
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2003

REVISING HORN FORMULAS REVISING HORN FORMULAS

Jignesh Umesh Doshi
University of Kentucky, jigud@hotmail.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Doshi, Jignesh Umesh, "REVISING HORN FORMULAS" (2003). University of Kentucky Master's Theses.
222.
https://uknowledge.uky.edu/gradschool_theses/222

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232558984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF THESIS

REVISING HORN FORMULAS

Boolean formulas can be used to model real-world facts. In some situation we may have

a Boolean formula that closely approximates a real-world fact, but we need to fine-tune it

so that it models the real-world fact exactly. This is a problem of theory revision where the

theory is in the form of a Boolean formula. An algorithm is presented for revising a class of

Boolean formulas that are expressible as conjunctions of Horn clauses. Each of the clauses

in the formulas considered here has a unique unnegated variable that does not appear in

any other clauses, and is not ‘F’. The revision algorithm uses equivalence and membership

queries to revise a given formula into a formula that is equivalent to an unknown target

formula having the same set of unnegated variables. The amount of time required by the

algorithm to perform this revision is logarithmic in the number of variables, and polyno-

mial in the number of clauses in the unknown formula. An early version of this work was

presented at the 2003 Midwest Artificial Intelligence and Cognitive Science Conference [4].

KEYWORDS: Propositional Horn sentences, Horn formulas, theory
revision, equivalence queries, membership queries.

Jignesh Umesh Doshi

August 6, 2003.

REVISING HORN FORMULAS

By

Jignesh Umesh Doshi

Dr. Judy Goldsmith

(Director Of Thesis)

Dr. Grzegorz W. Wasilkowski

(Director Of Graduate Studies)

August 6, 2003.

RULES FOR THE USE OF THESES

Unpublished theses submitted for the Master’s degree and deposited in the University

of Kentucky Library are as a rule open for inspection, but are to be used only with

due regard to the rights of the authors. Bibliographical references may be noted, but

quotations or summaries of parts may be published only with the permission of the

author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the thesis in whole or in part requires also the

consent of the Dean of The Graduate School of the University of Kentucky.

THESIS

Jignesh Umesh Doshi

The Graduate School

University of Kentucky

2003

REVISING HORN FORMULAS

THESIS

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science

in the College of Engineering

at the University of Kentucky

By

Jignesh Umesh Doshi

Lexington, Kentucky

Director: Dr. Judy Goldsmith, Professor of Computer Science

Lexington, Kentucky

2003

Copyright c©Jignesh U. Doshi 2003.

Acknowledgments

First, I want to thank my Thesis Chair, Dr. Judy Goldsmith, for her continuous guid-

ance and support. This includes not only the period of the creation of this Thesis, but also

throughout my master’s studies and research at the University of Kentucky. Her faith in

me and the freedom she provided have made this work possible.

I would also like to thank Dr. Robert Sloan at the University of Illinois, Chicago,

and the Midwest Artificial Intelligence and Cognitive Science Conference (MAICS-2003)

referees, for reading through and pointing out improvements in my paper, which provided

the theoretical base for this work. I thank Gyórgy Turán for help in implementing the

equivalence query oracle.

Assistance from my parents and brothers was extremely helpful during my stay here.

All my professors, Dr. Raphael Finkel, Dr. Ken Calvert, Dr. Andrew Klapper and others,

have made my studies at the University of Kentucky an enriching experience. I would like

to thank everyone at the CS Department with an emphasis on Dr. Judy Goldsmith for her

trust in me, and her continuous help from my first day at the University of Kentucky.

iii

Table of Contents

List of Figures vi

List of Files vii

1 Introduction 1

1.1 Computational Learning Theory . 2

1.2 Learning with Queries . 3

1.3 Theory Revision with Queries . 3

1.4 The Problem . 5

1.5 Thesis Outline . 5

2 Definitions 7

2.1 Basic definitions . 7

2.2 Learning Theory–related definitions . 8

2.3 Horn Clause–related definitions . 9

2.4 Assumptions . 9

3 Related Work 12

3.1 Learning Horn Formulas . 13

3.1.1 The Learning-Horn Algorithm [2] . 13

3.1.2 Example Run of the Learning-Horn Algorithm 14

3.1.3 Issues with the Learning-Horn Algorithm 15

3.2 Revising Horn Formulas in the Deletions-Only Model 16

3.2.1 Deletions-Only Revision Algorithm [6] 16

3.2.2 Example Run of the Deletions-Only Revision Algorithm 18

3.2.3 A question on the Deletions-Only Algorithm 20

4 Algorithm Overview 22

4.1 Steps toward the Additions-Also Algorithm 22

4.2 Notation . 23

4.3 Outline . 23

5 Algorithms 25

5.1 ReviseHorn(ρ0) . 25

5.2 ShrinkBody(x, h) . 26

5.3 Associate(x, ρ0) . 27

5.4 BinarySearch(ẍ, C0) . 29

iv

6 Lemmas and Theorems 31

7 Correctness Analysis 35

8 Implementation 38
8.1 Programming Language . 38
8.2 Design . 39

8.2.1 Clause object . 39
8.2.2 Global object . 39
8.2.3 ReviseHorn object . 39
8.2.4 GUI object . 40

8.3 Inputs . 40
8.3.1 Universe of variables . 40
8.3.2 Initial theory . 41
8.3.3 Target theory . 42

8.4 Data Structures . 42
8.4.1 Clause . 42
8.4.2 Theory . 42
8.4.3 Counterexamples . 42

8.5 Derived Inputs . 43
8.5.1 Set of valid head variables . 43
8.5.2 Set of valid body variables . 43
8.5.3 Hypothesis . 43

8.6 Validation . 43
8.6.1 Clause Validation . 43
8.6.2 Theory Validation . 44

8.7 Query Functions . 44
8.7.1 Equivalence Query (EQ) . 44
8.7.2 Membership Query (MQ) . 45

8.8 Revision Functions . 45
8.9 Output . 45

9 Example Run 46

10 Conclusion 52

A Implementation Code 53
A.1 Clause.java . 53
A.2 Global.java . 55
A.3 RevUniExp.java . 57
A.4 ReviseHorn.java . 65

Bibliography 75

Vita 77

v

List of Figures

8.1 Application GUI . 40
8.2 Application Class Diagram . 41

vi

List of Files

1. JDThesis.pdf 499 KB

vii

Chapter 1

Introduction

Suppose we have a good estimate of what an unknown target theory may be, but don’t

know it exactly, and would like to revise this theory to always be correct. What we need

is a revision algorithm, and not a learning algorithm. We can always use what we already

know (a known initial theory) while revising our hypothesis so that it becomes equivalent

to an unknown target theory. I present an algorithm for revising a subclass of propositional

Horn formulas (a subclass of Boolean formulas), in which revisions consist of deletion or

addition of Horn clause body variables. My algorithm is polynomial in the number of

clauses in the formula and logarithmic in the number of variables in the universe. My work

extends the positive results for revising Horn formulas in [6] in one significant direction. My

construction allows addition of new body variables in the revision process. The algorithm

presented in this thesis, however, deals with a subclass of Horn formulas that I define as

Unique Explanations (definition on page 9).

The problem solved here belongs to the field of computational learning theory. In

Section 1.1, I give an overview of the field of computational learning theory. A very brief

text on the entities involved in computational learning theory is given there. I explain why

this field was developed and how it is related to the work in this thesis. In Section 1.2, I

explain learning with queries, a subfield of computational learning theory, along with the

entities involved in the learning process and the types of queries posed. In Section 1.3, I

explain the concept of theory revision with queries. Section 1.4 mentions the problem I

solved and the revision model used in this thesis. I conclude this chapter with an outline

of the rest of the thesis.

1

1.1 Computational Learning Theory

The following information was collected from the book “Machine Learning” [12].

Computational learning theory is the design and analysis of algorithms for making pre-

dictions on the basis of past experiences. In computational learning theory, one defines a

formal mathematical model for learning. A formal model is chosen based on the following

criteria: What is being learned? What is the environment like; that is, is there a teacher?

and What is known till now? Computational learning theory involves answering questions

like: How many examples are necessary or sufficient to assure successful learning? or How

is the number of examples required affected in settings where: a learner poses queries to a

teacher, a teacher chooses examples or a teacher labels randomly generated instances.

Generally the attributes of a computational learning problem are the number of training

examples required to learn, the complexity of the hypothesis space, and the manner in which

training examples are presented. If c is a theory and x is an example, then training examples

are usually presented in any one of the following ways:

• A learner proposes instances as queries to a teacher, that is, a learner proposes an

instance x and a teacher provides c(x)(the value of c for an instance x).

• A teacher (that knows c) provides training examples, that is, a teacher provides a

sequence of examples of the form (x, c(x)).

• Some random process (for example, nature) proposes the instances, that is, an instance

x is generated randomly and a teacher provides c(x).

Next, I mention the values of these attributes for the problem solved here. In the

work presented in this thesis, the number of training examples required to revise a theory

is determined by the number of queries posed by a learner to a teacher. The hypothesis

space in my work is a subclass of Boolean formulas. In the problem solved here, the teacher

knows c and provides training examples to a learner. Thus, the work in this thesis is about

computation learning in a particular setting. The solution presented in this thesis works

for a subclass of computational learning problems in which queries are used for learning.

2

1.2 Learning with Queries

In the Learning-with-Queries model, a learner tries to identify a target theory through

queries to a teacher. This model is also known as Angluin’s model of learning with queries

[2]. Learning with queries involves two entities: queries and teachers. In this type of learn-

ing, a learner poses queries to the teachers that always answer them correctly. Two types

of teachers for learning a subclass of Boolean formulas, membership oracles and equivalence

oracles, were first introduced by Angluin, et al. in [2].

In a query to an equivalence oracle, the learning algorithm proposes a hypothesis h, and

the answer depends on whether the hypothesis is equivalent to the target theory. If so, the

answer is ‘Yes’, and the learning algorithm has succeeded in its goal of exact identification

of the target theory. Otherwise, the answer is a counterexample: some instance x such that

x is true for the hypothesis and false for the target theory or vice versa.

In a query to a membership oracle, the learning algorithm gives an instance x, and

the answer is either false or true depending on whether x is false or true for the target.

Membership queries work on instances, whereas equivalence queries work on formulas.

Instead of learning, I use these types of teachers to revise a subclass of Boolean formulas.

Thus, more specifically, the problem I solve in this thesis belongs to a field called “Theory

Revision with Queries”.

1.3 Theory Revision with Queries

Many times one has a rough explanation that requires alteration. For example, I ask

a field expert and an information engineer to develop an expert system for predicting my

college roommate’s cooking habits. I observe that my roommate cooks only when he is

hungry, there is no fight between us, there are no leftovers and it’s his turn to cook. Based

on this explanation, the following “pretty close” initial theory is developed:

HeIsHungry AND NoFight AND HisTurn AND NoLeftOvers → WillCook.

Then, though I use this initial theory as a general guide, I happen to observe that my

roommate didn’t cook even though he was hungry, there was no fight before his turn, and

there were no leftovers. He had been invited to his friend’s place. I must revise or edit my

initial theory, perhaps to:

3

HeIsHungry AND NoFight AND HisTurn AND NoLeftOvers AND NotInvited →

WillCook.

This is a problem known in machine learning as theory revision.

Given a Boolean formula that is approximately correct, how does one make it entirely

correct? If a given formula differs from an unknown target formula, what is the complexity

of revising this given formula? These are some of the questions that arise in theory revision.

The term “theory revision” refers to a wide variety of approaches, as in [5] and [7]. Because

of the breadth of the field, I do not begin to survey those approaches, but instead limit my

survey to work based on (a) theory revision with queries, and (b) Horn formulas, which are

a subclass of Boolean formulas. In fact, the problem of revising Horn formulas has many

interpretations. The different interpretations are surveyed by Goldsmith, et al. in [7].

For determining the revisions, teachers are available to which we pose membership

queries of the form “Is this an instance of the unknown target formula?”, and equivalence

queries of the form “Is this hypothesis equivalent to the target formula?”. If the hypothesis

is not equivalent to the target, an equivalence query returns an instance that is true for

the hypothesis and false for the target or vice versa. These queries are the same queries

posed in Angluin’s model [2]. However, here these queries are used for revision, and not for

learning. Revision algorithms are permitted time (measured as the number of examples)

polynomial in the number of required revisions, but only logarithmic in the total number

of variables in the universe. Under these limitations, it will generally be faster to revise an

existing explanation rather than to start learning from scratch.

Theory revision is of independent interest to the greater computer science commu-

nity. Unfortunately, most very large theories based on real–world examples are not exactly

correct. My work shows that, at least for certain forms of theories, a few corrections to

the theory can be made at a much lower cost in terms of examples (i.e., queries in formal

models) than (re)learning the whole theory from scratch.

Learning or revising of Horn formulas can be useful in the field of data mining where

collection and refinement of information is widely done. Other applications of revision of

Horn formulas are in the fields of machine learning, especially in robotics and computer

vision. Horn formulas are a common choice for practical machine learning systems, and

almost all systems that learn logic programs. Horn formulas are used to represent set oper-

ations and are the basis for logic programming language PROLOG. For more information

4

on the importance of Horn formulas consult [11].

1.4 The Problem

The problem that I solve in this thesis is a theory revision with queries problem in

a special setting. The solution presented here deals with the situation where a learner

has a rough estimate of what to learn, and where the learner tries to learn an unknown

target theory exactly within a specific time complexity. This solution requires that both

the initial theory and the target theory satisfy certain conditions. The theories that satisfy

these conditions are defined as Unique Explanations (definition on page 9).

There are many models for theory revision. Sloan and Turán [15] formulated the theory

revision problem in the model of membership and equivalence queries [1], and I am using

that model here as well. That is, there is one teacher MQ that tells whether any given

instance is positive or negative according to the correct theory, and a second teacher EQ

that responds to a false conjecture about the correct theory with a counterexample. An

expert would function as a membership oracle in an expert system setting.

