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ABSTRACT OF THESIS

INVESTIGATING THE RELATIONSHIP BETWEEN YIELD RISK AND AGRI-
ENVIRONMENTAL INDICATORS

The U.S. crop insurance program provides subsidies and risk reduction benefits to
producers.  In response to enhanced income and decreased risk, farmers increase planted acres,
often in more risky areas of production.  The primary objective of this thesis is to determine the
relationship between the environment and acreage brought into production as a result of crop
insurance.  This thesis does so indirectly, by examining the relationship between yield risk and a
set of agri-environmental indicators.  An ordinary least squares (OLS) model is used to examine
this relationship.  It is hypothesized that as acreage becomes more risky in terms of yield,
environmental damages resulting from production will increase.  Results suggest that while this
is not always the case, there is a strong correlation between yield risk and increased soil erosion
for the majority of the acreage in the study area.
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CHAPTER ONE
INTRODUCTION

The history of agricultural production in the United States (U.S.) shows a multitude of

changes in how and where producers of agricultural commodities choose to produce their goods.

Most of these shifts in production are thought to be the result of increases or decreases in

international trade and the subsequent increase or decrease in competitive and comparative

advantage, advancements in agricultural related technologies, and urban expansion.  In recent

years some researchers have speculated that these changing land-use patterns may also be the

result of government agricultural support programs, namely the Federal Crop Insurance Program

(FCIP) (Griffin, 1996; Skees 1999).

FCIP was reformed in 1980 to replace a disaster assistance program that was at the time

thought to encourage production in riskier areas of the country.  Crop insurance was originally

intended to protect producers of agricultural commodities against crop losses resulting from

natural disasters.  In 1986 the U.S. government began to subsidize crop insurance in an effort to

increase participation among producers.  Although FCIP was originally designed to reduce yield

risk and income variability, some researchers now believe that the program has evolved into one

of income enhancement and has begun to promote production in riskier areas of the country

much like the disaster assistance program it attempted to replace.

Due to the design of crop insurance subsidies, higher levels of transfer payments are

given to comparatively higher-risk areas of production.  Since many producers respond to

income transfers by increasing production, high-risk areas are likely to see increases in

production as well as increases in transfer payments.  Subsidies for crop insurance are currently

allocated according to a percent of the premium on the insurance policy.  Because premium rates

are a reflection of the amount of risk associated with a parcel of land, subsidies provide greater

transfers to farmers who are operating under risky conditions.  Skees (2000) provides an example

of how such a policy might function:

Consider two farmers who face different premium rates.  For the lower risk farmer, the
rate is $10 per $100 of liability.  The higher risk farmer would be charged $20 per $100
of liability without subsidies.  Given a 50 percent subsidy, the lower risk farmer can
expect a $5 per $100 of liability transfer over time.  The higher risk farmer expects $10
per $100 of liability.
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Such an incentive structure would likely encourage farmers to not only increase their level of

production, but to possibly increase it onto riskier, marginal lands as well.

Marginal lands make up what is referred to as the “extensive margin” or areas of

farmland that are of a lower quality in terms of crop yield and productivity (Figure 1.1).  Many

times marginal lands are acres located on the edge of production and are likely to be used given

an increase in commodity prices or a decrease in production costs.  While marginal lands are not

homogeneous across space, they are often associated with a particular set of environmental

characteristics, the most notable of which is erosion.  If crop insurance is promoting production

on marginal lands, and these lands are found to be highly erosive, crop insurance may be

contributing to erosion of farmland, buildup of sediment in nearby waterways, and other negative

environmental impacts.

Primary Production
Area
Higher Returns

Extensive
Margin
Lower Returns

Figure 1.1  Extensive Margin Versus Primary
Production Areas 

Crop Production Region
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Subsidies for crop insurance may also promote environmental degradation in that

increases in production may result in increases in chemical usage for crops.  Wu (1999) found

that crop insurance for corn in Nebraska caused a shift in production from hay and pasture to

corn.  This shift resulted in increased erosion and chemical use at the extensive and intensive

margin.  Wu also points out that an increase in chemical application rates may be due to the

‘moral hazard’ created by crop insurance.  Subsidized insurance affects application rates by

decreasing farmers’ production risk and reducing their incentive to apply the prescribed amount

of chemicals.  Additionally, Skees (2000) points out that for every 10 percentage point increase

in participation in crop insurance, an estimated 5.9 million additional acres are put into

production for the top six crops in the U.S.  This number suggests that on a national level,

roughly 25 to 30 million acres of crops may have been put into production as a result of crop

insurance.  This increase in production is likely to result in increased usage of chemical inputs

used in the production process.

Not only do subsidies for crop insurance affect decision-making at the farm level, but

changes also occur regionally.  As risk profiles change from region to region, so do farmers’

willingness to accept risk.  Such behavior may result in shifts in production from one area to

another.   This is illustrated by Skees in the gains and losses of crop share for the top six U.S.

crops.  It is evident that a shift in crop share has occurred from the Southeastern U.S. to the

Plains states (Skees, 2000).  It is important to ask what such a shift might imply in terms of

changes in environmental quality.  The Environmental Benefits Index (EBI) used by the

Conservation Reserve Program (CRP) concludes that the great majority of environmental

benefits to be gained or lost due to the implementation of CRP acres are found in the Eastern and

Southeastern U.S., particularly if these benefits are weighted by population (Heimlich, 1994). It

is important to note that shifts in production from one region to another do not necessarily imply

decreases in production in one area and increases in another.  Total production may still increase

for both areas, albeit at a slower pace for one region compared to another.

However, crop insurance may be encouraging environmental losses in another way.  As

Griffin pointed out in his 1996 study, it is possible that crop insurance along with disaster

assistance may be offsetting the environmental gains achieved through the CRP.   His study

suggests that for every acre of land taken out of production by the CRP, another acre is added

because of crop insurance and disaster assistance.  If these programs do in fact offset one
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another, environmental benefits achieved through the CRP may be diminished by production

increases resulting from crop insurance.

Objective

Environmental organizations and interest groups are suggesting that subsidized crop

insurance and disaster aid is encouraging production on environmentally sensitive lands by

promoting production at the extensive margin.  While this is almost certainly the case in some

areas of the country, Heimlich (1994) and others show that environmental impacts may differ

considerably depending on the geographic, spatial, and environmental attributes of the extensive

margin.  Given that the extensive margin, and the environmental impacts of production are not

homogenous across space, it is my intent to analyze the relationship between risk and the

environment on a level that better accounts for the physiographic, soil, and climatic traits found

in various regions of the U.S.

Thesis Organization

The first chapter of this study provides a background of crop insurance in the U.S. and

explains the motivations and relevance of this research.  Chapter Two, a literature review, is

divided into two parts.  The first is a review of the guiding economic and philosophic principles

of this research, the second focuses primarily on studies that address the environmental impacts

of crop insurance.  Chapter Four defines the methodology of the study while Chapter Five

discusses the empirical analysis and results. Chapter Six draws conclusions from the results of

the study.
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CHAPTER TWO

LITERATURE REVIEW: PART ONE

The first part of this chapter is focused on the guiding economic principles of this thesis,

primarily risk, utility, moral hazard, and adverse selection.  Risk, and more specifically yield

risk, is generally recognized as one of the guiding factors in producer behavior.  Individuals base

their actions in part on the level of utility they expect to derive from a particular action.  (For a

detailed description of risk as it applies to utility see von Nuemann and Morgenstern (1944).)  If

utility is viewed as a function of wealth for instance, it can be said that a risk averse individuals’

utility curve is concave with respect to wealth (Figure 2.1).  Conversely, if an individual is risk

preferring or favors risk, the individuals utility curve is convex with respect to wealth (Pratt,

1964 and Arrow, 1971) (Griffin, 1996).

Risk and utility theory has strong implications for the producer decision making process.

Because farmers are traditionally believed to be risk averse, we assume they are willing to pay to

avoid uncertainty.  One method by which risk averse producers may transfer their risks is

through crop insurance, assuming that the policy is actuarially fair and unsubsidized.  As Wu

Utility

Wealth

Figure 2.1 Risk Loving (A), Risk Neutral (B),
and Risk Averse (C) Utility Curves.

C

B
A
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(1999) and others have shown, risk preferring individuals, however, are likely to purchase

subsidized insurance in an effort to capitalize on potential money transfers.

Subsidized policies such as those that have been offered in recent decades are likely to

attract higher-risk producers and are characterized by adverse selection and moral hazard, both

forms of market distortions. In the case of adverse selection, agents acquire more information

about their potential losses than do policy providers.  Because policy providers are unable to

accurately measure yield risk for individual policy holders, they are forced to set rates according

to what they believe is the average level of risk.  By doing so, low-risk producers are

overcharged, while high-risk producers are undercharged.  This skews participation toward risk

preferring policy holders and results in increased risk in the insurance pool and larger indemnity

payments in the event of yield losses.

