for u_y.
IF (bottom_bc_flag /= 0) THEN

u_y = ( f_bottom(x(i),tn) - bbc2(ui(1),x(i),tn) )/bbc1(ui(1),x(i),tn)
END IF

ELSE
! If Top BC is non-"Dirichlet" (see notes in MODULE "const_params"), then use BC to compute u_y
! Otherwise, the assignment of the top Dirichlet BC to the grid function obviates the need for u_y.
IF (top_bc_flag /= 0) THEN

u_y = ( f_top(x(i),tn) - tbc2(ui(ny),x(i),tn) )/tbc1(ui(ny),x(i),tn)
END IF

END IF

END FUNCTION u_y

!-------------------------------------------------------------------------------------------------------------------
FUNCTION u_xx(j,i,u,x,y,tn)
IMPLICIT NONE
! This function computes the value of the SECOND PARTIAL DERIVATIVE of u w.r.t x, for computing the
! Frechet-Taylor Coefficients of the Linearlized form of the original adjoint form PDE:
! a1*(a2*kt*U_x)_x + b1*(b2*kt*U_y)_y + f(U,x,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative.
! Function & Arguments

REAL(KIND=rp), DIMENSION(:,:), INTENT(IN) :: u
REAL(KIND=rp), DIMENSION(:), INTENT(IN) :: x,y
REAL(KIND=rp), INTENT(IN) :: tn
INTEGER(KIND=ip), INTENT(IN) :: i,j
REAL(KIND=rp) :: u_xx

! Local Variables
REAL(KIND=rp) :: hx, a
INTEGER(KIND=ip) :: nx

! Main Calculations.
nx = SIZE(x)
hx = (x(nx) - x(1))/REAL(nx - 1)
IF (i>1 .AND. i<nx ) THEN

! Interior point (including the TOP/BOTTOM boundary). Use 2nd order Centered Differencing.
u_xx = (u(j,i-1) - 2.0_rp*u(j,i) + u(j,i+1))/(hx*hx)

ELSE IF (i==1) THEN ! Left boundary point.
! If Left BC is Dirichlet, then u_xx values are not needed for any calculations due to the
! assignment of the left Dirichlet BC to the grid function values at this boundary. Otherwise,
! use the boundary value to compute the image element (corresponding to the 0th column), and
! thus compute the centered difference estimation.
IF (left_bc_flag /= 0) THEN

a = ( f_left(y(j),tn) - lbc2(u(j,1),y(j),tn) )/lbc1(u(j,1),y(j),tn)
u_xx = (2.0_rp/(hx*hx))*(u(j,2) - u(j,1) - hx*a)

END IF
ELSE

! If Right BC is Dirichlet, then u_xx values are not needed for any calculations due to the
! assignment of the right Dirichlet BC to the grid function values at this boundary. Otherwise,
! use the boundary value to compute the image element (corresponding to the Nx + 1st column),
! and thus compute the centered difference estimation.
IF (right_bc_flag /= 0) THEN

a = ( f_right(y(j),tn) - rbc2(u(j,nx),y(j),tn) )/rbc1(u(j,nx),y(j),tn)
u_xx = (2.0_rp/(hx*hx))*(u(j,nx-1) - u(j,nx) + hx*a)

END IF
END IF

END FUNCTION u_xx

!-------------------------------------------------------------------------------------------------------------------
FUNCTION u_yy(j,i,u,x,y,tn)
IMPLICIT NONE
! This function computes the value of the SECOND PARTIAL DERIVATIVE of u w.r.t y, for computing the
! Frechet-Taylor Coefficients of the Linearlized form of the original adjoint form PDE:
! a1*(a2*kt*U_x)_x + b1*(b2*kt*U_y)_y + f(U,x,y,t) = rho*cp*U_t, where the "_" denotes a partial derivative.
! Function & Arguments

REAL(KIND=rp), DIMENSION(:,:), INTENT(IN) :: u
REAL(KIND=rp), DIMENSION(:), INTENT(IN) :: x,y
REAL(KIND=rp), INTENT(IN) :: tn
INTEGER(KIND=ip), INTENT(IN) :: i,j
REAL(KIND=rp) :: u_yy

! Local Variables
REAL(KIND=rp) :: hy, a
INTEGER(KIND=ip) :: ny
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! Main Calculations.
ny = SIZE(y)
hy = (y(ny) - y(1))/REAL(ny - 1)
IF (j>1 .AND. j<ny ) THEN

! Interior point (including the TOP/BOTTOM boundary). Use 2nd order Centered Differencing.
u_yy = (u(j-1,i) - 2.0_rp*u(j,i) + u(j+1,i))/(hy*hy)

ELSE IF (j==1) THEN ! Left boundary point.
! If Bottom BC is Dirichlet, then u_yy values are not needed for any calculations due to the
! assignment of the bottom Dirichlet BC to the grid function values at this boundary. Otherwise,
! use the boundary value to compute the image element (corresponding to the 0th row), and thus
! compute the centereddifference estimation.
IF (bottom_bc_flag /= 0) THEN

a = ( f_bottom(x(i),tn) - bbc2(u(1,i),x(i),tn) )/bbc1(u(1,i),x(i),tn)
u_yy = (2.0_rp/(hy*hy))*(u(2,i) - u(1,i) - hy*a)

END IF
ELSE

! If Top BC is Dirichlet, then u_yy values are not needed for any calculations due to the
! assignment of the top Dirichlet BC to the grid function values at this boundary. Otherwise,
! use the boundary value to compute the image element (corresponding to the Ny + 1st row), and
! thus compute the centereddifference estimation.
IF (top_bc_flag /=0) THEN

a = ( f_top(x(i),tn) - tbc2(u(ny,i),x(i),tn) )/tbc1(u(ny,i),x(i),tn)
u_yy = (2.0_rp/(hy*hy))*(u(ny-1,i) - u(ny,i) + hy*a)

END IF
END IF

END FUNCTION u_yy
!-------------------------------------------------------------------------------------------------------------------

END MODULE pde_routines

!-------------------------------------------------------------------------------------------------------------------------------------
MODULE solver_routines
USE const_params
USE fault_params
USE pde_routines

CONTAINS

!-------------------------------------------------------------------------------------------------------------------
SUBROUTINE lud_trid(a, b)
IMPLICIT NONE
!-------------------------------------------------------------------------------------------------------------------
! A subroutine that solves a TRI-DIAGONAL system of linear equations (ANY NUMBER, upto MACHINE MEMORY LIMIT)
! Ax = b: where A is a "compressed" tri-diagonal matrix, of dimension n X 3, and b is a vector of dimension n.
! This routine gets matrices A, and b as INPUTS. It RETURNS the solution in vector b. This algorithm uses the
! space allocated for the A matrix to simultaneously store the elements of the lower (L) and upper (U)
! triangular matrices into which A is decomposed. It does this by not storing or using the diagonal elements
! of U, which are all equal to 1.
!-------------------------------------------------------------------------------------------------------------------

! Function & Arguments
REAL(KIND=rp), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(KIND=rp), DIMENSION(:), INTENT(INOUT) :: b

! Local variables
INTEGER(KIND=ip) :: i, num_steps

! Input checks for argument consistency.
IF (SIZE(a,1) == 0) THEN

PRINT*, "ERROR: Input array A should be a square matrix with AT LEAST ONE element."
STOP

END IF
IF (SIZE(a,1) /= SIZE(b)) THEN

PRINT*, "ERROR: Input array dimensions for A and b do not match. Please check your inputs."
STOP

END IF

! Main Calculations.
num_steps = SIZE(a,1)

! Compute the elements of L and U, within the three columns of A. The sub-diagonal elements of L are in the
! first column of A, the diagonal elements of L are in the second column of A, and the super-diagonal elements
! of U are in the third column of A. The diagonal elements of U are all equal to 1 and are neither stored, nor
! explicitly used. The first column of A are identical to the sub-diagonal elements of L. So, only the second
! and third columns of A need be explicitly computed. Also, the first element of the second column is identical
! to the first diagonal element of L. Also, the first element of the first column of A as well as the last
! element of its third (last) column, are both ZERO.

DO i = 1, num_steps
IF (i > 1) a(i,2) = a(i,2) - a(i,1)*a(i-1, 3)
IF (ABS(a(i,2)) < epsilon) THEN

PRINT *, "ERROR: Coefficient of the diagonal element corresponding to ROW# ", i, " is very small."
PRINT *, "This Tridiagonal algorithm cannot handle TINY or ZERO diagonal elements. EXITING PROGRAM!"
STOP

END IF
IF (i < num_steps) a(i,3) = a(i, 3)/a(i,2)

END DO

! Forward Substitution Step - Solving the system Ly = b, where, y = Ux. The vector y is stored in b:
DO i = 1, num_steps

IF (i == 1) THEN
b(i) = b(i)/a(i,2)

ELSE
b(i) = (b(i) - a(i, 1)*b(i-1))/a(i,2)

END IF
END DO

! Backward Substitution - Ux = b. The RHS vector (b=y) is REPLACED by the solution vector, x:
DO i = num_steps-1, 1, -1

b(i) = b(i) - a(i,3)*b(i+1)
END DO

END SUBROUTINE lud_trid

!-------------------------------------------------------------------------------------------------------------------
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SUBROUTINE qldgts_coeff_rhs(x, y, t, k, stage_flag, iter, u, u_m, residual)
IMPLICIT NONE
!-------------------------------------------------------------------------------------------------------------------
! This function computes a predefined coefficient matrix "coeff", and the "rhs" vector that are needed to
! construct the tri-diagonal system at each each of the time split stages of the DOUGLAS-GUNN TIME SPLITTING
! algorithm, applied to the PDE:
! Ut = {1/(rho*cp)}*
! [a1*{kt*(a2_x*U_x + a2*U_xx) + a2*kt_u*(U_x)^2} + b1*{kt*(b2_y*U_y + b2*U_yy) + b2*kt_u*(U_y)^2} + f(U,x,y,t)],
! where the "_" denotes partial differentiation, obtained by expanding the ADJOINT form of the linear, but very
! general Pure Conduction Equation. The values of functions a1, a2, b1, b2, kt(U) and cp(U) can be changed to
! match any regular, closed domain. THIS ROUTINE ACCOUNTS FOR ALL 4 BOUNDARY CONDITIONS, OF ANY TYPE
! (LINEAR/NON-LINEAR - Dirichlet/Neumann/Robin). Appropriate boundary condition flags must be set in the module
! "const_params" above, and boundary condition values are computed using about 30 different functions that preceed
! this subroutine. Depending on the value of the stage_flag, either the first or the second stage arrays are
! constructed, as follows:
! {coeff_1(n+1)}*{U*(n+1)} = {rhs_1(n)} &
! {coeff_2(n+1)}*{U(n+1)} = U*(n+1)
! where n denotes the time step and "coeff_i" are tridiagonal matrices of dimension nx*ny (=n).
! Only the band diagonal elements of the tridiagonal systems are computed & stored in this program, to minimize
! storage. They are stored in the form of n X 3 matrices, where the three columns are, respectively, the
! sub-diagonal, diagonal, and super-diagonal elements of the original n X n system matrix.
!
! NOTE: THIS SAME ROUTINE CAN BE USED FOR LINEAR OR NON-LINEAR PDE (WITH LINEAR/NON-LINEAR BCs). It can be shown
! that the same functional expression applies to BOTH the linear and non-linear cases of the generalized PDE being
! solved here (See documentation for all proofs/derivations). While linear cases are automatically accounted for by
! the subroutines in the MODULE "pde_routines", the specific non-linear functional components have to be defined
! for each problem, as required. This means that the LINEAR CASE CAN BE TREATED AS A SPECIAL CASE OF THE NON-LINEAR
! CASE, and one compact notation can be used throughout.
!
!-------------------------------------------------------------------------------------------------------------------

! Argument Variable Declarations
REAL(KIND=rp), DIMENSION(:), INTENT(IN) :: x, y
REAL(KIND=rp), INTENT(IN) :: k, t
REAL(KIND=rp), DIMENSION(:,:), INTENT(IN) :: u, u_m
INTEGER(KIND=ip), INTENT(IN) :: iter, stage_flag
REAL(KIND=rp), DIMENSION(:), INTENT(OUT), OPTIONAL :: residual

! Local Variable Declarations. NOTE variable Nu_m is defined Globally under the MODULE "const_params".
REAL(KIND=rp) :: hx, hy, B_m, Bu_m, Buy_m, L_m, Lu_m, Lux_m, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, N0_m, N0_n,&

& N0u_m, N0ux_m, N0uxx_m, N0uxx_n, N_n, N_m, NS_m, NS_n, NSux_m, NSuxx_m, NSuy_m, NSuyy_m, Nux_m, &
& Nuy_m, Nuxx_m, Nuyy_m, rb, R_m, rt, Ru_m, Rux_m, rx, ry, T_m, Tu_m, Tuy_m, t_np1, t_n, ux, uy

REAL(KIND=rp), DIMENSION(SIZE(y), SIZE(x)) :: r, r1
REAL(KIND=rp), DIMENSION(SIZE(y), SIZE(x), 3) :: cf
REAL(KIND=rp), DIMENSION(SIZE(x)) :: uj, uj_n
INTEGER(KIND=ip) :: alloc_error, dealloc_error, i, i_end, i_start, j, j_end, j_start, l, m, n, nt, nx, ny

! Main Calculations.
nx = SIZE(x)
ny = SIZE(y)
hx = (x(nx) - x(1))/REAL(nx - 1)
hy = (y(ny) - y(1))/REAL(ny - 1)
n = nx*ny

t_np1 = t
t_n = t - k
rx = k/(2.0_rp*hx*hx)
ry = k/(2.0_rp*hy*hy)

! NOTE: For BOTH stages , LHS is computed at the previous iteration (m), and current time level n.
! For stage 1, RHS is computed at both n & n-1 levels. For stage 2, the RHS depends on the intermediate
! "solution" at the end of stage 1, dv(1), and the previous iterate, U_m, and current time level n.
! Values at different time levels are computed separately.

! If the PDE in question is NON-LINEAR, first compute the derivative of the NON-LINEAR FUNCTIONAL w.r.t u,
! Nu_m, which was defined GLOBALLY in the MODULE "const_params". This is used in both time stages of this
! routine, and saving this cuts down a considerable amount of arithmetic. In the LINEAR case, this
! becomes 0 (ZERO) identically, since kt and cp are CONSTANTS and f_rhs is independent of U, as defined
! in the MODULE pde_routines above, and all their derivatives w.r.t. U are zero.

! STEP 1: GRID INTERIOR - Computing LHS Coefficients and RHS values for all grid points (INTERIOR for NON-Cartesian):
! -------------------------------------------------------------------------------------------------------------------
! (1a) COMPUTING THE TRIDIAGONAL COEFFICIENT MATRIX FOR BOTH STAGES, "COEFF":
! ALL the coefficients will be first computed as a 3-D array cf(j,i,3), i.e., three coefficients
! for each grid node, for clarity, and to minimize any calculation errors. This array will then be
! converted to the 2D "coeff" array (Dimension: N x 3 = Nx*Ny x 3), after all BCs have been accounted for.
! (1b) RESIDUAL:
! THE ARRAY "r1" STORES THE RESIDUAL VECTOR AT EACH ITERATION.
! (1c) COMPUTING THE RHS VECTOR, "rhs", FOR THE FIRST STAGE:
! ALL the RHS coefficients will be computed as a 2-D array r(j,i), for clarity and to minimize any
! notational errors. This array will later be converted to the 1-D "rhs" vector, after all BCs have been
! accounted for.

SELECT CASE (coord_flag)
CASE (0)
! For a User Defined System, ASSUME ALL COEFFICIENTS ARE ANALYTIC IN THE PROBLEM DOMAIN. Hence, compute BOTH Interior & Boundary
! points for Neumann or Robin BCs, as in the Cartesian system.

IF (left_bc_flag == 0) THEN
i_start = 2

ELSE
i_start = 1

END IF
IF (right_bc_flag == 0) THEN

i_end = nx-1
ELSE

i_end = nx
END IF
IF (bottom_bc_flag == 0) THEN

j_start = 2
ELSE

j_start = 1
END IF
IF (top_bc_flag == 0) THEN

j_end = ny-1
ELSE

j_end = ny
END IF

CASE (1) ! For Cartesian System, Compute BOTH Interior & Boundary points for Neumann or Robin BCs.
IF (left_bc_flag == 0) THEN

i_start = 2
ELSE

i_start = 1
END IF



 152

IF (right_bc_flag == 0) THEN
i_end = nx-1

ELSE
i_end = nx

END IF
IF (bottom_bc_flag == 0) THEN

j_start = 2
ELSE

j_start = 1
END IF
IF (top_bc_flag == 0) THEN

j_end = ny-1
ELSE

j_end = ny
END IF

CASE (2) ! For Cylindrical System, Compute Interior & Boundary Points, EXCEPT LEFT x-BC, for Neumann or Robin BCs.
i_start = 2
IF (right_bc_flag == 0) THEN

i_end = nx-1
ELSE

i_end = nx
END IF
IF (bottom_bc_flag == 0) THEN

j_start = 2
ELSE

j_start = 1
END IF
IF (top_bc_flag == 0) THEN

j_end = ny-1
ELSE

j_end = ny
END IF

CASE (3) ! For Spherical System, Compute Interior & only MIDDLE PORTION OF RIGHT x-BC, for Neumann or Robin BCs.
i_start = 2
IF (right_bc_flag == 0) THEN

i_end = nx-1
ELSE

i_end = nx
END IF
j_start = 2
j_end = ny-1

END SELECT
IF (stage_flag == 1) THEN ! FIRST STAGE.

! FOR ALL GRID POINTS: Compute Nu_m and store it for use in the second stage of this iteration.
! Compute N_m, Nux_m, Nuxx_m, and N_n; Then compute the LHS Coefficient array, the residual array
! for the current iteration, AND the RHS vector for the FIRST stage.
DO j = j_start, j_end

DO m = 1, nx
uj(m) = u_m(j,m)

uj_n(m) = u(j,m)
END DO
DO i = i_start, i_end

ux = u_x(j,i,uj,x,y,t_np1)
uy = u_y(j,i,u_m(:,i),x,y,t_np1)
n1 = (kt_u(u_m(j,i)))*cp(u_m(j,i)) - (cp_u(u_m(j,i)))*kt(u_m(j,i))
n2 = (a1(x(i), y(j), t_np1))*(a2_x(x(i), y(j), t_np1))*ux
n3 = (a1(x(i), y(j), t_np1))*( a2(x(i), y(j), t_np1))*u_xx(j,i,u_m,x,y,t_np1)
n4 = (b1(x(i), y(j), t_np1))*(b2_y(x(i), y(j), t_np1))*uy
n5 = (b1(x(i), y(j), t_np1))*( b2(x(i), y(j), t_np1))*u_yy(j,i,u_m,x,y,t_np1)
n6 = (kt_uu(u_m(j,i)))*cp(u_m(j,i)) - (cp_u(u_m(j,i)))*kt_u(u_m(j,i))
n7 = (a1(x(i), y(j), t_np1))*(a2(x(i), y(j), t_np1))*ux*ux
n8 = (b1(x(i), y(j), t_np1))*(b2(x(i), y(j), t_np1))*uy*uy
n9 = (f_rhs_u(u_m(j,i), x(i), y(j), t_np1))* cp(u_m(j,i)) &
& - (f_rhs(u_m(j,i), x(i), y(j), t_np1))*cp_u(u_m(j,i))

Nu_m(j,i) = (n1*(n2 + n3 + n4 + n5) + n6*(n7 + n8) + n9)/( rho*(cp(u_m(j,i)))*cp(u_m(j,i)) )

n1 = kt(u_m(j,i))
n6 = kt_u(u_m(j,i))
n9 = f_rhs(u_m(j,i), x(i), y(j), t_np1)
N_m = (n1*(n2 + n3 + n4 + n5) + n6*(n7 + n8) + n9)/( rho*cp(u_m(j,i)) ) ! Use n2-n5,n7,n8 from Nu_m.

n4 = (a1(x(i), y(j), t_np1))/( rho*cp(u_m(j,i)) )
n2 = n1*a2_x(x(i), y(j), t_np1) ! Use n1 from N_m calculation.
n3 = 2.0_rp*(a2(x(i), y(j), t_np1))*n6*ux ! Use n6 from N_m calculation.
Nux_m = n4*(n2+n3)

Nuxx_m = n4*(a2(x(i), y(j), t_np1))*n1 ! Use n4 from Nux_m calculation, n1 from N_m calculation.

n2 = hx*Nux_m/(2.0_rp*Nuxx_m)
n3 = ( 4.0_rp - k*Nu_m(j,i) )/(4.0_rp*rx*Nuxx_m)
cf(j,i,1) = 1.0_rp - n2 ! First LHS Coefficient.
cf(j,i,2) = -(2.0_rp + n3) ! Second LHS Coefficient.
cf(j,i,3) = 1.0_rp + n2 ! Third LHS Coefficient.

ux = u_x(j,i,uj_n,x,y,t_n)
uy = u_y(j,i,u(:,i),x,y,t_n)
n1 = kt(u(j,i))
n2 = (a1(x(i), y(j), t_n))*(a2_x(x(i), y(j), t_n))*ux
n3 = (a1(x(i), y(j), t_n))*( a2(x(i), y(j), t_n))*u_xx(j,i,u,x,y,t_n)
n4 = (b1(x(i), y(j), t_n))*(b2_y(x(i), y(j), t_n))*uy
n5 = (b1(x(i), y(j), t_n))*( b2(x(i), y(j), t_n))*u_yy(j,i,u,x,y,t_n)
n6 = kt_u(u(j,i))
n7 = (a1(x(i), y(j), t_n))*( a2(x(i), y(j), t_n))*ux*ux
n8 = (b1(x(i), y(j), t_n))*( b2(x(i), y(j), t_n))*uy*uy
n9 = f_rhs(u_m(j,i), x(i), y(j), t_n)
N_n = (n1*(n2 + n3 + n4 + n5) + n6*(n7 + n8) + n9)/( rho*cp(u(j,i)) )

IF (linear_flag == 1) THEN ! Linear PDE. FIRST STAGE RHS VECTOR.
r(j,i) = -( u(j,i) - u_m(j,i) + 0.5_rp*k*(N_m + N_n) )/(rx*Nuxx_m)

ELSE ! Non-Linear PDE.
r1(j,i) = u(j,i) - u_m(j,i) + 0.5_rp*k*(N_m + N_n) ! NON-LINEAR RESIDUAL.
r(j,i) = -r1(j,i)/(rx*Nuxx_m) ! FIRST STAGE RHS VECTOR.

END IF
END DO

END DO
ELSE ! SECOND STAGE.

DO j = j_start, j_end
DO i = i_start, i_end

n1 = (b1(x(i), y(j), t_np1))/( rho*cp(u_m(j,i)) )
n2 = (kt(u_m(j,i)))*b2_y(x(i), y(j), t_np1)
n3 = 2.0_rp*(b2(x(i), y(j), t_np1))*(kt_u(u_m(j,i)))*u_y(j,i,u_m(:,i),x,y,t_np1)
Nuy_m = n1*(n2+n3)
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Nuyy_m = n1*(b2(x(i), y(j), t_np1))*(kt(u_m(j,i))) ! Use n1 from Nuy_m calculation.

n4 = hy*Nuy_m/(2.0_rp*Nuyy_m)
n5 = ( 4.0_rp - k*Nu_m(j,i) )/(4.0_rp*ry*Nuyy_m)
cf(j,i,1) = 1.0_rp - n4 ! First LHS Coefficient.
cf(j,i,2) = -(2.0_rp + n5) ! Second LHS Coefficient.
cf(j,i,3) = 1.0_rp + n4 ! Third LHS Coefficient.

r(j,i) = -u(j,i)/(ry*Nuyy_m) ! SECOND STAGE RHS VECTOR.
END DO

END DO
END IF

! STEP 2: GRID BOUNDARIES - Compute the Coeff & RHS array values for BOUNDARY grid points:
! -----------------------------------------------------------------------------------------
! This step is carried out for any combination of GENERAL (i.e., Linear/Non-Linear) Dirichlet/ Neumann/ Robin BCs.
! This is determined from the BC flags in the module "const_params". Also, at this stage, corner points are
! adjusted based on type of BCs along intersecting boundaries.

! STEP 2(a): LEFT BOUNDARY (i = 1) & LEFT CORNER POINTS (i = 1, WITH j = 1 OR ny).
! --------------------------------------------------------------------------------
! The generalized BC is given by: L_m(U) = Ux*L1(U) + L2(U) = f_left(y,t(m)). Therefore, Lu_m = Ux*L1u + L2u;
! and Lux_m = L1. Also, for a generalized Dirichlet BC, L1 = 0 => L1u = 0. So, in this case, L_m = L2,
! Lu_m = L2u, and Lux_m = 0. For the linear case, L_m = f_left(y,t(n)), Lu_m = alpha_x (= 0 for linear
! Neumann BC), and Lux_m = 1. In terms of components, for linear Neumann, L1_m = 1, L2_m = 0; for linear
! Robin BC, L1_m = 1, L2_m = alpha_x*U_n. All these values are taken care of, in the module "pde_routines",
! above, where separate subroutines are defined for each component of the left BC.

IF (left_bc_flag == 0) THEN ! GENERAL LINEAR/NON-LINEAR Dirichlet Left BC.
DO j = 1, ny

cf(j,1,1) = 0.0_rp
cf(j,1,2) = 1.0_rp
cf(j,1,3) = 0.0_rp
IF (linear_flag == 1) THEN

L_m = lbc2(u_m(j,1),y(j),t_n)
Lu_m = lbc_u(u_m(j,1),y(j),t_n)

ELSE
IF (iter == 1) THEN

L_m = lbc2(u_m(j,1),y(j),t_n)
Lu_m = lbc_u(u_m(j,1),y(j),t_n)

ELSE
L_m = lbc2(u_m(j,1),y(j),t_np1)
Lu_m = lbc_u(u_m(j,1),y(j),t_np1)

END IF
END IF
r(j,1) = (f_left(y(j),t_np1) - L_m )/Lu_m ! RHS value if Left BC is Linear/Non-Linear Dirichlet.
IF (stage_flag == 1) THEN

IF (linear_flag /= 1) r1(j,1) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END IF

END DO
IF (bottom_bc_flag == 0) THEN

IF (linear_flag == 1) THEN
B_m = bbc2(u_m(1,1),x(1),t_n)
Bu_m = bbc_u(u_m(1,1),x(1),t_n)

ELSE
IF (iter == 1) THEN

B_m = bbc2(u_m(1,1),x(1),t_n)
Bu_m = bbc_u(u_m(1,1),x(1),t_n)

ELSE
B_m = bbc2(u_m(1,1),x(1),t_np1)
Bu_m = bbc_u(u_m(1,1),x(1),t_np1)

END IF
END IF
rb = (f_bottom(x(1),t_np1) - B_m )/Bu_m
r(1,1)= 0.5_rp*(r(1,1)+ rb) ! BOTH Left & Bottom BCs are General Dirichlet.
IF (stage_flag == 1) THEN

IF (linear_flag /= 1) r1(1,1) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END IF

END IF
IF (top_bc_flag == 0) THEN

IF (linear_flag == 1) THEN
T_m = tbc2(u_m(ny,1),x(1),t_n)
Tu_m = tbc_u(u_m(ny,1),x(1),t_n)

ELSE
IF (iter == 1) THEN

T_m = tbc2(u_m(ny,1),x(1),t_n)
Tu_m = tbc_u(u_m(ny,1),x(1),t_n)

ELSE
T_m = tbc2(u_m(ny,1),x(1),t_np1)
Tu_m = tbc_u(u_m(ny,1),x(1),t_np1)

END IF
END IF
rt = (f_top(x(1),t_np1) - T_m )/Tu_m
r(ny,1) = 0.5_rp*( r(ny,1) + rt) ! BOTH Left & Top BCs are General Dirichlet.
IF (stage_flag == 1) THEN

IF (linear_flag /= 1) r1(ny,1) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END IF

ENDIF
ELSE ! GENERAL LINEAR/NON-LINEAR Neumann OR Robin Left BC.

j_start = 1
j_end = ny
IF (bottom_bc_flag == 0) THEN

cf(1,1,1) = 0.0_rp
cf(1,1,2) = 1.0_rp
cf(1,1,3) = 0.0_rp
IF (linear_flag == 1) THEN

B_m = bbc2(u_m(1,1),x(1),t_n)
Bu_m = bbc_u(u_m(1,1),x(1),t_n)

ELSE
IF (iter == 1) THEN

B_m = bbc2(u_m(1,1),x(1),t_n)
Bu_m = bbc_u(u_m(1,1),x(1),t_n)

ELSE
B_m = bbc2(u_m(1,1),x(1),t_np1)
Bu_m = bbc_u(u_m(1,1),x(1),t_np1)

END IF
END IF
r(1,1) = (f_bottom(x(1),t_np1) - B_m )/Bu_m ! ONLY Bottom BC is General Dirichlet.
IF (stage_flag == 1) THEN

IF (linear_flag /= 1) r1(1,1) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END IF
j_start = 2

END IF
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IF (top_bc_flag == 0) THEN
cf(ny,1,1) = 0.0_rp
cf(ny,1,2) = 1.0_rp
cf(ny,1,3) = 0.0_rp
IF (linear_flag == 1) THEN

T_m = tbc2(u_m(ny,1),x(1),t_n)
Tu_m = tbc_u(u_m(ny,1),x(1),t_n)

ELSE
IF (iter == 1) THEN

T_m = tbc2(u_m(ny,1),x(1),t_n)
Tu_m = tbc_u(u_m(ny,1),x(1),t_n)

ELSE
T_m = tbc2(u_m(ny,1),x(1),t_np1)
Tu_m = tbc_u(u_m(ny,1),x(1),t_np1)

END IF
END IF
r(ny,1) = (f_top(x(1),t_np1) - T_m )/Tu_m ! ONLY Top BC is General Dirichlet.
IF (stage_flag == 1) THEN

IF (linear_flag /= 1) r1(ny,1) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END IF
j_end = ny-1

END IF
DO j = j_start, j_end

IF (stage_flag == 1) THEN
DO m = 1, nx

uj(m) = u_m(j,m)
END DO
IF (linear_flag /= 1) THEN ! This is different, unlike for Dirichlet BCs above.

