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DEPOSITIONAL AND STRATIGRAPHIC SIGNIFICANCE OF MARINE, GREEN-
CLAY, MINERAL FACIES IN THE LOWER-MIDDLE MISSISSIPPIAN BORDEN 
AND FORT PAYNE FORMATIONS, WESTERN APPALACHIAN AND EASTERN 

ILLINOIS BASINS, KENTUCKY 
 

Detailed study of strata associated with the glauconite-rich Floyds Knob Bed in the 
western Appalachian and eastern Illinois basins have corroborated previous 
interpretations that the unit is a widespread, largely synchronous  marker horizon. 
However, in some areas there are multiple glauconite beds; in others a distinct bed is 
lacking, but the glauconite is dispersed throughout many beds, forming an interval rather 
than a distinct bed. In Kentucky and adjacent states, the Floyds Knob interval, in upper 
parts of the Lower-Middle Mississippian Borden-Grainger delta sequence and in lower 
parts of the Fort Payne carbonate sequence, was deposited at the end of loading-type 
relaxation during a flexural cycle in the Neoacadian (final) tectophase of the Acadian 
Orogeny. Tectonic influence, combined with a major late Osagean sea-level lowstand, 
created conditions that generated sediment starvation and shallower seas across 
widespread parts of the western Appalachian and eastern Illinois basins. In the absence of 
major sediment influx, glauconite was deposited uniformly across many major 
depositional settings, ranging from delta-platform to basinal environments. Especially 
important, however, is the newly reported occurrence of the Floyds Knob interval in 
basinal Fort Payne environments from south-central Kentucky, where it is represented by 
a thick, pelletal, glauconite-rich horizon that separates clastics at the base of the Fort. 
Payne Formation from carbonates at top. The study also provides the first-ever 
radiometric dating of the Floyds Knob glauconites, which suggests a late Osagean origin. 
These results support the existing biostratigraphic studies that point to a late Osagean 
origin for the Floyds Knob interval.  
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CHAPTER 1: INTRODUCTION 

1.1 Importance of Green Marine-clay Mineral Facies 

Clay minerals are the most important and most common mineral phase that occurs 

at the surface and in the shallow-subsurface on Earth. They are prime indicators of a large 

variety of geochemical processes at the surface and in the subsurface on Earth, and they 

are widespread and diverse in marine environments throughout geologic history. Among 

clays in the marine realm, authigenic green, marine, clay-mineral facies (glauconite and 

verdine) are very important because they precisely reflect the surrounding physical and 

chemical environments at the sediment-water interface at the time of formation. 

Glaucony and verdine facies commonly occur with phosphates, dolomite, siderite, silica, 

and calcite in mudstone-dominated successions and are important indicators of 

accommodation-space availability and background sedimentation rates.  

1.2 Glaucony Facies 

The mineral ‘glauconite’, also  known as glaucony and the major constituent in 

the ‘Glaucony facies’, is a common authigenic green clay mineral that occurs within 

glauconite-smectite and glauconite-mica end members.  Glauconite is the iron-

magnesium-rich equivalent of aluminum-rich illite. The transition into the smectite-

glauconite trend is similar to smectite-illite trend and ends with progressive incorporation 

of potassium into the system forming a glauconite-mica end member. Glauconite is a 

common constituent of modern, as well as of Precambrian-to-Pleistocene continental-

shelf environments, predominantly in water depths from 60 to 250 m, ranging from mid-

shelf to upper-slope regions (McRae, 1972; Odin and Letolle, 1980; Chafetz and Reid, 
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2000).  These areas are known to have slow sedimentation rates. The glauconitization 

process occurs mostly in passive shelf-margin environments in sediment-starved states 

that have low terrigenous-sediment input, suitable substrates, high organic activity, and 

suitable physical-chemical conditions (e.g., low turbulence, sub-oxic to reducing 

conditions, and an abundant supply of dissolved iron, potassium, and magnesium) 

(McRae, 1972; Odin and Matter, 1981). Because glauconite is a sensitive indicator of low 

sedimentation rates and is widespread in the sedimentary record, it constitutes a powerful 

tool for the study of depositional environments, the geologic time scale, and stratigraphic 

correlation (McRae, 1972; Odin and Matter, 1981; Amorosi, 1997). Glauconite is easy to 

recognize in the field and easy to separate in the laboratory because of its characteristic 

green color, pelletal shape, and high magnetic susceptibility. It can also be dated easily 

by several methods (e.g., K-Ar, Ar-Ar, Rb-Sr, and K-Ca) with good analytical precision 

(Morton and Long, 1980; Odin and Hunziker, 1982; Grant et al., 1984; Smith et al., 1993; 

Amireh et al., 1994; Smith et al., 1998; Gopalan, 2008; Conrad et al., 2010).  

1.3 Verdine Facies 

 Another important, authigenic, green, marine clay mineral that is commonly 

reported from modern-day, wide, continental-shelf to upper slope environments is the 

light- to dark-green, chloritic-clay-rich, verdine facies, now commonly referred to as the 

mineral ‘odinite’. This mineral is part of the kaolinite-serpentine group. Like glauconite 

facies, verdine facies are widely found in modern-day, passive-margin, shelf 

environments in areas known to have slow sedimentation rates (Odin, 1988; Odin and 

Masse, 1988; Odin and SenGupta, 1988; Rao et al., 1993; Rao et al., 1995). Because of 

its susceptibility to alteration to chlorite through weathering, verdine facies occurrences 
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from geologic horizons older than Quaternary age are rare (Proust and Hosu, 1996; 

Albani et al., 2004; Ettensohn et al., 2004; Udgata and Ettensohn, 2008). Authigenic 

verdine facies are notably pristine and commonly occur as relatively well-preserved, 

green, clay minerals that infill primary intraparticle porosity, especially the microcavities 

of bioclasts (Odin and Masse, 1988; Rao et al., 1993; Rao et al., 1995). Modern day, 

verdine-bearing sediments have been reported from both reefal and continental-margin 

environments where clastic input is very low (Odin, 1988; Odin and SenGupta, 1988; 

Rao et al., 1995; Kronen and Glenn, 2000). There are also verdine grains that show the 

effects of reworking and transport, such as abrasion, fragmentation and grain destruction.  

The reworked nature of these particles is commonly attributed to a higher energy 

depositional setting, where loss of accommodation space, seaward progradation, or 

sediment reworking have occurred. Verdine facies are iron-rich, but because they contain 

iron in both oxidized (Fe 3+) and reduced (Fe2+) states, it has been suggested that the 

facies forms in association with mildly reducing, suboxic solutions from which both 

ferric and ferrous iron may be supplied (Odin et al., 1988). It has also been suggested that 

the in situ formation of verdine minerals is rare in water depths exceeding 60 m due to 

their poor preservation potential, but contrary to these suggestions, verdine facies have 

been reported in a few situations from water depths of 200 m near reefal to sub-reefal 

environments around the Great Barrier Reef (Kronen and Glenn, 2000).   

1.4 Purpose of Study 

Though geologic records of vertical transitions from clastic-dominated facies to 

carbonate-dominated facies or vice versa are common and well studied, the lateral 

transition between the above-mentioned facies so far is poorly understood.  As many as 
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five glauconite horizons are present in the Lower-Middle Mississippian (Kinderhookian 

and Osagean) rocks of the Borden, Fort Payne, and Grainger formations in the western 

Appalachian and eastern Illinois basins in Kentucky and across intervening areas on the 

Cincinnati Arch (Fig. 1.1). These rock units have been the topic of many previous studies 

and are thought to be well understood; however, questions remain concerning details of 

the depositional framework and the lateral stratigraphic relationships among these three 

formations. Across the Appalachian Basin in eastern and east-central Kentucky, the 

Borden interval forms a thick, prograding, sub-aqueous deltaic sequence, which grades 

into a succession of more distal, deeper water marine shales and carbonate intercalations 

of the Fort Payne Formation in south-central Kentucky and north-central Tennessee. In 

south-central Kentucky, however, the Borden sequence thins across the Cincinnati Arch 

(Fig. 1.1) and thickens west of the arch in west-central Kentucky and southern Indiana in 

the Illinois Basin, where it was deposited as a separate Borden delta lobe. In southeastern 

Kentucky and northeastern Tennessee, a succession of shale and siltstone, strikingly 

similar to and equivalent to the Borden Formation, known as the Grainger Formation, is 

exposed along the Pine Mountain Thrust Fault. The Grainger Formation intertongues 

with, and disappears to the southwest by gradation into the carbonate-dominated Fort 

Payne chert in the Jellico Mountain area of northeastern Tennessee.  
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Figure 1.1 – Map showing regional geological outline of the Lower-Middle Mississippian 
Borden, Fort Payne, and Grainger formations in Appalachian and Illinois basins in 
Kentucky. The Cincinnati Arch is the boundary between the Appalachian and Illinois 
basins.  Map also shows section locations, and physiographic regions in Kentucky and 
adjacent states. Note: Fort Payne Reefs on geological quadrangle maps are carbonate-
mud mounds, rather than true reefs.  
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These three formations in the western Appalachian and eastern Illinois basins in 

Kentucky are associated by complex lateral facies architecture. Several different models 

have been suggested for lateral facies associations between the units (Sedimentation 

Seminar, 1972; Kepferle and Lewis, 1975; Lewis and Potter, 1978; Kepferle et al., 1980; 

Sable and Dever, 1990; Meyer et al., 1992; Meyer et al., 1995; Khetani and Read, 2002). 

Nonetheless, a key unit in all of the interpretations is the Floyds Knob Bed, a thick, 

widespread glauconite-rich horizon that is known in all three formations. In this horizon, 

the glauconite is pelletal and occurs with intense bioturbation and phosphorite.  

Additional glauconite horizons also occur that may or may not be associated with the 

Floyds Knob Bed. These horizons occur in upper parts of the Borden-Grainger deltaic 

sequence and in the lower part of Fort Payne Formation at the transition between coarser 

clastics and carbonate-rich silt and shale. This study has focused on a detailed 

sedimentological and geochemical examination of the Floyds Knob Bed and the 

associated, green marine chloritic-clay-rich-verdine facies, especially relative to the 

sedimentology of the facies and units above and below the Floyds Knob glauconite 

horizon. In addition, this study has attempted to trace the distribution of the Floyds Knob 

into areas and units, like the Fort Payne Formation. The position and distribution of the 

Floyds Knob Bed in the Fort Payne Formation was poorly known especially in relation to 

the economically significant Fort Payne carbonate-mud-mound facies (Sedimentation 

Seminar, 1972; Kepferle and Lewis, 1975; Lewis and Potter, 1978; Kepferle et al., 1980; 

Sable and Dever, 1990; Meyer et al., 1992; Meyer et al., 1995; Khetani and Read, 2002). 

Finally, I examined the regional depositional, eustatic, tectonic, and paleogeographic 

framework of the Lower-Middle Mississippian rocks in the western Appalachian and 
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eastern Illinois basins to understand the conditions that permitted the widespread 

deposition of the chloritic-clay-rich-verdine facies.   

Bright blue-green shales (chloritic-clay-rich-verdine facies), and dark-green 

marine clays (glauconite facies) are common on some distal, continental shelves and 

reflect the formation of iron-rich clays in sediment-poor settings (Odin and Masse, 1988; 

Rao et al., 1993). Shales of similar color are locally common in distal parts of the 

Appalachian Basin and in the eastern part of the Illinois Basin, especially in the Lower-

Middle Mississippian Borden and Fort Payne formations, Kentucky. The major problems 

addressed in this study include: 1) testing the hypothesis that the widespread, 

fossiliferous, dark-green, phosphate- and glauconite-rich Floyds Knob Bed in the Borden, 

Fort Payne, and Grainger formations is a chronostratigraphically equivalent surface; 2) 

characterizing and determining the origin of these green, marine, clay-mineral facies in 

the upper part of the Borden-Grainger deltaic sequence and in the distally equivalent 

marine shales and carbonate intercalations of the  Fort Payne Formation; 3) determining 

whether or not this Paleozoic facies helps us identify depositional, tectonic, and global 

eustatic patterns in the Mississippian rock record, like the verdine facies from modern 

continental platforms,; 4) determining whether or not these green marine-clay facies 

reflect a distal sedimentary response to the end of Neoacadian and/or  Ouachita orogenies 

and subsequent global sea-level fall in a sediment-poor, carbonate-dominated setting; 5) 

determining what role  regional and local tectonics, and global eustasy played in the 

lateral transition between the clastic-dominated upper Borden-Grainger deltaic sequence 

and carbonate-dominated Fort Payne sequence; and 6) examining the possible controls on 
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localization and deposition of  Early Mississippian (early Osagean) carbonate-mud 

mounds in the Fort Payne Formation.  

1.5 Study Methods 

All the above-mentioned objectives were achieved via detailed field and 

laboratory investigations. Vertical sections were measured and described for 39 outcrops 

and one core (total 40 sections) (Fig. 1.1). Where possible, lithologies both above and 

below the Floyds Knob Bed were described relative to lithofacies and current 

stratigraphic nomenclature. Outcrop and core data were supplemented by surface-

mapping information from 7.5-minute U.S.G.S. quadrangle maps. In the field, 

representative sections were carefully measured, described, and photographed to collect 

sedimentological, paleontological, and stratigraphic data, including general lithologies, 

textures, physical and biogenic structures, and associated body fossils, especially in units 

above and below the Floyds Knob Bed. The occurrences of different sedimentary features 

(e.g., hardgrounds and unconformities), paleontological features (biostromal 

accumulations), and trace-fossil occurrences were also noted for possible correlation. 

Because the Floyds Knob Bed is associated with multiple granular glauconite-rich 

horizons and glauconite-rich clay, it is described as a bed where it occurs as a single 

glauconite-rich bed; however, it is described as the Floyds Knob interval where it is 

represented by multiple glauconite horizons, or dispersed glauconite-rich clay. 

Representative samples were collected from measured sections for laboratory studies and 

to produce standard thin sections for petrographic analyses. Studies designed to assess the 

green marine-clay facies include: 1) petrographic examination in thin sections, 2) 

identification of clay-mineral phases using x-ray diffraction, and 3) analyses of major 
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oxide contents using x-ray fluorescence. Isotopic ages of the Floyds Knob glauconite bed 

from Borden Formation were determined by 40Ar/39Ar radiometric methods to provide 

time constraints. The radiometric dating technique is particularly important, as it has 

shown promising results in glauconite beds from different parts of the world (Morton and 

Long, 1980; Odin and Hunziker, 1982; Grant et al., 1984; Smith et al., 1993; Amireh et 

al., 1994; Smith et al., 1998; Gopalan, 2008; Conrad et al., 2010). However, this is the 

first time that it has been tested on glauconite-bearing strata in the Appalachian and 

Illinois basins.  

1.6 Study Area 

The study area includes the prominent belts of Mississippian rocks exposed in the 

Muldraugh Hill/Escarpment, Mississippian Plateau, and Cumberland Escarpment 

physiographic regions (Fig. 1.1). Outcrops were examined as far as Cumberland County, 

Kentucky, to the south, Carter County, Kentucky, to the northeast, Floyd County, 

Indiana, to the north, Letcher County, Kentucky, and Campbell County, Tennessee, to the 

southeast. The study area includes the distribution of Nada and Muldraugh members of 

the Borden Formation, exposed in eastern, east-central, west-central, and south-central 

Kentucky and southern Indiana, and the Fort Payne Formation exposed in south-central 

Kentucky both east and west of the Cincinnati Arch in the western Appalachian and 

eastern Illinois basins (Fig. 1.1). Field studies also included the Borden-equivalent 

Grainger Formation, exposed in southeastern Kentucky and northeastern Tennessee along 

the Pine Mountain Thrust Fault (Fig. 1.1).  
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CHAPTER 2: GLAUCONITE AND RADIOMETRIC DATING 

2.1 Glauconite Mineralogy 

Minerals placed into the glauconite group, or glaucony facies, are iron- and 

potassium-rich alumino-phyllosilicates having the general chemical composition of (K, 

Na) (Fe, Al, Mg)2 (Si, Al)4O10(OH)2. These minerals constitute a continuous family series 

with smectite and micaceous end members (Odin and Fullagar, 1988). Glauconite mica is 

a Fe- and K-rich dioctahedral mica with tetrahedral Al usually comprising >0.2 atoms per 

formula unit and octahedral Fe3+comprising >1.2 atoms per formula unit (Huggett, 2005). 

Typically, 5–12% of the total iron is ferrous. Glauconite mica is chemically distinguished 

from ferric illite by having higher total iron content, and from celadonite, by having  

higher levels of aluminum substitution for silicon in the tetrahedral layer and by a higher 

octahedral charge (Duplay and Buatier, 1990). Glauconitic smectite is a mixed-layer clay 

that has lower K and Fe contents, but higher Al content than glauconite mica. As will be 

described in subsequent sections, the spectrum of glauconite smectite to glauconite mica 

reflects mineralogic maturity (Thompson and Hower, 1975; Odin and Matter, 1981; Odin 

and Fullagar, 1988). 

2.2 Glauconite Formation 

The formation of glauconite occurs via authigenesis under a relatively narrow 

range of environmental conditions. It forms at or near the sediment-water interface in 

oxygenated to mildly reducing marine environments, wherein sedimentation rates are 

very low (McRae, 1972; Odin and Matter, 1981; Amorosi, 1997). Glauconization mainly 

occurs in fine-grained muds, deposited in shelf and slope settings at depths between 30 m 



11 

 

to 500 m (Bornhold and Giresse, 1985; Amorosi, 1997; Kelly and Webb, 1999). 

Glauconite may precipitate as coatings or films on the walls of fissures, borings, and in 

other semi-confined microenvironments associated with carbonate hardgrounds 

(Pemberton et al., 1992; Kitamura, 1998; Ruffel and Wach, 1998). However, it forms 

most commonly in granular siliciclastic substrates via replacement, infilling, or coating of 

individual grains. Fecal pellets are the most common type of precursor substrate. 

Aggregation of clay-rich sediment during passage through the digestive tracts of the 

organisms creates microenvironments that are favorable for glauconitization (Anderson et 

al., 1958; Pryor, 1975; Chafetz and Reid, 2000). In addition to pellets, glauconite may 

replace a variety of other grain types, including micas, quartz, chert, feldspar, calcite, 

dolomite, phosphate, and volcanic rock fragments (McRae, 1972; Pryor, 1975; Odin and 

Matter, 1981). Glauconite also may precipitate as cements within microfossil cavities or 

as coatings or films on other grains (Triplehorn, 1966; McRae, 1972; Odin and Matter, 

1981). 

2.3 Glauconite Maturity 

Odin and Matter (1981) recognized four common varieties of glauconite that 

reflect different levels of maturation: nascent, slightly evolved, evolved, and highly 

evolved grains. The level of maturity attained by glauconite depends on the residence 

time of grains at or near the sediment-water interface and, hence, on sedimentation rate. 

The glauconitization process normally ceases after burial beneath several decimeters of 

sediment, and formation of fully mature grains may require residence times of 105-106 

years (Odin and Matter, 1981). Levels of maturity of glauconite can be assessed on the 

basis of chemical composition, grain color, and morphology (Table 2.1). 
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Table 2.1 – Characteristics of glauconite at different stages of maturity (after Odin and 
Matter, 1981; Amouric and Parron, 1985; Amorosi, 1995; Huggett and Gale, 1997; Kelly 
and Web, 1999). 
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2.4 Radiometric Dating: The 40Ar/39Ar Method 

The 40Ar/39Ar dating technique is a sophisticated variation of the 39K/40Ar dating 

technique. Both techniques rely on the measurement of a daughter isotope (40Ar) and a 

parent isotope. While the K-Ar technique measures 39K as the parent, the 40Ar/39Ar 

technique uses 39Ar. 39K transforms to 39Ar by fast-neutron irradiation in a neutron- 

capture proton-emission reaction [39K (n, p)  39Ar] in a nuclear reactor. The amount of 

39Ar produced in the nuclear reactor depends upon the known relative abundance of 39K, 

time-length of irradiation, neutron-flux density, and neutron-capture cross section for 39K 

(Albarede, 1982; Foland et al., 1984, 1992; Layer et al., 1987); thus, 39Ar can be used as a 

proxy for 39K. The comparatively long half-life of 39Ar (t1/2 = 269 years) enables it to be 

used as a stable isotope for mass-spectrometric analyses (Merrihue and Turner, 1966).  

The Ar-Ar method is frequently used instead of K-Ar for geochronological 

studies of fine-grained minerals such as glauconite and illite, which are made up of fine 

crystallites (Brereton et al., 1976; Halliday, 1978; Foland et al., 1984; Hess and Lippolt, 

1986; Smith et al., 1993; Dong et al., 1995; Hassanipak and Wampler, 1996; Conrad et 

al., 2011), because multiple aliquots of  the same sample can be analyzed and compared 

to avoid possible sample inhomogeneities for better results (Albarede, 1982; Layer et al., 

1987), and the better precision of ±0.1% to which  40Ar/40K ratios can be measured 

(Samson and Alexander, 1987). However, serious complications of 39Ar recoil loss can 

arise while analyzing fine-grained clay minerals. The loss of 39Ar in this method occurs 

because the recoil energy, following production by irradiation, is sufficient to displace an 

atom to a distance of ~0.1 µm, which is a significant distance relative to the small grain 

size (~500-1000 nm thick) of clay minerals (Turner and Cadogan, 1974). The recoil loss 
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leads to underestimation of the K content, and is responsible for anomalously high 

40Ar/39Ar ratios in cryptocrystalline materials, which results in anomalously old ages 

(Brereton et al., 1976; Foland et al., 1984). 39Ar loss in cryptocrystalline materials can 

also occur by thermal degassing of low-retentive sites which pick up recoiling nuclides 

(Dong et al., 1995). These low-retentive sites are the two free surfaces of a clay-mineral 

grain, and the amount of 39Ar loss is inversely proportional to grain thickness. 39Ar loss in 

clays also occurs with H2O loss during laboratory heating. 39Ar loss from clay minerals 

occurs much more rapidly during vacuum heating due to structural disruption caused by 

H2O loss than by heating during diagenesis (Evernden et al., 1960). Another manner in 

which Ar may be lost during irradiation is caused by the different phases of unstable 

alteration products or poorly crystalline material present inside clay minerals, especially 

if elevated temperatures are attained (Hess and Lippolt, 1986). Alteration phases may 

lose significant 39Ar as a result of recoil capture as well as radiogenic 40Ar during neutron 

bombardment. The loss of 40Ar may result in an anomalously low 40Ar/39Ar ratio and low 

apparent age.  

