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ABSTRACT OF DISSERTATION 

 
 
 

COMPUTATIONAL ANALYSES OF THE UPTAKE AND DISTRIBUTION OF 
CARBON MONOXIDE (CO) IN HUMAN SUBJECTS  

 
 

 

Carbon monoxide (CO) is an odorless, colorless, tasteless gas that binds to hemoglobin 

with high affinity. This property underlies the use of low doses of CO to determine 

hemoglobin mass (MHb) in the fields of clinical and sports medicine.  However, 

hemoglobin bound to CO is unable to transport oxygen and exposure to high CO 

concentrations is a significant environmental and occupational health concern. These 

contrasting aspects of CO—clinically useful in low doses but potentially lethal in higher 

doses—mandates a need for a quantitative understanding of the temporal profiles of the 

uptake and distribution of CO in the human body. In this dissertation I have (i) used a 

mathematical model to analyze CO-rebreathing techniques used to estimate total 

hemoglobin mass and proposed a CO-rebreathing procedure to estimate hemoglobin mass 

with low errors, (ii) enhanced and validated a multicompartment model to estimate O2, 

CO and CO2 tensions, bicarbonate levels, pH levels, blood carboxyhemoglobin (HbCO) 

levels, and carboxymyoglobin (MbCO) levels in all the vascular (arterial, mixed venous 

and vascular subcompartments of the tissues) and tissue (brain, heart and skeletal muscle)  

compartments of the model in normoxia, hypoxia, CO hypoxia, hyperoxia, isocapnic 

hyperoxia and hyperbaric oxygen, and (iii) used this developed mathematical model to 

propose a treatment to improve O2 delivery and CO removal by comparing O2 and CO 

levels during different treatment protocols administered for otherwise-healthy CO-

poisoned subjects. 



KEYWORDS: Mathematical model, CO Rebreathing methods, CO poisoning, 
Normobaric oxygen, Hyperbaric oxygen. 
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Chapter 1: INTRODUCTION
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 Inhalation of carbon monoxide (CO) interrupts the efficient mechanism of 

hemoglobin (Hb) molecule to transport oxygen. O2 is stored in the lungs as a gas and in 

the blood. In the blood it is present in two (Vander et al., 2004) forms: (1) dissolved in 

plasma (normally 1.5% or 3 ml in 1 liter blood) and (2) reversibly combined with 

hemoglobin (normally 98.5% or 197 ml in 1 liter blood). Each hemoglobin molecule can 

bind to four oxygen molecules forming fully-saturated oxyhemoglobin (HbO2). Hb is 

present in the red blood cells and O2 transport to the tissues occurs primarily in the HbO2 

form, as there are about 280 million Hb molecules in each red blood cell. CO is an 

odorless, colorless, tasteless gas that has a much higher binding affinity for hemoglobin 

and competes with O2 for the same binding sites on Hb. Hb binds CO ~220 times more 

strongly than it binds O2, to form carboxyhemoglobin (HbCO). In the presence of CO, 

the oxygen dissociation curve shifts to the left resulting in increased affinity of Hb for O2. 

This increased affinity prevents unloading of O2 from Hb and impairs O2 delivery to the 

tissues. Thus inhalation of CO can decrease the oxygen-carrying capacity of hemoglobin 

and impair tissue oxygenation. 

 

  In addition to Hb, CO also binds to myoglobin (Mb). Mb is a monomeric heme 

protein present in the muscle tissue and each myoglobin molecule can bind to one O2 

molecule forming oxymyoglobin (MbO2). Mb is an oxygen store and also binds to CO to 

form carboxymyoglobin (MbCO).  Mb binds CO ~36 times more strongly than it binds 

O2. Thus, inhalation of CO can decrease the oxygen-storing capacity of myoglobin and 

impair tissue oxygenation. 

 

 Exposure to CO concentrations exceeding permissible exposure levels (average of 

50 ppm over 8 hrs) is a significant environmental and occupational health concern (EHC, 

1979; Raub et al., 1999). There are approximately 4000 deaths and over 40,000 

emergency department visits resulting from CO exposures in the United States each year 

(Raub et al., 2000; Tucker and Eichold, 2005). CO toxicity causes mortality primarily 

due to the effects of severe hypoxia by attaching itself to Hb and Mb and reducing the 

oxygen carrying capacity of these heme proteins. Both the therapy (i. e., normobaric vs. 

hyperbaric oxygen) and the duration of treatment are determined by the percent of 
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%HbCO in the blood and the state of consciousness of the patient when admitted to the 

hospital. Unfortunately, the %HbCO provides limited information regarding the total 

body burden of CO and the severity of the CO exposure because %HbCO correlates only 

weakly with extravascular CO content, and because a given %HbCO could have been 

achieved via an infinite variety of exposure conditions. 

 

 Although high doses of CO are toxic, techniques involving rebreathing relatively 

low concentrations of CO have been used with moderate success in both clinical and 

sports medicine to measure total hemoglobin mass, a value which provides information 

regarding adaptation to exercise training and various illnesses (Heinicke et al., 2001; 

Garvican et al., 2010; Schmidt and Prommer, 2005, 2010).  As is the case with CO 

poisoning, the accuracy of CO-rebreathing methods is dependent on the ability to account 

for all the CO in the body, which %HbCO levels alone do not provide. 

 

 It would be difficult, and in some cases impossible, to obtain the information 

necessary to accurately determine the total body burden of CO in a patient (CO poisoned 

victim) or a study subject (hemoglobin mass determination). The total body burden of CO 

is the amount of CO present in the blood (%HbCO), lungs, nonmuscle tissue and muscle 

tissue (%MbCO). Determination of total body burden of CO is diffcult mainly because 

non-invasive measurements of MbCO are not possible.  Use of a mathematical model, 

however, greatly improves the ability to address this question of assessing the total body 

burden of CO. I hypothesize that “using a validated mathematical model to accurately 

estimate the amount of CO bound to myoglobin during and after CO inhalation will (i) 

allow improving the accuracy of CO-rebreathing methods to determine hemoglobin mass 

and (ii) aid in suggesting treatments ensuring fast CO removal from the body, after CO 

poisoning.”  

 

 Our laboratory has developed mathematical models that predict the uptake, 

distribution, and elimination of CO under a variety of exposure conditions (Bruce and 

Bruce, 2003,2006; Bruce et al., 2008).  In my MS thesis, I enhanced the most recent 

model (Bruce et al., 2008) by adding a separate myocardial compartment and assessing 
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the effects of exercise on myocardial oxygen content in the presence of CO (Erupaka et 

al., 2010).  My doctoral dissertation comprises three projects, where each project is 

designed to accomplish the Specific Aims listed below.   

 

The first Specific Aim of my Doctoral dissertation was to use this enhanced 

model (Erupaka et al., 2010) to evaluate two commonly used CO rebreathing methods 

(Burge and Skinner, 1995; Schmidt and Prommer, 2005) to estimate hemoglobin mass 

(MHb) and to propose an alternative method with lower errors than the methods currently 

in use. The main aim of this project was to use a validated mathematical model to 

simulate the two commonly used CO rebreathing protocols (Burge and Skinner, 1995; 

Schmidt and Prommer, 2005) for a population of healthy subjects and then analyze the 

simulation results to determine any potential sources of errors in estimation of MHb. As a 

process of validation experimentally measured %HbCO levels (Garvican et al., 2010) 

from healthy human subjects during the two CO rebreathing protocols were compared 

with the model estimated %HbCO levels. Also, a new standardized CO rebreathing 

method to determine MHb with lower errors than the methods currently in use has been 

proposed and modifications to the existing CO rebreathing methods to improve 

estimation of MHb have been suggested. Methods to accomplish the first Specific Aim are 

discussed in detail in chapter 2 of this dissertation.  

 

 The second Specific Aim was to further enhance the earlier model 

(Erupaka et al., 2010) in order to be able to model the effects of poikilocapnic 

normobaric (NBO2), isocapnic normobaric (INBO2) and poikilocapnic hyperbaric 

(HBO2) oxygen therapy on brain oxygen levels. To achieve this aim it was necessary to 

enhance the model by adding a separate brain tissue compartment and to include control 

of ventilation, cardiac output, and brain blood flow with changes in O2 and CO2 levels. In 

order to understand the role of CO2 during isocapnic and poikilocapnic treatment 

protocols, mass balance equations for CO2 were added for all the compartments in the 

model. The main aim of this project was to enhance my earlier model and validate it for 

various conditions of changing O2 or CO2 concentrations like hypoxia, hyperoxia, 
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hyperbaric oxygen, hypercapnia and hypocapnia.  Methods to accomplish the second 

Specific Aim are discussed in detail in chapter 3 of this dissertation.  

 

The third Specific Aim was to use this enhanced and validated model to predict 

PO2’s in the brain, heart and skeletal muscle tissues, and to compare the rates of CO 

removal in CO-poisoned patients treated with NBO2, HBO2 or INBO2. The main aim of 

this project was to compare NBO2, HBO2 and INBO2 therapies, to determine the best 

treatment strategy to be administered, ensuring fastest CO removal and O2 delivery after 

healthy subjects were exposed to varying concentrations and durations of CO poisoning. 

Methods to accomplish my third Specific Aim are discussed in detail in chapter 4 of this 

dissertation.  
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Chapter 2: Computational Analyses of Carbon monoxide (CO) Rebreathing 

Methods to Estimate Hemoglobin Mass in Humans 

 

 

 

Contents of this chapter will be submitted as a manuscript
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INTRODUCTION 

Determination of total hemoglobin mass (MHb) is important in the fields of 

clinical and sports medicine (Garvican et al., 2010; Heinicke et al., 2001; Schmidt and 

Prommer, 2005). Routine measurements of MHb are made to determine the effects of 

adaptation to exercise training, environmental stresses, illness and trauma. Radioactive 

methods and dilution techniques are the most popular procedures to measure MHb. 

Determinations of MHb from the radioactive methods are reliable but have the 

disadvantage of being radioactive. The radioactivity is due to injection of radioactive 

markers like 51Cr or 11CO-labeled RBC’s. The dilution techniques to determine MHb are 

less harmful due to the usage of safe doses of carbon monoxide (CO), Evans blue dye or 

indocyanine green as markers. Recently Gore et al. (2005) had concluded that the 

determination of MHb using the CO rebreathing dilution technique has an error 

comparable to that of the radioactive methods and also errors lower than that obtained 

from other dilution techniques. 

 

In the CO rebreathing methods, a known volume of CO ( ) is rebreathed in 

100% O

tCOV

2. The duration of rebreathing is different for the various CO rebreathing 

protocols (Burge and Skinner, 1995; Garvican et al., 2010; Hutler et al., 2000, Schmidt 

and Prommer, 2005). However, the two commonly used CO rebreathing techniques to 

determine MHb were described by Burge and Skinner in 1995 and by Schmidt and 

Prommer in 2005. In these methods during the process of CO rebreathing, CO leaves the 

alveolar space and enters the vascular space via diffusion. In the vascular space, Hb binds 

CO to form HbCO. Depending on the CO rebreathing protocol, administered CO can 

leave the vascular space either by diffusion to the extravascular compartments containing 

heme pigments like myoglobin (Mb), cytochrome c oxidase, etc or to the lungs (from 

where CO is exhaled after the period of rebreathing). When equilibration of arterial and 

venous HbCO levels occurs, CO is assumed to be well mixed in the vascular space. In the 

CO rebreathing techniques, mixing time is determined as the time at which the %HbCO 

levels obtained from two or more blood sites (arterial, capillary or venous) are equal. 

Experimentally, the best one can do with current analyses of HbCO is to determine the 

time at which the differences between %HbCO levels is ≤ 0.1%. The CO rebreathing 
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methods are based on the principle that, after mixing of CO in the vascular space is 

complete, the MHb equals to the ratio of the volume of CO bound to Hb (VCOHb) and the 

maximal capacity of Hb to bind to CO (Equation 2.1).  

100 .............................................2.1
1.58Hb COHb

i

M K V
HbCO

=
Δ

i i  

where,  

K=1 (as all values are in BTPS) 

VCOHb= -V
tCOV CO Lungs + rebreathing system at end of rebreathing (VCO L+S) - 

VCO exhaled between end of rebreathing and time of blood sampling (VCO ex)- 

VCO bound to myoglobin at Tsample (VCOMb) 

∆HbCOi= Change in %HbCO between time T0 and Tsample for blood compartment 

‘i’. where i= arterial (ar), capillary (cot, cm), venous (vm) 

T0 = Start time of the experiment 

Tsample = Sampling time 

1.58= Hufners constant in BTPS (Gorelov, 2004) 

 

A prerequisite to accurately calculate the MHb using these methods is to ensure 

that mixing of CO in the vascular space is complete (trueTmix). Due to the measurement 

limitations of %HbCO and dependence of determinations of trueTmix on these values, MHb 

is calculated from blood samples taken at 1-2 min away from trueTmix. This time is 

referred to as sampling time, Tsample. Optimal values for trueTmix or Tsample to calculate MHb 

are often debatable in the CO rebreathing methods (Gore et al., 2006, Schmidt and 

Prommer, 2005). Depending on the CO rebreathing method applied, estimated values of 

the trueTmix (referred as Tmix in the text) range from 2-12 minutes (Burge and Skinner, 

1995; Garvican et al., 2010; Schmidt and Prommer, 2005).  Duration of CO rebreathing, 

volume of CO administered, site of blood sampling and variability among subjects may 

be some of the factors contributing to a wide range of Tmix values obtained from various 

CO rebreathing methods (Burge and Skinner, 1995; Garvican et al., 2010; Gore et al., 

2006; Schmidt and Prommer, 2005). Also the %HbCO values at Tsample are influenced by 

the site of sampling and diffusion of CO from vascular space to extravascular tissues or 

to the lungs (Garvican et al., 2010). In a given subject for a CO rebreathing method, 
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sampling for %HbCO from different blood sites (arterial, capillary, venous) before 

complete mixing of CO in the vascular space results in different estimates of MHb 

(Garvican et al., 2010). Thus the reliability and accuracy of MHb estimation is dependent 

on the blood sites sampled for %HbCO measurements (Equation 2.1) and determination 

of Tmix.  

 

Another prerequisite for accurate estimation of MHb from CO rebreathing methods 

is to be able to account for the entire volume of CO at Tsample that has been administered 

at the start of the experiment (T0). Thus the estimation of MHb is dependent on the 

calculation of the volume of CO bound to hemoglobin, VCOHb and %HbCO (Equation 

2.1). However, the calculation of VCOHb is dependent on the measurements of (i) the 

volume of CO in the lungs and the rebreathing system at the end of rebreathing (VCO 

L+S), (ii) the volume of CO exhaled from the end of rebreathing to Tsample (VCO ex), and 

(iii) the volume of CO bound to Mb at Tsample (VCOMb). Thus, any errors in determination 

of VCO L+S, VCO ex, or VCOMb may lead to either an overestimation or underestimation of 

total hemoglobin mass, MHb (Garvican et al., 2010; Steiner and Wehrlin, 2010). 

 

Prior to 2007, estimation of MHb from CO rebreathing methods assumed no loss 

or minimal loss of CO (1% of ) to Mb (Burge and Skinner, 1995; Hutler et al., 2000; 

Gore et al., 2006; Schmidt and Prommer, 2005). In 2003, Bruce and Bruce used their 

multicompartment model to simulate a CO rebreathing method (Burge and Skinner, 

1995) and concluded that Mb in the muscle tissue is a reservior for binding CO. Inspired 

by the findings of this model, recently Prommer and Schmidt (2007) have derived a 

formula to estimate V

tCOV

COMb and concluded that ~2% of is bound to Mb. This formula 

was derived on the assumption that there is constant flux of CO from blood to the tissues 

containing Mb. The errors introduced in determination of M

tCOV

Hb due to using this formula 

are not known. In the recent CO rebreathing experiments (Garvican et al., 2010; Steiner 

and Wehrlin, 2010), using Prommer and Schmidt’s formula (2007) to determine VCOMb 

resulted in higher estimates of MHb from Burge and Skinner’s method (1995) when 

compared to Schmidt and Prommer’s method (2005). The inability to account for the loss 
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of CO from Hb to Mb present in muscle tissues will lead to an overestimation of total 

MHb.  

 

The existing CO rebreathing methods result in different estimates of MHb for a 

given subject (Garvican et al., 2010; Steiner and Wehrlin, 2010), thus questioning the 

reliability and accuracy of these methods to determine MHb. Differences in the estimates 

of MHb from these methods makes it difficult to compare results from different studies 

which measure MHb to determine the effects of adaptation to exercise training, altitude 

and other blood related illnesses. In order to evaluate a CO rebreathing method which 

estimates MHb with low errors, it would be better to compare the estimates of MHb with a 

known value of MHb (AMHb). The commonly used CO rebreathing methods make various 

assumptions in calculating VCO L+S (Burge and Skinner, 1995), VCO ex (Schmidt and 

Prommer, 2005), or VCOMb (Prommer and Schmidt, 2007). Errors in determination of 

VCOL+S, VCO ex, or VCOMb due to these assumptions may lead to either an overestimation 

or underestimation of total hemoglobin mass, or, possibly, to compensating errors 

(Equation 2.1). Also, it is important to know if the differences in MHb from different CO 

rebreathing methods are due to the variations in these methods to estimate MHb or due to 

errors in the underlying concepts of CO dilution techniques to determine MHb.  

 

Thus the main aim of this study is to use a validated mathematical model to 

simulate the two commonly used CO rebreathing protocols (Burge and Skinner, 1995; 

Schmidt and Prommer, 2005) for a group of healthy subjects and then analyze the 

simulation results to determine any potential sources of errors in estimation of MHb 

( ˆ
HbM ). As a process of validation experimentally measured %HbCO levels (Garvican et 

al., 2010) in nine healthy human subjects from three different blood compartments 

(arterial, capillary and venous), during the two CO rebreathing protocols were compared 

with the model estimated %HbCO levels. In addition the model estimated MHb was 

compared to the experimentally determined MHb. Also, a new CO rebreathing method to 

determine ˆ
HbM  with low errors, independent of the site of sampling has been proposed 

and modifications to the existing CO rebreathing methods to improve estimation of MHb 

have been suggested. In addition the blood sampling site and the values for Tmix and 
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Tsample, to obtain low errors in ˆ
HbM  independent of the CO rebreathing method used to 

estimate MHb have been determined.  

 

METHODS 

Model description 

The mathematical model used in this study has been described in detail previously 

(Erupaka et al., 2010). This validated model was capable of predicting time varying 

%HbCO levels, carboxymyoglobin (%MbCO)  levels and O2 tensions in various tissue 

and blood compartments for a variety of CO exposures (Erupaka et al., 2010).  The major 

features of this model are the expansion of a standard single lumped compartment 

representation of skeletal muscle tissues into two tissue subcompartments interacting with 

three vascular subcompartments (Bruce et al., 2008) and an addition of a cardiac 

compartment (Erupaka et al.,2010) with an architechture similar to that of the skeletal 

muscle. This model (Erupaka et al., 2010) was shown to reproduce experimental data 

from transient CO exposure (Benignus et al., 1994) and one of the CO rebreathing 

method (Burge and Skinner, 1995). The %HbCO predicted by the model for arterial 

(%HbCOar) and skeletal muscle venous (%HbCOvm) blood compartments were in 

agreement with the experimentally measured arterial and venous %HbCO values (Bruce 

and Bruce, 2008; Erupaka et al., 2010). %HbCOvm is the %HbCO of the blood exiting 

from the third vascular subcompartment of skeletal muscle tissue. In addition to arterial 

and antecubital venous blood sites, the two common sites of measurement for capillary 

blood samples in CO rebreathing protocols are finger tips or ear lobe. In the current 

model, a blood site equivalent of measurements made from pre-warmed finger tip is 

assumed to be the %HbCO in blood entering the second vascular subcompartment of 

skeletal muscle tissue (%HbCOcm). As fingers contain Mb, this blood site is assumed to 

surround the skeletal muscle subcompartment of the model.  A model equivalent of 

%HbCO measurements made from the ear lobe is assumed to be that from the venous 

vascular compartment of the nonmuscle tissue (%HbCOcot).  

 

To determine ˆ
HbM  from the model, equations 2.2-2.4 were added to the model 

(See Table 2.1-2.2 for details). For Garvican’s data set, MHb was also estimated using 
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equation 2.1a in equation 2.1. In the model, VCOMb is calculated from the tissue volumes 

and MbCO concentrations of skeletal and cardiac muscle subcompartments (Equation 

2.2). VCOex and VCO L+S are calculated using equations 2.3-2.4. VCO exhaled calculated 

in the model would be the equivalent of collecting the expired CO over a specified 

duration of time in an experiment, e.g., VCO ex is the volume of exhaled CO collected 

from the end of rebreathing to Tsample. VCO L+S calculated in the model would be the 

equivalent of measuring volume of CO in the lungs and rebreathing system at a specific 

time, depending on the CO rebreathing method e.g., VCO L+S at Tsample or VCO L+S at the 

end of rebreathing. 