L_m = (u_x(j,1,uj,x,y,t_np1))*lbc1(u_m(j,1), y(j), t_np1) + lbc2(u_m(j,1), y(j), t_np1)
ELSE

L_m = (u_x(j,1,uj,x,y,t_n))* lbc1(u_m(j,1), y(j), t_n) + lbc2(u_m(j,1), y(j), t_n)
END IF
Lu_m = lbc_u(u_m(j,1), y(j), t_np1)
Lux_m = lbc1(u_m(j,1), y(j), t_np1)
n1 = 2.0_rp*hx*Lu_m/Lux_m
n2 = 2.0_rp*hx*( f_left(y(j),t_np1) - L_m )/Lux_m
IF (coord_flag <= 1) THEN ! CARTESIAN COORDINATES.

n3 = (a1(x(1), y(j), t_np1))/( rho*cp(u_m(j,1)) )
n4 = (a2_x(x(1), y(j), t_np1))*kt(u_m(j,1))
n5 = 2.0_rp*(a2(x(1), y(j), t_np1))*(kt_u(u_m(j,1)))*u_x(j,1,uj,x,y,t_np1)
Nux_m = n3*(n4+n5)

Nuxx_m = n3*(a2(x(1), y(j), t_np1))*(kt(u_m(j,1))) ! Use n3 from Nux_m calculation.

n6 = hx*Nux_m/(2.0_rp*Nuxx_m)
cf(j,1,1) = 0.0_rp
cf(j,1,2) = cf(j,1,2) + n1*(1.0_rp-n6)
cf(j,1,3) = 2.0_rp
r(j,1) = r(j,1) + n2*(1.0_rp-n6)

ELSE ! CYLINDRICAL or SPHERICAL COORDINATES. ADJUST as r -> 0.
DO m = 1, nx

uj(m) = u_m(j,m)
uj_n(m) = u(j,m)

END DO
n3 = (a1(x(1), y(j), t_np1))*(a2(x(1), y(j), t_np1))
n4 = (a1(x(1), y(j), t_n))*(a2(x(1), y(j), t_n))
IF(coord_flag == 2) THEN

n5 = 1.0_rp
ELSE

n5 = 2.0_rp
END IF

ux = u_x(j,1,uj,x,y,t_np1)
n6 = (kt_u(u_m(j,1)))*cp(u_m(j,1)) - (cp_u(u_m(j,1)))*kt(u_m(j,1))
n7 = (n5 + n3)*u_xx(j,1,u_m,x,y,t_np1)
n8 = (kt_uu(u_m(j,1)))*cp(u_m(j,1)) - (cp_u(u_m(j,1)))*kt_u(u_m(j,1))
n9 = n3*ux*ux
n10 = (f_rhs_u(u_m(j,1), x(1), y(j), t_np1))* cp(u_m(j,1)) &
& - (f_rhs(u_m(j,1), x(1), y(j), t_np1))*cp_u(u_m(j,1))

N0u_m = (n6*n7 + n8*n9 + n10)/( rho*(cp(u_m(j,1)))*cp(u_m(j,1)) )

n6 = kt(u_m(j,1))
n8 = kt_u(u_m(j,1))
n10 = f_rhs(u_m(j,1), x(1), y(j), t_np1)
N0_m = (n6*n7 + n8*n9 + n10)/( rho*cp(u_m(j,1)) ) ! Use n7 and n9 from N0u_m calculation.

N0ux_m = 2.0_rp*n3*n8*ux/( rho*cp(u_m(j,1)) ) ! Use n8 from N0_m calculation.
N0uxx_m = (n5 + n3)*(kt(u_m(j,1)))/( rho*cp(u_m(j,1)) )

ux = u_x(j,1,uj_n,x,y,t_n)
n6 = kt(u(j,1))
n7 = (n5 + n4)*u_xx(j,1,u,x,y,t_n)
n8 = kt_u(u(j,1))
n9 = n4*ux*ux
n10 = f_rhs(u(j,1), x(1), y(j), t_n)
N0_n = (n6*n7 + n8*n9 + n10)/( rho*cp(u(j,1)) )

n5 = hx*N0ux_m/(2.0_rp*N0uxx_m)
n6 = ( 4.0_rp - k*N0u_m )/(4.0_rp*rx*N0uxx_m)
cf(j,1,1) = 0.0_rp
cf(j,1,2) = -(2.0_rp + n6) + n1*(1.0_rp-n5)
cf(j,1,3) = 2.0_rp
IF (linear_flag == 1) THEN ! Linear PDE. FIRST STAGE RHS VECTOR.

r(j,1) = -( (( u(j,1) - u_m(j,1) + 0.5_rp*k*(N0_m + N0_n) )/(rx*N0uxx_m)) ) + n2*(1.0_rp-n5)
ELSE ! Non-Linear PDE.

r1(j,1) = u(j,1) - u_m(j,1) + 0.5_rp*k*(N0_m + N0_n) ! NON-LINEAR RESIDUAL.
r(j,1) = -( r1(j,1)/(rx*N0uxx_m) ) + n2*(1.0_rp-n5) ! FIRST STAGE RHS VECTOR.

END IF
END IF

ELSE
! For stage 2, compute cf and r elements at the left boundary, ONLY for Cylindrical OR Spherical Systems. In these
! cases, the L'Hospital Rule adjusted PDE at the left boundary DOES NOT CONTAIN any y derivative terms, due to the
! symmetry requirement for the Rule to be applied (i.e., U_y, U_yy have to be BOTH 0 (ZERO) as x --> 0.
IF ( (coord_flag == 2) .OR. (coord_flag == 3) ) THEN

cf(j,1,1) = 0.0_rp
cf(j,1,2) = 1.0_rp
cf(j,1,3) = 0.0_rp
r(j,1) = u(j,1)

END IF
END IF

END DO
END IF
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! STEP 2(b): Right Boundary (i = nx) & Right corner points (i = nx, WITH j = 1 OR ny).
! For spherical coordinate system, the corner points are NOT considered here since the top and bottom boundary
! functionals are different from the one in the interior.
! ---------------------------------------------------------------------------------------
! The generalized BC is given by: R_m(U) = Ux*R1(U) + R2(U) = f_right(y,t(m)). Therefore, Ru_m = Ux*R1u + R2u;
! and Rux_m =R1. Also, for a generalized Dirichlet BC, R1 = 0 => R1u = 0. So, in this case, R_m = R2,
! Ru_m = R2u, and Rux_m = 0. For the linear case, R_m = f_right(y,t(n)), Ru_m = alpha_x (= 0 for linear
! Neumann BC), and Rux_m = 1. In terms of components, for linear Neumann, R1_m = 1, R2_m = 0; for linear
! Robin BC, R1_m = 1, R2_m = alpha_x*U_n. All these values are taken care of, in the module "pde_routines",
! above, where separate subroutines are defined for each component of the right BC.

IF (right_bc_flag == 0) THEN ! GENERAL LINEAR/NON-LINEAR Dirichlet Left BC.
DO j = 1, ny

cf(j,nx,1) = 0.0_rp
cf(j,nx,2) = 1.0_rp
cf(j,nx,3) = 0.0_rp
IF (linear_flag == 1) THEN

R_m = rbc2(u_m(j,nx),y(j),t_n)
Ru_m = rbc_u(u_m(j,nx),y(j),t_n)

ELSE
IF (iter == 1) THEN

R_m = rbc2(u_m(j,nx),y(j),t_n)
Ru_m = rbc_u(u_m(j,nx),y(j),t_n)

ELSE
R_m = rbc2(u_m(j,nx),y(j),t_np1)
Ru_m = rbc_u(u_m(j,nx),y(j),t_np1)

END IF
END IF
r(j,nx) = (f_right(y(j),t_np1) - R_m )/Ru_m ! RHS value if Right BC is Linear/Non-Linear Dirichlet.
IF (stage_flag == 1) THEN

IF (linear_flag /= 1) r1(j,nx) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END IF

END DO
IF (bottom_bc_flag == 0) THEN

IF (linear_flag == 1) THEN
B_m = bbc2(u_m(1,nx),x(nx),t_n)
Bu_m = bbc_u(u_m(1,nx),x(nx),t_n)

ELSE
IF (iter == 1) THEN

B_m = bbc2(u_m(1,nx),x(nx),t_n)
Bu_m = bbc_u(u_m(1,nx),x(nx),t_n)

ELSE
B_m = bbc2(u_m(1,nx),x(nx),t_np1)
Bu_m = bbc_u(u_m(1,nx),x(nx),t_np1)

END IF
END IF
rb = (f_bottom(x(nx),t_np1) - B_m )/Bu_m
r(1,nx)= 0.5_rp*(r(1,nx) + rb) ! RHS value if Right & Bottom BCs are Dirichlet.
IF (stage_flag == 1) THEN

IF (linear_flag /= 1) r1(1,nx) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END IF

END IF
IF (top_bc_flag == 0) THEN

IF (linear_flag == 1) THEN
T_m = tbc2(u_m(ny,nx),x(nx),t_n)
Tu_m = tbc_u(u_m(ny,nx),x(nx),t_n)

ELSE
IF (iter == 1) THEN

T_m = tbc2(u_m(ny,nx),x(nx),t_n)
Tu_m = tbc_u(u_m(ny,nx),x(nx),t_n)

ELSE
T_m = tbc2(u_m(ny,nx),x(nx),t_np1)
Tu_m = tbc_u(u_m(ny,nx),x(nx),t_np1)

END IF
END IF
rt = (f_top(x(nx),t_np1) - T_m )/Tu_m
r(ny,nx) = 0.5_rp*( r(ny,nx) + rt) ! RHS value if Right & Top BCs are Dirichlet.
IF (stage_flag == 1) THEN

IF (linear_flag /= 1) r1(ny,nx) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END IF

ENDIF
ELSE ! GENERAL LINEAR/NON-LINEAR Neumann OR Robin Left BC.

j_start = 1
j_end = ny
IF (bottom_bc_flag == 0) THEN

cf(1,nx,1) = 0.0_rp
cf(1,nx,2) = 1.0_rp
cf(1,nx,3) = 0.0_rp
IF (linear_flag == 1) THEN

B_m = bbc2(u_m(1,nx),x(nx),t_n)
Bu_m = bbc_u(u_m(1,nx),x(nx),t_n)

ELSE
IF (iter == 1) THEN

B_m = bbc2(u_m(1,nx),x(nx),t_n)
Bu_m = bbc_u(u_m(1,nx),x(nx),t_n)

ELSE
B_m = bbc2(u_m(1,nx),x(nx),t_np1)
Bu_m = bbc_u(u_m(1,nx),x(nx),t_np1)

END IF
END IF
r(1,nx) = (f_bottom(x(nx),t_np1) - B_m )/Bu_m ! ONLY Bottom BC is General Dirichlet.
IF (stage_flag == 1) THEN

IF (linear_flag /= 1) r1(1,nx) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END IF
j_start = 2

ELSE
! For spherical system, and non-Dirichlet BCs, do not compute right-bottom corner point because the
! form of the functional changes for THETA = 0 or PI (corresponding to "bottom" and "top" BCs).
IF (coord_flag == 3) j_start = 2

END IF
IF (top_bc_flag == 0) THEN

cf(ny,nx,1) = 0.0_rp
cf(ny,nx,2) = 1.0_rp
cf(ny,nx,3) = 0.0_rp
IF (linear_flag == 1) THEN

T_m = tbc2(u_m(ny,nx),x(nx),t_n)
Tu_m = tbc_u(u_m(ny,nx),x(nx),t_n)

ELSE
IF (iter == 1) THEN

T_m = tbc2(u_m(ny,nx),x(nx),t_n)
Tu_m = tbc_u(u_m(ny,nx),x(nx),t_n)
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ELSE
T_m = tbc2(u_m(ny,nx),x(nx),t_np1)
Tu_m = tbc_u(u_m(ny,nx),x(nx),t_np1)

END IF
END IF
r(ny,nx) = (f_top(x(nx),t_np1) - T_m )/Tu_m ! ONLY Top BC is General Dirichlet.
IF (stage_flag == 1) THEN

IF (linear_flag /= 1) r1(ny,nx) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END IF
j_end = ny-1

ELSE
! For spherical system, and non-Dirichlet BCs, do not compute right-bottom corner point because the
! form of the functional changes for THETA = 0 or PI (corresponding to "bottom" and "top" BCs).
IF (coord_flag == 3) j_end = ny-1

END IF
DO j = j_start, j_end

IF (stage_flag == 1) THEN ! For the RIGHT Boundary, STAGE 2 NEED NOT be modified from that above.
DO m = 1, nx

uj(m) = u_m(j,m)
END DO
IF (linear_flag /= 1) THEN ! This is different, unlike for Dirichlet BCs above.

R_m = (u_x(j,nx,uj,x,y,t_np1))*rbc1(u_m(j,nx), y(j), t_np1) + rbc2(u_m(j,nx), y(j), t_np1)
ELSE

R_m = (u_x(j,nx,uj,x,y,t_n))* rbc1(u_m(j,nx), y(j), t_n) + rbc2(u_m(j,nx), y(j), t_n)
END IF
Ru_m = rbc_u(u_m(j,nx), y(j), t_np1)
Rux_m = rbc1(u_m(j,nx), y(j), t_np1)
n1 = 2.0_rp*hx*Ru_m/Rux_m
n2 = 2.0_rp*hx*( f_right(y(j),t_np1) - R_m )/Rux_m
n3 = (a1(x(nx), y(j), t_np1))/( rho*cp(u_m(j,nx)) )
n4 = (a2_x(x(nx), y(j), t_np1))*kt(u_m(j,nx))
n5 = 2.0_rp*(a2(x(nx), y(j), t_np1))*(kt_u(u_m(j,nx)))*u_x(j,nx,uj,x,y,t_np1)
Nux_m = n3*(n4+n5)

Nuxx_m = n3*(a2(x(nx), y(j), t_np1))*(kt(u_m(j,nx))) ! Use n3 from Nux_m calculation.

n6 = hx*Nux_m/(2.0_rp*Nuxx_m)
cf(j,nx,1) = 2.0_rp
cf(j,nx,2) = cf(j,nx,2) - n1*(1.0_rp + n6)
cf(j,nx,3) = 0.0_rp
r(j,nx) = r(j,nx) - n2*(1.0_rp + n6)

END IF
END DO

END IF

! STEP 2(c): Bottom Boundary: Corners have been taken care of under the left and right boundary loops.
! -------------------------------------------------------------------------------------------------------
! The generalized BC is given by: B_m(U) = Ux*B1(U) + B2(U) = f_bottom(x,t(m)). Therefore, Bu_m = Ux*B1u + B2u;
! and Bux_m =B1. Also, for a generalized Dirichlet BC, B1 = 0 => B1u = 0. So, in this case, B_m = B2,
! Bu_m = B2u, and Bux_m = 0. For the linear case, B_m = f_bottom(x,t(n)), Bu_m = alpha_y (= 0 for linear
! Neumann BC), and Bux_m = 1. In terms of components, for linear Neumann, B1_m = 1, B2_m = 0; for linear
! Robin BC, B1_m = 1, B2_m = alpha_x*U_n. All these values are taken care of, in the module "pde_routines",
! above, where separate subroutines are defined for each component of the bottom BC.

IF (bottom_bc_flag == 0) THEN ! GENERALIZED LINEAR/NON-LINEAR Dirichlet Bottom BC.
DO i = 2, nx ! i_end=nx: Right-Bottom Corner Point was not included in Right BC for Spher. System.

cf(1,i,1) = 0.0_rp
cf(1,i,2) = 1.0_rp
cf(1,i,3) = 0.0_rp
IF (linear_flag == 1) THEN

B_m = bbc2(u_m(1,i), x(i), t_n)
Bu_m = bbc_u(u_m(1,i), x(i), t_n)

ELSE
IF (iter == 1) THEN

B_m = bbc2(u_m(1,i), x(i), t_n)
Bu_m = bbc_u(u_m(1,i), x(i), t_n)

ELSE
B_m = bbc2(u_m(1,i), x(i), t_np1)
Bu_m = bbc_u(u_m(1,i), x(i), t_np1)

END IF
END IF
r(1,i) = ( f_bottom(x(i),t_np1) - B_m )/Bu_m ! RHS value if Bottom BC is Linear/Non-Linear Dirichlet.
IF (stage_flag == 1) THEN

IF (linear_flag /= 1) r1(1,i) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END IF

END DO
ELSE ! GENERALIZED LINEAR/NON-LINEAR Neumann OR Robin Bottom BC.

! For the BOTTOM Boundary, STAGE 1 NEED NOT be modified from that above, EXCEPT for the Spherical
! coordinate system (coord_flag = 3). In that case, for all i, the bottom LHS coefficients and
! RHS vector are identical in form to the Non-spherical cases, except that N and its derivatives are
! replaced by the spherical non-linear functional at the bottom boundary, Ns, in both stages.
IF (stage_flag == 1) THEN

IF (coord_flag == 3) THEN ! For Spherical Coordinate System
DO m = 1, nx

uj(m) = u_m(1,m)
uj_n(m) = u(1,m)

END DO
DO i = i_start, i_end

ux = u_x(1,i,uj,x,y,t_np1)
uy = u_y(1,i,u_m(:,i),x,y,t_np1)
n1 = (kt_u(u_m(1,i)))*cp(u_m(1,i)) - (cp_u(u_m(1,i)))*kt(u_m(1,i))
n2 = (a1(x(i), y(1), t_np1))*(a2_x(x(i), y(1), t_np1))*ux
n3 = (a1(x(i), y(1), t_np1))*( a2(x(i), y(1), t_np1))*u_xx(1,i,u_m,x,y,t_np1)
n4 = 2.0_rp*(b1(x(i), y(1), t_np1))*( b2(x(i), y(1), t_np1))*u_yy(1,i,u_m,x,y,t_np1)
n5 = (kt_uu(u_m(1,i)))*cp(u_m(1,i)) - (cp_u(u_m(1,i)))*kt_u(u_m(1,i))
n6 = (a1(x(i), y(1), t_np1))*( a2(x(i), y(1), t_np1))*ux*ux
n7 = (b1(x(i), y(1), t_np1))*( b2(x(i), y(1), t_np1))*uy*uy
n8 = (f_rhs_u(u_m(1,i), x(i), y(1), t_np1))* cp(u_m(1,i)) &
& - (f_rhs(u_m(1,i), x(i), y(1), t_np1))*cp_u(u_m(1,i))

NSu_m(1,i) = ( n1*(n2 + n3 + n4) + n5*(n6 + n7) + n8 )/( rho*(cp(u_m(1,i)))*cp(u_m(1,i)) )

n1 = kt(u_m(1,i))
n5 = kt_u(u_m(1,i))
n8 = f_rhs(u_m(1,i), x(i), y(1), t_np1)
NS_m = ( n1*(n2 + n3 + n4) + n5*(n6 + n7) + n8 )/( rho*cp(u_m(1,i)) ) ! Use n2-n4 & n6-n7 from NSu_m.

n4 = (a1(x(i), y(1), t_np1))/( rho*cp(u_m(1,i)) )
n2 = n1*a2_x(x(i), y(1), t_np1) ! Use n1 from NS_m calculation.
n3 = 2.0_rp*n5*(a2(x(i), y(1), t_np1))*ux ! Use n5 from NS_m calculation.
NSux_m = n4*(n2+n3)

NSuxx_m = n4*(a2(x(i), y(1), t_np1))*n1 ! Use n4 from NSux_m calc., n1 from NS_m calc.

n2 = hx*NSux_m/(2.0_rp*NSuxx_m)
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n3 = ( 4.0_rp - k*NSu_m(1,i) )/(4.0_rp*rx*NSuxx_m)
cf(1,i,1) = 1.0_rp - n2 ! First LHS Coefficient.
cf(1,i,2) = -(2.0_rp + n3) ! Second LHS Coefficient.
cf(1,i,3) = 1.0_rp + n2 ! Third LHS Coefficient.

ux = u_x(1,i,uj_n,x,y,t_n)
uy = u_y(1,i,u(:,i),x,y,t_n)
n1 = kt(u(1,i))
n2 = (a1(x(i), y(1), t_n))*(a2_x(x(i), y(1), t_n))*ux
n3 = (a1(x(i), y(1), t_n))*( a2(x(i), y(1), t_n))*u_xx(1,i,u,x,y,t_n)
n4 = 2.0_rp*(b1(x(i), y(1), t_n))*( b2(x(i), y(1), t_n))*u_yy(1,i,u,x,y,t_n)
n5 = kt_u(u(1,i))
n6 = (a1(x(i), y(1), t_n))*( a2(x(i), y(1), t_n))*ux*ux
n7 = (b1(x(i), y(1), t_n))*( b2(x(i), y(1), t_n))*uy*uy
n8 = f_rhs(u(1,i), x(i), y(1), t_n)
NS_n = ( n1*(n2 + n3 + n4) + n5*(n6 + n7) + n8 )/( rho*cp(u(1,i)) )

IF (linear_flag == 1) THEN ! Linear PDE. FIRST STAGE RHS VECTOR.
r(1,i) = -( u(1,i) - u_m(1,i) + 0.5_rp*k*(NS_m + NS_n) )/(rx*NSuxx_m)

ELSE ! Non-Linear PDE.
r1(1,i) = u(1,i) - u_m(1,i) + 0.5_rp*k*(NS_m + NS_n) ! NON-LINEAR RESIDUAL.
r(1,i) = -r1(1,i)/(rx*NSuxx_m) ! FIRST STAGE RHS VECTOR.

END IF
END DO

END IF
ELSE ! Second Stage

DO i = i_start, i_end ! Any coordinate system. For Cart. or Cyl. system, no calculation for i=nx.
IF (linear_flag /= 1) THEN

B_m = (u_y(1,i,u_m(:,i),x,y,t_np1))*bbc1(u_m(1,i), x(i), t_np1) + bbc2(u_m(1,i), x(i), t_np1)
ELSE

B_m = (u_y(1,i,u_m(:,i),x,y,t_n))*bbc1(u_m(1,i), x(i), t_n) + bbc2(u_m(1,i), x(i), t_n)
END IF
Bu_m = bbc_u(u_m(1,i), x(i), t_np1)
Buy_m = bbc1(u_m(1,i), x(i), t_np1)
n1 = 2.0_rp*hy*Bu_m/Buy_m
n2 = 2.0_rp*hy*( f_bottom(x(i),t_np1) - B_m )/Buy_m
n3 = (b1(x(i), y(1), t_np1))/( rho*cp(u_m(1,i)) )
n4 = (b2_y(x(i), y(1), t_np1))*kt(u_m(1,i))
n5 = 2.0_rp*(b2(x(i), y(1), t_np1))*(kt_u(u_m(1,i)))*u_y(1,i,u_m(:,i),x,y,t_np1)
IF (coord_flag <= 2) THEN ! FOR USER DEFINED ANALYTIC SYSTEM, CARTESIAN AND CYLINDRICAL COORDINATES.

IF (i /= nx) THEN ! Right-Bottom Corner Point Already Computed under Right BC.
Nuy_m = n3*(n4+n5)
Nuyy_m = n3*(b2(x(i), y(1), t_np1))*(kt(u_m(1,i)))

n6 = hy*Nuy_m/(2.0_rp*Nuyy_m)
cf(1,i,1) = 0.0_rp
cf(1,i,2) = cf(1,i,2) + n1*(1.0_rp-n6)
cf(1,i,3) = 2.0_rp
r(1,i) = r(1,i) + n2*(1.0_rp-n6)

END IF

ELSE ! FOR SPHERICAL COORDINATES. Includes Right-Bottom Corner point.
NSuy_m = n3*n5
NSuyy_m = 2.0_rp*n3*(b2(x(i), y(1), t_np1))*(kt(u_m(1,i)))

n6 = ( 4.0_rp - k*NSu_m(1,i) )/(4.0_rp*ry*NSuyy_m)
n7 = hy*NSuy_m/(2.0_rp*NSuyy_m)
cf(1,i,1) = 0.0_rp
cf(1,i,2) = -(2.0_rp + n6) + n1*(1.0_rp-n7)
cf(1,i,3) = 2.0_rp
r(1,i) = -(u(1,i))/(ry*NSuyy_m) + n2*(1.0_rp-n7)

END IF
END DO

END IF
END IF

! STEP 2(d): Top Boundary: Corners have been taken care of under the left and right boundary loops.
! --------------------------------------------------------------------------------------------------
! The generalized BC is given by: T_m(U) = Ux*T1(U) + T2(U) = f_top(x,t(m)). Therefore, Tu_m = Ux*T1u + T2u;
! and Tux_m =T1. Also, for a generalized Dirichlet BC, T1 = 0 => T1u = 0. So, in this case, T_m = T2,
! Tu_m = T2u, and Tux_m = 0. For the linear case, T_m = f_top(x,t(n)), Tu_m = alpha_y (= 0 for linear
! Neumann BC), and Tux_m = 1. In terms of components, for linear Neumann, T1_m = 1, T2_m = 0; for linear
! Robin BC, T1_m = 1, T2_m = alpha_x*U_n. All these values are taken care of, in the module "pde_routines",
! above, where separate subroutines are defined for each component of the top BC.

IF (top_bc_flag == 0) THEN ! GENERALIZED LINEAR/NON-LINEAR Dirichlet Top BC.
DO i = 2, nx ! i_end=nx: Right-Top Corner Point was not included in Right BC for Spherical System.

cf(ny,i,1) = 0.0_rp
cf(ny,i,2) = 1.0_rp
cf(ny,i,3) = 0.0_rp
IF (linear_flag == 1) THEN

T_m = tbc2(u_m(ny,i), x(i), t_n)
Tu_m = tbc_u(u_m(ny,i), x(i), t_n)

ELSE
IF (iter == 1) THEN

T_m = tbc2(u_m(ny,i), x(i), t_n)
Tu_m = tbc_u(u_m(ny,i), x(i), t_n)

ELSE
T_m = tbc2(u_m(ny,i), x(i), t_np1)
Tu_m = tbc_u(u_m(ny,i), x(i), t_np1)

END IF
END IF
r(ny,i) = (f_top(x(i),t_np1) - T_m )/Tu_m
IF (stage_flag == 1) THEN

IF (linear_flag /= 1) r1(ny,i) = 0.0_rp ! Calculate residual for the 1st stage of a Non-Linear PDE.
END IF

END DO
ELSE ! GENERALIZED LINEAR/NON-LINEAR Neumann OR Robin Top BC.

! For the TOP Boundary, STAGE 1 NEED NOT be modified from that above, EXCEPT for the Spherical
! coordinate system (coord_flag = 3). In that case, for all i, the top LHS coefficients and
! RHS vector are identical in form to the Non-spherical cases, except that N and its derivatives are
! replaced by the spherical non-linear functional at the top boundary, Ns, in both stages.
IF (stage_flag == 1) THEN

IF (coord_flag == 3) THEN ! For Spherical Coordinate System
DO m = 1, nx

uj(m) = u_m(ny,m)
uj_n(m) = u(ny,m)

END DO
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DO i = i_start, i_end
ux = u_x(ny,i,uj,x,y,t_np1)
uy = u_y(ny,i,u_m(:,i),x,y,t_np1)
n1 = (kt_u(u_m(ny,i)))*cp(u_m(ny,i)) - (cp_u(u_m(ny,i)))*kt(u_m(ny,i))
n2 = (a1(x(i), y(ny), t_np1))*(a2_x(x(i), y(ny), t_np1))*ux
n3 = (a1(x(i), y(ny), t_np1))*( a2(x(i), y(ny), t_np1))*u_xx(ny,i,u_m,x,y,t_np1)
n4 = 2.0_rp*(b1(x(i), y(ny), t_np1))*( b2(x(i), y(ny), t_np1))*u_yy(ny,i,u_m,x,y,t_np1)
n5 = (kt_uu(u_m(ny,i)))*cp(u_m(ny,i)) - (cp_u(u_m(ny,i)))*kt_u(u_m(ny,i))
n6 = (a1(x(i), y(ny), t_np1))*( a2(x(i), y(ny), t_np1))*ux*ux
n7 = (b1(x(i), y(ny), t_np1))*( b2(x(i), y(ny), t_np1))*uy*uy
n8 = (f_rhs_u(u_m(ny,i), x(i), y(ny), t_np1))* cp(u_m(ny,i)) &
& - (f_rhs(u_m(ny,i), x(i), y(ny), t_np1))*cp_u(u_m(ny,i))

NSu_m(2,i) = ( n1*(n2 + n3 + n4) + n5*(n6 + n7) + n8 )/( rho*(cp(u_m(ny,i)))*cp(u_m(ny,i)) )

n1 = kt(u_m(ny,i))
n5 = kt_u(u_m(ny,i))
n8 = f_rhs(u_m(ny,i), x(i), y(ny), t_np1)
NS_m = ( n1*(n2 + n3 + n4) + n5*(n6 + n7) + n8 )/(rho*cp(u_m(ny,i))) ! Use n2-n4 & n6-n7 from NSu_m.

n4 = (a1(x(i), y(ny), t_np1))/( rho*cp(u_m(ny,i)) )
n2 = n1*a2_x(x(i), y(ny), t_np1) ! Use n1 from NS_m calculation.
n3 = 2.0_rp*n5*(a2(x(i), y(ny), t_np1))*ux ! Use n5 from NS_m calculation.
NSux_m = n4*(n2+n3)

NSuxx_m = n4*(a2(x(i), y(ny), t_np1))*n1 ! Use n4 from NSux_m calc., n1 from NS_m calc.

n2 = hx*NSux_m/(2.0_rp*NSuxx_m)
n3 = ( 4.0_rp - k*NSu_m(2,i) )/(4.0_rp*rx*NSuxx_m)
cf(ny,i,1) = 1.0_rp - n2 ! First LHS Coefficient.
cf(ny,i,2) = -(2.0_rp + n3) ! Second LHS Coefficient.
cf(ny,i,3) = 1.0_rp + n2 ! Third LHS Coefficient.

ux = u_x(ny,i,uj_n,x,y,t_n)
uy = u_y(ny,i,u(:,i),x,y,t_n)
n1 = kt(u(ny,i))
n2 = (a1(x(i), y(ny), t_n))*(a2_x(x(i), y(ny), t_n))*ux
n3 = (a1(x(i), y(ny), t_n))*( a2(x(i), y(ny), t_n))*u_xx(ny,i,u,x,y,t_n)
n4 = 2.0_rp*(b1(x(i), y(ny), t_n))*( b2(x(i), y(ny), t_n))*u_yy(ny,i,u,x,y,t_n)
n5 = kt_u(u(ny,i))
n6 = (a1(x(i), y(ny), t_n))*( a2(x(i), y(ny), t_n))*ux*ux
n7 = (b1(x(i), y(ny), t_n))*( b2(x(i), y(ny), t_n))*uy*uy
n8 = f_rhs(u(ny,i), x(i), y(ny), t_n)
NS_n = ( n1*(n2 + n3 + n4) + n5*(n6 + n7) + n8 )/( rho*cp(u(ny,i)) )

IF (linear_flag == 1) THEN ! Linear PDE. FIRST STAGE RHS VECTOR.
r(ny,i) = -( u(ny,i) - u_m(ny,i) + 0.5_rp*k*(NS_m + NS_n) )/(rx*NSuxx_m)

ELSE ! Non-Linear PDE.
r1(ny,i) = u(ny,i) - u_m(ny,i) + 0.5_rp*k*(NS_m + NS_n) ! NON-LINEAR RESIDUAL.
r(ny,i) = -r1(ny,i)/(rx*NSuxx_m) ! FIRST STAGE RHS VECTOR.

END IF
END DO

END IF
ELSE

DO i = i_start, i_end ! Any coordinate system. For Cart. or Cyl. system, no calculation for i=nx.
IF (linear_flag /= 1) THEN

T_m = (u_y(ny,i,u_m(:,i),x,y,t_np1))*tbc1(u_m(ny,i), x(i), t_np1) + tbc2(u_m(ny,i), x(i), t_np1)
ELSE

T_m = (u_y(ny,i,u_m(:,i),x,y,t_n))*tbc1(u_m(ny,i), x(i), t_n) + tbc2(u_m(ny,i), x(i), t_n)
END IF
Tu_m = tbc_u(u_m(ny,i), x(i), t_np1)
Tuy_m = tbc1(u_m(ny,i), x(i), t_np1)
n1 = 2.0_rp*hy*Tu_m/Tuy_m
n2 = 2.0_rp*hy*( f_top(x(i),t_np1) - T_m )/Tuy_m
n3 = (b1(x(i), y(ny), t_np1))/( rho*cp(u_m(ny,i)) )
n4 = (b2_y(x(i), y(ny), t_np1))*kt(u_m(ny,i))
n5 = 2.0_rp*(b2(x(i), y(ny), t_np1))*(kt_u(u_m(ny,i)))*u_y(ny,i,u_m(:,i),x,y,t_np1)
IF (coord_flag <= 2) THEN ! FOR USER DEFINED ANALYTIC SYSTEM, CARTESIAN AND CYLINDRICAL COORDINATES.

