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ABSTRACT OF THESIS 
 
 
 

An Analysis of Camera Calibration for Voxel Coloring 
Including the Effect of Calibration on Voxelization Errors 

 
This thesis characterizes the problem of relative camera calibration in the context of three-

dimensional volumetric reconstruction. The general effects of camera calibration errors on 

different parameters of the projection matrix are well understood.  In addition, calibration error 

and Euclidean world errors for a single camera can be related via the inverse perspective 

projection.  However, there has been little analysis of camera calibration for a large number of 

views and how those errors directly influence the accuracy of recovered three-dimensional 

models. A specific analysis of how camera calibration error is propagated to reconstruction 

errors using traditional voxel coloring algorithms is discussed.  A review of the Voxel coloring 

algorithm is included and the general methods applied in the coloring algorithm are related to 

camera error.  In addition, a specific, but common, experimental setup used to acquire real-world 

objects through voxel coloring is introduced. Methods for relative calibration for this specific 

setup are discussed as well as a method to measure calibration error.  An analysis of effect of 

these errors on voxel coloring is presented, as well as a discussion concerning the effects of the 

resulting world-space error.   

Keywords:  Voxel Coloring, Camera Calibration, Calibration Error, Reconstruction, Voxelized 

Space 
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Chapter 1   
General Problem Overview and Related Work 

A primary goal of computer vision is the accurate three-dimensional description of 

scenes observed by one or more cameras.  This goal has been addressed both by research 

efforts that address the general scene interpretation problem directly [23,24,38,40,41] as 

well as those that focus on specific, but related, subproblems.  A significant subproblem 

related to this goal is the automatic acquisition of a three-dimensional geometric model from 

multiple viewpoints.  Geometrically reconstructed scenes are capable of supporting other 

computer vision tasks such as object recognition, segmentation, attention selection, event 

recognition, and a number of others.  Automatically acquired three-dimensional models have 

utility in themselves, and three-dimensional systems have been developed for a variety of 

applications ranging from automatic acquisition of three-dimensional city models [6,20,30] 

to reconstruction of existing artifacts for archival and study [8]. 

A common element among these reconstruction algorithms is the need for some form 

of camera calibration.  In particular, camera-based systems typically must recover the 

relative positioning of cameras with respect to one another [15], to the scene [14], or to other 

devices used in the acquisition process [4,9,11,13,19]. There is significant research related to 

relaxing the camera calibration required to perform scene reconstruction, e.g. self-calibration 

[3,12,10,42].  These approaches are promising.  Oftentimes the resulting cameras are 

calibrated up to an unknown projective or affine transformation.  This is useful if the 

reconstructed scene is to be used for visualization purposes or is to be used to measure 

features that are invariant under the unknown transformations.  However, using these 

methods, Euclidean reconstruction of the scene under observation is not possible.  For a 
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number of applications, such as close-range photogrammetry [18,32], manufacturing, and 

storage of three-dimensional artifacts for future scholarly study a Euclidean model that 

supports metric analysis is important. 

Given the importance of camera calibration to the three-dimensional reconstruction 

problem, there have been serious efforts related to accurate acquisition of camera parameters 

in a variety of contexts [1,31,39,44].  In addition, analytical and empirical studies relating 

errors in the camera models to expected errors in the world have taken place [2,5,16,17].   

This thesis undertakes an analysis of camera calibration in the context of three-dimensional 

Euclidean reconstruction.  In particular, we focus on how camera calibration errors are 

related to errors in a reconstructed scene that has been acquired using a volumetric 

reconstruction approach [7,33,34,35,36,37,45,46].  We characterize how error is propagated 

from camera to voxelization error in the scene for a specific, but common, reconstruction 

setup.  In addition, methods in which camera calibration can be constrained using specific 

surfaces are introduced.  Conclusions about calibration error and expected volumetric 

reconstruction accuracy are the discussed. 

 

1.1. A Brief History of Volumetric Reconstruction Methods 
 

Volumetric reconstruction refers to the automatic acquisition of a three-dimensional 

volume that corresponds to an object or scene under observation from multiple cameras.  

Because these techniques produce one or more closed volumes that describe the geometric 

shape (and potentially relative position) of one or more regions, they are often applied to 

acquire a coherent description of an object rather than a scene.  That is, volumetric 

techniques take several views of an object, segment it from the background using several 
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different approaches, and ultimately construct a closed volume that is likely to have given 

rise to the set of observed views.  One of the more successful approaches to passive, 

volumetric reconstruction from more than one viewpoint is referred to as the voxel coloring 

algorithm.   

The idea of voxel coloring was first put forward by Seitz et. Al [35], in  1998. From its 

inception, voxel coloring methods have attempted to achieve photo-realistic reconstruction 

without explicit point matching.  This has made it very attractive in modeling and computer 

graphics, where special measurements are not as important as an accurate reprojection.  

The voxel coloring algorithm is an object-space approach to reconstruction.  Given 

accurate calibration, traditional stereo reconstruction matches pixels in different views 

through an image-based matching scheme. For each matching pair of pixels, a 

corresponding point can be added to or reconstructed in the scene by intersecting the back 

projected the rays defined by the cameras and image pixels. In this way, a scene is slowly 

constructed as processing proceeds in image-space.  Voxel coloring assumes a particular 

volume divided into finite sized three-dimensional volume elements, called voxels, which 

are then forward projected into images for processing. In this way, processing takes place in 

the Euclidean space of voxels rather than directly in the images.  Although this difference 

may seem, at first glance, to be unimportant, processing directly on the volume in object-

space has been shown to have several advantages for particular contexts [7,33,34,35,36,37].   