[ ] ............................2.1COHb i iV Vb HbCO=∑ i a  

where, 

Vbi and [HbCO]i are the blood volume and concentration of Hb bound to CO in vascular 

compartment ‘i’. i= arterial (ar), three vascular subcompartments of skeletal muscle 

(bm1,bm2,bm3), three vascular subcompartments of cardiac muscle (bc1,bc2,bc3), other 

tissue venous blood compartment (vot) and mixed venous blood compartment (mx).  

 

1 1 2 2

1 1 2 2

............................2.2COMb

Vm MbCOm Vm MbCOm
V

Vcm MbCOcm Vcm MbCOcm
+⎧ ⎫

= ⎨ ⎬+ +⎩ ⎭

i i
i i

 

where, 

Vm1 and Vm2 are tissue volumes of skeletal muscle subcompartments. Vcm1 and Vcm2 are 

tissue volumes of cardiac muscle subcompartments. MbCOm1 and MbCOm2 are MbCO 

concentrations in skeletal muscle subcompartments at Tsample. MbCOcm1 and MbCOcm2 

are MbCO concentrations in cardiac muscle subcompartments at Tsample. 

end of rebreathing

 ( ) .....................................................2.3
sampleT

CO A A
T

V ex V C CO t dt= ∫ i  

where, 

VA  = Measured alveolar ventilation  

CACO(t)= Alveolar CO concentration  

VCO ex is zero in protocol B. 
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.
 ( )  ..........................................2.4CO RS LV A t TV L S V V C CO =+ = + i  

where, 

VRS= Volume of rebreathing system or spirometer 

VLV= Lung volume = Functional residual capacity for protocol B and residual volume for 

protocol P 

CACO= Alveolar CO concentration at time ‘T’ 

T= Tsample for protocol B and end of rebreathing time (2 min) for protocol P. 

 

Simulation Description 

This study comprised simulations of two commonly used CO rebreathing methods 

on two different data sets (See section “Data sets used for simulations of CO rebreathing 

protocols” for details). The first data set was provided by Garvican et al. (2010) and was 

used for model validation. The second data set was provided by Benignus et al. (1994) 

and was used to analyze potential sources of errors in calculation of ˆ
HbM  from the CO 

rebreathing methods. 

 

To validate the model and assess its predictive power to estimate %HbCO levels 

and MHb in different blood compartments, I used the mathematical model to simulate the 

CO rebreathing experiments of Garvican et al. (2010) in nine healthy (2 female, 7 male), 

recreationally-active, human subjects. Each subject was individually simulated using the 

subject specific parameters provided by the investigators, Garvican et al. (2010). The 

model estimated %HbCOar, %HbCOcm, and %HbCOvm for each subject were compared 

with their respective experimentally measured %HbCO levels, for the two CO 

rebreathing methods described in their study (Garvican et al., 2010).  If the model 

predicted mean ± SD values of %HbCO from all the nine subjects were within the 95% 

confidence limits of the experimental data, then the model was considered to be capable 

of reproducing the experimental data. Garvican et al. (2010) also provided us with the 

best estimates of MHb for each subject and these values were considered as AMHb for this 

data set. MHb from four different blood compartments was estimated from the model 

using the predicted %HbCO levels and VCOHb (Equation 2.1a).  Errors in estimation of 
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MHb from the two CO rebreathing protocols at different time points were calculated by 

comparing the model calculated MHb and AMHb.  It was assumed that, irresepective of the 

blood site sampled obtaining errors less than 2% would imply that the model is capable 

of estimating the experimentally determined MHb, AMHb. As Garvican’s data was used to 

validate the model for prediction of %HbCO’s and ˆ
HbM ’s in various blood 

compartments, this data set was not used for detailed analysis of determining potential 

sources of errors in the CO rebreathing methods.  

 

Data (Benignus et al., 1994) from fifteen healthy, male human subjects with 

known MHb, (AMHb) were used to simulate the two CO rebreathing studies. AMHb for each 

subject was calculated as the product of blood volume (measured by Na2
51CrO4 dilution 

method) and hemoglobin concentration (measured by  IL-282 CO-oximeter) provided by 

the investigators. To allow detailed analysis of CO rebreathing methods to estimate MHb, 

this study comprised simulations of the methods described by Burge and Skinner in 1995 

(which I refer to as protocol B) and by Schmidt and Prommer in 2005 which was later 

modified by Prommer and Schmidt in 2007 (which I refer to as protocol P). The volume 

of CO administered for a given subject was the same in both the protocols, i.e. 1 ml of 

CO/Kg of body weight (BW).  For protocols B and P, the model was used to determine 

the uptake and distribution of CO in each subject. The time varying %HbCO’s from the 

arterial, capillary other tissue, capillary muscle and muscle venous blood compartments 

(symbolized by %HbCOar, %HbCOcot, %HbCOcm, %HbCOvm) and alveolar CO 

concentrations (CACO) were calculated by the model for protocols B and P. The 

simulation results of each subject were analyzed to calculate ˆ
HbM  and then compared to 

the AMHb. In this study, ˆ
HbM  was determined using (i) the exact values from the model 

for VCO L+S, VCO ex, and VCOMb ( ˆ
HbM  thus calculated will be referred as ˆM

HbM ) and (ii) 

approximated values based on the published formulas for calculating VCO L+S, VCO ex, 

and VCOMb ( ˆ
HbM  thus calculated will be referred as ˆE

HbM ). ˆM
HbM  was calculated and 

compared to AMHb of the subjects to ensure that any errors in calculation of ˆ
HbM  are 

probably due to the assumptions made in the methods of calculating it in the experiments 
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rather than to the errors in the predicted data (VCOHb, VCO L+S, VCO ex, and VCOMb) from 

the model.  Also, ˆE
HbM  was compared to AMHb to determine the potential possibility of 

errors in estimation of MHb from the existing CO rebreathing methods. The major sources 

leading to errors in calculation of ˆ
HbM  from the two CO rebreathing methods were 

determined on comparing the values of  VCO L+S, VCO ex, and VCOMb used to calculate 

ˆM
HbM  and ˆE

HbM (See section “Estimation of hemoglobin mass” for details on 

calculation of ˆM
HbM  and ˆE

HbM ).  It was assumed that if the errors obtained on 

comparison of AMHb with the ˆ
HbM  calculated from the model are less than 2%, it would 

imply that the errors in calculation of ˆE
HbM  are not due to errors in the underlying 

concepts of CO rebreathing methods or due to the errors in calculation of ˆM
HbM . See 

Table 2.1 for symbols and definitions. 

 

Simulated CO rebreathing protocols 

This study comprised (i) simulations of CO rebreathing methods as described by 

Garvican et al. (2010) in healthy, recreationally-active subjects to validate the model and 

(ii) simulations of protocol B and protocol P in healthy subjects (Benignus et al., 1994) to 

allow detailed analysis of CO rebreathing methods to estimate MHb. ACSLTM version 

11.8 was used for implementing the model and running the simulations. ACSL is a 

computer language designed for modelling and evaluating the performance of systems 

described by time-dependent, nonlinear differential equations. Simulations were 

performed in double precision and a 12 min stabilization period was initiated with every 

simulation run for the baseline simulation to reach a steady state. For the duration of 

rebreathing, the rebreathing system or the spirometer and the lungs form a closed circuit. 

To simulate rebreathing, the lung volume was augmented by the volume of the 

rebreathing system or spirometer and alveolar ventilation was set to zero. 

  

To validate the model, CO rebreathing methods described by Garvican et al. 

(2010) were simulated. The CO rebreathing methods in their study are similar to 

protocols B and P described below, but with some changes in the CO dose administered.  

 15



To simulate protocol B, each subject rebreathed 1 ml of CO/Kg of body weight in 

~99% O2 for a duration of 40 mins. Also oxygen flow rate equal to the metabolic uptake 

was added to the rebreathing bag to avoid hypoxia as a result of underfilling of the bag. 

In this protocol the subject is on 100% O2 prior to rebreathing. The lung volume was 

augmented by the volume of the rebreathing system of 3.5 L.   

 

To simulate protocol P, each subject rebreathed 1 ml of CO /Kg of BW in ~ 99% 

O2 for 2 mins. Prior to CO rebreathing, the subject is on room air. CO rebreathing was 

followed by 13 mins of normal breathing on room air. The lung volume was augmented 

by the volume of the rebreathing system of 2 L.  

 

Estimation of hemoglobin mass (MHb) 

In the study conducted by Garvican et al. (2010), the investigators have provided 

information regarding (personal communication) the sampling time and blood site at 

which the best estimates of MHb were obtained in their subjects for the two CO 

rebreathing methods. The best estimates of MHb from their study were used as the MHb 

for the model simulations and were considered as AMHb to allow comparison with ˆM
HbM  

or ˆE
HbM . For the Burge and Skinner method,  AMHb was obtained at a Tsample of 12.5 min 

in four subjects and at 10 min in five subjects. The blood sampling site was arterial blood 

in 8 subjects and capillary blood in 1 subject. For the Schmidt and Prommer method 
AMHb, was obtained at Tsample of 7.5 min (2 subjects), 10 min (4 subjects) and 12.5 min (3 

subjects). The blood sampling site was arterial blood in 6 subjects and capillary blood in 

3 subjects. For the two CO rebreathing protocols, ˆM
HbM  for these subjects was calculated 

using the model equations 2.1-2.4 at the Tsample and the blood sites specified by the 

investigators. Also MHb was estimated using the model predicted %HbCO levels and 

VCOHb from equation 2.1a. This calculation was done to determine lower bounds on errors 

produced by these methods for estimating MHb.  ˆE
HbM  for all the subjects were calculated 

using the formulas (Equations 2.5-2.7) described by Garvican et al. (2010) at the 

specified Tmix, Tsample and blood site. In their study the formula to calculate VCO ex was 

different from Equation 2.6, as alveolar ventilation (V ) was estimated from a regression A
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equation and the alveolar CO concentration (CACO) was measured at a different time 

point.  For the two CO rebreathing methods, the values obtained for ˆE
HbM  and ˆM

HbM  

were compared with AMHb.  

 

For all the 15 healthy, male subjects of Benignus et al. (1994), MHb for protocols 

B and P was estimated from %HbCO calculated by the model for four blood 

compartments: arterial, venous blood of nonmuscle tissue (approximation of earlobe 

blood), blood flowing into the capillary subcompartment of muscle tissue (approximation 

of arterialized fingertip capillary blood) and muscle venous blood (symbolized by 

subscripts ar, cot, cm and vm respectively). For a given protocol to determine the Tmix for 

each subject; the time dependent pairwise differences (Figure 2.1) between %HbCO’s of 

arterial, capillary (cot, cm) and venous blood compartments were plotted along with a 

reference line at ±0.1. The time at which ∆%HbCO last crosses the 0.1 reference line was 

considered as the Tmix. The criterion of 0.1 reference line to determine Tmix was chosen 

due to the 0.1% detection limit of CO oximeter to measure %HbCO. After the Tmix was 

determined in each subject for a given protocol, Tsample was calculated as 1.5 min from 

Tmix.  

 

 To estimate MHb from equation 2.1, the %∆HbCO for each of the four blood sites 

and the volume of CO bound to Hb (VCOHb) were calculated. The %∆HbCO value for a 

specific blood compartment is calculated using the model predicted %HbCO’s of that 

blood compartment at T0 and Tsample (%HbCOTsample - %HbCOTo). However, the VCOHb 

(Table 2.2) was calculated using (i) model equations 2.2-2.4 (MVCOHb) and also using (ii) 

the formulas published (EVCOHb) by the authors of protocols B and P (Schmidt and 

Prommer, 2005; Prommer and Schmidt, 2007; Burge and Skinner, 1995) which are 

described below and in Table 2.2. The authors of protocol B (Burge and Skinner, 1995) 

used equation 2.5 to estimate VCO L+S and the authors of protocol P (Schmidt and 

Prommer, 2005) used equation 2.6 to estimate VCO exhaled. VCOMb was estimated using 

equation 2.7 in both the protocols (Prommer and Schmidt, 2007; Garvican et al., 2010). 

Thus for a given protocol B or P,  ˆM
HbM  is the MHb estimated using MVCOHb and ˆE

HbM  is 

the MHb estimated using EVCOHb (Table 2.2). For the CO rebreathing methods, I assumed 
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that if the errors obtained on comparison of  AMHb with ˆM
HbM  or ˆE

HbM  are less than 2%, 

then ˆM
HbM  or ˆE

HbM  will be considered as a good estimate of MHb. 

 

2.2 ...................................2.5
100 tCO COV L S V+ = i  

where, 

tCOV  = Total volume of CO administered 

20 ...........................2.6CO A A tV ex V T C CO == Δi i  

where, 

VA  = Assumed alveolar ventilation = 5L/min 

∆T= Tsample - 2 

CACO= Alveolar CO concentration at t=20 min 
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Data sets used for simulations of CO rebreathing protocols 

Garvican et al. (2010) have compared uptake kinetics of CO in the CO 

rebreathing methods which were proposed by Burge and Skinner (1995), and Schmidt 

and Prommer (2005). This data set was used to validate my model. In this experiment 

(Garvican et al.,2010), the investigators have measured time varying %HbCO levels from 

three different blood sites (ar,cm,vm), age, body weight, height, volume of CO dose 

administered, and Hb concentrations in nine healthy, recreationally-active subjects. Two 

of their nine subjects were females.  The %HbCO were taken from arterial (forearm), 

capillary (finger tips) and venous (forearm) blood sites at different time points of the 

 18



experiment. For the two CO rebreathing methods, the investigators have also provided 

information regarding (personal communication) the sampling time and blood site at 

which the best estimates of MHb were obtained in these subjects. The blood volume was 

calculated from experimentally determined MHb and the Hb concentrations by Garvican 

et al., 2010. For any given subject, these calculated blood volumes were differrent for the 

two CO rebreathing methods.  In the simulations of this study, using the blood volume 

values from the Burge and Skinner method showed better agreement between the model 

predictions of %HbCO levels and the experimental data. Thus in the simulations, values 

for blood volume, MHb (AMHb) and Hb concentrations for all the subjects were used from 

Burge and Skinner’s method. In the simulations, the rebreathing bag volume, ambient 

temperature and ambient pressure were set to the experimentally measured values. Total 

body oxygen consumption was calculated as 3.2 ml/Kg and cardiac output was estimated 

from the regression equation (Equation C.3 in Appendix C of Erupaka et al., 2010). 

Previous models from our lab were developed to simulate healthy human subjects (Bruce 

and Bruce, 2008; Erupaka et al., 2010). In literature it was found that the capillary 

density, mitochondrial content, heart rate and stroke volume at rest in untrained subjects 

differed statistically from the healthy endurance trained human subjects (Andersen and 

Henriksson, 1977; Brodal et al., 1977; Ingjer, 1979; Kalliokoski et al., 2001; Sagiv et al., 

2007; Tibes et al., 1977; Zoladz et al., 2005). Other parameters at rest like muscle blood 

volume, muscle blood flow, cardiac output, metabolic rate or ventilation, did not differ 

statistically between the trained and untrained groups (Kalliokoski et al., 2001; Sagiv et 

al., 2007; Tibes et al., 1977). Thus to simulate CO rebreathing methods in healthy, 

recreationally-active subjects, the muscle diffusion coefficient of CO (DMCO) and 

capillary density of the skeletal muscle was increased by 34% (Brodal et al., 1977; 

Zoladz et al., 2005). The DMCO was varied in proportion to muscle mass, with a value of 

DMCO of 0.302 ml/min/Torr/Kg of muscle mass. As the subjects are assumed to be 

trained, a heart rate of 51 beats/min was used (Kalliokoski et al., 2001; Sagiv et al., 2007; 

Tibes et al., 1977) to estimate myocardial oxygen consumption and myocardial blood 

flow (Erupaka et al., 2010). Values for all other parameters that were not provided by the 

investigators and were not significantly affected with exercise training, were those used 

in and referenced in my previous publication (Erupaka et al., 2010).  
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Benignus et al. (1994) exposed fifteen healthy, male human subjects to high 

concentrations of CO for short durations. This data set was used to analyze and determine 

sources of errors in the CO rebreathing methods to estimate MHb. Previous versions of the 

model were able to reproduce experimental data of arterial and venous %HbCO from all 

the subjects for the transient CO exposure simulations (Bruce and Bruce, 2003; Bruce 

and Bruce, 2006; Bruce et al., 2008). In this experiment (Benignus et al., 1994), 

measurements of age, body weight, height, blood volume, hemoglobin concentration, 

cardiac output, ventilation, initial %HbCO and lung diffusivity coefficient of CO were 

provided by the investigators for each subject.  AMHb for each subject was calculated as 

the product of blood volume and hemoglobin concentration measurements. The blood 

volume in this study was measured by Na2
51CrO4 dilution method. Total body oxygen 

consumption was calculated as 3.2 ml/Kg. DMCO was varied in proportion to muscle 

mass, with a value of DMCO of 0.225 ml/min/Torr/Kg of muscle mass. Values for all 

other parameters that were not provided by the investigators have been referenced in my 

previous publication (Erupaka et al., 2010).  

 

Determination of effects of Tmix, Tsample and sampling blood site on estimation of MHb

 In order to determine the effects of Tmix on estimation of MHb, ˆM
HbM  (the MHb 

estimated using the exact values from the model for VCO L+S, VCO ex, and VCOMb) was 

calculated for each CO rebreathing protocol from four blood compartments (ar, cot, cm, 

vm) for Benignus’s  subjects by varying the Tmix. In calculations of ˆM
HbM , Tmix was 

assumed as 1, 3, 5, 7, 9, 11, 13, 15 and 38 minutes and the difference between Tsample and 

Tmix was always 1.5 min. For each subject, the calculated ˆM
HbM  at a different Tsample 

(based on the Tmix value) was compared with the known hemoglobin mass of the subject, 
AMHb and the error in estimation of MHb was calculated from four different blood 

compartments. For a given CO rebreathing method, the errors in calculation of MHb from 

different blood sites and Tmix were plotted for these subjects. The minimal value of Tmix 

and the blood sampling site at which low errors in estimation of MHb were obtained 

independent of the CO rebreathing method applied, was determined. In this study I also 

looked at the effects of changing various factors like Mb concentration, , D
tCOV MCO (the 
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muscle diffusion capacity of CO), duration of rebreathing, muscle blood flow and muscle 

blood volume on Tmix in one of the Benignus’s subjects (S112, Benignus et al., 1994).  

 

Also, to determine the effects of Tsample on estimation of MHb, ˆM
HbM  was 

calculated from four different blood compartments (ar, cot, cm, vm) for protocols B and 

P for Benignus’s subjects by varying the Tsample realtive to Tmix. ˆM
HbM  were calculated at 

Tsample’s which were 1.5, 3, 5, 7, 9 and 11 minutes from the determined Tmix of each 

subject. For a given CO rebreathing protocol, the Tmix for each subject was determined 

based on the time at which the difference between the %HbCO’s from all the blood 

compartments was ≤ 0.1%. ˆM
HbM  at different Tsample’s were compared with AMHb and the 

errors in estimation of MHb from different blood sites and Tsample were plotted for these  

subjects. The blood sampling site and the minimal value of Tsample at which low errors in 

estimation of MHb were obtained independent of the CO rebreathing method applied, was 

determined. 

 

RESULTS 

Model behavior 

 The time course of %HbCO levels from all the blood sites for protocol B and 

protocol P for a single subject are shown in Figure 2.2. In both the protocols, arterial 

blood %HbCOar peaks within the first 2 minutes and then decreases. The capillary blood 

%HbCO rises initially and then reaches a plateau. Venous blood %HbCOvm increased 

slowly and then reaches values similar to that of capillary blood %HbCOcm in both the 

methods. Peak %HbCOar level is higher in protocol P than in protocol B. Mixing of CO 

(based on determination of Tmix as shown in Figure 2.1) in blood occurred by ~11 min in 

protocol B and by ~5 min in protocol P for the Benignus’s subjects. The above described 

uptake kinetics of CO are qualitatively in agreement with the peak %HbCO levels and the 

mixing times are quantitatively in agreement with the Tmix values reported in 

experimental results of protocol B and protocol P (Burge and Skinner, 1995; Schmidt and 

Prommer, 2005). 
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Model Validation 

  The mathematical model was used to simulate the CO rebreathing experiments 

described by Garvican et al. (2010) in nine (2 female, 7 male) healthy, recreationally-

active subjects. Each subject was individually simulated using the subject specific 

parameters provided by the investigators and the time varying %HbCO levels in blood 

were predicted by the model for the two CO rebreathing methods. The model is able to 

reproduce the experimental measurements of the time varying %HbCO levels made in 

three different blood compartments (%HbCOar, %HbCOcm, %HbCOvm) during the two 

commonly used CO rebreathing methods (Figure 2.3-2.4). On the one hand, the model 

predicted mean %HbCO ± SD values from the arterial (ar), capillary (cm) and venous 

(vm) blood compartments at different time points are within the 95% confidence limits of 

the experimental data for both the CO rebreathing methods. On the other hand, individual 

comparison of model predicted %HbCO levels from all the three blood compartments (ar, 

cm, vm) with the experimentally measured %HbCO levels at respective time points 

showed a good agreement for both the CO rebreathing methods in 6 of the 9 subjects. 