As mentioned previously, the cost of monitoring each policy holders actions are

prohibitive.  As a result, policy providers are unaware if policy holders adjust their level of

production risk after they purchase a policy.  This problem of moral hazard may result in

producers altering behavior in an effort to collect indemnities and, along with adverse selection,

result in the failure of insurance contracts. (Goodwin and Smith, 1995)

LITERATURE REVIEW: PART TWO

Literature cited in this section of the review focuses primarily on studies that address the

issue of acreage expansion and contraction occurring as a result of crop insurance and/or disaster

aid, and the environmental impacts that result from these programs.  While significant literature

exists on the impacts of crop insurance and disaster aid on crop choice, it will not be addressed

specifically.

Unsuccessful attempts at providing multiple-peril crop insurance to U.S. producers date

back to the late 1800’s.  At that time private insurance companies provided for the first time,

insurance coverage beyond that of hail and fire insurance.  Several efforts were made over the

next 20 years to provide price and/or yield risk insurance but all were unsuccessful as payments

for losses typically exceeded premiums (Gardner and Kramer, 1986).

The U.S. Government first became involved with crop insurance in 1922 with an

investigation into crop insurance and decided to offer insurance in 1939 with the adoption of the

Federal Crop Insurance Act of 1938 under President Roosevelt.  While the program continued
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intermittently throughout the first half of the century, indemnities often exceeded premiums

forcing the program to rely on government subsidies for financial assistance (Gardner and

Kramer, 1986).

During the late 1980's, a few individuals began to realize that by providing a safety net of

disaster payments and subsidized crop insurance, government programs may be directly

influencing farm production levels and prices. In 1936 the editors of the Christian Science

Monitor warned against the dangers of a crop insurance program encouraging production on

marginal lands (Goodwin and Smith, 1995).  While crop insurance, disaster relief, and the

political climate that surrounds them have changed over the last half century, the warning

heralded by the editors is still pertinent today.

Numerous government programs exist to manage both price and yield risk, including

price controls, crop insurance and others.  Some of these government policies and programs are

believed to cause distortions in markets as well as farm-level decision making.  Plantinga (1996)

illustrates this point with a study on the environmental effects of milk price supports. Using

county level data for Wisconsin, Plantinga looked at the effects of milk price supports on the

conversion of cropland to forest and the potential environmental benefits to be gained if the

strike price for supports were raised.  Specifically, Plantinga illustrated that reducing the price

support for milk in Wisconsin would reduce incentives for profit maximizing producers to

operate on marginal lands and would subsequently enhance environmental quality by reducing

soil erosion and improving wildlife habitat through afforestation. The study estimates that a five

percent reduction in price supports for milk would result in benefits in the form of decreased

erosion, increased wildlife habitat, and other environmental quality gains, ranging from 4.1 to

12.3 million dollars in value. A 15% decrease in support would yield benefits ranging from 12 to

35.9 million. Plantinga’s study is limited geographically in that he operates under the assumption

that land taken out of production would be converted to forestland, as is likely the case in

Wisconsin.  However, he estimates that if other areas of the country are similar to Wisconsin

with regard to the conversion of cropland to forestland, the elimination of price supports could

lead to $ 0.5 billion in environmental quality gains.  While such a conversion may or may not be

likely in other parts of the county, Plantinga’s study does prompt us to think about the possibility

of regional shifts in agriculture and how these shifts may result in increases in environmental

quality in some areas and decreases in others.
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Along with direct price supports, crop insurance and disaster relief are also believed to

cause distortions in agricultural related markets and farm-level decision making.  Distortions can

result in impacts at both the intensive and extensive margin.  Effects at the intensive margin can

result in increases or decreases in inputs such as fertilizers, herbicides, pesticides etc…  For

examples of literature on impacts at the intensive margin, see Horowitz and Lichtenbeg (1994),

and Goodwin Smith and (1996).

Impacts at the extensive margin can come in the form of converting forest or pastureland

to cropland as potential increases in returns motivate producers to bring more land into

production.  Studies on impacts at the extensive margin vary by methodology, study region, and

result.  Varying estimates exist as to the amount of forest or pastureland that has been brought

into production as a result of crop insurance.  Table 2.1, taken in part from Soule and

Mullarkey’s (2000) article on impacts at the extensive margin provides a list of these varying

estimates.

Table 1.1 Estimates of acreage expansion due to crop insurance and disaster relief.
Estimate of
Acreage Expansion

Area of Study Type of Analysis Author

16 million acres
remained in
production

Great Plains Empirical
econometric
analysis

Griffin (1996)

15 million acres in
production (45
million CRP when
CRP is included)

U.S. Empirical
econometric
analysis

Keeton, Skees, and
Long (1999)

600,000 acres U.S. Simulation model Young et al. (1999)
Less than 0.1%
increase in corn and
soybeans acreage.

Corn Belt Empirical
econometric
analysis

Goodwin and
Vandeveer (2000)

In 1996 Griffin addressed the production impacts of crop insurance and disaster payments

on planted acres in the Great Plains using two single equation empirical models with time-series,

cross-sectional, county level data.  Focusing on six major crops (corn, soybeans, grain sorghum,

barley, cotton, and wheat) for the dependent variable, Griffin’s study measured the impact that

crop insurance participation, risk subsidies, deficiency payments, and disaster payments had on

total planted acres for the six crops for the periods 1974-1977 and 1989-1992.  Results suggested

that roughly 16 million acres were in production that otherwise would not have been without
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disaster payments, crop insurance, and risk subsidies.  To address the environmental impacts of

this additional acreage, Griffin estimated the amount of soil erosion that could be attributed to

the 16 million acres.   In a crude estimate, the study suggested the amount of soil loss that could

be attributed to crop insurance and disaster payments to be 61.4 million tons.

Griffin’s second model used one continuous time period, 1978-1992, to measure the

impact of crop insurance and disaster payments on the amount of acreage devoted to wheat

production or to pasture that was converted to wheat production.  Results showed that these risk

management programs may have provided impetus for the conversion of 2.29 million acres of

pasture to wheat.

Keeton et al. (1999) estimated the effects of disaster assistance and crop insurance on

land-use patterns for six major crops (corn, wheat, soybeans, grain sorghum, barley, and cotton)

in the plains and Midwestern states.  More specifically, Keeton et al. wanted to know if

government programs were resulting in shifts in production to risky regions of the U.S.

Cropping data was taken from 285 Crop Reporting Districts (CRD) for the years 1978-1982 and

1988-1992, along with data on disaster assistance and crop insurance premiums.  Changes in

land-use patterns were measured by the dependent variable by capturing the change in total

cropland for the six crops in each CRD between the two time periods.    Statistically significant

correlations were found for four of the six independent variables; crop insurance transfers,

premium rates, participation, and base acres.  Keeton estimated that for every 1-percentage point

increase in crop insurance participation, an additional 1.5 million acres are planted to the top six

crops in the U.S.  Keeton points out that the crop insurance participation rate in 1980 was

approximately 10 percent.  In 1998, the number rose to roughly 45 percent if CAT is included.

As is illustrated in the study, such an increase implies that around 45 million additional acres

may be in production as a result of crop insurance when including 30 million CRP acres.

Young, et al. (1999) examined the influence of crop insurance subsidies on the planted

acreage of eight major field crops in the U.S. and in each of the seven major production regions.

Young measured the extent of market distortion directly attributable to crop insurance subsidies

by using acreage and production shifts.  Using county-level data, insurance subsidies were

converted to commodity-specific “price wedges”, a per bushel subsidy for crop insurance.  With

the POLYSYS-ERS simulation model, Young et al. measured the intra- and inter-regional shifts

along with cross-commodity price effects and found that subsidies resulted in a small shift in
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plantings on a national level and an aggregate increase in plantings of 0.2%.  Perhaps more

importantly, Young’s analysis showed a significant shift in production from the Far West and

Southeast to the Plains states.  The study is limited in that data was aggregated at the state level,

while decisions resulting from crop insurance subsidies are motivated by farm level incentives.

Additionally, subsidies are treated as homogenous across production and are incorporated into

the study as if they are actual revenue as opposed to additional income.   Finally, the study

assumes the "price wedge" effect of the subsidy drives short-run supply response.  If long-run

supply responses are used one of the results would show greater acreage responses.

 Goodwin, Vandeveer, and Deal (2001) use a multi-equation structural model of acreage

response, insurance participation, CRP enrollment, and input usage.  Their analysis is divided

into three separate applications; corn and soybean production for the Midwest from 1985-1993,

wheat and barley production in the Upper Great Plains, and corn and soybeans for a period after

the Federal Agriculture Improvement and Reform (FAIR) act.   Results show that participation in

crop insurance yields a statistically significant acreage response.  Although the response is

modest in most cases, a large response was found for wheat in the Northern Great Plains.  The

authors find that increases in participation resulting from decreases in premiums yield relatively

small acreage responses.  The study estimates that a 50% decrease in premiums would result in

an increase in acreage of .25-3.5%. 

