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ABSTRACT OF THESIS 
 

 
 

IMPLEMENTATION AND VALIDATION OF FAULT TOLERANT 
CONTROL OF A SELF-BEARING MOTOR CONSIDERING OPEN 

COIL FAULTS 
 
 

Self-bearing motor is a magnetic actuator with both bearing and motoring 
functionality.  This work implements and validates a decoupled and fault tolerant 
control algorithm for the Lorentz self bearing motor containing open phase faults.  
The goal of the algorithm is to achieve a stable bearing force and motoring torque 
even with coil faults.  This work simulates many non-real-time fault tolerant control 
models based on the algorithm using simulink.  Test cases are designed in simulink 
and tested on these models to arrive at the best model that could be implemented in 
dspace for real-time control.  The responses of these simulations are compared with 
the desired output.  Simulations showed that the decoupled and fault tolerant control 
model does not have any cross coupling and was fault tolerant for many 
combinations of open phase faults.  Simulink model was modified so that it was 
auto-complied into the dspace controller and dynamically linked with the hardware.  
A graphical user interface was provided for fault tolerant control in controldesk 
software and the motor was controlled in real-time.  Many experiments are designed 
to test the fault tolerant control model.  Experimental results validate fault tolerance 
in the motor with respect to open coil faults.  The self-bearing motor was found to be 
more stable in decoupled and fault tolerant control than non-fault tolerant control.   

 
 

 
 
 
                                                                                                             
 
 
 
 
 
 

d224
Anand Ranganathan

d224
May 19, 2005



 
 
 
 
 
 
 

 
 
 
 

IMPLEMENTATION AND VALIDATION OF FAULT TOLERANT 
CONTROL OF A SELF-BEARING MOTOR CONSIDERING OPEN 

COIL FAULTS 
 
 

By 
 
 

Anand Ranganathan 
 
 
 
 
 
 
 
 
 

 
        Director of Thesis 

 
 
 
 

         
Director of Graduate Studies 

 
 
 
 
 

                                                                   (Date)  

d224
Dr. Lyndon Scott Stephens

d224
Dr. George Huang

d224
May 19, 2005



RULES FOR THE USE OF THESES 
 
 
 
Unpublished theses submitted for the Master’s degree and deposited in the 
University of Kentucky Library are as a rule open for inspection, but are to be used 
only with due regard to the rights of the authors.  Bibliographical references may be 
noted, but quotations or summaries of parts may be published only with the 
permission of the author, and with the usual scholarly acknowledgements. 
 
 
Extensive copying or publication of the thesis in whole or in part also requires the 
consent of the dean of the Graduate School of the University of Kentucky. 
 
 
A Library that borrows this thesis for use by its patrons is expected to secure the 
signature of each user. 
 
Name                                                                                                                         
Date 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 

 
THESIS 

 
 
 
 
 
 
 
 
 
 

Anand Ranganathan 
 
 
 
 
 
 
 
 
 
 

The Graduate School 
 

University of Kentucky 
 

2005 
 
 
 
 
 



 
 
 
 
 
 
 
 

IMPLEMENTATION AND VALIDATION OF FAULT TOLERANT 
CONTROL OF SELF-BEARING MOTOR WITH RESPECT TO OPEN 

COIL FAULTS 
 
 
 
 
 
 
 
 

THESIS 
 
 
 
 
 
 
 
 
 
 

By 
 

Anand Ranganathan 
 

Lexington, Kentucky 
 

Director: Dr.  Lyndon Scott Stephens 
 

Lexington, Kentucky 
 

2005 
 
 



 
 
 
 
 
 
 
 
 
 

MASTER’S THESIS RELEASE 
 
 
 
 
 
 

I authorize the University of Kentucky 
Libraries to reproduce this thesis 

 in whole or in part for purposes of research 
 
 
 
 
 
 
 
 

       Signed:  
 

                                              Date:   
 
 
 
 
 

d224
Anand Ranganathan

d224
May 19, 2005



 iii

ACKNOWLEDGEMENTS 
 

 

I am grateful to my advisor, Dr. Scott Stephens for his insightful guidance and 

advice.  I thank him immensely for offering me this incredible opportunity to do 

research.  Without his assistance, this thesis would not have been possible.  I would 

like to thank him for all the knowledge that he has imparted to me during the course 

of study at University of Kentucky. 

I would like to extend my appreciation to the members of my thesis committee 

Dr.  Johne Parker and Dr. Keith Rouch for their support.   

I am indebted to my lab members for sharing their thoughtful insights and 

findings during many discussions we had on this area of research.  I would like to 

thank Dr. Zhaohui Ren, Kathy Warren, Hooi-Mei Chin and Barrett Steele from the 

magnetic bearing group in the Bearings and Seals lab, for advice and support.  

Thanks to other members of the Bearing and Seals lab for informative discussions 

on various topics related to my project. 

Further more, I would like to express my appreciation to Dr. Stephens and 

Jason Payton for their valuable suggestions after careful reading and proofing of the 

manuscript. 

I would also like to offer a special note of thanks to my parents for their 

unrelenting support and encouragement.  

 

 

 



 iv

Table of contents       
                  Page 

 
Acknowledgements         iii 
List of Figures          vi 
List of Tables          viii 
Nomenclature          ix 

 
Chapter 1 Introduction         1 

1.1 Magnetic Bearing       1 
1.2 Disadvantages of Magnetic Bearing     2 
1.3 Lorentz self-bearing motor      2 
1.4 Advantages of the self-bearing motor    4 
1.5 Problem definition and research motivation     4 
1.6 Literature survey       6 
 

Chapter 2. Lorentz Self-Bearing Motor      11 
2.1 Mathematical Modeling of the self-bearing motor   12 

          2.1.1 Actuator layout and control     13 
          2.1.2 Air gap flux and winding current distributions  14

               2.1.3 Force and torque generation     15 
  2.2 Verification of mathematical system model    19 
  2.3 Controller design and implementation of algorithm   19 
  2.4 Fault tolerant algorithm       20 
  2.5 Fault tolerant control approach     22 

 
Chapter 3 Simulation of Fault Tolerant control of Self-bearing motor  23
  3.1Procedure for verification & implementation fault tolerant model 25
  3.2 Simulation and testing procedures     25
  3.3 comparison of various fault tolerant control model   26
         3.3.1 integral equations model     27
         3.3.2 Lumped parameter model     28
         3.3.3 Crosscoupled Ki model      31
         3.3.4 Desired Ki model                31
         3.3.5 Lumped parameter model with the addition of faults 32
         3.3.6 Fault tolerant model using lumped parameter model 34
         3.2.7 Fault tolerant model using integral equations  36
         3.2.8 Decoupled & Fault tolerant model    37
  3.4 Comparison of forces in different models    41
  3.5 Comparison of perturbation voltages     50
  3.6 Implementation of Fault Tolerant Model in the controller  51
  3.7 Functions used in the simulink models    52 
              3.7.1 Medit-file Function for Phase Distribution function  53 

        3.7.2 Medit-file Function for Phase currents after faults   
              introduced (F)        53 



 v

        3.7.3 Medit-file Function for Commutation (Y)    54 
        3.7.4 Medit-file Function for Segment current-Control current  

                 mapping (T3)        54 
              3.7.5 C-mex file S-functions for pseudo-inverse in the   
        simulink model (A-1)       55 
              3.7.6 C-mex file S-functions for computing the Forces and  
         Torque in the simulink model (Φ)     61 

 
Chapter 4 Experimental Performance of fault tolerant control   62 

 4.1 Risk-free testing of the fault tolerant model    63 
  4.2 Test of Stiffness in fault tolerant and non-fault tolerant control 66 
  4.3 Sine sweep test        66 
  4.4 Power consumed in non-fault tolerant model and    
             Fault tolerant model       68 
  4.5 Torsional stiffness in non-fault tolerant model and    
                   Fault tolerant model       69 
  4.6 Closed loop stiffness for non-fault tolerant and fault-     
              tolerant control        71 
  4.7 Stability of the fault tolerant model in different fault   
        configurations        74 
 
Chapter 5 Conclusions and Future work      75 

 5.1 Conclusions        75 
 5.2 Future work        79 
 
 Bibliography        80 
 Appendix A          83 
 Appendix B          86 
 Appendix C         90 
 Appendix D          91 
 Appendix E          96 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi

List of Figures 
1.1  Magnetic Bearing          
1.2   Lorentz force motor 
1.3  Lorentz type segmented arc self-bearing motor 
1.4  Lorentz force type segmented arc self-bearing motor without faults 
1.5  Lorentz force type segmented arc self-bearing motor with phase faults 
2.1    Actuator layout and force generation in the segmented arc self-bearing 
  motor  
2.2       Flowchart for verification of mathematical system model and   
  implementation of the controller in dspace  
2.3    Non-fault tolerant Control Approach 
2.4    Fault tolerant Control Approach       
3.1   Flowchart for verification fault tolerant model and implementation of 
  the fault tolerant controller in dspace      
3.2    Integral equations model        
3.3    Simulink model for using integral equations model    
3.4   Lumped parameter model         
3.5    Simulink model for Lumped parameter model     
3.6    Crosscoupled Ki model  
3.7   Desired Ki model 
3.8    Lumped parameter model with the addition of fault matrix   
3.9    Simulink model for lumped parameter model with the addition of fault 
3.10    Fault tolerant model using lumped parameter model            
3.11    Simulink model for fault tolerant model using lumped parameter model 
3.12    Fault tolerant model using integral equations 
3.13    Simulink model for Fault tolerant model using integral equations 
3.14    Decoupled and fault tolerant model  
3.15   Simulink model for decoupled and fault tolerant model 
3.16    Decoupled and fault tolerant control with the actuator 
3.17    Desired forces when rotor angle turns through a pole pitch in no fault 

condition, [1 1 1]c =i  
3.18   Forces produced when segment 1 phase 1 is faulted and rotor angle 

turns through a pole pitch, [1 0 0]c =i  
3.19    Forces produced when segment 1 phase 1, 2 are faulted and rotor 

angle turns through a pole pitch, [1 0 0]c =i  
3.20   Forces produced when segment 1 phase 1, 2, 3 are faulted and rotor 

angle turns through a pole pitch, [1 0 0]c =i  
3.21   Forces produced for the fault configuration [000 100 010 001] and   

rotor angle turns through a pole pitch, [1 0 0]c =i  
3.22  Comparison of 12 phase currents between decoupled and fault tolerant 

and non-fault tolerant model for rotation of the rotor through 1 pole 
pitch and ix=1, iy=1, iθ=1, no fault condition 

4.1    dspace controldesk interface 
4.2  Phase voltages with change in rotor angles (power amp switched off) 
4.3   X and Y positions of the shaft indicating the stiffness of the motor 
4.4   Sine sweep test 



 vii

4.5    Power consumption in non-fault and fault tolerant control 
4.6  Closed loop torsional stiffness of non-fault and fault tolerant control 
4.7   Closed loop torsional stiffness of non-fault and fault tolerant control 
4.8   Experiments set-up for measuring closed loop stiffness  
4.9  Closed loop torsional stiffness of non-fault and fault tolerant control in 

“no fault” configuration 
4.10  Closed loop torsional stiffness of non-fault and fault tolerant control, 

when segment 1 phase1 was faulted 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 viii

List of tables 
3.1   Forces for different fault configurations in different models of the motor 
3.2   Percentage maximum variation in FX & FY from the desired forces 

when rotor angle turns through a pole pitch, [1 1 1]c =i , No fault 
condition 

3.3  Comparison of forces between non-fault tolerant, fault tolerant and 
decoupled & fault tolerant control model 

4.1  Closed loop torsional stiffness of non-fault and fault tolerant control 
4.2   Stability of the self-bearing motor under fault tolerant control 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ix

NOMENCLATURE                                                                                                                              

mB     PM Flux Density 
Bm,k,      Air gap flux due to the PM’s, 
Bw,k     Air gap flux due to the windings 

,w kB    Amplitude of the sinusoidal approximation to the winding flux 
Ik.      Winding current distribution 

iK ξ     Torque Current Gain 

ixxK    Direct Force Current Gain 

ixyK     Cross Coupled Force Gain 

,xy wK      Winding flux side pull 
L   Motor Length 
M      Number of Pole Pairs 
Nseg   Number of Segments 
Ns   Number of Winding Stations per Segment 
Nw   Number of Wires per Winding Station 
R   Rotor Outer Radius 
ix    Control current in x direction 
iy    Control current in y direction 
iξ    Control current in  ξ direction 

ki   Segment current 

,1ki    First phase current in the kth segment of the motor 

,2ki    Second phase current in the kth segment of the motor 

,3ki    Third phase current in the kth segment of the motor 

ki   Amplitude value of segment current 
γ   Phase angle of the current with respect to the permanent magnet 

 flux 
φ        Global angular coordinate 

kψ       kth winding segment relative to the x-axis 

θ         Local segment angle.



 1

Chapter 1 

 
Introduction 

 

1.1   Magnetic Bearing 

 Active electromagnetic levitation is based on the attractive force of a controllable 

electromagnet on a ferromagnetic body.  A control unit adjusts the current in an 

electromagnet.  Hence the magnetic force acts on the ferromagnetic body, so that the 

body is held in suspension.  A sensor continuously measures the position of the 

ferromagnetic body.   Assume that there is a single electromagnet placed over the top 

of the ferromagnetic body with an air gap between them in the y-direction.  If the 

ferromagnetic body is above the desired position, the controller reduces the current in 

the magnet and with it the magnetic force.  If the body is below the desired position, the 

current in the magnet is increased.   The sensor detects the position of the rotor and 

sends a voltage signal vp to the controller.  The controller generates perturbation 

voltage vp in turn and sends it to the power amplifier, which produces the required 

current i.   This current causes the electromagnetic force and keeps the rotor afloat 

against the force of gravitation.  A single electromagnet is incapable of stabilizing all 

spatial degrees of freedom of a rotor.  Two electromagnets arranged in an opposed pair 

are needed just to orient the position of a rotor in one direction.  Two such pairs of 

electromagnets positioned at right angles to each other form a "radial bearing." Like a 
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ball bearing, this configuration is capable of holding a rotor in one position in a plane (x-

y direction). 

V s

V p

i
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F

mg
Rotor

Electromagnet

Controller

Power 
Amp

 

Figure 1.1: Magnetic Bearing 

1.2 Disadvantages of magnetic bearings: 

• Requires separate driving motor for rotation, hence the shaft is longer.  This 

leads to unwanted vibration at low frequencies 

• Excessive heat generation 

• High power consumption 

1.3   Lorentz Self-Bearing Motor 

 The deficiency of having a separate driving motor was overcome by another type 

of magnetic bearing.   This new generation of magnetic bearing is called the Lorentz 

self-bearing motor.  Most of the self-bearing motors have one more sensor in addition to 

the sensors in the magnetic bearing, which is called the optical encoder.   The optical 

sensor senses the angular position of the rotor and sends it to the controller.  There is 

one more PID controller which is required for the angular direction in addition to the two 

PID controllers for x and y directions.  With the help of more electromagnets and an 
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appropriate control algorithm, the coils are energized for the shaft to rotate in θ 

direction, in addition to x and y.   