IF (i /= nx) THEN ! Right-Top Corner Point Already Computed under Right BC.
Nuy_m = n3*(n4+n5)
Nuyy_m = n3*(b2(x(i), y(ny), t_np1))*(kt(u_m(ny,i)))

n6 = hy*Nuy_m/(2.0_rp*Nuyy_m)
cf(ny,i,1) = 2.0_rp
cf(ny,i,2) = cf(ny,i,2) - n1*(1.0_rp+n6)
cf(ny,i,3) = 0.0_rp
r(ny,i) = r(ny,i) - n2*(1.0_rp+n6)

END IF
ELSE ! FOR SPHERICAL COORDINATES. Includes Right-Top Corner point.

NSuy_m = n3*n5
NSuyy_m = 2.0_rp*n3*(b2(x(i), y(ny), t_np1))*(kt(u_m(ny,i)))

n6 = ( 4.0_rp - k*NSu_m(2,i) )/(4.0_rp*ry*NSuyy_m)
n7 = hy*NSuy_m/(2.0_rp*NSuyy_m)
cf(ny,i,1) = 2.0_rp
cf(ny,i,2) = -(2.0_rp + n6) - n1*(1.0_rp+n7)
cf(ny,i,3) = 0.0_rp
r(ny,i) = -(u(ny,i))/(ry*NSuyy_m) - n2*(1.0_rp+n7)

END IF
END DO

END IF
END IF

! STEP 3. FINALLY, CONVERT the 3-D CF array into the 2-D COEFF array AND
! CONVERT the 2-D R array into the RHS vector:
! IMPORTANT NOTE: stage_flag = 1: CONVERT BY ROWS TO MAINTAIN TRI-DIAGONALITY.
! stage_flag = 2: CONVERT BY COLUMNS TO MAINTAIN TRI-DIAGONALITY.
l = 1
IF (stage_flag == 1) THEN ! STAGE 1: CONVERT BY ROWS (Lines // x-direction).

DO j = 1, ny
DO i = 1, nx

coeff(l,1) = cf(j,i,1)
coeff(l,2) = cf(j,i,2)
coeff(l,3) = cf(j,i,3)
rhs(l) = r(j,i)
IF (linear_flag /= 1) THEN

residual(l) = r1(j,i) ! For NON-LINEAR PROBLEMS, calculate Residual here.
END IF
l = l + 1

END DO
END DO
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ELSE ! STAGE 2: CONVERT BY COLUMNS (Lines // y-direction).
DO i = 1, nx

DO j = 1, ny
coeff(l,1) = cf(j,i,1)
coeff(l,2) = cf(j,i,2)
coeff(l,3) = cf(j,i,3)
rhs(l) = r(j,i)
l = l + 1

END DO
END DO

END IF

END SUBROUTINE qldgts_coeff_rhs

!-------------------------------------------------------------------------------------------------------------------
SUBROUTINE delta_qlin_dgts(x, y, t, k, u, en_est, dn, srad)
IMPLICIT NONE
!-------------------------------------------------------------------------------------------------------------------
! This routine computes the solution at A SINGLE TIME STEP, of a generalized heat conduction equation of the form:
! Ut = {1/(rho*cp)}*
! [a1*{kt*(a2_x*U_x + a2*U_xx) + a2*kt_u*(U_x)^2} + b1*{kt*(b2_y*U_y + b2*U_yy) + b2*kt_u*(U_y)^2} + f(U,x,y,t)],
! where the "_" denotes partial differentiation, obtained by expanding a general ADJOINT form of the Conduction
! Equation. The values of functions a1, a2, b1, b2, kt(u) and cp(u) can be changed to match any regular, closed
! domain. This routine uses the DELTA-FORM of QUASILINIARIZATION (NEWTON-KANTOROVICH PROCEDURE) in conjunction
! with the DELTA-FORM of DOUGLAS-GUNN TIME SPLITTING SCHEME (2-STEP). Here, for each iteration of the
! quasilinearization process, the "imporved" iterate is constructed using two stages corresponding to the
! 2-step Douglas-Gunn scheme. It uses the initial guess, U, provided by the MAIN PROGRAM for EACH time step, to
! iterate to a converged value for that time step. It outputs the grid function values for the input time
! step, u(x,y,t(n)), back to the main program. The grid function at each time stage of a SINGLE iteration is
! related to the previous one by the compact time-split matrix formulae:
! {coeff_1(n+1)}*dv(1) = {rhs_1(n+1, n)} &
! {coeff_2(n+1)}*dv(2) = dv(1)
! where n denotes the time step, and "coeff_i" are tridiagonal matrices of dimension nx*ny (=n).
! Only the band diagonal elements of the tridiagonal systems are computed & stored in this program (in the
! subroutine "qldgts_coeff_rhs", to minimize storage. They are stored in the form of n X 3 matrices, where the
! three columns are, respectively, the sub-diagonal, diagonal, and super-diagonal elements of the original n X n
! system matrix. The program calls the LU decomposition routine to compute the grid-functions, u, after each time
! step. It also stores the grid function values at the last time step, as they are required for Newton-Kantorovich
! iterations. IF SMOOTHING FLAG IS NON-ZERO, APPROPRIATE SMOOTHING OF GRID FUNCTION VALUES IS CARRIED OUT. HOWEVER,
! THIS IS HIGHLY CASE-SPECIFIC AND THE SUB-SET OF U VALUES TO BE SMOOTHED WILL BE DIFFERENT FOR EACH PROBLEM-BC COMBO.
!-------------------------------------------------------------------------------------------------------------------

! Arguments
REAL(KIND=rp), DIMENSION(:), INTENT(IN) :: x, y
REAL(KIND=rp), INTENT(IN) :: k,t
REAL(KIND=rp), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(KIND=rp), DIMENSION(:,:), INTENT(OUT), OPTIONAL :: en_est
REAL(KIND=rp), DIMENSION (:), INTENT(OUT), OPTIONAL :: dn, srad

! Local Variable Declarations
REAL(KIND=rp), DIMENSION(quasi_iterations) :: dn_norm, rs_norm
REAL(KIND=rp) :: hx, hy
INTEGER(KIND=ip) :: i, iter, j, l, n, nx, ny, stage_flag

nx = SIZE(x)
ny = SIZE(y)
n = nx*ny
hx = (x_right - x_left)/(nx - 1)
hy = (y_top - y_bottom)/(ny - 1)

! Save incoming value of u at last time step, as well as set the initial guess u_old to u at the
! last time step.
u_n = u ! This is necessary since u_n WILL BE NEEDED AT EVERY ITERATION, for the first D-G stage.
IF (linear_flag /= 1) THEN

u_old = u_n ! This assignes the first guess of the iterations as the value at the last time step.
END IF

! Start the iteration loop. The convergence limit, "quasi_epsilon", is calculated in the MAIN Program
! based on the value of the time step, k, and generally assigned a value of at least k^3, to ensure
! that DELTA_u is less than the maximum truncation error. This variable is, however, defined globally
! in the module "const_params" above. The maximum number of iterations should also be set in the
! globally defined variable "quasi_iterations", in the Main Program. NOTE: These iterations solve for
! the solution to the fully LINEARIZED (Frechet-Taylor) form of the original non-linear PDE. If k is
! sufficiently small, the value of the first iterate can be reasonably taken to be the value at the
! previous time step.

DO iter = 1, quasi_iterations
IF (iter > 1) THEN

IF (linear_flag /= 1) THEN
! If the PDE is non-linear, then beginning with the second iteration, check for convergence before
! starting any calculations for this iteration. Can use either residual or Dn for testing convergence.
! Simply remove the comment symbol, and CHANGE between "rs_norm" and "dn_norm" in the PRINT statement.

IF (exact_sol_flag == 0) THEN
! IF (rs_norm(iter-1) < quasi_epsilon) THEN

IF (dn(iter-1) < quasi_epsilon) THEN
en_est = (dn(iter-1))/(1.0_rp - srad(iter-1))
! OPTIONAL PRINT STATEMENTS:
IF (verbose_flag == 1) THEN

PRINT '(A7,ES9.3,A48,I2,A43,ES12.6, A1)', "TIME = ",t, &
& ". Newton-Kantorovich Iterations Converged after ",iter-1, &
& " iterations. Final value of L2-norm of Dn: ", dn(iter-1),"."

! & " iterations. Final value of L2 residual: ", rs_norm(iter-1),"."
END IF
RETURN

END IF
ELSE

! IF (rs_norm(iter-1) < quasi_epsilon) THEN
IF (dn_norm(iter-1) < quasi_epsilon) THEN

! OPTIONAL PRINT STATEMENTS:
IF (verbose_flag == 1) THEN

PRINT '(A7,ES9.3,A48,I2,A43,ES12.6, A1)', "TIME = ",t, &
& ". Newton-Kantorovich Iterations Converged after ",iter-1, &
& " iterations. Final value of L2-norm of Dn: ", dn_norm(iter-1),"."

! & " iterations. Final value of L2 residual: ", rs_norm(iter-1),"."
END IF
RETURN

END IF
END IF

END IF
END IF
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! If convergence is not observed, proceed to the next iteration:
! Every DOUGLAS-GUNN time step for the LINEARIZED NON-LINEAR PDE has two stages, each corresponding
! to one of the spatial directions. START THE STAGE LOOP FOR THE TWO STAGES AT EACH ITERATION, m.
DO stage_flag = 1, 2

! Call Subroutine "qldgts_coeff_rhs" to calculate POST-DISCRETIZATION BC-ADJUSTED PDE
! Coefficient matrix and PDE RHS vector, as defined by the above PDE. The stage flag
! determines which of the two sets of coefficients will be computed by the
! "dgts_coeff_rhs" routine. If stage_flag = 1, grid function values from BOTH the previous
! time step (u_n), and the last iteration (u_old) are used to calculate the RHS vector,
! and COEFF matrix is computed at time n+1. If stage_flag = 2, the intermediate values,
! dv(1)/F(m) becomes the RHS vector, and the COEFF matrix is again computed at time n+1 &
! using m-th iterate. The solution is updated at the end of the SECOND STAGE for each iteration,
! and allows for testing the convergence of the Newton-Kantorovich procedure. Also, the OPTIONAL
! rs vector computed at the end of the first stage gives the residual at the current iteration.
! L2 NORMS are used to estimate its magnitude and test for convergence at the beginning of the
! next iteration. If the PDE is linear, then in order to use the functional notation and setup
! of subroutine "qldgts_coeff_rhs", the value of "u_old" is set to "u_n" or "u", for each stage
! respectively.

!PRINT *, "ITERATION, STAGE: ", Iter, stage_flag
IF (stage_flag == 1) THEN

IF (linear_flag == 1) THEN
CALL qldgts_coeff_rhs(x, y, t, k, stage_flag, iter, u_n, u_n)

ELSE
CALL qldgts_coeff_rhs(x, y, t, k, stage_flag, iter, u_n, u_old, rs)
rs_norm(iter) = 0.0_rp
DO i = 1, n

rs_norm(iter) = rs_norm(iter) + (rs(i))*rs(i)
END DO
rs_norm(iter) = SQRT(rs_norm(iter))

END IF
ELSE

IF (linear_flag == 1) THEN
CALL qldgts_coeff_rhs(x, y, t, k, stage_flag, iter, u, u_n)

ELSE
CALL qldgts_coeff_rhs(x, y, t, k, stage_flag, iter, u, u_old)

END IF
END IF

! Call LU-Decomposition Routine to compute the grid function at the current time
! STAGE. These INTERMEDIATE grid function DELTAs, dU*, are returned in the "rhs" vector.
CALL lud_trid(coeff, rhs)

! NOTE: In this case, the values obtained in the RHS vector above are the dU (DELTA_U)
! values after each stage (dV after first stage and dU after second, notationally).
! Since the direction of evaluation changes from column-wise (for each row) in the 1st
! stage, to row-wise (for each column) in the 2nd stage, we have to RE-ORDER the RHS vector
! output by the lud_trid routine into the Grid Function deltas (dUs) at EACH STAGE of the
! time step m. In order to MINIMIZE STORAGE, the intermediate values are overwritten in the
! second stage of this time step, to give the FINAL grid function delta values at the end of
! the current iteration, m.
! IMPORTANT NOTE:
! stage_flag = 1: CONVERT BY ROWS (column-wise evaluations) TO MAINTAIN SYSTEM TRI-DIAGONALITY.
! stage_flag = 2: CONVERT BY COLUMNS (row-wise evaluations) TO MAINTAIN SYSTEM TRI-DIAGONALITY.
l = 1
IF (stage_flag == 1) THEN ! 1st STAGE: Convert RHS= dv(1)= dV by Rows(Lines//x-axis)

DO j = 1, ny
DO i = 1, nx

u(j,i) = rhs(l)
l = l + 1

END DO
END DO

ELSE ! 2nd STAGE: Convert RHS= dv(2)= dU, by Columns(Lines//y-axis)
DO i = 1, nx

DO j = 1, ny
u(j,i) = rhs(l)
l = l + 1

END DO
END DO

END IF
END DO ! Stage Loop.

! Now update the grid functions to the the value at the CURRENT time step: u(m) = U (=dU) + u_old.
! Here, dU (U stored in the rhs vector, OR dv(2)) is the reordered form of the last RHS vector
! output from the lud_trid subroutine, corresponding the output for stage_flag = 2.
DO i = 1, nx

DO j = 1, ny
IF (linear_flag == 1) THEN

u(j,i) = u(j,i) + u_n(j,i)
ELSE

u(j,i) = u(j,i) + u_old(j,i)
END IF

END DO
END DO

! For NON-LINEAR PROBLEMS, if exact solution is NOT available, compute the iteration error norm,
! temporarily storing the iteration error in the estimated error array, en_est. If the exact solution
! is known, compute the relative error Dn = u_(n) - u_(n-1) to use for convergence tests. Finally, save the
! current iteration grid function values for use in the next iteration.
IF (linear_flag /= 1) THEN

IF (exact_sol_flag == 0) THEN
en_est = u - u_old
dn(iter) = 0.0_rp
DO j = 1, ny

DO i = 1, nx
dn(iter) = dn(iter) + (en_est(j,i))*en_est(j,i)

END DO
END DO
dn(iter) = SQRT(dn(iter))
IF (verbose_flag == 1) PRINT *, "Dn = ", dn(iter) ! OPTIONAL
IF (iter > 1) THEN

srad(iter) = dn(iter)/dn(iter-1)
END IF
IF (iter == quasi_iterations) THEN ! Final iteration Warning.

en_est = (dn(iter))/(1.0_rp - srad(iter))
! OPTIONAL PRINT STATEMENTS:
IF (verbose_flag == 1) THEN

PRINT '(A20,ES9.3,A1,A38,I2,A30,ES12.6)', "*** WARNING: TIME = ",t,".", &
& "N-K Iterations DID NOT Converge after ",iter," iterations. L2-norm of Dn: ", dn(iter)

! & "N-K Iterations DID NOT Converge after ",iter," iterations. LAST L2 residual:",rs_norm(iter)
END IF

END IF
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ELSE ! Compute Dn to assess the decrease in relative error with iterations.
u_old = u - u_old
dn_norm(iter) = 0.0_rp
DO j = 1, ny

DO i = 1, nx
dn_norm(iter) = dn_norm(iter) + (u_old(j,i))*u_old(j,i)

END DO
END DO
dn_norm(iter) = SQRT(dn_norm(iter))

! WHEN USING "rs_norm" > IF (verbose_flag == 1) PRINT *, "Dn = ", dn_norm(iter)
IF (iter == quasi_iterations) THEN ! Final iteration Warning.

! OPTIONAL PRINT STATEMENTS:
IF (verbose_flag == 1) THEN
PRINT '(A20,ES9.3,A1,A38,I2,A30,ES12.6)', "*** WARNING: TIME = ",t,".", &
& "N-K Iterations DID NOT Converge after ",iter," iterations. L2-norm of Dn: ", dn_norm(iter)

! & "N-K Iterations DID NOT Converge after ",iter," iterations. LAST L2 residual:",rs_norm(iter)
END IF

END IF
END IF
u_old = u

END IF
! IF (exact_sol_flag == 0) THEN
! IF (iter == 1) PRINT *, "-----------------------------------------------------------------------------------"
! PRINT *, "Newton-Kantorovich Iteration# ",iter,". L2-norm of Dn = ", dn(iter)

! ELSE
! IF (iter == 1) PRINT *, "-----------------------------------------------------------------------------------"
! PRINT *, "Newton-Kantorovich Iteration# ",iter,". L2-norm of Dn = ", dn_norm(iter)
! END IF
! IF (iter == 1) PRINT *, "--------------------------------------------------------------------------------------"
! PRINT *, "Newton-Kantorovich Iteration# ",iter,". L2 RESIDUAL= ", rs_norm(iter)

END DO ! Iterations Loop

END SUBROUTINE delta_qlin_dgts

!-------------------------------------------------------------------------------------------------------------------

END MODULE solver_routines

!--------------------------------------------------------------------------------------------------------------------------
PROGRAM nonlin_parabolic_pde
USE const_params
USE fault_params
USE pde_routines
USE solver_routines
IMPLICIT NONE

!--------------------------------------------------------------------------------------------------------------------------
! Program for the solution of a GENERAL NON-LINEAR, 2D, TIME DEPENDENT HEAT CONDUCTION EQUATION (in Cartesian/
! Cylindrical/Spherical coordinates OR in ANY USER DEFINED ANALYTIC SYSTEM), with general NON-LINEAR BOUNDARY CONDITIONS
! USING DELTA-FORM OF QUASILINIARIZATION (NEWTON-KANTOROVICH PROCEDURE) IN CONJUNCTION WITH THE DELTA-FORM OF THE
! DOUGLAS-GUNN TIME SPLITTING SCHEME (2-STEP). THIS CODE CAN ALSO BE USED FOR LINEAR PROBLEMS WITHOUT ANY CHANGES TO
! THE CORE ALGORITHM IMPLEMENTED HERE. This code was written as part of the development of an "Asperity scale frictional
! melting model" for my M.S. Thesis Research. This work was supported by NSF grant: XXXXX-XXXXX. - Ravi Kanda (November, 2002).
! This program solves an equation of the form:
! Ut = {1/(rho*cp)}*
! [a1*{kt*(a2_x*U_x + a2*U_xx) + a2*kt_u*(U_x)^2} + b1*{kt*(b2_y*U_y + b2*U_yy) + b2*kt_u*(U_y)^2} + f(U,x,y,t)],
! where the "_" denotes partial differentiation, obtained by expanding the ADJOINT form of the linear, but very general
! Pure Conduction Equation. The values of functions a1, a2, b1, b2, kt(U) and cp(U) can be changed to match any
! "regular closed domain" (i.e.. Cartesian, Cylindrical, Spherical, Elliptical or ANY USER DEFINED ANALYTIC SYSTEM domains),
! in either of the three coordinate systems mentioned above. In addition, the treatment of the boundary conditions is very
! general in that any type of convective/conductive/radiative heat transfer boundary condition can be applied at any of the
! boundaries. The code adjusts the form of the equation in Spherical AND Cylindrical coordinates as r -> 0 ("left boundary"
! in an equivalent cartesian grid representation), and in Spherical coordinates, as THETA -> 0 or PI. In these cases, the
! coefficients of U_x (or U_y) in the generalized equation above (i.e., a2_x*a1 and b2_y*b1) are not ANALYTIC. The form
! of the coordinate system can be specified using a "coord_flag" in the module "const_params". This program computes
! the number of points in the spatial and time domains based on user supplied values of hx, hy & k, and computes the
! "evloution" of the grid functions, Uji, for each "grid node" with time.
!
! NOTE: IF A USER DEFINED SYSTEM IS CHOSEN, with NON-ANALYTIC {a1, a2, b1, b2}, THESE FUNCTIONS AND THEIR DERIVATIVES MUST
! BE DEFINED CORRECTLY IN THE SUBROUTINES OF THE MODULE "pde_routines". CARE MUST ALSO BE TAKEN TO APPROPRIATELY
! IMPLEMENT THE "INTERIOR" LOOP AND ALL THE "BOUNDARY CONDITION" LOOPS, IN THE SUBROUTINE "qldgts_coeff_rhs".
!
! NOTE: For use with highly non-linear problems, a smoothing flag and parameter can be prescribed by the user, in the command
! line, following the executable name. Either 1D or 2D Smoothing can be carried out using the simple Shuman filter, a low-pass
! filter, that basically smooths out gradients in the domain at the end of each time step, at points (determined explicitly by
! the user). IF SMOOTH FLAG IS NON-ZERO, THEN APPROPRIATE CHANGES NEED TO BE MADE BELOW, IN THE MAIN PROGRAM, TO MODIFY APPROPRIATE
! GRID VALUES OF U.
!
! This program computes the number of points in the spatial and time domains based on user supplied values of hx, hy
! & k, and computes the "evloution" of the grid functions, Uji, for each "grid node" with time. It allocates arrays,
! prior to these computations. The boundary conditions are specified in separate functions, as are the forcing
! function, f_rhs, as well as the exact solution (if known). IN THIS VERSION, boundary condition flags HAVE TO BE DEFINED in
! the module CONST_PARAMS, but SPECIFIED in the MAIN PROGRAM. This allows for SEVERAL changes in Boundary Condition types,
! with time [as when an Initial Neumann BC changes later to a Dirichlet BC]. Further details of boundary condition implementation
! are presented under the subroutine "qldgts_coeff_rhs", above. The initial condition is specified under a separate function,
! and is passed on to the "qldgts" subroutine. Time stepping is controlled in the main program, which outputs data at selected
! time levels to the output files. The latter subroutine outputs the values of the grid function u, at each time step, in
! a two dimensional array in y(j), and x(i). The plot data are printed out in separate output files to facilitate easy
! post-processing, for each of the time steps specified by the user. The number of time steps to be plotted or gridded
! and the number of output files, along with their names can be changed by changing the "out" parameter array size, and
! the array's elements, in the "const_params" module. EXTENSIVE checks have been added to all algorithms to improve
! ERROR TRAPPING. The program allows the output of grid function and plot data at any resolution that the user chooses,
! with the maximum ALLOWED resolution, of course, being hx*hy. If lower resolutions of hx and hy than allowed by the
! machine array limitations are needed, the code can be modified later to completely eliminate storage in large arrays,
! and instead, directly print out only the required plot data to output files. Evolution of maximum temperature is output to the
! screen at a few specified time levels.
!--------------------------------------------------------------------------------------------------------------------------

!---------------------------------------------------------------------------------------------------------------------------------------
! MAIN PROGRAM DECLARATIONS.
!---------------------------------------------------------------------------------------------------------------------------------------

REAL(KIND=rp), ALLOCATABLE, DIMENSION(:, :, :) :: u_errg, u_grid
REAL(KIND=rp), ALLOCATABLE, DIMENSION(:, :) :: en, error_maxevol, u, u_evol, u_maxevol, u_minevol, u_xsnap, u_ysnap
REAL(KIND=rp), ALLOCATABLE, DIMENSION(:) :: dn, srad, t_max_evol, x, y
REAL(KIND=rp), DIMENSION( SIZE(grid_conv,1) ) :: u_conv
REAL(KIND=rp), DIMENSION( SIZE(t_snap) ) :: u_grid_norm
REAL(KIND=rp) :: dtdec, en_max, en_norm, global_max_error, global_max_error_u, global_max_u, global_max_u_error, &

& globalmax_u_norm, hx, hy, jr, k, lr, lsx, lsy, maxdec, max_error, max_error_u, max_u, max_u_error, min_u, &
& min_u_error, mr, nr, steps, t, t_evol, t_global_max, t_global_max_error, tm, t_out, t_steps, u_norm, x_steps, &
& y_steps, y1, y2

INTEGER(KIND=ip), ALLOCATABLE, DIMENSION(:) :: i_grid, i_xsnap, j_grid, j_ysnap, nt_evol, nt_max_evol
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INTEGER(KIND=ip), DIMENSION(SIZE(t_snap)) :: nt_snap
INTEGER(KIND=ip), DIMENSION(SIZE(grid_conv,1)) :: nt_gridconv, nx_gridconv, ny_gridconv
INTEGER(KIND=ip) :: alloc_error, bcout_flag, close_status, dealloc_error, decsteps, evol_count, i, i_evol, ifg1, ifg2, ifg3, &

& ifg4, i_max, i_max_global, int_res_flag_1, int_res_flag_2, int_smflag, i_tmax, i_tmax_global, i_tmin, &
& i_tmin_global, i_ysnap, j, j_evol, j_max, j_max_global, j_tmax, j_tmax_global, j_tmin, j_xsnap, l, lk, &
& lt, lx, ly, m, maxintt, mt0, n, n_c_r, ne, n_evol, nk, norm_flag, n_t, n_tout, nt_globalmax, &
& nt_globalmax_error, nt_xsnap, nt_ysnap, num_tmaxevol, n_xgrid, n_xout, n_xsnap, n_ygrid, n_yout, n_ysnap, &
& open_status, out_count, out_time_steps, p, s1, tevol_count, t_points, x_points, xsnap_count, &
& ysnap_count, y_points

CHARACTER(LEN=1) :: res_flag_1, res_flag_2, smflag
CHARACTER(LEN=6) :: smfact

! Program Screen Header.
PRINT *, " "
PRINT *, "Program to compute the solution of a GENERAL NON-LINEAR, 2D, HEAT CONDUCTION EQUATION (in Cartesian/ "
PRINT *, "Cylindrical/Spherical coordinates), with general NON-LINEAR BOUNDARY CONDITIONS USING THE DELTA-FORM "
PRINT *, "OF QUASILINIARIZATION (NEWTON-KANTOROVICH PROCEDURE) IN CONJUNCTION WITH THE DELTA-FORM OF THE "
PRINT *, "DOUGLAS-GUNN TIME SPLITTING SCHEME (2-STEP). THIS CODE CAN ALSO BE USED FOR LINEAR PROBLEMS WITHOUT "
PRINT *, "ANY CHANGES TO THE CORE SUBROUTINES OF THIS IMPLEMENTATION. - by RAVI KANDA (November, 2002)."
PRINT *, "----------------------------------------------------------------------------------------------------"
PRINT *, " "

!---------------------------------------------------------------------------------------------------------------------------------------
! READ COMMAND LINE ARGUMENTS AND CHECK THAT ARGUMENT SIZES & VALUES ARE IN THE REQUIRED RANGES. COMPUTE DEPENDENT RUN VARIABLES.
!---------------------------------------------------------------------------------------------------------------------------------------

! SPATIAL Resolution Flag can be any number between 1 and 6. Each higher integer halves the grid spacing in space, in equal proportions.
! EXAMPLE: If x_right = 1.0,
! res_flag_1 = 1: int_res_flag_1 = 49: hx = hy = 0.1
! res_flag_1 = 2: int_res_flag_2 = 50: hx = hy = 0.05
! res_flag_1 = 3: int_res_flag_3 = 51: hx = hy = 0.025
! ............... And so on ................... ifg1 = IGETARG(1,res_flag_1,1)
IF (ifg1 < 0) THEN

PRINT *, "Error Reading FIRST ARGUMENT: SPATIAL Resolution Flag! Check that the program executable is followed by FOUR "
PRINT *, "arguments, SEPARATED BY SPACES. The first argument (1-9) specifies the SPATIAL resolution. The second argument (1-5)"
PRINT *, "specifies the TEMPORAL resolution. The third argument (0-2) specifies SMOOTHING FLAG. The fourth (000000-999999) "
PRINT *, "specifies the SMOOTHING FACTOR, if smoothing flag is NON-ZERO. The SPATIAL resolutions are determined as follows: "
PRINT *, "------------------ FIRST ARGUMENT --------------------------"
PRINT *, "FIRST ARGUMENT = 1: RES 1: hx1 = hx_max, hy1 = hy_max "
PRINT *, "FIRST ARGUMENT = 2: RES 2: hx2 = hx1/2, hy2 = hy1/2 "
PRINT *, "FIRST ARGUMENT = 3: RES 3: hx3 = hx2/2, hy3 = hy2/2 "
PRINT *, "........AND SO ON"
PRINT *, "------------------------------------------------------------"
STOP

ELSE
int_res_flag_1 = ICHAR(res_flag_1)
IF ( ((int_res_flag_1 - 48) == 0) .OR. ((int_res_flag_1 - 48) > 9) ) THEN

PRINT *, "***** ERROR: Due to MACHINE LIMITATIONS, the FIRST argument must be between 1 and 6! EXITING PROGRAM."
STOP

END IF
hx = hx_max/(2.0_rp**(int_res_flag_1 - 49))
hy = hy_max/(2.0_rp**(int_res_flag_1 - 49))
! Check that the output grid spacings are reasonable.
IF (out_x_grid_spacing < hx) THEN

PRINT *, "WARNING: Grid output has been requested at a higher resolution than hx! Setting this to equal hx."
out_x_grid_spacing = hx

END IF
IF (out_y_grid_spacing < hy) THEN

PRINT *, "WARNING: Grid output has been requested at a higher resolution than hy! Setting this to equal hy."
out_y_grid_spacing = hy

END IF
END IF

! TEMPORAL Resolution Flag can be any number between 1 and 5. Each higher integer cuts the time resolution by a 10th.
! res_flag_2 = 1: int_res_flag_2 = 49: k = MIN(hx,hy) = 0.1 For the above SPATIAL resolution example
! res_flag_2 = 2: int_res_flag_2 = 50: k = MIN(hx,hy)/10 = 0.01 For the above SPATIAL resolution example
! res_flag_2 = 3: int_res_flag_2 = 51: k = MIN(hx,hy)/100 = 0.001 For the above SPATIAL resolution example
! res_flag_2 = 4: int_res_flag_2 = 52: k = MIN(hx,hy)/1000 = 0.0001 For the above SPATIAL resolution example
! res_flag_2 = 5: int_res_flag_2 = 52: k = MIN(hx,hy)/10000 = 0.00001 For the above SPATIAL resolution example
ifg2 = IGETARG(2,res_flag_2,1)
IF (ifg2 < 0) THEN

PRINT *, "Error Reading SECOND ARGUMENT: TEMPORAL Resolution Flag! Check that the program executable is followed by FOUR "
PRINT *, "arguments, SEPARATED BY SPACES. The first argument (1-9) specifies the SPATIAL resolution. The second argument (1-5)"
PRINT *, "specifies the TEMPORAL resolution. The third argument (0-2) specifies SMOOTHING FLAG. The fourth (000000-999999) "
PRINT *, "specifies the SMOOTHING FACTOR, if smoothing flag is NON-ZERO. The TEMPORAL resolutions are determined as follows: "
PRINT *, "------------------ SECOND ARGUMENT -------------------------"
PRINT *, "SECOND ARGUMENT = 1: TIME RES 1: k = MIN(hx,hy)"
PRINT *, "SECOND ARGUMENT = 2: TIME RES 2: k = MIN(hx,hy)/10"
PRINT *, "SECOND ARGUMENT = 3: TIME RES 3: k = MIN(hx,hy)/100"
PRINT *, "SECOND ARGUMENT = 4: TIME RES 4: k = MIN(hx,hy)/1000"
PRINT *, "SECOND ARGUMENT = 5: TIME RES 5: k = MIN(hx,hy)/10000"
PRINT *, "------------------------------------------------------------"
STOP

