
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2004

CONTROL SYNTHESIS IN COLORED CONDITION SYSTEMS CONTROL SYNTHESIS IN COLORED CONDITION SYSTEMS

Praveen Mandavilli
University of Kentucky, pmandavilli@gmail.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Mandavilli, Praveen, "CONTROL SYNTHESIS IN COLORED CONDITION SYSTEMS" (2004). University of
Kentucky Master's Theses. 369.
https://uknowledge.uky.edu/gradschool_theses/369

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232558962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

November 05’ 2004

Praveen Mandavilli

With complex systems, monolithic models become impractical and it becomes nec-

essary to model them through subsystems and components. Unless these compo-

nents and subsystems are structured, exploiting them in a methodical manner to

develop a control logic for them also becomes complex. In the previous research,

to characterize the input/output behavior of discrete state interacting, systems a

condition language framework was defined and algorithms that can automatically

generate a controller given the system model and the desired specification using

this framework were presented. Though this framework and the control algorithms

are ideally suited to simple systems, representation of components with large state

spaces requires a more refined approach. In this thesis, we present the modelling

framework namely ‘Color condition systems’, that compactly represent components

with large state spaces. We also present algorithms that can automatically generate

a controller that consists of a set of action type taskblocks, given the system model

and the desired specification described using color condition systems. The mod-

elling framework and the working of the algorithms are illustrated using figures

and comments on the possible ways of optimizing the algorithms are also quoted.

Finally, in the appendix, we also present the approach that can be taken to imple-

ment a few parts of the algorithm.

KEYWORDS: Color Condition systems, Actionblock, Controller, Modeling

Framework, Large state space.

CONTROL SYNTHESIS IN COLORED CONDITION SYSTEMS

ABSTRACT OF THESIS

Dr. Ibrahim Jawahir.

Director of Graduate Studies.

Dr. Lawrence Emory Holloway.

Director of Thesis.

By

Praveen Mandavilli

CONTROL SYNTHESIS IN COLOR CONDITION

SYSTEMS

Unpublished theses submitted for the Master’s degree and deposited in the Uni-
versity of Kentucky Library are as a rule open for inspection, but are to be used
only with due regard to the rights of the authors. Bibliographical references may
be noted, but quotations or summaries of parts may be published only with the
permission of the author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the thesis in whole or in part also requires
the consent of the Dean of the Graduate School of the University of Kentucky.

RULES FOR THE USE OF THESES

THESIS

Praveen Mandavilli

The Graduate School

University of Kentucky

2004

Copyright c© Praveen Mandavilli 2004

Director: Dr. Lawrence E. Holloway,
Professor of Electrical & Computer Engineering,

University of Kentucky,

Lexington, Kentucky

2004

THESIS

A thesis submitted in partial fulfillment of the requirements for the degree
of Master of Science in Manufacturing Systems Engineering

in the College of Engineering
at the University of Kentucky

By
Praveen Mandavilli

Lexington, Kentucky

CONTROL SYNTHESIS IN COLORED CONDITION SYSTEMS

Signed:
Date:

MASTER’S THESIS RELEASE

I authorize the University of Kentucky Libraries to reproduce this thesis in
whole or in part for the purpose of research

This thesis would be unfinished with out the mention of the blessings showered

by my beloved family on me and the support & encouragement given to me by my

cherished professor Dr. Holloway, to whom this thesis is dedicated.

I dedicate this thesis to my parents who have provided me with support emo-

tionally and financially throughout this long journey called college career. Without

my professor lifting me up when this thesis seemed interminable, I doubt it should

ever have been completed.

DEDICATION

No work is ever created alone and no research is ever carried out in solitude. I am

greatly indebted to a number of people without whom this thesis might not have

been achievable. This thesis is the product of the gentle, encouraging support of my

mentor, academic advisor, Dr. Lawrence E. Holloway, who always had answered all

my questions and challenged my thinking.

This thesis is written with good support from my friend and research colleague

Prashanth Thumu who made the work more enjoyable. I also appreciate the help

provided by my friends at university of kentucky.

However there are those whose spiritual support is even more important.

Thanks goes to my family back in India. Through every stage I have my full stream

support from my parents. There are no words that adequately express my appreci-

ation and gratitude to them.

I would also thank my committee members Dr. Janet Lumpp and Dr. Jawahir

for offering suggestions for improvement.

ACKNOWLEDGMENTS

iii

TABLE OF CONTENTS

Acknowledgments iii

List of Figures vii

Chapter 1 Introduction and Motivation 1

1.1 Introduction and Motivation . 1

1.2 Prior Research . 2

Chapter 2 Condition Systems 4

2.1 Introduction . 4

2.1.1 Petri Nets . 4

2.2 Condition Systems . 5

2.2.1 Example . 6

2.2.2 Summary . 8

Chapter 3 Modelling Framework 10

3.1 Introduction . 10

3.2 Preliminaries . 10

3.2.1 Intervals . 11

3.3 Colored Condition models . 13

3.3.1 Color of a token . 14

3.3.2 Definition of Color Condition System 15

3.3.3 Assumptions . 18

iv

Chapter 4 Task Block Effectiveness 24

4.1 Introduction . 24

4.2 V-Sequence . 24

4.2.1 Example . 25

4.3 Taskblocks . 26

4.3.1 Linear Temporal Logic Syntax 26

4.3.2 Effectiveness . 28

Chapter 5 Action Block 31

5.1 Introduction . 31

5.2 System Structure Assumption, (SSA) 32

5.3 Actionblocks . 33

5.3.1 Paths . 33

5.3.2 Intervals revisited . 36

5.4 Procedure to build an Actionblock . 38

5.4.1 Procedure: CreateAB() . 43

5.4.2 Procedure: DoAdjacentCycles() 46

5.4.3 Procedure: DoRemoteCycles() 48

5.4.4 Procedure: DoRemainingColors() 54

5.4.5 Procedure: BuildTB() . 56

5.4.6 Example . 60

Chapter 6 Conclusion and Future work 65

6.1 Conclusion . 65

6.2 Future Work . 65

Appendix 67

Index 75

v

Bibliography 77

Vita 79

vi

LIST OF FIGURES

2.1 Example of a Petri net. 5

2.2 Longitudinal Adjustment Drive . 7

2.3 Model using condition system framework 8

3.1 User Elevator Car Model . 19

3.2 Actual Elevator Car Model . 20

5.1 Illustration of LeftSplit() and RightSplit() 38

5.2 Block Diagram of the algorithm . 39

5.3 Illustration of TAR() . 40

5.4 Illustration of Subcycle() . 42

5.5 BuildSetCTB: Comparison of CGcompo and CTB 46

5.6 Working of the procedure AdjacentCycles() 47

5.7 Working of the procedure DoRemoteCycles() 52

5.8 Model of a Mercedes Benz Passenger Seat 61

5.9 Actionblock of model for Mercedes Benz Passenger Seat 62

vii

Chapter 1

Introduction and Motivation

1.1 Introduction and Motivation

Automated control code synthesis methods for automated manufacturing systems

reduce the code creation time, minimize the debug time and simplify the main-

tenance of the code [Holl00]. Considerable research has been done in this area.

Condition systems, a class of condition-event models were used as the modelling

framework. The approach has been based on viewing the system as a collection of

simple subsystems that interact through “condition signals”. The condition systems

offer many advantages, allowing the modeler to represent the systems as a set of

components. The modelling framework is ideally suited for models of interacting

components as long as the systems remain simple with relatively small state spaces.

However, a research issue that must be addressed for complex systems is how

to effectively handle subsystems and components with potentially large number of

states. Representation of such components using the condition systems modelling

framework developed in the prior research becomes almost impractical. As the

state space associated with the subsystem increases, it becomes hard to describe

the model and at the same time the model becomes awful and unreadable. This

problem is typical for many practical applications of condition systems. Hence

it becomes necessary to refine the modelling framework in order to compactly

1

represent components with large state spaces. One of the promising directions to

tackle this problem of “state space” is to extend the techniques developed in the

prior research to high-level models. Colored condition systems framework, devel-

oped in the current thesis, allow the modeler to represent complex systems with

large state spaces compactly. The goal is to define the modelling framework and

TASK CONTROL SYNTHESIS: translating a high-level specification into detailed se-

quences of control and actuation signals that will accomplish the specified behavior.

This thesis is divided into four parts. Chapter 2 describes the condition systems

modelling framework. It gives an overview of the definition of condition systems

and briefly describes the logic behind the algorithms used to build the controller

that drives the system to a state that would output the target condition set. Chapter

3 defines precisely the modelling framework namely ‘color condition systems’ used

to model the systems which have large state spaces associated with them. It intro-

duces the concept of color of a token (hence called color condition systems), the

notion of intervals and condition matrices and demonstrates the framework with

examples and figures. Chapter 4 introduces linear temporal logic syntax used in

this thesis and explains what makes a taskblock to work effectively. The taskblock

generated in this thesis is an action type taskblock and is designed to perform a

specified action which would lead the system to the target state. Chapter 5 presents

the algorithm that is used to generate the action type taskblock. It introduces the

assumptions made and illustrates the working of the algorithm with examples and

figures.

1.2 Prior Research

One of the primary goals of developing a modelling framework for automatic

control synthesis for complex systems is to make it compact. Considerable research

2

has been done in the area of state aggregation and state explosion. To tackle the

systems which are of the size and complexity that we find in typical industrial

projects, colored petri nets(CP-Nets) were developed by Kurt Jensen [Jen98],

[Jen98]. CP-nets is a modelling language, a combination of Petri nets and pro-

gramming language. The concept of attaching a data type to the token, introduced

in CP-Nets, drastically reduced the size of the model, making it more readable and

understandable.

Caines et al, introduced the notion of state aggregation for finite machines via

the concept of dynamical consistency relation [Cain95], [Cain97]. The state-space

is divided into partitions where the dynamic consistency relation relates between

the blocks of states in any given partition. Hence, the state aggregation was

achieved.

Dwyer et al, presented a compact Petri net representation for concurrent

programs in the field of software engineering research [Dwy95]. Since these Petri

nets were based on task interaction graphs, they are called TIG-based Petri nets. A

compact representation was possible by maintaining only those parts of state space

that are relevant to the analysis of a particular property.

The approach of extending the already research techniques to high level nets

like colored petrinets has been taken by various other researchers like Gries in the

performance modeling of various memory architectures [Gries00].

The current thesis introduces the notion of color of a token in the condition

systems world. We describe the modeling framework of color condition systems in

chapter 3 and explain in detail the taskblock generation technique (Chapter 5).

3

Chapter 2

Condition Systems

2.1 Introduction

In this chapter we present an informal introduction to condition systems by means

of an example and formally define them. A condition system is a form of Petri net

that requires conditions to enable transitions and that outputs conditions according

to its marking. This type of modelling framework was used to define the plant

behavior and the high level specification in [Holl00].

2.1.1 Petri Nets

A Petri net is a graphical and mathematical modeling tool. It consists of places,

transitions, and arcs that connect them. Input arcs connect places with transitions,

while output arcs start at a transition and end at a place. Carl Adam Petri intro-

duced in 1962, this special class of genaralized graphs to address the problems of

concurrency. As a graphical tool, Petri nets can be used as a visual-communication

aid similar to flow charts, block diagrams, and networks. In addition, tokens are

used in these nets to simulate the dynamic and concurrent activities of systems.

4

P1 P2

P3

P4

T1

T2 T3

Figure 2.1: Example of a Petri net.

2.2 Condition Systems

The Condition systems interact with each other and their outside environment

through conditions. [Holl00] A condition can be considered as a signal that either

has value “true” or “false”. AllC represents the set of all conditions, such that for

each condition c in AllC, there also exists a negated condition denoted ¬c , where

¬(¬c) = c. Given a subset of conditions C ⊆ AllC, C is said to have a contradiction

if for some c ∈ C, the negation of ¬c is also in C.

A condition system is defined as a form of Petri Net that requires conditions for

enabling of transitions, and that outputs conditions (establishes the truth of certain

conditions) according to its marking.

DEFINITION 2.1 A condition system G is characterized by a set of states MG, a

next state mapping fG : MG × 2AllC −→ 2MG, and a condition output mapping

gG : MG −→ 2AllC. In this paper, we assume that MG, fG, and gG are defined

through a form of Petri net consisting of a set of places PG, a set of transitions TG,

a set of directed arcs AG between places and transitions, and a condition mapping

function Φ(·), where (∀p)Φ(p) ⊆ AllC maps output conditions to each place, and

5

(∀t)Φ(t) ⊆ AllC maps ENABLING CONDITIONS to each transition. The net is related

to MG, fG, and gG in the following manner:

1. THE STATES ARE THE MARKINGS OF THE PETRI NET: each state m ∈ MG is a

function over PG that represents a mapping of nonnegative integers to places.

2. THE OUTPUT CONDITIONS RESULT FROM MARKED PLACES: for any m ∈ MG,

gG(m) = {c|∃p s.t. c ∈ Φ(p) and m(p) ≥ 1}

3. NEXT-STATE DYNAMICS DEPEND ON STATE ENABLING AND CONDITION ENABLING:

for any m ∈ MG and any C ⊆ AllC, m ′ ∈ fG(m,C) if and only if there exists

some transition set T such that

(a) T is STATE-ENABLED, meaning (∀p ∈PG) m(p) ≥ |{t ∈ T |p is input to t}|

(b) T is CONDITION-ENABLED, meaning (∀t ∈ T) Φ(t) ⊆ C∗

(c) the next marking m ′ satisfies ∀p ∈PG,

m ′(p) = m(p) − |{t ∈ T | p is input to t}| + |{t ∈ T | p is output of t}|

4. MG IS CLOSED UNDER fG(·): if m ∈ MG and m ′ ∈ fG(m,C) for some C ⊆ AllC,

then m ′ ∈ MG.