Several workers have suggested a modified technique to minimize Ar loss during 

vacuum heating and neutron irradiation (Foland et al., 1992; Smith et al., 1993). The 

technique involves encapsulating and sealing glauconite grains in a small evacuated 

ampoule prior to irradiation. The recoiled Ar inside the ampoule and Ar from the solid 

sample can then be collected for analysis together by breaking the ampoule in an 

evacuated system. The vacuum-irradiation method significantly reduces recoil loss, and 

glauconites dated using this method show agreement between 40Ar/39Ar (total gas age) 

and K-Ar ages.  
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2.5 Experimental Method for 40Ar/39Ar Analysis of Glauconites 

Previous studies of glauconite in other areas have shown that only highly evolved 

glauconite grains with ~6% K are suitable for radiometric studies because the possibility 

of  inheriting radiogenic 40Ar from less evolved grains is minimal (Odin and Dodson, 

1982; Smith et al., 1993), and hence, such grains provide reliable geochronometers. In the 

absence of any reliable instrument for elemental-composition studies, however, the grains 

analyzed in this study were selected purely on the basis of prior experience with 

glauconite studies. Only grains with dark-green color and smooth peloidal external 

morphology were collected for radiometric analysis, as these grains tend to have high K-

content. In total, 12 samples were analyzed for this study; 11 came from the Floyds Knob 

Bed and associated glauconite horizons, and one came from the  glauconite-rich, 

Kinderhookian Maury Shale in south-central Kentucky (Fig. 2.1).  This is the first 

attempt at the Ar-Ar dating of glauconite from the Maury Shale.  

Three to four grains per sample, ~0.1-0.2 mm in diameter and weighing ~0.1 mg, 

were collected. The grains were placed in a quartz tube and evacuated under pressure. 

Because glauconite grains start degassing at very low temperatures, the bottom of the 

tube was dipped in water while the top was heated to detach the ampoule in order to keep 

the grains from overheating. The ampoules were placed in an evacuated crushing 

apparatus within a high-sensitivity mass spectrometer and were crushed mechanically. 

After collecting and measuring the ampoule gas, the samples were step-heated with a 

continuous laser for 60 seconds. Integrated 40Ar/39Ar ages for samples were calculated by 

combining the data for recoiled Ar in the ampoule gas fractions and the gas from the 

corresponding step-heated grains.  
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Figure 2.1 – Sampling locations for Ar/Ar dating. Three samples each were collected 
from the Bluegrass Parkway (BP), Big Hill (BH), and I-64 (OH3) sections, and two 
samples from the South Liberty (L1) section, respectively. A sample from the Burkesville 
south (BS) section was collected from the glauconite-rich Kinderhookian Maury Shale. 
Please note that the Bluegrass Parkway and Burkesville south sections are in the Illinois 
Basin west of the Cincinnati Arch, whereas South Liberty, Big Hill, and I-64 sections are 
in the Appalachian Basin east of the Cincinnati Arch.  
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In order for an age to be calculated by the 40Ar/39Ar technique, the neutron-flux 

density parameter must be known. For the neutron-flux density to be determined, a 

standard of known age must be irradiated with the samples of unknown age. The primary 

standard must be a mineral that is homogeneous, abundant, and easily dated by the K/Ar 

and 40Ar/39Ar methods. Once an accurate and precise age is determined for the primary 

standard, other minerals can be dated relative to it by the 40Ar/39Ar method. For this 

study, a hornblende from the McClure Mountains, Colorado (MMhb-1), with a 

recommended age 520.4±1.7 Ma was used as the primary standard (Samson and 

Alexander, 1987).   
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CHAPTER 3: PALEOGEOGRAPHY, PALEOCLIMATE, AND EUSTATIC 
FRAMEWORK DURING MISSISSIPPIAN TIME 

Important factors that control regional climate, which subsequently controls 

sediment supply and sedimentation pattern, include the geographic position of the area 

with respect to adjacent mountain belts and orogens (Hoffman and Grotzinger, 1993), and 

global and zonal climate belts through which the continents migrate (Heckel and Witzke, 

1979; Ettensohn et al., 2002; Cecil and DuLong, 2003; Cecil et al., 2004).  

Paleozoic sedimentary successions in the Appalachian Basin are divided into 

three major sedimentation patterns: Late Precambrian–Early Cambrian clastic-dominated, 

Early Cambrian–Middle Mississippian carbonate-dominated and Late Mississippian–

Permian clastic-dominated. These three Paleozoic sedimentation patterns of the 

Appalachian Basin were controlled in part by global and zonal climate changes during 

the northward movement of Laurentia/Laurussia from the southern temperate belt into the 

tropics (Scotese, 1997; Cecil et al., 2004). In particular, the Appalachian Basin had 

migrated through the humid, temperate, 60°–40°S latitudinal belt during Late 

Precambrian–Early Cambrian time, where clastic sediments dominated due to high 

moisture content. In turn, Middle Cambrian–Middle Mississippian time saw the basin 

migrating through the subtropical, high-pressure, arid climatic belt inside the 35°–15° S 

latitudes, where evaporites and carbonate sediments dominated due to decreased 

humidity. Late Mississippian–Permian time saw the basin migrating into the low-

pressure, humid, tropical climate belt of the equatorial region (equator–5° N latitude) 

(Scotese, 1997), where clastic sediments dominated because of high humidity and 

enhanced weathering rates.  
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The Lower–Middle Mississippian study interval in the western Appalachian and 

eastern Illinois basins is dominated by Borden-Grainger deltaic sediments and Fort Payne 

carbonate sediments with localized occurrences of black shales, cherts, phosphates, 

evaporites, iron-rich sediments, sandstones, and siltstones (Ettensohn, 1985a, 2008; 

Kepferle, 1971, 1977; Kepferle and Lewis, 1975; Kepferle et al., 1980; Whitehead, 1978; 

Warne, 1990). These varied lithologies in a carbonate-dominated regime reflect 

interactions among climate, eustasy, paleogeography, and tectonics (Ettensohn, 1985a, 

1985b, 1994, 2004, 2008).  

3.1 Laurussia 
During the Early–Middle Mississippian transition, the Laurussia continent was 

made up of North America and western Europe, and the Appalachian and Illinois basins 

were situated in sub-tropical latitudes south of the equator (Fig. 3.1). Deposition of the 

Borden and Fort Payne formations took place in a cooler climate with a low sea-level 

stand (Popp et al., 1986; Mii et al., 1999). However, the cooling event in central 

Laurussia was preceded by a warmer climate with high sea-level stands as evident from 

the thick, widespread Devonian–Mississippian black-shale deposition (Fisher, 1984; 

Ettensohn, 1995, 1998, 2008), and succeeded by warmer Late Mississippian climates 

with low sea-level stands, as evident from thick Upper Mississippian carbonates and 

Pennsylvanian coal deposits (Popp et al., 1986; Mii et al., 1999). Gondwana, the other 

major continent at that time, was positioned near the south pole throughout much of 

Paleozoic time (Caputo and Crowell, 1985) (Fig. 3.1). The position of Gondwana during 

Early—Middle Mississippian time was favorable for widespread glaciation, although 

evidence for the extent and magnitude of glaciation is limited (e.g., Veevers and Powell, 
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1987; Diaz et al., 1993). However, much of Laurussia was cooler (Mii et al., 1999; 

Ettensohn et al., 2009) and sea-levels dropped, which led to a global icehouse state and 

inception of Gondwana glaciation (Fisher, 1984). The glaciation event certainly 

influenced the global sea-level, which showed pronounced cyclicity thereafter (Ross and 

Ross, 1988).  
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Figure 3.1 – Paleogeographic map showing approximate position of Euramerica (Laurussia) and Gondwana supercontinents with 
respect to major orogenic and climate belts during Early Mississippian time (from http://www.scotese.com/newpage4.htm). Note that 
much of Laurussia was positioned in the sub-tropical climate belt, whereas Gondwana was positioned near the south pole. Red 
rectangle shows approximate position of the study area in Appalachian and Illinois basins.  
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Oxygen (O), carbon (C), and strontium (Sr) isotopes from marine carbonate rocks 

and unaltered brachiopods from the Paleozoic era have been studied extensively to 

understand changes in sea-water composition and related changes in global climate 

patterns (e.g., Popp et al., 1986; Grossman et al., 1993), but none of the studies has 

adequately explained global climate changes during Mississippian time. Mii et al. (1999) 

first published results of isotopic studies of unaltered North American brachiopod shells 

from Carboniferous (Mississippian and Pennsylvanian) strata (Fig. 3.2). The study shows 

that there was a major positive shift in δ13C and δ18O values during Early Mississippian 

(Kinderhookian–Osagean) time (stage C1, Fig. 2.4) across the Devonian-Mississippian 

boundary. The positive shift in δ13C has been attributed to a increase in the global carbon 

reservoir (Popp et al., 1986) and changes in the marine-circulation pattern due to closure 

of a seaway (Rheic Ocean) between Laurussia and Gondwana (Mii et al., 1999, 2001), 

whereas the increase in δ18O has been attributed to cooling and glaciation in 

Kinderhookian-Osagean time (Mii et al., 1999, 2001).  Although none of the analyzed 

brachiopod shells were from the Appalachian Basin (the majority were from the Illinois 

Basin and epeiric seas covering the North American platform), the changes in isotopic 

composition and climate in adjacent areas during Mississippian time might help to 

explain the decrease in sedimentation rates at the Devonian-Mississippian boundary 

(Maury Shale) and in the Floyds Knob Bed (Osagean) of the Fort Payne Formation, and 

at the transition between the Borden and Slade formations in the Appalachian Basin 

during deposition of the Floyds Knob Bed (Osagean) and correlative rocks.  
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Figure 3.2 – Comparison of Carboniferous carbon (δ13C) and oxygen (δ18O) isotope stratigraphy from Mii et al. (1999, broad dark 
band; Pennsylvanian Composita), Brand (1989, fine-dashed line), Holser (1984, solid line), and Bruckschen and Veiser (1997, dashed 
boxes meaning ±1s), with occurrences of glacial ice (VP, Veevers and Powell, 1987; D, Dickens, 1996; F, Frakes et al., 1992; G, 
Garzanti and Sciunnach, 1997).  Paleoclimate is inferred from isotope-migration patterns (Raymond et al., 1989; HLC = high-latitude 
cooling, HLW = high-latitude warming), evaporite accumulations (Frakes et al., 1992), and sea-level (Ross and Ross, 1988).  Sulfur-
isotope data (thick line) are from Claypool et al. (1980), and strontium-isotope data are from Denison et al. (1994, light stipple [as 
modified from Bruckschen et al., 1995]) and from Bruckschen et al, (1995, dark stipple).  Divisions D-C3 represent isotope stages.  
δ13C increases to the right; δ18O increases to the left (from Mii et al., 1999). Light-blue rectangle represents study interval. Please note 
that there were approximately five sea-level cycles during the study time interval (Kinderhookian-Osagean time).  
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3.2 Eustatic Framework 

Tectonic loading during fairly continuous craton-margin orogenies, flexural 

subsidence and uplift, and basement-structure reactivation have always had a major 

influence in defining sedimentation patterns and sea-level changes in the Appalachian 

foreland and adjacent basins (Ettensohn, 1985a, 1985b, 1994, 2004, 2005).  In foreland-

basin sequences, small-scale fifth- to sixth-order (104-105 years), high-frequency glacio-

eustatic cycle signatures commonly are concealed by the larger scale second-to fourth-

order (106-108 years) tectonic cycles (Dickinson et al., 1994). Small-scale local cycles 

could also be caused by the movement of individual structures in a basin.  

 The Mississippi Valley and Illinois Basin type (Keokuk) section on the North 

American craton show five transgressive-regressive, eustatic sea-level cycles during 

Kinderhookian—Osagean time (Fig. 3.3) (Ross and Ross, 1998). Results from this study 

correspond (Ross and Ross, 1998) well with the global eustatic sea-level curves proposed 

by Haq and Schutter (2008), where five to six cycles can be identified in Tournaisian to 

lower Visean (Kinderhookian–Osagean) time (Fig. 3.4). In the Appalachian Basin from 

the study area, two tectonic loading and relaxation transgressive-regressive cycles were 

noted by Ettensohn et al. (2004, Fig. 13) for the same time interval. The global and local 

regressive-transgressive sea-level curves (Ross and Ross, 1988; Haq and Schutter, 2008; 

Ettensohn et al., 2004) correlate well with glacio-eustatic cycles defined by positive shifts 

in δ18O and δ13C during Kinderhookian–Osagean time (Popp et al., 1986; Mii et al., 1999, 

2001). Long periods of regression in these eustatic curves suggest cooler conditions and 

initiation of Gondwana glaciation during Kinderhookian–Osagean time (Mii et al., 1999). 
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Figure 3.3 –Relative coastal onlap curve for the Mississippi Valley/Illinois Basin type 
(Keokuk) section (from Ross and Ross, 1988). Blue rectangle represents the study 
interval in the Appalachian and Illinois basins of Kentucky and adjacent states. Red 
arrow represents the period of onlap/offlap for the Floyds Knob interval in the Borden 
and Fort Payne formations. Five episodes of onlap can be seen during Kinderhookian–
Osagean time on the North American craton.  
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Figure 3.4 – Global sea-level onlap curves for the study interval (Lower-Middle 
Mississippian) (from Haq and Schutter, 2008). Blue rectangle represents the study 
interval.  
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CHAPTER 4: TECTONIC SETTING 

4.1 Proterozoic Basement Faults in Kentucky 

In sedimentary basins, evidence for recurrent movement of bounding and interior 

faults that result in depositional thickening of sediments on the downthrown sides, as well 

as uplift and erosion of deposits on the upthrown sides, is common throughout the 

geologic record (McKenzie, 1978; Jarvis, 1983; Artyushkov, 1987; McClay, 1990; 

Stewart et al., 1997; Gawthorpe and Leeder, 2000). In fact, throughout many foreland 

basins, sediment-distribution patterns reflect an interaction between the rate at which 

accommodation is generated by fault-controlled subsidence and sea-level controls, and 

the rate of sediment input (Schlische, 1991; Gawthorpe et al., 1994; Contreras et al., 

1997). Basement fault systems usually comprise an array of overlapping and under-

lapping fault segments (Drahovzal et al., 1992; Schlische, 1992; Gawthorpe and Hurst, 

1993; Peacock and Sanderson, 1994; Trudgill and Cartwright, 1994; Childs et al., 1995), 

and it is likely that there would be an interaction between growing fault segments that 

cause changes in faulting and sedimentation patterns through time.  

In the Appalachian and Illinois basins of the study area, patterns of depositional 

thickening and erosional thinning of Lower-Middle Mississippian sediments correlate 

with known basement structures and are very likely related to movement along faults 

associated with the East Continent Rift Basin, the Grenville Front Tectonic Zone, and the 

Rome Trough (Woodward, 1961; MacGill, 1973; Ettensohn, 1977, 1992; Dever, 1990, 

1995, 1999; Drahovzal et al., 1992; Lierman et al., 1992; Drahovzal and Noger, 1995; 

Harris and Drahovzal, 1996; Dever and Moody, 2002; Greb and Dever, 2002; Wilhelm, 
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2008). Reactivation of bounding and interior faults of the Rome Trough and the East 

Continent Rift Basin, uplift along the Cincinnati and Waverly arches, renewed movement 

along the Grenville Front and the Iapetus Rift Margin during Mississippian tectonic 

activity resulted in both uplift and erosion, as well as depositional thickening and 

thinning of Lower-Middle Mississippian units in the study area (Dever, 1995; Ettensohn, 

1977; MacQuown and Pear, 1983; Drahovzal et al., 1992). Each of these structures will 

be discussed briefly below.   

4.1.1 Rome Trough 
The Rome Trough is a major intracratonic graben that mainly formed during late-

stage Iapetan rifting (Thomas, 1991; Goodman, 1992). The Rome Trough is present in 

the western Appalachian Basin, east-central Kentucky, and some have considered it to be 

related to the East Continental Rift Complex (ECRC) (McGuire and Howell, 1963; Stark, 

1997) (Fig. 4.1). The trough is a linear graben-like structure in the subsurface bounded on 

the north by the Kentucky River Fault System and on the west by the Lexington Fault 

System (Ammerman and Keller, 1979; Webb, 1980; Drahovzal and Noger, 1995). The 

southern border fault system (Rockcastle River-Warfield Fault Zone) is defined by the 

margins of basement prominences and subtle arches, rather than by a coherent fault 

system (Drahovzal and Noger, 1995; Stark, 1997).  
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Figure 4.1 – Subsurface extent of the Rome Trough graben in eastern Kentucky. The 
graben is bound by three fault systems and includes one interior fault system.  The 
Kentucky River Fault System is the northern boundary. The Lexington Fault 
System/Grenville Front is the western boundary of the Rome trough. The Rockcastle 
River-Warfield Fault System is the southern boundary. The Irvine-Paint Creek Fault 
System is located within the Rome Trough and is exposed at the surface in eastern 
Kentucky. Modified from Drahovzal and Noger (1995).           
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The Rome Trough is a major negative element in western Appalachian Basin that 

represents a continental rift zone, formed mainly by Late Precambrian–Early Cambrian 

faulting during Iapetan rifting.  It has been interpreted to be a major rift system, 

extending from Grenville Front in the west northeastward across Kentucky, West 

Virginia, and Pennsylvania into south-central New York (Harris, 1978; Webb, 1980; 

Shumaker, 1986, Black, 1986; Thomas, 1991). In the Rome Trough, greatest subsidence 

occurred during Cambrian time, and major thickening of Cambrian sediments is present 

along the downthrown side of the northern border fault systems, and syn-rift 

sedimentation is associated with growth faulting within the trough (Thomas, 1960; Webb, 

1969, 1980).  The thickening of Cambrian sediments in the Rome Trough has been 

interpreted as a response to the activation of growth faults due to the relaxation of steeply 

ramped thrust faults generated during the Grenville contraction (Ammerman and Keller, 

1979). The southern boundary structures include the Rockcastle River uplift, the Pike 

County High, and the Perry County High (Black, 1986). Differential thicknesses of 

Cambrian sediments onlapping these features reflect paleo-topographic highs during 

Cambrian extension (Black, 1986).  The interior, intra-rift Irvine-Paint Creek Fault 

System (Fig. 4.1) and other fault systems within the Rome Trough exhibit down-to-south 

displacement and trend parallel to the northern border-fault system.  The fault systems in 

the Rome Trough that extend down into the Precambrian basement have experienced   

periodic movement since Cambrian time with periodic reactivation throughout Paleozoic 

time (Woodward, 1961; McGuire and Howell, 1963; Webb, 1980; Thomas, 1991; 

Ettensohn and Pashin, 1992). Cambrian extension of the Rome Trough in east-central 

Kentucky created a set of half-grabens of alternating polarity and variable displacement 
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(Walker et al., 1991, 1992). The half-grabens within the trough are bounded in the dip 

direction by continuous west-southwest oriented faults. Along strike, the half-grabens are 

laterally segmented by north-south-oriented faults, suggesting significant strike-slip 

displacement (Drahovzal and Noger, 1995).  

Post-Cambrian growth faulting of varied magnitude within the Rome Trough has 

occurred intermittently along bounding and interior faults during Ordovician, Silurian, 

Devonian, Mississippian, and Pennsylvanian times, resulting in the thickening of 

Paleozoic sediments on the downthrown sides (Dever, 1990, 1999). Paleozoic episodes of 

uplift accompanied by erosional and depositional thinning also occurred along bounding 

and interior faults of the trough (Dever, 1990, 1999). During Mississippian time, growth-

faulting, thickening of the units, and episodic uplift accompanied by erosional and 

depositional thinning of the units occurred along the bounding and interior faults of the 

Rome Trough (Dever, 1990, 1999; Ettensohn, 1992, 2004; Ettensohn and Peppers, 1979). 

In addition, probable seismites, or seismically induced deformation of carbonate bodies 

in Middle Mississippian units in east-central Kentucky, may reflect seismic, gravity-

induced -sliding during fault reactivation (Woodward, 1983; Greb and Dever, 2002). 

