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ABSTRACT OF THESIS 
 
 
 
 

A DEVELOPMENT OF A COMPUTER AIDED GRAPHIC USER INTERFACE 
POSTPROCESSOR FOR ROTOR BEARING SYSTEMS  

 
 

Rotor dynamic analysis, which requires extensive amount of data and rigorous analytical 
processing, has been eased by the advent of powerful and affordable digital computers. By 
incorporating the processor and a graphical interface post processor in a single set up, this 
program offers a consistent and efficient approach to rotor dynamic analysis. 

The graphic user interface presented in this program effectively addresses the inherent 
complexities of rotor dynamic analyses by linking the required computational algorithms 
together to constitute a comprehensive program by which input data and the results are 
exchanged, analyzed and graphically plotted with minimal effort by the user. Just by selecting an 
input file and appropriate options as required, the user can carry out a comprehensive rotor 
dynamic analysis (synchronous response, stability analysis, critical speed analysis with 
undamped map) of a particular design and view the results with several options to save the plots 
for further verification. This approach helps the user to modify the design of turbomachinery 
quickly, until an efficient design is reached, with minimal compromise in all aspects.  
 
KEYWORDS: Rotordynamic Analyses, Graphical User Interface, Post Processor, Cubic Spline, 
Visual Basic. 
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NOMENCLATURE 
 

 The nomenclature in general use in this thesis is listed below. Isolated usage of symbols 

from references is explained at the time of use and may not be included hereafter. 

 

Variable 

     D  Complex quantity 

     F  Force magnitude 

     Ip  Polar moment of Inertia 

     Id   Diametral moment of inertia 

     K  Stiffness 

     m  Mass   

     M  Moment  

     Nj  Jth Nodal location 

     n  Number of points to be plotted 

     Sj  Jth Station (element) 

     q   Vector of nodal displacement 

     U  Unbalance mass 

      λ  Real part of comple eigenvalue (growth factor) 

     ω  Complex part of eigenvalue – frequency (radians) 

 

Subscript 

      x  Along x-axis 

      y  Along y-axis 

      z  Along z-axis 

 

Matrix, Vector and Derivative Notation 

       .  Indicates derivative with respect to time 

       ..  Indicates second derivative with respect to time 

      [ ]  Matrix quantity 

      { }   Vector quantity 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

 This chapter introduces the basic concepts of turbomachinery rotor dynamics and related 

analysis methodology, commonly employed to design, verify and diagnose the high speed 

rotating equipment. A brief study delving into the historical developments in the field of rotor 

dynamics is provided. Also included in the chapter, is a review of computational approaches 

pertaining to rotor dynamics, including the one used in this thesis. The chapter concludes with 

the motivation and scope of effort presented in the thesis. 
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1.1  INTRODUCTION 

 Industrial machinery is said to be optimized when it results from a state-of-the-art 

mathematical simulation and design, comprehensive prototype, preproduction testing and 

manufacturing with minimal costs. A design is stated to be satisfactory if it satisfies the high 

technical requirements and low production costs simultaneously. Hence the machinery design 

involves an element of compromise in the many requirements of secondary importance. The 

success of a design, is not simply achieved by looking at one parameter in isolation, but is a 

complex process, with various parameters in interaction. Generally, as the objectives of the 

design can be formulated in terms of a few global variables, there may be a great many variables 

also defined and handled within each subsystem. The evaluation of how the variables of primary 

importance affect the overall quality of the design is of significant importance. Choosing an 

optimal design based on the particular requirements of the application and at the same time 

keeping in view the manufacturing costs is a challenge for any design, Roso, C. (1997). 

Choosing the best combination of design parameters from the innumerable options is of critical 

importance. 

 Apart from the above mentioned objectives, the other equally vital parameter in a 

profitable machine design is time. Though a designer may achieve a most optimal design, its 

success also depends on the amount of time taken, which is almost always kept constant. Hence 

regardless of whether the other parameters are varied or not, the time assigned for the 

development activity of new machinery is invariably constant. A general industry dictum is that 

a greater degree of inflexibility to the ‘time parameter’ leads to more rapid returns on the 

investment, Roso, C. (1995). Hence it seems straightforward that the time factor for design 

activities must be managed effectively to achieve a machine configuration that best confirms the 

requirements of a given application without requiring exorbitant production costs. Thus it can be 

said that a designer always has time, as an objective function, that is required to be kept at a 

minimum. 

 Machine design is customarily subdivided in phases namely: conceptualization, 

modeling, analysis and verification. Thus in computer terminology, design activity can be 

roughly divided between input data generation, computation and interpretation of analysis 
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results, Roso, C. (1997). The advent of faster digital computers has seen a significant reduction 

in computational time with the enhanced hardware capabilities making it possible to see 

enhanced graphical interpretation of results. So, when data preparation is improved and the non-

computational time reduced, more time is available to the designer to explore alternative 

solutions and hence improve overall design quality, without infringing on improved time 

constraint. 

 An analysis of rotor bearing dynamics is critical to the design of any high-speed 

machinery that has rotating parts. Such analysis has taken a giant leap forward with the 

development of standard computer programs for determining various system characteristics. 

When the tedious and error prone modeling process is automated and data input is consistently 

shared among the analysis processors and graphic postprocessors, the analysis would be 

significantly improved. 

 During the discussion that follows, the reader should be better able to appreciate the need 

for an improved graphical interface for computer analysis of rotor dynamics. 
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1.2  TURBOMACHINERY ROTORDYNAMICS HISTORICAL BACKGROUND 

 In recent years, there has been a marked increase in the average operating speed and 

power output of rotating machinery. The need for more compact and lighter-weight engines and 

power transmission systems, for improved engine performance, has provided the thrust for this 

trend. The industrial turbo machinery has benefited by this advancement in the aerodynamic 

knowledge which led to a substantial redesign, thereby increasing the efficiency. 

 Efficient rotating machinery requires high design speeds, which can result in a number of 

rotor bearing system dynamic issues such as prediction and control of rotor response, balancing 

and rotor bearing stability, Roso, C. (1997). Rigid rotor balancing methods are not adequate for 

balancing the new generation of high-speed rotors. Thus, a prediction of the flexible rotors 

during the transition through critical speeds is important for the design. Also, the sources of self 

excited instabilities need to be predicted as well as understood and instability mechanisms 

controlled. 

 The ability to mathematically simulate the behavior of the rotating machinery leads to the 

development of systems with high-speed performance and low production costs. Furthermore, it 

helps in better understanding of the problems associated with the design of such high-speed 

machinery. The evolution of the analysis of the rotor bearing system began with a single degree 

of freedom, expanding to multi degrees of freedom, constrained only by the capacity and 

performance of digital computers, Roso, C. (1995). 

 Early in the development of rotor dynamics, it was a commonly prevailing notion that 

operation above the first critical speed was impossible. Nascent stages of rotor dynamic study 

began with Rankine (1869), whose work resulted in his conclusion that a shaft would be stable 

under the first critical speed and would always be dynamically unstable above that. Thus, the 

unbounded increase in the vibration in the vicinity of the critical speed was seen as an unstable 

condition. This misconception was corroborated by Greenhill (1883), who stated that the shaft 

inertia contributes to its buckling, thus reinforcing Rankine’s concept. Later Dunkerley (1895), 

using the Reynold’s eigen value concept, could calculate critical speeds of wide variety of shaft 

disc systems. The turn of the century saw the strong endorsement of Rankine’s concept by 
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renowned researchers such as Chree,C (1904) and Kerr,W.(1916) although Delaval,G. claimed to 

have built a steam turbine that could operate beyond the “instability region” in 1883. 

 A major breakthrough in rotor dynamics, which later inspired the studies of many 

researchers, was made by Jeffcott,H.H. (1919), whose more comprehensive model consisted of a 

flat disc supported by a uniform, massless flexible shaft supported, at its ends, by rigid 

frictionless bearings. Jeffcott’s analysis, which included damping, led to the formulation and 

approaches to the problem of minimizing amplitudes of synchronous whirl. 

 Following Jeffcott’s theory, a number of publications came forth investigating the 

shortcomings and steadily resolved a number of issues. Rodgers,C. (1922) introduced the 

concept of Coriolis forces in the computation of resonant frequencies. He studied the behavior of 

vertical and horizontal undamped rotor systems with dissimilar lateral stiffness. Newkirk,B.L. 

(1924) addressed the concept of non-synchronous motion and of shaft whirling. He later studied 

the oil whirl in hydrodynamic journal bearings. Kimball,A.L. (1925) came out with a significant 

understanding and solution to internal friction. He iterated that the bending in shafts was the 

cause of the shaft to whirl when rotating above the first critical speed. Several studies were made 

by Robertson,D. (1933), on the transient whirling of a rotor disturbed from its steady state 

condition and on hysteretic whirling of rotors. Around the same time Smith,D.M. (1933) 

completed a comprehensive study analyzing the characteristic features of most of the important 

problems in rotor bearing dynamics from the properties of the governing equations. The study 

mainly focused on the unbalance whirl and stability of flexible rotors in flexible bearings. 

 The Jeffcott model was basically a particle or point mass representation and was 

inadequate to explain the phenomena that arose due to rigid body characteristics of flexible 

rotating equipment. The Stodola (1927) and Green (1928) model consisted of a rigid disc to 

examine the influence of rigid body parameter on the rotor’s natural frequencies, critical speeds 

and synchronous response. From a practical viewpoint, the Stodola-Green mode could be used to 

explain many of the dynamic consequences of an over hung turbine wheel design for rotating 

equipment. 

 An experimental study of shaft unbalance whirling was conducted by Downham,E. 

(1950-1957). Kellenburger,W. (1958) made a detailed study of response and stability of a shaft 
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with distributed mass and elasticity having dissimilar stiffness properties, rotating in rigid end 

bearings. Yamamoto,T. (1964) examined the critical speeds and  forced vibrations of a shaft 

carrying an asymmetrical rotating body. The experimental study, of the various rates of 

acceleration through a critical speed zone, by Lewis,R.M (1960) led to the conclusion that a 

rapid transition restricts the maximum amplitude, and a slow transient allows large transient 

whirl amplitudes. His results used a simple rotor-spring-mass system. He along with 

Dimentberg,F.M. (1961) showed that a harmonic vibration was induced with reverse precession 

near critical speed, due to the effects of flexible supports, which results in dynamic shaft stresses. 

 Due to the increasing speed and memory of the digital computers, the prediction of 

stiffness and damping characteristics of bearings and foundation received greater attention, since 

it directly affects the accuracy of rotor dynamics of complex machine system. In this path, a 

detailed study was conducted by Lund,J.W. and Sternlicht,B. (1961) on the response of flexible 

single disk rotor operating in plain cylindrical fluid film bearings with direct and cross coupled 

stiffness and damping properties.  

 A study involving rotor response to the unbalance of a flexible single disk rotor operating 

in bearings with radial stiffness and damping was made by Hagg,A.C. (1965). A comprehensive 

computer code was developed on the formulation of equations for unbalance response and rotor 

instability presented by Lund,J.W. (1965). Smith,D.M. (1966) investigated the system vibration 

to the other stationary components of machinery. 

 The focus of consequent research was shifted to the influence of rotor support bearings in 

the rotor response. The computer analysis helped in the analysis of hydrodynamic and 

antifriction bearings. 

 The validity of theoretical bearing stiffness and damping coefficients was examined by 

Orcutt,F.K. and Arwas,E.B. (1967). With the availability of fast computers, they were able to 

investigate bearing configuration better suited to produce a stable behavior of high speed 

machinery. The solution for plain journal bearings were presented by Lund,J.W. and Stenlich,B. 

(1962), based on finite difference method. Lund,J.W. along with Thompson,K. (1978) applied 

the technique to a variety of geometries including partial arc and tilting pad bearings. Reddi,M. 