1.5 Thesis Outline

Chapter 2 gives some basic definitions from logic and learning theory along with some

examples. Section 2.3 defines a Horn clause body and a Horn clause head and mentions

observations related to Horn clauses. Section 2.4 formally specifies my assumption under

which the algorithm in this thesis works correctly.

Chapter 3 introduces other authors’ work that is closely related to my thesis. This

chapter explains Angluin, et al.’s work on learning Horn formulas [2] and Goldsmith, et

al.’s work on revision of Horn formulas [6]. Some important issues and an example run of

their algorithm are presented here.

Chapter 4 specifies a road-map towards designing an Additions-Also algorithm. An

overview of my algorithm is also presented here. The notation specified in this chapter is

consistently used in the pseudo-code of my algorithm, in the explanation and in all the

following sections.

Chapter 5 presents the details of each of my algorithm subroutines along with their

pseudo-code. Chapter 6 uses this pseudo–code to prove the correctness of lemmas.

5

Chapter 6 provides the lemmas and their proofs. These lemmas are used later in Chap-

ter 7 for proving the correctness of my algorithm. The complexity derivation in Chapter 7

determines the maximum number of membership queries and equivalence queries required

in the revision process.

Chapter 8 covers all the implementation issues of the application designed. This chapter

presents information regarding the application design, the application usage, its inputs and

outputs, the data structures used and the validations performed. A class diagram of the

application design is also shown here.

Chapter 9 shows an actual run of the revision application for an example. This chapter

contains a trace of the revision process that shows all the counterexamples encountered

along with the queries asked, the answers obtained, the hypotheses built at each stage and

the number of equivalence queries and membership queries asked.

Copyright c©Jignesh U. Doshi 2003.

6

Chapter 2

Definitions

In this chapter, I give some basic definitions from logic (in Section 2.1) and learning

theory (in Section 2.2). Section 2.3 provides Horn clause-related definitions and observa-

tions. Only definitions that are required to understand the work in this thesis are provided.

This chapter concludes with a formal specification of my assumption under which the algo-

rithm in this thesis works correctly. An example that satisfies this assumption, and some

examples that don’t satisfy this assumption are also provided.

2.1 Basic definitions

I start with some basic definitions from logic.

Horn clause: An implication or disjunction of literals having at most one unnegated

variable. For example:

a.b.c → d ≡ ∼ a∨ ∼ b∨ ∼ c ∨ d

where a, b, c and d are Boolean variables, ‘∼’ represents a Boolean NOT, ‘∨’ represents a

Boolean OR, and ‘.’ represents a Boolean AND.

Horn formula: A conjunction of Horn clauses. For example:

(a.c → d) ∧ (b.d → e) ∧ (c.e → f)

where a, b, c, d, e and f are Boolean variables, ‘.’ represents a Boolean AND between clause

body variables, and ‘∧’ represents a Boolean AND between two Horn clauses.

7

Next, I give a couple of general definitions from computational learning theory, as

applied to my work.

2.2 Learning Theory–related definitions

The theories we are interested in are the initial theory, the target theory and the

hypothesis theory. Below I define an initial theory and a target theory. A hypothesis

theory is defined after the definitions of (positive and negative) examples.

Initial theory: A known Horn formula that needs revision.

Target theory: An unknown Horn formula to be derived from the initial theory.

I always work with a finite universe of n variables, so I identify sets of variables with

their characteristic bit strings or with their truth assignments. Thus, an example can be

represented as a n-bit string but can be intersected with a set of variables. For example,

x1x3x4 ∩ 1101 = x1x3x4 ∩ x1x2x4 = x1x3x4 ∩ TTFT = x1x4

I use true/false for the answers returned by queries, and T/F or 1/0 for the values assigned

to the variables.

Positive and negative examples: A positive (respectively, a negative) example for Horn

formula H is an assignment x such that H evaluates to T (respectively, F) when each vari-

able v in H is replaced by a corresponding bit in x.

Let x be an example; then true(x) (respectively, false(x)) is a set consisting of the constant

T (respectively, F) and the variables assigned the value T (respectively, F) by x.

Hypothesis: A proposition constructed from the initial theory and the examples obtained

from the queries.

Revision distance: The minimal number of deletions or additions of literals needed to

obtain the target theory from an initial theory.

Now we know what an example is. Below I define what a counterexample is. Counterex-

amples can be either negative or positive.

Negative counterexample: An example that does not satisfy the target theory but sat-

isfies the hypothesis.

Positive counterexample: An example that satisfies the target theory but not the hy-

pothesis.

8

Below I define a membership query and an equivalence query.

Membership Query (MQ): A query that returns true if a given example satisfies the

target theory, and false if a given example does not satisfies the target theory.

Equivalence Query (EQ): A query that returns true if the target and the hypothesis

theories are equivalent. Equivalent theories need not have the same structure as long as

they have the same truth table. If the two theories are not equivalent, the EQ returns a

counterexample.

2.3 Horn Clause–related definitions

My algorithm in this thesis revises a subclass of Horn formulas and extensively uses

the following two definitions specific to Horn clauses.

Clause’s head: A Horn clause’s unnegated variable.

Clause’s body: A Horn clause’s negated variables.

Consider the following Horn clause,

a.b.c → d ≡ ∼ a∨ ∼ b∨ ∼ c ∨ d

where a, b, c and d are Boolean variables, ‘∼’ represents a Boolean NOT, ‘∨’ represents a

Boolean OR, and ‘.’ represents a Boolean AND. This clause’s body is a set {a, b, c}, and

its head is the variable d.

For an example x ∈ {0,1}n and clause C, we say x covers C if body(C) ⊆ x, and x

falsifies C iff x covers C and head(C)/∈ x. If x and y both cover clause C, and at least one

of x and y falsifies C, then x ∩ y falsifies C.

2.4 Assumptions

Finally, I mention my assumption for the work presented in this thesis. The algorithm

presented in this thesis works correctly on any theory that is a Unique Explanation as

defined below.

Unique Explanation: A Horn formula in which all the clause heads are:

• not the literal ‘F’,

• unique,

9

• not in any of the bodies, and

• intact. That is, none of these heads is required to be deleted nor is any new head

required to be added to the initial Horn formula during the revision process.

For instance, a unique explanation can be used to represent the cooking habits of my room-

mate. The algorithm presented in this paper revises unique explanations like the one shown

below.

Known initial theory:

(HisTurn ∧ NoLeftOvers ∧ HeIsHungry → WillCook) ∧

(NoFight → NiceMood) ∧

(NothingElseToDo → EnthuToCook)

Unknown target theory:

(HisTurn ∧ NoLeftOvers ∧ NotInvited → WillCook) ∧

(NoFight ∧ PraiseHim → NiceMood) ∧

(NothingElseToDo → EnthuToCook)

Conversely, the following theories are not unique explanations:

Known initial theory:

(b11 ∧ b12 ∧ b13 → h1) ∧ (b21 ∧ b22 → h1) ∧ (b31 ∧ b32 ∧ b33 → h3)

Unknown target theory:

(b11 ∧ b12 ∧ b13 → h1) ∧ (b21 ∧ b22 → h2) ∧ (b31 ∧ b32 ∧ b33 → h3)

The initial theory above is not a unique explanation because there are clauses with a

non–unique head h1 in them. Even though the target theory is a unique explanation, the

algorithm presented here requires both the initial theory and the target theory to be unique

explanations for a successful revision.

Unknown target theory:

(b11 ∧ b12 ∧ b13 → h1) ∧ (b31 ∧ b32 ∧ h1 → h3)

The target theory above is not a unique explanation as it has a head that is in the

body of another clause. No initial theory can be revised to this type of target theory by

the algorithm presented in this thesis.

10

Unknown target theory:

(b11 ∧ b12 ∧ b13 → h1) ∧ (b21 ∧ b22 → F)

Literal F is not allowed as a clause head for either of the initial theory or the target

theory. The above target theory is therefore not a unique explanation.

Known initial theory:

(b11 ∧ b12 ∧ b13 → h1) ∧ (b21 ∧ b22 → h2)

Unknown target theory:

(b11 ∧ b12 ∧ b13 → h3) ∧ (b21 ∧ b22 → F)

Heads should not be deleted or added to obtain the target theory from the initial

theory. In the above target theory, head h3 is required to be added, and head h2 is required

to be deleted. This type of revisions cannot be made by the algorithm presented in this

thesis.

Copyright c©Jignesh U. Doshi 2003.

11

Chapter 3

Related Work

This chapter contains detail notes on the work from other authors that is related to

my work. I explain Angluin, et al.’s work on learning Horn formulas [2]. This work will

help understand some basic concepts, which are used in Goldsmith, et al.’s work [6]. After

this, I present Goldsmith, et al.’s work on revising Horn formulas and some issues with it.

My work is an extension of the work already done in [6].

An algorithm for learning, not revising, Horn formulas is presented in [2]. This algo-

rithm uses equivalence queries and membership queries to determine an unknown formula.

This algorithm requires polynomial (of degree greater than 0) time in the number of variables

and the number of clauses in the unknown formula. This requirement makes it unsuitable

for revising Horn formulas having many more variables than clauses or errors.

An algorithm that revises Horn formulas is presented in [6]. This algorithm also uses

equivalence queries and membership queries to revise an initial theory. This algorithm,

however, revises theories requiring only deletion of variables. This algorithm is polynomial

(of degree greater than 0) in the number of clauses in the formula, and is independent of

the number of variables in the formula.

In this thesis, I extend the positive results for revising Horn formulas in [6] in one

significant direction. My construction allows addition of new body variables in the revision

process. The algorithm presented in this thesis, however, deals with a subclass of Horn

formulas that I define as unique explanations (definition on page 9).

12

3.1 Learning Horn Formulas

The following information was collected from the paper “Learning conjunctions of Horn

Clauses” [2].

In [2], an algorithm is presented for learning a class of Boolean formulas that are expressible

as conjunctions of Horn clauses. This algorithm uses equivalence queries and membership

queries to produce a formula that is logically equivalent to the unknown formula to be

learned. The amount of time used by this algorithm is polynomial (of degree greater than

0) in the number of variables and the number of clauses in the unknown formula.

The gist of the algorithm presented in [2] is given below.

3.1.1 The Learning-Horn Algorithm [2]

The Learning-Horn algorithm by Angluin, et al. uses counterexamples presented by a

teacher to learn a Horn formula from scratch. This algorithm keeps track of all the coun-

terexamples presented by a teacher, and uses new counterexamples to refine its hypothesis.

The hypothesis is initially true for all the examples, and is refined until the target Horn

formula is learned.

According to the paper, every negative counterexample x violates some clause C of the

target formula. Therefore body(C)⊆true(x), and head(C)∈false(x). Thus one approach

presented in the paper is to add to the current hypothesis H all elements of the set

clauses(x) = { (
∧

v∈true(x) v) → z : z∈false(x) }

whenever a new negative counterexample x is obtained.

Now, according to Angluin, et al., the new clauses may be incorrect (not implied by

the target formula), or they may be correct, but too weak. Any clause that is not logically

implied by the target formula will eventually be discovered when a positive counterexample

is produced that does not satisfy this clause.

The problem of correct but weak clauses is more serious, according to Angluin, et al.

To see that there is at least one correct clause, let C
′

be the clause from clauses(x) with

the same head as C; the body set of C
′

may be much larger than the body set of C, with

the result that there are numerous negative counterexamples that violate C but satisfy

C
′

. According to Angluin, et al., an adversarial choice of counterexamples can force this

13

approach to add exponentially many correct but weak clauses. To counter this problem,

a second approach presented is to find smaller bodies by using membership queries to set

more of the variables to F in the negative counterexamples that are given.

Given a negative counterexample x, set some variable that is currently T in x to F,

and ask whether the result satisfies the target formula . If not, then the result still violates

some clause of the target formula, and so leave the variable set to F; otherwise, set the

variable back to T. Repeat this process until no more variables can be set to F.

The problem with this approach lies in the fact that even though an example violated

one clause of the target formula, this minimization might produce an example that violated

some other clause of the target formula; and this fact might lead to nontermination.

The first scenario shows that reduction of the number of variables set to T in the

negative counterexamples is required. The second scenario rules out the greedy approach.

A data driven approach is thus used by Angluin, et al. A new negative example is used

in an attempt to “refine” previously obtained negative examples by intersection. Each

such intersection, if it contains fewer true variables than the previously obtained negative

example, is then tested to see whether it is negative. If so, this new negative example is

a candidate to refine the previously obtained negative example. This algorithm maintains

a sequence S of negative examples. Each new negative counterexample either is used to

refine one element of S, or is added to the end of S.

In order to learn all of the clauses of the target formula, one would like the clauses

induced by the (negative) examples in S to approximate distinct clauses of the target

formula. This distinct-clause approximation will happen if the examples in S violate distinct

clauses of the target formula. Angluin, et al. proved that an overzealous refinement may

result in several examples in S violating the same clause of the target formula. To avoid

this, whenever a new negative counterexample could be used to refine several examples in

the sequence S, only the first among these is refined. This technique is also used in my

algorithm.

I now present an example run of the algorithm from the paper [2].

3.1.2 Example Run of the Learning-Horn Algorithm

Let the variable set be V = a, b, c, d and the target be (a ∧ c → d) ∧ (a ∧ b → c). Initially,

set S (a set of negative counterexamples) to an empty sequence, and H (hypothesis) to null

14

(true for all examples):

S : [] and H : φ.

Let the first counterexample for H be TTTF (negative example). There are no elements

of S that can be refined with this negative example, so simply append this example to the

end of the sequence. Since S has changed, generate a new hypothesis H.

S : [TTTF] and H : (a ∧ b ∧ c → d) ∧ (a ∧ b ∧ c → F).

