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ABSTRACT OF THESIS 
 
 
 

WAVELET AND SINE BASED ANALYSIS OF 
PRINT QUALITY EVALUATIONS 

 
 
Recent advances in imaging technology have resulted in a proliferation of images across 
different media. Before it reaches the end user, these signals undergo several 
transformations, which may introduce defects/artifacts that affect the perceived image 
quality. In order to design and evaluate these imaging systems, perceived image quality 
must be measured. This work focuses on analysis of print image defects and 
characterization of printer artifacts such as banding and graininess by using a human 
visual system (HVS) based framework. Specifically the work addresses the prediction of 
visibility of print defects (banding and graininess) by representing the print defects in 
terms of the orthogonal wavelet and sinusoidal basis functions and combining the 
detection probabilities of each basis functions to predict the response of the human visual 
system (HVS). The detection probabilities for basis function components and the 
simulated print defects are obtained from separate subjective tests. The prediction 
performance from both the wavelet based and sine based approaches is compared with 
the subjective testing results .The wavelet based prediction performs better than the 
sinusoidal based approach and can be a useful technique in developing measures and 
methods for print quality evaluations based on HVS.  
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CHAPTER 1  

 
Introduction and Literature Review 

Image quality assessment plays a very important role in image processing applications 

and is vital for developers of digital imaging systems. A great deal of effort has been 

made in recent years to develop image quality metrics [1 – 14]. These metrics are useful 

in developing quality control systems for imaging systems, benchmarking imaging 

systems and algorithms for evaluation between various imaging systems and developing 

imaging systems that achieve a given level of image quality with an optimal design and 

lowest possible cost. This introduction discusses definitions of image quality along with 

classification of image quality attributes and their description. A literature review 

describes various developments in image quality assessment and current trends in 

objective/subjective image quality assessment systems as it particularly related to print 

defects in images. This chapter concludes with a hypothesis statement and overall 

organization of the thesis. 

1.1 Classification of image quality attributes: 

 
Image and video signals generally require high storage space, transmission bandwidth 

and processing time. These signals undergo several stages of processing before they are 

delivered to the human observer which may introduce distortions that could reduce the 

final image quality. For example they are acquired by sensing devices such as cameras, 

which introduces error due to optics, color calibration, sensor noise and camera motion 
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etc. After acquisition they are usually compressed which introduces compression artifacts 

and further, transmission errors happen to distort the signal during the transmission. 

Finally the output devices like printers, monitors introduce distortions due to low 

reproduction efficiency, calibration errors etc. Mostly the artifacts introduced by these 

devices/processes are due to the limitations of the physical capabilities of these systems. 

These artifacts/attributes introduced at several stages play a very important role in 

perceived image quality. These artifacts can be broadly classified into different criteria 

[1]  

1. The nature of the attribute (personal, aesthetic, artifactual or preferential), which 

affects its amenability to objective description. 

2. The impact of the attribute in different types of assessment (first-,second-,third-

party), which influences the difficulty of studying it; and 

3. The extent to which the attribute is affected by imaging system properties, which 

largely determines the degree to which it concerns system designers. 

Personal and aesthetic attributes such as appearances of the subject, memories associated 

with the image/photograph, are very subjective in nature and may bias an observer with a 

priori knowledge. On the other hand artifactual attributes, which include defects such as 

blurring, banding, graininess, streaking and a variety of digital artifacts degrades the 

image quality when it is apparent, making them easier to describe objectively when 

compared with other attributes. 

The second type of classification is based on assessment made by individuals on the 

image quality. The evaluation of an image by a person associated with the formation of 
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the image is considered to be first-party assessment whereas the subjects in the image 

who render an opinion are considered as a second-party assessment. Finally, an 

evaluation by individuals not associated with the formation of the image is called third-

party assessment. First party and to an extent second-party assessments are difficult to 

model when compared with the third-party assessments due to their subjective nature, as 

they involve a higher level of visual cognition and a priori information associated with 

them.   

Finally the classification based on the imaging system properties is important as it allows 

identifying attributes of image quality that are of greatest interest to designers, since they 

fall under the control of system designers. For example attributes such as noisiness 

introduced by an imaging system affect the image quality whereas the memory associated 

with an image does not fit into this category. 

1.2 Image quality description and approaches 

The goal of image quality assessment research is to develop algorithms that can 

automatically predict the perceived image quality in agreement with the subjective scores 

from the human observers. Based on the previous discussions many definitions could be 

formulated for the notion of image quality depending on the applications. One such 

definition is “The quality of an image is defined to be an impression of its merit or 

excellence, as perceived by an observer neither associated with the act of image 

formation, nor closely involved with the subject matter depicted” [1]. In the compression 

scenario image quality is defined as “measure of the visible difference between original 

and distorted images or video sequences” [10].  
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Image quality assessment systems provide quality metrics that predict the perceived 

image quality. The success of the system depends on how well the system characterizes 

several attributes contributing to the perceived image quality. The common approach in 

image quality analysis is to characterize the attributes by objective metrics such as Mean 

Square Error (MSE) [2], Peak Signal to noise Ratio (PSNR), Modulation Transfer 

Function (MTF) of the system[1] and the Noise Power Spectra (NPS)[20] and the. These 

metrics, even while being comparatively easier to implement and providing useful 

information do not characterize some attributes well enough, as they do not take into 

consideration the processing performed by the Human Visual System (HVS). Hence they 

do not correlate well with the perceived Image Quality [2] by a human observer. 

Therefore models involving processing of HVS to predict perceived image quality have 

gained considerable attention in recent years. These methods have tried to incorporate 

several results from psychophysical and electrophysiological studies to model the HVS. 

They have made significant progress in providing more accurate image quality 

assessments when compared with the objective image quality descriptions. 

1.3 HVS Feature Based Algorithms 

A major emphasis in recent years has been given to deeper analysis and understanding of 

the processing of HVS. These research works are particularly influenced by the need for 

having a better description of image quality which is very helpful. For example, in 

compression/coding standards it directly leads to better performance and bandwidth gain. 

Electrophysiologists and psychophysicists have designed experiments to understand the 

operation of the HVS [4, 5, 6, 7]. Electrophysiologists have been concerned with the 

structural organization while psychophysicists have been concerned with the perceptual 
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process of the HVS. These studies have resulted in development of various models that 

are successful in predicting the response of the HVS to a set of simple stimuli. Various 

attempts have been made to combine a variety of psychophysical and 

electrophysiological results to obtain such a model [8, 9, 10, 11, 12, 13, 14]. The 

approach taken by most of these visual image quality models is to determine how the 

lower level physiology of the visual system limits the visual sensitivity. These limits are 

then converted to masking thresholds which specify the limits of acceptable distortion 

levels, the levels above which the perceptual image quality degrades appreciably. The 

standard model of visual detection based on these thresholds is mostly then modeled by a 

collection of spatial filters sensitive to narrow ranges of spatial frequencies and 

orientations that cover the input image space. 

1.3.1 HVS features 

The HVS based models mainly incorporate three types of processes that limit the visual 

sensitivity variations. They are luminance variations, spatial frequency and signal content 

masking and (in case of video) temporal variations. 

The human eye is sensitive to relative luminance rather than the absolute luminance. For 

a wide range of background intensities, the ratio of the threshold value ∆I divided by I is 

a constant. This equation  

KII =∆  (  1-1) 
 

is called Weber’s law[15]. The value for K is roughly 0.33. Most implementations of this 

aspect of visual sensitivity treat it as a point process. 
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The human visual system’s Contrast Sensitivity Function (CSF) provides the 

characterization of its spatial frequency response [3, 14].The CSF exhibits a band-pass 

characteristic, much more sensitive to mid spatial frequency and less sensitive to low and 

high spatial frequency range. Experiments have been designed to estimate the CSF by 

using Sine-wave gratings [3, 14], Gabor functions [12] and recently wavelet basis 

functions [17, 23] over a wide range of frequencies depending on the applications. The 

CSF is probably more important in terms of the visual sensitivity and is exploited well by 

the researcher’s based on the applications. The CSF shown below in Figure 1.1, adapted 

from [16] is a multivariate function of spatial frequency, temporal frequency, the 

orientation and viewing distance. 

 

Figure 1.1 Contrast Sensitivity Function adapted from [14] 

 

Signal content or contrast masking refers to the reduction in visibility of one image 

component caused by the presence of another image component with similar spatial 

location and frequency content. In other words the presence of a signal component in one 
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of the sub-bands, called masker contrast, will raise the threshold of detection for other 

signal components in the same sub-band [17]. The corresponding graph of this functional 

relation is shown below in Figure 1.2. As the masker contrast CM increases the contrast 

masking takes effect and the contrast threshold of the signal CT increases.  

 

Figure 1.2 Contrast masking Function adapted from [17] 

Graph A is obtained with a sinusoidal patterns while B is obtained with a noise pattern 

[17]. 

1.3.2 Review of models using HVS features 

 
Understanding the operation of HVS has resulted in utilization of HVS features in vision 

models to predict the HVS response to a set of simple stimuli. These models have been 

focused on dealing with Image fidelity and Image quality aspects. Image fidelity is 

inferred as the ability to discriminate between two images whereas Image quality refers 

to the preference of one image over another image. The image quality models consist of 

several stages to model various types of sensitivity variations while the image fidelity 

models focus mainly on the discriminabiltiy criterion. 
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One of the early attempts was to use the CSF to weight different frequency components 

in an image for encoding of images [16]. Daly’s Visual Difference Predictor (VDP) [8] 

an algorithm describing the human visual response was an important work in image 

quality framework. The VDP is a relative metric for prediction of visible differences 

between two digital images. The VDP included components for calibration of input 

images, a HVS model which addresses the three main sensitivity variations, namely, light 

level, spatial frequency and signal content, and a method for displaying the HVS 

predictions of the visible differences. The input to the VDP is two images, one of which 

acts as a reference image and the other is a distorted image by some processing. The 

output image is a map of the probability of detecting the differences between the two 

images as a function of their location of the images. Lubin’s Visual Discrimination 

Model [10] is a computational method for predicting human performance in visual 

detection, discrimination and image-quality rating tasks. The model uses the concept of 

Just Noticeable Differences (JND), a discrimination threshold measure, and frequency 

channel vision modeling to yield robust estimates of their visual discriminabiltiy. Both 

VDP and VMD use a wide variety of results from the psychophysical and 

electrophysiological literature in order to provide a complete model of the HVS.  