(1969) developed the finite element solution of incompressible lubrication problem. The finite 
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element method, being more generic and accommodating to abrupt geometrical changes, is seen 

to have advantages over the finite difference approach. 

 Nicholas,J (1977) studied the finite element analysis of pressure dam and tilted pad 

bearing. Rouch,K.E. (1977) developed an approach to include both pad mass and pitch inertia in 

predicting the dynamic performance of large pivoted pad journal bearings customarily utilized in 

high power rotating equipment. Subsequently, Nicholas,J. (1986-1988) and Barrett,L. (1985) 

analyzed and recognized the failure to include the influence of bearing support structure in rotor 

dynamic analysis, as one of the main reasons for the difference between analytical prediction and 

practical data. 

 Additional sources of instability in the operation of turbomachinery are the clearance 

excitation destabilizing forces, which was studied by Thomas,H. (1958) followed by Alford,J. 

(1965). Further contribution towards the modeling and measurement of destabilizing effect on 

compressor impellers was made by Urlichs,K. (1977) and Brennen,C. (1980) 

 This compendiary overview of the development in the field of rotordynamics shows that 

a significantly large amount of knowledge in the field has been accumulated and the thirst to 

master the field is still continuous. Reference books by Vance,J.M. (1988), Childs,D.W. (1993) 

and Ehrich,F.F. (1998) provide an insight into the analysis required to design rotor bearing 

system. With the knowledge and experience required to produce rotor bearing system, a designer 

can fulfill the requirements of the application in an optimal fashion. 

 But as the number of complexities of rotordynamic analyses have increased, the need to 

develop a comprehensive computational environment that comes up with an optimal design has 

surfaced, as will be clear during the presentation of this effort. 
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1.3 MODELING OF ROTOR BEARING SYSTEMS 

 For any analysis, it becomes necessary for the physical phenomena to be represented in 

mathematical terms. A rotor bearing system specifically requires consideration of structural and 

fluid dynamics to describe the rotor and bearing behavior. A very brief review of the two 

modeling approaches in rotor dynamics viz., transfer matrix technique and finite element method 

is given below. The detailed description is beyond the scope of this thesis and could be found in 

the references. 

 In the transfer matrix method, the system model is formulated as a matrix product of 

transfer matrices of individual rotor segments, discs and bearings with appropriate boundary 

conditions. Here the equations for each element relate the state variables at one end to those at 

the other end in a matrix form, Childs, D. (1993). The solution of the system damped natural 

frequencies and mode shapes follows from the system equations. Assuming the rotor motion to 

be synchronous, the response calculations can be made. The modal analysis uses the eigen value-

eigen vector results to uncouple the modes. 

Finite element method is a technique for solving an equation by approximating 

continuous quantities as a set of quantities at discrete points, often regularly spaced into a so-

called grid or mesh. Because finite element method can be adapted to problems of great 

complexity and unusual geometry, it is an extremely powerful tool in the solution of important 

problems in heat transfer, fluid mechanics, and mechanical systems. Furthermore, the availability 

of fast and inexpensive computers allows problems which are intractable using analytic methods 

to be solved in a straightforward manner. It is based on formulation of energy functional in a 

sub-regional or element basis solution of unknown nodal displacements and provides a lower 

bound of the system strain energy and an upper bound on potential energy. The usage of finite 

element method has numerous advantages like modeling irregularly shaped bodies quite easily, 

modeling bodies composed of several different materials (since the element equations are 

evaluated individually), handling unlimited number and different kind of boundary conditions, 

varying the size of the elements to make it possible to use small elements wherever necessary, 

including dynamic effects and ability to handle nonlinear behavior existing with large 

deformations and non linear materials, Logan, D.L. (2001).  
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The finite element technique has been used in the processor discussed in this thesis, to 

model the rotor bearing system. Extensive information about the finite element analysis of rotor-

bearing systems with matrix reduction can be found in Rouch, K.E.(1977) Ph.D dissertation 

reference. 
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1.4.  ROTORDYNAMIC ANALYSES 

 Any rotor dynamic analysis is possible only after modeling the shaft system effectively, 

usually by interconnecting elements and stations. The description of mass, inertia, internal and 

external damping and forcing phenomena on a local or global scale are provided within a station 

or shaft element definition. Mass is represented either as distributed or lumped into rigid 

elements depending on the other system components. Disc flexibility is one issue that also needs 

to be included in some cases. The bearings, seals and other destabilizing effects are accounted by 

stiffness, damping and cross coupling coefficients respectively to appropriate stations of the rotor 

model. Foundations are represented by stiffness and damping coefficients typically in series with 

the bearings. 

 A representative model for rotordynamic analysis of an industrial turbomachinery rotor-

bearing-foundation system is as shown in the Fig 1.1., Roso, C. (1995). 

Fig 1.1. Rotor-Bearing-foundation model for rotordynamic analysis. 

 10



One common geometrical model can be used to perform synchronous response, critical 

speed and stability analysis of the physical system. The rest of this section deals with the 

summary of these analyses and their common results. The flow diagram in Fig 1.2 shows the 

sequence that is generally followed when using computer programs to perform various rotor-

bearing system calculations, Rieger, N. F (1976). It shows that bearing design is to be dealt first 

due to its impact on the calculation of rotor and foundation characteristics. However, the bearing 

selection, its design and discussion of their parameters is itself a big subject to deal with and is 

out of the scope of this thesis work. 

Dynamic Eccentricity

 

Fig.1.2. Sequential flow diagram of various rotor-bearing system calculations. 
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The relationship between the rotor-bearing system dynamics and the overall design 

procedure involving several other parameters is illustrated in the Fig.1.3, Malanoski, S. B. 

 

Fig.1.3. Logic diagram of a typical design procedure 

The rest of this section deals with the summary of the comprehensive rotor dynamic 

analysis and their common results. 
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1.4.1  UNDAMPED CRITICAL SPEED ANALYSIS 

 Any rotor-bearing system has a number of discrete natural frequencies associated with it. 

Corresponding to each natural frequency is a mode shape which can be thought of as a snapshot 

of the rotor deflection curve at any instant of maximum strain during vibration, Vance, J.M. 

(1988). When one of the natural frequencies is excited by the rotor imbalance, synchronous with 

the shaft speed, the shaft speed coinciding with the natural frequency is called a critical speed. 

Hence, the critical speeds can be interpreted as resonant responses to excitation forces at 

frequencies which coincide with the natural resonant frequencies. These are often computed with 

damping neglected. 

 Due to the damping offered by the bearings, critical speed and response analyses are 

primarily to provide a preliminary approximation of the design and performance of a flexible 

rotor-bearing system. The system is modeled by developing the appropriate set of second order 

linear differential equations of motion and by solving them in the neighborhood of an 

equilibrium solution. The assumption of circular orbit for critical speed calculations is justified 

by some advantages, such as the rotor being considered in one dimensional representation and 

the resulting stiffness matrix being symmetric, Rouch, K.E. (1977). The system equation would 

be as below: 

                                                    [ ] [ ] 0=+ qKqM &&  

For                                               tj
o

st
o eqeqq ω==  

                                                    [ ] [ ]( ) 02 =− qMK ω  

 This leads to the solution of a number of natural frequencies and the possible motion of 

the model’s degree of freedom. Corresponding mode shapes are determined by obtaining 

amplitude ratios for specific natural frequencies. The mode shape amplitudes are in relative 

terms due to the equations being linearly dependent. If any mode is excited at natural frequency 

by an external harmonic force, the system would be stable as long as the effective damping is 

sufficient. Conversely, with negative effective damping, the response would be seen to be 

increasing with time without bound, implying the motion is unstable. 
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 Due to the damping characteristics of some of the fluid film bearings, the effective 

damping to rotor modes tends to zero when the motion is some fraction of operating speed, 

Vance, J.M. (1988). Considering a linear rotor bearing system, as the speed of the rotor 

increases, at some point the natural frequency of the system coincides with the fractional 

frequency at which the effective damping reduces to zero. This condition is called the whirl 

threshold speed of instability. A further rise in rotor speed would result in rapid growth of whirl 

displacement amplitude. But in practice, due to some non linearity in the model, the actual 

system would exhibit a bounded motion. 

 As discussed, the rotor-bearing design and analysis process is an iterative process. Many 

constraints on the mechanical design result from process requirements and these are often 

conflicting. In this design process, some procedure for assessing the resonance characteristics of 

a rotor as a function of bearing stiffness can give the designer a directive in the iterative process. 

Such a procedure, a critical speed map, is useful in judging rotor flexibility and in indicating the 

effectiveness of possible bearing damping. This presents on a log-log graph the critical speed 

location as a function of support stiffness. This technique shows the rigid rotor or rigid shaft 

behavior as a straight line with a slope of half for the first two critical speeds. Thus the rigid rotor 

and flexible rotor regions are readily apparent. Superposition of the bearing stiffness versus 

speed characteristic on the map gives the location of the undamped rotor natural frequency as 

shown in Fig 1.4., Roso, C. (1995).     

 

Fig.1.4. A typical critical speed map. 
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 An agreement between lateral speed analysis and the damped synchronous response 

would be obtained when the effect of damping is included in the computation of the actual 

bearing as shown in the figure above. 

 Another output of this type of analysis is the mode shapes of the rotor at critical speeds. 

This further indicates the degree of rotor bending and presents information relative to natural 

nodes of the rotor. This further gives a qualitative indication about the effectiveness of the 

bearing damping. For example, if a bearing is located at a nodal location, very little bearing 

motion can result to utilize the inherent damping of the system, implying, amplitude at critical 

speeds would be unacceptably high. A minor bearing location change would result in 

improvement in the overall performance. Also, as the bearing stiffness is progressively increased 

from low to high values, the form of the two lowest modes change from that of rigid rotor 

translatory and conical whirl respectively to that of flexible beam supported on progressively 

stiffer supports. A sample mode shape plot can be seen in Fig.1.5, Roso, C. (1995). 

 

Fig.1.5. A typical normal mode shape in stability analysis. 
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 Undamped Critical speeds are not in itself any indication of the system instability, but 

rather, a condition of possible large resonant response inherent to unbalance forces. Hence, the 

undamped critical speed analysis would give the designer a feel of the areas in which the system 

could reach unacceptable amplitudes under the conditions of synchronous excitation and 

marginal damping. This analysis, although it can be useful as a guide, is rarely used exclusively, 

as discussed in the next section on rotor response to unbalance. It is also possible to calculate the 

damped critical speeds, but this is normally done as proof of stability analysis. 
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1.4.2  SYNCHRONOUS RESPONSE 

 The most common form of harmonic motion is that of the unbalance or synchronous 

response, in which, the deviation of the center of mass of the rotor from the geometric center 

results in an unbalance force vector rotating with the rotor. This analysis helps the designer to 

know the magnitude of the displacement of whirl motion while crossing critical speeds or the 

rotor motion in a predefined speed with certain amount of unbalance distribution. The subject 

analysis determines the amplitude of response for each of the rotor locations as a function of 

rotor speed. Another result from this analysis is the bearing dynamic forces and system 

dissipated energy level.  

This type of analysis can be used as a sensitivity analysis. In this case, a unit imbalance 

can be located at locations coinciding the components such as couplings, impellers, balance 

pistons, etc and that which is particularly influential in generating high amplitudes of vibration at 

critical locations is determined. Another value of this analysis is that it can establish the effect of 

small modification in design such as component weight reduction, reduction of overhangs and 

also, as discussed, bearing location or bearing span. 

 The unbalance response is calculated by assuming a general synchronous elliptical orbit 

motion. The linear differential equation of motion, which includes the effects of damping, is 

written in a non-homogeneous form. The substitution of the assumed solution designated as 

steady state, and of the calculated value of excitation in the differential equation of motion, 

produces a system of algebraic equation with complex coefficients that can be solved with 

respect to complex displacement vectors. 