Let the next counterexample for H be TTTT (positive example). This eliminates an

incorrect clause from H but does not change S, so don’t generate a new H from S.

S : [TTTF] and H : (a ∧ b ∧ c → d)

All incorrect clauses from H will be discarded using future positive counterexamples in the

way shown above.

Let the next negative counterexample be TTFT. Intersect this with the first element

of S, and get the example TTFF, which has strictly fewer variables set to T than the first

element of S had. Now, a membership query with TTFF says that this example is also a

negative example, so replace the first element of S with the result of the intersection. Then,

because S has changed, generate a new hypothesis H from S.

S : [TTFF] and H : (a ∧ b → c) ∧ (a ∧ b → d).

The next negative counterexample is TFTF. Intersect this with the first element of S

to get the example TFFF, which a membership query shows to be a positive example for

the target formula. So don’t refine the first element of S with TFTF, but instead add this

example to the end of S.

S : [TTFF, TFTF] and H : (a ∧ b → c) ∧ (a ∧ b → d) ∧ (a ∧ c → d).

Now, the final equivalence query for H says that the target formula is learned, so stop.

3.1.3 Issues with the Learning-Horn Algorithm

This section explains some of the key issues with Angluin, et al.’s Learning-Horn al-

gorithm [2]. The issues presented here are to some extent tackled in Goldsmith, et al.’s

15

work [6]. Before I go into details of Goldsmith, et al.’s work, I explain some problems with

Angluin, et al.’s Learning-Horn algorithm.

The main issue with Angluin, et al.’s Learning-Horn algorithm [2] is its complexity.

The amount of time used by this algorithm is polynomial (of degree greater than 0) in the

number of variables and clauses in the unknown formula. Therefore, even if there are very

few clauses but many variables in the target theory, this algorithm may take a long time to

learn.

Also, in many cases a learner has a rough idea of what it is learning. This information

is never used by Angluin, et al.’s Learning-Horn algorithm [2]. Thus Angluin, et al.’s

Learning-Horn algorithm is unsuitable for learning Horn formulas where a learner has a

rough idea of what it is learning, and where there are many variables in the theory that is

being learned.

Goldsmith, et al.’s work on theory revision in the Deletions-Only model addresses these

issues to some extent. Instead of learning Horn formulas, Goldsmith, et al.’s algorithm

revises a rough estimate of what is to be learned. This algorithm is polynomial (of degree

greater than 0) in the number of clauses in the formula and independent of the number of

variables in the formula. The reason I say Goldsmith, et al.’s revision algorithm addresses

these issues to some extent is because that algorithm revises only those theories that require

deletion of variables already in the rough estimate.

3.2 Revising Horn Formulas in the Deletions-Only Model

The following notes were prepared from the paper “More theory revision with queries” [6].

In [6] an algorithm for revising Horn formulas is presented. This work is closest of all the

work on learning/revising of Horn formulas to the work presented in this thesis. Instead

of learning a Horn formula from scratch, revising a roughly correct Horn formula can be

achieved with algorithms of lower complexity. The algorithm presented in [6] works for

Horn formulas that require only deletion of variables from its clauses.

3.2.1 Deletions-Only Revision Algorithm [6]

Below I present a summary of routines used in [6] to achieve revision in the Deletions-

Only model. Before that I mention some specific definitions from the paper [6].

16

Definitions from the paper [6]:

x
⋂̇

y: An example x
⋂̇

y is the same as x
⋂

y except when there is one or more hypothesis

clause C such that x
⋂

y covers body(C), and x has a 1 in the position head(C), in which

case that 1 stays on regardless of y.

Metaclause: A collection of all Horn clauses that have the same body.

Algorithm 1 ReviseHorn.

This algorithm routine is the main routine that starts with an empty conjunction (i.e.,

everything is classified as true) and repeatedly makes equivalence queries until done. For

negative counterexamples, if possible the algorithm uses it to edit the body of a metaclause

in the current hypothesis. The subroutine ShrinkBody that does this body variable edition

is explained next. If it is not possible to shrink any of the current hypothesis clauses with the

counterexample, then the algorithm uses that counterexample to add a new metaclause to

the hypothesis. The subroutine NewMetaClause makes this metaclause addition. Positive

counterexamples are always used to edit heads of existing metaclauses. This procedure is

similar to how Angluin, et al.’s Learning-Horn algorithm [2] edits the set S of negative

counterexamples.

Algorithm 2 ShrinkBody

This subroutine is the authors’ first attempt to revise the hypothesis and is always called

first for a negative counterexample. If this subroutine fails to shrink any of the hypothesis

body, the authors call NewMetaClause (explained below). This subroutine shrinks the

body of the hypothesis clause corresponding to the target clause being falsified by the given

negative counterexample. If no such clause is present this subroutine fails.

Algorithm 3 NewMetaClause

This subroutine adds a new metaclause to the hypothesis and is called only when Shrink-

Body fails. Next, I present some details about this subroutine, as this will help understand

similar steps taken in my work.

Certain negative counterexamples can be used to create a new metaclause, because

every negative instance falsifies some target clause. If negative counterexample x falsifies

the target clause C∗ that is a revision of some initial theory clause C 0, then x
⋂

body(C0)

17

also falsifies C∗. Thus, for each clause C0 of the initial theory, one would like to say that if

MQ(x
⋂

body(C0)) = 0, then set x to x
⋂

body(C0).

However, there are two issues to which one must pay careful attention.

First, one doesn’t want to rediscover any metaclauses already in the hypothesis. Per-

haps example x falsified only the target clauses not falsified by any metaclause body in the

hypothesis, but x
⋂

body(C0) falsifies some target clause that is falsified by a metaclause

body already in the current hypothesis.

Second, one must make sure that the process of intersecting x with the initial theory

clause bodies does not change x from an example that the current hypothesis classifies as

positive to one the current hypothesis classifies as negative. This is why Goldsmith, et al.

use x
⋂̇

C0 instead of x
⋂

C0 in membership query.

Algorithm 4 FixHeads

A positive counterexample x falsifies a hypothesis clause of the form (foo → F) or with a

head. In the first case, Goldsmith, et al. add as heads of the metaclause body foo all heads

that occur in the clauses of the initial theory ρ0 and do not occur in foo.

In the second case, Goldsmith, et al. delete the extra head that conflicts with the

counterexample. The resultant hypothesis will thus satisfy the given example; that is, the

given positive counterexample will no longer be a counterexample.

Goldsmith, et al.’s algorithm revises a Horn sentence containing m clauses and needing

e revisions using O(m3e) queries. Below I present an example run of their Deletions-Only

revision algorithm.

3.2.2 Example Run of the Deletions-Only Revision Algorithm

Consider the following example.

Initial theory ∅: (x1x2x3→x4) ∧ (x2x4→x5)

Target theory ∅*: (x1x3→x4) ∧ (x4→x5)

h = true for all examples.

Suppose our first equivalence query results in the following negative counterexample.

EQ(h) = 00010 (negative counterexample)

18

Since there is no hypothesis clause to shrink, we call NewMetaClause to add a new hypoth-

esis clause. This results in the following hypothesis.

h = x4→FALSE

Say our next example returned from an equivalence query is the following positive coun-

terexample.

EQ(h) = 00011 (positive counterexample)

This results in a call to FixHeads. Our hypothesis now becomes,

h = x4→x5

Say our next example is EQ(h) = 10101 (negative counterexample)

ReviseHorn tries the following.

body(x4→x5)
⋂

10101 = 00010
⋂

10101 = 00000

Since MQ(body(x4→x5)
⋂

10101) = 1, ShrinkBody is not called.

Instead we call NewMetaClause(10101, initial theory, h), which tries the following.

b = 10101
⋂̇

11100 = 10100

MQ(b) = 0

b
⋂

00010 = 00000

MQ(00000) = 1

b=10101
⋂̇

01010 = 00000

MQ(b) = 1

Thus NewMetaClause results in the following hypothesis.

h = (x1x3x5→FALSE) ∧ (x4→x5)

Next, say we get the following counterexample.

EQ(h) = 10111 (positive counterexample)

Since it is a positive counterexample, we call FixHeads. The hypothesis now becomes.

h = (x1x3x5→x4) ∧ (x4→x5)

Our next example is EQ(h)=10101.

body(x1x3x5→x4)
⋂

10101 = 10101
⋂

10101

MQ(10101) = 0. This is a negative counterexample and so we call ShrinkBody.

ShrinkBody(x1x3x5→x4 ,10101, ..) tries the following.

b = 10101
⋂̇

11100 = 10100

MQ(b) = 0

x = 10100

b = 10100
⋂̇

01010 = 00000

19

MQ(b) = 1

x = 10100

Thus ShrinkBody succeeds and results in the following.

body(x1x3x5→x4) = 10100
⋂

10101 = 10100

h = (x1x3→x4) ∧ (x4→x5)

EQ(h) = “Correct”

Thus we have revised our initial theory.

3.2.3 A question on the Deletions-Only Algorithm

Why start with an empty hypothesis, and not with a hypothesis that is the

same as the initial theory in the Deletions-Only model?

I spent some time trying to answer this question. The problem with using the initial

theory as our hypothesis initially is the complexity restriction. We can in fact use the above

Deletions-Only algorithm with slight modifications to work with the hypothesis the same

as the initial theory at the start, but not without increasing its complexity. The

following example will make this clear.

Initial theory ϕ: abc → d
∧

bd → a

Target theory ϕ*: bc → d
∧

b → a

Hypothesis h = abc → d
∧

bd → a (Initially the same as the initial theory instead of being

empty)

EQ(abc → d
∧

bd → a)?

negative counterexample: 0110

Using ShrinkBody(abc → d, 0110)

h = bc → d
∧

bd → a

EQ(bc → d
∧

bd → a)?

negative counterexample: 0100

This negative counterexample can be used to shrink any of the clause bodies in the hypoth-

esis above. We don’t know which one to select, so we shrink both of them. Shrinking any

one of these clause bodies might result in a wrong target theory.

h = b → cd
∧

b → ad

20

h = b → acd

Now the above clause can be reduced to b → a using ShrinkBody. However, we will have to

reintroduce the first clause, which we already refined. In this new first clause, extra variables

might appear in its body, which might be removed one at a time later. This problem makes

the query complexity dependent on the number of variables in the theory. Thus the com-

plexity of the Deletions-Only algorithm increases if we don’t start with an empty hypothesis.

An extension of the work in [6] would be to allow clause body variable additions to the

initial theory during the revision process and within a certain time complexity. My work

in this thesis does exactly the same: It allows clause body variable additions to the initial

theory clauses for a subclass of Horn formulas and achieves the revision with complexity

that is logarithmic in the number of variables.

Copyright c©Jignesh U. Doshi 2003.

21

Chapter 4

Algorithm Overview

This chapter mentions an approach towards designing a revision algorithm in the

Additions-Also model — a model that allows clause body variable additions to the ini-

tial theory in the revision process. This chapter then specifies the notation used to present

my work in this thesis. An outline of the algorithm is presented next. The details of my

algorithm are presented in the next chapter (Chapter 5).

4.1 Steps toward the Additions-Also Algorithm

The first step towards designing an Additions-Also algorithm would be to design an

algorithm that works with a subclass of Horn formulas in which we can identify required ad-

ditions. To make the problem tractable, let’s assume additions are required only in bodies,

and heads are unique. In order to correctly revise this type of initial theory, an Additions-

Also algorithm must determine:

(a) Which variable needs to be added.

(b) To which initial theory clause this required variable needs to be added.

Once the required additions and the corresponding clauses are determined correctly, neg-

ative counterexamples can be used to add new clauses in the hypothesis. When this new

hypothesis clause (associated with a unique initial theory clause requiring body variable

additions) is added, all the variables required to be added to the associated initial theory

clause should be present in it. This way we can successfully convert an Additions-Also

problem into a Deletions-Only problem, which we know how to solve from Section 3.2.

Before I present more details of my work, let us look at the notation I use to explain

22

my work.

4.2 Notation

In this thesis I use the following convention.

Target theory symbols have * as superscripts.

For example, ρ∗ is a target theory, and C∗ is a target theory clause.

Initial theory symbols have 0 as superscripts.

For example, ρ0 is an initial theory, and C0 is an initial theory clause.

Hypothesis theory symbols have no superscripts.

For example, h is a hypothesis theory, and C is a hypothesis clause.

I use x, b for examples or temporary variables, and − for asymmetric set difference.

4.3 Outline

Using the initial theory, the algorithm constructs a hypothesis starting from an empty

Horn formula (which is always satisfied). Each clause I add to the hypothesis:

• revises an initial theory clause, and

• covers a target clause with the same head as that of the initial theory clause being

revised.

Furthermore, as I show in Lemma 6.5, a hypothesis clause is a subset of an initial

theory clause union the corresponding target theory clause. In other words, to each new

clause added to the hypothesis, no unnecessary literals are added other than those already

in the initial theory clause being revised.

The other task of my construction is to remove all the unnecessary literals from the

hypothesis clauses. While Goldsmith, et al. have presented an algorithm for revision of

Horn theories that require deletions only [6], mine differs from theirs in two ways. First, the

addition and deletion steps are mixed in my construction. It may be that I perform deletions

on some hypothesis clauses before adding others. Second, because of my assumptions about

23

the clause heads (implications) being unique, un-erasable and disjoint from other clause

bodies, the deletion step in my algorithm is much simpler than in [6].

My construction is governed by the algorithm ReviseHorn(ρ0). Within ReviseHorn(ρ0)

are calls to ShrinkBody(ẍ, C0) for deletions of unnecessary variables in the hypothesis

clauses, and to Associate(x, ρ0), which begins the process of adding a new clause to the hy-

pothesis. Associate(x, ρ0) is so named because this subroutine associates a particular head,

and thus a particular initial theory clause, with a counterexample. Once this association

is done, Associate(x, ρ0) calls BinarySearch(ẍ, C0) to find any necessary additions to an

associated initial theory clause. More formally,

Algorithm 1: ReviseHorn(ρ0) revises a given Horn formula ρ0. This subroutine re-

moves unnecessary variables from the body of any hypothesis clause if possible, or else adds

to the hypothesis an entire new clause that has all the required body variables.

