
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2005

IMPLEMENTATION AND VALIDATION OF FAULT TOLERANT IMPLEMENTATION AND VALIDATION OF FAULT TOLERANT

CONTROL OF A SELF-BEARING MOTOR CONSIDERING OPEN CONTROL OF A SELF-BEARING MOTOR CONSIDERING OPEN

COIL FAULTS COIL FAULTS

Anand Ranganathan
University of Kentucky

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Ranganathan, Anand, "IMPLEMENTATION AND VALIDATION OF FAULT TOLERANT CONTROL OF A SELF-
BEARING MOTOR CONSIDERING OPEN COIL FAULTS" (2005). University of Kentucky Master's Theses.
343.
https://uknowledge.uky.edu/gradschool_theses/343

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232558986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF THESIS

IMPLEMENTATION AND VALIDATION OF FAULT TOLERANT
CONTROL OF A SELF-BEARING MOTOR CONSIDERING OPEN

COIL FAULTS

Self-bearing motor is a magnetic actuator with both bearing and motoring
functionality. This work implements and validates a decoupled and fault tolerant
control algorithm for the Lorentz self bearing motor containing open phase faults.
The goal of the algorithm is to achieve a stable bearing force and motoring torque
even with coil faults. This work simulates many non-real-time fault tolerant control
models based on the algorithm using simulink. Test cases are designed in simulink
and tested on these models to arrive at the best model that could be implemented in
dspace for real-time control. The responses of these simulations are compared with
the desired output. Simulations showed that the decoupled and fault tolerant control
model does not have any cross coupling and was fault tolerant for many
combinations of open phase faults. Simulink model was modified so that it was
auto-complied into the dspace controller and dynamically linked with the hardware.
A graphical user interface was provided for fault tolerant control in controldesk
software and the motor was controlled in real-time. Many experiments are designed
to test the fault tolerant control model. Experimental results validate fault tolerance
in the motor with respect to open coil faults. The self-bearing motor was found to be
more stable in decoupled and fault tolerant control than non-fault tolerant control.

d224
Anand Ranganathan

d224
May 19, 2005

IMPLEMENTATION AND VALIDATION OF FAULT TOLERANT
CONTROL OF A SELF-BEARING MOTOR CONSIDERING OPEN

COIL FAULTS

By

Anand Ranganathan

 Director of Thesis

Director of Graduate Studies

 (Date)

d224
Dr. Lyndon Scott Stephens

d224
Dr. George Huang

d224
May 19, 2005

RULES FOR THE USE OF THESES

Unpublished theses submitted for the Master’s degree and deposited in the
University of Kentucky Library are as a rule open for inspection, but are to be used
only with due regard to the rights of the authors. Bibliographical references may be
noted, but quotations or summaries of parts may be published only with the
permission of the author, and with the usual scholarly acknowledgements.

Extensive copying or publication of the thesis in whole or in part also requires the
consent of the dean of the Graduate School of the University of Kentucky.

A Library that borrows this thesis for use by its patrons is expected to secure the
signature of each user.

Name
Date

THESIS

Anand Ranganathan

The Graduate School

University of Kentucky

2005

IMPLEMENTATION AND VALIDATION OF FAULT TOLERANT
CONTROL OF SELF-BEARING MOTOR WITH RESPECT TO OPEN

COIL FAULTS

THESIS

By

Anand Ranganathan

Lexington, Kentucky

Director: Dr. Lyndon Scott Stephens

Lexington, Kentucky

2005

MASTER’S THESIS RELEASE

I authorize the University of Kentucky
Libraries to reproduce this thesis

 in whole or in part for purposes of research

 Signed:

 Date:

d224
Anand Ranganathan

d224
May 19, 2005

 iii

ACKNOWLEDGEMENTS

I am grateful to my advisor, Dr. Scott Stephens for his insightful guidance and

advice. I thank him immensely for offering me this incredible opportunity to do

research. Without his assistance, this thesis would not have been possible. I would

like to thank him for all the knowledge that he has imparted to me during the course

of study at University of Kentucky.

I would like to extend my appreciation to the members of my thesis committee

Dr. Johne Parker and Dr. Keith Rouch for their support.

I am indebted to my lab members for sharing their thoughtful insights and

findings during many discussions we had on this area of research. I would like to

thank Dr. Zhaohui Ren, Kathy Warren, Hooi-Mei Chin and Barrett Steele from the

magnetic bearing group in the Bearings and Seals lab, for advice and support.

Thanks to other members of the Bearing and Seals lab for informative discussions

on various topics related to my project.

Further more, I would like to express my appreciation to Dr. Stephens and

Jason Payton for their valuable suggestions after careful reading and proofing of the

manuscript.

I would also like to offer a special note of thanks to my parents for their

unrelenting support and encouragement.

 iv

Table of contents
 Page

Acknowledgements iii
List of Figures vi
List of Tables viii
Nomenclature ix

Chapter 1 Introduction 1

1.1 Magnetic Bearing 1
1.2 Disadvantages of Magnetic Bearing 2
1.3 Lorentz self-bearing motor 2
1.4 Advantages of the self-bearing motor 4
1.5 Problem definition and research motivation 4
1.6 Literature survey 6

Chapter 2. Lorentz Self-Bearing Motor 11
2.1 Mathematical Modeling of the self-bearing motor 12

 2.1.1 Actuator layout and control 13
 2.1.2 Air gap flux and winding current distributions 14

 2.1.3 Force and torque generation 15
 2.2 Verification of mathematical system model 19
 2.3 Controller design and implementation of algorithm 19
 2.4 Fault tolerant algorithm 20
 2.5 Fault tolerant control approach 22

Chapter 3 Simulation of Fault Tolerant control of Self-bearing motor 23
 3.1Procedure for verification & implementation fault tolerant model 25
 3.2 Simulation and testing procedures 25
 3.3 comparison of various fault tolerant control model 26
 3.3.1 integral equations model 27
 3.3.2 Lumped parameter model 28
 3.3.3 Crosscoupled Ki model 31
 3.3.4 Desired Ki model 31
 3.3.5 Lumped parameter model with the addition of faults 32
 3.3.6 Fault tolerant model using lumped parameter model 34
 3.2.7 Fault tolerant model using integral equations 36
 3.2.8 Decoupled & Fault tolerant model 37
 3.4 Comparison of forces in different models 41
 3.5 Comparison of perturbation voltages 50
 3.6 Implementation of Fault Tolerant Model in the controller 51
 3.7 Functions used in the simulink models 52
 3.7.1 Medit-file Function for Phase Distribution function 53

 3.7.2 Medit-file Function for Phase currents after faults
 introduced (F) 53

 v

 3.7.3 Medit-file Function for Commutation (Y) 54
 3.7.4 Medit-file Function for Segment current-Control current

 mapping (T3) 54
 3.7.5 C-mex file S-functions for pseudo-inverse in the
 simulink model (A-1) 55
 3.7.6 C-mex file S-functions for computing the Forces and
 Torque in the simulink model (Φ) 61

Chapter 4 Experimental Performance of fault tolerant control 62

 4.1 Risk-free testing of the fault tolerant model 63
 4.2 Test of Stiffness in fault tolerant and non-fault tolerant control 66
 4.3 Sine sweep test 66
 4.4 Power consumed in non-fault tolerant model and
 Fault tolerant model 68
 4.5 Torsional stiffness in non-fault tolerant model and
 Fault tolerant model 69
 4.6 Closed loop stiffness for non-fault tolerant and fault-
 tolerant control 71
 4.7 Stability of the fault tolerant model in different fault
 configurations 74

Chapter 5 Conclusions and Future work 75

 5.1 Conclusions 75
 5.2 Future work 79

 Bibliography 80
 Appendix A 83
 Appendix B 86
 Appendix C 90
 Appendix D 91
 Appendix E 96

 vi

List of Figures
1.1 Magnetic Bearing
1.2 Lorentz force motor
1.3 Lorentz type segmented arc self-bearing motor
1.4 Lorentz force type segmented arc self-bearing motor without faults
1.5 Lorentz force type segmented arc self-bearing motor with phase faults
2.1 Actuator layout and force generation in the segmented arc self-bearing
 motor
2.2 Flowchart for verification of mathematical system model and
 implementation of the controller in dspace
2.3 Non-fault tolerant Control Approach
2.4 Fault tolerant Control Approach
3.1 Flowchart for verification fault tolerant model and implementation of
 the fault tolerant controller in dspace
3.2 Integral equations model
3.3 Simulink model for using integral equations model
3.4 Lumped parameter model
3.5 Simulink model for Lumped parameter model
3.6 Crosscoupled Ki model
3.7 Desired Ki model
3.8 Lumped parameter model with the addition of fault matrix
3.9 Simulink model for lumped parameter model with the addition of fault
3.10 Fault tolerant model using lumped parameter model
3.11 Simulink model for fault tolerant model using lumped parameter model
3.12 Fault tolerant model using integral equations
3.13 Simulink model for Fault tolerant model using integral equations
3.14 Decoupled and fault tolerant model
3.15 Simulink model for decoupled and fault tolerant model
3.16 Decoupled and fault tolerant control with the actuator
3.17 Desired forces when rotor angle turns through a pole pitch in no fault

condition, [1 1 1]c =i
3.18 Forces produced when segment 1 phase 1 is faulted and rotor angle

turns through a pole pitch, [1 0 0]c =i
3.19 Forces produced when segment 1 phase 1, 2 are faulted and rotor

angle turns through a pole pitch, [1 0 0]c =i
3.20 Forces produced when segment 1 phase 1, 2, 3 are faulted and rotor

angle turns through a pole pitch, [1 0 0]c =i
3.21 Forces produced for the fault configuration [000 100 010 001] and

rotor angle turns through a pole pitch, [1 0 0]c =i
3.22 Comparison of 12 phase currents between decoupled and fault tolerant

and non-fault tolerant model for rotation of the rotor through 1 pole
pitch and ix=1, iy=1, iθ=1, no fault condition

4.1 dspace controldesk interface
4.2 Phase voltages with change in rotor angles (power amp switched off)
4.3 X and Y positions of the shaft indicating the stiffness of the motor
4.4 Sine sweep test

 vii

4.5 Power consumption in non-fault and fault tolerant control
4.6 Closed loop torsional stiffness of non-fault and fault tolerant control
4.7 Closed loop torsional stiffness of non-fault and fault tolerant control
4.8 Experiments set-up for measuring closed loop stiffness
4.9 Closed loop torsional stiffness of non-fault and fault tolerant control in

“no fault” configuration
4.10 Closed loop torsional stiffness of non-fault and fault tolerant control,

when segment 1 phase1 was faulted

 viii

List of tables
3.1 Forces for different fault configurations in different models of the motor
3.2 Percentage maximum variation in FX & FY from the desired forces

when rotor angle turns through a pole pitch, [1 1 1]c =i , No fault
condition

3.3 Comparison of forces between non-fault tolerant, fault tolerant and
decoupled & fault tolerant control model

4.1 Closed loop torsional stiffness of non-fault and fault tolerant control
4.2 Stability of the self-bearing motor under fault tolerant control

 ix

NOMENCLATURE

mB PM Flux Density
Bm,k, Air gap flux due to the PM’s,
Bw,k Air gap flux due to the windings

,w kB Amplitude of the sinusoidal approximation to the winding flux
Ik. Winding current distribution

iK ξ Torque Current Gain

ixxK Direct Force Current Gain

ixyK Cross Coupled Force Gain

,xy wK Winding flux side pull
L Motor Length
M Number of Pole Pairs
Nseg Number of Segments
Ns Number of Winding Stations per Segment
Nw Number of Wires per Winding Station
R Rotor Outer Radius
ix Control current in x direction
iy Control current in y direction
iξ Control current in ξ direction

ki Segment current

,1ki First phase current in the kth segment of the motor

,2ki Second phase current in the kth segment of the motor

,3ki Third phase current in the kth segment of the motor

ki Amplitude value of segment current
γ Phase angle of the current with respect to the permanent magnet

 flux
φ Global angular coordinate

kψ kth winding segment relative to the x-axis

θ Local segment angle.

 1

Chapter 1

Introduction

1.1 Magnetic Bearing

 Active electromagnetic levitation is based on the attractive force of a controllable

electromagnet on a ferromagnetic body. A control unit adjusts the current in an

electromagnet. Hence the magnetic force acts on the ferromagnetic body, so that the

body is held in suspension. A sensor continuously measures the position of the

ferromagnetic body. Assume that there is a single electromagnet placed over the top

of the ferromagnetic body with an air gap between them in the y-direction. If the

ferromagnetic body is above the desired position, the controller reduces the current in

the magnet and with it the magnetic force. If the body is below the desired position, the

current in the magnet is increased. The sensor detects the position of the rotor and

sends a voltage signal vp to the controller. The controller generates perturbation

voltage vp in turn and sends it to the power amplifier, which produces the required

current i. This current causes the electromagnetic force and keeps the rotor afloat

against the force of gravitation. A single electromagnet is incapable of stabilizing all

spatial degrees of freedom of a rotor. Two electromagnets arranged in an opposed pair

are needed just to orient the position of a rotor in one direction. Two such pairs of

electromagnets positioned at right angles to each other form a "radial bearing." Like a

 2

ball bearing, this configuration is capable of holding a rotor in one position in a plane (x-

y direction).

V s

V p

i

Sensor

F

mg
Rotor

Electromagnet

Controller

Power
Amp

Figure 1.1: Magnetic Bearing

1.2 Disadvantages of magnetic bearings:

• Requires separate driving motor for rotation, hence the shaft is longer. This

leads to unwanted vibration at low frequencies

• Excessive heat generation

• High power consumption

1.3 Lorentz Self-Bearing Motor

 The deficiency of having a separate driving motor was overcome by another type

of magnetic bearing. This new generation of magnetic bearing is called the Lorentz

self-bearing motor. Most of the self-bearing motors have one more sensor in addition to

the sensors in the magnetic bearing, which is called the optical encoder. The optical

sensor senses the angular position of the rotor and sends it to the controller. There is

one more PID controller which is required for the angular direction in addition to the two

PID controllers for x and y directions. With the help of more electromagnets and an

 3

appropriate control algorithm, the coils are energized for the shaft to rotate in θ

direction, in addition to x and y.

The motor that is used in the Bearings and Seals Laboratory at the University

of Kentucky uses Lorentz forces to generate the forces and the torque. The figure

1.4 shows how Lorentz force is developed in a motor. The Lorentz force is

orthogonal to the direction of the current and magnetic field lines as shown. The

direction of the force is given by Fleming’s right hand rule.

Figure 1.2: Lorentz force motor

The self-bearing motor is a magnetic bearing which can be used to levitate as

well as rotate the shaft (Figures 1.3). A magnetic bearing is an electro-magnetic device

used only to levitate the shaft against the gravitational pull. The ability of the self-

bearing motor to provide bearing force and motoring torque renders it superior to the

magnetic bearings. The figure 1.3 is a schematic of the segmented arc Lorentz type

slotless self-bearing motor used in the Bearings and Seals lab at the University of

Kentucky.

Horse shoe
magnets

Magnetic field
lines

Current carrying
conductor

Lorentz
forces

 4

S

SEGMENT 1

N S
N

ROTOR

N
S

N S
N S

N
S N

S

NS
NSS N

S N

S
N

S
N

SN

SN

S
N

1
2

3

S
E

G
M

E
N

T
 2

SEGMENT 3

S
E

G
M

E
N

T
 4

12312312
3

1
2

3
1

2
3

1
2

3
1

2
3

1
2

3 1 2 3 1 2 3 1 2
3

1
2

3
1

2
3

1
2

3
1

2
3

Figure 1.3: Lorentz type segmented arc self-bearing motor

1.4 Advantage of the self-bearing motor

• Less power consumption

• Eliminates the trade-off between motoring torque and radial bearing forces.

• Overall weight of the actuator and the system is reduced since there is no

separate driving motor as in magnetic bearings.

• No cogging or detent torque.

1.5 Problem definition and research motivation

STATOR

N
S

NS

S
N

N
S

S

Segment-1

N

Y

NS

F1x
F4y

φ
X

SN
NS

N S

F3x

S
N

ROTOR

N
S

S
N

Segment-3

N
S

ξN S

SN

S NSe
gm

en
t-2

F2y

Segm
ent-4

R

Figure 1.3: Lorentz type segmented arc self-bearing motor without faults

Shaft

Air gap
Stator

Segments

 5

S N

S
N

STATOR

F 4y

φ
X

Segm
ent-4

SN
SN

S N

ξ

F 3x

N
S

S
N

S
N

S N

 F1x, F 1y

ROTOR

NS
N

S
N

SN

N
NSSe

gm
en

t-2

S

F 2y

R

S

S
N

Y

Segment-1

Segment-3

Figure 1.4: Lorentz type segmented arc self-bearing motor with phase faults

When a phase fails, the actuator does not produce the same bearing force and

motoring torque as it would without the fault. With more phase faults, the actuator loses

stability. The main goal of this research is to provide a stable bearing force and

motoring torque even with phase faults. This thesis in particular focuses on

implementing the fault tolerance of a self-bearing motor to open phase coil faults using

adaptive control software without the addition of any hardware. Hence successful

implementation would eliminate the hardware costs associated with the coil faults

occurring in the motor. In addition, decoupling of the force-current relationship is also

achieved in the motor. The problem of fault tolerance needs to be addressed and

requires a thorough analysis.