 After the displacement vector is known, the phase angle by which response lags the 

excitation, can be computed. The forces transmitted to the rotor support can also be obtained 

once the displacement vector has been computed using force-displacement relationship. The 

results of the synchronous response analysis are presented for each nodal location of the model. 

Fig.1.6. and Fig.1.7 show representative results of a typical synchronous response of a rotor 

bearing system, Roso, C. (1995) 
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Fig.1.6. Synchronous Response Analysis : Phase angle Vs Speed 

 

Fig.1.7. Synchronous Response Analysis : Amplitude Vs Speed 
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1.4.3  STABILITY ANALYSIS 

 The evaluation of rotor-bearing system stability utilizes the same mass elastic model, 

bearing spring and damping coefficients, as well as other system elements which can exhibit 

cross-coupling or destabilizing behavior. A system is termed as stable, pertaining to rotor 

dynamics, when “the motion following a sufficiently small disturbance remains within 

prescribed bounds” and is termed as asymptotically stable when the system “tends to resume its 

original position with time”, Huseyin,K. (1976). 

 Stability analysis provides information on the behavior of the rotor-bearing system 

verifying if the whirl orbit of rotor increases or decreases with time from the equilibrium position 

after some disturbing action. A stable system would return to its original whirl orbit with a 

damped oscillation motion, otherwise would continue to grow with time until restrained by some 

other non rotating component, following removal of disturbance. The orbit form is the result of 

all the collective forces acting on the rotor, such as the inwardly directed radial forces tending to 

maintain dynamic equilibrium of the system and the tangential forces acting opposite to the 

whirling motion, which confer stability to the system at rotor critical speeds, Poritsky,H. (1965). 

As outlined by Lund,J.W. (1975) some sources of destabilization of the system are: 

• Hydrodynamic bearing and seal forces 

• Interaction with process fluid flow forces 

• Internal rotor damping 

• Rotor asymmetry 

If such a source of instability is present, some degree of external damping, generally in 

bearings or supports, needs to be present to maintain stability, Rouch, K.E. (1977). 

As previously described, the behavior of a rotor-bearing system is represented by linear 

differential equations of motion which reflect a condition of dynamic equilibrium. The general 

solution of equations is a combination of linearly independent solutions in a form of exponential 

time dependent function with generally complex exponents (λ+jω).  The real part (λ) of the 
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exponent corresponds to the rate of growth or decay, while the imaginary part (ω) is the damped 

natural frequency corresponding to the frequency components of the response. Huseyin,K. 

(1976) defines four cases. 

a) All the λk (λ=1,2,3,…n)<0 indicates asymptotic stability. 

b) One or more λk >0 shows instability 

c) If some λk = 0 while remaining λ’s < 0, state is critical; may be stable but not 

asymptotically stable 

d) If all λk = 0 (ω not repeated) state is stable. 

A divergent instability is classified as the case where λk > 0 and ωk = 0. When λk > 0 and 

ωk ≠ 0, a dynamic situation arises in which the system oscillates at increased amplitudes. 

 The procedure generally followed is to calculate the system damped natural frequencies 

and determine the output at these frequencies in the form of a log decrement. In summary, the 

results of this analysis are the system damped critical speeds and the sensitivity of the system 

towards supporting non-synchronous vibrations. Generally the first undamped critical speed is 

deemed to be of primary interest in determining the stability margin of the system. However each 

of the eigen values will be accompanied by a system log decrement to guide this interpolation. 

 At any operating speed of a rotor-bearing system, there is a system natural frequency ν 

(in general, nonsynchronous with the rotational speed) which can be excited and which has an 

amplitude decay component. Amplitude growth is described by the expression ‘eλt’, where t is 

the time. In the commonly referred to as logarithmic decrement, δ=-2λ/ν, if δ becomes zero, and 

then negative, the rotor instability threshold speed becomes equal to the running speed. The rotor 

then becomes unstable and highly susceptible to any internal or external excitation forces. 

 Normally, the basic rotor model is first evaluated with the bearing system alone. This is 

valuable in that most available field data is more complete in the definition of rotor model and 

bearing system, whereas the definition of other elements in the system is often unknown or 

unattainable. According to Malanoski.S.B, log decrement values above 0.5 portend to be a stable 
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system; negative values indicate definite instability while positive values below 0.25 indicate 

marginal behavior. Values between 0.25 and 0.5 represent a gray area which must be more 

thoroughly evaluated in terms of the other destabilizing forces of the system. Once having 

ascertained the sensitivity of the system, estimates are made for the effects of oil-buffered seals, 

aerodynamics, etc. 

 Generally, the whirling motion in rotating machine assemblies does not follow the 

exponential growth rate predicted by linear analysis because non linear system energy is 

dissipated more rapidly. Thus a steady state of motion is reached after a sharp increase in whirl 

amplitude with rotational speed. The high amplitude of the rotor can be tolerated unless it causes 

a functional damage to the system. 

 A typical stability analysis is summarized graphically by plotting stability parameter i.e. 

the growth factor or logarithmic decrement versus an increasing value of destabilization 

excitation as shown in Fig.1.8, Roso, C. (1995). The behavior of the rotor bearing system can 

then be predicted for the estimated value of destabilizing excitation. 

 

Fig.1.8. A typical stability map at constant operating speed. 
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 When a linear plot of damped natural frequency versus shaft rotational speed is 

constructed, the plot is called ‘whirl speed map’. Superimposition of excitation forcing frequency 

versus rotational speed identifies the potential critical speeds as indicated in Fig.1.9, Roso, C. 

(1995). The logarithmic decrement values are also indicated in the plot to have an idea of the 

sensitivity of the rotor to the assumed excitation. 

 

Fig.1.9. A typical whirl speed map. 

 The various individual mode shapes corresponding to various natural frequencies are also 

computed as part of stability analysis. 
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1.4.4  TRANSIENT RESPONSE 

 The transient response analysis is used to analyze the behavior of complex rotor-bearing 

systems. This analysis is carried out by observing the trend of amplitude response with time. 

Here the system of differential equations of motion is integrated with respect to time allowing for 

the most general solution, including possible non-linearity. Due to the large time and space steps 

required to maintain numerical stability, a large computer storage and fast processor are required 

for this analysis. This thesis, however, does not provide for the transient response of the rotor 

bearing system. 
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1.5 COMPUTATIONAL APPROACHES 

For any rotor dynamic analysis, an extensive amount of data is needed. The modeling of 

a rotor requires specifications pertaining to its geometry, physical and mechanical properties, 

support and loading characteristics and bearing properties. Also, different analyses require 

different kind of information. The rotor design may be altered considering other geometric 

preferences, manufacturing issues and operating conditions. As a result for a particular analysis, 

many data files need to be generated containing both input and output information. 

The application of this thesis is directed after the development of a comprehensive 

program, which develops efficiently and accurately the rotor dynamic analysis data. The 

customary approach first involves the modeling of the rotor bearing system. This involves the 

division of the rotating shaft into interconnecting stations or elements. Properties of lumped 

masses representing the large discs or impellers, mass imbalances and natural boundary 

conditions are to be incorporated into the model. The bearing and foundation supports are to be 

modeled in terms of their dynamic stiffness and damping coefficients. The forces and moments, 

if any, are to be made part of the computed file describing the rotor bearing system geometry. 

This approach would enable a generic file which could be edited according to the specific needs. 

After the geometry of the system has been defined, the input-output file needs to be 

specific for the kind of analysis intended. Such a file system would make sure that different 

analyses are carried out on the same geometric model or the same analysis could be carried out 

just by changing the geometry of the model. Studies can be conducted for the influence of 

projected operating conditions on the dynamic behavior of the system. 

The following section gives an overview of one such computer program, “RotBrg©”, 

which this thesis work uses as a processor, with a modified version to suit the requirements of 

the post-processor. The basic computer program and theory were the subject of Ph.D dissertation 

of Rouch,K.E.(1977), the comprehensive documentation of which is beyond the scope of this 

thesis. However, a brief overview is presented in the following section. 
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1.5.1 RotBrg© PROCESSOR PROGRAM 

As stated in the previous section, this thesis work uses a modified version of RotBrg© as 

its processor. This computer program, which is based on finite element formulation, is used for 

modeling the Rotor-Bearing-foundation system and run for various analyses effectively thus 

providing data for the postprocessor. 

A key element in RotBrg© is the use of matrix reduction of the rotor element matrices. 

This allows greater freedom for the analysis in describing the rotor geometry and greater 

efficiency because only essential degrees of freedom need to be retained for the solution, Rouch, 

K.E. (2001). The finite element technique is better suited than the transfer matrix technique, 

which occasionally develops numerical problems, for the structural, thermal and other physical 

systems. It provides a greater degree of accuracy with fewer stations than the transfer matrix 

approach, but with some penalty on the computer storage, which is not a limitation on present 

day computers.  

Dynamic reduction is a common method for reducing the size of a finite element 

problem. It is especially applicable in rotor dynamics because in this application, only rotor 

matrices are reduced and bearing and foundation matrices are added to the reduced rotor 

matrices. Thus this application of reduction can be considered sub-structuring or “super element” 

approach, with the rotor being the substructure.  Shaft characteristics can be generated, placed in 

reduced matrix form, and used repeatedly, in combination with varying bearing properties across 

a speed range. It also has the advantage for the analyst to be flexible in preparing as detailed a 

rotor model as is convenient and then retaining only sufficient degrees of freedom to describe the 

rotor characteristics of interest. In summary, by reduction, a transformation is established 

between the slave degrees of freedom and retained degrees of freedom based on the principle of 

minimum potential energy, Rouch, K.E. (2001). This transformation, applied to the system 

matrices, results in reduced matrices which approximate system characteristics. The reduction 

process is carried out in conjunction with rotor element assembly to minimize core requirements. 

Since the mass and damping matrices are modified by this reduction process, it is much more 

accurate than the static condensation sometimes used in dynamic analysis. 
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For the calculation of critical speed, the rotor is condensed to user-selected degrees of 

freedom in the Y-Z plane and natural frequency and mode shape calculations performed at a 

series of bearing stiffness values. Each bearing may have different values of stiffness, but the 

usual practice being to use identical stiffness for this analysis. Gyroscopic effects are included 

for a circular orbit assumption. A second option is a search procedure which iteratively updates 

bearing properties at each of the critical speeds until convergence is obtained. 

For the calculation of synchronous response, for a given unbalance distribution, the rotor 

response is calculated by assuming synchronous (elliptical) motion, Rouch, K. E. (2001). 

[ ] [ ] [ ] FqKqCqM =++ &&&  

qjq Ω=&  

[ ] [ ] [ ]{ } FqKCjM =++Ω− ω2  

[ ] FqD =  

[D], q and F are complex quantities, but the equation is otherwise equivalent to the 

standard linear system of equations, and can be solved accordingly. The calculated complex 

displacements are converted to orbit parameters. 

For the stability evaluation, if damping is included in the rotor system and a general 

sinusoidal motion postulated: q=qoe(λ+jω)t where Si= λ+jω, is the complex frequency. The 

resulting set of equations is a damped eigen value problem with roots Si. The mode shapes are 

then calculated. The real part of the root is called the growth factor, a negative value indicating a 

stable rotor system. 
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1.6. SCOPE OF THESIS 

 Turbomachinery design and analyses requires a rigorous analytical approach. A coherent 

sequencing of analyses and verifications is required to accomplish the design objectives in a 

timely and reliable manner, Roso, C. (1995). The ability to analyze the rotor-bearing system at 

off-design operating and manufacturing conditions enhances the quality of the equipment at its 

roots. Hence the design of machinery and its operational analysis must posses an inherent 

stability which insures that the configuration which is manufactured sufficiently close to a 

known specification will perform according to the design objectives and requirements for a 

predetermined period of time. Hence, an effective designing program that could perform most of 

the fundamental analyses by utilizing a common or slightly edited input file, backed up by a 

post-processor program, can result in an efficient rotor-bearing system. The development in 

recent years of advanced object oriented programming techniques has eased the design of 

computer user-friendly interface programs specifically dedicated to the needs of rotor dynamic 

analyses. This has further facilitated the easy user friendly and improved graphical interface and 

plotting capability of any kind of rotor dynamic analysis. 