We note that items in 3a and 3c above correspond to standard Petri net state

enabling and firing of a transition set, respectively. Item 3b adds an additional

transition set enabling constraint that the input conditions to each transition must

also be within the considered set C∗ of true conditions.

We define the output condition set for a system G as Cout(G) = { c ∈ Φ(p) | p

∈ G }. And similarly, define Cin(G) = { c ∈ Φ(t) | t ∈ G }

2.2.1 Example

Consider a passenger car seat of Benz [URL]. The seat is equipped with motors

and sensors. A seat control unit is installed for controlling the seat. Consider the

6

Figure 2.2: Longitudinal Adjustment Drive

longitudinal Adjustment Drive (LAD). This motor(LAD) is fitted with a Hall sensor

which indicates the movement of the adjustment axis through ticks and can move

the seat both forward and backward. A tick is one complete rotation of the spindle

on which the seat is rested. The total number of longitudinal adjustment ticks are

1270.

In fig. 2.3, we modelled the plant described above in the condition systems

framework [Holl00]. The conditions ‘MF’ and ‘MB’ on the transitions are Motor

Forward and Motor Backward respectively. From the model we see that there are

2540 different possible states.

7

…

…

…

…

{HS} {!HS} {HS} {!HS}

{HS} {!HS} {HS}

Model using condition system framework

{MF} {MF} {MF} {MF}

{MF}{MF} {MF}

{MB}{MB}{MB}

{MB} {MB} {MB} {MB}

1 1` 2 2`

12701269`1269

Figure 2.3: Model using condition system framework

2.2.2 Summary

In the prior research on condition systems, algorithms for synthesizing action type

and maintain type taskblocks that can be used as a controller to drive the system to

a given target condition [Holl00], [Holl02] were developed for the systems mod-

elled in framework described in the previous section. The action blocks created

were intended to be sequenced together to create control structures that drive a

system through a sequence of conditions. The research was extended from analyz-

ing system nets that were one layer deep to models that are several layers deep.

Since every output state cannot be associated with a sensor in practice all the

time, State Observers were introduced [Holl03] to observe the state of a system.

The systems with larger state spaces similar to the example cited in section 2.2.1

need a more formal approach. Notice that the example shows 2540 different pos-

sible states which makes the modelling very difficult. The current thesis aims at

defining a modelling framework to counter this problem and describing algorithms

to synthesize action type taskblocks that can behave as a controller to drive the

8

system to a given target condition.

9

Chapter 3

Modelling Framework

3.1 Introduction

The purpose of this chapter is to introduce colored condition systems. A detailed

description of the modelling framework that we use to define the plant behavior is

discussed in this chapter. We start with Preliminaries section 3.2 stating the notation

we follow in this thesis and describing the notion of intervals. We then introduce

the concept of color of a token (sec: 3.3.1), before defining color condition systems

(sec: 3.3.2). At the end of this chapter we illustrate the color condition system by

means of an example (sec: 3.3.3).

3.2 Preliminaries

The following notation is used in this chapter and thesis.

• R: Set of Real Numbers.

• Z: Set of Integers.

• I: Set of closed intervals of integers in addition to the semi-closed intervals

(-∞, α] and [α, ∞) for any α ∈ Z, as well as the interval (-∞, ∞)

• We use Rn, Zn, In to denote the set of column matrices of dimension ‘n’ of

real numbers, integers and intervals respectively and Rn×m, Zn×m, In×m to

10

represent matrices of dimension n by m.

• AllC: The universe of all conditions.

• I: Identity Matrix.

• O: Null Matrix.

Note: In the definition of color condition systems, we use N to represent dimen-

sions. For example, Ncg = |CG | and since CG is an ordered set of conditions (as

seen in the definition later), the notation cj (where cj ∈ CG and 1 6 j 6 Ncg) will

represent the jth element in the set.

3.2.1 Intervals

Integer Matrix, υ ∈ Zn

We use υ to denote a column integer matrix. N(υ) represents the dimension of the

column matrix. We refer an element at column ‘x’ as (υ)x.

Example

• υ1 =




1

10

30




where,

(υ1)1 = 1, (υ1)2 = 10, (υ1)3 = 30. and N(υ1) = 3.

Note : We use Υ to denote a set of above stated integer matrices.

Matrix of Integer Intervals, I ∈ In

We use ‘I ’ to denote a column matrix of integer intervals. An interval r, can be one

of the following four types.

11

1. r = [[r1, r2]] = { rx | r1 6 rx 6 r2, rx ∈ Z}

2. r = ((r1, r2)) = { rx | r1 < rx < r2, rx ∈ Z}

3. r = [[r1, r2)) = { rx | r1 6 rx < r2, rx ∈ Z}

4. r = ((r1, r2]] = { rx | r1 < rx 6 r2, rx ∈ Z}

N(I) represents the dimension of the column matrix. We refer to an element at

column ‘x’ as (I)x.

DEFINITION 3.1 υ ∈ I
Given some I ∈ In and υ ∈ Zn, we define the notation υ ∈ I, if and only if

• N(υ) = N(I) and

• (υ)x ∈ (I)x ∀ 1 6 x 6 n

Example

I1 =


 [[1, 10]]

[[2, 100]]




where,

(I1)1 = [[1, 10]], (I1)2 = [[2, 100]]. Now given, υ =


 3

10


 then υ ∈ I

since,

• N(υ) = N(I1)

• 3 ∈ [[1, 10]] [(υ)1 ∈ (I1)1]

• 10 ∈ [[2, 100]] [(υ)2 ∈ (I1)2]

Note: Set of matrices of integer intervals, ‘I’: We use ‘I’ to denote a set of matrices

of integer intervals.

Example

I = {I1, I2, I3}

12

Addition: I+υ

I + υ = I ′ where, l(I ′) = l(I) + υ, u(I ′) = u(I) + υ

Union: I1 ∪ I2

I1 ∪ I2 = I

where,

• I = { I1, I2 } if I1 ∩ I2 = Ø

• I = { I ′ } if I1 ∩ I2 6= Ø

where, l(I ′) = MIN(l(I1), l(I2)) and u(I ′) = MAX(u(I1), u(I2))

Note: The lower limit of an interval r is denoted by l(r) and the upper limit of the

interval is denoted by u(r).

Union: I1 ∪ I2

I1 ∪ I2 =
⋃

∀ I ∈ I1 and I2
I

3.3 Colored Condition models

Condition systems communicate with each other and with their outside environ-

ments through CONDITIONS. In colored condition systems, a condition can be one

of the following two types.

1. Binary valued conditions (CB)

2. Multi valued conditions (CM)

Thus, AllC is partitioned into the sets CB and CM. c ∈ CB, like in condition

systems [Holl00], is a signal that either has the value “True” or “False”. A c ∈ CM

on the other hand is a signal that has either a zero or a positive integer value. For

each binary condition c ∈ AllC, there exists a logically negated condition denoted

by ⇁ c, where ⇁ (⇁ c) = c.

13

DEFINITION 3.2 : ‘dc’ or ‘Don’t Care’

We define the symbol ‘dc’ as a ‘do not care’ signal. A condition with a value ‘dc’

implies that we do not care about that condition and what ever value it has at that

time instant is immaterial. Hence, ‘dc’ is any value in the interval ((−∞, ∞)).

DEFINITION 3.3 basis(υ) = C

The function basis(υ) = C, defines that the value of cj in the ordered condition set

‘C’ is equal to υj of column matrix element υ, where 1 6 j 6 NC.

Example:

Let C = {c1, c2, c3}. Given a matrix υ, If basis of υ is C, then υ is a column matrix

of size 3(i.e., NC) and the values of c1, c2 and c3 are υ1, υ2 and υ3 respectively or υ(c1)

= υ1, υ(c2) = υ2, υ(c3) = υ3

3.3.1 Color of a token

In condition systems discussed in chapter 2, the presence of a token in a place for

a system Gsys at any instant of time would define the system state. This would

require a modeler to represent each state possible in the system by a place. Hence,

as the states increase, the number of places in the system also increase and for a

system with larger number of states the net becomes very large.

In order to represent a condition system more compactly we equip each to-

ken with a color. The color of a token is the data value attached to it. A token color

is defined through a column matrix of color elements and let Nk be the number

of these elements. Each matrix element called ‘color element’ can take an inte-

ger value. The matrix is denoted by Ktoken and the ith element is referred as ki−token.

The first color element of matrix Ktoken is either a zero or a one. The signifi-

cance of this color element can be seen in the definition of marking of the Petri net

14

(refer section 3.3.2). The other color elements represent the values of the multi

valued conditions in the system, that are output by the system and they will be

zero when the first color element is zero.

We now formally define color condition systems, followed by an example

that illustrates the definition.

3.3.2 Definition of Color Condition System

DEFINITION 3.4 A colored condition system G is a form of Petri net consisting of

1. An ordered set, CG , of binary conditions followed by multi valued conditions

of the system G. Ncg = Ncgb + Ncgm

(Ncgb = |Binary Conditions| and Ncgm = |Multi Valued Conditions|)

2. A set of places PG,

3. A set of transitions TG,

4. A set of input arcs A
pt
G directed from a place p ∈ PG to transition t ∈ TG, and

a set of output arcs A
tp
G directed from a transition t ∈ TG to a place p ∈ PG,

(AG = A
pt
G ∪A

tp
G),

5. A Visibility matrix, V(p) where V(p) ∈ ZNCG
×NKtoken indicates the conditions

that will be visible when the place ‘p’ is marked.

V(p) =


 υ 0

0 A




where υ ∈ {0, 1}Ncgb and A ∈ Z(NKtoken
−1)×(NKtoken

−1)

6. A Condition Acceptance Interval function CAG(t) where CAG(t) ∈ INcg gives

acceptance intervals for condition values (∀t ∈ TG). These define condition

enabling for the transition as described below.

15

7. A Token Acceptance Interval function TAG(t)(p): For any given transition ‘t’ and

place ‘p’ such that p ∈ (p)t, then TAG(t)(p) ∈ INk is a Nk-dimension interval of

integer matrices, where Nk is the color dimension defined in the section 3.3.1

This defines state enabling for the transition as described below.

8. Token Assignment Expression Mapping function AEG(t)(p) where

(∀t ∈ TG and ∀p ∈ t(p), ∀p ′ ∈ (p ′)t) AEG(t)(p) is an expression of the form

m ′(p) =
∑

∀p ′∈(p)t

(Ωt(p
′, p) ∗m(p ′)) + α(t)(p)

where m ′(·) and m(·) are markings defined below, and

Coefficient Matrix Ωt(p, p ′) ∈ ZNk×Nk

The Coefficient Matrix Ωt(p, p ′) is a Nk-ordered diagonal matrix.

Constant Matrix α(t)(p) ∈ ZNk

The Constant Matrix α(t)(p) is a Nk-ordered column matrix.

G is characterized by a set of markings MG, a next state mapping fG, and a

condition output mapping gG. The net is related to MG, gG, fG as follows

1. MARKING

The states are markings of the Petri net. Each state m ∈MG is a function over

PG that represents a mapping of matrices to places. A marking for a place p is

defined as follows.

(∀p) m(p) ∈ ZNk ∪ ONk where

m(p) = ONk represents no token in the place p and

m(p) = ~z ∈ ZNk with ~z 6= 0 represents a token of color vector value ~z at place

p.

2. THE OUTPUT CONDITIONS RESULT FROM MARKED PLACES AND COLOR OF THE

TOKENS

For any m ∈ MG, gG(m) = max
p∈PG

(V(p) * m(p)).

16

Note that basis(gG(m)) = CG

3. NEXT STATE DYNAMICS

For any m ∈ MG a transition ‘t’ can fire if and only if

• ‘t’ is token enabled. A Transition ‘t’ is token enabled under marking ‘m’

if every input place to ‘t’ has a token and the token belongs to the token

acceptance interval. Formally,

A transition ‘t’ is token enabled iff

∀ p ∈ (p)t, m(p) 6= O and m(p) ∈ TAG(t)(p)

• ‘t’ is condition enabled. Given some condition value matrix υ such that

CG ⊆ basis(υ), a transition ‘t’ is condition enabled under υ if for each c ∈
CG, υc ∈ CAG(t)

In words, the value of condition c is within the token acceptance interval

for transition t.

A transition ‘t’ firing results in a new marking m ′, such that

m ′(p) =





∑

∀p ′∈(p)t

Ωt(p, p ′) ∗m(p ′) + αtp ∀p ∈ t(p)

O ∀p ∈(p) t

m(p) otherwise

4. We define the function fG(m, υ) as the set of all markings resulting from firing

a transition that is enabled under marking m and condition vector υ where

CG ⊆ basis(υ)

5. MG is closed under fG(·): if m ∈ MG and m ′ ∈ fG (m, υ) for some υ, such that

basis(υ) ⊆ AllC, then m ′ ∈ MG.