The motor that is used in the Bearings and Seals Laboratory at the University 

of Kentucky uses Lorentz forces to generate the forces and the torque.  The figure 

1.4 shows how Lorentz force is developed in a motor.  The Lorentz force is 

orthogonal to the direction of the current and magnetic field lines as shown.  The 

direction of the force is given by Fleming’s right hand rule. 

 

Figure 1.2: Lorentz force motor 

The self-bearing motor is a magnetic bearing which can be used to levitate as 

well as rotate the shaft (Figures 1.3).  A magnetic bearing is an electro-magnetic device 

used only to levitate the shaft against the gravitational pull.  The ability of the self-

bearing motor to provide bearing force and motoring torque renders it superior to the 

magnetic bearings.  The figure 1.3 is a schematic of the segmented arc Lorentz type 

slotless self-bearing motor used in the Bearings and Seals lab at the University of 

Kentucky.   
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Figure 1.3: Lorentz type segmented arc self-bearing motor 

1.4   Advantage of the self-bearing motor 

• Less power consumption  

• Eliminates the trade-off between motoring torque and radial bearing forces. 

• Overall weight of the actuator and the system is reduced since there is no 

separate driving motor as in magnetic bearings. 

• No cogging or detent torque. 

1.5 Problem definition and research motivation 
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Figure 1.3: Lorentz type segmented arc self-bearing motor without faults 
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Figure 1.4: Lorentz type segmented arc self-bearing motor with phase faults 

When a phase fails, the actuator does not produce the same bearing force and 

motoring torque as it would without the fault.  With more phase faults, the actuator loses 

stability.  The main goal of this research is to provide a stable bearing force and 

motoring torque even with phase faults.  This thesis in particular focuses on 

implementing the fault tolerance of a self-bearing motor to open phase coil faults using 

adaptive control software without the addition of any hardware.  Hence successful 

implementation would eliminate the hardware costs associated with the coil faults 

occurring in the motor.  In addition, decoupling of the force-current relationship is also 

achieved in the motor.  The problem of fault tolerance needs to be addressed and 

requires a thorough analysis.   

There are many types of phase faults that can occur in the motor.  The phase 

faults can be classified into the following categories 

1. Open coil faults 

2. Shorted faults 

a) When the coils short with themselves 
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b) When the coil shorts with the back iron 

c) When the coil shorts with other coils 

This research deals with providing fault protection for the self-bearing motor 

considering open coil faults.  The short circuit faults are difficult to identify and fault 

tolerant control of such faults are a challenge to researchers to date. 

1.6 Literature survey 

      Chiba [91] proposed a reluctance type bearingless motor and the contributed the 

concept of inductances, which are a function of the eccentric displacement of the rotor, 

to radial force.  Bleuler [92] proposed a systematic way of classifying magnetic levitation 

methods.  Lorentz force bearings and self-sensing bearings were considered to have 

high potential for industrial applications.  Okada [Okada 96] introduced an internal 

permanent magnet type bearingless motor, which has the merits of strong levitation 

force and relatively easy control capability.  Hertel [00] came up with a basic approach 

to designing a bearingless motor.  By maintaining a constant air gap area and reducing 

the utilization factor by iterative processes until the rated output power and maximum 

force are reached, the main dimensions of bearingless AC machines was determined.  

Okada [00] introduced a new type of Lorentz type self-bearing motor similar to the one 

in Bearing and Seals lab at the University of Kentucky.  The difference between these 

two is that different current carrying coils are used to generate radial force and motoring 

torque.  Salazar [00] reviewed the published papers in bearingless motor types, winding 

types, mechanical test results and applications. 
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Salazar [00], Bischel [00], Chiba [91], Schoeb [94] and Okada [96] studied the 

permanent self bearing motor, among others for a variety of applications.  In all of the 

designs the common conclusion was that attractive forces between the rotor and the 

stator (Maxwell-type forces) provide bearing function, and magnetic forces on the 

current carrying conductors (Lorenz type forces) produce the motoring torque.   As a 

result of this approach, a trade-off exists between motoring torque and bearing force 

with respect to PM thickness.  A slotless self-bearing motor was designed and proposed 

by Stephens and Kim [Stephens 00] for precision pointing and angular slewing 

applications, which could overcome the trade-off.   Force and torque measurement 

principles in the self-bearing motor were discussed by Steele [00].   Permeance and flux 

models were presented by Stephens [02:1] and those were used to derive expressions 

for torque and force production.  A linearized force-current-displacement relationship 

based on the permeance and flux model was derived for a general operating point.  A 

revised set of actuator gains were derived by Chin[03:2] considering the various phase 

angles between winding current & permanent flux density distributions and effect of 

constant external loads.  The design issues comprising the search for stable radial 

bearing function PID controllers and the various stable regions of these controller gains 

for different bandwidth and crosscouplings effects were analyzed by Chin[Chin 03:1].  

Stephens [02:2]evaluated the robustness of the Lorenz self-bearing motor system via µ-

synthesis and the utility of structured uncertainty approach for synthesizing robustly 

stable controllers.    

Chin [Chin 03:1] explained the significant effects cross-coupling between radial and 

tangential direction.  The cross-coupling between x and y direction was predicted 
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theoretically and an experimental basis was provided for future high-speed applications.   

The cross-coupling effect is undesirable because it limits the bearing stiffness and 

causes reduction in bandwidth.   When the shaft rotates at the critical speed, cross-

coupling gets higher creating instability in the system.   These effects emphasize the 

importance of decoupling the model to provide a stable bearing force and motoring 

torque.  Decoupling in simple terms is to control a variable without affecting the other 

variables.  Aeschimann, Kummerle, Zoethout, Bleuler [Beat 00] presented a simple 

method to decouple an active magnetic bearing in statespace.   In their work, the 

displacement and the velocity were chosen as the states of the model, with the former 

measured directly and the later obtained using a simple differentiator.  A failure safe 

control approach to magnetic actuators can promote a broad range of applications.   

Most fault tolerance systems are focused on sensors and amplifiers.   Kim and 

Stephens proposed new coil winding schemes that minimized coil failure effects and 

allowed the motor to levitate and rotate stably in the event of coil failure [Kim 00].   

Analysis indicates that symmetric parallel winding is the most advantageous with 

respect to open faults in a phase.   This however is at the expense of manufacturing 

ease and an excessive build up of end turns which increases actuator length.    

 Maslen [95] provided a mechanism for linearizing and decoupling the force axes 

in complicated magnetic actuators.  A clear method has been established for achieving 

fault tolerance to coil failures.  If one or more coils fail, a new coil current control 

scheme was constructed that preserves the linear relationship between required force 

and coil currents.   Meeker [96] addressed the fault tolerant control in Maxwell type 

actuators and provided a general mathematical basis for such problems.  Several 



 9

schemes have been proposed for achieving reliable electromagnetic devices including 

controller board approaches that make use of re-bias linearization [Dominick 99].   A 

fault tolerant magnetic bearing considering material path reluctance was proposed by 

Na and Palazzolo which uses a Lagrange multiplier optimization method for determining 

the current distribution matrices [Na 99]and makes the magnetic bearing fault tolerant to 

many pole and coil failures.  Stephens [04] came up with a model based fault tolerant 

algorithm that had the potential to provide fault tolerance to open coil faults and also 

decouple the segmented arc, Lorenz self bearing motor. 

Thesis outline 

Chapter 1 introduces the basics of this research.  It provides the research motivation 

and objectives of this thesis.  A Contemporary literature survey on magnetic bearings, 

self-bearing motor and fault tolerance of magnetic actuators are outlined. 

Chapter 2 serves as a background on the previous work by Dr.  L Scott Stephens 

[Stephens 02:01].  This chapter describes the actuator layout and the derivation of 

Lorentz type forces for the self-bearing motor. In addition, this chapter also describes 

the fault tolerant algorithm [Stephens 04:01]. 

Chapter 3 compares and simulates the various fault tolerant control models. It 

discusses the implementation of the fault tolerant best model in the self-bearing motor. 

Chapter 4 gives the experimental procedures to validate the decoupled and fault 

tolerant control model of a self-bearing motor to open coil faults. The results of the 

experiments prove that the decoupled and fault tolerant was found to be better than the 

non-fault tolerant model. 

Chapter 5 discusses the results and conclusions from the experimental results.   
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Appendix A gives the C-mex file associated with the pseudo-inverse S-function.   

Appendix B gives the Medit-file Function for Calculation of Forces using integral 

equations 

Appendix C gives the Medit-file Function for the phase Distribution matrix, segment 

current-control current mapping matrix and fault matrix 

Appendix D gives the C-mex file S-function for permanent magnet flux distribution.  

This S-function computes the forces from the station currents. 

Appendix E shows how forces are computed for the given set of control currents in the 

non-fault tolerant control model. 
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Chapter 2 

 
Lorentz Self-Bearing Motor 

 

 

This actuator has a unique capability to produce radial bearing force as well as 

motoring torque independently by using Lorentz-type forces.   The Lorenz self-bearing 

motor test-rig mainly involves electrical and mechanical design considerations of the 

test-rig.  This chapter mainly serves as a background from the previous work of 

Stephens [Stephens 00:1:04].  This chapter is has four sections.  Section 2.1 explains 

the mathematical model of the self-bearing motor test-rig. The subsections in section 

2.1 explain the actuator layout, permeance flux model and Lorentz force derivations for 

the motor.  The details about more design considerations and modeling of the motor can 

be obtained from the references [Steele 00, Stephens 00].  The section 2.4 describes 

the fault tolerant algorithm.  The section 2.2 gives a systematic procedure for verification 

of mathematical dynamical system model. The section 2.3 gives discusses the design 

and implementation of the controller via matlab/simulink/dspace.  

2.1      Mathematical Modeling of the Self-Bearing Motor 

 The physical system is best described in terms of mathematical model.  An 

accurate mathematical model of the system is necessary in order to design a controller.   

However a perfect model of the system cannot be built due to unmodeled system 
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dynamics like unbalanced forces, external disturbances, which causes uncertainties in 

the system.  The following section describes the system model. 

2.1.1  Actuator layout and control 

 

Figure 2.1 shows the layout of the actuator consisting of M=12 permanent magnet 

pole pairs attached to the rotor and Nseg=4 individually controlled winding segments 

attached to the stator.   Each winding segment in the motor is an arc of π/2 radians and 

is attached to the slotless back iron.   The windings occupy Ns=18 stations along each 

winding segment ID with Nw=96 individual wires per station.   The 18 stations are 

divided into 6 sets of 3 phase windings.   

 The global angular coordinate that gives the orientation along any stator segment 

relative to the x coordinate axis is given by: 

 
Figure 2.1:  Actuator layout and force generation in the segmented arc self-

bearing motor, courtesy: Stephens (00:1) 
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4k
πφ θ ψ= + −            (2.1) 

where π/4 is half the segment angle and θ is the local segment angle.   Referring to 

Figure 2.3, the orientation of the kth winding segment relative to the x-axis is given by 

ψk=k (π/2).   

The control force and torque generation principle is also illustrated in Figure 2.1.   

Each segment generates traction on the surface of the rotor due to the PM flux linking 

with the segment windings (a Lorentz-type force).   By precise construction of the motor, 

the tractions due to segments 1-4 are resolved into the forces F1x, F2y, F3x and F4y.   By 

proper selection of the control currents in each segment, the segment forces are 

modulated to produce independent bearing forces and motoring torque. 

2.1.2  Air gap flux and winding current distributions 

 Figure 2.3 shows the block diagram for servo control of the self bearing motor.   

Position sensors measure the x, y and ξ motions of the rotor and feed these back 

through signal conditioning modules and into a digital controller.   Each motor segment 

is controlled by a separate segment current, ki  , that is proportional to the amplifier 

voltage, Vk, and that is sinusoidally commutated into the three phase windings using 

digital commutation and transconductance power amplifiers.   The three phase currents 

in the kth segment of the motor are 60o (π/3 rad) apart in phase angle and given by:  

,3 cos ( ) 3k ki i M πξ γ = − +                     (2.2) 

[ ], 2 cos ( )k ki i M ξ γ= −        (2.3) 
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  ,3 cos ( ) 3k ki i M πξ γ = − −                (2.4) 

     where γ is the phase angle of the current with respect to the permanent magnet flux.    

Control of the actuator such that independent torque and force generation is 

achieved as depicted in Figure 2.3, depends upon proper selection of the segment 

winding currents   This selection is done with respect to three rotor position control 

currents, ix, iy and iξ that correspond to the x and y direction bearing forces and the ξ 

direction motoring torque:  

                                       

1

2

3

4

( )
( )

( )
( )

x

y

x

y

i i i
i i i

i i i
i i i

ξ

ξ

ξ

ξ

= −

= −

= +

= +
                      (2.5) 

 The air gap flux due to the permanent magnets, Bm,k, the air gap flux due to the 

windings, Bw,k, and the winding current distribution, Ik. are approximated sinusoidally as:   

[ ], ,( , ) sin ( )m k m kB B Mθ ξ ξ θ= −                          (2.6) 

      [ ]( , ) sin ( )k kI i Mθ ξ ξ θ γ= − −                              (2.7) 

, ,( , ) sin ( 2w k w kB B M M
πθ ξ ξ θ γ = − − +                        (2.8) 

where ,m kB , ki , and ,w kB  are the amplitudes of the sine wave approximations, and 

π/2M is the phase shift of the winding flux with respect to the winding current.   Both 

,m kB  and ,w kB  are functions of φ (and therefore θ, by equation 1) when the rotor is in 



 15

an eccentric position.   The PM flux amplitude, ,m kB , is computed using the remnance 

flux density. 

2.1.3 Force and torque generation 

Given the air gap flux and winding distributions in the previous section, the forces 

acting on the rotor are divided into three groups:  (1) Lorentz-type due to PM flux 

and winding current interaction, (2) Maxwell-type due to the PM flux interaction with 

the rotor and (3) Maxwell-type due to the winding flux interaction with the rotor.  

Those used for bearing force and torque controls are the Lorentz-type and computed 

as: 

4
2

, ,0
1

( ) ( ) cos
4

segN

x L m k k k
k

F ML B I d
π πθ θ θ ψ θ

=

=

 = + +  
∑ ∫            (2.9) 

4
2

, ,0
1

( ) ( ) sin
4

segN

y L m k k k
k

F ML B I d
π πθ θ θ ψ θ

=

=

 = + +  
∑ ∫       (2.10) 

        
4

2
,0

1
( ) ( )

segN

m k k
k

T MRL B I d
π

ξ θ θ θ
=

=

= ∑ ∫                 (2.11) 

where R is the outside radius of the rotor.    The Maxwell type forces on the rotor 

due to the PM flux are computed using: 

     [ ]2
4

2
, ,0

1
( ) cos ( )

2

segN

x M m k
ko

RLF B d
π

θ φ θ θ
µ

=

=

 =  ∑ ∫                 (2.12) 

   [ ]2
4

2
, ,0

1
( ) sin ( )

2

segN

y M m k
ko

RLF B d
π

θ φ θ θ
µ

=

=

 =  ∑ ∫                    (2.13) 
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The Maxwell type forces on the rotor due to the winding flux are computed using: 

[ ]2
4

2
, ,0

1
( ) cos ( )

2

segN

x w w k
ko

RLF B d
π

θ φ θ θ
µ

=

=

 =  ∑ ∫                        (2.14) 

  [ ]2
4

2
, ,0

1
( ) sin ( )

2

segN

y w w k
ko

RLF B d
π

θ φ θ θ
µ

=

=

 =  ∑ ∫          (2.15) 

The net force and torque on the self bearing motor rotor is then the sum of these 

components: 

, , ,

, , ,

x x L x m x w

y y L y m y w

F F F F
F F F F
T Tξ ξ

= + +

= + +

=
                     (2.16) 

Performing integrals (2.9)-(2.15), results in net forces and torque that are a function 

of the control currents, ix, iy, and iξ, and rotor motion x, y, and ξ. 