However, in three of the nine subjects, the rise in %HbCO levels of the blood 

compartment “vm” during the initial five minutes was faster than the experimental data 

for both the methods (Figure 2.16). After five minutes, the model predicted %HbCO 

levels were similar to the experimentally measured values. In these three subjects I was 

able to match the model predicted %HbCOvm levels with the experimental values by 

decreasing the muscle blood flow and increasing the blood volume of muscle vascular 

subcompartment 3 (Vbm3). In all the three subjects the muscle blood flow was decreased 

by 20% and the blood volume Vbm3 was increased by 20% of the total mixed venous 

blood volume (Figure 2.16). However even prior to changing the values of muscle blood 

flow and Vbm3 in 3 of the 9 subjects, the model predicted mean %HbCO levels from all 

the three blood compartments are in good agreement with the mean %HbCO levels made 

from the experiments of Garvican et al. (2010) for the Burge and Skinner method (Figure 

2.3) and the Schmidt and Prommer method (Figure 2.4). Thus, the model is able to 

reproduce the experimental measurements of time varying %HbCO levels from three 

different blood compartments and predicts the uptake and distribution of CO during the 

commonly used CO rebreathing methods. 
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Model estimates of MHb ( ˆM
HbM ) from the CO rebreathing methods  

 ˆM
HbM , the MHb estimated using the exact values from the model (Equations 2.1-

2.4, Table 2.2)  for VCO L+S, VCO ex, and VCOMb was calculated for the data sets of 

Garvican et al., 2010 (9 healthy-2 female and 7 male, recreationally-active subjects) and 

Benignus et al., 1994 (15 healthy, male subjects). 

 

 For the two CO rebreathing methods, ˆM
HbM  for Garvican’s subjects was 

calculated using the Tsample and the blood sites specified by the investigators. In my 

simulations of this study the values for the known MHb, AMHb for Garvican’s subjects 

were used from the Burge and Skinner’s method of the experiments of Garvican et al. 

(2010). ˆM
HbM  calculated from these subjects underestimated AMHb by 0.32±0.8% in the 

Burge and Skinner method and by 2.2±0.49% in the Schmidt and Prommer method. In 

the simulations of Schmidt and Prommer method, using the MHb estimated from Schmidt 

and Prommer method of the experiments of Garvican et al. (2010), did not change the 

errors obtained in calculation of ˆM
HbM (2.18±0.46%). 

 

  In addition, Equation 2.1 was used to calculate time varying MHb using the model 

estimated VCOHb (Equation 2.1a) and %HbCO’s from four different blood compartments.  

For the Burge and Skinner method (Figure 2.5A) irrespective of the blood site sampled, 

errors less than 2% in estimation of MHb occurred at ~ 16 min. Estimates of MHb were 

close to the actual MHb values from arterial (ar) and capillary other tissue (cot) blood sites 

at ~ 9 min. The estimates of MHb from all four blood sites were never equal, suggesting 

incomplete mixing of CO in blood. For the Prommer and Schmidt method (Figure 2.5B) 

irrespective of the blood site sampled, errors less than 2% in estimation of MHb occurred 

at ~ 7 min. Estimates of MHb were close to the actual MHb values from all the blood sites 

at ~ 9 min. Also, the estimates of MHb from all four blood sites were similar at ~ 9 min, 

suggesting complete mixing of CO in blood. These results suggest that the model is 

capable of calculating MHb from both the CO rebreathing methods with ~ 0 errors at the 

capillary and arterial sampling blood sites and sampling time of ~ 9 min. 
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ˆM
HbM  for the data set of Benignus et al. (1994) was calculated for the two CO 

rebreathing protocols B and P using equations 2.1-2.4 (Table 2.2) for arterial (ar), 

capillary other tissue (cot), capillary muscle (cm) and muscle venous (vm) blood 

compartments. Tmix for each subject was determined based on the time at which the 

differences between %HbCO’s from all the blood compartments was ≤ 0.1% (See 

methods, Figure 2.1). Tsample was considered 1.5 min away from Tmix. AMHb for the data 

set of Benignus et al. (1994) was calculated for each subject as the product of blood 

volume (measured by Na2
51CrO4 dilution method) and Hb concentration reported in their 

study.  The ˆM
HbM  calculated for the Benignus’s subjects for both the protocols B and P 

are in agreement with the AMHb of these subjects (Table 2.3). The mean errors averaged 

across the subjects for ˆM
HbM  from the “cm” and “vm” blood sites are slightly larger 

(~2%) for protocol B. These errors are due to the sensitivity of MHb to variability in 

values of %∆HbCO (Burge and Skinner, 1995; also see discussion), as %∆HbCO values 

at Tsample depend on the blood sampling site.  

 

Overall, depending on the site of sampling the values of ˆM
HbM  for both the CO 

rebreathing methods from the data sets of Garvican et al. (2010) and Benignus et al. 

(1994) are within 2% of AMHb. This result ensures that the validated model is capable of 

calculating good estimates of MHb ( ˆM
HbM ) for protocols B and P and that any errors in 

calculation of ˆ
HbM are probably due to the method of calculating ˆ

HbM  from the existing 

CO rebreathing methods. This result also ensures that the errors in estimation of MHb are 

not due to errors in the concepts for estimating MHb from CO rebreathing methods. 

 

Experimental estimates of MHb ( ˆE
HbM ) from the CO rebreathing methods 

ˆE
HbM  is the estimate of MHb which is calculated using the approximated values based on 

the published formulas for calculating VCO L+S, VCO ex, and VCOMb. The model 

calculated %HbCOar, %HbCOcot, %HbCOcm, and %HbCOvm are assumed to be 
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experimental equivalents of %HbCO measurements made from arteries in the forearm, 

ear lob, pre-warmed finger tips and veins in the forearm respectively.  

 

For the data set of Garvican et al. (2010), ˆE
HbM  for the two CO rebreathing 

methods were calculated using the equations provided by Garvican et al. (2010) for 

calculating VCOL+S, VCO ex, and VCOMb at the specified Tmix, Tsample and blood site. In 

Garvican’s subjects ˆE
HbM  underestimated AMHb by 2.2± 0.9 % in the Burge and Skinner 

method and by 5.8±0.5 % in the Schmidt and Prommer method. As Garvican et al. (2010) 

did not measure alveolar ventilation (V ) in their subjects nor did they provide the 

regression equation used to estimate V

A

A  in their study, the VA  estimated from the model 

(See section “Model parameters” for details) was used to calculate VCO ex to 

estimate ˆE
HbM  in the Schmidt and Prommer method. Larger errors from the Schmidt and 

Prommer method when compared to Burge and Skinner method suggest that the actual 

values for MHb for Garvican’s subjects are close to the  ˆ
HbM ’s estimated from Burge and 

Skinner method. It should be noted the errors in ˆE
HbM  were 5.7±0.7% if the estimates 

from Schmidt and Prommer method were considered as AMHb. The errors from Burge and 

Skinner method are lower as the arterial blood sites were sampled. 

 

For the data set of Benignus et al. (1994), ˆE
HbM  for the protocols B and P were 

calculated from all the four blood compartments (ar, cot, cm, vm) using Equations 2.1, 

2.5-2.7 (Table 2.2). Tmix for each subject was determined based on the time at which the 

pairwise differences between %HbCO’s from all the blood compartments was ≤ 0.1% 

(See methods, Figure 2.1). Tsample was considered 1.5 min away from Tmix.  The mean 

errors in ˆE
HbM  for protocols B and P from different blood sites are shown in Table 2.4.   

 

   ˆE
HbM  from protocol B overestimates AMHb by greater than 2%.  The largest error 

is seen at the blood sites “cm” and “vm”. The major source of overestimation of AMHb is 

due to the inaccuracy in estimating VCOMb.  ˆE
HbM  uses Prommer and Schmidt’s formula 
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(Prommer and Schmidt, 2007) to calculate VCOMb. Estimation of VCOMb using Prommer 

and Schmidt’s formula is also dependent on the site of sampling (Table 2.2, 2.4). Their 

formula is based on the assumption that there is constant flux of CO from blood to 

muscle tissue. As seen in Figure 2.6, the flux of CO from blood to muscle tissue varies 

with time. This assumption of constant CO flux results in the underestimation of the 

actual volume of CO bound to myoglobin (Figure 2.7) in protocol B. This 

underestimation of VCOMb leads to overestimation of VCOHb, thereby resulting in an over 

estimation of AMHb. This underestimation of VCOMb is more prominently seen at blood 

site “vm”. Accurate estimation of VCOMb results in ˆM
HbM  close to AMHb, whereas 

underestimation of VCOMb results in ˆE
HbM  greater than AMHb (Figure 2.8).  

 

  ˆE
HbM  from protocol P results in estimates close to AMHb from blood sites “ar”, 

“cot” and “cm”.  However, ˆE
HbM  from blood site “vm” is overestimated by 4.9%.  The 

estimation of VCOMb is greatly dependent on the site of blood sampling as the estimated 

VCOMb depends (Equation 2.7) on the ratio of %HbCO at Tsample and  %HbCO at Tmix. 

Since this ratio is often less than one, VCOMb is often overestimated (Figures 2.7, 2.9). In 

protocol P, VCOMb is overestimated from blood sites “ar”, “cot” and “cm” and 

underestimated from site “vm” (Figure 2.9). In addition to inaccurate estimation of 

VCOMb, this protocol also underestimates the volume of CO exhaled up to Tsample (Figure 

2.10). At the blood sites “ar”, “cot” and “cm”, overestimation of VCOMb is compensated 

with the underestimation of Vco exhaled, thereby resulting in ˆE
HbM  close to AMHb from 

these blood sites. However at the blood site “vm”, underestimation of both VCOMb and 

Vco exhaled results in overestimation of AMHb. Thus the values of ˆE
HbM  in protocol P 

are close to AMHb based on compensatory errors from the blood sites “ar”, “cot” and 

“cm” (Table 2.4).  

 

Errors > 2% in estimation of  ˆE
HbM  suggest that these errors are due to 

inaccuracies in the methods of calculating VCOL+S, VCO ex, or VCOMb. The sources of 

errors in calculation of ˆE
HbM  could be due to the errors in calculations of VCOL+S, VCO 
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ex, or VCOMb. In protocol P the sources of errors could either be due to the assumptions 

made in VCO ex (Equation 2.6), VCOMb (Equation 2.7) or both, as VCOL+S in this protocol 

is measured and not estimated. In protocol B the sources of errors could either be due to 

the assumptions made in VCO L+S (Equation 2.5), VCOMb (Equation 2.7) or both, as VCO 

ex in this protocol is 0. To determine the errors in ˆ
HbM  due to the errors in estimation of  

VCO ex and VCOL+S, ˆE
HbM  was calculated from the blood site “vm” for the protocols P 

and B using the model calculated VCOMb (Equation 2.2)  instead of using Equation 2.7 to 

estimate VCOMb. Calculating ˆE
HbM  from blood site “vm” using Equation 2.6 to estimate 

VCO exhaled and using the model calculated VCOMb (Equation 2.2), results in a maximum 

error of 0.8% in ˆE
HbM  for protocol P. Calculating ˆE

HbM  from blood site “vm” using 

Equation 2.5 to estimate VCO L+S and using the model calculated VCOMb (Equation 2.2), 

results in a maximum error of 1.2% in ˆE
HbM  for protocol B. These errors are smaller 

compared to the errors obtained in ˆE
HbM using Equation 2.7 to estimate VCOMb (Table 

2.4).  Thus, detailed analysis of all the simulations suggests that the major source of error 

leading to inexact calculation of ˆE
HbM  in both the protocols is due to the inaccuracy in 

estimating volume of CO bound to myoglobin rather than the errors in estimation of VCO 

ex and VCOL+S. Also, using the blood sites “ar”, “cot” or “cm” to calculate ˆE
HbM  results 

in lower errors and using blood site “vm” as a sampling site in the CO rebreathing studies 

may lead to larger errors in calculation of ˆE
HbM . 

 

Improving CO rebreathing protocols 

Protocol B offers the advantage of calculating MHb close to the actual values, if 

the VCOMb were estimated accurately. However the long duration of rebreathing and a 

longer Tmix are a disadvantage of this protocol. Protocol P has a shorter Tmix and 

rebreathing duration but the estimates of VCOMb and Vco exhaled are inaccurate. The 

errors in estimates of MHb from protocols B and P are also dependent on the site of blood 

sampling. Thus, there is a need to determine a CO rebreathing method with a shorter Tmix 

which estimates MHb without compensating errors and has lower errors irrespective of the 

sampling blood site. In the quest to develop such a method, the validated model was used 
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to estimate MHb from four different blood sites (ar, cot, cm, vm) for varying durations (2, 

3.5, 5, 7.5, 10 min) of CO rebreathing in 100% O2 (Figure 2.11). In addition, the effects 

of administering 100% O2 before or after CO rebreathing versus room air breathing on 

estimation of MHb was also tested.  Based on these simulation results, a new protocol was 

defined. 

 

New Protocol: In this protocol (Figure 2.12A), 1 ml/Kg of CO in 3 L of oxygen is 

rebreathed for 3.5 min followed by 17 min of room air breathing. Prior to rebreathing, the 

subject is on 100% O2. This new protocol (protocol N) was simulated for the Benignus’s 

(15 healthy male) and Garvican‘s (9-2 female and 7 male, healthy, recreationally-active 

subjects) subjects and ˆE
HbM  was determined. In 3 of the 9 Garvican’s subjects, the model 

predicted fast uptake of CO in the blood compartment “vm” during the initial 5 minutes 

of two mostly used CO rebreathing methods when compared to the experimental data. 

The muscle blood volume of third vascular subcompartment of skeletal muscle and 

muscle blood flow were adjusted in these subjects to match the experimental data (Figure 

2.16). To simulate protocol N in these 3 subjects, the adjusted values for muscle blood 

volume in the third vascular subcompartment and muscle blood flow were used. Tmix was 

determined from the methods described previously (Figure 2.1). The Tmix for this 

protocol is ~5 min in Benignus’s subjects and ~6.5 min in Garvican’s subjects. The 

uptake kinetics of CO in all the blood compartments for this protocol are shown in Figure 

2.12B. Tsample was considered as 1.5 min away from Tmix. In actual practice, the volume 

of CO exhaled should be collected over the duration of experiment and the volume of CO 

in the lungs and rebreathing system should be measured at the end of CO rebreathing.  

 

 The volume of CO bound to myoglobin is estimated from a regression 

relationship based on the model calculated VCOMb (Figure 2.13a, Equation 2.8a). In order 

to develop this regression relation, the model calculated VCOMb (in ml, BTPS), Tsample (in 

minutes) and (in ml, BTPS) from Benignus’s and Garvican’s subjects were used. 

V

tCOV

COMb is estimated as a function of Tsample and 
tCOV  (Equation 2.8). VCOMb is the 

dependent variable and Tsample,  are the independent variables. To develop a 
tCOV
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regression equation to estimate VCOMb for protocol N, the muscle blood flow (decreased 

by 20% of average value) and blood volume of the third skeletal vascular compartment 

(increased by 20% of mixed venous blood volume) was changed in 3 of the 9 Garvican’s 

subjects. The regression equations to estimate VCOMb were developed for this protocol 

using a DMCO of 0.225 ml/min/Torr/Kg of muscle mass for Benignus’s subjects and 

0.302 ml/min/Torr/Kg of muscle mass for Garvican’s subjects. In one typical subject 

(S112, Benignus et al., 1994), when the DMCO was increased by 50%, the regression 

equation (Equation 2.8a) underestimated VCOMb by 0.62 ml (relative to the correct value 

of 2.53 ml) and a decrease in DMCO by 50% resulted in an overestimation of VCOMb from 

the regression equation by 0.65 ml. S112 was chosen for analysis of variations in DMCO 

on the regression equations proposed, as the value for VCOMb calculated from the 

regression equation (Equation 2.8) for this subject was close to the value for VCOMb from 

the model. The effects of changes in ventilation (+50%) on estimation of VCOMb from the 

regression equations were negligible. The errors in ˆE
HbM  are less than 1% from this 

protocol (Table 2.5, Figure 2.2.13) from any blood sampling site.  Thus, protocol N 

results in lower errors in estimation of ˆE
HbM  compared to protocols B and P without 

involving any compensatory errors (Figure 2.14).  
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The major source of error in calculation of ˆE
HbM , from protocols B and P are due 

to errors in the estimation of VCOMb. Independent of the site of sampling, low errors in 

estimates of MHb from protocols B and P can be obtained by using the suggested 

regression equations (Equation 2.8b-c).  

 

Protocol B: A regression equation to estimate VCOMb is developed for this protocol based 

on the model estimates of VCOMb from 24 (Benignus’s and Garvican’s subjects) healthy 

humans (Figure 2.13A, Equation 2.8b). To develop this regression relation, the model 

calculated VCOMb (in ml, BTPS), Tsample (in minutes) and 
tCOV  (in ml, BTPS) from these 
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subjects (Benignus et al., 1994; Garvican et al., 2010) were used. VCOMb is the dependent 

variable and Tsample,  are the independent variables. For Benignus’s subjects, T
tCOV sample 

was 1.5 min away from the model determined Tmix (See methods, Figure 2.1) and for 

Garvican’s subjects Tsample provided by the investigators were used. The DMCO values 

used for the two data sets simulated (Benignus et al., 1994; Garvican et al., 2010) were 

same as those used in protocol N. In one typical subject (S112, Benignus et al., 1994), the 

effects of changing DMCO on estimation of VCOMb from the regression equation were 

analyzed. When the DMCO was increased by 50%, the regression equation (Equation 

2.8b) underestimated VCOMb by 0.93 ml from its actual value and a decrease in DMCO by 

50% resulted in an overestimation of VCOMb from the regression equation by 1.2 ml from 

its actual value. The errors in calculation of ˆE
HbM  are less than 1.1% (independent of 

blood site sampled) when the regression equation is used (Equation 2.8b, Table 2.5). For 

this protocol, it would also be recommended that the volume of CO in the rebreathing 

system be measured at the Tsample instead of estimating it form Equation 2.5. 

 

Protocol P: A regression equation to estimate VCOMb is proposed to improve the 

estimation of MHb from this CO rebreathing method, based on the model estimates of 

VCOMb from 24 healthy subjects (Figure 2.13C, Equation 8c). To develop this regression 

relation, the model calculated VCOMb (in ml, BTPS), Tsample (in minutes) and (in ml, 

BTPS) from the subjects of Benignus et al. (1994)  and Garvican et al. (2010) were used. 

V

tCOV

COMb is the dependent variable and Tsample,  are the independent variables. For 

Benignus’s subjects, T

tCOV

sample was 1.5 min away from the model determined Tmix and for 

Garvican’s subjects Tsample provided by the investigators were used. In one typical subject 

(S112, Benignus et al., 1994), when the DMCO was increased by 50%, the regression 

equation (Equation 2.8c) underestimated VCOMb by 0.54 ml from its actual value and a 

decrease in DMCO by 50% resulted in an overestimation of VCOMb from the regression 

equation by 0.61 ml from its actual value. In this protocol, the effects of changes in 

ventilation on estimation of VCOMb from the regression equation were negligible and it 

would be suggested that the volume of CO exhaled be measured up to Tsample. Errors less 
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than 1% (Table 2.5) without involving any compensatory errors are obtained when the 

regression equation (Equation 2.8c) is used to calculate ˆE
HbM . 

 

Predicted values for Tmix, Tsample, and sampling blood sites to estimate MHb with low 

errors:  In this study additional analysis of the simulations of the three CO rebreathing 

protocols (B, P, and N) was done to determine the effects of Tmix, Tsample, and the 

sampling blood site on estimation of MHb.  

 

Effects of mixing time (Tmix): In order to determine the effects of Tmix on 

estimation of MHb, ˆM
HbM  was calculated for protocols B, P and N from arterial (ar), 

capillary other tissue (cot), capillary muscle (cm) and muscle venous (vm) blood 

compartments by assuming different values for Tmix. ˆM
HbM , the MHb estimated using the 

exact values from the model (Equations 2.1-2.4, Table 2.2)  for VCO L+S, VCO ex, and 

VCOMb was calculated for the Benignus’s  subjects. In calculations of ˆM
HbM , Tmix was 

assumed as 1, 3, 5, 7, 9, 11, 13, 15 and 38 minutes. The difference between Tsample and 

Tmix was always 1.5 min. For each protocol, the errors in calculation of ˆM
HbM  from 

different blood sites and Tmix was plotted for all the subjects (Figure 2.17-2.18). The error 

at each Tsample was calculated on comparing ˆM
HbM  with AMHb. In protocol B, low errors 

in estimation of MHb were obtained from blood sites “ar” and “ot” at a minimum value of 

Tmix of  7.5 min (Tsample = 9 min). The minimum value of Tmix to obtain low errors in 

ˆM
HbM  from blood sites “cm” and “vm” was 38 min (Tsample = 39.5 min). Thus, in this 

protocol estimation of MHb from a blood sample taken from an artery or an ear lobe at 9 

min, would result in an lower error than taking a blood sample from a vein or finger tip at 

40 mins. Similar error analysis for protocols P (Figure 2.18) and N (Figure not shown for 

protocol N) were done.  Error analysis for protocols P and N revealed that low errors in 

estimation of MHb were obtained irrespective of the blood site sampled at a minimum 

value of Tmix of 5.0 min (Tsample = 6.5 min) and 6.5 min (Tsample = 8 min), respectively. 