Differential thinning and thickening of Lower to Upper Mississippian rocks of the 

Borden and Slade formations along the upthrown and downthrown blocks of the 

Kentucky River and Irvine Paint-Creek fault systems also suggest growth-fault 

reactivation accompanying tectonic activity (Dever, 1995; Dever and Moody, 2002; 

Wilhelm, 2008).  
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4.1.2 Grenville Front 
The Grenville Front is the western boundary of metamorphism and deformation 

associated with the Grenville Orogeny, a collisional event along the eastern margin of the 

Laurentian continent that appears to have emplaced an allochthon of metamorphic strata   

above the East Continent Rift Basin sediments (Drahovzal et al., 1992; Stark, 1997). The 

front separates 0.8–1.1 Ga old, high-grade metamorphic rocks of the Grenville province 

to the east from the 1.2–1.4 Ga anorogenic, calc-alkaline rocks of the eastern Granite–

Rhyolite province to the west.  The Grenville Front extends from southern Canada 

southward through south-central Kentucky. In fact, the Lexington Fault System, a late 

normal fault which may coincide with the older crystalline thrust complex in north-

central Kentucky (Fig. 4.2) (Lidiak and Zietz, 1976; Keller et al., 1982; Drahovzal et al., 

1992), may be a surface manifestation of the Grenville Front. The Grenville Front marks 

the western limit of the Grenville Front tectonic zone (Green et al., 1988; Pratt et al., 

1989). This 40–50-km wide zone is characterized by prominent, southeast-dipping 

reflectors interpreted to be mylonitic layering (Pratt et al., 1989). This fabric is 

interpreted to be the result of imbricate thrusting during the 1.0 Ga old Grenville Orogeny 

during which the Grenville province was sutured to the Granite–Rhyolite province.  
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Figure 4.2 – Location and extent of Grenville Front in central and south-central Kentucky 
(modified from Drahovzal and Noger, 1995). The Grenville Front is concealed in the 
subsurface in central and south-central Kentucky, whereas the Lexington Fault System 
may coincide with the Grenville Front in north-central Kentucky.  
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On the basis of age determinations from limited deep core samples of the local 

unaltered basement mafic rocks associated with the East Continent Gravity High in 

central Kentucky, the Grenville Front metamorphism is interpreted to be about 1.0 Ga old 

(Keller et al., 1981, 1982).  

4.1.3 East Continent Rift Basin (ECRB) in Illinois Basin 
 

The East Continent Rift Basin (ECRB) is a major negative element situated 

largely in basement rocks of the Illinois Basin, west of the Grenville Front. It 

encompasses much of west-central Kentucky, southwestern Ohio, and southeastern 

Indiana. The ECRB is one of the many rift segments that define the East Continent Rift 

Complex (ECRC) (Stark, 1997), which has been interpreted to be an extension of the 

middle Proterozoic (Keweenawan) Midcontinent Rift System (1.05 to 1.3 Ga). The 

ECRB was first described after the discovery of the thick Precambrian Middle Run 

Formation below the Cambrian Mount Simon Sandstone in Warren County, Ohio 

(Shrake, 1991).  It is an elongated, north-south-trending Precambrian rift basin that 

stretches from northern Tennessee through west-central Kentucky, Ohio, and Indiana to 

southern Michigan. It is bounded by the Grenville Front to the east and by normal fault 

blocks to the west (Drahovzal et al., 1992; Fig. 4.3).  
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Figure 4.3 – Subsurface extent of the concealed East Continent Rift Basin (ECRB) 
basement-fault system in south-central and west-central Kentucky (modified from 
Drahovzal et al., 1992, Drahovzal and Noger, 1995, and Stark, 1997).  The Grenville 
Front is younger than ECRB so, it may not be the true eastern boundary of ECRB.  
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The ECRB is infilled by a lower succession of interbedded extrusive flows and 

clastic sediments and an upper succession of apparently alluvial red beds. From gravity, 

magnetic, and seismic data, it is interpreted that the ECRB is composed of several sub-

basins, some of which are as deep as 27,000-feet below sea level and filled with 

sediments as thick as 22,500 feet (Drahovzal et al., 1992). The basin is older than the 

Grenville Orogeny (1 Ga) and was overridden by allochthonous Grenville rocks. The 

subsequent Grenville compressional event resulted in folding and faulting of the rift-fill 

sequence. It has also been suggested that post-Grenville erosion, Paleozoic orogenic 

events, and structural inversion caused the present configuration of the basin (Drahovzal 

et al., 1992). The structures associated with the ECRB (Fig. 4.3) must have been 

reactivated during later Paleozoic orogenies and may have influenced Paleozoic 

structures, stratigraphy, diagenesis, as well as hydrocarbon migration and entrapment 

(Drahovzal et al., 1992).  

 4.1.4 Cincinnati Arch 

The Cincinnati Arch is a broad, north-to-south-oriented, regional anticlinal 

structure, separating the Appalachian Basin on the east from the Illinois Basin, on the 

west (Fig. 4.4).  Rast and Goodman (1994) have suggested that the arch may have 

resulted from structural inversion of parts of the ECRB that underlies it. Bulge migration 

may have reactivated the structures associated with ECRB during each successive 

orogeny. The arch extends from Tennessee through the Nashville Dome northward into 

Kentucky through the Jessamine Dome toward Cincinnati, Ohio. Major structural 

elements associated with this arch include the Nashville and Jessamine Domes on the 

crest, and border faults of the Rome Trough and East Continent Rift Basin on the eastern  
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Figure 4.4 – Location of the Cincinnati and Waverly arches in Kentucky. The north-to-
south-oriented Cincinnati Arch extends from Tennessee through central Kentucky 
towards Cincinnati, Ohio, separating the Appalachian and Illinois Basins.  The Waverly 
Arch of northeastern Kentucky is generally oriented north-to-south extending northward 
into southern Ohio.   
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and western sides, respectively (Borella and Osborne, 1978; Weir et al., 1984; Drahovzal 

et al., 1992; Drahovzal and Noger, 1995; Kolata et al., 2001).  The Cincinnati Arch is 

inferred to have been a relatively fixed, positive structural element throughout much of 

Phanerozoic time, possibly beginning as early as Cambrian–Early Ordovician time 

(Rodgers, 1971; Read, 1989; Drake et al., 1989). 

Thickness and facies variations in Early, Middle, and Late Ordovician shallow-

water deposits in central and south-central Kentucky suggest that the arch was mainly an 

elevated feature in and around the Jessamine Dome (McGuire and Howell, 1963; Borella 

and Osbourne, 1978; Grossnickle, 1985; Ettensohn et al., 1986; Anderson, 1991; 

Ettensohn 1992). Features such as seismites, syn-tectonic faulting, and differential 

subsidence also indicate that the Cincinnati Arch was subjected to seismic activity during 

Late Ordovician time (Ettensohn et al., 2002; Jewell and Ettensohn, 2004; MacLaughlin 

and Brett, 2004).  

Thickness variations in the Lower Silurian Brassfield Formation as well as 

restricted westward movement of detrital sediment in Middle and Late Silurian time 

suggest a restricted open-marine circulation due to the presence of an emergent arch 

during the Salinic Orogeny (Currie, 1981; Gordon and Ettensohn, 1984; Ettensohn, 1994; 

Andrews, 1997).  

Lower, Middle, and Upper Devonian carbonate rocks and black shales deposited 

in south-central and central Kentucky show depositional thinning and onlap over older 

eroded Ordovician and Silurian strata towards the axis of the arch (McFarlan, 1943; 

Freeman, 1951; Kepferle, 1986). Moreover, depositional thinning of Devonian 

Chattanooga and equivalent black shales toward the axis of the arch indicate that the arch 
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was a submerged, positive structural element during Late Devonian time (Dillman, 1980; 

Ettensohn et al., 1988).  During this time, however, uplift of the Cincinnati Arch and 

related subsidence in the Appalachian Basin were apparently related to migratory 

lithospheric flexure in response to Acadian tectonism (Ettensohn et al., 1988, Ettensohn, 

1992). 

Depositional and facies architecture of Lower–Middle Mississippian Borden and 

Fort Payne formations in Kentucky do not show any evidence of an elevated Cincinnati 

Arch. However, depositional thinning of Sunbury black shale from east to west towards 

the arch suggests a slightly positive, but submerged structural feature by Early 

Kinderhookian time (Tournaisian) (Ettensohn and Elam, 1985).  Thickness variations and 

direction of progradation of the Borden and Fort Payne formations do not suggest any 

evidence of an elevated arch (Whitehead, 1976; Sable and Dever, 1990). However, the 

Meramecian (Visean) Warsaw Limestone, St. Louis Limestone, and Ste. Genevieve 

Limestone in the Eastern Interior basin of western Kentucky thin eastward, suggesting 

that the Cincinnati Arch was a positive feature (Sable, 1979; Sable and Dever, 1990).  

Evaporites deposited during early parts of St. Louis deposition probably reflect restriction 

generated by uplift of the Cincinnati Arch and other positive structures, combined with 

sea-level decline (Craig and Varnes, 1979; De Witt et al., 1979).  Paleocurrent patterns in 

upper Meramecian (Visean) and lower Chesterian limestones in the northern Appalachian 

basin reflect the presence of a narrow, elongate embayment that was probably constricted 

on the west by subaerial exposure of the arch in Ohio and north-central Kentucky 

(Woodward, 1983).  By Late Mississippian time, however, depositional thinning and 
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erosion of Upper Mississippian units in northeastern Kentucky, in part, reflect uplift on 

the Cincinnati Arch (Ettensohn, 1975). 

4.1.5 Waverly Arch 
The Waverly Arch is a broad, low, concealed, north-to-south-oriented, positive 

feature, parallel to the Cincinnati Arch, extending from north-central Ohio southward into 

eastern Kentucky (Fig. 4.4).  The arch is probably related to the basement fault systems in 

the Rome Trough at depth (Pashin and Ettensohn, 1987; Ettensohn, 1992). The arch was 

first noted in the work of Woodward (1961), who reported depositional and erosional 

thinning of early Paleozoic formations across the structure. Subsequent investigations of 

Mississippian and Pennsylvanian formations in eastern and north-eastern Kentucky by 

Ettensohn (1975, 1980, 1981) and Englund et al., (1981) noted different axial positions of 

the structure. However, multiple studies suggest the Waverly Arch was a prominent 

feature during much of mid-Cambrian through Pennsylvanian time. 

Thickness variations in the Lower Mississippian Henley Bed of the Farmers 

Member of the Borden Formation (Kearby, 1971) have been interpreted to reflect syn-

depositional uplift on the Waverly Arch (Woodward, 1961; Mason and Lierman, 1992). 

After deposition of the Henley Bed, the eastern margin of subsequent fan-shaped deposits 

of the Farmers Member of the Borden Formation was apparently affected by recurrent 

movement along the Waverly Arch (Woodward, 1961; Lierman et al., 1992).  Movement 

along the Rome Trough basement fault systems and Waverly Arch (Woodward, 1961; 

Drahovzal and Noger, 1995; Harris and Drahovzal, 1996) was suggested to have been a 

dominant factor during deposition of the Lower–Middle Mississippian Borden Formation 

in eastern and northeastern Kentucky.  
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4.2 Lithospheric Flexural Models  
The depositional architecture and sedimentation patterns in many foreland basins 

indicate that the stratigraphy in these basins commonly reflects a complex interplay 

among sediment supply, eustasy, flexural loading from thrust sheet emplacement, and 

possibly long-wavelength dynamic loading (Quinlan and Beaumont, 1984; Beaumont et 

al., 1988).  Newly emplaced loads at the orogenic front along cratonic margins not only 

influence sedimentation in foreland basins by creating new sources of sediment, but also 

influence development and distribution of major unconformities, basins, areas of regional 

uplift, and modes of sedimentation in cratonic basins far away from the orogenic front 

(Beaumont, 1981; Karnmer and Watts, 1983; Quinlan and Beaumont, 1984; Beaumont et 

al., 1988; Ettensohn, 1993, 1994).  

The eastern continental margin of Laurussia experienced parts of two major 

orogenies during the Carboniferous period: the Acadian Orogeny which began during 

Devonian time and continued into the Mississippian time, and the Alleghanian Orogeny, 

which largely occurred during the Pennsylvanian and Permian periods, but emplacement 

of Mauch Chunk clastic wedges suggests that the Alleghanian Orogeny started during 

late Mississippian time (Thomas, 1977; Ettensohn, 1994, 2008). Also by Middle 

Mississippian time, the Ouachita Orogeny had begun on the southern margin of Laurussia 

(e.g., Arbenz, 1989). Newly emplaced loads along the southern and eastern continental 

margins of Laurussia caused deformation along the edge of the plate and the coeval 

cratonward migration of foreland basins and uplifted peripheral bulges on the distal 

margins of these basins. Some of the basins no doubt impinged upon the study area in 

east-central and south-central Kentucky.  
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Lithospheric flexure in foreland basins occurs during orogeny in order to maintain 

isostatic equilibrium in response to the deformational loading of migrating fold-thrust 

belts during plate collision. The deformational loading at the craton margin creates a 

retro-arc foreland basin and associated peripheral bulge (Dickinson, 1974; Quinlan and 

Beaumont, 1984; Beaumont et al., 1988). As orogeny proceeds and thrust loads shift 

cratonward, the foreland basin and peripheral bulge also migrate cratonward away from 

the load.  Moreover, the migrating bulge produces a regional unconformity which is 

overlapped by foreland-basin sediments.  With increased thrusting, loading, and folding 

at the orogenic front, the foreland basin subsides to the point that an under-filled foreland 

basin with a stratified water column develops (e.g., Early Mississippian Sunbury Shale; 

Ettensohn et al., 2004) (Fig. 4.5). As the deformed load is eroded, however, the basin 

begins to fill with turbidites, debris flows, deltas, tempestites, and flysch-like sediments 

(Fig. 4.5). Once the orogeny halts and cratonward movement of deformation ceases, the 

static load then subsides, forcing the foreland basin to subside more while the bulge gets 

uplifted and migrates back toward the load. At this time in proximal parts of the basin 

near to the bulge, the bulge my block the further westward migration of deltaic 

sediments, such that deltaic sedimentation gives away to shallow open-marine and 

peritidal sediments on and near the uplifted bulge(e.g., Maccrady Formation; Ettensohn et 

al., 2004). However, because the uplifted bulge blocks cratonward movement of 

sediment, distal parts of the foreland basin experience sediment starvation and relative 

sea-level rise, permitting the deposition of glaucony, phosphate rich-shales and siltstones, 

as well as chloritic clays (e.g.,  Nada Member and associated Floyds Knob glauconite 

horizons of Borden Formation (Ettensohn et al., 2004). In the absence of clastic 
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sediments from far distal areas of the foreland basin, deeper water, cherty carbonates may 

come to dominate (Fig. 4.5).   

4.2.1 Neoacadian Tectophase  
Lower–Middle Mississippian rocks in the study area of the western Appalachian 

and distal Illinois Basins reflect parts of a tectonic event called the fourth tectophase of 

the Acadian Orogeny or the Neoacadian tectophase (Ettensohn, 1994, 2004, 2008). This 

tectophase or orogenic event has been interpreted to represent a unique time of dextral 

shearing and transpression between the Carolina terrane and Laurussia (Merschat and 

Hatcher, 2007; Ettensohn, 2008) (Fig. 4.5).  

4.3 Pine Mountain Thrust  
In parts of eastern Kentucky (Pound Gap), western Virginia (Cumberland Gap 

tunnel), and northeastern Tennessee (Jellico Mountain), a complete section of 

Mississippian rocks is exposed along the northwestern face of the Pine Mountain thrust 

sheet (Fig. 4.1). The rocks were thrusted northwestward 3–22 km from deeper parts of 

the central Appalachian basin during the Alleghanian Orogeny (Coskren, 1981; Mitra, 

1988). The Mississippian rocks are exposed along the truncated limbs of the Middlesboro 

Syncline and the Powell Valley Anticline.  
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Figure 4.5 – Schematic southwest-northeast cross-section across the central Appalachian 
Basin showing Mississippian units and lithologies with respect to the flexural events of 
the Early–Middle Mississippian Neoacadian tectophase of the Acadian Orogeny (adapted 
from Ettensohn et al., 2004).  
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CHAPTER 5: STRATIGRAPHIC FRAMEWORK 

5.1 Price-Pocono-Grainger-Borden Delta Complex and Fort Payne Formation 

The Price-Pocono-Grainger-Borden delta complex represents an Early-Middle 

Mississippian (Kinderhookian-Osagean) clastic succession deposited in the central and 

western Appalachian Basin during the loading-type-relaxation phase at the end of the 

Neoacadian tectophase of the Acadian Orogeny (Ettensohn, 1994, 2001, 2008; Ettensohn 

et al., 2002).  In the western parts of the basin, the delta complex immediately rests 

unconformably over basinal, black-shale deposits of Devonian and Mississippian age. 

The Price-Pocono part, which is composed of non-marine, delta-plain sediments, reflects 

proximal, subaerial parts of the delta complex in eastern parts of the Appalachian Basin 

near source areas (Bartlett, 1974; Arkle et al., 1979), whereas the Borden-Grainger parts 

are composed of marine, prodelta, and delta-front sediments that represent more distal, 

subaqueous part of the wedge (Hasson, 1972). The subaqueous part of the delta lobes in 

the western Appalachian Basin extends cratonward for 600 km, crossing the Cincinnati 

Arch into the Illinois Basin (Swan et al., 1965; Lineback, 1966). 

The paleoslope of the delta complex was dominantly to the west, but in the 

Illinois Basin across the Cincinnati Arch, a southern paleoslope was present (Kepferle, 

1971; Whitehead, 1978). In the distal parts of the delta complex in eastern Kentucky, the 

thickness of the Borden and Grainger formations reaches 240 m, and 200 m in the Illinois 

Basin in southern Indiana and north-central Kentucky, respectively, whereas in the 

proximal parts (Price-Pocono) in the central part of the basin, the thickness reaches 500 

m (Meckel, 1970; Patchen et al., 1985).  



46 

 

The Borden Formation and the correlative Grainger Formation in Kentucky are 

dominated by terrigenous detrital sediments, especially deep-water prodelta clays and 

coarsening-upward delta-front silts (Peterson and Kepferle, 1970; Kearby, 1971).  In 

Kentucky, the delta lobes of Borden and Grainger formations (Fig. 5.1) thin progressively 

westward and southwestward along a paleoslope in central and southeastern parts of 

Kentucky into the starved-basin conditions of the Fort Payne Formation to the southwest 

in south-central Kentucky (Peterson and Kepferle, 1970; Kepferle, 1971; Sedimentation 

Seminar, 1972; Lewis and Potter, 1978; Whitehead, 1984; Sable and Dever, 1990). 
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Figure 5.1 – Map showing regional setting of Appalachian and Illinois basins in 
Kentucky (modified from Lewis and Potter, 1978). Map shows position of the exposed 
Borden-Grainger delta complex (stippled) in western Appalachian and eastern Illinois 
basins with respect to the Fort Payne starved basin in south-central Kentucky during 
Early Mississippian time. The Fort Payne starved basin lies southwest of the Borden-
Grainger delta front. 
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5.2 Stratigraphic Relationship and Descriptions  

The major stratigraphic units of this study are the Borden Formation, the Fort 

Payne Formation, the Maccrady Formation, and the Grainger Formation. Other important 

units like the Maury Shale and Rockford Limestone in Kentucky are commonly 

subsumed by the Fort Payne and Borden formations, respectively. The lithostratigraphic 

and chronostratigraphic relationships between correlative units observed in the study area 

of southeastern Kentucky and northeastern Tennessee, west-central Kentucky and 

southern Indiana, south-central, east-central, and northeastern Kentucky are presented in 

Figures 5.2 and 5.3 and described below.  

5.2.1 Maury Shale 

The Maury Shale (Figs. 5.2 and 5.3), or the New Providence Member of earlier 

workers (Early Mississippian; Kinderhookian), is a green, glauconitic, shale unit with 

abundant conodonts, fossil fragments, fish remains, and phosphate nodules at its base; it 

is considered to be the base of the Fort Payne Formation in south-central Kentucky. Other 

accessory minerals such as pyrite, gypsum, and iron-oxide are found in the unit. The 

Maury Shale is equivalent to the Maury Formation of Tennessee and unconformably 

overlies the Upper Devonian and Lower Mississippian Chattanooga or New Albany 

shales (MacQuown and Perkins, 1982; Lewis and Potter, 1978; Ausich and Meyer, 1990; 

Leslie et al., 1996; Krause et al., 2002).  The Maury Shale unconformably overlies 

Devonian-Mississippian shales below, and in places, may be unconformably overlain by 

shales in the Fort Payne and Borden formations.
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Figure 5.2 – Chronostratigraphic framework showing Early–Middle Mississippian 
(Kinderhookian–Osagean) Borden, Grainger, and Fort Payne study interval (modified 
after Sedimentation Seminar, 1972;  Ausich and Meyer, 1990; Sable and Dever, 1990; 
Khetani and Read, 2002; Lierman and Mason, 2004).  
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Figure 5.3 – Lithostratigraphic framework showing Lower–Middle Mississippian 
(Kinderhookian–Osagean) Borden and Fort Payne study interval.  

 

 



51 

 

Biostratigraphic studies of extracted conodonts have suggested that the Maury Shale may 

represent sedimentation during parts of the Kinderhookian and Osagean stages, a period 

of apparently 17 million years (Conant and Swanson, 1961; Sable and Dever, 1990; 

Leslie et al., 1996; Krause et al., 2002; Davydov et al., 2004). This shale or its 

equivalents in the New Providence generally reflects the beginning of the buildup interval 

in the lower part of the Fort Payne Formation.  