2.2 Verification of mathematical system model 

Figure 2.2 describes the procedure for both the verification of mathematical system 

model and the implementation of the controller in dspace.  The physical system is 

rendered as a modeled into mathematical model based on assumptions about the 

difficulty and cost criteria. The mathematical model is simulated in software like simulink 

and checked for favorable results.  It is then compared with the actual dynamic 

response.  If the response does not match the mathematical model is modified and the 

simulation is performed again.  This process is continued until the theoretical response 

matches with the actual dynamic response.  The controller is designed and 

implemented using simulink, dspace and real time workshop. 
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Figure 2.2: Flowchart for verification of mathematical system model and 
implementation of the controller in dspace 
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Figure 2.3:  Non-Fault Tolerant Control Approach, Courtesy: Stephens 04
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2.3 Controller design and implementation of controllers 

 The figure 2.3 shows the schematic of the self-bearing motor with non-fault 

tolerant approach.  The radial displacements x and y, and angular displacements, θ 

of the rotor are measured using the proximity probes and encoder respectively.  

These signals are sent to the analog-to-digital converter (ADC) after signal 

conditioning.   The sensor voltages Vx, Vy and Vθ are added to reference voltages  

Vrx, Vry and Vrθ to obtain the error voltages Vex, Vey and Veθ.   The error voltages 

serve as the input to controllers.  The control voltages Vcx, Vcy and Vcθ are converted 

to segment voltages V1, V2 , V3 and V4 using appropriate mapping.  The segment 

voltages are commuted digitally to obtain 3 phase voltages per segment, i.e, 12 in 

all.  These voltages are sent to the digital-to-analog converter (DAC) and the analog 

signals are amplified to 12 phase currents using a tranconductance amplifier. 

The control system is implemented in simulink so that it can be implemented in 

the dspace system.  The simulink block diagram is downloaded in the dspace DSP 

boards of the dspace system.   Using the dspace controldesk interface, the motor is 

controlled in real-time.  Experiments are designed to validate the control algorithm 

and performance of the motor is evaluated. 

 
2.4 Fault tolerant algorithm 

 The decoupled and fault tolerant algorithm serves as a background for 

implementation of fault tolerance of self-bearing motor [Stephens 04].  The model 

based algorithm presented was used to decouple the segmented arc, Lorenz self 

bearing motor.  Simulations showed that the algorithm gracefully degrades the 

performance of the motor under open coil faults.   The redundancy in the actuator 
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phases is taken advantage of in providing protection to phase faults.  The cost of the 

fault protection was found to be a lower limit on peak actuator force and torque, and 

a high power loss.    

2.5 Fault tolerant control approach 

 Fault tolerant control is achieved by constructing a detailed model of the 

force-current relationship at each rotor angle, θ, and simply inverting that model onto 

itself to decouple the system.   Referring to Figure 3.2, the inverted model is inserted 

in the “fault tolerant mapping” block.   The appropriate mapping depends upon the 

relationship between the actuator force vector, Fc, and the actuator segment current 

vector, is, which is given by: 

{

}

( )
}} }}

{

}4 1
3 1

1
3 4 8 4 8 1 2 1 2 1 2 1 2 4

2

3

4

 ( )  

x
x

x x x xc x

c y
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i
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F F Y

i
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i
c

Aθ

θ θ

 
   
   = Φ Λ   
       

s
F

i

1 4 442 4 4 43  

 (2.17) 

where Φ(θ) is a matrix that describes how the permanent magnets are distributed 

about the rotor, Λ is a matrix that describes how the phases are wound into the 

stator, F is a matrix that encodes the faults (an open circuit on any given phase) 

and Y(θ) is the commutation matrix.    
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Figure 2.4:  Fault tolerant control approach, courtesy: Stephens 04
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The model is completely decoupled by defining the fault tolerant mapping 

between the segment currents and the control currents as: 

iA K+=s ci i                     (2.18) 

where A+=AT(AAT)-1 and is the Moore-Penrose pseudo inverse of the 

underdetermined model, A, and iK  is any desired current gain matrix as defined 

by the designer.   Of course the desired current gain matrix is of the completely 

decoupled variety and may be as simple as the identity matrix.   Combining 

equations (2.17) and (2.18) illustrates how the method essentially cancels the 

original system, whether it has a fault or not, and replaces it with the desired 

current gain matrix: 

{ i
I

AA K+=c cF i          (2.19) 

Note that this mapping solves the problem of cross-coupling and current gain 

variation that exists in this actuator even for the case of no fault, as well as 

provides a current gain matrix that remains invariant under open coil faults. 
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Chapter 3 
 
 
Fault Tolerant Model: Development, 
Verification and Implementation 

 
 

A fail-safe control approach to self-bearing motors can promote a broad range 

of applications.  The approach to fault tolerance for the self bearing motors on the 

optical tracking test rig is a combination of the redundant hardware and adaptive 

control software.  The hardware redundancy on each self-bearing motor consists of 

12 phases that comprise four segments to generate only 2 radial bearing forces and 

1 motoring torque.   These phases (windings) can be driven in a variety of ways by 

the power amplifiers.  There is adequate redundancy in the self-bearing motor to 

achieve fault tolerance in the radial and angular pointing direction.  The hardware 

redundancy in a self-bearing motor leads to increase in weight and cost.      

The software algorithm gives the flexibility of implementing different kinds of 

control algorithms without the addition of much hardware.   The fault tolerance was 

achieved in the self-bearing motor by manipulating the with software part of the 

system.  This model is split into four matrices, two of them in software and two of 

them in hardware, so that control current times the matrices provide the forces.  The 

commutation matrix and segment-control current mapping matrix form a part of 

software.  The permanent magnet distribution matrix and coiling winding distribution 

matrix forms a part of hardware.  This study achieved fault tolerance using the 

software since altering with the hardware was difficult, weighty and costly. 
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3.1 Verification of fault-tolerant model and model implementation 

The mathematical model of the non-fault tolerant control approach was 

available.  This model was advantageously used for constructing a fault tolerant 

control model.  The dynamic response of the non-fault tolerant control model was 

produced by simulation in simulink.  Assumptions were made based on difficulty, 

applications, unmodeled dynamics, feasibility and cost, before constructing the 

mathematical model for the fault tolerant control model.  The dynamic response of 

the fault-tolerant model was produced in simulations in simulink.  The responses of 

both the fault tolerant and non-fault tolerant model are compared.  On obtaining the 

expected result, the model was designed and implemented in dspace for performing 

real-time control of the motor.  Experiments are designed for gathering useful results 

from the system.  Figure 3.1 gives the procedure for the verification of fault tolerant 

control model and the implementation of the fault tolerant controller in dspace. 

3.2 Simulation and Testing Procedures 

The previous chapter put forth a mathematical model for achieving fault 

tolerance in a self-bearing motor.  The model was deciphered into simulink codes.  

The mathematical model essentially builds a force-current relationship using 

different methods.  There are as many simulink models as the number of methods.  

Every simulink model presents results which are evaluated and verified with the 

expected trend from the mathematical model.  Upon the successful performance of 

the model in simulation, it was implemented in real-time with some modification.  The 

model was then downloaded in dspace controller and tested in the dspace 

environment.   This testing was performed without levitating the test-rig directly using 



 26

the model instead and thereby ensuring that the testing would not harm the test-rig.  

A risk-free testing was executed by keeping the power amplifiers switched off so that 

the power that gets out into the motor was meager.  Next, the values in the virtual 

indicators at different significant locations in the model are read.  The read out was 

checked for expected results.  This testing was a hybrid test of software and 

hardware called a hardware-in the loop simulation.  The successful completion 

completes the final phase of testing.   After obtaining convincing results in the 

simulation, the power amplifier was switched on and the motor was levitated using 

the controls in the dspace software.   

3.3 Comparison of various fault tolerant control model 

This chapter focuses on a comparison of the following fault tolerant models. 
 

1.  Integral equations model (Non-fault tolerant control model): This model gives 

the force-current relationship based on integral equations, when there are no faults 

in the system.  

2.  Lumped parameter model (Non-fault tolerant control model): This model 

gives the force-current relationship based on lumped parameter matrix equstions, 

when there are no faults in the system. 

3.  Fault tolerant control model based on integral equations: This model gives 

the force-current relationship based on integral equations, when there are faults in 

the system. 

4.  Fault tolerant control model based on lumped parameter model: This model 

gives the force-current relationship based on lumped parameter matrix equations, 

when there faults in the system. 
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5.  Decoupled and fault tolerant control model: This model gives the force-current 

relationship based on lumped parameter matrix equations, when there are faults in 

the system. The key difference is that a decoupled Ki is implemented here. In all of 

the previous models, the Ki matrix implemented is the coupled one, which 

corresponds to the non-faulted motor 

 All these models are developed and simulated and the best model was 

chosen for implementation in the dspace controller.  The commonality in these 

control models is that, all of them bear a force-current relationship.   

{

}3 1

 f u (  ,  , , , , )

x

c x

c y

c

c x c y c
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F n c t i o n
T

c

i i i x y
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  = 
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3.3.1 Integral equations model 

This model gives a force-current relationship based on integral equations.  

This model was the most accurate of the models available and includes most of the 

effects.  The control currents , ,cx cy ci i i θ  were sent in as inputs to the integral equations 

model and forces Fx Fy and torque T are obtained as the output (Figure 3.2).  The 

force produced on the shaft by a set of control currents using integral equations, was 

determined in the simulink model (Figures 3.3) 
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Figure 3.2:  Integral equations model 

 
 

 
 

Figure 3.3:  Simulink model for using integral equations model 
 

3.3.2 Lumped parameter model 

Achieving fault tolerance implies achieving the desired forces in the shaft for a 

given set of control currents, even with some phase faults.  The lumped parameter 

model serves as a basis of accomplishing fault tolerance later.  This model was less 

accurate than the integral equations models and breaks up into the following 

components 
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Λ -Phase Distribution matrix 

Y -Commutation matrix 

3T -Segment Current-Control current mapping 

The entire system is a mixture of hardware and software components.  The 

hardware components are replaced by blocks in simulink and integrated with the 

existing software blocks in simulink for the purpose of simulation.  The force 

computed in terms of the components of the system is given by the following eqn. 

{

}

( )
}} }}

{

}3 1 3 1

3 4 8 4 8 1 2 1 2 4 4 3

 ( ) T 3  

x x

x x x xc x c x

c y c y

c c

c

F i
F Y i
T i

c

θ θ

θ θ
   
   = Φ Λ   
      

F i

      (3.1) 

The control currents , ,cx cy ci i i θ  were sent in as inputs to the lumped parameter 

model and forces Fx Fy and torque T are obtained as the output.  The result of the 

lumped parameter model, simulated in simulink as shown in figure 3.4, was checked 

for agreement with the integral equation result.  The advantage of the lumped 

parameter model over the integral equations model is that it can be inverted so that 

it is used in the fault tolerant models. 
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Figure 3.4:  Lumped parameter model 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Figure 3.5:  Simulink model for Lumped parameter model 
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3.3.3 Crosscoupled iK  model: 

The theoretical force-current relationship based on integral equations and the 

lumped parameter model are crosscoupled and are represented by a single 3 x 3 

matrix as follows: 
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Figure 3.6:  Crosscoupled iK model 

 

3.3.4 Desired iK model 

The crosscoupled matrix can be simplified further into a decoupled matrix by 

making all the elements except the leading diagonal to be zero.  This model is the 

desired model and uses decoupled iK  .  The decoupled iK  has no crosscoupled 
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terms and no θ dependence.  It gives the desired force-current relationship and this 

helps to decouple the forces in the motor 
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Figure 3.7:  Desired iK model 
 

3.3.5 Lumped parameter model with the addition of fault matrix 

 If there are faults in the matrix, they can be represented by a fault matrix F 

and the equation for which is represented by the following formula and modeled as 

shown in simulink.  With the faults in the fault matrix, the force and torque produced 

was different from those found in a faultless system.  With more faults the forces and 

torque produced decrease drastically and causes instability to the system.   
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 33

Fx
Current 
Mapping

T3 Fy

icθ

icx

θ

Y

icθ

θ

 
Commutation 

λ φ

T

F
Permanant 
Magnet 
Distribution

Rotor 
Angle

Phase 
Distribution

Control 
Currents

Forces

Fault 
Matrix

 

Figure 3.8:  Lumped parameter model with the addition of fault matrix 
 
 

 

Figure 3.9:  Simulink model for lumped parameter model with the addition of fault matrix
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3.3.6 Fault tolerant model based on lumped parameter model 

 A fault tolerant model based on the lumped parameter model was developed 

from the lumped parameter model.  The fault tolerant based on the lumped 

parameter model is based on the following equation:   

{ i
I

AA K+=c cF i     (3.6) 
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   (3.7) 

 

Assuming that there is no fault, A  and 1A− cancel out each other and leave out the 

original model.  Next, if there are faults, A  and 1A− cancel out each other and would 

still leave out the original model if 1 0AA− ≠ .  The existence or non-existence of the 

fault tolerant model was elaborately discussed by Stephens [04].  The above 

equation gives a crosscoupled fault tolerant model and was modeled in simulink as 

shown figure 3.11.  In case of faults, a fault tolerant model based on the lumped 

parameter model would return the same amount of forces that a lumped parameter 

model would, without the faults.  This model was tolerant to many different fault 

configurations, but does not decouple the forces. 
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Figure 3.10:  Fault tolerant model using lumped parameter model 

 

Figure 3.11:  Simulink model for fault tolerant model using lumped parameter model 
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3.3.7 Fault tolerant model based on integral equations 

The fault tolerant model based on integral equations was developed from the 

integral equations model.  The fault tolerant control based on the lumped parameter 

model is governed by the following equation. 