In general, the voxel reconstruction algorithm is straightforward.  Voxels are iteratively 

processed to determine which belong in the volume as opposed to those that do not and 

should be eliminated. Starting from the outermost voxels (those closest to the camera 

centers), each voxel is projected into all images, regardless of visibility constraints implied 
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by the current set of voxels in the volume.  Once projected into each image, analysis of the 

corresponding pixels in each view determines the voxel’s consistency.  This measure is 

typically related to the variance of the color for each projected region in all of the available 

views.  High variance implies that the voxel is either not present in the data, or is occluded 

by other voxels, in either case, the voxel is removed from the scene.  This carving procedure 

removes voxels until the remaining volume is consistent in all the images.  Once a set of 

consistent voxels remain in the dataset, a final color assignment for each voxel can be 

assigned using the available images and camera calibration information through direct 

interpolation.  The general setup of the algorithm is shown in Figure 1.1.   For the 

complexities related to viewing conditions, accurate consistency measures, and logistics of 

the algorithm , the reader is referred to [7,33,34,35,36,37]. 
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Figure 1.1: Typical setup used for voxel coloring.  Multiple views observe a volume of 
voxels representing the potential object shape prior to the algorithm proceeds.  Voxels are 
projected into each camera using corresponding projection matrices to determine voxel 
consistency and either retain or remove voxels from the scene.  Note that the chosen voxel 
does not,  project into one of the cameras(far right) and projects into an uncolored region in 
another camera (far left). 

 

 Recent modifications of the algorithm have focused on relaxing constraints concerning 

camera viewpoints [7], new consistency measures [7], and hardware acceleration techniques 

as well as algorithm changes to address the problem of complexity related to the traditional 

coloring algorithm.   

Other researchers have focused on describing the initial object volume as a projective 

space, governed by the known relative (Epipolar) geometry between the available views.  

That is, the voxel space is no longer Euclidean and voxels are not uniform in size and shape.  

The space is directly defined by the relative geometry of the cameras.  An analysis of how 
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camera calibration error influences volumetric reconstruction under these conditions seems 

important and appropriate but is the focus of future work (see Chapter 7). 

Both the traditional algorithm and the more recent extensions to the technique rely on 

accurate camera calibration information.  An in-depth analysis of camera calibration and its 

influence on the behavior of the object-space voxel coloring algorithm is important to 

characterizing the behavior of these existing approaches.  In addition, results presented here 

have implications for new research in the area of volumetric reconstruction. 

1.2.  Thesis Statement and Contribution 
 

This thesis focuses on an understanding of how camera calibration errors are related to 

three-dimensional, object-space, errors in a reconstructed volume.  In addition, a few 

methods to improve camera calibration for conditions typically found in multi-view object 

reconstruction are suggested based on the analysis of error detailed here.  The work 

described here is based on a specific thesis.  This three-part thesis is: 

 

Accuracy of volumetric reconstruction can be directly related to the 

magnitude and character of error in the camera models used by the 

reconstruction technique.  An understanding of this relationship is important 

to the prediction and characterization of voxel coloring errors.  Once this 

relationship has been understood, this knowledge can be used in a number of 

ways to reduce the errors likely to occur when reconstructing objects and 

environments.     
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This thesis statement is expanded in the next several chapters to describe the details of 

how different camera parameters are related to expected reconstruction error.  The depth of 

the thesis is demonstrated by conducting an explicit analysis of error for both the general 

case of multiple camera, volumetric reconstruction as well as a specific case, encountered 

commonly by automatic multi-view reconstruction systems. 

1.3. Outline of the Thesis 
 

The work described here was inspired, in part, by ongoing research to extend and 

improve the base voxel coloring algorithm.  When possible, analysis of calibration effects on 

reconstruction accuracy is generalized to arbitrary volumetric methods.  However, a large 

portion of the thesis is specific to methods that have been developed by particular 

researchers [7,33,34,35,36,37] that are in wide use, or are currently under development.  

Chapter 2 describes the motivation behind this work and the related research efforts that 

provide the impetus for this analysis.  

Following that, a discussion of the issues related to calibrating multiple cameras for 

volumetric reconstruction is discussed in Chapter 3. Chapter 4 describes how weak 

topological and geometric constraints about the relative positioning of cameras can be used 

to improve camera calibration.  The techniques suggested in this chapter are designed for 

common experimental setups encountered applying voxel coloring algorithms. 

Chapter 5 describes how we model error in the multi-camera calibration process.  

Introduction of error into each of the camera models is important in understanding how 

overall error is propagated through all cameras involved in the reconstruction process. 
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Chapter 6 describes how this error models is related to error in the reconstructed object 

when applying volumetric reconstruction methods.  The specific case of voxel coloring 

under a known camera noise model is discussed.   

The thesis concludes in Chapter 7 with several observations related to camera errors and 

propagation of this error into world space.  Finally, future directions for related research are 

suggested. 
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Chapter 2   
Problem Motivation 

 
The analysis carried out in this thesis is specifically directed toward voxel coloring 

algorithms using multiple, calibrated cameras.  There are a number of examples where voxel 

coloring algorithms are being used to support other vision tasks [21] as well as commercial 

applications.  The work here is directed at these general approaches but was carried out in 

the context of supporting rapid volumetric model acquisition for model acquisition systems 

that must acquire a base geometry and accurately align the supporting images to the model.  

In this case, accurate camera calibration is important for both the model acquisition phase 

and the subsequent coloring/texturing of the model during rendering. 

An example commercial application of accurate voxel coloring is the Archvision, Inc, 

Rich Photorealistic Content (RPC) objects that can be purchased and placed into scenes for 

visualization, simulation, gaming, and other applications. The RPC object is a mixed 

geometric and image-based model that is textured according to viewpoint at rendering time.  

At its core, the RPC object contains a base geometry that is acquired by capturing several 

controlled viewpoints of a real-world object to which voxel coloring is applied. 