ELSE
int_res_flag_2 = ICHAR(res_flag_2)
IF ( ((int_res_flag_2 - 48) == 0) .OR. ((int_res_flag_2 - 48) > 5) ) THEN

PRINT *, "***** ERROR: Due to MACHINE LIMITATIONS, the SECOND argument must be between 1 and 5! EXITING PROGRAM."
STOP

END IF
k = ( MIN(hx, hy) )/( 10.0_rp**(int_res_flag_2 - 49) )
! Set Tolerance for Non-Linear Iterations.
IF (linear_flag /= 1) THEN

quasi_epsilon = k*k*k
quasi_iterations = 25

ELSE
quasi_epsilon = 1.0E30
quasi_iterations = 1

END IF
END IF

! SMOOTHING FLAG: THIRD ARGUMENT AFTER THE PROGRAM EXECUTABLE. For highly non-linear problems, this smooths out the gradients
! in the domain, at the end of each time step, at points (determined explicitly by the user) using either 1D or 2D Shuman Filter.
! IF THIS VALUE IS NON-ZERO, THEN APPROPRIATE CHANGES NEED TO BE MADE BELOW, IN THE MAIN PROGRAM, TO MODIFY THE APPROPRIATE
! GRID VALUES OF U. Values for this flag are:
! smooth_flag = 0, no smoothing
! smooth_flag = 1, 1D smoothing
! smooth_flag = 2, 2D smoothing.
ifg3 = IGETARG(3,smflag,1)
IF (ifg3 < 0) THEN

PRINT *, "Error Reading THIRD ARGUMENT: SMOOTHING Flag! Check that the program executable is followed by FOUR arguments,"
PRINT *, "SEPARATED BY SPACES. The first argument (1-9) specifies the SPATIAL resolution. The second argument (1-5) "
PRINT *, "specifies the TEMPORAL resolution. The third argument (0-2) specifies SMOOTHING FLAG. The fourth (000000-999999) "
PRINT *, "specifies the SMOOTHING FACTOR, if smoothing flag is NON-ZERO. The SMOOTHING FLAGS are as follows: "
PRINT *, "------------------ THIRD ARGUMENT -------------------------"
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PRINT *, "THIRD ARGUMENT = smooth_flag = 0, No smoothing"
PRINT *, "THIRD ARGUMENT = smooth_flag = 1, 1D smoothing"
PRINT *, "THIRD ARGUMENT = smooth_flag = 2, 2D smoothing"
PRINT *, "------------------------------------------------------------"
STOP

ELSE
smooth_flag = ICHAR(smflag) - 48
IF (smooth_flag > 2) THEN

PRINT *, "***** ERROR: This program can handle only 1D or 2D problems. The THIRD argument must be between 0 and 2!"
PRINT *, "EXITING PROGRAM."
STOP

END IF
END IF

! NOTE: If the THIRD argument, SMOOTHING FLAG, is NON-ZERO, then specify a degree of smoothing between {2 or 4} to 9999
! as the last argument for the executable file, for 1D or 2D SMOOTHING, respectively.
ifg4 = IGETARG(4,smfact,6)
IF (ifg4 < 0) THEN

PRINT *, "Error Reading FOURTH ARGUMENT: SMOOTHING FACTOR! Check that the program executable is followed by FOUR arguments, "
PRINT *, "SEPARATED BY SPACES. The first argument (1-9) specifies the SPATIAL resolution. The second argument (1-5) "
PRINT *, "specifies the TEMPORAL resolution. The third argument (0-2) specifies SMOOTHING FLAG. The fourth (000000-999999) "
PRINT *, "specifies the SMOOTHING FACTOR, if smoothing flag is NON-ZERO. SMOOTHING FACTOR has a range of 0-999999, and "
PRINT *, "MUST BE 6 characters long. FORMAT: 000002, 000038, 000125, 001525, 085792, & 850000."
PRINT *, "IF NO SMOOTHING IS NEEDED, make sure that the THIRD ARGUMENT, SMOOTHING FLAG, is ZERO, & SET this value to 000000!"
PRINT *, " "
PRINT *, "Check also that the program executable is followed by THREE 1-digit arguments, SEPARATED BY SPACES, prior to this one."
PRINT *, "-------------------------------------------------------------------------------------------------------------------"
STOP

ELSE IF (ifg4 < 6) THEN
PRINT *, "Error Reading FOURTH Input! This argument specifies the SMOOTHING FACTOR FOR NON-LINEAR TEMPERATURE CORRECTIONS."
PRINT *, "This argument has a range of 0-999999, and MUST be 6 characters long. FORMAT: "
PRINT *, "000002, 000038, 000125, 001525, 085792, & 850000."
PRINT *, "IF NO SMOOTHING IS NEEDED, make sure that the THIRD ARGUMENT, SMOOTHING FLAG, is 0 (ZERO), & SET this value to 000000!"
PRINT *, " "
PRINT *, "Check also that the program executable is followed by THREE 1-digit, and ONE 6-digit arguments, SEPARATED BY SPACES."
PRINT *, "-------------------------------------------------------------------------------------------------------------------"
STOP

ELSE
smooth_factor = (ICHAR(smfact(1:1)) - 48)*100000.0_rp + (ICHAR(smfact(2:2)) - 48)*10000.0_rp &

& + (ICHAR(smfact(3:3)) - 48)*1000.0_rp + (ICHAR(smfact(4:4)) - 48)*100.0_rp &
& + (ICHAR(smfact(5:5)) - 48)*10.0_rp + (ICHAR(smfact(6:6)) - 48)*1.0_rp

IF ( (smooth_flag == 0) .AND. (smooth_factor > 0) ) THEN
PRINT *, "SMOOTHING FLAG = 0: For NO smoothing, SMOOTHING FACTOR MUST BE 0000 (ZERO)!"
PRINT *, "EXITING PROGRAM."
STOP

END IF
END IF
!---------------------------------------------------------------------------------------------------------------------------------------
! END OF READING COMMAND LINE ARGUMENTS AND INPUT ERROR CHECKS.
!---------------------------------------------------------------------------------------------------------------------------------------

!---------------------------------------------------------------------------------------------------------------------------------------
! HEADER INFORMATION FOR OUTPUT FILES
!---------------------------------------------------------------------------------------------------------------------------------------

! Connect to output files, and type in the headings. Report opening errors.
DO m = 1, SIZE(out)

OPEN (UNIT=out(m), FILE=outfile(m), STATUS="REPLACE", IOSTAT=open_status)
DO i = 1,3

IF (open_status==0) THEN
EXIT ! Exit on successful opening/connection

ELSE
PRINT *, "Unable to open file - ", outfile(m), ". Trying again."

ENDIF
PRINT *, outfile(m), " cannot be opened! Check your source directory contents."
STOP

END DO
WRITE (UNIT=out(m), FMT='("% Program to compute the solution evolution of a GENERALIZED NON-LINEAR, 2D "/&

& "% HEAT CONDUCTION PDE, with GENERALIZED NON-LINEAR BCs, using the DELTA-FORM of"/&
& "% QUASILINEARIZATION (NEWTON-KANTOROVICH PROCEDURE) WITH DOUGLAS-GUNN TIME&
& SPLITTING SCHEME:"/"% - by RAVI KANDA (July, 2002).")')

WRITE (UNIT=out(m), FMT='("% Precision: KIND = ",I2," for FORTRAN90 Compiler v2.4 for HP-UX 11i on HP-SuperDome.")') rp
WRITE (UNIT=out(m), FMT='("% -----------------------------------------------------------------------------"/"% ")')
WRITE (UNIT=out(m), FMT='("X-Limits: (x_left, x_right) = (",ES14.8,",",ES14.8,")")') x_left, x_right
WRITE (UNIT=out(m), FMT='("Y-Limits: (y_bottom, y_top) = (",ES14.8,",",ES14.8,")")') y_bottom, y_top
WRITE (UNIT=out(m), FMT='("t-Limits: (t_initial, t_final) = (",ES14.8,",",ES14.8,")")') t_initial, t_final
WRITE (UNIT=out(m), FMT='("The value of x-step, hx = ", ES14.8)') hx
WRITE (UNIT=out(m), FMT='("The value of y-step, hy = ", ES14.8)') hy
WRITE (UNIT=out(m), FMT='("The value of t-step, k = ", ES14.8)') k
WRITE (UNIT=out(m), FMT='("% -----------------------------------------------------------------------------")')
IF (linear_flag /= 1) THEN

WRITE (UNIT=out(m), FMT='("% This problem is indicated to be NON-LINEAR. Newton-Kantorovich "/&
& "% iterations will be performed up to a convergence tolerance of ", ES12.6,"."/&
& "% The maximum number of iterations, max_iter, was set to: ",I2,".")') quasi_epsilon,quasi_iterations

WRITE (UNIT=out(m), FMT='("% -----------------------------------------------------------------------")')
IF (smooth_flag == 0) THEN

WRITE (UNIT=out(m), FMT='("% SMOOTHING FLAG = 0: NO SMOOTHING WILL BE PERFORMED.")')
WRITE (UNIT=out(m), FMT='("% ---------------------------------------------------")')

ELSE IF (smooth_flag == 1) THEN
WRITE (UNIT=out(m), FMT='("% SMOOTHING FLAG = 1: 1D SMOOTHING WILL BE PERFORMED, with SMOOTHING FACTOR = ", &

& F7.2,".")') smooth_factor
WRITE (UNIT=out(m), FMT='("% ---------------------------------------------------------------------------------")')

ELSE
WRITE (UNIT=out(m), FMT='("% SMOOTHING FLAG = 2: 2D SMOOTHING WILL BE PERFORMED, with SMOOTHING FACTOR = ", &

& F7.2,".")') smooth_factor
WRITE (UNIT=out(m), FMT='("% ---------------------------------------------------------------------------------")')

END IF
ELSE

WRITE (UNIT=out(m), FMT='("% This problem is indicated to be LINEAR. No iterations need to be "/&
& "% performed. Douglas-Gunn Time splitting will be directly implemented.")')

WRITE (UNIT=out(m), FMT='("% -----------------------------------------------------------------------")')
END IF
IF (coord_flag == 1) THEN

WRITE (UNIT=out(m), FMT='("% COORDINATE SYSTEM: CARTESIAN.")')
WRITE (UNIT=out(m), FMT='("% --------------------------------")')

ELSE IF (coord_flag == 2) THEN
WRITE (UNIT=out(m), FMT='("% COORDINATE SYSTEM: CYLINDRICAL.")')
WRITE (UNIT=out(m), FMT='("% --------------------------------")')

ELSE
WRITE (UNIT=out(m), FMT='("% COORDINATE SYSTEM: SPHERICAL.")')
WRITE (UNIT=out(m), FMT='("% --------------------------------")')

END IF
END DO
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IF (exact_sol_flag == 0) THEN ! No exact solution available.
IF (linear_flag /= 1) THEN

PRINT *, "Exact solution not available for Non-Linear Problem. Using Error Estimates."
WRITE (UNIT=out(2), FMT='("% NON-LINEAR PDE: Exact solution not available. Using Error Estimates.")')
WRITE (UNIT=out(2), FMT='("% -----------------------------------------------------------------------")')

ELSE
PRINT *, "Exact solution not available for Linear Problem. No Error Estimate available."
WRITE (UNIT=out(2), FMT='("% LINEAR PDE: Exact solution not available. No Error Estimates Available.")')
WRITE (UNIT=out(2), FMT='("% LINEAR PDE: ERRORS WILL BE ARBITRARILY SET TO 1000.0_rp!")')
WRITE (UNIT=out(2), FMT='("% -----------------------------------------------------------------------")')

END IF
END IF

! Compute the RADIAN MEASURE of the RADIUS OF ASPERITY CONTACT AREA. OUTPUT FAULT DATA TO ALL FILES & SCREEN. This cannot be computed
! under FAULT PARAMS because the Parameter statement does not accept any intrinsic function evaluations.
y0 = ATAN(rc_by_r0)

! Print out all the Fault Parameters Being used for this run:
DO m = 1, SIZE(out)

WRITE (UNIT=out(m), FMT='("Ambient Temperature, U0 = 300 K.")')
WRITE (UNIT=out(m), FMT='("Asperity Radius, r0 = ", F6.3, " m.")') x_right
WRITE (UNIT=out(m), FMT='("Young''s Modulus, E = ", F6.2, " GPa.")') e_y
WRITE (UNIT=out(m), FMT='("Poisson''s Ratio, nu = ", F4.2, " (dimensionless).")') nu_ps
WRITE (UNIT=out(m), FMT='("Coefficient of Friction, mu = ", F4.2, " (dimensionless).")') mu
WRITE (UNIT=out(m), FMT='("Density of asperity material, rho = ", F7.2, " kg/m**3.")') rho
WRITE (UNIT=out(m), FMT='("Ambient average shear stress, TAU = ", ES8.2," Pa.")') tau
WRITE (UNIT=out(m), FMT='("Asperity slip velocity, U = ", F6.3, " m/sec.")') slip_v
WRITE (UNIT=out(m), FMT='("The ratio, rc/r0 = ", ES14.8," (dimensionless).")') rc_by_r0
WRITE (UNIT=out(m), FMT='("Maximum radius of circular asperity contact area, rc = ", ES9.3, " m.")') rc
WRITE (UNIT=out(m), FMT='("Asperity slip duration, T0 = ", ES9.3, " sec.")') t0
WRITE (UNIT=out(m), FMT='("Maximum Asperity contact, THETA_0 = ", F10.8," Radians.")') y0
IF (linear_flag == 1) THEN

WRITE (UNIT=out(m), FMT='("Thermal Conductivity, kt = ", ES8.2, " W/(m**2.K).")') kt_const
WRITE (UNIT=out(m), FMT='("Specific Heat, Cp = ", ES8.2, " J/kg")') cp_const
WRITE (UNIT=out(m), FMT='("Thermal Conductivity, KAPPA = ", ES8.2, " m**2/sec.")') &

&
kt_const/(rho*cp_const)

ELSE
WRITE (UNIT=out(m), FMT='("Specific Heat, Cp & Coeff. of Thermal Conductivity, k are NON-LINEAR FUNCTIONS OF TEMPERATURE.")')

END IF
WRITE (UNIT=out(m), FMT='("% -----------------------------------------------------------------------------------------------")')

END DO
PRINT *, "X-Limits: (x_left, x_right) = (",x_left,",",x_right,")"
PRINT *, "Y-Limits: (y_bottom, y_top) = (",y_bottom,",",y_top,")"
PRINT *, "t-Limits: (t_initial, t_final) = (",t_initial,",",t_final,")"
PRINT *, "The value of x-step, hx = ", hx
PRINT *, "The value of y-step, hy = ", hy
PRINT *, "The value of t-step, k = ", k
PRINT *, "Smoothing Flag = ", smooth_flag
PRINT *, "Smoothing Factor = ", smooth_factor
PRINT *, "---------------------------------------------------------------------------------------"
PRINT *, "Ambient Temperature, U0 = 300 K."
PRINT *, "Asperity Radius r0 = ", x_right, " m."
PRINT *, "Young''s Modulus, E = ", e_y, " GPa."
PRINT *, "Poisson's Ratio, nu = ", nu_ps, " (dimensionless)."
PRINT *, "Coefficient of Friction, mu = ", mu, " (dimensionless)."
PRINT *, "Density of asperity material, rho = ", rho, " kg/m**3."
PRINT *, "Ambient average shear stress, TAU = ", tau, " Pa."
PRINT *, "Asperity slip velocity, U = ", slip_v, " m/sec."
PRINT *, "The ratio, rc/r0 = ", rc_by_r0," (dimensionless)."
PRINT *, "Maximum radius of circular asperity contact area, rc = ", rc, " m."
PRINT *, "Asperity slip duration, T0 = ", t0, " sec."
PRINT *, "Maximum Asperity contact THETA_0 = ", y0, " Radians."
IF (linear_flag == 1) THEN

PRINT *, "Thermal Conductivity, kt = ", kt_const, " W/(m**2.K)."
PRINT *, "Specific Heat, Cp = ", cp_const, " J/kg"
PRINT *, "Thermal Conductivity, KAPPA = ", kt_const/(rho*cp_const), " m**2/sec."

ELSE
PRINT *, "Specific Heat, Cp & Coeff. of Thermal Conductivity, k are NON-LINEAR FUNCTIONS OF TEMPERATURE."

END IF
PRINT *, "---------------------------------------------------------------------------------------"
IF (t0 < k) THEN

PRINT *, " "
PRINT *, "WARNING: T0, the asperity separation time, is LESS THAN THE TEMPORAL RESOLUTION FOR THIS RUN!!"
PRINT *, " "

END IF
IF (t0 > t_final) THEN

PRINT *, " "
PRINT *, "WARNING: TIME RANGE for this run is LESS THAN the asperity separation time, T0!!"
PRINT *, " "

END IF
!---------------------------------------------------------------------------------------------------------------------------------------
! END OF HEADER INFORMATION FOR OUTPUT FILES & SCREEN
!---------------------------------------------------------------------------------------------------------------------------------------

!---------------------------------------------------------------------------------------------------------------------------------------
! OUTPUT FILE PARAMETERS:
!---------------------------------------------------------------------------------------------------------------------------------------

! OUTPUT FILES #1 & 2: GRID FUNCTIONS at times corresponding to those defined in the array t_snap in the MODULE CONST_PARAMS.
! Convert time levels for outputting GRID FUNCTIONS and ERRORS into time step numbers for the given value of k, the step size.
! Also compute the output grid size, and the grid indices for outputting to these files, given hx and hy.
DO n = 1, SIZE(t_snap)

nr = (t_snap(n) - t_initial)/k + 1.0_rp
IF ( ABS(nr-INT(nr)) > 0.5_rp ) THEN

nt_snap(n) = INT(nr) + 1

ELSE
nt_snap(n) = INT(nr)

END IF
END DO
lsx = (x_right - x_left)/(out_x_grid_spacing) + 1.0_rp
IF ( ABS(lsx-INT(lsx)) > 0.5_rp ) THEN

n_xgrid = INT(lsx) + 1
ELSE

n_xgrid = INT(lsx)
END IF
lsy = (y_top - y_bottom)/(out_y_grid_spacing) + 1.0_rp
IF ( ABS(lsy-INT(lsy)) > 0.5_rp ) THEN

n_ygrid = INT(lsy) + 1
ELSE

n_ygrid = INT(lsy)
END IF
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! Allocate grid 1D index arrays i_grid, and j_grid. At the same time, allocate the 3D arrays, u_grid and u_errg.
ALLOCATE (i_grid(n_xgrid), j_grid(n_ygrid), u_errg(n_ygrid,n_xgrid,SIZE(t_snap)), u_grid(n_ygrid,n_xgrid,SIZE(t_snap)), &

& STAT=alloc_error)
IF (alloc_error /=0) THEN

PRINT *, "ERROR: Some/All GRID arrays could not be allocated! Not enough storage space."
STOP

ELSE
PRINT *, "ALL grid ARRAYS SUCCESSFULLY ALLOCATED."

END IF
y1 = x_left
DO i = 1,n_xgrid

lr = (y1 - x_left)/hx + 1.0_rp
IF ( ABS(lr-INT(lr)) > 0.5_rp ) THEN

i_grid(i) = INT(lr) + 1
ELSE

i_grid(i) = INT(lr)
END IF
y1 = y1 + out_x_grid_spacing

END DO
y1 = y_bottom
DO j = 1,n_ygrid

mr = (y1 - y_bottom)/hy + 1.0_rp
IF ( ABS(mr-INT(mr)) > 0.5_rp ) THEN

j_grid(j) = INT(mr) + 1
ELSE

j_grid(j) = INT(mr)
END IF
y1 = y1 + out_y_grid_spacing

END DO
!--------------------------------------------------------

! OUTPUT FILE #3: SNAPSHOTS.
! OUTPUT FILE #3a: SNAPSHOT OF PROFILE ALONG A LINE PARALLEL TO x-axis - Convert to time level, i, in t(i):
nr = (t_xsnap - t_initial)/k + 1.0_rp
IF ( ABS(nr-INT(nr)) > 0.5_rp ) THEN

nt_xsnap = INT(nr) + 1
ELSE

nt_xsnap = INT(nr)
END IF
! Compute y-index of snap along x-axis:
mr = (y_xsnap - y_bottom)/hy + 1.0_rp
IF ( ABS(mr-INT(mr)) > 0.5_rp ) THEN

j_xsnap = INT(mr) + 1
ELSE

j_xsnap = INT(mr)
END IF
! Also compute/specify the number of x spatial steps for output generation. ALLOCATE i_xsnap array, along with u_xsnap.
! Compute the index contents of i_xsnap:
n_xsnap = n_xgrid
ALLOCATE (i_xsnap(n_xsnap), u_xsnap(n_xsnap,2), STAT=alloc_error)
IF (alloc_error /=0) THEN

PRINT *, "ERROR: All/Some XSNAP arrays could not be allocated! Not enough storage space."
STOP

ELSE
PRINT *, "ALL xsnap ARRAYS SUCCESSFULLY ALLOCATED."

END IF
y1 = x_left
DO i = 1, n_xsnap

lr = (y1 - x_left)/hx + 1.0_rp
IF ( ABS(lr-INT(lr)) > 0.5_rp ) THEN

i_xsnap(i) = INT(lr) + 1
ELSE

i_xsnap(i) = INT(lr)
END IF
y1 = y1 + out_x_grid_spacing

END DO
!--------------------------------------------------------

! OUTPUT FILE #3b: SNAPSHOT OF PROFILE ALONG A LINE PARALLEL TO y-axis - Convert to time level, i, in t(i):
nr = (t_ysnap - t_initial)/k + 1.0_rp
IF ( ABS(nr-INT(nr)) > 0.5_rp ) THEN

nt_ysnap = INT(nr) + 1
ELSE

nt_ysnap = INT(nr)
END IF
! Compute x-index of snap along y-axis:
lr = (x_ysnap - x_left)/hx + 1.0_rp
IF ( ABS(lr-INT(lr)) > 0.5_rp ) THEN

i_ysnap = INT(lr) + 1
ELSE

i_ysnap = INT(lr)
END IF
! Also compute/specify the number of y spatial steps for output generation. ALLOCATE j_ysnap array, along with u_ysnap.
! Compute the index contents of j_ysnap:
n_ysnap = n_ygrid
ALLOCATE (j_ysnap(n_ysnap), u_ysnap(n_ysnap,2), STAT=alloc_error)
IF (alloc_error /=0) THEN

PRINT *, "ERROR: All/Some YSNAP arrays could not be allocated! Not enough storage space."
STOP

ELSE
PRINT *, "ALL ysnap ARRAYS SUCCESSFULLY ALLOCATED."

END IF
y1 = y_bottom
DO j = 1, n_ysnap

mr = (y1 - y_bottom)/hy + 1.0_rp
IF ( ABS(mr-INT(mr)) > 0.5_rp ) THEN

j_ysnap(j) = INT(mr) + 1
ELSE

j_ysnap(j) = INT(mr)
END IF
y1 = y1 + out_y_grid_spacing

END DO
!--------------------------------------------------------

! OUTPUT FILE #4: TEMPERATURE & ERROR EVOLUTION OUTPUT.
! Compute the x- and y- indices for the point at which grid function temporal evolution is being output. Also, compute the number of
! time evolution output steps based on the value for t_evol_spacing defined in the MODULE
! CONST_PARAMS:
lr = (x_time - x_left)/hx + 1.0_rp
IF ( ABS(lr-INT(lr)) > 0.5_rp ) THEN

i_evol = INT(lr) + 1
ELSE

i_evol = INT(lr)
END IF
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mr = (y_time - y_bottom)/hy + 1.0_rp
IF ( ABS(mr-INT(mr)) > 0.5_rp ) THEN

j_evol = INT(mr) + 1
ELSE

j_evol = INT(mr)
END IF
nr = (t_final - t_initial)/t_evol_spacing + 1.0_rp
IF ( ABS(nr-INT(nr)) > 0.5_rp ) THEN

n_evol = INT(nr) + 1
ELSE

n_evol = INT(nr)
END IF
! Allocate the time evolution index array, nt_evol, as well as u_evol. Compute the index elements of nt_evol.
ALLOCATE (nt_evol(n_evol), u_evol(n_evol,2), STAT=alloc_error)
IF (alloc_error /=0) THEN

PRINT *, "ERROR: All/Some T_EVOL arrays could not be allocated! Not enough storage space."
STOP

ELSE
PRINT *, "ALL t_evol ARRAYS SUCCESSFULLY ALLOCATED."

END IF
t_evol = t_initial
DO m = 1, n_evol

nr = (t_evol - t_initial)/k + 1.0_rp
IF ( ABS(nr-INT(nr)) > 0.5_rp ) THEN

nt_evol(m) = INT(nr) + 1
ELSE

nt_evol(m) = INT(nr)
END IF
t_evol = t_evol + t_evol_spacing

END DO
! MAX. TEMPERATURE & ERROR EVOLUTION.
! Determine Maximum Temperature (and Maximum Error, if applicable) Evolution time levels. The time levels are distributed at
! equidistant points on a log-scale - i.e., appropriate points in the decades containing the time step, k, and the final time,
! t_final, and 10 points in each of the intermediate decades.
lt = INT(LOG10(t_final))
lk = INT(LOG10(k))
maxdec = 10.0_rp**( lt )
IF (t_final == maxdec) THEN ! Determine the number of terms in the decade containing t_final

maxintt = 0
ELSE

maxintt= INT( t_final/maxdec )
END IF
dtdec = 10.0_rp**( lk )

! Determine the number of terms in the decade containing time step size, k: Exclude the last value, which falls into the next higher decade.
nk = INT(dtdec/k) - 1

! For the intermediate time range (between the decades contiaining t_final and k), each decade will have 9 points.
decsteps = lt - lk
num_tmaxevol = 1 + nk + 9*decsteps + maxintt + 1

! Allocate all TEMPERATURE EVOLUTION arrays.
ALLOCATE (error_maxevol(num_tmaxevol,7), t_max_evol(num_tmaxevol), nt_max_evol(num_tmaxevol), u_maxevol(num_tmaxevol,7), &

& u_minevol(num_tmaxevol,7), STAT=alloc_error)
IF (alloc_error /=0) THEN

PRINT *, "ERROR: All/Some TEMPERATURE EVOLUTION arrays could not be allocated! Not enough storage space."
STOP

ELSE
PRINT *, "ALL temperature evolution ARRAYS SUCCESSFULLY ALLOCATED."

END IF

! Fill the t_max_evol array with appropriate output time levels.
m = 0
i = 1
DO j = 1, num_tmaxevol

IF (j <= 1+nk) THEN
IF (j == 1) THEN

t_max_evol(j) = t_initial
ELSE

t_max_evol(j) = (j-1)*k ! If nk = 0, there are no terms in this block.
END IF

ELSE IF (j <= 1+nk+9*decsteps ) THEN
t_max_evol(j) = i*dtdec*(10.0_rp**m)
i = i + 1
IF (i > 9) THEN

m = m + 1
i = 1

END IF

ELSE IF (maxintt /= 0) THEN ! If maxintt = 0, t_final corresponds to a decadal "margin", then no terms here.
IF ( j <= (num_tmaxevol - 1) ) THEN

t_max_evol(j) = ( j - (1 + nk + 9*decsteps) )*maxdec
END IF

ELSE ! j = num_tmaxevol
t_max_evol(j) = t_final

END IF
END DO

! Now convert the maximum temperature evolution time levels to the corresponding integral time steps, for the given k.
DO m = 1, num_tmaxevol

tm = (t_max_evol(m) - t_initial)/k + 1.0_rp
IF ( ABS(tm-INT(tm)) > 0.5_rp ) THEN

nt_max_evol(m) = INT(tm) + 1
ELSE

nt_max_evol(m) = INT(tm)
END IF

END DO
!--------------------------------------------------------

! OUTPUT FILE #5: POINT GRID CONVERGENCE TEST LOCATIONS - 8 points, at different space & time coordinates:
! DEFINE THIS ARRAY IN THE MODULE "const_params" WITH THE REQUIRED DIMENSION! Convert grid convergence time levels
! into time levels for the given value of k, the step size. Also, print out all the grid convergence data points.
DO n = 1, SIZE(grid_conv,1)

lr = (grid_conv(n,1) - x_left)/hx + 1.0_rp
IF ( ABS(lr-INT(lr)) > 0.5_rp ) THEN

nx_gridconv(n) = INT(lr) + 1
ELSE

nx_gridconv(n) = INT(lr)
END IF
mr = (grid_conv(n,2) - y_bottom)/hy + 1.0_rp
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IF ( ABS(mr-INT(mr)) > 0.5_rp ) THEN
ny_gridconv(n) = INT(mr) + 1

ELSE
ny_gridconv(n) = INT(mr)

END IF
nr = (grid_conv(n,3) - t_initial)/k + 1.0_rp
IF ( ABS(nr-INT(nr)) > 0.5_rp ) THEN

nt_gridconv(n) = INT(nr) + 1
ELSE

nt_gridconv(n) = INT(nr)
END IF
WRITE (UNIT=out(5), FMT='(1X,"x = ",F4.2,1X,"y = ",F4.2,1X,"t = ",F4.2)') grid_conv(n,1), grid_conv(n,2), grid_conv(n,3)

END DO
WRITE (UNIT=out(5), FMT='(/"-------------------------------------------------------------------------------")')
!--------------------------------------------------------

!---------------------------------------------------------------------------------------------------------------------------------------
! COMPUTE/INITIALIZE RUN PARAMETERS, AND ALLOCATE ALL OTHER ARRAYS NEEDED FOR THIS RUN:
!---------------------------------------------------------------------------------------------------------------------------------------

! Calculate the Number of Points in the space and time domains. Check that the number of points do not
! exceed machine limitations.
x_steps = 1.0_rp + (x_right - x_left)/hx
y_steps = 1.0_rp + (y_top - y_bottom)/hy
t_steps = 1.0_rp + (t_final - t_initial)/k
IF ( ABS(x_steps-INT(x_steps)) > 0.5_rp ) THEN

x_points = INT(x_steps) + 1
ELSE

x_points = INT(x_steps)
END IF
IF (x_points > max_points) THEN

PRINT*, "******** ERROR: Number of x grid points exceeds maximum allowed grid points, ", max_points
PRINT*, "ABORTING PROGRAM!"
STOP

END IF
IF ( ABS(y_steps-INT(y_steps)) > 0.5_rp ) THEN

y_points = INT(y_steps) + 1
ELSE

y_points = INT(y_steps)
END IF
IF (y_points > max_points) THEN

PRINT*, "******** ERROR: Number of y grid points exceeds maximum allowed grid points, ", max_points
PRINT*, "ABORTING PROGRAM!"
STOP

END IF
! Unlike the x and y grid points above, "t_points" has a maximum value determined only by the machine DO LOOP counter limit.*****
IF ( ABS(t_steps-INT(t_steps)) > 0.5_rp ) THEN

t_points = INT(t_steps) + 1
ELSE

t_points = INT(t_steps)
END IF

n_c_r = x_points*y_points ! This is used in for defining the coeff & rhs arrays in the ALLOCATE statement below.