{

}

( )
}} }}

( )
}} }} }

{

}13 1 3 1

13 48 3 4848 1212 12 12 4 48 1212 12 12 4

 ( )  ( )  

x x

x xx x x x x xcx cx

cy cy

c c

i

I
c

AA
KF i

F F Y F Y INT i
T i

c

θ θ

θ θ θ θ

−

−            = Φ Λ Φ Λ               
F i

64444744448644474448

144444444424444444443
 

 This model uses the inverse of the lumped parameter model and the integral 

equations model to provide the fault tolerance.  The inverse of a lumped parameter 

model must be used because integral equations cannot be inversed.  Since the 

lumped parameter model and integral equations model do not give the same results, 

hence inverse of the lumped parameter model would not cancel perfectly with the 

integral equations model.  This model was tolerant to multiple faults, but does not 

decouple the forces.   
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Figure 3.12:  Fault tolerant model using integral equations 
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Figure 3.13:  Simulink model for fault tolerant model using integral equations 

 
 
3.3.8 Decoupled & Fault tolerant model 

The decoupled and fault tolerant model is a model which uses the inverse of 

the lumped parameter model and a decoupled Ki to remove the crosscoupling.  The 

force current relationship based on the decoupled and fault tolerant algorithm is 

given by the following equation: 
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This model uses the lumped parameter and the inverse of the lumped parameter to 

provide fault tolerance.  Incase of faults, the model would cancel with the model 

inverse and return the forces depending on the iK .   The iK  is a matrix that has 

entries only in the leading diagonal.  This would return the decoupled forces for any 

set of control currents.  This model thus removes the crosscoupling as well as θ  

dependence.  The simulations of all the three fault tolerant models performed later, 

revealed that this model was the better than the other fault tolerant models.
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Figure 3.14:  Decoupled and fault tolerant model  
 

 

Figure 3.15:  Simulink model for decoupled and fault tolerant model
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Figure 3.16:  Decoupled and fault tolerant control with the actuator
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Table 3.1:  Forces for different fault configurations in different motor models

Forces  
 

 
Rotor Angle 

 

 
 
 

Control Currents 
Model 1 

Desired Model iK  
Model 2 

Crosscoupled 
Model iK  

Model 4 
Lumped Parameter 

Model 

Model 4 
Integral Equations 

Model 

Model 4 
Fault tolerant 
Model Using 

Integral Equations 

Model 6 
Chapter 2 Fault 

tolerant 
Model Using 

Lumped Parameter 
Model 

Model 7 
Decoupled and 
Fault Tolerant 

Model 

θ ix iy iθ Fx Fy T Fx Fy T Fx Fy T Fx Fy T Fx Fy T Fx Fy T Fx Fy T 
1 0 0 156.5 0 0 164.6 -9.88 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0 0 
0 1 0 0 156.5 0 -9.88 164.6 0 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0 

0 

0 0 1 0 0 38.2 0 0 40.25 0 0 38.2 0 0 38.2 0 0 38.18 0 0 38.2 0 0 38.2 
1 0 0 156.5 0 0 164.6 -9.88 0 156.3 7.89 0 156.3 6.55 0 156.2 6.53 0 156.3 7.89 0 156.5 0 0 
0 1 0 0 156.5 0 -9.88 164.6 0 -7.89 156.3 0 -6.55 156.3 0 -6.53 156.2 0 -7.89 156.3 0 0 156.5 0 

15*(1/4) 

0 0 1 0 0 38.2 0 0 40.25 0 0 38.2 0 0 38.2 0 0 38.18 0 0 38.2 0 0 38.2 
1 0 0 156.5 0 0 164.6 -9.88 0 156.1 0 0 156 0 0 155.9 0 0 156.1 0 0 156.5 0 0 
0 1 0 0 156.5 0 -9.88 164.6 0 0 156.1 0 0 156 0 0 155.9 0 0 156.1 0 0 156.5 0 

15*(1/2) 

0 0 1 0 0 38.2 0 0 40.25 0 0 38.2 0 0 38.2 0 0 38.18 0 0 38.2 0 0 38.2 
1 0 0 156.5 0 0 164.6 -9.88 0 156.3 -7.89 0 156.3 -6.55 0 156.2 -6.53 0 156.3 -7.89 0 156.5 0 0 
0 1 0 0 156.5 0 -9.88 164.6 0 7.885 156.3 0 6.55 156.3 0 6.53 156.2 0 7.885 156.3 0 0 156.5 0 

15*(3/4) 

0 0 1 0 0 38.2 0 0 40.25 0 0 38.2 0 0 38.2 0 0 38.18 0 0 38.2 0 0 38.2 
1 0 0 156.5 0 0 164.6 -9.88 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0 0 
0 1 0 0 156.5 0 -9.88 164.6 0 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0 

15 

0 0 1 0 0 38.2 0 0 40.25 0 0 38.2 0 0 38.2 0 0 38.18 0 0 38.2 0 0 38.2 
0 1 1 1 156.5 156.5 38.2 154.7 154.7 40.25 156.5 156.5 38.2 156.5 156.5 38.2 156.5 156.5 38.18 156.5 156.5 38.2 156.5 156.5 38.2 

15*(1/4) 1 1 1 156.5 156.5 38.2 154.7 154.7 40.25 148.4 164.2 38.2 149.7 162.8 38.2 149.7 162.7 38.18 148.4 164.2 38.2 156.5 156.5 38.2 
15*(1/2) 1 1 1 156.5 156.5 38.2 154.7 154.7 40.25 156.1 156.1 38.2 156 156 38.2 155.9 155.9 38.18 156.1 156.1 38.2 156.1 156.1 38.2 
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3.4 Comparison of forces in different models  

The Table 3.1 describes the amount of crosscoupling in the different models 

described above.  There are predominantly 7 models discussed in this table.  The 

data analysis in the table was limited a change in rotor angle through a pole pitch, 

which is a good representation of the entire rotor angle.  This is due to the fact that 

after the rotation of the magnet through a pole pitch, the same north-south pole 

configuration will repeat itself.  Model 1 is the desired model and the goal of 

decoupled and fault tolerant model.  In this case, the forces produced are not 

dependent on the rotor angle and there is no crosscoupling of forces.   Model 2 is 

the crosscoupled model and is a very approximate way of representing the force-

current relationship in the existing model.  Model 3 is the lumped parameter model 

and the forces produced by it are dependent on rotor angle and crosscoupled.  

Model 4 is the integral equations model and is closer to the actual model of the 

motor.  It was found from the simulation that the crosscoupling of both the lumped 

parameter model and the integral equations model were highest, when the rotor 

angle was one-forth of a pole pitch.  At this rotor angle and [ix=1, iy=0, iθ=0], the force 

produced in y-direction is Fxy = -7.89 in the lumped parameter model and is Fxy = -

6.55 in the integral equations model.  The forces produced are dependent on rotor 

angle and are less crosscoupled than the lumped parameter model.   Model 5 is the 

fault tolerant model based on the integral equations model.  In no fault condition, this 

model is as good the integral equations model.  Forces produced in this model are 

also dependent on rotor angle and exhibit the same crosscoupling as the integral 

equations model in no fault condition.  Model 6 is the fault tolerant model based on 
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the lumped parameter model.  In “no fault” condition, this model is as good the 

lumped parameter model.  Forces produced in this model are also dependent on 

rotor angle and exhibit the same crosscoupling as the lumped parameter model in 

“no fault” condition.  In both models 5 and 6,  A and A+ cancel out each other leaving 

out the base model (integral equations and lumped parameter model).  In both 

models 5 and 6 , A and A+ cancels even if there are faulted phases thus allowing the 

base model to define the force-current relationship.  Both the models are fault 

tolerant, but are as crosscoupled as the base model.  Model 7 is the decoupled & 

fault tolerant model and is as good as the desired model.  The forces produced are 

not dependent on rotor angle and are not crosscoupled.  For any rotor angle, the 

control current [ix=1, iy=0, iθ=0] produces the desired force (Fxx=156.5) only in that 

direction and no force in the other directions (Fxy=0).   The trend is seen when a 

control current [ix=0, iy=1, iθ=0] is sent in y-direction.  The advantage of this model is 

that A and A+ cancel out each other leaving out the desired Ki.  The desired Ki does 

not have any crosscoupled terms in it, causing the forces to be decoupled.  In this 

model, A and A+ would cancel out even when the phases are faulted, letting the 

desired Ki to define the force-current relationship.   

   

1-Integral Equations, 2-Lumped Parameter model, 3-Fault tolerant control model 

based on integral equations, 4-Fault tolerant control model based on lumped 

parameter model, 5-Decopled and fault tolerant control 
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Figure 3.17:  Desired forces when rotor angle turns through a pole pitch in no fault 
conditions, [1 1 1]c =i  

Figure 3.17 plots the forces produced for different models when the rotor angle 

turns through a pole pitch in no fault conditions, [1 1 1]c =i .  In the plots, Ki desired 

model and the decoupled fault tolerant model are a straight line running from left to 

right as the rotor angle increases through one pole pitch.  The decoupled fault 

tolerant model is the only model which would meet the desired model specifications.  

The forces produced in the lumped parameter model and the fault tolerant model 

based on the lumped parameter model is a sinusoidal wave as shown in the plot and 

overlap.  The plot shows that both the lumped parameter model and fault tolerant 

model based on the lumped parameter model are equally crosscoupled at every 

rotor angle.    The forces produced in the integral equations model and the fault 

tolerant model based on the integral equations model is a sinusoidal wave as shown 

in the plot and overlap.  The plot shows that both the integral equations model and 

fault tolerant model based on integral equations model are equally crosscoupled at 
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every rotor angle.  From the plot, it was inferred that the decoupled fault tolerant 

model is better than any of the other models.  The plot also shows that the fault 

tolerant model based on the integral equations model is better than the fault tolerant 

model based in the lumped parameter model because it is less crosscoupled.    

 
 

Models Ki 
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Integral 
Equations 

Model 

Lumped 
Parameter 

Model 

Fault 
Tolerant 
Model 
using 

Integral 
Equations 

Fault 
Tolerant 
Model 
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and Fault 
Tolerant 
Model 

Percentage 
Maximum 
Difference 

in FX 

 
0 

 
4.1762 

 
5.0365 

 
4.1762 

 
5.0365 

 
0 

Percentage 
Maximum 
Difference 
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0 

 
4.1762 

 
5.0365 

 
4.1762 

 
5.0365 

 
0 

Percentage 
Maximum 
Difference 

in T 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
Table 3.2:  Percentage maximum variation in FX & FY from the desired forces when 

rotor angle turns through a pole pitch, [1 1 1]c =i , No fault condition 
 

Table 3.2 shows the percentage of maximum variation in FX & FY from the 

desired forces when rotor angle turns through a pole pitch, [1 1 1]c =i  in no fault 

conditions.  The percentage variation of FX and FY in the lumped parameter model 

(5.04%) is more than the integral equations model (4.17%).   Percentage variations 

in the fault tolerant models based on the respective base models are also the same.  

Hence the fault tolerant model based on the integral equations model is better than 

the fault tolerant model based on the lumped parameter model.  The table shows 

that the decoupled and fault tolerant model has 0 percentage variation in FX and FY 
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from the desired, when the rotor angles turns through a pole pitch. Thus the 

decoupled and fault tolerant model is better than the other models with respect to 

crosscoupling.  There is no crosscouping in θ direction in any of the models. 

All of the above discussions have been restricted to no fault conditions.  Now 

the faults were introduced and the models were tested for fault tolerance.  There are 

three models discussed: The non-fault tolerant model (lumped parameter model), 

the fault Tolerant based on the lumped parameter model and the decoupled fault 

tolerant control model.  Table 3.3 compares the forces between these three models.  

In the Non-fault tolerant model, for an input control current [1 0 0]c =i  and rotor angle 

of θ=0, the force produced in x direction is Fx=156.5 in “no fault” condition.   When 

the segment 1 phase 1 is faulted, the force produced decreases to Fx=143.5.  With 

more faults, the force produced decreases further.  In addition to decrease in force in 

the required direction, there is an increase in crosscoupling of the forces.  As the 

segment 1 phase1 is faulted, the crosscoupled forces increase from Fxy=0 to 

Fxy=1.138.  In the fault tolerant model based on the lumped parameter model and 

the decoupled fault tolerant models, force production does not decrease with faults 

making them superior to the non-fault tolerant model.   
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 Non-Fault Tolerant system Fault tolerant system
Decoupled & Fault 

tolerant system 
Failures FX FY T FX FY T FX FY T 

ix=1 iy=0 iθ=0  θ=0 
No fault 156.5 0 0 156.5 0 0 156.5 0 0 

Segment 1          
F11 143.5 1.138 1.592 156.5 0 0 156.5 0 0 

F11,F12 91.26 1.138 7.958 156.5 0 0 156.5 0 0 
F11,F12,F13 78.25 0 9.55 156.5 0 0 156.5 0 0 
Segment 3          

F31 143.5 1.138 -1.592 156.5 0 0 156.5 0 0 
F31,F32 91.26 1.138 -7.958 156.5 0 0 156.5 0 0 

F31,F32,F33 78.25 0 -9.55 156.5 0 0 156.5 0 0 
ix=0 iy=1 iθ=0 θ=0 

No fault 0 156.5 0 0 156.5 0 0 156.5 0 
Segment 2          

F21 -1.138 143.5 1.592 0 156.5 0 0 156.5 0 
F21,F22 -1.138 91.26 7.958 0 156.5 0 0 156.5 0 

F21,F22,F23 0 78.25 9.55 0 156.5 0 0 156.5 0 
Segment 4          

F41 -1.138 143.5 -1.592 0 156.5 0 0 156.5 0 
F41,F42 -1.138 91.26 -7.958 0 156.5 0 0 156.5 0 

F41,F42,F43 0 78.25 -9.55 0 156.5 0 0 156.5 0 
ix=0 iy=0 iθ=1 θ=0 

No fault 0 0 38.2 0 0 38.2 0 0 38.2 
Segment 1          

F11 13.01 -1.138 36.61 0 0 38.2 0 0 38.2 
F11,F12 65.24 -1.138 30.24 0 0 38.2 0 0 38.2 

F11,F12,F13 78.25 0 28.65 0 0 38.2 0 0 38.2 
Segment 2          

F21 1.138 13.01 36.61 0 0 38.2 0 0 38.2 
F21,F22 1.138 65.24 30.24 0 0 38.2 0 0 38.2 

F21,F22,F23 0 78.25 28.65 0 0 38.2 0 0 38.2 
Segment 3          

F31 -13.01 1.138 36.61 0 0 38.2 0 0 38.2 
F31,F32 -65.24 1.138 30.24 0 0 38.2 0 0 38.2 

F31,F32,F33 -78.25 0 28.65 0 0 38.2 0 0 38.2 
Segment 4          

F41 -1.138 -13.01 36.61 0 0 38.2 0 0 38.2 
F41,F42 -1.138 -65.24 30.24 0 0 38.2 0 0 38.2 

F41,F42,F43 0 -78.25 28.65 0 0 38.2 0 0 38.2 
 

Table 3.3: Comparison of forces between non-fault tolerant, fault tolerant and 
decoupled & fault Tolerant Control model with different  fault configurations 
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Figures 3.18, 3.19, 3.20 and 3.21 show how forces are produced in the non-

fault tolerant, fault tolerant (based on integral equations & lumped parameter model) 

and decoupled fault tolerant model with the change in rotor angle and the 

introduction of faults.  Figure 3.18 shows forces produced in different models, when 

segment 1 phase 1 is faulted and the rotor angle turns through a pole pitch, 

[1 0 0]c =i .Both the fault tolerant and the decoupled fault tolerant models are better 

than the non-fault tolerant model.  They produce the desired force even with faults.  

Figure 3.19 and Figure 3.20 shows the forces produced when segment 1 phase 1,2 

are faulted and segment 1 phase 1,2,3 are faulted respectively.  The forces 

produced are invariant to faults in the case of fault tolerant and decoupled fault 

tolerant model.  Unlike the decoupled fault tolerant model, the fault tolerant model 

(based on integral equations & lumped parameter model) has some crosscoupling.  