The RPC object is created by first placing an object onto a turntable such as the one in the 

setup described by figure 2.1.  
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Figure 2.1:  Experimental setup to capture a volumetric model from a real-world object.  (a) 
Multiple viewpoints of turntable are calibrated to a world coordinate system.  (b) Actual 
setup used to collect data used in this thesis. 

The turntable (in Figure 2b) is printed with a calibration target that can be seen by the 

camera.  The turntable is rotated through a predefined sequence of positions and at each, the  

camera is calibrated to the target using the well-known eight point algorithm [43]. Next the 

object is secured to the turntable and it is again rotated through the predefined set of 

viewpoints.  The stationary camera records a large number of images, which correspond to 

consecutive views of the object that an observer would see were they to walk full circle 

around the object while looking directly at it.   

In a direct image-based rendering approach, the RPC objectss can be placed into a virtual 

environment allowing appropriate images to be rendered based on relative viewpoint for an 

observer in the environment.  As a result, a perfectly accurate view of the object is always 

available in the environment, assuming that the object is viewed from any of the same 

angles from which the camera that created the original images viewed the object.   

 Although this pure image-based approach works quite well for views taken in the 

same plane as the object, there are two drawbacks.  If a view of the object is required from 
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an angle from which the camera did not record an image (say from above the object, or 

otherwise significantly out of the plane), significant distortion could possibly occur.  Also, 

the number of images which must be stored can grow very large, and if a significant 

resolution is used, the files can become quite cumbersome, and infeasible for use in such 

applications as web-commerce.     

2.1. Application of Voxel Coloring 
 

 Voxel coloring presents an elegant approach to extending the limitations inherent in 

pure image-based rendering approached.  Given that a set of calibrated viewpoints of the 

object in question are already available, voxel coloring applied to these images is a natural 

approach to take.  

A voxel model, which is 3-dimensional by nature, has the capacity to project correctly 

even if the object is viewed outside the plane from which the original images were taken.  

Voxel coloring is particularly suited to this application due to its focus on reprojection 

accuracy, which is the primary concern addressed by the RPC format. 

The production of a voxel model from an RPC file is very straightforward.  First, it is 

assumed that the object is stationary, and the camera has moved in a circle around the 

object.  Secondly, so long as the camera model used to create a 2-D projection of the voxels 

into images in the virtual environments is the same as the camera model used to create the 

voxel model, then the true value of the intrinsic parameters of the camera are unimportant, 

and can be assumed to be any reasonable value.  After these assumptions are made, the only 

task remaining is to calibrate the cameras (relative to each other) and proceed with the 

generalized voxel coloring algorithm.   
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 The remainder of this thesis will deal with the problem of camera calibration.  

Although much work has been done in the area for both stereo and generalized voxel 

coloring, this particular image collection setup present new challenges and sensitivity to 

error which are unique.  The chapter describes the specific geometric setup and how error 

from one pair of cameras is related to other cameras in the setup. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright  2002 Elwood Talmadge Waddell, Jr.  
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Chapter 3   
 

General Calibration for N Cameras in Arbitrary Space 

As mentioned in Chapter 1, an important first step in the voxel coloring algorithm is 

camera calibration.  Camera calibration information is used to “carve” voxels by projecting 

each voxel into available images and measure a consistency score.  In addition, calibration 

information (in the form of the projection matrix for each camera) influences the colors that 

will ultimately be assigned to the voxels.  Poor calibration then, may result in an inaccurate 

geometric model as well a one that is far from photorealistic. In this chapter we discuss how 

calibration accuracy for N cameras, positioned somewhat arbitrarily will influence the 

resulting acquired object model. 

Figure 3.1 illustrates the effective positions of the cameras in the world described in 

Chapter 2.  

 
Figure 3.1:  The effective positions of cameras in space.  When a solid object is 

rotated so that a single stationary camera can photograph it multiple viewpoints, the 
resulting system can be modeled as multiple cameras rotated in space around the object.  
Note that each camera lies on a circle. 

 
Figure 3.1 also illustrates the fact that all the cameras may lie on a particular circle in the 

world.  So long as the turntable is leveled, this circle is defined in a plane parallel to the 

turntable on which the object was rotated, which passes through the camera center.  The 

radius is defined by the distance from the camera center to the intersection of the plane and 
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the axis of rotation of the turntable.  Note that, although we can make these observations, 

they are not exploited until Chapter 4.  Here we focus on the more general relationship 

between camera position accuracy and the resulting object model.  

A standard approach to calibrating a set of cameras is to discover a set of points in the 

world whose 3D positions are known and whose corresponding pixel positions can also be 

discovered. This method allows both the intrinsic and extrinsic parameters for all cameras to 

be found, but requires known world coordinate points.  The process of finding these points is 

often not trivial.   

As noted in Chapter 1, if the actual intrinsic parameters of the camera are not to be used 

to make measurements of the reconstructed object, then calibration for the set of cameras 

can be relative to one camera in the system rather than direct calibration to the world 

coordinate system.  A list of match points is input to the Eight Point Algorithm [43] which 

has been used to calibrate pairs of cameras, but without world truth, or intrinsic camera 

parameters, the calibration will be correct up to a projective transform.  As the same camera 

will be used to reproject the voxels into images, it is possible to refer to the calibration as 

correct up to a scale factor, as the “world truth” for this case concerns the reprojection, and 

not ground truth.   

Although this would work well for two cameras, there are a host of cameras around the 

object.  For this reason, it is not possible simply to calibrate each pair of cameras with one 

camera selected as the “world reference camera.”  The Eight Point Algorithm always returns 

a unit translation vector, not all cameras lie 1 unit away from the same camera.  Even if it 

were possible to get world coordinate match points, these points would need to be selected 

on all sides of the object, as it is unlikely that any given point on the object will be visible to 
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all cameras.  As a result of these considerations, it can be concluded that a method is needed 

to calibrate all of the cameras relative to each other.     

