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ABSTRACT OF THESIS 

INNOVATIVE PRODUCT DESIGN FOR SUSTAINABILITY  
ENHANCEMENT IN ALUMINUM BEVERAGE CANS BASED ON  

DESIGN FOR SUSTAINABILITY CONCEPTS 

 
 A new methodology for innovative product development based on the 
application of sustainability principles for the entire life-cycle of a product and 
beyond is developed.  This involves an analysis of multi-life cycle material flow 
leading towards “perpetual life products”, making it truly sustainable.  In order to 
achieve the function of such a sustainable product, it has to fulfill the concept of 
6R (Recover, Reuse, Recycle, Redesign, Reduce and Remanufacture), which 
are composed of 6 stages of material flow in a product’s life, as opposed to the 
traditional 3R (Reduce, Reuse, Recover) concept.  We apply the 6R concept in 
designing a new aluminum beverage can with much enhanced sustainability 
factors, especially in recycling processes. 
 
KEYWORDS:  Design for Sustainability, Multiple and Perpetual Product 

Life-cycle, 6R concept, Sustainable Product, Aluminum 
Beverage Can 
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Chapter One 

Introduction 

1.1 Thesis Focus and Objective 

 Sustainable development is critical in today’s world with dwindling land 

reserves, natural resources and growing populations which lead to increased 

natural resources requirements and energy consumption rates as well as, 

byproducts from economic developments such as environment pollutions and 

societal changes.  Historically, the manufacturing sectors have always played an 

important part in any economic or societal growth.  Therefore, it is imperative to 

have sustainable manufacture.  Sustainable manufacture is composed of three 

sub-elements; sustainable product, sustainable manufacturing systems and 

sustainable manufacturing process [1].  

 In this thesis, efforts will be put forth to identify a new sustainable product 

design methodology.  A new methodology for innovative product development 

based on the application of sustainability principles for the entire life-cycle of a 

product and beyond is developed.  This involves an analysis of multi-life cycle 

material flow leading towards “perpetual life products”, making it truly sustainable.  

In order to achieve the function of such a sustainable product, it has to fulfill the 

concept of 6R (Recover, Reuse, Recycle, Redesign, Reduce and 

Remanufacture), which are composed of 6 stages of material flow in a product’s 

life, as opposed to the traditional 3R (Reduce, Reuse, Recycle) concept.  This 

new product design methodology has wide ranging applications, from 

automobiles to consumer electronics product designs.  We will apply the 6R 
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concept to design a new aluminum beverage can with enhanced sustainability 

factors, especially the recyclability.   

 One of the major advantages of aluminum beverage can is its capability to 

be recycled over and over again without any quality loss, contributing to the 

environment by reducing the need for fresh bauxites to make primary aluminum.  

As with most mature and well developed products, the innovation curves tend to 

reach a flat line, in addition to dwindling recycling rate over the years.  Therefore, 

it is critical to take a look at the design of the aluminum beverage can from a 

fresh perspective in order to come up with possible solutions to increase its 

sustainability, through its recyclability.   

 

1.2 Previous Research on Sustainability 

 Before embarking on finding ways to enhance the sustainability of any 

product, we need a proper definition of sustainability, sustainable product and 

sustainable product design methodology.  The most recognized definition of 

sustainability come from the Bruntland Commission as “meeting the needs of the 

present without compromising the ability of future generations to meet their own 

needs” [2].  The term sustainability contains the idea that humans on this planet 

should live in such a way, that the needs of the present are satisfied without 

risking that future generations will not be able to meet their needs, with balance 

between ecological, economic and social dimensions [3].  Sustainability is also 

defined as the tendency of ecosystems to dynamically balance their consumption 

patterns of matter and energy, and evolve to a point where life itself can continue 
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[4].  Achieving a comprehensive, global sustainability heavily depends on 

collective and unified efforts of the global community involving multi-disciplinary 

approach in three core areas of research: environment, economy and society [1].  

Most research work on sustainability has so far primarily focused on 

environmental effects.  However, to achieve comprehensive sustainable 

developments, it is important to look at all major influencing elements of 

sustainability. 

 Sustainable products are products that are fully compatible with nature 

throughout their entire life-cycle [5].  According to Sustainable Products 

Corporation, sustainable products provide the greatest global environment, 

economic and social benefits while protecting public health, welfare and 

environment and are measured over their entire life-cycle, from raw materials 

extraction to final reuse or disposal [6].  A sustainable product should make a 

large economic impact while making a major contribution to environment and 

societal needs [7].   

 There are several existing design methodologies to design and produce 

sustainable products.  The first is called BioDesign using the cyclic, solar and 

safe elements [5], [8].  According to this approach, when activity equals damage, 

do not try to reduce the environmental impact by trying to reduce the amount of 

activity, but change the activities so that they are biocompatible and cause no 

damage [8].  A sustainable product should be designed with these 5 elements in 

mind: cyclic, solar, safe, efficient and social.  Cyclic means that the product has 

to be made from organic materials which is recyclable or compostable, or is 
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made from minerals that are continuously cycled in a closed loop.  Solar means 

the product must use solar energy or other forms of renewable energy, while safe 

means that the product should not be toxic in manufacture, use or disposal.  The 

element efficient simply means that the product should use 90% less material, 

energy and water during manufacture compared to similar products in 1990.  The 

last element, social, means that the product’s manufacture and use must support 

basic human rights and natural justice.    

   Design for Environment (DFE) methodology considers product 

development as an integrated system where every decision influences the whole 

process and results in different impacts on the environment [4].  DFE utilizes 

technological innovations and methodological proceedings to help designers and 

decision makers to produce goods and services that are economically viable and 

ecologically friendly [4].  First, the detailing of product needs and characteristics 

is done to identify the environmental aspects that can make the product greener.  

Next, an environmental impact analysis is done on the data collected from the 

first stage.  Lastly, low cost, design innovation and eco-friendly improvements are 

made to the product from the results of the environmental impact analysis.  

 Products, processes and practices can be designed with a specific 

sustainable growth rate for the control of pollution and for the reduction of 

material and energy use by adopting the Paradigm E concept.  Any corporation 

that adopts the Paradigm E must emphasize Ecology, Environment, Energy, 

Economy, Empowering, Education and Excellence in all product life-cycle 

decisions [9].  The true goals of design for sustainability under the Paradigm E 
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are material and energy resource consumption, waste reduction, and prevention 

of pollution because by pursuing these goals, green and robust products and 

processes are produced [9]. 

 The Sustainable Product Design (SPD) concept shows that it is fruitless to 

try to define what sustainable product design is, because SPD encompasses a 

great diversity of approaches which will vary with place, time, environment, 

culture and knowledge [10].  Designing a sustainable product usually needs to 

incorporate several factors, first being that necessity will dictate inventiveness.  

Sustainability demands resourcefulness and new solutions have to be found 

which require less energy and costs [10].  Secondly, designers need to improvise 

and be spontaneous with working with the constraints of resources and realize 

that most products are actually a physical manifestation of unsustainable 

practices [10].  This may include using too many moving parts in a product, which 

lowers its reliability or not utilizing the latest technology such as CAD and FEM 

analysis in the design stage.  A sustainable product also needs to have aesthetic 

longevity and efficient energy use.  In addition, it has to be able to be 

manufactured locally to contribute to the economy and if it is to be mass 

produced, integration of locally made components is necessary.  All of these 

factors can be broadly categorized into four core elements; Economics, 

Environment, Ethics and Social [10]. 

 Another approach to sustainable product design with emphasis on 

sustainable manufacture and environmental requirements is shown in Figure 1.1 

[11].  According to this, there are four examples of methodologies that have 
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recently been developed and represent the most significant stages of a product’s 

life-cycle, which have an influence on its environmental performance.  They are 

introducing environmental awareness to customer requirements (CR), assessing 

environmental performance as a design objective, performing life-cycle 

assessment (LCA) during the design process and evaluating the product’s 

potential for reuse and recycling.  Factoring in the environmental requirements, a 

new sustainable approach to product development and usage in four stages of 

the product’s life-cycle is derived.  They are environmentally conscious quality 

function deployment (ECQFD), sustainable trade-off model for design, life-cycle 

assessment and end-of-life options (EOL). 

 

Figure 1.1: Methodologies for Sustainable Manufacturing at Stages of Product 

Life-Cycles [11]. 
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 One of the roles of a sustainable product is to reduce or moderate 

unintended pollutions.  Therefore, a sustainable product design methodology 

should take into account how to reduce pollutions through sustainable product 

design [12].  There is three ascending sustainable product design scenarios, with 

the first being Eco-redesigns (E-), which is a short-term, low-functional-change, 

low-risk approaches that involve modifying present product designs, 

manufacturing systems, materials and distribution systems and resulting in low 

degree of environmental improvements [12].  The second scenario is Eco-

innovations (E+), which are long term, high-functional-change group of 

approaches that focus on reinventing the ways and means used to provide 

benefits to customers through products [12].  Lastly, emerging/unproven and 

radical technology may be built into the product through Sustainable Technology 

innovations (E++), with the objective of introducing the highest degree of 

potential environment improvements. 