 The aim of this thesis has been to develop a comprehensive user friendly post processing 

program to facilitate the analyses of a rotor bearing system. The effort involved a set up program 

package, which includes the processor for an input file, creation of separate output files for later 

analysis purpose and the post processor display of the results with convenience of saving as a 

hard copy or print out the plots and results, thus efficiently handling the designer’s development 

and verification of turbomachinery. 
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CHAPTER 2 

GRAPHICAL USER INTEFACE 

  

A graphical user interface (abbreviated as GUI) is a method of interacting with a 

computer through the use of graphical images and widgets in addition to text. It can be seen as a 

program interface that takes advantage of the computer’s graphics capabilities to make the 

program easier to use. This chapter provides an overview of the graphic user interface 

application. The general advantages and features offered by a GUI package are briefly discussed. 

A brief description of various GUI options available at hand, is presented. The chapter ends with 

the selection of the best option to suit the requirements and graphical representation of the work 

in this thesis. All the packages and softwares discussed in this chapter are trademarks or 

registered trademarks of their respective companies. 
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2.1 INTRODUCTION 

 An individual rotor dynamic analysis of a computer rotor-dynamic system requires an 

extensive amount of data and comprehensive analysis requires the data to be displayed in the 

form of plots. The geometry of the rotor may be altered as a consequence of analysis iterations, 

based on the observations of the plot by the designer. Hence, separate data output files for 

various rotor dynamical analyses become essential, as also a graphical output feature. The 

designer would have a chance to browse through the vast amount of data and choose that which 

he intends to analyze. Given the development of compact, large capacity computer storage 

devices capable of retaining sizeable amounts of information, the retaining of information is not 

a concern, as is instead the need to properly channel the data as per requirements and 

visualization. Hence the necessity to use a GUI arises for the comprehensive post-processor 

analysis of a rotor bearing system. 

 

2.2 GRAPHICAL USER INTERFACE 

Well-designed graphical user interfaces can free the user from learning complex 

command languages and avoid the need for preparing input in a text-based format. GUIs are used 

extensively for interaction with computers because of the ease, superiority, efficiency, user 

friendliness and robustness as they allow the user to interact by manipulation of graphical 

objects, web resource ( http://www.wikipedia.org ). 

The first graphical user interface was designed by Xerox Corporation’s Palo Alto 

research center in the1970s, but it was not until late1980s and the emergence of the Apple 

Macintosh that graphical user interfaces became popular. One reason for their slow acceptance 

was the fact that they require considerable CPU power and high quality monitor, which until then 

were prohibitively expensive, Alistair D. N. Edwards., ( http://www.rit.edu ) 

In addition to their visual components, graphical user interfaces also make it easier to 

move data from one application to another. A true GUI includes standard formats for 

representing text and graphics. Because the formats are well defined, different programs that run 

under a common GUI can share data. This makes it possible, for example, to copy a graph 
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created by GUI application into a document created by a word processor. If functionality is what 

a program actually does, then the interface is how the user interacts with the program and 

provides input and retrieves output. The hallmark of GUI programming lies in its graphical 

control features, such as toolbar buttons or icons. Some vital points of a successful GUI are 

discussed below. 

2.2.1 User-Centered Design 

 In early days of computing, a good software program was one that worked. A great 

program was one that worked and expended the fewest computing resources. Computer 

programmers designed programs for use by other computer professionals and not the general 

public, so a generic text based interface permitting expeditious user input was the order of the 

day, Cortes, L. (1997). But in today’s world, in which computer resources are abundant and 

computer users are usually non-programmers and computer neophytes, a good program is one 

that not only works but also is easy to learn. Hence the focus shifted onto user centric 

applications. Unlike problem-centered programming, which has first and foremost focus on the 

task, user centered design begins with observing how users confront present manual and 

automated methods. The goal, under this design, would be to understand users’ work tasks, their 

mental models of those tasks, and the tools already familiar to them. 

2.2.2 Event-driven Programming 

 In event-driven programming, tasks are performed in a predictable fashion, one step 

following the other. The GUI permits event-driven programming, and therein lies another part of 

its strength. In event-driven programming, the user controls the program’s tasks via GUI 

events—entries using a keystroke, mouse click, penlight, etc., the variety of events a user can 

generate are set by the hardware and operating system. Both procedure and event driven 

programming restrict the user’s possible choices, but only the latter gives the user control over 

several task steps, Cortes, L. (1997). Procedure and event driven programming both arrive at the 

same calculations, but differ in how the user interacts with the program to create and process the 

output results. The user experiences a variety of ways to enter data on any user centric form and 

as a result of the complex algorithms working in the background, perceives the software as user 

friendly and simple to use. 
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2.2.3 Portability of Applications 

 Portability of applications across different platforms is a subject that has attracted a lot of 

attention for some time. Until recently, it has been quite difficult or expensive for an application 

with a graphical user interface (GUI) to be truly portable, Cortes, L. (1997). Portability requires a 

certain amount of conformance of operating systems, programming languages and tools. This 

means in most cases that a GUI is limited to a certain environment, for example, to the Windows 

platform and Linux. In addition, a new version of any of the underlying ingredients may break 

the original GUI. Things become more difficult if the application must be portable across very 

different platforms, such as UNIX and Microsoft Windows. One approach is to make the 

interface layer as ‘thin’ as possible. The vast majority of the code is in the fully portable ‘engine’ 

and the interface code is an easily separable module, with a version for each of the supported 

platforms, Cortes, L. (1997). This does require separate source code for each supported platform, 

with the risk that all code will not be maintained in step, leading to divergence of versions. 

If a new application is being written, rather than an existing one being ported, the most 

attractive method of creating a portable GUI is to use a portable library. This can then be used to 

create user interface components on all target platforms. Portability toolkits tend to take either a 

‘lowest common denominator’ approach, providing only those interface components that appear 

on all platforms, or attempt to provide all widgets on all platforms, often by supplying their own 

widget set on all platforms, Cortes, L. (1997). One example of the former approach is the XVT 

toolkit. This is supplied as a set of libraries that must be linked with the application code, which 

can be C or C++. The application makes calls to the same XVT functions, whatever the 

destination platform. The code is then linked with the library for the appropriate platform. 

Hence, proper care must be taken before a GUI is designed to have the portability incorporated. 
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2.2.4 Templates Usage 

 Rather than individually customizing each screen, global templates could be created, that 

would convert screens in large to GUI format, which still leaves with the opportunity to 

customize individual screens when necessary. The more powerful GUI tools also let the 

developer customize the screen by adding visual and functional enhancements such as pop-up 

windows, radio buttons, list boxes, pull-down menus, toolbars, background graphics and logos. 

Colors and fonts can be changed. Function keys can be emulated with buttons or other controls. 

The new displays are typically much more intuitive and easier to use than the original text 

displays. To this point, GUI tools have focused on transforming existing text screens to look and 

function like a program developed from scratch for the Web. The new generation of GUI tools 

provide scripting tools, which make it possible to go one step further, by improving the 

productivity of the user interface, web resource ( http://www.webopedia.com ). Scripts can be 

developed to enter data and perform the functions of another application on an automated basis. 

The commands can be activated and controlled by the user through a more intuitive graphical 

interface while the text screens are hidden from view. The script can perform repetitive tasks and 

make decisions based on predetermined rules. It can exchange information with other 

applications such as databases, spreadsheets and word processors. 

 In general, some common objectives ought to be met, to lead to a good GUI design. The 

user must be able to anticipate a widget’s behavior from its visual properties (Principle of 

consistency at widget level). Widgets in this context refer to visual controls such as buttons, 

menus, check boxes, scroll bars and rulers. The user must be able to anticipate the behavior of 

the program using knowledge gained from other programs (Principle of consistency at platform 

level). This refers to abstractions such as mouse gestures, placement of menus, icons and toolbar 

glyphs. A good GUI would help users enter appropriate data. If the program requires formatted 

data (numeric range or alphanumeric only), bounded input widgets could be used to 

appropriately limit the user’s input choices. If a certain program step cannot be legitimately 

performed until the user completes other steps, the dependent steps can be disabled until all its 

dependencies are satisfied, Bernard J. J. (1998), ( http://jimjansen.tripod.com ). Every screen 

should be so designed that a novice can easily tell what steps, especially critical ones, have been 

performed. A good GUI application should be self evident, with required help materials. 
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Incorporating suitable warning and error messages force the user to address the critical issues 

before returning to the task. Finally, it is important to design the interface so that the users can 

accomplish their tasks while being minimally aware of the interface itself. 

 However, in spite of having a good GUI capability, a software is deemed of not having a 

good functionality if it does not support extensive computer graphics. Some of the vital features 

of a GUI with good graphics feature are: 

• Render plotting 

• Interactivity 

• Real-time manipulation 

• Scientific visualization 

• Storage of plots/images in memory or on disk 

All the above graphical features coupled with a good interface make a good package for 

general industrial usage environment. The next step would be to find a suitable programming 

language/package that fulfils all the above requirements with respect to Graphical user interface. 
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2.3 GRAPHICAL USER INTERFACE OPTIONS AVAILABLE 

There are a lot of programming packages available currently, which offer a wide range of 

capabilities in terms of speed, extensive graphics, security, performance and compatibility. The 

following section covers some of the options available for building a comprehensive Graphical 

interface along with other embedded features. 

2.3.1 C/C++ 

 Although building graphics in C language is feasible, it requires a lot of effort on the 

programmer’s part for that. C has a rich collection of libraries and a variety of toolkits for 

building a graphical interface. These toolkits are particularly valuable for C and add ever-

expanding functional richness to the language. Most of the GUI functionalities can be 

incorporated using C graphics like the pop up menu, location cross hair, etc., Johnson, N. (1987). 

 Graphics programming in C involves, perhaps more than non-graphics programming, a 

great deal of memory management. A lot of structured declaration is needed to keep track of 

memory, which is not easily comprehended. A lot of syntactic declaration and coding is required 

for a simple interface. The language is known for high performance.  

 The same explanation holds true even in the case of C++, except for its enhancements 

over its predecessor C with respect to usage of object oriented features. However, there had been 

no significant improvement in the graphics it offered, Stevens, A. (2000). Because C++ blended 

the high efficiency and stylistic elements of C with the object-oriented paradigm, it was a 

language that could not be used to create a wide range of programs. 