Literature that directly addresses the environmental impacts of increases or shifts in

production at the extensive margin as a result of crop insurance and disaster relief is far from

abundant but is beginning to surface as policy debates on the issue become more prevalent.  In

1999, Wu investigated the effect of crop insurance on crop mix and chemical input use in the

Central Nebraska Basin.  Wu hypothesized that crop insurance was encouraging changes in

cropping patterns and application rates of chemical inputs.  Using farm level data and a

simultaneous equation system, Wu found that farmers with higher soil erosion rates in their corn

fields were in fact more likely to purchase corn insurance.  Additionally, Wu’s results show that

purchasers of crop insurance shifted production from hay and pasture to corn and soybeans,

resulting in increased soil erosion along with increased applications of nitrogen, phosphorus, and

atrazine.

One reason for the lack of research on the environmental impacts of crop insurance and

disaster relief may be the lack of a comprehensive environmental quality index.  While numerous
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indexes have been developed to measure soil erosion, wind erosion, and other environmental

quality concerns, a comprehensive direct measure of environmental damages that result from

agriculture does not exist.  It is of course understandable that this is the case.  The creation of

such index would be a daunting task requiring massive amounts of data.  Even with such an

index, in an ever-changing physical environment, a static index would be of little use over time.

Nonetheless, some individuals such as Ralph Heimlich and others have attempted to create sets

of indicators of potential environmental damages.

Using a set of indicators developed by Heimlich and the Economic Research Service

(ERS), Heimlich provided information on the “geographic distribution of potential

environmental damages from agricultural production” (Heimlich, 1994). Indicators were

weighted by affected population and in the case of soil productivity, dryland cash rent per year.

In the 1994 paper entitled “Targeting Green Support Payments: The Geographic Interface

between Agriculture and the Environment”, Heimlich states that we must “explicitly recognize

that the environment is fundamentally a spatial phenomenon requiring spatial indicators”.

The indicators used for this study, discussed in the next chapter, follow in a similar vein.

Environmental indicators are compiled from NRCS databases and are used to give an estimate of

potential environmental impacts resulting from changes in production risk.
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CHAPTER THREE
DATA AND METHODOLOGY

This study develops a model to estimate the correlation between crop yield risk and the

agri-environmental indicators to be described in the independent variables section of this chapter.

Two separate regression models are estimated, using a different dependent variable for each.

These measures are discussed in detail in the dependent variables section of this chapter.

To estimate the correlation between yield risk and the environmental variables, data from

various sources are used.  The National Agricultural Statistics Service (NASS) provided crop

yield data by county for the years 1956-2000.  These data were used to estimate the yield risk

statistic.  Data for the environmental variables comes from the Natural Resource Conservation

Service (NRCS) Resource Assessment Division.  Geographic information on Farm Resource

Regions was provided by the ERS.

The purpose of this study is to investigate the relationship between yield risk and the

environment.  Previous studies have shown that risk management programs such as disaster

assistance and crop insurance have caused shifts in the production of six major crops in the U.S.

Additionally, research has shown that these programs are likely to encourage production

expansions onto the extensive margin, at both the farm level and regional level.  Individuals at

the Environmental Working Group and elsewhere have proposed that expansions and shifts in

production may result in environmental damages.  This study attempts to indirectly assess the

potential environmental impacts of such shifts and expansions by looking more closely at the

relationship between yield risk and a set of agri-environmental indicators discussed in the

independent variables section of this chapter.

Dependent Variables

Two dependent variables are designed to reflect the level of yield risk at the county level.

NASS data was gathered for the years 1956-2000 on each of the major program crops: corn,

soybeans, wheat, grain sorghum, cotton, and barley for both the Model 1 and Model 2 variables.

The dependent variable of Model 2, is the coefficient of variation for the total normalized percent

deviation from the trend yield in a county.  To arrive at the Model 2 yield variable, several

calculations were performed.  First, the normalized percent deviation from the trend was
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calculated by taking the percent deviation from the trend and dividing by crop share for each

county.  This weighed the percent deviation from the trend for a given crop in such a way as to

represent the share of that crop in the county in that year.  Next, the sum of all the normalized

percent deviations from the trend is taken for a given year and multiplied by 100.  The standard

deviation divided by the county mean then creates the coefficient of variation.  The Model 1

yield variation variable is derived in the same manner but only uses observations where the

percent deviation from the trend is negative.  Such a negative number should better reflect actual

yield loss.  Since negative deviations from the trend are often very large (as is the case of a

catastrophic loss due to drought, major freezes, and excess rain) eliminating positive deviations

from the trend, which are often small, provides a more accurate measure of the yield risk used to

determine crop insurance subsidies.  The estimation is expressed mathematically as;

Normalized Deviant = Σ (AY/TYtc) * CStc + … (AY/TYt6) * CSt6                              3.1

Where AY represents average yield, TY represents trend yield for the crop over the time period t,

t represents time in years 1950-2000, C represents one of the six crops studied, and CS represents

crop share.  The coefficient of variation was calculated as the standard deviation of the

normalized deviant divided by the mean of the normalized deviant. Geographic Information

Systems (GIS) coverages for Model 1 and Model 2 are provided in Appendix 3.1.

Independent Variables:

The study uses five explanatory variables along with an acreage control variable to

examine the relationship between yield risk and the environmental attributes of the extensive

margin. The variables chosen account for the majority of the environmental impacts of

agriculture found throughout the U.S.  All of the agri-environmental indicators are products of

the Resource Assessment Division of the NRCS- United States Department of Agriculture

(USDA). Table 3.1 shows the five agri-environmental indicators along with their data sources,

years of record, spatial scale, and crop coverage.  Detailed information on each explanatory

variable follows the table.  Maps for each explanatory variable can be found in Appendix 3.2-

Explanatory Variable Maps.
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Table 3.1- Explanatory Variables

Variable Name Sources of Data Years of Record Spatial Scale Crop Coverage

Soil Erosion-
Water

National
Resources
Inventory

1997 8-Digit Hydrologic
Unit

Cultivated
Cropland

Soil Erosion-
Wind

National
Resources
Inventory

1997 8-Digit Hydrologic
Unit

Cultivated
Cropland

Potential Nitrogen
Fertilizer Loss

National
Resources
Inventory

1992 8-Digit Hydrologic
Unit

Corn, Soybean,
Wheat, Cotton,
Barley, Sorghum,
Rice

Pesticide Leaching
Potential and
Pesticide Runoff
Potential

National
Resources
Inventory

1992 8-Digit Hydrologic
Unit

Barley, corn,
cotton, oats,
peanuts, potatoes,
rice, sorghum,
soybeans, sugar
beets, sunflowers,
tobacco, wheat

Average Annual Soil Erosion by Water on Cultivated Cropland as a Proportion of the

Tolerable Rate (T) is used to determine the distribution of soil erosion by water over the study

area.  The variable represents estimates of actual soil erosion in 1997 due to water relative to the

tolerable soil loss rate (T).  Soil erosion is determined by using the Universal Soil Loss Equation

(USLE) for individual 8-digit hydrologic units.  (A U.S. map with an overlay of 8-digit

hydrologic units can be found in Appendix 3.3- 8 Digit Hydrologic Units.)  The T factor or the

soil loss tolerance is used in conjunction with the USLE.  The tolerable rate is defined as the

“maximum rate of annual soil erosion that will permit crop productivity to be sustained

economically and indefinitely” (Soil Erosion by Water, 2001).  Using location specific NRI data

the USLE is calculated as: A = RKLSCP, A is the computed soil loss per unit area, R is the

rainfall factor, K is the soil erodibility factor, L is the slope length factor, S is the slope steepness

factor, C is a cover and management factor, and P is a conservation practice factor (Soil Erosion

by Water, 2001).

Data for the soil erosion variable was gathered from the 1997 Natural Resources

Inventory (NRI).  Cultivated cropland is defined as land devoted to row or close crops, summer

fallow, aquaculture in crop rotation, or other cropland not planted including set-aside, double-

cropped land devoted to horticulture, or land in hay or pasture previously in row or close crops in

one of the past three years.
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Water erosion is defined by the NRCS as the “process of detachment, transport, and

deposition of soil in which the primary agent is water” (Water Quality and Ag., 1997).  Water

erosion can be caused by sheet, rill, and gully erosion but is only measured by sheet and rill for

this analysis.  Sheet and rill erosion is characterized by the removal of a thin layer of topsoil by

runoff water.  This type of erosion typically forms small eroding channels a few inches in depth.