 Most methodology for designing a sustainable product assumes the 

product as having only a single life-cycle.  This is a severe limitation, because a 

sustainable product needs to have a “closed-loop” material cycle.  This idea can 

even be taken further by saying that a truly sustainable product design 

methodology is a fusion of all traditional product design methodologies with 

emphasis on all three pillars of sustainability, environment, economy and society, 

that produces a sustainable product with multiple and perpetual life-cycle.  In 

addition, most sustainable product methodologies emphasize the systems 

perspectives.  This is a top down approach as opposed to the bottom up 
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approach when working on sustainability from the product level.  There are many 

advantages to enhancing sustainability of a product from the product point of 

view which will be discussed in later chapters. 
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Chapter Two 

Introduction to Packaging and Aluminum Beverage Cans  

Throughout the history of mankind, we have always been known as 

explorers and inventors.  Along with the discovery of fire and invention of the 

wheel, the knowledge of packing food to extend its life is ranked as one of the 

most important milestones in the human history that has often been overlooked.  

The technology of food packaging has been the catalyst that propels man to 

explore the new world and discover new things.  It also helped to maintain the 

civilization by supplying people with indispensable fresh food.  

 Over the years, the technology of food packaging keeps developing, with 

new materials being used to construct the containers to keep food in, chemicals 

to preserve food, and new manufacturing technology to package food.  

Nowadays, aluminum is one of the most important materials in the food 

packaging industry; it is being used widely to make foils, containers, bottles and 

cans.  In this section, we will look closely at the role aluminum plays in 

revolutionizing food packaging, and the development of aluminum beverage cans. 

 

2.1 Aluminum in Packaging 

 In 1795, the government of Napoleon offered a 12,000 francs reward to 

anyone who came up with a method of preserving food.  Fourteen years later, in 

1809, Nicolas Appert, known as the father of canning, managed to preserve food 

by sterilizing it, and he was awarded the 12,000 francs.  The first food container 

was patented by Peter Durand of England in 1810.  It was made out of tin-plated 
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iron.  In 1818 he introduced his container to America.  One year later, in 1819, 

Thomas Kensett Sr. and Ezra Daggett started to can oysters, fruits, meats and 

vegetables in New York.  Kensett eventually patented the tin-plated can in 1825.  

Over the years, steel, plastics, glass and aluminum have been used to make 

food containers, which evolved into many different shapes and sizes to cater to 

the changing needs of consumers.  Fast-forward to the twenty-first century; 

aluminum has emerged as an important player in the food packaging industry 

due to its superiority.  Aluminum is known as a long life packaging material for 

perishable food. 

 Early food packaging needed only to satisfy the most basic requirement of 

the time, keeping food fresh and portable.  However nowadays, besides its 

protective properties, packaging has to fulfill economical, technical, social and 

ecological demands [13].  The use of aluminum in the food packaging industry 

started in 1910, when the first aluminum foil was produced.  Aluminum was rolled 

into sheets with thickness of just a hundredth of a millimeter.  These sheets were 

then laminated with paper to produce aluminum foil.  The following year, in 1911, 

chocolate manufacturers started to use aluminum foil to wrap their chocolates.  

Eventually, aluminum foil displaced the use of tin foil.  From then on, aluminum 

use in the packaging industry has continued to expand, as shown in Figure 2.1. 

 Today, aluminum is widely used and is dominant in the packaging industry 

(Figure 2.2).  Aluminum packaging offers a range of properties that contribute to 

a high degree of acceptance with traders and consumers alike [13].  Aluminum 

packaging is lightweight; the metal itself is easily formed, and provides good 
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shape stability.  It also has good thermal conductivity, and reflects light and UV 

rays.  Its excellent barrier properties protect contents in the aluminum package, 

and its corrosion resistance makes it invincible for many types of food and 

beverage.  Aluminum is also chemically neutral, and packaging made out of it 

can be printed on easily.  Most important from the viewpoint of sustainability is its 

ability to be recycled over and over again, as we shall discuss in later chapters.  

Physiologically, aluminum is harmless.  All the attributes are listed in Figure 2.3. 
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Figure 2.2:  Uses of Aluminum in Packaging. 

 

 
 

Material Properties of Aluminum 
 

• lightweight 

• good formability and good shape stability 

• good thermal conductivity 

• high reflectivity for light and UV rays 

• excellent barrier properties 

• corrosion resistance 

• almost completely chemically neutral 

• good printability 

• complete recyclability 

• physiological harmlessness 

 

Figure 2.3:  Material Properties of Aluminum which makes it a Superior 

Packaging Material [13]. 

 

 

Food/Beverage 
 

 

Pharmaceutical 
Products and 

Cosmetics

Chemical Products 
 

Aluminum in Packaging 



 14

2.2 Development of Aluminum Beverage Cans 

 Aluminum beverage cans are part and parcel of today’s life for most 

Americans.  We take these cans for granted most of the time, and do not think 

twice about it when using or discarding them.  We do not realize that these cans 

have undergone nearly 70 years of amazing design and manufacturing 

innovation and evolution, starting with the birth of the steel can.  Today’s 

aluminum beverage cans are the result of years of hard work, and the fruit of new 

manufacturing technology.  The can is not only lightweight; it is also structurally 

very advanced.  The commercial can nowadays weigh only 0.48 ounce, 

compared to 0.66 ounce in the 1960s [14].  This is a reduction of almost 27%.  

Aluminum beverage cans have a thickness less than two pieces of paper, yet 

could withstand pressure of more than 90 pounds per square inch, about three 

times the pressure in an automobile tire [14]. 

 All this started almost 70 years ago in 1935, when the first 3-piece steel 

beer can was produced by the Krueger Brewing Company (Figure 2.4a).  This 3-

piece can consisted of a rolled and seamed cylinder and two end pieces [14].  

The design required that consumers use a pointed instrument to open it [15].  

Some earlier designs also incorporated conical tops sealed by bottle caps 

(Figure 2.4b) [14].  The first canned soft drink was Cliquot Club ginger ale, which 

appeared in 1938.  However, it was beset by leakage and flavor absorption 

problems from the can liner [16].  The problems were only solved in 1948, when 

the first major soft drinks packaged in a steel can were launched by Pepsi-Cola 

(Figure 2.5) and the Continental Can Company. 
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(a)                                (b) 

Figure 2.4:  The birth of the steel beer cans (a) and the bottle cans (b) (Source: 

Beer Can Collection of America [16]). 

 

The first aluminum beverage can was marketed in 1958 by the Adolph 

Coors Company in Golden, Colorado, and introduced to the public by the 

Hawaiian brewery Primo [14].  This first two-piece aluminum beverage can was 

produced using the impact-extrusion process.  The Coor’s can was structurally 

weak, and had a capacity of only 7 ounces.  However, consumer demands 

pushed the can to evolve further, with the introduction of the first easy-open lid in 

1961.  In 1963, Reynolds Metal Company introduced a new manufacturing 

process for producing 12-ounce aluminum cans, from which all modern can 

manufacturing processes are derived.  It was used to package a diet cola called 

“Slenderella” [16].  Hamms Brewery in St. Paul, Minnesota begin to package 

beer in the 12 ounce aluminum can in 1964, and Pepsi-Cola and Coca-Cola soon 

followed in 1967 [14].  The first “206” (diameter of 2.5”) lid was introduced in 



 16

1987, followed by the current “202” (diameter of 2.25”) lid in 1993.  The current 

“stay-on-tab” lid has been around since 1989.  To increase customer appeal and 

create a distinctive look for the product, the first shaped can from Crown Cork & 

Seal appeared in 1997 (Figure 2.6).  A comprehensive time line of major 

developments in aluminum beverage can is shown in Figure 2.7.      

 

Figure 2.5:  Aluminum Beverage Cans used to Package Pepsi-Cola and 

Coca-Cola products in the 1960s [16]. 

 

 

Figure 2.6:  Shaped Aluminum Cans from Crown Cork & Seal [17]. 
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Today, the aluminum beverage can is the primary packaging container 

used in the soft drink and beer industries in the United States and the world.  

Steel cans have been virtually displaced by aluminum cans [14], except in some 

parts of Europe and Asia.  Aluminum beverage cans have undergone many 

changes throughout the years, but cannot stay stagnant if they want to be ahead 

of the competition, especially against PET plastics in the soft drink segment, and 

glass in the microbreweries segment [18]. Customer demands and sustainability 

concerns will be the main factors dictating changes in the future. 
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Figure 2.7:  Major Developments in Aluminum Beverage Cans  

 

 

Aluminum 
Cans 

 1935   The first 3-piece steel cans from Krueger  
  Brewing Company 

1938  Cliquot Club, the first soft drink appeared  
 in the market 

1948    Pepsi-Cola and Coca-Cola started to package 
their  products in steel cans 

Steel 
Cans 

1958   First aluminum beverage can produced by 
Adolph   Coors Company 

1963   Reynolds Metal Company produces the 12- 
ounce aluminum can 

1987   “206” lids introduced 

1993   “202” lids introduced 

1961   First “easy-open” lid 

1989   First “stay-on-tab” lid introduced 

1997   Shaped cans appear on the market 

1967   Pepsi-Cola and Coca-Cola start packaging 
their drinks in the new 12 ounce can 
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2.3 Modern Aluminum Beverage Can Design 

 Modern aluminum beverage cans are designed using the latest tools, such 

as finite element analysis [19] and the most advanced manufacturing processes 

[14], [20].  Aluminum cans today are not only lightweight and strong, but also 

provide customer appeal, and are effective at keeping food and beverages fresh.  

Figure 2.8 shows the anatomy of the modern aluminum beverage can.  