These results suggest that irrespective of the protocol, site of blood sampling and 

intersubject variability, a minimum value of Tmix after which the effects of Tmix on 
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estimation of MHb are minimal is 7.5 min. Results of  the simulations to look at the 

effects of changing various factors like myoglobin concentration, , D
tCOV MCO, duration 

of rebreathing, muscle blood flow and muscle blood volume on Tmix are reported in  the 

discussion sections of this chapter in the section “Mixing time of CO in the vascular 

space” 

 

Effects of sampling time (Tsample): To determine the effects of Tsample on estimation of 

MHb, ˆM
HbM  was calculated for protocols B, P and N from four blood compartments (ar, 

cot, cm, vm) for Benignus’s subjects by varying the Tsample. ˆM
HbM  was calculated at 

Tsample’s which were 1.5, 3, 5, 7, 9 and 11 minutes from the determined Tmix of each 

subject (Figure 2.15, shown for protocol N). Tmix for each subject for a given CO 

rebreathing protocol was determined from the model using the methods described 

previously (Figure 2.1). Error analysis for protocols P (Figure not shown) and N (Figure 

2.15) suggested that low errors in estimation of MHb were obtained irrespective of the 

blood site sampled, when the difference between Tmix and Tsample was between 1.5-3 min. 

For protocol B (Figure not shown), low errors in estimation of MHb were obtained from 

blood sites “ar” and “cot” when the difference between Tmix and Tsample was between 1.5-

3 min. In protocol B to obtain low errors in estimation of MHb from blood sites “cm” and 

“vm”, the difference between Tmix and Tsample was between 8-10 min. Summarizing 

results on error analysis of MHb with changes in Tmix, and Tsample from different blood 

sites in these 15 healthy subjects (Benignus et al., 1994) and using the information from 

the plateaus observed in %HbCO’s of blood compartments of the experimental data from 

9 healthy, recreationally-active subjects (Garvican et al., 2010); a minimal value of Tsample 

to obtain low errors in ˆ
HbM  can be suggested.  It is suggested that low errors in ˆ

HbM  can 

be obtained for any protocol at a Tsample of 9 min using a blood sample from ear lobe, 

finger tip, or an artery in the forearm.  

 

Effects of blood sampling site: In this study ˆM
HbM was calculated from four blood 

compartments for all three CO rebreathing protocols (B, P and N) at different Tmix and 
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Tsample values. Low errors in ˆ
HbM  were obtained when the blood was sampled from 

arterial (assumed to represent blood sample from an artery in a fore arm), capillary other 

tissue (assumed to represent blood sample from an ear lobe) and muscle capillary 

(assumed to represent blood sample from a finger tip) sites (Table 2.5, Figure 2.13, 

Figure 2.17-2.18).  

 

In general analysis of protocols B, P and N suggest that, using a sample taken 

from blood sites “ar”, “cot” or “cm” at 9 min and estimating VCOMb from the proposed 

regression equations (Equation 2.8) will ensure estimation of MHb with low errors. 

 

DISCUSSION 

The main aim of this study was to use a validated mathematical model to 

determine any potential sources of errors in estimation of MHb ( ˆ
HbM ) from the existing 

CO rebreathing methods. After validating the model, my goal was to evaluate any 

potential errors in these methods and to suggest modifications that mitigate those errors. 

The validated mathematical model was used to simulate the two commonly used CO 

rebreathing methods in healthy human subjects. For these methods, ˆ
HbM  was determined 

using the exact values from the model for VCO L+S, VCO ex, and VCOMb ( ˆM
HbM ) and 

using the approximated values based on the published formulas for calculating VCO L+S, 

VCO ex, and VCOMb ( ˆE
HbM ). The errors in estimation of MHb were calculated by 

comparing the values of ˆM
HbM  and ˆE

HbM  to the known hemoglobin mass of the subjects, 

AMHb. On comparison, it was found that the values of ˆM
HbM  were in agreement with 

AMHb independent of the sampling blood site while the values from ˆE
HbM were dependent 

on the sampling blood site and ˆE
HbM  either inaccurately estimated (overestimation or 

underestimation) AMHb or was close to AMHb based on compensating errors. Inaccuracies 

in estimation of volume of CO bound to myoglobin was found to be the major source of 

error in calculation of ˆE
HbM  from the existing CO rebreathing methods. In this study, I 

also propose a new CO rebreathing method which I predict will estimate MHb with small 
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errors. Also, for experimentalists who wish to use the existing CO rebreathing methods, I 

suggest modifications to these methods for calculating ˆE
HbM   with low errors. 

 

Model Limitations 

Model validation of %HbCO levels: The model was validated by comparing the model 

predicted and experimentally measured values of %HbCO (%HbCOar, %HbCOcm, 

%HbCOvm) from three blood sites (arterial, capillary, venous). The experiments of 

Garvican et al. (2010) were simulated, and the predicted mean %HbCO ± SD values from 

all the three blood compartments at different time points were within the 95% confidence 

limits of the experimental data (Figures 2.3-2.4). However, individual comparison of 

%HbCO vs. time revealed that in 3 of the 9 subjects the model predicted faster uptake of 

CO in the muscle venous compartment, and higher %HbCOvm, during the initial few 

minutes of both the CO rebreathing protocols (Figure 2.16). After ~5 minutes, the 

predicted %HbCOvm was in agreement with the experimental values. Model prediction of 

fast uptake of CO in the muscle venous compartment would result in a smaller predicted 

Tmix in these subjects when compared to the experimentally determined Tmix. This 

behavior of the model would suggest an erroneously small Tmix for ~33% of the 

population when compared to the data obtained from experiments. I was able to match 

the predicted %HbCOvm with experimental values by decreasing the muscle blood flow 

by 20% and increasing blood volume in the third vascular compartment of the muscle 

(Vbm3) by 20% of the mixed venous blood volume (Figure 2.16). In these 3 subjects, 

changing the values for muscle blood flow and Vbm3 did not affect the values of 

%HbCOvm after 5 minutes or the uptake of CO in other blood compartments.  

 

In my model, I used average values reported in the literature (Bruce and Bruce, 

2008; Erupaka et al., 2010) for blood flow and Vbm3 (as the values for these parameters 

were not provided by the investigators). The blood flow rates are heterogeneous at 

different compartments of vasculature and, for some subjects, may be lower than the 

average values used for the integrated muscle compartment in the model. In addition to 

this, the coefficient of variation in muscle blood flow or any physiological parameter 

might be 20%. On this basis, decreasing the muscle blood flow to match the experimental 
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data of 3 subjects may be justifiable. Also, Vbm3 is assumed to be larger by up to 20% of 

the mixed venous blood volume in some subjects than the average values used in the 

model. Thus, when the volume of this compartment was increased, the model matched 

the slower uptake of CO by muscle observed in the experimental data. The regression 

equations to estimate VCOMb for protocols B, P, and N were developed using the 

simulations from Garvican’s subjects, including the 3 for whom the values of blood flow 

and Vbm3 were changed. Thus this limitation of the model to predict uptake of CO in the 

muscle venous compartment for some subjects should not affect the regression equations 

proposed. 

 

Model parameters: Values for parameters in the model where either provided by the 

investigators, or estimated from regression equations developed from healthy populations 

(Bruce and Bruce, 2008; Erupaka et al., 2010). For some parameters which were not 

provided to us by the investigators or estimating the value from a regression equation was 

not possible (like estimating alveolar ventilation), average values from the literature for 

healthy populations were used. In my simulations using the same average value for all the 

subjects for some parameters like alveolar ventilation, the muscle diffusion capacity of 

CO (DMCO) and lung volume, may affect the model calculated values of VCOMb, VCO 

S+L and VCO ex.  Thus whenever possible, in all my simulations intersubject variability 

was taken into account while estimating the values for unknown parameters which were 

not provided to us by the investigators (Garvican et al., 2010; Benignus et al., 1994).   

Like in cases where the subject specific values for alveolar ventilation were not measured 

(Garvican et al., 2010), the ventilation in each subject was adjusted so that an arterial PO2 

of 98 Torr was obtained on breathing room air at the control or steady state. For 

Garvican’s subjects, ˆ
HbM  calculated using equations 2.1a-2.4 were in agreement with 

AMHb for both the CO rebreathing methods. However, for Schmidt and Prommer method 

ˆE
HbM  underestimated AMHb by ~6%. In addition to inaccurate estimation of VCOMb, 

assumptions made in estimation of alveolar ventialtion may have contributed to larger 

errors in ˆE
HbM  from Schmidt and Prommer method when compared to Burge and 

Skinner method. The values for DMCO may differ among the subjects, thus the DMCO 
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was varied as a function of muscle mass to take into account differences in muscle mass 

of subjects (Garvican et al., 2010, Benignus et al., 1994). An average value of lung 

volume was used for simulating the three CO rebreathing protocols (B, P and N) in all the 

subjects (Bruce and Bruce, 2003; Erupaka et al., 2010). To determine the effects of 

changes in lung volume on estimation of MHb, protocol N was simulated in Benignus’s 

subjects with changing the lung volume as a function of age, body weight and height of 

the subject (Petersen et al., 1975). For each subject ˆM
HbM  was calculated (Equations 2.1-

2.4) using the estimated value of lung volume as a function of age, body weight and 

height. No significant differences were found in the values of ˆM
HbM  (results not shown) 

compared to the ˆM
HbM  calculated using the same average value of lung volume in 

different subjects. For protocols B and P, the effects of changing the lung volume (as a 

function of age, body weight and height) on calculation of ˆM
HbM  were not analyzed in 

this study. The small or no influence of lung volume on estimation of MHb has also been 

confirmed by the experiments and calculations of Steiner and Wehrlin (2010). 

 

Effects of various factors on estimation of hemoglobin mass, ˆ
HbM  

Volume of CO bound to myoglobin: Analysis of simulations of all three protocols in 

Benignus’s subjects reveals that ~ 6%, 2%, and 3% of is bound to myoglobin in 

protocols B, P, and N respectively. On average if V

tCOV

COMb is ignored in the estimation of 

VCOHb, then protocols B, P, and N overestimate MHb by ~7% (Tsample = 12 min), 2.2% 

(Tsample= 6 min), and ~3.3% (Tsample=7 min), respectively. If a larger Tsample (say 

Tsample=12 min) is used in protocols P and N then the error in ˆ
HbM  due to ignoring VCOMb 

may be slightly greater by ~1%, but would not be as large as the error in protocol B. In 

protocols P and N, CO is exhaled after rebreathing ends causing a decrease in the amount 

of CO entering the tissues and resulting in lower values for VCOMb at any Tsample when 

compared to protocol B. Thus at any given Tsample when compared to protocol P, VCOMb is 

larger in protocol B. Also, when compared to protocol P the underestimation of VCOMb is 

larger in protocol B, thus resulting in a higher estimate of MHb from protocol B for any 

subject. Thus in the existing CO rebreathing methods when compared to protocol P, ˆ
HbM  
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is always greater from protocol B either due to ignoring VCOMb (Gore et al.,2006; 

Schmidt and Prommer,2005; Steiner and Wehrlin,2010) or due to underestimating the 

volume of CO bound to Mb using the Prommer and Schmidt’s formula (Equation 2.7) 

(Garvican et al., 2010; Schmidt and Prommer,2007), which either ways results in an 

overestimation of MHb.  However in protocol B, if the volume of CO bound to myoglobin 

is accounted accurately, then the estimates of MHb are close to the values of AMHb (Figure 

2.8, Table 2.5).  

 

 Prommer and Schmidt (2007) make an assumption that there is continuous flow 

of CO from Hb to Mb at a constant rate. Certainly there is continuous flow of CO from 

Hb to Mb (Bruce and Bruce, 2003), but the rate of flow of CO is not constant (Figure 

2.6). This assumption results in inaccuracies in calculation of VCOMb which may combine 

with other errors to either result in overestimation of MHb (Table 2.4), underestimation of 

MHb (See results) or correct estimation of MHb based on compensatory errors (Table 2.4). 

Also the formula (Equation 2.7) proposed by Prommer and Schmidt (2007) is greatly 

influenced by the choice of (i) site of sampling due to the use of %HbCO levels and (ii) 

values for Tmix, and Tsample due to the two assumptions made while developing their 

formula. 

 

In protocol B, the %HbCOcm or %HbCOvm levels rise slowly, resulting in a larger 

Tmix (Figure 2.2a). In this protocol assuming that negligible amount of CO is bound to 

Mb at Tmix results in underestimation of VCOMb. Thus, using Prommer and Schmidt’s 

formula (Equation 2.7) to estimate VCOMb overestimates MHb in protocol B. In protocol P 

using Prommer and Schmidt’s formula to estimate VCOMb from venous blood results in an 

overestimation of MHb, which is due to the underestimation of VCOMb from their 

assumption of constant CO flux. Estimation of MHb from other blood compartments is 

based on compensatory errors. Also, the errors in estimation of VCOMb from different 

blood compartments are evident due to the effects of incomplete circulatory mixing 

(Figure 2.5).  For protocol P, my modeling results agree with findings of Prommer and 

Schmidt (2007) that ~2% of is bound to Mb. In this article (Prommer and Schmidt, 
tCOV
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2007), it should be noted that the ear lobe was the sampled blood site and the precise 

volume of CO exhaled was measured. 

 

In this study, I proposed regression equations to estimate VCOMb from Tsample and 

for different protocols using V
tCOV COMb values calculated by the model for Benignus’s 

(healthy) and Garvican’s (healthy, recreationally-active) subjects. In the case of 

Garvican’s subjects, volume of CO bound to Mb will be greater compared to Benignus’s 

subjects because Tsample and are larger in recreationally-active subjects. Though this 

result cannot be proven experimentally, it is suggested by the fact that the recreationally-

active populations will have more muscle mass, resulting in larger amount of myoglobin 

being available to bind to CO. The regression equations to estimate V

tCOV

COMb were 

developed for each protocol using a DMCO of 0.225 ml/min/Torr/Kg of muscle mass for 

Benignus’s subjects and 0.302 ml/min/Torr/Kg of muscle mass for Garvican’s subjects. 

For all the protocols, I analyzed the effects of changing DMCO (±50%) on estimation of 

VCOMb from the regression equation (see Results). For protocols P and N, the effects of 

changes in ventilation on estimation of VCOMb from the regression equations were 

negligible.  

 

Mixing time of CO in the vascular space (Tmix): The mixing times of protocol B and 

protocol P are in agreement with articles published in the literature (Burge and Skinner, 

1995; Gore et al., 2006; Schmidt and Prommer, 2005). These articles used approximated 

methods to determine Tmix, where as my model allowed a more complete analysis of 

mixing, as it was based on pairwise differences from five blood sites (Figure 2.1).  In 

order to determine the effects of Tmix on estimation of MHb, ˆM
HbM  was calculated for 

protocols B, P and N from various blood compartments for Benignus’s subjects by 

varying the Tmix. Analysis of these results suggested that irrespective of the protocol, site 

of blood sampling and intersubject variability, a minimum value of Tmix after which the 

effects of Tmix on estimation of MHb are minimal is 7.5 min. 
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The simulations discussed in this paragraph were not presented in the results 

section. In this study I also looked at the effects of changing various factors like 

myoglobin (Mb) concentration, , D
tCOV MCO, duration of rebreathing, muscle blood flow 

and muscle blood volume on Tmix in one of the Benignus’s subjects (S112, Benignus et 

al, 1994). An increase in concentration of Mb resulted in a larger Tmix for any CO 

rebreathing protocol. Thus, untrained (sedentary) subjects and populations with lower 

muscle mass will have a smaller Tmix when compared to trained (athletes, recreationally-

active) subjects and populations with larger muscle mass.  Administering smaller doses 

of CO resulted in lower values for %HbCO and smaller Tmix in any CO rebreathing 

protocol because of the 0.1% HbCO threshold criterion to determine Tmix. One of the 

major reasons for obtaining a larger Tmix in CO rebreathing methods is due to the slow 

diffusion of CO from the vascular space to the tissue spaces containing myoglobin. The 

rate of diffusion of CO from the vascular space to the myoglobin containing tissues is 

dependent on the DMCO and the pressure gradients of CO between the blood and tissue 

compartments.  It is however suggested that the minimum dose of CO to be administered 

is 1 ml/Kg for men and 0.8 ml/Kg for women, to allow measurements of %HbCO. When 

compared to trained subjects the amount of CO injected into the rebreathing bag is 

smaller in untrained subjects, thus resulting in untrained subjects having a smaller Tmix 

when compared to the trained subjects. Also, women will have a lower Tmix when 

compared to men as the dose of CO administered in the CO rebreathing studies is smaller 

in women than men.  For any CO rebreathing protocol, a lower value for DMCO results in 

a smaller Tmix. When a smaller value of DMCO is used, the amount of CO flowing into 

the tissues from the vascular space is smaller and thus mixing of CO takes place faster in 

the vascular space. As the CO flux from the vascular space to the muscle tissues is 

dependent on DMCO, using a lower DMCO value results in a smaller Tmix than using a 

higher DMCO value. A CO dilution technique with longer duration of CO rebreathing has 

larger Tmix when compared to a CO rebreathing method involving smaller durations of 

CO rebreathing. Depending on DMCO value, the volume of CO diffusing from the blood 

compartments to the muscle tissue compartment is directly proportional to the duration of 

CO rebreathing method. Longer the duration of rebreathing, larger is the volume of CO 

flowing into the muscle tissues from the vascular space and slower is the mixing of CO in 
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the vascular space- thus resulting in a larger Tmix. Thus for any given subject, protocol B 

has the largest Tmix followed by protocol N and protocol P. Populations with lower 

muscle blood flow tend to have a larger Tmix when compared to populations with normal 

or lower blood flows. An increase in muscle blood volume also results in an increase in 

Tmix. Thus a variation in one or more than one of these various factors may explain the 

range of values reported for Tmix in the literature. These results also suggest that trained 

populations may have a larger Tmix than untrained populations.  

 

Blood sampling site: ˆM
HbM  and ˆE

HbM  were calculated in Benignus’s subjects for the 

three CO rebreathing protocols B, P and N (Tables 2-4) from the arterial (ar-artery in fore 

arm), capillary other tissue (cot-ear lobe), capillary muscle (cm-finger tip) and muscle 

venous (vm- vein in forearm) blood compartments. Errors in ˆM
HbM  from blood 

compartments “ar” and “cot” of protocol B and all other compartments of protocol P 

were less than 1%.  Errors in ˆM
HbM  from blood sites “cot” and “vm” in protocol B were 

<2%. The reason for slightly larger errors in ˆM
HbM  from compartments “cot” and “vm” 

in protocol B is due to the sensitivity of MHb to changes in %∆HbCO (Equation 2.1) and 

due to incomplete mixing of CO in blood (Figure 2.2a). A variation of ∆HbCO by ±0.1% 

will result in a variation of MHb by . Despite a difference of ~0.1% between the 

%HbCO’s, considering a sample from blood site “cot” or “vm” one can expect that the 

12 g∓

AMHb will be overestimated or underestimated by ~12g (Figure 2.2a). In protocol P, 

ˆE
HbM  was lower from blood sites ar, cot and cm when compared to ˆE

HbM  from blood 

site vm. These results are due to incomplete mixing of CO in blood and are in agreement 

with other studies (Garvican et al., 2010; Gore et al., 2006). Suggested sampling sites to 

obtain low errors in estimation of MHb for protocol B are arterial or ear lobe blood sites. 

For protocols P and N, arterial, ear lobe or finger tips are the suggested blood sites to 

obtain low errors in MHb. Based on the analysis of simulation results from all the blood 

compartments and experimental data (Garvican et al., 2010), despite low errors in ˆM
HbM  

or ˆE
HbM (Table 2.3, 2.5) from protocol B, P and N, blood site “vm” is not suggested as it 

is not a reliable sampling site.  
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  Irrespective of the protocol, low errors in estimation of MHb were obtained from 

arterial, capillary other tissue and muscle capillary sites (Table 2.5). My results for 

suggested reliable sampling sites for protocols B and P are in agreement with the 

preferred sampling blood sites of Garvican et al. (2010). For a given CO rebreathing 

method, Garvican et al. (2010) chose their blood site in each subject based on the least 

coefficient of variation in MHb at different time points. Suggestions for reliable sampling 

blood sites from my study are more credible than theirs as reliable sampling blood sites 

were determined based on obtaining lowest errors in estimates of MHb, when compared to 
AMHb from three different CO rebreathing methods and four different blood sites in 24 

(15 Benignus’s and 9 Garvican’s subjects) healthy humans. Thus, suggestions for reliable 

blood sampling sites to obtain low errors in estimation of MHb based on experimental data 

and analysis of simulations are ear lobe or pre warmed finger tips. If obtaining samples 

from ear lobe or finger tips is not possible, then arterial blood should be sampled. 

Considering the difficulties in obtaining samples from arterial blood sites, despite low 

errors arterial blood site is reserved as the next best site for sampling. Though all the 

protocols estimate MHb with errors less than 2% using %HbCO values from venous blood 

(Table 2.3, Table 2.5), it is suggested that venous blood sites should be avoided because 

this compartment takes more time to reach equilibration with other compartments. Usage 

of one of the suggested blood sampling sites will improve the reliability and accuracy of 

the CO rebreathing methods to estimate MHb and allow standardization of the method. 