Soil erosion by water in the U.S. is found primarily east of the 100th meridian, where rainfall is

heaviest. (Water Quality and Ag., 1997)

The NRCS refers to the wind erosion variable (e_wind) by the title, Average Annual Soil

Erosion by Wind on Cultivated Cropland as a Proportion of the Tolerable Rate (T).  This

variable uses data from the 1997 NRI to measure actual soil erosion by wind for each 8-digit

hydrologic unit.  Actual soil erosion for the variable is calculated using the average annual Wind

Erosion Equation (WEQ).  Wind erosion is defined as “The process of detachment, transport,

and deposition of soil by wind” (Soil Erosion by Wind, 2001).  The WEQ is “an erosion model

designed to predict the long-term average annual soil losses from a field having specific

characteristics” (Soil Erosion by Wind, 2001).  The functional form is E = f(IKCLV) where E,

measured in tons per acre per year, is the estimated average annual soil loss, I is the soil

erodibility, K is the soil ridge roughness factor, C is the climatic factor, L is the equivalent

unsheltered distance across the field along the prevailing wind erosion direction, and V is the

equivalent vegetative cover.  Wind erosion occurs primarily in the western U.S. and is especially

prominent in Minnesota, Texas, Oklahoma, New Mexico, Colorado and areas of Montana. (Soil

Erosion by Wind, 2001)

The third NRCS variable used in this study is Potential Nitrogen Fertilizer Loss from

Farm Fields, Based on Production of 7 Major Crops.  Potential nitrogen loss was measured using

land use data from the 1992 NRI along with fertilizer use data and crop yield data from NASS.

Nutrient application rates by state as well as the percentage of acres treated with nitrogen were

imputed to NRI sample points by state and crop.  Crops included in the study were corn,

soybean, wheat, cotton, barley, sorghum, and rice.  Excess nitrogen was calculated on a per acre

basis in pounds for each NRI sample point.  Excess nitrogen was calculated as the difference

between the application rate and the estimated amount of nitrogen likely to be taken up by the

crop grown and removed from the field at harvest.  Nutrient uptake was calculated as the percent

of nutrients in the harvested crop biomass multiplied by the acre-based county crop yield five-
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year average (1988-1992).  By dividing the excess nitrogen loading per watershed (accounting

for the percent of acres treated in each watershed) by total acres of non-federal rural land in the

watershed, an average per-acre rate for each watershed was determined. (Potential Nitrogen

Fertilizer, 1996)

The category Pesticide Leaching and Runoff Potential by Watershed for 13 Crops is used

to derive the fourth and fifth variables used in the study.  Five determinants of pesticide loss

were used in a simulation including: 1. intrinsic potential of pesticide runoff or leaching losses

from a given soil type, 2. chemical properties of the pesticides, 3. annual rainfall and its

relationship to leaching and runoff, 4. cropping patterns, and 5. chemical use.  Loss estimates

were estimated for NRCS by Don Goss (Texas Agricultural Experiment Station, Temple, Texas)

using the Groundwater Loading Effects of Agricultural Management  (GLEAMS) field-level

process model.  Estimates for leaching and runoff were made for 240 pesticides applied to 120

soils for 20 years of daily weather from 55 climate stations in the U.S.  Pesticide runoff was

defined as movement beyond the edge of the field and included pesticides in solution as well as

pesticides in soil and organic matter.  Pesticide leaching was defined as movement beyond the

bottom of the root-zone. Irrigated and non-irrigated conditions were accounted for in separate

estimates.  Using 1992 NRI sample points as representative fields along with land use data and a

national chemical use database, pesticide loss results were integrated to simulate potential

pesticide loss on thirteen crops including: barley, corn, cotton, oats, peanuts, potatoes, rice,

sorghum, soybeans, sugar beets, sunflowers, tobacco, and wheat.  An estimate of the expected

level of pesticides applied by crop and by state, along with the percent of acres treated was

obtained by NRCS for over 200 pesticides.  Their estimates reflect average chemical use over the

years 1990-93.  To estimate potential pesticide loss, chemical application rate data was combined

with state and crop-specific NRI sample points.  Maximum levels of runoff and leaching over the

20-year period of study were attributed to NRI sample points using match-ups by soil and

proximity to the climate stations.  Total loss from each NRI sample point was measured by

summing over loss estimates for all potential chemicals used on the crop grown and was adjusted

for percentage of acres treated.  Total losses from NRI sample points were then aggregated over

all points within a watershed using NRI expansion factors and weights and were then averaged

by dividing the acres of nonfederal rural land in the watershed. (Pesticide Leaching 1996,

Pesticide Runoff 1996)
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The acreage control variable was calculated by taking the acreage in each county devoted

to the production of the six focus crops and dividing that number by the total number of acres in

the county and multiplying by 100.  This gave the percentage of acreage devoted to the

production of the six study crops in each county. This value is a reflection of cropping intensity

within a county.  Data on total number of acreage in each county was not limited to land devoted

to agriculture.  Thus, total county acreage reflects all lands within a county, regardless of land

cover and does not reflect the percentage of agricultural land within a county devoted to the six

crops in the study.

Because risk data was calculated using FIPS codes while environmental variables were

created using 8-digit hydrologic units (HUCs), GIS and the statistical software SAS were used to

convert watershed or hydrologic units into weighted FIPS or county units.  The polygons

representing counties and watersheds were united using the union tool in the Arcview GIS

software.  Next the area of the individual union polygons of county and watershed areas were

calculated using an Arcview script.  Using SAS the area of union polygons with identical FIPS

and HUCs designations were summed.  Next, the areas of unionized polygons were summed by

identical FIPS designation to determine the area of the FIPS unit.  Finally, environmental

indicators assigned to HUC units were transferred to FIPS units by summing the HUC values

weighted by unionized FIPS-HUC polygon area as a ratio of total FIPS area for each FIPS unit

(See Eq. 3.1).

Where X is the environmental variable of interest.

Farm Resource Regions

Hydrologic units in the study area were aggregated into nine ERS Farm Resource

Regions (Agri-Environmental Policy at the Crossroads, 2001).  Farm resource regions are

derived from four sources: (1) the Farm Production Regions- Northern Plains, Delta, etc., (2) a

cluster analysis of farm characteristics in the U.S. (Sommer and Hines, 1991), (3) the USDA

Land Resource Regions, and (4) the National Agricultural Statistics Service’s (NASS) Crop

Reporting Districts (CRD).  Regions were constructed based on the types of commodities grown,

1.3)/( FIPSHUCFIPSHUC

HUCFIPS

FIPS AreaAreaXX −∗
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along with environmental and physiographic factors such as soil, climate, and water.  Regional

boundaries conform to CRD’s but state boundaries were not a factor in the aggregation process.

The nine regions are: the Basin and Range, Northern Great Plains, Heartland, Northern Crescent,

Fruitful Rim, Prairie Gateway, Mississippi Portal Southern Seaboard, and Eastern Uplands.  A

map of each of the regions is found in Appendix 3.4- ERS Farm Resource Regions. (Water

Quality and Ag., 1997)

Theoretical Model

The proposed model tests the hypothesis that shifts and expansions in production into

relatively more risky regions of the country are resulting in changes in soil erosion and chemical

use.  An Ordinary Least Squares (OLS) model is developed to test the relationship between yield

risk and the environment.  The model uses the yield risk variable as the dependent variable.  The

modeled equation (Equation 3.2) is:

where Yi represents the yield risk variable for each i FIPS unit in the study and Xi represents the

explanatory (environmental) variables.  R represents the number of regions 1 through 9 and K

represents the environmental variables 1 through 6. Dir = 1 if Region = r and is 0 otherwise.  The

modeled data is cross sectional, but is not time series (i.e., is grouped).  As described previously

in the dependent variables section, yield variation data was compiled across years to give a single

yield risk value estimate for each county.

The structure of Equation 3.2 follows that of  a fixed effects model.  In a fixed effects

model the intercept varies across the N cross-sectional units, or regions.  As there are 9 separate

regions used in the model, N-1 dummies are used.  The dummy variable coefficients are used to

measure shifts in the regression line arising from unknown variables (Kennedy, 1998).

Differences in intercept are differences in mean crop yield variation by region.
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While designed like a fixed effects model, Equation 3.2 is not a fixed model because the

data are not time series.  Furthermore, Equation 3.2 allows for shifts in slope, something not

common in a fixed effects model.  However, one characteristic of a fixed effects model utilized.

Specifically, it is assumed that the errors for each cross section are well behaved (i.e., σ2
r=1 = …

= σ2
r=1).  If so then this model is efficiently estimated by OLS.  This is a strong assumption for

grouped data, but one that is maintained throughout this investigation.  Again, Equation 3.2 is

special in that it captures differences in the independent variables by region.  Specifically,

Equation 3.1 allows changes in both the intercept and slope terms by region.  The design of

Equation 3.1 is a block diagonal matrix (Equation 3.2) such that Y = xb where:

x(i,k) j=1    0 . . .        0    k = 1…K = 7                                       3.3

X = 0   x(i,k) j=2      0     i = 1…I = # of counties in region

0    0 x(i,k) j=3   j = 1…J = 9 regions

The block diagonal matrix is (J∗I)∗(J∗K) where J is 9 (the number of regions), and K is 7

(the number of parameters plus the region dummy variable).  Thus this model estimates J∗K

parameter values (i.e., b is (J∗K)∗1) to explain the variation in the vector Y that is dimension

(J∗K)∗1).  Note that all K regional dummy variables are included in this model, hence estimation

does not include an intercept.  Specifically (Equation 3.4);

∑j=i CDij = 1 for all K = 1...(J∗I)                  3.4

The intercept, if included, would be perfectly correlated with the included country dummy

variables and estimation of equation 3.2 would fail due to X being non-singular.