The output condition set(Cout (G)) and input condition set(Cin (G)) for a system

G are defined as

17

• Cout (G) = { cj | cj ∈ CG, Vj,l(p) = 1 for some l, p ∈ PG, 1 6 j 6 Ncg}

• Cin (G) = { cj | cj ∈ CG, [CAG(t)]j 6= dc, t ∈ TG, 1 6 j 6 Ncg }

Note: We refer the place where the token attains its initial color as home and the

initial color as khome.

3.3.3 Assumptions

A color condition system defined above has the following assumptions

1. Assumes safe marking:

A marking M for a Petri net is bounded if there is some positive integer n

having the property that in any firing sequence, no place ever receives more

than n tokens. If a marking M is bounded and in any firing sequence no place

ever receives more than one token, we call M a safe marking. Note that by the

“Next State Dynamics” definition above, no place can ever contain multiple

tokens.

2. No self loops:

In system G, ∀ t ∈ TG, (p)t ∩ t(p) = φ.

There exists no transition which has the same place as its input as well as

output.

3. At most one transition firing can occur at a time.

Example

Consider an elevator car of a building with 100 floors. The car glides on a vertical

shaft. A magnetic sensor on the side of the car reads a series of holes on a long

vertical tape in the shaft. By counting the holes (100 in total) speeding by, one can

18

determine the location of the car in the building. Let us model this example in the

color condition systems framework.

The elevator motor, ‘M’ can move the elevator up or down. Let these input

conditions be ‘Mup’ and ‘Mdown’. Let the condition output by the magnetic sensor

be ‘Mag_Sens’. The sensor ‘Up_Sens’ goes high if the elevator is going up. All these

four are binary conditions. Let us introduce a color element ‘index’ into the model

to keep track of the hole count.

Hence, CG = {Mag_Sens, Up_Sens, Mup, Mdown, index},

Color Matrix, Ktoken =
(

1 index

)T

T2

T4 T3

T1

P2

P1

P3

{Mag_Sens},
{index}

{Up_Sens},
{!Mag_Sens},
{index}

{! Up_Sens},
{! Mag_Sens},
{index}

{Mdown} {Mdown}

{Mup} {Mup}

index++

index - -

1, 99

2, 100

1, 99

2, 100

index=1

Figure 3.1: User Elevator Car Model

1. The set of places is, PG = {P1, P2, P3}

In this net the place P1 is home. Observe that the token gets initialized with a

19

T2

T4 T3

T1

P2

P1

P3

1 0
0 1 * + 0

-1

1 0
0 1 * + 0

1

1, 1

2, 100

1, 1

1, 99

1, 1

1, 99

1
index = 1

1

1, 1

2, 100

0 0
0 0
dc 0
dc 0
0 1

m(P3)

m(P2)

1 0
dc 0
dc 0
dc 0
0 1

0 0
1 0
dc 0
dc 0
0 1

dc
dc

dc

1, 1
dc

dc
dc

dc

1, 1
dc

dc
dc
dc

1, 1
dc

dc
dc
dc

1, 1
dc

Figure 3.2: Actual Elevator Car Model

color(index = 1) at P1. So m0(p1) =
[

1 1

]T

, m0(p2), m0(p3) =
[

0 0

]T

,

2. The set of transitions is, TG = {T1, T2, T3, T4}

3. The Visibility Matrix (∀p ∈ PG) V(p) ∈ ZNCG
×NKtoken is defined (using the

ordered set of CG) as

• V(P1) =


 1 dc dc dc 0

0 0 0 0 1




T

• V(P2) =


 0 1 dc dc 0

0 0 0 0 1




T

,

• V(P3) =


 0 0 dc dc 0

0 0 0 0 1




T

20

when the place P1 is marked, then according to the definition of color

condition systems, since the output conditions result from marked place and

color of the token, we see that the output conditions associated with P1 are

{Mag_Sens, index} since

 1 0 dc dc 0

0 0 0 0 1




T

*
(

1 index

)T

=
[

1 dc dc dc index

]T

as the basis is CG

4. The Condition Acceptance Interval functions CAG(t) (defined using ordered

set CG)

• CAG(T1) =
[

dc dc [[1, 1]] dc dc

]T

• CAG(T2) =
[

dc dc [[1, 1]] dc dc

]T

• CAG(T3) =
[

dc dc dc [[1, 1]] dc

]T

• CAG(T4) =
[

dc dc dc [[1, 1]] dc

]T

Thus, Mup must have a value ‘1’ for T1 or T2 to be condition enabled and

Mdown must have a value ‘1’ for T3 or T4 to be enabled.

5. The Token Acceptance Interval function TAG(t)(p)

• TAG(T1)(P1) =
[

[[1, 1]] [[1, 99]]
]T

• TAG(T2)(P2) =
[

[[1, 1]] [[1, 99]]
]T

• TAG(T3)(P1) =
[

[[1, 1]] [[2, 100]]
]T

• TAG(T4)(P3) =
[

[[1, 1]] [[2, 100]]
]T

6. Token Assignment Expression Mapping function AEG(t)(p)

• AEG(T2)(P1) =


 1 0

0 1


 * m(P2) +


 0

1




21

• AEG(T4)(P1) =


 1 0

0 1


 * m(P3) +


 0

−1




Dynamics:

The initial marking of the net is




 1

1


 Ø Ø




since initially, there is a token at place P1 with color
(

1 1

)T

. This implies that

the elevator is in the first floor when the system is initialized.

Note: The presence of Ø in the above initial marking implies the absence of a

token in the corresponding place. In other words, it is equivalent to a token with

all zero values.

Now let us consider the marking

 Ø


 1

47


 Ø


.

This is the instant where the elevator car is moving up and has just passed the 47th

floor. In other words, the place P2 has a token with color
(

1 47

)T

Consider that at this time instant the transition T1 is condition enabled. In other

words, Mup is TRUE i.e., the elevator continues to go up. Since the input place

to transition T1 i.e., P2 has a token and the token belongs to the token acceptance

interval TAG(T1)(P1) i.e,

(
1 1

)T

∈
[

[[1, 1]] [[1, 99]]
]T

the transition is also token enabled. As T1 is both token and condition enabled, it

can fire. When T1 fires then according to next state dynamics (sec: 3.3.2 point 3)

in the definition of color condition systems, the resultant new marking would be




 1

48


 Ø Ø




22

Explanation: From the definition

• m ′(P1)
 1 0

0 1


 *


 1

47


 +


 0

1


 =


 1

48




since P1 ∈ t(p)

• m ′(P2) =
(

0 0

)T

. since P2 ∈ p(t)

• m ′(P3) = m(P3) since P3 /∈ p(t) ∩ (t)p

23

Chapter 4

Task Block Effectiveness

4.1 Introduction

We use color condition models to model plants that we control. These models

represent the components of the plant. Let the set of color condition models repre-

senting components be denoted as Gcompo. The controllers that we consider are also

represented as collections of color condition models. We use Gtasks to denote the

controller models, representing elements of control logic. These controller models

are called taskblocks.

In the following sections we define V-sequences and language of a plant. Lin-

ear Temporal Logic(LTL) syntax that we will use through out this chapter is also

discussed.

4.2 V-Sequence

Given an ordered condition set C, we define AllV|C as a set of integer vectors such

that for each υ ∈ AllV|C, basis(υ) = C.

A V-sequence(Vseq or s) over an ordered condition set C is a finite sequence of

elements(with possible repetitions) of AllV|C.

A language, given an ordered condition set C, is the set of all V-sequences over

C. We denote this language as LC

24

DEFINITION 4.1 Given a system G and an ordered condition set C, such that

Cout(G) ∪ Cin(G) ⊆ C, define function Vmap(m) ⊆ LC recursively as follows.

1. Given m0 and some V0 ∈ AllV|C, then V0 ∈ Vmap(m0) if

∀ c ∈ basis(gG(mj)), (gG(mj))c = (V0)c. Thus, the value of condition c, driven

by the system is the same as the value in V0.

2. Given some m0 . . . my and some V0 . . . Vx s.t. (V0 . . . Vx) ∈ Vmap(m0 . . . my)

then we have the following three cases.

(a) Given an my+1 ∈ fG(my, Vx) and given a condition vector Vx+1 ∈ AllV|C

then V0 . . . Vx ∈ Vmap(m0 . . . my) if ∀ c ∈ basis(gG(my+1)), gG(my+1)c =

(Vx+1)c

(b) Given (V0 . . . Vx−1, Vx) ∈ Vmap(m0 . . . my) if Vx−1 = Vx then V0 . . . Vx−1

∈ Vmap(m0 . . . my)

(c) Given Vx+1, such that ∀ c ∈ basis(gG(my)) then (gG(my))c = (Vx+1)c,

then V0 . . . Vx+1 ∈ Vmap(m0 . . . my)

4.2.1 Example

Consider the Elevator car example 3.3.3. The initial marking m0 is



 1

12


 Ø Ø


. The following are the V-sequences that can be possible in

L(G, m0):

• s1 = (υ1, υ2, υ3) corresponding to making the sequence





 1

12


 Ø Ø


,


 Ø


 1

12


 Ø


,





 1

13


 Ø Ø




where

υ1(Mag_Sens) = 1, υ1(Mup) = 1, υ1(index) = 12.

25

υ2(Mag_Sens) = 0, υ2(Up_Sens) = 1, υ2(Mup) = 1, υ2(index) = 12 .

υ3(Mag_Sens) = 1, υ3(Mup) = 1, υ3(index) = 13.

• s2 = (υ1, υ2, υ3, υ4) where

υ1(Mag_Sens) = 1, υ1(index) = 12.

υ2(Mag_Sens) = 1, υ2(Mdown) = 1, υ2(index) = 12.

υ3(Mdown) = 1, υ3(index) = 12.

υ4(Mag_Sens) = 1, υ4(Mdown) = 1, υ4(index) =11.

• s3 = (υ1, υ2, υ3) where

υ1(Mag_Sens) = 1, υ1(Mup) = 1, υ1(Mright) = 1, υ1(index) = 47.

υ2(Up_Sens) = 1, υ2(Mup) = 1, υ2(index) = 47 .

υ3(Mag_Sens) = 1, υ3(Mup) = 1, υ3(index) = 48.

We observe that the marking corresponding to the sequence s1 is








 1

12


 Ø Ø


 ,


 Ø


 1

12


 Ø


 ,





 1

13


 Ø Ø







Note: Mright /∈ CG, but still can be a part of V-Sequence in the language L(G, m0).

4.3 Taskblocks

4.3.1 Linear Temporal Logic Syntax

We will use the following temporal operators of LTL, where the operators have the

mentioned intuitive meaning.

1. U : The operator U represents the until operation between two propositions.

If p and q represent two propositions then the formula p U q predicts the

26

eventual occurrence of q and stating that p holds continuously at least until

the (first) occurrence of q.

2. G : The G operator represents “Globally” or “always”. Gp read as ‘always p’

represents the specification that the proposition p is true for all time.

3. F : The F operator represents “eventually” or “in the future”. Fp read as

‘eventually p’ represents that the proposition p will hold eventually sometime

in future.

Notation

• > : Indicates a formula that is always satisfied (always true).

• |= : Satisfaction Relation. Read as satisfies.

DEFINITION 4.2 ACON(), IDLECON(), COMCON() For any condition vector υtarg

with basis(υtarg) = CG , we define three unique conditions , ,

1. ACON(υtarg)

2. IDLECON(ACON(υtarg))

3. COMCON(ACON(υtarg))

Each taskblock has a specific control function. An activation condition uniquely

identifies a taskblock, which activates the taskblock to begin its control function. If

‘Υ’ represents a set of target condition matrices, then let Cdo ⊂ AllC represent the

set of activation conditions where

Cdo = {ACON(υtarg) | υtarg∈ Υ}

For each element do ∈ Cdo we associate the following:

1. TB(do) ∈ Gtasks is the unique taskblock for which do ∈ Cin(TB(do)). No other

taskblocks or components have do as an input.

27

2. COMCON(do) ∈ Cout(TB(do)) is a condition indicating task completion. This

is output from the taskblock

3. IDLECON(do) ∈ Cout(TB(do)) is a condition indicating that the taskblock is yet

to be activated and is also an output from the taskblock. Exactly one place

‘p’ in TB(do) is associated with a visibility matrix which when marked would

output IDLECON(do). Furthermore this is the only condition output by the

place ‘p’.

4. Gcompo ∈ Gcompo is a component model associated with the task do.

5. goal(do) ∈ Cout(Gcompo) is a condition output from the component model.

4.3.2 Effectiveness

This section defines ‘effective’, which formally describes the behavior of a taskblock

when it is interacting with a system.