The degree of crosscoupling is less than the non-fault tolerant model as shown in 

the figures.  Though not clear from the figures, the force produced Fxx in the fault 

tolerant model is close to the desired force, but not precisely equal to that value for 

most rotor angles.  This is due to the fact that the fault tolerant model is not 

decoupled.  From the figures one can infer that the fault tolerant model based on the 

integral equations is better than the fault tolerant model based on the lumped 

parameter model even in faulted conditions.  With some fault combinations, however 

the model might fail.  One of them is shown in Figure 3.21, where the force produced 

drastically falls at half-a-pole pitch for the fault configuration [000100010001].  It was 

inferred from the simulations that decoupled and fault tolerant model is the better 

than any of the other models.  This model was hence implemented in dspace and 
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the performance of fault tolerance is evaluated.  From here on, the decoupled and 

fault tolerant control model will be referred to as fault tolerant model. 

 
1-Lumped Parameter model  
2-Fault tolerant control model based on integral equations  
3-Fault tolerant control model based on lumped parameter model  
4-Decopled and fault tolerant control 
 

 

 

Figure 3.18:  Forces produced when segment 1 phase 1 is faulted and rotor angle 
turns through a pole pitch, [1 0 0]c =i  

 
Figure 3.19: Forces produced when segment 1 phase 1,2 is faulted and rotor angle 

turns through a pole pitch, [1 0 0]c =i  
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Figure 3.20: Forces produced when segment 1 phase 1,2,3 is faulted and rotor 
angle turns through a pole pitch, [1 0 0]c =i  

 
 
 
 
 

 
Figure 3.21: Forces produced for the fault configuration [000 100 010 001] and rotor 

angle turns through a pole pitch, [1 0 0]c =i  
 
 
 
 
 

Actuator 
failure 
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3.5  Comparison of perturbation voltages 

Figure 3.22 shows the perturbation voltages in all twelve phases of the self-bearing 

motor for the same input control currents ix=1, iy=1, iθ=1 with “no fault” condition.  In 

“no fault” conditions, both the fault tolerant and Non-fault tolerant model send in the 

same output voltages for the same input control currents.  The plot shows how the 

perturbation currents are nearly the same for both the models.  This implies that both 

decoupled fault tolerant model are as good as the non-fault tolerant model in “no 

fault” condition.  It remains an uncertain from the above simulation if decoupled fault 

tolerant model is better than non-fault tolerant model.  This can be found out only by 

maintaining the same input control currents for both the fault tolerant and non-fault 

tolerant model, and then introducing faults in different phases. Now the forces 

produced in the both these models are compared .  Care was taken so that the 

perturbation voltage values already closer to zero were not zeroed by introduction of 

faults.  Zeroing of perturbation voltage values close to zero would not result in a 

significant change in the output force and therefore not result in any useful 

conclusion.    
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Figure 3.22:  Comparison of 12 phase currents between decoupled-fault tolerant 
and non-fault tolerant model for rotation of the rotor through 1 pole pitch and ix=1, 

iy=1, iθ=1, “no fault” condition 
 

3.6 Implementation of Fault Tolerant Model 

 The decoupled and fault tolerant model was found to be the best of the three 

fault tolerant models.  The software equivalents of the model (Ф and λ) shown in the 

figure are replaced by the actual hardware (power amplifier and the self-bearing 

motor).  Fault tolerance was implemented in the motor based on the decoupling and 

fault tolerant algorithm using simulink/matlab/rtw/dspace.  The model was simulated 

for any modeling errors and was verified for consistency.  Test cases were designed 

in simulink to verify that the output of the model met with the algorithmic output 

Decoupled & Fault Tolerant model Non-Fault Tolerant model 
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requirements.   Now the model was ready for some real-time testing.  The non-real-

time simulink model based on the decoupled and fault tolerant algorithm was 

modified by replacing the m-file matlab function with a C-mex file S-function block for 

pseudo-inverse.  The simulink model was modified to interface with the dspace 

controller hardware.  A realistic testing of the algorithm functionality was performed 

by combining concepts from the rapid control prototyping approach and hardware-in-

the-Loop Simulation.  Real-Time Workshop was used to generate and execute a 

stand-alone C code for developing and testing the fault tolerant algorithm modeled in 

simulink.  rtw / simulink / matlab are used to build the simulink model into C codes.  

The resulting code was used for real-time rapid prototyping and hardware-in-the-

loop testing.  The generated code can be interactively tuned and monitored using 

dspace environment.   

3.7 Functions used in the simulink models 

 The following flowcharts give the different user defined matlab functions used 

for simulink blocks in the various models described earlier.  There are four medit file 

functions and two C-mex file S-functions used in the models.  The medit files used 

are used only in simulations and are replaced by using other blocks.  The rest of 

blocks in the decoupled and fault tolerant model, which are impossible to replace 

with any built-in simulink functions, are made up of C-mex file S-functions so that the 

simulink model file can be auto-compiled in the dspace environment for real-time 

control.  The two functions written in C are for the pseudo inverse of the model and 

the flux linkage matrix.  Both functions are compiled in the matlab command prompt 
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by typing “mex file name.  c” to convert them into “dll” file.   Now the code was 

dynamically linked with their appropriate block in the model. 

3.7.1 Medit-file function for phase distribution (λ) 
 

Start

INPUT
Phase currents  iφ(1-12)

STATION CURRENTS
istations=[beta,z3,z3,z3;

    z3,beta,z3,z3;
z3,z3,beta,z3;
z3,z3,z3,beta]* iφ;

Stop

beta=[ -I(3,3); I(3,3); -I(3,3); I(3,3)];
z3=zeros(12,3);

 
 
3.7.2 Medit-file function for phase currents after faults introduced (F) 

Start

Faulted phase currents

 i phase currents  = F* i phase currents

Stop

Faults
F=eye(12,12);

F(1,1)=0; F(2,2)=1; F(3,3)=1;
F(4,4)=1; F(5,5)=1;F(6,6)=1;
F(7,7)=1;F(8,8)=1;F(9,9)=1;

F(10,10)=1;F(11,11)=1;F(12,12)=1;

INPUT
Faultless phase currents

 i phase currents (1-4)
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3.7.3  Medit-file Function for segment-Control current mapping (T3) 
Start

isegment currents (1-4) = T3* i control currents

Stop

T3 = [-1 0 1;
           0 -1 1;
          1 0 1;
          0 1 1]

INPUT
icontrol currents (1-4)

 
 
3.6.4 Medit-file function for commutation (Y) 

Start

 iφ=Y* isegment currents ;

Stop

Y=zeros(12,4)
Y(1,1)=φ1;Y(2,1)=φ2;Y(3,1)=φ3;

Y(4,2)=φ1;Y(5,2)=phi2;Y(6,2)=φ3;
Y(7,3)=φ1;Y(8,3)=φ2;Y(9,3)=φ3;

Y(10,4)=φ1;Y(11,4)=φ2;Y(12,4)=φ3;

φ1=Cos(θ+π/4)
φ2=Cos(θ)

φ3=Cos(θ+π/4)

INPUT
isegment currents (1-4)

Rotor Angle θ, M=12,
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3.6.5 Flowchart to compute the pseudo-inverse in the simulink model (A-1) 

Start

Constant parameters
M=12,

Nw = 96,
R=0.110,
L=0.1016,

pi=3.1415926,
Bm,k =0.9885653733729429

For k= 1 to 72

INPUT
Force in x FX,

Forces in Y FY,
Torque T,

Instantaneous Rotor Angle θ
Faulted or faultless phases F

PERMANENT MAGNET DISTRIBUTION
MATRIX

φ[K]=(k-1)*(2*π/72)+(π/4)+(π/72)
Bm,k[k]=Bm,kp Sin(M(θ−φ[k])

ϕ[1][k]=-Nw LBm,k[k] Sin(φ[k])
ϕ[2][k]=Nw LBm,k[k] Cos(φ[k])

ϕ[3][k]=Nw LBm,k[k]

Next K

FAULT ENCODING MATRIX
F[1][1]=1 or 0,F[2][2]=1 or 0,F[3][3]=1 or 0
F[4][4]=1 or 0,F[5][5]=1 or 0,F[6][6]=1 or 0
F[7][7]=1 or 0,F[8][8]=1 or 0, F[9][9]=1 or 0,

F[10][10]=1 or 0,F[11][11]=1 or 0, [12][12]=1 or 0

1
 

Φ 

F
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φ1=Cos(θ+π/4)
φ2=Cos(θ)

φ3=Cos(θ+π/4)

COMMUTATION
Y[1][1]=φ1,Y[2][1]=φ2,Y[3][1]=φ3
Y[4][1]=φ1,Y[5][2]=φ2,Y[6][3]=φ3
Y[7][1]=φ1,Y[8][2]=φ2,Y[9][3]=φ3

Y[10][1]=φ1,Y[11][2]=φ2,Y[12][3]=φ3

1

PHASE DISTRIBUTION MATRIX FOR ONE SEGMENT
β[1][1]=1 or 0,β[2][2]=1,β[3][3]=1,
β[4][1]=−1,β[5][2]=−1,β[6][3]=-1,

β[7][1]=1,β[8][2]=1, β[9][3]=1,
β[10][1]=−1,β[11][2]=−1,β [12][3]=−1

β[13][1]=1,β[14][2]=1,β [15][3]=1
β[16][1]=-1,β[17][2]=-1,β [18][3]=-1

For k= 1 to 18

Next j

For i= 0 to 3

Next k

PHASE DISTRIBUTION MATRIX
FOR ALL FOUR SEGMENTS
λ[18*i+k][3*i+k]=β[k][j]

For j= 1 to 3

Next i

2

Y 

λ 
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2

For j= 1 to 12

For i= 0 to 3

Temp[i][j]=0

For k= 1 to 12

Next j

Next i

Temp[i][j]=Temp[i][j]+ϕ[i][k]∗λ[k][j]

Next k

For j= 1 to 12

For i= 0 to 3

Tempa[i][j]=0

Next k

Next j

Tempa[i][j]=Tempa[i][j]+Temp[i][k]*F[k][j]

For k= 1 to 12

Next i

3

Φλ 

ΦλF
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3

For j= 1 to 4

For i= 0 to 3

A[i][j]=0

Next k

Next j

A[i][j]=A[i][j]+Tempa[i][k]*Y[k][j]

For k= 1 to 12

Next i

4

For j= 1 to 3

Next j

For i= 1 to 4

Next i

A[i][j]=A[i][j]

A=ΦλFY 

AT
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4

For j= 1 to 3

For i= 0 to 3

B[i][j]=0

Next k

Next j

B[i][j]=B[i][j]+A[i][k]*A[k][j]

For k= 1 to 4

Next i

CALCULATION OF INVERSE
Ba=B[1][1],Bb=B[1][2], Bc=B[1][3]
Bd=B[2][1],Be=B[2][2], Bf=B[2][3]
Bg=B[3][1],Bh=B[3][2], Bi=B[3][2]

DETERMINANT
∆_B=Ba*(Be*Bi-Bh*Bf)-Bd*(Bb*Bi-Bh*Bc)+Bg*(Bb*Bf-Bc*Be)

5

INVERSE
inv_B[1][1]=(Be*Bi-Bh*Bf)/∆_B;inv_B[1][2]=-(Bb*Bi-Bh*Bc)/∆_B;inv_B[1][3]=(Bb*Bf-Be*Bc)/∆_B;
inv_B[2][1]=(Bd*Bi-Bg*Bf)/∆_B;inv_B[2][2]=-(Ba*Bi-Bg*Bc)/∆_B;inv_B[2][3]=(Ba*Bf-Bd*Bc)/∆_B;

inv_B[3][1]=(Bh*Bd-Bg*Be)/∆_B;inv_B[3][2]=-(Ba*Bh-Bb*Bg)/∆_B;inv_B[3][3]=(Ba*Be-Bd*Bb)/∆_B;

A AT 

(A AT)-1 

|A AT|
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For j= 1 to 3

For i= 0 to 4

pinvA[i][j]=0

Next j

For k= 1 to 3

Pseudo-inverse of A
pinvA[i][j]=pinvA[i][j]+A_T[i][k]*inv_B[k][j]

Next i

Next k

For i= 0 to 4

sys[i]=0

For k= 0 to 3

Segment currents
sys[i]=sys[i]+pinvA[i][k]*Fc[k]

Next k

Next i

5

New segment currents
S1[0]=sys[1]
S1[0]=sys[2]
S1[0]=sys[3]
S1[0]=sys[4]

Stop

 
 

A+ =A.(A AT)-1

is=A+ Fc 



 61

3.6.6 Flowchart to compute the forces and torque in the simulink model (Φ) 
 

 

.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start

Constant parameters
M=12,Nw = 96,

R=0.110,L=0.1016,
pi=3.1415926,Bm,k =0.98856

For k  =  1 to 72

INPUT
Station currents  is (1-48)

Instantaneous Rotor Angle θ

PERMANENT MAGNET DISTRIBUTION
MATRIX

φ[K] = ( k-1 ) * ( 2* π/ 72) + (π / 4) + (π / 72)
Bm,k[k] = Bm,kp Sin( M (θ − φ[k])
ϕ[1][k] = -Nw L Bm,k[k] Sin(φ[k])
ϕ[2][k] = Nw L Bm,[k] Cos(φ[k])

ϕ[3][k] = Nw L Bm,k [k]

Next K

FORCES AND TORQUE
FX = FX + ist[k]*ϕ[1][k];
FY = FY + ist[k]*ϕ[2][k];

T = T + ist[k]*ϕ[3][k];

Stop

Φ

FX ,FY ,T 
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Chapter 4 
 
 

Experimental performance of 
decoupled and fault tolerant control 

 

 

This chapter will discuss the experimental results obtained from the self-

bearing motor test-rig after the implementation of the fault tolerant control.  The fault 

tolerant control was added to the non-fault tolerant control in the same simulink 

model and then auto-compiled into the dspace environment.  Both the models are 

subjected to same set of experiments and the performance was evaluated.  A 

dspace layout was created for testing the fault tolerant control.  The goal of this 

chapter is to prove experimentally that the decoupled and fault tolerant control is 

better than the non-fault tolerant control.  The experimental performance of the 

decoupling and fault tolerant algorithm was evaluated and compared with the 

simulations as well as the non-fault tolerant control model.  This chapter compares 

the non-fault and fault tolerant control in terms of stability, closed loop stiffness, 

torsional stiffness and power consumption. 

 The layout in dspace is shown in figure 4.1.  As shown in the figure, the 

layout has indicators and controls to manipulate the output voltages using both fault 

tolerant and non-fault tolerant control.  Faults can be deliberately introduced in the 

phases by changing the value of the fault control in the dspace layout from “1” to “0” 
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in that particular phase.  “1” represents the presence of the phase and “0” represents 

the absence of the phase.  There are indicators showing the 12 phase voltages to 

compare the fault tolerant control with the non-fault tolerant control.  The total 

voltage is the sum of the 12 phase voltages and was compared in both the models.  

A button was used to switch from non-fault tolerant control to fault tolerant control in 

real-time.   