Algorithm 2: ShrinkBody(x, h) removes unnecessary variables from a hypothesis clause

body if possible and indicates whether this shrinking was successful or not.

Algorithm 3: Associate(x, ρ0) finds an association between a given negative counterex-

ample x and some initial theory clause. This association is then used by BinarySearch(ẍ,

C0) to find additions of new body variables, if any are in fact required.

Algorithm 4: BinarySearch(ẍ, C0) uses negative counterexample ẍ to find all miss-

ing body variables in the initial theory clause C 0 and add them to the new hypothesis

clause body.

Goldsmith, et al. based their Horn Revision algorithm [6] on Angluin et al.’s algo-

rithm for learning Horn formulas via queries [2]. I model my algorithm loosely on that of

Goldsmith, et al. For instance, my BinarySearch(ẍ, C 0) is similar to that presented in [6]

except that their BinarySearch always finds a necessary addition, whereas mine first checks

whether any additions are required. ShrinkBody(x, h) is also similar to that in [6], but

Associate(x, ρ0) does not appear in any of the surveyed literature.

Copyright c©Jignesh U. Doshi 2003.

24

Chapter 5

Algorithms

This chapter provides commented pseudo–code along with a line-by-line explanation of

all the subroutines of the Additions–Also revision algorithm. Chapter 6 uses this pseudo–

code to prove the correctness of lemmas, which are later used to prove the correctness of

my algorithm.

5.1 ReviseHorn(ρ0)

Revises a Horn formula ρ0 to ρ∗.

Input: ρ0 is the initial theory to be refined.

We cannot get a positive counterexample in the entire revision process. This fact is proved

in Lemma 6.7.

1: h=Empty Horn formula (always satisfied)

2: while ((x=EQ(h)) 6= ”Correct”) do

// By lemma 6.7, x will always be a negative counterexample.

3: shrunk=ShrinkBody(x, h)

4: if (not shrunk) then

5: h=h ∧ Associate(x, ρ0) // Add a new hypothesis clause.

25

6: end if

7: end while

ReviseHorn(ρ0) begins with an empty hypothesis (i.e., everything is classified as true) and

repeatedly makes equivalence queries until done. For every negative counterexample x, if

possible I use x to edit the body of a clause in the current hypothesis, or else I use x to add

a new clause to the hypothesis. The second case will always occur with the first negative

counterexample. By Lemma 6.7, positive counterexamples are never obtained.

The call to ShrinkBody(x, h) on line 3 is used to edit an existing hypothesis clause

body if possible. If shrinking is not possible, I call Associate(x, ρ0) to add a new clause in

the hypothesis. This new clause has all the required body variables added to it.

5.2 ShrinkBody(x, h)

Shrinks a hypothesis clause if possible and indicates whether shrinking was done or not.

Input: negative counterexample x, hypothesis theory h.

1: for (each clause C ∈ h in order) do

// Check if any hypothesis clause can be shrunk.

2: if (body(C)∩x⊂ body(C) and MQ(x ∩ body(C) ∪ (all heads) − head(C))==0)

then

3: body(C) = body(C)∩x

4: return true // Shrinking is done.

5: end if

6: end for

7: return false // No shrinking done.

26

In lines 1 and 2, I check whether any of the current hypothesis clause bodies can be shrunk.

If so, I shrink them in line 3 and return true indicating that shrinking was done.

In fact, there may be a target clause C∗ such that x covers both body(C∗) and head(C∗),

but x could be used to remove unnecessary variables from the body of the corresponding

hypothesis clause – even though x is not a counterexample for that clause. This is why, in

line 2 of ShrinkBody(x, h), I turn on all heads except the head of the clause under consider-

ation. Turning on the other heads guarantees that a negative membership query response

can only reflect that body(C∗) is covered. If shrinking is not possible, it is indicated by

returning false in line 7.

5.3 Associate(x, ρ0)

Associates a negative counterexample to an initial theory clause. This association is then

used by BinarySearch(ẍ, C0) to find all the required additions to this associated initial the-

ory clause.

Input: x is a negative counterexample.

1: ẍ=x ∪ all heads of ρ0 // ẍ is not a counterexample at this point.

2: d=ẍ − x // all heads in ẍ not already on in x.

3: while (MQ(ẍ)==1) do

4: Turn off a bit b in d such that ∀ C ∈ h, b /∈ head(C)

5: ẍ=x − b

6: if (ẍ is a negative counterexample) then

7: Associate ẍ to clause C0 of ρ0 such that head(C0)==bit b in d that was

just turned off

8: end if // By Lemma 6.7, ẍ cannot become a positive counterexample.

27

9: end while

10: ẍ=BinarySearch(ẍ, C0) // finds all required additions if any in C0.

11: return clause: ẍ → head(C0)

In line 1, I turn on (set to true) all the heads that were off initially in the negative

counterexample x. I call this new example ẍ. Since ẍ has all the possible heads turned on,

it can never be a counterexample at this step. All heads turned on means ẍ satisfies all the

clauses of the target and all the clauses of the hypothesis theory. As there is no clause with

head ‘F’, ẍ will be positive for both the target and the hypothesis theory.

In line 2, I use d to keep track of all those heads that are on in ẍ and off in x.

Associate(x, ρ0) is called only when shrinking is not possible, that is, when a new hypothesis

clause corresponding to a target clause falsified by x needs to be added to the hypothesis.

The head of this target clause will be off in x, and this head will also not be the head of

any current hypothesis clause. Thus d contains at least one head b that is not a head of any

current hypothesis clause such that turning b off in ẍ makes ẍ a negative counterexample.

In the while loop, I find the initial theory clause to which ẍ needs to be associated

before calling BinarySearch(ẍ, C0). BinarySearch(ẍ, C0) then finds all the body variable

additions required for the associated initial theory clause.

At line 3, I am certain that ẍ is positive for both the initial theory and the target

theory. In lines 3..9, I turn off one head at a time from d in ẍ and check whether ẍ becomes

a negative counterexample.

In line 5, one of the heads that was on in ẍ and off in x is turned off in ẍ using d. I

don’t turn off any existing hypothesis head, as I don’t want to associate this new negative

counterexample with an existing hypothesis clause.

In line 6, I check if ẍ is turned into a negative counterexample due to turning off of a

head in previous line. In line 7, I associate the negative counterexample ẍ with the initial

theory clause having the head that was just turned off. Having found an association, I exit

the loop. I do not check if ẍ is a positive counterexample because, by Lemma 6.7, I cannot

get a positive counterexample in the entire revision process. In line 9, I loop back to line 3

keeping the head turned off in ẍ as no association was found.

In line 10, I call BinarySearch(ẍ, C0) to find all required additions, if any, to the asso-

ciated clause C0 before returning ẍ to ReviseHorn(ρ0) on line 11.

28

5.4 BinarySearch(ẍ, C0)

Finds all the required body variable additions, if any.

Input: ẍ is a negative counterexample associated with C 0

1: start = x = (ẍ ∩ body(C0)) ∪ all head bits in ẍ

2: while (ẍ − x 6= 0)

3: d = ẍ − x

4: repeat

5: if (it’s the first iteration of the repeat loop) then

6: c = φ // First check whether any additions are needed.

7: else

8: c = d with half of its on bits turned off

9: end if

10: if (MQ(x ∪ c) == 0) then

11: ẍ = x ∪ c

12: d = c

13: else

14: x = x ∪ c

15: d = d − c

16: end if

17: until (number of bits on in d ≤ 1)

29

18: x = start = start ∪ d // d is the required addition.

19: end while

20: return (x− all head bits) // Remove all head bits.

BinarySearch(ẍ, C0) finds all the required body variable additions (variables that were not

present in the corresponding initial theory clause) to the body of the new clause being added

to the hypothesis.

The clause returned by BinarySearch(ẍ, C0) may not be the final target theory clause.

This clause might require deletions, and that will be done by shrinking it with future

negative counterexamples. But for now we are guaranteed that this returned clause needs

no further additions.

In the first line, I temporarily keep the heads on in x so that clauses with these heads

don’t interfere with the addition checks performed later. An interference occurs when x

covers bodies of these clauses (clauses whose head is turned off after intersection in the

first line). This interference might lead to additions to the wrong clause being found.

These heads are later removed from x after all additions for body(C 0) are found and before

returning x as the new clause body. In line 8, it does not matter what convention is chosen

for determining which half of the bits is turned off. The reader is invited to choose a

convention.

In the repeat..until loop, each required addition is found using binary search on the

possible additions. A required variable is the threshold variable that when turned off in

ẍ makes ẍ (a negative counterexample) a non-counterexample. In line 18, I have found a

required addition, which is noted and not included for examination in binary searches for

further additions. The outer while loop performs this binary search process until no new

additions are possible.

In the last line, I remove all the head variables from x because heads cannot be in the

new clause body (by my assumption that theories are Unique Explanations). After this

removal of heads, I return x to Associate(x, ρ0) as the new clause body to be added to the

hypothesis.

Copyright c©Jignesh U. Doshi 2003.

30

Chapter 6

Lemmas and Theorems

This chapter provides some lemmas and theorems with their proofs. These lemmas

and theorems are used later in Chapter 7 for proving the correctness of my algorithm.

Lemma 6.1 The first counterexample in the construction must be a negative counterexam-

ple.

Proof Initially the hypothesis theory is empty, that is, it is true for all examples in the

universe. So the only way we can have a counterexample is by having an example that

satisfies the hypothesis theory and falsifies the target theory. Thus the first counterexample

in the construction must be a negative counterexample.

Lemma 6.2 Given the negative counterexample x in Associate(x, ρ0), x falsifies a target

clause C∗

j such that h∗

j is not the head of any clause already present in the current hypothesis.

Proof Suppose hypothesis h = b1 → h1 ∧ b2 → h2 ∧ ... ∧ bk → hk where bi is the body,

and hi is the head for clause Ci in the hypothesis. Say x is a new negative counterexample.

Then h(x) is true. For each clause Ci in h, x either covers its body bi and includes its head

hi=h∗

i , or it does not cover body bi.

Next, we claim that if x does not cover body bi it does not cover the corresponding

target clause body b∗i and hence cannot be a negative counterexample due to clause C ∗

i . To

prove this, let’s assume x does not cover a hypothesis body bi but covers the corresponding

target clause body b∗i , and x does not include head hi=h∗

i . This means b∗i ⊂ bi, and example

x is a negative counterexample. Prior to calling Associate(x, ρ0), we attempt to shrink the

hypothesis clause body bi using x. The shrinking of bi will succeed since b∗i ⊂ bi, and

31

so we will never call Associate(x, ρ0). Thus x in Associate(x, ρ0) cannot cover body b∗i if

does not cover the corresponding hypothesis clause body bi and hence cannot be a negative

counterexample due to target clause C∗

i corresponding to Ci already being present in the

hypothesis.

Lemma 6.3 Given a negative counterexample x to hypothesis h, Associate(x, ρ0) produces

a negative counterexample ẍ and head h∗ such that h∗ is the head of the unique target clause

C∗ that is not present in the current hypothesis, and ẍ covers body(C ∗). In other words,

we correctly associate each counterexample with exactly one initial theory clause and hence

exactly one target theory clause not present in the current hypothesis.

Proof Suppose hypothesis h = b1 → h1 ∧ b2 → h2 ∧ ... ∧ bk → hk where bi is the body and

hi is the head for a clause Ci in the hypothesis. Associate(x, ρ0) ensures that ẍ, obtained

by turning on all heads in x, is not associated with any of the Ci, i ≤ k, already present in

the hypothesis. This property is ensured by not turning off any hypothesis head hi ∈ ẍ.

Initially in Associate(x, ρ0), ẍ is a non–counterexample as all heads are on in ẍ. This fact

also makes ẍ true for both the target theory and the hypothesis theory. The example ẍ can

never become a positive counterexample as we never turn off any hypothesis head hi ∈ ẍ

or turn on any hypothesis clause body variable. In Associate(x, ρ0) we only turn off heads

that were turned on by us in ẍ and that are not the head of any of the existing hypothesis

clauses. We stop with the first initial theory clause C 0
j whose head when turned off in ẍ

made ẍ a negative counterexample. At this point ẍ falsifies only a single target theory clause

not present in the current hypothesis and having the same head as C 0
j . Thus ẍ is associated

with C0
j and the corresponding target clause C∗

j not present in the current hypothesis.

Associate(x, ρ0) thus produces a negative counterexample ẍ and head h∗

j=head(C0
j) such

that h∗

j is the head of the unique target clause C∗

j not present in the current hypothesis,

and ẍ covers body(C∗

j).

Lemma 6.4 Given ẍ, h∗, and an initial theory clause C0 = b0 → h∗ corresponding to a

target theory clause C∗ = b∗ → h∗, BinarySearch(ẍ, C0) produces all and only variables in

b∗ − b0. More simply, BinarySearch(ẍ, C0) finds all the required clause body additions for

an initial theory clause before it is added as a new hypothesis clause.

Proof In line 1 of BinarySearch(ẍ, C0), we temporarily add all the heads that are on in

the counterexample ẍ to the new hypothesis clause body. This addition of heads prevents

32

interference of other target clauses in the addition check; that is, it prevents BinarySearch(ẍ,

C0) from finding required additions to clauses other than C 0. In the repeat-until loop of

BinarySearch(ẍ, C0), we find a single variable addition, if any, to body(C 0) that is the

threshold between a positive and a negative example associated with clause head(C 0). In

the outer loop of BinarySearch(ẍ, C0), we perform this binary search repeatedly to find

each required addition. This search continues until no more additions are required. Thus

BinarySearch(ẍ, C0) finds all the required clause body additions for an initial theory clause

before this clause is added as a new hypothesis clause.