There are many types of phase faults that can occur in the motor. The phase

faults can be classified into the following categories

1. Open coil faults

2. Shorted faults

a) When the coils short with themselves

 6

b) When the coil shorts with the back iron

c) When the coil shorts with other coils

This research deals with providing fault protection for the self-bearing motor

considering open coil faults. The short circuit faults are difficult to identify and fault

tolerant control of such faults are a challenge to researchers to date.

1.6 Literature survey

 Chiba [91] proposed a reluctance type bearingless motor and the contributed the

concept of inductances, which are a function of the eccentric displacement of the rotor,

to radial force. Bleuler [92] proposed a systematic way of classifying magnetic levitation

methods. Lorentz force bearings and self-sensing bearings were considered to have

high potential for industrial applications. Okada [Okada 96] introduced an internal

permanent magnet type bearingless motor, which has the merits of strong levitation

force and relatively easy control capability. Hertel [00] came up with a basic approach

to designing a bearingless motor. By maintaining a constant air gap area and reducing

the utilization factor by iterative processes until the rated output power and maximum

force are reached, the main dimensions of bearingless AC machines was determined.

Okada [00] introduced a new type of Lorentz type self-bearing motor similar to the one

in Bearing and Seals lab at the University of Kentucky. The difference between these

two is that different current carrying coils are used to generate radial force and motoring

torque. Salazar [00] reviewed the published papers in bearingless motor types, winding

types, mechanical test results and applications.

 7

Salazar [00], Bischel [00], Chiba [91], Schoeb [94] and Okada [96] studied the

permanent self bearing motor, among others for a variety of applications. In all of the

designs the common conclusion was that attractive forces between the rotor and the

stator (Maxwell-type forces) provide bearing function, and magnetic forces on the

current carrying conductors (Lorenz type forces) produce the motoring torque. As a

result of this approach, a trade-off exists between motoring torque and bearing force

with respect to PM thickness. A slotless self-bearing motor was designed and proposed

by Stephens and Kim [Stephens 00] for precision pointing and angular slewing

applications, which could overcome the trade-off. Force and torque measurement

principles in the self-bearing motor were discussed by Steele [00]. Permeance and flux

models were presented by Stephens [02:1] and those were used to derive expressions

for torque and force production. A linearized force-current-displacement relationship

based on the permeance and flux model was derived for a general operating point. A

revised set of actuator gains were derived by Chin[03:2] considering the various phase

angles between winding current & permanent flux density distributions and effect of

constant external loads. The design issues comprising the search for stable radial

bearing function PID controllers and the various stable regions of these controller gains

for different bandwidth and crosscouplings effects were analyzed by Chin[Chin 03:1].

Stephens [02:2]evaluated the robustness of the Lorenz self-bearing motor system via µ-

synthesis and the utility of structured uncertainty approach for synthesizing robustly

stable controllers.

Chin [Chin 03:1] explained the significant effects cross-coupling between radial and

tangential direction. The cross-coupling between x and y direction was predicted

 8

theoretically and an experimental basis was provided for future high-speed applications.

The cross-coupling effect is undesirable because it limits the bearing stiffness and

causes reduction in bandwidth. When the shaft rotates at the critical speed, cross-

coupling gets higher creating instability in the system. These effects emphasize the

importance of decoupling the model to provide a stable bearing force and motoring

torque. Decoupling in simple terms is to control a variable without affecting the other

variables. Aeschimann, Kummerle, Zoethout, Bleuler [Beat 00] presented a simple

method to decouple an active magnetic bearing in statespace. In their work, the

displacement and the velocity were chosen as the states of the model, with the former

measured directly and the later obtained using a simple differentiator. A failure safe

control approach to magnetic actuators can promote a broad range of applications.

Most fault tolerance systems are focused on sensors and amplifiers. Kim and

Stephens proposed new coil winding schemes that minimized coil failure effects and

allowed the motor to levitate and rotate stably in the event of coil failure [Kim 00].

Analysis indicates that symmetric parallel winding is the most advantageous with

respect to open faults in a phase. This however is at the expense of manufacturing

ease and an excessive build up of end turns which increases actuator length.

 Maslen [95] provided a mechanism for linearizing and decoupling the force axes

in complicated magnetic actuators. A clear method has been established for achieving

fault tolerance to coil failures. If one or more coils fail, a new coil current control

scheme was constructed that preserves the linear relationship between required force

and coil currents. Meeker [96] addressed the fault tolerant control in Maxwell type

actuators and provided a general mathematical basis for such problems. Several

 9

schemes have been proposed for achieving reliable electromagnetic devices including

controller board approaches that make use of re-bias linearization [Dominick 99]. A

fault tolerant magnetic bearing considering material path reluctance was proposed by

Na and Palazzolo which uses a Lagrange multiplier optimization method for determining

the current distribution matrices [Na 99]and makes the magnetic bearing fault tolerant to

many pole and coil failures. Stephens [04] came up with a model based fault tolerant

algorithm that had the potential to provide fault tolerance to open coil faults and also

decouple the segmented arc, Lorenz self bearing motor.

Thesis outline

Chapter 1 introduces the basics of this research. It provides the research motivation

and objectives of this thesis. A Contemporary literature survey on magnetic bearings,

self-bearing motor and fault tolerance of magnetic actuators are outlined.

Chapter 2 serves as a background on the previous work by Dr. L Scott Stephens

[Stephens 02:01]. This chapter describes the actuator layout and the derivation of

Lorentz type forces for the self-bearing motor. In addition, this chapter also describes

the fault tolerant algorithm [Stephens 04:01].

Chapter 3 compares and simulates the various fault tolerant control models. It

discusses the implementation of the fault tolerant best model in the self-bearing motor.

Chapter 4 gives the experimental procedures to validate the decoupled and fault

tolerant control model of a self-bearing motor to open coil faults. The results of the

experiments prove that the decoupled and fault tolerant was found to be better than the

non-fault tolerant model.

Chapter 5 discusses the results and conclusions from the experimental results.

 10

Appendix A gives the C-mex file associated with the pseudo-inverse S-function.

Appendix B gives the Medit-file Function for Calculation of Forces using integral

equations

Appendix C gives the Medit-file Function for the phase Distribution matrix, segment

current-control current mapping matrix and fault matrix

Appendix D gives the C-mex file S-function for permanent magnet flux distribution.

This S-function computes the forces from the station currents.

Appendix E shows how forces are computed for the given set of control currents in the

non-fault tolerant control model.

 11

Chapter 2

Lorentz Self-Bearing Motor

This actuator has a unique capability to produce radial bearing force as well as

motoring torque independently by using Lorentz-type forces. The Lorenz self-bearing

motor test-rig mainly involves electrical and mechanical design considerations of the

test-rig. This chapter mainly serves as a background from the previous work of

Stephens [Stephens 00:1:04]. This chapter is has four sections. Section 2.1 explains

the mathematical model of the self-bearing motor test-rig. The subsections in section

2.1 explain the actuator layout, permeance flux model and Lorentz force derivations for

the motor. The details about more design considerations and modeling of the motor can

be obtained from the references [Steele 00, Stephens 00]. The section 2.4 describes

the fault tolerant algorithm. The section 2.2 gives a systematic procedure for verification

of mathematical dynamical system model. The section 2.3 gives discusses the design

and implementation of the controller via matlab/simulink/dspace.

2.1 Mathematical Modeling of the Self-Bearing Motor

 The physical system is best described in terms of mathematical model. An

accurate mathematical model of the system is necessary in order to design a controller.

However a perfect model of the system cannot be built due to unmodeled system

 12

dynamics like unbalanced forces, external disturbances, which causes uncertainties in

the system. The following section describes the system model.

2.1.1 Actuator layout and control

Figure 2.1 shows the layout of the actuator consisting of M=12 permanent magnet

pole pairs attached to the rotor and Nseg=4 individually controlled winding segments

attached to the stator. Each winding segment in the motor is an arc of π/2 radians and

is attached to the slotless back iron. The windings occupy Ns=18 stations along each

winding segment ID with Nw=96 individual wires per station. The 18 stations are

divided into 6 sets of 3 phase windings.

 The global angular coordinate that gives the orientation along any stator segment

relative to the x coordinate axis is given by:

Figure 2.1: Actuator layout and force generation in the segmented arc self-

bearing motor, courtesy: Stephens (00:1)

 13

4k
πφ θ ψ= + − (2.1)

where π/4 is half the segment angle and θ is the local segment angle. Referring to

Figure 2.3, the orientation of the kth winding segment relative to the x-axis is given by

ψk=k (π/2).

The control force and torque generation principle is also illustrated in Figure 2.1.

Each segment generates traction on the surface of the rotor due to the PM flux linking

with the segment windings (a Lorentz-type force). By precise construction of the motor,

the tractions due to segments 1-4 are resolved into the forces F1x, F2y, F3x and F4y. By

proper selection of the control currents in each segment, the segment forces are

modulated to produce independent bearing forces and motoring torque.

2.1.2 Air gap flux and winding current distributions

 Figure 2.3 shows the block diagram for servo control of the self bearing motor.

Position sensors measure the x, y and ξ motions of the rotor and feed these back

through signal conditioning modules and into a digital controller. Each motor segment

is controlled by a separate segment current, ki , that is proportional to the amplifier

voltage, Vk, and that is sinusoidally commutated into the three phase windings using

digital commutation and transconductance power amplifiers. The three phase currents

in the kth segment of the motor are 60o (π/3 rad) apart in phase angle and given by:

,3 cos () 3k ki i M πξ γ = − + (2.2)

[], 2 cos ()k ki i M ξ γ= − (2.3)

 14

 ,3 cos () 3k ki i M πξ γ = − − (2.4)

 where γ is the phase angle of the current with respect to the permanent magnet flux.

Control of the actuator such that independent torque and force generation is

achieved as depicted in Figure 2.3, depends upon proper selection of the segment

winding currents This selection is done with respect to three rotor position control

currents, ix, iy and iξ that correspond to the x and y direction bearing forces and the ξ

direction motoring torque:

1

2

3

4

()
()

()
()

x

y

x

y

i i i
i i i

i i i
i i i

ξ

ξ

ξ

ξ

= −

= −

= +

= +
 (2.5)

 The air gap flux due to the permanent magnets, Bm,k, the air gap flux due to the

windings, Bw,k, and the winding current distribution, Ik. are approximated sinusoidally as:

[], ,(,) sin ()m k m kB B Mθ ξ ξ θ= − (2.6)

 [](,) sin ()k kI i Mθ ξ ξ θ γ= − − (2.7)

, ,(,) sin (2w k w kB B M M
πθ ξ ξ θ γ = − − + (2.8)

where ,m kB , ki , and ,w kB are the amplitudes of the sine wave approximations, and

π/2M is the phase shift of the winding flux with respect to the winding current. Both

,m kB and ,w kB are functions of φ (and therefore θ, by equation 1) when the rotor is in

 15

an eccentric position. The PM flux amplitude, ,m kB , is computed using the remnance

flux density.

2.1.3 Force and torque generation

Given the air gap flux and winding distributions in the previous section, the forces

acting on the rotor are divided into three groups: (1) Lorentz-type due to PM flux

and winding current interaction, (2) Maxwell-type due to the PM flux interaction with

the rotor and (3) Maxwell-type due to the winding flux interaction with the rotor.

Those used for bearing force and torque controls are the Lorentz-type and computed

as:

4
2

, ,0
1

() () cos
4

segN

x L m k k k
k

F ML B I d
π πθ θ θ ψ θ

=

=

 = + +
∑ ∫ (2.9)

4
2

, ,0
1

() () sin
4

segN

y L m k k k
k

F ML B I d
π πθ θ θ ψ θ

=

=

 = + +
∑ ∫ (2.10)

4

2
,0

1
() ()

segN

m k k
k

T MRL B I d
π

ξ θ θ θ
=

=

= ∑ ∫ (2.11)

where R is the outside radius of the rotor. The Maxwell type forces on the rotor

due to the PM flux are computed using:

 []2
4

2
, ,0

1
() cos ()

2

segN

x M m k
ko

RLF B d
π

θ φ θ θ
µ

=

=

 = ∑ ∫ (2.12)

 []2
4

2
, ,0

1
() sin ()

2

segN

y M m k
ko

RLF B d
π

θ φ θ θ
µ

=

=

 = ∑ ∫ (2.13)

 16

The Maxwell type forces on the rotor due to the winding flux are computed using:

[]2
4

2
, ,0

1
() cos ()

2

segN

x w w k
ko

RLF B d
π

θ φ θ θ
µ

=

=

 = ∑ ∫ (2.14)

 []2
4

2
, ,0

1
() sin ()

2

segN

y w w k
ko

RLF B d
π

θ φ θ θ
µ

=

=

 = ∑ ∫ (2.15)

The net force and torque on the self bearing motor rotor is then the sum of these

components:

, , ,

, , ,

x x L x m x w

y y L y m y w

F F F F
F F F F
T Tξ ξ

= + +

= + +

=
 (2.16)

Performing integrals (2.9)-(2.15), results in net forces and torque that are a function

of the control currents, ix, iy, and iξ, and rotor motion x, y, and ξ.

2.2 Verification of mathematical system model

Figure 2.2 describes the procedure for both the verification of mathematical system

model and the implementation of the controller in dspace. The physical system is

rendered as a modeled into mathematical model based on assumptions about the

difficulty and cost criteria. The mathematical model is simulated in software like simulink

and checked for favorable results. It is then compared with the actual dynamic

response. If the response does not match the mathematical model is modified and the

simulation is performed again. This process is continued until the theoretical response

matches with the actual dynamic response. The controller is designed and

implemented using simulink, dspace and real time workshop.

 17

Start

Theoretical dynamic system
responses

(Fault tolerant control model
in SIMULINK)

Mathematical System Model
(Fault tolerant control model)

Model of the Physical System
Theoretical model of
Self-Bearing motor

Assumptions and Approximations
(Centered rotor, lightly loaded rms

application)

Theoretical dynamic
system responses

(Non-fault tolerant control
model in SIMULINK)

Implementation in D-space controller
(SIMULINK/RTW/Control desk)

Stop

Controller Design
(Fault tolerant controller)

Comparison

Modify Model

Expected Result

Modeling

Modeling

Figure 2.2: Flowchart for verification of mathematical system model and
implementation of the controller in dspace

 18

12
 S

in
gl

e
Ph

as
e

A
m

ps

 D

/A
 C

on
ve

rte
r

+

VcerV V
+

V

Gc

xV

Encoder Interface

A/D Converter

V = V cos(M(θ-γ))
V = V cos(M(θ-γ)-π/3)

V = V cos(M(θ-γ)+π/3)

Segment 4
V = V cos(M(θ-γ)+π/3)

V = V cos(M(θ-γ)-π/3)
V = V cos(M(θ-γ))

+ V4

442

43 4

41 4

+ 3V
332

33 3

31 3

ryV

+

exrxV V

yV

Gc
cxV

Gc
Vey Vcy

Digital Controller

111V = V cos(M(θ-γ)+π/3)+ V
V = V cos(M(θ-γ))
V = V cos(M(θ-γ)-π/3)

V = V cos(M(θ-γ)+π/3)

V = V cos(M(θ-γ)-π/3)
V = V cos(M(θ-γ))

Segment 2

Segment 3

V+ 2

23 2

22

21

2

2

+

1

113

12 1

Segment 1

Commutation Logic

+

32i

Gap Sensor Signal Converter

43i

41i
42i

33i

i

i
31i
23

i 22

21

i
i13

12

i11 y
x

θ

θ

θθ

Figure 2.3: Non-Fault Tolerant Control Approach, Courtesy: Stephens 04

 19

2.3 Controller design and implementation of controllers

 The figure 2.3 shows the schematic of the self-bearing motor with non-fault

tolerant approach. The radial displacements x and y, and angular displacements, θ

of the rotor are measured using the proximity probes and encoder respectively.

These signals are sent to the analog-to-digital converter (ADC) after signal

conditioning. The sensor voltages Vx, Vy and Vθ are added to reference voltages

Vrx, Vry and Vrθ to obtain the error voltages Vex, Vey and Veθ. The error voltages

serve as the input to controllers. The control voltages Vcx, Vcy and Vcθ are converted

to segment voltages V1, V2 , V3 and V4 using appropriate mapping. The segment

voltages are commuted digitally to obtain 3 phase voltages per segment, i.e, 12 in

all. These voltages are sent to the digital-to-analog converter (DAC) and the analog

signals are amplified to 12 phase currents using a tranconductance amplifier.

The control system is implemented in simulink so that it can be implemented in

the dspace system. The simulink block diagram is downloaded in the dspace DSP

boards of the dspace system. Using the dspace controldesk interface, the motor is

controlled in real-time. Experiments are designed to validate the control algorithm

and performance of the motor is evaluated.

2.4 Fault tolerant algorithm

 The decoupled and fault tolerant algorithm serves as a background for

implementation of fault tolerance of self-bearing motor [Stephens 04]. The model

based algorithm presented was used to decouple the segmented arc, Lorenz self

bearing motor. Simulations showed that the algorithm gracefully degrades the

performance of the motor under open coil faults. The redundancy in the actuator

 20

phases is taken advantage of in providing protection to phase faults. The cost of the

fault protection was found to be a lower limit on peak actuator force and torque, and

a high power loss.