 

Sampling time: To determine the effects of Tsample on estimation of MHb, ˆM
HbM  was 

calculated for protocols B, P and N from various blood compartments for Benignus’s 

subjects by varying the Tsample relative to Tmix. Summarizing the simulation results from 

Benignus’s subjects and using the information of plateaus attained in %HbCO levels 

from the experimental data of Garvican’s subjects, it is suggested that low errors in ˆ
HbM  

can be obtained for any protocol at a Tsample of 9 min using a blood sample from ear lobe, 

finger tip, or an artery in the forearm. Using finger tips for blood sampling may have 

slightly larger errors (Table 2.3, Table 2.5) compared to using ear lobe or arterial blood 

sites in protocol B. Sampling at the suggested Tsample will allow determination of ˆ
HbM  
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with low errors and also avoid taking multiple samples which will decrease the cost of 

the experiment, inconvenience to the subject and duration of the experiment. 

 

 Effects of plasma skimming: Due to a process known as plasma skimming the red blood 

cells (RBC) are not evenly distributed within the vascular tree and the hematocrit in the 

microvascular beds is considerably lower than that of the larger vessels (Burge and 

Skinner, 1995). Plasma skimming is a phenomenon in which, due to low flow rates in the 

microvascular beds like capillaries, the RBC’s stick together, thus increasing the 

viscosity, and remaining at the centre of the vessel. Thus, the blood closest to the vessel 

wall has lower hematocrit and the fraction of blood volume that is occupied by the RBC’s 

is lower in the microvascular beds when compared to larger blood vessels. As an effect of 

plasma skimming, it would be expected that ˆ
HbM  calculated using %HbCO 

measurements from a capillary blood site may be an overestimate of the actual 

hemoglobin mass.  However, this process of plasma skimming should not effect the 

estimation of MHb from a specific blood site, if the blood is sampled for %HbCO after 

mixing of CO is complete and the %HbCO’s from all the blood compartments are similar 

or equal. As it is difficult to determine the true Tmix, using the suggested sampling time of 

9 min should allow accurate estimation of MHb. Though the process of plasma skimming 

is not implemented in the model, it should be noted that the model was able to predict the 

%HbCO’s from different blood compartments, which were in agreement with the 

experimental data. Also the techniques using tagged RBC’s (CO, 51Cr) have been 

reported to accurately estimate the RBC volume, but underestimate the plasma and blood 

volume (Burge and Skinner, 1995). Thus, a correction factor as proposed by Burge and 

Skinner (1995) may have to be applied to estimate blood volume using the CO 

rebreathing methods.  

 

Proposed new CO rebreathing method 

 In this study I have proposed a new CO rebreathing method (Figure 2.12A) to 

estimate MHb with low errors irrespective of the site of sampling. In this section I 

summarize the procedure to determine ˆ
HbM  using this new method. Prior to CO 

rebreathing the subject breathes 100% O2 for approximately 5 minutes. The initial 
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%HbCO levels from ear lobe, pre warmed finger tip or an artery in fore arm should be 

measured. The subject then rebreathes CO in 100% O2 for 3.5 min. A known volume of 

CO is injected into the rebreathing system (3 L) at the beginning of CO rebreathing. The 

time at which CO is injected into the rebreathing circuit is considered as the experiment 

start time (T0). The volume of CO administered is based on the gender and fitness level 

of the subject (Schmidt and Prommer, 2005). The concentration of CO in the rebreathing 

system at the end of rebreathing (3.5 min from T0) is measured in ml, ATPD and then 

converted to BTPS. The volume of CO exhaled from end of rebreathing to Tsample (9 min 

from T0) is measured in ml, BTPS. The %HbCO levels at Tsample are measured from the 

arterial, capillary other tissue, or capillary muscle blood compartments. VCOMb (in ml, 

BTPS) is estimated using the proposed regression equation (Equation 2.8a, Figure 

2.13A). The VCO administered ( ) is in ml, ATPD and should be converted to BTPS. 

T

tCOV

sample is in minutes. MHb is calculated using equation 2.1.  

 

Modifications to the existing CO rebreathing methods 

Protocol B: In this method, inaccuracies in estimation of VCOMb result in larger errors in 

ˆ
HbM  when compared to other CO rebreathing methods.  Also, the long duration of CO 

rebreathing in 100% O2 (40 min) causes inconvenience to the subjects. Thus the main 

disadvantages of this method are inaccurate estimation of VCOMb, larger Tmix and long 

durations of rebreathing. However, using the regression equation (Equation 2.8b, Figure 

2.13b) suggested in this study to estimate VCOMb will lower the errors in ˆE
HbM  (Table 

2.5) when compared to using the Prommer and Schmidt’s formula (Equation 2.7, Table 

3) or ignoring VCOMb. Despite larger Tmix, making a measurement from arterial or ear lobe 

(other tissue capillary) blood sites at a sampling time of 9 min, will allow determination 

of ˆ
HbM  with low errors (Figure 2.17). Also the duration of the experiment can be 

decreased to 9 minutes as low errors in ˆ
HbM  are obtained at the suggested sampling site 

and time. In addition to the suggested modifications, this method is complemented with 

other advantages like there will be no additional errors introduced in ˆE
HbM  due to 

inaccuracies in measurement of VCO ex (as CO is not exhaled in this method). In this 
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method despite intersubject variability, the magnitude of the size of error in calculation 

of ˆ
HbM  is low from any blood site (Figure 2.17). Thus this method can be anticipated to 

determine ˆ
HbM  with low errors for a range of subjects.  Also I suggest that the VCO L+S 

be measured at the suggested sampling time, instead of calculating it from Equation 2.5.  

 

Protocol P: The advantages of this method are that it has a smaller Tmix, smaller duration 

of CO rebreathing and lower volume of CO bound to myoglobin when compared to other 

rebreathing methods. However, the choice of 2 min duration of rebreathing in this 

method was not based on experimental or mathematical model driven results. Also, the 

model was able to validate the %HbCO’s measured from different blood compartments 

for the Schmidt and Prommer’s experiment conducted by Garvican et al. (2010), using 

the blood volumes calculated for the Burge and Skinner’s method in the same 

experiment. This result suggests that the estimates of MHb from Schmidt and Prommer’s 

method were inaccurate.  In this CO rebreathing method, the values of ˆE
HbM  are based 

on compensatory errors in calculation of VCOMb and VCO ex (Table 2.4). To avoid errors 

in ˆE
HbM , it is suggested that VCO ex should be measured during the experiment and 

VCOMb should be calculated using the regression equation proposed in this study for 

protocol P (Equation 2.8c, Figure 2.13c). Unlike protocol B, in this method the 

magnitude of the size of error in calculation of ˆ
HbM  from any blood site is dependent on 

the intersubject variability (Figure 2.17). The subject specific factors like ventilation, age, 

fitness level, body weight, blood volume, or DMCO, to which the magnitude of error is 

sensitive, is not known and have not been analyzed in this study. Also the choice of 

duration of CO rebreathing in protocol N is based on results (low errors in MHb) obtained 

from simulation analysis. 

 

CONCLUSIONS 

 In this study a validated mathematical model was used to determine any potential 

sources of errors in estimation of MHb ( ˆ
HbM ) from the existing CO rebreathing methods. 

Inaccuracies in estimation of volume of CO bound to myoglobin was found to be the 
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major source of error in calculation of ˆ
HbM  from these methods.  Using the regression 

equations developed in this study to estimate the volume of CO bound to myoglobin will 

allow estimation of MHb with low errors from any CO rebreathing method. Also 

estimating MHb using the new CO rebreathing method (Protocol N) or from the existing 

CO rebreathing methods with the suggested modifications for estimation of volume of 

CO bound to myoglobin, sampling time, and blood site, will allow estimation of MHb 

with low errors and allow comparison of  hemoglobin mass determined from different 

studies using different CO rebreathing methods possible.  

 
SUMMARY 

 
  Routine measurements of hemoglobin mass (MHb) are made to study the 

alterations in oxygen delivery during exercise training and acclimatization to altitude. 

Carbon monoxide (CO) rebreathing technique is a popularly used method to determine 

MHb in humans. The two commonly used CO rebreathing methods to determine MHb 

were proposed by Burge and Skinner (1995) and Schmidt and Prommer (2005). The 

potential sources of errors in determination of MHb from these methods are not known. 

The main aim of this study was to use a validated mathematical model to simulate the 

commonly used CO rebreathing methods and determine any potential sources of errors in 

estimation of MHb using these methods. For the two CO rebreathing methods, my 

previously published mathematical model (Erupaka et. al., 2010) was validated for 

experimentally measured %HbCO and MHb from arterial, capillary and venous blood 

sites of human subjects (Garvican et al., 2010). The validated model was used to simulate 

the existing CO rebreathing methods in 24 human subjects with a known MHb. MHb in 

these subjects was also estimated using the approximations made in the existing CO 

rebreathing methods for calculating volume of CO bound to myoglobin, volume of CO 

exhaled and the volume of CO in the rebreathing system. On analysis of my simulations, 

it was found that inaccuracies in estimation of volume of CO bound to myoglobin was 

the major source of error in determination of MHb. To determine MHb with low errors 

from the CO rebreathing methods, the validated mathematical model was applied in this 

study to propose a new CO rebreathing method and suggest modifications to the existing 

CO rebreathing methods.  
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Table 2.1: Symbols and their definitions 

Symbol Definition 

Blood sites sampled for determination of hemoglobin mass 

ar Arterial blood site (artery in forearm) 

cm Muscle tissue capillary blood site (finger tip) 

cot Nonmuscle tissue capillary blood site (ear lobe) 

Blood sites 

vm Muscle tissue venous blood site (vein in forearm) 

Percent carboxyhemoglobin level 

%HbCOar %HbCO in arterial blood 

%HbCOcot %HbCO in capillary  blood of nonmuscle tissues 

%HbCOcm %HbCO in capillary  blood of skeletal muscle tissues 

%HbCO 

%HbCOvm %HbCO in venous  blood of  skeletal muscle tissues 

MHb Hemoglobin mass 
AMHb Known value of  MHb from experiments (Input parameter to the model) 

Estimated  MHb

ˆM
HbM  ˆ

HbM  estimated using the values from the model 

ˆ
HbM  

ˆE
HbM  ˆ

HbM  estimated using the approximations from the experiments 

Tmix Estimated mixing time of CO in vascular space 

Tsample Blood sampling time 

VCOHb Volume of CO bound to hemoglobin 

VCOMb Volume of CO bound to myoglobin 

VCO L+S Volume of CO in the lungs and rebreathing system at Tsample

VCO ex Volume of CO exhaled 
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Table 2.2 : Estimation of hemoglobin mass ( ˆM
HbM , ˆE

HbM ) 

Model Experiment Variable 

Protocol B Protocol P Protocol B Protocol P 

ˆ
HbM  100ˆ

1.58
M M

Hb COHb
i

M K V
HbCO

=
Δ

i i  100ˆ
1.58

E E
Hb COHb

i

M K V
HbCO

=
Δ

i i  

VCOHb  -  L+S -  ex -
M

COt CO CO COMbV V V V VCOHb =  -  L+S -  ex -
E

COt CO CO COMbV V V V VCOHb =  

COtV  Total volume of CO administered Total volume of CO administered 

 L+SCOV  Equation 2.4 Equation 2.4 Equation 2.5 Equation 2.4 

 exCOV  0 Equation 2.3 0 Equation 2.6 

COMbV  Equation 2.2 Equation 2.2 Equation 2.7 Equation 2.7 
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Table 2.3:  Mean values with standard deviations of various variables and 

mean errors in calculation of ˆM
HbM  from Benignus’s subjects (15 healthy 

male humans) for simulations of protocols B and P. 

Variable Protocol B Protocol P 

Tmix 11.5 ± 2.561 3.54 ± 0.159 

Tsample 13 ± 2.561 5.04 ± 0.159 

Actual hemoglobin mass (AMHb )(g) 779.9 ± 167.8 779.9 ± 167.8 

VCO administered (ml) 83.88 ± 13.44 83.88 ± 13.44 

VCO Lung + rebreathing system  (ml) 1.279 ± 0.161 1.116 ± 0.339 

Vco exhaled (ml) 0.0 1.440 ± 0.342 

VCOMb (ml) 5.174 ± 1.683 1.581 ± 0.382 

VCOHb (ml) 77.43 ± 12.62 79.74 ± 13.05 

∆HbCO (%)* 6.411 ± 0.899 6.718 ± 1.053 Arterial 

mean % error+ 0.118 ± 0.151 -0.865 ± 0.363 

∆HbCO (%)* 6.415 ± 0.900 6.732 ± 1.055 CapillaryOT

mean % error+ 0.057 ± 0.140 -0.974 ± 0.365 

∆HbCO (%)* 6.307  ± 0.899 6.716 ± 1.056 CapillaryM

mean % error+ 1.619 ± 0.079 -0.769 ± 0.365 

∆HbCO (%)* 6.291 ± 0.906 6.601 ± 1.055 VenousM

mean % error+ 1.883 ± 0.209 -0.392 ± 0.402 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* All ∆HbCO% are the values estimated by the model at Tsample. 
+ %errors in estimates of MHb calculated from the model ( ˆM

HbM ) compared to AMHb
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 Table 2.4: Mean values with standard deviations of estimated VCOMb 

using Equation 2.7 and errors in calculation of ˆE
HbM  from 

Benignus’s subjects for simulations of protocols B and P. 

Blood site Protocol* VCOMb (ml) mean % error+

Arterial B 3.134 ± 0.603 2.051 ± 1.599 

CapillaryOT B 3.201 ± 0.619 1.901 ± 1.582 

CapillaryM B 2.154 ± 0.590 4.870 ± 1.378 

VenousM B 1.896 ± 0.550 5.479 ± 1.288 

Arterial P 1.872 ± 0.568 -0.056 ± 0.37 

CapillaryOT P 2.120 ± 0.613 -0.474 ± 0.41 

CapillaryM P 2.031 ± 0.723 -0.159 ± 0.49 

VenousM P -1.749 ± 0.77 4.958 ± 0.702 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*See Table 2.3 for Tmix, Tsample, actual MHb (AMHb),VCO administered, and ∆HbCO%. The 

volume of CO exhaled is 0 ml and 0.513 ± 0.088 ml for protocols B and P respectively.  

The volume of CO in the lungs and rebreathing system is 1.845± 0.296 ml in protocol B 

and 0.513 ± 0.088 ml in protocol P. 
+ %errors in estimates of MHb calculated from the experiments ( ˆE

HbM ) compared to AMHb
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 Table 2.5: Mean values with standard deviations of errors in ˆE
HbM  from 

Benignus’s subjects for simulations of protocols B, P and N. 

Blood site Protocol N* 

mean % error+

Protocol B 

mean % error+

Protocol P 

mean % error+

Arterial -0.249 ± 0.502 -0.694 ± 1.026 0.322 ± 0.504 

CapillaryOT -0.305± 0.488 -0.755 ± 1.014 0.212 ± 0.486 

CapillaryM -0.730 ± 0.576 0.793 ± 0.897 0.419 ± 0.485 

VenousM -0.056 ± 0.453 1.053 ± 0.774 0.801 ± 0.424 

 

 

 

 

 

 

 

 

 

 

*The mean values for Tmix, Tsample, volume of CO exhaled, and volume of CO in the 

lungs + rebreathing system for the new protocol are 4.54 ± 0.19, 6.04 ± 0.19, 1.00 ± 0.15 

and 1.26 ± 0.26 respectively. VCOMb for all protocols are estimated from the regression 

equations.  
+ %errors in estimates of MHb calculated from the ˆE

HbM (as described below) compared 

to AMHb.  ˆE
HbM  was calculated using estimations of VCOMb from the regression equations 

(Equation 2.8) and VCO L+S (Equation 2.5), VCO exhaled (Equation 2.6)  from the 

experiment formulas. 
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Figure 2.1: Determination of Tmix in (A) protocol B and (B) protocol P. The pairwise 

differences in %HbCO within four different blood compartments were plotted at different 

times. The time at which the %HbCO difference line crosses the reference line was 

determined as the mixing time, Tmix. 
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Figure 2.2: Uptake kinetics of CO in (A) protocol B and (B) protocol P. The %HbCO 

levels in different vascular compartments of the model arterial (ar), capillary muscle 

(cm), capillary other tissue (cot), muscle venous (vm) and mixed venous (vmx).  
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Figure 2.3: Comparison of model predicted %HbCO with experimental data from three 

blood sites: (A) arterial-ar, (B) capillary muscle –cm, (C) venous muscle-vm, for Burge 

and Skinner method. The solid lines with error bars are the model predicted mean 

%HbCO with ±SD, from individual simualtions of 9 subjects. Mean %HbCO from the 

experiments is represented with symbol ‘• ’. The dashed lines are the 95% confidence 

limits of the experimental data. 

. 
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Figure 2.4: Comparison of model predicted %HbCO with experimental data from three 

blood sites: (A) arterial-ar, (B) capillary muscle –cm, (C) venous muscle-vm,  for 

Schmidt and Prommer method. The solid lines with error bars are the model predicted 

mean %HbCO with ±SD, from individual simualtions of 9 subjects. Mean %HbCO from 

the experiments is represented with symbol ‘• ’. The dashed lines are the 95% confidence 

limits of the experimental data. 
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Figure 2.5: Mean % error  in estimated Hb mass using exact data from the model (i. e., 

VCOHb) vs. time for blood sampled from arterial (—), capillary other tissue (–·–·), 

capillary muscle (····) and muscle venous (– –) blood sites for (A) Burge and Skinner 

method and (B) Prommer and Schmidt method. Value at each time point represents mean 

percent error from simulations of Garvican’s 9 subjects. The red solid line is  the zero 

line. 
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Figure 2.6: CO flux from blood to muscle tissues in the two commonly used CO 

rebreathing methods. CO flux (ordinate) from blood to muscle tissue in protocol B (solid 

line) and Protocol P (dashed line) is not constant. 
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Figure 2.7: Comparison of model calculated VCOMb (abcissa) with Prommer and 

Schmidt’s estimated VCOMb (ordinate) in (A) arterial, (B) capillary other tissue, (C) 

capillary muscle and (D) muscle venous blood sites for protocol B.  Dashed lines are the 

identity lines. Each point represents one subject.  
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Figure 2.8: Errors in estimation of MHb. Comparison of the actual known MHb, AMHb with 

MHb estimated using the exact values from the model, ˆM
HbM  and MHb estimated using the 

approximations used in the existing CO rebreathing methods, ˆE
HbM  for samples taken 

from different blood sites (A) arterial, (B) capillary other tissue, (C) capillary muscle and 

(D) muscle venous for protocol B. Dashed lines are the zero reference lines. Each point 

represents one subject. 
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Figure 2.9: Comparison of model calculated VCOMb (abcissa) with Prommer and 

Schmidt’s estimated VCOMb (ordinate) in (A) arterial, (B) capillary other tissue, (C) 

capillary muscle and (D) muscle venous blood sites for protocol P.  Dashed lines are the 

identity lines. Each point represents one subject. 
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Figure 2.10: Comparison of model calculated VCO exhaled (abcissa) with Prommer and 

Schmidt’s estimated VCO exhaled (ordinate) in protocol B.  Dashed line is the identity 

line. Each point represents one subject. 
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Figure 2.11: Effects of varying durations of CO rebreathing in 100% O2 and the ambient 

conditions before or after CO rebreathing on errors in estimation of MHb. Errors in 

estimates of MHb (y-axis) from various blood compartments for different durations of 

rebreathing shown on x-axis (2, 3.5, 5, 7.5, 10 min) are represented by (A) ‘ ’ on 

breathing room air before and after CO rebreathing in 100% O2, (B) ‘◊’ breathing 100% 

O2  before CO rebreathing in 100% O2 followed by breathing room air (C) ‘ ’  breathing 

100% O2 before and after CO rebreathing in 100% O2 and (D) ‘ ’breathing room air 

before CO rebreathing in 100% O2  followed by 100% O2. Dashed lines are the zero 

reference lines. 
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Figure 2.12A: Protocol N 
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Figure 2.12B: Uptake kinetics of CO in protocol N for one typical subject. The %HbCO 

levels in different vascular compartments of the model arterial (ar), capillary muscle 

(cm), capillary other tissue (cot), muscle venous (vm) and mixed venous (vmx).  
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Figure 2.13: Proposed regression equations to estimate VCOMb for calculation of MHb 

from (A) Protocol N, (B) Protocol B and (C) Protocol P. Model calculated VCOMb as 

abscissa and regression estimated VCOMb as ordinate. R is the regression coefficient and E 

is the error in the estimate. Dashed lines are the identity lines. Each point represents one 

subject. 
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Figure 2.14: Comparison of errors from different blood sites for protocols B (dash-dotted 

line), P (dashed line) and N (solid line). Shown on x-axis and y-axis are the errors in 

ˆ
HbM  and cumulative probability density functions for data from the 15 subjects 

(Benignus et al., 1994) from (A) arterial, (B)capillary-other tissue, (C) capillary muscle 

and (D) muscle venous blood sites.  
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Figure 2.15: Effects of Tsample on estimation of MHb in protocol N. Errors in calculation of 

ˆM
HbM (ordinate) from (A) arterial, (B)capillary-other tissue, (C) capillary muscle and 

(D)muscle venous blood compartments are plotted at different times (abcissa) in 

Benignus’s subjects. Each line represents one subject. 
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Figure 2.16: Model fit of a healthy, recreationally-active female human subject from 

Garvican et al.(2010). The %venous HbCO levels in the (A) Burge and Skinner methods 

and (B) Schmidt and Prommer method from the experiment of Garvican et al., 2010 (o), 

model fit using average values for blood volume of venous blood compartment of the 

muscle and muscle blood flow (dashed line) and model fit using the increased blood 

volume of venous blood compartment of the muscle and decreased muscle blood flow 

(solid line). The venous blood compartment volume was increased by 20% of mixed 

venous blood volume and the muscle blood flow was decreased by 20%. 
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Figure 2.17: Effects of Tmix on estimation of MHb in protocol B. Errors in calculation of 

ˆM
HbM (ordinate) from (A) arterial, (B)capillary-other tissue, (C) capillary muscle and (D) 

muscle venous blood compartments are plotted at different times (abcissa) in Benignus’s 

subjects. Each line represents one subject. 