Autocorrelated errors were tested for using the Durban Watson test.  The test revealed

that autoregressive error terms existed in all regions of the data except the Basin and Range.

Because autoregressive error terms violate an assumption of linear regression the data was

corrected for autocorrelation using first differencing.  If autocorrelation goes uncorrected, the

residual variance is likely to underestimate the true variance.  Additionally, variances and

standard errors of the OLS estimators are likely to underestimate the true variances and standard

errors.  As a result, t and F tests of significance would no longer be valid and would provide

misleading conclusions regarding the significance of the estimated regression coefficients

(Kennedy, 1998).
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Heteroskedasticity was also found in all regions of the data other than the Basin and

Range.  This implication is that one or more of the independent variables varies in magnitude in

direct proportion to the residuals.  This violates the assumption of homoskedastic variance of

residuals.  Heteroskedasticity was corrected by using weighted least squares where the weight

was determined using a variant of White’s procedure.  The consequences of not correcting

heteroskedasticity are the same as those for not correcting autocorrelation.

The Barra-Jarque test was run to test for normality.  Normality assumes that εi is normally

distributed, meaning that for each value of X, the disturbance is normally distributed around

zero.  The test revealed that εi was not normally distributed about the mean.  A DF Betas test was

run to determine influential observation and outliers.  Problem observations were then removed

from the data set in an effort to correct infinite error variance.  Although non-normality still

exists in the data, in most cases removing influential observations and outliers resulted in a more

normal distribution of errors.

Given Equations 3.2 and 3.3 the model estimated in this study is (Equation 3.5):

Risk1 =                   3.5
b11R1i + b12 Ni * R1i + b13 Wind Ei * R1i  + b14 Water Ei * R1i + b15 PRi * R1i + b16 PLi * R1i + b17 ACi *R1i    +

b21R2i + b22 Ni * R2i + b23 Wind Ei * R2i  + b24 Water Ei * R2i + b25 PRi * R2i + b26 PLi * R2i + b27 ACi *R2i     +

b31R3i + b32 Ni * R3i + b33 Wind Ei * R3i  + b34 Water Ei * R3i + b35 PRi * R3i + b36 PLi * R3i + b37 ACi *R3i    +

b41R4i + b42 Ni * R4i + b43 Wind Ei * R4i  + b44 Water Ei * R4i + b45 PRi * R4i + b46 PLi * R4i + b47 ACi *R4i     +

b51R5i + b52 Ni * R5i + b53 Wind Ei * R5i  + b54 Water Ei * R5i + b55 PRi  * R5i + b56 PLi * R5i + b57 ACi *R5i     +

b61R6i + b62 Ni * R6i + b63 Wind Ei * R6i  + b64 Water Ei * R6i + b65 PRi * R6i + b66 PLi * R6i + b67 ACi *R6i     +

b71R7i + b72 Ni * R7i + b73 Wind Ei * R7i  + b74 Water Ei * R7i + b75 PRi * R7i + b76 PLi * R7i + b77 ACi *R7i     +

b81R8i + b82 Ni * R8i + b83 Wind Ei * R8i  + b84 Water Ei * R8i + b85 PRi * R8i + b86 PLi * R8i + b87 ACi *R8i     +

b91R9i + b92 Ni * R9i + b93 Wind Ei * R9i  + b94 Water Ei * R9i + b95 PRi * R9i + b96 PLi * R9i + b97 ACi *R9i

In Equation 3.5 Risk1 is crop yield variation by FIPS.  N is Potential Nitrogen Fertilizer Loss

from Farm Fields, Wind E is Average Annual Soil Erosion by Wind on Cultivated Cropland as a

Proportion of the Tolerable Rate (T), Water E is Average Annual Soil Erosion by Water on

Cultivated Cropland as a Proportion of the Tolerable Rate, PR is Pesticide Runoff Potential, PL

is Pesticide Leaching Potential, and AC is the acreage control variable described earlier.  Again,

R1 through R9 are dummy variables for each of the 9 regions included for estimation.
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CHAPTER FOUR
EMPICIRAL ANALYSIS

The results reported in this chapter are from the estimation of model 1 described in

Chapter 3 (Figure 3.?). With respect to model results, greatest emphasis will be placed on Model

1, as it is believed to provide a more accurate measure of yield risk that better matches crop

insurance subsidies.  However, both models yield similar results. The chapter is divided into

three sections.  The first provides an overview of the estimation results and the acreage and

weighted mean values for each of the variables by region for Model 1.  Section two is a detailed

analysis of the parameter estimates for all nine regions in the study and addresses the impacts of

increases in production within a particular region.  The third section discusses the elasticity

values for Model 1 and the potential inter-regional impacts of production at the extensive

margin.

Results are derived for the nine ERS Farm Resource Regions described in Chapter Three.

However, most of the discussion will focus on three regions in particular; the Northern Great

Plains, the Heartland, and the Prairie Gateway. These three regions make up over 80% of the

acreage devoted to the six crops used in the study. Little emphasis is placed on the Fruitful Rim,

Basin and Range, and Eastern Uplands regions, as they make up a small portion of the acreage

devoted to the six crops used in the study.

Table 4.1 summarizes the estimated relationship between yield risk and the explanatory

variables for the nine regions.  The left-hand column reports the percentage of acres devoted to

the crops used in the study.  The regression results reveal that the Heartland, Prairie Gateway,

and Northern Great Plains regions show a positive correlation between yield risk and erosion.

Positive correlations between yield risk and erosion suggest that as yield risk increases within

each region, soil erosion from wind and water is likely to increase as well.

The estimated relationship between yield risk and chemicals (i.e. Nitrogen Fertilizer

Loss, Pesticide Runoff and Pesticide Leaching) are less clear.  While the relationship between

yield risk and chemical loss does not conform to expectations in some regions, it is believed that

the model may not be properly designed to capture the relationship between chemical use and

yield risk.  Specifically, the model does not take into account the type of crop being produced.
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As chemical use can be closely tied with a particular crop, for example nitrogen fertilizer and

corn, a control for the type of crop produced may yield more meaningful results.

The negative relationship between the acreage control variable and yield variation is of

the expected sign.  The negative correlation simply reflects the reality that cropping is more

intense in areas with lower yield variability (i.e., a higher proportion of the surface is planted to

these crops in low risk areas).

It should be noted that an increase in crop acreage does not cause a decrease in yield

variability.  This study is not designed to show causality.  Similarly, a positive correlation

between wind erosion and yield variability cannot be interpreted to mean that increases in yield

variability cause increases in wind erosion.  Rather, the evidence strongly suggests that a

statistically significant correlation exists between wind erosion and areas that have greater yield

risk.  As soil erosion from wind increases, an increase in yield risk, within that particular region,

is also present.

The analysis of variance, having corrected the data for infinite error variance and non-

spherical errors, reveals a coefficient of determination (Adj R-sq) of 0.91.  This suggests that

91% of the variance in the dependent variable is being explained by the independent variables.

The probability of F (Pr > F) is .0001, which suggests that at least one of the independent

variables aids understanding of yield variance with 99% confidence.

Table 4.1 Included Variables, Regions, Acreage Percent, Average Variation in Crop Yield,
and Sign of Parameter Coefficients for Models 1.

Model 1 % Acres Regional
Variation

Nitrogen Wind
Erosion

Water
Erosion

Pest-
Runoff

Pest-
Leaching

Acreage
Control

Heartland 40.6 0.094 . POS POS NEG . NEG
Prairie
Gateway

26.4 0.163 NEG POS . . NEG NEG

N. Great
Plains

13.6 0.136 NEG . POS . NEG NEG

Northern
Crescent

6.3 0.143 NEG NEG NEG NEG . NEG

Mississippi
Portal

5.8 0.088 . . . . . .

Southern
Seaboard

3.3 0.148 NEG . . . NEG NEG
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Missing observation denote parameter estimates that are not statistically different from 0 at

α=0.05.

Regional mean values weighted to control for regional differences in acreage, are

reported in Table 4.2.  The variance of  crop yield variation ( β̂ ) is used as a measure of the

dispersion of the sampling distribution of β̂ by region.  Weighted mean values for the

explanatory variables reveal high levels of actual and potential environmental damage in several

regions of importance.  Among these are nitrogen loss from farm fields in the Heartland and

Mississippi Portal, and wind erosion above the tolerable rate (T) in the Prairie Gateway and

water erosion above the tolerable rate (T) in the Heartland.

Table 4.2 Regional Mean Values Weighted by Acres for Model 1.