4.1 Risk-free testing of the fault tolerant model 

 A risk free testing of the fault tolerant control model can be done by looking at 

the 12 phase currents for both fault tolerant and non-fault tolerant model (Figure 

4.2).  This experiment was performed even without switching the power amplifier on. 

However the dspace controller and sensor signals are still kept on.  Hence the 

sensor signals are taken in the dspace and serve a common input control current 

and angular position to both the models.  The angular position was varied by rotating 

the shaft by hand and hence changing it.  The input control currents are varied by 

changing the reference signal.   For “no fault” condition, the phase voltages in both 

models are nearly identical proving the fact that the test rig can be levitated using 

the decoupled and fault tolerant control at “no fault” condition.   

 
 
 
 
 
 
 
 
 
 
 
 



 64

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.1 – dspace controldesk interface 
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θ= 0 θ= -13.53 θ= -6.52 

θ= -0.24 θ= 7.023 θ= -3.53 
 

Figure 4.2: Phase voltages with change in rotor angles 
 (Power amplifier switched off) 
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4.2 Test of stiffness in fault tolerant and non-fault tolerant control 

The motor was levitated and faults are introduced in the non-fault tolerant 

model & fault tolerant control model.  The x and y sensor signals are looked at in 

dspace control desk as shown in the figure.  The sensor signals gave the position of 

shaft in x and y directions and indirectly represent the stiffness of the motor.   In the 

non-fault tolerant control, the shaft moves away from the center (to the left in this 

case) indicating a decrease in the closed loop stiffness of the motor.  The decrease 

in stiffness would cause the system to be less stable.  But in the fault tolerant model, 

the shaft remains at the center and hence retains the stiffness.  The purpose of the 

control is to keep the shaft at the center even with faults.  Hence the fault tolerant 

control was better than the non-fault tolerant control in a faulty environment. 

    

 

 

 

 

 

Figure 4.3 – X and Y position of the shaft indicating the stiffness of the motor 
 

4.3 Sine sweep test 

 In this test, fault tolerance was evaluated when the motor shaft was made to 

do a sine sweep.  Both the non-fault tolerant control and fault tolerant control are 

subjected to this test.  Faults are introduced while the shaft was executing a sine 

sweep.  When F11 and F12 are faulted, the non-fault tolerant control (NF) was stable 

 
F11 and F12 faulted  

Non-fault tolerant model 
 

F11 and F12 faulted  
fault-tolerant model 

 
F11, F12, F13 faulted 
Fault tolerant model 
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in its θ direction but was unstable in its radial direction (Figure 4.4).   If  F11,F12 and 

F13 are faulted, then the motor goes unstable in both radial as well as θ direction.   

For the same fault configuration, the motor would be stable in radial direction and θ 

direction with the fault tolerant control (F).   

 

 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 

 

Figure 4.4: Sine sweep test 

 

F11 and F12 faulted (NF)

 
Sine sweep over ½ pole pitch 

 

F11, F12, F13 faulted (NF) 
 

Sine sweep over ½ pole pitch 
 

F11, F12, F13 faulted (F) 

 

Sine sweep over ½ pole pitch 
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4.4 Power consumed in Non-fault tolerant model and Fault tolerant model 

The motor was levitated and the total voltage was seen from the dspace 

layout for both the non-fault tolerant and fault tolerant control.  This total voltage is 

the sum of all the 12 phase voltages.  A transconductance amplifier was used to 

amplify the phase voltages to currents.  A 1V supplied to such an amplifier produces 

4 A of current. Hence the total current is four times the magnitude of the total 

voltage. The power consumed is the square of the total current consumed times the 

resistance of the winding of the motor.  When there are no faults in the system, the 

total power required was about the same in both fault tolerant and non-fault tolerant 

system.  When faults are introduced, the power consumed was more for the fault 

tolerant control than non-fault tolerant control. But in a fault-tolerant control, the total 

power consumed in the motor with faulty phases was found to be more than that 

required in a fault less system.  As the faults increase, the power consumption 

increases as well.  Fault tolerance was achieved in the motor at the cost of 

increased power consumption. 
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Figure 4.5 – Instantaneous Power consumption in non-fault and fault tolerant control 
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Figure 4.6: Closed Loop Torsional stiffness of non-fault and fault tolerant control 

 

4.5 Torsional stiffness in Non-fault tolerant model and Fault tolerant model 

The motor was levitated and a torque wrench was used for imparting a specific 

amount of torque to the motor shaft.  The shaft rotates through a small angle and the 

change in angle of rotation was measured from the dspace layout for both the non-

fault tolerant as well as the fault tolerant control.  The torsional stiffness of both the 

models was computed for every fault configuration.  The stiffness of the fault tolerant 

control remains nearly the same even after the phase faults are introduced.  The 

stiffness of the non-fault tolerant control drops as the number of faults increases as 

shown in table 4.1 and figure 4.7. 
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Figure 4.7: Closed loop torsional stiffness of non-fault and fault tolerant control 
 

Torque 
applied  

Initial 
position of 
the shaft 

Final 
position of 
the shaft 

N-m Θ1 Θ2 

Faulted 
phases 

  

Models 

    

Rotor 
angle 

changed in 
µ radians

Rotor 
angle 

changed in 
deg 

Closed 
loop 

torsion 
stiffness 
 N-m/rad 

10^2 

7 NF -0.1722 -0.1822 -0.0100 -0.5752 6.9700 No fault 

7 F -0.1736 -0.1833 -0.0098 -0.5587 7.1758 

7 NF -0.1779 -0.1890 -0.0112 -0.6387 6.2763 F12 

7 F -0.1768 -0.1866 -0.0097 -0.5579 7.1861 

7 NF -0.1847 -0.1962 -0.0114 -0.6556 6.1151 F13 

7 F -0.1903 -0.2000 -0.0097 -0.5531 7.2486 

7 NF -0.1859 -0.1966 -0.0107 -0.6126 6.5439 F43 

7 F -0.1797 -0.1895 -0.0099 -0.5655 7.0893 

7 NF -0.1672 -0.1805 -0.0133 -0.7622 5.2600 F11, F12 

7 F -0.1841 -0.1922 -0.0081 -0.4615 8.6859 

7 NF -0.1627 -0.1808 -0.0181 -1.0373 3.8648 F11, F13 

7 F -0.1877 -0.1975 -0.0097 -0.5580 7.1839 

7 NF -0.1902 -0.2027 -0.0125 -0.7135 5.6189 F32, F33 

7 F -0.1865 -0.1969 -0.0103 -0.5909 6.7843 

7 NF -0.1030 -0.1746 -0.0716 -4.0983 0.9782 F11, F12,F13 

7 F -0.1883 -0.1984 -0.0102 -0.5822 6.8864 

Table 4.1: Closed loop torsional stiffness of non-fault and fault tolerant control 
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4.6 Closed loop stiffness for Non-fault tolerant and fault-tolerant control 

The closed loop stiffness of the system can be measured in the non-fault tolerant 

and the fault-tolerant control by the following method.  The self-bearing motor was 

levitated and a specified external force was applied in the x-direction on the shaft in 

Newton using weight-pulley system.  The displacements of the shaft in x-direction 

are measured for different values of external force.  It was ensured that the angular 

displacements were less, so that the permanent magnet distribution relative to the 

shaft stator segments remains nearly the same.  Closed loop stiffness of the motor 

was determined by finding force per unit displacement for each weight.  The 

experiment was repeated for different weights so that reliable data can be obtained.  

But collecting the displacement data remains a challenge due to the shaft moving 

back to initial position after being displaced by the weights.  This happens due to the 

integral gain moving the shaft back to the initial position.  It was therefore necessary 

that the displacement data be taken in immediately after loading.  To avoid 

hysteresis, the weights are fully removed after obtaining every displacement data 

and then the new weights are added to obtaining new data.  Closed loop stiffness of 

the fault tolerant and the non-fault tolerant models was compared.  From the table it 

was found that the stiffness of the fault tolerant control was higher than that of the 

non-fault tolerant control model even with coil faults.  This shows that the motor is 

more stable in case fault tolerant control. 
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Figure 4.8: Experimental set-up for measuring closed loop stiffness  
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y1 = 0.0228x1 + 0.0124 R12  = 0.9548

y2 = 0.0226x2 + 0.0112 R22  = 0.9448
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Figure 4.9: Closed loop torsional flexibility stiffness of non-fault and fault tolerant 
control in “No fault” configuration 
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Figure 4.10: Closed loop torsional flexibility/stiffness of non-fault and fault tolerant 
control in segment 1 phase1 was faulted 
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4.7 Stability of the fault tolerant model in different fault configurations 
 
The fault tolerant control was found to be stable under different fault configurations 

at different rotor angles that would cause the non-fault tolerant control to fail.  

Though better than the non-fault tolerant control, the fault tolerant control was not 

found to be as good as the simulation results suggested. 

 
Rotor Angles Fault Conf 

5.4 6.3 7.2 8.1 9.0 9.9 10.8 11.7 12.6 13.5 
111 111 111 111 Stable Stable Stable Stable Stable Stable Stable Stable Stable Stable 

011 111 111 111 Stable Stable Stable Stable Stable Stable Stable Stable Stable Stable 

001 111 111 111 Stable Stable Stable Stable Stable Stable Stable Stable Stable Stable 

000 111 111 111 Stable Stable Stable Stable Stable Stable Stable Stable Stable Stable 

000 011 111 111 Stable Stable Stable Stable Stable Stable Stable Stable Stable Stable 

000 101 111 111 Unstable Stable Stable Stable Stable Stable Stable Stable Stable Stable 

000 110 111 111 Unstable Unstable Unstable Unstable Unstable Stable Stable Stable Stable Stable 

000 010 111 111 Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable 

000 001 111 111 Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable 

000 100 111 111 Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable 

Table 4.2: Stability of the motor under fault tolerant control 
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Chapter 5 

 
Conclusions and future work 

 
 

5.1 Conclusions 

The self-bearing motor used in this research work is a 12 phase 4 

segment motor that operates on the principles of radial bearing force and 

motoring torque.  A pair of opposite segments produces the force in x and y 

directions and adjacent segments cause the motoring torque.   

The self-bearing motor produces independent bearing force and motoring 

torque using the common coil windings and return flux path.  It has the 

advantage of lesser heating, higher efficiency, lesser iron losses and smooth 

angular slewing.  It has a high level of precision pointing and tracking accuracies 

[Ren 05].   

This thesis used a model based adaptive control approach, which is the 

preferred method for software fault tolerance.   The reference model inversion 

was computed instantaneously to obtain the desired control currents for a given 

rotor displacement and set of external forces and torque for achieving fault 

tolerance.   The decoupling was accomplished by identifying that the force-

current relationship, iK , is invariant under a fault.    
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This work involved simulating, implementing and validating the decoupled 

and fault tolerant model in a 4 segment 12 phase self-bearing motor.  The 

summary and conclusions of this thesis is as follows 

1. In this work, many different models were simulated in simulink inclusive of 

the decoupled and fault tolerant algorithm and the conclusions were 

derived from the simulation.  Force and torque produced are analyzed in 

every model for many common input control currents and rotor angles. 

2.  It was found from the simulations that the decoupled and fault tolerant 

control was better than the fault tolerant model based on the integral 

equations and the fault tolerant model based on the lumped parameter.   

The decoupled and fault tolerant model was the only model which could 

remove the crosscoupling in addition to providing fault tolerance.   

3. The simulink model of the fault tolerant control was modified so that the 

model could be used for real-time control with dspace.  The m-file s-

function used for finding the pseudo inverse of the model in the simulation 

was replaced by c-mex file s-function so that the model was downloadable 

to the dsp boards of the dspace.   

4. The pseudo-inverse involves intensive mathematical computations.  The 

C-mex file S-function block of the pseudo-inverse makes the simulink 

model bigger in terms of computation time.  But this does not change the 

operating bandwidth for the system, since the power amplifier puts a 

smaller limit on the bandwidth.   
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5. After downloading to the DSP boards of the dspace system, a graphical 

user interface was designed for the fault tolerant control to test the 

controller. 

6. Experiments are designed so that fault tolerance can be validated. 

7. A risk-free testing of the fault tolerant control was performed by looking at 

the phase currents of both the non-fault tolerant and fault tolerant control 

in the dspace layout without switching on the power amplifier.  The phase 

currents of both the models for different control currents and rotor angle.   

8. The shaft was levitated and the x - y positions of the shaft are looked at, 

for both fault tolerant and non-fault tolerant models, with phase faults.  The 

shaft was found to move away from the center with the addition of phase 

faults to the non-fault tolerant model, indicating a decrease in stiffness.  

The shaft would not move from the center in the fault tolerant control, 

indicating that the stiffness remains the same.  The lower the stiffness, the 

lower the stability of the actuator.  Thus the stability of the motor under 

non-fault tolerant control decreases with the introduction of faults in the 

phases. 

9. Both the non-fault tolerant control and fault tolerant control are subjected 

to a sine sweep test.  Faults are introduced while the shaft was executing 

a sine sweep.  It was found that the performance of the non-fault tolerant 

control decreased with faults.  A stable bearing force and motoring torque 

was accomplished even under coil faults.    
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10. The penalty paid for the fault tolerance was an increased power usage 

and operating temperature.  The power consumed was found to increase 

with the number of faults in the fault tolerant control. 

11.  The torsional stiffness of the non-fault tolerant control drops as the 

number of faults increases, but it remains the same for the fault tolerant 

control.  Thus the stability of the non-fault tolerant control drops drastically 

with faults that of the fault tolerant control.  However, it was noted that the 

stiffness of the fault tolerant control also dropped but dropped slowly with 

faults indicating a steady degradation in performance of the motor with an 

increasing number of faults. 

12.   A load test with a weight-pulley system was performed with the motor 

under the fault tolerant and the non-fault tolerant control.  It was found that 

the closed loop stiffness of the motor was found to be higher for the motor 

with the fault tolerant control.  The test was performed with the addition of 

faults, and it was found that the stiffness of the motor was higher for the 

fault tolerant control.  It was noted that the stiffness of the motor falls even 

with fault tolerant control, thus indicating some degradation in the 

performance.  Higher stiffness of the motor in the fault tolerant control 

indicated greater stability in the motor.   

13. The fault tolerant control was found to be stable under different fault 

configurations at different rotor angles at which the non-fault tolerant 

control would fail.  Though better than the non-fault tolerant control, the 
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fault tolerant control was not found to be as good as the simulation results 

suggested. 

14.  Since the motor was higher in stability and less crosscoupled with the 

fault tolerant control, it can be used at higher speeds. 

15.  The saturation block in the simulink file, puts a limit on the phase currents 

output to the D/A.  When more faults are introduced, the magnitude of 

current in faultless phases was more than the saturation limit in the 

saturation block.  Hence the output currents in those phases will be equal 

to the saturation limit.  The forces produced will also be different from 

required, hence resulting in deterioration in performance of the fault 

tolerant control. 

5.2 Future work 

1. Exploring the possibility of using a look-up table in the simulink model instead 

of the C-mex file S-function, so that intensive computations involved in the 

fault tolerant model be reduced. 

2. Detect faults using fault detection circuitry and feeding into dspace so that it 

can be used in space applications. 