! Allocate arrays and vectors. Arrays coeff, NSu_m, Nu_m, rhs, rs, u_n, u_old are used in other modules, and MUST BE
! DEFINED GLOBALLY, in the module "const_params" above.
IF (linear_flag /= 1) THEN

ALLOCATE (coeff(n_c_r,3), dn(quasi_iterations), en(y_points,x_points), NSu_m(2,x_points), Nu_m(y_points,x_points), &
& srad(quasi_iterations), rhs(n_c_r), rs(n_c_r), u(y_points,x_points), u_n(y_points,x_points), &
& u_old(y_points,x_points), x(x_points), y(y_points), STAT=alloc_error)

ELSE
ALLOCATE (coeff(n_c_r,3), en(y_points,x_points), NSu_m(2,x_points), Nu_m(y_points,x_points), rhs(n_c_r), &

& u(y_points,x_points), u_n(y_points,x_points), x(x_points), y(y_points), STAT=alloc_error)
END IF
IF (alloc_error /=0) THEN

PRINT *, "ERROR: All/Some NON-OUTPUT-FILE arrays could not be allocated! Not enough storage space."
STOP

ELSE
PRINT *, "ALL non-output-file ARRAYS SUCCESSFULLY ALLOCATED."
PRINT *, "----------------------------------------------------------------------------------------------------------------"
PRINT *, " "

END IF

! Initialize all arrays that are not being used in the MAIN Program.
coeff = 0.0_rp
Nu_m = 0.0_rp ! This array is used for the Non-Linear/Linear Functional in "qlindgts_coeff_rhs" routine.
NSu_m = 0.0_rp ! This array is used for the bottom boundary Non-Linear/Linear Functional in "qlindgts_coeff_rhs" routine.
rhs = 0.0_rp
rs = 0.0_rp
u_n = 0.0_rp
u_old = 0.0_rp

! Compute the spatial grid coordinate vectors, X & Y, and assign the initial time:
x = (/ ((x_left + (i-1)*hx), i = 1, x_points) /)
y = (/ ((y_bottom + (i-1)*hy), i = 1, y_points) /)

! INITIALIZE time and other flags/counters.
t = t_initial
t_evol = t_initial
ne = 1
out_count = 1
global_max_error = 0.0_rp
global_max_u = 0.0_rp
evol_count = 1 ! Screen output time level index
bcout_flag = 0 ! For outputting BC types each time there is a change.
norm_flag = 1 ! For saving U_norm each time global maximum temperature is updated.
xsnap_count = 1 ! Count for output level for FILE #3a
ysnap_count = 1 ! Count for output level for FILE #3b
tevol_count = 1 ! Count for output level for FILE #4

!-----------------------------------------------------------------------------------------------------------------------------------------------
! MAIN COMPUTAIONAL LOOP: Contains BC TYPE definitions as a function of time, if applicable. OUTPUT DATA IS ALSO STORED WITHIN THIS LOOP.
!-----------------------------------------------------------------------------------------------------------------------------------------------

! START THE TIME STEPPING LOOP, with m=1 as the initial time.
DO n_t = 1, t_points

IF (n_t == 1) THEN
! Compute the initial values for the problem, and output them.

u = f_initial(x,y)
max_u = 0.0_rp
min_u = 1/epsilon
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DO j = 1, y_points
DO i = 1, x_points

IF (ABS(u(j,i)) > max_u) THEN
max_u = ABS(u(j,i))
max_u_error = en(j,i)
i_tmax = i
j_tmax = j

END IF
IF (ABS(u(j,i)) < min_u) THEN

min_u = ABS(u(j,i))
min_u_error = en(j,i)
i_tmin = i
j_tmin = j

END IF
IF (ABS(u(j,i)) > global_max_u) THEN

global_max_u = ABS(u(j,i))
global_max_u_error = en(j,i)
i_tmax_global = i
j_tmax_global = j
t_global_max = t
nt_globalmax = n_t

END IF
END DO

END DO

! DEFINE THE INITIAL BC FLAGS.
! PDE BOUNDARY CONDITION FLAGS: These are being moved here from CONST_PARAMS to offer flexibility in terms of
! time varying BC TYPES (for instance a change from an initial Neumann BC to a subsequent Dirichlet BC. The BC
! type change can happen any number of times, and the case-specific handling of these changes will be dealt with
! different DO LOOPS for each BC set.
! NOTATION FOR BOUNDARY CONDITION FLAGS: 0 for DIRICHLET {i.e., Bbc(U) = B2bc(U)},
! 1 for NEUMANN {i.e., Bbc(U) = U_x*B1bc(U)},
! 2 for ROBIN {i.e., Bbc(u) = U_x*B1bc(U)}.
! All BCs are represented in the generalized non-linear forms encountered in heat conduction problems:
! Bbc(U) = U_x*B1bc(U)+ B2bc(U) or U_y*B1bc(U)+ B2bc(U). This form can be used to represent either NON-LINEAR or
! LINEAR BCs. PROVIDE ALL BOUNDARY OPERATORS, B, in this SPLIT FORM, using separate functions for B1 and B2, for
! EACH BC. These classifications and their implementations are discussed under the separate functions in the module
! "pde_routines", below, and ESPECIALLY UNDER THE SUBROUTINE "qldgts_coeff_rhs", where they are used:

left_bc_flag = 1
right_bc_flag = 1
bottom_bc_flag = 1
top_bc_flag = 1

! OPTIONAL Linear Robin Parameters, ALPHA_x & ALPHA_y for each of the two directions. Eg., in: L = U_x + alpha_x * U
! alpha_x = 0.0_rp
! alpha_y = 0.0_rp

!
! BOUNDARY CONDITION LINEARITY FLAGS: 1 if linear, 0 if non-linear.
! These will affect the forms and values of the corresponding boundary condition functionals (lbc1, bbc1, tbc2, etc.)
! below. If any of these flags is 0 (non-linear BC) then the forms of these functionals have to be defined in the
! respective subroutines in MODULE "pde_routines":

left_lin_flag = 1
right_lin_flag = 0
bottom_lin_flag = 1
top_lin_flag = 1

! Confirm ALL BC types for this time range.
DO m = 1, SIZE(out)

WRITE (UNIT=out(m), FMT='("% For time <= To = ",ES8.2, ": ")', ADVANCE="NO") t0
IF (left_lin_flag == 1) THEN

IF (left_bc_flag == 0) THEN
WRITE (UNIT=out(m), FMT='("LEFT BC = Linear Dirichlet; ")', ADVANCE="NO")

ELSE IF (left_bc_flag == 1) THEN
WRITE (UNIT=out(m), FMT='("LEFT BC = Linear Neumann; ")', ADVANCE="NO")

ELSE
WRITE (UNIT=out(m), FMT='("LEFT BC = Linear Robin; ")', ADVANCE="NO")

END IF
ELSE

IF (left_bc_flag == 0) THEN
WRITE (UNIT=out(m), FMT='("LEFT BC = Non-Linear Dirichlet; ")', ADVANCE="NO")

ELSE IF (left_bc_flag == 1) THEN
WRITE (UNIT=out(m), FMT='("LEFT BC = Non-Linear Neumann; ")', ADVANCE="NO")

ELSE
WRITE (UNIT=out(m), FMT='("LEFT BC = Non-Linear Robin; ")', ADVANCE="NO")

END IF
END IF
IF (right_lin_flag == 1) THEN

IF (right_bc_flag == 0) THEN
WRITE (UNIT=out(m), FMT='("RIGHT BC = Linear Dirichlet; ")', ADVANCE="NO")

ELSE IF (right_bc_flag == 1) THEN
WRITE (UNIT=out(m), FMT='("RIGHT BC = Linear Neumann; ")', ADVANCE="NO")

ELSE
WRITE (UNIT=out(m), FMT='("RIGHT BC = Linear Robin; ")', ADVANCE="NO")

END IF
ELSE

IF (right_bc_flag == 0) THEN
WRITE (UNIT=out(m), FMT='("RIGHT BC = Non-Linear Dirichlet; ")', ADVANCE="NO")

ELSE IF (right_bc_flag == 1) THEN
WRITE (UNIT=out(m), FMT='("RIGHT BC = Non-Linear Neumann; ")', ADVANCE="NO")

ELSE
WRITE (UNIT=out(m), FMT='("RIGHT BC = Non-Linear Robin; ")', ADVANCE="NO")

END IF
END IF
IF (bottom_lin_flag == 1) THEN

IF (bottom_bc_flag == 0) THEN
WRITE (UNIT=out(m), FMT='("BOTTOM BC = Linear Dirichlet; ")', ADVANCE="NO")

ELSE IF (bottom_bc_flag == 1) THEN
WRITE (UNIT=out(m), FMT='("BOTTOM BC = Linear Neumann; ")', ADVANCE="NO")

ELSE
WRITE (UNIT=out(m), FMT='("BOTTOM BC = Linear Robin; ")', ADVANCE="NO")

END IF
ELSE

IF (bottom_bc_flag == 0) THEN
WRITE (UNIT=out(m), FMT='("BOTTOM BC = Non-Linear Dirichlet; ")', ADVANCE="NO")

ELSE IF (bottom_bc_flag == 1) THEN
WRITE (UNIT=out(m), FMT='("BOTTOM BC = Non-Linear Neumann; ")', ADVANCE="NO")

ELSE
WRITE (UNIT=out(m), FMT='("BOTTOM BC = Non-Linear Robin; ")', ADVANCE="NO")

END IF
END IF
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IF (top_lin_flag == 1) THEN
IF (top_bc_flag == 0) THEN

WRITE (UNIT=out(m), FMT='("TOP BC = Linear Dirichlet; ")')
WRITE (UNIT=out(m), FMT='("% -------------------------------------------------------------&

&---------------------------------------------------------------------
")')

ELSE IF (top_bc_flag == 1) THEN
WRITE (UNIT=out(m), FMT='("TOP BC = Linear Neumann; ")')
WRITE (UNIT=out(m), FMT='("% -------------------------------------------------------------&

&---------------------------------------------------------------------
")')

ELSE
WRITE (UNIT=out(m), FMT='("TOP BC = Linear Robin; ")')
WRITE (UNIT=out(m), FMT='("% -------------------------------------------------------------&

&---------------------------------------------------------------------
")')

END IF
ELSE

IF (top_bc_flag == 0) THEN
WRITE (UNIT=out(m), FMT='("TOP BC = Non-Linear Dirichlet.")')
WRITE (UNIT=out(m), FMT='("% -------------------------------------------------------------&

&---------------------------------------------------------------------
")')

ELSE IF (top_bc_flag == 1) THEN
WRITE (UNIT=out(m), FMT='("TOP BC = Non-Linear Neumann.")')
WRITE (UNIT=out(m), FMT='("% -------------------------------------------------------------&

&---------------------------------------------------------------------
")')

ELSE
WRITE (UNIT=out(m), FMT='("TOP BC = Non-Linear Robin.")')
WRITE (UNIT=out(m), FMT='("% -------------------------------------------------------------&

&---------------------------------------------------------------------
")')

END IF
END IF

END DO

ELSE

! CALL DOUGLAS-GUNN ROUTINE TO COMPUTE THE EVOLUTION OF GRID FUNCTIONS. If exact solution is not
! available, request error estimation from the quasilinear Douglas-Gunn routine. Compute exact errors,
! if known, otherwise, use the error estimate obtained from "delta_qlin_dgts".
!
IF ( (t > t0) .AND. (bcout_flag == 0) ) THEN ! Set BCs & Print to Output files on the FIRST PASS post the time of BC change.

! DEFINE BC TYPE VARIATIONS FOR SUBSEQUENT TIME(S).
! NOTE: In the case of hemispherical asperity frictional melting, if time is less than or equal to the duration of
! asperity separation, the right BC is the frictional heat flux (Neumann) into the asperity. Otherwise, the asperity
! is surrounded by air at ambient temperature (Dirichlet).
! PDE BOUNDARY CONDITION FLAGS: These are being moved here from CONST_PARAMS to offer flexibility in terms of
! time varying BC TYPES (for instance a change from an initial Neumann BC to a subsequent Dirichlet BC. The BC
! type change can happen any number of times, and the case-specific handling of these changes will be dealt with
! different DO LOOPS for each BC set.
! NOTATION FOR BOUNDARY CONDITION FLAGS: 0 for DIRICHLET {i.e., Bbc(U) = B2bc(U)},
! 1 for NEUMANN {i.e., Bbc(U) = U_x*B1bc(U)},
! 2 for ROBIN {i.e., Bbc(u) = U_x*B1bc(U)}.
! All BCs are represented in the generalized non-linear forms encountered in heat conduction problems:
! Bbc(U) = U_x*B1bc(U)+ B2bc(U) or U_y*B1bc(U)+ B2bc(U). This form can be used to represent either NON-LINEAR or
! LINEAR BCs. PROVIDE ALL BOUNDARY OPERATORS, B, in this SPLIT FORM, using separate functions for B1 and B2, for
! EACH BC. These classifications and their implementations are discussed under the separate functions in the module
! "pde_routines", below, and ESPECIALLY UNDER THE SUBROUTINE "qldgts_coeff_rhs", where they are used:

left_bc_flag = 1
right_bc_flag = 1
bottom_bc_flag = 1
top_bc_flag = 1

! OPTIONAL Linear Robin Parameters, ALPHA_x & ALPHA_y for each of the two directions. Eg., in: L = U_x + alpha_x * U
! alpha_x = 0.0_rp
! alpha_y = 0.0_rp

!
! BOUNDARY CONDITION LINEARITY FLAGS: 1 if linear, 0 if non-linear.
! These will affect the forms and values of the corresponding boundary condition functionals (lbc1, bbc1, tbc2, etc.)
! below. If any of these flags is 0 (non-linear BC) then the forms of these functionals have to be defined in the
! respective subroutines in MODULE "pde_routines":

left_lin_flag = 1
right_lin_flag = 0
bottom_lin_flag = 1
top_lin_flag = 1

! Confirm ALL BC types for this time range.
DO m = 1, SIZE(out)

WRITE (UNIT=out(m), FMT='("% For time > To = ",ES8.2, ": ")', ADVANCE="NO") t0
IF (left_lin_flag == 1) THEN

IF (left_bc_flag == 0) THEN
WRITE (UNIT=out(m), FMT='("LEFT BC = Linear Dirichlet; ")', ADVANCE="NO")

ELSE IF (left_bc_flag == 1) THEN
WRITE (UNIT=out(m), FMT='("LEFT BC = Linear Neumann; ")', ADVANCE="NO")

ELSE
WRITE (UNIT=out(m), FMT='("LEFT BC = Linear Robin; ")', ADVANCE="NO")

END IF
ELSE

IF (left_bc_flag == 0) THEN
WRITE (UNIT=out(m), FMT='("LEFT BC = Non-Linear Dirichlet; ")', ADVANCE="NO")

ELSE IF (left_bc_flag == 1) THEN
WRITE (UNIT=out(m), FMT='("LEFT BC = Non-Linear Neumann; ")', ADVANCE="NO")

ELSE
WRITE (UNIT=out(m), FMT='("LEFT BC = Non-Linear Robin; ")', ADVANCE="NO")

END IF
END IF
IF (right_lin_flag == 1) THEN

IF (right_bc_flag == 0) THEN
WRITE (UNIT=out(m), FMT='("RIGHT BC = Linear Dirichlet; ")', ADVANCE="NO")

ELSE IF (right_bc_flag == 1) THEN
WRITE (UNIT=out(m), FMT='("RIGHT BC = Linear Neumann; ")', ADVANCE="NO")

ELSE
WRITE (UNIT=out(m), FMT='("RIGHT BC = Linear Robin; ")', ADVANCE="NO")

END IF
ELSE

IF (right_bc_flag == 0) THEN
WRITE (UNIT=out(m), FMT='("RIGHT BC = Non-Linear Dirichlet; ")', ADVANCE="NO")

ELSE IF (right_bc_flag == 1) THEN
WRITE (UNIT=out(m), FMT='("RIGHT BC = Non-Linear Neumann; ")', ADVANCE="NO")
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ELSE
WRITE (UNIT=out(m), FMT='("RIGHT BC = Non-Linear Robin; ")', ADVANCE="NO")

END IF
END IF

IF (bottom_lin_flag == 1) THEN
IF (bottom_bc_flag == 0) THEN

WRITE (UNIT=out(m), FMT='("BOTTOM BC = Linear Dirichlet; ")', ADVANCE="NO")
ELSE IF (bottom_bc_flag == 1) THEN

WRITE (UNIT=out(m), FMT='("BOTTOM BC = Linear Neumann; ")', ADVANCE="NO")
ELSE

WRITE (UNIT=out(m), FMT='("BOTTOM BC = Linear Robin; ")', ADVANCE="NO")
END IF

ELSE
IF (bottom_bc_flag == 0) THEN

WRITE (UNIT=out(m), FMT='("BOTTOM BC = Non-Linear Dirichlet; ")', ADVANCE="NO")
ELSE IF (bottom_bc_flag == 1) THEN

WRITE (UNIT=out(m), FMT='("BOTTOM BC = Non-Linear Neumann; ")', ADVANCE="NO")
ELSE

WRITE (UNIT=out(m), FMT='("BOTTOM BC = Non-Linear Robin; ")', ADVANCE="NO")
END IF

END IF
IF (top_lin_flag == 1) THEN

IF (top_bc_flag == 0) THEN
WRITE (UNIT=out(m), FMT='("TOP BC = Linear Dirichlet; ")')
WRITE (UNIT=out(m), FMT='("% -------------------------------------------------------------&

&----------------------------------------------------------------
")')

ELSE IF (top_bc_flag == 1) THEN
WRITE (UNIT=out(m), FMT='("TOP BC = Linear Neumann; ")')
WRITE (UNIT=out(m), FMT='("% -------------------------------------------------------------&

&----------------------------------------------------------------
")')

ELSE
WRITE (UNIT=out(m), FMT='("TOP BC = Linear Robin; ")')
WRITE (UNIT=out(m), FMT='("% -------------------------------------------------------------&

&----------------------------------------------------------------
")')

END IF
ELSE

IF (top_bc_flag == 0) THEN
WRITE (UNIT=out(m), FMT='("TOP BC = Non-Linear Dirichlet.")')
WRITE (UNIT=out(m), FMT='("% -------------------------------------------------------------&

&----------------------------------------------------------------
")')

ELSE IF (top_bc_flag == 1) THEN
WRITE (UNIT=out(m), FMT='("TOP BC = Non-Linear Neumann.")')
WRITE (UNIT=out(m), FMT='("% -------------------------------------------------------------&

&----------------------------------------------------------------
")')

ELSE
WRITE (UNIT=out(m), FMT='("TOP BC = Non-Linear Robin.")')
WRITE (UNIT=out(m), FMT='("% -------------------------------------------------------------&

&----------------------------------------------------------------
")')

END IF
END IF

END DO
bcout_flag = 1

END IF

IF (exact_sol_flag == 1) THEN
CALL delta_qlin_dgts(x, y, t, k, u)

! SMOOTHING: If smooth_flag is non-zero, then apply appropriate smoothing to grid functions. NOTE: SMOOTHING IS PROBLEM SPECIFIC
! AND THE GRID FUNCTIONS TO BE SMOOTHED HAVE TO BE DETERMINED, SOMETIMES THROUGH MANUAL ITERATIONS OF WHAT WORKS BEST. Below, two
! smoothing functions are provided for the case of a steep gradient at the right boundary of the problem domain. The smoothing
! factor is defined globally in the MODULE CONST_PARAMS, and is SPECIFIED on the command line along with the executable file.

IF (smooth_flag == 1) THEN
! DO i = x_points-2, x_points-1 ! 1D smoothing: DIRICHLET BC - Smooth columns nx-2 to nx-1.

DO i = x_points-3, x_points ! 1D smoothing: NEUMANN BC - Smooth columns nx-3 to nx, i.e., INCLUDE BDRY. NODE.

IF (i == x_points) u(j,i+1) = 2.0_rp*hx*f_right(y(j),t) + u(j, i-1) ! For NEUMANN RIGHT BC.
DO j = 1, y_points ! Since TOP & BOTTOM BCs are NEUMANN.

u(j,i) = ( u(j,i-1) + smooth_factor*u(j,i) + u(j,i+1) )/(2.0_rp + smooth_factor)
END DO

END DO
ELSE IF (smooth_flag == 2) THEN

! DO i = x_points-s1+1, x_points-1 ! 2D smoothing: DIRICHLET BC - Smooth columns nx-2 to nx-1.
DO i = x_points-s1, x_points ! 2D smoothing: NEUMANN BC - Smooth columns nx-1 to nx, i.e., INCLUDE BDRY. NODE.

s1 = 3 + INT(y0/hy) ! Location of the flux-RBC input edge with respect to the current grid.
IF (i == x_points) u(j,i+1) = 2.0_rp*hx*f_right(y(j),t) + u(j,i-1) ! For NEUMANN RIGHT BC.
DO j = 1, s1 ! Since the BOTTOM BC is NEUMANN.

! For NEUMANN BOTTOM BC.
IF (j == 1) u(j-1,i) = u(j+1,i) - 2.0_rp*hy*f_bottom(x(i),t)
u(j,i) = ( u(j,i-1) + u(j-1,i) + smooth_factor*u(j,i) + u(j,i+1) + u(j+1,i) )
u(j,i) = u(j,i)/(4.0_rp + smooth_factor)

END DO
END DO

END IF

max_u = 0.0_rp
min_u = 1/epsilon
max_error = 0.0_rp
DO j = 1, y_points

DO i = 1, x_points
en(j,i) = ABS( f_exact(x(i),y(j),t) - u(j,i) )
IF (verbose_flag == 1) THEN

IF (en(j,i) > max_error) THEN
max_error = en(j,i)
max_error_u = u(j,i)
i_max = i
j_max = j

END IF
IF (u(j,i) > max_u) THEN

max_u = u(j,i)
max_u_error = en(j,i)
i_tmax = i
j_tmax = j

END IF
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IF (u(j,i) < min_u) THEN
min_u = u(j,i)
min_u_error = en(j,i)
i_tmin = i
j_tmin = j

END IF
END IF
IF (u(j,i) > global_max_u) THEN

global_max_u = u(j,i)
global_max_u_error = en(j,i)
i_tmax_global = i
j_tmax_global = j
t_global_max = t
nt_globalmax = n_t

END IF
IF (en(j,i) > global_max_error) THEN

global_max_error = en(j,i)
global_max_error_u = u(j,i)
i_max_global = i
j_max_global = j
t_global_max_error = t
nt_globalmax_error = n_t

END IF
END DO

END DO
ELSE

IF (linear_flag /= 1) THEN
CALL delta_qlin_dgts(x, y, t, k, u, en, dn, srad)

! SMOOTHING: If smooth_flag is non-zero, then apply appropriate smoothing to grid functions. NOTE: SMOOTHING IS PROBLEM SPECIFIC
! AND THE GRID FUNCTIONS TO BE SMOOTHED HAVE TO BE DETERMINED, SOMETIMES THROUGH MANUAL ITERATIONS OF WHAT WORKS BEST. Below, two
! smoothing functions are provided for the case of a steep gradient at the right boundary of the problem domain. The smoothing
! factor is defined globally in the MODULE CONST_PARAMS, and is SPECIFIED on the command line along with the executable file.

IF (smooth_flag == 1) THEN
! DO i = x_points-2, x_points-1 ! 1D smoothing: DIRICHLET BC - Smooth columns nx-2 to nx-1.

DO i = x_points-3, x_points ! 1D smoothing: NEUMANN BC - INCLUDE BOUNDARY NODES.
IF (i == x_points) u(j,i+1) = 2.0_rp*hx*f_right(y(j),t) + u(j, i-1) ! For NEUMANN RIGHT BC.
DO j = 1, y_points ! Since both the TOP & BOTTOM BCs are NEUMANN.

u(j,i) = ( u(j,i-1) + smooth_factor*u(j,i) + u(j,i+1) )/(2.0_rp + smooth_factor)
END DO

END DO
ELSE IF (smooth_flag == 2) THEN

! DO i = x_points-s1+1, x_points-1 ! 2D smoothing: DIRICHLET BC - Smooth columns nx-2 to nx-1.
DO i = x_points-s1, x_points ! 2D smoothing: NEUMANN BC - INCLUDE BOUNDARY NODES.

s1 = 3 + INT(y0/hy) ! Location of the flux-RBC input edge with respect to the current grid.
IF (i == x_points) u(j,i+1) = 2.0_rp*hx*f_right(y(j),t) + u(j,i-1) ! For NEUMANN RIGHT BC.
DO j = 1, s1 ! Since the BOTTOM BC is NEUMANN.

! For NEUMANN BOTTOM BC.
IF (j == 1) u(j-1,i) = u(j+1,i) - 2.0_rp*hy*f_bottom(x(i),t)
u(j,i) = ( u(j,i-1) + u(j-1,i) + smooth_factor*u(j,i) + u(j,i+1) + u(j+1,i) )
u(j,i) = u(j,i)/(4.0_rp + smooth_factor)

END DO
END DO

END IF

max_u = 0.0_rp
min_u = 1/epsilon
max_error = 0.0_rp
DO j = 1, y_points

DO i = 1, x_points
IF (verbose_flag == 1) THEN

IF (en(j,i) > max_error) THEN
max_error = en(j,i)
max_error_u = u(j,i)
i_max = i
j_max = j

END IF
IF (u(j,i) > max_u) THEN

max_u = u(j,i)
max_u_error = en(j,i)
i_tmax = i
j_tmax = j

END IF
IF (u(j,i) < min_u) THEN

min_u = u(j,i)
min_u_error = en(j,i)
i_tmin = i
j_tmin = j

END IF
END IF
IF (u(j,i) > global_max_u) THEN

global_max_u = u(j,i)
global_max_u_error = en(j,i)
i_tmax_global = i
j_tmax_global = j
t_global_max = t
nt_globalmax = n_t

END IF
IF (en(j,i) > global_max_error) THEN

global_max_error = en(j,i)
global_max_error_u = u(j,i)
i_max_global = i
j_max_global = j
t_global_max_error = t
nt_globalmax_error = n_t

END IF
END DO

END DO
ELSE

CALL delta_qlin_dgts(x, y, t, k, u)
max_u = 0.0_rp
min_u = 1/epsilon
DO j = 1, y_points

DO i = 1, x_points
IF (verbose_flag == 1) THEN

IF (u(j,i) > max_u) THEN
max_u = u(j,i)
i_tmax = i
j_tmax = j

END IF
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IF (u(j,i) < min_u) THEN
min_u = u(j,i)
i_tmin = i
j_tmin = j

END IF
END IF
IF (u(j,i) > global_max_u) THEN

global_max_u = u(j,i)
i_tmax_global = i
j_tmax_global = j
t_global_max = t
nt_globalmax = n_t

END IF
END DO

END DO
END IF

END IF
END IF

!---------------------------------------------------------------
! STORE OUTPUT FILE & SCREEN OUTPUT DATA IN DATA ARRAYS.
!---------------------------------------------------------------

! SCREEN OUTPUT:
! --------------
IF ( (verbose_flag /= 1) .AND. (n_t == nt_max_evol(evol_count)) ) THEN

!Optional PRINT *, "STARTING EVOLUTION DATA PROCESSING FOR t(",n_t,") = ",t,"."
END IF

! OUTPUT FILES 1 & 2: Output data if this is the correct time level.
! ------------------------------------------------
IF ( n_t == nt_snap(out_count) ) THEN

u_grid_norm(out_count) = 0.0_rp
DO j = 1, y_points

DO i = 1, x_points
IF (exact_sol_flag == 1) THEN

en(j,i) = ABS( f_exact(x(i),y(j),t) - u(j,i) )
ELSE

IF (linear_flag == 1) en(j,i) = 1.0E30_rp
END IF
u_grid_norm(out_count) = u_grid_norm(out_count) + (u(j,i))*u(j,i)

END DO
END DO
u_grid_norm(out_count) = SQRT( u_grid_norm(out_count) )
DO j = 1,n_ygrid

DO i = 1,n_xgrid
u_grid(j,i,out_count) = u(j_grid(j),i_grid(i))
IF (exact_sol_flag == 1) THEN

u_errg(j,i,out_count) = en(j_grid(j),i_grid(i))/u_grid_norm(out_count)
ELSE

IF (linear_flag == 1) THEN
u_errg(j,i,out_count) = en(j_grid(j),i_grid(i))

ELSE
u_errg(j,i,out_count) = en(j_grid(j),i_grid(i))/u_grid_norm(out_count)

END IF
END IF

END DO
END DO
out_count = out_count + 1

END IF

! OUTPUT FILE 3: Snapshot data, if this is the correct time level.
! ----------------------------------------------------------------
IF (n_t == nt_xsnap) THEN

DO i = 1, n_xsnap
u_xsnap(i,1) = x(i_xsnap(i))
u_xsnap(i,2) = u(j_xsnap,i_xsnap(i))

END DO
END IF
IF (n_t == nt_ysnap) THEN

DO j = 1, n_ysnap
u_ysnap(j,1) = y(j_ysnap(j))
u_ysnap(j,2) = u(j_ysnap(j),i_ysnap)

END DO
END IF

! OUTPUT FILE 4: TEMPERATURE EVOLUTION AT A SINGLE (x,y) grid point in the problem domain; EVOLUTION OF MAXIMUM DOMAIN
! TEMPERATURE & MAXIMUM DOMAIN ERROR :
! ---------------------------------------------------------------------------------------------------------------------------
DO m = 1, n_evol

IF (n_t == nt_evol(m)) THEN
u_evol(m,1) = t
u_evol(m,2) = u(j_evol,i_evol)

END IF
END DO
IF (n_t == nt_max_evol(evol_count)) THEN

IF (exact_sol_flag == 1) THEN
max_error = 0.0_rp
max_u = 0.0_rp
min_u = 1/epsilon
en_norm = 0.0_rp
u_norm = 0.0_rp
DO j = 1, y_points

DO i = 1, x_points
en(j,i) = ABS( f_exact(x(i),y(j),t) - u(j,i) )
en_norm = en_norm + (en(j,i))*en(j,i)
u_norm = u_norm + (u(j,i))*u(j,i)
IF (en(j,i) > max_error) THEN

max_error = en(j,i)
max_error_u = u(j,i)
i_max = i
j_max = j

END IF
IF (u(j,i) > max_u) THEN

max_u = u(j,i)
max_u_error = en(j,i)
i_tmax = i
j_tmax = j

END IF
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IF (u(j,i) < min_u) THEN
min_u = u(j,i)
min_u_error = en(j,i)
i_tmin = i
j_tmin = j

END IF
END DO

END DO
en_norm = SQRT(en_norm)
u_norm = SQRT(u_norm)
en = en/u_norm
max_error = max_error/u_norm
max_u_error = max_u_error/u_norm
min_u_error = min_u_error/u_norm
u_maxevol(evol_count, 1) = n_t
u_maxevol(evol_count, 2) = t
u_maxevol(evol_count, 3) = j_tmax
u_maxevol(evol_count, 4) = i_tmax
u_maxevol(evol_count, 5) = u(j_tmax, i_tmax)
u_maxevol(evol_count, 6) = max_u_error
u_maxevol(evol_count, 7) = u_norm
u_minevol(evol_count, 1) = n_t
u_minevol(evol_count, 2) = t
u_minevol(evol_count, 3) = j_tmin
u_minevol(evol_count, 4) = i_tmin
u_minevol(evol_count, 5) = u(j_tmin, i_tmin)
u_minevol(evol_count, 6) = min_u_error
u_minevol(evol_count, 7) = u_norm
error_maxevol(evol_count, 1) = n_t
error_maxevol(evol_count, 2) = t
error_maxevol(evol_count, 3) = j_max
error_maxevol(evol_count, 4) = i_max
error_maxevol(evol_count, 5) = max_error
error_maxevol(evol_count, 6) = u(j_max, i_max)
error_maxevol(evol_count, 7) = u_norm