Watson [14] investigated the effect of luminance masking and contrast masking in the 

DCT domain with a motive to improve the coding efficiency of the DCT based JPEG 

standard. It follows an Image dependent perceptual approach and computes a visually 

optimal quantization matrix for any given image with minimal cost and produces better 

results than image independent quantization matrices. Villasenor et.al [18] have studied 

visibility of the wavelet basis functions and wavelet quantization noise in Y, Cb and Cr 
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color channels in order to achieve optimal compression using Discrete Wavelet 

Transform (DWT) based methods. A mathematical model for DWT noise detection 

thresholds as function of levels, orientation and visual resolution are constructed and used 

in computing a perceptually lossless quantization matrix for which the errors are below 

the human visual threshold.  

Another important work in the field on human visual models was the Image Fidelity 

Assessor (IFA) developed by Taylor et.al [12]. The IFA evaluates the perceived image 

fidelity between two images based on multi-channel Gabor pyramid decomposition 

which acts as a human vision model. Psychometric functions were determined 

experimentally using Gabor patches, which closely match the receptive fields in the 

visual cortex, and described the discrimination ability of the HVS as a function of spatial 

frequency, orientation and adaptation level. This helped in having an integrated approach 

for vision modeling as the parameters of the model have a direct correspondence with the 

decomposition used in the model, a feature which was missing from earlier vision 

models. Wencheng Wu et. al [25]further extended the model to include three color 

channels and a new color descriptor and called it Color Image Fidelity Assessor (CIFA). 

 Several other multi-channel visual models based on gabor functions have been proposed 

[9, 26, 27]. Teo and Heeger proposed a model of perceptual distortion that is consistent 

with empirical findings in the physiology of visual cells and in spatial pattern 

psychophysics. Several other works which incorporate the perceptual process for 

measuring the image quality have been proposed with most of them focusing in the 

compression related scenario. 

 9



 

1.4 Print Defect Characterization 

Characterization of artifactual printer defect patterns such as banding, graininess, mottle 

and streaking finds extensive applications in developing standards for printer quality 

analysis. More research work has been carried out in the field of print image quality 

analysis and especially towards characterization of print defects [19, 20, 21, 22, 23]. 

Predominantly these analyses are focused on characterizing print defects through 

objective quality metrics, estimation of visual threshold of those defects and also 

characterization based on Fourier based analysis.  

Brigs et.al [19] show that the banding can be objectively quantified by their frequency 

analysis. Further they suggest that the reflectance range and the reflectance standard 

deviation of the reflectance profiles were useful in quantifying the overall banding 

severity. Kane et.al [20] illustrate the quantification of banding, streaking and graininess 

through a spectral separation technique followed by the estimation of individual noise 

power spectrum (NPS) in the flat field background by assuming that the components are 

additive. This procedure was tested with synthetic data sets, as well as data obtained from 

flat field prints and captures from digital devices and was found to be in agreement with 

visual observations. Mizes et.al [21] show that the streaking artifact can be characterized 

by a 1/f noise spectrum and provide the perceptibility limits of simulated 1/f noise 

samples. Cui et.al [22] report the visual thresholds measured for an inkjet banding profile 

which are lower when compared with reported results from the sinusoidal banding 

profiles. Michael et.al [23] introduced a perceptual print quality metrics evaluation by 

applying the Sarnoff JND vision model which is used in predicting digital video quality 

and concluded that the perceived distortion in black characters on white background is 
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less than for white characters on a black background. Recently more collaborative efforts 

have been carried out with ModelFest [28, 29] to evaluate computational models of early 

human vision. The phase one of the effort involves a collection of luminance contrast 

thresholds for 43 2-D monochromatic spatial patterns and evaluation of ModelFest data 

with five different spatial vision models. The work suggests the use of wavelet based 

models for early spatial vision modeling of the collected data. Most of these methods 

focusing on print defects, while providing useful information do not take into 

consideration the effect of HVS while analyzing the print defect patterns and hence do 

not correlate with the notion of perception. Hence the methods which incorporate the 

aspects of HVS gains importance. Recent works in the realm of print image quality are 

focused in comparing the effectiveness of the predicting the subjective image quality 

measurements carried out on printed hard copies with that of prediction based on 

objective image metrics based on digitized images of the hard copies [35]. This thesis 

work addresses those issues discussed in the international standards committee for a 

particular type of print defects and compares the effectiveness of two different 

approaches.     

1.4.1 Motivation: Why HVS based and Why Wavelets? 

Recent efforts have been done on characterizing the print defects such as banding 

graininess and streaking through wavelet based analysis [24] and Symlet patterns were 

shown to be robust in detecting and characterizing the print defect patterns in random 

backgrounds. From psycho-visual studies it is known that the HVS works with several 

perception channels, which are octave-wise spread over the spatial frequency range [5, 6, 

7, 8]. This behavior closely resembles the dyadic structure of wavelet decomposition. The 
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Discrete Wavelet Transform (DWT) due to its orthogonal spatial frequency 

representation provides a better framework for characterizing signals with localized 

space-frequency properties which includes the print defects. These advantages help in 

simplifying the development of thresholds and combining the contrast detection 

probabilities to characterize the print defects by including the processing done by HVS.  

1.5 Hypothesis 

The objective of this thesis is to examine the feasibility of predicting the perception or 

visibility of print defect patterns, banding and graininess, under a flat field and noisy 

background conditions by a wavelet-based and sinusoidal-based approach and to compare 

their performance. 

Subjective tests and metrics based on the wavelet and sinusoidal decompositions were 

designed to test the feasibility of this prediction and to compare the wavelet and the 

sinusoid based approaches. Separate tests were designed to estimate the detection 

thresholds for the individual wavelet, sinusoidal basis functions and simulated defect 

patterns and were used in the metrics for the prediction process. 

1.6 Organization of the Thesis 

Chapter 2 discusses the experiment set up and design to estimate the detection thresholds 

of the basis functions and simulated defect patterns. Chapter 3 presents the discussion of 

the prediction procedure and analysis of the experiments and Chapter 4 presents the 

results and discussions followed by Chapter 5 which presents the conclusion and the 

future research directions. 
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CHAPTER 2  

Experiment Setup and Design  

This chapter discusses the experiments used to estimate the HVS detection thresholds of 

the wavelet and sinusoidal basis functions along with the simulated defect patterns. The 

detection thresholds of the basis functions were used in the prediction process while the 

detection thresholds of the simulated defect patterns were used to compare the results of 

the prediction process with the results of the subjective testing. The chapter explains the 

general prediction procedure, experimental procedures involved with estimating the 

thresholds, the regulations involved with the procedure and the characteristics of the 

stimuli involved in the experiment. The discussion on the general prediction procedure 

employed and the relevance of the subjective testing procedure in the prediction process 

is presented in Section 2.1. Section 2.2 discusses about the subjective testing procedure 

and the measurement of the contrast thresholds. The next section, Section 2.3 describes 

the specifications of the experimental procedures followed in the subjective testing 

procedure. Section 2.4 describes the characteristics of the stimuli that were used in the 

experiment followed by the sensitivity study on the effect of viewing distance on the 

frequency content of the stimuli in Section 2.5. Finally the contrast computations of the 

stimuli are explained in Section 2.6. 

2.1 General prediction procedure and subjective testing 

The general prediction process of the print defects and the relevance of the subjective 

testing procedure in the prediction process can be explained with the help of a flow chart 

as shown in Figure. 2.1. The prediction of the HVS response for both, wavelet based and 
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the sinusoid based approach follow a general technique and differs only in the transform 

domain representation and calculation of contrast from the transform coefficients.   

Decompose defect patterns 
in terms of basis functions 

Wavelet Sinusoidal 

Compute Channel 
contrast values 

Use Psychometric Functions to 
compute Detection Probabilities

Pool detection probabilities 
assuming independence 

 

Figure 2.1 General Prediction Procedure 

The general prediction procedure is explained below, 

1. The first step in the prediction is the simulation of defect patterns, banding and 

graininess, at particular contrast level. 

2.  The second step is the decomposition of the image into corresponding basis 

function/transform domain coefficients according to either the wavelet or the 

sinusoidal based method. 

3. The third step is computation of a contrast value from the resulting basis 

function/transform domain  coefficients 
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4. The fourth step is to obtain a detection probability by substituting the computed 

contrast value in the respective psychometric function of the basis functions, 

which serves as a mapping function between the computed contrast values and 

detection probability. 

5. The final stage comprises of combining the detection probabilities obtained 

together, referred to as pooling, to arrive at the predicted response. 

The above steps were repeated for different contrast values until the contrast level 

yielding 92% detection probability was determined from the pooled probability values.  

The pooling procedure mimics the process of integration of information from various 

channels in the brain. As there is no firm experimental evidence on how the brain 

integrates the data, this process is carried out by assuming total independence between 

the various visual channels. The subjective testing procedure on the basis functions helps 

us to estimate the contrast thresholds of the basis functions which are used to create the 

psychometric functions that serve as a mapping tool between the contrast values and the 

detection probabilities. The subjective detection thresholds of the simulated print defects 

are used to compare the results obtained from the prediction process. 

2.2 Subjective testing procedure  

The objective of the subjective testing procedure was to estimate the detection thresholds 

of various basis function stimuli and simulated print defect patterns. The estimated 

thresholds were then used to determine the feasibility of predicting the perception or 

visibility of print defect patterns. Predictions based on wavelet and sinusoidal basis 

approaches were compared. Therefore three separate subjective tests were performed. 
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One test presented the subjects with wavelet patterns at various scales and orientations, 

another test presented sinusoidal patterns at various frequencies and orientations and the 

final test presented simulated banding defect patterns at various scales and sizes and 

simulated grain pattern at various coarseness and sizes. A 2-alternative forced choice 

(2AFC) test was used with a Bayesian adaptive psychometric procedure referred to as 

QUEST [30], to determine the contrast thresholds and detection probabilities. Subjects 

used in the experiments were drafted for this study through announcements posted at the 

University of Kentucky and Lexmark International Inc. Results from 22 subjects taking 

25 subjective tests, due to some overlap, were used in this study. Eight subjects were 

tested individually using wavelet patterns, eight with sinusoidal patterns and nine subjects 

with simulated grain defect patterns and simulated banding defect pattern. Subjective 

testing was performed in an office with no windows and a constant fluorescent light 

illumination. 