2.5 Fault tolerant control approach

 Fault tolerant control is achieved by constructing a detailed model of the

force-current relationship at each rotor angle, θ, and simply inverting that model onto

itself to decouple the system. Referring to Figure 3.2, the inverted model is inserted

in the “fault tolerant mapping” block. The appropriate mapping depends upon the

relationship between the actuator force vector, Fc, and the actuator segment current

vector, is, which is given by:

{

}

()
}} }}

{

}4 1
3 1

1
3 4 8 4 8 1 2 1 2 1 2 1 2 4

2

3

4

 ()

x
x

x x x xc x

c y

c

i
F

i
F F Y

i
T

i
c

Aθ

θ θ

 = Φ Λ

s
F

i

1 4 442 4 4 43

 (2.17)

where Φ(θ) is a matrix that describes how the permanent magnets are distributed

about the rotor, Λ is a matrix that describes how the phases are wound into the

stator, F is a matrix that encodes the faults (an open circuit on any given phase)

and Y(θ) is the commutation matrix.

 21

Se
g.

-2

Seg.-3

Encoder

Seg.-1
Seg.-4

 Amp. for Seg.-4
I41=V4cos(M(θ-γ)+π/3)
I42=V4cos(M(θ-γ))
I43=V4cos(M(θ-γ)-π/3)

V4

V2

Vcy

V1

Vcθ

V3

VcxVex PID
Controller

Vey PID
Controller

Veθ PID
Controller

Vθ

Vrθ

+

Vsx

Vrx

+

+

Vsy

Vry

Angular
Position

x-direction
position

y-direction
position

y

x

θ

Rotor

Stator Amp. for Seg.-2
I21=V2cos(M(θ-γ)+π/3)
I22=V2cos(M(θ-γ))
I23=V2cos(M(θ-γ)-π/3)

 Amp. for Seg.-1
I11=V1cos(M(θ-γ)+π/3)
I12=V1cos(M(θ-γ))
I13=V1cos(M(θ-γ)−π/3)

 Amp. for Seg.-3
I31=V3cos(M(θ-γ)+π/3)
I32=V3cos(M(θ-γ))
I33=V3cos(M(θ-γ)-π/3)

Commutation
&
Amplification

θ

Figure 2.4: Fault tolerant control approach, courtesy: Stephens 04

 22

The model is completely decoupled by defining the fault tolerant mapping

between the segment currents and the control currents as:

iA K+=s ci i (2.18)

where A+=AT(AAT)-1 and is the Moore-Penrose pseudo inverse of the

underdetermined model, A, and iK is any desired current gain matrix as defined

by the designer. Of course the desired current gain matrix is of the completely

decoupled variety and may be as simple as the identity matrix. Combining

equations (2.17) and (2.18) illustrates how the method essentially cancels the

original system, whether it has a fault or not, and replaces it with the desired

current gain matrix:

{ i
I

AA K+=c cF i (2.19)

Note that this mapping solves the problem of cross-coupling and current gain

variation that exists in this actuator even for the case of no fault, as well as

provides a current gain matrix that remains invariant under open coil faults.

 23

Chapter 3

Fault Tolerant Model: Development,
Verification and Implementation

A fail-safe control approach to self-bearing motors can promote a broad range

of applications. The approach to fault tolerance for the self bearing motors on the

optical tracking test rig is a combination of the redundant hardware and adaptive

control software. The hardware redundancy on each self-bearing motor consists of

12 phases that comprise four segments to generate only 2 radial bearing forces and

1 motoring torque. These phases (windings) can be driven in a variety of ways by

the power amplifiers. There is adequate redundancy in the self-bearing motor to

achieve fault tolerance in the radial and angular pointing direction. The hardware

redundancy in a self-bearing motor leads to increase in weight and cost.

The software algorithm gives the flexibility of implementing different kinds of

control algorithms without the addition of much hardware. The fault tolerance was

achieved in the self-bearing motor by manipulating the with software part of the

system. This model is split into four matrices, two of them in software and two of

them in hardware, so that control current times the matrices provide the forces. The

commutation matrix and segment-control current mapping matrix form a part of

software. The permanent magnet distribution matrix and coiling winding distribution

matrix forms a part of hardware. This study achieved fault tolerance using the

software since altering with the hardware was difficult, weighty and costly.

 24

Start

Theoretical dynamic system
responses

(Fault tolerant control model
in SIMULINK)

Mathematical System Model
(Fault tolerant control model)

Model of the Physical System
Theoretical model of
Self-Bearing motor

Assumptions and Approximations
(Centered rotor, lightly loaded rms

application,etc,...)

Theoretical dynamic
system responses

(Non-fault tolerant control
model in SIMULINK)

Implementation in D-space controller
(SIMULINK/RTW/Control desk)

Stop

Controller Design
(Fault tolerant controller)

Comparison

Modify Model

Expected Result

Modeling

Modeling

Figure 3.1: Flowchart for verification of Fault tolerant model and implementation
of the fault tolerant controller in dSPACE

 25

3.1 Verification of fault-tolerant model and model implementation

The mathematical model of the non-fault tolerant control approach was

available. This model was advantageously used for constructing a fault tolerant

control model. The dynamic response of the non-fault tolerant control model was

produced by simulation in simulink. Assumptions were made based on difficulty,

applications, unmodeled dynamics, feasibility and cost, before constructing the

mathematical model for the fault tolerant control model. The dynamic response of

the fault-tolerant model was produced in simulations in simulink. The responses of

both the fault tolerant and non-fault tolerant model are compared. On obtaining the

expected result, the model was designed and implemented in dspace for performing

real-time control of the motor. Experiments are designed for gathering useful results

from the system. Figure 3.1 gives the procedure for the verification of fault tolerant

control model and the implementation of the fault tolerant controller in dspace.

3.2 Simulation and Testing Procedures

The previous chapter put forth a mathematical model for achieving fault

tolerance in a self-bearing motor. The model was deciphered into simulink codes.

The mathematical model essentially builds a force-current relationship using

different methods. There are as many simulink models as the number of methods.

Every simulink model presents results which are evaluated and verified with the

expected trend from the mathematical model. Upon the successful performance of

the model in simulation, it was implemented in real-time with some modification. The

model was then downloaded in dspace controller and tested in the dspace

environment. This testing was performed without levitating the test-rig directly using

 26

the model instead and thereby ensuring that the testing would not harm the test-rig.

A risk-free testing was executed by keeping the power amplifiers switched off so that

the power that gets out into the motor was meager. Next, the values in the virtual

indicators at different significant locations in the model are read. The read out was

checked for expected results. This testing was a hybrid test of software and

hardware called a hardware-in the loop simulation. The successful completion

completes the final phase of testing. After obtaining convincing results in the

simulation, the power amplifier was switched on and the motor was levitated using

the controls in the dspace software.

3.3 Comparison of various fault tolerant control model

This chapter focuses on a comparison of the following fault tolerant models.

1. Integral equations model (Non-fault tolerant control model): This model gives

the force-current relationship based on integral equations, when there are no faults

in the system.

2. Lumped parameter model (Non-fault tolerant control model): This model

gives the force-current relationship based on lumped parameter matrix equstions,

when there are no faults in the system.

3. Fault tolerant control model based on integral equations: This model gives

the force-current relationship based on integral equations, when there are faults in

the system.

4. Fault tolerant control model based on lumped parameter model: This model

gives the force-current relationship based on lumped parameter matrix equations,

when there faults in the system.

 27

5. Decoupled and fault tolerant control model: This model gives the force-current

relationship based on lumped parameter matrix equations, when there are faults in

the system. The key difference is that a decoupled Ki is implemented here. In all of

the previous models, the Ki matrix implemented is the coupled one, which

corresponds to the non-faulted motor

 All these models are developed and simulated and the best model was

chosen for implementation in the dspace controller. The commonality in these

control models is that, all of them bear a force-current relationship.

{

}3 1

 f u (, , , , ,)

x

c x

c y

c

c x c y c

F
F n c t i o n
T

c

i i i x y
θ

θ θ

 =

F

3.3.1 Integral equations model

This model gives a force-current relationship based on integral equations.

This model was the most accurate of the models available and includes most of the

effects. The control currents , ,cx cy ci i i θ were sent in as inputs to the integral equations

model and forces Fx Fy and torque T are obtained as the output (Figure 3.2). The

force produced on the shaft by a set of control currents using integral equations, was

determined in the simulink model (Figures 3.3)

 28

Fx

Fy

icθ

icx

θ

icθ

 Integral
Equations

T

Rotor
Angle

Control
Currents

Forces

Figure 3.2: Integral equations model

Figure 3.3: Simulink model for using integral equations model

3.3.2 Lumped parameter model

Achieving fault tolerance implies achieving the desired forces in the shaft for a

given set of control currents, even with some phase faults. The lumped parameter

model serves as a basis of accomplishing fault tolerance later. This model was less

accurate than the integral equations models and breaks up into the following

components

()θΦ -Flux linkage matrix

Integral
Equations

Control
Current

Rotor
Angle

Forces & Torque

 29

Λ -Phase Distribution matrix

Y -Commutation matrix

3T -Segment Current-Control current mapping

The entire system is a mixture of hardware and software components. The

hardware components are replaced by blocks in simulink and integrated with the

existing software blocks in simulink for the purpose of simulation. The force

computed in terms of the components of the system is given by the following eqn.

{

}

()
}} }}

{

}3 1 3 1

3 4 8 4 8 1 2 1 2 4 4 3

 () T 3

x x

x x x xc x c x

c y c y

c c

c

F i
F Y i
T i

c

θ θ

θ θ

 = Φ Λ

F i

 (3.1)

The control currents , ,cx cy ci i i θ were sent in as inputs to the lumped parameter

model and forces Fx Fy and torque T are obtained as the output. The result of the

lumped parameter model, simulated in simulink as shown in figure 3.4, was checked

for agreement with the integral equation result. The advantage of the lumped

parameter model over the integral equations model is that it can be inverted so that

it is used in the fault tolerant models.

 30

Fx
Current
Mapping

T3 Fy

icθ

icx

θ

Y

icθ

θ

Commutation

λ φ

T
Permanant
Magnet
Distribution

Rotor
Angle

Phase
Distribution

Control
Currents

Forces

Figure 3.4: Lumped parameter model

Figure 3.5: Simulink model for Lumped parameter model

Control
Currents

Current
Mapping Commutation Phase

Distribution

Flux
Distribution

Forces &
Torque

Rotor
Angle

 31

3.3.3 Crosscoupled iK model:

The theoretical force-current relationship based on integral equations and the

lumped parameter model are crosscoupled and are represented by a single 3 x 3

matrix as follows:

{ {

,

,

,

,

() ()

() ()

ixx xy w y
x x

y ixx xy w x y

i

xy w ixy

xy w ixy

i

K K iF i

F K K i i

T i0 0 K

K i K

K i K

K

θ θ
θ

θ

θ

θ θ

θ θ

≈ −

 ±
 ±

 c cF i14444444444244444444443

(3.2)

Fx

Fy

icθ

icx

θ

icθ

Crosscoupled

T

Rotor
Angle

Control
Currents

Forces

Ki

Ki

Figure 3.6: Crosscoupled iK model

3.3.4 Desired iK model

The crosscoupled matrix can be simplified further into a decoupled matrix by

making all the elements except the leading diagonal to be zero. This model is the

desired model and uses decoupled iK . The decoupled iK has no crosscoupled

 32

terms and no θ dependence. It gives the desired force-current relationship and this

helps to decouple the forces in the motor

0 0

0 0

()
()

ixx

ixx

i

i

K

K

0 0 K

K

θ

θ
θ

=

 (3.8)

.

Fx

Fy

icθ

icx

θ

icθ

Desired
 Ki

T

Rotor
Angle

Control
Currents

Forces

Ki

Figure 3.7: Desired iK model

3.3.5 Lumped parameter model with the addition of fault matrix

 If there are faults in the matrix, they can be represented by a fault matrix F

and the equation for which is represented by the following formula and modeled as

shown in simulink. With the faults in the fault matrix, the force and torque produced

was different from those found in a faultless system. With more faults the forces and

torque produced decrease drastically and causes instability to the system.

{

}

()
}} }}}

{

}3 1 3 1

3 4 8 4 8 1 2 1 2 1 2 1 2 4 4 3

 () T 3

x x

x x x x xcx cx

cy cy

c c

c

F i
F F Y i
T i

c

θ θ

θ θ

 = Φ Λ

F i

 (3.5)

 33

Fx
Current
Mapping

T3 Fy

icθ

icx

θ

Y

icθ

θ

Commutation

λ φ

T

F
Permanant
Magnet
Distribution

Rotor
Angle

Phase
Distribution

Control
Currents

Forces

Fault
Matrix

Figure 3.8: Lumped parameter model with the addition of fault matrix

Figure 3.9: Simulink model for lumped parameter model with the addition of fault matrix

 34

3.3.6 Fault tolerant model based on lumped parameter model

 A fault tolerant model based on the lumped parameter model was developed

from the lumped parameter model. The fault tolerant based on the lumped

parameter model is based on the following equation:

{ i
I

AA K+=c cF i (3.6)

{

}

()
}} }}

()
}} }}

()
}} }}

{

}13 1 3 1

13 4 8 3 4 8 3 4 84 8 1 2 1 2 1 2 1 2 4 4 8 1 2 1 2 1 2 1 2 4 4 8 1 2 1 2 4 4 3

 () () () T 3

x x

x x xx x x x x x x x xcx cx

cy cy

c c

i

c

KAA
F i
F F Y F Y Y i
T i

c

θ θ

θ θ θ θ θ θ

−

− = Φ Λ Φ Λ Φ Λ
F i

64444744448644474448 644474448

 (3.7)

Assuming that there is no fault, A and 1A− cancel out each other and leave out the

original model. Next, if there are faults, A and 1A− cancel out each other and would

still leave out the original model if 1 0AA− ≠ . The existence or non-existence of the

fault tolerant model was elaborately discussed by Stephens [04]. The above

equation gives a crosscoupled fault tolerant model and was modeled in simulink as

shown figure 3.11. In case of faults, a fault tolerant model based on the lumped

parameter model would return the same amount of forces that a lumped parameter

model would, without the faults. This model was tolerant to many different fault

configurations, but does not decouple the forces.

 35

Current
Mapping

T3

icθ

icx

θ

Y

icθ

θ

Commutation

λ φ

Permanant
Magnet
Distribution

Rotor
Angle

Phase
Distribution

Control
Currents

Phase
Distribution

Commutation

θ

Y

Forces

Permanant
Magnet
Distribution

λ φ

T

Fy

Fx

 Model
Inverse

A
inv

θ

F
Fault
Matrix

Ki

Figure 3.10: Fault tolerant model using lumped parameter model

Figure 3.11: Simulink model for fault tolerant model using lumped parameter model

 36

3.3.7 Fault tolerant model based on integral equations

The fault tolerant model based on integral equations was developed from the

integral equations model. The fault tolerant control based on the lumped parameter

model is governed by the following equation.

{

}

()
}} }}

()
}} }} }

{

}13 1 3 1

13 48 3 4848 1212 12 12 4 48 1212 12 12 4

 () ()

x x

x xx x x x x xcx cx

cy cy

c c

i

I
c

AA
KF i

F F Y F Y INT i
T i

c

θ θ

θ θ θ θ

−

− = Φ Λ Φ Λ
F i

64444744448644474448

144444444424444444443

 This model uses the inverse of the lumped parameter model and the integral

equations model to provide the fault tolerance. The inverse of a lumped parameter

model must be used because integral equations cannot be inversed. Since the

lumped parameter model and integral equations model do not give the same results,

hence inverse of the lumped parameter model would not cancel perfectly with the

integral equations model. This model was tolerant to multiple faults, but does not

decouple the forces.

F x

A

θ

 Model
Inverse

F y

icθ

icx

θ

Y

icθ

θ

Commutation

λ φ

T

F
Permanant
Magnet
Distribution

Rotor
Angle

Phase
Distribution

Control
Currents

Forces

Fault
Matrix

 Integral
Equations

Int

Figure 3.12: Fault tolerant model using integral equations

 37

Figure 3.13: Simulink model for fault tolerant model using integral equations

3.3.8 Decoupled & Fault tolerant model

The decoupled and fault tolerant model is a model which uses the inverse of

the lumped parameter model and a decoupled Ki to remove the crosscoupling. The

force current relationship based on the decoupled and fault tolerant algorithm is

given by the following equation:

{ i
I

AA K+=c cF i

()
}} }}

()
}} }}

1

13 48 3 4848 12 12 12 12 4 48 12 12 12 12 4

() ()
x xx x x x x x

i

AA

I

F Y F Y Kθ θ θ θ

−

−

= Φ Λ Φ Λ

c cF i

64444744448644474448

144444444424444444443

This model uses the lumped parameter and the inverse of the lumped parameter to

provide fault tolerance. Incase of faults, the model would cancel with the model

inverse and return the forces depending on the iK . The iK is a matrix that has

entries only in the leading diagonal. This would return the decoupled forces for any

set of control currents. This model thus removes the crosscoupling as well as θ

dependence. The simulations of all the three fault tolerant models performed later,

revealed that this model was the better than the other fault tolerant models.