Region Acreage
in
Millions

% of
Total
Acreage

Weighted
Mean-
Model 1

Weighted
Variance-
Model 1

Nitrogen Wind
Erosion

Water
Erosion

Pest
Runoff

Pest
Leaching

Basin and
Range

2.1 1.09 0.09 0.000 3.27 0.86 1.10 2.00 2.22

Northern
Great Plains

26.2 13.58 0.11 0.019 4.38 3.51 0.32 1.83 1.05

Heartland 78.3 40.6 0.06 0.010 23.87 0.53 0.91 2.94 1.64
Northern
Crescent

12.2 6.30 0.09 0.019 0.88 0.09 0.05 0.43 0.62

Fruitful Rim 2.8 1.45 0.10 0.003 9.09 8.42 0.67 1.59 2.16
Prairie
Gateway

50.8 26.38 0.10 0.022 7.45 3.26 0.57 2.03 1.95

Mississippi
Portal

11 5.76 0.07 0.002 18.17 0 1.07 2.92 2.93

Southern
Seaboard

6.3 3.28 0.05 0.016 2.08 0 0.18 1.17 2.15

Eastern
Uplands

2.7 1.42 0.11 0.003 0.65 0 0.13 1.08 1.11

Intra-regional analysis

It is important to note that while the results are discussed by region the model was run

using the entire data set (See Equation 3.?).  Region one, Basin and Range, makes up a 1.9% of

the acreage in the study area and observations only come from Montana and Colorado.  The

weighted variance for this region, 0.00099, is the lowest in the study area (Table 4.2).  The mean

value of yield risk variation in the region is 0.09.  The Basin and Range has the largest share of

nonfamily farms and the smallest share of U.S. cropland.  The area produces primarily cattle,
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(not included in this study) wheat, and sorghum, and accounts for 4% of U.S. farms, cropland,

and value of production.  No statistically significant correlations are found between yield risk

and the explanatory variables (Table 4.3).

Table 4.3 Parameter Estimates: Region One- Basin and Range.

Parameter Estimates
Variable Parameter Estimate Standard Error        t Value      Pr > |t|
Region 1 0.08218 0.01381 8.95                   <.0001
Nitrogen-Leach/Runoff -0.00069686 0.00591 -0.12 0.9062
Erosion-Air -0.00227 0.00216 -1.05 0.2919
Erosion-Water 0.00465 0.01457 0.32 0.7495
Pesticide-Runoff 0.00494 0.01450 0.34 0.7334
Pesticide-Leach -0.00137 0.00801 -0.17 0.8646
Acreage Control -0.00032364 0.00158 -0.20 0.8379

The Northern Great Plains, Region 2, shows statistically significant correlations for

nitrogen leaching and runoff, erosion by water, and pesticide leaching, along with the acreage

control variable and the intercept (Table 4.4).  A positive correlation exists between yield risk

and soil erosion by water.  Although a direct causal relationship may not be inferred, the results

strongly suggest that as yield risk in the Northern Great Plains increases, increased soil erosion

by water is likely.  This is especially concerning given that the Northern Great Plains make up

nearly 14% of the acreage in the study area, approximately 26 million acres.  The Northern Great

Plains has a weighted variance of 0.019 and a weighted mean value of yield risk variation of

0.11, the highest in the study (Table 4.2). The area with the largest farms and the smallest

population, the Northern Great Plains make up 5% of farms, 6% of the value of production, and

17% of the cropland in the U.S.  The area produces primarily wheat, cattle, and sheep.

Table 4.4 Parameter Estimates: Region Two- Northern Great Plains.

Parameter Estimates
Variable Parameter Estimate Standard Error t Value Pr > |t|
Region 2 0.13628 0.01101 12.38      <.0001
Nitrogen-Leach/Runoff -0.00287 0.00078350 -3.67      0.0003
Erosion-Air -0.00151 0.00125 -1.21     0.2273
Erosion-Water 0.03402 0.01710 1.99     0.0468
Pesticide-Runoff 0.00293 0.00369 0.79     0.4277
Pesticide-Leach -0.01346 0.00439 -3.07      0.0022
Acreage Control -0.00039011 0.00021564 -1.81      0.0706
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The Heartland makes up the region of the U.S. with the most farms (22%), the highest

value of production, (23%), and the most cropland (27%).  For Model 1 the Heartland has the

lowest weighted mean value of yield risk variation (0.06) in the study outside of the Southern

Seaboard, and has a weighted variance of 0.01 (Table 4.2).  The region produces primarily cash

grain and cattle farms and is found to have statistically significant correlations between yield risk

and all independent variables except pesticide leaching and nitrogen leaching and runoff (Table

4.5).  Positive correlations are found for soil erosion by wind and water, along with the acreage

control and the intercept.  A positive correlation between wind erosion and yield risk is

particularly important since the Heartland makes up the highest percentage of acreage in the

study at 40% or 78 million acres. Once again, a direct causal relationship cannot be inferred but

as yield risk increases in the Heartland, it is likely that soil erosion above the tolerable rate (T)

will also increase.  If producers respond to subsidies that pay more to those in higher risk regions

by increasing production, as previous research has shown, increases in acreage are likely to result

in increased soil erosion above the tolerable rate.

Table 4.5 Parameter Estimates: Region Three- Heartland

Parameter Estimates

Variable Parameter Estimate Standard Error t Value Pr > |t|
Region 3 0.09434 0.01280 7.37     <.0001
Nitrogen-Leach/Runoff -0.0004503 0.00020247 -0.22 0.8240
Erosion-Air 0.00271 0.00160 1.70 0.0895
Erosion-Water 0.00669 0.00345 1.94 0.0526
Pesticide-Runoff -0.01044 0.0475 -2.20 0.0279
Pesticide-Leach -0.00095501 0.00147 -0.65 0.5149
Acreage Control -0.00023366 0.00008200 -2.85 0.0044

Region four, called the Northern Crescent, includes portions of Minnesota, Wisconsin,

Michigan, a small section of Ohio, and most of Pennsylvania.  The Northern Crescent makes up

6.3% of the total acreage in the study with 12 million acres.  The region has weighted mean

value of yield risk variation of 0.09 and a weighted variance of 0.019 (Table 4.2).  Much of the

Northern Crescent is not included in the study area, as it does not produce a significant amount

of the six crops used in the study.  The Northern Crescent as a whole is the most populous region
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in the country and makes up 15% of farms, 15% of the value of production, and 9% of the

cropland.  Dairy, general crops, and cash grain farms are prevalent in this area of the country.

Although all independent variables except pesticide leaching are significant for the region, none

are positively correlated with yield risk (Table 4.6).

Table 4.6 Parameter Estimate: Region Four- Northern Crescent.

Parameter Estimates
Variable Parameter Estimate Standard Error t Value Pr > |t|
Region 4 0.14296 0.00535 26.73        <.0001
Nitrogen-Leach/Runoff -0.00118 0.00011255 -10.52        <.0001
Erosion-Air -0.00305 0.00088349 -3.46         0.006
Erosion-Water -0.00645 0.00168 -3.85         0.0001
Pesticide-Runoff -0.01927 0.00209 -9.20        <.0001
Pesticide-Leach 0.00094139 0.00152 -0.62 0.5353
Acreage Control -0.00000524 0.00000005 -9.13 <.0001

The Fruitful Rim makes up a relatively small portion of the study area with observations

found in parts of Texas, Georgia, Alabama, and South Carolina.  The majority of the Fruitful

Rim is located outside of the study area in California, Florida, and the Northwestern U.S.  The

region makes up 1.4% of the study area with 2.8 million acres devoted to the crops used in the

study.  Statistically significant correlations are found for nitrogen runoff and leaching, as well as

soil erosion by water (Table 4.7).  Soil erosion above the tolerable rate (T) is positively

correlated in this, suggesting that as risk increases, actual soil erosion also increases.  Because

most observations in the Fruitful Rim are located on the coast, soil erosion by water is not

unexpected.

Table 4.7 Parameter Estimate: Region Five- Fruitful Rim.

Parameter Estimates
Variable Parameter Estimate Standard Error t Value Pr > |t|
Region 5 0.11094 0.00961 12.37     <.0001
Nitrogen-Leach/Runoff -0.00061883 0.00097021 -0.64 0.5237
Erosion-Air -0.00059877 0.00070047 0.85 0.3928
Erosion-Water 0.01484 0.00655 2.27 0.0234
Pesticide-Runoff -0.00167 0.00427 -0.39 0.6957
Pesticide-Leach 0.00191 0.00529 0.36 0.7185
Acreage Control -0.00102 0.00033231 -3.08 0.0021
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Region six, the Prairie Gateway, makes up 13% of farms, 12% of the value of production,

17% of cropland, and consists of several states in the study region including Kansas, Oklahoma,

and parts of Texas, Colorado, and Nebraska.  The second largest region in the study, the Prairie

Gateway makes up 26% of the acreage in the study with approximately 51 million acres.  The

region has a weighted mean value of yield risk variation of 0.1 and a weighted variance of 0.24

(Table 4.2).  The Prairie Gateway produces primarily wheat, oat, barley, rice and cotton along

with cattle and sorghum.  Statistically significant correlations were found for all independent

variables except erosion by water and pesticide runoff (Table 4.8).  A positive correlation exists

between yield risk and soil erosion by air.  Because the Prairie Gateway is such a large region, a

positive correlation between yield risk and soil erosion by wind is especially significant.