 2.3.2 Visual Basic 

 As the name suggests, a major portion of the programming with Visual Basic (VB) is 

accomplished visually. This means that during design time, the designer would be able to see 

how the program will look during runtime. This is a great advantage over other programming 

languages, because the designer is able to change and experiment with the design until satisfied 

with the colors, sizes, images and other features included in the program. Visual Basic is 

completely graphically oriented, so it enables to directly create windows, menus, buttons, etc., 
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and what need to be written are the codes that process system messages and events. Several 

designer friendly features like the capability of developing ‘Hot Keys’, automatic compiling for 

‘Reserve words’ during design time, etc., have made it a qualified option. Already enhanced with 

the power and elegance of many high-level languages, VB’s most outstanding feature is the 

ability to generate with ease a Windows graphical user interface - an interface that is not 

restricted to pure alphanumeric display. Perhaps the most powerful feature of Visual Basic is its 

capability of incorporating third-party controls, Gurewich, N., Gurewich, O. (1997), (known as 

OCX ActiveX controls), which extend the add-on features like multimedia and extensive 

graphics. With the introduction of a compiler and its enhanced controls, Visual Basic 

applications can hold their own against C++ applications for speed and extensibility, Donald, 

R.P., Oancea, G. (1999). Even though Visual Basic (version 6.0) can create blazing fast 

applications, it is best known for its capability to create Internet and client/server applications 

very quickly. Visual Basic can create programs that interact with files, databases, interact with 

the Internet, and even interact with hardware. The industrial-strength development environment 

is suitable for almost any type of Windows application. The files processing feature of Visual 

Basic enables creation, manipulation, and storage of large amounts of data, access several sets of 

data at once, and share data with other programs. 

 The major disadvantage of Visual Basic is that the implementation of powerful features 

requires add-ons. These add-ons are called VBX files. 

2.3.3 Visual Basic.NET 

 The VB.NET language is disarmingly simple and is highly expressive when it comes to 

implementing modern programming concepts. VB.NET includes all the support for structured, 

component-based, object oriented programming that one expects of a modern language. Object 

Oriented Programming (OOP) is a vast topic in itself, which is beyond the subject of this thesis. 

This concept is popular in the current programming due to its techniques to help manage the 

complexity of long codes. The goal of VB.NET is to provide a simple, safe, object-oriented, 

internet-centric, high performance language for .NET development, Liberty, J. (2002). It is 

simple because there are relatively few keywords. This makes it easy to learn and easy to adapt 

to a programmer’s specific needs. One more merit of VB.NET is that it is considered safe 

because it provides support in the language to find bugs early in the development process itself. 
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This makes for code, that is easier to maintain and programs that are more reliable. It frees the 

programmer from having to deal with the mundane complexities of writing windows programs, 

and instead concentrate on solving problems. 

 One of the attracting features that VB.NET enjoys is that it has a number of features 

which makes it backward compatible with Visual Basic 6.0. Other features have been added 

specifically to adapt visual basic to object oriented programming and to the .NET platform. Its 

support feature to find bugs early in the development process makes for the easier maintenance 

and reliability of the code. It also does not support many features like pointers that make for 

unsafe code. It goes beyond traditional windows programming to facilitate creating web 

applications, quickly and easily. VB.NET can be used to develop three types of applications to 

be run on a windows computer, Reynolds, M., Blair, R., Crossland, J. (2003): 

A. Console applications displaying no graphics 

B. Windows applications using the standard windows interface 

C. Web applications that can be accessed using a browser 

 The main drawback of VB.NET, however, is that it is a version of Visual Basic 

specifically written for .NET. While .NET is developed to become cross-platform, the 

overwhelming majority of these programs are written to run on a machine running Windows. 

The .NET platform is web-centric. 

2.3.4 C# 

 C# is a programming language that was developed specifically for the purpose of writing 

applications for the .NET platform. It embodies most of the positive features of C++, Java and 

Visual Basic. C# is used to create the same applications as described previously for VB.NET. 

Since the language was built on the shoulders of C++ and Java, all the features such as modern 

object oriented and component based programming concepts are enabled. To build and run C# 

programs, Windows 2000, IE5.5, Microsoft .NET SDK, text editor and an optional Visual Studio 

.NET are required, Drayton, P., Albahari, B., Neward, T. (2002). 
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 The goal of C# is to provide a simple, safe, object oriented, internet-centric, high 

performance language for the .NET development. C# is considered simple due to its relatively 

few keywords, which make sit easy to learn and easy to adapt to the programmer’s specific 

needs. Like VB.NET, C# also is considered safe because it provides support in the language to 

find bugs early in the development process making it easier in maintenance and more reliable. 

C# is considered as a next major step in the evolution of component-based development 

languages, Liberty, J. (2002). 

 The demerits associated with C# are the same as VB.NET. C# was designed for 

developing web and web-aware programs. In other words, it is most useful for creating web 

applications. 

2.3.5 Java 

 The difficulties with C and C++ (and most other languages) being designed to be 

compiled for a specific target, led to the creation of Java. Java has gained a wide and rapidly 

growing popularity and acceptance as the programming language of the World Wide Web since 

its first release in 1995 by Sun Microsystems, Naughton, P., Schildt, H. (1999). Java is an object-

oriented language that is secure, robust, portable, simple, multi-threaded and distributable. Java 

comes with a large library of tools useful for many areas of distributed and internet computing. 

Java is, more than just a language for writing applets (small programs that are downloaded from 

a server and execute in a client browser, independent of the server’s and client’s platforms), 

Naughton, P., Schildt, H. (1999). It is a general programming language whose library contains a 

rich set of tools to create GUIs. The first versions of Java provided only basic GUI tools like 

lists, radio buttons and the like, but the latest release of the Java libraries has a much larger set of 

tools that include tables and trees, various forms of buttons for toolbars, sliders, progress bars, 

etc. Java rivals the capabilities of existing GUI interfaces (Visual Basic on Windows, X/Motif on 

Unix) but with the distinct advantage of being portable. In many cases Java is also faster than 

competing products as compiler technology takes advantage of the built-in safety features of 

Java. 
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 A special feature of Java is that the programmer, independently of the underlying 

platform, can choose the “look-and-feel” of the GUI. Earlier versions of Java GUIs always 

reflected the platform; the same Java application would use the Microsoft Windows "look-and-

feel" on Windows platforms while it appeared like an X/Motif GUI on Unix machines. With the 

most recent Java version one can choose either a Windows, X/Motif, a special Java or even a 

user-defined "look-and-feel" on all platforms, Naughton, P., Schildt, H. (1999). The AWT 

(Abstract Window Toolkit) package, used to create applet windows, is used for the creation of 

stand-alone windows that run in a GUI environment. 

 While the Java windowing environment is portable across all platforms, its performance 

and capabilities are at present limited to least-common-denominator functionality, Naughton, P., 

Schildt, H. (1999). This means it is not possible to provide a fully functional, industrial strength 

GUI interface at present, by using Java. This is a serious limitation, since experience shows that 

the last few percent in functionality of a GUI interface has a very large effect on the perceived 

ease of use. The main disadvantage of Java is speed.  Java, and the AWT, probably does not 

provide the performance required for "real-time" displays as required, for example, by rapidly 

updating histograms and plots. Although Java's ability for producing portable, architecturally 

neutral code is desirable, the method used to create this code is inefficient. Once Java code is 

compiled into byte code, an interpreter called a Java Virtual Machine (which accounts for Java’s 

versatile portability), specifically designed for a computer architecture, runs the program, which 

makes the application slow. Java, being an interpreted system, is currently an order of magnitude 

slower than C. 
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2.4.1 SELECTED OPTION 

Building a post-processor graphical interface for a comprehensive rotor dynamic analysis 

requires taking into account certain important features and neglecting certain inconsequent 

features. A post processor program would need to access the output files from the processor, for 

further analysis. The program would be required to have all the regular widgets such as buttons, 

pull down menus, choice buttons, suitable plotting output, printing capability, feature for saving 

the plots, etc. Taking into consideration all the above-discussed facts about the graphical user 

interface requirements and various available software/package options, it is concluded that the 

optimal option would be using Visual Basic 6.0 for the purpose. 

As previously discussed, C and C++ are poor in the capabilities of building graphic 

interface. Also, the implementation time would be high. Due to the requirement of a secondary 

scientific plotting package, this option was ruled out. Visual Basic.NET, though advanced and 

conforming to all the requirements in terms of simplicity and features, does not suit well for a 

normal industry environment package. Also, the .NET platform is a disadvantage in itself along 

with its exorbitant cost. C#, with almost the same features as Visual Basic.NET was eliminated 

on the same basis. Java, with its extensive set of toolkits and graphic libraries is a good option 

for the GUI. But, its speed, when taken into account the file accessing, and the code involved in 

building the whole interface, made it a difficult choice. The scientific plotting capabilities of 

Java, which are not advanced, have ruled it out of contention.  

On the other hand, Visual Basic 6.0 with its rich set of controls and built in windows 

toolkits made it a frontrunner. The sequential file format of the output files from the preprocessor 

makes it easier for Visual Basic interpretation. The plotting feature of Visual Basic, though not 

very advanced, was easily used for the purpose, thus eliminating the need for any other plotting 

package. The rapid development of the interface is a positive feature. Further significant 

advantage of Visual Basic over other programming packages is the ability to modify and change 

the interface during design time itself. Utilizing the ActiveX controls, some of the advanced 

features were easily incorporated. 

Hence, the selection of Visual Basic 6.0 for the purpose of creating the user interface 

proved to be extremely satisfactory. 
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CHAPTER 3 

PLOTTING AND CURVE FITTING 
 

 
 For the rotor dynamic analyses, the postprocessor needs to have the capability to make 

plots, display them on the screen and save to a file in a compatible format. A further 

enhancement would be to print the plots to a default printer. It would not be an efficient use of 

manpower to write a custom set of plotting tools if the designer could find a package that is 

available that satisfies the need. The selection of a suitable tool for plotting the results for various 

analyses is discussed in this chapter. 

 In the plotting of the mode shapes in the stability analysis and the critical response 

analysis, one of the most critical issues would be to select the curve fitting technique. A 

discussion on the appropriate curve fitting is discussed to the end of this chapter. All the 

packages and softwares discussed in this chapter are trademarks or registered trademarks of their 

respective companies. 
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3.1 INTRODUCTION 

 It seems quite clear that the choice of package is intimately related to the scope of what 

and how much of detail the designer wants to have. For example, if the designer intends to have 

the tools to just put up plots and images with minimal interactive analysis then the choice would 

only be limited to some basic Image and Plotting Software (IPS) or if the need is to have more 

complicated interactions with the user and more extensive image manipulation (e.g. rotatable 

images), then something more like a graphic toolkit would be desirable. Some of the basic 

requirements of IPS for science analysis graphics as listed by the user interface committee are as 

follows: 

• The IPS must be available on all supported platforms. 

• Any external libraries used by the IPS must be well supported, tested, and free. 

• The IPS must be extensible, allowing the creation of custom widgets. 

• The IPS must be simple to integrate or install, preferably through a binary distribution for 

end-users. 

• The IPS must be able to generate publication quality images, including PostScript. 

• The IPS must allow export of images into standard browser supported formats (e.g., 

BMP, GIF, JPEG, etc.) 

• Plots shall be modifiable, rather than forcing regeneration of plots from scratch. 

• The IPS must support overlaying of images, contours and plotted points. 

•  The display rate should be less than about 2 seconds for tasks that are not data intensive. 

• The IPS must provide for returning interactive graphical inputs such as cursor position. 

In accordance with the plotting requirements of various rotor dynamic analyses, it is 

deemed not necessary to include graphic toolkits. Hence, the need for the post processing 

analysis would be a basic image and plotting package. The following section deals with various 

options of plotting packages. Their merits and demerits have been discussed accordingly. 
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3.2 PLOTTING OPTIONS 

 As discussed previously, the selected post processing plotting package option must 

satisfy the basic norms. Henceforth, some of the plotting options would be discussed along with 

their applicability for rotor dynamic analysis. 

 

3.2.1 C/C++ 

 As discussed in the previous chapter, C and C++ languages share a low level of computer 

graphics and plotting capability relative to other specifically developed packages. Rather, there 

are a lot of packages developed that could be interfaced with C/C++ for graphic and plotting 

enhancement, which also provide capability to I/O files, Johnson, N. (1987). The requirement of 

long syntactic declaration, coding and exhaustive memory management makes this option hard 

to manage. 