 38

θ

 M odel
Inverse F x

Current
G ain

K i A F y

icθ

icx

θ

Y

icθ

θ

Com m utation

λ φ

T

F
Perm anant
M agnet
D istribution

R otor
A ngle

Phase
D istribution

Control
Currents

Forces

Fault
M atrix

Figure 3.14: Decoupled and fault tolerant model

Figure 3.15: Simulink model for decoupled and fault tolerant model

 39

FAULT
TOLERANT
MAPPING

θ
V sy

V sx

PID
Controller

FAULT
DETECTOR

FAULT
MATRIXCOMMUTATION

CURRENT
GAIN
MATRIX

icθ

icx x

ENCODER

STATOR

y

2
1

S N

1
2

3

1

S
N

3

S
N

R

2
3

SE
G

M
E

N
T 4

2
1

3

N
S

N S
S

N
1

2
3

S
N

31 2

S
1

N

1
3

2
2

3

2

S
NN

12
3

S2
1

3

3

S

SS

S

N

ROTOR

2

θ

2
3 1

N

N
S

3

2
3

1
3

2
1

2

1

S
N

N

SE
G

M
E

N
T

2 1 N

1

SEGMENT 3

3

SEGMENT 1

icy

θ

 Amp. for Seg.-4
I 41=V 4cos(M (θ-γ)+π/3)
I 42=V 4cos(M (θ-γ))
I 43=V4cos(M (θ-γ)-π/3)

 Amp. for Seg.-3
I 31=V 3cos(M (θ-γ)+π/3)
I 32=V 3cos(M (θ-γ))
I 33=V3cos(M (θ-γ)−π/3)

 Amp. for Seg.-2
I 21=V 2cos(M (θ-γ)+π/3)
I 22=V 2cos(M (θ-γ))
I 23=V2cos(M (θ-γ)-π/3)

 Amp. for Seg.-1
I 11=V 1cos(M (θ-γ)+π/3)
I 12=V 1cos(M (θ-γ))
I 13=V1cos(M (θ-γ)-π/3)

is4

is3

is2

is1

Inverse
AK i

F11

F12
F13

 F21
 F22
 F23

F31

F32
F33

F41

F41
F43

T

Fx

Fy

θ

y-direction
position

x-direction
position

Angular
Position

V ry
+

+
V rx

+
V rθ

V θ

PID
Controller

V eθ

PID
Controller

V ey

V ex

Figure 3.16: Decoupled and fault tolerant control with the actuator

 40

Table 3.1: Forces for different fault configurations in different motor models

Forces

Rotor Angle

Control Currents
Model 1

Desired Model iK
Model 2

Crosscoupled
Model iK

Model 4
Lumped Parameter

Model

Model 4
Integral Equations

Model

Model 4
Fault tolerant
Model Using

Integral Equations

Model 6
Chapter 2 Fault

tolerant
Model Using

Lumped Parameter
Model

Model 7
Decoupled and
Fault Tolerant

Model

θ ix iy iθ Fx Fy T Fx Fy T Fx Fy T Fx Fy T Fx Fy T Fx Fy T Fx Fy T
1 0 0 156.5 0 0 164.6 -9.88 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0 0
0 1 0 0 156.5 0 -9.88 164.6 0 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0

0

0 0 1 0 0 38.2 0 0 40.25 0 0 38.2 0 0 38.2 0 0 38.18 0 0 38.2 0 0 38.2
1 0 0 156.5 0 0 164.6 -9.88 0 156.3 7.89 0 156.3 6.55 0 156.2 6.53 0 156.3 7.89 0 156.5 0 0
0 1 0 0 156.5 0 -9.88 164.6 0 -7.89 156.3 0 -6.55 156.3 0 -6.53 156.2 0 -7.89 156.3 0 0 156.5 0

15*(1/4)

0 0 1 0 0 38.2 0 0 40.25 0 0 38.2 0 0 38.2 0 0 38.18 0 0 38.2 0 0 38.2
1 0 0 156.5 0 0 164.6 -9.88 0 156.1 0 0 156 0 0 155.9 0 0 156.1 0 0 156.5 0 0
0 1 0 0 156.5 0 -9.88 164.6 0 0 156.1 0 0 156 0 0 155.9 0 0 156.1 0 0 156.5 0

15*(1/2)

0 0 1 0 0 38.2 0 0 40.25 0 0 38.2 0 0 38.2 0 0 38.18 0 0 38.2 0 0 38.2
1 0 0 156.5 0 0 164.6 -9.88 0 156.3 -7.89 0 156.3 -6.55 0 156.2 -6.53 0 156.3 -7.89 0 156.5 0 0
0 1 0 0 156.5 0 -9.88 164.6 0 7.885 156.3 0 6.55 156.3 0 6.53 156.2 0 7.885 156.3 0 0 156.5 0

15*(3/4)

0 0 1 0 0 38.2 0 0 40.25 0 0 38.2 0 0 38.2 0 0 38.18 0 0 38.2 0 0 38.2
1 0 0 156.5 0 0 164.6 -9.88 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0 0
0 1 0 0 156.5 0 -9.88 164.6 0 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0 0 156.5 0

15

0 0 1 0 0 38.2 0 0 40.25 0 0 38.2 0 0 38.2 0 0 38.18 0 0 38.2 0 0 38.2
0 1 1 1 156.5 156.5 38.2 154.7 154.7 40.25 156.5 156.5 38.2 156.5 156.5 38.2 156.5 156.5 38.18 156.5 156.5 38.2 156.5 156.5 38.2

15*(1/4) 1 1 1 156.5 156.5 38.2 154.7 154.7 40.25 148.4 164.2 38.2 149.7 162.8 38.2 149.7 162.7 38.18 148.4 164.2 38.2 156.5 156.5 38.2
15*(1/2) 1 1 1 156.5 156.5 38.2 154.7 154.7 40.25 156.1 156.1 38.2 156 156 38.2 155.9 155.9 38.18 156.1 156.1 38.2 156.1 156.1 38.2

 41

3.4 Comparison of forces in different models

The Table 3.1 describes the amount of crosscoupling in the different models

described above. There are predominantly 7 models discussed in this table. The

data analysis in the table was limited a change in rotor angle through a pole pitch,

which is a good representation of the entire rotor angle. This is due to the fact that

after the rotation of the magnet through a pole pitch, the same north-south pole

configuration will repeat itself. Model 1 is the desired model and the goal of

decoupled and fault tolerant model. In this case, the forces produced are not

dependent on the rotor angle and there is no crosscoupling of forces. Model 2 is

the crosscoupled model and is a very approximate way of representing the force-

current relationship in the existing model. Model 3 is the lumped parameter model

and the forces produced by it are dependent on rotor angle and crosscoupled.

Model 4 is the integral equations model and is closer to the actual model of the

motor. It was found from the simulation that the crosscoupling of both the lumped

parameter model and the integral equations model were highest, when the rotor

angle was one-forth of a pole pitch. At this rotor angle and [ix=1, iy=0, iθ=0], the force

produced in y-direction is Fxy = -7.89 in the lumped parameter model and is Fxy = -

6.55 in the integral equations model. The forces produced are dependent on rotor

angle and are less crosscoupled than the lumped parameter model. Model 5 is the

fault tolerant model based on the integral equations model. In no fault condition, this

model is as good the integral equations model. Forces produced in this model are

also dependent on rotor angle and exhibit the same crosscoupling as the integral

equations model in no fault condition. Model 6 is the fault tolerant model based on

 42

the lumped parameter model. In “no fault” condition, this model is as good the

lumped parameter model. Forces produced in this model are also dependent on

rotor angle and exhibit the same crosscoupling as the lumped parameter model in

“no fault” condition. In both models 5 and 6, A and A+ cancel out each other leaving

out the base model (integral equations and lumped parameter model). In both

models 5 and 6 , A and A+ cancels even if there are faulted phases thus allowing the

base model to define the force-current relationship. Both the models are fault

tolerant, but are as crosscoupled as the base model. Model 7 is the decoupled &

fault tolerant model and is as good as the desired model. The forces produced are

not dependent on rotor angle and are not crosscoupled. For any rotor angle, the

control current [ix=1, iy=0, iθ=0] produces the desired force (Fxx=156.5) only in that

direction and no force in the other directions (Fxy=0). The trend is seen when a

control current [ix=0, iy=1, iθ=0] is sent in y-direction. The advantage of this model is

that A and A+ cancel out each other leaving out the desired Ki. The desired Ki does

not have any crosscoupled terms in it, causing the forces to be decoupled. In this

model, A and A+ would cancel out even when the phases are faulted, letting the

desired Ki to define the force-current relationship.

1-Integral Equations, 2-Lumped Parameter model, 3-Fault tolerant control model

based on integral equations, 4-Fault tolerant control model based on lumped

parameter model, 5-Decopled and fault tolerant control

 43

Figure 3.17: Desired forces when rotor angle turns through a pole pitch in no fault
conditions, [1 1 1]c =i

Figure 3.17 plots the forces produced for different models when the rotor angle

turns through a pole pitch in no fault conditions, [1 1 1]c =i . In the plots, Ki desired

model and the decoupled fault tolerant model are a straight line running from left to

right as the rotor angle increases through one pole pitch. The decoupled fault

tolerant model is the only model which would meet the desired model specifications.

The forces produced in the lumped parameter model and the fault tolerant model

based on the lumped parameter model is a sinusoidal wave as shown in the plot and

overlap. The plot shows that both the lumped parameter model and fault tolerant

model based on the lumped parameter model are equally crosscoupled at every

rotor angle. The forces produced in the integral equations model and the fault

tolerant model based on the integral equations model is a sinusoidal wave as shown

in the plot and overlap. The plot shows that both the integral equations model and

fault tolerant model based on integral equations model are equally crosscoupled at

 44

every rotor angle. From the plot, it was inferred that the decoupled fault tolerant

model is better than any of the other models. The plot also shows that the fault

tolerant model based on the integral equations model is better than the fault tolerant

model based in the lumped parameter model because it is less crosscoupled.

Models Ki
Desired

Integral
Equations

Model

Lumped
Parameter

Model

Fault
Tolerant
Model
using

Integral
Equations

Fault
Tolerant
Model

Decoupled
and Fault
Tolerant
Model

Percentage
Maximum
Difference

in FX

0

4.1762

5.0365

4.1762

5.0365

0

Percentage
Maximum
Difference

in FY

0

4.1762

5.0365

4.1762

5.0365

0

Percentage
Maximum
Difference

in T

0

0

0

0

0

0

Table 3.2: Percentage maximum variation in FX & FY from the desired forces when

rotor angle turns through a pole pitch, [1 1 1]c =i , No fault condition

Table 3.2 shows the percentage of maximum variation in FX & FY from the

desired forces when rotor angle turns through a pole pitch, [1 1 1]c =i in no fault

conditions. The percentage variation of FX and FY in the lumped parameter model

(5.04%) is more than the integral equations model (4.17%). Percentage variations

in the fault tolerant models based on the respective base models are also the same.

Hence the fault tolerant model based on the integral equations model is better than

the fault tolerant model based on the lumped parameter model. The table shows

that the decoupled and fault tolerant model has 0 percentage variation in FX and FY

 45

from the desired, when the rotor angles turns through a pole pitch. Thus the

decoupled and fault tolerant model is better than the other models with respect to

crosscoupling. There is no crosscouping in θ direction in any of the models.

All of the above discussions have been restricted to no fault conditions. Now

the faults were introduced and the models were tested for fault tolerance. There are

three models discussed: The non-fault tolerant model (lumped parameter model),

the fault Tolerant based on the lumped parameter model and the decoupled fault

tolerant control model. Table 3.3 compares the forces between these three models.

In the Non-fault tolerant model, for an input control current [1 0 0]c =i and rotor angle

of θ=0, the force produced in x direction is Fx=156.5 in “no fault” condition. When

the segment 1 phase 1 is faulted, the force produced decreases to Fx=143.5. With

more faults, the force produced decreases further. In addition to decrease in force in

the required direction, there is an increase in crosscoupling of the forces. As the

segment 1 phase1 is faulted, the crosscoupled forces increase from Fxy=0 to

Fxy=1.138. In the fault tolerant model based on the lumped parameter model and

the decoupled fault tolerant models, force production does not decrease with faults

making them superior to the non-fault tolerant model.

 46

 Non-Fault Tolerant system Fault tolerant system
Decoupled & Fault

tolerant system
Failures FX FY T FX FY T FX FY T

ix=1 iy=0 iθ=0 θ=0
No fault 156.5 0 0 156.5 0 0 156.5 0 0

Segment 1
F11 143.5 1.138 1.592 156.5 0 0 156.5 0 0

F11,F12 91.26 1.138 7.958 156.5 0 0 156.5 0 0
F11,F12,F13 78.25 0 9.55 156.5 0 0 156.5 0 0
Segment 3

F31 143.5 1.138 -1.592 156.5 0 0 156.5 0 0
F31,F32 91.26 1.138 -7.958 156.5 0 0 156.5 0 0

F31,F32,F33 78.25 0 -9.55 156.5 0 0 156.5 0 0
ix=0 iy=1 iθ=0 θ=0

No fault 0 156.5 0 0 156.5 0 0 156.5 0
Segment 2

F21 -1.138 143.5 1.592 0 156.5 0 0 156.5 0
F21,F22 -1.138 91.26 7.958 0 156.5 0 0 156.5 0

F21,F22,F23 0 78.25 9.55 0 156.5 0 0 156.5 0
Segment 4

F41 -1.138 143.5 -1.592 0 156.5 0 0 156.5 0
F41,F42 -1.138 91.26 -7.958 0 156.5 0 0 156.5 0

F41,F42,F43 0 78.25 -9.55 0 156.5 0 0 156.5 0
ix=0 iy=0 iθ=1 θ=0

No fault 0 0 38.2 0 0 38.2 0 0 38.2
Segment 1

F11 13.01 -1.138 36.61 0 0 38.2 0 0 38.2
F11,F12 65.24 -1.138 30.24 0 0 38.2 0 0 38.2

F11,F12,F13 78.25 0 28.65 0 0 38.2 0 0 38.2
Segment 2

F21 1.138 13.01 36.61 0 0 38.2 0 0 38.2
F21,F22 1.138 65.24 30.24 0 0 38.2 0 0 38.2

F21,F22,F23 0 78.25 28.65 0 0 38.2 0 0 38.2
Segment 3

F31 -13.01 1.138 36.61 0 0 38.2 0 0 38.2
F31,F32 -65.24 1.138 30.24 0 0 38.2 0 0 38.2

F31,F32,F33 -78.25 0 28.65 0 0 38.2 0 0 38.2
Segment 4

F41 -1.138 -13.01 36.61 0 0 38.2 0 0 38.2
F41,F42 -1.138 -65.24 30.24 0 0 38.2 0 0 38.2

F41,F42,F43 0 -78.25 28.65 0 0 38.2 0 0 38.2

Table 3.3: Comparison of forces between non-fault tolerant, fault tolerant and
decoupled & fault Tolerant Control model with different fault configurations

 47

Figures 3.18, 3.19, 3.20 and 3.21 show how forces are produced in the non-

fault tolerant, fault tolerant (based on integral equations & lumped parameter model)

and decoupled fault tolerant model with the change in rotor angle and the

introduction of faults. Figure 3.18 shows forces produced in different models, when

segment 1 phase 1 is faulted and the rotor angle turns through a pole pitch,

[1 0 0]c =i .Both the fault tolerant and the decoupled fault tolerant models are better

than the non-fault tolerant model. They produce the desired force even with faults.

Figure 3.19 and Figure 3.20 shows the forces produced when segment 1 phase 1,2

are faulted and segment 1 phase 1,2,3 are faulted respectively. The forces

produced are invariant to faults in the case of fault tolerant and decoupled fault

tolerant model. Unlike the decoupled fault tolerant model, the fault tolerant model

(based on integral equations & lumped parameter model) has some crosscoupling.

The degree of crosscoupling is less than the non-fault tolerant model as shown in

the figures. Though not clear from the figures, the force produced Fxx in the fault

tolerant model is close to the desired force, but not precisely equal to that value for

most rotor angles. This is due to the fact that the fault tolerant model is not

decoupled. From the figures one can infer that the fault tolerant model based on the

integral equations is better than the fault tolerant model based on the lumped

parameter model even in faulted conditions. With some fault combinations, however

the model might fail. One of them is shown in Figure 3.21, where the force produced

drastically falls at half-a-pole pitch for the fault configuration [000100010001]. It was

inferred from the simulations that decoupled and fault tolerant model is the better

than any of the other models. This model was hence implemented in dspace and

 48

the performance of fault tolerance is evaluated. From here on, the decoupled and

fault tolerant control model will be referred to as fault tolerant model.

1-Lumped Parameter model
2-Fault tolerant control model based on integral equations
3-Fault tolerant control model based on lumped parameter model
4-Decopled and fault tolerant control

Figure 3.18: Forces produced when segment 1 phase 1 is faulted and rotor angle
turns through a pole pitch, [1 0 0]c =i

Figure 3.19: Forces produced when segment 1 phase 1,2 is faulted and rotor angle

turns through a pole pitch, [1 0 0]c =i

 49

Figure 3.20: Forces produced when segment 1 phase 1,2,3 is faulted and rotor
angle turns through a pole pitch, [1 0 0]c =i

Figure 3.21: Forces produced for the fault configuration [000 100 010 001] and rotor

angle turns through a pole pitch, [1 0 0]c =i

Actuator
failure

 50

3.5 Comparison of perturbation voltages

Figure 3.22 shows the perturbation voltages in all twelve phases of the self-bearing

motor for the same input control currents ix=1, iy=1, iθ=1 with “no fault” condition. In

“no fault” conditions, both the fault tolerant and Non-fault tolerant model send in the

same output voltages for the same input control currents. The plot shows how the

perturbation currents are nearly the same for both the models. This implies that both

decoupled fault tolerant model are as good as the non-fault tolerant model in “no

fault” condition. It remains an uncertain from the above simulation if decoupled fault

tolerant model is better than non-fault tolerant model. This can be found out only by

maintaining the same input control currents for both the fault tolerant and non-fault

tolerant model, and then introducing faults in different phases. Now the forces

produced in the both these models are compared . Care was taken so that the

perturbation voltage values already closer to zero were not zeroed by introduction of

faults. Zeroing of perturbation voltage values close to zero would not result in a

significant change in the output force and therefore not result in any useful

conclusion.