Maury lithologic equivalents in the western Appalachian and eastern Illinois 

basins typically contain mixed conodont assemblages of Devonian, Kinderhookian, and 

Osagean ages, and are interpreted to represent a lag concentrate at an erosional hiatus, 

which probably extended through Kinderhookian and early Osagean times (Rexroad and 

Scott, 1964; Sable and Dever, 1990) (Figs. 5.2 and 5.3). With this interpretation, the 

depositional environment for the Maury Shale and associated fossiliferous green shales is 

interpreted to represent very slow clastic influx in a starved marine basin far removed 

from source areas. Abundant phosphate nodules and fine glauconite clay in the Maury 

also support a low-energy, sediment-starved environment of precipitation (Conant and 

Swanson, 1961; Sable and Dever, 1990).  

5.2.2 Rockford Limestone 

The Rockford Limestone is a thin, widespread calcareous unit of Early 

Mississippian (late Kinderhookian-early Osagean) age present in southern Indiana, and 

west-central Kentucky (Sable and Dever, 1990) (Fig. 5.2).The Rockford Limestone has 

also been reported from east-central Kentucky at the Big Hill exposure near Berea 

(Lierman and Mason, 2004). The Rockford Limestone was named after the Rockford 

Goniatite Bed in southern Indiana and is a gray to greenish-gray, micritic, phosphatic, 
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glauconitic limestone or dolostone (Sable and Dever, 1990; Lierman and Mason, 2004). 

It is reported to contain both Kinderhookian and Osagean conodont elements in Indiana, 

as well as Kinderhookian foraminiferal elements in west-central Kentucky and southern 

Indiana (Sable and Dever, 1990). Kinderhookian conodont elements have also been 

reported from the underlying Jacobs Chapel Shale at the Big Hill exposure near Berea, 

Kentucky (Sandberg et al., 2002; Lierman and Mason, 2004). The Rockford Limestone of 

west-central Kentucky and Indiana seems to be coeval with parts of the Maury Shale in 

south-central Kentucky (Sable and Dever, 1990).   

The Rockford Limestone is as much as 3 feet (~ 1 m) thick in west-central 

Kentucky near the Ohio River in Louisville, and rests directly on the Devonian New 

Albany Shale. This unit has also been reported from the Big Hill exposure in east-central 

Kentucky, where it is very thin-bedded (5-10 cm), greenish-gray, calcareous, and highly 

bioturbated; it occurs with the very thin, underlying the Jacobs Chapel Shale Bed 

(Lierman and Mason, 2004). The Rockford Limestone along with the Jacobs Chapel 

Shale Bed typically occurs just above an erosional contact with the underlying Devonian–

Mississippian New Albany Shale; it has a gradational contact with the overlying Nancy 

Member of the Borden Formation (Lierman and Mason, 2004).  

Previous studies suggest that the Rockford Limestone in Indiana and parts of 

northern Kentucky were deposited in a low-energy environment on a seafloor with little 

relief and low clastic influx, in a deeper area behind the Cincinnati Arch (Sable and 

Dever, 1990). The depositional environment has been interpreted to represent a starved-

shelf or basin environment (Sable and Dever, 1990). The Rockford Limestone unit at the 

Big Hill exposure is devoid of any primary sedimentary structures due to intense 
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bioturbation, and has been interpreted to represent an isolated, distal part of a carbonate 

turbidite flow in dysaerobic conditions (Lierman and Mason, 2004).  

5.2.3 Borden Formation 

The Borden Group (or Borden Formation) was formally designated by Cumings 

(1922) for the Lower-Middle Mississippian shales and siltstones exposed near Borden in 

Clark County, Indiana (Weir et al., 1966). Stockdale (1931, 1939) proposed the use of the 

Borden Group (or Formation) in Kentucky. The Borden Formation unconformably 

overlies Upper Devonian and/or Lower Mississippian black shales, and is generally a 

coarsening-upward, west-to-southwest-thinning- and -fining, clastic sequence that is 

common in west-central, east-central, south-central, and northeastern parts of Kentucky 

(Fig. 5.2). The generalized depositional environment is interpreted to have been a 

subaqueous marine delta, in which the delta prograded westerly from the east and 

northeast onto a stable cratonic shelf (Peterson and Kepferle, 1970; Lane and Dubar, 

1983).  In the Borden delta, environments range from pro-delta to delta front.  

The following members and one bed of the Borden Formation are described 

below: Nancy Member, Cowbell Member, Halls Gap Member, Floyds Knob Bed, Wildie 

Member, Nada Member, and Muldraugh Member.  

5.2.3.1 Nancy Member 
The Nancy Member is of Osagean age (Figs. 5.2 and 5.3) and is widespread and 

persistent throughout northeastern, east-central, west-central, and south-central parts 

Kentucky. The Nancy Member represents distal foreset and bottomset strata of the 
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Borden delta and was named by Weir et al (1966) for exposures of basal part of Borden 

Formation in Pulaski County, Kentucky (Kepferle, 1971).   

The Nancy Member is composed of non-resistant, gray- to greenish-gray, 

fossiliferous, bioturbated mudstones, shales, and silty shales with local crinodal 

packstone lenses, as well as siderite and calcareous concretions. The common fossils 

include brachiopods, crinoids, cephalopods, gastropods, pelecypods, and bryozoans 

(Weir et al., 1966; Kepferle, 1971; Warne, 1990). The Nancy Member contains the Gum 

Sulfur Bed, a lentil of resistant siltstone that emphasizes the clastic-wedge character of 

the lower Borden (Sable and Dever, 1990). Nancy shales and silty shales lack any 

sedimentary structures due to extensive bioturbation. The sediments were deposited 

below normal wave base, on a basin-floor, pro-delta, or delta-slope environment 

(Kepferle, 1977; Chaplin, 1980, 1985; Kammer and Cox, 1985). Trace fossils reported in 

the Nancy Member are included in the deeper water Zoophycus-Nereites ichnofacies 

assemblages (Chaplin, 1980, 1985). Lower Nancy and upper Nancy contain Zoophycus-

Nereites, and Zoophycus assemblages, respectively, indicating distal turbidite (Nereites) 

to quiet, deep-water (Zoophycus) depositional environments (Chaplin, 1980, 1985; Frey 

and Seilacher, 1980; Warne, 1990).  

In northeastern and east-central Kentucky, the Nancy Member unconformably 

overlies Devonian and Mississippian black shales, and is unconformably overlain by the 

Cowbell, Halls Gap or Holtsclaw members of the Borden Formation. In west-central 

Kentucky in Jefferson and Bullitt counties, however, the Nancy Member is conformably 

overlain by the Muldraugh Member across a thin glauconitic siltstone unit (Floyds Knob 
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Bed), locally associated with an oolitic limestone (Kepferle, 1971; Sable and Dever, 

1990).  

5.2.3.2 Cowbell Member 
The Cowbell Member (Figs. 5.2 and 5.3) is of Osagean age and is widespread and 

persistent throughout northeastern and east-central parts of Kentucky. The Cowbell 

Member represents distal delta-front strata of the Borden delta and was named by Weir et 

al. (1966) for siltstones exposed near the head of a minor tributary of Cowbell Creek west 

of Big Hill, Kentucky. The Cowbell Member is as much as 380-feet (115.8-m) thick in 

northeastern and east-central Kentucky.  

The Cowbell Member is composed of bluish-gray to gray, thick, fossiliferous, 

bioturbated, resistant siltstones separated by thin discontinuous, grey shales. The 

calcareous, sub-graywacke-type siltstones commonly weather to platy fragments, which 

commonly obscure original bedding due to extensive bioturbation. The Cowbell Member 

contains siderite nodules, calcite nodules, and ironstone layers (Warne, 1990). Common 

fossils include brachiopods, crinoids, pelecypods, gastropods, and bryozoans; ammonoids 

are sparse to common (Kearby, 1971).  

The Cowbell Member conformably overlies the Nancy Member and conformably 

underlies the Nada Member across a thin glauconitic siltstone layer in northeastern and 

east-central Kentucky, although in places the glauconite layer is absent (e.g., at Big Hill, 

near Berea in Kentucky). The Cowbell Member was deposited on the Borden delta-front 

as a migrating distal bar in a delta-front setting (Kearby, 1971).  Trace-fossil associations 

in the Cowbell Member include the Cruziana ichnofacies in the lower portion and 

Cruziana-Skolithos ichnofacies in the uppermost portion, indicating subtidal deposition 
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(Kearby, 1971; Chaplin, 1980, 1985).  Based on sedimentary structures and trace-fossil 

assemblages, the Cowbell Member was deposited in a high pro-delta and delta-front 

environment, deposited as a result of constant distributary-channel migration and 

switching (Kearby, 1971; Chaplin, 1980, 1985).  

5.2.3.3 Halls Gap Member 
The Halls Gap Member is of Osagean age (Figs. 5.2 and 5.3), and named after a 

calcareous-to-dolomitic siltstone unit that is present in west-central, south-central, and 

east-central Kentucky.  The unit is composed of resistant, greenish-gray to medium-gray 

limy siltstone with minor clayey siltstones and silty limestones (Weir et al., 1966).  The 

unit weathers to a brownish orange-gray color and generally thickens to the southwest.  

The bedding usually displays planar laminae, ripple cross-laminae, and small-scale 

hummocky cross-stratification.  Locally, the bedding displays a fining-upward texture 

into bioturbated, friable siltstones.  The unit thickens to the southwest where it measures 

almost 100 feet (30.5 m) thick southeast of Halls Gap, Kentucky.   

The Halls Gap Member exhibits foreset beds dipping west and southwest at 

angles of generally less than 5°, and thins or grades to extinction southwestward into the 

Fort Payne Formation (Sable and Dever, 1990). The unit is truncated in places by the 

overlying Wildie Member (or Nada Member) and grades laterally into siltstones and 

shaley siltstones of the Nancy Member (Weir et al., 1966). The Muldraugh Member 

conformably overlies the Halls Gap Member across the glauconitic siltstones represented 

by the Floyds Knob Bed.  Siliceous geodes and concretions occur throughout the unit, 

and lenses of limestone become more persistent in its upper parts. 
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5.2.3.4 Floyds Knob Bed 
The widespread, Late Osagean Floyds Knob Bed (Figs. 5.2 and 5.3) was first 

described as the Floyds Knob Formation by Stockdale (1931, 1939) for the fossiliferous 

glauconitic limestones and siltstones exposed near Floyds Knob Post Office, Floyd 

County, Indiana.  The Floyds Knob Bed was described by Stockdale (1939) as an 

important ‘marker’ horizon in the Appalachian and Illinois basins that has been used in 

tracing facies from strata, both above and below, and in establishing correlations across 

the region. Whitehead (1978) formally designated the unit as the Floyds Knob Bed of the 

Borden Formation after Weir et al. (1966) suggested that the Floyds Knob Formation of 

Stockdale (1939) is too thin, too discontinuous, and could be easily confused with other 

glauconite horizons that commonly occur in the upper Borden Formation.  

The Floyds Knob Bed is generally composed of an upper bioturbated, peloidal 

glauconite and a lower limestone or dolostone bed. In places, only the glauconite is 

present in Kentucky; where the carbonate is present, it is generally composed of 

glauconitic, crinoidal, mudstones, wackestones, or packstones which are fossiliferous and 

locally dolomitic (Stockdale, 1931; Kepferle, 1971; Whitehead, 1978, Sable and Dever, 

1990). The Floyds Knob Bed is extensively burrowed and bioturbated, and glauconite 

pellets are mostly concentrated in burrows and trails. The unit is abundantly fossiliferous, 

including gastropods, foraminifera, brachiopods, corals, echinoderms, pelecypods, 

bryozoans, and crinoids (Whitehead, 1976, 1978). Abundant pyrite, chertified fossils, 

ferroan dolomitic mud, and secondary calcite deposits are recognized in association with 

the Floyds Knob Bed in Kentucky. Phosphorite nodules and phosphatic fossil remains are 

also common in the Floyds Knob Bed throughout the study area, but they are more 
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abundant in southern parts of its distribution. Nodules range in diameter from 0.25 inches 

to about 2 inches (0.6 to 5 cm), are rounded and elongate in shape, locally contain fossils 

like cephalopods, and have divots and distinctive markings that are the result of boring by 

invertebrate species. Lierman and Mason (2004) reported phosphatic fossil remains 

including fish teeth, scales, small fragmented bones, internal molds of gastropods and 

brachiopods, and crinoidal debris.  

  The unit is distributed widely and has been reported in southern Indiana in the 

basal part of the Edwardsville Limestone (Whitehead, 1978) and to the east at Newman 

Ridge, Tennessee, in the basal part of the Maccrady Formation (Hasson, 1986). In west-

central Kentucky, the Floyds Knob Bed overlies the Halls Gap Member and underlies the 

Muldraugh Member south of Lebanon (Kentucky Highway 208) in Marion County. It is 

conformably underlain by the Nancy Member and overlain by the Muldraugh Member at 

the Fort Knox and Bluegrass Parkway exposures in Hardin County. In south-central 

Kentucky, the Floyds Knob Bed conformably overlies the Halls Gap Member and 

underlies the Muldraugh Member west of Somerset (Cumberland Parkway) in Pulaski 

County and south of Liberty (US 127S) in Casey County. In Cumberland, Wayne, 

Clinton, and Russell counties, the Floyds Knob Bed overlies unnamed dark-grey silty 

shales of the Fort Payne Formation and underlies Fort Payne calcisiltites and dolosiltites. 

In northeastern Kentucky, the Floyds Knob Bed conformably overlies the Cowbell 

Member and occurs within the Nada Member near Morehead (Interstate 64) in Rowan 

and Carter counties. In east-central Kentucky, the Floyds Knob Bed overlies the Cowbell 

Member and occurs within Nada Member near Slade (Natural Bridge area, Kentucky 

Highway 11) in Powell County, near Frenchburg in Menifee County (US 460), and near 
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Brodhead (Kentucky Highway 70) in Rockcastle County. The Floyds Knob Bed also 

occurs within the Nada Member at the Big Hill exposure in Madison County and at the 

Interstate 75 exposure near Mt. Vernon in Rockcastle County. The Floyds Knob Bed is 

conformably underlain by the Grainger Formation and overlain by the Fort Payne 

Formation in the Jellico Mountain area, Campbell County, Tennessee. At Pound Gap in 

Letcher County, Kentucky though glauconite is absent, the Floyds Knob Bed  is 

represented by  a concentrated interval of medium-gray to greenish gray mudstones and 

siltstones that occur at the contact between the Grainger Formation below and the 

Newman Limestone above. At Cumberland Gap, Virginia, the Floyds Knob Bed has been 

assigned to an interval of medium-gray to greenish-gray mudstones and siltstones that 

occur at the contact between the Grainger Formation below and the Fort Payne Formation 

above (Vanover et al., 1989).  

5.2.3.5 Nada Member 
The Nada Member (Figs. 5.2 and 5.3) of the Borden Formation is composed of 

nonresistant, greenish-blue to bluish-green gray, dark-red, and greenish-purple clay 

shales and silty shales with minor siltstones, packstones, grainstones, dolomicrites, and 

glauconites. Dark-green glauconite grains of the Floyds Knob Bed are scattered 

throughout, but are commonly concentrated in 1–2-inch (2.5–5-cm) thick laminae, which 

are generally phosphatic (Stockdale, 1931; Weir et al., 1966; Chaplin, 1980). Four to five 

glauconite horizons, including the Floyds Knob Bed, occur in the Nada Member. The 

thickness of the Nada Member ranges from 0 to about 75 feet (22.8 m), reaching the 

maximum in east-central Kentucky; it thins to the northeast, east of Morehead, Kentucky 

(Chaplin, 1980).  
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The Nada Member (Figs. 5.2 and 5.3) is the uppermost deposit across the Borden 

delta and represents an open-marine, shelf-margin, delta-destruction facies on the Borden 

delta platform (Ettensohn, 1979, 1980, 1981; Chaplin, 1980; Ettensohn et al., 2004) on 

top of the delta-front silts and sands of the Cowbell Member.  The Nada Member is 

generally conformable with the underlying Cowbell Member and the overlying Renfro 

Member of the Slade Formation. In places, however an apparently erosional contact 

between the Renfro and the Nada may indicate an unconformity.  The glauconite-rich 

Floyds Knob Bed is located within the Nada Member and is continuous throughout the 

region (Stockdale, 1931; Kepferle, 1971; Whitehead, 1978, Sable and Dever, 1990).  

The high concentration of glauconite and phosphorite nodules in the upper part of 

the Nada Member is not typical of delta-platform, siliciclastic deposition.  Both minerals 

suggest that the rate of sedimentation was greatly reduced in comparison to lower 

members of the Borden Formation. Ettensohn et al. (2004) suggested that the bluish-

green coloration of the siltstones and shales of the Nada Member represents a unique 

example of chlorite-rich verdine-facies development with attributes similar to the 

glauconite facies reported by Odin and Letolle (1980), Odin and Matter (1981), Odin and 

Fullager (1988), and Thamban and Rao (2000).   

Conodont and ammonoid species (Work and Mason, 2003), and crinoids (Lee et 

al., 2005) found in northeastern Kentucky at the Hilltop Church Section and along 

Interstate 64 between Morehead and Olive Hill, Kentucky, suggest that the upper Nada is 

late middle Osagean (late Tournaisian to earliest Visean) in age.  Crinoids sampled at 

many exposures in northeastern Kentucky suggest that the Nada is of late early Osagean 

age (Lane and Dubar, 1983; Kammer, 1984; Matchen and Kammer, 1994).  Conodonts 
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and foraminifera in the overlying Renfro Member, in contrast, suggest that the Renfro is 

largely Meramecian (Visean) in age (Weir, 1970).  Therefore, an unconformity may exist 

between the two members where evidence for late Osagean rocks in northeastern 

Kentucky is absent (Lee et al., 2005).   

The Nada Member is remarkably different in northeastern Kentucky compared to 

occurrences in east-central Kentucky along the Cumberland Escarpment. In northeastern 

Kentucky, the Nada Member includes many carbonate-buildup horizons, characterized by 

abundant brachiopods, bryozoans, cephalopods, gastropods, pelecypods, pelmetazoans, 

and rugose corals (Chaplin, 1980).  The diverse fauna suggests that open-marine 

conditions existed during deposition of the Nada in northeastern Kentucky.  Chaplin 

(1980) interpreted the buildups as a series of crinoid-bryozoan shoals that grew on top of 

abandoned delta lobes.  However, to the southwest in east-central Kentucky, the Nada 

Member is composed mostly of shales and silty shales, suggesting that clastic deposition 

was more active and probably occurred in deeper conditions there than to the northeast.  

Bryozoans, brachiopods, and crinoids are common along with phosphorite nodules, and 

phosphorite has replaced much of the skeletal material in the lower and middle parts of 

the member.  Hence, the abundance and diversity of fossil material suggests that 

sedimentation rates must have been slow enough to allow these quiet-bottom 

communities to develop on the muddy substrate (Ettensohn et al., 2004).  Water depths 

were likely above storm wave-base because of the presence of hummocky cross-beds and 

debris-filled scours in some beds, which are infilled with the disarticulated invertebrate 

remains (Lierman and Mason, 2004; Ettensohn et al., 2004).  The siltstone beds within 

the Nada Member typically are tabular and massive (bioturbated) and exhibit planar and 
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hummocky cross-bedding; ripple-bedding is common, as are erosional scours (flute casts, 

tool marks) and/or loadcasts along the lower contacts.  Trace fossils are evident in the 

lower and upper parts of individual beds, and trace fossils from the Zoophycus and 

Cruziana ichnofacies are common (Chapman, 1980). Siltstone beds are commonly 

separated by thin shale partings (Chapman, 1980).  Overall, deposition in the Nada 

Member is interpreted to have occurred on a shallow-subtidal delta platform with local 

carbonate banks and interdeltaic lagoons in waters less than 200-feet (60-m) deep 

(Ettensohn et al., 2004). 

5.2.3.6 Wildie Member 
The Wildie Member or upper Nada Member of Lierman and Mason (2004) of the 

Borden Formation (Figs. 5.2 and 5.3) is composed of two principal lithologies: olive-gray 

siltstones or fine-grained sandstones, and dark olive-gray mudstones that are more 

common in the upper part of the unit.  The unit is exposed in the vicinity of northern 

Rockcastle County and southern Madison County as an elongate, lobe-shaped body. The 

unit dips and pinches out towards the southwest and is bound at the lower and upper 

contacts by glauconitic siltstone beds (Weir et al., 1966). It has sharp, erosional contacts 

with both the underlying Nada Member and overlying Renfro Member across erosional 

surfaces characterized by silty glauconite beds.  

The siltstone beds of the Wildie Member are primarily composed of moderately 

sorted, angular, detrital quartz and feldspar within beds that range from 0.2 to 7.0 feet 

(0.06 to 2.0 m) in thickness (Gauthier, 1988).  The thickest beds are found in outcrop 

exposures between the towns of Wildie and Hummel in northern Rockcastle County 

(Gauthier, 1988).  The siltstone beds typically are tabular and massive (bioturbated) and 
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exhibit planar and hummocky cross-bedding; ripple-bedding is common, as are erosional 

scours (flute casts, tool marks) and/or loadcasts along the lower contacts.  Trace fossils 

are evident in the lower and upper parts of individual beds, and fossils from the 

Zoophycus and Cruziana ichnofacies are common (Gauthier, 1988). Siltstone beds are 

often separated by thin shale partings (Gauthier, 1988).   

The mudstone beds of the Wildie Member contain glauconite and lesser amounts 

of iron pyrite.  The mudstone beds range from less than one inch thick (several 

millimeters) to beds that are greater than 13 feet (4 m) thick at the distal margins 

(Gauthier, 1988).  The Wildie Member, overall, is a fining-upward sequence in which 

mudstone tends to be more abundant in the upper parts of the section.  The mudstones are 

typically bioturbated, thus destroying any bedding and sedimentary structures (Gauthier, 

1988). 