 Modern aluminum beverage cans consist of 2 major pieces, the body and 

the lid (including the stay-on tab), as opposed to the earlier 3 piece design 

(bottom, body and lid) for steel cans.  The body is manufactured using an impact 

extrusion process known as two-piece drawing and wall ironing, first introduced by 

the Reynolds Metal Company in 1963.   The body is made out of an aluminum 

alloy AL3004, with composition by weight of 1% manganese, 0.4% iron, 0.2% 

silicon and 0.15% copper.  Its thickness is about 0.003 inches, thicker at the 

bottom for added strength [14].  The structural strength of the aluminum can is 

enhanced by the shape of the bottom, which curves inward to assume a dome 

shape.  The top of the body is usually necked to accommodate the lid, which has 

grown smaller in diameter over the years. 

 The lid or can end is an integral part of the can, made out of aluminum 

alloy AL5182.  It contains less manganese and more magnesium, thus making it 

stronger than the body [14].  The center of the lid is usually drawn up to make a 

rivet for the tab.  The tab is used to open the can, and is usually scored to make it 

easier to open.  Over the years, the diameter of the lid has progressively become 

smaller and smaller; the “202” lid is the standard today. 
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Figure 2.8:  Anatomy of the Modern Aluminum Beverage Can [14]. 
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12 

8 

  The aluminum beverage can the lid made out of a stronger alloy than the 

body because the top needs to be able to withstand top loadings during stacking.  

It must also be strong enough to be double-seamed.  Current aluminum beverage 

cans come in different sizes, from 4 oz up to 32 oz of liquids.  In addition, the lid 

also comes in various sizes and colors, with the “202” type the most popular today.  

Table 1 shows the various can sizes and lids manufactured today. 

 

Table 2.1 Various Can and Lid Types 

Aluminum Beverage Can Sizes (oz) Aluminum Beverage Can End 
 Types and Sizes  

 
 

 

 

Figure 2.9:  Construction of Modern Aluminum Beverage Cans 
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2.4 Aluminum Beverage Can Manufacture 

 Aluminum beverage can manufacture starts with uncoiling rolls of 

aluminum sheet.  Each coil can weigh up to 25,000 lbs.  AL3004 alloy is used to 

manufacture the body and AL5182 alloy for the lid or can end.  To manufacture 

the body of the can, after uncoiling, the sheets are passed through a lubricator.  

Here, a thin film of lubricant is applied to the surface of the sheets, which pass on 

to the cupper, where circular blanks are cut from the sheet and formed into cups.  

This process, called backward extrusion, can produce 2500 to 3750 cups per 

minute.  A series of tooling dies is then used to redraw and iron the cups until the 

specific shape and specifications of the can body are obtained.  After that, the 

open end of the can is trimmed to a uniform height.  The redrawing and ironing 

processes is shown in Figure 2.10. 

 The can is next washed and dried to prepare for application of internal 

coatings and outside labels.  A base coat of lacquer is next applied to the outside 

surface of the can, before it goes into an oven to be cured.  Graphics are then 

printed onto the outside surface, using up to 6 different combinations of color 

before a thin film of lacquer is applied.  Lacquers are also applied to the bottom 

of the can.  Next, the whole thing goes into another oven to be cured.  Another 

film of lacquer is applied to the internal surface of the can, which goes into 

another oven to be cured. 

 The can next goes though a machine called the waxer, where another film 

of lubricant is applied to the edges of the can in preparation for necking.  A  
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machine called the die necker then gradually rolls the top opening down to 

specific diameters, depending on which size of lid will be used.  The flanger then 

rolls back the top of the can, in order to form a lip to which to attach the can end 

after filling.  The outer dome is next reprofiled for stackability, or inner dome 

reformed for strength.  Quality inspection is performed next to check for pinholes 

or other damage.  Cameras are used to check for inside contamination before 

the cans are palletized to be shipped to customers.  Customers such as soft 

drink companies then fill the cans with their product, and finally the lid or can end 

is attached and seamed.  Figure 2.11 shows the physical transformation of the 

can through each process. 

  

Figure 2.11: Transformation of Aluminum Beverage Cans During Manufacture 

[14] 
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 The lid or can end also starts off with coiled aluminum sheets.  In this case, 

the sheet is AL5182.  After being lubricated, the sheets go into a shell press.  A 

circular disc is blanked and then formed into a shell.  This process can produce 

up to 5,500 shells per minute in a modern plant.  The shell is then discharged 

through a curler, which forms the precise shape required for the double seaming 

operation to attach the lid to the body.  A liquid sealing compound is then applied 

to the end, and the shells moved to a conversion press where the score is 

formed and tab attached.  After quality control checks, the lids are shipped to the 

customers. 

 

2.5 Aluminum Beverage Can Recycling 

 Aluminum beverage can recycling was started as a result of the “Ban the 

Can” campaign in the seventies.  Used aluminum beverage cans were 

considered an eyesore, and manufacturers had to set up recycling centers to 

deal with this issue.  In addition, the 1973 OPEC oil crisis forced manufacturers 

to find a more energy-efficient way to manufacture aluminum beverage cans.  

They found that recycling only consumes 5% of the energy needed to produce 

the same can from virgin metals. At a 25% recycling rate, the aluminum can is 

more energy efficient than the bi-metal can, and with 60% recycling it becomes 

competitive with the returnable bottle [21]. 

 The aluminum beverage can recycling process in a modern recycling plant 

is illustrated in Figure 2.12.  Used beverage cans (UBCs) come in bales weighing  
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approximately 400 kg, or as briquettes with maximum density of 500kg/m3 [22].  

The first step in recycling UBCs is to shred them to ensure that no trapped liquid 

or extraneous material reaches the melters, which might cause serious damage 

or injuries [22] & [23].  After being shredded, the UBCs pass through a magnetic 

separator to remove any ferrous contaminants.  Nonmagnetic and nonferrous 

materials such as lead, zinc and stainless steel are separated using an air knife.   

 The next step is delacquering, usually carried out in two ways.  The first 

method is to expose the UBCs to a “safe” temperature over a long period of time; 

the second method is to heat the UBCs to a temperature just below the melting 

temperature of the alloys for a short time.  The UBCs then move to the next 

stage, the thermal-mechanical separation process.  In this stage the temperature 

is held constant at a specific level in a neutral atmosphere; by gentle mechanical 

action the AL 5182 alloys are broken into small fragments, along the grain 

boundaries weakened by the onset of incipient melting [22], [23].  The 

fragmented AL 5182 particles then pass through an integrated screen and are 

transported to lid stock melters, and the AL 3004 particles are sent to body stock 

melters. 
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Chapter 3 

Sustainability Issues of Aluminum Beverage Cans 

 One of the most well known definitions of sustainability is from the 1987 

Brundtland Commission Report.  It defined sustainability simply as “meeting the 

needs of the present without compromising the ability of future generations to 

meet their own needs” [2].  Economic viability, social responsibility and 

environment protection are the three pillars of sustainable development [24].  

Figure 3.1 illustrates all major components of sustainable development, 

encompassing the three pillars of sustainability. 

 

Figure 3.1: Sustainable Development [25] 

Sustainable Development

Sustained Growth

Environmental 
Sustainability

Economic Sustainability Societal
Sustainability

Plants, Forestry 
& Vegetation

Water, Soil & 
Air Pollution

Industry 
Emissions &

Toxicity

Sustainable 
Natural 

Resources 
(Oil, Gas, 

Minerals, etc)

Sustainable 
Agriculture

Sustainable 
Living (Health, 

Safety, etc.)

Sustainable
Products 

Sustainable 
Cities, Villages 
& Communities

Sustainable 
Manufacturing 

Systems

Sustainable 
Manufacturing 

Processes

Sustainable Manufacture 

Sustainable Development

Sustained Growth

Environmental 
Sustainability

Economic Sustainability Societal
Sustainability

Plants, Forestry 
& Vegetation

Water, Soil & 
Air Pollution

Industry 
Emissions &

Toxicity

Sustainable 
Natural 

Resources 
(Oil, Gas, 

Minerals, etc)

Sustainable 
Agriculture

Sustainable 
Living (Health, 

Safety, etc.)

Sustainable
Products 

Sustainable 
Cities, Villages 
& Communities

Sustainable 
Manufacturing 

Systems

Sustainable 
Manufacturing 

Processes

Sustainable Manufacture 

Sustainable Development

Sustained Growth

Environmental 
Sustainability

Economic Sustainability Societal
Sustainability

Plants, Forestry 
& Vegetation

Water, Soil & 
Air Pollution

Industry 
Emissions &

Toxicity

Sustainable 
Natural 

Resources 
(Oil, Gas, 

Minerals, etc)

Sustainable 
Agriculture

Sustainable 
Living (Health, 

Safety, etc.)

Sustainable
Products 

Sustainable 
Cities, Villages 
& Communities

Sustainable 
Manufacturing 

Systems

Sustainable 
Manufacturing 

Processes

Sustainable Manufacture 



 29

The application of sustainability ranges from sustainable city and urban 

development to sustainable consumer products.  Current concepts regarding 

sustainability are more concerned with determining the economic and social 

dimensions of sustainability and linking these with the ecological dimension [24].  

This approach is referred to as “corporate social responsibility” [24].  

Comprehensive, global sustainability heavily depends on collective and unified 

effort of the global community involving multi-disciplinary approach [1]. 