2.2.1 Threshold Measurement 

 The subjective testing using the 2AFC procedure involves presenting a sequence of 

image pairs, one image containing only the background and the other containing a scaled 

stimulus added to the background. All the patterns were presented in both flat field and 

random noise backgrounds. The uniform background luminance was set to a mean gray 

level value of 128 and the random noise was generated as a white Gaussian noise with a  

-23dB contrast level. Following the presentation of the image pairs, the subjects used a 

mouse click to choose the image that appeared to contain the stimulus. The order of the 

image pair presentation was random for each trial and each image was presented for 1 

second with a 0.5 second pause between images. These times were chosen to minimize 
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the time period of the subjective testing procedure, while being consistent with previous 

works [31]. The amplitude/contrast of the stimulus presented was varied adaptively from 

trial to trial based on the decision of the observer by a Bayesian psychometric procedure 

called QUEST [30] that sequentially estimated the 92% detection threshold. Prior 

information (in the form of prior probability density function) is used along with the data 

in the form of the likelihood function to guide the contrast value of the patterns used in 

each trial. The Quest function Q(T) [30] is given as  

)(ln)(ln)( TDfTfTQ TDT +=                                             (  2-1) 

Where fT(T) is the prior probability function of the threshold and fD/T(D/T) is the 

likelihood function of the threshold conditional upon the data D.  

The initial guess to start the subjective testing procedure for each type of stimulus, 

varying in frequency, orientation, size and background, were estimated by empirical 

testing methods. The initial values chosen would be such that the testing procedure would 

reach the estimated thresholds within first six trials barring some finger errors by the 

subjects. Further trials allowed the adaptive testing process to estimate the exact 

threshold of the subject for various stimuli. The initial guess value for various stimuli 

used in the experiment play a very important role in the convergence of the experiments 

on an accurate threshold value within limited number of trials. Following each trial the 

Quest function is estimated depending upon the success or failure of detection of stimuli 

by the observer and is given as  
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where S[j-k] is the success function and F[j-k] is the failure function both of which are 

obtained by shifting the psychometric function modeled by Weibull distribution[30]. 

Sixteen trials were used in each of the subjective tests and the final estimate of the 

threshold was taken to be the peak value of the likelihood function at the final trial. The 

procedure based on fixed number of trials for completing the experiment was chosen over 

a procedure based on confidence limits for the following reasons; simplicity of the 

experiment procedure, limited running time of the experiment which helps in maintaining 

the focus of the subject yielding better threshold estimates [31] and also it compares well 

with the conventional psychometric experiments based on staircase methods while 

intelligently making use of the knowledge obtained from previous trials inherent of the 

adaptive techniques.  

The original stimuli were represented as gray scale images with gray-levels between 0 

and 255 represented as 

uli) S * (Stim   BI(g)  g +=
                                           

(  2-3) 

Where I(g) is the displayed gray level image, Bg represents the background, either a 

mean gray level of 128 for uniform background or random noise field of -23dB contrast 

level for noisy background, S is the scaling factor of the stimuli which is varied by the 

adaptive procedure and the Stimuli refers to basis functions and the simulated defect 

patterns. For each trial, depending on the decision of the observer, the Scale factor S was 
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varied by using the adaptive Quest process. As mentioned above the gray-levels of the 

displayed final image was maintained between 0 and 255, the limits of saturation of the 

display system.  

2.3 Experiment Procedures and Specifications 

All the test patterns that were displayed as a grayscale images on a LaCIE 20” with 

physical dimensions of 371mm x 297mm. The resolution of the display was set to 1280 x 

1024 pixels which yielded a resolution of 34.5 pixels/cm. All the stimuli were positioned 

at the center of the image of size 384 x 384 pixels with no additional fixation cues, 

therefore the edges of the images served as fixation cues. The background of the monitor 

outside the pattern display range was set to zero.  

2.3.1 Display Visual Resolution 

The visibility of the stimuli presented depends upon the display visual resolution in 

pixels/degree of the display system. For a given viewing distance and a display 

resolution, the effective display visual resolution visual angle is 

( ) 3.57
.

180
..

180tan.. rxrxrxd ≈≈= ππ  (  2-4) 

where x is distance in cms, r is display resolution in pixels/cm and d is the display visual 

resolution in pixels/degree. In this study the viewing distance was set at 57 cms and 

therefore an image of size 384 x 384 pixels occupies 34.5 pixels/cm yielding a display 

visual resolution of 34.75 pixels/degree. At 57 cms viewing distance an image of the 

384x384 pixels subtends 11.13 visual degrees. The spatial frequency content of the 

stimuli presented in the subjective testing procedure are expressed in cycles per degree 

(CPD) as this unit describes the frequency response, independent of the viewing distance. 
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With the above conditions the 384x384 image subtends 11.13 visual degrees at 57 cms 

viewing distance. Even though the viewing distance was kept constant throughout the 

subjective testing there may have been instances where the subjects did not maintain the 

specified distance. A sensitivity study analyzing the effects of change in viewing distance 

to the frequency components of the images displayed is presented in Section 2.5. 

2.3.2 Display System Settings 

The Gamma of the display, the relationship between the luminance generated by the  

device and  applied voltage, was set to 2.7 to provide a smallest possible contrast level 

variations at the intended luminance level for integer increments of the display values in 

graphic buffer. The brightness and the contrast of the CRT were manually adjusted at the 

beginning of the testing so that the low-contrast stimuli were not visible for several 

nonzero values of the graphic buffer. At these settings the display system exhibited an 

approximate linear characteristic over the entire range of the display values. These 

settings were kept constant throughout all subjective tests. However in order to maintain 

consistency and a need to express those luminance values in an device independent 

representation the physical luminance of the display was measured at 17 uniformly 

spaced gray level increments from 0-255 using a Minolta Chromameter CS-100A before 

each subjective test. The luminance (Y-Value) was recorded with the results of each 

subjective test to convert the gray level graphic buffer values to luminance value, a 

device independent representation. 

The background luminance for the 384x384 pixel field was set to a gray level of 128 or 

the mean gray level for the random field background throughout all subjective testing 

procedures. The display system parameters were adjusted properly so that the mean gray 
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level value corresponded to a luminance measure of 20cd/m2. Although the luminance 

values were measured independently for each test, very little variations existed between 

measurements and this luminance measure represents the value for all the tests. The 

values of the display buffer gray levels and the measured Luminance (Y) value with the 

symmetric error bars of unit standard deviation is shown in Figure 2.2. 

 

Figure 2.2 Display buffer values vs. Measured L values 

 The linear relationship between the display buffer gray levels and the measured 

luminance is evident from the above measurements. All the stimuli of intermediate gray 

levels ranging from 0-255 were converted into luminance values through linear 

interpolation with the help of the above relationship and were expressed in cd/m2. 

2.4 Stimuli Description and Generation 

The subjective testing procedure used four stimuli sets in three separate tests, two basis 

functions, wavelets and sinusoid, and the simulated print defect patterns, banding and 
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grain under two different background conditions for the predicting the perceptibility of 

print defect patterns.  

2.4.1 Wavelet Stimuli Description and Generation 

The stimuli for the wavelet basis function tests consisted of 2-dimensional Symlets of 8th 

order[32], spanning from Levels-2 through 4 from a 4-level wavelet decomposition 

oriented along horizontal, vertical and diagonal direction, where Level-1 represents the 

smallest scale or highest frequency. Two examples of wavelet basis function from Level-

4, the largest scale, and level-3 are shown below in figure 2.3(a) and 2.3(b). 

 

       
Figure 2.3: a) Wavelet basis function of level-4 and 
horizontal direction 

 

 
  Figure 2.3: b) Wavelet basis function of level-3 
and horizontal direction  

Figure 2.3 Wavelet basis function from Level-4 and Level-3 
   

Totally 9 different stimuli were presented, each one varying across three levels and the 

three different orientations. Symlets are used in the subjective testing as they were shown 

to be more suitable in characterizing the print defects [24] due to their near symmetry in 

spatial domain and also due to their smoothness property (due to their high order). The 

higher order ensures a smoother spatial function with greater localization in the frequency 
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domain. The wavelet functions have a good localization in space as well as frequency 

domain. The low pass and high pass decomposition filter coefficients for an 8th order 

symlet are shown in Figure 2.4(a) and 2.4(b). 

 

       
    Figure 2.4: a) Low pass decomposition filter of 
8th   order Symlet 

 

 
       Figure 2.4: b) High pass decomposition filter of 
8th order Symlet 

Figure  2.4 Low-pass and high-pass decomposition filter coefficients of 8th order Symlet 

 
The spectral characteristics of the low-pass decomposition filter and the high-pass above 

decomposition filters are shown below in Figure 2.5(a) and 2.5(b). Note the low-pass and 

the high-pass characteristics of the respective filters. 

 

          
Figure 2.5: a) Spectrum of low-pass decomposition 
filter of 8th   order Symlet 

 

 
 Figure 2.5: b)Spectrum of high pass 
decomposition filter of 8th order Symlet 

Figure 2.5 Spectral Characteristics of low-pass and high-pass decomposition filters 
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The wavelet stimulus from the first level is not used because the stimuli from Level-4 to 

Level-2 cover approximately 1.07 – 8.58 cycles per degree (cpd) of spatial frequency 

range, so the contribution from the Level-1 was considered to be less significant due to 

very low sensitivity of the HVS for frequencies below 1 cpd as evident from the contrast 

sensitivity curve in Figure.1.1. In addition to this fact, it allowed for fewer wavelet 

patterns to be presented in the subjective tests.  To ensure that the energy was not present 

at the first level of the image, the defect patterns were all filtered to zero out energy at 

this level.   