 The Wildie Member of the Borden Formation is interpreted as having been 

deposited in an upper delta-front and platform setting adjacent to a nearby distributary 

channel (Weir et al., 1966; Weir, 1970; Gauthier, 1988).  Sediments of the Wildie 

Member were deposited following the regional hiatus and accompanying deposition of 

the underlying Floyd Knob Bed (Weir et al., 1966).  The quartz, feldspar, and glauconitic 

grains in the Wildie Member are interpreted to have been derived from an easterly source 

controlled by fluvial and wave-dominated conditions (Weir et al., 1966; Weir, 1970; 

Gauthier, 1988).  Where hummocky cross stratification is present in outcrop, Gauthier 

(1988) inferred that the beds were deposited by storm-generated waves on parts of an 

abandoned delta lobe that were scoured and reworked by unidirectional and oscillatory 
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flow regimes.  Gauthier (1988) also suggested that the mudstone facies was deposited 

during fair-weather conditions. 

5.2.3.7 Muldraugh Member 
On the Borden-delta slope, the hiatus or time of slow deposition represented by 

the Floyds Knob Bed marks the beginning of carbonate deposition in Middle 

Mississippian time, which continued throughout much of Late Mississippian time on the 

platform before the renewal of terrigenous-detrital sedimentation in latest Mississippian 

time. In south-central, west-central, and central Kentucky, basal deposits of the carbonate 

sequence are assigned to the Muldraugh Member (Figs. 5.2 and 5.3) of the Borden 

Formation. The Muldraugh Member is characterized by diverse lithologies, but is 

primarily composed of resistant cherty dolosiltites, wackestones, silty micrites, and 

dolomicrites, with packstone-grainstone lenses, calcareous shales, and siliceous geodes.  

In general, the Muldraugh Member exhibits thin- to- medium, lenticular bedding, such 

that the bases of the beds are irregular and erosional while the tops show pinch-and-swell 

structures.  Structures include megaripples, cross bedding, and graded bedding, and some 

beds are bioturbated with Chondrites and Zoophycus trace fossils.   

The Muldraugh is exposed in west-central, central, and south-central Kentucky.  

The lower contact is the topmost glauconite seam in the Floyds Knob Bed (Weir, 1970), 

whereas the upper contact is with the overlying Salem-Warsaw Formation to the north 

and with the equivalent Science Hill Sandstone in south-central Kentucky (Weir, 1970). 

The Muldraugh Member is subdivided into seven intervals based on biostratigraphic and 

lithostratigraphic relationships (Kammer et al., 1990; Kammer et al., 2007).  On the basis 
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of conodonts (Nicoll and Rexroad, 1975), the Muldraugh is thought to be largely late 

Osagean (Tournaisian) in age. 

The Muldraugh Member was deposited down-dip of the Renfro Member and up-

dip of Fort Payne sediments as a carbonate-ramp facies along the outer-delta platform 

and delta slope of the Borden delta (Peterson and Kepferle, 1970; Sable and Dever, 1990; 

Ausich and Meyer, 1992).  The Muldraugh Member carbonates have been interpreted to 

represent largely subtidal sediments; much of the carbonate sediment was transported to 

the platform margin, onto the foreset slope, and into the sediment-starved basin, forming 

clinoform deposits that built a southwestwardly prograding carbonate platform 

(Sedimentation Seminar, 1972; Klein, 1974; Hannan, 1975; Benson, 1976).  Deposits of 

the Muldraugh thicken abruptly to the southwest across the Borden Delta front, ranging 

in thickness from about 36 to 60 feet (11 to 18 m) on the platform to almost 300 feet (90 

m) on the slope and basinward (Dever, 1995). In the basin southwest of the delta-front, 

rocks correlative with the Muldraugh are assigned to the Fort Payne Formation.  

5.2.4 Grainger Formation 

The Grainger Formation (Fig. 5.2) of late Kinderhookian–Osagean (late 

Tournaisian–early Visean) age in central Appalachian Basin is only exposed at the 

surface along Pine Mountain in southeastern Kentucky, northeastern Tennessee, and 

western Virginia, where it attains a thickness of 200–500 feet (60–150 m) (Howell and 

Mason, 1998; Sable and Dever, 1990; Ettensohn et al., 2002). The Grainger is composed 

of  shelf-edge to basinal, pro-deltaic deposits, equivalent to more proximal delta-front and 

delta-plain deposits of the more proximal Price and Pocono formations to the northeast 

(Hasson, 1972, 1986; Rice et al., 1979; Ettensohn et al., 2002). The Grainger Formation 
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is characterized by gray and greenish-gray, silty shales with thin laminae and beds of 

siltstones, as well as by siderite nodules and lenses similar to those in the Nancy Member 

of the Borden Formation; however, the upper part of the Grainger is characterized by 

resistant grey, greenish-gray, and reddish-grey siltstones, shales, and sandstones similar 

to those in the Nada Member of the Borden Formation (Sable and Dever, 1990). The 

overall grain size of the Grainger decreases southward into Virginia and Tennessee, 

where shale is the only lithic component (Englund, 1964).  

The Grainger Formation at Pound Gap, Letcher County, in southeastern 

Kentucky, has a gradational contact with the underlying Kinderhookian Sunbury Shale 

and an erosional contact with the overlying upper Meramecian–lower Chesterian (middle 

Visean) Newman Limestone. The middle part of the Grainger is characterized by several 

stacked sequences of interbedded siltstones and shales, each of which generally thins 

upward, showing the characteristics of graded (Bouma) sequences. The siltstones 

represent turbidite-sequence development in an outer-fan environment of deposition 

(Howell and Mason, 1998). The upper part of the Grainger contains reddish-gray to 

greenish-gray siltstones and shales with abundant iron-oxide nodules.  Abundance of 

sedimentary structures including hummocky cross-strata and channeling suggest 

subsequent development of a shallow, storm-dominated shelf environment during the 

deposition of the upper part (Howell and Mason, 1998; Ettensohn et al., 2002). The red 

shales and siltstone units at the top have been correlated with the Maccrady Formation to 

the east (Smith et al., 1967; Ettensohn et al., 2002), a sequence of red peritidal shales and 

sandstones with evaporites (Warne, 1990).   



67 

 

In the Cumberland Gap area of western Virginia, and the Jellico Mountain area of 

northeastern Tennessee, the Grainger consist of shales, silty shale, and siltstones with 

abundant iron-oxide nodules at the top. The color of the sediments changes gradually 

from dark-gray at the base to greenish-gray and reddish-gray at the top (Dean et al., 

1989), indicating conditions of sedimentation changing from anoxic conditions at the 

base to shallower oxic conditions at the top. The upper contact with the overlying upper 

Osagean (lower Visean) sequence of interbedded cherts, siliceous dolostones, and shales 

of the Fort Payne Formation is erosional and sharp, defined by the glauconite-rich Floyds 

Knob Bed (Dean et al., 1989; Sable and Dever, 1990; Ettensohn et al., 2002). The 

thickness of Fort Payne Formation increases southward; about 5 m of cherty Fort Payne 

equivalent occurs at the top of the Grainger in the Cumberland Gap Tunnel, whereas 

about 23 m of Fort Payne is present in the Jellico Mountain area.  

5.2.5 Fort Payne Formation 

The Lower to Middle Mississippian (Late Kinderhookian–Osagean) Fort Payne 

Formation (Figs. 5.2 and 5.3) in south-central Kentucky is an extremely heterogeneous 

mixed clastic-carbonate unit that occurs between the underlying Devonian–Mississippian 

Chattanooga (New Albany) Shale, Maury Formation equivalent, and the overlying 

Meramecian Warsaw-Salem Limestone. Deposition of the Fort Payne is intimately 

associated with the deposition of the Borden delta to northeast, as it is placed 

stratigraphically in front of the abandoned Borden delta lobes. During middle and late 

Osagean time, the Borden deltaic wedge migrated into central and south-central 

Kentucky, after which the focus of major clastic deposition shifted to the north into 

Indiana, creating a widespread, starved-basin condition that extended from southern 
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Kentucky southward into Tennessee, Mississippi, and Alabama and was ideal for thick 

carbonate and silica  precipitation (Peterson and Kepferle, 1970; Sedimentation Seminar, 

1972; Pryor and Sable, 1974; Lewis and Potter, 1978).  

The Fort Payne is the most diverse and lithologically complex unit in the 

southwestern Appalachian and eastern Illinois basins of Kentucky. The Fort Payne 

contains dolomitic and calcareous, silty, medium- to light-gray, bioturbated shales with 

abundant, scattered quartz geodes; argillaceous, medium- to dark-gray, typically thin-

bedded, bioturbated dolomites; bedded chert; crinoidal grainstone-packstones; and 

wackestones. Waulsortian-like mud mounds, as well as bryozoan-crinoidal bioherms that 

occur in trends that strike parallel to the Borden front, are also present in the Fort Payne 

Formation (Thaden and Lewis, 1962, 1966; Sedimentation Seminar, 1972).  These 

bioherms and mud mounds are composed chiefly of crinoidal and bryozoan limestones, 

including mudstone and/or wackestone. They are partly dolomitized with some minor 

chert and are commonly associated with greenish-gray and dark-grey, fossiliferous shales 

(Lewis and Potter, 1978; Ausich and Meyer, 1990; Krause and Meyer, 2004).  These 

carbonate-mud mounds are mainly scattered west of the Cincinnati Arch in Kentucky and 

around the Nashville Dome in central Tennessee. Both occurrences seem to overlain 

deeply buried parts of the Grenville Front and East Continent Rift Basin structures.  

The elongated, northeast-trending, coarsening-upward, very fine-grained, porous, 

thoroughly bioturbated bodies of the Knifley/Jabez Sandstone Member of the Fort Payne 

Formation occur on the crest of the Cincinnati Arch (Kepferle and Lewis, 1975; Hannan, 

1975; Lewis and Potter, 1978). The Knifley/Jabez Sandstone has been interpreted to be a 

slope-break shoal deposit (Sedimentation Seminar, 1972). The Cane Valley Limestone 
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Member of the Fort Payne is a cross-bedded, elongated, bryozoan-crinoidal grainstone 

body that occurs parallel to the Knifley Sandstone and shows an off-lapping relationship 

with the underlying Borden Formation (Klein, 1974; Kepferle and Lewis, 1975; 

Sedimentation Seminar, 1972; Lewis and Potter, 1978). The Cane Valley Limestone has 

been interpreted to be a slope or platform-edge shoal bank deposit into which fossil 

debris on the deltaic platform to the east was transported (Sedimentation Seminar, 1972).  

Argillaceous, silty, calcareous-to-dolomitic, bioturbated carbonates of the Fort 

Payne  Formation and Muldraugh Member of the Borden occur widely in the 

Appalachian and Illinois basins between the biohermal facies and the Knifley Sandstone. 

In fact, carbonate-rich facies between the Knifley Sandstone and the Cane Valley 

Limestone, as well as above the Cane Valley Limestone up to the Warsaw-Salem 

Limestone contact, suggest continued sedimentation with a dominance of carbonate mud 

prograding basinward with increased water depths (Sedimentation Seminar, 1972; Klein, 

1974; Lewis and Potter, 1978; Sable and Dever, 1990).  

Although the Borden and Fort Payne formations both overlie the Chattanooga 

Shale, much of the Borden was deposited as westerly prograding prodelta silts, prior to 

the deposition of the Fort Payne. On the basis of diverse lithology, lateral variability, and 

the thickness changes of different facies in the Fort Payne, the depositional environment 

has been interpreted to be a marine, oxic to dysoxic southwestward-dipping ramp in front 

of the Borden delta front, consisting of the varied facies described in the previous 

paragraphs. In south-central Kentucky, the Fort Payne Formation varies between 225–

300 feet (70–90 m) in thickness (Lewis and Potter, 1978).  
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5.2.6 Maccrady Formation 

The Maccrady Formation was named by Stose (1913) for a thin section of red 

shale and limestone exposed near the town of Maccrady in southwest Virginia.  The unit 

is described as is a fining-upward sequence of red and green clay shales, mudstones, and 

siltstones with local sandstones, argillaceous micrites, argillaceous dolostones, gypsum, 

anhydrites, coals, and gray shales. In the type area, the Maccrady Formation contains 

marine facies with evaporites (Dennison and Wheeler, 1975), and at Caldwell, West 

Virginia, the Maccrady Formation is more than 220 ft (67 m) thick. It consists of non-

marine, crumbly, red mudstones with channel-fill and crevasse-splay sandstones and 

siltstones and a bedded limestone of apparent non-marine origin near the top (Bjerstedt 

and Kammer, 1988).  In southwest Virginia, marine limestones in the Maccrady contain 

fossils that indicate an early Meramecian age (Butts, 1940).  The Maccrady is 

interbedded with, and replaced by, the Fort Payne Chert to the southwest along Newman 

Ridge in northeast Tennessee (Hasson, 1986).   

Evaporites in the Maccrady Formation have been documented in the Plasterco-

Saltville-Locust Cove, Virginia, area, but gypsum and anhydrite have also been 

recognized as far south as Brumley Gap, Washington County, Virginia (Bartlett, 1974); 

as far west as Russell and Tazewell counties, Virginia (Cooper, 1961); and as far north as 

southern West Virginia (Heller, 1980).  Solution breccias in the Maccrady Formation, in 

Tazewell County, Virginia, have been noted by Warne (1990), and are considered to have 

formed by telogenetic solution of evaporites.  

Iron-rich shales, siltstones, and sandstones occur locally in the Maccrady Formation 

in southwestern Virginia (Warne, 1990), Newman Ridge, Tennessee (Hasson, 1972; 



71 

 

Kuczynski and Hicks, 1978), and along Pine Mountain in eastern Kentucky (Wilpolt and 

Marden, 1959; Howell and Mason, 1998). Along Pine Mountain in eastern Kentucky and 

at Little Stone Gap and Pennington Gap, southwestern Virginia, the uppermost 0.5-2.0 

feet (0.15-0.6 m) of the Maccrady Formation are composed of distinctive light greenish-

gray, light olive-gray to pale-red, dusky-red streaked, chloritic (identified in thin-section), 

very fine-grained sandstones, siltstones, and silty mudstones.  This unit is well-indurated 

and commonly has undulatory, discontinuous chert laminae or nodules, which are 

hematitic in places. This is considered to be the same bed as that at the top of the Fort 

Payne Formation at Cumberland Gap, Virginia, and in northeastern Tennessee (Warne, 

1990).  It may also be equivalent to the Floyds Knob observed at the top of the Grainger 

Formation at Jellico Mountain, Cumberland Gap, and Pound Gap. In fact, Wilpolt and 

Marden (1959) have equated the upper red parts of the Grainger with the Maccrady 

farther to the east.  
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CHAPTER 6: CHARACTERIZATION 

6.1 Stratigraphy and Correlation of Units Containing the Floyds Knob Interval 

In the study area of Kentucky and adjacent states, 39 outcrops and one core 

containing the Floyds Knob Bed were measured and described (total 40). The measured 

section locations are shown in Figure 6.1, and the section descriptions are shown in 

Appendix 1 with assigned outcrop identifiers and a section legend. Outcrop identifiers are 

also shown in Figure 6.2, and the legend for cross-sections and measured section 

locations is provided in Figure 6.3. All sections are described, named, and followed by 

outcrop identifiers in the following text.  

All the sections were measured using the Floyds Knob Bed as the datum to show 

thickness of the units above and below. Special attempts were made to find the Floyds 

Knob Bed, or its equivalent strata, in all the sections. After compiling results from the 

measured sections (Figs. 6.1 and 6.2), six cross-sections and one isopach map were made 

with accompanying thickness profiles to visualize the lateral and vertical extent of the 

measured units. Two cross-sections were constructed using the Floyds Knob Bed as the 

datum in south-central Kentucky, and one cross-section was constructed from 

northeastern to east-central Kentucky using the base of the Renfro Member as the datum.  

Three cross-sections were constructed using the top of the upper Devonian Chattanooga 

Shale as the datum. Different data horizons were used to help to visualize potential 

vertical variation of the Floyds Knob Bed across the Borden Front in the western 

Appalachian and eastern Illinois basins.  
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Figure 6.1 – Geologic map of the study area, showing the distribution of Borden 
Formation members, as well as of the Grainger and Fort Payne formations, and the 
location of studied sections in Kentucky and adjacent states.  
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Figure 6.2 – Chart showing section locations with outcrop identifiers in Kentucky and 
adjacent states.  
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Figure 6.3 – Chart showing legend symbols to be used for identifying different features in 
measured sections and cross-sections in the following figures of this section.  

 



76 

 

Glauconite precipitation occurs in suboxic, iron-rich environments where there is 

low sediment input. The fact that the Floyds Knob interval glauconite is widespread 

means that similar conditions must have been laterally continuous throughout the western 

Appalachian and eastern Illinois basins at the end of the loading-type relaxation phase of 

the Neoacadian tectophase during a global sea-level lowstand (Figs. 3.3 and 4.5), and that 

the interval is largely synchronous throughout. Therefore, parts of units containing the 

Floyds Knob Bed and associated glauconite-horizons, green shales, and siltstones (Floyds 

Knob interval), must be largely equivalent.  Hence, in the following sections, parts of 

every unit containing the Floyds Knob Bed will be described.  

6.1.1 Floyds Knob Bed/Interval 

The widespread, upper Osagean Floyds Knob Bed was first described as the 

Floyds Knob Formation by Stockdale (1931, 1939) for the fossiliferous, glauconitic 

limestones and siltstones exposed near the Floyds Knob Post Office, Floyd County, 

Indiana (Fig. 6.4).  The Floyds Knob Bed was described by Stockdale (1939) as an 

important ‘marker’ horizon in the Appalachian and Illinois basins that has been 

subsequently used for tracing related facies, both above and below, and in establishing 

correlations across the region. Whitehead (1978) formally designated the unit as the 

Floyds Knob Bed of the Borden Formation after Weir et al. (1966), suggested that the 

Floyds Knob Formation of Stockdale (1939) is too thin and too discontinuous to be 

considered a formation rather than a bed. Also, the unit is not distinctive everywhere and 

could be easily confused with other glauconite horizons that commonly occur in the 

upper part of the Borden Formation. However, for this study, the Floyds Knob Bed of  
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Figure 6.4 – A) Measured stratigraphic section 
at the Floyds Knob type (IN) section, Indiana. 
B) Field photograph of the location.  
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Weir et al. (1966) and Whitehead (1978) and the associated glauconite horizons, green 

shales, and pelletal glauconite-rich siltstones will be grouped together as the Floyds Knob 

interval.  

The Floyds Knob interval is a glauconitic, phosphatic rich-interval that occurs 

throughout the study area (Fig. 6.5). In the east-central and northeastern parts of 

Kentucky, the Floyds Knob interval is associated with the Wildie and Nada members of 

the Borden Formation. In this part of Kentucky, the Floyds Knob interval is composed of 

three to four pelletal glauconite horizons, green shales, and siltstones as in the Wildie and 

Nada members within 10–15 m thick strata (Figs. 6.5 and 6.6).  

In the eastern parts of south-central Kentucky in Pulaski and Casey counties, the 

Floyds Knob interval is comprised of four pelletal glauconite horizons within 15 m thick 

strata. One occurs at the base of the Muldraugh Member, and is composed of pelletal 

glauconite grains embedded in dolomitic matrix. Two more prominent glauconite 

horizons associated with the Floyds Knob Bed occur at the top of the underlying Halls 

Gap Member (Fig. 6.5), and another horizon occurs within the Muldraugh Member in 

Casey County, south of Liberty along the US-127 (L1) section. In Wayne County in 

south-central Kentucky at the Lake Cumberland (LC4) section, the Floyds Knob interval 

is represented by a single prominent horizon (0.4 m) embedded in dolomitic matrix that 

sits at the contact between the underlying shales of the Nancy Member of the Borden 

Formation and the overlying carbonates of the Fort Payne Formation (Fig. 6.5). 
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Figure 6.5 – Cross-section C-C’ from northeastern to south-central Kentucky through 
east-central Kentucky, showing the distribution of different units associated with the 
Floyds Knob Bed/interval in the western Appalachian and eastern Illinois basins. Datum 
is the top of the Upper Devonian Chattanooga Shale. Index map included below. Data 
from geological quadrangle maps were used, where study locations are absent. Not to 
scale. 
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Figure 6.6 – A) Measured stratigraphic section at 
the Bighill (BH) section, east-central Kentucky. 
B) Field photograph from the Bighill section.  
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In south-central Kentucky, however, at the three Lake Cumberland sections (LC1, 

LC2, and LC3) in Russell County, at the Mantown Road section (MR) in Clinton County, 

and at three Burkesville north sections (BN1, BN2, and BN3) in Cumberland County, no 

distinct glauconite horizon has been found. Each of these sections is associated with 

carbonate-mud mounds that occur at the top of the Maury Shale and/or New Providence 

equivalent (Figs. 6.5 and 6.7). Instead of pelletal glauconite, however, the Floyds Knob 

interval at each of these sections comprised of fossiliferous green shales containing 

limestone lenses that are very similar to those occurring in the Nada and Wildie members 

in northeastern and east-central Kentucky, respectively.  