Corollary 6.5 The clause resulting from the binary search in Lemma 6.4, C = b → h∗,

corresponds to the target clause C∗ = b∗ → h∗, and b∗ ⊆ b. Furthermore, b − b∗ ⊆ b0, that

is, the only unnecessary body variables in this new hypothesis clause are the ones already

present in the initial theory clause body.

Proof In BinarySearch(ẍ, C0) we remove all the heads from the body to be returned.

These heads were added by Associate(x, ρ0) and kept on in BinarySearch(ẍ, C0) during the

search. By Lemma 6.4, BinarySearch(ẍ, C0) adds only necessary variables to the body being

returned. The only unnecessary variables that are allowed in the body that is returned are

those that were present in the initial theory body and in the counterexample.These variables

are later removed by ShrinkBody(x, h). Thus BinarySearch(ẍ, C 0) makes all the required

additions and no unnecessary additions. Since we make all the required additions prior to

adding a new clause, the clause resulting from the binary search in Lemma 6.4, C = b → h∗,

corresponds to the target clause C∗ = b∗ → h∗, such that b∗ ⊆ b.

Lemma 6.6 If ShrinkBody(x, h) is applied to b → h∗, it will remove only variables in

b − b∗. In other words, ShrinkBody(x, h) deletes variables from hypothesis clauses only if

those variables do not appear in the corresponding target clause.

Proof From Lemma 6.5 each hypothesis clause has a corresponding target clause, and this

association is never changed during the revision process. In line 2 of ShrinkBody(x, h),

we check whether removal of at least one hypothesis body variable not present in the

corresponding target clause makes the negative counterexample a non–counterexample. The

temporary turning on of other heads in the second condition guarantees that even after

deletion of variables from the hypothesis clause C, body(C) covers the same target clause

33

body as previously associated. Thus ShrinkBody(x, h) deletes variables from hypothesis

clauses only if those variables do not appear in the corresponding target clause.

Corollary 6.7 All counterexamples are negative; that is, we can never get a positive coun-

terexample in the revision process. In other words, the target theory always implies the

hypothesis.

Proof This follows from Corollary 6.5 and Lemma 6.1. Initially the hypothesis is true

everywhere, so the first counterexample is always negative. By Lemma 6.5, the clauses

we add to the hypothesis are each associated with a unique target clause having the same

head. At any point in the revision process each hypothesis clause body has all the required

additions, and from Lemma 6.6, ShrinkBody(x, h) removes body variables from a hypothesis

clause only if they are not present in the corresponding target theory. So each hypothesis

clause body is always a superset of the corresponding target clause body having the same

head. Thus the target theory always implies the hypothesis theory. Therefore we cannot

have an example that is true for the target theory and false for the hypothesis theory. Thus

all counterexamples are negative; that is, we can never get a positive counterexample in the

revision process.

Copyright c©Jignesh U. Doshi 2003.

34

Chapter 7

Correctness Analysis

This chapter analyzes the correctness of my algorithm using the lemmas and theorems

from Chapter 6. A derivation for the complexity of my algorithm is presented at the end

of this chapter to determine the maximum number of membership queries and equivalence

queries required for correct revision.

Let m be the number of clauses in the target theory, n be the total number of variables,

and e be the revision distance from the target theory. I first prove the correctness of my

algorithm and then address its complexity.

Lemma 7.1 ReviseHorn(ρ0) correctly revises a Horn formula ρ0 with m clauses and n

variables and with revision distance e from the target theory ρ∗ (where ρ0 and ρ∗ are Unique

Explanations).

Proof Once a particular clause is added, it is never deleted. By Lemma 6.6, each nonempty

hypothesis is implied by ρ∗. In particular, by Lemma 6.5, each hypothesis clause covers

the corresponding ρ∗ clause (i.e., the target clause with the same head). For each variable

appearing in a hypothesis clause that does not appear in the corresponding ρ∗ clause, there

will eventually be a counterexample that triggers ShrinkBody(x, h) on that clause.

Next, I show that each ρ∗ clause is eventually covered by some hypothesis clause.

Suppose not, and let C∗ be a target clause with head h∗ that is never covered. Then in

particular the instance with all bits turned on except h∗ will be a negative counterexample

to any such hypothesis. In order for my algorithm to converge, some such counterexample

must be handled.

35

Finally, I show that my algorithm actually converges. By Lemma 6.5, no unnecessary

additions are made to any of the hypothesis clauses, so there can only be m clauses added,

and there can be no more than e deletions per clause. Since each clause addition is finite,

and each deletion requires only finitely many queries, my algorithm converges.

Let us now consider how many membership queries and equivalence queries are required

for the revision process.

Lemma 7.2 ReviseHorn(ρ0) makes O(m2 + m ∗ e ∗ log n) membership queries (MQs) to

revise a Horn formula with m clauses and n variables and with revision distance e from the

target theory.

Proof In a single call to ShrinkBody(x, h), line 2 of ShrinkBody(x, h) is executed at most

m times as there can be at most m hypothesis clauses. Thus each call to ShrinkBody(x, h)

makes at most m MQs.

Line 5 of ReviseHorn(ρ0) is executed exactly m times as there will be m additions of

clauses to the initial empty hypothesis.

In a single call to Associate(x, ρ0), line 3 is executed at most m times. Thus m MQs

are made at line 3.

The repeat-until loop in a single call to BinarySearch(ẍ, C 0) is executed at most log n

times, and the while loop is executed at most e times. Thus a single call to BinarySearch(ẍ,

C0) makes e ∗ log n MQs. As a result, each call to Associate(x, ρ0) makes (m + e ∗ log n)

MQs. Therefore line 5 of ReviseHorn(ρ0) makes a total of m ∗ (m + e ∗ log n) MQs.

Line 3 of ReviseHorn(ρ0) is executed at most e + m + 1 times for at most e required

deletions and at most m shrinking calls that failed just before the addition of new clauses

by Associate(x, ρ0). Thus line 3 of ReviseHorn(ρ0) makes a total of m ∗ (e + m + 1) MQs.

Therefore the total number of MQs made is at most (m∗(e+m+1)+m∗(m+e∗logn)),

which is O(m2 + m ∗ e ∗ log n).

Lemma 7.3 ReviseHorn(ρ0) makes O(e + m) equivalence queries (EQs) to revise a Horn

formula with m clauses and n variables and with revision distance e from the target theory.

Proof The only place equivalence queries are used in the algorithm is in line 3 of ReviseHorn(ρ0)

and since line 3 of ReviseHorn(ρ0) is executed at most (e+m+1) times, my algorithm will

need at most (e + m + 1) EQs to make the revision.

36

Thus ReviseHorn(ρ0) correctly revises a Horn formula ρ0 with m clauses and n vari-

ables and with revision distance e from the target theory ρ∗ (where ρ0 and ρ∗ are Unique

Explanations) using at most O(m2 + m ∗ e ∗ log n) MQs and O(e + m) EQs.

Copyright c©Jignesh U. Doshi 2003.

37

Chapter 8

Implementation

This chapter covers all the implementation issues of the revision application and presents

information regarding the application design, the application usage, its inputs and outputs,

the data structures used and the validations performed. Section 8.1 explains why Java was

chosen to implement the algorithm. This section mentions important Java APIs used in the

application development. Section 8.2 presents a high-level design of the application along

with a class diagram. Section 8.3 explains what are mandatory and optional inputs to the

application and how the inputs such as the universe of variables, the initial theory and the

target theory are entered in the application. Section 8.4 specifies the data structures used to

represent clauses and formulas in the application. Section 8.5 mentions other required data

that are derived from the user inputs such as the set of valid head variables and the set of

valid body variables. Section 8.6 explains what validations are required and how clause val-

idations and theory validations are performed. Section 8.7 explains how equivalence query

(EQ) and membership query (MQ) functions are implemented. Section 8.8 explains how

the revision functions are implemented. Section 8.9 lists all the types of output generated

by the application. The application code is presented in the appendix.

8.1 Programming Language

I used Java to develop the revision application. The primary reason for choosing Java

was availability of the HashSet class in Java 2 platform API specification. The HashSet

class API allows some basic set operations such as intersection, union and set difference

to be performed efficiently on HashSet objects. Use of the HashSet class API considerably

38

reduced programming time and effort. Java also helped in developing a better GUI for the

revision application.

8.2 Design

The application development involved designing the classes (to hold the data and rep-

resent the objects) and the interfaces (interaction among these objects). The following

objects were designed.

8.2.1 Clause object

This object was designed to hold a Horn clause along with the operations that can be

carried out on a Horn clause. This object contains a variable set (a clause body) and a

variable (a clause head) representing a Horn clause. This object has two constructors, one

to construct a clause using variables and the other to construct a clause from another clause

object. This object also provides functions to set body variables and get body and head

variables. Notice that no function to set a head is provided because in the revision process

a clause head is never changed.

8.2.2 Global object

This object contains all the global variables used by ReviseHorn object and the GUI

object. This object contains the initial theory, the hypothesis theory and the target theory

along with functions used to display them in the format understood by the user. This

object also implements membership query and equivalence query functions described in

section 8.7. This object contains other global variables such as the counts for membership

and equivalence queries.

8.2.3 ReviseHorn object

This object contains all the revision functions (ShrinkBody, Associate and Binary-

Search) and other functions to get the theories from a user and validate these theories.

This object uses global variables from the Global object to store and retrieve data during

the revision, gets inputs from the GUI object and displays output through the GUI object.

39

Figure 8.1: Application GUI

8.2.4 GUI object

This object provides an interface between the user and the revision application. This

object takes inputs from the user and passes these inputs to the ReviseHorn object for

processing, or to the Global object for storage. All the actions are initiated via this object.

This object also provides help information and links to a technical paper on the algorithm.

A snapshot of the application GUI is shown on page 40.

The diagram on page 41 shows all the objects designed to realize the revision application

along with the interactions between them.

8.3 Inputs

This section describes all the inputs to the application and how they are entered.

8.3.1 Universe of variables

The universe of variables is a set of all variables present in the initial theory and

the target theory. This is entered in the application as, for example, a.b.c.d.e.f.g where

40

Figure 8.2: Application Class Diagram

a, b, c, d, e, f and g are strings representing Boolean variables. This input is mandatory.

8.3.2 Initial theory

The initial theory is the next required input. All the clauses are separated by ‘ ∧ ’

representing a Boolean AND. Clause body variables are separated by ‘.’ and are entered

before a clause head. Clause body and clause head are separated by ‘→’ symbol.

Each Horn clause is entered as, for example, a.b.c.d → e.

The initial theory is entered as, for example, a.b.c → d ∧ c.e → f ∧ a.g → h.

41

8.3.3 Target theory

The target theory is a mandatory input, which is entered the same way the initial

theory is entered.

8.4 Data Structures

The data structures designed were mainly to hold Horn clause data, Horn theory data

and the counterexamples. This section provides details about all the data structures de-

signed for the revision application.

8.4.1 Clause

A clause object as discussed earlier is used to store a Horn clause data. A clause

object contains the following.

• A String object for storing the head information. So, for example, a head can be

‘WillCook’ or it can be just a character ‘a’.

• A HashSet of String objects for storing the body information. So, for example, a

body can be a set {‘HisTurn’, ‘NoLeftOvers’, ‘NotInvited’} or a set {‘b’, ‘c’, ‘d’, ‘e’}.

8.4.2 Theory

A theory object is used to store information about the initial theory, the target theory

and the hypothesis theory. A theory is a HashSet object containing

• Clause objects, each of which represents a Horn theory clause.

8.4.3 Counterexamples

A counterexample is a HashSet of strings. So, for example, a counterexample can

be {‘HisTurn′, ‘NoLeftOvers′, ‘NotInvited′} meaning variables HisTurn, NoLeftOvers

and NotInvited are set to true or a set {‘b’, ‘d’, ‘e’} meaning variables b, d and e are set

to true.

42

8.5 Derived Inputs

I tried to minimize the inputs from the user by deriving some of the required inputs.

These variables are stored within the application as:

8.5.1 Set of valid head variables

A set derived from the initial theory. This set is compared with the set of target theory

heads. These sets must be equivalent. This condition is one of the requirements for the

theories to be unique explanations.

8.5.2 Set of valid body variables

This set is a set difference of the universe of variables and the set of valid heads. This

set is used for checking body variables in the target theory.

8.5.3 Hypothesis

A hypothesis is initially an empty Horn formula, which is true for all examples. A

hypothesis is derived from the initial theory, the target theory and the counterexamples

obtained from equivalence queries (EQ).

8.6 Validation

The derived inputs obtained above are used to validate the input clauses and theories.

These validations are performed before the revision process starts, and the user is prompted

to make corrections if any are needed.

8.6.1 Clause Validation

The main clause-related validations are the following.

• All the variables in a clause must be in the universe-of-variable set.

• A head variable must not be in the body of the same clause, as this will make the

clause always true.

• All the clause body variables must be in the set of valid body variables.

43

• The clause head must be in the set of valid head variables.

8.6.2 Theory Validation

The initial theory and the target theory must be unique explanations. To validate this,

the following must be checked.

• Clause heads are unique; that is, no two clauses in a theory have the same head.

• Clause heads are not the literal ‘F’. This application does not allow literals to be

entered.

• Clause heads should not be in the body of any other clause in the theory.

• A set of target theory heads must be the same as the set of initial theory heads.

8.7 Query Functions

Two query functions, membership and equivalence query functions, were implemented

for the revision application. The algorithm for these functions is presented below.

8.7.1 Equivalence Query (EQ)

Inputs: A target theory and a hypothesis theory.