It is possible to begin by assuming 3 cameras C1,C2,C3, and extending from there.  

Assume that either the intrinsic parameters for all three cameras are know, or that the 

intrinsic parameters for all three cameras are the same.   

Given estimates of the fundamental matrices F1,F2,F3,for pairs of cameras C1 to C2, C2 to 

C3, and C1 to C3 respectively, it is possible to determine the relative (extrinsic) calibration of 

the cameras up to a scaling factor.  From the Fundamental matrices, the true essential 

matrices E1,E2,E3, can be obtained if the intrinsic parameters of each camera are known.  If 

the parameters are not known, but assumed to be the same, E1,E2,E3, can be obtained up to a 

projective transform.  As mentioned above, in the case of voxel reconstruction from RPC 

files, this projective transform is simply a scaling factor.  From the Essential matrices, the 

rotation matrices R1,R2,R3, and unit vectors T1,T2,T3 can be obtained in a very straight 

forward manner.  (reference from trucco)  Figure 3.2 depicts the relation between the 

cameras and the translation vectors.  

 

 
Figure 3.2: For three cameras C1,C2, and C3 the translation vectors from C1 to C2, C2 

to C3, and C1 to C3  can be labeled T1,T2, and T3 respectively.   
 

If the estimates F1,F2,F3 contain no error, and R1,R2,R3,T1,T2,T3 are all obtained with no 

numerical instability.  Then the following constraints will apply, and a relative 
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reconstruction can be obtained. In this case, the constraints involving relative rotations and 

translations can be written as: 

 (R1)(R2)=R3                                                         (Equation 3.1)  

s1T1 + s2(R1)(T2)= s3T3                                           (Equation 3.2) 

where each si  is scalar.  

The rotation constraint is fully defined by the rotation matrices, and no further effort need 

be expended to this constraint when reconstructing the relative calibration; however, before 

relative calibration can be computed, each scaling factor in the translation constraint must be 

determined.  Assuming no error or instability, the translation constraint yields a system of 

three equation and three unknown variables, Ax=b where A is a 3x3 matrix and x and b are 

both 3 element vectors as follows 
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The system, has been formed by three vectors connecting three points in space, hence all 

three vectors are co-planar.  The system is obviously rank deficient, as the third column of A 

is a linear combination of the first two columns.  In order to obtain any one of the infinite 

number of solutions to the system, any one of si must be set.  The values of the other si are 

then determined by the system uniquely.  After solving for all si the configuration of the 

system is known exactly up to a scaling factor. 
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A system of N cameras can be considered consisting of C1,…,CN.  It can be assumed that 

fundamental matrices are found such that: 

For points in pixel coordinates p1 in C1’s image and p2 in C2’s image, let F1 be the 

fundamental matrix such that  0112 =pFpt

For points in pixel coordinates pn in Cn’s image and pn+1 in Cn+1’s image, let F2(n-1) be the 

fundamental matrix such that  0)1(21 =−+ nn
t
n pFp

For for points in pixel coordinates pn in Cn’s image and pn+2 in Cn+2’s image, let F2n+1 be 

the fundamental matrix such that  0222 =++ nn
t
n pFp

This numbering convention is illustrated using translation vectors in Figure 3.3 

 
Figure 3.3:  Relational numbering system.  This illustrates, using translation vectors, the 

relationships between cameras and vectors under the numbering convention adopted in this 
chapter.  Vectors not directly connected to the systems involving camera n have not been 
labeled.     

 
 

Adapting this numbering convention to the Rotation constraint, it can be seen that the 

rotation constraint for N cameras is as follows: 

 (Ri)(Ri+2)=R i+3 for 1 < i < 2(N-2)+1                     (Equation 2.5) 
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The translation vector requires a bit more work to obtain.   Given the above, the three 

camera process can be repeated N-2 times with an extra step being taken after the first three 

cameras have been considered.  Intuitively, if for the first three cameras, the value of a 

single si has been set to any arbitrary value other than zero, and if the other si have then been 

determined, the process can be repeated treating C2 as C1 was previously treated, and C3 as 

C2 and C4 as C3.  At this point, rather than setting an arbitrary si in the system as was done 

with the first three cameras, the scaling factor associated with the one overlapping vector 

previously determined should be set to the value determined in the previous step.  This must 

be done so that the configuration of the entire system will match.  This process will yield the 

following system, which is a generalized translation constraint for the system of cameras 

described.     
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(Equation 3.6) 
 

After solving for all si, the relative position between any camera in any other camera’s 

reference frame can be calculated.  For the location of Cfinish in Cstart‘s coordinate system 

(where finish>start), we need only to evaluate  
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The special case occurs if Cstart  is the first camera.  In that case the following equation 

must be used.   
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The cases where start>finish are seen to be similar. 

Note that the reconstruction relies only on the vectors relating consecutive cameras, and 

not those relating every other camera.  As long as the translation constraint is enforced, it 

does not matter which set of vectors is used as both sets must return the same positions.   

In summary, given only match points between pairs of adjacent cameras, and cameras 

separated by one other camera, it is possible acquire rotation matrices and unit translation 

vectors, and then attain the global calibration, up to a scaling factor. 
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Chapter 4   
Calibration for N Cameras on Specially Defined Surfaces  

As mentioned at the beginning of Chapter 3, if certain geometric constraints exist for a 

set of cameras, they can be used to aid in camera calibration.  This chapter will focus on 

calibrating cameras, which lie on a surface with special, known properties.   

Assume N cameras C1,C2,…CN and assume that either the intrinsic parameters for all 

cameras are known, or that the intrinsic parameters for all N cameras are the same.  Given 

that the fundamental matrices F1,F2,…,FN-1 are obtained for pairs C1 to C2, C2 to C3,…, CN-1 

to CN, then R1,…,RN-1,T1,…,TN-1 can also be obtained in straightforward manner.  Figure 3.1 

illustrates the relationship between this numbering scheme and the resulting translation 

vectors. 