 51

Figure 3.22: Comparison of 12 phase currents between decoupled-fault tolerant
and non-fault tolerant model for rotation of the rotor through 1 pole pitch and ix=1,

iy=1, iθ=1, “no fault” condition

3.6 Implementation of Fault Tolerant Model

 The decoupled and fault tolerant model was found to be the best of the three

fault tolerant models. The software equivalents of the model (Ф and λ) shown in the

figure are replaced by the actual hardware (power amplifier and the self-bearing

motor). Fault tolerance was implemented in the motor based on the decoupling and

fault tolerant algorithm using simulink/matlab/rtw/dspace. The model was simulated

for any modeling errors and was verified for consistency. Test cases were designed

in simulink to verify that the output of the model met with the algorithmic output

Decoupled & Fault Tolerant model Non-Fault Tolerant model

 52

requirements. Now the model was ready for some real-time testing. The non-real-

time simulink model based on the decoupled and fault tolerant algorithm was

modified by replacing the m-file matlab function with a C-mex file S-function block for

pseudo-inverse. The simulink model was modified to interface with the dspace

controller hardware. A realistic testing of the algorithm functionality was performed

by combining concepts from the rapid control prototyping approach and hardware-in-

the-Loop Simulation. Real-Time Workshop was used to generate and execute a

stand-alone C code for developing and testing the fault tolerant algorithm modeled in

simulink. rtw / simulink / matlab are used to build the simulink model into C codes.

The resulting code was used for real-time rapid prototyping and hardware-in-the-

loop testing. The generated code can be interactively tuned and monitored using

dspace environment.

3.7 Functions used in the simulink models

 The following flowcharts give the different user defined matlab functions used

for simulink blocks in the various models described earlier. There are four medit file

functions and two C-mex file S-functions used in the models. The medit files used

are used only in simulations and are replaced by using other blocks. The rest of

blocks in the decoupled and fault tolerant model, which are impossible to replace

with any built-in simulink functions, are made up of C-mex file S-functions so that the

simulink model file can be auto-compiled in the dspace environment for real-time

control. The two functions written in C are for the pseudo inverse of the model and

the flux linkage matrix. Both functions are compiled in the matlab command prompt

 53

by typing “mex file name. c” to convert them into “dll” file. Now the code was

dynamically linked with their appropriate block in the model.

3.7.1 Medit-file function for phase distribution (λ)

Start

INPUT
Phase currents iφ(1-12)

STATION CURRENTS
istations=[beta,z3,z3,z3;

 z3,beta,z3,z3;
z3,z3,beta,z3;
z3,z3,z3,beta]* iφ;

Stop

beta=[-I(3,3); I(3,3); -I(3,3); I(3,3)];
z3=zeros(12,3);

3.7.2 Medit-file function for phase currents after faults introduced (F)

Start

Faulted phase currents

 i phase currents = F* i phase currents

Stop

Faults
F=eye(12,12);

F(1,1)=0; F(2,2)=1; F(3,3)=1;
F(4,4)=1; F(5,5)=1;F(6,6)=1;
F(7,7)=1;F(8,8)=1;F(9,9)=1;

F(10,10)=1;F(11,11)=1;F(12,12)=1;

INPUT
Faultless phase currents

 i phase currents (1-4)

 54

3.7.3 Medit-file Function for segment-Control current mapping (T3)
Start

isegment currents (1-4) = T3* i control currents

Stop

T3 = [-1 0 1;
 0 -1 1;
 1 0 1;
 0 1 1]

INPUT
icontrol currents (1-4)

3.6.4 Medit-file function for commutation (Y)

Start

 iφ=Y* isegment currents ;

Stop

Y=zeros(12,4)
Y(1,1)=φ1;Y(2,1)=φ2;Y(3,1)=φ3;

Y(4,2)=φ1;Y(5,2)=phi2;Y(6,2)=φ3;
Y(7,3)=φ1;Y(8,3)=φ2;Y(9,3)=φ3;

Y(10,4)=φ1;Y(11,4)=φ2;Y(12,4)=φ3;

φ1=Cos(θ+π/4)
φ2=Cos(θ)

φ3=Cos(θ+π/4)

INPUT
isegment currents (1-4)

Rotor Angle θ, M=12,

 55

3.6.5 Flowchart to compute the pseudo-inverse in the simulink model (A-1)

Start

Constant parameters
M=12,

Nw = 96,
R=0.110,
L=0.1016,

pi=3.1415926,
Bm,k =0.9885653733729429

For k= 1 to 72

INPUT
Force in x FX,

Forces in Y FY,
Torque T,

Instantaneous Rotor Angle θ
Faulted or faultless phases F

PERMANENT MAGNET DISTRIBUTION
MATRIX

φ[K]=(k-1)*(2*π/72)+(π/4)+(π/72)
Bm,k[k]=Bm,kp Sin(M(θ−φ[k])

ϕ[1][k]=-Nw LBm,k[k] Sin(φ[k])
ϕ[2][k]=Nw LBm,k[k] Cos(φ[k])

ϕ[3][k]=Nw LBm,k[k]

Next K

FAULT ENCODING MATRIX
F[1][1]=1 or 0,F[2][2]=1 or 0,F[3][3]=1 or 0
F[4][4]=1 or 0,F[5][5]=1 or 0,F[6][6]=1 or 0
F[7][7]=1 or 0,F[8][8]=1 or 0, F[9][9]=1 or 0,

F[10][10]=1 or 0,F[11][11]=1 or 0, [12][12]=1 or 0

1

Φ

F

 56

φ1=Cos(θ+π/4)
φ2=Cos(θ)

φ3=Cos(θ+π/4)

COMMUTATION
Y[1][1]=φ1,Y[2][1]=φ2,Y[3][1]=φ3
Y[4][1]=φ1,Y[5][2]=φ2,Y[6][3]=φ3
Y[7][1]=φ1,Y[8][2]=φ2,Y[9][3]=φ3

Y[10][1]=φ1,Y[11][2]=φ2,Y[12][3]=φ3

1

PHASE DISTRIBUTION MATRIX FOR ONE SEGMENT
β[1][1]=1 or 0,β[2][2]=1,β[3][3]=1,
β[4][1]=−1,β[5][2]=−1,β[6][3]=-1,

β[7][1]=1,β[8][2]=1, β[9][3]=1,
β[10][1]=−1,β[11][2]=−1,β [12][3]=−1

β[13][1]=1,β[14][2]=1,β [15][3]=1
β[16][1]=-1,β[17][2]=-1,β [18][3]=-1

For k= 1 to 18

Next j

For i= 0 to 3

Next k

PHASE DISTRIBUTION MATRIX
FOR ALL FOUR SEGMENTS
λ[18*i+k][3*i+k]=β[k][j]

For j= 1 to 3

Next i

2

Y

λ

 57

2

For j= 1 to 12

For i= 0 to 3

Temp[i][j]=0

For k= 1 to 12

Next j

Next i

Temp[i][j]=Temp[i][j]+ϕ[i][k]∗λ[k][j]

Next k

For j= 1 to 12

For i= 0 to 3

Tempa[i][j]=0

Next k

Next j

Tempa[i][j]=Tempa[i][j]+Temp[i][k]*F[k][j]

For k= 1 to 12

Next i

3

Φλ

ΦλF

 58

3

For j= 1 to 4

For i= 0 to 3

A[i][j]=0

Next k

Next j

A[i][j]=A[i][j]+Tempa[i][k]*Y[k][j]

For k= 1 to 12

Next i

4

For j= 1 to 3

Next j

For i= 1 to 4

Next i

A[i][j]=A[i][j]

A=ΦλFY

AT

 59

4

For j= 1 to 3

For i= 0 to 3

B[i][j]=0

Next k

Next j

B[i][j]=B[i][j]+A[i][k]*A[k][j]

For k= 1 to 4

Next i

CALCULATION OF INVERSE
Ba=B[1][1],Bb=B[1][2], Bc=B[1][3]
Bd=B[2][1],Be=B[2][2], Bf=B[2][3]
Bg=B[3][1],Bh=B[3][2], Bi=B[3][2]

DETERMINANT
∆_B=Ba*(Be*Bi-Bh*Bf)-Bd*(Bb*Bi-Bh*Bc)+Bg*(Bb*Bf-Bc*Be)

5

INVERSE
inv_B[1][1]=(Be*Bi-Bh*Bf)/∆_B;inv_B[1][2]=-(Bb*Bi-Bh*Bc)/∆_B;inv_B[1][3]=(Bb*Bf-Be*Bc)/∆_B;
inv_B[2][1]=(Bd*Bi-Bg*Bf)/∆_B;inv_B[2][2]=-(Ba*Bi-Bg*Bc)/∆_B;inv_B[2][3]=(Ba*Bf-Bd*Bc)/∆_B;

inv_B[3][1]=(Bh*Bd-Bg*Be)/∆_B;inv_B[3][2]=-(Ba*Bh-Bb*Bg)/∆_B;inv_B[3][3]=(Ba*Be-Bd*Bb)/∆_B;

A AT

(A AT)-1

|A AT|

 60

For j= 1 to 3

For i= 0 to 4

pinvA[i][j]=0

Next j

For k= 1 to 3

Pseudo-inverse of A
pinvA[i][j]=pinvA[i][j]+A_T[i][k]*inv_B[k][j]

Next i

Next k

For i= 0 to 4

sys[i]=0

For k= 0 to 3

Segment currents
sys[i]=sys[i]+pinvA[i][k]*Fc[k]

Next k

Next i

5

New segment currents
S1[0]=sys[1]
S1[0]=sys[2]
S1[0]=sys[3]
S1[0]=sys[4]

Stop

A+ =A.(A AT)-1

is=A+ Fc

 61

3.6.6 Flowchart to compute the forces and torque in the simulink model (Φ)

.

Start

Constant parameters
M=12,Nw = 96,

R=0.110,L=0.1016,
pi=3.1415926,Bm,k =0.98856

For k = 1 to 72

INPUT
Station currents is (1-48)

Instantaneous Rotor Angle θ

PERMANENT MAGNET DISTRIBUTION
MATRIX

φ[K] = (k-1) * (2* π/ 72) + (π / 4) + (π / 72)
Bm,k[k] = Bm,kp Sin(M (θ − φ[k])
ϕ[1][k] = -Nw L Bm,k[k] Sin(φ[k])
ϕ[2][k] = Nw L Bm,[k] Cos(φ[k])

ϕ[3][k] = Nw L Bm,k [k]

Next K

FORCES AND TORQUE
FX = FX + ist[k]*ϕ[1][k];
FY = FY + ist[k]*ϕ[2][k];

T = T + ist[k]*ϕ[3][k];

Stop

Φ

FX ,FY ,T

 62

Chapter 4

Experimental performance of
decoupled and fault tolerant control

This chapter will discuss the experimental results obtained from the self-

bearing motor test-rig after the implementation of the fault tolerant control. The fault

tolerant control was added to the non-fault tolerant control in the same simulink

model and then auto-compiled into the dspace environment. Both the models are

subjected to same set of experiments and the performance was evaluated. A

dspace layout was created for testing the fault tolerant control. The goal of this

chapter is to prove experimentally that the decoupled and fault tolerant control is

better than the non-fault tolerant control. The experimental performance of the

decoupling and fault tolerant algorithm was evaluated and compared with the

simulations as well as the non-fault tolerant control model. This chapter compares

the non-fault and fault tolerant control in terms of stability, closed loop stiffness,

torsional stiffness and power consumption.

 The layout in dspace is shown in figure 4.1. As shown in the figure, the

layout has indicators and controls to manipulate the output voltages using both fault

tolerant and non-fault tolerant control. Faults can be deliberately introduced in the

phases by changing the value of the fault control in the dspace layout from “1” to “0”

 63

in that particular phase. “1” represents the presence of the phase and “0” represents

the absence of the phase. There are indicators showing the 12 phase voltages to

compare the fault tolerant control with the non-fault tolerant control. The total

voltage is the sum of the 12 phase voltages and was compared in both the models.

A button was used to switch from non-fault tolerant control to fault tolerant control in

real-time.

4.1 Risk-free testing of the fault tolerant model

 A risk free testing of the fault tolerant control model can be done by looking at

the 12 phase currents for both fault tolerant and non-fault tolerant model (Figure

4.2). This experiment was performed even without switching the power amplifier on.

However the dspace controller and sensor signals are still kept on. Hence the

sensor signals are taken in the dspace and serve a common input control current

and angular position to both the models. The angular position was varied by rotating

the shaft by hand and hence changing it. The input control currents are varied by

changing the reference signal. For “no fault” condition, the phase voltages in both

models are nearly identical proving the fact that the test rig can be levitated using

the decoupled and fault tolerant control at “no fault” condition.

 64

Figure 4.1 – dspace controldesk interface

BUTTON TO
SWITCH
MODELS

FAULT TOLERANT
MODEL

FAULTS
12 PHASE

CURRENTS

CONTROL
CURRENTS

SEGMENT
CURRENTS

NON-FAULT
TOLERANT MODEL

TOTAL
VOLTAGE

ANGULAR
POSITION

 65

θ= 0 θ= -13.53 θ= -6.52

θ= -0.24 θ= 7.023 θ= -3.53

Figure 4.2: Phase voltages with change in rotor angles
 (Power amplifier switched off)

 66

4.2 Test of stiffness in fault tolerant and non-fault tolerant control

The motor was levitated and faults are introduced in the non-fault tolerant

model & fault tolerant control model. The x and y sensor signals are looked at in

dspace control desk as shown in the figure. The sensor signals gave the position of

shaft in x and y directions and indirectly represent the stiffness of the motor. In the

non-fault tolerant control, the shaft moves away from the center (to the left in this

case) indicating a decrease in the closed loop stiffness of the motor. The decrease

in stiffness would cause the system to be less stable. But in the fault tolerant model,

the shaft remains at the center and hence retains the stiffness. The purpose of the

control is to keep the shaft at the center even with faults. Hence the fault tolerant

control was better than the non-fault tolerant control in a faulty environment.

Figure 4.3 – X and Y position of the shaft indicating the stiffness of the motor

4.3 Sine sweep test

 In this test, fault tolerance was evaluated when the motor shaft was made to

do a sine sweep. Both the non-fault tolerant control and fault tolerant control are

subjected to this test. Faults are introduced while the shaft was executing a sine

sweep. When F11 and F12 are faulted, the non-fault tolerant control (NF) was stable

F11 and F12 faulted

Non-fault tolerant model

F11 and F12 faulted
fault-tolerant model

F11, F12, F13 faulted
Fault tolerant model

 67

in its θ direction but was unstable in its radial direction (Figure 4.4). If F11,F12 and

F13 are faulted, then the motor goes unstable in both radial as well as θ direction.

For the same fault configuration, the motor would be stable in radial direction and θ

direction with the fault tolerant control (F).

Figure 4.4: Sine sweep test

F11 and F12 faulted (NF)

Sine sweep over ½ pole pitch

F11, F12, F13 faulted (NF)

Sine sweep over ½ pole pitch

F11, F12, F13 faulted (F)

Sine sweep over ½ pole pitch

 68

4.4 Power consumed in Non-fault tolerant model and Fault tolerant model

The motor was levitated and the total voltage was seen from the dspace

layout for both the non-fault tolerant and fault tolerant control. This total voltage is

the sum of all the 12 phase voltages. A transconductance amplifier was used to

amplify the phase voltages to currents. A 1V supplied to such an amplifier produces

4 A of current. Hence the total current is four times the magnitude of the total

voltage. The power consumed is the square of the total current consumed times the

resistance of the winding of the motor. When there are no faults in the system, the

total power required was about the same in both fault tolerant and non-fault tolerant

system. When faults are introduced, the power consumed was more for the fault

tolerant control than non-fault tolerant control. But in a fault-tolerant control, the total

power consumed in the motor with faulty phases was found to be more than that

required in a fault less system. As the faults increase, the power consumption

increases as well. Fault tolerance was achieved in the motor at the cost of

increased power consumption.

0

500

1000

1500

2000

2500

No fault Seg1 Ph1 Seg1 Ph2 Seg1 Ph3 Seg1 Ph1&
2

Seg1Ph1 &
Seg1 Ph2

Seg1,2,3
Fault Conditions

Po
w

er
 C

on
su

m
pt

io
n

(W
at

ts
) Non-Fault Tolerant

Fault Tolerant

Figure 4.5 – Instantaneous Power consumption in non-fault and fault tolerant control

 69

Figure 4.6: Closed Loop Torsional stiffness of non-fault and fault tolerant control

4.5 Torsional stiffness in Non-fault tolerant model and Fault tolerant model

The motor was levitated and a torque wrench was used for imparting a specific

amount of torque to the motor shaft. The shaft rotates through a small angle and the

change in angle of rotation was measured from the dspace layout for both the non-

fault tolerant as well as the fault tolerant control. The torsional stiffness of both the

models was computed for every fault configuration. The stiffness of the fault tolerant

control remains nearly the same even after the phase faults are introduced. The

stiffness of the non-fault tolerant control drops as the number of faults increases as

shown in table 4.1 and figure 4.7.