 

3.1 Sustainability Development in the Aluminum Industry 

 Aluminum is probably one of the most important and essential metals in 

the industrialized world today.  Its strength, conductivity, recyclability, and light 

weight make it ideally suited to the needs of a highly mobile and technologically 

sophisticated world [26].  Aluminum also fits well in the concept of sustainability 

because it is the most environmentally sustainable material available to our 

increasingly resource-conscious planet [26].  Aluminum applications began in 

1886 when Hall and Héroult discovered how to mass produce aluminum through 

electrolysis.  In 1900, the annual output of aluminum was only 1000 tonnes, but 

this figure rose to 20 million tonnes by the end of the 20th century.  In 2000, the 

United States shipped $6.1 billion worth of aluminum [26].  This makes aluminum 

the world’s second most used metal [27].  Figure 3.2 shows the world’s uses of 

aluminum, with the transportation sectors consuming the most aluminum 

compared to other sectors.  The packaging sector consumes 20% of worldwide 

aluminum usage, tied with the construction sectors.   
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Figure 3.2: World Aluminum Consumption in 2000 (Data from [27])  
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Figure 3.3: US Aluminum Shipments by Product Form in 2000 (Data from [26]) 
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Figure 3.4: US Aluminum Shipments by Major Markets in 2000 (Data from [26]) 

 

 

Figure 3.5: Aluminum Production and Life-cycle [27]  

 

Figure 3.3 shows US aluminum shipments by product form and by market in 

Figure 3.4.  Aluminum in the form of sheet, plate and foil constitutes the largest 
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shipment in the US in 2000, while the transportation sector consumes 33% of US 

aluminum shipments, closely followed by the packaging industry at 20%.  Most of 

the uses of aluminum sheets, plate and foil are in the packaging industry, for 

making aluminum beverage cans, food containers etc.  Figure 3.5 shows the life-

cycle of a typical aluminum product, starting with bauxite mining and extraction, 

ending with recycling by collecting scraps and secondary smelting. 

 Two important sectors for aluminum consumptions are the transportation 

sector, specifically the automobile industry, and the food packaging industry.  

Due to the superior weight to strength ratio, aluminum is widely used to make 

light and fuel-efficient cars.  During an automobile’s production, one kilogram of 

aluminum can replace two kilograms of conventional heavier materials, thus 

helping in reducing the automobile’s weight and cutting down fuel consumption 

and emissions while retaining or improving the vehicle’s safety [27].  This 

translates into a reduction of 20 kilograms of CO2 [27] for every kilogram of 

aluminum used to replace conventional materials used in automobile 

manufacture.  It has been forecasted that by 2020, there will be a 35% increase 

in CO2 emissions from all vehicles, while an increased use of aluminum in 

vehicles would reduce these statistics to 28% [27].  Therefore, the use of 

aluminum is one important option in sustaining the automotive industry. 

 Aluminum used in the food packaging industry helps to preserve food 

quality, reduces wastes and provides convenience for consumers [13], [27].   Its 

excellent properties described in Chapter 2 and shown in Figure 2.3 help it to 

saves about 30% of the world’s food from wastage [27].  Only about 10% of the 
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energy consumed in the production of foodstuff is attributed to packaging, with 

50% of energy consumed during primary production of the foodstuff itself and 

35% for the food preparation and handling [27].  The public used to have the 

misconception that packaging, be it aluminum beverage cans or aluminum foil, 

creates environmental pollution.  However, the fact is that packaging saves ten 

times more waste than it creates [27]. 
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Figure 3.6: Global Aluminum Production Data (Compiled using data from [27]) 

 

 Over the years, the whole aluminum industry has improved in terms of 

economy, environment and society point of view.  Figure 3.6 shows the world 

trend in aluminum production.  Although global alumina production and primary 

production of aluminum has been steadily increasing over a period of ten years 

from 1990 to 2000, energy consumption and outputs from productions such as 
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green house gases and PFC have been on the decline.  This shows that it is 

possible to have a sustainable growth and development without sacrificing 

economic profits or ecological side effects.  Both, the economy and the 

environmental sustainability can go hand in hand.  Improvements in green house 

gas emissions and energy consumption reductions in production mainly have to 

do with technological advancements over the years in production and 

manufacturing processes.  Aluminum is derived from bauxite ores, which has to 

be mined.  About 120 million tonnes are extracted annually, and the global 

commercially available bauxite reserves will last for more than 200 years [28].  

Although only a small percentage of bauxite, about 6%, is mined in the rain forest 

region (2.4 square kilometers is used annually, about 0.00002% of the world’s 

rain forest), extensive rehabilitation of the land is still carried out by the aluminum 

industry after extraction of the ore [28].  In 1990, a bauxite mine in Western 

Australia was awarded the “Global 500 Roll of Honor for Environmental 

Achievement” prize by the United Nations for their role in rehabilitation and 

environment protection. 

 Most companies involved in the aluminum industry have adopted the 

concept of “corporate citizenship”, where consideration has been given to a 

company’s social responsibility and to concepts of socially correct business 

dealings, while at the same time bearing the aspects of sustainability in mind [29].  

The first step in protecting society in the sustainable aluminum industry starts at 

the refinery plant level.  Figure 3.7 shows statistics for global accident rates at 

smelters, refineries, mines and all aluminum plants.  A downward trend is  
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Figure 3.7: Global Accident Rates in Aluminum Production (Data from [27], [29]) 

 

observed in all categories, and therefore showing that sustainability at the 

societal level, in terms workers’ safety and welfare, in the aluminum industry is 

on the rise.  If we look at the product level, aluminum products have really 

revolutionized the human society.  From transportation to food packaging, 

aluminum is indispensable at the societal level.  We have seen how aluminum is 

used in automobiles not only to increase fuel efficiency and reduce CO2 

emissions, but also enhance to an automobile’s safety.  Crash tests of 

automobiles show that aluminum absorbs at least as much energy as steel 

structures [29].  In addition, aluminum is also used in airplanes to reduce weight.  

Today’s Boeing 747 aircraft is comprised of 80% aluminum.  This helps the 

airline industry to transport about a third of the world’s trade goods in value, and 



 36

it carried 1.5 billion passengers in 1999.  Both use of aluminum in automobiles 

and airplanes have greatly increased human and goods mobility.  Use of 

aluminum in the packaging industry has helped protect society against food 

contamination as well as preserving food and beverages for a longer period of 

time.  Its properties shown in Figure 2.3 make aluminum one of the most 

effective and long life packaging materials.  Even an extremely thin layer of foil 

help maintains the freshness of foods that quickly deteriorate, such as milk and 

enables medicine to be transported and stored in tropical regions with high 

humidity [29]. 

 From the systems perspective, the aluminum industry provides jobs to 

countless people and is vital economy drivers for many countries.  Kentucky has 

a huge aluminum industry and if it were a country, it would have the most 

concentration of aluminum plants in the world, with an average annual worker’s 

wage of $46000.  The United States is one of the largest producers of primary 

aluminum metal in the world with shipments worth $6.1 billion in 2000 [26].  

Aluminum contributes 50% of Jamaica’s exports and provides employment to 

over 4000 people there, with the least qualified workers earning up to four times 

the legally required minimum wage in that country [29].  In Brazil, aluminum 

companies provided elementary education for the children of their employees 

and donated education materials to over 25000 school children [27].  The 

German aluminum industry employs about 75000 people with a total wage and 

salary bill of four billion euros [30], making it one of the largest industries in that 

country.  In Ghana, the Volta Aluminum Company contributes $200 million 
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annually to the economy, making it the fifth largest contributor of foreign 

exchange to the country [27].  

 Another critical aspect that contributes to the sustainable development of 

the aluminum industry is recycling.  Aluminum is an “energy bank”  that can be 

recycled over and over again without quality loss.  Its amazing recyclability 

ensures that a deposit made into this bank will preserve its value [26].  The 

suitable phrase for consumption of aluminum is that it is used and not consumed 

[31].  A large number of secondary aluminum metals from the “aluminum pool” 

can be recycled and reused.  A widely known fact is that aluminum products can 

be recycled and remanufactured endlessly with only 5% of the energy and 

emissions originally required to produce the virgin product [26].  It takes about 

95000 Btus of energy to make one pound of primary aluminum from bauxite ore, 

but only 4300 Btus from scrap, or secondary aluminum metal [32].  Figure 3.8 

shows the worldwide recycling rate of various aluminum products with respect to 

markets in 1990 and 2000.  Generally, the trend is pretty encouraging with 

increased recycling rates in all markets, with the exception of one; the aluminum 

beverage can market, which decreased from 61% in 1990 to 59% in 2000.  As 

stated earlier, aluminum recycling is a critical factor in ensuring the sustainable 

development of the aluminum industry, due to the fact that recycling contributes 

to the three pillars of sustainability.  Recycling is beneficial to the environment, 

reducing wastes and scrap.  It also reduces the need for clearing land for fresh 

supply of bauxites.  Recycling is economically viable, since aluminum is an 
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Figure 3.8: Worldwide Collection (Recycle) Rates by Market (Data from [33]) 
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“energy bank”, and producing aluminum from scrap only consumes 5% of the 

energy used to extract aluminum from bauxites.  The recycling industry creates 

jobs for society, and helps them to live in a cleaner and better environment.   

 The aluminum industry as a whole is moving in the right direction in 

achieving a sustained growth and development.  However, one particular area of 

concern in the aluminum industry is the aluminum beverage can market.  One 

obvious factor that may threaten the sustainability of the aluminum beverage can 

is its declining recycling rates.  We will further analyze the sustainability of the 

aluminum beverage cans in the next section. 