In southern Indiana, the Floyds Knob interval occurs at the base of the 

Edwardsville Formation (Fig. 6.8). In Floyd County, southern Indiana, at the Floyds 

Knob type section (IN), the Floyds Knob interval is represented by a single glauconitic 

grainstone horizon (1.5 m) that occurs at the contact between the overlying Edwardsville 

and underlying Carwood formations of the Borden Group (Fig. 6.4). In Hardin County, at 

the Fort Knox (FK) and Bluegrass Parkway (BP) sections, the Floyds Knob interval 

occurs within the Muldraugh Member at the contact between the overlying Muldraugh 

and underlying Nancy members (Figs. 6.9 and 6.10). At the Fort Knox (FK) section, the 

Floyds Knob interval is represented by a single thick glauconite horizon (1 m) (Fig. 6.9), 

whereas at the Bluegrass Parkway (BP) section,  the Floyds Knob interval (29 m) is 

represented by three to four pelletal horizons that occur within the Muldraugh Member 

(Fig. 6.10). At the same section, all of these horizons converge along foresets into a thick 

Floyds Knob horizon (Fig. 6.10). At the Muldraugh type (MT) section in Marion County  
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Figure 6.7 – A) Measured stratigraphic section 
at the Mantown Road (MR) section, Clinton 
County, south-central Kentucky. B) Field 
photograph from the Mantown Road section. 
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along KY Highway208, the Floyds Knob interval (15 m) occurs within the overlying 

Muldraugh and the underlying Halls Gap members (Fig. 6.11).  

In northeastern Tennessee, at the Jellico Mountain (JM) section, the Floyds Knob 

interval is represented by a single pelletal glauconite horizon (0.35 m) that occurs at the 

contact between the underlying shales and siltstones of the Grainger Formation and the 

overlying chertified carbonates of the Fort Payne Formation (Fig. 6.12). At the Pound 

Gap (PG) and Cumberland Gap (CG) sections in southeastern Kentucky, the Floyds 

Knob interval is devoid of any glauconite grains, but has been interpreted to be 

represented by thin green shales and siltstones (1.5–0.5 m) that occur at the contact 

between the underlying Grainger Formation and the overlying Newman Limestone (Dean 

and Moshier, 1989) (Fig. 6.12).  
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Figure 6.8 – Cross-section B-B’ from northeastern 
Kentucky to southern Indiana through east-central, 
south-central, and west-central Kentucky, showing the 
distribution of different units associated with the 
Floyds Knob Bed/interval in the western Appalachian 
and eastern Illinois basins. Datum is the top of the 
Upper Devonian Chattanooga Shale. Index map 
included at bottom. Data from geological quadrangle 
maps were used, where study locations are absent. 
Not to scale.  
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Figure 6.9 - A) Measured stratigraphic section at 
the Fort Knox (FK) locality, Hardin County, 
west-central Kentucky. B) Field photograph from 
the Fort Knox locality. 
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Figure 6.10 - A) Measured stratigraphic section at 
the Bluegrass Parkway (BP) locality, Hardin 
County, west-central Kentucky. B) Field 
photograph from the Bluegrass Parkway locality. 
Dashed lines represent glauconite horizons that 
merge to the southwest.  
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Figure 6.11 - A) Measured stratigraphic section 
at the Muldraugh type (MT) locality, Marion 
County, west-central Kentucky. B) Field 
photograph from the Muldraugh type section. 
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Figure 6.12 – Stratigraphic cross-section E-E’ showing the distribution of the Fort Payne and Grainger formations in Kentucky and 
adjacent states. Datum is the Floyds Knob Bed/interval. Index map is in the upper right-hand corner.  

21
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X-ray diffraction studies of the Floyds Knob interval (pelletal glauconites and 

associated green shales) from the Nada and Wildie members at the Big Hill section (BH) 

show that the green shales are composed of fine-grained, clay-size, dispersed glauconite 

and chloritic-clay-rich verdine facies (Fig. 6.13). Similar studies were done for the green 

shales associated with the carbonate-mud mounds from the Lake Cumberland region 

(sections LC1, LC2 and LC3) in south-central Kentucky. The results show that the green 

shales are composed of very fine-grained, clay-size, dispersed glauconite and chloritic-

clay-rich verdine facies (Fig. 6.14).   

The Floyds Knob Bed/interval is generally composed of an upper bioturbated, 

pelletal glauconite and a lower limestone or dolostone bed. In places, only the glauconite 

is present in Kentucky. Where the carbonate is present, however, it is generally composed 

of glauconitic and crinoidal mudstones, wackestones, or packstones, which are 

fossiliferous and locally dolomitic (Stockdale, 1931; Kepferle, 1971; Whitehead, 1978, 

Sable and Dever, 1990) (Fig. 6.15). In southern Indiana at the type section in Floyd 

County (IN), the interval is mostly a single glauconitic grainstone facies. In much of 

west-central and south-central Kentucky, the interval is chiefly composed of pelletal 

glauconite horizons that occur with phosphates (Fig. 6.15). In south-central Kentucky, in 

Lake Cumberland region, in Clinton and Cumberland counties, around the well-known 

carbonate-mud mounds distinctive glauconite horizons are absent. The Floyds Knob 

interval, however, is indicated by the presence of wackestone-mudstone and green-shale 

facies (Fig. 6.15). As already indicated, these green shales have a glauconitic component 

(Fig. 6.14), but any pelletal glauconite is absent.  
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Figure 6.13 – A) X-ray diffractogram of the green shales from the Bighill (BH) exposure. 
The green shales are chiefly composed of finely disseminated glauconitic and chloritic 
clay (altered verdine facies). B) X-ray diffractogram of the glauconite grains from the 
Floyds Knob Bed (granular glauconites) at the Bighill (BH) exposure. The green pelletal 
grains are chiefly composed of glauconite.  
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Figure 6.14 – A) X-ray diffractogram of the green shales from below the mud mounds at 
the Lake Cumberland (LC1) exposure. B)  X-ray diffractogram of the green shales from 
the top of the mud mounds at the Lake Cumberland (LC2) exposure. C) X-ray 
diffractogram of the green shales from below the mud mounds at the Lake Cumberland 
(LC3) exposure.  The green shales are chiefly composed of finely disseminated 
glauconitic and chloritic (altered verdine facies) clay. 
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Figure 6.15 – Lithofacies map for the Floyds Knob interval in Kentucky and adjacent 
states relative to the outcrop belts.  
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In contrast, in east-central and northeastern Kentucky, the Floyds Knob interval is 

represented by two to four horizons of glauconite that are present within the green, 

glauconitic shales and siltstones of the Nada and Wildie members (Figs. 6.5 and 6.6).  In 

as much as the entirety of these units is glauconite, in contrast to bounding units, and 

individual glauconite horizons merge to the southwest (Fig. 6.8), it seems best to interpret 

the entirety of the green, calcareous, glauconitic-mud sections (Fig. 6.15) as part of the 

Floyds Knob interval.  In southeastern Kentucky at the Pound Gap (PG) and Cumberland 

Gap (CG) sections, the Floyds Knob interval is devoid of any glauconite grains, but is 

represented by a very thin green-shale and siltstone facies (Fig. 6.15) that occur at the 

contact between the underlying Grainger Formation and overlying Newman Limestone in 

a section that normally contains dark gray shales and siltstones (Dean and Moshier, 

1989). In northeastern Tennessee, at the Jellico Mountain (JM) section, the Floyds Knob 

interval is represented by a single pelletal glauconite horizon that occurs at the contact 

between the underlying Grainger Formation and overlying Fort Payne chert (Fig. 6.15).   

An isopach map for the Floyds Knob interval is shown in Figure 6.16. It can be 

seen that there are two sites of major depositional thickening in west-central and 

northeastern Kentucky. The thickness decreases southeast into south-central Kentucky. In 

south-central Kentucky, the Floyds Knob interval attains its greatest thicknesses around 

the mud mounds, but the thickness is irregular because of the presence and absence of the 

mounds (Fig. 6.16). On the other hand, thicknesses are minimal where the Floyds Knob 

has been condensed to a single pelletal glauconite horizon in the deepest parts of the Fort 

Payne starved basin between the mud mounds and Borden delta front to the northeast.   
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Figure 6.16 - Lithofacies and isopach map for the Floyds Knob interval in Kentucky and 
adjacent states relative to outcrop belt. Contour interval 5 meters except on the Pine 
Mountain exposures. Inferred faults were from geological quadrangle maps.  
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6.1.2 Nada Member of the Borden Formation 
The distribution of the Nada Member and the equivalent Wildie Member in the 

study area is shown in Figure 6.17. The southern and western limit of the Nada and 

Wildie members occurs in Madison and Rockcastle counties in east-central Kentucky at 

the Big Hill (BH) and Brodhead (BD) sections. The Nada grades downdip 

(southwestward) into upper parts of the Halls Gap and Nancy members and upward into 

lower part of the Wildie Member (Fig. 6.18). In the northeastern part of Kentucky, the 

Nada is present throughout the study area (Fig. 6.17), overlies the Cowbell Member, and 

grades upward into the Renfro Member north of the Kentucky River fault system near the 

Waverly Arch at the Olive Hill (OH3) section in Rowan and Carter counties (Fig. 6.18; 

Appendix 1).  

The Nada Member in east-central Kentucky, in general, is a silty to clayey shale, 

which is laminated to thin-bedded and blue-gray, greenish-blue-gray, and locally dark-

reddish-purple in color. The Nada also shows an increase in the amount of silt to the 

north and east, where silty shale and thin-bedded, shaley siltstone beds become more 

prominent in outcrop.  As silt content increases to the north and east, the thickness of 

bedding tends to increase as well. The dominant color of the Nada also changes to the 

north and east as blue-gray siltstones and shales become greener in color.  This color 

change is directly related to an observed increase in amount of glauconite present 

throughout the Nada within the Floyds Knob interval.  In general, the shales observed in 

measured sections to the north appear to have glauconite dispersed more evenly 

throughout the section within the Floyds Knob interval. The amount of red mud in the 

shales also increases to the north, and the red shales may occur within the Floyds Knob  
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Figure 6.17 – Map showing distribution of the Nada and equivalent Wildie members 
exposed in northeastern and east-central Kentucky. Blue crosshatching represents the 
Nada and Wildie members.  
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Figure 6.18 – Stratigraphic cross-section (A-A’) from northeastern to east-central 
Kentucky, showing the distribution and intertongueing between the Nada, Wildie, and 
Halls Gap Members of the Borden Formation and the Renfro Member, all of which are 
associated with the Floyds Knob interval in the western Appalachian Basin. The datum is 
the base of the Renfro Member. Index map included at bottom.  
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interval.  The red shales are typically clayey and do not appear to contain any fossils (Fig 

6.18; Appendix 1).  

6.1.3 Muldraugh Member of the Borden Formation 

The distribution of the Muldraugh Member is shown in Figure 6.19. The southern 

and eastern limits of the Muldraugh Member occur in Casey and Pulaski counties in 

south-central Kentucky south of the Liberty (L1) and west of the Somerset (S2) sections. 

The Muldraugh Member represents a highly resistant, bioturbated, olive-gray, cherty 

dolosiltite with thin shale partings (Fig. 6.20). Chert nodules and concretions are locally 

common, and the main matrix minerals are silica and carbonate (dolomite and calcite).  

The Muldraugh grades laterally into the Renfro Member of the Slade Formation toward 

the east, west of the Brodhead section in Rockcastle County, and into the silty, shaly 

carbonates of the Fort Payne Formation towards the southeast and southwest near the 

Liberty (L2) and Somerset (S2) sections (Figs. 6.5 and 6.8In west-central and south-

central parts of Kentucky, the Muldraugh overlies the Halls Gap Member in Casey, 

Marion, and Pulaski counties and the Nancy Member in Hardin County. (Fig. 6.8).  

 

 

 

 

 

 



 

99 

 

 

 

 

 

 

 

 

 

 

Figure 6.19 - Map showing distribution of the Muldraugh Member in southern Indiana, 
west-central, and south-central Kentucky. Blue crosshatching represents the distribution 
of the Muldraugh Member.  

 

 

 

 

 

 

Figure 6.20 – General lithology of the Muldraugh Member. Olive-gray, bioturbated, 
cherty, dolosiltite with abundant chert nodules. Photograph from the south Liberty 
section 1 (L1).  
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6.1.4 Halls Gap Member of the Borden Formation 

The Halls Gap Member is a calcareous-to-dolomitic siltstone unit that is present 

in west-central, south-central, and east-central Kentucky.  The unit is composed of 

resistant, greenish-gray to medium-gray limy siltstone with minor clayey siltstones, and 

silty limestones (Weir et al., 1966). The southern and eastern limits of the Halls Gap 

Member occur in Pulaski and Rockcastle counties, respectively, in east-central Kentucky 

at the Brodhead (BD) section and west of the Somerset (S2) section. The Halls Gap 

grades laterally into the Nada and Wildie members toward the east near the Brodhead 

section (BD) in Rockcastle County, and into the Nancy Member toward the southwest 

near the Liberty (L2) and Somerset (S2) sections (Figs. 6.5 and 6.8). In west-central and 

south-central parts of Kentucky, the Halls Gap Member in the study area underlies the 

Muldraugh Member and overlies the Nancy Member in Casey, Marion, Pulaski, and 

Rockcastle counties.  

6.1.6 Fort Payne Formation 

The distribution of the Fort Payne Formation is shown in Figure 6.21. The 

northern and eastern limits of the Fort Payne Formation are in Taylor, Casey, Russell and 

Pulaski counties, in south-central Kentucky west of the Somerset (S2) and east of the 

Lake Cumberland (LC4) sections. The Fort Payne Formation extends south and 

southwest all the way to Georgia, Alabama, and Mississippi through Tennessee. The Fort 

Payne grades into the Muldraugh Member of the Borden Formation toward the east and 

north, west of the Somerset (S1) and east of the Lake Cumberland (LC4) sections in 

Pulaski and Russell counties, respectively (Figs. 6.5 and 6.21). In south-central part of 

Kentucky at the Lake Cumberland (LC4) section in Russell County, the Fort Payne 
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overlies the Nancy Member separated by the Floyds Knob interval (Fig. 6.22).  In most of 

south-central and west-central Kentucky, Maury and Nancy equivalents are included in 

the Fort Payne Formation, so that the Fort Payne Formation widely overlies the 

Devonian/Mississippian Chattanooga or New Albany Shales unconformably (Figs. 6.5, 

6.8, and 6.12). It can be seen that the Floyds Knob interval in south-central Kentucky is 

represented by a single, thick, glauconite-horizon in the Fort Payne starved basin in front 

of the Borden delta (section LC4), in contrast to the  multiple glauconite horizons within 

the Borden deltaic sequence (section S1) (Fig. 6.22). This change in the manifestation of 

the Floyds Knob interval could be interpreted to represent the absence of sediment influx 

in to the Fort Payne starved basin across the Borden delta-front, whereas within the 

Borden deltaic sequence, multiple glauconite-horizons may be the result of continuous 

sedimentation disturbing the glauconite precipitation.  

The Fort Payne is the most diverse and lithologically complex unit that occurs in 

the southwestern Appalachian and Illinois basins of Kentucky. The Fort Payne contains 

dolomitic and calcareous, silty, medium- to light-gray, bioturbated shales with abundant, 

scattered quartz geodes; argillaceous, medium- to dark-gray, typically thin-bedded, 

bioturbated dolomites; bedded chert; crinoidal grainstone-packstones; and wackestones. 

Waulsortian-like mud mounds, as well as bryozoan-crinoidal bioherms in trends that 

strike parallel to the Borden front, are also present in the Fort Payne Formation (Thaden 

and Lewis, 1962, 1966; Sedimentation Seminar, 1972).  These bioherms and mud 

mounds are composed chiefly of crinoidal and bryozoan limestones, including mudstone 

and/or wackestone. They are partly dolomitized with some minor chert and are  
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Figure 6.21 – Map showing distribution of the Fort Payne Formation in south-central 
Kentucky. ECRB faults adapted from Drahovzal et al. (1992) and Stark (1997).  
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Figure 6.22 – Stratigraphic cross-section F-F’ showing distribution of the Fort Payne mud 
mounds in the Lake Cumberland region with respect to the Floyds Knob interval and the 
Muldraugh Member of the Borden Formation in south-central Kentucky across the 
western Appalachian and eastern Illinois basins. Datum is the Floyds Knob Bed. Index 
map is in the upper right-hand corner. ECRB faults adapted from Drahovzal et al. (1992) 
and Stark (1997). 
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commonly associated with greenish-gray and dark-grey, fossiliferous shales (Lewis and 

Potter, 1978; Ausich and Meyer, 1990; Krause and Meyer, 2004) (Fig. 6.23).  These 

carbonate reef-like structures are mainly scattered along the Cincinnati Arch in Kentucky 

and around the Nashville Dome in central Tennessee. Both occurrences seem to overlap 

deeply buried parts of the Grenville Front, faults associated with the East Continent Rift 

Basin (ECRB), and the Cincinnati Arch (Figs.6.21 and 6.22).  

The Fort Payne Formation also contains argillaceous, silty, calcareous-to-

dolomitic, bioturbated carbonates that occur widely in the Appalachian and Illinois basins 

between the biohermal facies. These lithologies overlie Nancy-equivalent dark-gray 

shales across a glauconite horizon, which is interpreted to be the Floyds Knob 

Bed/interval in the Fort Payne Formation (Figs. 6.24 and 6.25). This is the first report of 

the Floyds Knob Bed/interval in the Fort Payne Formation. The glauconite-rich Maury 

Shale of the Fort Payne Formation in south-central Kentucky is clearly different from the 

Floyds Knob interval, separated by Nancy-equivalent dark shales (Figs. 6.24 and 6.25). 

The Maury Shale is a very fine-grained glauconitic clay-rich horizon, whereas the Floyds 

Knob interval is defined by pelletal glauconite horizons.  

 

 

 

 

 



 

105 

 

 

 

Figure 6.23 – Photograph showing mud mounds and associated green shales from Lake 
Cumberland section 1 (LC1).  
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Figure 6.24 – Stratigraphic cross-section D-D’ showing the distribution, nature, and 
vertical extent of the Floyds Knob interval in the Fort Payne Formation in south-central 
Kentucky across the western Appalachian and eastern Illinois basins. The datum is the 
top of the Upper Devonian Chattanooga Shale. Index map is in the upper right-hand 
corner. ECRB faults adapted from Drahovzal et al. (1992) and Stark (1997). 
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Figure 6.25 - A) Measured stratigraphic 
section at the Swanpond Road (SR) section, 
Russell County, south-central Kentucky. B) 
Field photograph from the Swanpond Road 
section. 
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6.1.7 Grainger Formation 
The distribution of the late Kinderhookian–Osagean (late Tournaisian–early 

Visean) age Grainger Formation is shown in Figure 6.1. The Grainger Formation in the 

central Appalachian Basin is exposed at the surface along the Pine Mountain Thrust in 

southeastern Kentucky, northeastern Tennessee, and western Virginia. The Grainger 

Formation is characterized by gray and greenish-gray, silty shales with thin laminae and 

beds of siltstones, as well as by siderite nodules and lenses similar to those in the Nancy 

Member of the Borden Formation; however, the upper part of the Grainger is 

characterized by resistant gray, greenish-gray, and reddish-gray siltstones, shales, and 

sandstones similar to those in the Nada Member of the Borden Formation (Sable and 

Dever, 1990). 

In northeastern Tennessee, at the Jellico Mountain (JM) section, the Grainger 

Formation is overlain by the chertified carbonates of the Fort Payne Formation across the 

Floyds Knob Bed (Figs. 6.12 and 6.26). At the Pound Gap (PG) and Cumberland Gap 

(CG) sections in eastern and southeastern Kentucky, the Grainger Formation is overlain 

by the Newman Limestone across thin green shales and siltstones devoid of any pelletal 

glauconite, which has been interpreted as the Floyds Knob Bed (Fig. 6.12) (Dean and 

Moshier, 1989). Red beds containing mud-cracks, and salt casts just below these green 

shales and silts have been interpreted to represent Maccrady equivalents in upper parts of 

the Grainger Formation (Wilpolt and Marden, 1949; Ettensohn, 1998; Ettensohn et al., 

2002).  
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Figure 6.26 – A) Measured stratigraphic section at 
the Jellico Mountain (JM) locality, TN. B) 
Photograph showing the occurrence of Floyds 
Knob Bed at the contact between the underlying 
Grainger and overlying Fort Payne formations.  

A 

B
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6.2 Petrographic and Megascopic Characterization of the Floyds Knob Glauconite 
interval 

The Floyds Knob interval is a glauconitic, phosphate-rich interval that occurs 

throughout the study area. The Floyds Knob interval is extensively burrowed and 

bioturbated, and glauconite pellets are mostly concentrated in burrows and trails (Fig. 

6.27). The unit is abundantly fossiliferous, including gastropods, foraminifera, 

brachiopods, corals, echinoderms, pelecypods, bryozoans, and crinoids (Whitehead, 

1976, 1978). Abundant pyrite, ooids, chertified fossils, ferroan dolomitic mud, and 

secondary calcite deposits are recognized in association with the Floyds Knob interval in 

Kentucky. Phosphorite nodules and phosphatic fossil remains are also common in the 

Floyds Knob interval.   

Samples from the Floyds Knob interval were collected for petrographic 

examination and field pictures are used for megascopic examination to develop facies-

distribution patterns and to study depositional environments in the study area.  These 

facies were based on glauconite grain-size distribution, other common mineral 

associations, fossil content, matrix or cement content, and level of bioturbation. 

Dunham’s carbonate-rock-texture classification scheme is chiefly used to name the rocks. 

The petrographic studies are shown in Table 6.1, with assigned section identifiers, and a 

legend for petrographic studies is provided in Figure 6.28.  Table 6.1 is arranged 

according to the facies-distribution patterns and depositional environments outlined in 

Figure 6.15.  