 With respect to rotor dynamic postprocessor, the analyses requires good I/O file 

management, plotting compatibility with GUI and plot output streaming. Hence, this option was 

ruled out for the purpose. 

 

3.2.2 Visual Basic 

 Visual Basic, with its rich collection of graphic interface tools has good plotting 

capability. Though it does not posses full scientific image and plotting resources, suitable coding 

can help achieve the purpose. With the help of necessary toolkits and library routines, Visual 

Basic can be fully extended to the range of a satisfactory plotting tool. The easy I/O file handling 

is a plus, Donald, R.P., Oancea, G. (1999). After the plotting is completed, it can be channeled 

into an editable file or printer. Hence, all its functionalities make it a versatile plotting option. 

 Using Visual Basic for rotor dynamic plotting purpose could be a satisfactory solution, 

except that fairly long codes are needed for simple plotting. Since there would be no need for a 

highly advanced image manipulation and 3-D plotting, Visual Basic offers a comprehensive 

choice for plots. It also offers a cost effective solution with its many advantages. 
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3.2.3 Visual Basic.NET/ C# 

 The features discussed previously for Visual Basic holds good for Visual Basic.NET and 

C#. The only difference and drawback is that both these options are specific for .NET 

environment. The web centric software can be suitably used for plotting with the usage of 

appropriate APIs, Reynolds, M., Blair, R., Crossland, J. (2003). 

 Visual Basic.NET or C# could be used as a plotting option for rotor dynamic 

postprocessor analysis, but its web centric approach would not make it a plausible solution for 

industrial applications. A lot of capabilities of these software packages are deemed unnecessary 

when it comes to its application for rotor dynamic analyses. 

 

3.2.4 Java 

 Java has a large library of tools for plotting. Its graphic interface capability coupled with 

the sets of plotting functions makes Java a good choice. The inbuilt routines for various 

functionalities like plotting, printing, exporting files and various saving formats has a great edge 

over other options. Java has a rich collection of in built objects typically used for any graphic 

user interface, Naughton, P., Schildt, H. (1999). Though a bit long lines of code are required for 

plotting purpose, Java quite effectively serves the purpose. 

 Using Java for plotting, though serves the purpose, the speed of the application is reduced 

quite a bit. Also, this internet centric language does not seem to hold a satisfactory option for an 

industrial application like rotor dynamic analyses. 

 

3.2.5 SciPlot 

 The SciPlot toolbox provides a graphic building block for any scientific/engineering 

development platforms for numerical or statistical analysis and publication of scientific result 

applications. The SciPlot library provides a basic set of graphics routines for scientific and 

engineering plotting. Graphs can be generated interactively in a client window for quick preview. 

Final hardcopy plots can be produced on any windows-supported and graphics capable printer. 

The various functions provided by SciPlot are axis tilting, numeric label generation, number 

conversion, data array plotting, 3D surface contour plotting and plot annotation routines to 

generate plots with linear and log axis scales. SciPlot supports graphic application development 

 43



through the use of the Microsoft Windows API. Both static and dynamic linked applications are 

supported, MicroGlyph/SciPlot™ Graphics Library Documentation Manual. 

 SciPlot has its demerits in its applicability. One of the main drawbacks is its non-

compatibility with some C/FORTRAN compilers. Also, its limited support of color modes makes 

it a less sought option. The need to include a separate graphics library for the plotting purpose, 

which could be eliminated with some other options, makes it a disadvantage. 

 

3.2.6 Gnuplot 

 Gnuplot is a commonly available plotting package. It is a free X window application with 

command line interface, web resource ( http://www.ucc.ie ). With a reasonable control of plot 

appearance, its output quality is quite satisfactory. Gnuplot is commonly used for producing 2D 

and 3D plots, although it doesn't have as many features as some of the other commercial 

mathematical software available. It is not as complex to use as packages such as Mathematica or 

Matlab. It is ideal for users who only need to a plot a graph and don't want to learn a major tool. 

A nice thing about doing the plot interface this way is that it is not too difficult to maintain or 

extend. It can be used with the output for many printers and other plotting devices, like 

PostScript, LaTeX, HPGL, MetaFont, etc., web resource ( http://scv.bu.edu ) 

 Some of the disadvantages of using Gnuplot are that the plotting must be done with 

temporary files, since Gnuplot cannot read data from standard input and lacks some important 

features, primarily multiple plots per page. Interactive plotting with Gnuplot requires the 

operating system to be multi-tasking. 

 Gnuplot can be satisfactorily used for plotting rotor dynamic analyses plots. But, its 

lacking applicability with other front-end softwares such as Visual Basic or Java makes it a less 

sought option. 
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3.2.7 Tecplot 

Tecplot has powerful capabilities in three key areas: plotting, data managements, and the 

user interface. These provide more control to explore, analyze and communicate results. The 

various merits of Tecplot in plotting are its ability in line plots, log-log plots, in-built spline and 

curve fits. Tecplot has various plotting options like symbol properties, labels, grid spacing, axes, 

colors, titles, legends, and fonts and multiple horizontal and vertical axes. It has features like data 

text loader, supplement auxiliary data information and image import. Customized options to 

output data and plots in various formats is a plus point for Tecplot.  Its graphic user interface has 

an added advantage, web resource ( www.tecplot.com ). 

The main disadvantage of using Tecplot is its cost, when using as a supplement for 

plotting purpose, with any other graphical user interface designed specifically for rotor dynamic 

analysis. Its various advanced functionalities are not needed for rotor dynamic specific analyses. 

The requirement for setting up of different software for plotting purpose only makes it a serious 

setback. 

 

3.2.8 Mathematica 

Mathematica is also an X windows application with command line interface and good 

output plot quality, web resource (http://scv.bu.edu). Mathematica seamlessly integrates a 

numeric and symbolic computational engine, graphics system, programming language, 

documentation system, and an advanced connectivity to other applications. Some of the 

advantages of using Mathematica come by its handling complex symbolic calculations that often 

involve hundreds of thousands or millions of terms, loading, analyzing, and visualizing data, 

Solving equations, differential equations, and minimization problems numerically or 

symbolically and doing numerical modeling and simulations, ranging from simple control 

systems to galaxy collisions, financial derivatives, complex biological systems, chemical 

reactions, environmental impact studies, and magnetic fields in particle accelerators, web 

resource (http://www.wolfram.com). 

Although Mathematica is very powerful, it is difficult to use. Since the rotor dynamic 

analysis does not need the full-fledged features, it would not be worth the time investment to 

learn and use Mathematica without doing a significant amount with it. Hence, this option is, 

rather, taken off contention. 
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3.2.9 Fortner Dataplot 

 DataPlot, a plotting package produced by Fortner Research LLC, is an easy-to-use X 

Windows application that can produce line graphs, including multiple graphs per plot, error bars, 

and log axes, as well as parametric plots and scatter plots. The point-and-click driven interface 

allows easy changes to titles, graph annotation, axis and tick-mark labeling, labeling, font 

selection, and color. There are various ways to bring data into the program, which can be kept 

and manipulated in a spreadsheet style database or file. Data is selected from the rows and/or 

columns of this file, and graphs are produced in X Windows. The results can be saved as 

PostScript files and printed on printers. Plots can also be saved as raster image file. The highlight 

of Dataplot being its easiness to learn or use, and obtain high quality postscript output for the 

most common and simple graphs, web resource (http://www.scv.bu.edu). 

 Dataplot proves to be an option that has far more features than are required for a normal 

rotor dynamic analysis. The compatibility with other graphic interface and cost make it a less 

preferred option. 

 

3.2.10 Excel/Spreadsheet 

Excel is an extremely versatile and useful tool with its chief advantage over other 

commercially available softwares being that it can be easily adapted for a variety of purposes and 

that it is available on most PCs at no extra cost. It has certain advantages like, being able to plot 

data with curve fit, a useful searchable database, simulations and interactive worksheets. Excel 

can incorporate multiple data sets onto the same plot for comparison.  Templates can be created 

in Excel to automatically perform calculations on the data that are retrieved. The runtime context 

sensitive help makes it a good option. 

 Excel can only plot data values from tables. This means that, to plot any data set or any 

function, the information must first be inserted or generated in tabular form, although once a 

table of data exists, the plotting of the data is straightforward. Hence, a completely different set 

up for plotting and saving makes it unpractical to merge it with any other user interface program. 

Also, the various specific plots in rotor dynamic analysis cannot be realized effectively in Excel. 
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3.3 SELECTED OPTION 

 The plotting of data for various rotor dynamic analyses requires certain basic 

functionalities. The processor, which this thesis uses, outputs the data results into separate 

formatted files for the respective analyses. Any plotting option would need to use these files, 

perform some conditional branching, and plot the appropriate plots with curve fitting, if 

necessary. The user would also be needed to give options to either save it in one of the standard 

formats or print it out for further analysis.  Also, embedding the processor with the graphical user 

interface to run the input files would cut unnecessary steps for a separate processor run. Along 

with these requirements, the plotting functionality within the graphical user environment would 

be an interesting feature. Taking all the above requirements along with cost constraint and other 

features like plotting controls, and an easy setup installation wizard, makes Visual Basic the best 

of all the choices. 

 As discussed previously, C and C++ options have a lower functionality with plot controls 

and a very native graphic interface. C# and Visual basic.NET being more of web centric 

applications and its unnecessary advanced features, with respect to rotor dynamic post 

processing, has made it a demerit in itself. Also, the .NET platform, with high cost, ruled them 

out for the purpose. Java, for its low speed and web centric was ruled out.  SciPlot and Gnuplot, 

being impressive for plotting purpose but having limited user options as an interface and 

compatibility, web resource (http://scv.bu.edu), with other programs, were ruled out. Tecplot, 

though advanced, was not considered due to its graphic interface not confirming for rotor 

dynamic post processing application. Fortner Dataplot, Mathematica and Excel spreadsheet, 

though share to be a very good plotting option, the user interface is not suited for rotor dynamic 

analyses and also cannot be combined with other graphic interface. 

 Visual Basic has a rich plotting controls set. Its ability to have plotting options combined 

into the graphical interface to give a wholesome look for rotor dynamic analyses makes it a 

better option. Visual Basic has file writing and accessing features, which makes it suitable to use 

it in conjunction with RotBrg processor, which this thesis uses, and its output files. Lastly, the 

plot saving and printing features, using the active X controls, makes it the best of all the options. 

There are various other features that are well suited for a rotor dynamic analyses post processor. 

 Hence, Visual basic 6.0 has been chosen for both graphic user interface and plotting 

purposes and has proved to be extremely satisfactory. 
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3.4 CURVE FITTING 

 Applications of numerical techniques in engineering often involve curve fitting of 

experimental data. Its importance comes in data handling because it produces a mathematical 

model of the data that can compactly contain and represent its primary properties, Kincaid, D., 

Cheney, W. (1996). With respect to rotor dynamic application, curve fitting is necessary for its 

data to be analyzed in the form of plots. For a designer to modify or obtain an optimum rotor-

bearing model, the fitting of a polynomial curve to the set of result data points becomes 

necessary. 

 For the purpose of curve fit between the data points, a cubic spline method has been 

chosen. The spline logic, described below, has been dissolved into computer equations in a 

separate subroutine. It is attached as an appendix to this thesis. 

 A spline consists of polynomial pieces on subintervals joined together with certain 

continuity conditions. A cubic spline is a spline constructed of piecewise third-order polynomials 

which pass through a set of ‘m’ control points.  It is as shown in the figure below, Weisstein, 

E.W. (1999).  