 
Figure 4.1:  Numbering scheme illustrated with translation vectors used in this 

chapter.  
 

Suppose that the cameras lie on a surface and that the optical axes of the cameras are 

aligned with a constant function of the gradient of the surface at the point where the camera 

is located, and that the rotation from each camera to another around the optical axis is zero.  

Further suppose that the surface, or any constrained subset (given that the constraint is 

known) of the surface on which the cameras are located has the following property. 
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For any point p and on the surface, and the function fdir(p)=   )(
)(

pf
pf

∆
∆  then fdir(p)= fdir(p’) 

if and only if p=p’, that is the inverse of fdir  is defined (by the definition of an inverse 

function).    

Given this, if the rotation of one camera’s coordinate system is known along with the 

constant function of the gradient expressed as a rotation Rcfnr, and the equation for the 

surface and the inverse of fdir then all cameras can be placed onto the surface corresponding 

to their true world coordinate using only rotation information. 

Algorithm: 

For the camera Ci, apply Ri’ which maps the world coordinate system to the camera 

coordinate system, to the vector [0,0,1] (the optical axis).  Further, apply the inverse of the 

constant function of the gradient to this vector.  This vector now uniquely determines the 

position of Ci on the surface so that the position p is: 
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icfnrdir RRfp                                     (Equation 4.1) 

 
The position of every other camera can be determined according to the following 

equations.  For camera j, where j>i, the position of i determined according to Equation 4.1, 

the position p is given by equation 3.2 
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4.1. Calibration with Shift Invariance 
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If the surface described in the previous section also has a property of rotational shift 

invariance, then it is not necessary to determine the rotation of any single cameras 

coordinate system from the world coordinate system, as any camera can be picked and set to 

the “world coordinate system” camera, and placed arbitrarily. 

Shift invariance implies that for any valid rotations R and any valid vectors V that 

Equation 4.3 must hold. 

( ) ( ) ( ) ( ))()( 21
1

11
11

122
1

12
11

2 avvavrdiravvavrdiravravvavrdiravvavrdiravr VRfVRfRVRfVRfR −−−−−− −=−  

(Equation 4.3) 

The shift invariance property assures that the resulting camera placement will be identical 

to any other camera placement, relative to all other cameras.  The most common surface, 

and possibly the only surface with this property is the sphere.   
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Chapter 5   
Introduction of Error into the General Calibration System 

 

In this chapter, we discuss the direct effects of calibration error on volumetric 

reconstruction accuracy.  In particular, the general calibration approaches introduced in 

Chapters 3 and 4 are re-evaluated in the context of error in the relative mapping between 

cameras.   

5.1. Introduction and effects of Error 
 

Assuming again three cameras, if F1,F2,F3 are obtained empirically, through the eight 

point algorithm [43] or any other method, then they are certain to contain some noise.  This 

noise will occur in both the rotation matrices and the translation vectors.     

As a result it is very unlikely that either the rotation constraint or the translation 

constraint will continue to hold.  Specifically, the equality in the rotation constraint will fail 

while the translation constraint will most probably yield a system for which there will exist 

only the trivial solution x=[0,0,0].  This will occur whenever the net error, causes the three 

vectors to be no longer co-planar.  More formally, this occurs when the dot product of the 

error expressed as a vector, and a cross product of any two of the translation vectors is not 

zero.   

( ) ⇒≠×• 0jierror TTT the system has only a trivial solution. ( i and j not equal)  

 This failure of the constraint has two implications for the calibration process.  Firstly, 

adaptations must be made to the process in order to enforce the constraints and allow for the 
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calibration described in Chapter 3.  Secondly, the induced error can be measured, analyzed, 

and possibly corrected.   

5.2. A note concerning assumptions used when dealing with Error 
 

In the following sections, methods of measuring error and mitigating the effects of 

measured error will be discussed.  It will be assumed that the errors introduced are 

independent, and that all errors are generated according to the same distributions.  In reality, 

there may be any number of sources for the error in the rotation matrices and translation 

vectors, and it is possible that the errors may not be independent, but this case will not be 

discussed. 

It should also be noted that if certain things about how the matrices and vectors were 

obtained are known, then it might be possible to efficiently determine which vectors are 

prone to more noise and which are not, and use this information when dealing with the 

noise.  For example, if the vector T1 was obtained from the eight point algorithm using 108 

well chosen points, while T2 and T3 were each constructed using the same algorithm with 

only 8 well chosen points, then any measured error in the system has most likely resulted 

from noise in T2 and T3, all things being otherwise equal.  For the following sections, it will 

be assumed that the same methods are used across all camera pairs, so that no one vector 

should be trusted any more than any other vector.     

5.2.1 Error in the rotation matrix  
If the errors in the Rotation matrices are assumed to be independent, and the distribution 

of the noise is assumed to be identical in each case, then the Error Rotation Matrix can be 

formed as follows from the Rotation Constraint.   
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Rerror=  (R3
-1)(R1)(R2)    (Equation 5.1) 

To enforce this constraint, it would be desirable to spread the rotation error out across all 

three matrices evenly, such that equation 5.2 holds.  

(R1correct)(R1)(R2correct ) (R2)=( R3correct )R3   (Equation 5.2)  

Although this is desirable, it is not intuitively obvious as to how to break the error up 

evenly.  Although each matrix could be decomposed to its Euler angles, and the error around 

each axis distributed to each matrix, this process incurs the cost of dealing with singularities 

and ambiguities inherent with Euler angles.  Although quaternion representation of the 

rotations would allow analysis without the difficulty of singularities, quaternion 

representations still do not commute, leaves a difficulty in equally distributing error back 

across the constituent rotations.     