ELSE
IF (linear_flag /= 1) THEN

max_error = 0.0_rp
max_u = 0.0_rp
min_u = 1/epsilon
en_norm = 0.0_rp
u_norm = 0.0_rp

DO j = 1, y_points
DO i = 1, x_points

en_norm = en_norm + (en(j,i))*en(j,i)
u_norm = u_norm + (u(j,i))*u(j,i)
IF (en(j,i) > max_error) THEN

max_error = en(j,i)
max_error_u = u(j,i)
i_max = i
j_max = j

END IF
IF (u(j,i) > max_u) THEN

max_u = u(j,i)
max_u_error = en(j,i)
i_tmax = i
j_tmax = j

END IF
IF (u(j,i) < min_u) THEN

min_u = u(j,i)
min_u_error = en(j,i)
i_tmin = i
j_tmin = j

END IF
END DO

END DO
en_norm = SQRT(en_norm)
u_norm = SQRT(u_norm)
en = en/u_norm
max_error = max_error/u_norm
max_u_error = max_u_error/u_norm
min_u_error = min_u_error/u_norm
u_maxevol(evol_count, 1) = n_t
u_maxevol(evol_count, 2) = t
u_maxevol(evol_count, 3) = j_tmax
u_maxevol(evol_count, 4) = i_tmax
u_maxevol(evol_count, 5) = u(j_tmax, i_tmax)
u_maxevol(evol_count, 6) = max_u_error
u_maxevol(evol_count, 7) = u_norm
u_minevol(evol_count, 1) = n_t
u_minevol(evol_count, 2) = t
u_minevol(evol_count, 3) = j_tmin
u_minevol(evol_count, 4) = i_tmin
u_minevol(evol_count, 5) = u(j_tmin, i_tmin)
u_minevol(evol_count, 6) = min_u_error
u_minevol(evol_count, 7) = u_norm
error_maxevol(evol_count, 1) = n_t
error_maxevol(evol_count, 2) = t
error_maxevol(evol_count, 3) = j_max
error_maxevol(evol_count, 4) = i_max
error_maxevol(evol_count, 5) = max_error
error_maxevol(evol_count, 6) = u(j_max, i_max)
error_maxevol(evol_count, 7) = u_norm

ELSE
max_u = 0.0_rp
min_u = 1/epsilon
DO j = 1, y_points

DO i = 1, x_points
IF (u(j,i) > max_u) THEN

max_u = u(j,i)
i_tmax = i
j_tmax = j

END IF
IF (u(j,i) < min_u) THEN

min_u = u(j,i)
i_tmin = i
j_tmin = j

END IF
END DO

END DO
u_maxevol(evol_count, 1) = n_t
u_maxevol(evol_count, 2) = t
u_maxevol(evol_count, 3) = j_tmax
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u_maxevol(evol_count, 4) = i_tmax
u_maxevol(evol_count, 5) = u(j_tmax, i_tmax)
u_maxevol(evol_count, 6) = 1.0E30_rp
u_maxevol(evol_count, 7) = 1.0E30_rp
u_minevol(evol_count, 2) = t
u_minevol(evol_count, 3) = j_tmin
u_minevol(evol_count, 4) = i_tmin
u_minevol(evol_count, 5) = u(j_tmin, i_tmin)
u_minevol(evol_count, 6) = 1.0E30_rp
u_minevol(evol_count, 7) = 1.0E30_rp

END IF
END IF
evol_count = evol_count + 1

END IF

! OUTPUT FILE 5: GRID FUNCTION CONVERGENCE DATA:
! -----------------------------------------------
DO j = 1, SIZE(grid_conv,1)

IF (n_t == nt_gridconv(j)) THEN
u_conv(j) = u(ny_gridconv(j),nx_gridconv(j))

END IF
END DO

IF (verbose_flag == 1) THEN
PRINT *, "t(", n_t,") = ",t,":"
PRINT *, " row=",j_tmax,", col=",i_tmax,": DOMAIN MAXIMUM TEMPERATURE = ", u(j_tmax, i_tmax)
PRINT *, " row=",j_tmin,", col=",i_tmin,": DOMAIN MINIMUM TEMPERATURE = ", u(j_tmin, i_tmin)
IF (linear_flag /= 1) THEN

PRINT *, " row=",j_max, ", col=",i_max," : DOMAIN MAXIMUM ERROR = ",max_error,", &
&TEMPERATURE = ", u(j_max, i_max),"."

END IF
END IF

! UPDATE TIME TO NEXT STEP.
t = t + k

END DO

!---------------------------------------------------------------------------------------------------------------------------------------
! END OF MAIN COMPUTAIONAL LOOP.
!---------------------------------------------------------------------------------------------------------------------------------------

!---------------------------------------------------------------------------------------------------------------------------------------
! OUTPUT STORED RUN DATA TO ALL OUTPUT FILES.
!---------------------------------------------------------------------------------------------------------------------------------------

! -----------------------------------------------------------------------------------------------------------------------------------
! OUTPUT FILE 1: Output grid functions at the resolution required for convergence tests.
! -----------------------------------------------------------------------------------------------------------------------------------
DO m = 1, SIZE(t_snap)

WRITE (UNIT=out(1), FMT='("TIME STEP",I6,": The solution u(x,y) at time = ", F10.6)') nt_snap(m),t_snap(m)
WRITE (UNIT=out(1), FMT='("% ------------------------------------------------------------------")')
WRITE (UNIT=out(1), FMT='("% x = ")', ADVANCE="NO")
DO i = 1,n_xgrid ! Print out X-coordinate headings.

IF (i == n_xgrid) THEN
WRITE (UNIT=out(1), FMT='(1X, F9.6)') x(i_grid(i))
EXIT

END IF
WRITE (UNIT=out(1), FMT='(1X, F9.6,",")', ADVANCE="NO") x(i_grid(i))

END DO
DO j = 1,n_ygrid ! Print out each row vector (y-row) of the solution.

IF ( (coord_flag == 2) .OR. (coord_flag == 3) )THEN
IF (j == n_ygrid) THEN ! If y_top = PI, then repeat last value within domain for top boundary point

WRITE (UNIT=out(1), FMT='("y(",I5,")= ",F9.6,",")', ADVANCE="NO") j_grid(j), &
& ( y(j_grid(j-1)) + out_y_grid_spacing )

ELSE
WRITE (UNIT=out(1), FMT='("y(",I5,")= ",F9.6,",")', ADVANCE="NO") j_grid(j), y(j_grid(j))

END IF
ELSE

WRITE (UNIT=out(1), FMT='("y(",I5,")= ",F9.6,",")', ADVANCE="NO") j_grid(j), y(j_grid(j))
END IF
DO i = 1,n_xgrid

IF (i == n_xgrid) THEN
IF ( (coord_flag == 2) .OR. (coord_flag == 3) )THEN

IF (j == n_ygrid) THEN ! If y_top = PI, then repeat last value in domain for top bdry. point
WRITE (UNIT=out(1), FMT='(1X,ES18.8)') u_grid(j-1,i,m)

ELSE
WRITE (UNIT=out(1), FMT='(1X,ES18.8)') u_grid(j,i,m)

END IF
ELSE

WRITE (UNIT=out(1), FMT='(1X,ES18.8)') u_grid(j,i,m)
END IF
EXIT

END IF
IF ( (coord_flag == 2) .OR. (coord_flag == 3) )THEN

IF (j == n_ygrid) THEN ! If y_top = PI, then repeat last value within domain for top boundary point
WRITE (UNIT=out(1), FMT='(1X,ES18.8,",")', ADVANCE="NO") u_grid(j-1,i,m)

ELSE
WRITE (UNIT=out(1), FMT='(1X,ES18.8,",")', ADVANCE="NO") u_grid(j,i,m)

END IF
ELSE

WRITE (UNIT=out(1), FMT='(1X,ES18.8,",")', ADVANCE="NO") u_grid(j,i,m)
END IF

END DO
END DO
WRITE (UNIT=out(1), FMT='("% ---------------------------------------------------------------------------------------"/)')

END DO

! -----------------------------------------------------------------------------------------------------------------------------------
! OUTPUT FILE 2: Print ERROR data at required resolution.
! Exact error distribution, en(yj,xi), at the current time step if exact solution is known;
! ESTIMATED Error distribution, en_est(yj,xi), at the current time step when exact solution is not available.
! -----------------------------------------------------------------------------------------------------------------------------------
DO m = 1, SIZE(t_snap)

IF (exact_sol_flag == 1) THEN
WRITE (UNIT=out(2), FMT='("TIME STEP",I6,": The RELATIVE error en(x,y) at time = ", F10.6,&

& ": U_norm = ",ES18.8)') nt_snap(m), t_snap(m), u_grid_norm(m)
WRITE (UNIT=out(2), FMT='("% -------------------------------------------------------------------------")')

ELSE
WRITE (UNIT=out(2), FMT='("TIME STEP",I6,": The ESTIMATED RELATIVE error en_est(x,y) at time = ", F10.6, &

& ": U_norm = ",ES18.8)') nt_snap(m), t_snap(m), u_grid_norm(m)
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WRITE (UNIT=out(2), FMT='("% ---------------------------------------------------------------------------------")')
END IF
WRITE (UNIT=out(2), FMT='("% x = ")', ADVANCE="NO")
DO i = 1,n_xgrid ! Print out X-coordinate headings.

IF (i == n_xgrid) THEN
WRITE (UNIT=out(2), FMT='(1X, F9.6)') x(i_grid(i))
EXIT

END IF
WRITE (UNIT=out(2), FMT='(1X, F9.6,",")', ADVANCE="NO") x(i_grid(i))

END DO
DO j = 1,n_ygrid ! Print out each row vector (y-row) of the solution.

IF ( (coord_flag == 2) .OR. (coord_flag == 3) )THEN
IF (j == n_ygrid) THEN ! If y_top = PI, then repeat last value within domain for top boundary point

WRITE (UNIT=out(2), FMT='("y(",I5,")= ",F9.6,",")', ADVANCE="NO") j_grid(j), &
& ( y(j_grid(j-1)) + out_y_grid_spacing )

ELSE
WRITE (UNIT=out(2), FMT='("y(",I5,")= ",F9.6,",")', ADVANCE="NO") j_grid(j), y(j_grid(j))

END IF
ELSE

WRITE (UNIT=out(1), FMT='("y(",I5,")= ",F9.6,",")', ADVANCE="NO") j_grid(j), y(j_grid(j))
END IF
DO i = 1,n_xgrid

IF (i == n_xgrid) THEN
IF ( (coord_flag == 2) .OR. (coord_flag == 3) )THEN

IF (j == n_ygrid) THEN ! If y_top = PI, then repeat last value in domain for top bdry. point
WRITE (UNIT=out(2), FMT='(1X,ES18.8)') u_errg(j-1,i,m)

ELSE
WRITE (UNIT=out(2), FMT='(1X,ES18.8)') u_errg(j,i,m)

END IF
ELSE

WRITE (UNIT=out(2), FMT='(1X,ES18.8)') u_errg(j,i,m)
END IF
EXIT

END IF
IF ( (coord_flag == 2) .OR. (coord_flag == 3) )THEN

IF (j == n_ygrid) THEN ! If y_top = PI, then repeat last value within domain for top boundary point
WRITE (UNIT=out(2), FMT='(1X,ES18.8,",")', ADVANCE="NO") u_errg(j-1,i,m)

ELSE
WRITE (UNIT=out(2), FMT='(1X,ES18.8,",")', ADVANCE="NO") u_errg(j,i,m)

END IF
ELSE

WRITE (UNIT=out(2), FMT='(1X,ES18.8,",")', ADVANCE="NO") u_errg(j,i,m)
END IF

END DO
END DO
WRITE (UNIT=out(2), FMT='("% ---------------------------------------------------------------------------------------"/)')

END DO

! -----------------------------------------------------------------------------------------------------------------------------------
! OUTPUT FILE 3: Snapshot data.
! -----------------------------------------------------------------------------------------------------------------------------------
! 3a. Plot the profile parallel to x-axis (corresponding to y_xsnap and t_xsnap).
! -------------------------------------------------------------------------------
WRITE (UNIT=out(3), FMT='(/"SNAPSHOT at y = ",F9.6," & t = ",F9.6,":")') y_xsnap, t_xsnap
WRITE (UNIT=out(3), FMT='("----------------------------------------------------------------------"/)')
WRITE (UNIT=out(3), FMT='(5X,"x",8X,"U_xsnap(x)")')
DO i = 1, n_xsnap

WRITE (UNIT=out(3), FMT='(3X,F4.2,3X,ES17.10)') u_xsnap(i,1), u_xsnap(i,2)
END DO
WRITE (UNIT=out(3), FMT='("----------------------------------------------------------------------"/)')

! 3b. Plot the profile parallel to y-axis (corresponding to x_ysnap and t_ysnap).
! -------------------------------------------------------------------------------
WRITE (UNIT=out(3), FMT='("SNAPSHOT at x = ",F9.6," & t = ",F9.6,":")') x_ysnap, t_ysnap
WRITE (UNIT=out(3), FMT='("----------------------------------------------------------------------"/)')
WRITE (UNIT=out(3), FMT='(5X,"y",8X,"U_ysnap(y)")')
DO j = 1, n_ysnap

IF (j == n_ysnap) THEN
WRITE (UNIT=out(3), FMT='(3X,F4.2,3X,ES17.10)') ( u_ysnap(j-1,1) + out_y_grid_spacing ), u_ysnap(j-1,2)

ELSE
WRITE (UNIT=out(3), FMT='(3X,F4.2,3X,ES17.10)') u_ysnap(j,1), u_ysnap(j,2)

END IF
END DO
WRITE (UNIT=out(3), FMT='("----------------------------------------------------------------------"/)')

! -----------------------------------------------------------------------------------------------------------------------------------
! OUTPUT FILE 4: TEMPERATURE EVOLUTION AT A SINGLE (x,y) grid point, MAX. & MIN. TEMPERATURE, and MAX. ERROR in the problem domain:
! -----------------------------------------------------------------------------------------------------------------------------------

! First, output the time lag between the maximum temperature and the time of separation.
WRITE (UNIT=out(4), FMT='("TIME LAG BETWEEN TIME CORRESPONDING TO U_max AND TIME AT ASPERITY SEPARATION = ",ES13.6)') &

& (t_global_max - t0)
WRITE (UNIT=out(4), FMT='("RELATIVE TIME LAG (w.r.t. T0) BETWEEN TIME CORRESPONDING TO U_max AND TIME AT ASPERITY &

&SEPARATION = ",ES13.6)') (t_global_max - t0)/t0
WRITE (UNIT=out(4), FMT='(/"-------------------------------------------------------------------------------------------------")')

! 4a. Grid Function Evolution at (x_time, y_time):
! -------------------------------------------------
WRITE (UNIT=out(4), FMT='("Grid Function evolution at grid point: (",F9.6,", ",F9.6,").")') x_time, y_time
WRITE (UNIT=out(4), FMT='("----------------------------------------------------------------------------------")')
WRITE (UNIT=out(4), FMT='(5X,"t",5X,"U(x_time, y_time)")')
DO m = 1, n_evol

WRITE (UNIT=out(4), FMT='(3X,F4.2,3X,ES15.8)') u_evol(m,1), u_evol(m,2)
END DO
WRITE (UNIT=out(4), FMT='("----------------------------------------------------------------------"/)')

! 4b. Maximum Temperature Evolution:
! -----------------------------------
WRITE (UNIT=out(4), FMT='("Domain Maximum Temperature evolution:")')
WRITE (UNIT=out(4), FMT='("--------------------------------------------------------------------------------------------------")')
IF (exact_sol_flag == 1) THEN

WRITE (UNIT=out(4), FMT='(4X,"Step #",8X," t",8X," j ",3X," i ",3X," U_max ",3X,"Relative Error",&
& 3X," U_norm ")')

ELSE
WRITE (UNIT=out(4), FMT='(4X,"Step #",8X," t",8X," j ",3X," i ",3X," U_max ",3X,"Est. Relative Error",&

& 3X," U_norm ")')
END IF
DO m = 1, num_tmaxevol

WRITE (UNIT=out(4), FMT='(3X,I7,3X,ES12.6,3X,2(I6,3X),3(ES15.8,3X))') u_maxevol(m,1), u_maxevol(m,2), u_maxevol(m,3), &
& u_maxevol(m,4), u_maxevol(m,5), u_maxevol(m,6), u_minevol(m,7)

END DO
WRITE (UNIT=out(4), FMT='(/"TEMPORAL GLOBAL TEMPERATURE MAXIMA: ")')
WRITE (UNIT=out(4), FMT='("------------------------------------")')
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IF (exact_sol_flag == 1) THEN
WRITE (UNIT=out(4), FMT='(3X,I7,3X,F4.2,3X,2(I6,3X),2(ES15.8,3X))') nt_globalmax, t_global_max, j_tmax_global, &

& i_tmax_global, global_max_u, global_max_u_error
ELSE

IF (linear_flag /= 1) THEN
WRITE (UNIT=out(4), FMT='(3X,I7,3X,F4.2,3X,2(I6,3X),2(ES15.8,3X))') nt_globalmax, t_global_max, j_tmax_global, &

& i_tmax_global, global_max_u, global_max_u_error
ELSE

WRITE (UNIT=out(4), FMT='(3X,I7,3X,F4.2,3X,2(I6,3X),2(ES15.8,3X))') nt_globalmax, t_global_max, j_tmax_global, &
& i_tmax_global, global_max_u, 1.0E30_rp

END IF
END IF
WRITE (UNIT=out(4), FMT='("-------------------------------------------------------------------------------------------------"/)')

! 4c. Maximum Error Evolution:
! -----------------------------------
WRITE (UNIT=out(4), FMT='("Domain Maximum Error evolution:")')
WRITE (UNIT=out(4), FMT='("--------------------------------------------------------------------------------------------------")')
IF (exact_sol_flag == 1) THEN

WRITE (UNIT=out(4), FMT='(4X,"Step #",8X," t",8X," j ",3X," i ",1X," Max. Rel. Error ",1X," U ",&
& 3X," U_norm ")')

ELSE
WRITE (UNIT=out(4), FMT='(4X,"Step #",8X," t",8X," j ",3X," i ",1X,"Max. Est. Rel. Err.",1X," U ",&

& 3X," U_norm ")')
END IF
DO m = 1, num_tmaxevol

WRITE (UNIT=out(4), FMT='(3X,I7,3X,ES12.6,3X,2(I6,3X),3(ES15.8,3X))') error_maxevol(m,1), error_maxevol(m,2), &
& error_maxevol(m,3), error_maxevol(m,4), error_maxevol(m,5), error_maxevol(m,6), u_minevol(m,7)

END DO
WRITE (UNIT=out(4), FMT='(/"TEMPORAL GLOBAL ABSOLUTE ERROR MAXIMA: ")')
WRITE (UNIT=out(4), FMT='("------------------------------")')
IF (exact_sol_flag == 1) THEN

WRITE (UNIT=out(4), FMT='(3X,I7,3X,F4.2,3X,2(I6,3X),2(ES15.8,3X))') nt_globalmax_error, t_global_max_error, j_max_global, &
& i_max_global, global_max_error, global_max_error_u

ELSE
IF (linear_flag /= 1) THEN

WRITE (UNIT=out(4), FMT='(3X,I7,3X,F4.2,3X,2(I6,3X),2(ES15.8,3X))') nt_globalmax_error, t_global_max_error, j_max_global, &
& i_max_global, global_max_error, global_max_error_u

ELSE
WRITE (UNIT=out(4), FMT='(3X,I7,3X,F4.2,3X,2(I6,3X),2(ES15.8,3X))') nt_globalmax_error, t_global_max_error, j_max_global, &

& i_max_global, global_max_error, 1.0E30_rp
END IF

END IF
WRITE (UNIT=out(4), FMT='("-------------------------------------------------------------------------------------------------"/)')

! 4d. Minimum Temperature Evolution:
! -----------------------------------
WRITE (UNIT=out(4), FMT='(/"Domain Minimum Temperature evolution:")')
WRITE (UNIT=out(4), FMT='("--------------------------------------------------------------------------------------------------")')
IF (exact_sol_flag == 1) THEN

WRITE (UNIT=out(4), FMT='(4X,"Step #",8X," t",8X," j ",3X," i ",3X," U_min ",3X," Relative Error", 3X," U_norm ")')
ELSE

WRITE (UNIT=out(4), FMT='(4X,"Step #",8X," t",8X," j ",3X," i ",3X," U_min ",3X,"Est. Relative Error", 3X," U_norm ")')
END IF
DO m = 1, num_tmaxevol

WRITE (UNIT=out(4), FMT='(3X,I7,3X,ES12.6,3X,2(I6,3X),3(ES15.8,3X))') u_minevol(m,1), u_minevol(m,2), u_minevol(m,3), &
& u_minevol(m,4), u_minevol(m,5), u_minevol(m,6), u_minevol(m,7)

END DO
WRITE (UNIT=out(4), FMT='("-------------------------------------------------------------------------------------------------"/)')

! -----------------------------------------------------------------------------------------------------------------------------------
! OUTPUT FILE 5: GRID FUNCTION CONVERGENCE DATA.
! -----------------------------------------------------------------------------------------------------------------------------------
WRITE (UNIT=out(5), FMT='(/"Grid Function Convergence Data at the following grid points: ")')
WRITE (UNIT=out(5), FMT='("-------------------------------------------------------------------------------")')
WRITE (UNIT=out(5), FMT='(1X,"k",1X,"hx",1X,"hy",1X,"U1",1X,"U2",1X,"U3",1X,"U4",1X,"U5",1X,"U6",1X,"U7",1X,"U8",)')
WRITE (UNIT=out(5), FMT='(3(1X,F8.6))', ADVANCE="NO") k, hx, hy
DO m = 1, SIZE(grid_conv,1)

WRITE (UNIT=out(5), FMT='(ES17.10,1X)', ADVANCE="NO") u_conv(m)
END DO
WRITE (UNIT=out(5), FMT='(/"-------------------------------------------------------------------------------------------------"/)')

PRINT *, " "
PRINT *, "----------------------------------------------------------------------------------------------------------------------"
!---------------------------------------------------------------------------------------------------------------------------------------
! END OF INPUT TO OUTPUT FILES.
!---------------------------------------------------------------------------------------------------------------------------------------

!---------------------------------------------------------------------------------------------------------------------------------------
! PROGRAM CLOSING SEQUENCE: Deallocate arrays, and lose all files.
!---------------------------------------------------------------------------------------------------------------------------------------

! Deallocate ALL arrays.
IF (linear_flag /= 1) THEN

DEALLOCATE (coeff, dn, en, error_maxevol, i_grid, i_xsnap, j_grid, j_ysnap, NSu_m, Nu_m, nt_evol, nt_max_evol, srad, &
& rhs, rs, t_max_evol, u, u_errg, u_evol, u_grid, u_n, u_old, u_maxevol, u_minevol, u_xsnap, u_ysnap, x, y, &
& STAT=dealloc_error)

ELSE
DEALLOCATE (coeff, en, error_maxevol, i_grid, i_xsnap, j_grid, j_ysnap, NSu_m, Nu_m, nt_evol, nt_max_evol, &

& rhs, t_max_evol, u, u_errg, u_evol, u_grid, u_n, u_maxevol, u_minevol, u_xsnap, u_ysnap, x, y, STAT=dealloc_error)
END IF
IF (dealloc_error /=0) THEN

PRINT *, "WARNING: SOME OR ALL Arrays could not be DEALLOCATED!"
END IF
PRINT *, "FINISHED DEALLOCATING ALL ARRAYS."

! Close output files.
DO m = 1, SIZE(out)

CLOSE (UNIT=out(m), STATUS="KEEP", IOSTAT=close_status)
IF (close_status==0) THEN

PRINT *, "OUTPUT FILE, ",outfile(m),", CLOSED"
ELSE

PRINT *, "WARNING: The file, ",outfile(m), ", could not be disconnected!"
END IF

END DO
PRINT *, "Program execution completed successfully. EXITING."
!---------------------------------------------------------------------------------------------------------------------------------------
! END OF PROGRAM CLOSING SEQUENCE
!---------------------------------------------------------------------------------------------------------------------------------------

END PROGRAM nonlin_parabolic_pde
!---------------------------------------------------------------------------------------------------------------------------------------------------------
! END OF MAIN PROGRAM
!---------------------------------------------------------------------------------------------------------------------------------------------------------
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APPENDIX C: PROPERTIES OF ROCKS & MINERALS: 
TABLES AND FIGURES 

 
Table C- 1. Data relavant to frictional melting from literature survey. 

 Parameter Data (Units, Comments, Reference) 
# Symbol Definition  
 
 
1 

 
 
ηηηη 

 
 
Viscocity of frictional melt 

•  Scholz (1990): for dry granitic frictional melt: 107-108 poise 
(p. 137). 

•  Sibson (1975): For basaltic andesite at 1100 0C and 1 bar: 103-
104 poise (p. 783). 

 
 
 
2 

 
 
κκκκ 

 
 
Thermal diffusivity of host 
rock 

•  Killick & Roering (1998): 1x10-6 – 1.9x10-6 m2/sec for most 
rock materials (p. 254)  

•  Sibson (1975): 7.0x10-7 m2/sec (p. 784) 
•  Lachenbruch & Sass (1980): 1x10-7 m2/sec (p. 6187). 
 

3 µµµµ Coefficient of friction 
between fault/slip surfaces 

•  Killick & Roering (1998): 0.6 – 0.85; 0.85, for σn < 200 MPa 
(p. 253) – : Byrelee’s (1978) results.  

•  Jaegar & Cook (1979): W. Granite: 0.11 (Table 6.2.1, p. 146); 
•  Wang & Scholz (1994): 0.21 (p. 6793) 
•  Touloukinan et. al. (1981): In Gpa (Table 6.1, p. 135) 
 
Quartzite 0.10-0.30 
Granite/ 0.09-0.48 
Diorite 0.05-0.29 
Gneiss 0.06-0.13 

 
 
 
 
4 

 
 
 
 
νννν 

 
 
 
 
Poisson’s Ratio 

Schist 0.01-0.15 
 
 
5 

 
 
ρρρρ 

 
 
Density of host rock  

•  Killick & Roering (1998): 2700-2820 kg/m3.(p. 254) 
•  Sibson (1975): 2800 kg/m3 (p. 786) 
•  Cardwell et al. (1978): 2800 kg/m3 (p. 527) 
•  McKinzie and Brune (1972): 3000 kg/m3 (p. 74) 
 

 
 
 
 
 
6 

 
 
 
 
 
∆∆∆∆σσσσs/d 

 
 
 
 
 
Stress Drop (static/dynamic) 

•  Kanamori (1994):  
� Static drop: 30-100 bars (p. 209); 
� Static drop: 10-100 bars over large scales (or profile 

lengths, p. 215); 300-2000 bars for the 1990 Pasadena, 
CA earthquake, over a profile length of about 0.5 km; 
150-300 bars for the Sierra Madre, CA earthquake, over 
a profile length of about 4 km (p. 218). 

� Dynamic drop: Average over whole quake area: 12-40 
bars; Local range: 22-84 bars; point range: 40-200 bars. 

•  Lachenbruch & Sass (1980): Stress drop based on heat flow 
calculations and seismic observations: 0-100 bars (p. 6206). 

 
(CONTINUED) 
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Table C-1. Data relavant to frictional melting from literature survey.  (CONTINUED) 
 Parameter Data (Units, Comments, Reference) 
# Symbo

l 
Definition  

7 σσσσc  Compressive strength Scholz (1990):– Uniaxial compressive strength: Quartz: 2200 
MPa; Calcite: 200 MPa (p. 61). 

 
 
 
8 

 
 
 
σσσσn, σσσσv 

 
 
 
Normal or vertical stresses on 
the fault (average) 

•  Sibson (1975): σn = 1.6 ρgz, for optimal thrust faulting; 
Differential stress approx. = 3.2 kbar (p. 790)  

•  McKinzie and Brune (1972): >10 bars for frictional melting 
(p. 74) 

•  Kanamori (1994): About 200 bars or even less than 100 bars 
for the San Andreas Fault system. 

•  Turcotte & Tag (1980): About 100 bars.  
 
Spray (1992): In MPa (Table 1, p. 210):  
Micas (Muscovite & Biotite) 167-333 
Serpentine (lizardite & chrysotile) 200 
Amphiboles: actinolite & tremolite  
                      horneblende & parg 

567-833 
750 

Pyroxenes: clinopyroxene  
                   orthopyroxene 

750-1083 
567-833 

Feldspar: Orthoclase 
                 Albite & Anorthite 

833 
833-1083 

Silicon Dioxide (Quartz):  1400 
Olivine (Forsterite)  1083-1400 
Zircon 1667 
Soda-Lime glass 1800 
Rutile 1083 
Corundum 3333 
Diamond 25,000 

 
 
 
 
 
 
 
 
9 

 
 
 
 
 
 
 
 
ττττy 

 
 
 
 
 
 
Yield strength in shear, for 
host rock. 
H=(nM)3=3σσσσy = 6ττττy 
n=1.3 - 1.6 

Titanium 85 
•  Sibson (1975): For Gneiss, ANISOTROPIC strengths: σ45 = 

4.2 kbar; σ90 = 8.4 kbar (p. 779) 
•  Spray (1992): In Mpa (Table 1, p. 210): 
Micas (Muscovite & Biotite) 333-666 
Serpentine (lizardite & chrysotile) 400 
Amphiboles: actinolite & tremolite  
                      horneblende & parg 

1133-1666 
1500 

Pyroxenes: clinopyroxene  
                   orthopyroxene 

1500-2166 
1133-1666 

Feldspar: Orthoclase 
                 Albite & Anorthite 

1666 
1666-2166 

Silicon Dioxide (Quartz): Natural 
                                           Synthetic 

2800 

Olivine (Forsterite)  2166-2800 
Zircon 3333 
Soda-Lime glass 3600 
Rutile 2166 
Corundum 6666 
Diamond 50,000 

 
 
 
 
 
 
 
 
 
10 
 

 
 
 
 
 
 
 
 
 
σσσσy 

 
 
 
 
 
 
 
 
 
Yield strength in tension, for 
host rock 
H=(nM)3=3σσσσy = 6ττττy 
n=1.3 - 1.6 

Titanium 170 

(CONTINUED) 
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Table C-1. Data relavant to frictional melting from literature survey.  (CONTINUED) 
 Parameter Data (Units, Comments, Reference) 
# Symbol Definition  
 
11 

 
ξξξξ 

 
Strain rate for fault  

•  Spray (1992): 10-2 – 1 for coseismic slip; >103 for meteorite 
impact (Figure 2, p. 209) 

•  Kanamori (1994): 10-4 
 

 
12 
 

 
C 

 
Cohesive strength of the fault 

 
Killick & Roering (1998): 1-54 Mpa (= 2S, Figure 6, p. 256, and 
also below). 