 

3.2 The Sustainability of Aluminum Beverage Cans 

 If we look at the historical development of the aluminum beverage can, 

including its “ancestor”; the 3-piece steel can, the aluminum beverage can has 

been around for almost 70 years.  It is a well-developed and mature product in 

terms of product design and development.  As with other mature products in the 

market, the innovation curve is not as steep as with a newly introduced product.  

Without product innovation and improvement, the sustainability of the aluminum 

beverage can may be in jeopardy.  Figure 3.9 shows the relationship between 

innovation and sustainability.  From the product point of view, innovation equals 

increased sustainability.  The major factors affecting a product’s sustainability are 

shown in Figure 3.10.  Six factors have been identified, and they are a product’s 

functionality, environmental impact, societal impact, recyclability/ 

remanufacturability, manufacturability, and resource utilization and economy [35].  
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In order to enhance the sustainability of the aluminum beverage can, we need to 

analyze the market to see which of the six factors are most important for the can.   

 

Figure 3.9: Innovation and Sustainability Relationship [34] 

 

 

Figure 3.10: Factors Affecting Product Sustainability [35] 



 41

 The United States is the world’s largest consumer of aluminum beverage 

cans.  It produces 300 million aluminum beverage can a day, and 100 billion 

cans a year [14].  The industry’s output in the US is equivalent to one can per 

American per day, and outstrips the production of nails and paper clips [14].  

According to the US Bureau of Census, the US aluminum industry employed 

about 141,000 people with total industry shipments estimated at $38.8 billion.  

According to the Aluminum Association Inc., aluminum beverage cans account 

for 100% of the total US beverage can market in 2002 [36].  This however is not 

the case in Europe, where the aluminum beverage can is facing serious 

competitions from steel and plastic containers. 
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Figure 3.11: The Aluminum Beverage Can’s Market Share in 2002 in Europe 

(Data from [37]) 



 42

Figure 3.11 shows the aluminum beverage can’s market share in Europe in 2002.  

In several developed countries in Europe such as France, Germany, Portugal, 

and Spain, the market share of aluminum beverage can is less than 50%.  As a 

result of competition, the annual growth rate for the overall aluminum container 

market slowed dramatically between 1990 and 2000 [26]. 
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 Figure 3.12: Aluminum Beverage Cans Discarded in the United States 

(Prepared using data from U.S Department of Commerce & Bureau of Census) 

 

 Domestically, although the aluminum beverage can is dominant in the 

beverage can market, the aluminum beverage can recycling rate has been on the 

decline for the past few years.  Figure 3.12 shows an increasing trend of the 

number of aluminum beverage cans discarded in the US from 1972 to 2000.  An 

increasing trend is also observed in Figure 3.13 for the number of aluminum 
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beverage cans being recovered for recycling from 1972 to 2002.  However, the 

collection rate has not been able to keep up with the number of cans being 

discarded, and as a result, the recycling rate of aluminum beverage can has 

been on the decline since 1992.  This trend is shown if Figure 3.14.  The 

declining rate of aluminum beverage can recycling in the US is worrisome 

because recycling is one of the strong points of the aluminum beverage can 

which makes it a sustainable product. 
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Figure 3.13: Number of Aluminum Beverage Cans Collected in the US for 

Recycling (Data The Aluminum Association Inc., Can Manufacturers Institute, 

Institute of Scrap Recycling Industries, Inc.) 
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Figure 3.14: Aluminum Beverage Can Recycling Rate in the US (Data from The  

Aluminum Association Inc. and US Department of Commerce) 

 

 Arguments can be made that the recycling rate has been on the decline 

primarily because of the lower demand for aluminum beverage cans.  However, 

Figure 3.15 proves otherwise.  From 1972 to 2002, it has been shown that 

market demand for aluminum beverage cans has always been on the uptrend, 

hovering about 100 billion cans shipped per year today.  Therefore, there is a 

fundamental problem in the declining rate of aluminum beverage can recycling in 

the US.  It may be consumer’s lack of awareness, lack of effort on government’s 

part to educate the society of the benefits of recycling or even the lack of 

regulations enforcing recycling to a certain degree.  Whatever the reasons are, 

the fact is aluminum beverage can recycling is declining in the US and although 
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the market demand is still going strong, this is not sustainable as wastes is 

increasing.  

0 20 40 60 80 100 120

Number of Aluminum Beverage Cans Shipped (Billions)

1972

1975

1978

1981

1984

1987

1990

1993

1996

1999

2002

Ye
ar

 

Figure 3.15: Number of Aluminum Beverage Cans Shipped in the US (Data The 

Aluminum Association Inc., Can Manufacturers Institute, Institute of Scrap 

Recycling Industries, Inc.) 

 

 United States used to be the world’s largest primary aluminum producers.  

However, due to the higher energy costs in the US, primary production of 

aluminum has shifted to countries such as China and Australia [38].  Therefore, 

in order to satisfy domestic industrial needs of aluminum, the US had to import 

aluminum from those countries that are the primary producers.  Not only that, 

some used beverage cans (UBCs) are also exported from the US to be recycled 

abroad.  This means that the US has to rely on importing of aluminum from 
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abroad to sustain its economy.  This scenario does not make sense at all, since 

the US has the largest consumption of aluminum products, especially aluminum 

beverage cans.  These aluminum products have the potential to be recycled but 

instead they go into the waste stream, and for the aluminum beverage can, only 

about 50% of the can is recovered to be recycled. 

 Statistics aside, over the past few years, manufacturers have been trying 

to bring product innovations into the can industry and some even tried to stray 

away from the traditional can design and tried to market aluminum bottle can 

(Figure 3.16) [39].  Although the aluminum bottle can is an exciting idea that 

offers fresh product aesthetics and has been a major hit in Japan, the US 

introduction is just beginning.  One major disadvantage of the product is its 

relatively high manufacturing costs, but this will change with economy of scale.  

However, the traditional “beer tumbler” shaped aluminum beverage can still hold 

a special place in the hearts of consumer and is likely to stay for a long time.  

Other innovations that have been brought in and should be brought into the 

market are using aluminum beverage cans to market wine, milk and juice, self 

warming and cooling cans, temperature sensitive paints used on aluminum 

beverage cans and cans that inject nitrogen gas into the drink upon tab opening 

to make it more bubbly. 
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Figure 3.16: Aluminum Bottle Can [39] 

 However, from the discussion, it seems that in the US today, recyclability 

is still the main factor affecting aluminum beverage can’s sustainability.  

Therefore innovations have to be made to the product design to enhance its 

sustainability, especially in recyclability.  There are many ways to enhance a 

product’s sustainability, and it can be done through the system’s or process 

perspectives. However, in the next chapters, we will discuss why the product’s 

point of view is chosen and a new methodology for sustainable product design is 

developed and implemented towards creating a new aluminum beverage can 

design.  
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Chapter 4 

Design for Sustainability 

 As pointed out in earlier chapters, one inadequacy with the current 

sustainable product design methodology is that only one product life-cycle is 

considered.  Traditional notion holds that a product’s life-cycle ends when it is 

thrown away and after recycling, the product starts a brand new life-cycle.  The 

idea of a product having multiple and even perpetual life-cycles is alien to many 

and new.  However, a truly sustainable product needs to have multiple and 

perpetual life-cycles with a closed loop material flow.  This research also focuses 

on developing a sustainable product from the product’s point of view.  In looking 

from the perspectives of the product level, product designers are working within 

the constraints of the current infrastructure, be it manufacturing, distribution or 

recycling.  Therefore, the introduction of a new sustainable product does not 

require huge upfront costs to change the current manufacturing, distribution or 

recycling infrastructure to accommodate the product.  A new sustainable product 

should be a product of pure engineering innovations that improves its economical, 

environmental and societal value without requiring a systems change.   

 

4.1 Design for Sustainability Methodology 

 Most design methodologies are created either to overcome deficiencies in 

the current design and manufacturing processes, or to improve the recovery and 

recyclability of the products during and at the end of its service life. Overcoming 

the deficiencies in the design and manufacturing processes may include reducing 
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energy, material and labor costs, as well as, reducing wastes in machine 

utilization and material flow.  Some of the traditional design methodologies are 

also utilized to produce products that are easier to be serviced, repaired, 

disassembled, recovered and recycled, while a comprehensive methodology to 

represent various major sustainability elements is yet to emerge.   

 However, if we look at the big picture, the desired outcomes of all those 

traditional design methodology points to one or more aspects of sustainability.  In 

other words, most traditional design methodologies are created and utilized to 

enhance the products from either one of these three focal points; economy, 

environment and society.  The final objective and outcomes of utilizing any of 

these traditional design methodologies would be trying to come up with some 

kind of a sustainable product.  Therefore, if there was an “ideal sustainable 

product design methodology”, it would be the fusion of all the traditional design 

methodologies and its desired outcome will be a sustainable product; 

encompassing sustainable manufacture, recovery, recycle as well as being 

environmentally friendly and benefiting to society, fulfilling all three pillars of 

sustainability; environment, economy and society.  This “ideal sustainable 

product design methodology” should be called Design for Sustainability (DFS).  

Figure 4.1 shows the major elements of DFS which consists of all the other 

traditional design methodologies.  All outcomes and objectives of those design 

methodologies point towards the requirements of DFS.  The ideal design for 

sustainability methodology should fulfill all three important elements in 

sustainable development without compromising any of them.  In addition, DFS 
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should have the notion that the life-cycle of a sustainable product should be 

considered as multiple and perpetual, where the base material keeps flowing 

after the recycle stage. 