DEFINITION 4.3 Given a system G ⊆ Gtasks ∪ Gcompo with initial state ‘m0’ and a

condition do ∈ Cin(G) ∩ Cdo such that g(m0)(IDLECON(do)) = 1 and ‘υ’ such that

basis(υ) = AllC, do is effective for G under m0 if each of the following statements

are true

1. Continued Activation implies eventual completion

∀s ∈ L(G, m0), if s |= FG(υ(do)=1), then for any formula fext such that

condition basis of the formula does not include conditions in Cout(G) ∪
Cout(Gtask) then there exists some s ′ such that

(a) ss ′ ∈ L(G, m0)

(b) s ′ |= fext

(c) s ′ |= (υ(do)=1)U(υ(do)=1 ∧υ (COMCON(do))=1)

28

2. Completion implies earlier activation

∀s ∈ L(G, m0), if F(υ (COMCON(do))=1) then

F((υ(do) = 1) U (COMCON(do))=1))

3. Completion implies achieved goal

Any condition matrix sequence ‘s’ and any condition matrix ‘υ’ such that

sυ ∈ L(G, m0), if υ(COMCON(do)) = 1 then υ(goal(do)) = 1

4. Leaving completion means earlier deactivation

∀s ∈ L(G, m0), if F(υ(COMCON(do))=1 U υ(COMCON(do))=0), then

F(υ(COMCON(do))=1 ∧ (υ(do) = 0) U υ(COMCON(do))=0)

5. Deactivation implies eventual return to idle

∀s ∈ L(G, m0), if s |= FG(υ(do)=0), then for any formula fext such that

condition basis of the formula does not include conditions in Cout(G) ∪
Cout(Gtask) then there exists some s ′ such that

(a) ss ′ ∈ L(G, m0)

(b) s ′ |= fext

(c) s ′ |= (υ(do)=0)U(υ(do)=0 ∧υ(idle(do))=1)

In the above definition, the first statement states that when the condition ‘do’

turns true and continues to remain true, then eventually a completion condition

COMCON(do) will follow from the taskblock. The statement holds true for any

external formula fext.

The second statement in the definition implies that if the completion condition

COMCON(do) eventually follows in s, then the ‘do’ condition should have been al-

ways true in the string s.

The third statement refers to the fact that eventual occurrence of the completion

condition COMCON(do) simultaneously makes the goal condition goal(do) also true.

29

The fourth statement simply states that eventual truth of the completion condi-

tion COMCON(do) will maintain the system in the completion condition until the do

becomes false.

The last statement says that if do is false, then eventually IDLECON(do) will

become true.

30

Chapter 5

Action Block

5.1 Introduction

In this chapter, we present an algorithm to generate an action type taskblock. The

taskblocks we generate are designed to perform a specific control function. They

communicate with the system and the other taskblocks through condition signals.

In other words, a condition which is output by the system could be an input to

the controller. This input condition can enable a transition in the controller which

could trigger a state change in it. Hence the controller would output a condition

as a result of the state change, which in turn could be an input condition in the

system. This would enable or disenable certain transitions of the system triggering

a state change in the system. The working of the algorithm is explained by means

of an example which illustrates the above communication more precisely.

We start stating the assumptions that the system must satisfy, define paths in a

net and discuss further the intervals that were introduced in chapter 3. The major

part of this chapter describe the procedures that make the generation of action-

blocks possible. In the current synthesis technique, we assume that the operation

of the controller is faster than the system.

31

5.2 System Structure Assumption, (SSA)

A component(G) of colored condition system satisfies the System Structure Assump-

tion(SSA) if the following statements are true.

1. Structure: G is a state graph i.e., For all transitions t in G, there exists exactly

one input place and one output place for t.

2. States: MG consists of all states with a single place marked.

3. Color Mapping Function: For each place p, there exists a color mapping func-

tion K(p) ⊆ KG such that

K(p) =
⋃

∀ti∈(t)p, p ′j∈(p)ti
[TA(ti)(p ′j) + αtip]

4. Observability: For any two places p, p ′ and any k ∈ K(p), k ′ ∈ K(p ′)

V(p) ∗ k 6= V(p ′) ∗ k ′

5. Token Assignment Mapping: For any place p and p ′ in G such that p ′ ∈ t(p)

where t ∈ p(t) then Ω(p, p ′) = Ø or Ω(p, p ′) = I.

6. Transition Selectability: For any place p in G, for all transitions t, t ′ ∈ p(t),

where t 6= t ′, then either CAG(t) * CAG(t’) or if CAG(t) ⊆ CAG(t’) then

TAG(t)(p)
⋂

TAG(t ′)(p) = Ø. Also for all transitions t in G, CAG(t) is nonempty.

SSA: 1 and SSA: 2 state that the system is a state graph and there is only one token

in the system at any time instant. The color mapping function (SSA:3) for a place

p defines the color a token could possibly attain when it reaches the place p. The

token at place p cannot attain any other color which is outside the range defined

by this function. The observability statement (SSA:4) defined above states that the

marking of the system at any instant uniquely identifies the state of the system.

The token assignment mapping function (SSA:5) simply defines that the value of

the token either increments only by an integer value or a completely new value

32

gets assigned. A path is defined to be value dependent or value independent based

on this fact (see section: 5.3.1). SSA: 6 states that there is never an ambiguity

in selection of transitions. If there is more than one output transition for a place,

then each transition is uniquely identifiable as none of their condition acceptance

intervals are same. Even if any two output transitions from the same place have

same condition acceptance intervals, the token acceptance intervals with respect to

the common input places are non-intersecting.

Assumption on Prompt Control:

In a system G = Gsys

⋃Gctrl with a state m ∈ MG where MG = msys

⋃
mctrl and

where Gctrl represents a controller, if a transition is enabled in Gctrl and another

transition is enabled in Gsys, the transition in the controller will fire first.

5.3 Actionblocks

An action-block is generated given a system Gsys and the target condition matrix

υtarg. The purpose of this taskblock, which is in the form of a color condition

system, is to drive the system Gsys to the target condition matrix υtarg. In other

words it represents the control logic that takes the system to the target state which

outputs υtarg.

Before presenting the algorithm, we define the terms used in the algorithm.

5.3.1 Paths

Path

A path (denoted by π) is an alternating sequence of places and transitions, corre-

sponding to a directed path in a color condition system. A path starts and ends with

a place. It is denoted by π.

33

Example: The following are a few of the possible paths in the elevator car exam-

ple 3.1 described in the chapter 3

• π1 = (P1, T1, P2).

• π2 = (P1, T3, P3, T4, P1).

• π3 = (P1, T1, P2, T2, P1, T3, P3, T4, P1).

Cycle

A cycle is defined as a path with the same start and end place. It is denoted by πc

Example: A few cycles that can be found in example 3.1 are

• π1 = (P1, T3, P3, T4, P1).

• π2 = (P1, T1, P2, T2, P1, T3, P3, T4, P1).

Paths can be classified into two types namely Value-independent path and Value-

dependent path.

• Value-independent path: If there exists a subpath pi, ti, pi+1 in π such that

Ωti
(pi, pi+1) = Ø then the path is a Value-independent path.

Notice that the presence of the above condition would assign an entirely new

color to the token, irrespective of its previous color. Hence there exists no

constant relation between the previous and the next color.

• Value-dependent path: If there exists no subpath pi, ti, pi+1 in π such that

Ωti
(pi, pi+1) = Ø then the path is a Value-dependent path.

Notice that in the current case, the next color of the token is always dependent

on the previous color of the token. Hence there exists a constant relation

between the previous and the next color.

34

Weight

The weight of a Value-dependent path path is equal to the total change in the color

when a token traverses along it. If the path is a cycle, then weight is equal to the

total change in color when a token traverses along it once.

Lemma 5.1 Under the SSA, the weight of a Value-dependent path π =

(p0, t0, p1, t1, . . . , tn−1, pn), denoted by W(π) ∈ ZNk is

W(π) = αt0p1
+ αt1p2

+ . . . + αtn−1pn

Proof: Under the token assignment mapping assumption (SSA: 5), any subpath pi,

ti, pi+1 in a Value-dependent path π would have Ωti
(pi, pi+1) = I. According to

the definition the weight of a path is equal to the total change in the color when a

token traverses along it. Hence, the only increment in the color of the token while

traversing along the path π is the α value associated with each transition and its

corresponding output place, that the token would visit along the path. Therefore,

W(π) = αt0p1
+ αt1p2

+ . . . + αtn−1pn

¥

For a Value-independent path, since there exists a subpath pi, ti, pi+1 in π Ωti
(pi,

pi+1) = Ø, not the same relation is possible between the color of the token at the

beginning of the path and the color of the token at the end of the path every time.

Therefore, the weight of a Value-independent path is undefined.

Length

The length of a path is equal to the total count of nodes (places/transitions) in the

path. It is denoted by L(π)

Example: Given a path π= (p0, t0, p1, t1, . . . , tn−1, pn).

L(π) = (2*n + 1)

35

Master Cycles

Master cycles are Value-dependent path cycles with non-zero weight. A master cycle

is denoted by π̃cand a set of master cycles is denoted by Π̃c.

Note:

1. To refer a node at kth position in the path, we use the notation π(k), where 1

6 k 6 L(π). For example, in the path π1 = (p1, t1, p2), π1(1) is p1, π1(2) is t1

and π1(3) is p2. Also, 1 6 k 6 L(π)

2. To refer to the “head” and the “tail” in a path, we use the notation H() and

T() respectively. Hence, H(π) = p1 and T(π) = p2 in the above example.

5.3.2 Intervals revisited

The lower limit of an interval r is denoted by l(r) and the upper limit of the interval

is denoted by u(r).

For example, if r = [[20, 900]], then l(r) = 20, u(r) = 900.

The lower limit of an interval matrix I ∈ In of dimension ‘n’, is an integer

matrix in Zn of the same dimension denoted by l(I) and defined as follows.

l(I) = [cj] where cj = l(I j), 1 6 j 6 n.

Similarly, the upper limit of an interval matrix I ∈ In of dimension ‘n’, is an integer

matrix of the same dimension denoted by u(I) and defined as follows.

u(I) = [cj] where cj = u(I j), 1 6 j 6 n.

DEFINITION 5.1 Given some I ∈ IN, υ ∈ ZN, define LEFTSPLIT(I, υ) and RIGHT-

SPLIT(I, υ) as follows

36

1. LEFTSPLIT(I, υ) = I ′

where ∀ 1 6 j 6 n(I),

l(I ′)j = l(I j), u(I ′j) = υj if υj ∈ I j

I ′j = I j if u(I j) < υj

I ′j = φ if l(I j) > υj

2. RIGHTSPLIT(I, υ) = I ′

where ∀ 1 6 j 6 n(I),

l(I ′j) = υj, u(I ′)j = u(I j) if υj ∈ I j

I ′j = I j if l(I j) > υj

I ′j = φ if u(I j) < υj

Note: We generalize the above definition as follows for a set I of intervals, I ∈ In

• LEFTSPLIT(I, υ) = { I ′ | I ′ = LEFTSPLIT(I, υ), ∀ I ∈ I }

• RIGHTSPLIT(I, υ) = { I ′ | I ′ = RIGHTSPLIT(I, υ), ∀ I ∈ I }

Example

Consider the interval I =
[

[[1, 10]] [[1, 99]]
]T

and

υ1 =
[

5 50

]T

, υ2 =
[

5 100

]T

• LEFTSPLIT(I, υ1) =
[

[[1, 5]] [[1, 50]]
]T

• RIGHTSPLIT(I, υ1) =
[

[[5, 10]] [[50, 99]]
]T

• LEFTSPLIT(I, υ2) =
[

[[1, 5]] [[1, 99]]
]T

• RIGHTSPLIT(I, υ2) =
[

[[5, 10]] φ

]T

37

u1 u2 u3
I1

LeftSplit(I1, u1) =

RightSplit(I1, u1) =

LeftSplit(I1, u2) =

RightSplit(I1, u2) =

LeftSplit(I1, u3) =

RightSplit(I1, u3) =

u1

u2

u3

Number Line

Interval

F

F

Figure 5.1: Illustration of LeftSplit() and RightSplit()

5.4 Procedure to build an Actionblock

In this section we describe the algorithm that is used to build an action type

taskblock given the component model,Gcompo and target marking υtarg. The al-

gorithm accomplishes this task by

1. Identifying the target place and target color of the token.

The procedure CREATEAB() section:5.4.1 is the top level function that per-

forms this step of identifying the target place and color. It is also responsible

to coordinate the next two steps.

2. Identifying the paths a token with certain color should trace to reach the target

place with target color.

This step is achieved by three procedures

38

• DOADJACENTCYCLES() section:5.4.2

• DOREMOTECYCLES() section:5.4.3

• DOREMAININGCOLORS() section:5.4.4

Each time a path is identified by any of these procedures, the function

BUILDTB() is called by the procedure that identified it, to accomplish the

following step.

3. Building the actionblock based on the identified paths in the above step.

This step is performed by the procedure BuildTB() section:5.4.5.

CreateAB()

DoAdjacentCycles()

DoRemoteCycles()

DoRemainingColors()

BuildTB()

1

2

3

4

6

78

9 10

11

5

12

Figure 5.2: Block Diagram of the algorithm

The algorithm is also supported by procedures defined below.

DEFINITION 5.2 Given a source node n, target node ns and the component net

Gcompo where n, ns ∈ Gcompo, Π(n,ns) is a set of all paths from n to ns such that;

39

1. Path cannot revisit source node except possibly at the end:

For any path π ∈ Π(n,ns), for all k such that 1 < k < L(π) then π(k) 6= ns.

2. Cyclic sub-paths cannot repeat:

∀ π ∈ Π(n,ns), for any sub-path π ′ in π such that π ′ is a cycle, then π ′ does not

occur more than once in π.