5.2.2 Error in Translation Vectors  
As indicated above, the introduction of noise into the translation vectors creates a system 

for which there exists only a trivial exact solution.  We choose a value for any of si, and 

attempt to solve the system exactly, no solution will be found.  If, however, a least squares 

solution is sought, then approximations for the true relative values of si will be found, up to 

a scaling factor.  This is analogous to the method suggested by Trucco and Verri for 

resolving ambiguities in stereo reconstruction.  That is, given a baseline (or a set si ), locate 

the point p which is closest and equidistant to the rays of interest.  This is illustrated in 

Figure 5.1.  Note that the point is found by constructing a perpendicular line between the 

rays and extracting the midpoint.   
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Figure 5.1:  Point p is the point in space which projects most closely (measured in least-
squares) into the indicated points in the left and right images. 

 
Given the best approximations for all si, an error vector can now be formed from the 

Translation Constraint as follows 

Terror = s1T1 + s2 (R1)(T2)- s3T3    (Equation 5.3) 

If it is assumed that the error in each T vector is independent, and the distribution in each 

case is identical, and it is further assumed that the noise in the rotation matrices will not 

have a significant effect on the system formed by the Translation Constraint, then it can be 

seen that the total error is the sum of the errors contributed by each T vector multiplied by 

the appropriate scaling factor si and that the sum is Terror. 

Given that the error in each Ti was assumed to be independent, then the error contributed 

to the vector Terror will be proportional to the scaling factors si.  It is possible to distribute the 
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Terror vector to each Ti , thereby forcing a system for which an exact solution.  In order to 

equally distribute correction for the error across the system, the normalized scaling factors  

can be formed as follows. 
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   (Equation(s) 5.4) 

  

These can now be used to scale Terror  for application to each of the translation vectors, to 

enforce the translation constraint as follows.   

Terror - Terror = s1T1 + s2(R1)(T2)- s3T3 - Terror       (Equation 5.5) 

 

Terror - Terror = s1T1 + s2 (R1)(T2)- s3T3 - se1Terror - se2Terror - se3Terror      (Equation 5.6) 

 

0 = s1 (T1-
321 sss

Terror

++
)+ s2 ((R1)(T2)- 

321 sss
Terror

++
) - s3 (T3 + 

321 sss
Terror

++
)   (Equation 5.7) 

 

5.3. Error across N cameras  
 

If N cameras are considered, then the approach to solving for the scaling factors is no 

different than dealing with three cameras—the first (or any arbitrary si)can be set, and the 

system can be solved minimizing the error across all cameras.   

Once each si has been determined, it is possible to collect N-2 error vectors.  At this 

point, several analysis options are possible.  The distribution of the raw error vectors can 

provide interesting information concerning the overall error.  This should give a good 
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indication of absolute error across the system of cameras.  This analysis can be performed 

on the X, Y, and Z elements of the vectors to test independence, and test to see if the noise is 

zero mean.  Similarly, the normalized error can be analyzed so that cameras which have 

greater spacing—and a greater error as a result, will not affect the analysis. 

This analysis can be useful in that, if the noise in the system is expected to be of zero 

mean, but a T-test or boot-strap analysis indicates that this is very unlikely, then it might be 

possible to take steps to mitigate the error.  Specifically, if there is a bias vector which 

distributes noise with non-zero mean to the translation vectors, and the vector of mean error 

is [epsx,epsy,epsz],  then the resultant error vectors will, all other things being equal, tend to 

[epsx,epsy,epsz].  Once detected, the bias can be removed from each translation vector.   

The remaining unanswered question is “what to do with the residual error vectors in an N 

camera system?”  Even after bias (if it was detected) is removed, the system will still require 

some adjustment to enforce the translation constraint.  Possible promising methods include 

optimization toward minimum change to all translation vectors, and also calculating the 

fixes for each of the sets of three cameras independently, then scaling and rotating each set 

of three vectors as appropriate at each camera to bring the system into alignment.       
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Chapter 6   
Effects of Error as Applied to Voxel Coloring 

As mentioned in the thesis statement, once camera calibration errors have been modeled 

and analyzed, this information can be used to predict and rectify errors in the voxel coloring 

algorithm.  This chapter will discuss the sources of error in the voxel coloring algorithm and 

briefly discuss the associated geometry, which can give rise to a set of errors even in the 

presence of perfect calibration.  After this discussion, the propagation of calibration error 

through the system will be discussed, and the effects of this error on the algorithm will be 

analyzed in detail, specifically as it relates to the rejection of consistent voxels.      

6.1. Error Sources in Voxel Coloring 
Several sources of reconstruction errors in both voxel coloring and other volumetric 

approaches have been studied by [25,26,27,28,29,34,45,46].  Reconstruction errors can be 

categorized by cause into three general areas;  errors due to voxelization, errors due to 

calibration and mis-projection, and errors due to violations of color-constancy to included ill 

chosen rejection criteria for voxels. 

Significant work has been done in the area of rejection criteria [7], and some work has 

been done in the area of voxelization error, [25,26,27,28,29,34,35,45,46].  This chaper will 

deal primarily with the errors introduced due to calibration errors and the resulting mis-

projections.  This will be preceeded by a brief discussion of errors due to voxelation, which 

expands upon current work.   

6.1.1 Voxelation Errors and the Perfect Case 
Given any set of cameras, it can be seen that there exists a perfect voxelization of the 

space where each voxel projects into at most one pixel in any image.  This voxelization 
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consists of the voxels defined by the volumes defined by the intersections of the projections 

of the rectangular pixels into the environment.   For a set of N cameras, a voxel can be 

uniquely identified by an N-tuple indicating the single pixels in each of the N images into 

which the voxel projects.  Although there is a large number of possible N-tulpes, as 

described by Equation 6.1, a potential majority of the N-tuples are invalid, as the volumes 

associated with an arbitrary set of pixels from different images are unlikely to form volumes 

in space, which intersect.   