 
13 

 
CP 

 
Specific heat at constant 
pressure for host rock 

 
•  Killick & Roering (1998): 1200 JKg-1K-1 (p. 254).  
•  Cardwell et al. (1978): 1050 JKg-1K-1 (p. 527). 
•  McKinzie and Brune (1972): 1000 JKg-1K-1 (p. 74) 
 

 
 
 
 
14 

 
 
 
 
d 

 
 
 
 
Crustal depth of 
pseudotachylyte formation 

•  Swanson (1992): 0-18 km below the surface (Fig.1); 
Crystalline PT: < 5 km; Glassy PT: >5 km; Mylonitic zone, 
plastically deformed PT: 10-15 km. 

•  Killick & Roering (1998): 1.9-6.6 km below paleo land 
surface.  3.3-6.1 km under lithostatic loading, and 9.3-17.2 
km under hydrostatic loading.  The values depend on the mole 
fraction of water and mass fraction of CO2 in host rock. 
(p.250-1) 

•  Sibson (1975): 1-10 km (p. 784); > 2-3 km (p. 786); most 
likely depth at 4-5 km (p. 791). 

 
•  Jaegar & Cook (1979): Quartz Diorite: 3 x 106 psi (= 

0.0068915*3000000 Mpa = 20.67 Gpa), Granite: 2  3 x 106 psi 
(= 13.78 GPa) [p. 188, Sec. 6.14, Fig. 6.15.1]; W. Granite: 8.1 
x 106 psi (55.81 Gpa) {Table 6.2.1, p. 146];  

•  Wang & Scholz (1994):  Westerly Granite 69 Gpa (p. 6793) 
•  http://www.almazoptics.com/homepage/Quartz.htm:     

Quartz: 76 GPa (perp.), and 97 GPa (para.) – optical quality. 
•  http://www.tosoh.com/EnglishHomePage/tqg/genprop.htm: 

Quartz glass: 70-74 GPa. 
•  Touloukinan et. al. (1981):  In Gpa (Table 6.1, p. 135; Fig. 

6.27, p. 168) 
Quartzite 14.34-68.95 
Granite/ 
Westerly 
Granite 

pconf = 0 Mpa: 5.52 – 64.10  
pconf = 500 Mpa:  75 (from slope in above figure, at 
250 C,), 55 at 3000C, & 40 at 5000C. 

Granodiorite 45.10-70.80 
Diorite 4.09-103.1 
Gneiss 12.68-67.22 

 
 
 
 
 
 
 
 
15 

 
 
 
 
 
 
 
 
E, Ey 

 
 
 
 
 
 
 
 
Young’s Modulus 

Schist 39.30-80.67 

(CONTINUED) 

http://www.almazoptics.com/homepage/Quartz.htm
http://www.tosoh.com/EnglishHomePage/tqg/genprop.htm
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Table C-1. Data relavant to frictional melting from literature survey.  (CONTINUED) 
 Parameter Data (Units, Comments, Reference) 
# Symbol Definition  

•  Scholz (1990):– Calcite: 600 MPa; Sandstone: 2000 MPa – 
Logan and Teufel’s results (p. 61).   

•  Spray (1992): In kg/mm-2 (= Mpa) (Table 1, p. 210): 
Micas (Muscovite & Biotite) 100-200 
Serpentine (lizardite & chrysotile) 120 
Amphiboles: actinolite & tremolite  
                      horneblende & parg 

340-500 
450 

Pyroxenes: clinopyroxene  
                   orthopyroxene 

450-650 
340-500 

Feldspar: Orthoclase 
                 Albite & Anorthite 

500 
500-650 

Silicon Dioxide (Quartz): Natural 
                                           Synthetic 

840 

Olivine (Forsterite)  650-840 
Zircon 1000 
Soda-Lime glass 840 
Rutile 650 
Corundum 2000 

 
 
 
 
 
 
 
16 

 
 
 
 
 
 
 
H 

 
 
 
 
 
 
 
Indentation / Penetration 

hardness  

H=(nM)3=3σσσσy = 6ττττy 
n=1.3 - 1.6 

Titanium 50 
 
•  Sibson (1975): 2 W/m-1  0C-1 (p. 786) 
•  McKinzie & Brune (1972): 2 W/m-1  0C-1 (p. 74). 
•  Killick & Roering (1998): Quartzites: 3.45-6.42 W/m-1  0C-1 

(p. 254) 
•  Lachenbruch & Sass (1980): 2.5 W/m-1  0C-1 (p. 6187). 
•  Spray (1992): In W/m-1  0C-1 (Table 1, p. 210): 
Micas: Muscovite  
            Biotite 

1.3 
0.8 

Serpentine: lizardite  
                   chrysotile 

1.34 
3.0 

Amphiboles: actinolite  
                      tremolite  
                      horneblende 

1.22 
2.78 
1.4-1.8 

Pyroxenes: clinopyroxene  
                   orthopyroxene 

2.4-3.1 
2.4-2.86 

Feldspar: Orthoclase 
                 Albite  
                 Anorthite 

1.35 
1.35 
0.85 

Silicon Dioxide (Quartz): Natural 
                                           Synthetic 

4.3 

Olivine (Forsterite)  2.96 
Zircon 2.6 
Soda-Lime glass 1.0 
Rutile 2.9 
Corundum 13.0 
Diamond 63-93 

 
 
 
 
 
 
 
 
 
 
 
 
 
17 

 
 
 
 
 
 
 
 
 
 
 
 
 
k 

 
 
 
 
 
 
 
 
 
 
 
 
 
Thermal conductivity of host 
rock 

Titanium 22 

(CONTINUED) 
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Table C-1. Data relavant to frictional melting from literature survey.  (CONTINUED) 
 Parameter Data (Units, Comments, Reference) 
# Symbol Definition  

Spray (1992): In MPa/m-1/2 (Table 1, p. 210):  
Feldspar 
(orthoclase) 

1.3  001 

Natural quartz  2.4  perp. to the <c> direction 
Synnthetic quartz 0.8-1.0 perpendicular to r and z directions. 
Olivine 0.59  

0.73 
010 
001 

Soda-Lime glass 0.7  
Corundum 3.0  
Diamond 3.4-3.9 111 

 
 
 
 
 
18 

 
 
 
 
 
Kc 

 
 
 
 
 
Fracture toughness 

Titanium ≥50!  
 
19 

 
LF 

 
Length of fault veins 

•  Swanson (1992): 1-10 m long 
•  Curewitz & Karson (1999): Sometimes >20 m (p. 1695) 
•  Grocott (1981): up to 1 km long! (p. 169) 
•  Sibson (1975): Approx. 10 cm. (p. 778) 

 
20 

 
lI 

 
Length of injection veins 

•  Curewitz & Karson (1999): Typically, 1 m (p. 1695) 
•  Sibson (1975): Approx. 0.1-1 cm. (p. 778) 
Spray (1992): (Table 1, p. 210): 
Micas (Muscovite & Biotite) 2.5-4 
Serpentine (lizardite & chrysotile) 3 
Amphiboles: actinolite & tremolite  
                      horneblende & parg 

5-6 
5.5 

Pyroxenes: clinopyroxene  
                   orthopyroxene 

5.5-6.5 
5-6 

Feldspar: Orthoclase 
                 Albite & Anorthite 

6 
6-6.5 

Silicon Dioxide (Quartz): Natural 
                                           Synthetic 

7 

Olivine (Forsterite)  6.5-7 
Zircon 7.5 
Soda-Lime glass 7 
Rutile 6.5 
Corundum 9 
Diamond 10 

 
 
 
 
 
 
 
21 

 
 
 
 
 
 
 
M 

 
 
 
 
 
 
 
Mohs hardness 
H=(nM)3=3σσσσy = 6ττττy 
n=1.3 - 1.6 

Titanium 2 
 
 
 
 
 
22 

 
 
 
 
 
P 

 
 
 
 
 
Pressure in pore fluid at 
pseudotachylyte formation 
depths 

•  Killick & Roering (1998): Pconfining = f(WH2O); Pconfining = 
g(WCO2).  Based on PT without any vesicles or bubbles, the 
confining pressures must counter the solubility pressure given 
by these relations.  Depending on water and CO2 content in 
local rocks, these pressures were hypothesized to vary 
between 92 MPa and 142 MPa. (p. 250-251).  Also P approx. 
= 0.335 σn (for hydrostatic conditions) and 0.9σn (for 
lithostatic conditions). 

•  Sibson (1975): Pore fluid pressure rise = (Temperature 
rise/47) kbars, for water initially at 140 0C (close to 
homogenization), and depth of 4-5 km. 50 0C rise in temp 
corresponds to a 1kbar overpressurization.  

(CONTINUTED) 



 182

Table C-1. Data relavant to frictional melting from literature survey.  (CONTINUED) 
 Parameter Data (Units, Comments, Reference) 
# Symbol Definition  
 
23 

 
Q 

 
Heat flux 

 
Scholz (1990):– Q= τf . U =50Mpa x 1 cm/sec; OR 0.016 W/m2 
typically.  Good chunk of Wf (p. 114)  
 

 
 
24 

 
 
r 

 
 
Clast size (radius/major axis) 

 
•  Curewitz & Karson (1999): 10µm – 1m (p. 1696 & 99) 
•  Shimamoto & Nagahama (1992): 5 – 2000 µm (graphs) 
 

25 S Tensile strength of the fault  
Killick & Roering (1998): 0.5-27 Mpa (Figure 6, p. 256). 
 

 
26 

 
t0 

 
Time duration for melting/ 
duration of fault motion 

•  Swanson (1992): Melting duration approx.= 104 sec; Rupture 
duration approx. = 1.2-12 sec. (Figure 2) 

•  Sibson (1975): Cooling times = 0.4 – 40 s (p. 778).   
•  Cardwell et al. (1978): Duration of faulting approx. = 1 sec 

(p. 527). 
 

 
 
 
 
 
 
 
 
 
 
27 

 
 
 
 
 
 
 
 
 
 
Tmax 

 
 
 
 
 
 
 
 
 
 
Maximum frictional melt 
temperatures  

•  Swanson (1992): (p. 227) 
� Tplastic transition (Quartz) = 300 0C; Tplastic transition (Feldspar) 

= 450 0C 
� Tpeak  estimate of 1000 0C from hotrock melt 

temperatures and theoretical calculations (Cardwell, et 
al.(1978), and McKinzie & Brune (1972)); 

� Tpeak  estimate of 1520 0C from SiO2 glass compositions;  
� Tpeak  estimate of 1400 0C from flash melting during 

welding;  
� Tpeak  estimate of 1180 0C from thermal dye 

measurements by Logan and Teufel (1986);  
•  Curewitz & Karson (1999): Thomologous (sintering temperature) 

= 0.6-0.7 Tmelt; About 700-900 0C for granitic melts with 
rounded clasts in PT (p. 1705); >900 0C for glassy PT (p. 
1707). 

•  Killick & Roering (1998): From Carslaw & Jaegar (1959) and 
Sibson (1975): Tmax- Tambient = f(Q/t1/2) ; and gives, about 1000 
0C (p. 255). 

•  Sibson (1975): 1100-1200 0C, from embayment of plagioclase 
porphyroclasts (p. 783). 

•  Cardwell et al. (1978): Tambient = 400 0C; Tmelt = 800 0C (p. 
529). 

•  McKinzie & Brune (1972): Tmelt = 1000 0C (p. 74). 
 

 
 
28 

 
 
TF 

 
 
Thickness of fault veins 

 
•  Curewitz & Karson (1999): < 2 cm; Reservoir zones, > 10 m 

(p. 1695). 
•  Grocott (1981): Distance between paired shears: Typical: .15-

1.5 m; Actual, field: 2-3 cm – 3 m. (p. 169 & 171) 
 

29 tI Thickness of injection veins Curewitz & Karson (1999): About 2 cm (p. 1695). 
 

(CONTINUTED) 
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Table C-1. Data relavant to frictional melting from literature survey.  (CONTINUED) 
 Parameter Data (Units, Comments, Reference) 
# Symbol Definition  

Spray (1992): In 0C (Table 1, p. 210): 
Micas: (Muscovite & Biotite) 650 
Serpentine: (lizardite & chrysotile) 400 
Amphiboles: actinolite  
                      tremolite  
                      horneblende 
                      parg 

750 
850 
750 
1000 

Pyroxenes: clinopyroxene  
                   orthopyroxene 

1400 
1425 

Feldspar: Orthoclase 
                 Albite  
                 Anorthite 

1150 
1100 
1550 

Silicon Dioxide (Quartz): Natural 
                                           Synthetic 

1730 

Olivine (Forsterite)  1890 
Zircon 1695 
Soda-Lime glass 1000 
Rutile 1825 
Corundum 2000 
Diamond 3727 

 
 
 
 
 
 
 
 
 
30 

 
 
 
 
 
 
 
 
 
Tm 

 
 
 
 
 
 
 
 
 
Mineral melt temperatures 

Titanium 1667 
 
 
 
 
 
31 

 
 
 
 
 
U 

 
 
 
 
 
Fault displacement (slip) 
velocities 

•  Swanson (1992): < 1 m/s (p. 227). 
•  Curewitz & Karson (1999): >0.1 m/s for coseismic slip (from 

Magloughlin & Spray (1992) and Spray (1995)) (p. 1694). 
•  Spray (1992): 0.1-2 m/s for coseismic slip (p. 212). 
•  Sibson (1975): > 0.1 m/s; typically, .5 m/s (p. 786). 
•  Grocott (1981): 0.1-1 m/s (based on Sibson (1975)). 
•  Kanamori (1994): Typically < 1m/s; (1-92 cm/sec observed in 

field): Maximum about 2 m/s (p. 219). 
•  Turcotte & Tag (1980): For San Andreas, plate velocity = 5.0-

5.5 cm/yr (!) (p. 6224 & 6229). 
•  Lachenbruch & Sass (1980): Plate velocity for San Andreas = 

4.0-5.0 cm/yr.   
32 WCO2 CO2 wt % in host rock Killick & Roering (1998): 0.1 % (w/w) (p. 250-251). 
33 Wf Total fault energy •  Scholz (1990):–Wf =Ws + Wg + WR + Q  (p. 114) 
34 Wg Gravitational work •  Scholz (1990):– Negligible (p. 114)  
35 WH2O H2O wt % Killick & Roering (1998): 0.48-2.33 % (w/w) (p. 250-1). 
36 WR Seismic (Reflected) energy •  Scholz (1990):– varies from fault to fault (p. 114)   
37 Ws Surface energy •  Scholz (1990):– approximately 10-3 – 10-4 of Wf. (p. 114).   

•  Lachenbruch & Sass (1980): 10-2 of Wf. (p. 6218) 
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Figure C- 1. QUARTZ: Specific Heat, [1 - {Cp(T)/1500}] as a function of Temperature, T.  The value 
at 300 K, or typical ambient conditions, is marked with the dotted line.  In some of the runs 
illustrated in Table A-7, this cutoff was assumed, resulting in a discontinuity at 300 K.   
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Figure C- 2. QUARTZ: Thermal Conductivity, (k(T) - 1) as a function of Temperature, T.  The 
value at 300 K, or typical ambient conditions, is marked with the dotted line.  In some of the runs 
illustrated in Table A-7, this cutoff was assumed, resulting in a discontinuity at 300 K.   
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Figure C- 3. FELDSPARS: Specific Heat, [1 - {Cp(T)/1000}] as a function of Temperature, 
T.  The value at 300 K, or typical ambient conditions, is marked with the dotted line  
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Figure C- 4. FELDSPAR: Thermal Conductivity, k(T) as a function of Temperature, T.  The value 
at 300 K, or typical ambient conditions, is marked with the dotted line.   
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APPENDIX D:MATLAB POST-PROCESSING CODES 
 
 
 
 
 
 
 

FOUR MATLAB POST PROCESSING CODES  

FOR FORTRAN 90 OUTPUT FILES (APPENDIX A) 
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CODE D-1. DevolRuns.m: Matlab code for processing FORTRAN 90 output file DEVOL (temporal evolution of 
peak temperatures). 
 
% This program reads time evolution data for the specified number of resolutions, and creates a space delimited file for each time
% step. This file can be subsequently for plotting X-Y semi-log scatter plot where the axes for each data set are for the same
% parameters, but of different lengths. The program accomplishes this using string searches for key words, to identify the
% start and end of data at each resolution.

format short e
evoldata = zeros(50,10);
inpfilebeg = 'Devol_';
inpfilemid = '_2_';

% Ask for number of input files:
inpath = input('Type the absolute path to the directory containing the input files (use backslashes):', 's');
firstfile = input('Type the resolution number (1-2, typically) of the FIRST input file for this set of runs:');
lastfile = input('Type the resolution number (3-5, typically) of the LAST input file for this set of runs:');
numfiles = lastfile - firstfile + 1;
inpfileend = input('Type the ending for this set of runs (e.g., qr5T100, fr1T1000, qr1T50_Lin,...):','s');
basetemp = input('Type the value of the ambient temperature - 360, usually, but 330 if D1km:');
for res = firstfile:lastfile % FOR LOOP to combine snapution data for all "numfile" resolutions.

inpfile = [inpath,'\',inpfilebeg,int2str(res),inpfilemid,inpfileend];
fid = fopen(inpfile, 'r');
lcount = 0
while lcount <= 12

line = fgetl(fid);
disp(line)
lcount = lcount + 1;
if lcount == 8 % Ignore lines 1-7.

string = line(32:45); % Read x-left from line 8.
string = lower(string);

xl = str2num(string);
string = line(47:60); % Read x-right from line 8.
string = lower(string);

xr = str2num(string);
end
if lcount == 9

string = line(32:45); % Read y-bottom from line 9.
string = lower(string);

yb = str2num(string);
string = line(47:60); % Read y-top from line 9.
string = lower(string);
yt = str2num(string);

end
if lcount == 10

string = line(35:48); % Read t_initial from line 10.
string = lower(string);

ti = str2num(string);
string = line(50:63); % Read t_final from line 10.
string = lower(string);

tf = str2num(string);
end
if lcount == 11

string = line(27:40); % Read hx from line 11.
string = lower(string);

hx = str2num(string);
end
if lcount == 12

string = line(27:40); % Read hy from line 12.
string = lower(string);

hy = str2num(string);
end
if lcount == 13

string = line(27:40); % Read k from line 13.
string = lower(string);

ht = str2num(string);
end

end
% Compute the total number of time steps based on the time step size and time limits for this run:
steps = ( (tf - ti)/ht ) + 1.0;
numsteps = round(steps)
if abs(numsteps - steps) >= 0.5

t_steps = numsteps + 1;
else

t_steps = numsteps;
end

% Beginning line 14, start reading each line. If it contains the string "Maximum Temperature", it marks the beginning of EVOL Data.
while feof(fid) == 0

line = fgetl(fid);
if isempty(findstr('Maximum Temperature',line)) == 1

disp(line)
lcount = lcount + 1;

else
% READ EVOLUTION DATA.
disp(line)
lcount = lcount + 1;
for i = 1:2 % IGNORE THE NEXT TWO HEADER LINES.

line = fgetl(fid);
lcount = lcount + 1;
disp(line)

end
row = 0; % Initialize Data Row counter.
endstr = [' ',num2str(t_steps),' '];
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while isempty(findstr(endstr,line)) == 1 % Read evolution data.
line = fgetl(fid);
lcount = lcount + 1;
row = row + 1;
for i = 1:2 % Do loop for the two data fields, time and T_max.

if i == 1
col = 2*res - 1;
string = line(14:25); % Read time field
string = lower(string);

else
col = 2*res;
string = line(48:61); % Read Max. Temperature field
string = lower(string);

end
evoldata(row,col) = str2num(string);

end
end
while isempty(findstr('GLOBAL TEMPERATURE MAXIMA',line)) == 1

line = fgetl(fid);
lcount = lcount + 1;
disp(line)

end
line = fgetl(fid); % Once the Header for the global max. Temperature is found, ignore the next line.
lcount = lcount + 1;
disp(line)
line = fgetl(fid); % FINAL DATA LINE.
lcount = lcount + 1;
row = row + 1; % FINAL DATA ROW.
for i = 1:2 % Do loop for the two data fields, time and GLOBAL T_max.

if i == 1
col = 2*res - 1;
string = line(14:25); % Read time field
string = lower(string);

else
col = 2*res;
string = line(48:61); % Read Max. Temperature field
string = lower(string);

end
evoldata(row,col) = str2num(string);

end
end % IF LOOP for Data entry into "evoldata" array.

end % EOF WHILE LOOP for each resolution file.
end % Data assimilation FOR LOOP
% Since the Global maxima is output separately by the FORTRAN 90 Code, evoldata needs to be sorted first before it can be used.
tempcount = 0;
for res = firstfile:lastfile

for j = 1:size(evoldata,1)
if evoldata(j,2*res) ~= 0.0 % COUNT THE NUMBER OF ROWS WITH NON-ZERO TEMPERATURE.

tempcount = tempcount + 1;
end

end
temp = zeros(tempcount,2);
tempcount = 0;
for j = 1:size(evoldata,1)

if evoldata(j,2*res) ~= 0.0 % MAKE SURE THE 0 (Zero) ELEMENTS ARE NOT SORTED AND REMAIN AT THE BOTTOM.
tempcount = tempcount + 1;
temp(tempcount,1) = evoldata(j,2*res-1);
temp(tempcount,2) = evoldata(j,2*res );

end
end
[tmp,idcol] = sort(temp(:,1));
temp = temp(idcol,:);
evoldata(:,2*res-1) = zeros(size(evoldata,1),1);
evoldata(:,2*res) = zeros(size(evoldata,1),1);
tempcount = 0;
for j = 1:size(temp,1)

tempcount = tempcount + 1;
evoldata(j,2*res-1) = temp(tempcount,1);
evoldata(j,2*res ) = temp(tempcount,2);

end
tempcount = 0;

end
% FINALLY, SAVE THE SORTED AND INITIAL-TIME "CORRECTED" PEAK TEMPERATURE EVOLUTION DATA IN A SEPARATE FILE. Clear array from
workspace.
eval( ['save ',inpfilebeg,inpfileend,'.dat evoldata -ascii'], ['Error saving EVOLUTION Data file!'] )
eval( 'clear evoldata','Error deleting temporary GRID DATA array from Workspace!')

% Now read in the evoldata file:
inpdata = dlmread([inpfilebeg,inpfileend,'.dat'], ' ');

% Separate into X and Y arrays for ease of sorting, and plotting data:
X = [inpdata(:,1) inpdata(:,3) inpdata(:,5) inpdata(:,7) inpdata(:, 9)];
Y = [inpdata(:,2) inpdata(:,4) inpdata(:,6) inpdata(:,8) inpdata(:,10)];
% Compute maxima and/or minima as required, for determining axes limits:
[ymax,i] = max(Y(:));
[xmax,i] = max(X(:));
%[xmin,i] = min(X(:));
x = X(:); % Since there are a number of 0 (Zero) valued terms in inpdata array, the minimum CANNOT be found with the "min" function.
xmin = 1;

for j = 1:size(x,1)
if (x(j) > eps) & (x(j) < xmin)

xmin = x(j);
end

end
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xmax = ceil(log10(xmax)); % Round towards +INFINITY.
xmax = 10.0^(xmax);
xmin = floor(log10(xmin)) - 1; % Round towards -INFINITY.
xmin = 10.0^(xmin);
X(1,:) = xmin; % The Fortran 90 code begins at initial time = 0, so for the semi-log plot, set this to a small
value.
% Estimate a y plot grid spacing, based on the current data file.
yincr = (ymax-basetemp)/10.0;
if yincr > 1.0

order = fix(log10(yincr)); % Round exponent towards 0 (ZERO) (to get the order of magnitude of "yincr") if increment is > 1
else

order = floor(log10(yincr)); % Round exponent towards -INFINITY (to get the order of magnitude of "yincr") if increment is <
1
end
yincr = (10.0^order)*round(yincr/10.0^order);

% NOW PLOT THE SORTED DATA:
semilogx(X(:,1),Y(:,1),'b:x',X(:,2),Y(:,2),'g:^',X(:,3),Y(:,3),'m-.s',X(:,4),Y(:,4),'k--d',X(:,5),Y(:,5),'r-o');
x_label = 'Time (s)';
y_label = 'Maximum Temperature (K)';
set(gca,'Title',text('String',inpfileend),...

'GridLineStyle','-',...
'Layer','top',...
'XColor',[0.5,0.5,0.5],...
'YColor',[0.5,0.5,0.5],...
'XLim',[xmin xmax],...
'YLim',[basetemp (ymax + yincr)],...
'YTick',[basetemp:yincr:(ymax + yincr)]);

grid on;
xlabel('Time (s)'), ylabel('Maximum Temperature (K)');
legend('Resolution 1','Resolution 2','Resolution 3','Resolution 4','Resolution 5',-1);

% Save Plots in different formats:
% (1) Save current figure in Matlab readable format:
% saveas(gcf, [filestart,'_image_',int2str(res),'.fig'])
% (2)Export current figure to uncompressed tiff format (at specified dpi):

dpi = 300;
print(['-r',int2str(dpi)], '-dtiff', [inpfilebeg,inpfileend,'.tif'])

% (3) POSTSCRIPT FILES FOR CONVERTING TO PDF FORMAT:
print(['-r',int2str(dpi)], '-dpsc', [inpfilebeg,inpfileend,'.ps'])

% ------------------------------------------------ END ---------------------------------------------------------------------
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CODE D-2. DevolPlots.m: Matlab code for extracting and plotting convergence data from the files generated by 
the previous code DevolRuns.m. . 
 
% This program reads time evolution data files already created using the MATLAB file "DevolRuns.m", input in the form of a list file,
% and plots and stores convergence rate metrics. These are output to data, ps and tiff files. It also stores data for the highest
% resolution runs in a separate array for the entire list of files, using the specified Thesis run parameters (r and Tau). This
% array is output as a space delimited data file.

format long e
filemax = 25;
filenames = cell(filemax, 1); % Define cell array for storing input file names.
tmax_out = zeros(5,6); % Define and Initialize the array containing max temperature data.

% Ask for number of input files:
dbfile = input('Type the name of the file containing data file names to be processed in this run:', 's');
fid = fopen(dbfile,'r');
filecount = 0;
while feof(fid) == 0 % Read filenames, count and store them.

filecount = filecount + 1;
line = fgetl(fid);
if filecount == 1

minrockcode = line(7:7); % Select mineral/rock code.
end
line = deblank(line); % Remove any trailing or leading blanks from the filename string.
line = fliplr(line);
line = deblank(line);
line = fliplr(line);
filenames{filecount,1} = line;
disp(['Processed Filename: ',line])

end
status = fclose(fid);
for file = 1:filecount % FOR LOOP for processing input "Devol" files.

TempRes = dlmread(filenames{file,1}, ' ');

% First determine the row and column of array "tmax_out" into which the peak temperature value from this file should be input.
tauend = 0;
line = filenames{file,1};
len = length(line);
run_id = line(7:len-4);
rstart = 3;
for i = 1:length(run_id)

if run_id(i:i) == '_'
tauend = i-1;

end
end
if tauend == 0

tauend = length(run_id);
end
for i = 1:length(run_id)

if run_id(i:i) == 'T'
taustart = i+1;
rend = i-1;

end
end
len_r = rend - rstart + 1;
len_tau = tauend - taustart + 1;
if len_r == 1

if (str2num(run_id(rstart:rend)) - 1.0) < 1.0e-6
datrow = 1;

else
datrow = 2;

end
elseif len_r == 2

if (str2num(run_id(rstart:rend)) - 10.0) < 1.0e-6
datrow = 3;

else
datrow = 4;

end
else

datrow = 5;
end
if len_tau == 2

if (str2num(run_id(taustart:tauend)) - 10.0) < 1.0e-6
datcol = 1;

else
datcol = 2;

end
elseif len_tau == 3

if (str2num(run_id(taustart:tauend)) - 100.0) < 1.0e-6
datcol = 3;

elseif (str2num(run_id(taustart:tauend)) - 200.0) < 1.0e-6
datcol = 4;

else
datcol = 5;

end
else

datcol = 6;
end

% Initialize all data arrays and variables.
numres = (size(TempRes,2))/2;
Tmax = zeros(numres,1);
t_Tmax = zeros(numres,1);
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dTmax = zeros(numres,1);
dTratio = zeros(numres,1);
TmaxOrder = zeros(numres,1);

% Main calculations for convergence tests.
for res = 1:numres

[Tmax(res),i] = max(TempRes(:,2*res));
t_Tmax(res) = TempRes(i,(2*res-1));

end
% Determine the number of resolutions at which output exists for each file.
res = 2;
flag = 0;
while flag == 0

if Tmax(res) < eps
numplotdata = res-1;
flag = 1;

end
res = res + 1;
if (res == numres + 1) & (flag == 0)

numplotdata = numres;
flag = 1;

end
end
% Now compute the convergence metrics.
for res = 1:(numplotdata-1)

dTmax(res) = abs(Tmax(res+1) - Tmax(res));
end
for res = 1:(numplotdata-2)

dTratio(res) = (dTmax(res))/dTmax(res+1);
TmaxOrder(res) = (log10(dTratio(res)))/(log10(2.0));

end

% Store the above convergence data for each file in its corresponding cell array, and save it to a file.
tmax_conv_data = [t_Tmax Tmax dTmax dTratio TmaxOrder];

% SAVE THE PEAK TEMPERATURE CONVERGENCE DATA IN A SEPARATE FILE. Clear array from workspace.
eval( ['save TmaxConvData_',run_id,'.dat tmax_conv_data -ascii -double'], ['Error saving EVOLUTION Data file!'] )
eval( 'clear tmax_conv_data','Error deleting temporary CONV DATA array from Workspace!')

% Save maximum temperature to the tmax_out CELL ARRAY DEFINED ABOVE.
tmax_out(datrow,datcol) = Tmax(numplotdata,1);
% 1. PLOT RAW ERROR DATA.
subplot(2,1,1)
x = [2:1:numplotdata];
y = dTmax(1:numplotdata-1);
y_max = max(y);
y_min = min(y);
y_incr = (y_max - y_min)/10.0;
y_max = y_max + y_incr;
plot(x,y,'r-o','LineWidth',2)
set(gca,'Title',text('String',['(a). ',run_id]),...

'GridLineStyle','-',...
'Layer','top',...
'XColor',[0.5,0.5,0.5],...
'XTick', x,...
'YColor',[0.5,0.5,0.5],...
'YLim',[y_min,y_max],...
'YTick',[y_min:y_incr:y_max]);

grid on;
xlabel('Resolution Level, i'), ylabel('dT_{max,i} = T_i - T_{i-1} (K)');

% 2. PLOT convergence order.
subplot(2,1,2)
x = [3:1:numplotdata];
y = TmaxOrder(1:numplotdata-2);
if length(y) ~= 1

y_max = max(y);
y_min = min(y);
y_incr = (y_max - y_min)/10.0;
y_max = y_max + y_incr;
plot(x,y,'r-o','LineWidth',2)
set(gca,'Title',text('String',['(b). ',run_id]),...