Note: In statement 1 the inequality on k is strict. Thus only when n = ns,

H(π) = T(π) = ns

p1 p2 p3 p4

K(p1) K(p2) K(p3)

t1 t2 t3

TA(t1)(p1)

TA(t2)(p2)

TA(t3)(p3)

π

TAR(π, p1)

Figure 5.3: Illustration of TAR()

DEFINITION 5.3 Given a path π ={ p1, t1, p2, · · · , tn−1, pn }, TAR(π, p1) is the

largest interval such that there exist intervals I1, I2, · · · , In−1 where,

1. I1 = TAR(π, p1)

40

2. ∀ 1 6 i 6 (n-1), Ii ∈ TAG(ti)(pi)

3. ∀ 1 6 i 6 (n-1), Ii+1 = Ωti
(pi, pi+1) ? Ii + α(ti)(pi+1)

Note: The Notation TAR stands for “Token Acceptance Range”

Given a path π, and a place p the procedure TAR(π, p) generates the token

acceptance range I ∈ K(p) such that a token at place p with color k ∈ I would

continuously token enable all the transitions it would visit along π if each of the

former transitions fire.

A procedure to determine TAR(π, p) is in the Appendix 6.2

The Token Acceptance Interval function defined as a part of the color condition

system, behaves as a guard, by either enabling/disenabling (token enabling) the

transition. On the other hand, the procedure TAR(π) generates the token accep-

tance range that would allow the token to flow along a given path.

Example: Consider a path

π = { p1, ta, p2, tb, p3, tc, p4 }

where the token acceptance ranges are

TAG(ta)(p1) =
[

[[1, 1]] [[1, 99]]
]T

, TAG(tb)(p2) =
[

[[1, 1]] [[10, 150]]
]T

,

TAG(tc)(p3) =
[

[[1, 1]] [[50, 90]]
]T

and the token assignment expression mapping functions are

AEG(ta)(p2) =


 1 0

0 1


 * m(p1) +


 0

1




AEG(tb)(p3) =


 1 0

0 1


 * m(p2) +


 0

2


,

AEG(tc)(p4) =


 1 0

0 1


 * m(p3) +


 0

−4




Now consider the colors in the interval
[

[[1, 1]] [[47, 87]]
]T

at place p1. If ta is

enabled and fires then any token at place p1 with color k ∈
[

[[1, 1]] [[47, 87]]
]T

41

would result in a new token at place p2 and also the resultant color will token

enable tb. Similarly, if tb fires at this stage the resultant new token at place p3 will

token enable tc.

The procedure TAR(π, p) identifies this color interval
[

[[1, 1]] [[47, 87]]
]T

which would allow the token with any color in the identified interval to traverse

along the path, uninterruptedly.

DEFINITION 5.4 Given a path π, the procedure SUBCYCLES(π) returns the ordered

set of cycles that a token could possibly trace along the path π, in their order of

completion.

Example: Consider a path, which is also a cycle

π = { p1, ta, p2, tb, p3, tc, p2, td, p4, te, p5, tf, p4, tg, p6, th, p4, ti, p7, tj, p1 }

The cycles a token possibly trace (with no cycle within it) along the path are

• { p2, tb, p3, tc, p2 }

• { p4, te, p5, tf, p4 }

• { p4, tg, p6, th, p4 }

• { p1, ta, p2, td, p4, ti, p7, tj, p1 }

p1 p2 p3 p4 p5 p6 p7p4ta tb tc td te tf tg th ti tjp2 p4 p1

1 2 3 4

Figure 5.4: Illustration of Subcycle()

The procedure SUBCYCLES(π) extracts all these cycles in the order they appear

along the path. In the above example |SUBCYCLES(π)| = 4.

42

DEFINITION 5.5 Given place p and color k ∈ K(p), the function ISCOLORLEGAL(k,

p) returns true if there exists some valid execution of the net from the initial mark-

ing such that the place p is marked with color k.

A color k at place p is defined to be a legal color if and only if there exists a path

from color khome at home to k at p. The procedure ISCOLORLEGAL(k, p) performs

this task.

DEFINITION 5.6 Given paths π1, π2, . . ., πn−1, πn such that T(πi) = H(πi+1)

∀ 1 6 i 6 (n−1), we define

CONCAT(π1, π2, . . ., πn−1, πn) = π ′1, π ′2, . . ., π ′n−1, πn

where π ′i = πi − T(πi) ∀ 1 6 i 6 (n−1)

Note: If ∃T(πi) 6= H(πi+1) ∀ 1 6 i 6 (n−1), then CONCAT(π1, π2, . . ., πn−1, πn) is

undefined

Example: Consider the following paths,

• π1 = { p1, t1, p2 }

• π2 = { p2, t4, p4 }

• π3 = { p4, t5, p5 }

Since, T(πi) = H(πi+1) ∀ 1 6 i 6 2, CONCAT(π1, π2, π3) = { p1, t1, p2, t4, p4, t5, p5 }

5.4.1 Procedure: CreateAB()

CREATEAB() is the top level function. It begins by generating the ordered condition

set CTB of the action block being built. The procedure selects a place ‘ptarg’, called

the target place from the component net. It identifies the target place by searching

for the goal color ktarg ∈ K(ptarg) which would output the condition matrix υtarg.

43

CREATEAB() then begins to determine the paths a token with color k ∈ K(ptarg),

would have to trace to attain the target color, ktarg. Note that the paths in the for-

mer statement are cycles of ptarg. Each and every color k ∈ K(ptarg) − ktarg, at place

ptarg would have start and end at ptarg to reach the target state. To achieve this,

the procedure calls three procedures DOADJACENTCYCLES() 5.4.2, DOREMOTECY-

CLES() 5.4.3 and DOREMAININGCOLORS() 5.4.4. Once a path is identified, these

procedures call BUILDTB() to build the action block for the identified path. At the

same time all the colors k ∈ K(ptarg) and k ′ ∈ K(p) (where p is a place along this

identified path) are marked as spotted.

The procedure then calls DOREMOTECYCLES() and DOREMAININGCOLORS(), to

identify the paths a token with color k ∈ K(p) (where p ∈ P(Gcompo) − ptarg) which

is not yet marked as spotted in the above stage, would have to trace.

Note: We use the color set K̃p as a GLOBAL variable. Initially, K̃p = K(p) ∀ p ∈
PGcompo. In the algorithm all the spotted colors for a place p are removed from K̃p,

thus leaving all the unspotted colors in it.

Procedure: CREATEAB(υtarg)

1. Define GTB with PTB ⇐ Ø, TTB ⇐ Ø, and CTB ⇐ BUILDSETCTB(υtarg, CGcompo).

2. Define Ptarg ⇐ {psys in G |∃ k ∈ K(psys) where V(psys)*k = υtarg }

3. Choose any one ptarg ∈ Ptarg

4. ktarg ⇐ k, for some k s.t., V(ptarg)*k = υtarg

5. DOADJACENTCYCLES(GTB, ptarg, ktarg)

6. DOREMOTECYCLES(GTB, ptarg, ptarg, ktarg)

7. DOREMAININGCOLORS(GTB, ptarg, ptarg, kgoal)

8. for each (p ∈ (PGcompo− {ptarg})) {

9. DOREMOTECYCLES(GTB, p, ptarg, ktarg)

10. DOREMAININGCOLORS(GTB, p, ptarg, kgoal)

44

11. }

BuildSet TB

Each taskblock generated has an ordered set of conditions CTB associated with

it. Every action-block that is created has a specific purpose; to accomplish

a certain task. The condition that would activate the action-block to accom-

plish its assigned task is the activation condition ACON(υtarg). The first condi-

tion in CTB represents this activation condition. The second condition in CTB is

the idle condition IDLECON(ACON(υtarg)) followed by the completion condition

COMCON(ACON(υtarg)), the truth of which notifies that the task of action-block is

accomplished.

The remaining conditions that follow the above three conditions in CTB are de-

pendent on CGcompo (where Gcompo is the plant associated with the action-block

being built). An input to Gcompo turns into a doAMap(C), while an output to Gcompo

remains unchanged in CTB.

DEFINITION 5.7 doAMap(C):

doAMap(C) = {doA
c | c ∈ C} ⊆ AllC

These conditions created in CTB are in the same order as they appear in CGcompo.

The following procedure illustrates the creation of CTB.

Procedure: BUILDSETCTB(υtarg, CGcompo)

1. (CTB)1 ⇐ ACON(υtarg)

2. (CTB)2 ⇐ IDLECON(ACON(υtarg))

3. (CTB)3 ⇐ COMCON(ACON(υtarg))

4. for i ⇐ 1 to |CGcompo|

5. {

6. if ((CGcompo)i ∈ Cin (Gcompo)) (CTB)i+3 ⇐ doAMap((CGcompo)i)

45

7. else (CTB)i+3 ⇐ (CGcompo)i

8. }

C1

C4

C2

C5

C6

CGcompo

CTB- vtarg

ACon(vtarg)

IdleCon(vtarg)

ComCon(vtarg)

C1

doAC2

C4

doAC5

C6

Cout - Gcompo = {C1, C4, C6}

Cin - Gcompo = {C2, C5}

Figure 5.5: BuildSetCTB: Comparison of CGcompo and CTB

5.4.2 Procedure: DoAdjacentCycles()

Given the target place ptarg and the target color kgoal, this procedure examines

each cycle πc (s.t., |SUBCYCLES|(πc) = 1) which is both a master cycle and cycle

of ptarg to determine that set of colors I (I∈ K(ptarg) which if allowed to trace the

cycle would ultimately either reach the target state or go to a state that is closer to

the target state.

The procedure CreateAB() calls DOADJACENTCYCLES(psource, ktarg) such that

psource = ptarg and ktarg = kgoal. The steps from 1 to 3 in the procedure described

below identify all the cycles Π+/− such that there is no subcycle within any of the

identified cycle and are both master cycles as well as cycles of the psource.

Procedure: DOADJACENTCYCLES(GTB, psource, ktarg)

1. Kpsource ⇐ K(psource), pdest ⇐ psource

2. Πcycles ⇐ { π | π ∈ Π(psource,psink)
, |SUBCYCLES(π)| = 1 }

46

3. Π+/− ⇐ { π | π ∈ Πcycles, W(π) 6= 0 }

4. for each πc∈ Π+/−

5. {

6. Kπcur ⇐ TAR(πc, psource) ∩ Kpsource

7. if (W(πc) > 0)

8. I ⇐ LEFTSPLIT(Kπcur, ktarg− W(πc))

9. if (W(πc) < 0)

10. I ⇐ RIGHTSPLIT(Kπcur, ktarg− W(πc))

11. BUILDTB(GTB, {πc}, {I})

12. }

Each identified cycle πc of Π+/− is then analyzed. Step 6 extracts the color set Kπcur

of psource such that any color k ∈ Kπcur can uninterruptedly cycle through πc. Once

this set Kπcur is determined the actual set of colors I is detected in either step 8 or

10. Now the procedure is ready to build the task block with the identified color set

I, that goes along the cycle πc. Hence the procedure BUILDTB() is called.

1

32

A

B

C

1 0
0 1 * +

0
3m(p3)

1 0
0 1 * +

0
-1m(p1)

K(p1) = [[[1, 1]], [[1, 100]]]T

1, 1

2, 99

1, 1

1, 50

1, 1

1, 50

2 50 99

1 50 99

98

1 50 994 53

30

5128

1 50 994 53

Figure 5.6: Working of the procedure AdjacentCycles()

47

Note: The algorithm described selects any path from Π+/− at random. This does

not ensure an optimum solution and achieving an optimum solution is beyond the

scope of this thesis. One way to pick a path from Π+/− so that the target state is

reached sooner is as follows

Choose any πc ∈ Π+/− s.t. |W(πc) / Pπc| is greatest where Pπc ⇐ |{ p | p ∈ πc}|

If a cycle is chosen such that the change in the color of the token when it tra-

verses from one place to its next place in the cycle is less than no other cycle, it is

obvious that the target state can be reached faster.

5.4.3 Procedure: DoRemoteCycles()

Given the source place psource and destination place pdest, the procedure

DoRemoteCycles() is designed to examine paths Πremote of the following type.

Πremote ⇐ { π | π ∈ Π(psource,pdest)
, SUBCYCLES(π) ∩ Π̃c 6= φ }

1. Π(psource,pdest)
: All paths starting at psource and end at pdest.

2. SUBCYCLES(π) ∩ Π̃c 6= φ, π ∈Π(psource,pdest)
: Paths that contain atleast one master

cycle in there subcycles.

Notation

In the algorithm that follows we use the following notation.

• πcur: Current path under consideration. πcur ∈ Πremote.

• πmc: Current master cycle identified by the algorithm along the path πcur.

• πpre−mc: The subpath of π along which the token travels to enter πmc.

• πpost−mc: The subpath of π along which the token travels to exit πmc and

reach pdest.

48

• IA ⊆ K(psource), IB ⊆ K(pcom), IC ⊆ K(pcom)

Note:

1. T(πpre−mc) = H(πpost−mc) = H(πmc). Let this place be denoted by pcom.

2. CONCAT(πpre−mc, πmc, πpost−mc) = πcur

The goal of the present algorithm is to identify the color set (IA ∈ K(psource)) so

that any color k ∈ IA at psource can eventually reach either the destination state or

get closer to it.

The procedure examines all the paths with fewer number of subcycles prior to

analyzing those with larger number of subcycles. In other words the procedure tries

to send the token along a path with fewer subcycles.