  ∏PixelCount                             (Equation 6.1) 
=

N

i
iCamera

1

)(

Work done by [33] makes use of voxels which are defined in projective space by a pair of 

basis views—for a pair of cameras, this space is perfect.  For more cameras, the voxels are 

no longer perfect, but it can be seen that the number of total voxels cannot continue to grow 

increasingly faster, as the size of the voxels defined in N images will most probably project 

into a an increasingly smaller area of each additional image.  This is obviously not valid 

when the additional cameras begin to voxelize a new section of space.   

The perfect voxelation of the space contains three types of voxels, which shall be called 

types I, II, and III.  These voxels are illustrated in figure 6.1, which depicts two single 

dimensional cameras which each have four pixels.  The type I voxels are those which are 

adjacent to the optic center or “pinhole” of the camera.  If voxel coloring is to be performed 

in the perfect voxel space, type I voxels must be ignored, otherwise, these voxels have the 

potential to be the first in each image to be colored, and will then occlude the entire scene, 

producing a reconstruction which is both trivial and perfect.  Type III voxels are those, are 

unbounded on one side and not adjacent to any camera center—These are the voxels 

approximated by warped voxels in a semi-infinite or infinite space in [37].  Type II voxels 
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are finite, and not adjacent to the optic center of any camera.  These should form the 

majority of voxels in a voxel space useful for voxel coloring.  As far as relative abundance, 

there can be no more Type I voxels than there are pixels in all images.  There are at least as 

many type III voxels as there are pixels, assuming none of the Type I  voxels are infinite.  

Although it is possible to arrange cameras so that there are no type II voxels, this case is not 

easily achieved, nor particularly desirable for those applications for which voxel coloring is 

used.            

 
Figure 6.1:  This illustrates the perfect voxelizaition of a space in 2-Dimensions defined 

by 2 cameras each having 4 pixels.  Voxels of the first, second, and third kind are labeled. 
   

 Any voxelization of the space which utilizes voxels larger than, or which themselves 

could be divided by, the voxels which form the perfect voxelization, has the potential to 

introduce errors.  This is especially true when any divided voxel contains a depth 

discontinuity described in [36].  Equivalently, it can be said that any voxel which projects 

into more than one pixel in any image has the potential to introduce error, which would 

otherwise not occur, even in the absence of projection errors. 
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 To fully make use of this perfect voxel space, occlusions must be correctly handled 

as it is likely that a single voxel will not cover an entire pixel when it is declared consistent, 

or otherwise considered solid. A potential solution is to note the exact reprojection of 

consistent voxels into each pixel, subdivide each pixel, and allow reprojection to occur to 

the remaining portions.  Practically, this solution is not currently feasible, nor is the use of 

the perfect voxel space for many cameras, but this space and associated reprojection rules 

define the best possible theoretical case, upon which no improvement can be achieved.   

 It should be noted that in the presence of error, the actual voxelization of the space 

can be drastically affected by any error.    

6.1.2 Projection Error  
Traditional voxel coloring algorithms test of the consistency of a voxel by comparing the 

variation over all pixels (in all cameras) into which the voxel projects to a standard variance.  

It is assumed that calibration error is negligible, and that variation in the pixels will be 

caused by lighting, or other external factors, which for consistent voxels will result in a 

significantly lower variation than for inconsistent voxels [35,36].  Statistically measured, 

this significantly lower variation is used to set the criteria for rejecting inconsistent voxels, 

and coloring consistent voxels.   

When a single voxel is projected into a set of M images by M cameras whose collective 

calibration has been affected by noise, the potential for rejecting consistent voxels will 

increase according to several factors, which will be discussed in this section.   

If the error in the Rotation and Translation vectors across all M cameras has been 

modeled, then the projection of a single voxel into any camera can be modeled in the 

presence of the noise.  Normally, the projection matrices of the cameras are assumed to be 
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noiseless and the voxel is projected into a specific set of pixel(s) in each image.  Of a given 

set of pixels Pi in an image into which a voxel might project in the presence of error, the 

pixels into which a specific voxel should project can be labeled Pi’.  In the presence of error, 

the voxel may project into a larger area in the image as defined by the possible error.  It is 

easily observed that the size of Pi will vary directly with both the rotational error and the 

relative distance of the voxel from the camera.  The size of Pi will also be affected by the 

Translation error, but possibly to a lesser degree.  As the translation error increases or 

decreases the distance of the voxel from the camera, it may increase the size of Pi, directly. 

But this effect will vary inversely with the distance of the voxel from the camera.  

Translational error in the plane perpendicular to the ray passing through the center of the 

voxel will similarly affect size and location of Pi , but again, this effect will also vary 

inversely as the distance from the voxel.  If it is assumed that the translation errors are small 

compared to the distance of the camera from the voxel, then the effect becomes nearly 

trivial, and the size of Pi becomes related primarily to the rotation error.  Similarly, if the 

distance to the voxel is small as compared to the translation error, the translation error will 

become a key player in the size of Pi. 

If the projection equations are used to project a point into a camera in the presence of 

noise, the previous intuitive statements can be shown mathematically.   

It can be assumed that the pixel-scale factor (f) is the same in the X and Y direction.  This 

yields projection equations from the camera coordinate system to the pixel coordinate 

system for a single camera  
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Translation from the world coordinate system to the camera coordinate system is given 

by the following equations. 
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Equation 6.4 can be expanded to a system of three equations, which contain the terms of 

R and T, however this will not be done here.  The terms of the rotation matrix are composed 

of  trigonometric functions of the actual angle errors along each axis .  An analysis of the 

error in the rotations propagated through to the image projections is non-linear in nature, and 

thus beyond the scope of this thesis.  It will suffice to say that the magnitude of error due to 

the rotation matrix will increase with an increase in magnitude of the world coordinate 

vector—as was mentioned in the preceding paragraph.   