The wavelet stimuli are generated by computing the impulse response of the wavelet 

filters by setting a single coefficient, in a specific level and orientation, to unit value in a 

4-level DWT transform as shown in the Figure 2.6(a), setting all the other values to zero 

and computing the inverse DWT of the signal. The resulting symlet of a Level-4 wavelet 

pattern (largest scale corresponding to low frequency) with a horizontal orientation in flat 

and background is shown in Figure. 2.6(b). The DWT operates by an octave based 

division of the frequency spectrum, and the divisions on Figure 2.6(a) represent those 

octave bands.  
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 Levels    4     3         2                      1 

 
 

Figure 2.6: a) A 4-level DWT with a single 
coefficient in level-4 and horizontal direction, set to 

1 

 
 

Figure 2.6: b) Symlet basis function with horizontal 
orientation from level4 in flat field background 

Figure  2-6 A 4-level DWT and corresponding basis function 

At the first decomposition stage or at the 4th level of the transform, the band covers the 

spectral range extending from one half of the Nyquist rate (fs/4) to Nyquist rate (fs/2) 

which is equivalent to half of the display resolution or the sampling frequency. At the 

next level the band is lowered by a factor of two and spans fs/8 to fs/4 and so on. Thus 

for a display resolution of d pixels/degree, the spatial frequency f, of level L will be 

Ldf −= 2. cycles/degree                                             (  2-5) 

The Symlet wavelet basis function generated was fixed at 384x384 size and were 

embedded in both flat field with a mean gray level of 128 and white Gaussian noise with 

-23dB contrast level as described in Eq. 2.3. The wavelet stimulus from the first level is 

not used because the stimuli from levels 2 through 4 cover approximately 1.07 – 8.58 

CPD of the spatial frequency range. In our case, Level 4 of the wavelet stimulus consists 

of the octave band from [ 1.07 - 2.14]cpd , Level-3 consists of the band [2.14 - 4.29]cpd 

while Level-2 consists of the band ranging from [4.29 – 8.58] cpd.  To ensure consistency 
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with this, all the spectral energy belonging to first level of the defect patterns were zeroed 

out through a filtering procedure. 

2.4.2 Sinusoidal Stimuli Description and Generation 

The stimuli for the Sinusoidal basis function were sine wave gratings added to a constant 

luminance background or white noise background oriented along horizontal and vertical 

directions given by 

)***2sin(*     φπ ++= tfaLy  (  2-6) 

Where L is the Luminance value and f is the frequency of the given sinusoid.  

Figure 2.7:a) Sinusoidal basis function with 
horizontal orientation at 2.9 cpd in flat field 

Figure 2.7:b) Sinusoidal basis function with 
horizontal orientation at 2.9 cpd in random field 

Figure  2.7 Sinusoidal Basis functions under different backgrounds 

The frequencies used for sinusoidal patterns for the subjective testing were [1.43, 2.87, 

4.31, 5.75, 7.19, 8.62 and 9.34] CPD. To reduce the effect of abrupt changes along the 

edges of the 384x384 image field, a Gaussian window with standard deviation equal to 

one fourth of the image size weighted the sinusoidal patterns. Figures 2.7(a) and 2.7(b) 
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show examples of sinusoidal pattern in flat and random field backgrounds. The sinusoids 

have a highly localized form in the frequency domain as their Fourier decomposition 

would result in the most localized coefficients, and poor localization in space domain. 

2.4.3 Banding defect Stimuli Generation and Description 

Banding defects in print images are defined as one dimensional fluctuation in darkness 

[quote ISO/IEC DIS13660] characterized by Discrete Fourier Transform (DFT) of the 

luminance line perpendicular to the bands. The banding print defect was generated from a 

scanned banding profile presented in Cui et.al [22] as shown in Figure 2.8(a) 

Interpolation was used to stretch or compress this pattern to simulate banding at different 

frequencies. To simulate the effect of local banding artifacts, two different sizes of the 

banding pattern over regions of 2.76 and 1.84 visual degrees were generated. Also to  

 

Figure 2.8:a) Measured banding profile 

 

 

Figure 2.8:b) Simulated banding artifact in flat field 
occupying 2.76 degrees 

 

Figure  2.8 Simulated local banding artifact 

reduce the abrupt changes along the edges they were weighted by a Gaussian window 

whose standard deviations were correspondingly set to 0.69 and 0.46 degrees, one fourth 
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of the size of the local image size. These patterns were positioned at the center of an 

image of size 384x384 pixels (about 11 visual degrees) as shown in the figure 2.8(b). 

Three different frequencies of the banding pattern, 2.87, 5.75 and 8.62 cpd were 

generated for each size. The size and frequency of the banding patterns were chosen to be 

consistent with the wavelet basis functions used, such that almost all banding pattern 

spectral energy was distributed over the levels 2 through 4 of 4-level wavelet 

decomposition. This criterion is ensured by subjecting the simulated defect patterns to 4-

level wavelet decomposition and zeroing out the coefficients in Level-1 and computing 

the inverse DWT to obtain a modified empirical banding pattern. This process created 

minor distortion of the high frequency defect patterns, by filtering out higher order 

harmonics and making the pattern more sinusoidal that the profile shown. 

2.4.4 Grain defect Stimuli Generation and Description 

Grain defects or graininess in print images are as perceived 2-D random fluctuations in 

blackness generally at frequencies greater than or equal to 1 cycle/mm [32] characterized 

by the standard deviation aperture product. A characterization for the graininess defect is 

the noise power spectrum (NPS)[20]. The NPS shows a linear spectral pattern on a log 

scale that is characterized by its spectral slope [21]. In other words the spectral roll-off 

characterizes the coarseness of the graininess pattern. The steeper the roll-off, the coarser 

the graininess pattern in the spatial domain. The graininess pattern was simulated by 

passing white Gaussian noise through a filter with a spectrum similar to what has been 

reported for measured data [20].A spectrum with a linear roll-off (on a log-linear scale) in 

both the horizontal and vertical direction was used with a negative slope of -0.17 

dB/(cycles/mm). To simulate the effect of local grain artifacts, two different sizes of the 
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grain pattern over regions of 2.76 and 3.68 visual degrees were generated. To reduce the 

abrupt changes along the edges along the edges, the grain pattern is scaled by means of a 

modified Gaussian weighting function. The weighting function is defined by a Gaussian 

distribution with standard deviation equal to one fourth of the image size but with unit 

value for all distributed values when within a standard deviation from either side of the 

mean. The standard deviation of the Gaussian window was correspondingly set to 0.69 

and 0.92 degrees. These patterns were positioned at the center of an image of size 

384x384 pixels (about 11 visual degrees) as shown in the figure 2.9. Three different 

slopes were used to created 3 grain patterns of different coarseness for each image size. 

 

Figure 2.9:a) Simulated grain artifact in flat field 
occupying 3.68 degrees 

 

Figure 2.9:b) Simulated grain artifact in flat field 
occupying 2.76 degrees 

Figure  2.9 Simulated Grain artifacts of 2 different sizes 

To ensure that the spectral energy of the grain patterns were distributed within levels 2 

through 4, they were subjected to 4-level wavelet decomposition and the energy at the 

first-level was filtered out. 
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2.5 Effect of change in viewing distance on the frequency content of the 

stimuli 

Even though the viewing distance was kept constant throughout the subjective testing 

there may have been instances where the subjects did not maintain the specified distance 

by a small quantity. A sensitivity analysis was carried out analyzing the effects of change 

in viewing distance on the frequency components of the images displayed since the 

frequency content of the stimuli displayed is inversely proportional to the viewing 

distance. 

The physical dimensions of the stimuli displayed of size 384x384 occupied an area of 

11.13 cm x 11.13 cm in the display system. In the experiment the viewing distance was 

maintained at 57cms and frequencies of the stimuli were calculated based on this viewing 

distance. At the above specified condition a value of 1˚  visual angle is given by  

57 *Tan(1˚)  = 0.9978 cm. An analysis was performed by varying the viewing distance to 

57±10cms (even though the change in viewing distance was typically less than this 

magnitude) and the subsequent change in frequency of the stimuli is presented. 

The unit of CPD is obtained from the formula 

Degree
Cms

Cms
CyclesDegreeCycles */ =  

(  2-7) 

The sinusoidal stimuli used for the experiments were [ 16, 32, 48, 64, 80, 96, 104] cycles 

occupying 11.13 cm x 11.13 cm viewing area. For example the frequency of the sinusoid 

of 16 cycles in the given field of 11.13 cms x 11.13 cms at 57 cms viewing distance in 

CPD is given by 
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CPD
Degree

Cms
Cms

CyclesCPD 43.19948.0*4376.1
==  

(  2-8) 

 

In terms of percentage change, a change in viewing distance by ±X% produces the same 

±X change in the frequency content of the signal. 

For example for a sinusoidal stimuli at 57 cms which has frequency of 2.86 cpd ,a change 

in viewing distance by -10 cms to 47 cms, approximately 17%, reduces the frequency of 

the stimulus to 2.35 cpd, the percentage of reduction being 17%. 

The change in frequency for the sinusoidal stimuli is given below at the corresponding 

viewing distance is given below in Table 2.1. 

Table 2.1: Effect of change in viewing distance on frequency of Sinusoidal stimuli 

Freq. of Sine in 

384x384 field. 

At 47 cms, 

frequency in CPD 

At 57 cms, 

frequency in CPD 

At 67 cms, 

frequency in CPD 

16 1.17 1.43 1.68 

32 2.35 2.86 3.36 

48 3.53 4.29 5.04 

64 4.71 5.72 6.72 

80 5.89 7.14 8.40 

96 7.07 8.58 10.08 

104 7.67 9.29 10.92 
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The same analysis is carried out for the wavelet stimuli by observing the band of 

frequencies at various levels of decomposition. At the first level of decomposition the 

wavelet band extends from 0-fs/4 in the approximations and fs/4 to fs/2 in the details and 

follows octave based decomposition for subsequent levels. The octave frequency bands 

associated with the corresponding decomposition levels for the wavelet stimuli at 

different viewing distances is provided below. 

Table 2.2: Effect of change in viewing distance on the frequency of wavelet stimuli 
 At 47 cm, freq in CPD At 57 cm, freq in CPD At 67 cm, freq in CPD 

0-fs/4      fs/4-fs/2 0-fs/4      fs/4-fs/2 0-fs/4      fs/4-fs/2 Level 1 

0 - 7.07 7.07-14.15 0 - 8.58 8.58-17.16 0 - 10.08 10.08-20.1

0-fs/8      fs/8-fs/4 0-fs/8      fs/8-fs/4 0-fs/8      fs/8-fs/4 Level 2 

 0-3.53 3.53-7.07 0-4.29 4.29-8.58 0-5.04 5.04-10.08

0-fs/16     fs/16-fs/8 0-fs/16     fs/16-fs/8 0-fs/16     fs/16-fs/8 Level 3 

0-1.76 1.76-3.53 0-2.14 2.14-4.29 0-2.52 2.52-5.04 

0-fs/32     fs/32-fs/16 0-fs/32     fs/32-fs/16 0-fs/32     fs/32-fs/16Level 4 

0-0.88 0.88 -1.76 0-1.07 1.07-2.14 0-1.26 1.26-2.52 

 

The inference made from this analysis is that, even if there were changes of the order of  

±8 cms which corresponds to approximately 14% of the original viewing distance of the 

observer in the experiment, the frequency content of the stimuli were placed within 
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designated bands calculated based on the 57 cms viewing distance. In the case of the 

sinusoidal stimuli the impact of the viewing distance also has the same effect when 

grouping into octave bands as was done while doing the prediction procedure. 