 

Figure 4.1: Major Elements Contributing to Design for Sustainability. 

 

4.2 6R Concept: Multiple and Perpetual Material Flow  

 From the marketing and business perspectives, a product’s life-cycle is 

usually defined as the progress of the product through introduction, growth, 

maturity and decline stages.  Engineers define product life-cycle assessment 
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(LCA) as an objective process to evaluate the environmental burden associated 

with a product by identifying and quantifying energy, material uses and releases 

on the environment, and to evaluate and implement opportunities to affect 

environmental improvements [40].  This assessment usually includes the entire 

life-cycle of the product, encompassing extracting and processing of raw 

materials; manufacturing, transportation, and distribution; use/re-

use/maintenance; recycling; and final disposal of the product [40].  However, this 

definition and assessment methodology only consider the product as having a 

single life-cycle, and no consideration of perpetual material flow for sustainability 

is prevalent.   

 The first step in developing an ideal design for sustainability methodology 

for producing a truly sustainable product is ensuring that both the design 

methodology and the life-cycle evaluation of the finished product include an 

element of multiple life products with perpetual material flow.  Traditionally, the 

life-cycle of a finished product with a single life-cycle starts from manufacture and 

ends with disassembly and/or recycling.  The recently introduced 3R approach to 

manufacturing (Reduce, Reuse, Recycle) appears to be in line with this, while 

multiple and even perpetual life-cycle approach would seem essential for a fully 

sustainable product.  An effort to model a product’s life-cycle by considering the 

perpetuality of material flow is shown in Figure 4.2, typically for automobiles. 
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Figure 4.2: Automobile life-cycle (Adapted from [41]) 

 

 In designing for sustainability to maintain perpetuality of material flow, the 

raw material used to manufacture the initial product is expected to be recovered 

and recycled at the end of the first life-cycle before “flowing” into the next life-

cycle as part of another product.  This multiple and perpetual life-cycle concept is 

defined by the 6R concept as shown in Figure 4.3.  There are 6 integral elements 

in the 6R concept; Recover, Reuse, Recycle, Redesign, Reduce and 

Remanufacture.  Each integral element by itself forms the basis for sustainability.  

The first stage in manufacturing a product begins with designing.  In this initial 

step, companies look at the market and competitor’s product in order to design a 

product that fits the consumers’ needs, able to compete with the competitors 

offering and environmentally friendly.  This is done by evaluating the product’s 

sustainable elements, such as functionality, manufacturing costs, serviceability, 

recycleability, etc.  After this impact analysis has been done, the product will go 

into production and be sold to consumer for use.  According to the 6R concept, 

when the product has no more value or use to the first owner, instead of going 
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directly to be recycled, it needs to be recovered.  In this Recover stage, the 

product is stripped down and useful parts are salvaged as spare parts for 

identical products while the remaining presumably defective materials are sent to 

be recycled.  An example of this process can be found in the automotive industry.  

Daily, hundreds of used and “totaled” vehicles are stripped apart to salvage 

spare parts and the rest of the automobile is sent to be scraped and recycled.  In 

addition, many ink cartridges for printers are recovered by manufacturers, refilled 

and sold as brand new ink cartridges. 

 

Figure 4.3: Stages of material flow in perpetual product life-cycle involving 6R 

elements.     

 These salvaged parts from the Recover stage are then used in other 

products.  This next stage is the Reuse stage.  After the usefulness of the parts is 
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exhausted completely, it goes to the Recycle stage.  Usually, this is the end of 

life for a single life-cycle product.  However, in order for a product to have 

multiple and even perpetual life, we have to consider the “flow” of materials from 

the previous product into the new product, and take this as the continuation of 

the product’s life.  In the next stage, instead of making the same product again, a 

sustainability-minded designer will redesign the product again to make it more 

economical, environmentally friendly and fulfill the needs of society, all three 

aspects of sustainability.   

 This is what we call the Redesign stage.  During the redesigning process, 

reducing the materials used in the product, the manufacturing processes, and so 

on, is critical in order to bring the product to the next level of sustainability and to 

make it competitive in the market.  This stage is the Reduce stage.  After all of 

this is completed, the product is remanufactured again as a similar product but 

with enhanced sustainability elements.  The cycle is repeated again as shown in 

Figure 4.3.  The 6R concept is unique in the sense that it promotes the idea of 

Kaizen, or continuous improvements in product design, that benefits the 

environment, economy and society.  In addition, the concept can be tailored to 

suit any specific product.  The priority for each stage in the concept is different 

with different product, for example the recovering of aluminum beverage cans for 

reuse as “spare parts”, analogous to the spare parts recovery in the automotive 

industry, is not a priority, although it can be recovered and used in crafts.  

Therefore, the Reuse stage can be skipped and move to the next stage, Recycle.  
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This flexibility in the concept makes it applicable to a wide range of products, 

although a truly sustainable product should ideally “flow” through each stage.   

  

4.3 Certified Sustainable Product 

 As discussed earlier, a truly sustainable product should “flow” through 

each of the stages in the 6R concept.  As seen in Chapter 1, most existing 

sustainable product design methodologies only have the stereotypical notion that 

a sustainable product should be “green”.  This stereotype is not at all beneficial, 

as businesses are not much interested in a “green” product that can not generate 

sales or profit.  Neither does the idea that a sustainable product should put the 

environment first and consider the societal impact as second hand 

considerations makes any sense.  We should not assess sustainability from 

“pure ecology’ point of view [42], rather look at sustainability from three equal 

perspectives; environment, economy and society.  A sustainable product should 

not be assessed as having only a single life-cycle, but should be treated as 

having multiple and perpetual life-cycle.   

 The mindset of sustainable product being a “green” product is not wrong, 

just inadequate and incomplete.  The idea of sustainability and sustainable 

products would be fully accomplished only if the three pillars of the idea; 

environment, economy and society are placed on the same level, with multiple 

and perpetual life-cycle considerations built into the product. The 6R concept is a 

useful tool in sustainable product design, and we will apply this tool to the 

aluminum beverage can to enhance its sustainability, especially its recyclability.  
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As shown in Chapter 3, the recycling of aluminum is not only the strongest point 

of the aluminum industry, but the recycling of aluminum beverage cans has been 

on the decline over the past few years compared to the other aluminum products 

(see Figure 3.8 in Chapter 3).  Therefore, the recyclability of aluminum beverage 

cans is the “silver bullet” in sustaining the aluminum beverage can in the US 

market.  Increasing the recyclability of the can not only benefits the environment 

by reducing waste, but also improves economic profits for the industry (recycled 

metal costs less than the primary metal) and provides jobs to the community 

(societal benefits).  For this reason alone, the aluminum beverage can should not 

be considered “recyclable” but “certified sustainable product” (Figure 4.4), 

satisfying six integral elements of product sustainability discussed previously. 

 

 

 

Figure 4.4: The Proposed Sustainability Enhancement in Aluminum Beverage 

Can (From recyclable product to certified sustainable product) 
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Chapter 5 

Innovative Aluminum Beverage Cans Design for Increased 

Recylability 

 After detailed analysis on the overall status of the product sustainability in 

the aluminum industry, especially in the aluminum beverage can market; we 

have arrived at a conclusion that the recyclability of the aluminum beverage can 

is the strongest sustainability point of the product.  Not only recycling of the 

aluminum beverage can profitable to the environment, but also it is beneficial to 

the economy and the society dimension.  In addition, we established that in order 

to enhance the sustainability of the aluminum beverage can, we need to work 

from the product’s perspectives with the current manufacturing and recycling 

constraints.  The systems impact down the line will also be assessed.  The 6R 

concept will be applied to this task. 

   

5.1 6R Concept applied to New Innovative Aluminum Can Design 

 The redesign of the aluminum beverage can will not be done from the 

ground up by looking at the existing design and bring subtle innovations with 

huge impacts into the product.  We will apply the 6R concept to the 12 oz can, 

which is the workhorse size of the aluminum beverage can industry and accounts 

for over 90% of all aluminum beverage cans manufactured in the United States.  

The aluminum beverage can is a well developed and mature product, and from 

the product design point of view, it has some good features.  First is the stay-on-

lid, second is the cylindrical shape of the body for optimal load distributions, as 
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well as the dome-shaped surface at the bottom for better stackability and internal 

pressure distribution.  The only sustainability disadvantage of the can is the dual 

alloy construction.  The lid is currently made out of a stronger alloy because it 

needs to withstand top loads during stacking and also be able to be double-

seamed.  This requires that the two alloys be separated during recycling and 

melted in two separate lines of furnaces.  Therefore it seems obvious that the 

new innovative aluminum beverage can should be engineered to be 

manufactured out of only one alloy while retaining rest of the efficient current 

design features. 