Returns: An empty set when the target and the hypothesis theories are equivalent and a

set of variables if the target and the hypothesis are not equivalent. This set of variables

is a counterexample, and it always falsifies the target and satisfies the hypothesis; that is,

this set is always a negative counterexample. Positive counterexamples are never obtained

in the entire revision process.

Implementation: We try to build a counterexample falsifying a target clause. This is

achieved by having a set of all body variables of a target clause and all the valid head

variables except the head of this target clause. This set (example) thus falsifies the target

theory. We then check if this example satisfies the current hypothesis. If this example

does satisfy the hypothesis, we return this example as a negative counterexample. Other-

wise, we try building a negative counterexample with the next target theory clause. If no

such negative counterexample could be generated, we return an empty set, which indicates

that the hypothesis and the target are equivalent. Also, if a negative counterexample is

44

found, we add some random variables to it such that this counterexample still remains a

negative counterexample. This represents uncertainty in the nature of the answers from an

equivalence oracle.

8.7.2 Membership Query (MQ)

Inputs: A theory and a set of variables representing an example whose membership to the

theory is being tested.

Returns: True if the example makes the given theory true; that is, the example is a member

of the given theory and false if the example makes the given theory false (the example is

not a member of the given theory).

Implementation: We check if the given example falsifies any of the given theory clauses.

An example falsifies a clause if it covers the set of clause body variables and not the clause

head. If any such clause is found return false. Otherwise, return true.

8.8 Revision Functions

The functions involved in the revision process are: ShrinkBody, Associate and Binary-

Search. These functions are implemented by line-by-line translation of the corresponding

pseudo–code shown earlier into Java code.

8.9 Output

The following outputs are generated by the revision application.

• All the steps taking place in the revision process are shown along with the counterex-

amples obtained, queries asked and the answers obtained.

• The hypothesis theory derived after obtaining a counterexample from every equiva-

lence query during the revision process.

• The number of equivalence queries (EQs) and membership queries (MQs) asked during

the revision process is calculated and shown after the revision is accomplished.

Copyright c©Jignesh U. Doshi 2003.

45

Chapter 9

Example Run

This chapter presents an example run of the application developed. The exact output

generated by the application for an example is shown here.

Universe of variables: a.b.c.d.e.f.g.h.i.j.k.l.m.n.o

Initial theory: a.c.b → e ∧ l → n ∧ f.g → h ∧ i.j → k ∧ c.b → o

Target theory: d.c.b → e ∧ c.b → o ∧ i.c → k ∧ a.f.g → h ∧ m.b → n

EQ(h)=o.d.i.k.m.a.h.c.n.b

————

SHRINKBODY

————

No shrinking done.

————

ASSOCIATE

————

MQ(d.o.i.k.m.a.c.h.n.b.e)=true

MQ(d.o.i.k.m.a.c.h.n.b)=false

Associating with: a.c.b → e

————

BINARYSEARCH

————

MQ(o.k.a.h.c.n.b)=true

MQ(d.o.k.a.h.c.n.b)=false

46

Required addition d found.

———————————————————–

Initial theory: a.c.b → e ∧ l → n ∧ f.g → h ∧ i.j → k ∧ c.b → o

Hypothesis: d.a.c.b → e

Target theory: d.c.b → e ∧ c.b → o ∧ i.c → k ∧ a.f.g → h ∧ m.b → n

———————————————————–

EQ(h)= o.d.i.k.m.h.c.n.b

————

SHRINKBODY

————

MQ(o.d.k.h.c.n.b)=false

Clause shrunk: d.c.b → e

———————————————————–

Initial theory: a.c.b → e ∧ l → n ∧ f.g → h ∧ i.j → k ∧ c.b → o

Hypothesis: d.c.b → e

Target theory: d.c.b → e ∧ c.b → o ∧ i.c → k ∧ a.f.g → h ∧ m.b → n

———————————————————–

EQ(h)= d.i.k.m.a.h.c.n.b.e

————

SHRINKBODY

————

No shrinking done.

————

ASSOCIATE

————

MQ(o.d.i.k.m.a.c.h.n.b.e)=true

MQ(d.i.k.m.a.c.h.n.b.e)=false

Associating with: c.b → o

————

BINARYSEARCH

————

MQ(k.h.c.n.b.e)=false

———————————————————–

47

Initial theory: a.c.b → e ∧ l → n ∧ f.g → h ∧ i.j → k ∧ c.b → o

Hypothesis: c.b → o ∧ d.c.b → e

Target theory: d.c.b → e ∧ c.b → o ∧ i.c → k ∧ a.f.g → h ∧ m.b → n

———————————————————–

EQ(h)= d.o.i.m.a.h.c.f.n.e

————

SHRINKBODY

————

MQ(k.h.c.n.e)=true

MQ(o.d.k.h.c.n)=true

No shrinking done.

————

ASSOCIATE

————

MQ(o.d.i.k.m.a.c.h.f.n.e)=true

MQ(o.d.i.m.a.c.h.f.n.e)=false

Associating with: i.j → k

————

BINARYSEARCH

————

MQ(o.i.h.n.e)=true

MQ(d.o.i.m.h.n.e)=true

MQ(d.o.i.m.a.h.n.e)=true

MQ(d.o.i.m.a.c.h.n.e)=false

Required addition c found.

MQ(d.o.i.c.h.n.e)=false

Required addition d found.

———————————————————–

Initial theory: a.c.b → e ∧ l → n ∧ f.g → h ∧ i.j → k ∧ c.b → o

Hypothesis: c.b → o ∧ d.i.c → k ∧ d.c.b → e

Target theory: d.c.b → e ∧ c.b → o ∧ i.c → k ∧ a.f.g → h ∧ m.b → n

———————————————————–

EQ(h)= o.i.m.a.h.c.f.n.e

48

————

SHRINKBODY

————

MQ(k.h.c.n.e)=true

MQ(o.i.h.c.n.e)=false

Clause shrunk: i.c → k

———————————————————–

Initial theory: a.c.b → e ∧ l → n ∧ f.g → h ∧ i.j → k ∧ c.b → o

Hypothesis: c.b → o ∧ i.c → k ∧ d.c.b → e

Target theory: d.c.b → e ∧ c.b → o ∧ i.c → k ∧ a.f.g → h ∧ m.b → n

———————————————————–

EQ(h)= d.o.i.k.m.a.f.n.g.e

————

SHRINKBODY

————

MQ(k.h.n.e)=true

MQ(o.i.h.n.e)=true

MQ(o.d.k.h.n)=true

No shrinking done.

————

ASSOCIATE

————

MQ(o.d.i.k.m.a.h.f.n.g.e)=true

MQ(o.d.i.k.m.a.f.n.g.e)=false

Associating with: f.g → h

————

BINARYSEARCH

————

MQ(o.k.f.n.g.e)=true

MQ(d.o.i.k.f.n.g.e)=true

MQ(d.o.i.k.m.f.n.g.e)=true

Required addition a found.

MQ(d.o.k.a.f.n.g.e)=false

49

Required addition d found.

———————————————————–

Initial theory: a.c.b → e ∧ l → n ∧ f.g → h ∧ i.j → k ∧ c.b → o

Hypothesis: c.b → o ∧ i.c → k ∧ d.c.b → e ∧ d.a.f.g → h

Target theory: d.c.b → e ∧ c.b → o ∧ i.c → k ∧ a.f.g → h ∧ m.b → n

———————————————————–

EQ(h)= o.i.k.m.a.f.n.g.e

————

SHRINKBODY

————

MQ(k.h.n.e)=true

MQ(o.i.h.n.e)=true

MQ(o.k.h.n)=true

MQ(o.k.a.f.n.g.e)=false

Clause shrunk: a.f.g → h

———————————————————–

Initial theory: a.c.b → e ∧ l → n ∧ f.g → h ∧ i.j → k ∧ c.b → o

Hypothesis: c.b → o ∧ i.c → k ∧ d.c.b → e ∧ a.f.g → h

Target theory: d.c.b → e ∧ c.b → o ∧ i.c → k ∧ a.f.g → h ∧ m.b → n

———————————————————–

EQ(h)= d.o.i.k.m.a.c.h.b.e

————

SHRINKBODY

————

MQ(o.k.a.n.e)=true

No shrinking done.

————

ASSOCIATE

————

MQ(o.d.i.k.m.a.h.c.n.b.e)=true

MQ(o.d.i.k.m.a.h.c.b.e)=false

Associating with: l → n

————

50

BINARYSEARCH

————

MQ(o.k.h.e)=true

MQ(d.o.i.k.m.h.e)=true

MQ(d.o.i.k.m.a.h.e)=true

MQ(d.o.i.k.m.a.c.h.e)=true

Required addition b found.

MQ(d.o.i.k.h.b.e)=true

MQ(d.o.i.k.m.h.b.e)=false

Required addition m found.

MQ(d.o.k.m.h.b.e)=false

Required addition d found.

———————————————————–

Initial theory: a.c.b → e ∧ l → n ∧ f.g → h ∧ i.j → k ∧ c.b → o

Hypothesis: c.b → o ∧ i.c → k ∧ d.c.b → e ∧ d.m.b → n ∧ a.f.g → h

Target theory: d.c.b → e ∧ c.b → o ∧ i.c → k ∧ a.f.g → h ∧ m.b → n

———————————————————–

EQ(h)= o.i.k.m.a.c.h.b.e

————

SHRINKBODY

————

MQ(o.k.h.c.n.b)=true

MQ(o.k.m.h.b.e)=false

Clause shrunk: m.b → n

———————————————————–

Initial theory: a.c.b → e ∧ l → n ∧ f.g → h ∧ i.j → k ∧ c.b → o

Hypothesis: c.b → o ∧ i.c → k ∧ d.c.b → e ∧ m.b → n ∧ a.f.g → h

Target theory: d.c.b → e ∧ c.b → o ∧ i.c → k ∧ a.f.g → h ∧ m.b → n

———————————————————–

Revision done using 10 EQs and 44 MQs.

Copyright c©Jignesh U. Doshi 2003.

51

Chapter 10

Conclusion

My work shows that revision of a subclass of Horn formulas requiring both additions

and deletions can be done in time, that is logarithmic in the number of variables n (making

the algorithm suitable in situations where n is big) and polynomial in the number of clauses

m. I have implemented and tested this algorithm. The difficulty in the implementation was

in generating counterexamples and query functions.

An extension to this work would be to enhance this algorithm to cover the entire set of

Horn formulas that is, Horn formulas with non-unique and ‘F’ heads, where head variables

may also occur in bodies and may be revised.

Copyright c©Jignesh U. Doshi 2003.

52

Appendix A

Implementation Code

A.1 Clause.java

/∗∗

Created by J ignesh U. Doshi

Date : Apr i l 2 4 , 2 003

This f i l e s p e c i f i e s the Horn c l au s e data s t ru c tu r e .

∗∗∗/

import java . u t i l . ∗ ;

pub l i c c l a s s Clause {

pr i v a t e HashSet body ; / / Clause body va r i ab l e s e t .

p r i v a t e S t r ing head ; // Clause head .

pub l i c Clause (HashSet body , S t r ing head) { / / Constructor .

t h i s . body=new HashSet (body) ;

t h i s . head=new Str ing (head) ;

}

pub l i c Clause (Clause c) { / / Constructor .

t h i s . body=new HashSet (c . getBody ()) ;

t h i s . head=new Str ing (c . getHead ()) ;

}

pub l i c void p r i n t () { // Pr in t s c l au s e in user readab le form .

I t e r a t o r i=body . i t e r a t o r () ;

53

whi l e (i . hasNext ()) {

Global . window . proce s s . appendText ((S t r ing) i . next ()) ;

i f (i . hasNext ()) Global . window . proce s s . appendText (” . ”) ;

}

Global . window . proce s s . appendText(”−>”+head) ;

}

pub l i c S t r ing getHead () { / / Returns head va r i ab l e .

re turn head ;

}

pub l i c HashSet getBody () { / / Returns body va r i ab l e s e t .

r e turn body ;

}

// Changes body s e t o f a c l au s e .

pub l i c void setBody (HashSet newBody) {

body . c l e a r () ;

body . addAll (newBody) ;

}

}

54

A.2 Global.java

/∗∗

Created by J ignesh U. Doshi

Date : Apr i l 2 4 , 2 003

This f i l e s p e c i f i e s the g l oba l v a r i a b l e s , f un c t i on s

and data s t r u c t u r e s that are used by other modules .

∗∗∗/

import java . u t i l . ∗ ;

pub l i c c l a s s Clause {

pr i v a t e HashSet body ; / / Clause body va r i ab l e s e t .

p r i v a t e S t r ing head ; // Clause head .

pub l i c Clause (HashSet body , S t r ing head) { / / Constructor .

t h i s . body=new HashSet (body) ;

t h i s . head=new Str ing (head) ;

}

pub l i c Clause (Clause c) { / / Constructor .

t h i s . body=new HashSet (c . getBody ()) ;

t h i s . head=new Str ing (c . getHead ()) ;

}

pub l i c void p r i n t () { // Pr in t s c l au s e in user readab le form .

I t e r a t o r i=body . i t e r a t o r () ;

whi l e (i . hasNext ()) {

Global . window . proce s s . appendText ((S t r ing) i . next ()) ;

i f (i . hasNext ()) Global . window . proce s s . appendText (” . ”) ;

}

Global . window . proce s s . appendText(”−>”+head) ;

}

pub l i c S t r ing getHead () { / / Returns head va r i ab l e .

re turn head ;

}

pub l i c HashSet getBody () { / / Returns body va r i ab l e s e t .

r e turn body ;

55

}

// Changes body s e t o f a c l au s e .

pub l i c void setBody (HashSet newBody) {

body . c l e a r () ;

body . addAll (newBody) ;

}

}

56

A.3 RevUniExp.java

/∗∗

Created by J ignesh U. Doshi

Date : Apr i l 2 4 , 2 003

This f i l e conta in s code f o r the GUI o f the app l i c a t i on

ReviseHorn . java

∗∗∗/

import java . awt . ∗ ;

import java . awt . event . ∗ ;

import java . u t i l . ∗ ;

// GUI Window .

pub l i c c l a s s RevUniExp extends Frame implements Act i onL i s t ene r {

pub l i c TextFie ld i n i t i a l ; // Input f i e l d s .

pub l i c TextFie ld t a r g e t ;

pub l i c TextFie ld univVar ;

pub l i c TextArea proce s s ; // Output f i e l d .