 67



0 5 10 15 20
-2

-1.5

-1

-0.5

0

0.5

Time (min)

%
E

rr
or

 in
 M

H
b (

ar
)

0 5 10 15 20
-2

-1.5

-1

-0.5

0

0.5

Time (min)

%
E

rr
or

 in
 M

H
b (

co
t)

0 5 10 15 20
-2

-1.5

-1

-0.5

0

0.5

Time (min)

%
E

rr
or

 in
 M

H
b (

cm
)

0 5 10 15 20
-2

-1.5

-1

-0.5

0

0.5

Time (min)

%
E

rr
or

 in
 M

H
b (

vm
)

Protocol P A. B. 

C. D. 

 
Figure 2.18: Effects of Tmix on estimation of MHb in protocol P. Errors in calculation of 

ˆM
HbM (ordinate) from (A) arterial, (B)capillary-other tissue, (C) capillary muscle and (D) 

muscle venous blood compartments are plotted at different times (abcissa) in Benignus’s 

subjects. Each line represents one subject. 
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Chapter 3: Enhanced Mathematical Model 

 

Contents of this chapter will be submitted as a manuscript
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INTRODUCTION 

The third specific aim is to compare the current treatment strategies available to 

treat CO poisoned victims and determine the best treatment strategy ensuring fastest CO 

removal and O2 delivery after CO poisoning. As stated in chapter 1, the best approach to 

accomplish this aim would be to use a validated mathematical model capable of 

estimating CO burden (%HbCO, %MbCO), O2 levels and CO2 levels in different blood 

(arterial, capillary, venous) and tissue (brain, heart, skeletal muscle, nonmuscle) 

compartments for various CO exposures and treatment sessions in  healthy populations. 

Understanding the O2 and CO2 dynamics (transport and utilization of O2 or CO2 from and 

within blood vessels and tissues) in the brain, heart and skeletal muscle during different 

treatments plays a key role in designing treatments. This is because brain, heart and 

skeletal muscle (during exercise) tissues are highly oxidative organs and produce 

metabolites like CO2. Limitation of O2 supply below a certain level to these organs due to 

CO leads to collapse of vital cell functions, accumulation of metabolites and eventually 

cell death (Erecińska and Silver, 2001; Folbergrová et al., 1990; Zauner et al., 2002). 

 

 The major limitations of the previously developed model (Erupaka et al., 2010) 

are that the brain tissue is represented as a part of the lumped other tissue compartment 

and the model lacks control of ventilation and regulation of blood flow in conditions of 

changing O2 or CO2 concentrations. Thus due to these major limitations, this model 

cannot be applied to compare O2 levels in the brain compartment during different 

treatments and to understand the role of CO2 during isocapnic (arterial PCO2 maintained 

at a constant level) and poikilocapnic (uncontrolled arterial PCO2) treatments. There are 

other whole body mathematical models developed in the literature but have limitations 

(Stuhmiller and Stuhmiller, 2005; Ursino et al., 2001; Wolf and Garner¸ 2007; Zhou et 

al., 2007). Many of these models cannot be applied because mass balance of CO or 

regulation of blood flow has not been incorporated in these models for conditions like CO 

exposure or HBO2 (Ursino et al., 2001; Wolf and Garner¸2007; Zhou et al., 2007). 

Models which have incorporated CO mass balance equations ignore the fact that a 

significant amount of CO can diffuse into the muscle tissues (Stuhmiller and 

Stuhmiller,005). Thus, the best available mathematical model that can applied to 
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implement the third specific aim is the model developed in our lab (Erupaka et al., 2010). 

However, this model should be enhanced by adding the necessary features and validated 

for various conditions of changing O2 and CO2 concentrations to allow simulations of 

various treatment protocols.  

 

The mathematical model described in this chapter is an expansion of the previous 

model (Erupaka et al., 2010). This previously developed and published model (Erupaka 

et al., 2010) was upgraded by adding a cardiac compartment to the original model of 

Bruce et al. (2008).  Significant enhancements made to the previous upgraded model 

(Erupaka et al., 2010) are addition of: (i) brain compartment (Figure 3.1), (ii) mass 

balance equations for CO2, (iii) control of ventilation, (iv) regulation of blood flow: 

cardiac output, cerebral blood flow, myocardial blood flow, skeletal muscle tissue and 

non-muscle tissue blood flow with changes in arterial O2 saturation (SO2), PO2, PCO2, 

%HbCO and (v) Bohr effect on O2 dissociation curve and Haldane effect on CO2 

dissociation curve.  

 

METHODS 

ACSL 11.8 was used to implement this model. For numerical integration, Runge-

Kutta-Fehlberg variable step size algorithm with error flagging was used and the 

maximum allowable step size was 0.001 min.  Simulations were performed in double 

precision and a 30 minute stabilization period was initiated with every simulation run for 

the baseline simulation to reach a steady state. New algorithms were added to implement 

Bohr effects and previously used algorithms (described as special functions in Erupaka et 

al., 2010) were modified.   

 

Model Description 

Addition of brain compartment: A brain compartment (Figure 3.1) comprising three 

vascular subcompartments (bb1,bb2,bb3) and two tissue subcompartments (b1,b2) was 

added to my previously published model (Erupaka et al., 2010). This concept of two 

tissue subcompartments with three vascular subcompartments was introduced, validated 

and published for the skeletal muscle by Bruce et al. (2008). Later this concept was 
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extended to the cardiac muscle tissue by Erupaka et al. (2010). In this chapter, the same 

concepts of a two tissue subcompartments described by Bruce et al. (2008) were 

implemented to add a brain tissue compartment to the model.  The brain tissue in my 

previous model (Erupaka et al., 2010) was lumped with the nonmuscle tissues. A separate 

brain compartment was implemented to estimate extent of CO induced hypoxia during 

CO exposure and O2 delivery during different therapy protocols. Also, knowledge of O2 

and CO2 (CO2 mass balance equations described later in the text) levels in the brain will 

enable better control of ventilation in the model.  The structure of the brain compartment 

(Figure 3.1) is similar to that of the skeletal and cardiac muscle compartments of previous 

models developed in our lab (Bruce et al., 2008; Erupaka et al., 2010). The relative 

volumes of brain tissue subcompartments and blood subcompartments were chosen by 

trial and error from various volume distributions, which were tested to optimize the 

model predictions for brain blood and brain tissue PO2’s in various conditions (Table 3.1-

3.2). The mass balance equations for O2 and CO for the brain compartment (Eqs. 3.1-

3.10) are similar to that of the cardiac and skeletal muscle tissue (Appendix A of Erupaka 

et al., 2010), except that the brain tissue compartments do not contain myoglobin. After 

adding the brain compartment, the brain tissue and venous PO2’s were validated for 

conditions of hypoxic hypoxia, CO hypoxia, hyperoxia and hyperbaric oxygen (See 

section “Model Validation”). The O2 and CO mass balance equations written for brain 

compartment are as described below:  

 

Brain Tissue Subcompartment 1, (b1): 

( )2 2 2 1 21 2 1 2 1 2

1 1

( ) ( )( ) ( ) ( )
d d

b b bb b b

b xb

D O C O t C O tdC O t Flux O t MR O t
dt V D V

′ ⋅ −
= + −

b

………… (3.1) 

( )2 11 1

1

( ) ( )( ) ( )
d d

b b bb b

b xb

D CO C CO t C CO tdC CO t Flux CO t
dt V D

′ ⋅ −
= + ……………………(3.2) 

Cb1O2(t) and Cb1CO(t) are the tissue concentrations of O2 and CO in brain tissue 

subcompartment, b1 of volume Vb1.  and  are the O1 2 ( )bFlux O t 1 ( )bFlux CO t 2 and CO 

fluxes from blood to brain tissue subcompartment 1.  

 are the dissolved O1 2 2 2 1 2( ), ( ), ( ),  and ( )d d d d
b b b bC O t C O t C CO t C CO t 2 and CO concentrations 
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in tissue subcompartments 1 and 2, respectively. Dxb is the mean intercapillary distance 

in the brain tissue.  and2bD O′ bD CO′  are the intertissue brain diffusion coefficients for O2 

and CO. 1 2 ( )bMR O t  is the metabolic rate of O2 in tissue compartment b1. 

 

Brain Tissue Subcompartment 2, (b2): 

( )2 1 2 2 22 2 2 2 2 2

22 2

1

( ) ( )( ) ( ) ( )
d d

b b bb b b

bb b
xb

b

D O C O t C O tdC O t Flux O t MR O t
Vdt V VD V

′ ⋅ −
= + −

⎛ ⎞⋅⎜ ⎟
⎝ ⎠

………(3.3) 

( )1 22 2

22

1

( ) ( )( ) ( )
d d

b b bb b

bb
xb

b

D CO C CO t C CO tdC CO t Flux CO t
Vdt V D V

′ ⋅ −
= +

⎛ ⎞⋅⎜ ⎟
⎝ ⎠

…………………(3.4) 

Cb2O2(t) and Cb2CO(t) are the tissue concentrations of O2 and CO in brain tissue 

subcompartment, b2 of volume Vb2.  and  are the O2 2 ( )bFlux O t 2 ( )bFlux CO t 2 and CO 

fluxes from blood to brain tissue subcompartment 2. 2 2 ( )bMR O t  is the metabolic rate of 

O2 in tissue compartment b2. 

 

Brain Blood compartment 1, (bb1): 

( )1 2
1 2 1 2

( ) ( ) ( ) ( ) ( )bv
bb b ar bv b

dC O tV Q t C O t C O t O Fl
dt

= ⋅ − − 2 1ux t ………………… …(3.5) 

( )1
1 1

( ) ( ) ( ) ( ) ( )bv
bb b ar bv b

dC CO tV Q t C CO t C CO t COF
dt

= ⋅ − − 1lux t ……………… (3.6) 

Cbv1O2(t) and Cbv1CO(t) are the blood concentrations of O2 and CO in brain vascular 

subcompartment 1, bb1 of volume Vbb1.  is the brain blood flow and , 

 are the concentration of O

( )bQ t 2 ( )arC O t

( )arC CO t 2 and CO in the arterial blood.  and 

 are the O

2 1( )bO Flux t

1( )bCOFlux t 2 and CO fluxes from blood compartment 1 to brain tissue 

subcompartment 1. 

 

Brain Blood compartment 2, (bb2): 

( )2 2
2 1 2 2 2

( ) ( ) ( ) ( ) ( )bv
bb b bv bv b

dC O tV Q t C O t C O t O Fl
dt

= ⋅ − − 2 2ux t …………………(3.7) 
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( )2
2 1 2

( ) ( ) ( ) ( ) ( )bv
bb b bv bv b

dC CO tV Q t C CO t C CO t COF
dt

= ⋅ − − 2lux t ………… …(3.8) 

Cbv2O2(t) and Cbv2CO(t) are the blood concentrations of O2 and CO in brain vascular 

subcompartment 2, bb2 of volume Vbb2.  and  are the O2 2 ( )bO Flux t 2 ( )bCOFlux t 2 and CO 

fluxes from blood compartment 2 to brain tissue subcompartment 2. 

 

Brain Blood compartment 3, (bb3): 

( )3 2
23 2 3 2

( ) ( ) ( ) ( ) ( )bv
bb b bv bv b

dC O tV Q t C O t C O t O Fl
dt

= ⋅ − − 2 3ux t ……… …………(3.9) 

( )3
3 2 3

( ) ( ) ( ) ( ) ( )bv
bb b bv bv b

dC CO tV Q t C CO t C CO t COFlux t
dt

= ⋅ − − 3 ……… …….(3.10) 

Cbv3O2(t) and Cbv3CO(t) are the blood concentrations of O2 and CO in brain vascular 

subcompartment 3, bb3 of volume 3 to brain tissue subcompartment 1.  and 

 are the O

2 3( )bO Flux t

3 ( )bCOFlux t 2 and CO fluxes from blood compartment 1 to brain tissue 

subcompartment 1. 

 

 

Auxiliary equations for brain tissue (b1, b2) and blood (bb1, bb2, bb3) 

subcompartments: 

1b bV Fv V= ⋅ bt

btV

 

( )2 1b bV Fv= − ⋅  

1bV ,  are the tissue volumes of brain tissue subcopartment 1 and 2, 

 respectively.  is the product of brain tissue volume distribution fraction,  

 and total brain tissue volume,  

2bV

1bV bFv

btV

bb b btV volfrac V= ⋅  

bbV  is the total blood volume in the vascular compartments of brain tissue. It is 

 the product of the fraction of volume of brain tissue compartment attributed to 

 blood ,   and  bvolfrac btV

1bb vb bbV F V= ⋅  

 74



( )2 1bb vb bbV F= − ⋅V

1

am bt

 

3 _bb bvb on bbV D V= ⋅  

1bbV , ,  are the blood volumes of arterial, capillary and venous 

 subcompartments of brain tissue.  

2bbV 3bbV

2 2/gr1.21b bMR O MR O V= i i  

( ) ( )
( ) ( )

1

1 2

1

1 2

2 1

1 2
1 2

2 1
2 1 2

                                   if ( )  26
( ) ( )   if  ( ) < 26

( )

b

b b

b

b b

V
b bV V

b V b
b bV V

b b

MR O P O t
MR O t P O tMR O P O t

K O P O t

+

+

⎧ ⎫⋅ ≥
⎪ ⎪⎪ ⎪= ⎨ ⎬⎛ ⎞

⋅ ⋅⎪ ⎪⎜ ⎟+⎪ ⎪⎝ ⎠⎩ ⎭

2

2

 

( ) ( )
( ) ( )

2

1 2

2

1 2

2 2

2 2
2 2

2 2
2 2 2

                                   if ( )  26
( ) ( )   if  ( ) < 26

( )

b

b b

b

b b

V
b bV V

b V b
b bV V

b b

MR O P O t
MR O t P O tMR O P O t

K O P O t

+

+

⎧ ⎫⋅ ≥
⎪ ⎪⎪ ⎪= ⎨ ⎬⎛ ⎞

⋅ ⋅⎪ ⎪⎜ ⎟+⎪ ⎪⎝ ⎠⎩ ⎭

2

2

 

2bMR O , 1 2 ( )bMR O t , 2 2 ( )bMR O t are the metabolic oxygen consumptions of an 

average brain tissue, brain tissue subcompartment 1, and brain tissue 

subcompartment 2, respectively. MRO2 of the tissue compartment decreases as a 

function of tissue PO2, after a tissue PO2 of 26 Torr. 

1 2 2 1 2 3( ) ( ) ( )b bFlux O t O Flux t O Flux t= + b  

2 2 2 2( ) ( )b bFlux O t O Flux t=  

( )2 1 1 2 2 1 2( ) ( ) ( ) ( )b b ab bO Flux t Db O t P O t P O t= ⋅ −  

21 2 1
1 2

( ). .
( )

1.04
b O

b

PS O t S V
Db O t = b   

2 ( )abP O t  , (Erupaka et al, 2010; Appendix A, See Section 2.7, special functions 
(F.5)) 

1 2 _
0

( )( ) b
b bav rest

b

Q tPS O t PS
Q

= ⋅  

0 /b b gram btQ Q V= i  

( )2 2 2 2 2 2 2( ) ( ) ( ) ( )b b bb bO Flux t Db O t P O t P O t= ⋅ −  

22 2 2
2 2

( )
( )

1.04
b O

b

PS O t S V
Db O t b⋅ ⋅

=  
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2 2 _
0

( )( ) b
b bcap rest

b

Q tPS O t PS
Q

= ⋅  

2 ( )abP O t  ,  (Erupaka et al., 2010; Appendix A, See Section 2.7, special 
 functions  (F.5)) 

2 ( )bbP O t

 
1 1( ) ( ) ( )b bFlux CO t COFlux t COFlux t= + 3b  

2 2( ) ( )b bFlux CO t COFlux t=  

( )1 1 1( ) ( ) ( ) ( )b b ab bCOFlux t Db CO t P CO t P CO t= ⋅ −  

( )1( ) 0.5 ( )  ( )ab ar bvP CO t P CO t P CO t= +  

( )2 2 2( ) ( ) ( ) ( )b b bb bCOFlux t Db CO t P CO t P CO t= ⋅ −  

( )1 2( ) 0.5 ( )  ( )bb bv bvP CO t P CO t P CO t= +  

( )3 3 1( ) ( ) ( ) ( )b b cb bCOFlux t Db CO t P CO t P CO t= ⋅ −  

( )2 3( ) 0.5 ( )  ( )cb bv bvP CO t P CO t P CO t= +  

1 2
1

2 2

( )( ) 
( )

b
b B

b

Db O tDb CO t D CO
Db O t

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
 

2 2

2 2

( )( ) 
( )

b
B M

m

Db O tD CO t D CO
Db O t

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
 

22 2 2
2 2

( )
( )

1.04
b O

b

PS O t S V
Db O t b⋅ ⋅

=  

2 2 _
0

( )( ) b
b bcap rest

b

Q tPS O t PS
Q

= ⋅  

2 ( )b BDb CO t D CO=  

3 2 1 2 _( ) ( )b bDb O t Db O t D= ⋅ bvb on  

23
3

22

( )( ) 
( )

b
bb B

b

Db O tD CO t D CO
Db O t

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
 

1 2 1 2( ) ( )d
b bC O t C O t=  

1 1( ) ( )d
b bC CO t C CO t=  

  
21 2 1 2( ) ( )b O bC O t S P O t= ⋅
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1 1( ) ( )b CO bC CO t S P CO t= ⋅  

All other equations are similar to those of skeletal and cardiac tissue 

compartments (Appendix A of Erupaka et al., 2010), except that there is no O2 or CO 

bound to myoglobin in brain tissue compartments. See Table 3.1 and Appendix A of 

Erupaka et al. (2010) for definitions of all other parameters and variables. 

 

Addition of mass balance equations for CO2: Mass balance equations for CO2 in all 

compartments were added to model transport and production of CO2 from and within 

various blood vessels, lungs and various tissues. This modification was added to allow 

control of ventilation and regulation of blood flow with changes in CO2 levels. Addition 

of this feature to the model will also allow evaluation of the role of CO2 in managing a 

treatment after CO poisoning occurs. The mass balance equations for CO2 are similar to 

that of O2 (Appendix A of Erupaka et al., 2010), except that CO2 is produced as a 

metabolite on O2 utilization. In the blood compartments Hb binds to CO2 to form 

carbaminohemoglobin (HbCO2). Thus the total CO2 in any vascular compartment is 

expressed as dissolved CO2, in the form of bicarbonate and as bound to Hb while the total 

CO2 in any tissue compartment is expressed as dissolved CO2 and in the form of 

bicarbonate ( ) (Stuhmiller and Stuhmiller, 2005; Ursino et al., 2001; Wolf and 

Garner¸ 2007; Zhou et al., 2007).  