2.6 Contrast Computations of the Stimuli 

The stimuli that are presented to the observers are represented in terms of their contrast 

values. The detection thresholds for the stimuli estimated are based on the contrast 

measures that are defined on the stimuli. The contrast sensitivity function describes the 

relationship between the contrast perception and the spatial frequency expressed in CPD 

and in this study these are represented in terms of detection thresholds. Generally 

speaking, contrast is a measure of the luminance variation relative to the average 

luminance in the surrounding region. The definition of a proper contrast measure is 

difficult over an entire range of image types, but for simple stimuli the Michelson’s 

contrast is used. 

The contrast values for all stimuli in these tests excepting the grain pattern were recorded 

and are represented in decibels as 
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where L(x, y) is the luminance of the pixel values over the x-y plane and Lbg is the mean 

background luminance.  The contrast was computed globally over the whole image and 

recorded with the subjects' response. This value represents the maximum contrast value 

of the image. 
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For grain patterns this measure cannot be used as they do not possess simple structure 

and are random in nature. Hence a contrast measure which characterizes the nature of the 

grain pattern based on the energy is used. The contrast measure of the grain pattern is 

defined as 
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(  2-10) 

where L(x, y) is the luminance of the pixel values over the x-y plane and r  encompasses 

the image field within the one standard deviation area, of the modified Gaussian function 

used to weight the grain pattern.                                                                                                                    
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CHAPTER 3  

Prediction and Analysis 

This chapter discusses the prediction process involved in computing HVS detection 

thresholds, from the thresholds estimated through the subjective testing procedure. The 

two different prediction procedures, one based on a Wavelet based decomposition and the 

other based on Fourier/Sinusoidal based decomposition are explained. Section 3.1 

discusses the prediction of the HVS response from psychometric functions and threshold 

estimation procedure from the results of the subjective testing procedure. Section 3.2 

discusses the prediction procedure based on a wavelet based approach and Section 3.3 

explains the prediction procedure based on a sinusoidal based approach for the banding 

defect. The final Section 3.4, presents the prediction process based on wavelet approach 

for the grain defect. 

3.1 Prediction of HVS response 

A psychometric function [30], describes the relation between a physical measure of a 

stimulus, usually the intensity, and the probability of a particular psychophysical 

response. Threshold characterization using psychometric functions is used so that the 

detection probabilities can be obtained for any contrast value and combined together in a 

prediction model to compute the probability of the pattern being detected. The 

psychometric function has the same shape under all conditions when expressed as a 

function of log intensity [30]. Under different conditions it differs only in position along 

the log intensity axis. This relation allows us to describe any particular psychometric 
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function PT(x), characterized by a threshold T, in terms of a canonical form Ψ(x), by the 

relation  

T) -(x    )( Ψ=xPT  (  3-1) 

where x is the log intensity of the stimulus and the parameter T may be chosen as any 

convenient point in the function Ψ. 

In our study we use the Weibull psychometric function and 92% point is chosen as the 

threshold T. Therefore the detection probability for ith   basis function estimated from the 

QUEST method can be substituted into the associated psychometric function of a 

particular stimulus as  
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(  3-2) 

where c is the contrast value of the basis function, and β is the parameter which specifies  

the slope of the psychometric function. The parameter γ specifies the probability of 

pattern being detected at zero intensity. For 2AFC tests the value is 0.5 since the subject 

is forced to make a decision between two choices. For 2AFC tests, having γ=0.5 and 

choosing β=3.5 yields threshold intensities with the probability of success being 0.92 

[30].  All the parameter values except γ were expressed in decibels. The psychometric 

function has a 0.5 probability value when the pattern is not detectable and therefore 

varies from 0.5 to 1 with increasing contrast values. Various options were available to 

modify the psychometric function. In our method, in order to combine these probabilities 

from the contrast values of the decomposed image components, low contrast value 

corresponding to probabilities under 0.6 were scaled to zero. Therefore the shape of the 

psychometric function was maintained for probability values greater than 0.6 and were 
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linearly distorted down to 0 for probability values lesser than 0.6. The modified 

psychometric is then given as 
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(  3-3) 

3.1.1 Final Threshold computation 

The thresholds of the basis functions from the subjective testing are computed to create 

the psychometric functions which serve as a mapping tool between contrast values and 

detection probability as explained in Section 2.1. 

 
The thresholds for the entire set of basis functions and the defect patterns were computed 

by two methods. In the first method the median likelihood values of the thresholds were 

found via a bootstrapping method to limit the effect of outliers and to obtain variability 

measure of the estimate. Bootstrapping is a resampling technique that assumes that the 

observations are independent and performs sampling with replacement from the acquired 

data where each observation has the same probability of being chosen each time [34]. 

Hence a bootstrap sample from an original sample of size n consists of randomly 

choosing one of the n values and repeating this k times, putting the chosen value back 

into the pool each time. The desired statistic is calculated from this bootstrap sample and 

the entire procedure is repeated k times. This ensures that each bootstrap sample is 

independent. In our analysis, for every stimulus, each bootstrap sample consisted of a set 

of threshold values, estimated through the QUEST procedure, drawn 64 times at random 

with replacement. For each drawing the median of the thresholds was taken as the 
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estimate. Then from all the 64 estimates, the median, upper quartile and lower quartile 

values were taken from the set. The median of those values was considered as the final 

estimate and was used in the psychometric function. The inter-quartile range was used as 

a measure of the variability. The bootstrapping procedure was done for each of the basis 

functions, wavelets and sinusoids, the grain defect pattern by drawing 8 samples at a time 

with replacement since 8 subjects were involved and for banding defect pattern, by 

drawing 9 samples at a time with replacement since 9 subjects were involved. 

The median was taken as the estimate because of the presence of the outlier data in the 

subjective testing results, due to some users correctly speculating the presence of patterns 

in all the trials. To avoid this difficulty a second method was used in estimating the 

thresholds, in which the mean of the subjective thresholds were computed by excluding 

the outlier data from the subjective testing procedure. The advantage of computing the 

thresholds directly from the mean of subjective data is two fold. The first one is that the 

estimating mean directly from the data allows us to specify the 95% confidence limits on 

the threshold values which is a significant statistic measure. The second one is that it 

gives us an option of comparing it with the thresholds obtained from the bootstrapped 

median procedure which is a resampling procedure as opposed to the direct threshold 

computation from the subjective data. In this method the 95% confidence limits on the 

prediction threshold were used as a measure of variability. 
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3.2 Prediction of HVS response for banding defect based on a Wavelet 

approach 

This section explains the several steps involved in prediction of HVS response for 

banding defect based on wavelet approach as discussed in Section 2.1. 

The banding defect patterns were generated at different contrast levels consistent with the 

values used in subjective tests. These patterns were subjected to 4-level wavelet 

decomposition as described in [33], given by 

∑ ∑ −−=+
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(  3-4) 

where level 0 is the original signal and the wavelet kernel, Kuv, an 8th order Symlet [24, 

33], is composed of 4 different combinations of high and low-pass filters applied in 

vertical and horizontal orientations.  The subscripts on y indicate the orientation of its 

wavelet kernel and the superscripts represent the coefficients at level-l as described in 

[24]. Let the wavelet function (high-pass filter) be denoted by h(i) and the scaling 

function (low-pass filter) be denoted by g(i).  Then a class of separable kernels in 2 

dimensions for the wavelet decomposition can be defined as 
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Subscript 11 refers to the low-pass filter in both the vertical and horizontal directions.  In 

going from one level to the next, y11 from the previous level is used, as indicated in Eq. 

(3.4).  The scaling by 2 of the arguments of y11 denotes a dyadic sub-sampling that occurs 

in going from one level to the next. The levels represent octave sub-bands, since sub-

sampling scales down the frequency axis of the wavelet kernel by a factor of 2, thereby 
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reducing its effective cutoff frequencies without changing the kernel coefficients. At the 

first level of the transform, the band covers the spectral range extending from one half of 

the Nyquist rate to Nyquist rate.  This is equivalent to half of the display pixel rate.  At 

the next level the band is lowered by a factor of two and so on. 

3.2.1 Calculation of Contrast from transform coefficient 

The next step is the conversion of the decomposed wavelet image coefficients to contrast 

values. Contrast at each spatial location within each channel is obtained by taking the 

ratio of the channel image to the base-band image. The mean background of the 

simulated image, which has the lowest frequency content of the image, is obtained from 

the y11 coefficients at the fourth level, in which each transform coefficient approximates a 

local DC component for a 16 by 16 pixel area because of the 4-level decomposition on an 

image of size 384x384 pixels. The pixel difference measures correspond to the y12, y21, 

and y22 coefficients at all lower levels and these are used as the numerator in a contrast 

ratio.  These coefficients in the numerator represent the high-pass results of the wavelet 

decompositions, which approximate the local pixel differences representing a contrast 

measure. The wavelet the coefficients from are spatially aligned with the high-pass 

coefficients at the fourth level and lower. This spatial alignment of the coefficients is 

done by up-sampling and interpolation of the high-pass coefficients and the coefficients 

from level by the help of wavelet reconstruction filters from their respective levels to 

the Level 0, which equals the size of the original image. The contrast values for the 

wavelet basis coefficients can be computed from 

4
11y

4
11y
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where )(4
11y are the coefficients from y expanded to level l through up-sampling and 

interpolation with the help of the wavelet reconstruction filters. Each level and 

orientation of the wavelet decomposition represents one of the basis function for which a 

psychometric function was computed.  Therefore, the computed contrast ratio is 

substituted into the psychometric function to obtain probabilities for all 9 wavelet sub-

bands and all spatial coefficients in each sub-band. These are pooled together to obtain 

the predicted detection probability for simulated defect pattern. For prediction 

performance, the defect contrast value that results in a predicted 92% detection 

probability was compared to the contrast ratio obtained through a subjective test on the 

defect pattern. 