Adapter

Torque
Wrench

Motor
Test Rig

 70

Closed LoopTorsionsl Stiffness

0

1

2

3

4

5

6

7

8

No faults Seg 1
Ph2

Seg 1
Ph3

Seg 4 Ph
3

Seg 1 Ph
1&2

Seg 1 Ph
1 & 3

Seg 3 Ph
2 & 3

Fault Conditions

To
rs

io
na

l s
tif

fn
es

s

Non Fault

Fault

Figure 4.7: Closed loop torsional stiffness of non-fault and fault tolerant control

Torque
applied

Initial
position of
the shaft

Final
position of
the shaft

N-m Θ1 Θ2

Faulted
phases

Models

Rotor
angle

changed in
µ radians

Rotor
angle

changed in
deg

Closed
loop

torsion
stiffness
 N-m/rad

10^2

7 NF -0.1722 -0.1822 -0.0100 -0.5752 6.9700 No fault

7 F -0.1736 -0.1833 -0.0098 -0.5587 7.1758

7 NF -0.1779 -0.1890 -0.0112 -0.6387 6.2763 F12

7 F -0.1768 -0.1866 -0.0097 -0.5579 7.1861

7 NF -0.1847 -0.1962 -0.0114 -0.6556 6.1151 F13

7 F -0.1903 -0.2000 -0.0097 -0.5531 7.2486

7 NF -0.1859 -0.1966 -0.0107 -0.6126 6.5439 F43

7 F -0.1797 -0.1895 -0.0099 -0.5655 7.0893

7 NF -0.1672 -0.1805 -0.0133 -0.7622 5.2600 F11, F12

7 F -0.1841 -0.1922 -0.0081 -0.4615 8.6859

7 NF -0.1627 -0.1808 -0.0181 -1.0373 3.8648 F11, F13

7 F -0.1877 -0.1975 -0.0097 -0.5580 7.1839

7 NF -0.1902 -0.2027 -0.0125 -0.7135 5.6189 F32, F33

7 F -0.1865 -0.1969 -0.0103 -0.5909 6.7843

7 NF -0.1030 -0.1746 -0.0716 -4.0983 0.9782 F11, F12,F13

7 F -0.1883 -0.1984 -0.0102 -0.5822 6.8864

Table 4.1: Closed loop torsional stiffness of non-fault and fault tolerant control

 71

4.6 Closed loop stiffness for Non-fault tolerant and fault-tolerant control

The closed loop stiffness of the system can be measured in the non-fault tolerant

and the fault-tolerant control by the following method. The self-bearing motor was

levitated and a specified external force was applied in the x-direction on the shaft in

Newton using weight-pulley system. The displacements of the shaft in x-direction

are measured for different values of external force. It was ensured that the angular

displacements were less, so that the permanent magnet distribution relative to the

shaft stator segments remains nearly the same. Closed loop stiffness of the motor

was determined by finding force per unit displacement for each weight. The

experiment was repeated for different weights so that reliable data can be obtained.

But collecting the displacement data remains a challenge due to the shaft moving

back to initial position after being displaced by the weights. This happens due to the

integral gain moving the shaft back to the initial position. It was therefore necessary

that the displacement data be taken in immediately after loading. To avoid

hysteresis, the weights are fully removed after obtaining every displacement data

and then the new weights are added to obtaining new data. Closed loop stiffness of

the fault tolerant and the non-fault tolerant models was compared. From the table it

was found that the stiffness of the fault tolerant control was higher than that of the

non-fault tolerant control model even with coil faults. This shows that the motor is

more stable in case fault tolerant control.

 72

Figure 4.8: Experimental set-up for measuring closed loop stiffness

Weights

Pulley

Motor Test
Rig

Adapter

Thread

 73

y1 = 0.0228x1 + 0.0124 R12 = 0.9548

y2 = 0.0226x2 + 0.0112 R22 = 0.9448

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 1 2 3 4 5 6
Load Applied (Kg)

D
is

pl
ac

em
en

t

Non-Fault Tolerant Control
Fault Tolerant Control

Figure 4.9: Closed loop torsional flexibility stiffness of non-fault and fault tolerant
control in “No fault” configuration

y1 = 0.0425x1 + 0.031
 R1

2 = 0.973

y2 = 0.0341x2 + 0.0297
R2

2 = 0.9327

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6
Load Applied (Kg)

D
is

pl
ac

em
en

t

Non-Fault Tolerant Control
Fault Tolerant Control

Figure 4.10: Closed loop torsional flexibility/stiffness of non-fault and fault tolerant
control in segment 1 phase1 was faulted

 74

4.7 Stability of the fault tolerant model in different fault configurations

The fault tolerant control was found to be stable under different fault configurations

at different rotor angles that would cause the non-fault tolerant control to fail.

Though better than the non-fault tolerant control, the fault tolerant control was not

found to be as good as the simulation results suggested.

Rotor Angles Fault Conf

5.4 6.3 7.2 8.1 9.0 9.9 10.8 11.7 12.6 13.5
111 111 111 111 Stable Stable Stable Stable Stable Stable Stable Stable Stable Stable

011 111 111 111 Stable Stable Stable Stable Stable Stable Stable Stable Stable Stable

001 111 111 111 Stable Stable Stable Stable Stable Stable Stable Stable Stable Stable

000 111 111 111 Stable Stable Stable Stable Stable Stable Stable Stable Stable Stable

000 011 111 111 Stable Stable Stable Stable Stable Stable Stable Stable Stable Stable

000 101 111 111 Unstable Stable Stable Stable Stable Stable Stable Stable Stable Stable

000 110 111 111 Unstable Unstable Unstable Unstable Unstable Stable Stable Stable Stable Stable

000 010 111 111 Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable

000 001 111 111 Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable

000 100 111 111 Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable Unstable

Table 4.2: Stability of the motor under fault tolerant control

 75

Chapter 5

Conclusions and future work

5.1 Conclusions

The self-bearing motor used in this research work is a 12 phase 4

segment motor that operates on the principles of radial bearing force and

motoring torque. A pair of opposite segments produces the force in x and y

directions and adjacent segments cause the motoring torque.

The self-bearing motor produces independent bearing force and motoring

torque using the common coil windings and return flux path. It has the

advantage of lesser heating, higher efficiency, lesser iron losses and smooth

angular slewing. It has a high level of precision pointing and tracking accuracies

[Ren 05].

This thesis used a model based adaptive control approach, which is the

preferred method for software fault tolerance. The reference model inversion

was computed instantaneously to obtain the desired control currents for a given

rotor displacement and set of external forces and torque for achieving fault

tolerance. The decoupling was accomplished by identifying that the force-

current relationship, iK , is invariant under a fault.

 76

This work involved simulating, implementing and validating the decoupled

and fault tolerant model in a 4 segment 12 phase self-bearing motor. The

summary and conclusions of this thesis is as follows

1. In this work, many different models were simulated in simulink inclusive of

the decoupled and fault tolerant algorithm and the conclusions were

derived from the simulation. Force and torque produced are analyzed in

every model for many common input control currents and rotor angles.

2. It was found from the simulations that the decoupled and fault tolerant

control was better than the fault tolerant model based on the integral

equations and the fault tolerant model based on the lumped parameter.

The decoupled and fault tolerant model was the only model which could

remove the crosscoupling in addition to providing fault tolerance.

3. The simulink model of the fault tolerant control was modified so that the

model could be used for real-time control with dspace. The m-file s-

function used for finding the pseudo inverse of the model in the simulation

was replaced by c-mex file s-function so that the model was downloadable

to the dsp boards of the dspace.

4. The pseudo-inverse involves intensive mathematical computations. The

C-mex file S-function block of the pseudo-inverse makes the simulink

model bigger in terms of computation time. But this does not change the

operating bandwidth for the system, since the power amplifier puts a

smaller limit on the bandwidth.

 77

5. After downloading to the DSP boards of the dspace system, a graphical

user interface was designed for the fault tolerant control to test the

controller.

6. Experiments are designed so that fault tolerance can be validated.

7. A risk-free testing of the fault tolerant control was performed by looking at

the phase currents of both the non-fault tolerant and fault tolerant control

in the dspace layout without switching on the power amplifier. The phase

currents of both the models for different control currents and rotor angle.

8. The shaft was levitated and the x - y positions of the shaft are looked at,

for both fault tolerant and non-fault tolerant models, with phase faults. The

shaft was found to move away from the center with the addition of phase

faults to the non-fault tolerant model, indicating a decrease in stiffness.

The shaft would not move from the center in the fault tolerant control,

indicating that the stiffness remains the same. The lower the stiffness, the

lower the stability of the actuator. Thus the stability of the motor under

non-fault tolerant control decreases with the introduction of faults in the

phases.

9. Both the non-fault tolerant control and fault tolerant control are subjected

to a sine sweep test. Faults are introduced while the shaft was executing

a sine sweep. It was found that the performance of the non-fault tolerant

control decreased with faults. A stable bearing force and motoring torque

was accomplished even under coil faults.

 78

10. The penalty paid for the fault tolerance was an increased power usage

and operating temperature. The power consumed was found to increase

with the number of faults in the fault tolerant control.

11. The torsional stiffness of the non-fault tolerant control drops as the

number of faults increases, but it remains the same for the fault tolerant

control. Thus the stability of the non-fault tolerant control drops drastically

with faults that of the fault tolerant control. However, it was noted that the

stiffness of the fault tolerant control also dropped but dropped slowly with

faults indicating a steady degradation in performance of the motor with an

increasing number of faults.

12. A load test with a weight-pulley system was performed with the motor

under the fault tolerant and the non-fault tolerant control. It was found that

the closed loop stiffness of the motor was found to be higher for the motor

with the fault tolerant control. The test was performed with the addition of

faults, and it was found that the stiffness of the motor was higher for the

fault tolerant control. It was noted that the stiffness of the motor falls even

with fault tolerant control, thus indicating some degradation in the

performance. Higher stiffness of the motor in the fault tolerant control

indicated greater stability in the motor.

13. The fault tolerant control was found to be stable under different fault

configurations at different rotor angles at which the non-fault tolerant

control would fail. Though better than the non-fault tolerant control, the

 79

fault tolerant control was not found to be as good as the simulation results

suggested.

14. Since the motor was higher in stability and less crosscoupled with the

fault tolerant control, it can be used at higher speeds.

15. The saturation block in the simulink file, puts a limit on the phase currents

output to the D/A. When more faults are introduced, the magnitude of

current in faultless phases was more than the saturation limit in the

saturation block. Hence the output currents in those phases will be equal

to the saturation limit. The forces produced will also be different from

required, hence resulting in deterioration in performance of the fault

tolerant control.

5.2 Future work

1. Exploring the possibility of using a look-up table in the simulink model instead

of the C-mex file S-function, so that intensive computations involved in the

fault tolerant model be reduced.

2. Detect faults using fault detection circuitry and feeding into dspace so that it

can be used in space applications.

3. Incorporate phase fault tolerance for non-centered rotors.

4. Identify other types of faults like cracked rotor, temperature excess, amplifier

faults, etc. Investigate the different methods of correcting the different faults,

identify the best method and implement.

5. Investigate and implement fault tolerance for short circuit faults.

 80

Bibliography

[Beat 00] Beat Aeschlimann,, Matthias Kummerle, Jurjen Zoethout

and Hannes Bleuler, “Model based decoupling control of
a disc rotor on active magnetic bearing,” Proc. 7th Int.
Symp. Magn. Bearings, ETH, Zurich, Switzerland, pp.
245-249, August, 2000.

[Bischel 91] Bischel, J., “The bearingless electrical machine,” in Proc.

Int. Symp Magn. Suspension Technol.’91, NASA
Publication 3152, Langley Research Center, Hampton,
VA, pp. 561-573, August, 1991.

[Bleuler 91] Bleuler, H., “A survey of magnetic levitation and magnetic

bearing types” JSME international journal, Series III, Vol.
35,No.3,1992.

[Chiba 91] Chiba, A., Rahman, M.A., and Fukao, T., “Radial forces

in bearingless reluctance motor,” IEEE Trans.
Magnetics, vol. 27, p. 786, Mar. 1991.

[Chin 03:1] Hooi-mei Chin and Stephens, L.S., “Closed loop

performance of a slotless Lorentz self-bearing motor”
Proc. of IGTI, ASME Turbo Expo Expo,June, 2003.

[Chin 03:2] Hooi-mei Chin, “Controller design issues and

performance of the lorentz self-bearing motor”, Masters
thesis, University of Kentucky,December,2003

[Dominick 99] Dominick Montie, “Self-sensing in fault tolerant magnetic

bearing” in Trans. Of the ASME,99-GT-178,Jun. 1999.

[Hertel 00] Lars Hertel, Wilfried Hofmann, “Basic approach for the

design of bearingless motors,” Proc. 7th Int. Symp.
Magn. Bearings, ETH, Zurich, Switzerland, pp. 341-346,
August, 2000.

[Kim 00] Kim, D.G., and Stephens, L.S., “Fault Tolerance of a

Lorentz-Type Slotless, Self Bearing Motor According to
the Coiling Schemes”, Proc. 7th Int. Symp. Magn.
Bearings, ETH, Zurich, Switzerland, pp. 219-224,
August, 2000.

 81

[Maslen 95] Maslen,E.H. and Meeker, D.C.“Fault tolerance of
magnetic bearing by generalized bias current
linearization,” IEEE transactions of magnetics, Vol. 31,
No.3, May 1995.

[Meeker 96] Meeker, D.C.“Optimal solutions to inverse problems in
quadratic magnetic actuators,” Doctoral Dissertation,
University of Virginia, May 1996.

[Na 99] Na, U.J. and Palazzola, A.B., “Optimized realization of

fault tolerant hetroppolar magnetic bearing for active
vibration control” Proceedings of the ASME Design
Engineering Technical Conferences, September 1999.

[Na 99] Na, U.J. and Palazzola, A.B., “Fault tolerant, Decoupling

control of magnetic bearings including material path
reluctances” Proc. 7th Int. Symp. Magn. Bearings, ETH,
Zurich, Switzerland, pp. 213-218, August, 2000.

[Okada 96] Okada, Y., Miyamoto, S., and Ohishi, T., “Levitation and

torque control of internal permanent magnet type
bearingless motor,” IEEE Trans. Control Syst. Techn.,
vol. 4, no. 5, pp. 565-571, 1996.

[Okada 00] Okada, Y., Konishi, H., Kannebako, H., and Lee, C.W.,
“Lorentz Force Type Self-Bearing Motor,” Proc. 7th Int.
Symp. Magn. Bearings, ETH, Zurich, Switzerland, pp.
353-358, August, 2000.

[Salazar 00] Salazar, A.O., Chiba, A., and Fukao, T., “A Review of

Developments in Bearingless Motors,” Proc. 7th Int.
Symp. Magn. Bearings, ETH, Zurich, Switzerland, pp.
335-339, August, 2000.

[Ren 05] Zhaohui Ren, “Model, Control and Performance of a six

degree-of-freedom precision pointing and tracking
systems” , PhD Thesis, University of Kentucky, May,
2005

[Schoeb 94] Schoeb, R. and Bischel, J., “Vector control of

bearingless motor,” in Proc. 4th Int. Symp. Magn.
Bearings, ETH Zurich, Switzerland, pp. 327-332, 1994.

[Steele 00] Steele, B.A. and Stephens, L.S., “A Test Rig for

Measuring Force and Torque Production in A Lorentz,

 82

Slotless Self Bearing Motor,” Proc. 7th Int. Symp. Magn.
Bearings, ETH, Zurich, Switzerland, pp. 407-412,
August, 2000.

[Stephens 00] Stephens, L.S. and Kim, D.G., “Analysis and Simulation

of a Lorentz-type, Slotless Self-Bearing Motor”,
Proceedings of the 1st IFAC Conference on
Mechatronics, Darmstadt, Germany, September, 2000.

[Stephens 02:1] Stephens, L.S. and Kim, D.G., “Force and torque
characteristics for a slotless Lorentz Self-Bearing
Servomotor,” IEEE transactions of magnetics, Vol. 38,
No.4, July 2002.

[Stephens 02:2] Stephens, L.S. and Hooi-Mei Chin., “Robust stability of
the lorentz-type self-bearing servomotor,” JSME
international journal, Series C, Vol. 46,No.2,2003.

[Stephens 04] Stephens, L.S. and Anand Ranganathan “Fault

Tolerance of a Lorentz Self Bearing Motor Considering
open coil faults,” Proc. 9th Int. Symp. Magn. Bearings,
Lexington, USA, August, 2004.