 
Fig 3.1. A typical cubic spline curve 

 

The second derivative of each polynomial is commonly set to zero at the endpoints, since 

this provides a boundary condition that completes the system of ‘m-2’ equations. This produces a 

so-called "natural" cubic spline and leads to a simple tridiagonal system which can be solved 

easily to give the coefficients of the polynomials, Mathews, J. H., Fink, K. F. (1999). However, 

this choice is not the only one possible and other boundary conditions can be used instead. 
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Considering a 1-dimensional spline for a set of n+1 points (y0,y1,…,yn), the ith piece of 

spline can be represented as 

Yi(t) = ai + bit + cit2 + dit3     (1) 

where t is a parameter t Є [0,1] and i =0,1,…,n-1. 

Yi(0) = yi = ai      (2) 

Yi(1) = yi+1 = ai + bi + ci +di.               (3) 

Taking the derivative of yi(t) in each interval then gives 

)0(iY ′  = Di = bi                 (4) 

)1(iY ′  = Di+1 = bi +2ci + 3di    (5) 

Solving equations (2)-(5) for ai ,bi , ci and di gives 

ai = yi       (6) 

bi = Di       (7) 

ci = 3(yi+1 - yi) – 2Di –Di+1    (8) 

di = 2(yi – yi-1) + Di + Di+1    (9) 

Now it requires that the second derivatives also match at the points, so 

Yi-1(1) = yi      (10) 

)1(1−′iY  =                  (11) )0(iY ′

Yi (0) = yi      (12) 

)1(1−′′iY  =       (13) )0(i ′′

for interior points, as well as end points satisfy 

Y0(0) = y0      (14) 

Yn-1(1) = yn      (15) 

This give s a total of 4(n-1)+2 =4n-2 equations for the 4n unknowns. To obtain two more 

conditions, it requires that the second derivatives at the end points be zero. This is one of the five 

end-point constraints chosen for the purpose.  Hence 

)0(0Y ′′  = 0      (16) 

)1(1−′′nY  = 0      (17) 
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Rearranging all these equations leads to the following symmetric tridiagonal system: 
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The above equation applies to an open curve, which is the case in rotor dynamic analysis. 

The above system is strictly diagonally dominant and has a unique solution. The coefficients 

D0,D1,D2,…., Dn-1,Dn and other spline coefficients are computed in a subroutine.  The above 

system is broke up to make suitable equations for computer calculation, thus giving coefficients 

for a smooth cubic spline curve. The cubic spline subroutine written in Visual Basic 6.0, has 

been attached in the appendix section for reference. 
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CHAPTER 4 

PROGRAM SCHEMATIC AND IMPLEMENTATION 

 

 This chapter provides an overview and schematic of the post processor program - 

‘RotPlot©’. The organization and mode of operation of the program are intuitive and user 

interactive. The salient features of the program in the form of screen shots and the flow chart of 

the program are presented. It includes the description of the installation of the program, which 

enables to transfer the code from a removable media to a computer hard disc in a user friendly 

manner. The chapter ends with a section containing sample plots of different post-processor 

analyses results, of a particular rotor design. 
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4.1  FILE STRUCTURE 

 The rotor dynamic analysis of a complex rotor bearing system requires an extensive 

amount of data. A comprehensive rotor bearing system may be subject to various analyses, as 

different design considerations and manufacturing issues must be evaluated with different 

geometry iterations. Hence, for a particular study, many data files will be generated which may 

contain both input and output information. Due to availability of large capacity computer storage, 

the need to keep track of data in an efficiently organized way is more of a concern than of the 

memory storage requirement. 

 A rotor bearing foundation is generally subjected to three kinds of analysis viz., 

undamped critical speed analysis, stability analysis and the synchronous response analysis. The 

subject program of this thesis has the option to carry out the above mentioned analyses. The 

program requires a separate input file, with pertinent information such as rotational speeds, 

station information, loads and other rotor model identification code for each of the analysis 

intended. But only a slight change in the input file is needed to change the analysis type. The 

output files generated also depend on the selected analysis type. The evaluation of output 

analysis files is enhanced by all the related files being identified by the same input file name, but 

with different extensions, appropriate to the analysis carried out. This facilitates the archiving 

process of analysis, since all the files of interest can easily be traced to the name of the analysis 

input file. Since these output files are text based, in format, they can be printed or imported into 

other compatible programs. 

 Irrespective of the type of analysis intended, the input file for the program bears the 

extension ‘IN’. The following tables show the various files generated by the post processor 

analysis program and a brief description of its content. 
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Extension Brief Content Description 

OUT Comprehensive analysis information as output 

SYR Response amplitude, phase and orbit data at various speeds and stations 

SYB Bearing response amplitude and phase at various speed and bearings 

SYF Response amplitude and phase data at foundation level station locations 

BRL Bearing parameters and rotor location data 

Table 4.1 Synchronous Response Analysis Output Files 

 

 

 

Extension Brief Content Description 

OUT Comprehensive analysis information as output 

STY Comprehensive Mode parameters and related data for all the specified modes 

BRL Bearing parameters and rotor location data 

Table 4.2 Stability Analysis Output Files 

 

  

Extension Brief Content Description 

OUT Comprehensive analysis information as output 

CRM Critical speeds and its associated modes information  

CTR Critical speed map data (Bearing stiffness associated at various speeds) 

SFN Bearing stiffness data in study 

BRL Bearing parameters and rotor location data 

Table 4.3 Critical Speed Analysis Output Files 
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4.2 PROGRAM SCHEMATIC OF ROTORDYNAMIC POST-PROCESSOR 

 Once the post processor program is installed on a computer, from the setup package, the 

main selection menu is displayed as seen in Fig. 4.5. The analyst can access the available options 

using the keyboard or any pointing device. Upon selection of an option, subsequent menus are 

displayed, guiding the user through the process to the ultimate plots. The program automatically 

sets default parameters such as sub directory selection, default file extension setting depending 

on the analysis, output plots saving menu and others, relieving the analyst from performing tasks 

that are peripheral to the main objective of analysis. All the related analyses output files would 

be automatically generated in the same directory where the input file is located, for the user’s 

convenience for further analysis. 

 Fig 4.1 illustrates a schematic of the organization and mode of operation of the program 

developed. Fig. 4.2 through Fig 4.31 graphically illustrate the various steps and options prior to 

the display of the analysis plots, upon which the user has the opportunity to either save a plot to a 

convenient file, copy it to the clipboard or print it to a default printer as a hard copy, for future 

reformatting and analysis. The illustrations are typically from a computer with Windows XP – 

SP1 operating system environment, the look and shape may vary depending on the operating 

system and preloaded theme settings. 
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Fig 4.2 shows a typical program loading screen whenever the user starts RotPlot. The 

progressive bar indicates the level of loading completion of the program and the main menu is 

displayed immediately after the program has completely loaded. 

 
Fig 4.2 Program loading 
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 Fig.4.3 shows the program background and is constant throughout the program execution. 

Fig.4.4 shows the help tips related to the program, at start up. The option can be turned off at any 

time. 

 
Fig 4.3 Program background 

 

 
Fig 4.4 Help tips at startup 
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 Fig. 4.5 and Fig. 4.6 show the main menu, from where the user can easily navigate 

between the post processor and processor. The help and overview toggle button can be used to 

know about the processor program and post-processor program along with its features. The 

startup tips can be made to display, by turning on the appropriate option. 

 
Fig 4.5 Main menu showing the processor and post-processor overview 

 

 
Fig 4.6 Main menu showing program help 
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 Fig 4.7 shows the program information and the related copyrights. Fig 4.8 shows the 

processor menu. All the compatible input files in the current directory can be viewed by clicking 

on the ‘Browse’ button.  Upon selecting an input file and clicking the ‘Run Processor’ button, the 

necessary analysis files are generated for post processing. 

 
Fig 4.7 Program version and copyright information 

 
Fig 4.8 Processor menu 
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 Fig 4.9 shows a typical browse form for the processor. Only the input files in the current 

directory are displayed and any one of them can be selected for processing. Fig 4.10 shows a 

typical screen where the user is prompted with the status of the program. 

 
Fig 4.9 Processor file input menu 

 

 
4.10 Program working message  
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 Fig 4.11 shows the main post processor menu. Each of the buttons indicates the analysis 

options that can be carried out. The user has the option to switch to the main menu or exit the 

program from this menu. Each analysis further has options before the final plot is viewed. The 

user can run the processor once and come back to perform the post processing at a later time, 

without losing the necessary data. 

 

 
Fig 4.11 Rotor dynamic analyses options menu 
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 Fig 4.12 shows the synchronous response analysis options. The user can proceed further 

only after selecting a particular option. Fig 4.13 shows the synchronous response plot options. A 

compatible analysis file can to be selected by clicking the browse button. The user can easily 

navigate and change options throughout the program using the ‘Back’ and ‘Proceed’ buttons. 

The selected options can be cancelled anytime by clicking ‘Cancel’ button. 

 
Fig 4.12 Synchronous response specific option menu 

 

 
Fig 4.13 Synchronous response analysis sub menu 
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 Fig 4.14 shows a typical form for browsing and selecting a synchronous response 

analysis file. Only the synchronous response analysis files, with an extension SYR, would be 

viewed for selection. 

 

 
Fig 4.14 Synchronous response specific file input menu 
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 Fig 4.15 shows the plot settings menu. A user can select the increment level on the rotor 

speed axis by selecting the pre-specified value or entering any other desired value. The 

amplitude increments on the plot can also be selected or entered similarly. The ‘Station to plot’ 

pull down menu has a list of all the stations on file, where the synchronous response is carried 

out. The user may select any option of choice. The grid option can be checked to have the grid 

superimposed on the plot. The operating speed(s) can also be marked on the plot, for 

convenience, by the appropriate check box. The user has the option to switch back to the main 

menu directly or exit out of the program at this point. The default settings can be changed by an 

advanced user, to suit the plot requirements. 

 

 
Fig 4.15 Plot settings menu for response plot 

 

 

 64



 Fig 4.16 shows the default options that could be changed to suit the plot requirements. 

The ‘Speed Range’ specifies the maximum speed value that the user intends to view on the plot. 

The default value is the maximum speed specified in the input file. Similarly, a maximum 

amplitude setting can be entered.  The user is given the option to view multiple stations response 

on a single plot, rather than having them plotted separately. A maximum of three stations 

response plots can be plotted at once. The user may select to have only the ‘X Amplitudes Vs 

Speed’ or ‘Y Amplitudes Vs Speed’ plot by checking the appropriate setting. Similarly, the 

amplitude plots at foundation level can be plotted. 

 

 
Fig 4.16 Synchronous response default setting changing menu 
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 Fig 4.17 shows the plot setting menu for the Phase Vs Speed plot. The user may select 

one of the pre defined phase increment values or enter any positive value of choice. The phase 

axis (typically Y-axis) would be divided in multiples of the value selected by the user. The grid 

would also be modified accordingly. 

 

 
Fig 4.17 Plot setting menu for phase plot 
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 Fig 4.18 shows a typical ‘Browse File’ menu for the bearing response analysis. Only the 

compatible files with extension ‘SYB’ would be viewed for selection. Fig 4.19 shows the plot 

settings menu for bearing response. The ‘Bearing to Plot’ pull down menu has all the bearings of 

the input file rotor model, for selection. The user may select any one of them. 

 
Fig 4.18 File input menu for bearing response plot 

 
Fig 4.19 Plot setting menu for bearing response 
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 Fig 4.20 shows the stability analysis options. Once the user selects an input file, the mode 

plotting options are activated for selection. The ‘Mode to be Plotted’ pull down menu has as 

many modes to plot as indicated in the input file. The ‘Rotor Length Increment’ gives the user 

the option to select the increment on the rotor length axis, typically X-axis. The rotor model can 

be superimposed on the mode plot by selecting the appropriate option. The bearing locations can 

also be plotted for convenience by selecting the option. A grid mesh can be superimposed on the 

plot by selecting the option. The default settings can be changed by an advanced user to suit the 

requirements. Fig 4.21 shows the error prompt when the user tries to enter mode plotting options 

without entering any appropriate input file. 