)(4
11

3.2.2 Pooling procedure to obtain probability of detection 

The probability pooling was done assuming that each basis function contrast value from 

Eq. (3.6) represented independent visual channels.  Therefore, the final probability of 

detection for a defect contrast level c was computed as the complement of the probability 

of not detecting a basis function component in any of the channels, which can be denoted 

by 
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n
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(  3-7) 

where N is number of channels and λ(xn) is the channel probability for basis function 

contrast cn. The number of channels is 9, same as the number of basis functions used in 
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the subjective testing and the channel coefficients used in calculating the contrast of the 

stimuli. The channel contrast for the wavelet exploited the spatial orthogonality of the 

coefficients at each level and combined the independent probabilities over spatial contrast 

values: 
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(  3-8) 

where ck is the contrast values for the spatial wavelet coefficients corresponding to Eq. 

(3.6),  n is the particular channel (a specific i, j, and l combination), and K is the total 

number of (spatial) wavelet coefficients at that level and orientation. 

3.3 Prediction of HVS response for banding defect based on a 

Sinusoidal approach 

The prediction based on sinusoidal decomposition was performed only on the banding 

defect as it is characterized by Discrete Fourier Transform (DFT) of the luminance line 

orthogonal to the banding defect. The sinusoidal based prediction follows the general 

prediction procedure described previously, but with a modification in the transform 

domain representation and method of calculating contrast.  

In the first stage, banding defect patterns were generated at a given contrast level. A line 

was extracted perpendicular to the orientation of the banding defect from the center of the 

image and transformed in to sinusoidal components by a 1-dimensional DFT. This 

method of characterization of the banding defect is consistent with the definition of the 

banding defect [32]. 
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3.3.1 Calculation of Contrast from transform coefficient 

The contrast ratios were obtained by using the DC value to scale down each DFT 

component. The transform coefficients were grouped into four octave bands given by 

[1.07-2.14, 2.14-4.28, 4.28-9.56, 9.56-19.12 CPD] and the magnitude of the coefficients 

were summed within each octave band and the results were substituted into the 

psychometric functions obtained for the sinusoidal basis. The energy contrast value is 

given by 
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where S(k) are the DFT coefficients with index k ranging over octave bands starting with 

index of reference frequency fo  and b is an integer ranging from 0 to 3. The sinusoidal 

basis function corresponding to the center of the octave band was used to obtain 

probabilities from the psychometric function. The four octave bands were computed 

corresponding to a similar frequency range as the wavelet sub-bands, except that it 

included an additional low frequency band. A linear interpolation scheme was used to 

obtain psychometric functions at the frequencies of the sinusoidal component not tested. 

This modified way of calculation of detection probability was used over a more direct 

approach of computing the detection probability by applying each S(k) into its 

corresponding psychometric function and pooling those values as it yielded very poor 

prediction results with close to 100% under-prediction of HVS results. Thus, the 

modified method using octave bands described here was determined by assuming that the 

visual channels were octave based, and the detection of the pattern resulted from the 

contributions of all contrast energy in that channel. This modification resulted in good 
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performance for the sinusoidal based method and provided a better basis of comparing 

with the wavelet based method. The reason for the use of modified method based on 

octave bands for prediction in case of sinusoids as shown in Eq.3.9 was because of the 

characteristics of the sinusoidal basis function stimuli used in the subjective testing. The 

sinusoidal basis function stimuli were oriented along two directions and were not 

localized by windowing and hence could not provide similar spectral information as 

provided by the wavelets. The sinusoidal basis functions could not be made a local 

stimulus by windowing, because the print defects were being represented in terms of the 

global sinusoidal basis functions as necessitated by representation of the Fourier 

transform. On the other hand the stimuli representing the banding defect had to be local 

(implemented by windowing) to efficiently characterize the nature of the defect as it 

occurs practically. 

3.3.2 Pooling procedure to obtain probability of detection 

The probability pooling was done based on the assumption that the each basis function 

contrast value or in other words the sum of Fourier magnitude coefficients over the 

octave bands represented individual visual channels. As with the wavelet based process 

the final probability of detection for a defect at contrast level c was computed as the 

complement of the probability of not detecting a basis function component in any of the 

channels, denoted by 
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Where N is the number of channels and λ(xn) is the channel probability for basis function 

contrast cn. The number of channels in this case is equal to 4 as there were four sub-bands 

used in the sinusoidal prediction procedure. The sinusoidal approach does not include 

spatial components and hence the channel probability λ(xn) is given as  

)( knn cP=λ  
(  3-11) 

where ck is the contrast value from Eq. (3.8), and the psychometric function corresponds 

to the sinusoid at the center of the octave band. 

3.4 Prediction of HVS response for Grain defect based on a Wavelet 

approach 

The previous sections described the prediction of HVS response for banding defect based 

on a wavelet and sinusoidal method. This section explains the process of prediction of 

HVS response to grain defects, generated in two different sizes with three differing 

coarseness levels. The prediction of HVS response for grain pattern was carried out by a 

wavelet based procedure only. One main reason for that is the sinusoidal component 

analysis is more suitable for analyzing banding defect as it is characterized by FFT of the 

luminance line orthogonal to the banding defect and also due to the fact that the random 

structure exhibited by the grain defect does not provide any useful insight with the similar 

procedure. The other reason is that the subjective testing with the sinusoidal basis 

functions had stimuli oriented along two directions only and did not include any localized 

sinusoidal patterns. Hence there was not similar sufficient spectral information to cover 
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the entire spatial frequency range when compared with the information obtained from the 

subjective tests based on the wavelet basis functions. Therefore the grain patterns were 

analyzed only by a wavelet based prediction procedure and the results are compared for 

the two differing sizes of the grain pattern. The prediction of HVS response for grain 

pattern is similar to the procedure followed for the banding pattern. In the first stage the 

grain defects were generated with varying contrast levels by increasing the amplitude of 

the grain pattern and are subjected to 4-level wavelet decomposition.  

The second step is converting the coefficients to a contrast measure, consistent with the 

definition of the contrast for the grain defect pattern. The contrast of the grain pattern 

from the wavelet coefficients are computed as  

)4(
11

2
,

)(

)(

),(
),(

y

mny
mnc ji

l
ij

l
ij

∑
=  

(  3-12) 

 

The contrast calculation, detection probability and the pooling procedure were the same 

as followed in the banding defect pattern analysis. 
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CHAPTER 4  

      Results and Discussion 
 

This chapter presents and discusses the results obtained from the subjective testing and 

the predicted thresholds obtained from the wavelet based and sinusoid based prediction 

methods. In the Section 4.1 the subjective thresholds obtained using a median operation 

to censor the effects of outliers is presented along with the predicted thresholds using the 

wavelet and sine based methods for the banding defect. The discussion of these results is 

presented in Section 4.2. The next section, Section 4.3, provides the results of the 

subjective thresholds obtained using a mean operation (after censoring the outliers) and 

the predicted thresholds using the two methods for the banding defect. The following 

Section 4.4 contains the discussion about these results. Section 4.5 deals with the grain 

defect, and presents results of the estimated subjective thresholds computed using mean 

and median operations and the prediction on the based on wavelet method. The final 

Section 4.6 is discusses the results of the grain pattern. 

 

4.1 Comparison of Median subjective thresholds with the predicted 

thresholds for banding defect 

 The results of the median subjective thresholds, obtained as explained in Section 3.1, on 

the defect banding patterns are presented in Table 4.1, which include both defect sizes on 
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the flat field background at luminance level 20 cd/m2 and random background with mean 

luminance 20 cd/m2 and -23 dB of white noise. The final median subjective threshold 

computation is explained in Section 3.1.1 

Table 4.1: 92% Median subjective detection thresholds in dB for subjective defect tests 

 

Subjective median Values  Low Frequency Mid Frequency High Frequency 

Large banding in flat field           -35.7 
 
 

         -37.5 
 
 

-31.5 
 
 

Small banding in flat field 
 -34.0 -34.0 -30.5 

Large banding in noise field 
-34.0 -33.0 -31.5 

Small banding in noise field 
-32.7 -33.0 -28.0 

 

The predicted values using the wavelet bases are shown in Table 4.2 along with the 

percent error relative to the median thresholds in Table 4.2.   

Table 4.2: 92% detection Threshold in dB for predicted HVS response using wavelet 
bases with percent error relative to the median subjective thresholds in parenthesis. 

Predicted values by 

 Wavelet  Method 

Low Frequency Mid Frequency High Frequency 

Large banding in flat field 
-40.1 (12%) -35.5 (–5%)  -34.8 (10%)  

Small banding in flat field 
 -40.0 (18%)  -33.5 (-1%)  -32.9 (8%)  

Large banding in noise field 
-35.5 (4%) -32.5 (-2%) -31.3 (-1%)  

Small banding in noise field 
 -35.0 (7%) -30.4 (-8%)  -29.9 (7%)  
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A systematic error of -1.33dB exists between the predicted and subjective thresholds. The 

predicted values using the wavelet bases after the removal of the systematic error is given 

below in Table 4.3 

Table 4.3:  92% Detection Threshold in dB for predicted HVS response using wavelet 
bases after removing systematic error with percent error relative to the median subjective 
thresholds in parenthesis 

Predicted values by 

 Wavelet  Method 

Low Frequency Mid Frequency High Frequency 

Large banding in flat field 
-38.8 (8%) -34.2(-9%) -33.5(6.5%) 

Small banding in flat field 
-38.7(13%) -32.3(-5.5%) -31.6(3.5%) 

Large banding in noise field 
-34.2(0.5%) -31.2(-5.5%) -29.9(-5%) 

Small banding in noise field 
-33.6(2%) -29.7(-10%) -28.6(2%) 

 
 
The predicted values using the sinusoidal bases are shown in Table 4.4 along with the 

percent error relative to the thresholds in Table 4.1.  

Figure 4.4:  92% Detection Threshold in dB for predicted HVS response using Sinusoidal 
bases with percent error relative to the median subjective thresholds in parenthesis 

Predicted values by 

 Sinusoidal  Method 

Low Frequency Mid Frequency High Frequency 

Large banding in flat field 
-30.2 (-15%)  -30.1 (-20%)  -27.2 (-14%)  

Small banding in flat field 
 -30.1 (-11%) -30.0 (-12%)  -27.9 (-9%)  

Large banding in noise field 
-26.5 (-22%) -25.6 (-22%) -23.6 (-26%)  

Small banding in noise field 
 -26.2 (-20%)  -25.5 (-23%)  -23.4 (-17%)  
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A systematic error of 5.75 dB existed between all the predicted and subjective thresholds. 