3HCO−

 

( )

( )

( ) ( )

2

2
2 2 2

2 2 2

       (  ) :

( ) ( )( ) - ( ) - ( ).......................3.11

( ) ( ) 1 ( ) ( )

A A
L I A LB

B

LB ep mx v

Mass balance equations for CO in Lung Alveolar L compartment

dC CO t V tV P CO t P CO t CO flux t
dt P

CO flux t Q t SF C CO t C CO t d

= ×

= ⋅ − ⋅ − −

 

VL is the lung volume, AV is the alveolar ventilation,  is the cardiac output, SF is the 

pulmonary shunt fraction (SF=0 for HBO

Q

2 conditions), CiCO2 is the concentration in 

compartment ‘i’ and PiCO2 is the partial pressure of CO2 in compartment ‘i’. Like the 

mass balance equations of oxygen (Appendix A of Erupaka et al., 2010),  I assume that 

the end pulmonary PCO2 (PEPCO2) is equal to the alveolar PCO2 (PACO2). 
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( )
3 2

2

2
2 2 2

2 2 2 2

2

       ' ' :
( ) ( ) ( ) ( ) ( )................3.12

( ) ( ) ( ) ( )

( )

i in out

i
b i i i i

HCO HbCOdissolved
i i i i

dissolved
i

Mass balance of CO in any vascluar compartment i
dC CO tV Q t C CO t C CO t CO Flux t

dt
C CO t C CO t C CO t C CO t

C CO t S

−

= ⋅ − −

= + +

=
3

2

2 2

( 6.1)
2 2 2

2 Hb Hb i 2

2

( ) 10

( ) 0.2413C +(0.31C (1-S O ))
( ) 0       

i

b i

HCO pH
i b i

HbCO
i

i

CO PCO

C CO t S CO PCO

C CO t
CO Flux t for arterial and mixed venous blood compartments

− −=

=

=

i

i i
i

 

ibV  is the blood volume of compartment ‘i’, SbCO2 is solubility of CO2 in blood, SiO2 is 

the O2 saturation of blood compartment ‘i’ (0≤SiO2≤1), pHi is the pH in the blood 

compartment ‘i’ and CHb is the concentration of Hb. Calculation of 

indirectly depends on P2
2 ( )HbCO

iC CO t iCO2, as SiO2 is calculated at every time step (0.001 

min) taking into account the effects of PiCO2, pHi and %HbCOi (Bohr effect on the 

oxygen dissociation curve). 

 

( )

3

2

2 2 2 1 21 2 1 2 1 2

1 1

1 2 1 2 1 2

          ( 1, 2) :

( ) ( )( ) ( ) ( ) .............3.13

( ) ( ) (

d d
i i ii i i

ti xi ti

HCOdissolved
i i i

Mass balance of CO in any tissue of two subcompartments i i

D CO C CO t C CO tdC CO t Flux CO t MR CO t
dt V D V

C CO t C CO t C CO t
−

′ ⋅ −
= + +

= +

3 1

1 2 2 1 2

( 6.1)
1 2 2 1 2

)

( )

( ) 10 ti

dissolved
i t i

HCO pH
i t i

C CO t S CO P CO

C CO t S CO P CO
− −

=

=

i

i i

 

The mass balance equation for CO2 is given for the first tissue subcompartment.   is 

the volume of tissue compartment ‘i1’, 

1tiV

2iD CO′  is the intertissue diffusion coefficient of 

CO2 , xiD is the intercapillary distance in  the tissue compartment, StCO2 is the solubility 

of CO2 in tissue, 1i 2MR CO  is the rate of CO2 production in tissue subcompartment i1,  and  

pHti is  pH in the tissue compartment ‘i’. 

Auxiliary equations for CO2 mass balance equations: 

1 2 2 1 2 3( ) ( ) ( )b bFlux CO t CO Flux t CO Flux t= + b  

2 2 2 2( ) ( )b bFlux CO t CO Flux t=  
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( )2 1 1 2 2 1 2( ) ( ) ( ) ( )b b ab bCO Flux t Db CO t P CO t P CO t= ⋅ −  

( )2 2 1( ) 0.5 ( )  ( )ab ar bvP CO t P CO t P CO t= + 2  

( )2 2 2 2 2 2 2( ) ( ) ( ) ( )b b bb bCO Flux t Db CO t P CO t P CO t= ⋅ −  

( )2 1 2 2( ) 0.5 ( )  ( )bb bv bvP CO t P CO t P CO t= + 2  

( )2 3 3 2 2 1 2( ) ( ) ( ) ( )b b cb bCO Flux t Db CO t P CO t P CO t= ⋅ −  

( )2 2 2 3( ) 0.5 ( )  ( )cb bv bvP CO t P CO t P CO t= + 2

i

 

2 2( ) ( )i iMR CO t MR O t RQ= i  

2 2( ) 18 ( )i iD CO t D O t= i  

2 2 2 2( ) ( ) ( ( ) ( ) ( ))ot B CM M 2MR CO t MRCO t MR CO t MR CO t MR CO t= − + +  

MRotCO2(t), MRCO2(t), MRBCO2(t), MRCMCO2(t) and MRMCO2(t) are the rates 

of CO2 production in the non-muscle tissue, whole body, brain tissue, cardiac 

muscle and skeletal muscle, respectively. Values for RQi and fac are given in 

table 3.1. The diffusion coefficient for CO2 ( ) is reported to be at least 

18 times greater than that of O

2 ( )iD CO t

2 ( ) in the normoxic and normocapnic 

conditions (Zhou et al., 2007). In my model this relation of a constant ratio 

between  and  is assumed to be valid for all conditions like 

hyperoxia, hypoxia, hypercapnia, CO hypoxia, hypocapnia etc.  

2 ( )iD O t

2 ( )iD CO t 2 ( )iD O t

 

After implementing the mass balance equations for CO2, tissue and blood PCO2 

from various compartments were validated for situations of normoxic normocapnia, 

hypercapnia, hyperoxia, and hyperbaric oxygen (See section “Model Validation”). 

 

Addition of control of ventilation:  The uptake and removal of CO is dependent on the 

ventilation of the subject. For the same duration and concentration of CO exposure, a 

subject with higher ventilation will inhale more CO and will have higher %HbCO levels 

at the end of exposure, when compared to a subject with lower ventilation. In CO 

exposure studies of humans (Chiodi et al., 1941) and animals (Doblar et al., 1977; 

Santiago ans Edelman, 1976), it has been observed that the ventilation does not change 
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significantly from the control values at least up to a %HbCO of 55. But during treatment 

with normobaric oxygen (NBO2), isocapnic NBO2 or hyperbaric oxygen (HBO2), the 

ventilation would be significantly different from the control values (Becker et al., 1996; 

Fisher et al., 1999; Lambertsen et al., 1952, 1953; Nishimura at al., 2007). Inhalation of 

O2 results in a decreased brain blood flow due to cerebral vasoconstriction. Decreased 

brain blood flow causes an increase in brain tissue PCO2. Increases in brain tissue PCO2 

are sensed by the central chemoreceptors and the respiratory centers in the brain send 

signals to cause an increase in ventilation.  Higher ventilation during treatment (NBO2, 

isocapnic NBO2, or HBO2) for a CO poisoned patient would mean that more CO will be 

exhaled, thereby resulting in faster removal of CO from the body. Thus to appropriately 

estimate uptake and removal of CO during an exposure and treatment, it is essential to 

implement control of ventilation in my model.  

 

 Many mathematical models (Duffin et al., 2000; Longobardo et al., 2002; 

Stuhmiller and Stuhmiller, 2005; Ursino et al., 2001; Topor et al., 2004; Wolf and 

Garner¸ 2007; Zhou et al., 2007) have implemented control of ventilation as the sum of 

peripheral ( PERIV ) and central ventilation ( ). But the gains or threshold used in their 

equations were specific to situations like hypoxic hypoxia, sleep stages or hyperoxia. 

Also most of these models estimated minute ventilation (Duffin et al., 2000; Longobardo 

et al., 2002; Stuhmiller and Stuhmiller, 2005; Ursino et al., 2001; Topor et al., 2004;Wolf 

and Garner¸ 2007). In my model, I need to estimate alveolar ventilation (

CENTV

AV ) during 

normoxia, CO hypoxia, NBO2, isocapnic NBO2, and HBO2. Thus to implement 

ventilation control in my model, I used the concepts of Garner and Wolf (2007) and 

implemented alveolar ventilation as the sum of peripheral and central component (Eqs. 

3.14-3.16). Tidal volume, dead space and minute ventilation were estimated from 

regression equations based on alveolar ventilation (Bruce et al., 2011, under review). 

Minute ventilation was calculated in the model to allow comparison of model estimates 

of ventilation with the experimental data.  The parameters in the equations for control of 

ventilation (Wolf and Garner¸ 2007) were first adjusted to match normoxic values of 

ventilation. Later the values of the parameters were fine tuned to match hypoxic, 

hypercapic and hyperoxic (NBO2, isocapnic NBO2, and HBO2) data. The details of the 
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experiments used to determine the gains and threshold of the ventilation control equations 

(Eqs. 3.14-3.16) are described in the “model validation” section of this chapter. The 

equations for the control of ventilation are: 

2

( ) ( ) ( )......................................................................3.14
( ) 2.07 ( ( ) 46)............................................................3.15

( )

A CENT PERI

CENT bt

PERI

V t V t V t
V t P CO t

V t

= +
= −i

2

2

2
2

2 2 2

14
2 2

3
2

3600.72 ( ( ) 37.8) 5.04 ( )...3.16
( ) 26.2

( ) ( ) ; D
( )

( ) ( )5 4   for  1
40 40

( )
( )                 f

40

cb CO
cb

c
bt b c c

cb cb

CO

cb

P CO t F t
P O t

kP CO t P CO t D
Q t

P CO t P CO t

F t
P CO t

−

⎛ ⎞
= − + −⎜ ⎟−⎝ ⎠

= + =

⎛ ⎞⎛ ⎞ ⎛ ⎞− ≤⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠

i i

2

2 2

( )or  > 1
40

( ) ( ) ; 
( )

cb

p
cb ar p p

P CO t

k
P CO t P CO t D D

Q t

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪⎛ ⎞
⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭

= + =

 

where,  

Pb2CO2(t) is the PCO2 of the brain tissue in subcompartment 2 and ParCO2(t) is the 

arterial PCO2. Dp and Dc are the peripheral and central time delays. See Table 3.1 for 

values of  kc and kp. is the cardiac output. ( )Q t

 

Addition of regulation of blood flow: Cardiac output (Q ) and blood flow to various 

tissues is regulated constantly with changes in arterial PO2, PCO2 and %HbCO levels 

(low or high O2 and CO2, high CO). Cardiac output and blood flow to other vital organs 

like brain and heart is reported to increase with increasing %HbCO levels (Benignus et 

al., 1992; Chiodi et al., 1941; Doblar et al., 1977; Einzig et al., 1980; Kleinert et al., 

1980; Koehler et al., 1984; Langston et al., 1996; Paulson et al., 1973; Rucker et al., 

2002; Santiago et al., 1986; Zhu and Weiss, 1995). In NBO2 or HBO2 conditions and 

hypocapnia, cardiac output and brain blood flow is reported to decrease due to peripheral 

vasoconstriction (Floyd et al., 2003; Lambertsen et al., 1953; Ohta, 1986; Topor et al., 

2004; Zhou et al., 2007; Weaver et al., 2009). During hypoxic hypoxia and hypercapnia, 

cardiac output and brain blood flow ( ) is reported to increase due to peripheral BQ
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vasodilatation (Topor et al., 2004; Wolf and Garner¸2007; Zhou et al., 2007). Thus to 

model dynamics of O2, CO2 and CO during exposure and various treatments, regulation 

of blood flow should be implemented.  

 

Regression equations were developed to predict changes in cardiac output (Figure 

3.2) and brain blood flow (Figure 3.3) with increases in %HbCO levels (Benignus et al., 

1992; Chiodi et al., 1941; Doblar et al., 1977; Koehler et al., 1984; Langston et al., 1996; 

Paulson et al., 1973; Rucker et al., 2002; Santiago et al., 1986). Piecewise linear 

regression fits were made to predict percent changes in cardiac output (Figure 3.2d) and 

brain blood flow (Figure 3.3) as a function of %HbCO. The previous model (Erupaka et 

al., 2010) was developed to simulate CO exposures <30% HbCO levels. But, the current 

model being developed is intended to simulate CO exposures greater than 30% HbCO 

levels. The previous regression equation developed in my model (Equation C5 of 

Appendix C, Erupaka et al., 2010) underestimated the changes in cardiac output with 

increases in %HbCO levels >30. Chiodi et al. (1941) reported that the changes in cardiac 

output are statistically different for %HbCO levels >30. To predict appropriate percent 

changes in Q  for %HbCO levels greater than 26%, a regression equation was developed 

(Figure 3.2) using the data from Chiodi et al. (1941). The regression statistics for this 

equation are R2=0.901 and the error in the estimate, Ĕ=7.94. To predict changes in 

cardiac output for %HbCO levels less than or equal to 26%, an equation of the form 

y=mx+c was calculated for a line formed from two data points. The first data point 

(1%,0.572%) for this line was from the old regression equation (Equation C5 of 

Appendix C, Erupaka et al., 2010) at 1% HbCO and the second data point (26%,1.772) 

was from the new regression relation at 26% HbCO. The value of 26% HbCO level was 

chosen to avoid discontinuity in the regression relation developed. To predict percent 

changes in  with changes in %HbCO, data from animals (Doblar  et al., 1977; Koehler 

et al., 1984; Langston et al., 1996; Santiago et al., 1986) and humans (Benignus et al., 

1992; Paulson et al., 1973; Rucker et al., 2002) were used (Figure 3.3). The regression 

statistics for this equation for % HbCO levels ≤ 23 are R

BQ

2=0.951, Ĕ=3.37 and for 

%HbCO levels >23 are R2=0.898, Ĕ=9.622. The value of 23% HbCO level was chosen to 

avoid discontinuity in the regression relation developed to predict brain blood flow. 
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Equations for regulation of  and  during hypoxia, hypercapnia and 

hypocapnia were used from the model of Zhou et al. (2007).  For conditions of NBO

Q BQ

2, 

isocapnic NBO2 and HBO2,  was estimated using a regression equation as function of 

P

Q

arO2 and ParCO2. The regression equation was developed in this study using the data 

from healthy human subjects (McMohan et al., 2002; Weaver et al., 2009; Whalen et al., 

1965) who were exposed to NBO2, isocapnic NBO2 or HBO2 and Q  was measured. The 

regression statistics for the equation developed are R2=0.849, Ĕ=0.314.  for conditions 

of high O

BQ

2 (NBO2, isocapnic NBO2 or HBO2), was estimated from the relationship 

developed by Floyd et al. (2003). The coefficients of the regression relation developed by 

Floyd et al. (2003) were fine tuned to match the model predicted ventilation to that of the 

experiments of Becker et al. (1996) and Lambertsen et al. (1952, 1953). 

2 2
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0 0

2 2

Regulation of Cardiac Output ( )
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0Q  is the resting cardiac output, SarO2(t) is the arterial O2 saturation and ParCO2(t) is the 

arterial PCO2. ParO2(t) is the arterial PO2 and PB is the barometric pressure. qτ  is the first 

order time constant.  Par0O2(t), Par0CO2(t) are the arterial PO2 and PCO2 at the control 

conditions. The maximal decrease in (t) from during high oxygen conditions is 

limited to 15% (Weaver et al., 2009).  

Q 0Q
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0BQ is the resting brain blood flow and ff is the adjustment factor introduced, so that the 

ventilation does not change from its control state (normoxic,normocapnia) during CO 

exposure (See section “model limitations”).  bτ  is the first order time constant. Vbt is the 

brain tissue volume. The maximal decrease in (t) from during high oxygen 

conditions is limited to 30% (Ohta, 1986). 
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Addition of Bohr and Haldane effects: In the presence of CO, the oxygen dissociation 

curve shifts to the left resulting in an increased affinity of Hb for O2. The leftward shift 

causes the sigmoidal curve to become more hyperbolic and impairs unloading of oxygen 

to the tissues. P50 is the vascular PO2 at which hemoglobin is 50% saturated. The value of 

P50 decreases with increases in %HbCO levels in the blood (Bruce and Bruce, 2003). The 
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previous model (Erupaka et al., 2010) accounted for changes in P50 due to increase in 

%HbCO levels. In the new model, after implementing mass balance of CO2, it was 

necessary to include Bohr effects (PCO2, pH, %HbCO levels, and temperature) on the 

oxygen dissociation curve and Haldane effects (O2Hb) on CO2 dissociation curve 

(Collier, 1976; Lobdell, 1981; Sharan et al.,1989;Stuhmiller and Stuhmiller, 2005). The 

concepts from Sharan et al. (1989) were used to implement Bohr effects on oxygen 

dissociation curve (ODC). Algorithms were developed to calculate O2 saturation, P50 and 

PO2 in a vascular compartment taking into account the effects of PCO2, pH, %HbCO 

levels, and temperature on ODC (Collier, 1976; Lobdell,1981; Sharan et al.,1989). In the 

algorithm the dependence of ODC on %HbCO is implemented by calculating the P50, 

according to the theory of Collier (1976). To calculate the oxygen saturation (SO2) or 

PO2 in any blood compartment, an invertible Adair type equation with high accuracy is 

used (Equation 1 of Lobdell, 1981). Later the absolute SO2 is calculated from %HbCO 

levels and maximal oxyhemoglobin (HbO2).   Haldane effects (O2Hb) on CO2 

dissociation curve were implemented using the relationship published by Stuhmiller and 

Stuhmiller (Equation A43, 2005).  The algorithms implementing Bohr and Haldane 

effects were validated for various conditions of normoxia, CO hypoxia, hyperoxia, 

hypercapnia and hypocapnia (See section “model validation”). 

 

Other modifications: The metabolic rate of O2 consumption in cardiac muscle and 

skeletal muscle tissue was constant if the tissue PO2 was greater than 20 Torr and 

decreased (Equation 3.22) with decreasing tissue PO2’s for values less than 20 Torr. 
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 where i1, i2 represent tissue subcompartment 1 and 2 of cardiac or skeletal muscle 

tissues. MRiO2 is the metabolic rate of O2 in tissue ‘t’. Pi1O2 is the PO2 in compartment 

‘i1”. Vi1 and Vi2 are the tissue volumes of subcompartment i1 and i2. For KiO2 see Table 

A4 of Appendix A of Erupaka et al. (2010). 
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  The muscle diffusion coefficient of CO (DMCO) was varied in proportion to 

muscle mass, with a value of DMCO of 0.225 ml/min/Torr/Kg of muscle mass. Lung 

diffusivity of CO (DLCO) varied (Equation 3.23) as a function of alveolar PO2 (PAO2) 

and at a PAO2 of 500 Torr, DLCO was half of its value at room air ( ).  L AiD CO r

L L Air
A 2

1D CO D CO .........................3.23P O1
500

=
+

i  

 

 Hypoxic ventilatory depression (HVD) is a bipasic response produced during 

hypoxic exposure, where an initial rapid increase in ventilation is not sustained and is 

followed by a decline during the first 30 mins of hypoxic exposure. HVD was 

implemented in the model using the concepts of Ursino et al. (2001) and Zhou et al. 

(2007). The version of the model in which HVD was implemented, was validated for 

transient and steady state conditions of hypoxia (Bascom et al., 1992). After 

implementing and validating the mechanism of HVD, the model was used to simulate a 

short duration CO exposure resulting in ~20% HbCO. At the end of CO exposure the 

predicted change in ventilation from the normoxic condition did not agree with the 

experimentally measured changes in ventilation (Chiodi et al., 1941; Kizakevich et al., 

2000). As this version of the model was unable to predict appropriate changes in 

ventilation during CO hypoxia, the mechanism of HVD was not implemented (See 

discussion). 

 

RESULTS 

Model validation 

 After implementing the above described modifications, the capability of the 

model to predict brain tissue and venous PO2’s¸ ventilaton, tissue and blood PCO2’s, 

tissue and blood pH in various compartments was assessed and compared with 

experimental data. The modified model was validated for various conditions. The 

conditions simulated were normoxia, hypercapnia, hypocapnia, hypoxic hypoxia, CO 

hypoxia, hyperoxia, isocapnic hyperoxia and hyperbaric oxygen. For various simulated 

experimental conditions, the model predicted values of various parameters (brain tissue 
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and venous PO2, ventilation, blood PCO2, etc) were validated against the experimentally 

measured values. Most of the data for validation of brain tissue PO2’s were obtained from 

studies on anesthetized animals (Table 3.2), but data for validation of ventilation, blood 

PCO2, blood pH and brain venous PO2’s were obtained from studies involving human 

subjects (References in the text below and Table 3.2). Developing a validated 

mathematical model to estimate O2, CO and CO2 levels in brain, heart and skeletal 

muscle tissue during CO exposures and treatments, will allow me to compare O2 

delivery, CO removal and CO2 levels during different treatments after a CO exposure.  

 

Validation of brain tissue and blood PO2: Table 3.2 shows the compiled experimental 

data for brain tissue and venous PO2’s from different species and conditions of 

measurement. Inspired levels of O2 (FIO2) and barometric pressure (PB) in the simulations 

were set equal to the reported experimental values or were adjusted to achieve the 

measured arterial PO2 (when arterial PO2 was reported in the study). Arterial PO2’s for 

the experiments simulated ranged from 21 Torr to 2100 Torr.  Alveolar ventilation, brain 

blood flow, brain oxygen consumption and brain CO2 production were estimated by the 

model for a human subject. For all the simulations, other brain compartment related 

parameters (volume distribution fraction, permeability surface area product, etc) are listed 

in Table 3.1.  The PO2 of the third vascular subcompartment of the brain compartment, 

bb3, (Figure 3.1), was compared to sagittal sinus PO2 reported in the experimental data.  

The brain tissue O2 tensions in the experiments were mostly reported as mean values with 

standard deviations.  I considered the reported mean PO2 plus one standard deviation as 

the O2 tension of brain tissue subcompartment 1, b1 and the reported mean PO2 minus one 

standard deviation as the O2 tension of brain tissue subcompartment 2, b2.  During 

conditions of high arterial PO2, the tissue PO2 in b2 increased but did not increase in 

proportion to the arterial PO2. This result is in agreement with the experimental studies, 

where an increase in tissue PO2 was not seen in the majority of tissue during hyperoxia 

(Eintrei and Lund, 1986; Lumb and Nair, 2010). Thus for hyperoxic and hyperbaric 

conditions, O2 tension of b1 was compared to the reported mean PO2 of the experiments. 