 
Fig 4.20 Stability analysis menu 

 
Fig 4.21 Stability analysis file input error handler 
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 Fig 4.22 shows a typical ‘Browse file’ menu for the stability analysis, which would 

display only the appropriate files with ‘STY’ extension. Fig 4.23 shows the default changing 

settings by which the user has the option to plot only the X mode shapes or Y mode shapes.  

Also, multiple modes can be plotted simultaneously by selecting all those modes 

.  

Fig 4.22 Stability analysis file input menu 

 
Fig 4.23 Stability analysis defaults changing menu 
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 Fig 4.24 shows the Critical speed analysis option menu. A suitable analysis file can be 

selected only after selecting an analysis option. Fig 4.25 shows the error prompt when the user 

tried to proceed to the plot without inputting an analysis file. Fig 4.26 shows the error prompt 

when the user tried to select a file for input before selecting an analysis option. 

 
Fig 4.24 Critical speed analysis options menu 

 

 
Fig 4.25 Critical speed analysis file input error handler 

 
Fig 4.26 Critical speed analysis selection error handler 
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Fig 4.27 and Fig 4.28 show the ‘Browse File’ menu depending on the analysis option 

selected by the user. The type of files displayed for selection also depends on the analysis option 

selected. Files with extensions ‘CRM’ and ‘CTR’ stand for the critical speed mode shape and 

critical speed map options respectively. 

 
Fig 4.27 Critical speed analysis file input menu 

 

 

Fig 4.28 Critical speed map input file menu 
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 Fig 4.28 shows the Critical speed mode plotting options menu. The ‘Bearing Stiffness of 

plot’ pull down menu has all the cases of bearing stiffness listed in the input file. User may select 

any case to plot. The rotor length increment option value lets the user set the increment for the 

rotor length axis, typically X-axis. The rotor model can be superimposed on the mode plot by 

selecting the appropriate option. The bearing locations can also be plotted for convenience by 

selecting the option. By checking those options, the corresponding bearing stiffness values are 

showed on the plot along with the critical speeds, at that particular selected mode. A grid mesh 

can be superimposed on the plot by selecting the option. Fig 4.29 shows the confirmation prompt 

to the user whenever the user tries to exit the program. 

 
Fig 4.29 Critical speed analysis mode plotting options menu 

 
Fig 4.30 Program exit confirmation 
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 Fig 4.31 shows a typical output plot. It shows the title of the plot, as in the input file and 

the various plot parameters depending on the analysis selected. A right click with the mouse on 

the plot would show the specific plot parameters at that particular point. The ‘Save’ button would 

enable to save the plot in any specified directory, in bitmap (BMP) format. The ‘Copy’ button 

would copy the entire plot to clipboard, giving the option of inserting it later in any appropriate 

file, for analysis. The ‘Print’ option enables the user to print it to the default printer as a hard 

copy. 

 

 
Fig 4.31 Sample plot with options for the user 
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4.3 PROGRAM INSTALLATION 

 Effort was made to facilitate the installation of the program with an easy setup package as 

part of this thesis. This installation requires a minimum of user’s effort and is menu driven. The 

user is given the option to select the destination drive and directory where the program is chosen 

to be installed. The author has used InstallShied software to build the installation package along 

with all necessary program controls for compatibility.  

 Fig 4.32 through Fig 4.37 depicts the setup process in a computer with Windows XP – 

SP1 operating system environment. All the illustrations are self explanatory with the details 

being provided at each step.  

 

 
Fig 4.32 Program installation start up screen 
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Fig 4.33 Program installation wizard 

 

 
Fig 4.34 Program installation setup option 
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Fig 4.35 Program Installation settings conformation 

 

 
Fig 4.36 Program installation progress 
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Fig 4.37 Program installation confirmation 

 

 After the successful installation of the program onto the hard drive of any computer, the 

program short cut is seen on the desktop as default and also in the start menu of the operating 

system. This facilitates the user to directly launch the program from the desktop. The program 

and all of its associated components can be easily removed from the computer from the control 

panel’s add/remove programs menu. The uninstallation would, however, not remove any analysis 

files created by the program and need be removed manually by the user. 
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4.4 SAMPLE PLOTS 

 

 In the later sections, some sample plots produced by RotPlot post-processor program are 

illustrated. The plots are divided into sub sections to distinguish the three rotor dynamic analyses 

– undamped critical speed analysis, stability analysis and synchronous response analysis. 

Different colors are used to differentiate the different curves and mode shapes. 

 

4.4.1 Undamped Critical Speed Analysis Sample Plots 

 

 

Fig 4.38 Critical speed mode shape for stiffness of 1E4 
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Fig 4.39 Critical speed mode shapes for stiffness of 1E5 

 

 

Fig 4.40 Critical speed mode shapes for stiffness of 1E6 
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Fig 1.41 Critical speed mode shapes for a stiffness of 1E7 

 

 

Fig 4.42 Critical speed mode shapes with grid option on 
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Fig 4.43 Critical speed mode shapes with rotor model and bearing locations superimposed 

 

 

Fig 4.44 Critical speed map 
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4.4.2 Stability Analysis Sample Plots 

 

 

Fig 4.45 First damped mode shape 

 

Fig 4.46 Second damped mode shape 
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Fig 4.47 Third damped mode shape 

 

Fig 4.482 Fourth damped mode shape 
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Fig 4.49 Fifth damped mode shape 

 

 

Fig 3 Sixth damped mode shape 
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Fig 4.51 Seventh damped mode shape 

 

Fig 4.52 Damped mode shape with rotor dynamic model superimposed 
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Fig 4.53 Damped mode shape with rotor and bearings location superimposed 

 

 

Fig 4.54 Damped mode shape with grid option turned on 
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Fig 4.55 Damped mode shape with specific position parameters selected 
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4.4.3 Synchronous Response Analysis Sample Plots 

 

Fig 4.56 Synchronous response of the rotor at first station location 

 

Fig 4.57 Synchronous response of the rotor at second station location 
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Fig 4.58 Synchronous response of the rotor at third station location 

 

 

Fig 4.59 Synchronous response of the rotor with grid option turned on 
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Fig 4.60 Synchronous response plot with specific location parameters highlighted 

 

 

Fig 4.61 Phase response plot 

 90



 

Fig 4.62 Bearing response plot at first bearing location 

 

 

Fig 4.63 Bearing response plot at second bearing location 
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Fig 4.64 Bearing phase plot 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

 

5.1 CONCLUSIONS 

 

 This thesis work involved the development of a computer program that would offer the 

designer and analyst of a complex rotor bearing system, an opportunity to obtain data and 

graphic display of rotor dynamic analysis results in an effective and easy way. As was mentioned 

earlier in this thesis, an efficient rotor bearing design requires the quantitative evaluation of how 

the interaction of variables of primary importance affects the rotor bearing system behavior in 

operating conditions. The modified processor, as part of the program, is developed to produce 

the relevant files of a particular analysis. This approach helps an analyst in verifying the data for 

a particular design consideration. The ability to quickly change the design of a rotor and view the 

results instantly will enable the designer to obtain an efficient rotor dynamic system. 

 The subject program of this thesis has the ability to further post process the analysis files 

and visualize results in the form of plots, which further enhance the designer’s insight of a 

particular design. Most of its user friendly features such as the default analysis files directory 

selection, ability to multitask in combination with Windows operating system based operations, 

etc., make it a powerful tool for rotor dynamic analysis. Furthermore, it provides options for the 

user to save the result plots to any user selected file in a picture format, copy them to clipboard, 

access it instantly from any other compatible program or instantly print it to a printer. The built-

in-multi-analysis aspect of the program allows the designer to conduct a comprehensive 

evaluation of the dynamic behavior of the rotor bearing assembly, thus enhancing the mechanical 

soundness of the system being designed. 

 The computer software, as being developed, represents a useful tool for designers of 

modern turbomachinery and promises to contribute to the ever demanding quest of quality in 

design through comprehensive analytical simulation of the phenomena pertaining to rotor 

dynamic analysis. 

 

 

 93



5.2 FUTURE WORK 

 

 The scope of the analysis program allows the user to perform the main analyses namely 

undamped critical speed analysis, stability analysis and synchronous response. A revised version 

of the program should have the capability to conduct the transient response analysis of a rotor 

dynamic system. 

 The program in the present configuration does not offer the capability to show the orbit 

information for the synchronous response analysis. Future versions could provide this option. 

 The present program version has an in-built processor and a compatible post processor 

packed into a single unit. The user is required to manually develop the input file in a format 

compatible to the processor. At the time of compilation of this thesis, effort was being put by the 

author to integrate a pre-processor program, initially developed by Dr.Carlo Roso, with the 

current program, which would enhance the program’s capability as a comprehensive rotor 

dynamic design and analysis program. 

 The current version of the software is dedicated to a single user operation. Even though at 

the present time this is not viewed as a significant limitation, consideration should be given in 

the future to adapt the code for multi user service. 
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APPENDIX 

 

A1. Cubic Spline Visual Basic Code 

 

Public Sub SplineCurve_Modes(X0, Y0, X1, Y1, X2, Y2, X3, Y3, ByVal MinVal As Single, _ 

ByVal MaxVal As Single) 

 

' Spline Logic (Dissolved into computer equations for stability mode plots) 

     

    On Error Resume Next 

    Dim MaxX, Px, Py, X, Y 

    Dim A1, A2, B1, B2, C1, C2, D1, D2, M1, M2, M3 

    Dim A, B, C, D 

     

    A1 = (X1 ^ 3 - X2 ^ 3) - 3 * (X2 ^ 2) * (X1 - X2) 

    B1 = (X1 ^ 2 - X2 ^ 2) - 2 * X2 * (X1 - X2) 

    A2 = 3 * (X1 ^ 2 - X2 ^ 2) 

    B2 = 2 * (X1 - X2) 

     

    M1 = (Y1 - Y0) / (X1 - X0) 

    M2 = (Y2 - Y1) / (X2 - X1) 

    M3 = (Y3 - Y2) / (X3 - X2) 

    D1 = (M1 + M2) / 2 

    D2 = (M2 + M3) / 2 

    C1 = Y1 - Y2 - D2 * (X1 - X2) 

    C2 = D1 - D2 

     

    A = (C1 * B2 - C2 * B1) / (A1 * B2 - A2 * B1) 

    B = (C2 - A2 * A) / B2 

    C = D2 - 3 * X2 ^ 2 * A - 2 * X2 * B 

    D = Y2 - A * X2 ^ 3 - B * X2 ^ 2 - C * X2 
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'   FrmModesPlot.Circle (X0, Y0), 0.002, vbBlack    ' Optional plotting of data points on plots 

'   FrmModesPlot.Circle (X3, Y3), 0.002, vbBlack     

        If  X1 < X2 Then 

X = X1 

MaxX = X2 

Py = Y1 

    Else 

         X = X2 

MaxX = X1 

         Py = Y2 

    End If 

    Px = X 

    '  Drawing cubic curve 

    '  Form2.DrawStyle = 2  ‘ Optional setting to change the plot drawing style 

    Do While X < MaxX 

         X = X + 0.02 

         Y = A * X * X * X + B * X * X + C * X + D 

         Y = Y 

          If Y < MinVal Then                    ' Condition to prevent the spline to cross the _                      

                                    Y = MinVal                     '  lower bound 

             ElseIf Y > MaxVal Then             ' Condition to prevent the spline to cross the _                          

Y = MaxVal                     '  upper bound 

                    End If 

FrmModesPlot.Line (Px, Py)-(X, Y)      ' Main plotting 

        Px = X 

         Py = Y 

Loop 

' Form2.DrawStyle = 0  ' Optional setting back the draw settings to original 

End Sub 
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