Table 4.8 Parameter Estimate: Region Six- Prairie Gateway.

Parameter Estimates
Variable Parameter Estimate Standard Error t Value Pr > |t|
Region 6 0.16328 0.00513 31.81       <.0001
Nitrogen-Leach/Runoff -0.00133 0.00033192 -4.00       <.0001
Erosion-Air 0.00191 0.00022624 8.43       <.0001
Erosion-Water -0.00567 0.00407 -1.40       0.1632
Pesticide-Runoff -0.00353 0.00234 -1.51       0.1361
Pesticide-Leach -0.01250 0.00170 -7.37     <.0001
Acreage Control -0.0004828 0.000075 -6.40       <.0001

The Mississippi Portal is made up of areas bordering the Mississippi River Valley from

Tennessee to the Louisiana Delta.  The Mississippi Portal makes up 5.7% of the total acreage in

the study with 11 million acres devoted to the six crops in the study.   The region has a weighted

mean value of yield risk variation of 0.07 and a weighted variance of 0.0025 (Table 4.2).

Because of missing data, the independent variable soil erosion by air was not regressed for this

region.  No statistical significance is found in the region, apart from the intercept.(Table 4.9)
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Table 4.9 Parameter Estimates: Region Seven- Mississippi Portal.

Parameter Estimates
Variable Parameter Estimate Standard Error t Value Pr > |t|
Region 7 0.08875 0.02076 4.27        <.0001
Nitrogen-Leach/Runoff -0.00045750 0.00075941 -0.60        0.5469
Erosion-Air - - - -
Erosion-Water -0.00143 0.00578 -0.25 0.8045
Pesticide-Runoff -0.00417 0.00894 -0.47 0.6413
Pesticide-Leach 0.00168 0.00975 0.17 0.8630
Acreage Control -0.000109 0.000312 -0.35 0.7258

Region eight, the Southern Seaboard, is made up of a mix of small and large farms that

produce general field crops as well as cattle and poultry. The Southern Seaboard makes up 3.3%

of the total acreage in the study with 6 million acres devoted to the six crops in the study.   The

region has a weighted mean value of yield risk variation of 0.05 and a weighted variance of

0.0169 (Table 4.2).  No statistically significant positive correlations exist in the region (Table

4.10).  Nitrogen and Pesticide Leaching were found to be negatively correlated with the yield

risk.

Table 4.10 Parameter Estimates: Region Eight- Southern Seaboard.

Parameter Estimates
Variable Parameter Estimate Standard Error t Value Pr > |t|
Region 8 0.14805 0.00908 16.30        <.0001
Nitrogen-Leach/Runoff -0.00206 0.00068172 -3.02 0.0025
Erosion-Air -0.02189 0.01503 -1.46 0.1455
Erosion-Water -0.0008 0.00244 -0.33 0.7431
Pesticide-Runoff 0.00335 0.00562 0.60 0.5513
Pesticide-Leach -0.01587 0.00431 -3.69 0.0002
Acreage Control -0.0000065 0.0000041 -1.56 0.1199

The Eastern Uplands, Region 9, consists of mostly small farms and produces primarily

part-time cattle, tobacco, and poultry.  Crops used in this study are not heavily produced in this

region. The Eastern Uplands make up 1.4% of the total acreage in the study with 2.7 million

acres devoted to the six crops in the study.   The region has a weighted mean value of yield risk

variation of 0.11 and a weighted variance of 0.0036 (Table 4.2).   Statistically significant positive

correlations are found between yield risk and soil erosion by air and water (Table 4.11).  Thus, as

yield risk increases, an increase in soil erosion is also likely.
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Table 4.11 Parameter Estimates: Region Nine- Eastern Uplands.

Parameter Estimates
Variable Parameter Estimate Standard Error t Value Pr > |t|
Region 9 0.09133 0.00650 14.04        <.0001
Nitrogen-Leach/Runoff -0.00245 0.00074982 -3.27         0.0011
Erosion-Air 0.71659 0.15508 4.62        <.0001
Erosion-Water 0.00888 0.00276 3.21 0.0013
Pesticide-Runoff -0.00077867 0.00325 -0.24 0.8104
Pesticide-Leach -0.00483 0.00199 -2.43 0.0152
Acreage Control 0.00053 0.000381 1.39 0.1640

Inter-Regional Analysis:

While expansions and shifts in production, and the subsequent environmental impacts of

those shifts, are essentially the results of farm-level incentives, policy decisions are made at the

national level.  For this reason it is necessary to investigate shifts in production occurring

between regions.  Additionally, Heimlich (1994) and others have demonstrated that the

environmental impacts of agricultural can vary greatly across space.  If this is the case, the ability

to determine the relative environmental impacts across regions is necessary.  The inter-regional

analysis is once again broken down by the nine ERS Farm Resource Regions, with special

emphasis placed on the Northern Great Plains, Heartland, Prairie Gateway, Mississippi Portal,

Southern Seaboard, and Eastern Uplands regions.

Table 4.12 shows elasticity values using parameter estimates from Model 1 (Tables 4.3

through 4.11) for each of the six explanatory variables.  For example, if Y = b0 + b1 X1 is the

estimated model, then the elasticity for X, can be determined using Equation 4.1.

The elasticity (ε1 ), calculated according to Equation 4.1, measures the responsiveness of Y to X

at the mean value of Y and X (mean values for each variable are reported in Table 4.2).  Because

the mean is a cross-section specific measure, ε is similar to an arc elasticity common in

economic literature, where εI  measures the percent change in crop yield variability for a percent

change in one of the independent variables.  For example, a one-unit increase in wind erosion in

the Heartland is associated with a 0.026 unit increase in yield variability (Table 4.12).  Positive

1.4)/()/(*)/( 1111 YXbYXXY =∂∂=ε
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elasticity values for erosion exist in the Heartland, Prairie Gateway and Northern Great Plains.

Of the two erosion measures, higher elasticity values are associated with soil erosion by water.

In the Heartland a one unit change in water erosion is associated with a 0.11 unit increase in

yield variability.  A one-unit change in water erosion in the Northern Great Plains is associated

with a 0.102 unit increase in yield variability.  Elasticities for chemicals and the acreage control

variable are negative throughout.  Zero is used when the coefficient is not statistically different

than zero.

Table 4.12 Elasticity Values- Model 1.

Model 1 Elasticity Values by Parameter Estimate
Region Nitrogen Wind

Erosion
Water
Erosion

Pesticide
Runoff

Pesticide
Leaching

Percent
Crop
Acres

Basin and Range 0 0 0 0 0 0
Northern Great
Plains

-0.11 0 0.10 0 -0.13 -0.09

Heartland 0 0.02 0.11 -0.55 0 -0.23
Northern Crescent -0.01 -0.00 -0.00 -0.09 0 -0.55
Fruitful Rim 0 0 0.09 0 0 -0.27
Prairie Gateway -0.09 0.05 0 0 -0.23 -0.18
Mississippi Portal 0 0 0 0 0 0
Southern Seaboard -0.08 0 0 0 -0.69 0
Eastern Uplands -0.01 0 0.01 0 -0.05 0

Intercept values for the nine regions are found in Table 4.13.  Each of the regional

parameter estimates are statistically different from 0 with 95% confidence.  Statistical

differences between regional intercepts are discussed later in this chapter.

Table 4.13 Intercept Values- Model 1

Region          Parameter Estimate                  Standard Error                    t Value    Pr > |t|
Basin and Range 0.08218 0.01381 8.95      <.0001
Northern Great Plains 0.13628 0.01101 12.38      <.0001
Heartland 0.09434 0.0128 7.37      <.0001
Northern Crescent 0.14296 0.00535 26.73      <.0001
Fruitful Rim 0.11094 0.00961 12.37      <.0001
Prairie Gateway 0.16328 0.00513 31.81      <.0001
Mississippi Portal 0.08875 0.02076 4.27      <.0001
Southern Seaboard 0.14805 0.00908 16.3      <.0001
Eastern Uplands 0.09133 0.0065 14.04      <.0001
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Figure 4.1, found at the end of this chapter, shows the mean value of yield variation by

region weighted by total acres in each county used in the study.  Results show that counties in

the Northern Great Plains have the highest overall mean value of variation followed closely by

the Eastern Uplands and the Prairie Gateway.  While the Eastern Uplands stretches from

Pennsylvania down to Georgia and also includes a smaller section in western Arkansas, southern

Missouri, and eastern Oklahoma, it is primarily the portion of this region west of the Mississippi

River that is included in the study.  The area east of the Mississippi River is devoted in large part

to crops not included in the study.  If Griffin (1996), Keeton (1999), and others are correct, it is

likely that the greatest expansions in production are occurring in these regions.  Regions of

comparatively lower yield variation include the Heartland, Mississippi Portal, and the Southern

Seaboard. One common misconception may be that acreage shrinkage is likely to occur in areas

with low yield variation.  On the contrary, Keeton (1999) and others have shown that acreage

expansions are simply occurring at slower rates in these regions of the country when compared

to areas in the Plains states where yield variation is higher.
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Figure 4.1 Mean Variation for Model 1 by ERS Farm Resource Region.