 

 



111 

 

 

Figure 6.27 – Extensively bioturbated Floyds Knob Bed as observed at different sections 
in Kentucky. Please note that the glauconite pellets are mostly concentrated in burrows 
and occur in association with phosphate. A) west of Somerset section (S1), Cumberland 
Parkway; B) Muldraugh type (MT) section, KY-208; C) Burkesville west (BW) section, 
KY-90; D) Bighill (BH) section, Bighill, Kentucky.  
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Figure 6.28 – Chart showing the legend used for petrographic studies of the Floyds 
Interval. 
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Table 6.1 – Petrographic and megascopic descriptions, and interpreted depositional environments for the Floyds Knob interval.  
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Table 6.1 (continued)  
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Table 6.1 (continued) 
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Table 6.1 (continued) 
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Table 6.1 (continued) 
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Table 6.1 (continued) 

Note: The Floyds Knob interval (silty shales) at the Pound Gap (PG) and Cumberland Gap (CG) sections occurs at the contact 
between the underlying Grainger Formation and overlying Newman Limestone. It always occurs at the top of the Grainger Formation, 
such as at the Jellico Mountain section (JM).  
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Table 6.1 (continued) 
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Table 6.1 (continued) 
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Table 6.1 (continued) 
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Table 6.1 (continued) 
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Table 6.1 (continued) 
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Table 6.1 (continued) 
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Table 6.1 (continued) 
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Table 6.1 (continued) 
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Table 6.1 (continued) 
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CHAPTER 7: 40Ar/39Ar ANALYSIS OF AUTHIGENIC GLAUCONITIC 
MINERALS 

7.1 Results 

For 40Ar/39Ar analyses, 12 glauconite samples were collected from the Lower-

Middle Mississippian rocks of the western Appalachian and eastern Illinois basins in 

Kentucky. Eleven samples were collected from the Floyds Knob interval and one sample 

was collected from the Kinderhookian, glauconite-rich Maury Shale of the Illinois Basin. 

Of the 11 samples, three samples were collected from the Bluegrass Parkway (BP) 

section, which is in the Illinois Basin. The other eight samples were collected from the 

Floyds Knob interval situated in the western Appalachian Basin, in south-central, east-

central, and northeastern Kentucky.  A location map for the sampled sections is shown in 

Figure 7.1.  A detailed sampled-outcrop and data-horizon identifier is provided in Table 

7.1 (see Appendix 1 for detailed lithology of the sampling horizons with respect to the 

outcrop identifiers). Of the 12 samples analyzed, one analysis was not taken into 

consideration because of the experimental error (see Table 7.1).  

The 40Ar/39Ar data for the glauconites irradiated in a vacuum are summarized in 

Table 7.2, and the age spectra are given in Appendix 2. Overall, the recoil losses of 39Ar 

for irradiated grains ranged from 20.9% to 30.3%. The total gas ages (equivalent to 

conventional 39K/40Ar) of all the glauconites from the study area are highly variable and 

show much younger ages than the estimated biostratigraphic ages (Fig.7.2). Sample BS 

of glauconite-rich clay from the Maury Shale in the Illinois Basin, which was analyzed 

by this technique, gives an apparent age of 278.78 ± 0.682 Ma, which is mid-Permian in 

age (Table 7.2). 
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Figure 7.1 - Sampling locations for glauconite Ar/Ar dating. Three samples each were 
collected from the Bluegrass Parkway (BP), Big Hill (BH), and I-64 (OH3) sections, and 
two samples from South Liberty (L1) section respectively. A sample from the KY 61S 
(BS) section was collected from the glauconite-rich Kinderhookian Maury Shale. Please 
note that the Bluegrass Parkway and KY 61S sections are in the Illinois Basin west of the 
Cincinnati Arch, whereas the South Liberty, Big Hill, and I-64 sections are in the 
Appalachian Basin east of the Cincinnati Arch. 
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Table 7.1 – Summary of sampling locations for 40Ar/39Ar of glauconitic minerals from 
Kentucky.  
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Table 7.2 – Summary of 40Ar/39Ar data for glauconitic minerals from Kentucky.  

 

 

 

 

 

 

 

 



132 

 

Figure 7.2 – Stratigraphic cross-section showing the radiometric ages of glauconite 
samples collected from different sections across the western Appalachian and eastern 
Illinois basins. Index map included at top. Not to scale.  
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This age is much younger than what was suggested by biostratigraphic studies of 

extracted conodonts from the Maury Shale. The conodont studies have suggested that the 

Maury Shale may represent sedimentation during parts of the Kinderhookian and early 

Osagean stages, which ranges roughly from 359.2 Ma to 345.3 Ma (Conant and Swanson, 

1961; Leslie et al., 1996; Davydov et al., 2004). The age discrepancy indicates that 

sample BS (Maury Shale) was probably affected by a later resetting (i.e., thermal or 

tectonic) event that caused a variable amount of radiogenic argon loss.  

Similarly, the other 10 samples from the Floyds Knob interval in the western 

Appalachian and eastern Illinois basins largely show apparent ages younger than 300 Ma, 

which is Early Permian in age (Table 7.2). These apparent ages are much younger than 

what has been suggested by biostratigraphic studies. Mega-fossil studies of the Keokuk-

type brachiopod fauna and extracted conodonts point to a late Osagean age (~ 343–341 

Ma) (Butts, 1922; Stockdale, 1939; Weller et al., 1948; Goodman, 1975; Whitehead, 

1976, 1978; Shaver, 1985).  Anomalous ages for all the samples are interpreted to have 

resulted from partial to complete resetting by some later thermal or tectonic event. 

7.2 Interpretations 

7.2.1 Statistical Calculation  

For all the glauconite grains, the recoil loss of 39Ar was in range from 20.9% to 

30.3%.  The recoil loss is the loss of 39Ar that occurs because the recoil energy following 

irradiation is sufficient to displace the atom to a distance of ~0.1 µm, which is a 

significant distance relative to the small grain size (~500-1000 nm thick) of clay minerals 

(Brereton, 1972; Turner and Cadogan, 1974). These recoil losses were fitted into a 

statistical calculation that shows recoil losses versus apparent ages to obtain a meaningful 
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interpretation for all the analyzed data. All the samples collected and analyzed from the 

western Appalachian Basin were then fitted onto a best-fit line that gave an age range of 

341.550 ± 8.828 Ma at zero recoil loss of 39Ar (Fig. 7.3).  This age compares well with 

the estimated biostratigraphic ages that point to a late Osagean age for the Floyds Knob 

interval (~ 343–341 Ma) (Butts, 1922; Stockdale, 1939; Weller et al., 1948; Goodman, 

1975; Whitehead, 1976, 1978; Shaver, 1985), and  also compare well with the recent 

international time scale (Fig. 7.4) (Davydov et al., 2004).  In addition to the radiometric 

ages of the glauconites, a trilobite specimen was collected from the Floyds Knob Bed, 

Burkesville west (BW) section, Cumberland County (Appendix 1). The trilobite 

specimen (Fig. 7.5) has been identified as the species Exochops portlocki of Keokuk (late 

Osagean) age (D. Brezinski, 2011, pers. comm.). Exochops portlocki is a common 

trilobite of late Osagean age, which is present in the Keokuk and Warsaw formations of 

the Midcontinent and the upper Lake Valley Formation of New Mexico (Brezinski, 

1999); however, this is the first reported occurrence of Exochops portlocki from 

Kentucky.    
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Figure 7.3 – Statistical calculations showing the best-fit line of modified ages for seven 
glauconite samples obtained from the Appalachian Basin.  
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Figure 7.4 - Correlation of the international subdivisions of the Carboniferous System 
with selected regional stage and sub-stage nomenclature (modified after Davydov et al., 
2004). Red arrow points to the Osagean–Meramecian boundary (341 Ma).  
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Figure 7.5 – Late Osagean (Keokuk) trilobite species Exochops portlocki from the Floyds 
Knob Bed, Burkesville west (BW) section (Kentucky Highway 90).  
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7.2.2 Resetting of the K–Ar system and the Maury Shale 

The sampled area is in the western Appalachian and eastern Illinois basins, an 

area that was distal to the Appalachian orogen, and hence, experienced fewer effects from 

the various Appalachian orogenies. This area, which overlies parts of the Rome Trough, 

Cincinnati Arch, Grenville Front, and East Continent Rift Basin, is characterized by both 

E-W and N-S normal and reverse faults. These faults were originally the result of E-W 

compressive and extensional movements that developed during the middle Proterozoic 

(Keweenawan) Midcontinent Rift System, late Proterozoic Grenville Orogeny, and the 

latest Proterozoic-earliest Paleozoic Iapetan rifting. Although these structures may have 

been reactivated during various Paleozoic orogenies, there was no evidence that any of 

them would have contributed any tectonic thickening significant enough to have 

contributed to recrystallization or metamorphic activity.  

However, the Ar data for the glauconites do show that apparent ages can be 

correlated with the advent of the Alleghanian Orogeny, which took place during Late 

Mississippian–Early Pennsylvanian–Permian time, between 328-265 Ma (Ettensohn, 

2008). The Alleghanian Orogeny, moreover, may have tectonically thickened some units 

on the footwall side of the Pine Mountain Thrust, especially in eastern parts of the study 

area, or contributed altering hydrothermal solutions (McKee et al., 1967; Oliver, 1986; 

Friedman, 1987; Hearn et al., 1987; Elliot and Aronson, 1993).  Hence, the glauconite 

ages obtained by the Ar-Ar technique (Table 7.2) were apparently reset during this phase 

of tectonic activity with a corresponding loss of the original depositional/diagenetic 

radiogenic Ar. Due to the fine-grained nature of the glauconite crystallites, the amount of 
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radiogenic Ar loss could have been significant, resulting in total gas ages that are much 

younger than the estimated biostratigraphic ages.  

The reported total gas age (278.78 ± 0.682 Ma; middle Permian) of the Maury 

Shale from the Illinois Basin presents a special problem with respect to the estimated 

biostratigraphic ages. The estimated biostratigraphic ages for the Maury Shale have 

suggested sedimentation during parts of the Kinderhookian and early Osagean stages 

(Conant and Swanson, 1961; Leslie et al., 1996). The Floyds Knob interval glauconites 

occur stratigraphically above the Maury Shale, but show total gas ages much older than 

the Maury Shale (Table 7.2).  The Maury Shale is a glauconitic clayshale, and it can be 

interpreted that due to the fine-grained nature, it was prone to lose more radiogenic Ar 

(40Ar), compared to the granular glauconites of the Floyds Knob interval. For such 

cryptocrystalline materials, various factors are responsible for the radiogenic Ar loss: 1) 

structural disruption of the clay minerals caused by H2O loss during laboratory heating 

(Evernden et al., 1960), 2) various alteration phases present inside the clay minerals may 

lose significant radiogenic Ar during neutron bombardment (Hess and Lippolt, 1986), 

and 3) Ar loss during later thermal or tectonic events contributing hydrothermal fluids.   

The reported middle Permian total gas of the Maury Shale from the Illinois Basin 

(Figs. 7.1 and 7.2; Table 7.2) compares well with many previous studies, which suggest 

that hydrothermal-fluid circulation and tectonic thickening were playing major roles in 

sediment diagenesis and mineralization in the Illinois Basin. In particular, the Mississippi 

Valley-type fluoride mineralization from the Fluorspar district in the Illinois Basin of 

Kentucky and Illinois have been determined to have occurred during middle Permian 

time (Brannon et al., 1992; Chesley et al., 1994). Fluid-inclusion temperature 
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measurements from the Fluorspar district range from 120°C to 175°C (Richardson and 

Pinckney, 1984; Taylor et al., 1992). These high temperatures and hydrothermal-fluid 

migration may have affected the Maury Shale, resulting in significant radiogenic Ar loss. 

Orogenesis and uplift of the Ouachita fold and thrust belt, which started in the 

Pennsylvanian and continued into the middle Permian time along the southern margin of 

Laurussia (Kolata and Nelson, 1991), are also likely to have produced the topographically 

driven northward hydrothermal fluid flow responsible for lead-zinc deposits of Arkansas, 

Missouri, and Kansas (Bethke et al., 1988; Graven et al., 1993). These northward-driven 

hydrothermal fluids may have contributed significantly in radiogenic Ar loss in the 

Maury Shale. At the eastern margin of the Illinois Basin, tectonic-stratigraphic models 

and fluid-inclusion temperatures suggest that the Cincinnati Arch and Nashville Dome 

were buried by 1-2 km of Late Pennsylvanian through Early Permian sediment (Stearns 

and Reesman, 1986; Beaumont et al., 1987). This tectonic thickening and elevated 

temperatures may also have resulted in variable amounts of radiogenic Ar loss from the 

Maury Shale.  

For this study, however, only one sample from the Maury Shale was collected for 

the Ar-Ar analysis (Figs. 7.1 and 7.2). The result from this one analysis has proven to be 

inconclusive, and data collected are inadequate to provide a meaningful conclusion. In 

the future, more studies and more analyses will be needed to determine more accurate 

depositional ages for the Maury Shale. 
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CHAPTER 8: INTERPRETATION 

The Floyds Knob Bed is interpreted to have formed a thin, continuous layer on 

top of the Borden delta. It represents a widespread temporal marker horizon that was 

most probably deposited on a southward-facing paleo-slope along foresets of the Borden-

Grainger delta front during a time of sediment starvation following the end of clastic 

influx (Stockdale, 1939; Kepferle, 1970, 1977, 1971, 1978; Sedimentation Seminar, 

1972; Kepferle and Lewis, 1974; Pryor and Sable, 1974; Whitehead, 1978; Sable and 

Dever, 1990).  Previous studies have suggested that the strata above and below the Floyds 

Knob Bed do not intertongue with each other, which implies that strata above and below 

are not lateral facies equivalents, but rather record two separate depositional episodes 

(Peterson and Kepferle, 1970; Kepferle, 1971; Sedimentation Seminar, 1972; Whitehead, 

1978; Sable and Dever, 1990; Ettensohn et al., 2004). However, multiple glauconite-rich 

beds and intervals occur in some areas, so the Floyds Knob is better interpreted as an 

interval rather than a bed in most of the study area. The glauconites associated with the 

Floyds Knob interval largely record the replacement of fecal pellets that were 

concentrated during a time of sediment starvation and high organic activity, prolonged 

exposure of clay-size material at the sediment-water interface, and ingestion by 

organisms (Van Wie, 1971). The glauconite grains associated with the Floyds Knob 

interval are dark-green, microcrystalline, medium- to fine-sand sized (up to 0.5 mm in 

diameter) pellets that are concentrated along the bedding planes and in burrows. The 

important question now arises, what are the possible causes and implications of such 

widespread sediment starvation and suboxic water conditions that persisted briefly over 

such an extensive area?  
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8.1 Depositional Environments 
Despite the fact that glauconite is typically deposited in suboxic, sediment-

depleted settings,  petrology (Table 6.1), stratigraphic occurrence (Fig. 8.1), and 

paleogeographic reconstruction (Fig. 8.2) from the present study indicate that the 

glauconite deposition spanned several major depositional settings, again reinforcing the 

largely synchronous nature of the unit. These observed depositional settings will be 

described below. 

8.1.1 Distal delta platform 
The Floyds Knob interval in southern Indiana is characterized by basal, post-

Borden erosion and deposition of a glauconitic crinoidal packstone-grainstone facies 

(Fig. 8.3). This facies is suggested to mark the beginning of a basin-wide transgression on 

an erosional surface (Whitehead, 1976, 1978). Petrographic examination of this facies 

indicates that the Floyds Knob Bed is composed largely of carbonate skeletal materials 

with abundant ooids that have been replaced by glauconite (Table 6.1, section identifier-

IN). No peloidal glauconite grains were identified, but the presence of abundant ooids 

and skeletal materials suggests that the unit was deposited in high-energy conditions at or 

near the wave base (10 m) on a distal-delta-platform environment (Fig. 8.2). The area 

was apparently far enough removed from clastic sources to allow almost wholly pure 

carbonate deposition. 

This platform very abruptly transformed into a delta front in northern Hardin 

County. The change occurs at the point where unnamed surface faults with a probable 

basement expression cross the outcrop (Figs. 8.2 and 6.16), which suggests that the delta 

platform–delta front termination may have been coeval with subsidence on the fault.  
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Figure 8.1 – Cross-section C-C’ from northeastern to south-central Kentucky through 
east-central Kentucky showing the distribution of different units associated with the 
Floyds Knob Bed/interval in the western Appalachian and eastern Illinois basins. Datum 
is the top of the Upper Devonian Chattanooga Shale. Index map included below. Data 
from geological quadrangle maps were used, where study locations are absent. Not to 
scale. 
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Figure 8.2 – Facies map for the Floyds Knob interval in Kentucky and adjacent states 
relative to the outcrop belt, and the inferred position of delta lobes (position of the delta 
lobes after Kepferle, 1977). Inferred faults were from geological quadrangle maps. 
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Figure 8.3 – A) Measured stratigraphic 
section at the Floyds Knob type (IN) 
section, Indiana. B) Field photograph of 
the type section.  
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8.1.2 Delta front 
The Floyds Knob interval in west-central and south-central Kentucky, from 

Hardin County in the northwest to Russell County in the southeast at sections FK, BP, 

MP, L1, L2, S1, S2, and LC4 (Figs. 8.1, 8.2 and 8.4), is characterized by dark-green 

pelletal glauconite grains that occur with phosphate and chertified skeletal materials in a 

dark-gray dolomitic matrix (Table 6.1, section identifiers - FK and L1).  The interval is 

extremely bioturbated and the glauconite is mostly concentrated in burrows and trails 

(Fig. 6.27A and B). In addition, the presence of small-scale hummocky cross-beds (Fig. 

8.5) indicates that the interval was deposited in low-energy, sediment-starved conditions 

below normal wave base, but at or near storm wave base (~ 60 m) on a delta-front 

environment (Fig. 8.2). A major depocenter for this facies occurs in northern Hardin 

County and adjacent parts of LaRue County, where faults of Rome Trough and Rough-

Creek Graben with probable basement expression cross the outcrop belt (Figs.8.2 and 

6.16). This depocenter may be related to subsidence along the two faults, or the position 

and topography of the delta lobes (Fig. 8.2).   

8.1.3 Prodelta 

The Floyds Knob interval in southeastern Kentucky and western Virginia at 

sections PG and CG (Fig. 8.2) is characterized by a thin layer of medium-gray to 

greenish-gray silty muds that occur at the contact between the overlying Newman 

Limestone and underlying Grainger Formation (Fig. 8.6). The interval is bioturbated and 

has abundant chert and iron-oxide nodules, small-scale hummocky cross-beds, and 

alternate red shales (Fig. 8.6). These features indicate that the interval in this part of the 

basin was deposited in low-energy conditions below the normal wave base, but at or near 

the storm wave base in a prodelta environment, but deeper than the delta-front facies. 
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Figure 8.4 - A) Measured stratigraphic section at 
the Muldraugh type (MT) section, Marion 
County, west-central Kentucky. B) Field 
photograph from the Muldraugh type section. 
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Figure 8.5 – Small-scale hummocky cross beds within the Floyds Knob Bed at the south 
end of the Liberty section 2 (L2). Presence of hummocky cross-beds indicates deposition 
at or near storm wave base. 
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Figure 8.6 – Measured stratigraphic section at Pound Gap (PG), US Highway 119.   
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8.1.4 Basinal 
The Floyds Knob interval in Cumberland and Russell counties, south-central 

Kentucky (Fig. 8.2, section identifiers C5, SR, and BW) is characterized by dark-green 

pelletal glauconite grains that occur with phosphate and chertified skeletal materials in a 

dark-red dolomitic matrix (Table 6.1, section identifiers - C5 and BW). The Floyds Knob 

occurs at the contact between the overlying Fort Payne carbonates and underlying Nancy-

equivalent silty shales, suggesting that the area in south-central Kentucky experienced 

sediment-starved conditions (Fig. 8.7). The interval is extremely bioturbated and the 

glauconite is mostly concentrated in burrows and trails (Fig. 6.27C); small-scale ripple 

marks (Fig. 8.8)  indicate that the interval was deposited in low-energy conditions below 

normal wave base, but at or near storm wave base (~ 60 m) in a deep, distal, basinal 

environment, deeper than typical delta-front and prodelta facies (Fig. 8.2) .  

The presence of dolomitic concretionary units that outline channels in Nancy-

equivalent silty shales below the Floyds Knob Bed at the Burkesville west (BW) section 

(Fig. 8.9) may reflect the fact that deeper water, bottom-hugging currents were 

transporting sediments from the northwest along deep parts of the delta-front.  

The isopach map for the Floyds Knob interval (Fig. 6.16) in this area shows a 

substantial decline in thickness in this basinal area compared to adjacent delta-front areas 

to the north and northeast and surrounding mud-mound areas to the east and southwest 

(Fig. 6.16). It seems likely that the distal nature of the area (Fig. 8.2), its presence at the 

delta-slope toe (Fig. 8.1), and the fact that it was largely surrounded by an elevated mud-

mound facies (Figs. 6.16, 8.1 and 8.2) effectively isolated the area, thereby contributing 

to the general thinness of the unit in this area.  
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Figure 8.7 – Measured stratigraphic section at the Burkesville west section (BW).  
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Figure 8.8 – Floyds Knob Bed from the Burkesville west (BW) section showing small-
scale ripple marks and wavy bedding. This suggests that the unit was deposited at or 
above the storm wave base, so that storms periodically reworked the glauconite.  