Error in Translation and rotation can be added to Equation 6.4 to produce Equations 

6.5,6.6, and 6.7, from which the previous statements concerning error propagation can be 

seen.   
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As inferred from experimentation in [34] the error introduced by misprojecting a voxel is 

dependant on where in the image the voxel is misprojected, and how the image changes in 

that area.  For example, in the extreme best case, a set of cameras will be looking at a mono-

chromatic wall—regardless of where a voxel might reproject due to noise, the color of the 

pixel(s) into which it will project will always be effectively the same or at least within the 

bounds of the properly set rejection criteria set for the algorithm.  As a result, in the best 

case, even the worst noise will not cause a consistent voxel to be rejected.  In an extreme 

worst case, it will be assumed that a voxel projects into exactly one pixel (the resolution of 

the space is identical to the actual change in the space, or as stated by Seitz, the effective 

Nyquist rate is achieved), and that each voxel is a substantially different color than its 

neighbor—this will imply that each pixel will be a substantially different color than its 

neighbor.  In this case, as little as one pixel in projection error will result in substantial 

inflation of the rejection criteria statistic, and lead to false rejection of any voxels, which are 

mis-projected by only a small amount.  In practice few images if any fall into either extreme, 

but individual neighborhoods of pixels will do so.  Voxels projecting to the middle of large 

mono-chromatic areas (those likely to allow the production of cusps), will be quite 

insensitive to calibration noise.  Voxels projecting to areas near edges, or other areas with 

where the autocovariance in the region has a fast fall off (or is otherwise similar to the Dirac 

function) will be very sensitive to noise which would allow the voxel to project across that 

edge, or onto a region of a different color.     

This observation indicates that it might be possible to weigh the contributions of different 

images to the overall consistency/rejection statistic based on any projected error models and 

the image area into which any given voxel will project.  Specifically, the expected value of 
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the variance of the all pixels in the image (Pi) convolved with the probability distribution of 

the error in that region of the image compared to the variance of the pixels into which the 

voxel would otherwise be determined to project (Pi‘) gives an estimate of reliability which 

could be used which determining the rejection statistic.  This measure of reliability is 

expressed in equation  6.12. 
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Certainly, the calculation of this reliability coefficient would add overhead to the voxel 

coloring algorithm at its deepest level.  As a result, it is possible that this adaptation would 

add an undesirable increase in run time for the algorithm, and may be infeasible at this time.  

However, it does provide a measure of confidence which has until now has not been 

considered for voxel coloring.       
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Chapter 7   
 

This thesis has shown it is possible to calibrate a large number of cameras in the presence 

of error and has proceeded to show methods of error measurement.  Chapters 3 through 5 

specifically illustrate how a few constraints can allow a full relative system calibration in the 

presence of noise, with Chapter 5 indicating noise measurement techniques.  Chapter 6 has 

shown how the calibration error propagates through the system directly into the image, and 

how this error can affect voxel coloring.  Specifically, a method for determining which 

voxels will be sensitive to error in particular cameras and which voxels are extremely 

insensitive to error as a function of calibration noise and image characteristics is covered.  

Additionally, Chapter 6 reviews the situations where the voxelization of the space can 

contribute to errors, and identifies the best case voxelization of a space upon which no 

improvement can be made.   

   

 

 

 

7.1. Future Work  
 

Given the scope of this thesis, there are a number of interesting areas which were not able 

to be explored which should considered in the future.  Areas such as the construction of 

more complex linear systems, in depth consideration of measured errors, and the detailed 

qualities of the perfect voxelizatoin of a space are subjects particularly well suited for future 

study.   
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Chapter 4 concludes by presenting a method of solution to the N camera calibration 

problem where error has been introduced and measured.  At this time, it is unclear as to the 

best method to analyze and handle the resultant error (correcting) vectors and how to work 

this information back into the model of the projection system.  Techniques such as 

weighting the confidence in a single cameras projection according to the magnitude of its 

error relative to the other cameras, or collectively considering the error vectors to form a 

Probability Distribution Function (or functions) to apply across several cameras are obvious 

areas for consideration.  Statistical techniques such as ANOVA could also be used to 

analyze error vectors.  There also exist any number of modifications to optimization 

algorithms which could make use of the error vectors along with the Rotational and 

Translational constraints to weight certain estimates more confidently when producing the 

final calibration model.  Certainly, this area provides a number of possible avenues of 

further research.   

   As previously mentioned, Chapter 4 dealt with the special case where fundamental 

matrices were obtained for each consecutive camera pair, and each pair of cameras separated 

by only one camera.  It may well be possible, in any given set of circumstances, to obtain 

additional fundamental matrices relating cameras.  When obtained, these would add 

additional confidence, and constraints to the overall system.  Enumerating the number of 

possibly linearly independent constraints for a set of cameras and a sufficiently large  

arbitrary number of fundamental matrices is one area outside the scope of this thesis which 

could significantly enhance the calibration of a system.   

In the previous chapter (5), the perfect voxelization of a space was presented.  The 

properties of this space, and the specific effects of error on the system are not well know, 
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and have not yet been discussed in depth.  It is entirely possible, that use of multiple cameras 

in this framework could lead to resolution enhancement for a system assuming that the 

Nyquist rate of the cameras has not been riotously exceeded.  Other benefits of dealing with 

the perfectly voxelized space include the possibility to deal with error for a set of cameras 

entirely in the Projective space.  Lastly, if an efficient way to order voxels in the perfect 

space were developed, the use of this voxelization in voxel coloring could become feasible, 

and useful.   

Several areas which are related, but slightly outside the scope of this thesis present 

significant opportunities for future work, which could contribute to both efficiency of 

computation and correctness of reconstruction.   
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