If this error is taken out, the then all errors range between -7 and 10 percent. The 

predicted values using the sinusoidal bases after removing the systematic errors are 

shown in Table 4.5 along with the percent error relative to the median thresholds in Table 

4.1 

Table 4.5:  92% Detection Threshold in dB for predicted HVS response using Sinusoidal 
bases after removing systematic error with percent error relative to the median subjective 
thresholds in parenthesis 
Predicted values by 

 Sinusoidal  Method 

Low Frequency Mid Frequency High Frequency 

Large banding in flat field 
-35.9(1%) -35.8(-4%) -32.9(4%) 

Small banding in flat field 
-35.8(5.5%) -35.7(5%) -33.6(10%) 

Large banding in noise field 
-32.5(-3.5%) -31.3(-6%) -29.3(-7%) 

Small banding in noise field 
-31.9(-2.5%) -31.5(-5.5%) -29.5(4%) 

 

4.2 Discussions on comparison between Wavelet and Sine based 

method for banding defect: 

The error on the results for both wavelet and sinusoidal cases is comparable to the inter 

quartile ranges on the subjective defect tests (up to 12%) and the basis function tests (up 

to 11%).  So it is realistic to conclude that the prediction performance was reasonable.  

The summing of energy in the octave bands for the sinusoidal based technique suggests 

that a Gabor patch should be used next time in a comparison with a wavelet based 

method as both of them share a great similarity in terms of their spectral characteristics.  

The contrast measures in the subjective tests were computed globally over a whole image 
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using the definition Eq.2.9, but the contrast computations from basis functions in the 

prediction process as explained in Section 3.3, characterize local pixels of the image. 

Hence the large systematic errors in sinusoidal based method are likely due to this 

inconsistency in scale of the contrast value computations. Once this error was removed 

the prediction performance was similar to that of the wavelet approach. The effect of the 

systematic errors on the performance of predictions has to be investigated in future 

research efforts. 

The large errors for the low-frequency flat-field results are likely due the limited number 

for gray levels below the thresholds.  The low frequency patterns for the wavelet bases 

were the easiest to detect and it was difficult to set up the experiment so that most people 

had several gray levels below which this pattern could not be detected.  Some subjects 

were even able to correctly identify this pattern for all 16 trials.  This resulted in 

significant quantization error for the low frequency wavelet patterns.  This reason is 

supported by the observation that in most cases when white noise was added to the test 

patterns the prediction error reduced when compared with the results from the flat field 

background.  The white noise had the effect of making the patterns harder to detect 

(reduced HVS sensitivity) and as a result more gray levels existed below the detection 

threshold for all subjects, especially for the lower frequency patterns. This effect is 

shown in Figure 4.1 
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Figure 4.1 Absolute errors in flat field and noisy backgrounds for Median method 

 

Overall both wavelet and sinusoidal based methods worked reasonably well suggesting 

the feasibility of developing measures and methods for print defect detection that reflect 

the response of the HVS.   In addition, the performance prediction analysis done in these 

experiments used mostly different populations.  There were 1 or 2 subjects common to all 

three tests.  This suggests that the information obtained from one population on the basis 

functions was applicable to the larger population.  It was not simply the case of learning 

the HVS capability of population and predicting the response of the same population 
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4.3 Comparison of Mean subjective thresholds with the predicted 

thresholds for banding defect  

The results of the subjective test on the defect banding patterns are presented in Table 

4.6, which include both defect sizes on the flat field background at luminance level 20 

cd/m2 and random background with mean luminance 20 cd/m2 and -23 dB of white noise. 

The mean subjective thresholds are provided with their 95% confidence limits calculated 

with the help of the student’s t-distribution. The level of confidence (precision) desired 

for the output variable x  to within δ units at confidence level 1-α, using the following 

relation:  

 

[ ] αδµ −=<− 1Pr x  (  4-1) 

 

where  

N
SNt 





 −=

−
1,

21 αδ  
(  4-2) 

 
 

where S is the standard deviation and N is the number of trials, in this case the number of 

the valid subjective responses. The 

−

−
1,

21
Nt α


   can be obtained from the student’s t-

distribution table with α value set to 0.05 for 95% confidence intervals. 
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Table 4.6: 92% mean subjective detection thresholds in dB for defect tests with their 
confidence intervals 

Subjective mean Values  Low Frequency Mid Frequency High Frequency 

Large banding in flat field -34.90±1.20 -36.70±1.20 -31.70±2.30 

Small banding in flat field -32.40±0.90 -34.70±0.80 -29.40±2.30 

Large banding in noise field -33.90±1.70 -34.60±0.80 -29.80±1.50 

Small banding in noise field -32.30±1.50 -33.90±1.10 -28.70±2.0 

 
The predicted values using the wavelet bases are shown in Table 4.7 along with the 

distance from the subjective mean thresholds in Table 4.6.   

Table 4.7: 92% Detection Threshold in dB for predicted HVS response using wavelet 
bases with distance from subjective mean thresholds in parenthesis 

Predicted values by 

 Wavelet  Method 

Low Frequency Mid Frequency High Frequency 

Large banding in flat field -40.2 (-5.3) -37.00(-0.3) -36.00(-4.3) 

Small banding in flat field -39.90 (-7.5) 
 

-35.90(-1.2) 
 

-35.6 (-6.2) 
 

Large banding in noise field -36.10 (-1.7) -32.50 (+2.2) -32.30 (-2.9) 

Small banding in noise field -35.50 (-3.2) -31.0 (-2.9) -30.70 (-2) 

A systematic error of -2.7 dB exists between the predicted and subjective thresholds. The 

predicted values using the wavelet bases after removing the systematic error is shown in 

Table 4.8 along with the distance from subjective mean thresholds in Table 4.6.  
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Table 4.8: 92% Detection Threshold in dB for predicted HVS response using wavelet 
bases after removing systematic errors with distance from the mean subjective thresholds 
in parenthesis 

Predicted values by 

 Wavelet  Method 

Low Frequency Mid Frequency High Frequency 

Large banding in flat field -37.5(-2.6) -34.3(+2.4) -33.3(-1.6) 

Small banding in flat field -37.2(-4.8) -33.2(+1.5) -32.9(-3.5) 

Large banding in noise field -33.4(+0.5) -29.8(+4.8) -29.6(+0.2) 

Small banding in noise field -32..8(-0.5) -28.3(+2.9) -28.0(+0.7) 

The predicted values using the sinusoidal bases are shown in Table 4.9 along with the 

percent error relative to the thresholds in Table 4.6. A systematic error of 5.9 dB existed 

between all the predicted and subjective thresholds. 

Table 4.9: 92% Detection Threshold in dB for predicted HVS response using Sine bases 
with distance from the mean subjective thresholds in parenthesis 

Predicted values by 

 Sinusoidal  Method 

Low Frequency Mid Frequency High Frequency 

Large banding in flat field -30.3(+4.6) -28.90(+7.8) -26.10(+5.4) 

Small banding in flat field -29.80(+2.6) 
 

-28.40(+6.3) 
 

-26.10(+3.3) 

Large banding in noise field -26.50(+7.4) 
 

-24.50 (+10.1) -26.10 (+3.7) 

Small banding in noise field -26.10(+6.2) -24.20 (+9.7) -26.10(+2.6) 

  

The predicted values using the sinusoidal bases after removing the systematic error is 

shown in Table 4.10 along with the percent error relative to the thresholds in Table 4.6. 
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Table 4.10: Detection Threshold in dB for predicted HVS response using Sine bases after 
removing the systematic error with distance from mean subjective thresholds in 
parenthesis 

Predicted values by 

 Sinusoidal  Method 

Low Frequency Mid Frequency High Frequency 

Large banding in flat field -36.2(-1.3) -34.8(+1.9) -32.0(-0.5) 

Small banding in flat field -35.7(-3.3) -34.3(+0.4) -32.0(-2.6) 

Large banding in noise field -32.4(+1.5) -30.4(+4.2) -32.0(-2.2) 

Small banding in noise field -32.0(+0.3) -30.1(+3.8) -32(-3.3) 

 
 

4.4 Discussions on comparison of Wavelet and Sine based method for 

banding defect: 

As mentioned previously the large errors for the low-frequency flat-field results are likely 

due to the limited number for gray levels below the thresholds.  This limitation could not 

be overcome in this subjective testing procedure because of the limits of the display 

resolution of the display system. The lower frequency patterns of the wavelet and 

sinusoidal patterns were easier to detect and hence some subjects were even able to 

correctly identify this pattern for all 16 trials.  Those measurements were classified as 

outliers in the testing and their thresholds were omitted while calculating the mean values 

upon which the psychometric functions were computed as mentioned in Section 3.1.1. 

The computed threshold’s suffered from a small data set as there was one outlier in the 

subjective responses of each basis function variation reducing the data set from eight to 

seven. Hence the estimated thresholds may not be closer to the actual threshold. This 
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resulted in significant quantization error for the low frequency wavelet patterns.  This 

reason is supported by the observation that in most cases when white noise was added to 

the test patterns the prediction error reduced .The white noise had the effect of making 

the patterns harder to detect (reduced HVS sensitivity) and as a result more gray levels 

existed below the detection threshold for all subjects, especially for the lower frequency 

patterns. Figure 4.2 shows the absolute errors between the subjective and the predictive 

procedures (with systematic error removed)  in Flat field and noisy background 

conditions. 

1 2 3
0

1

2

3

4

5

6

A
bs

 E
rr

|S
ub

j -
 P

re
d|

Low Freq                                       Mid Freq                                     High Freq

1 2 3
0

1

2

3

4

5

Low Freq                                       Mid Freq                                     High Freq

Absolute error with and without noisy background- Sine Method  

A
bs

 E
rr

|S
ub

j -
 P

re
d|

Large banding - Flat
Large banding - Noise
Small banding - Flat
Small banding - Noise

Absolute error with and without noisy background- Wavelet Method  

 

Figure 4.2 Absolute errors in flat field and noisy backgrounds for Mean method 
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The predicted thresholds based on the wavelet method in many cases falls just outside the 

95% confidence interval estimates of the subjective thresholds suggesting that this 

method works reasonably well to suggest the feasibility of developing measures and 

methods for print defect evaluation that reflect the response of the HVS. The prediction 

results for the wavelet and the sinusoidal based methods perform better when the 

systematic errors are removed. Particularly in sinusoidal based prediction since the 

systematic errors are large there could be some inconsistencies while calculation of 

contrast measures in the prediction process which might have resulted in scaling 

problems. Hence more effort should be focused on understanding the effect of scale 

factor on the contrast values in future works. 