3. Incorporate phase fault tolerance for non-centered rotors. 

4. Identify other types of faults like cracked rotor, temperature excess, amplifier 

faults, etc.  Investigate the different methods of correcting the different faults, 

identify the best method and implement. 

5. Investigate and implement fault tolerance for short circuit faults. 
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Appendix A 
C-mex-file function for calculation of pseudo inverse 
 
/* File:inv_A.c is C-mex S-function used in conjunction with fault_algo.mdl 
 *  Abstract: 
 *      c code for pseudo-inverse of A */ 
#define S_FUNCTION_NAME inv_A 
#define S_FUNCTION_LEVEL 2 
#include "simstruc.h" 
/*====================* 
 * S-function methods * 
 *====================*/ 
/* Function: mdlInitializeSizes =============================================== 
 * Abstract: 
 *    The sizes information is used by Simulink to determine the S-function 
 *    block's characteristics (number of inputs, outputs, states, etc.). 
 */ 
static void mdlInitializeSizes(SimStruct *S) 
{ 
    ssSetNumSFcnParams(S, 0);  /* Number of expected parameters */ 
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) { 
        return; /* Parameter mismatch will be reported by Simulink */ 
    } 
 
    ssSetNumContStates(S, 0); 
    ssSetNumDiscStates(S, 0); 
 
    if (!ssSetNumInputPorts(S, 19)) return;/*7 in two out*/ 
    ssSetInputPortWidth(S, 0, 3); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 1, 1); /*format: s,port,width */  
    ssSetInputPortWidth(S, 2, 3); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 3, 12); /*format: s,port,width */  
    ssSetInputPortDirectFeedThrough(S, 0, 3); 
    ssSetInputPortDirectFeedThrough(S, 1, 1); 
    ssSetInputPortDirectFeedThrough(S, 2, 3); 
    ssSetInputPortDirectFeedThrough(S, 3, 12); 
    if (!ssSetNumOutputPorts(S, 4)) return; 
    ssSetOutputPortWidth(S, 0, 1); /*port and width*/ 
    ssSetOutputPortWidth(S, 1, 1); 
    ssSetOutputPortWidth(S, 2, 1); 
    ssSetOutputPortWidth(S, 3, 1); 
    ssSetNumSampleTimes(S, 1); 
    ssSetNumRWork(S, 0); 
    ssSetNumIWork(S, 0); 
    ssSetNumPWork(S, 0); 
    ssSetNumModes(S, 0); 
    ssSetNumNonsampledZCs(S, 0); 
    /* Take care when specifying exception free code - see sfuntmpl_doc.c */ 
    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE); 
} 
/* Function: mdlInitializeSampleTimes ========================================= 
 * Abstract: 
 *    Specifiy that we inherit our sample time from the driving block. 
 */ 
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static void mdlInitializeSampleTimes(SimStruct *S) 
{ 
    ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME); 
    ssSetOffsetTime(S, 0, 0.0); 
} 
#define MDL_INITIALIZE_CONDITIONS 
/* Function: mdlInitializeConditions ======================================== 
 * Abstract: 
 *    Initialize both discrete states to one. 
 */ 
static void mdlInitializeConditions(SimStruct *S) 
{ 
} 
/* Function: mdlOutputs ======================================================= 
 * Abstract: 
 *      y = Cx   
 */ 
static void mdlOutputs(SimStruct *S, int_T tid) 
{ 
    real_T            *S1    = ssGetOutputPortRealSignal(S,0); 
    real_T            *S2  = ssGetOutputPortRealSignal(S,1); 
    real_T            *S3  = ssGetOutputPortRealSignal(S,2); 
    InputRealPtrsType uPtrFx    = ssGetInputPortRealSignalPtrs(S,0,1); 
    InputRealPtrsType uPtrFy    = ssGetInputPortRealSignalPtrs(S,0,2); 
    InputRealPtrsType uPtrT    = ssGetInputPortRealSignalPtrs(S,0,3); 
    InputRealPtrsType uPtrtheta    = ssGetInputPortRealSignalPtrs(S,1,1); 
    InputRealPtrsType uPtrY1    = ssGetInputPortRealSignalPtrs(S,2,1); 
    InputRealPtrsType uPtrY2    = ssGetInputPortRealSignalPtrs(S,2,2); 
    InputRealPtrsType uPtrY3    = ssGetInputPortRealSignalPtrs(S,2,3); 
    InputRealPtrsType uPtrF1    = ssGetInputPortRealSignalPtrs(S,3,1); 
    InputRealPtrsType uPtrF2    = ssGetInputPortRealSignalPtrs(S,3,2); 
    InputRealPtrsType uPtrF3    = ssGetInputPortRealSignalPtrs(S,3,3); 
    InputRealPtrsType uPtrF4    = ssGetInputPortRealSignalPtrs(S,3,4); 
    InputRealPtrsType uPtrF5    = ssGetInputPortRealSignalPtrs(S,3,5); 
    InputRealPtrsType uPtrF6    = ssGetInputPortRealSignalPtrs(S,3,6); 
    InputRealPtrsType uPtrF7    = ssGetInputPortRealSignalPtrs(S,3,7); 
    InputRealPtrsType uPtrF8    = ssGetInputPortRealSignalPtrs(S,3,8); 
    InputRealPtrsType uPtrF9    = ssGetInputPortRealSignalPtrs(S,3,9); 
    InputRealPtrsType uPtrF10    = ssGetInputPortRealSignalPtrs(S,3,10); 
    InputRealPtrsType uPtrF11    = ssGetInputPortRealSignalPtrs(S,3,11); 
    InputRealPtrsType uPtrF12    = ssGetInputPortRealSignalPtrs(S,3,12); 
    /*uPtrs[element])  * Pointer to Input Port0 */ 
   real_T U1,U2,U3,U4,U5,U6; 
   UNUSED_ARG(tid); /* not used in single tasking mode */ 
 Fx=*uPtrFx[0]; 
 Fy=*uPtrFy[0];  
 T=*uPtrT[0]; 
 theta=*uPtrtheta[0]; 
M=8;Nw=85;R=50.8e-3;L=25.4e-3; 
R=50.8e-3; 
 BMKP=0.78; 
for k=1:48 
phi(k)=(k-1)*(2*pi/48)+(pi/4)+(pi/48); %ORIENTATION ALONG ANY STATOR STATION RELATIVE TO X COORDINATE 
AXIS  
 BMK(k)=BMKP*sin(M*(theta-phi(k))); 
ph(1,k)=-Nw*L*BMK(k)*sin(phi(k)); 
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ph(2,k)=Nw*L*BMK(k)*cos(phi(k)); 
 ph(3,k)=Nw*L*R*BMK(k); 
end 
phi1=*uPtrY1[0]; 
phi2=*uPtrY2[0];  
phi3=*uPtrY3[0];  
Fa[1,1]=*uPtrF1[0];  
Fa[2,2]=*uPtrF2[0];  
Fa[3,3]=*uPtrF3[0]; 
Fa[4,4]=*uPtrF4[0];  
Fa[5,5]=*uPtrF5[0];  
Fa[6,6]=*uPtrF6[0]; 
Fa[7,7]=*uPtrF7[0];  
Fa[8,8]=*uPtrF8[0];  
Fa[9,9]=*uPtrF9[0];  
Fa[10,10]=*uPtrF10[0]; 
Fa[11,11]=*uPtrF11[0];  
Fa[12,12]=*uPtrF12[0];   
Y=zeros(12,4); 
Y[1,1]=phi1;Y[2,1]=phi2;Y[3,1]=phi3; 
Y[4,2]=phi1;Y[5,2]=phi2;Y[6,2]=phi3; 
Y[7,3]=phi1;Y[8,3]=phi2;Y[9,3]=phi3; 
Y[10,4]=phi1;Y[11,4]=phi2;Y[12,4]=phi3;  
beta=[-eye(3,3);eye(3,3);-eye(3,3);eye(3,3)]; 
z3=zeros(12,3); 
lambda=[beta,z3,z3,z3; 

          z3,beta,z3,z3; 
                z3,z3,beta,z3; 
                z3,z3,z3,beta]; 
A=ph*lambda*Fa*Y;   %A with no fault 
sys=pinv(A)*Fc';  %Matrix pseudo-inverse of A_Fault 
 
S1[0]=sys[0];S2[0]=sys[1];S3[0]=sys[2]; 
} 
#define MDL_UPDATE 
/* Function: mdlUpdate ====================================================== 
 * Abstract: 
 *      xdot = Ax + Bu 
 */ 
static void mdlUpdate(SimStruct *S, int_T tid) 
{ 
   UNUSED_ARG(S); /* unused input argument */    
} 
/* Function: mdlTerminate ===================================================== 
 * Abstract: 
 *    No termination needed, but we are required to have this routine. 
 */ 
static void mdlTerminate(SimStruct *S) 
{ 
    UNUSED_ARG(S); /* unused input argument */ 
} 
#ifdef  matlab_MEX_FILE    /* Is this file being compiled as a MEX-file? */ 
#include "simulink.c"      /* MEX-file interface mechanism */ 
#else 
#include "cg_sfun.h"       /* Code generation registration function */ 

#endif 
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Appendix B 
Medit-file function for calculation of force and torque using integral equations 
 
%input of x,y,zeta,ix,iy,izeta values 
clear 
 
clc 
 
 x=input(' Rotor motion in x = ') 
  
 y=input(' Rotor motion in Y = ') 
  
 zeta=input(' Rotor motion in zeta = ') 
  
 gamma=input(' Phase Angle of the current wrt permenent magnet flux = ') 
  
 ix=input(' control current in x direction = ') 
  
 iy=input(' control current in y direction = ') 
  
 izeta=input(' control current in zeta direction = ') 
  
 M=8;                        %NUMBER OF POLE PAIRS 
  
 Nseg=4;                    %NUMBER OF SEGMENTS 
  
 Ns=12;                     %NUMBER OF WINDING STATIONS PER SEGMENT 
  
 Nw=85;                   %NUMBER OF WIRES PER WINDING STATION 
  
 tm=7.75e-3;           %RADIAL THICKNESS OF PERMANENT MAGNETS IN m 
  
 tc=3.87e-3;            %RADIAL THICKNESS OF COIL WINDINGS IN m  
  
 go=0.762e-3;           %NOMINAL RADIAL AIR GAP 
  
 R=50.8e-3;             %ROTOR OUTER RADIUS 
  
 L=25.4e-3;             %MOTOR LENGTH 
  
 %BMKP=0.77;        %PM FLUX DENSITY IN Tesla 
  
 mur=1.1;                  %RECOIL PERMEABILITY 
  
 muo=4*3.143*(10e-7);       %PERMEABILITY IN FREE SPACE 
  
 Br=1.08;                   %REMNANCE FLUX DENSITY IN Tesla 
   
 Kml=1.82;                  %MAGNETIC LEAKAGE FACTOR 
  
 Cphi=0.8;                  %FLUX CONCENTRATION FACTOR 
  
 %iAmp=12.0;               %PEAK INSTANTANEOUS CURRENT PER PHASE IN 

Amps 
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 irms=3.0;                %MAXIMUM CONTINOUS CURRENT PER PHASE IN Amps 
  
 for k=1:480 
     
    theta(k)=(k-1)*2*pi/480;%GLOBAL SEGMENT ANGLE 
 
 end 
  
 %ORIENTATION ALONG ANY STATOR STATION RELATIVE TO X COORDINATE AXIS 
  
 for k=1:480 
            
   phi(k)=theta(k)+pi/4;  
  
 end        
         
         
 %CURRENT IN EACH SEGMENT  
             
  i(1)=izeta-ix; 
   
  i(2)=izeta-iy; 
   
  i(3)=izeta+ix; 
   
  i(4)=izeta+iy; 
              
%AMPLITUDE OF CURRENT 
  
for k=1:4 
    
   iAmp(k)=(2*sqrt(2)/3)*Nw*i(k); 
    
   sprintf('AMPLITUDE OF CURRENT IS %5.5f',iAmp(k)) 
    
end 
 
for k=1:480 
    
      if  (k>=1) & (k<=120) 
           q=1; 
            
  elseif (k>=121) & (k<=240) 
           q=2; 
            
  elseif (k>=241) & (k<=360) 
           q=3; 
            
  elseif (k>=361) & (k<=480) 
           q=4;    
 end 
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%PM FLUX AMPLITUDE           
 
BWKP(k)=(muo*iAmp(q))/2*(tm+tc+go-x*cos(phi(k))-y*sin(phi(k))); 
 
%WINDING FLUX AMPLITUDE   
 
BMKP(k)=0.77;  %(sqrt(2)*Br*tm)/(tm+mur*Cphi*Kml*(go+tc-x*cos(phi(k))-y*sin(phi(k)))); 
 
%PM FLUX   
 
BMK(k)=BMKP(k)*sin(M*(zeta-(theta(k)-(q-1)*pi/2))); 
   
%WINDING CURRENT DISTRIBUTION   
 
IK(k)=iAmp(q)*sin(M*(zeta-(theta(k)-(q-1)*pi/2)-gamma)); 
 
sprintf('WINDING CURRENT IN %d IS %5.5f',k,IK(k)); 
   
%WINDING FLUX  
 
BWK(k)=BWKP(k)*sin(M*(zeta-(theta(k)-(q-1)*pi/2)-gamma+pi/(2*M))); 
  
end 
          
%THE NET FORCE AND TORQUE ON THE SELF BEARING ROTOR 
 
 FXL=0; FYL=0; Tzeta=0;                
  
 FXM=0; FYM=0;  
 
 FXW=0; FYW=0;                
 
for k=1:480 
      
%LORENTZ TYPE FORCES FOR BEARING FORCE AND TORQUE CONTROL       
 
FXL=FXL+BMK(k)*IK(k)*cos(phi(k)); 
 
FYL=FYL+BMK(k)*IK(k)*sin(phi(k)); 
 
Tzeta=Tzeta+BMK(k)*IK(k); 
                
%MAXWELL TYPE FORCES ON THE ROTOR DUE TO THE PM FLUX  
 
FXM=FXM+BMK(k)*BMK(k)*cos(phi(k)); 
 
FYM=FYM+BMK(k)*BMK(k)*sin(phi(k)); 
                   
%MAXWELL TYPE FORCES ON THE ROTOR DUE TO THE WINDING FLUX    
 
FXW=FXW+BWK(k)*BWK(k)*cos(phi(k)); 
 
FYW=FYW+BWK(k)*BWK(k)*sin(phi(k)); 
 
end 
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%LORENTZ TYPE FORCES FOR BEARING FORCE AND TORQUE CONTROL  
 
FXL=M*L*FXL;         
 
FYL=M*L*FYL;            
 
Tzeta=M*R*L*Tzeta;                
                
%MAXWELL TYPE FORCES ON THE ROTOR DUE TO THE PM FLUX 
 
FXM=(R*L/2*muo)*FXM;        
 
FYM=(R*L/2*muo)*FYM;                   
                
% MAXWELL TYPE FORCES ON THE ROTOR DUE TO THE WINDING FLUX 
 
FXW=(R*L/2*muo)*FXW;        
 
FYW=(R*L/2*muo)*FYW;  
                