Procedure: DOREMOTECYCLES(GTB, psource, pdest, ktarg)

1. cycmax ⇐ max{|SUBCYCLES(π)|, such that π ∈ Π(psource,pdest)
}

2. sccount ⇐ 2, ΠMC ⇐ Π̃c

3. while (sccount 6 cycmax)

4. {

5. for each πcur ∈ Πremote s.t. |SUBCYCLES(πcur)| = sccount

6. {

7. Define υ such that,

υ ⇐ ktarg − (W(πc))

8. if (W(πmc) > 0) {

9. I1 ⇐ LEFTSPLIT(TAR(πpre−mc, psource), υ)

10. IB ⇐ [I1 + W(πpre−mc)] ∩ TAR(πmc, pcom)

11. if (IB = φ)

break;

12. else {

49

13. if (ktarg− W(πpost−mc)) ∈ TAR(πpost−mc, pcom)

krem−targ ⇐ ktarg− W(πpost−mc)

14. else if (u(TAR(πpost−mc, pcom)) < ktarg− W(πpost−mc))

krem−targ ⇐ u(TAR(πpost−mc, pcom))

15. else break;

16. IC ⇐ [[krem−targ− W(πmc) + 1, krem−targ]]

17. if IC /∈ TAR(πpost−mc, pcom)

break;

18. if ((IC− W(πmc)) /∈ TAR(πmc, pcom))

break;

19. IB ⇐ IB ∩ LEFTSPLIT(IB, u((IC− W(πmc))))

20. if IB = φ

break;

21. IA ⇐ IB− W(πpre−mc)

22. }

23. }

24. if (W(πmc) < 0) {

25. I1 ⇐ RIGHTSPLIT(TAR(πpre−mc, psource), υ)

26. IB ⇐ [I1 + W(πpre−mc)] ∩ TAR(πmc, pcom)

27. if (IB = φ)

break;

28. else {

29. if (ktarg− W(πpost−mc)) ∈ TAR(πpost−mc, pcom)

krem−targ ⇐ ktarg− W(πpost−mc)

30. else if (l(TAR(πpost−mc, pcom)) > ktarg− W(πpost−mc))

krem−targ ⇐ l(TAR(πpost−mc, pcom))

31. else break;

50

32. IC ⇐ [[krem−targ, krem−targ− W(πmc) - 1]]

33. if IC /∈ TAR(πpost−mc, pcom)

break;

34. if ((IC− W(πmc)) /∈ TAR(πmc, pcom))

break;

35. IB ⇐ IB ∩ RIGHTSPLIT(IB, l((IC− W(πmc))))

36. if IB = φ

break;

37. }

38. }

39. BUILDTB(GTB, {πpre−mc, πmc, πpost−mc}, {IA ,IB , IC })

40. }

41. sccount ⇐ sccount + 1.

42. }

Example

Consider the color petrinet in figure 5.7 which shows a part of a plant. The above

algorithm is designed to analyze paths that resemble the color petri net shown in the

figure 5.7. The purpose of this example is to walk the reader through the algorithm

and hence it should be noted that this example does not depict any practical system.

In the present example

1. psource = p1, pdest : p1.

2. πcur = {p1, tA, p2, tB, p3, tC, p4, tD, p2, tB, p3, tE, p1}

3. πmc = {p2, tB, p3, tC, p4, tD, p2}

4. πpre−mc = {p1, tA, p2}

5. πpost−mc = {p2, tB, p3, tE, p1}

51

4

32

D

B

C

1

A E

K(p1) = [[[1, 1]], [[1, 100]]]T

1 0
0 1 * +

0
-1m(p4)

1 0
0 1 * +

0
3m(p3)

1, 1

1, 50

1, 1

1, 65

1, 1

1, 45

1, 1

4, 48

1, 1

1, 60

At p2

1 100At p1

30

28

1 28

1 50

A

B

C

D

1 45

1 60

E

30

1 60

3029

F

1 45

G

29

1 28

At p1

H

Figure 5.7: Working of the procedure DoRemoteCycles()

6. ktarg =
(

1 30

)T

7. W(πmc) =
(

0 2

)T

W(πpre−mc) =
(

0 0

)T

W(πpost−mc) =
(

0 0

)T

Notice that CONCAT(πpre−mc, πmc, πpost−mc) = πcur and T(πpre−mc) = H(πpost−mc)

= H(πmc) = pcom = p2. The place p2 (pcom) is significant because of the fact that it

is common to all the paths.

The right side of figure 5.7, show those steps that the algorithm follows to de-

termine IA, IB and IC.

1. ‘A’ denotes the color set of p1.

2. ‘B’ shows line 9 of the algorithm. While the entire number line represents

the Token Acceptance Range of p1 along πpre−mc, it is left split along υ. The

52

resultant is shown as ‘C’ (I1)

3. ‘D’ depicts line 10. The hatched line is the projection of I1 on the Target

Acceptance Range of p2 along πmc.

4. ‘E’ represents the Token Acceptance Range of p2 along πpost−mc and the num-

ber denotes krem−targ.

5. ‘F’ shows IC.

6. ‘G’ depicts the line 19 and ‘H’ is the projection on I1 i.e., on the TAR shown in

‘B’.

The weight of the master cycle πmc is a positive value 2. Hence the lines 8 to 23

are applicable to this example. The goal of the algorithm is to determine the subset

IA of the color set of p1 (psource) which can reach the destination place p1(pdest) such

that any k ∈ IA would transform to either ktarg or get closer to ktarg after traversing

through the path πcur before reaching the destination place p1. The minimum pos-

sible change in the color would be the weight of πcur itself since the token would

have to traverse it atleast once. So, if a token with color (ktarg−W(πcur)) or a color

value lesser than (ktarg−W(πcur)) begins at psource, it would reach pdest well with in

ktarg. Hence these values are filtered out at line 9. Line 10 determines the probable

color set IB that can reach p2(pcom) from psource and can traverse through πmc from

p2 atleast once. Line 16 determines the actual color set IC of p2 that should trace

the path πpost−mc to achieve the goal. Notice that if, any color k ∈ IC determined

in step 16 traces πmc atleast once before traversing πpost−mc, then the color of the

resultant token at p2 (pcom) would either be unable to traverse πpost−mc or if it is

successful in traversing πpost−mc, the resultant color value of the token at pdest would

be greater than ktarg which is not desirable. Hence IC becomes the desired interval

at p2 that should traverse πpost−mc. Line 17 ensures that every color reaching p2 has

an exit path along πpost−mc. Line 19 ensures that only those colors at p2 which can

53

eventually fall in IC are assigned to IB. Based on IB, IA is determined.

The logic flows in a similar manner if W(πmc) is a negative.

5.4.4 Procedure: DoRemainingColors()

Non-Overlapping cycles property (NOC):

In a system G, any cycle πc ∈ G satisfies the following property.

For any πi, πj ∈ SUBCYCLES(πc) where 1 6 i, j 6 |SUBCYCLES(πc)| such that

if |πi ∩ πj| > 1 then either

• πi ⊆ πj or

• πj ⊆ πi

The procedure discussed in this section, determines the paths a token with color

that is not yet marked as spotted in either DOADJACENTCYCLES() or DOREMOTE-

CYCLES() would trace. In this procedure, a path is determined for each individual

unspotted color unlike in the above procedures where a path is determined for a

color set. The paths that are analyzed in this procedure are those where the subcy-

cles within the path are more than one. In the previous procedures the master cycles

that were analyzed were one at a time. In the current procedure, a combination of

master cycles are analyzed to determine the path a color should traverse to reach

the destination state. Also note that in this procedure, the procedure determines

those path which will lead all the colors the final destination unlike in previous pro-

cedures where the paths determined either allow the token with a color to reach

the destination state or get closer to the destination state.

In the current procedure, an equation is constructed based on the path being

considered. The task is to find out if there exists a solution such that if a token with

a color k (line: 5) starts at the beginning of the path π, (3) under consideration and

traverses along the subcycles of π for ni (line: 7) times before reaching the end of

54

the path, will it attain the destination state. We require that the total change in the

color value before the token traverses the entire path should be ktarg− k. Hence

the constructed equation is equated to this value. Also, note that when a token

traverses along the path π the total change in the token would not only include the

values of ni times the weight of the subcycle but also the weights of intermediary

paths defined in line 11.

The equation can be solved using mathematical software like MATLAB, Solver

in Excel etc., Once the solution is determined, the procedure checks for the validity

of solution in the lines from 14 to 19. After the validity is checked, BUILDTB() is

called to construct the part of the taskblock for the determined color and path.

Procedure: DOREMAININGCOLORS(GTB, psource, pdest, Kgoal)

1. if (psource = pdest)

Πcycles ⇐ { π ∈ Π(psource,psink)
s.t. |SUBCYCLES(π)| > 2 }

2. if (psource 6= pdest)

Πcycles ⇐ { π ∈ Π(psource,psink)
s.t. |SUBCYCLES(π)| > 1 }

3. for each π ∈ Πcycles

{

4. Π ⇐ SUBCYCLES(π)

5. for each k ∈ K(psource)

6. {

7. Define equation eq with variables ni, 1 6 i 6 |Π| s.t.,
∑

∀16i6|Π|,π ′i∈Π

ni * W(π ′i) = kgoal − k − (W(π) −
∑

∀π ′∈Π

W(π ′))

8. solve the equation eq for the variables ni.

9. If solution for ni exists,

for any i, j if π ′j ∈ SUBCYCLES(π ′j)

then nj > ni

{

55

10. N ⇐ |SUBCYCLES(Π)|

11. For π with ordered subcycle set π ′0, π ′1, · · · ,π ′N
define intermediary paths π ′′0 , π ′′1 , · · · ,π ′′N such that

π = CONCAT(π ′′0 , π ′1, π ′′1 ,π ′2, π ′′2 , · · · ,π ′N, π ′′N)

12. Assign I(π ′′0) ⇐ k

13. feasibleFLAG = TRUE

14. for i = 1 to N

15. {

16. I(π ′i) ⇐ I(π ′′i−1) + W(π ′′i−1)

17. I(π ′′i) ⇐ I(π ′i) + ni * W(π ′′i−1)

18. if I(π ′i) /∈ KH(π ′i) or I(π ′′i) /∈ KH(π ′′i) then feasibleFLAG = FALSE

19. }

20. if (feasibleFLAG 6= FALSE) then

BUILDTB({ π ′′0 , π ′1, π ′′1 ,π ′2, · · · ,π ′N, π ′′N }, { Iπ ′′0 , Iπ ′1 Iπ ′′1 , · · · , Iπ ′N, Iπ ′′N })

21. }

22. }

23. }

5.4.5 Procedure: BuildTB()

The procedure BUILDTB() builds the actual action type taskblock for a given com-

ponent model. Every time a procedure identifies a color set and its corresponding

path, it calls BUILDTB().

In the procedure BUILDTB(GTB, Π, Iset, υtarg), GTB is the net being built and

υtarg is the target condition matrix. Π is an ordered set of paths, and Iset is a

corresponding ordered set of color intervals. For example, let π1, π2, · · · ,πk ∈ Π

i.e., |Π| = k. If |Π| = k, then |Iset| = k and the procedure is designed to allow the

colors Iset(j) (which belongs to K(p), where p = H(πj), 1 6 j 6 k), traverse along

56

the path π(j).

BUILDTB() creates the following places and transitions in the taskblock.

• pidle: The place that is marked when the taskblock is idle.

• pcmpl: The place that will be marked when the task is completed and the

component is outputting goal condition matrix.

• pt: The place that is created in the taskblock from the transition t in the com-

ponent. There exists one and only one place corresponding to each transition

in the component.

• t#
p : One of the # transitions that is created in the taskblock from the place p

in the component. There can exist more than one transition corresponding to

a place in the component. # represents a positive integer.

• t#
cmpl: One of the # transitions in taskblock which would fire when the task is

complete.

When the procedure is called for the first time, BUILDTB() creates two places pidle,

pcmpl and the transition t1
cmpl in the taskblock.

Procedure: BUILDTB(Π, Iset)

1. if (PTB == Ø) {

2. Create place pidle in PTB

with V(pidle)IDLECON(ACON(υtarg)) ⇐ 1

3. Create place pcmpl in PTB

with V(pcmpl)COMCON(ACON(υtarg)) ⇐ 1

4. Create transition t1
cmpl in TTB from pidle to pcmpl

with CATB(t1
cmpl)c ⇐[[z, z]],

∀ c ∈ CTB ∩ basis(ktarg), z is value of c in ktarg

}

57

5. For each π ∈ Πand for each t ∈ (π ∩ TGcompo), {

6. if (pt doesnot yet exist in PGTB
) {

7. C ⇐ { c | ∀ c, s.t. CAGcompo(t)c = [[1, 1]]} ∪
∀ {c ′ | ∀ c ′ , s.t. CAGcompo(t ′)c ′ = [[0, 0]]

where t ′ ∈ ((p)t)(t), t 6= t ′ }

8. C ⇐ { c | ∀ c, s.t. CAGcompo(t)c = [[0, 0]]} ∪
∀ {c ′ | ∀ c ′ , s.t. CAGcompo(t ′)c ′ = [[1, 1]]

where t ′ ∈ ((p)t)(t), t 6= t ′ }

9. Create place pt in PGTB
such that

V(pt)doAMap(c) ⇐ 1,

V(pt)doAMap(c ′) ⇐ 0 ∀ c ∈ C, c ′ ∈ C ′

10. }

11. }

12. for each t ∈ (t)ptarg {

13. if (pt ∈ PGTB
) {

14. if ∃ t#
cmpl ∈ TTB then x = GetMax(#)+1, else x = 1.