Many sources of variability can be attributed as to why the wavelet based prediction do 

not fall within the 95% confidence estimates of the thresholds.  

1. As mentioned above the lack of sufficient number of gray levels, due to the 

barrier of display resolution, below the threshold prevents us in estimating the 

exact thresholds. Because of this problem the estimated thresholds may slightly 

differ from the actual thresholds and hence the prediction might not fall within the 

confidence limits. One way to circumvent this problem is to increase the hardware 

capability to reproduce finer gray level variations of the stimuli in subjective tests.     

2. The peak contrast measure may not be a good measure in characterizing the basis 

function stimuli. The peak contrast definition used here may be a good measure in 

representing a periodic image pattern such as a sinusoid but for a spatially limited 

pattern such as a wavelet basis function this contrast measure may not sufficiently 

characterize its response in the HVS. Different contrast measures such as energy 
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based measure may be used and compared between wavelet and sinusoidal based 

prediction models. 

3.  Assumption of the Weibull PDF for variation around the threshold values. A 

more empirical PDF, non-parametric in nature, may yield better prediction and 

more accurate results with pooling methods. The CDF was modified in a linear 

fashion to aid the prediction process; other methods of modifying the CDF have 

to be studied. The analysis of the prediction methods with a non-parametric and a 

parametric CDF should make an interesting study in the future research efforts. 

4. Standardization of the subjective procedures could result in prediction of precise 

contrast thresholds. Standard testing methods as mentioned in ModelFest [28] 

should yield us better thresholds estimates and also allows us to compare the 

results of similar research efforts being carried out. 

 

4.5 Results and discussion of Median subjective thresholds with the 

wavelet based prediction for Grain defect  

The results of the 92% detection threshold in dB for the subjective testing using the 

median and the prediction thresholds by wavelet based method for the grain patterns of 

both sizes in the flat-field background at 20 cd/m2 luminance level (Table 4.11). 
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Table 4.11: 92%Detection Threshold in dB for Subjective testing using the median and 
predicted HVS response using Wavelet bases for Grain Defect 

Big Grain Pattern Coarse Medium Fine 

Subjective (median) -36.5 -36.5 -36.5 

Prediction Wavelet -34.5(-4%) -35.3(-3%) -35.5(-3%) 

Small grain pattern Coarse Medium Fine 

Subjective(median) -36.5 -34.0 -36.5 

Prediction wavelet -33.6(8%) -33.6(-1%) -34.0(-7%) 

 

Systematic error of 1.4 dB for the larger grain pattern and 1.93 dB for smaller grain 

pattern error existed between the subjective and the predictive thresholds. The results of 

the prediction of the grain patterns with systematic error removed is given in table 4.12 

Table 4.12: 92%Detection Threshold in dB for Subjective testing using the median and 
predicted HVS response using after removing systematic errors using wavelet bases for 
Grain Defect  

Big Grain Pattern Coarse Medium Fine 

Subjective (median) -36.5 -36.5 -36.5 

Prediction Wavelet -35.9(2%) -36.7(-1%) -36.9(1%) 

Small grain pattern Coarse Medium Fine 

Subjective(median) -36.5 -34.0 -36.5 

Prediction wavelet -35.5(3%) -35.9(-5%) -35.9(2%) 
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Removing the systematic error limits the prediction error within 2% in case of larger 

grain pattern and -5% for the smaller grain pattern. The good prediction performance for 

the grain defect implies that the contrast measure for the grain defect based on the energy 

model characterizes the defect well. Though the wavelet based prediction performed well 

in case of the grain pattern, not much variation in threshold values could be obtained with 

the subjective experiments across the coarseness and size of the grain pattern.  

4.6 Results and discussion of Mean subjective thresholds with the 

wavelet based prediction for Grain defect  

The results of the 92% detection threshold in dB for the subjective testing using the mean 

with their 95% confidence limits and the prediction thresholds by wavelet based 

procedure along with the distance from the mean subjective thresholds for the grain 

patterns of both sizes in the flat field background at 20 cd/m2 luminance level are 

presented in Table 4.13 

Table 4.13: 92%Detection Threshold in dB for Subjective testing using the mean and 
predicted HVS response using Wavelet bases along with the distance from the mean 
subjective thresholds in parenthesis for grain defect. 

Big Grain Pattern Coarse Medium Fine 

Subjective (mean) -35.20±0.90 -35.70±0.70 -36.80±0.90 

Prediction Wavelet -36.20(-1) -36.30(-0.6) -36.30(0.5) 

Small grain pattern Coarse Medium Fine 

Subjective(mean) -36.50±1.0 -34.40±0.70 -36.80±1.00 

Prediction wavelet -34.30(-2.2) -35.10(-0.7) -35.00(1.8) 
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The performance of the wavelet based prediction was within the 95% confidence limits 

for all the case except the coarse grain pattern of smaller size falling short by about -1dB.  

A systematic error of -0.3 dB and -0.4 dB existed for the large and small grain pattern. 

The results of the wavelet based prediction after removing the systematic error is 

presented along with the distance from the mean subjective thresholds in Table 4.14. 

Table 4.14:  92% Mean detection Threshold in dB for Subjective testing and predicted 
HVS response using Wavelet bases after removing systematic errors along with the 
distance from the mean subjective thresholds in parenthesis. 

Big Grain Pattern Coarse Medium Fine 

Subjective (mean) -35.20±0.90 -35.70±0.70 -36.80±0.90 

Prediction Wavelet -35.9(-0.7) -36.0(-0.3) -36.0(0.8) 

Small grain pattern Coarse Medium Fine 

Subjective(mean) -36.50±1.0 -34.40±0.70 -36.80±1.00 

Prediction wavelet -33.9(-2.6) -34.80(-0.4) -35.4(1.8) 

 

The good performance of the wavelet based prediction can again be attributed to the 

superior characterization of the grain pattern by an energy based contrast measure. The 

prediction performance suggests that the spatial pooling of orthogonal translation may 

follow the response of the HVS to the pattern size. However the prediction results for the 

smaller grain pattern are not within the 95% confidence limits suggesting that greater 

variations in coarseness and size must be examined along with the contrast scaling issues. 
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CHAPTER 5  

Conclusions and Future Work 
 

The chapter focuses on the contributions made and the inferences that can be derived 

based on the results of the subjective testing experiments on basis function and the 

simulated print defects. The outcomes of the experiments and a conclusion of the 

prediction performance of the wavelet based and the sinusoidal based method are 

discussed on section 5.1. The suggestions for performance improvements that can be 

incorporated to obtain more accurate results are presented in the following section. The 

next section, Section 5.3 describes the possible future research directions that could be 

followed in developing comprehensive standards for print quality evaluations. 

5.1 Summary 

The objective of this work was to explore the feasibility of predicting the perception or 

visibility of print defect patterns, banding and graininess, under a flat field and noisy 

background conditions by a wavelet-based and sinusoidal-based approach and to compare 

their performance. A novel method based on representing the print defects in terms of 

wavelet transform and a modified octave based sinusoidal method was introduced. Based 

on the performance one can conclude that the wavelet based method of prediction worked 

reasonably well when compared with the sinusoidal method, and hence can be an useful 

technique in developing measures and methods of print quality evaluations based on the 

HVS response.  
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Several different methods of pooling, using the single largest contrast value in the band 

limited contrast measure (equivalent to Minkowski’s pooling with exponent of ∞), by 

using top 5 contrast values in the band limited contrast were tried in the prediction 

process. But the one reported, which uses all the contrast values in the contrast measure 

proved to be the better performer in the wavelet based prediction process. 

The orthogonal wavelets have distinct advantages in developing models for probability 

pooling based on independence of the visual channels from the HVS model. In addition, 

orthogonality ensures the pattern energy was not over counted or under counted in each 

wavelet frequency or spatial band (this is not possible with the Gabor patch).  The 

systematic error for the wavelet approach was within the inter-quartile distance of the 

error in case of the median based thresholds and just missed the 95% confidence intervals 

with the mean based thresholds under the noisy background conditions. The performance 

in the flat field background was hampered by the lack of gray levels below the actual 

thresholds and can be improved by using hardware with better display resolution.   This 

suggests that the model for pooling probabilities and scaling of contrast values followed 

that of the HVS, at least better than the sinusoidal approach with no spatial component. 

5.2 Suggestions for performance improvements 

Adopting standardized subjective testing procedure by following the experiment 

conditions as suggested in ModelFest [30] should yield accurate estimates of thresholds 

and also allows the comparison of the results with a communal set of data. 

Definite improvements may be achieved by more direct computation of detection 

probabilities over a range of contrast values between the 1% and 99% detection levels 
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from an empirical CDF collected through user inputs.  The psychometric functions used 

to obtain intermediate probabilities from the QUEST procedure may not be very accurate 

for values far from the 92% detection threshold.  Also 84% detection threshold measure 

instead of 92% detection threshold as suggested by recent efforts [29, 30] should provide 

us with a more stable measure of detection thresholds. The wavelet approach may have 

been relatively robust to this error because of its ability to capture the defect pattern 

energy in a few coefficients.  In the future experiments better prediction and more 

accurate assessment of pooling methods may be obtained from non-parametric 

distribution functions for HVS detection probabilities.  This may further improve the 

consistency of the performance and be more consistent with models for combining 

channel probabilities. 

Use of different types of contrast measures for characterizing the stimuli and a prediction 

method consistent with the contrast definition used should provide more insight regarding 

the proper characterization of the stimuli.  

5.3 Future Work 

More interesting and insightful comparisons should be made between methods using 

Gabor patches and wavelets.  Both methods are similar in that they can reflect spatial and 

frequency localization.  As a matter of fact the Gabor patch is a wavelet; however it 

cannot operate as a tight set of orthogonal filters as can be done with the symlet.  Future 

comparisons between these basis functions should allow for a more direct comparison of 

methods, and should indicate the advantage of orthogonality in predicting HVS response 

along with the impact on the shape of the basis function.  
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The wavelet based model shows more promise as they generate the orthogonal 

decomposition filters in a more systematic way. Some issues regarding the workings of 

human visual system itself have not yet been resolved, nevertheless these investigations 

based on subjective testing will go a long way in establishing a complete HVS model 

incorporating the higher and lower level vision processes that will have a tremendous 

impact in the larger context of perceptual image quality. 

 
. 
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