%NET FORCE AND TORQUE ON THE SELF BEARING ROTOR 
 
FX=FXL+FXM+FXW 
 
FY=FYL+FYM+FYW 
 
Tzeta=Tzeta 
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Appendix C 
Medit-file function for phase distribution matrix 
 
function [lambda_output] = lambda(lambda_input) 
beta=[-eye(3,3);eye(3,3);-eye(3,3);eye(3,3)]; 
z3=zeros(12,3); 
lambda_output=[beta,z3,z3,z3; 
              z3,beta,z3,z3; 
                           z3,z3,beta,z3; 
                           z3,z3,z3,beta]*lambda_input; 

 
 

Medit-file function for commutation matrix 
 
function [Y_output] = Y(Y_input) 
M=8;zeta=Y_input(5);gamma=0; 
phi1=cos(M*(zeta-gamma)+pi/3); 
phi2=cos(M*(zeta-gamma)); 
phi3=cos(M*(zeta-gamma)-pi/3); 
Y=zeros(12,4) 
Y(1,1)=phi1;Y(2,1)=phi2;Y(3,1)=phi3; 
Y(4,2)=phi1;Y(5,2)=phi2;Y(6,2)=phi3; 
Y(7,3)=phi1;Y(8,3)=phi2;Y(9,3)=phi3; 
Y(10,4)=phi1;Y(11,4)=phi2;Y(12,4)=phi3; 
Y_output=Y*Y_input(1:4); 

 
 
 

Medit-file function for segment current-control current mapping 
 
function [T3_output] = T3(T3_input) 
T3_output=[-1 0 1;0 -1 1;1 0 1;0 1 1]*T3_input; 
 
Medit-file function for faulted phase currents 

 
 function [F_output] = F(F_input) 
 F=eye(12,12); 
 F(1,1)=0; 
 F(2,2)=0; 
 F(3,3)=0; 
 F(4,4)=0; 
 F(5,5)=0; 
 F(6,6)=0; 
 F(7,7)=0; 
% F(8,8)=0; 
 F(9,9)=0; 
 F(10,10)=0; 
 F(11,11)=0; 
% F(12,12)=0; 
 F_output=F*F_input; 
 
 
 
 



 91

Appendix D 
C-mex file function for permanent magnet flux distribution matrix 
 
/*  File    : ph_sfunc.c 
 *  Abstract: 
  *      c code for ph_sfunc     */ 
 
#define S_FUNCTION_NAME ph_sfunc 
#define S_FUNCTION_LEVEL 2 
#include "simstruc.h" 
#include "math.h" 
 
/*====================* 
 * S-function methods * 
 *====================*/ 
 
/* Function: mdlInitializeSizes =============================================== 
 * Abstract: 
 *    The sizes information is used by Simulink to determine the S-function 
 *    block's characteristics (number of inputs, outputs, states, etc.). 
 */ 
static void mdlInitializeSizes(SimStruct *S) 
{ 
    ssSetNumSFcnParams(S, 0);  /* Number of expected parameters */ 
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) { 
        return; /* Parameter mismatch will be reported by Simulink */ 
    } 
    ssSetNumContStates(S, 0); 
    ssSetNumDiscStates(S, 0); 
    
   if (!ssSetNumInputPorts(S, 49)) return;/*7 in two out*/ 
    ssSetInputPortWidth(S, 0, 1); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 2); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 3); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 4); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 5); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 6); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 7); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 8); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 9); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 10); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 11); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 12); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 13); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 14); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 15); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 16); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 17); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 18); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 19); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 20); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 21); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 22); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 23); /*format: s,port,width */ 
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    ssSetInputPortWidth(S, 0, 24); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 25); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 26); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 27); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 28); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 29); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 30); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 31); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 32); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 33); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 34); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 35); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 36); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 37); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 38); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 39); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 40); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 41); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 42); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 43); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 44); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 45); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 46); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 47); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 48); /*format: s,port,width */ 
    ssSetInputPortWidth(S, 0, 49); /*format: s,port,width */ 
     
    ssSetInputPortDirectFeedThrough(S, 0, 49); 
 
    if (!ssSetNumOutputPorts(S, 3)) return; 
    ssSetOutputPortWidth(S, 0, 1); /*port and width*/ 
    ssSetOutputPortWidth(S, 0, 2); 
    ssSetOutputPortWidth(S, 0, 3); 
 
    ssSetNumSampleTimes(S, 1);  /*unsure if this is right*/ 
    ssSetNumRWork(S, 0); 
    ssSetNumIWork(S, 0); 
    ssSetNumPWork(S, 0); 
    ssSetNumModes(S, 0); 
    ssSetNumNonsampledZCs(S, 0); 
 
    /* Take care when specifying exception free code - see sfuntmpl_doc.c */ 
    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE); 
} 
 
/* Function: mdlInitializeSampleTimes ========================================= 
 * Abstract: 
 *    Specifiy that we inherit our sample time from the driving block. 
 */ 
static void mdlInitializeSampleTimes(SimStruct *S) 
{ 
    ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME); 
    ssSetOffsetTime(S, 0, 0.0); 
} 
 
#define MDL_INITIALIZE_CONDITIONS 
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/* Function: mdlInitializeConditions ======================================== 
 * Abstract: 
 *    Initialize both discrete states to one. 
 */ 
static void mdlInitializeConditions(SimStruct *S) 
{} 
 
/* Function: mdlOutputs ======================================================= 
 * Abstract: 
 *      y = Cx   
 */ 
static void mdlOutputs(SimStruct *S, int_T tid) 
{ 
    real_T            *S1    = ssGetOutputPortRealSignal(S,0); 
    real_T            *S2  = ssGetOutputPortRealSignal(S,0,1); 
    real_T            *S3  = ssGetOutputPortRealSignal(S,0,3); 
  
    InputRealPtrsType uph1    = ssGetInputPortRealSignalPtrs(S,0,1); 
    InputRealPtrsType uph2    = ssGetInputPortRealSignalPtrs(S,0,2); 
    InputRealPtrsType uph3  = ssGetInputPortRealSignalPtrs(S,0,3); 
    InputRealPtrsType uph4  = ssSetInputPortWidth(S, 0, 4);   
    InputRealPtrsType uph5  = ssSetInputPortWidth(S, 0, 5);   
    InputRealPtrsType uph6  = ssSetInputPortWidth(S, 0, 6);   
    InputRealPtrsType uph7  = ssSetInputPortWidth(S, 0, 7);   
    InputRealPtrsType uph8  = ssSetInputPortWidth(S, 0, 8);   
    InputRealPtrsType uph9  = ssSetInputPortWidth(S, 0, 9);   
    InputRealPtrsType uph10  = ssSetInputPortWidth(S, 0, 10);   
    InputRealPtrsType uph11  = ssSetInputPortWidth(S, 0, 11);   
    InputRealPtrsType uph12  = ssSetInputPortWidth(S, 0, 12);   
    InputRealPtrsType uph13  = ssSetInputPortWidth(S, 0, 13);   
    InputRealPtrsType uph14  = ssSetInputPortWidth(S, 0, 14);   
    InputRealPtrsType uph15  = ssSetInputPortWidth(S, 0, 15);   
    InputRealPtrsType uph16 = ssSetInputPortWidth(S, 0, 16);   
    InputRealPtrsType uph17  = ssSetInputPortWidth(S, 0, 17);   
    InputRealPtrsType uph18  = ssSetInputPortWidth(S, 0, 18);   
    InputRealPtrsType uph19  = ssSetInputPortWidth(S, 0, 19);   
    InputRealPtrsType uph20  = ssSetInputPortWidth(S, 0, 20);   
    InputRealPtrsType uph21  = ssSetInputPortWidth(S, 0, 21);   
    InputRealPtrsType uph22  = ssSetInputPortWidth(S, 0, 22);   
    InputRealPtrsType uph23  = ssSetInputPortWidth(S, 0, 23);   
    InputRealPtrsType uph24 = ssSetInputPortWidth(S, 0, 24);   
    InputRealPtrsType uph25  = ssSetInputPortWidth(S, 0, 25);   
    InputRealPtrsType uph26  = ssSetInputPortWidth(S, 0, 26);   
    InputRealPtrsType uph27  = ssSetInputPortWidth(S, 0, 27);   
    InputRealPtrsType uph28  = ssSetInputPortWidth(S, 0, 28);   
    InputRealPtrsType uph29  = ssSetInputPortWidth(S, 0, 29);   
    InputRealPtrsType uph30  = ssSetInputPortWidth(S, 0, 30);   
    InputRealPtrsType uph31  = ssSetInputPortWidth(S, 0, 31);   
    InputRealPtrsType uph32  = ssSetInputPortWidth(S, 0, 32);   
    InputRealPtrsType uph33  = ssSetInputPortWidth(S, 0, 33);   
    InputRealPtrsType uph34  = ssSetInputPortWidth(S, 0, 34);   
    InputRealPtrsType uph35  = ssSetInputPortWidth(S, 0, 35);   
    InputRealPtrsType uph36  = ssSetInputPortWidth(S, 0, 36);   
    InputRealPtrsType uph37  = ssSetInputPortWidth(S, 0, 37);   
    InputRealPtrsType uph38  = ssSetInputPortWidth(S, 0, 38);   
    InputRealPtrsType uph39  = ssSetInputPortWidth(S, 0, 39);   
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    InputRealPtrsType uph40  = ssSetInputPortWidth(S, 0, 40);   
    InputRealPtrsType uph41  = ssSetInputPortWidth(S, 0, 41);   
    InputRealPtrsType uph42  = ssSetInputPortWidth(S, 0, 42);   
    InputRealPtrsType uph43  = ssSetInputPortWidth(S, 0, 43);   
    InputRealPtrsType uph44  = ssSetInputPortWidth(S, 0, 44);   
    InputRealPtrsType uph45  = ssSetInputPortWidth(S, 0, 45);   
    InputRealPtrsType uph46  = ssSetInputPortWidth(S, 0, 46);   
    InputRealPtrsType uph47  = ssSetInputPortWidth(S, 0, 47);   
    InputRealPtrsType uph48  = ssSetInputPortWidth(S, 0, 48);   
    InputRealPtrsType utheta  = ssSetInputPortWidth(S, 0, 49);   
   
    /*uPtrs[element])  * Pointer to Input Port0 */ 
    
   real_T  BMK[49],ph[4][49]; 
   real_T  temp[4][13],sys[3]; 
   real_T M=8,Nw=85,R=50.8e-3,L=25.4e-3,pi=3.1415926,theta; 
   real_T BMKP=0.78; 
   int_T ii,jj,k; 
 
    ph1  = *uph1; 
    ph2  = *uph2; 
    ph3  = *uph3; 
    ph4  = *uph4;   
    ph5  = *uph5;   
    ph6  = *uph6;   
    ph7  = *uph7;   
    ph8  = *uph8;   
    ph9  = *uph9;   
    ph10  = *uph10;   
    ph11  = *uph11;   
    ph12  = *uph12;   
    ph13  = *uph13;   
    ph14  = *uph14;   
    ph15  = *uph15;   
    ph16 = *uph16;   
    ph17  = *uph17;   
    ph18  =*uph18;   
    ph19  = *uph19;   
    ph20  = *uph20;   
    ph21  = *uph21;   
    ph22  = *uph22;   
    ph23  =*uph23 ;   
    ph24 = *uph24;   
    ph25  =*uph25;   
    ph26  =*uph26 ;   
    ph27  =*uph27;   
    ph28  =*uph28;   
    ph29  =*uph29 ;   
    ph30  = *uph30;   
    ph31  = *uph30;   
    ph32  = *uph30;   
    ph33  = *uph30;   
    ph34  = *uph30;   
    ph35  = *uph30;   
    ph36  = *uph30;   
    ph37  = *uph30;   
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    ph38  = *uph30;   
    ph39  = *uph30;   
    ph40  = *uph30;   
    ph41  = *uph30;   
    ph42  = *uph30;   
    ph43  = *uph43;   
    ph44  = *uph44;   
    ph45  = *uph45;   
    ph46  = *uph46;   
    ph47  = *uph47;   
    ph48  = *uph48;   
    theta  = *utheta;  
     
/* START FROM HERE F0R TOMMOROW*/ 
 
   for(k=1;k<=48;k++) 
   { 
   phi[k]=(k-1)*(2*pi/48)+(pi/4)+(pi/48); /*ORIENTATION ALONG ANY STATOR STATION  

      RELATIVE TO X COORDINATE AXIS */ 
   BMK[k]=BMKP*sin(M*(theta-phi[k])); 
   ph[1][k]=-Nw*L*BMK[k]*sin(phi[k]); 
   ph[2][k]=Nw*L*BMK[k]*cos(phi[k]); 
   ph[3][k]=Nw*L*R*BMK[k]; 
   } 
 
 sys=ph*ph_input  /*Replace with a mult loop */ 
  
  S1[0]=sys[1]; 
  S2[0]=sys[2]; 
  S3[0]=sys[3]; 
 
} 
 
#define MDL_UPDATE 
/* Function: mdlUpdate ====================================================== 
 * Abstract: 
 *      xdot = Ax + Bu */ 
static void mdlUpdate(SimStruct *S, int_T tid) 
{ 
   UNUSED_ARG(S); /* unused input argument */    
} 
 
/* Function: mdlTerminate ===================================================== 
 * Abstract: 
 *    No termination needed, but we are required to have this routine. 
 */ 
static void mdlTerminate(SimStruct *S) 
{ 
    UNUSED_ARG(S); /* unused input argument */ 
} 
 
#ifdef  matlab_MEX_FILE    /* Is this file being compiled as a MEX-file? */ 
#include "simulink.c"      /* MEX-file interface mechanism */ 
#else 
#include "cg_sfun.h"       /* Code generation registration function */ 
#endif 
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Appendix E 
Fault tolerant model computations 

 1 Calculation of desired forces using decoupled iK : 
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3 Calculation of iφ : 
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4 Calculation of ist : 

1 1

1 2

1 3

2 1

2 2

1 2  x  1 2 3

1 1 3 1

1 2

1 3

 (4 8  x  1 2 ) 2 1

1 2 3 2 2

1 2 3 2 3

1 2 3 3 1

1 2 3 3 2

3 3

4 1

4 2

4 3

0 0 0
0 0 0
0 0 0
0 0 0

x

x
s t

x

x

i
i
i
i
i
i

i i
i
i
i
i
i

i
i
i
i
i
i
i

λ

β
β

β
β

Φ
Φ
Φ
Φ
Φ
Φ

Φ Φ 
 Φ 
 Φ
 Φ 
 Φ 
   Φ  = =   Φ
   Φ    
 Φ 
 Φ
 Φ 
 Φ  

678

6 4 4 4 447 4 4 4 4 48

4 8  x  1

3 2

3 3

4 1

4 2

4 3

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3

|
|
|

i
i
i
i
i
i
i
i
i
i
i
i
i
i

 
 
 
 
 
 
 
 
 
 
 

Φ 
 Φ 
 Φ
 Φ 
 Φ
 

Φ 
 Φ
 

Φ 
 Φ 

Φ 
 Φ 
 Φ
 

Φ 
 Φ
 
 
 
 
   

678

             

          (15) 

 

 

 

 

 

 

 



 100

5 Calculation of xF , yF ,T : 
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