Figure 8.9 – Section photograph from the Burkesville west (BW) section showing the 
evidence for deeper water channel flows during the deposition of Nancy-equivalent 
shales.  
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8.1.5. Proximal delta platform 
The Floyds Knob interval in east-central and south-central Kentucky occurs 

within the Nada and equivalent Wildie members (Figs. 6.18, 8.1 and 8.10). The interval is 

characterized by dark-green, pelletal glauconite grains that occur with phosphate, 

secondary calcite, and glauconitic replacement of skeletal materials (Table 6.1, section 

identifiers - BD, BH, OH3). The interval is extremely bioturbated and the glauconite is 

mostly concentrated in burrows and trails (Fig. 6.27D). Small-scale hummocky cross-

beds, glauconite-rich shales and siltstones, as well as glauconite-rich horizons along the 

partings in siltstones (Figs 6.18 and 8.10; Appendix 1), suggest that the areas may have 

experienced sediment starvation in open-marine, shallow-water environmental conditions 

that were influenced by episodic storm events across the proximal delta platform at the 

top of an abandoned delta lobe during a sea-level low stand (Fig. 8.2) (Chaplin, 1980; 

Lane and Dubar, 1983; Kepferle, 1977; Ettensohn, 1979, 1980, 1981; Gauthier, 1988; 

Ettensohn et al., 2004).  Moreover, the occurrence of red shales in Nada and equivalent 

Wildie members in east-central and northeastern Kentucky may reflect the reworking and 

transportation of red muds from the shallower peritidal Maccrady environment to the east 

during a sea-level lowstand (Fig. 6.18).  

The outcrop belt in east-central Kentucky seems more or less to follow an 

individual delta lobe to the southwest (Fig. 8.2). Although Floyds Knob-equivalent units 

like the Nada and Wildie naturally thicken to the northeast, a small depocenter between 

northern Menifee County, and Powel and Wolfe counties occurs between the Kentucky 

River and Irvine-Paint Creek fault systems (Fig. 6.16), suggesting that the basement 

precursors of these faults were probably active during Floyds Knob deposition and later  
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Figure 8.10 - A) Measured stratigraphic 
section at the I-64 section (OH3), Carter 
County, northeastern Kentucky. B) Field 
photograph of the OH3 section. Note the 
presence of red muds below the Floyds 
Knob Bed. 
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during Mississippian carbonate deposition (Sable and Dever, 1990; Dever, 1995; 

Wilhelm, 2008). 

In contrast to the relatively thin, pure carbonates that were being deposited at the 

time on the distal delta platform (Figs. 6.16 and 8.2), the thicker, more clastic-rich 

sediments on the proximal delta platform reflect this lobe’s more proximal position 

relative to eastern source areas, which suggests that the thickness variations in the Floyds 

Knob interval may also be associated with the position and topography of the delta lobe 

(Fig. 8.2).  

8.1.6 Toe-of-slope carbonate-mud mounds 
The Floyds Knob interval in Russell, Clinton, and Cumberland counties, south-

central Kentucky (Fig. 8.2, section identifiers - LC1, LC2, LC3, MR, BN1, BN2, and 

BN3), is represented by carbonate mud mounds and the associated green fossiliferous 

shale facies (Figs. 6.22 and 8.1).  The mud mounds and the green shales are situated at 

the top of Maury/New Providence-equivalent, glauconitic- and phosphate-rich shale 

(Figs. 6.7, 6.22, 8.1, and 8.11). The green fossiliferous shales surrounding the mud 

mounds are characterized by very finely disseminated glauconite- and chlorite-rich clays, 

and occur with phosphate nodules (Fig. 6.14; Table 6.1, section identifier-BN3).   

Most of the more recent research has suggested that the carbonate-mud mounds 

present in the lower part of the Fort Payne Formation in south-central Kentucky and 

north-central Tennessee were deposited in relatively deeper water, but within the photic 

zone on a southward facing paleoslope in front of the abandoned Borden delta (Fig. 8.12) 

(MacQouwn and Perkins, 1982; Ausich and Meyer, 1990; Meyer et al., 1995; Khetani 

and Read, 2002; Krause et al., 2002; Krause and Meyer, 2004; Greb et al., 2008). The 
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thin-bedded, flat-lying, green fossiliferous shales above the Maury Shale, which act as 

the background sediment in which the mud mounds developed, are interpreted to have 

been produced by turbidity currents, slumps, and slides on the delta paleoslope (Lewis 

and Potter, 1978; Ausich and Meyer, 1990; Meyer et al., 1995; Krause et al., 2002; 

Krause and Meyer, 2004). These mud mounds most likely developed on 

paleotopographic highs, created by the differential sediment accumulation on the basin-

floor (Lumsden, 1988; Ausich and Meyer, 1990; Stapor and Knox, 1995).  

However, the Fort Payne mud mounds and associated green shales may also have 

developed over deep, structurally, uplifted areas, (Fig. 8.2), in shallower, warm waters 

within the photic zone, as evident by the occurrence of coral communities (Fig. 8.13). 

Jeffery (1997) has suggested that carbonate mud mounds are relatively common atop 

structures that can elevate themselves into shallower, sunny, more active waters. The 

presence of rugose and tabulate corals (Fig. 8.13) along with an abundance of 

echinoderm debris in the Fort Payne mud mounds indicates the presence of active waters 

that kept colonies clean and supplied nutrient- and oxygen-rich waters. In addition, the 

presence of rugose and tabulate corals, which are assumed to have contained algal 

symbionts, like their modern ancestors, calls for well-lit water less than 100 m deep. This 

is also confirmed by the presence of clotted carbonate muds (Fig. 8.14), which have been 

attributed to algal mats and other forms of algae apparently living on the mound surfaces 

(Krause and Meyer, 2004). The distal location of these mounds, as well as their elevated 

nature, would have insured a relatively clastic-free setting.  

The mound area overlies basement faults of the Precambrian East Continent Rift 

Basin and Grenville Front. These structures may have been reactivated to elevate 
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overlying areas.  Migrating Neoacadian tectonic bulge may also have caused their uplift. 

Moreover, synsedimentary growth structures and angular unconformities associated with 

the mud-mound section (Figs. 8.11, 8.15, 8.16 and 8.17) may well support the 

reactivation of these structures at depth. These growth structures could also be related to 

slope processes and sediment compaction. Periodic storms apparently kept the mound 

tops clean and well-exposed in well-lit, active waters. However, the same storms would 

have reworked nearby delta-front and prodelta muds, not to mention nearby glauconitic 

muds. These muds would have accumulated in quiet, low places between the mounds, 

and with rising sea level, would have eventually buried the mounds. While the mounds 

were active, gravity- and storm-reworking of skeletal debris from the top of the mounds 

would have generated the many grainstone and packstone layers found in the surrounding 

green shales.  
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Figure 8.11 – Measured stratigraphic section at the Burkesville north (BN3) section.   



159 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.12 – Interpreted lithostratigraphic relationships between the Borden siliciclastic 
and the Fort Payne carbonates across the western Appalachian and eastern Illinois basins 
(Kinderhookian–Osagean). Datum is the top of the Upper Chattanooga Shale. Index map 
included at bottom.  
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Figure 8.13 – Observed coral and fossil communities from the mud mounds. (A, B, C) 
from the Burkesville north (BN3) section; D) from the Lake Cumberland (LC2) section.  

 

 

 

 

 

 

Figure 8.14 – Clotted carbonate muds on the mud mounds with fossils. Photograph from 
the Mantown Road (MR) section, Clinton County.  
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Figure 8.15 – Carbonate mud-mound photograph and interpretations from the Burkesville 
north section 3 (BN3).  Mound core and post-mound facies drape over, pinch out, and 
show angular relationships with the undeformed mound facies. 

Figure 8.16 – Synsedimentary growth structures in the green fossiliferous shales 
surrounding the mud mounds at the Burkesville north (BN2) section.  
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Figure 8.17 – Carbonate-mud mound from the Burkesville north section, Cumberland 
County, showing angular unconformable relationship between green-shale facies and 
mound facies.  
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8.2 Timing of deposition of the Floyds Knob interval 
It has been postulated that the Floyds Knob interval records a break in deposition 

between the clastic-dominated Borden-Grainger deltaic sequence and the carbonate-

dominated Slade Formation during late Osagean–early Meramecian time (Kepferle, 1971; 

Whitehead, 1976, 1978, Sable and Dever, 1990). The nature of glauconite deposition and 

its occurrence across such a widespread area suggests that the deposition event was 

largely penecontemporaneous across several different environments. 40Ar/39Ar absolute 

dating (341.55 Ma) of glauconites from the Floyds Knob interval suggests a late Osagean 

time, but likely experimental error indicates the possibility of an early Osagean to early 

Meramecian time (Fig. 7.2). However, mega-fossil studies of Keokuk-type brachiopod 

fauna, miospore biostratigraphic studies, and conodonts point to a late Osagean age 341 

Ma) (Butts, 1922; Stockdale, 1939; Weller et al., 1948; Goodman, 1975; Whitehead, 

1976, 1978; Shaver, 1985; Richardson and Ausich, 2004). Widespread development of 

the Floyds Knob interval across central and eastern Kentucky and in parts of Indiana and 

Tennessee at this time suggests a regional causative event, either eustatic, tectonic, or a 

combination of both. 

8.2.1 Tectonic-eustatic events 
Before the deposition of the Floyds Knob interval in late Osagean time, vast 

amounts of clastic debris from the Borden-Grainger delta complex (Figs. 8.1 and 8.2) 

were deposited across the craton to the west of the orogenic front in a subsiding foreland 

basin during the final Acadian/Neoacadian tectophase, reflecting the loading-type 

relaxation and equilibrium stages of a lithospheric flexural response to orogeny 

(Ettensohn, 1993, 1994, 2004; Ettensohn et al., 2004) (Figs. 8.18 and 8.19). Most of the 

clastics from the orogenic  
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 Figure 8.18 – Schematic southwest-northeast cross-section across central Appalachian 
Basin showing Mississippian units and lithologies with respect to the flexural events of 
the Early–Middle Mississippian Neoacadian tectophase of Acadian Orogeny (adapted 
from Ettensohn et al., 2004).  
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Figure 8.19 – Early flexural stratigraphic sequence, showing flexural events, 
accompanying lithologies, and a relative sea-level curve (modified from Ettensohn et al., 
2002, Figure 11). 
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load were derived from the convergence of the Carolina terrane with the New York and 

Virginia promontories of the eastern Laurussia (Ettensohn, 1994, 2008; Merschat and 

Hatcher, 2007).  

The Sunbury Shale and its equivalents in the upper Chattanooga and New Albany 

shales (Falling Run Bed; Fig. 5.2) represent the sedimentary response to initial 

convergence between the continent and terrane that created major deformation and 

deformational loading in the Appalachian Basin. South-central, west-central, and east-

central Kentucky were so far distal that only very thin Sunbury equivalents or thin 

concretionary zones (Falling Run Bed) were deposited (Fig. 5.2). Once the cratonward 

movement of the load ended, loading-type relaxation of the crust below the now static 

load ensued, deepening the foreland basin and causing the forebulge to move cratonward. 

By this time, the load was eroding and vast amounts of clastic debris were shed westward 

into the foreland basin as the Price-Pocono-Borden-Grainger delta complex (Figs. 8.18 

and 8.19). The distal most part of the Borden-Grainger in south-central Kentucky, 

however, is represented by the thin Maury Shale/New Providence equivalent glauconite-

rich clayey shale facies. It occurs immediately above the Falling Run Bed across an 

unconformity, and was possibly deposited in sediment-starved conditions in deeper 

water, anoxic environment. The fine-grained nature of the glauconite in the Maury could 

be attributed to the absence of burrowing animals in deeper, anoxic environment, which 

prohibited significant fecal matter accumulation. This all happened during middle-late 

Osagean time. At the same time, the region was experiencing a major sea-level 

drawdown (Fig. 8.20), probably related to increased glacial ice volume on Gondwana 

(Ross and Ross, 1988; Mii et al., 1999; Davydov et al., 2004; Haq and Schutter, 2008). 
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The eastwardly migrating bulge effectively formed a regional barrier, blocking farther 

westward sediment influx into the western Appalachian Basin, while sea-level drawdown 

(Fig. 8.20) generated delta-destruction facies like the Nada and Wildie equivalents and 

high-energy carbonate facies on more distal delta platforms (Fig. 8.2). In these settings, 

peritidal and evaporitic sediments developed on the bulge in the Maccrady Formation 

(Fig. 8.18; Warne, 1990) to the east (Virginia, West Virginia, and Tennessee), whereas 

farther to the west in Kentucky, central Tennessee,  
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Figure 8.20 – Relative coastal onlap curve for the Mississippi Valley/Illinois Basin type 
(Keokuk) section (from Ross and Ross, 1988). Blue rectangle represents the study 
interval in the Appalachian and Illinois basins of Kentucky and adjacent states. Red 
arrow represents the period of onlap/offlap for the Floyds Knob interval in the Borden 
and Fort Payne formations. Five episodes of onlap can be seen during Kinderhookian–
Osagean time on the North American craton. 
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and southern Indiana, the Floyds Knob interval developed in sediment-starved, sub-oxic 

conditions on top of and in front of the abandoned Borden delta (Chaplin, 1980; Lane and 

Dubar, 1983; Kepferle, 1977; Ettensohn, 1980, 1981, 1994, 2002; Gauthier, 1988; 

Ettensohn et al., 2004). In fact, the Floyds Knob interval effectively represents the 

boundary between clastic-rich parts of the Borden-Grainger complex and the Fort Payne 

Formation, and overlying carbonate-rich parts of the Borden (Nada, Wildie, Muldraugh, 

and lower Edwardsville (Figs. 6.8, 6.18, and 8.1) and Fort Payne Formation (Figs. 6.8 

and 8.1). In uplifted conditions high above the poorly oxygenated, basinal bottom waters, 

and during the lowstand conditions, coeval carbonate mud mounds developed wherever 

they could in starved-basin Fort Payne environments. Hence, the Floyds Knob interval 

throughout the study area is most likely related to a combination of eustatic and tectonic 

events. These same events set the stage for future Meramecian and Chesterian carbonate 

deposition throughout the Appalachian Basin and mid-continent region.  
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CHAPTER 9: CONCLUSIONS 

The glauconite- and phosphate-rich Floyds Knob Bed is described as a late 

Osagean temporal marker horizon that is recognized in the western Appalachian and 

eastern Illinois basins throughout central and eastern Kentucky and in parts of Indiana 

and Tennessee. It is also associated with three to four more granular glauconite-rich 

horizons, and glauconite-rich muds reaching thickness of up to 30 m in some places, atop 

and in front of the abandoned Borden-Grainger delta, effectively representing an interval, 

rather than a single bed.  The Floyds Knob interval represents sediment-starvation and 

suboxic conditions following the end of major synorogenic (Neoacadian), sediment 

influx onto foreland parts of the craton. This interval also marks the transition between 

dominantly clastic facies to dominantly carbonate facies during a sea-level lowstand in 

the early phase of loading-type relaxation associated with the Neoacadian tectophase of 

the Acadian Orogeny.  

The Floyds Knob interval was previously thought to have been deposited only in 

sediment-depleted settings atop the Borden-Grainger delta slope, but this study has found 

that the Floyds Knob interval was deposited across several major depositional settings in 

the western Appalachian and eastern Illinois basins. Basement structures may have 

played a major role in defining the nature and thickness of the sediments, combined with 

the position and depositional topography of the abandoned delta lobes. More importantly, 

the Floyds Knob interval in south-central Kentucky does not occur at the base of the 

carbonate-dominated Fort Payne Formation with the glauconite-rich Maury/New 

Providence equivalent shales; rather, it is represented by a thick pelletal glauconite-rich 

horizon that separates basal Fort Payne clastics from overlying Fort Payne carbonates. 
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Mineralogical studies of the green shales associated with the carbonate-mud mounds 

suggest that the green shales are composed of glauconite and chloritic-clay-rich verdine 

facies, and the stratigraphic occurrence of the mud mounds and associated green shales 

suggest that they represent the Floyds Knob interval in south-central Kentucky, and that 

the mounds may have developed on structural highs associated with the Grenville Front 

and East Continent Rift Basin.  

Radiometric dating of the glauconites from the western Appalachian Basin and 

biostratigraphic study of the trilobite species Exochops portlocki from the Fort Payne 

Formation in the eastern Illinois Basin suggest a late Osagean origin for the Floyds Knob 

interval with errors indicating possible early Osagean to early Meramecian origin. These 

results are similar to the existing biostratigraphic studies, which point to a late Osagean 

origin for the Floyds Knob interval.  

Closer examination of the carbonate-mud mounds of the Fort Payne Formation in 

south-central Kentucky, including the presence of non-reef coral communities, suggest 

that these mud mounds must have developed in active water within the photic zone in a 

water column dominated by episodic storms. The mud mounds were apparently 

topographically higher than surrounding basinal environments, and must have nucleated 

on paleotopographic features. These features may have resulted from the reactivation of 

the basement faults underlying the area during the Neoacadian Orogeny and/or have been 

created by sediment accumulation of variable thicknesses on the basin-floor, generated 

along the delta-front by turbidity currents, slumps, slides, and other mass flows.  

Copyright© Devi Bhagabati Prasad Udgata 2011 
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APPENDIX-1 

(Measured Stratigraphic Sections) 
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Table TA1 - List of measured sections. 
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Figure FA1 – Location map of the measured stratigraphic sections in Kentucky and 
adjacent states.  
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Figure FA2 – Legend for measured stratigraphic sections.  
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Figure FA3 – Measured stratigraphic section at the section OH1.   
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Figure FA4 – Measured stratigraphic section at the section OH2.   
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Figure FA5 – Measured stratigraphic section at the section OH3.   
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Figure FA6 – Measured stratigraphic section at the section MP.   
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Figure FA7 – Measured stratigraphic 
section at the section NB.   
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Figure FA8 – Measured 
stratigraphic section at the section 
MC.   
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Figure FA9 – Measured 
stratigraphic section at the section 
GC.   
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Figure FA10 – Measured 
stratigraphic section at the 
section HT.   
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Figure FA11 – Measured 
stratigraphic section at the section 
FN.   
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Figure FA12 – Measured 
stratigraphic section at the 
section FS.   

 



186 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure FA13 – Measured 
stratigraphic section at the 
section BH. 
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Figure FA14 – Measured 
stratigraphic section at the section 
MT. 
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Figure FA15 – Measured 
stratigraphic section at the 
section BD. 
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Figure FA16 – Measured 
stratigraphic section at the section 
IN. 
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Figure FA17 – Measured 
stratigraphic section at the 
section FK. 



191 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure FA18 – Measured 
stratigraphic section at the 
section BP. 
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Figure FA19 – Measured 
stratigraphic section at the 
section MT. 
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Figure FA20 – Measured 
stratigraphic section at the 
section L1. 
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Figure FA21 – Measured 
stratigraphic section at the 
section L2. 
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Figure FA22 – Measured 
stratigraphic section at the 
section S1. 
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Figure FA23 – Measured 
stratigraphic section at the section 
S2. 
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Figure FA24 – Measured stratigraphic 
section at the section LC1. 
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Figure FA25 – Measured stratigraphic 
section at the section LC2. 
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Figure FA26 – Measured stratigraphic 
section at the section LC3. 
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Figure FA27 – Measured stratigraphic 
section at the section LC4. 
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Figure FA28 – Measured stratigraphic 
section at the section WD. 
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Figure FA29 – Borehole image for figure FA28. 
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Figure FA30 – Measured 
stratigraphic section at the 
section SR. 
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Figure FA31 – Measured 
stratigraphic section at the 
section MR. 
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Figure FA32 – Measured 
stratigraphic section at the section 
BN1. 
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Figure FA33 – Measured 
stratigraphic section at the 
section BN2. 
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Figure FA34 – Measured 
stratigraphic section at the 
section BN3. 
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Figure FA35 – Measured 
stratigraphic section at the section 
BN4. 
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Figure FA36 – Measured 
stratigraphic section at the 
section BN5. 
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Figure FA37 – Measured 
stratigraphic section at the 
section BS. 
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Figure FA38 – Measured 
stratigraphic section at the 
section BW 
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Figure FA39 – Measured 
stratigraphic section at the 
section BN6. 
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Figure FA40 – Measured 
stratigraphic section at the 
section C5. 
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Figure FA41 – Measured 
stratigraphic section at the 
section PG. 
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Figure FA42 – Measured 
stratigraphic section at the section 
CG. 
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Figure FA43 – Measured 
stratigraphic section at the 
section JM. 
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APPENDIX 2 
(40Ar/39Ar analyses Spectra) 
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Figure FA44 – Ar-Ar spectrum for the sample L1-1.  
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Figure FA45 – Ar-Ar spectrum for the sample L1-2.  
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Figure FA46 – Ar-Ar spectrum for the sample BH-2. 
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Figure FA47 – Ar-Ar spectrum for the sample BH-3.  

 

 

 



222 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure FA48 – Ar-Ar spectrum for the sample OH3-1 
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Figure FA49 – Ar-Ar spectrum for the sample OH3-2. 

 

 

 

 



224 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure FA50 – Ar-Ar spectrum for the sample OH3-3.  
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Figure FA51 – Ar-Ar spectrum for the sample BP-1. 
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Figure FA52 – Ar-Ar spectrum for the sample BP-2.  
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Figure FA53 – Ar-Ar spectrum for the sample BP-3.  
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Figure FA54 – Ar-Ar spectrum for the sample BS (Maury Shale). 
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