Figures 4.2 through 4.6 examine the relationship between yield risk and the agri-

environmental indicators assuming that all parameter values are fixed at their regional mean.

Figure 4.2, found at the end of this chapter, shows the relationship between yield variation and

soil erosion by water.  A statistically significant positive relationship exists between water

erosion and yield variation in the Northern Great Plains, Heartland, and Eastern Uplands. This

relationship suggests that if producers in regions with high levels of yield risk, like the Northern

Great Plains, respond to subsidies more strongly than producers in less risky regions of

production, an increase in soil erosion from water is likely.  Elasticity values found in Table 4.12

reveal that a one-unit increase in soil erosion in the Northern Great Plains is associated with a

0.102 unit increase in yield variability.  The elasticity value in the Heartland is slightly higher at

0.111.  An F test on the regional intercepts for Model 1 reveals that mean yield variation is

statistically different at a 99% confidence level between the Northern Great Plains and the

Heartland. The slopes for the two regions showing positive correlation between yield variation

and water erosion are not statistically different from one another at the 99% confidence level.
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This suggests that the rate of change in variation as water erosion increases is the same between

the Heartland and Northern Great Plains.  However, the difference in slope between the Northern

Great Plains and the Heartland is statistically significant at an 88% confidence level.

Figure 4.2 Yield Variation and Soil Erosion by Water.

Figure 4.3, found at the end of this chapter, shows the relationship between yield

variation and soil erosion by wind. A statistically significant positive relationship exists for the

Prairie Gateway and Heartland regions.  The Prairie Gateway in particular shows a high level of

yield variation (Fig.4.1- Appendix 4.1) suggesting that acreage expansions are likely in this area

as producers in this region respond to incentives from risk management programs and expand

production onto the extensive margin.  Elasticity values for the Prairie Gateway and Heartland

are 0.06 and 0.03, respectively.  Therefore, a one-unit change in wind erosion in the Prairie
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Gateway is associated with a 0.06 unit increase in yield variability. An F test on the regional

intercept estimates reveals that mean yield variation is statistically different at the 99%

confidence level between the Prairie Gateway and the Heartland.  Slope values for the two

regions, however, are not statistically different from one another suggesting that the rate of

change in variation as wind erosion increases is the same between the Prairie Gateway and the

Heartland.

Figure 4.3 Yield Variation and Soil Erosion by Wind.

The relationship between yield variation and nitrogen runoff and leaching, (Fig. 4.4) is

negative for all areas included in the study except the Heartland and Mississippi Portal, where no
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expectations, as it was thought that a positive relationship would likely exist in some regions of

the country.  As explained previously, one possible explanation for the lack of positive

correlation between yield risk and nitrogen and pesticides may be the design of the model.  The

model may not be designed to properly capture the relationship between chemical use and yield

risk.  More specifically, the model does not take into account the type of crop being produced.

As chemical use can be closely tied with a particular crop, a control for the type of crop

produced may yield more meaningful results.

Figure 4.4 Yield Variation and Nitrogen Runoff/Leaching.

A negative relationship exists between yield variation and pesticide leaching in all

regions except the Northern Great Plains and the Mississippi Portal, where no statistical

significance exists (Fig. 4.5).  Similarly a negative relationship is found between yield variation
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and pesticide runoff (Fig. 4.6) in the Northern Great Plains.  No statistically significant

relationship exists for the remaining regions.  Regional intercept values for pesticide leaching are

quite varied, reaching from a high of approximately 0.14 in the Prairie Gateway and Southern

Seaboard to a low of approximately 0.7 in the Heartland.

Figure 4.5 Yield Variation and Pesticide Leaching.
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Figure 4.6 Yield Variation and Pesticide Runoff.
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CHAPTER FIVE
CONCLUSION

Investigating the relationship between yield risk and the environment brings to light

several potentially relevant policy issues.  This thesis subscribes to the notion that risk

management programs, particularly crop insurance, are creating incentives for farmers to

increase production at the extensive margin.  Firstly, it must be stated that if risk management

programs are encouraging production at the national level, there must necessarily be a resulting

increase in nitrogen and pesticide use and likely an increase in soil erosion as well.  Secondly, if

risk management programs are encouraging increases or shifts in production at the farm level, a

careful look must be taken at the additional acres being brought into production.  Wu’s 1999

study uses farm-level data to show that purchasers of crop insurance shifted production from hay

and pasture to corn and soybeans.  This shift resulted in increased soil erosion, along with

increased applications of nitrogen, phosphorus, and atrazine.

The purpose of this study is to investigate the relationship between yield risk and the

environment.  Previous studies have shown that risk management programs such as disaster

assistance and crop insurance have caused shifts in the production of six major crops in the U.S.

Additionally, research has shown that these programs are likely to encourage production

expansions onto the extensive margin, at both the farm level and regional level.  It been proposed

by individuals at the Environmental Working Group and elsewhere that expansions and shifts in

production may result in environmental damages.  This study attempts to indirectly assess the

potential environmental impacts of such shifts and expansions by looking more closely at the

relationship between yield risk and a set of agri-environmental indicators.  An Ordinary Least

Squares (OLS) model is developed to test this relationship.

The results suggest that increases in production as a result of farmers reactions to risk

management programs are likely taking place primarily in the Northern Great Plains, and the

Prairie Gateway.  The environmental attributes associated with this area of the county are in

many cases vastly different from those in other regions of the U.S. Thus, as marginal land is

brought into production, it becomes imperative that the environmental characteristics of that land

be considered when designing agri-environmental policies such as the targeting green support

payments.
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The results of this study suggest that as farmers take advantage of subsidies that pay more

to those who produce in higher risk regions, increases in soil erosion from water are likely in the

Heartland and Northern Great Plains.  As these two regions make up over half of the U.S.

acreage devoted to the six crops in the study, this is of particular concern.  Elasticities for the two

regions suggest that a one-unit change in water erosion in the Heartland is associated with a 0.11

unit increase in yield variability.   A similar result is found for the Northern Great Plains.

Soil erosion by wind is significantly correlated with yield variation in the Heartland and

Prairie Gateway regions.  As these two regions make up over 65% of the acreage devoted to the

six crops in the study, wind erosion is also of particular concern.  Elasticity values from the two

regions suggest that a one-unit increase in wind erosion in the Heartland is associated with a .026

unit increase in yield variability.  The elasticity value for the Prairie Gateway reveals a .059 unit

increase in yield variability. This suggests that as farmers take advantage of subsidies that

encourage production in higher risk regions, wind erosion in the Heartland and Prairie Gateway

is likely to be a result.

Results of the regression between yield risk and chemicals (i.e. Nitrogen Fertilizer Loss,

Pesticide Runoff and Pesticide Leaching) are less clear.  While the relationship between yield

risk and chemical loss does not conform to expectations in some regions, it is believed that the

model may not be designed to properly capture the relationship between chemical use and yield

risk.  More specifically, the model does not take into account the type of crop being produced.

As chemical use can be closely tied with a particular crop, for example nitrogen fertilizer and

corn, a control for the type of crop produced may yield more meaningful results.  The addition of

a control variable for crop type would likely be an excellent addition to future research.

There are several additional limitations to this study.  The study area is limited

geographically in that for the most part, the western and northeastern U.S. is not included in the

analysis.  Additionally, only six major row crops are included in the study.  The study could be

improved by expanding the research area to all areas of the U.S. as well as incorporating

additional crops.  While such a study would be far more complex, it may allow for a more

complete picture in terms of national environmental impacts, and subsequently allow for greater

national-level policy analysis.  The study is also limited by a lack of data in several areas.  No

direct measure of farm level risk is available at this time.  If such a measure were available

indirect valuation methods such as the yield variation measure employed here would not be
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necessary.  Additionally, while the development of agri-environmental indicators has

significantly improved in recent years, much work is still needed to accurately assess

environmental impacts of agricultural production.
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Appendix A: A.2. Average Annual Soil Erosion By Water

42



Appendix A: A.3. Average Annual Soil Erosion By Wind
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Appendix A: A.4. Potential Nitrogen Fertilizer Loss from Farm Fields
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Appendix A: A.5. Pesticide Leaching Potential by Watershed
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Appendix A: A.6. Pesticide Runoff Potential by Watershed
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Appendix A: A.7. 8-Digit Hydrologic Units
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Appendix A: A.8:  ERS Farm Resource Regions
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