 There are six stages of material flow in the 6R concept; Recover, Reuse, 

Recycle, Redesign, Reduce and Recycle.  Of these 6 stages of material flow, we 

have identified that 3 stages, Redesign, Reduce and Recycle, are crucial to the 

aluminum beverage cans and should be used for the product redesign.  The 

process of enhancing the sustainability of aluminum beverage cans begins with a 

new design concept from the Redesign stage in the 6R concept.  Significant 

changes in the current can designs are not desirable according to the principles 

of sustainability; because a completely different can design would require major 

revamping of the manufacturing processes involving large monetary costs, thus 

not economically sustainable.  Therefore, subtle innovations to the current design 

that produce major impacts to the recyclability of the aluminum beverage can are 

desired.  In addition, this innovative can redesign should also take into account 

what is needed in the next Reduce stage.  In other words, the redesigning of the 

can not only means coming out with a design that is different in terms of looks 



 59

and functionality, but also trying to reduce the recycling steps or materials used 

to manufacture the cans.  Finally, the new aluminum beverage can should have a 

better performance in the Recycle stage compared to the current design. 

 The concept for the proposed new and innovative design is based on a 

can made of out a single alloy AL3004.  This means that instead of 

manufacturing the lid out of AL5182, it can be made out of AL3004, the same 

alloy as for the body.  In order to compensate for the weaker AL3004, the lid will 

have a concave shape to withstand and distribute loadings better.  This also 

actually improves its stackability as the concaved lid complements the dome-

shaped bottom of the body.  The design and performance evaluations of the new 

unialloy can will be described in the next section. 

 

5.2 Finite Element Analysis of New Unialloy Can Design 

 The design inspiration for the new unialloy aluminum beverage can comes 

from the idea that a curved surface would be stronger than a flat surface, in 

terms of the ability to distribute stresses better.  The left can in Figure 5.1 shows 

a radical can design with an extremely concave lid.  However, overly curvaceous 

lid would make opening the tab harder, as well as not aesthetically appealing.  

However, if we refined down this idea further, we arrive at the can design shown 

on the right in Figure 5.1.  At fist glance, this new design would seem similar to 

the current existing design which is shown the center of Figure 5.1.  However, 

upon further inspection, we notice a slightly curved lid in the new design on the 

right.  The curvature of this lid is only 6 cm with the center point of the curve 
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about 3 cm from the bottom, thus is barely noticeable.  This slight curvature is 

more pleasing to the eyes than the can on the left in Figure 5.1, and would be no 

different than the current design to open with a tab as the curvature is slight.  

Also, this curved lid would complements the dome-shaped bottom of the can, 

thus further enhancing its stackability.   

 

Figure 5.1: Aluminum Beverage Can Design (From left: Initial new inspiration, 

Current aluminum beverage can, Final New Unialloy Aluminum Beverage Can) 

 

 The structural performance of the unialloy aluminum beverage cans still 

needs to be assessed, with the current aluminum beverage can used as a 

benchmark.  Attempts have been made previously to predict and model the 

structural performance of aluminum beverage cans [19] and simulate the 

manufacturing process of the can [43], using advanced CAD and FEM software.  

The cans are modeled in Pro/Engineer Wildfire with the exact dimension shown 
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in Figure 2.8 in Chapter 2.  The body shell thickness varies from 0.003 in (0.075 

mm) to 0.012 in (0.3 mm), depending on the location, with the thickest portion 

near the bottom and the thinnest at the middle.  The lid was measured using a 

micrometer caliper and the average thickness was found to be 0.027 in (0.687 

mm).  The current design and new unialloy design would share the exact same 

dimensions, with the exception of the 6 cm curvature on top of the lid. 

 The normal criteria to assess the structural performance of any beverage 

can design is that is has to be able to withstand internal gas pressure of 90 psi 

(620528.1561 Pa) and top load of 250 lbs (113.3981 kg).  The cans were drawn 

as thin surfaces in Pro/Engineer Wildfire and using the built in Pro/Mechanical 

extension, the surfaces were modeled as shell elements with the appropriate 

alloy properties and thickness.  Next, loadings of 90 psi uniform pressure 

internally and 250 lbs axial top load on the lid were applied to the cans.  The lid 

and body seaming points are assumed as rigid.  Next, the model was meshed, 

and imported into ANSYS 7.1 to be stress analyzed.  The element used to 

represent the thin walled structure of the can is Shell 93.  According to the 

ANSYS help files, SHELL93 is particularly well suited to model curved shells. 

The element has six degrees of freedom at each node: translations in the nodal x, 

y, and z directions and rotations about the nodal x, y, and z-axes. The 

deformation shapes are quadratic in both in-plane directions. The element has 

plasticity, stress stiffening, large deflection, and large strain capabilities.   Figure 

5.2 shows the 8-node Shell93 elements.  
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Figure 5.2: Shell93 8-Nodel Structural Shell (From ANSYS 7.1 Help Files) 

 

 ANSYS results for both cans are shown in Figure 5.3 to 5.10.  The 

maximum stress for both can designs is 336 MPa, with maximum axial 

displacements of 0.677 mm for the current can design, and 0.350 mm for the 

new unialloy design.  This analysis shows that both designs hold up pretty well 

and are quite similar in performance.  Maximum stress does not occur on the lid 

for both cases.  If we look at Figure 5.6 and 5.10, the analysis shows a better 

load distribution for the unialloy can with curved surface than for the present can.  

The function of Pro/Engineer, Pro/Mechanica and ANSYS is to show a relative 

structural comparison between the two can designs.  The results obtained are as 

close as possible to real world performance with minimal margins or error. The 

main significance of this analysis is to show that comparable performance can be 

obtained by using a unialloy can construction made out of AL3004. 
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Figure 5.3: Current Can Displacement Subjected to Loads 

 

Figure 5.4: Current Can Stress Distribution Subjected to Loads (Bottom view) 



 64

 

Figure 5.5: Current Can Stress Distribution Subjected to Loads (Front view) 

 

Figure 5.6: Current Can Stress Distribution Subjected to Loads (ISO view) 
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Figure 5.7: Unialloy Can Displacement Subjected to Loads 

 

Figure 5.8: Unialloy Can Stress Distribution Subjected to Loads (Bottom view) 
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Figure 5.9: Unialloy Can Stress Distribution Subjected to Loads (Front view) 

 

Figure 5.10: Unialloy Can Stress Distribution Subjected to Loads (ISO view) 
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5.3 Impact of New Unialloy Aluminum Beverage Can Design 

 Our main objectives in enhancing the sustainability of the aluminum 

beverage can, through the product’s point of view, is based upon the 

consideration that redesigning the product under the constraints of the existing 

manufacturing, distribution and recycling infrastructure would be more 

sustainable redesigning from the systems perspectives as it would not incur huge 

changes in the current infrastructure, thus making economical sense as well.  

However, changes at the product level would lead to huge impact at the systems 

level. 

 One obvious impact of the unialloy can at the systems level is on recycling.  

The unialloy can would revolutionize the recycling process, and further increasing 

the economical viability of the process.  By eliminating the need for separation 

and melting in two separate lines of furnaces, energy consumption is reduced 

and emissions from recycling such as green house gases are also minimized.  A 

cheaper way to recycle would encourage the industry to expand thus employing 

more workers.  The impact of the unialloy can would therefore be threefold, in 

terms of environment, economy and society. 
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Chapter Six 

Unialloy Aluminum Beverage Can Recycling 

 In this chapter we will quantify the recyclability of both the current can and 

the new unialloy can.  Flowcharts of the recycling processes will be analyzed and 

based on published works, we will try to model the effectiveness of the recycling 

process for both aluminum beverage cans. 

 

6.1 Unialloy Aluminum Beverage Can Recycling Process Modeling 

  The aluminum beverage can recycling process was discussed in Chapter 

2 and Figure 2.12 shows a very good illustration of the process.  It is obvious that 

if we have unialloy aluminum beverage can, the process would be much simpler.  

The proposed recycling process for the unialloy can is shown in Figure 6.1.  

From [22-23], it is known that melting aluminum alloys in the furnace typically 

would produce significant amount of “skim”, the mixture of metal, oxides, other 

contaminants and trapped gas that floats on top of the melt [22].  This mixture is 

typically about 15% of the original melt from both AL3004 and AL5182.  The 

recovery of metal from this melt is only about 6-8% of the original melt.  This 

means about 7-9% of the original melt will be lost forever.  The recovered metal 

can only be used in body stock manufacturing because of its high manganese 

and contaminant level [22-23].  In order to balance the recycling closed-loop 

process, some metal from the potroom may need to be injected into the recycling 

flow.  The process percentage typically depends on the melt loss.   During the 

casting and rolling of the recycled alloys into either body or lid sheet, about 42% 
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of the weight of the original melt would be shaved, cropped or slit off in various 

stages [22-23].  Typically, the recovering of this scrap on the production line 

would not be 100%, thus, some percentage of this, about 42% would be loss.  If 

the ratio of lid to body is approximated to be 0.2, then 20% of the various losses 

and scraps are generated by the lid.  Figure 6.2 and 6.3 shows the flow chart of 

the dual alloy and unialloy aluminum beverage can recycling process 

respectively. 

 

 

Figure 6.1: Unialloy Aluminum Beverage Can Recycling Process. 
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Figure 6.2: Dual alloy Aluminum Beverage Can Recycling Process Flow Chart. 
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Figure 6.3 Unialloy Aluminum Beverage Can Recycling Process Flow Chart. 
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 We will now compare the recycling efficiency of both the current can the 

unialloy can.  If we use the lid to body ratio of 0.2, from [22-23], we can imply that 

melting process of the AL3004 would produce 12% skim and melting of AL5182 

would result in 3% skim.  If the skim recovery process recovers 7% of the original 

melt, then the remaining 8% skim would be melt loss.  Because of the fact that 

metal from the potroom would need to be injected into the closed-loop process to 

balance the material flow and also the recovered skim can only be used for body 

manufacturing in dual alloy can, then 5% and 3% of the original melt’s metal 

would need to be injected in the AL3004 and AL5182 line respectively.  For the 

unialloy beverage can, since it is made out of AL3004 only, then skim formation 

would only be 12% of the original melt.  Skim recovery stays the same at 7%, the 

melt loss would be 5%, meaning 5% metal from the potroom would be needed to 

compensate the cycle. 