Label i n i t i a l L a b e l ; // GUI components .

Label t a rge tLabe l ;

Label hypLabel ;

Button r e v i s e ;

Button c l e a r ;

Button help ;

Label varLabel ;

Label p roce s sLabe l ;

Button a lgo ;

pub l i c RevUniExp () { // Constructor

// Layout manager ob j e c t .

RevUniExpLayout customLayout = new RevUniExpLayout () ;

// Layout components added here .

setFont (new Font (” He lve t i ca ” , Font .PLAIN , 1 2)) ;

setLayout (customLayout) ;

varLabel = new Label (” Universe o f Var i ab l e s ”) ;

57

add (varLabel) ;

univVar = new TextFie ld (” ”) ;

add (univVar) ;

he lp = new Button (” Help ”) ;

add (help) ;

he lp . addAct ionLis tener (t h i s) ;

i n i t i a l L a b e l = new Label (” I n i t i a l Theory ”) ;

add (i n i t i a l L a b e l) ;

i n i t i a l = new TextFie ld (” ”) ;

add (i n i t i a l) ;

t a rge tLabe l = new Label (” Target Theory ”) ;

add (ta rge tLabe l) ;

t a r g e t = new TextFie ld (” ”) ;

add (t a r g e t) ;

p roce s sLabe l = new Label (” Rev i s ion Process ”) ;

add (proce s sLabe l) ;

r e v i s e = new Button (” Revise Explanat ion ”) ;

add (r e v i s e) ;

r e v i s e . addAct ionLis tener (t h i s) ;

c l e a r = new Button (” Clear ”) ;

add (c l e a r) ;

c l e a r . addAct ionLis tener (t h i s) ;

a lgo = new Button (” Algorithm ”) ;

add (a lgo) ;

a lgo . addAct ionLis tener (t h i s) ;

p roce s s = new TextArea (” ”) ;

p roce s s . s e tEd i t ab l e (f a l s e) ;

p roce s s . setBackground (new Color (2 5 5 , 2 5 5 , 2 5 5)) ;

add (proce s s) ;

s e t S i z e (g e tP r e f e r r edS i z e ()) ;

addWindowListener (new WindowAdapter () {

pub l i c void windowClosing (WindowEvent e) {

58

System . e x i t (0) ;

}

}) ;

}

// Al l buttons ’ a c t i on l i s t e n e r .

pub l i c void act ionPerformed (ActionEvent e) {

// f o r Revise Explanat ion button .

i f (e . getSource()== r e v i s e) {

Global . i n i t () ;

Global . window . proce s s . appendText (”\n ”) ;

// Make a s e t o f a l l the v a r i a b l e s .

S t r ing input=Global . window . univVar . getText () ;

Str ingToken iz er s t = new Str ingToken ize r (input , ” . ”) ;

whi l e (s t . hasMoreTokens ()) {

Global . univ . add (s t . nextToken ()) ;

} // Global . univ should not change a f t e r t h i s l i n e .

// Get I n i t i a l theory and Target theory from the GUI and

// va l i d a t e them .

i f (ReviseHorn . getTheory (Global . INI) &&

ReviseHorn . getTheory (Global .TAR)) {

// Ask equ iva l ence query to get a counterexample s e t .

HashSet counterExample=Global .EQ() ;

whi l e (! counterExample . isEmpty ()) {

// Show the counterexample

Global . window . proce s s . appendText (”EQ(h)=”);

I t e r a t o r i=counterExample . i t e r a t o r () ;

whi l e (i . hasNext ()) {

Global . window . proce s s . appendText

((S t r ing) i . next ()) ;

i f (i . hasNext ())

Global . window . proce s s . appendText (” . ”) ;

e l s e Global . window . proce s s . appendText (”\n ”) ;

59

}

// Try shr ink ing c l au s e body .

i f (! ReviseHorn . shrinkBody (counterExample)) {

// Shr ink ing f a i l e d , add new c l au s e .

ReviseHorn . a s s o c i a t e (counterExample) ;

}

Global . window . proce s s . appendText

(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n ”) ;

// Pr int each step o f r e v i s i o n .

Global . pr intTheory (Global . INI) ;

Global . pr intTheory (Global .HYP) ;

Global . pr intTheory (Global .TAR) ;

Global . window . proce s s . appendText

(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n ”) ;

// Ask equ iva l ence query again .

counterExample=Global .EQ() ;

} // Pr int EQ and MQ counts .

Global . window . proce s s . appendText (” Rev i s ion done

us ing ”+countEQ+ ” EQs and ”+Global . countMQ+” MQs.\n ”) ;

}

}

i f (e . getSource()== c l e a r) {

Global . window . proce s s . setText (” ”) ; / / Clear a l l .

}

// Layout components added here .

i f (e . getSource()==algo) {

t ry {

// Open t e c hn i c a l paper .

Runtime r t = Runtime . getRuntime () ;

Process p = r t . exec (”cmd / c s t a r t

reviseUniqueExp . pdf ”) ;

} catch (Exception ex) {

60

System . out . p r i n t l n (ex) ;

}

}

i f (e . getSource()==help) { / / Show help in output box .

Global . window . proce s s . setText (” ”) ;

Global . window . proce s s . appendText

(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n ”) ;

Global . window . proce s s . appendText

(” Using t h i s app l i c a t i on .\ n ”) ;

Global . window . proce s s . appendText

(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n ”) ;

Global . window . proce s s . appendText (” Universe o f v a r i ab l e

should be entered as a . b . c . d . e . f . g (separated by ’ . ’) \ n ”) ;

Global . window . proce s s . appendText (” I n i t i a l theory should

be entered as a . b−>d ˆ e . f−>g

(space only be fo r e and a f t e r ’ ˆ ’) \ n ”) ;

Global . window . proce s s . appendText (” Target theory i s a l s o

entered s im i l a r l y as a . c−>d ˆ b . f−>g\n ”) ;

Global . window . proce s s . appendText (” Var i ab l e s on the l e f t

o f ’−> ’ a re body v a r i a b l e s and on the r i gh t i s a head .\n

Each c l au s e i s separated by ’ ˆ ’ which

r ep r e s en t s a boolean AND.\ n ”) ;

Global . window . proce s s . appendText (”Both the s e t h e o r i e s

should be unique exp lanat i ons that i s heads are ,\n

unique , not in any o f the bod ies , and i n t a c t i . e . heads

are the same in i n i t i a l and t a r g e t theory c l a u s e s .\n ”) ;

Global . window . proce s s . appendText (”\nOuput i s the e n t i r e

r e v i s i o n proce s s shown step by step

with each counterexample .\ n Number o f membership and

equ iva l ence que r i e s asked in the r e v i s i o n proce s s are

a l s o shown .\n ”) ;

Global . window . proce s s . appendText

61

(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”);

}

}

pub l i c s t a t i c void main (St r ing args []) {

Global . window=new RevUniExp () ;

Global . window . s e tRe s i z ab l e (f a l s e) ;

Global . window . s e tT i t l e (” Rev i s ing Unique Explanat ion

− J ignesh Doshi and Judy Goldsmith ”) ;

Global . window . pack () ;

Global . window . show () ;

}

}

// Component layout s p e c i f i e d here .

c l a s s RevUniExpLayout implements LayoutManager {

pub l i c RevUniExpLayout () {

}

pub l i c void addLayoutComponent (S t r ing name , Component comp) {

}

pub l i c void removeLayoutComponent (Component comp) {

}

pub l i c Dimension pre f e r r edLayoutS i z e (Container parent) {

Dimension dim = new Dimension (0 , 0) ;

I n s e t s i n s e t s = parent . g e t I n s e t s () ;

dim . width = 662 + i n s e t s . l e f t + i n s e t s . r i gh t ;

dim . he ight = 385 + i n s e t s . top + i n s e t s . bottom ;

return dim ;

}

pub l i c Dimension minimumLayoutSize (Container parent) {

Dimension dim = new Dimension (0 , 0) ;

re turn dim ;

}

62

pub l i c void layoutConta iner (Container parent) {

I n s e t s i n s e t s = parent . g e t I n s e t s () ;

Component c ;

c = parent . getComponent (0) ;

i f (c . i s V i s i b l e ())

{ c . setBounds (i n s e t s . l e f t +8, i n s e t s . top +8 ,112 , 24) ;}

c = parent . getComponent (1) ;

i f (c . i s V i s i b l e ())

{ c . setBounds (i n s e t s . l e f t +128, i n s e t s . top +8 ,392 , 24) ;}

c = parent . getComponent (2) ;

i f (c . i s V i s i b l e ())

{ c . setBounds (i n s e t s . l e f t +528, i n s e t s . top +8 ,128 , 24) ;}

c = parent . getComponent (3) ;

i f (c . i s V i s i b l e ())

{ c . setBounds (i n s e t s . l e f t +8, i n s e t s . top +40 ,112 , 24) ;}

c = parent . getComponent (4) ;

i f (c . i s V i s i b l e ())

{ c . setBounds (i n s e t s . l e f t +128, i n s e t s . top +40 ,528 , 24) ;}

c = parent . getComponent (5) ;

i f (c . i s V i s i b l e ())

{ c . setBounds (i n s e t s . l e f t +8, i n s e t s . top +72 ,112 , 24) ;}

c = parent . getComponent (6) ;

i f (c . i s V i s i b l e ())

{ c . setBounds (i n s e t s . l e f t +128, i n s e t s . top +72 ,528 , 24) ;}

c = parent . getComponent (7) ;

i f (c . i s V i s i b l e ())

{ c . setBounds (i n s e t s . l e f t +8, i n s e t s . top +104 ,112 , 24) ;}

c = parent . getComponent (8) ;

i f (c . i s V i s i b l e ())

{ c . setBounds (i n s e t s . l e f t +256, i n s e t s . top +104 ,128 , 24) ;}

c = parent . getComponent (9) ;

i f (c . i s V i s i b l e ())

63

{ c . setBounds (i n s e t s . l e f t +392, i n s e t s . top +104 ,128 , 24) ;}

c = parent . getComponent (1 0) ;

i f (c . i s V i s i b l e ())

{ c . setBounds (i n s e t s . l e f t +528, i n s e t s . top +104 ,128 , 24) ;}

c = parent . getComponent (1 1) ;

i f (c . i s V i s i b l e ())

{ c . setBounds (i n s e t s . l e f t +8, i n s e t s . top +136 ,648 ,240) ;}

}

}

64

A.4 ReviseHorn.java

/∗∗

Created by J ignesh U. Doshi

Date : Apr i l 2 4 , 2 003

This f i l e conta in s code f o r the core o f the r e v i s i o n

proce s s . Routines f o r

g e t t i n g input t h e o r i e s ,

v a l i d a t i n g them ,

shr ink ing c l a u s e s ,

a s s o c i a t i n g counterexamples and

f i nd i ng a l l the r equ i r ed body va r i ab l e add i t i on s

are wr i t t en in t h i s f i l e .

∗∗∗/

import java . u t i l . ∗ ;

import java . i o . ∗ ;

// Core c l a s s conta in ing r e v i s i o n r ou t i n e s .

pub l i c c l a s s ReviseHorn {

// Shr inks a hypothe s i s c l au s e body i f p o s s i b l e .

s t a t i c boolean shrinkBody (HashSet x) {

Global . window . proce s s . appendText(”−−−−−−−−−−\n ”) ;

Global . window . proce s s . appendText (”SHRINKBODY\n ”) ;

Global . window . proce s s . appendText(”−−−−−−−−−−\n ”) ;

I t e r a t o r i=Global .Hyp . i t e r a t o r () ;

whi l e (i . hasNext ()) { / / For each hypothe s i s c l au s e ,

Clause c=(Clause) i . next () ;

HashSet temp=new HashSet (x) ;

temp . r e t a i nA l l (c . getBody ()) ;

// check i f i t can be shrunk .

i f (temp . s i z e ()< c . getBody () . s i z e ()) {

HashSet check=new HashSet (temp) ;

check . addAll (Global . headSet) ;

check . remove (c . getHead ()) ;

65

Global . window . proce s s . appendText (”MQ(”) ;

Global . p r i n tS e t (check) ;

Global . window . proce s s . appendText(”)=”+

Global .MQ(check , Global .TAR)+”\n ”) ;

Global . countMQ−−;

i f (! Global .MQ(check , Global .TAR)) {

c . setBody (temp) ; // Shr ink ing done .

Global . window . proce s s . appendText

(” Clause shrunk : ”) ;

c . p r i n t () ;

Global . window . proce s s . appendText (”\n ”) ;

re turn true ;

}

}

}

Global . window . proce s s . appendText (”No shr ink ing done .\n ”) ;

// Could not shr ink any hypothe s i s c l au s e body .

re turn f a l s e ;

}

// Assoc i a t e counterexample x to an i n i t i a l theory c l au s e .

s t a t i c void a s s o c i a t e (HashSet x) {

Global . window . proce s s . appendText(”−−−−−−−−−−\n ”) ;

Global . window . proce s s . appendText (”ASSOCIATE\n ”) ;

Global . window . proce s s . appendText(”−−−−−−−−−−\n ”) ;

HashSet xdot=new HashSet (x) ;

xdot . addAll (Global . headSet) ;

HashSet d=new HashSet (xdot) ;

d . removeAll (x) ;

I t e r a t o r varSet ;

S t r ing input=”n” ;

S t r ing b=””;

Clause a s s o c i a t ed=new Clause (new HashSet () , ” ”) ;

66

Global . window . proce s s . appendText (”MQ(”) ;

Global . p r i n tS e t (xdot) ;

Global . window . proce s s . appendText(”)=”+

Global .MQ(xdot , Global .TAR)+”\n ”) ;

Global . countMQ−− ; // non−user membership query .