15. if there exists no transition from pt to pcmpl then

16. Create transition tx
cmpl in TTB from pt to pcmpl

with CATB(tx
cmpl)c ⇐[[z, z]],

∀ c ∈ CTB ∩ basis(ktarg), z is value of c in ktarg

17. }

18. }

19. Pvisited ⇐ NULL

20. for each π ∈ Π {

21. for each [p ∈ (π ∩ PGcompo) − Pvisited] {

22. Ti/p ⇐ Ø, To/p ⇐ Ø

23. for each π ′ ∈ Π) and for each (p ′ ∈ (π ′ ∩ PGcompo), {

58

24. if (p = p ′)

25. Ti/p ⇐ Ti/p + t where t appears immediately before p ′ in π ′

26. To/p ⇐ To/p + t where t appears immediately after p ′ in π ′

27. }

28. for each t ∈ Ti/p {

29. for each t ′ ∈ To/p {

30. Π ′′ ⇐ { π ′′ | p and t are consecutive in π ′′ }

31. if (|Π ′′| = 1) π1 ⇐ π ′′ where π ′′ ∈ Π ′′

32. if (|Π ′′| > 1) π1 ⇐ π ′′ such that t immediately precedes p in π ′′.

33. for each I ∈ I where I ∈ Iset and I corresponds to π1

34. {

35. if ∃ t#
p ∈ TTB then x = GetMax(#)+1, else x = 1.

36. Create tx
p in TTB from pt to pt ′ with

CA(tx
p)c ⇐ [[1, 1]] ∀c, s.t. c ∈ (CB), V1(p)c ⇐ 1;

CA(tx
p)c ⇐ [[0, 0]] ∀c, s.t. c ∈ (CB), V1(p)c ⇐ 0;

CA(tx
p)index ⇐ I(2) + [W(π ′1)](2) where

π ′1 is the subpath in π1 such that H(π ′1) = H(π1), T(π ′1) = p

if Vj(p)index = 1, for any j.

37. }

38. Create tx+1
p in TTB from pidle to pt ′ with CA(tx+1

p) = CA(tx
p)

39. }

40. }

41. }

42. Pvisited ⇐ Pvisited+ p

43. }

The procedure from line 5 to line 11 creates a places pt. The visibility matrix

associated with the place created is such that the presence of a token in that place

59

results in a marking which makes the conditions of the taskblock CTB that are asso-

ciated with the input conditions of its corresponding transition t in the plant model

true and the conditions associated with its sibling transitions(and not associated

with the transition t) false. In other words the presence of a token in this place pt

in the taskblock will eventually enable the corresponding transition t of the plant

(At the same time the sibling transitions are disabled).

Visibility Matrix

In the above procedure, the visibility matrix associated with a place p has all its

values equal to ‘dc’, unless specified otherwise. For example, when a place p is

created then the associated visibility matrix is V(p) =
(

dc dc · · dc

)T

unless

specified otherwise. Since the size and values in the visibility matrix correspond to

CTB, the notation V(p)c would mean that the row corresponding to condition c ∈
CTB is being referred.

Finally, the procedure creates the transitions of the taskblock. This can been

seen in the lines from 20 to 43 of the procedure. The total number of transitions

after the execution of the last function call to BUILDTB() is equal to the place’s

number of input transitions times the number of output transitions. This is based

on the fact that this number is equal to the total number of firing sequences possible

involving the place’s input transitions and output transitions.

5.4.6 Example

Consider the system model described in the example section 2.2.1 of chapter 2.

There is an additional sensor LS that goes high when the motor moves to left. The

model of the plant, modelled using the color condition system framework is shown

in the figure 5.8. The condition set CG of the model and the token are

CG = {HS, LS, MF, MB, index},

60

pback
pforwpHS

t HS-forw

t HS-back t forw

t back

1
index = 1

1

0 0
0 0
dc 0
dc 0
0 1

1 0
0 0
dc 0
dc 0
0 1

0 0
1 0
dc 0
dc 0
0 1

1 0
0 1 * + 0

-1m(pback)

1 0
0 1 * + 0

1m(pforw)

dc
dc

dc

1, 1
dc

dc
dc

dc

1, 1
dc

dc
dc
dc

1, 1
dc

dc
dc
dc

1, 1
dc

1, 1

2, 1270

1, 1

2, 1270

1, 1

1, 1269

1, 1

1, 1269

Figure 5.8: Model of a Mercedes Benz Passenger Seat

Color Matrix, Ktoken =
(

1 index

)T

Let us say that the specification specifies the target state as

υtarg =
(

1 0 0 0 720

)T

which would give the target color as ktarg =
(

1 720

)T

. The action block gen-

erated to achieve this specification from the procedures described in the previous

sections for is shown in the figure 5.9. The following points give a brief description

of the steps involved in the synthesis of this taskblock.

1. CreateAB() identifies the target place. In the current example, the target place

set Ptarg is Ptarg = { pHS }. Firstly it generates the condition set CTB which

corresponds to the taskblock. All the output conditions associated with the

plant are copied to CTB while the input conditions are transformed to doA

61

pidle

pcmpl

pt-HS back pt-HS forw

pt-back pt-forw

{ VdoA MB = 1}
{ VdoA MF = 0}

{ VdoA MB = 1} { VdoA MF = 1}

{ VdoA MF = 1}
{ VdoA MB = 0}

{ VComCon = 1}

{ VIdleCon = 1}

t1
p-back

t2
p-back

t1
p-HS t2

p-HS

t3
p-HS

t4
p-HS

t0
cmpl

t1
cmpl t2

cmpl

t1
p-forw

t2
p-forw

{ CAindex = 0721, 1270 }
{ CALS = 1}
{ CAHS = 0}

{ CAindex = 0721, 1270 }
{ CALS = 1}
{ CAHS = 1}

{ CAindex = 0720, 0720 }
{ CALS = 0}
{ CAHS = 1}

{ CAindex = 0720, 0720 }
{ CALS = 0}
{ CAHS = 1}

{ CAindex = 0000, 1270 }
{ CALS = 1}
{ CAHS = 0}

{ CAindex = 0000, 1270 }
{ CALS = 0}
{ CAHS = 0}

{ CAindex = 0000, 0719 }
{ CALS = 0}
{ CAHS = 0}

{ CAindex = 0000, 0719 }
{ CALS = 0}
{ CAHS = 1}

{ CAindex = 0000, 0719 }
{ CALS = 0}
{ CAHS = 1}

{ CAindex = 0721, 1270 }
{ CALS = 0}
{ CAHS = 1}

{ CAindex = 0720, 0720 }
{ CALS = 0}
{ CAHS = 1}

{ CAindex = 0721, 1270 }
{ CALS = 1}
{ CAHS = 0}

t5
p-HS

t4
p-HS

{ CAindex = 0000, 0719 }
{ CALS = 1}
{ CAHS = 0}

Figure 5.9: Actionblock of model for Mercedes Benz Passenger Seat

conditions.

2. CreateAB() makes a function call to DoAdjacentCycles() with ptarg being pHS.

3. The paths identified by DOADJACENTCYCLES() in step 2 of the algorithm

would be

• Πcycles = { { pHS, tback, pback, tHS−back, pHS },

{ pHS, tforw, pforw, tHS−forw, pHS } }

where the first path in Πcycles is negative weighted master cycle and the sec-

ond path is a positive weighted master cycle.

4. DOADJACENTCYCLES() analyzes both the above paths. The first path in Πcycles,

since being negative weighted yields I =
(

[[1, 1]] [[721, 1270]]
)T

and

62

the second path would yield I =
(

[[1, 1]] [[1, 719]]
)T

5. BUILDTB() is called by DOADJACENTCYCLES() for each of the above identified

paths and I.

6. BUILDTB() checks for the existence of places in the taskblock being generated

and since the function is being called for the first time, there exist no places

in the taskblock. Hence, BUILDTB() creates the places pidle, pcmpl and also

the transition t1cmpl which connects pidle and pcmpl with the corresponding

visibility matrices and condition acceptance intervals respectively.

7. The function BUILDTB() creates exactly one place in the taskblock correspond-

ing to a transition in the plant model. Hence, the function searches for a

place in the taskblock which corresponds to the transition it finds, along the

paths it is analyzing. If not already created, the function creates its corre-

sponding place and its visibility matrix. For example, the place pt−back in the

taskblock corresponds to the transition tback which is along the first path in

Πcycles shown in step 3. The process is repeated for each place of the en-

tire path shown. Notice in the generated taskblock (5.9) that the visibility

matrix of pt−back has doAML true and doAMR false, since the condition ‘ML’

corresponds to tback and the condition ‘MR’ corresponds to tforw, its sibling

transition.

8. The function also creates several transitions in the taskblock corresponding to

a single place in the plant as discussed in the final paragraph of section 5.4.5.

Corresponding to the place pHS, it can be seen in the figure 5.9 that there are

four transitions in the taskblock. The function DOADJACENTCYCLES() returns

the control back to CREATEAB().

9. The absence of any remote cycles and since all the colors of the place ptarg,

pback and pforw have been analyzed, the function calls for the DOREMOTECY-

63

CLES() and DOREMAININGCOLORS() are ignored by CREATEAB().

These are the steps involved in building an actiontype taskblock.

64

Chapter 6

Conclusion and Future work

6.1 Conclusion

In the current thesis, condition systems were reintroduced and a summary of its re-

sults were stated. The concept of color of a token and modeling framework of color

condition systems was defined. The primary contribution has been development

of algorithms to generate the action type task blocks. The algorithms described in

chapter 5 generate the taskblock given the plant modeled in color condition system

framework defined in the chapter 3 under the System Structure Assumption(SSA)

and Non-Overlapping Cycles assumption (NOC) defined in chapter 5.

6.2 Future Work

The goal of the thesis was to build a foundation for color condition systems. Since

the current topic of research is still in the earlier stages there is a lot of scope to

optimize the algorithms developed in this document. Also the assumptions made

in this thesis can be relaxed to allow the modeler to model a broader range of

complex systems. The non-overlapping cycles assumption made in this document

is not a requirement. An important direction would be to extend this algorithms

to non-overlapping cycles. Also, the algorithms described in this thesis work for

those tokens whose colors are two-dimensional. Hence, research may be pursued

65

to work for larger dimensioned color matrices. This will introduce more information

carrying capabilities in the net.

Development of techniques to build state observers for systems with unidentifi-

able states and to counteract forbidden states would be another important direction

future research could pursue.

66

Appendix

Algorithm to determine possible paths between two places

In this section we show a procedure that explores the plant Gcompo and generates

the set Π(n,ns) containing all the paths from node n to ns. This is description of a

possible implementation of definition 5.2 defined in chapter 5. An example is used

to illustrate the working of the procedure.

Given a source node n, target node ns and the component net Gcompo such that

n, ns ∈ Gcompo, the procedure SEEKPATH() generates all the possible set of paths

Π(n,ns) from n to ns by exploring the plant Gcompo

The procedure starts at the node n, selects one of the possible output nodes of

n ′ (child nodes) and explores as far as possible along each branch before backtrack-

ing. A node is a parent node to all its output nodes, called child nodes and since the

procedure starts at n, we call it as the root node. If the node ns is found, the branch

is appended to the set Π(n,ns) and the algorithm backtracks to the corresponding

parent node to investigate the other possible branches. If the branch being investi-

gated encounters a cycle that was already visited in the branch, the procedure stops

exploring the branch further and backtracks to choose an alternative branch. The

search stops when all the paths get exhausted and there are no more branches left

to be investigated.

In the following procedure which is a recursive procedure the function GETOP-

TRANSITIONS(n, Gcompo) in the line 11 retrieves all the output transitions of the

place n in the plant Gcompo. Similarly function GETOPPLACES(n, Gcompo) in the

line 12 retrieves all the output places of the transition ‘n’ in the plant Gcompo. The

67

function on the line 17 ensures that the branch under consideration will not search

further since there exists a cycle that has been visited twice in it.

Procedure: SEEKPATH(n, ns, π, Π(n,ns))

1. Assign N ⇐ NULL

2. if ((n = ns) AND (n ∈ π))

3. {

4. π ⇐ π + n

5. Π(n,ns) ⇐ Π(n,ns) + π

6. RETURN(Π(n,ns))

7. }

8. else

9. {

10. π ⇐ π + n

11. if (n ∈ PGcompo) N ⇐ GETOPTRANSITIONS(n, Gcompo)

12. if (n ∈ TGcompo) N ⇐ GETOPPLACES(n, Gcompo)

13. for each n ′ ∈ N

14. {

15. if ((n ′ ∈ TGcompo) And

(Number of times n ′ was already visited in π > 2))

16. {

17. if (DOESANYCYCLERECUR(π) = TRUE)

18. RETURN(Π(n,ns))

19. }

20. Π(n,ns) ⇐ SEEKPATH(n ′, ns, π, Π(n,ns))

21. }

68

22. RETURN(Π(n,ns))

23. }

Theorem .1 SEEKPATH() generates the set Π(n,ns).

Proof: The procedure explores along a branch until

1. The destination node ns is located (at line 6).

This return statement would be true if the condition at line 2 is satisfied.