 83

Appendix A
C-mex-file function for calculation of pseudo inverse

/* File:inv_A.c is C-mex S-function used in conjunction with fault_algo.mdl
 * Abstract:
 * c code for pseudo-inverse of A */
#define S_FUNCTION_NAME inv_A
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"
/*====================*
 * S-function methods *
 ====================/
/* Function: mdlInitializeSizes ===
 * Abstract:
 * The sizes information is used by Simulink to determine the S-function
 * block's characteristics (number of inputs, outputs, states, etc.).
 */
static void mdlInitializeSizes(SimStruct *S)
{
 ssSetNumSFcnParams(S, 0); /* Number of expected parameters */
 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
 return; /* Parameter mismatch will be reported by Simulink */
 }

 ssSetNumContStates(S, 0);
 ssSetNumDiscStates(S, 0);

 if (!ssSetNumInputPorts(S, 19)) return;/*7 in two out*/
 ssSetInputPortWidth(S, 0, 3); /*format: s,port,width */
 ssSetInputPortWidth(S, 1, 1); /*format: s,port,width */
 ssSetInputPortWidth(S, 2, 3); /*format: s,port,width */
 ssSetInputPortWidth(S, 3, 12); /*format: s,port,width */
 ssSetInputPortDirectFeedThrough(S, 0, 3);
 ssSetInputPortDirectFeedThrough(S, 1, 1);
 ssSetInputPortDirectFeedThrough(S, 2, 3);
 ssSetInputPortDirectFeedThrough(S, 3, 12);
 if (!ssSetNumOutputPorts(S, 4)) return;
 ssSetOutputPortWidth(S, 0, 1); /*port and width*/
 ssSetOutputPortWidth(S, 1, 1);
 ssSetOutputPortWidth(S, 2, 1);
 ssSetOutputPortWidth(S, 3, 1);
 ssSetNumSampleTimes(S, 1);
 ssSetNumRWork(S, 0);
 ssSetNumIWork(S, 0);
 ssSetNumPWork(S, 0);
 ssSetNumModes(S, 0);
 ssSetNumNonsampledZCs(S, 0);
 /* Take care when specifying exception free code - see sfuntmpl_doc.c */
 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);
}
/* Function: mdlInitializeSampleTimes ===
 * Abstract:
 * Specifiy that we inherit our sample time from the driving block.
 */

 84

static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
 ssSetOffsetTime(S, 0, 0.0);
}
#define MDL_INITIALIZE_CONDITIONS
/* Function: mdlInitializeConditions ==
 * Abstract:
 * Initialize both discrete states to one.
 */
static void mdlInitializeConditions(SimStruct *S)
{
}
/* Function: mdlOutputs ===
 * Abstract:
 * y = Cx
 */
static void mdlOutputs(SimStruct *S, int_T tid)
{
 real_T *S1 = ssGetOutputPortRealSignal(S,0);
 real_T *S2 = ssGetOutputPortRealSignal(S,1);
 real_T *S3 = ssGetOutputPortRealSignal(S,2);
 InputRealPtrsType uPtrFx = ssGetInputPortRealSignalPtrs(S,0,1);
 InputRealPtrsType uPtrFy = ssGetInputPortRealSignalPtrs(S,0,2);
 InputRealPtrsType uPtrT = ssGetInputPortRealSignalPtrs(S,0,3);
 InputRealPtrsType uPtrtheta = ssGetInputPortRealSignalPtrs(S,1,1);
 InputRealPtrsType uPtrY1 = ssGetInputPortRealSignalPtrs(S,2,1);
 InputRealPtrsType uPtrY2 = ssGetInputPortRealSignalPtrs(S,2,2);
 InputRealPtrsType uPtrY3 = ssGetInputPortRealSignalPtrs(S,2,3);
 InputRealPtrsType uPtrF1 = ssGetInputPortRealSignalPtrs(S,3,1);
 InputRealPtrsType uPtrF2 = ssGetInputPortRealSignalPtrs(S,3,2);
 InputRealPtrsType uPtrF3 = ssGetInputPortRealSignalPtrs(S,3,3);
 InputRealPtrsType uPtrF4 = ssGetInputPortRealSignalPtrs(S,3,4);
 InputRealPtrsType uPtrF5 = ssGetInputPortRealSignalPtrs(S,3,5);
 InputRealPtrsType uPtrF6 = ssGetInputPortRealSignalPtrs(S,3,6);
 InputRealPtrsType uPtrF7 = ssGetInputPortRealSignalPtrs(S,3,7);
 InputRealPtrsType uPtrF8 = ssGetInputPortRealSignalPtrs(S,3,8);
 InputRealPtrsType uPtrF9 = ssGetInputPortRealSignalPtrs(S,3,9);
 InputRealPtrsType uPtrF10 = ssGetInputPortRealSignalPtrs(S,3,10);
 InputRealPtrsType uPtrF11 = ssGetInputPortRealSignalPtrs(S,3,11);
 InputRealPtrsType uPtrF12 = ssGetInputPortRealSignalPtrs(S,3,12);
 /*uPtrs[element]) * Pointer to Input Port0 */
 real_T U1,U2,U3,U4,U5,U6;
 UNUSED_ARG(tid); /* not used in single tasking mode */
 Fx=*uPtrFx[0];
 Fy=*uPtrFy[0];
 T=*uPtrT[0];
 theta=*uPtrtheta[0];
M=8;Nw=85;R=50.8e-3;L=25.4e-3;
R=50.8e-3;
 BMKP=0.78;
for k=1:48
phi(k)=(k-1)*(2*pi/48)+(pi/4)+(pi/48); %ORIENTATION ALONG ANY STATOR STATION RELATIVE TO X COORDINATE
AXIS
 BMK(k)=BMKP*sin(M*(theta-phi(k)));
ph(1,k)=-Nw*L*BMK(k)*sin(phi(k));

 85

ph(2,k)=Nw*L*BMK(k)*cos(phi(k));
 ph(3,k)=Nw*L*R*BMK(k);
end
phi1=*uPtrY1[0];
phi2=*uPtrY2[0];
phi3=*uPtrY3[0];
Fa[1,1]=*uPtrF1[0];
Fa[2,2]=*uPtrF2[0];
Fa[3,3]=*uPtrF3[0];
Fa[4,4]=*uPtrF4[0];
Fa[5,5]=*uPtrF5[0];
Fa[6,6]=*uPtrF6[0];
Fa[7,7]=*uPtrF7[0];
Fa[8,8]=*uPtrF8[0];
Fa[9,9]=*uPtrF9[0];
Fa[10,10]=*uPtrF10[0];
Fa[11,11]=*uPtrF11[0];
Fa[12,12]=*uPtrF12[0];
Y=zeros(12,4);
Y[1,1]=phi1;Y[2,1]=phi2;Y[3,1]=phi3;
Y[4,2]=phi1;Y[5,2]=phi2;Y[6,2]=phi3;
Y[7,3]=phi1;Y[8,3]=phi2;Y[9,3]=phi3;
Y[10,4]=phi1;Y[11,4]=phi2;Y[12,4]=phi3;
beta=[-eye(3,3);eye(3,3);-eye(3,3);eye(3,3)];
z3=zeros(12,3);
lambda=[beta,z3,z3,z3;

 z3,beta,z3,z3;
 z3,z3,beta,z3;
 z3,z3,z3,beta];
A=ph*lambda*Fa*Y; %A with no fault
sys=pinv(A)*Fc'; %Matrix pseudo-inverse of A_Fault

S1[0]=sys[0];S2[0]=sys[1];S3[0]=sys[2];
}
#define MDL_UPDATE
/* Function: mdlUpdate ==
 * Abstract:
 * xdot = Ax + Bu
 */
static void mdlUpdate(SimStruct *S, int_T tid)
{
 UNUSED_ARG(S); /* unused input argument */
}
/* Function: mdlTerminate ===
 * Abstract:
 * No termination needed, but we are required to have this routine.
 */
static void mdlTerminate(SimStruct *S)
{
 UNUSED_ARG(S); /* unused input argument */
}
#ifdef matlab_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */

#endif

 86

Appendix B
Medit-file function for calculation of force and torque using integral equations

%input of x,y,zeta,ix,iy,izeta values
clear

clc

 x=input(' Rotor motion in x = ')

 y=input(' Rotor motion in Y = ')

 zeta=input(' Rotor motion in zeta = ')

 gamma=input(' Phase Angle of the current wrt permenent magnet flux = ')

 ix=input(' control current in x direction = ')

 iy=input(' control current in y direction = ')

 izeta=input(' control current in zeta direction = ')

 M=8; %NUMBER OF POLE PAIRS

 Nseg=4; %NUMBER OF SEGMENTS

 Ns=12; %NUMBER OF WINDING STATIONS PER SEGMENT

 Nw=85; %NUMBER OF WIRES PER WINDING STATION

 tm=7.75e-3; %RADIAL THICKNESS OF PERMANENT MAGNETS IN m

 tc=3.87e-3; %RADIAL THICKNESS OF COIL WINDINGS IN m

 go=0.762e-3; %NOMINAL RADIAL AIR GAP

 R=50.8e-3; %ROTOR OUTER RADIUS

 L=25.4e-3; %MOTOR LENGTH

 %BMKP=0.77; %PM FLUX DENSITY IN Tesla

 mur=1.1; %RECOIL PERMEABILITY

 muo=4*3.143*(10e-7); %PERMEABILITY IN FREE SPACE

 Br=1.08; %REMNANCE FLUX DENSITY IN Tesla

 Kml=1.82; %MAGNETIC LEAKAGE FACTOR

 Cphi=0.8; %FLUX CONCENTRATION FACTOR

 %iAmp=12.0; %PEAK INSTANTANEOUS CURRENT PER PHASE IN

Amps

 87

 irms=3.0; %MAXIMUM CONTINOUS CURRENT PER PHASE IN Amps

 for k=1:480

 theta(k)=(k-1)*2*pi/480;%GLOBAL SEGMENT ANGLE

 end

 %ORIENTATION ALONG ANY STATOR STATION RELATIVE TO X COORDINATE AXIS

 for k=1:480

 phi(k)=theta(k)+pi/4;

 end

 %CURRENT IN EACH SEGMENT

 i(1)=izeta-ix;

 i(2)=izeta-iy;

 i(3)=izeta+ix;

 i(4)=izeta+iy;

%AMPLITUDE OF CURRENT

for k=1:4

 iAmp(k)=(2*sqrt(2)/3)*Nw*i(k);

 sprintf('AMPLITUDE OF CURRENT IS %5.5f',iAmp(k))

end

for k=1:480

 if (k>=1) & (k<=120)
 q=1;

 elseif (k>=121) & (k<=240)
 q=2;

 elseif (k>=241) & (k<=360)
 q=3;

 elseif (k>=361) & (k<=480)
 q=4;
 end

 88

%PM FLUX AMPLITUDE

BWKP(k)=(muo*iAmp(q))/2*(tm+tc+go-x*cos(phi(k))-y*sin(phi(k)));

%WINDING FLUX AMPLITUDE

BMKP(k)=0.77; %(sqrt(2)*Br*tm)/(tm+mur*Cphi*Kml*(go+tc-x*cos(phi(k))-y*sin(phi(k))));

%PM FLUX

BMK(k)=BMKP(k)*sin(M*(zeta-(theta(k)-(q-1)*pi/2)));

%WINDING CURRENT DISTRIBUTION

IK(k)=iAmp(q)*sin(M*(zeta-(theta(k)-(q-1)*pi/2)-gamma));

sprintf('WINDING CURRENT IN %d IS %5.5f',k,IK(k));

%WINDING FLUX

BWK(k)=BWKP(k)*sin(M*(zeta-(theta(k)-(q-1)*pi/2)-gamma+pi/(2*M)));

end

%THE NET FORCE AND TORQUE ON THE SELF BEARING ROTOR

 FXL=0; FYL=0; Tzeta=0;

 FXM=0; FYM=0;

 FXW=0; FYW=0;

for k=1:480

%LORENTZ TYPE FORCES FOR BEARING FORCE AND TORQUE CONTROL

FXL=FXL+BMK(k)*IK(k)*cos(phi(k));

FYL=FYL+BMK(k)*IK(k)*sin(phi(k));

Tzeta=Tzeta+BMK(k)*IK(k);

%MAXWELL TYPE FORCES ON THE ROTOR DUE TO THE PM FLUX

FXM=FXM+BMK(k)*BMK(k)*cos(phi(k));

FYM=FYM+BMK(k)*BMK(k)*sin(phi(k));

%MAXWELL TYPE FORCES ON THE ROTOR DUE TO THE WINDING FLUX

FXW=FXW+BWK(k)*BWK(k)*cos(phi(k));

FYW=FYW+BWK(k)*BWK(k)*sin(phi(k));

end

 89

%LORENTZ TYPE FORCES FOR BEARING FORCE AND TORQUE CONTROL

FXL=M*L*FXL;

FYL=M*L*FYL;

Tzeta=M*R*L*Tzeta;

%MAXWELL TYPE FORCES ON THE ROTOR DUE TO THE PM FLUX

FXM=(R*L/2*muo)*FXM;

FYM=(R*L/2*muo)*FYM;

% MAXWELL TYPE FORCES ON THE ROTOR DUE TO THE WINDING FLUX

FXW=(R*L/2*muo)*FXW;

FYW=(R*L/2*muo)*FYW;

%NET FORCE AND TORQUE ON THE SELF BEARING ROTOR

FX=FXL+FXM+FXW

FY=FYL+FYM+FYW

Tzeta=Tzeta

 90

Appendix C
Medit-file function for phase distribution matrix

function [lambda_output] = lambda(lambda_input)
beta=[-eye(3,3);eye(3,3);-eye(3,3);eye(3,3)];
z3=zeros(12,3);
lambda_output=[beta,z3,z3,z3;
 z3,beta,z3,z3;
 z3,z3,beta,z3;
 z3,z3,z3,beta]*lambda_input;

Medit-file function for commutation matrix

function [Y_output] = Y(Y_input)
M=8;zeta=Y_input(5);gamma=0;
phi1=cos(M*(zeta-gamma)+pi/3);
phi2=cos(M*(zeta-gamma));
phi3=cos(M*(zeta-gamma)-pi/3);
Y=zeros(12,4)
Y(1,1)=phi1;Y(2,1)=phi2;Y(3,1)=phi3;
Y(4,2)=phi1;Y(5,2)=phi2;Y(6,2)=phi3;
Y(7,3)=phi1;Y(8,3)=phi2;Y(9,3)=phi3;
Y(10,4)=phi1;Y(11,4)=phi2;Y(12,4)=phi3;
Y_output=Y*Y_input(1:4);

Medit-file function for segment current-control current mapping

function [T3_output] = T3(T3_input)
T3_output=[-1 0 1;0 -1 1;1 0 1;0 1 1]*T3_input;

Medit-file function for faulted phase currents

 function [F_output] = F(F_input)
 F=eye(12,12);
 F(1,1)=0;
 F(2,2)=0;
 F(3,3)=0;
 F(4,4)=0;
 F(5,5)=0;
 F(6,6)=0;
 F(7,7)=0;
% F(8,8)=0;
 F(9,9)=0;
 F(10,10)=0;
 F(11,11)=0;
% F(12,12)=0;
 F_output=F*F_input;

 91

Appendix D
C-mex file function for permanent magnet flux distribution matrix

/* File : ph_sfunc.c
 * Abstract:
 * c code for ph_sfunc */

#define S_FUNCTION_NAME ph_sfunc
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"
#include "math.h"

/*====================*
 * S-function methods *
 ====================/

/* Function: mdlInitializeSizes ===
 * Abstract:
 * The sizes information is used by Simulink to determine the S-function
 * block's characteristics (number of inputs, outputs, states, etc.).
 */
static void mdlInitializeSizes(SimStruct *S)
{
 ssSetNumSFcnParams(S, 0); /* Number of expected parameters */
 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
 return; /* Parameter mismatch will be reported by Simulink */
 }
 ssSetNumContStates(S, 0);
 ssSetNumDiscStates(S, 0);

 if (!ssSetNumInputPorts(S, 49)) return;/*7 in two out*/
 ssSetInputPortWidth(S, 0, 1); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 2); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 3); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 4); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 5); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 6); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 7); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 8); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 9); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 10); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 11); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 12); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 13); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 14); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 15); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 16); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 17); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 18); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 19); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 20); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 21); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 22); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 23); /*format: s,port,width */

 92

 ssSetInputPortWidth(S, 0, 24); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 25); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 26); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 27); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 28); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 29); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 30); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 31); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 32); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 33); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 34); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 35); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 36); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 37); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 38); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 39); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 40); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 41); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 42); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 43); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 44); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 45); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 46); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 47); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 48); /*format: s,port,width */
 ssSetInputPortWidth(S, 0, 49); /*format: s,port,width */

 ssSetInputPortDirectFeedThrough(S, 0, 49);

 if (!ssSetNumOutputPorts(S, 3)) return;
 ssSetOutputPortWidth(S, 0, 1); /*port and width*/
 ssSetOutputPortWidth(S, 0, 2);
 ssSetOutputPortWidth(S, 0, 3);

 ssSetNumSampleTimes(S, 1); /*unsure if this is right*/
 ssSetNumRWork(S, 0);
 ssSetNumIWork(S, 0);
 ssSetNumPWork(S, 0);
 ssSetNumModes(S, 0);
 ssSetNumNonsampledZCs(S, 0);

 /* Take care when specifying exception free code - see sfuntmpl_doc.c */
 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);
}

/* Function: mdlInitializeSampleTimes ===
 * Abstract:
 * Specifiy that we inherit our sample time from the driving block.
 */
static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
 ssSetOffsetTime(S, 0, 0.0);
}

#define MDL_INITIALIZE_CONDITIONS

 93

/* Function: mdlInitializeConditions ==
 * Abstract:
 * Initialize both discrete states to one.
 */
static void mdlInitializeConditions(SimStruct *S)
{}