// While xdot i s a t rue f o r Target theory ,

whi l e (Global .MQ(xdot , Global .TAR)) {

I t e r a t o r i=d . i t e r a t o r () ;

whi l e (i . hasNext ()) {

b=(St r ing) i . next () ;

// turn o f f a head not a l ready in

// hypothe s i s theory .

i f (! Global . hypHeadSet . conta in s (b)) {

d . remove (b) ;

break ;

}

}

xdot . remove (b) ;

// Check i f t h i s makes i t nega t iv e counterexample .

Global . window . proce s s . appendText (”MQ(”) ;

Global . p r i n tS e t (xdot) ;

Global . window . proce s s . appendText(”)=”+

Global .MQ(xdot , Global .TAR)+”\n ”) ;

Global . countMQ−−;

} // Assoc i a t e with f i r s t c l au s e that i s f a l s i f i e d .

Global . window . proce s s . appendText (” Assoc i a t ing with : ”) ;

I t e r a t o r whichClause=Global . I n i . i t e r a t o r () ;

whi l e (whichClause . hasNext ()) {

a s s o c i a t ed=new Clause ((Clause) whichClause . next ()) ;

i f (a s s o c i a t ed . getHead () . equa l s (b)) {

break ;

}

67

}

a s s o c i a t ed . p r i n t () ;

Global . window . proce s s . appendText (”\n ”) ;

BinarySearch (xdot , a s s o c i a t ed) ; / / Cal l b inary search .

}

// Find a l l add i t i on s r equ i r ed to a s s o c i a t ed c l au s e .

s t a t i c void BinarySearch (HashSet xdot , Clause a s s o c i a t ed) {

Global . window . proce s s . appendText(”−−−−−−−−−−−−\n ”) ;

Global . window . proce s s . appendText (”BINARYSEARCH\n ”) ;

Global . window . proce s s . appendText(”−−−−−−−−−−−−\n ”) ;

boolean f i r s t I t e r=true ;

S t r ing input ;

I t e r a t o r varSet ;

HashSet temp=new HashSet (xdot) ;

temp . r e t a i nA l l (a s s o c i a t ed . getBody ()) ;

HashSet xdotHeads=new HashSet (xdot) ;

xdotHeads . r e t a i nA l l (Global . headSet) ;

temp . addAll (xdotHeads) ;

// xdot syminte r s e c t i on body (a s s o c i a t ed) .

HashSet x=new HashSet (temp) ;

HashSet s t a r t=new HashSet (temp) ;

HashSet d=new HashSet () ;

HashSet c=new HashSet () ;

temp . c l e a r () ;

temp . addAll (xdot) ;

temp . removeAll (x) ; / / xdot i n t e r s e c t i o n x .

// While xdot and x are not the same ,

whi l e (! temp . isEmpty ()) {

d . c l e a r () ;

d . addAll (temp) ;

do {

// I f any more add i t i on s are needed .

68

i f (f i r s t I t e r) {

c . c l e a r () ;

f i r s t I t e r=f a l s e ;

}

e l s e {// Turn o f f h a l f the v a r i a b l e s in c .

c . c l e a r () ;

I t e r a t o r dVar=d . i t e r a t o r () ;

f o r (i n t count =0; count<d . s i z e () / 2 ; count++) {

c . add (dVar . next ()) ;

}

}

temp . c l e a r () ;

temp . addAll (x) ;

temp . addAll (c) ;

Global . window . proce s s . appendText (”MQ(”) ;

Global . p r i n tS e t (temp) ;

Global . window . proce s s . appendText(”)=”+

Global .MQ(temp , Global .TAR)+”\n ”) ;

Global . countMQ−−;

// Check i f any va r i ab l e i s l e f t out .

i f (! Global .MQ(temp , Global .TAR)) {

xdot . c l e a r () ;

xdot . addAll (temp) ;

d . c l e a r () ;

d . addAll (c) ;

}

e l s e {

x . c l e a r () ;

x . addAll (temp) ;

d . removeAll (c) ;

}

} whi l e (d . s i z e ()>1) ;

69

// T i l l we f i nd a s i n g l e r equ i r ed add i t i on .

i f (! d . isEmpty ()) { / / Make the r equ i r ed add i t i on .

I t e r a t o r added=d . i t e r a t o r () ;

Global . window . proce s s . appendText

(” Required add i t i on ”+added . next ()+” found .\ n ”) ;

}

s t a r t . addAll (d) ;

x . c l e a r () ;

x . addAll (s t a r t) ;

temp . c l e a r () ;

temp . addAll (xdot) ;

temp . removeAll (x) ;

} // Try f i nd i ng more r equ i r ed add i t i on s .

// Remove head v a r i a b l e s from the body .

x . removeAll (Global . headSet) ;

Clause newHypClause=new Clause (x , a s s o c i a t ed . getHead ()) ;

// Add the f i n a l c l au s e to the hypothe s i s .

Global .Hyp . add (newHypClause) ;

}

// Va l ida t e s input theory c l a u s e s .

s t a t i c boolean va l i d a t e (i n t f l a g){

HashSet bodySet=new HashSet () ;

HashSet headSet=new HashSet () ;

I t e r a t o r i ;

swi tch (f l a g) {

case Global . INI : i=Global . I n i . i t e r a t o r () ;

break ;

case Global .TAR: i=Global . Tar . i t e r a t o r () ;

break ;

d e f au l t : Global . window . proce s s . appendText

(”Bad arg to va l i d a t e () . Ex i t ing va l i d a t e () . \ n ”) ;

re turn f a l s e ;

70

}

headSet . c l e a r () ;

bodySet . c l e a r () ;

whi l e (i . hasNext ()) {

Clause c=(Clause) i . next () ;

// Same heads in two or more c l a u s e s .

i f (headSet . add (c . getHead ())== f a l s e) {

Global . window . proce s s . appendText

(”Non unique Heads ! Edit c l au s e : ”) ;

c . p r i n t () ;

Global . window . proce s s . appendText (”\n ”) ;

re turn f a l s e ;

}

bodySet . addAll (c . getBody ()) ;

}

HashSet temp=new HashSet (headSet) ;

temp . r e t a i nA l l (bodySet) ;

// Head pre s ent in some body .

i f (! temp . isEmpty ()) {

Global . window . proce s s . appendText

(”Head in some body ! Edit one o f the c l a u s e s .\ n ”) ;

re turn f a l s e ;

}

bodySet . addAll (headSet) ;

// Var iab le not in the un ive r s e o f v a r i ab l e .

i f (! Global . univ . c on t a i n sA l l (bodySet)) {

Global . window . proce s s . appendText

(”Unknown va r i ab l e ! Edit one o f the c l a u s e s .\n ”) ;

re turn f a l s e ;

}

re turn true ;

}

71

// Sto r e s va l i d i n i t i a l and t a r g e t unique exp lanat i ons .

pub l i c s t a t i c boolean getTheory (i n t f l a g) {

St r ing input=new Str ing () ;

I t e r a t o r i ;

HashSet temp=new HashSet () ;

swi tch (f l a g) { // Get i n i t i a l or f i n a l theory ?

case Global . INI :

input=new Str ing (Global . window . i n i t i a l . getText ()) ;

break ;

case Global .TAR:

input=new Str ing (Global . window . t a r g e t . getText ()) ;

break ;

d e f au l t :

Global . window . proce s s . appendText

(”Bad arg to getTheory () ! Ex i t ing getTheory () . \ n ”) ;

re turn f a l s e ;

}

Str ingToken iz er c l = new Str ingToken ize r (input , ” ˆ ”) ;

whi l e (c l . hasMoreTokens ()) { / / For each c l au s e ,

S t r ing c l au s e=c l . nextToken () ;

Str ingToken iz e r s t = new Str ingToken ize r (c l au s e ,”−>”);

// Check cons t ruc t o f the c l au s e .

HashSet body=new HashSet () ;

i f (! s t . hasMoreTokens ()) {

Global . window . proce s s . appendText

(” Something wrong ! Edit one o f the c l a u s e s .\ n ”) ;

re turn f a l s e ;

}

// Make a s e t o f input body v a r i a b l e s .

Str ingToken iz e r bd = new

Str ingToken iz e r (s t . nextToken () , ” . ”) ;

whi l e (bd . hasMoreTokens ()) {

72

body . add (bd . nextToken ()) ;

}

// Check f o r the cons t ruc t o f an input c l au s e .

i f (! s t . hasMoreTokens ()) {

Global . window . proce s s . appendText

(” Something wrong ! Edit one o f the c l a u s e s .\ n ”) ;

re turn f a l s e ;

}

St r ing head=s t . nextToken () ;

// Make a c l au s e ob j e c t .

Clause c=new Clause (body , head) ;

swi tch (f l a g) { / / Val idate the c l au s e .

case Global . INI : Global . I n i . add (c) ;

i f (! v a l i d a t e (f l a g)) {

Global . I n i . remove (c) ;

re turn f a l s e ;

}

break ;

case Global .TAR: Global . Tar . add (c) ;

i f (! v a l i d a t e (f l a g)) {

Global . Tar . remove (c) ;

re turn f a l s e ;

}

break ;

}

}

swi tch (f l a g) {

case Global . INI : i=Global . I n i . i t e r a t o r () ;

whi l e (i . hasNext ()) {

Clause c=(Clause) i . next () ;

// Make a s e t o f heads .

Global . headSet . add (c . getHead ()) ;

73

}

// Make a s e t o f body v a r i a b l e s .

Global . bodySet . addAll (Global . univ) ;

Global . bodySet . removeAll (Global . headSet) ;

break ;

case Global .TAR: i=Global . Tar . i t e r a t o r () ;

temp . c l e a r () ;

whi l e (i . hasNext ()) {

Clause c=(Clause) i . next () ;

temp . add (c . getHead ()) ;

}

// Check i f the t a r g e t head s e t i s the same

// as i n i t i a l theory head s e t .

i f (! temp . equa l s (Global . headSet)) {

Global . window . proce s s . appendText

(” Target theory heads must be i n t a c t !

Edit theory .\n ”) ;

re turn f a l s e ;

}

break ;

}

// Pr int the theory in the user readab le form .

Global . pr intTheory (f l a g) ;

// return su c c e s s in g e t t i n g va l i d theory .

re turn true ;

}

}

74

Bibliography

[1] Dana Angluin. Learning regular sets from queries and counterexamples. Inform. Com-

put., 75(2):87–106, 1987.

[2] Dana Angluin, Michael Frazier, and Leonard Pitt. Learning conjuctions of horn clauses.

Machine Learning, 9:147–164, 1992.

[3] Jean-Paul Delahaye. Formal Methods in Artificial Intelligence. A Halsted Press Book,

1987.

[4] Jignesh Doshi and Judy Goldsmith. Revising unique explanation. Proc. The 14th

Midwest Artificial Intelligence and Cognitive Science Conference, MAICS, pages 24–

30, 2003.

[5] Allen Ginsberg, Sholom M. Weiss, and Peter Politakis. Automatic knowledge base

refinement for classification systems. Artificial Intelligence, 35(2):197–226, 1988.

[6] Judy Goldsmith and Robert H. Sloan. More theory revision with queries. Proc. ACM

Symposium on Theory of Computing (STOC ’00), pages 441–448, 2000.

[7] Judy Goldsmith, Robert H. Sloan, Balázs Szórényi, and Gyórgy Turán. Theory revision

with queries: Horn and other non-DNF forms, 2003. Submitted.

[8] Russell Greiner. The complexity of theory revision. Proc. IJCAI, pages 1162–1168,

1995.

[9] Moshe Koppel, Ronen Feldman, and Alberto Maria Segre. Bias-driven revision of

logical domain theories. Journal of Artificial Intelligence Research, 1:159–208, 1994.

[10] L. Pitt M. Kearns, M. Li and L. Valiant. On the learnability of Boolean formulae.

Proc. 19th Annu. ACM Sympos. Theory Comput. (STOC ’87), pages 285–294, 1987.

75

[11] Johann A. Makowsky. Why Horn formulas matter in computer science: Initial struc-

tures and generic examples. Journal of Computer and System Sciences, 34:266–292,

1987.

[12] Tom Mitchell. Machine Learning. McGraw Hill, 1997.

[13] R. J. Mooney. A preliminary PAC analysis of theory revision. Computational Learning

Theory and Natural Learning Systems., III:43–53, 1995.

[14] Chandra Reddy and Prasad Tadepalli. Learning horn definitions: Theory and an

application to planning. New Generation Computing, 17(1):77–98, 1999.

[15] R. H. Sloan and G. Turan. On theory revision with queries. Proc. 12th Annu. Conf.

on Comput. Learning Theory., pages 41–52, 1999.

76

Vita

Date and Place of Birth: Godhra, India, April 9, 1980

Education: Bachelor of Engineering in Computer Engineering
University of Bombay, 2001

Professional Positions: Graduate Research Assistant
Department of Computer Science
University of Kentucky
Lexington, Kentucky, 2001–2003

Junior Systems Administrator
Math Sciences Computing Facility
University of Kentucky
Lexington, Kentucky, 2001

Web Developer
Freelance
Bombay, India, 1998–2001

Honors: Research Assistantship
University of Kentucky, 2001–2003

Professional Publications:

“Revising Unique Explanations” In The 14th Midwest Artificial Intelligence and Cognitive
Science Conference MAICS-2003, University of Cincinnati, 2003.

Jignesh Doshi

77

	REVISING HORN FORMULAS
	Recommended Citation

	thesis.dvi