   The following equations and methodology are derived from [44] and will 

lead eventually to a simplified equation for recycling effectiveness.  For the 

simple product life-cycle illustrated in Figure 6.4, the aggregated environmental 

impact at each stage can be expressed as EI.  This is the sum of the normalized 

impact levels, I for all associated impact types.   

 

Figure 6.4: Product Life-Cycle [44]. 
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The total life-cycle environmental impact is then: 

4321 EIEIEIEIEIT +++=                                      (1) 

The Resource Productivity, RP for each stage is: 

11 / EIPRP =           ;         22 / EIPRP =                         (2a, b) 

33 /EIPRP =            ;      44 /EIPRP =                        (2c, d) 

where P is the production rate (product units/year).  The largest RP indicates the 

stage that causes the least environmental impact (higher productivity is better). 

Environmental implications of the product design are usually affected by product 

reusability and recyclability.  A simple recovery operation consisting solely of 

material recycling is shown in Figure 6.5.   

 

 

Figure 6.5: Material Cycle [44]. 
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This is defined in terms of recovery rate R (product units/year) rather than P, 

since the purpose of the operation is to manage recovered product.  The impact 

EIR includes product collection, transport and processing.  Recycling will reduce 

the rate of which materials are obtained from the supply line, ms (kg/year), and 

product disposal rate, D.  The ratios are: 

cmmX /1 =    ;     PRZ /=                           (4a, b) 

Assuming no loss of material during manufacturing and customer use (mc = P), 

then the efficiency of recycling is: 

ZXRm // 1==ε                                     (5) 

In Figure 6.5, those quantities affected by recycling are indicated with (‘).   

The modified environmental impacts are then: 

)1(' 111 XEIEI −=      ;     )1(' 44 ZEIEI −=       (6a, b) 

It is assumed that the recycled component and material mix, m is assumed to be 

the same as mc for simplicity, so EI1 is reduced in direct proportion to X1.  Then 

the total life-cycle impact is: 

RT EIEIEIEIEIEI ++++= ''' 4321                    (7)  

Recycling is assumed to be beneficial, thus, 

TT EIEI <'                                                                     (8) 

Substituting Eqn. 1, 6 and 7 into 8, we get, 

411 ZEIEIXEIR +<                                            (9) 

Equation 9 shows that the environmental impact of recycling is less than those 

from the supply line and final disposal.  If EI is substituted in terms of RP from 
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Eqn. 2 and 3 and using Eqn. 4 and 5 into 9, we will get the minimum acceptable 

recycling performance, RPR: 

)/1/(1/ 144 RPRPRPRPR ε+>                    (10) 

When the unialloy aluminum beverage can is put into production and recycled, 

based on Eqn. 10, we can qualitatively compare the recycling efficiencies of both 

cans.   

 

6.2 Aluminum Beverage Can Recycling Process Interactive Program 

 Based on all the implied data from [22-23] and flowcharts from Figure 6.2 

and 6.3, an interactive program is created using Microsoft Visual Basic 6.0.  This 

is a flexible program that allows the user to input any arbitrary values.    The 

interface is shown in Figure 6.6.  For example, it can be 400 lbs of used 

aluminum beverage cans or $400 million worth to be recycled.  The program will 

then calculate the melt loss, metal from the potroom needed to replenish the lost 

metal and also scraps from the process.  The result output unit is dependant 

upon the input unit, for example in Figure 6.2, if the user designated the input as 

400 lbs of used aluminum beverage cans, then the result will be in lbs.  The 

results from the program shows the comparison between the recycling of the 

current dual alloy can and unialloy can.  For any program, the result is as good 

as the governing variables.   

 We have four governing variables that are preset and loaded into the 

program each time it is executed or reset.  The values for each of these 

governing variables are; lid to body ratio, skim formation, skim recovery and 
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scrap generation. These are preset from data gathered and compiled in [22-23].  

The flexibility aspect of this program lies in the fact that the user would have the 

ability to change any of these governing variables.  For example, if the skim 

recovery process have been improved because of new technology or because of 

lightweighting of the can the lid to body ratio is different, the user have the option 

to change those governing variables.   This means that the program has a 

flexibility built into it to keep up with technology change in the recycling process.  

The programming is shown in the Appendix A.   
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Figure 6.6: Program Interface. 
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Figure 6.7: Sample Calculations. 
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Chapter Seven 

Discussion and Conclusion 

 Most sustainable product design methodologies overly emphasize 

environmental impacts.  This is not desirable as in today’s business-oriented 

world, a sustainable product should be economically viable without adverse 

effect to the environment and society.  In addition, life-cycle assessment of 

sustainable product is done by considering a product as having only one life-

cycle, usually from manufacturing and ends with recycling.  However, for a truly 

sustainable product, this is not adequate.  A sustainable product should be 

considered as having multiple and perpetual life-cycles.  Its material flow should 

form a close loop and defined by the 6R concept.  The 6R concept is a good tool 

in Design for Sustainability (DFS) as it maximizes the life of a product and builds 

improvements into the product after every life-cycle. 

 The 6R concept was applied to the aluminum beverage can in this case.  

The sustainable growth and development of the whole aluminum industry is 

thoroughly discussed and we found that the aluminum beverage can’s recycling 

rate in the United States has been on the decline for the past few years.  Since 

we have also identified recycling as the aluminum beverage can’s strongest point, 

it therefore makes good sense to enhance the recyclability of the aluminum 

beverage cans in order to increase the sustainability.  Recyclability of the 

aluminum beverage can is tied to all three major elements in sustainability; 

economy, environment and society.  Although we started analyzing and 

identifying the problem from the system’s perspectives, we ultimately solved the 
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problem at the product level.  By enhancing the recyclability of the aluminum 

beverage can from the product design point of view, we are working within the 

constraints of the current manufacturing, distribution and recycling infrastructure, 

thus ensuring the new redesigned product would fit perfectly into the current 

infrastructure.  This also means that no huge economic investments are needed 

to invest in the production of this new aluminum beverage can.   

 The new aluminum beverage can is designed out of a single alloy; thereby 

the name unialloy can, as opposed to the current dual alloy construction.  The 

unialloy can eliminates the need for separation of alloy for melting, thus 

minimizing energy, time and labor use in the recycling process.  This ultimately 

translates into monetary savings.  The unialloy can was designed using 

Pro/Engineer and Pro/Mechanica and structural analysis was done using ANSYS 

7.0.  Results shows similar performance to the current dual alloy can.  An 

equation for quantifying the recycling performance was adapted from published 

work and can be used to compare the recycling performance of the unialloy and 

dual alloy aluminum beverage cans.  In addition, an interactive aluminum 

beverage can recycling program was created based on aluminum can recycling 

data from published work. 

 This research starts with the need to enhance the sustainability of the 

aluminum beverage can.  The problem was analyzed from the systems 

perspectives and solved at the product’s design level.  A rethinking of sustainable 

product life-cycle was carried out and the result is the 6R concept.  This concept 

was applied to the new unialloy aluminum beverage can design.  The design and 
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analysis of the cans were done using the latest CAD and FEM tools.  The cans 

were shown to be structurally equivalent or even somewhat better.   This work 

serves as an example of taking a product which has been around for a long time 

with diminishing sustainability, and applying a fresh approach to the problem 

from a product’s perspectives which ultimately leads to improvements at the 

systems level. 
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Appendix A: Visual Basic Programming for Aluminum Beverage 

Can Recycling Process Interactive Program 

 

Private Sub Calculate_Click() 

SA = Val(SA.Text) 

BLR = Val(BLR.Text) 

SF = Val(SF.Text) 

SR = Val(SR.Text) 

SG = Val(SG.Text) 

DML = SA * ((SF - SR) * 0.01) 

DPR = DML 

DSL = (SG * 0.01) * BLR * SA 

DSB = SA * ((SG * 0.01) * (1 - BLR)) 

TS = ((SG * 0.01) * BLR * SA) + (SA * ((SG * 0.01) * (1 - BLR))) 

UML = SA * (((SF * 0.01) * (1 - BLR)) - (SR * 0.01)) 

UPR = UML 

US = SA * ((SG * 0.01) * (1 - BLR)) 

DML.Text = Str$(DML) 

DPR.Text = Str$(DPR) 

DSL.Text = Str$(DSL) 

DSB.Text = Str$(DSB) 

TS.Text = Str$(TS) 

UML.Text = Str$(UML) 

UPR.Text = Str$(UPR) 

US.Text = Str$(US) 

End Sub 

 

Private Sub Print_Click() 

PrintForm 

End Sub 
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Private Sub Reset_Click() 

Dim c As Control 

For Each c In Controls 

   If TypeOf c Is TextBox Then 

      c.Text = "" 

   End If 

Next 

BLR = 0.2 

SF = 15 

SR = 7 

SG = 42 

BLR.Text = Str$(BLR) 

SF.Text = Str$(SF) 

SR.Text = Str$(SR) 

SG.Text = Str$(SG) 

 

End Sub 
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