'GridLineStyle','-',...
'Layer','top',...
'XColor',[0.5,0.5,0.5],...
'XTick', x,...
'YColor',[0.5,0.5,0.5],...
'YLim',[y_min,y_max],...
'YTick',[y_min:y_incr:y_max]);

grid on;
xlabel('Resolution Level, i'), ylabel('Order of Convergence');

end
% Save Plots in different formats:
% (1) Save current figure in Matlab readable format:
% saveas(gcf, ['TmaxConvData_',run_id,'.fig'])
% (2)Export current figure to uncompressed tiff format (at specified dpi):

dpi = 300;
print(['-r',int2str(dpi)], '-dtiff', ['TmaxConvData_',run_id,'.tif'])

% (3) POSTSCRIPT FILES FOR CONVERTING TO PDF FORMAT:
print(['-r',int2str(dpi)], '-dpsc', ['TmaxConvData_',run_id,'.ps'])

disp(['Finished Processing Run ID: ',run_id,', file# ',int2str(file),' of ',int2str(filecount),'.'])
%pause

end
% Finally, save the max temperature data in "tmax_out" into a file.
if tauend < length(run_id) % Add suffix if the run is linear.
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fileend = '_Lin'
eval( ['save TpeakRTauData_',minrockcode,fileend,'.dat tmax_out -ascii -double'], ['Error saving PEAK TEMPERATURE Data file!'] )

else
eval( ['save TpeakRTauData_',minrockcode,'.dat tmax_out -ascii -double'], ['Error saving PEAK TEMPERATURE Data file!'] )

end

%--------------------------------------------------------- END -----------------------------------------------------------------
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CODE D-3. DsnapRuns.m: Matlab code for processing FORTRAN 90 output file DSNAP (temperature profiles 
along transects parallel to x- and y-axes). 
 
% This program reads time x-snap data for the specified number of resolutions, and creates a space delimited file for each time
% step. This file can be subsequently for plotting X-Y scatter plots where the axes for each data set are for the same
% parameters, but of different lengths. The program accomplishes this using string searches for key words, to identify the
% start and end of data at each resolution.

format short e
snapdata = zeros(21,10);
inpfilebeg = 'Dsnap_';
inpfilemid = '_2_';
% Ask for number of input files:
inpath = input('Type the absolute path to the directory containing the input files (use backslashes):', 's');
firstfile = input('Type the resolution number (1-2, typically) of the FIRST input file for this set of runs:');
lastfile = input('Type the resolution number (3-5, typically) of the LAST input file for this set of runs:');
numfiles = lastfile - firstfile + 1;
inpfileend = input('Type the ending for this set of runs (e.g., qr5T100, fr1T1000, qr1T50_Lin,...):','s');
basetemp = input('Type the value of the ambient temperature - 360, usually, but 330 if D1km:');
for res = firstfile:lastfile % FOR LOOP to combine snapution data for all "numfile" resolutions.

inpfile = [inpath,'\',inpfilebeg,int2str(res),inpfilemid,inpfileend];
fid = fopen(inpfile, 'r');
lcount = 0
while lcount <= 12

line = fgetl(fid);
disp(line)
lcount = lcount + 1;
if lcount == 8 % Ignore lines 1-7.

string = line(32:45); % Read x-left from line 8.
string = lower(string);

xl = str2num(string);
string = line(47:60); % Read x-right from line 8.
string = lower(string);

xr = str2num(string);
end
if lcount == 9

string = line(32:45); % Read y-bottom from line 9.
string = lower(string);

yb = str2num(string);
string = line(47:60); % Read y-top from line 9.
string = lower(string);
yt = str2num(string);

end
if lcount == 10

string = line(35:48); % Read t_initial from line 10.
string = lower(string);

ti = str2num(string);
string = line(50:63); % Read t_final from line 10.
string = lower(string);

tf = str2num(string);
end
if lcount == 11

string = line(27:40); % Read hx from line 11.
string = lower(string);

hx = str2num(string);
end
if lcount == 12

string = line(27:40); % Read hy from line 12.
string = lower(string);

hy = str2num(string);
end
if lcount == 13

string = line(27:40); % Read k from line 13.
string = lower(string);

ht = str2num(string);
end

end
% Beginning Line 14, start reading each line until the string " y U_ysnap(y)" is found, which marks the beginning
% of x_snap data.
while feof(fid) == 0

line = fgetl(fid);
if isempty(findstr(' y U_ysnap(y)',line)) == 1

disp(line)
lcount = lcount + 1;

else
% READ x_snap DATA.
row = 0; % Initialize Data Row counter.
while isempty(findstr('--------------------------',line)) == 1 % Read x_snap data.

line = fgetl(fid);
%disp(['PROCESSING THIS LINE:',line])
lcount = lcount + 1;
row = row + 1;
for i = 1:2 % Do loop for the two data fields, time and T_max.

if i == 1
col = 2*res - 1;
string = line(4:15); % Read y (THETA) data field
string = lower(string);

else
col = 2*res;
string = line(20:35); % Read Temperature field
string = lower(string);

end
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if row <= 1
snapdata(row,col) = str2num(string);

elseif (snapdata(row-1,2*res - 1) ~= yt)
snapdata(row,col) = str2num(string);

end
end

end
end % IF LOOP for Data entry into "snapdata" array.

end % EOF WHILE LOOP for each resolution file.
end % Data assimilation FOR LOOP
% FINALLY, SAVE THE SORTED AND INITIAL-TIME "CORRECTED" TEMPERATURE DATA at RIGHT BOUNDARY IN A SEPARATE FILE. Clear array from
workspace.
eval( ['save ',inpfilebeg,inpfileend,'.dat snapdata -ascii'], ['Error saving x_snap Data file!'] )
eval( 'clear snapdata','Error deleting temporary GRID DATA array from Workspace!')

% Now read in the snapdata file:
inpdata = dlmread([inpfilebeg,inpfileend,'.dat'], ' ');

% Separate into X and Y arrays for ease of sorting, and plotting data:
X = [inpdata(:,1) inpdata(:,3) inpdata(:,5) inpdata(:,7) inpdata(:, 9)];
Y = [inpdata(:,2) inpdata(:,4) inpdata(:,6) inpdata(:,8) inpdata(:,10)];

% NOW PLOT THE SORTED DATA:
% Compute maxima and/or minima as required, for determining axes limits:
[ymax,i] = max(Y(:));
% Estimate a y plot grid spacing, based on the current data file.
yincr = (ymax-basetemp)/10.0;
if yincr > 1.0

order = fix(log10(yincr)); % Round exponent towards 0 (ZERO) (to get the order of magnitude of "yincr") if increment is > 1
else

order = floor(log10(yincr)); % Round exponent towards -INFINITY (to get the order of magnitude of "yincr") if increment is <
1
end
yincr = (10.0^order)*round(yincr/10.0^order);

xmax = yt;
xmin = yb;
xincr = X(2,1) - X(1,1);

plot(X(:,1),Y(:,1),'b:x',X(:,2),Y(:,2),'g:^',X(:,3),Y(:,3),'m-.s',X(:,4),Y(:,4),'k--d',X(:,5),Y(:,5),'r-o');
set(gca,'Title',text('String',inpfileend),...

'GridLineStyle','-',...
'Layer','top',...
'XColor',[0.5,0.5,0.5],...
'YColor',[0.5,0.5,0.5],...
'XLim',[xmin xmax],...
'XTick',[xmin:xincr:xmax],...
'YLim',[basetemp (ymax + yincr)],...
'YTick',[basetemp:yincr:(ymax + yincr)]);

grid on;
xlabel('Theta (radians)'), ylabel('Temperature at Right Boundary (K)');
legend('Resolution 1','Resolution 2','Resolution 3','Resolution 4','Resolution 5',-1);

% Save Plots in different formats:
% (1) Save current figure in Matlab readable format:
% saveas(gcf, [filestart,'_image_',int2str(res),'.fig'])
% (2)Export current figure to uncompressed tiff format (at specified dpi):

dpi = 300;
print(['-r',int2str(dpi)], '-dtiff', [inpfilebeg,inpfileend,'.tif'])

% (3) POSTSCRIPT FILES FOR CONVERTING TO PDF FORMAT:
print(['-r',int2str(dpi)], '-dpsc', [inpfilebeg,inpfileend,'.ps'])

% ------------------------------------------------ END ---------------------------------------------------------------------
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CODE D-4. Matlab code for processing FORTRAN 90 output file DGRID (temperature distribution data at the 
resolution specified in the FORTRAN 90 code COND2D) into 3D temperature surface plots and AVI movies.   
 
% FOR HANDLING THE THESIS PROBLEM WHEN hx = hy = 0.1*R:
% This program reads data in the form of grid data over a rectangular domain for each time step, and creates a space delimited file
for each time step.
% This file can be subsequently read by M-Files that can plot the data into Surface/Contour plots. The program accomplishes this using
string searches
% for key words, to identify the start and end of data at each time step.

global z_min

format short e
rowbegin_NumCharIgnore = 19;
inpfilebeg = 'Dgrid_5_2_';

% Ask for input file name:
inpath = input('Type the absolute path to the directory containing the input files (use backslashes): ', 's');
inpfileend = input('Type the ending for this set of runs (e.g., qr5T100, fr1T1000, qr1T50_D1km_Lin...): ','s');
inpfile = [inpath,'\',inpfilebeg,inpfileend];
disp('Next input the z-axis aspect ratio, which determines its relative size w.r.t. the x- and y- axes, and hence the shape')
disp('of the 3D plots. If the z-axis seems scrunched up, keep reducing this value till its size is comarable to the x- and y- axes.')
disp('On the other hand, if z-axis is so big that it dominates that other two yielding a columnar or vertical line plot,')
disp('then do the opposite - Increase this value till the other two axes are restored.');
zaspect = input('Type the aspect ratio for z-axis. Default = 5000000 (5 million). RANGE = 0.01 to 1000000000 (1 billion): ');
log_flag = input('Do you want z data to be converted to log scale (for widely varying orders of magnitude over time)? State y/n: ',
's');
if log_flag == 'y'

logzero = -10.0; % Define how to deal with ZERO or NEGATIVE numbers when using the LOG SCALE for Z-AXIS.
end
max_t = input('Type the maximum number of time levels used in this run. Estimate will do as it is used to initialize the time array:
');
t = zeros(1,max_t); % Initialize time level array
fid = fopen(inpfile, 'r');
lcount = 0
while lcount <= 12

line = fgetl(fid);
disp(line)
lcount = lcount + 1;
if lcount == 8 % Ignore lines 1-7.

string = line(32:45); % Read x-left from line 8.
string = lower(string);

xl = str2num(string);
string = line(47:60); % Read x-right from line 8.
string = lower(string);

xr = str2num(string);
end
if lcount == 9

string = line(32:45); % Read y-bottom from line 9.
string = lower(string);

yb = str2num(string);
string = line(47:60); % Read y-top from line 9.
string = lower(string);

yt = str2num(string);
end
if lcount == 10

string = line(35:48); % Read t_initial from line 10.
string = lower(string);

ti = str2num(string);
string = line(50:63); % Read t_final from line 10.
string = lower(string);

tf = str2num(string);
end
if lcount == 11

string = line(27:40); % Read hx from line 11.
string = lower(string);

hx = str2num(string);
end
if lcount == 12

string = line(27:40); % Read hy from line 12.
string = lower(string);

hy = str2num(string);
end
if lcount == 13

string = line(27:40); % Read k from line 13.
string = lower(string);

ht = str2num(string);
end

end
% Compute the dimensions of the grid data. For these runs, the grid spacings chosen were MAX(hx,hx_max/2) or MAX(hy,hy_max/2). SO,
% for all resolutions except the first one, this results in the latter values being chosen for grid spacing.
x_grid_spacing = 0.5*((xr - xl)/10.0);
y_grid_spacing = 0.5*((yt - yb)/10.0);
steps = ( (yt - yb)/y_grid_spacing ) + 1.0;
nrows = round(steps)
if abs(nrows - steps) >= 0.5

grid_rows = nrows + 1;
else

grid_rows = nrows;
end
steps = ( (xr - xl)/x_grid_spacing ) + 1.0;
ncols = round(steps)
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if abs(ncols - steps) >= 0.5
grid_columns = ncols + 1;

else
grid_columns = ncols;

end

% Beginning line 14, start reading each line. If it contains the string "TIME STEP", it is the beginning of the next time step grid
data.
tscount = 1; % Initialize time level counter
max_z = -(1.0/eps); % Initialize max and min z values. It is optimal to find these values at the same
time
min_z = (1.0/eps); % as reading in grid data.
griddata = zeros(grid_rows, grid_columns)
while feof(fid) == 0

line = fgetl(fid);
if isempty(findstr('TIME STEP',line)) == 1

disp(line)
lcount = lcount + 1;

else
% READ TIME LEVEL.
disp(line)
lcount = lcount + 1;
string = line(48:57);
string = lower(string);
t(tscount) = str2num(string); % Compute time level from string.
tscount = tscount + 1; % Update time level counter
% READ DATA FOR THIS TIME LEVEL.
for i = 1:2 % Read HEADER LINES (TWO) for each time step data segment.

line = fgetl(fid);
lcount = lcount + 1;
disp(line)

end
for j = 1:grid_rows % Read grid data.

line = fgetl(fid);
lcount = lcount + 1;
% THE NEXT TWO STATEMENTS DEAL WITH THE FORTRAN OUTPUT LINES WITH THE FORMAT FMT='(1X,ES18.8,","): So, ignore the blank at
% the beginning and the "," at the end of each data entry.
strbegin = rowbegin_NumCharIgnore+2;
strend = strbegin + 18;
for i = 1:grid_columns

string = line(strbegin:strend);
string = lower(string);
griddata(j,i) = str2num(string);
if griddata(j,i) > max_z

max_z = griddata(j,i); % Store current maximum z value
end
if griddata(j,i) < min_z

min_z = griddata(j,i); % Store current minimum z value
end
strbegin = strend + 2;
strend = strbegin+18;

end
end
% The FORTAN 90 CODE DOES NOT GENERATE DATA FOR yt = 3.15. So, copy data from y= 3.10 into the last row of griddata.
if yt == pi

for i = 1:grid_columns
griddata(grid_rows, i) = griddata(grid_rows-1, i);

end
end
for i = 1:1 % Read FOOTER LINES for each time step data segment. This includes the last data line which is a repeat.

line = fgetl(fid);
lcount = lcount + 1;
disp(line)

end
% SAVE DATA AT THIS TIME LEVEL IN A SEPARATE FILE.
eval( ['save ',inpfile,'_',int2str(tscount-1),' griddata -ascii'], ['Error saving file for time loop#',int2str(tscount),'!'] )
eval( 'clear data','Error deleting temporary GRID DATA array from Workspace!')

end
end

% Now read in the space-delimited GRID data in a rectangular grid representing [r,THETA] space (r = 0-1, THETA=0-PI)
% and (a) extend the data symmetrically over the FULL circle, (b) then plot a POLAR MESH-CONTOUR plot & a COLOR plot of the data, AND
% (c) save the figures in FIG files along with exporting them to TIFF images for word processing applications.
% REQUIRES "MESHC_ZCONTOUR.m", A VARIANT OF THE MATLAB FUNCTION "MESHC", TO CONTROL THE DISTANCE BETWEEN THE MESH PLOT AND
% CONTOUR MAP PLANE. This is accomplished using the global variable, "z_min".

% INPUT FILE SEPCS.
max_files = tscount-1;
filestart = [inpfile,'_'];

% Generate the x,y grid for the POLAR DATA ABOVE, and redefine the lower limit of the y axis to -yt. This will mean redefining
% the number of y grid points on the extended axis.
yb = yb - yt;
grid_rows = grid_rows + (grid_rows - 1);
[th,r] = meshgrid(yb:y_grid_spacing:yt, xl:x_grid_spacing:xr);
[X,Y] = pol2cart(th,r); % Convert Polar coordinates to Cartesian Coordinates for creating the plots.
% Define Rows/2 which will be used in reshaping the data array, and in extending the THETA field.
grid_rows_by_2 = (grid_rows + 1)/2 % "grid_rows" is always ODD.

% Compute the limits & tick marks along the x- and y- axes for POLAR plot representation. Define the coordinat limits so they
% completely enclose the segment of the disc being considered: x_left = r_min*COS(Theta_max) & |y_max| = r_max*SIN(Theta_max)
x_right = xr;
epxflag = 0;
epx = 0;
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while epxflag == 0
if abs(xl*10.0^epx - fix(xl*10.0^epx)) < 1.0e-6

epxflag = 1;
else

epx = epx + 1;
end

end
x_left = (10.0^-epx)*fix((10.0^epx)*xl*cos(yt)); % Round x_left towards 0.
x_incr = (x_right-x_left)/2.0;
x_tick = [x_left:x_incr:x_right];
if (xr < 0.001)

epxt = abs( floor(log10(xr)) ); % Round multiplicative exponent towards -INFINITY.
x_tick_label = ([x_left:x_incr:x_right]*10.0^epxt)';

elseif abs( log10(xr) - floor(log10(xr)) ) < 1.0e-6
epxt = abs( floor(log10(xr)) ) + 1; % Round multiplicative exponent towards -INFINITY. Add 1 if exactly .001, .0001, etc.
x_tick_label = ([x_left:x_incr:x_right]*10.0^epxt)';

else
x_tick_label = [x_left:x_incr:x_right]';

end
y_top = xr*sin(yt); % Round y_top towards INFINITY.
epyflag = 0;
epy = 0;
while epyflag == 0

if fix(y_top*10.0^epy) >= 1
epyflag = 1;

else
epy = epy + 1;

end
end
y_top = (10.0^-(epy+1))*floor((10.0^(epy+1))*y_top) % To ensure representation of y_top (& all y-axis ticks) to 2 significant
digits.
y_bottom = -y_top;
y_incr = (y_top-y_bottom)/2.0;
y_tick = [y_bottom:y_incr:y_top];
if (epy > 3) % Use y_top instead of yt here since y_top = r*SIN(yt) ~ r*yt could become small for small yt!

y_tick_label = ([y_bottom:y_incr:y_top]*10.0^epy)';
else

y_tick_label = [y_bottom:y_incr:y_top]';
end
x_label_xloc = x_left + (x_right-x_left)/2.0;
x_label_yloc = y_bottom - 0.25*y_incr;
y_label_xloc = x_right + 0.25*x_incr;
y_label_yloc = y_bottom + (y_top-y_bottom)/2.0;

% Compute the limits & tick marks along the z-axis for POLAR MESH-CONTOUR plot representation. It is being assumed that the
temperature decays with time.
% So, for uniformity in representation of plots and colormap at different times, BOTH the axes AND the colormap are scaled with
respect to the earliest time-level,
% corresponding to "t(1)". Also, adjust this z_min value so that the lower z-axis limit is "well" below the minimum value. This is the
z-level (or plane)
% at which contours will be drawn in the 3D plot. ALways set z_max to one z_increment above the max z value. Use "FIX(X)" instead of
"ROUND(X)" to round to the
% lower integer (i.e., round towards 0) always, in determining z_incr to be used for the plots.
if log_flag == 'y' % Use log scale when z data varies by orders of magnitude.

if max_z > 0.0
z_max = log10(max_z);

else
z_max = logzero; % Finite Approximation for Log(0) for plotting.

end
if min_z > 0.0

z_min = log10(min_z);
else

z_min = logzero; % Finite Approximation for Log(0) for plotting.
end

else
z_max = 10.0*round(max_z/10.0); % Round to nearest 10 K.
z_min = 10.0*round(min_z/10.0); % Round to nearest 10 K.

end
if log_flag == 'y'

incr = (z_max-z_min)/10.0;
z_incr = 0.01*fix(incr*100)
if z_incr >= (log10(max_z))

z_incr = z_incr/5.0;
end

else % If z increment is larger thant he original maximum value, reduce it by a factor of 5.
z_incr = (z_max-z_min)/10.0;
if z_incr > 1.0

order = fix(log10(z_incr)); % Round exponent towards 0 (ZERO) (to get the order of magnitude of "yincr") if increment
is > 1

else
order = floor(log10(z_incr)); % Round exponent towards -INFINITY (to get the order of magnitude of "yincr") if increment

is < 1
end
z_incr = (10.0^order)*round(z_incr/10.0^order);
%z_incr = 20.0*fix((z_max-z_min)/100.0); % Round towards nearest 10 K.
%if z_incr >= (max_z - min_z)
% z_incr = z_incr/5.0;
%end

end
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if log_flag == 'y'
z_max = fix(z_max) + z_incr; % Use for log scale.
if z_max < log10(max_z)

while z_max < log10(max_z)
z_max = z_max + z_incr;

end
end

else % Make sure that the max tick value is one increment above the max z data.
if z_max < max_z % Can happen when z_incr is very small.

while z_max < max_z
z_max = z_max + z_incr;

end
end

end
if log_flag == 'y'

z_steps = (fix((z_max - z_min)/z_incr)) + 1;
else

z_steps = (fix((z_max - z_min)/z_incr)) + 1;
%z_steps = (fix((max_z - min_z)/z_incr)) + 1;

end
base_steps = z_steps; % Use for log scale.
%if mod(z_steps,2) == 0 % Use when using absolute temperatures.
% base_steps = z_steps/2.0;
%else
% base_steps = (z_steps+1)/2.0;
%end
% Save z_min at this stage for use in caxis command below, before changing it to adjust the floor level of the contour map.
z_min_colormap = z_min
z_min = z_min - base_steps*z_incr;
z_tick = [z_min:z_incr:z_max];
%z_tick = [z_min:2*z_incr:z_max]; % Generate z ticks at twice the z_increment for plotting & determining range, IF z_incr is small.
% Use log scale when z data varies by orders of magnitude. In any case, the tick labels can still retain their original values.
if log_flag == 'y'

%z_tick_label_char = num2str(10.^z_tick);
z_tick_label_char = num2str(z_tick);

else
z_tick_label_char = num2str(z_tick);

end
blankpos = findstr(' ',z_tick_label_char);
blanklet = isspace(z_tick_label_char);
% "blanklet" above is an array of the same size as "z_tick_label_char", with 1(ONE)s at blank positions, and 0s at other places.
% "findstr" does not output information about the 1st and last character strings in the z_tick_label_char array, since they do not
% start with a blank. Therefore, separate loops must be used to identify, and later compute, these end values.
% The following loops mark the length of each tick mark label in z_tick_label_char:
k = 1; % k is the Tick Mark Label Index - the final value of k is the total # of tick mark labels.
if blankpos(1) ~= 1 % First character string.

strbegin(1) = 1;
strend(1) = blankpos(1) - 1;
len(1) = strend(1) - strbegin(1) + 1;
k = k + 1;

end
i = 1;
while (i+1) <= size(blankpos,2)

if (blankpos(i+1) - blankpos(i)) > 1
strbegin(k) = blankpos(i) + 1;
strend(k) = blankpos(i+1) - 1;
len(k) = strend(k) - strbegin(k) + 1;
k = k + 1;

end
i = i + 1 % Increment inside array "BLANKPOS".

end
if k == size(z_tick,2) % Last character string.

strbegin(k) = blankpos(size(blankpos,2)) + 1;
strend(k) = size(z_tick_label_char,2);
len(k) = strend(k) - strbegin(k) + 1;

else
disp('WARNING: Number of tick labels does not match the number of ticks!')

end
z_tick_label = cell(1,size(z_tick,2)); % Create and INITIALIZE a CELL ARRAY for storing each of the tick labels (string arrays).
for k = 1:size(z_tick,2)

disp(['TICK LABEL # ',int2str(k)])
pos = strbegin(k);
string = ' '; % Initialize string
for i = 1:len(k)

string(i:i) = z_tick_label_char(1,pos);
pos = pos + 1;

end
z_tick_label(1,k) = {string}; % ADD each tick mark label string to the Cell array.

end
if log_flag == 'y'

% Since tick mark increment is 2 times z_incr, the number of tick marks to be erased is only about half as much.
if mod(base_steps,2) == 0

base_steps = base_steps/2.0;
else

base_steps = (base_steps+1)/2.0;
end

end
for i = 1:base_steps

z_tick_label(1,i) = {' '}; % Set the tick marks outside the z data range to blanks, in the Cell Array.
end
z_tick_label = z_tick_label'; % Convert the tick label vector into a column vector for use in Meshc plots.
x_label_zloc = z_min - z_incr;
y_label_zloc = z_min - z_incr;
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if log_flag == 'y'
z_label_zloc = z_min + (z_max - z_min)/2.0;

else
z_label_zloc = min_z + (max_z - min_z)/2.0;

end
z_label_xloc = x_left - 0.5*x_incr;
z_label_yloc = y_bottom - 0.5*y_incr;

% FINALLY CREATE MESH-CONTOUR AS WELL AS POLAR COLOR PLOTS FOR EACH FILE.
% First, open an AVI file to store the movie generated. Then create the mesh plots at each time step (one frame), and store each frame
% in the AVI file.
outfile = [inpfilebeg,inpfileend];
aviobj = avifile([outfile,'_movie.avi'],'fps',4,'compression','None');

for nf = 1:max_files
% Open the data input files and obtain plot temperatures.
Z1 = dlmread([filestart,int2str(nf)], ' ');

% Extend the temperatures symmetrically across to the other semi-circle.
Z = zeros(grid_rows,grid_columns);
for j = 1:grid_rows

for i = 1:grid_columns
if j < grid_rows_by_2

if rem(grid_rows,2) == 0
disp('******************** WARNING: Variable GRID_ROWS is even! **************************')
pause
%if (grid_rows-j) > 0
%Z(j,i) = Z1( (grid_rows_by_2-j), i );
%else
% SATISFY PERIODICITY: Set the z data at the top of the y-axis range (if 2*PI) the same as that at the bottom (0)
% Z(j,i) = Z1(1,i);
%end

else
Z(j,i) = Z1( (grid_rows_by_2-j+1), i );

end
else

Z(j,i) = Z1(j-grid_rows_by_2+1,i);
end

end
end
if log_flag == 'y' % Use log scale when z data varies by orders of magnitude.

for j = 1:grid_rows
for i = 1:grid_columns

if Z(j,i) > 0.0
Z(j,i) = log10(Z(j,i));

else
Z(j,i) = logzero; % Approximating Log(0), for plotting purposes.

end
end

end
end

subplot(2,1,1) % ROW 1
h1 = meshc_zcontour(X',Y',Z);
load thesis_colormap -mat
colormap(temperature_colormap)
camproj perspective
view(24.0,12.0)
daspect([1 1 zaspect]) % For thesis problem, when using absolute temperatures.
if log_flag == 'y'

%caxis([z_min_colormap z_max])
caxis([0 4])

else % Set colormap scale for the first time level, and HOLD IT ON for next plot.
% caxis([min_z max_z])
% caxis([min_z 2050]) % max_z based on T_melt of Quartz, ~2050 K.

caxis([min_z 1500]) % max_z based on T_melt of Feldspar, ~1500 K.
end
% Set background color and axes properties for current figure.
set(gcf, 'Color' , 'white' ,...

'DefaultAxesColor' , 'white' ,...
'DefaultAxesFontName' , 'times' ,...
'DefaultAxesFontSize' , 8 )

t_text = {['Fig',int2str(nf),'. POLAR Color Mesh-Contour Plots for: ',inpfileend,' at time = ',num2str(t(nf)),' s.'],...
['(k=',num2str(ht),'*hx=',num2str(hx),'*hy=',num2str(hy),')']};

h_title = text('String',t_text,'Color', 'black', 'FontAngle', 'normal', 'FontName', 'times', 'FontWeight', 'bold', 'FontSize', 9);
x_label = text(x_label_xloc,x_label_yloc,x_label_zloc,'x','Color','blue','FontAngle','italic','FontWeight','bold','FontSize', 8);
y_label = text(y_label_xloc,y_label_yloc,y_label_zloc,'y','Color','blue','FontAngle','italic','FontWeight','bold','FontSize',8);
z_label = text(z_label_xloc,z_label_yloc,z_label_zloc,'T','Color','blue','FontAngle','italic','FontWeight','bold','FontSize', 8);
set(gca,'Title' , h_title ,...

'FontName' , 'times' ,...
'FontSize' , 8 ,...
'XLim' , [x_left x_right] ,...
'XTick' , x_tick ,...
'XTickLabel', x_tick_label ,...
'YLim' , [y_bottom y_top] ,...
'YTick' , y_tick ,...
'YTickLabel', y_tick_label ,...
'ZLim' , [z_min z_max] ,...
'ZTick' , z_tick ,...
'ZTickLabel', z_tick_label )
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subplot(2,1,2) % ROW 2
h2 = pcolor(X',Y',Z);
colormap(temperature_colormap)
daspect([1 1 1]) % For thesis problem, when using absolute temperatures.
% "pcolor" plots data in plan view (Elevation = 90 Deg). Rotate the plot by 90 Deg. along the Azimuth, for proper orientation:
% 0 Deg. at bottom & 180 Deg. at top.
view(90.0, 90.0) % Azimuth, Elevation.
shading faceted
set(h2,'LineStyle','none')
if log_flag == 'y'

%caxis([z_min_colormap z_max])
caxis([0 4])

else % Set colormap scale for the first time level, and HOLD IT ON for next plot.
% caxis([min_z max_z])
% caxis([min_z 2050]) % max_z based on T_melt of Quartz, ~2050 K.

caxis([min_z 1500]) % max_z based on T_melt of Feldspar, ~1500 K.
end

% set(gca,'FontName' , 'times' ,...
% 'FontSize' , 8 ,...
% 'XLim' , [x_left x_right] ,...
% 'XTick' , x_tick ,...
% 'XTickLabel', x_tick_label ,...
% 'YLim' , [y_bottom y_top] ,...
% 'YTick' , y_tick ,...
% 'YTickLabel', y_tick_label )
set(gca,'FontName' , 'times' ,...

'FontSize' , 8 ,...
'XLim' , [x_left x_right] ,...
'YLim' , [y_bottom y_top])

colorbar('horiz')

% Save current figure and export it to uncompressed tiff format (at specified dpi).
%saveas(gcf, [outfile,'_image_',int2str(nf),'.fig'])
dpi = 200;
print(['-r',int2str(dpi)], '-dtiff', [outfile,'_image_',int2str(nf),'.tif'])
print(['-r',int2str(dpi)], '-dpsc', [outfile,'_image_',int2str(nf),'.ps']) % THESE TWO POSTSCRIPT FILES ARE FOR USING

THESE PLOTS IN POSTERS.
%print(['-r',int2str(dpi)], '-dpsc2', [outfile,'_image_',int2str(nf),'_L2.ps'])

% Create and save as a movie frame for the current time step.
F(nf) = getframe(gcf);
aviobj = addframe(aviobj,F(nf));
disp (['Time Step = ',int2str(nf),': Plot and Movie Output SAVED.'])

%pause
end
aviobj = close(aviobj);
% Save the movie frame to a "MAT" file, using the save command. The command load <filename> X,Y,Z can be used to load the above "MAT"
file later. This allows for the
% movie to be stored in a MATLAB readable format.
movfile = [outfile,'_movie.mat'];
eval( ['save ',movfile,' F'], ['Error saving MATLAB movie file!'] )
% PLAY MOVIE "num" TIMES. The loading procedure shown is redundant here. But it is being used to test the frame saving and retrieval
process. Just using the movie
% command will do the job, as in the next two lines.
num = input('Number of times you want to play the movie: ');
fps = input('Input speed in frames per second, fps: ');
load(movfile,'-mat')
movie(gcf,F,num,fps, [0 0 0 0])
 
% ------------------------------------------------ END ---------------------------------------------------------------------
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