SEEKPATH() is a recursive procedure and when it is called by itself n is replaced

by n ′, where n ′ is an output node of n (see line 13). n = ns, implies that the

destination node is located. Hence SEEKPATH() should stop exploring further.

When the procedure is called for the first time, π and Π are empty. If the task

is to determine all the cycles of a node n, then n and ns are same. In this case

n = ns, would not imply that the destination node has been located. Hence,

the second condition n ∈ π at line 2 ensures that further exploration of the

branch is not halted.

2. No further exploration is possible. At line 22.

The task of procedure SEEKPATH() would have been accomplished when

all the paths along the output nodes n ′ of n are explored. The lines from 13

to 21 ensure that all the output nodes of n have been explored. So further

exploration is halted at line 22.

3. The existence of a subcycle π ′ (where ns /∈ π ′) in a path π more than once

would never terminate the procedure SEEKPATH() since it searches for the

destination node ns with out any success forever. The procedure avoids this

condition at line 17.

Since the system is a state graph (SSA 5.2), for any transitions t, t ′ (p)t = (p)t ′

and |(p)t| = 1. If a transition t is visited twice along a path, then according to

69

the definition of cycle (5.3.1) the subpath π ′ between the first occurrence of

t to the subsequent occurrence of t represents a cycle. Any subsequent occur-

rence of t again in the path π might result in the repetition of the subcycle π ′.

In order to assert if a repetition exists

• Let the transition t occur m (m > 2) times along the path π.

• Let the sub paths between any two subsequent occurrences of t be π1, π2

· · · πm−1.

• Assume that the same subcycle π ′ repeats in π1 and πm−l.

If the above assumption that the same subcycle π ′ repeats in π1 and πm−l is

true, then if any transition t ′′ ∈ π1 implies t ′′ ∈ πm−1 or vice-versa. Hence, the

set of transitions appearing in π1 is a subset of πm−1 or viceversa.

In the flowchart of the sub-procedure DOESANYCYCLERECUR() 1 the the loop

at bottom right extracts the transition sets with transitions that would be

found between any two subsequent occurrences of t. These sets are compared

between each other to determine if any one is a subset of the other in the top

left of the flowchart. If comparison is successful, a repetition of a subcycle

is asserted and the sub-procedure returns TRUE. The procedure SEEKPATH()

then terminates any further investigation along the branch (line 18).

Hence, ∀ π ∈ Π(n,ns), there exists no sub-cycle π ′ along the path π that is

visited twice in it.

From the above, we see that the procedure explores along every output node of n.

Hence, there exists no path from n to n ′ in Gcompo that remains unexamined i.e.,

there exists no path π ′ from ‘n’ to ‘ns’ in the net Gcompo which does not belong to

the set Π(n,ns).

70

n’count = Number of times n’ appears in the path π
counter = 1

pos1 = First position of n’ in π
pos2 = pos1

counter ++
pos1 = pos2

pos2 = Next position of n’ after pos1

Tsetcounter = { t | t e π ‘t’ lies between the location pos 1 and pos 2}

Is
counter < n’count

Return TRUE

Start

YES

last set = counter
counter = 1

NO

Is
Tlast set Õ Tcounter

or
Tcounter Õ Tlast set YES

counter ++

Is
counter = last set

Return FALSE

YES

NO

Stop

Stop

NO

Figure 1: DoesAnyCycleRecur(n ′)

Example

Consider the example shown in the figure 2. We use this example only to illustrate

the various paths a token can trace between any given pair of places. Let us deter-

mine all possible paths, the token could trace between place P2 and P2 (i.e., all the

possible cycles of P2) with the help of procedure SEEKPATH(). The figure 3 shows

the entire working of the procedure indicating the branches it would search and the

conditions that would terminate the search process along a branch. The procedure

starts at P2 and since the search is to find place P2, the branches

• P2, T2, P1, T1, P2

• P2, T3, P3, T7, P5, T6, P2

• P2, T3, P3, T7, P5, T5, P4, T4, P3, T7, P5, T6, P2

• P2, T3, P3, T7, P5, T5, P4, T8, P6, T9, P4, T4, P3, T7, P5, T6, P2

71

P1 P2 P4 P6

P3

P5

T1

T2

T3 T4

T5T6

T7

T8

T9

Figure 2: Example to illustrate the working of the procedure SeekPath()

terminate as soon as P2 is found. Now let us consider the branch

P2, T3, P3, T7, P5, T5, P4, T4, P3, T7, P5, T5, P4, T4, P3, T7.

We observe that T7 repeated itself third time (> 2) in the above branch. If allowed

to trace the above branch, the token after visiting T7 for the first time would visit

T5 and T4 before visiting T7 for the second time. We also observe that the token

would visit the same set of transitions (i.e., traces the same path) again before T7

is visited for the third time. Since the algorithm has already identified this path,

further exploration of the branch is not necessary. Therefore the procedure stops

investigating the branch further.

The appearance of T7 the third time would trigger the sub-function DoesAny-

CycleRecur() (refer the line 15 in the algorithm). In the flowchart shown in figure

1, the loop at bottom right extracts the transition sets containing those transitions

which the token would visit between two successive occurrences of T7. In the cur-

rent branch two such transition sets are possible. They are

• Tset1 = { T5, T4 }

• Tset2 = { T5, T4 }

The loop at the top left compares these sets to determine if either of them is a

subset to the other. If the comparison is true, then according to the lemma ?? we

72

P1 P3

P5P2 P4

P3

P5

P6

P3

P4

P3

P6

P4

T3

T7

T5

T4

T7

T5

T6

P5

T4

T7

P4 T8T9

T8 T9 T8

P4

T9

T8

P5

T7

T4

P4

T6

T5

P6

P3T4
T8

P5

P3

T8
P4 T9T8

T4

T7

P4

T9

P3T4

X

T8

T7

T2

T1

T6

T7

P2

P2

P2

P2

X

X

X

XX

X

Figure 3: SeekPath Tree

have a cycle repeating itself in the path (as seen in this example) which makes

DoesAnyCycleRecur() TRUE. Hence, the algorithm SEEKPATH() stops exploring the

branch further. (refer line 17 in the algorithm).

In the branch,

P2, T3, P3, T7, P5, T5, P4, T8, P6, T9, P4, T4, P3, T7, P5, T5, P4, T8, P6, T9, P4, T8

the transition T8 repeats itself more than twice. Hence, the transition sets consid-

ered in this branch are Tset1 = { T9, T4, T7, T5 } and Tset2 = { T9 } where Tset2 is a

subset of Tset1. Similarly is the case with the other branches shown in the figure.

Target acceptance range

In this section we present a flow chart which captures the token acceptance range

for a path π from a place located at position n. This is implementation of the defi-

nition 5.3 in chapter 5.

73

The flow chart is self-explanatory. It starts to look at each and every place start-

ing from the place located at position n. Let this place be pn. It captures the target

acceptance interval of the place with respect to its output transition and projects it

back to place Pn based on the token assignment functions existing between place

pn and the place under consideration. Every time the algorithm performs this task

it would only consider the intersection of the token acceptance interval of Pn with

respect to its O/P transition and the projected token acceptance interval, as the fu-

ture token acceptance interval of Pn with respect to its O/P transition. Once all the

places along the path are examined then the token acceptance interval of of Pn with

respect to its O/P transition is the required TAR.

start

stop

n = n1 + 2, ul = null matrix, uu = null matrix

Extract π’ from π such that H(π’) = π(n1), T(π’) = π(n) t = π(n – 1), p = π(n – 2)

Is
ul < lower limit (TA(t)(p)) – W(π’)

Is
uu > upper limit (TA(t)(p)) – W(π’)

ul = lower limit (TA(t)(p)) – W(π’)

uu = upper limit (TA(t)(p)) – W(π’)

n = n + 2

Is
type = H

Is
n > n2 return ul, uu

ul = ul + W(π)
uu= uu + W(π)

YES

YES

NO

NO

NO YES YES

NO

Figure 4: Flow chart of TAR()

74

Index

ACon(), 27

Activation Condition, 27

basis(), 14

BUILDTB(), 57

Color Condition System, 15

Color of a token, 14

ComCon(), 27

Condition Acceptance Interval func-

tion, 15

Condition Enabled, 6, 17

Condition System, 5

CREATEAB(), 44

dc or Don’t Care, 14

dc or Don’t Care signal, 13

doAMap(), 45

DOADJACENTCYCLES(), 46

DOREMAININGCOLORS(), 55

DOREMOTECYCLES(), 49

Effectiveness, 28

Future Operator F, 27

Global Operator G, 27

IdleCon(), 27

Interval, 11, 36

Set of matrices of integer intervals,

‘I’, 12

Integer Matrix, υ, 11

Matrix of Integer Intervals, I, 11

LeftSplit(), 36

Linear Temporal Logic Syntax, 26

|= Satisfaction Relation, 27

> Always TRUE, 27

Future Operator F, 27

Global Operator G, 27

Until Operator U, 26

Marking, 6, 16

Next State Dynamics, 17

Path, 33

Weight of a path, 35

Cycle, 34

Length of a path, 35

Master Cycles, 36

Value-dependent path path, 34

Value-independent path path, 34

Petri Nets, 4

Prompt Control Assumption, 33

RightSplit(), 36

75

State Enabled, 6

System Structure Assumption, 32

Token Acceptance Interval function,

16

Token Assignment Expression Map-

ping function, 16

Token Enabled, 17

Until Operator U, 26

V-Sequence, 24

Visibility Matrix, 15

76

Bibliography

[Holl00] Lawrence E. Holloway, Xiaoyi Guan, Ranganathan Sundaravadivelu, Jeff

Ashley, Jr. Automated Synthesis and Composition of Taskblocks for Con-

trol of Manufacturing Systems. IEEE TRANSACTIONS ON SYSTEMS AND

CYBERNETICS-PART B: CYBERNETICS, 30(5), October 2000.

[Holl01] Lawrence E. Holloway, Jeff Ashley, Jr. An equivalent LTL/Kripke Structure

for the condition sequence/condition system model 7TH WORKSHOP ON

DISCRETE EVENT SYSTEMS (WODES2004), FRANCE, September 2004.

[Holl02] Lawrence E. Holloway, R. Sunderavadivelu. Task Blocks for Synthesis of

Controllers for Condition Systems. 1998 IEEE INTERNATIONAL CONFER-

ENCE ON SYSTEMS, MAN AND CYBERNATICS , San Diego, October 1998.

[Holl03] Lawrence E. Holloway, Xiaoyi Guan, Ranganathan Sundaravadivelu, Jeff

Ashley, Jr. State Observer Synthesis for a Class of Condition Systems. 5TH

WORKSHOP ON DISCRETE EVENT SYSTEMS (WODES2000), BELGIUM, Au-

gust 2000.

[Holl04] Lawrence E. Holloway, Jeff Ashley, Jr. Elaborative Orderings of Condition

Languages. IN PROCEEDINGS OF 1998 IEEE CONFERENCE ON DECISION

AND CONTROL, TAMPA , December 1998.

[Jen98] Kurt Jensen Coloured Petri Nets, Basic Concepts, Analysis Methods and

Practical Use, VOL-I EATCS MONOGRAPHS ON THEORETICAL COMPUTER

SCIENCE, SPRINGER-VERLAG, 1992.

77

[Jen98] Kurt Jensen Coloured Petri Nets, A High-level Language for System Design

and Analysis. ADVANCES IN PETRI NETS, LECTURE NOTES IN COMPUTER

SCIENCE VOL 483, SPRINGER-VERLAG, 1991.

[Zoh01] Zohar Manna, Amir Pnueli. The Temporal Logic of Reactive and Concur-

rent Systems, Specification.

[Cain95] P. E. Caines, Y. J. Wei The Hierarchical Lattices of a Finite Machine. SYS-

TEMS & CONTROL LETTERS 25, PAGES 257 – 263, 1995.

[Cain97] Peter E. Caines, Vineet Gupta, Gang Shen The Hierarchichal Control of

ST-Finite State machines SYSTEM & CONTROL LETTERS 32, PAGES 185-

192, 1997.

[Gries00] M. Gries Modeling a Memory Subsystem with Petri Nets HARDWARE

DESIGN AND PETRI NETS, KLUWER ACADEMIC PUBLISHERS, March 2000.

[Dwy95] Matthew B. Dwyer, Lori A. Clarke, Kari A.Nies A Compact Petri Net Rep-

resentation for Concurrent Programs. IN PROCEEDINGS OF THE 17TH

INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, PAGES 147–

157, April 1995

[URL] www.automotive-uml.com/mc/challenge/specification

78

Vita

Date and place of birth

April - 19 - 1979, Andhra Pradesh, India.

Educational institutions attended and degrees awarded

Bachelor of Technology, Valluripalli Nageswara Rao Vignana Jyothi Institute of

Engineering and Technology, JNTU, Hyderabad, INDIA.

Major: Mechanical Engineering.

Professional Positions held

1. October 2004 - Present

RCI Engineer, Paoli, Inc.,

2. August 2001 - October 2004

Research Assistant, UK Center for Manufacturing, University of Kentucky.

Honors

1. August 2001. Awarded a full scholarship (a Research Assistantship) by the

Department of Manufacturing Engineering, University of Kentucky, to pursue

Master’s Degree.

79

	CONTROL SYNTHESIS IN COLORED CONDITION SYSTEMS
	Recommended Citation

	tmp.1322500888.pdf.WDUeY