/* Function: mdlOutputs ===
 * Abstract:
 * y = Cx
 */
static void mdlOutputs(SimStruct *S, int_T tid)
{
 real_T *S1 = ssGetOutputPortRealSignal(S,0);
 real_T *S2 = ssGetOutputPortRealSignal(S,0,1);
 real_T *S3 = ssGetOutputPortRealSignal(S,0,3);

 InputRealPtrsType uph1 = ssGetInputPortRealSignalPtrs(S,0,1);
 InputRealPtrsType uph2 = ssGetInputPortRealSignalPtrs(S,0,2);
 InputRealPtrsType uph3 = ssGetInputPortRealSignalPtrs(S,0,3);
 InputRealPtrsType uph4 = ssSetInputPortWidth(S, 0, 4);
 InputRealPtrsType uph5 = ssSetInputPortWidth(S, 0, 5);
 InputRealPtrsType uph6 = ssSetInputPortWidth(S, 0, 6);
 InputRealPtrsType uph7 = ssSetInputPortWidth(S, 0, 7);
 InputRealPtrsType uph8 = ssSetInputPortWidth(S, 0, 8);
 InputRealPtrsType uph9 = ssSetInputPortWidth(S, 0, 9);
 InputRealPtrsType uph10 = ssSetInputPortWidth(S, 0, 10);
 InputRealPtrsType uph11 = ssSetInputPortWidth(S, 0, 11);
 InputRealPtrsType uph12 = ssSetInputPortWidth(S, 0, 12);
 InputRealPtrsType uph13 = ssSetInputPortWidth(S, 0, 13);
 InputRealPtrsType uph14 = ssSetInputPortWidth(S, 0, 14);
 InputRealPtrsType uph15 = ssSetInputPortWidth(S, 0, 15);
 InputRealPtrsType uph16 = ssSetInputPortWidth(S, 0, 16);
 InputRealPtrsType uph17 = ssSetInputPortWidth(S, 0, 17);
 InputRealPtrsType uph18 = ssSetInputPortWidth(S, 0, 18);
 InputRealPtrsType uph19 = ssSetInputPortWidth(S, 0, 19);
 InputRealPtrsType uph20 = ssSetInputPortWidth(S, 0, 20);
 InputRealPtrsType uph21 = ssSetInputPortWidth(S, 0, 21);
 InputRealPtrsType uph22 = ssSetInputPortWidth(S, 0, 22);
 InputRealPtrsType uph23 = ssSetInputPortWidth(S, 0, 23);
 InputRealPtrsType uph24 = ssSetInputPortWidth(S, 0, 24);
 InputRealPtrsType uph25 = ssSetInputPortWidth(S, 0, 25);
 InputRealPtrsType uph26 = ssSetInputPortWidth(S, 0, 26);
 InputRealPtrsType uph27 = ssSetInputPortWidth(S, 0, 27);
 InputRealPtrsType uph28 = ssSetInputPortWidth(S, 0, 28);
 InputRealPtrsType uph29 = ssSetInputPortWidth(S, 0, 29);
 InputRealPtrsType uph30 = ssSetInputPortWidth(S, 0, 30);
 InputRealPtrsType uph31 = ssSetInputPortWidth(S, 0, 31);
 InputRealPtrsType uph32 = ssSetInputPortWidth(S, 0, 32);
 InputRealPtrsType uph33 = ssSetInputPortWidth(S, 0, 33);
 InputRealPtrsType uph34 = ssSetInputPortWidth(S, 0, 34);
 InputRealPtrsType uph35 = ssSetInputPortWidth(S, 0, 35);
 InputRealPtrsType uph36 = ssSetInputPortWidth(S, 0, 36);
 InputRealPtrsType uph37 = ssSetInputPortWidth(S, 0, 37);
 InputRealPtrsType uph38 = ssSetInputPortWidth(S, 0, 38);
 InputRealPtrsType uph39 = ssSetInputPortWidth(S, 0, 39);

 94

 InputRealPtrsType uph40 = ssSetInputPortWidth(S, 0, 40);
 InputRealPtrsType uph41 = ssSetInputPortWidth(S, 0, 41);
 InputRealPtrsType uph42 = ssSetInputPortWidth(S, 0, 42);
 InputRealPtrsType uph43 = ssSetInputPortWidth(S, 0, 43);
 InputRealPtrsType uph44 = ssSetInputPortWidth(S, 0, 44);
 InputRealPtrsType uph45 = ssSetInputPortWidth(S, 0, 45);
 InputRealPtrsType uph46 = ssSetInputPortWidth(S, 0, 46);
 InputRealPtrsType uph47 = ssSetInputPortWidth(S, 0, 47);
 InputRealPtrsType uph48 = ssSetInputPortWidth(S, 0, 48);
 InputRealPtrsType utheta = ssSetInputPortWidth(S, 0, 49);

 /*uPtrs[element]) * Pointer to Input Port0 */

 real_T BMK[49],ph[4][49];
 real_T temp[4][13],sys[3];
 real_T M=8,Nw=85,R=50.8e-3,L=25.4e-3,pi=3.1415926,theta;
 real_T BMKP=0.78;
 int_T ii,jj,k;

 ph1 = *uph1;
 ph2 = *uph2;
 ph3 = *uph3;
 ph4 = *uph4;
 ph5 = *uph5;
 ph6 = *uph6;
 ph7 = *uph7;
 ph8 = *uph8;
 ph9 = *uph9;
 ph10 = *uph10;
 ph11 = *uph11;
 ph12 = *uph12;
 ph13 = *uph13;
 ph14 = *uph14;
 ph15 = *uph15;
 ph16 = *uph16;
 ph17 = *uph17;
 ph18 =*uph18;
 ph19 = *uph19;
 ph20 = *uph20;
 ph21 = *uph21;
 ph22 = *uph22;
 ph23 =*uph23 ;
 ph24 = *uph24;
 ph25 =*uph25;
 ph26 =*uph26 ;
 ph27 =*uph27;
 ph28 =*uph28;
 ph29 =*uph29 ;
 ph30 = *uph30;
 ph31 = *uph30;
 ph32 = *uph30;
 ph33 = *uph30;
 ph34 = *uph30;
 ph35 = *uph30;
 ph36 = *uph30;
 ph37 = *uph30;

 95

 ph38 = *uph30;
 ph39 = *uph30;
 ph40 = *uph30;
 ph41 = *uph30;
 ph42 = *uph30;
 ph43 = *uph43;
 ph44 = *uph44;
 ph45 = *uph45;
 ph46 = *uph46;
 ph47 = *uph47;
 ph48 = *uph48;
 theta = *utheta;

/* START FROM HERE F0R TOMMOROW*/

 for(k=1;k<=48;k++)
 {
 phi[k]=(k-1)*(2*pi/48)+(pi/4)+(pi/48); /*ORIENTATION ALONG ANY STATOR STATION

 RELATIVE TO X COORDINATE AXIS */
 BMK[k]=BMKP*sin(M*(theta-phi[k]));
 ph[1][k]=-Nw*L*BMK[k]*sin(phi[k]);
 ph[2][k]=Nw*L*BMK[k]*cos(phi[k]);
 ph[3][k]=Nw*L*R*BMK[k];
 }

 sys=ph*ph_input /*Replace with a mult loop */

 S1[0]=sys[1];
 S2[0]=sys[2];
 S3[0]=sys[3];

}

#define MDL_UPDATE
/* Function: mdlUpdate ==
 * Abstract:
 * xdot = Ax + Bu */
static void mdlUpdate(SimStruct *S, int_T tid)
{
 UNUSED_ARG(S); /* unused input argument */
}

/* Function: mdlTerminate ===
 * Abstract:
 * No termination needed, but we are required to have this routine.
 */
static void mdlTerminate(SimStruct *S)
{
 UNUSED_ARG(S); /* unused input argument */
}

#ifdef matlab_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

 96

Appendix E
Fault tolerant model computations

 1 Calculation of desired forces using decoupled iK :

}

{

}3 33 1 3 1

0 0 155 0 0 1 155

0 0 0 155 0 1 155

37 2 74

()
() =

ixx

ixx

i

xx x

x cx

y cy

c

i c

K

0 0 K 0 0

K

F K i
F i
T iθ θ

θ
θ =

 =

i

64444744448

14444244443

 (1)

2 Calculation of is using pseudo inverse A+:
2.1 Calculation of A FYθ

=Φ Λ :

11 12 13 14

21 22 23 24

31 32 33 34

3 x 4

A
a a a a
a a a a
a a a a

 =

64444744448

 (2)

2.2 Calculation of 1A− :

 1 1. (.)T TA A A A− −= (3)

4 x 3

11 21 31
11 12 13 14

12 22 32
21 22 23 24

13 23 33
31 32 33 34

14 24 34

3 x 4

 . T

a a a
a a a

A A
a a a
a a a

a a a a
a a a a
a a a a

 =

6447448
64444744448

 (3)

11 11 12 12 13 13 14 14 11 21 12 22 13 23 14 24 11 31 12 32 13 33 14 34

21 11 22 12 23 13 24 14 21 21 22 22 23 23 24 24 21 31 22 32 23 33 24 34

31 11 32

.

.

. .

a a
a a
a a a a

+ + + + + + + + +
= + + + + + + + + +

+ 12 33 13 34 14 31 21 32 22 33 23 34 24 31 31 32 32 33 33 34 34

3 x 3

.a a a a a a a a a a a a a a a a a a a a

 + + + + + + + +

644444444444444444444474444444444444444444448

 (4)

 97

11 12 13

21 22 23

31 32 33

3 x 3

b b b
b b b
b b b

 =

6447448

 (5)

 1 (.)(.)
 .

T
T

T

Adj A AA A
A A

− = (6)

1(.)TA A −

() () ()
() () ()

() () ()

22 33 32 23 21 33 31 23 21 32 31 22

12 33 32 13 11 33 31 13 11 32 31 12

12 23 22 13 11 23 21 13 11 22 21 12

11 22 33

. .

b b b b b b b b b b b b
b b b b b b b b b b b b

b b b b b b b b b b b b

b b b

 − − − −

− − − − −

 − − − − =
−() () ()32 23 12 21 33 31 23 13 21 32 31 22 b b b b b b b b b b b b− − + −

 (7)

11 12 13

21 22 23

31 32 33

3 x 3

c c c
c c c
c c c

 =

6447448

 (8)

1 1. (.)T TA A A A− −= (9)

4 x 3

11 21 31 11 11 21 22 31 33
11 12 13

12 22 32 12 11 22 22 32 331
21 22 23

13 23 33 13 11 23 22 33 33
31 32 33

14 24 34 14 11 24 22

3 x 3
. . .
. . .
. . .
. .

a a a a c a c a c
c c c

a a a a c a c a c
A c c c

a a a a c a c a c
c c c

a a a a c a c

−

+ +
 + + = = + + +

6447448
6447448

4 x 3

34 33.a c

 +

64444744448

 (10)

2.3 Calculation of si :

} }}4 34 1 3 1
1

xx x

s cA −=i F (11)

 98

{

}
}

4 x 34 1
3 x 1

1 11 11 21 22 31 33

2 12 11 22 22 32 33

3 13 11 23 22 33 33

4 14 11 24 22 34 33

. . .

. . .

. . .

. . .

x

s
x

s
y

s

s

is

i a c a c a c
F

i a c a c a c
F

i a c a c a c
T

i a c a c a c

+ +
 + + = + +
 + +

64444744448

 (12)

3 Calculation of iφ :

} } }12 1 4 112 4

i =
x xx

Y siφ (13)

 (4 x 12)

1 1 1

2 1 2

3 1 3

1 2 1

2 2 21

3 2 32

1 3 13

2 3 24

3 3 3

1 4 1

2 4 2

3 4 31

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

i =
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Y

i
i
i
i
ii
ii
ii
ii
i
i
i
i

φ

Φ Φ
 Φ Φ
 Φ Φ
 Φ Φ
 Φ Φ
 Φ Φ = Φ Φ
 Φ Φ
 Φ Φ
 Φ Φ
 Φ Φ
 Φ Φ

64444744448

1

2

3

 cos[() /3]
 cos[()]

 cos[() /3]

m
m
m

θ γ π
θ γ
θ γ π

 Φ = − +

Φ = −
 Φ = − −

 (14)

 99

4 Calculation of ist :

1 1

1 2

1 3

2 1

2 2

1 2 x 1 2 3

1 1 3 1

1 2

1 3

 (4 8 x 1 2) 2 1

1 2 3 2 2

1 2 3 2 3

1 2 3 3 1

1 2 3 3 2

3 3

4 1

4 2

4 3

0 0 0
0 0 0
0 0 0
0 0 0

x

x
s t

x

x

i
i
i
i
i
i

i i
i
i
i
i
i

i
i
i
i
i
i
i

λ

β
β

β
β

Φ
Φ
Φ
Φ
Φ
Φ

Φ Φ
 Φ
 Φ
 Φ
 Φ
 Φ = = Φ
 Φ
 Φ
 Φ
 Φ
 Φ

678

6 4 4 4 447 4 4 4 4 48

4 8 x 1

3 2

3 3

4 1

4 2

4 3

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3

|
|
|

i
i
i
i
i
i
i
i
i
i
i
i
i
i

Φ
 Φ
 Φ
 Φ
 Φ

Φ
 Φ

Φ
 Φ

Φ
 Φ
 Φ

Φ
 Φ

678

 (15)

 100

5 Calculation of xF , yF ,T :

 * * (1) (1) * * (4 8) (4 8)
 * * (1) (1) * * (4 8) (4 8)
 * * * (1) (1) * * * (4 8) (4 8)

M K M K

M K M K

M K M K

x
y

M L B S in M L B S inF
F M L B C o s M L B S in

M L R B I M L R B ITθ

=

− − −
− − −
− − −

()

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3

4 1

4 2

4 3

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3

|
|
|

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

θΦ

Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ

6444444444444444444444744444444444444444444444844

4 8 x 1

64748

 (16)

 101

Vita

Anand Ranganathan

Born May 13th 1979 in Chennai, Tamilnadu, India

Education:

Bachelor of Engineering in Mechanical Engineering, 2000

University of Madras, Chennai

Advanced level automotive course work, 2001

Madras Institute of Technology, Anna University, Chennai

Membership: ASME, SAE and I EEE

Scholastic honors:

Federal Government of India GATE scholarship for graduate studies (2000-2001)

Kentucky Graduate Scholarship (2001-2004)

Professional Publication:

Lyndon S. Stephens, Anand Ranganathan, “Decoupled and fault tolerant algorithm

of Lorentz self-bearing motor considering open coil faults,” 9th International

symposium on magnetic bearing, 2004, University of Kentucky

	IMPLEMENTATION AND VALIDATION OF FAULT TOLERANT CONTROL OF A SELF-BEARING MOTOR CONSIDERING OPEN COIL FAULTS
	Recommended Citation

	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Chapter 1 Introduction
	1.1 Magnetic Bearing
	1.2 Disadvantages of Magnetic Bearings
	1.3 Lorentz Self-Bearing Motor
	1.4 Advantages of the Self-Bearing motors
	1.5 Problem definition and research motivation
	1.6 Literature Survey

	Chapter 2 Lorentz Self-Bearing Motor
	2.1 Mathematical modeling of the self-bearing motor
	2.1.1 Actuator layout and control
	2.1.2 Air gap flux and winding current distribution
	2.1.3 Force and torque generation

	2.2 Verification of mathematical system model
	2.3 Controller design and implementation
	2.4 Fault tolerant algorithm
	2.5 Fault tolerant control approach

	Chapter 3 Simulation of Fault Tolerant control of Self-Bearing Motor
	3.1 Procedure for verification & implementation of fault tolerant control
	3.2 Simulation and testing procedures
	3.3 Comparison of various fault tolerant model
	3.3.1 integral equations model
	3.3.2 Lumped parameter model
	3.3.3 Crosscoupled Ki model
	3.3.4 Desired Ki model
	3.3.5 Lumped parameter model with the addition of faults
	3.3.6 Fault tolerant model using lumped paramter model
	3.3.7 Fault tolerant model using integral equstions model
	3.3.8 Decoupled & Fault Tolerant model

	3.4 Comparison of forces in different models
	3.5 Comparison of perturbation voltages
	3.6 Implementation of Fault Tolerant Model in the controller
	3.7 Functions used in the simulink models
	3.7.1 Medit file for Phase Distribution function
	3.7.2 Medit file for Phase currents after faults introduced (F)
	3.7.3 Medit file for Commutation(Y)
	3.7.4 Medit file for Segment Current-Control current mapping
	3.7.5 C-mex file S-function for Pseudo-inverse in the simulink model
	3.7.6 C-mex file S-functions for computing the Forces and Torque in the simulink model

	Chapter 4 Experimental performance of fault tolerant control
	4.1 Risk-free testing of the fault tolerant model
	4.2 Test of Stiffness in the fault tolerant and non-fault tolerant control
	4.3 Sine sweep test
	4.4 Power consumed in the fault tolerant and non-fault tolerant control
	4.5 Torsional stiffness in the non-fault tolerant model and fault tolerant model
	4.6 Closed loop stiffness for non-fault tolerant and fault tolerant control
	4.7 Stabilty of fault tolerant model in different fault configurations

	Chapter 5 Conclusions and Future work
	5.1 Conclusions
	5.2 Future work

	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Vita