Figure 3.4(a-b) shows the comparison of model predictions (brain tissue and sagittal 

venous PO2’s) with experimentally measured values. Predicted PO2’s from the model 
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were tested for conditions of normoxia, hypoxia, hyperoxia, hyperbaric oxygen, CO 

hypoxia, hypocapnia, and hypercapnia. In Fig. 3.4 (a-b), the model-predicted PO2’s for 

brain tissue and venous compartments fit variations in the experimentally measured 

PO2’s for a variety of simulation conditions. Also, the model was used to simulate 40 

mins of CO exposure to attain 40% HbCO and the brain tissue PO2’s after 40 min of CO 

exposure were compared with an experimental study in rat (Hara et al., 2011). The 

average brain tissue PO2 after 40 min of CO exposure at 40% HbCO was in agreement 

with the experimental result of Hara et al. (2011). Thus, the model predicts 

physiologically reasonable brain tissue and vascular O2 tensions over a wide range of 

arterial PO2 values. 

 

Validation of tissue and blood PCO2: Model predicted brain tissue and blood venous 

PCO2’s were tested for conditions of normoxia (Hoffman, 2001; Lambertsen et al., 1952, 

1953,1953,1955; Martinez Tica et al., 1999), hypoxia (Martinez Tica et al., 1999), 

hyperoxia (Lambertsen et al., 1952), hyperbaric oxygen (Lambertsen et al., 1953,1955), 

hypocapnia (Hoffman, 2001) and hypercapnia (Hoffman, 2001; Lambertsen et al., 1953). 

Figure 3.4(c-d) shows the comparison of model predictions (brain tissue and sagittal 

venous PCO2’s) with experimentally measured values. In hypoxia, the model-predicted 

brain tissue and blood PCO2’s are slight underestimates of the experimental data.  Also, 

in the condition of normoxia, the skeletal muscle (M) and cardiac muscle (C) tissue PCO2 

predicted by the model (M:46.9 Torr, C:50.2 Torr) are in agreement with the 

experimental data (M:45.4 Torr, C:54±5 Torr) reported by Hart et al.(2003) and Hoffman 

et al. (2001). Model estimated tissue PCO2’s in the cardiac muscle during hypocapnia and 

hypercapnia closely matched the trend in the data reported by Hoffman et al. (2001). 

Figure 3.5 shows that the model predicted arterial and mixed venous PCO2’s and pH 

measurements for normoxia, hyperoxia and hyperbaric oxygen are in agreement with the 

data. Considering the limited availability and variability of experimental data for blood 

and tissue PCO2 tensions, the model closely represents the trends in the data.  

 

Validation of PO2 and PCO2 for hyperbaric oxygen:  Weaver et al. (2009) exposed 10 

healthy subjects to air and oxygen at 0.85, 3, 2.5, 2, 1.3 and 1.2 ATA. Cardiac output, 
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whole body metabolic rate, arterial and venous blood gas, pH measurements, heart rate 

and many other variables were measured at the end of exposure to each pressure. I used 

the model to simulate their experiment for an average subject from their data (mean age, 

weight, height etc). Average values for heart rate, cardiac output and metabolic rate were 

given as the input to my model at the specified atmospheric pressures. Model predicted 

arterial PO2 (ParO2), PCO2 (ParCO2), pHar and venous PO2 (PmxO2), PCO2 (PmxCO2), pHmx   

were compared to the experimental data at 0.85 ATA air, 0.85 ATA O2, 3 ATA O2, 2.5 

ATA O2, 2 ATA O2, and 1.2 ATA O2, respectively (Figure 3.5). The model predicted gas 

tensions in the arterial and mixed venous blood compartments were compared with the 

arterial and venous measurements of the experimental data. It is seen from Figure 3.5 that 

the model estimates are in agreement with the experimentally measured values. Also, the 

model-predicted tissue PO2 in the skeletal muscle compartment at 2 ATA are in 

agreement with the value reported by Hart et al. (2003) 

 

 Overall the model is well validated to predict tissue and blood O2 and CO2 

tensions in brain, heart and skeletal muscle for a variety of conditions like nomoxia, 

hypoxic hypoxia, CO hypoxia, hyperoxia, hyperbaric oxygen, hypocapnia and 

hypercapnia. 

 

Validation of ventilation: Model predicted ventilation was validated for various situations 

like normoxia, hypoxia, isocapnic hyperoxia, poikilocapinc hyperoxia, hypercapnia and 

hyperbaric oxygen.  

 

Ventilation in hypoxia: The parameters in the peripheral ventilation equation (Equation 

3.16) were adjusted to isocapnic hypoxic data from Bascom et al. (1992). In this 

experiment, ventilatory responses to different levels of end tidal PO2 during isocapnia in 

humans were measured. End tidal PO2 was held at normoxic level (100 Torr) for the first 

10 minutes, which was followed by 20 mins hypoxic exposure at 75, 65, 55, 50, or 45 

Torr. PCO2 was held at 1-2 Torr above the resting value. In the simulations, PACO2 was 

held constant at the resting level of 39.03 Torr. Then I adjusted the inspired oxygen 

fraction to match the experimental oxygen saturation and PO2. Model estimation of 
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ventilation at different levels of hypoxia is in agreement with the change in ventilation 

observed in the experiments (Figure 3.6). In situations where I would like to simulate CO 

exposure at altitude, the lowest (maximum) PO2 may be 75 Torr. So I concentrated on 

matching model estimation of ventilation to the change at 75 Torr.  

 

Ventilation in hyperoxia: Becker et al. (1996) measured the ventilatory response to 

different levels of hyperoxia. In their study, ventilation in human subjects was measured 

after breathing 30%, 50% or 75% O2 for 30 min, while maintaining isocapnia. The 

parameters in the central ventilation equation (Equation 3.15) and the brain blood flow 

equation coefficients were adjusted to match hyperoxic data. PCO2 was maintained at the 

resting value of 39.03 Torr. At higher levels of inspired O2 (50%,75%), the model 

estimation matches with the experimental data. At 30% inspired oxygen, the model 

estimation is lower than the experimental data. Becker et al. (1996) did not measure the 

ventilation at 100% O2. The model application will be mainly in 100% O2 concentration, 

so I attempted to adjust my model parameters to match data at higher O2 concentrations 

(Figure 3.7). The model estimated ventilation change at 100% O2 is in agreement with 

other data from Poulin et al. (1993) and Ren et al. (2002). 

 

In addition to isocapnic hyperoxia, the enhanced model was validated for 

poikilocapnic hyperoxia. Nishimura et al. (2007) exposed human subjects to subsequent 

stepwise increases from 21% air to 40%, 70% and 100% O2. O2 level at each step was 

maintained for ~20 min.  They measured arterial PCO2 and ventilation at the end of each 

level. This experiment was simulated using the enhanced model and model estimated 

changes in ventilation and arterial PCO2 at different levels of hyperoxia were compared 

with the experimental data. The model matches the experimental data at high inspired 

oxygen concentrations (Figure 3.8). There is a slight mismatch at the lower levels of 

inspired O2 concentration. But as the model will be applied only in high O2 inspired 

fractions, the parameter values in the ventilation equation were considered to be 

appropriate. 
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Ventilation in hyperbaric oxygen: Lambertsen et al. (1952,1953,1955) exposed human 

subjects to oxygen at 3.5 ATA for ~20 min and measured the ventilatory response and 

changes in arterial PCO2. They reported a 25% increase in ventilation and drop in PCO2 

of ~ 4-5 Torr compared to the control value (normoxia). Using my enhanced model to 

simulate their experiment resulted in an increase in ventilation of 22% and a drop in 

arterial PCO2 (ParCO2) of 4.29 Torr. Thus, the estimated changes in ventilation and 

ParCO2’s predicted by model are in agreement with the experimental data. 

 

Slopes of Ventilation (Ve) and alveolar PCO2 (PACO2) response curves in normoxia, 

hypoxia, and hyperoxia: In order to produce the Ve-PACO2 curves at different alveolar 

PO2’s (PAO2=100,50,200 Torr), I maintained the alveolar PO2 at a constant level and the 

inspired fraction of CO2 was increased in every simulation from 0% to 3%,5%,6%, or 7% 

for 25 min. The slopes and the intercepts for the alveolar PCO2 (PACO2) and minute 

ventilation (Ve) curves at each of the maintained PAO2 were calculated and compared 

with the experimental values (Table 3.3). The slopes of the Ve-PACO2 curves from my 

model simulations are in agreement with the slopes of the Ve-PACO2 curves from other 

experiments. I also simulated the experiments of Reynolds et al. (1972) in which 

ventilatory response of healthy subjects who breathed 0%, 3%, 5%, 6%, or 7% of CO2 for 

25 minutes was determined. At various inspired levels of CO2, I compared the change in 

PACO2 with the change in ventilation predicted by my model with the experimental data 

and with other mathematical models (Figure 3.9) in the literature simulating the same 

experiment (Chiari et al., 1997; Sokhanvar et al., 2005, Grodins et al., 1967, Wolf and 

Garner, 2007). The enhanced model was unable to reproduce the transient changes in 

ventilation but  the steady state  responses predicted by the model were in agreement with 

the experimental data and steady state data from other mathematical models. As the 

application of this model will be in situations where the CO exposure duration will be 

atleast 20 mins, the inability of the model to reproduce transient changes in ventilation 

may be ignored as a limitation. 

 

Validation of algorithm implemented to include Bohr effects: The algorithms 

implementing Bohr effects were validated in the model. Model calculated O2 saturations 
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were compared with experimentally measured O2 saturation (SO2) for various values of 

PCO2, pH, and %HbCO levels (Doblar, 1977; Roughton and Darling, 1943; Sharan et al, 

1989; Severinghaus, 1966; Severinghaus, 1979; Weaver et al., 2009; Whalen et al., 1965; 

Zhu and Weiss, 1995). The algorithm estimated O2 saturations are in agreement with the 

experimentally measured values (Figure 3.10) for conditions of normoxia, CO hypoxia, 

hypercapnia, and hypoxia. Also as seen in figure 3.6a, for a given inspired O2 fraction, 

the model estimated arterial SO2 is in agreement with the experimentally measured SO2 

for various PO2’s. 

DISCUSSION 

Model Limitations 

The current model was enhanced to simulate and compare the treatment strategies 

currently used to treat CO poisoned victims. My previous model (Erupaka et al., 2010) 

was modified by adding a two subcompartment brain tissue, dynamics of CO2, control of 

ventilation and regulation of cardiac output and blood flow to various tissues. This 

modified model was later validated for model estimated variables (ventilation, tissue and 

blood PO2, tissue and blood PCO2) in various conditions of normoxia, hypercapnia, 

hypoxia, hyperoxia, and hyperbaric oxygen. My enhanced model is the only model 

currently available in the literature to estimate O2, CO and CO2 tensions, bicarbonate 

levels, pH levels, blood HbCO levels, and MbCO (in heart and skeletal muscle tissues) 

levels  in all the vascular and tissue compartments in normoxia, hypoxia, CO hypoxia, 

hyperoxia, isocapnic hyperoxia and hyperbaric oxygen. This feature of the developed and 

validated model to estimate O2, CO and CO2 levels in brain, heart and skeletal muscle 

tissue during CO exposures and treatments, will allow me to compare O2 delivery, CO 

removal and CO2 levels during different treatments after a CO exposure. In addition to 

the limitations discussed in the previous version of this model (Bruce et al., 2008; 

Erupaka et al., 2010), there are some limitations to this enhanced model which are 

discussed below.  

 

Brain tissue compartment: The brain tissue compartment in this model represents the whole 

brain. The brain blood flow values, oxygen consumption and all other parameters used to 

model this compartment are for an average human brain. Thus the oxygenation levels 
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predicted for this compartment for various simulation conditions represent the PO2’s in the 

whole brain. However it is well known that the brain is a highly heterogeneous tissue with 

respect to blood flow, oxygen consumption, tissue PO2’s and vasculature (Erecińska and 

Silver, 2001; Floyd et al, 2003; Kolbitsch et al., 2002; Leenders et al., 1990). Imaging 

studies of CO poisoned victims have reported injury to the basal ganglia, hippocampus, and 

cortical white matter. In my study, the goal is to compare O2 delivery to the brain tissue 

during the different treatment strategies applied and not to find a correlation between the 

tissue PO2 in the various regions (white matter, gray matter, hippocampus, basal ganglia, 

and cortex) of the brain with the neurological outcomes or imaging studies. Though it is 

desirable to have a brain compartment representing various regions, applying this model to 

accomplish the third specific aim should not be considered as a significant limitation. 

 

Myocardial oxygen consumption: Myocardial oxygen consumption (MOC) in the model 

is calculated as a function of heart rate (Equation C8, Appendix C of Erupaka et al., 

2010). An increase in work load of the heart in conditions of hypoxic hypoxia (low O2) or 

CO hypoxia would result in increased O2 demand and supply to the heart (Erupaka et al., 

2010). In the current model or the previous version of this model, myocardial oxygen 

consumption does not increase with increasing work load of the heart i.e., during increase 

in cardiac output with CO exposure.  A regression relation to predict changes in heart rate 

with increasing %HbCO levels using data from Chiodi et al. (1941) was developed. The 

regression estimated increases in heart rate were used to increase the resting myocardial 

oxygen consumption in the enhanced model. Using this approach greatly underestimated 

the tissue PO2’s in the heart at HbCO levels >25%, as the increase in blood flow to the 

heart was not sufficient to meet the increased O2 demand. Thus to overcome the problem 

of O2 supply and demand mismatch, this regression equation was not implemented in the 

final version of the enhanced model. The heart is a rapidly contracting muscle with a high 

O2 extraction fraction and MOC at resting state, so in conditions of increased work load 

the heart relies on energy production via anaerobic metabolism. My model does not 

feature energy production through anaerobic metabolism. In my model, irrespective of 

the work load, MOC in the model decreases only as a function of tissue PO2 (Equation 

3.22). If the heart rate is known during CO exposures, then changes in MOC can be 
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predicted at various stages. However obtaining information on heart rate during high CO 

exposures is difficult. Thus in healthy populations the model estimated tissue PO2’s may 

assumed to be slight overestimates of the actual values at %HbCO levels greater than 

~35% (educated guess based on data from Chiodi et al., 1941). 

 

Prediction of injury: The enhanced model does not directly predict the possibility of 

injury after a CO exposure. Despite treatment, neurological and myocardial problems 

manifest from CO poisoning.  Occurrence of these problems after treatment may either be 

due to cellular injuries sustained at the time of exposure, or due to inadequacy of the 

therapy administered to sustain high tissue PO2, together with rapid clearance of CO and 

other metabolites like CO2. This model can be applied to compare the adequacy of the 

treatment administered but currently does not have the capability to predict injury 

sustained by the tissues at the time of exposure or before the treatment was applied.  

 

Tissue oxygen thresholds reported in the literature for functional impairments or 

occurrences of injury are as follows: Intracellular acidosis is reported to occur at tissue 

PO2’s less than 6 Torr (Erecińska and Silver, 2001; Zauner et al., 2002). ECG 

abnormalities are seen when myocardial O2 tensions are <5 Torr (Erecińska and Silver, 

2001; Zauner et al., 2002). A tissue PO2 of <1.5 Torr would be an indicator of anaerobic 

metabolism (Zauner et al.,2002). Binding of CO to cytochrome c-oxidase (CCO) can be 

expected when tissue PO2 approaches 1 Torr, thereby inhibiting mitochondrial respiration 

(Fisher and Dodia, 1981). Cell death can be inferred when a tissue PO2 of zero is 

maintained (Smith et al., 2007).  Based on the above thresholds, I can attempt to specify a 

criterion to suggest possibility of injury in the tissues.  To avoid the influence of tissue 

injury on determination of the best treatment, the maximum %HbCO level at which tissue 

injury does not occur can be suggested by determining the %HbCO level at which the 

PO2’s in the brain and heart tissue start to fall below a certain threshold (PTHO2). But the 

%HbCO level determined from this approach will be dependent on the duration and 

concentration of CO, health of the subject and intersubject variability. A logistic regression 

(model) to develop the prognostic equation of injury using the variables affecting the 

incidence of injury like the HbCO levels, duration of exposure, myocardial and cerebral 
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tissue PO2’s, metabolic rate, oxygen saturation, blood pH, arterial PCO2, blood lactate 

levels and other subject specific variables (age, gender, Hb concentrations and health of the 

patient) can be used. But limitations in availability of data currently make this approach 

unfit to predict injury. Also in conditions of severe hypoxia, the model does not take in to 

account the production of CO2 in the tissues or other metabolites from the anaerobic 

metabolic pathway. The best my model can do is determine the time taken in various 

tissues to reach the pre CO exposure (control) tissue PO2 values or the values above the 

threshold PO2’s (PtO2 > PTHO2). As unconsciousness is reported in CO poisoned subjects at 

a %HbCO levels ≥ 40 (Parkinson et al., 2002; Stewart, 1975), I will consider the PO2 in the 

tissues at the end of a simulation of CO exposure of levels reaching 40% as PTHO2.   

 

Cerebral blood flow: The blood flow to the brain has been reported to increase during CO 

exposure (Benignus et al., 1992; Doblar et al., 1977; Koehler et al., 1984; Langston et al., 

1996; Paulson et al., 1973; Rucker et al., 2002; Santiago et al., 1986). The regression 

equation developed in this study to predict percent changes in brain blood flow with 

increasing %HbCO, was mostly from animal data. Data for humans were available only up 

to HbCO levels less than 20%. During CO exposure, ParCO2 (arterial PCO2) is reported to 

increase significantly (Doblar et al., 1977). These increases in ParCO2 will further 

contribute to an increase in brain blood flow. The increases in brain blood flow reported in 

the experiments were due to the cumulative effect of increased ParCO2 and %HbCO. Also 

the aortic body sensitivity to CO is known to be greater in animals when compared to 

humans (Lahiri et al., 1981). Thus, using the data from these experiments (Doblar et al., 

1977; Koehler et al., 1984; Langston et al., 1996; Santiago et al., 1986) to predict brain 

blood flow resulted in an overestimation of the predicted values in the model (Figure 3.3). 

In order to compensate the overestimations, an adjusting factor “ff” (Table 3.1) was 

introduced. The value for this parameter “ff” was determined by (trail and error) simulating 

various CO exposures and ensuring that the ventilation did not change more than 4% from 

the pre CO exposure value (Chiodi et al., 1941; Santiago and Edelman, 1976). A value for 

this parameter was chosen from 0-1, e.g., choosing a value of 0.5, decreased the percent 

changes predicted in brain blood flow,
HbCOBQ  as a function of %HbCO by 50% (Equation 

3.18). For the chosen value, CO exposures of %HbCO levels of 10, 20, 30, 40, and 50 were 
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simulated and the % change in ventilation at each %HbCO level from the pre CO exposure 

value was calculated. The value of “ff” at which the ventilation did not change more than 

4% from the pre CO exposure value for the range of %HbCO levels, was considered as the 

value for ff (Table 3.1) in all my simulations.  

 

Effects of HBO2 on shunt fraction (SF): Weaver et al., (2009) reported a decrease in SF 

during HBO2 conditions in humans. In the simulations of experiments of weaver et al. 

(2009), the values for SF reported in the experiment were used. In their experiments, the 

value of SF dropped to zero during HBO2 exposure from a value of 0.15 at normobaric 

oxygen. However, the authors report that this observed reduction may not reflect the actual 

reduction in SF, due to the limitations in applying the calculations of SF to HBO2 

conditions. There have been no other experiments measuring SF in humans and modeling 

studies predict (Rasanen et al., 1987) a decrease in SF with increasing inspired O2 fraction. 

Thus in this study, for all the HBO2 simulations a value of zero is assumed for SF. 

 

Implementation of hypoxic ventilatory depression: Hypoxia produces an initial rapid 

increase in ventilation which is not sustained and declines during the first 30 mins of 

hypoxic exposure (Bascom et al, 1992). This biphasic response is referred to as hypoxic 

venitilatory depression (HVD). The rapid increase in ventilation is reported to be produced 

due to stimulation of peripheral chemoreceptors. The effects of hypoxia on the central 

nervous system are reported to promote the decline in ventilation due to various 

mechanisms like changes in K+ and Ca2+ channel dynamics, neuromodulators like 

adenosine, GABA. In one of the version of the enhanced model, HVD was implemented to 

modify the gain of peripheral ventilation component. The gain was modulated as a first 

order differential equation of brain tissue PO2 (Zhou et al., 2001; Ursino et al., 2001). 

Model predicted ventilatory responses during transient as well as steady state hypoxia were 

in agreement with the experimental data (Bascom et al., 1992). However when a CO 

exposure resulting in 20% HbCO was simulated, model predicted ventilation decreased 

which was not in agreement with the experimental data (Chiodi et al., 1941; Kizakevich et 

al., 2000). Thus, to simulate CO hypoxia with appropriate changes in ventilation, HVD was 

not implemented in the current version of the enhanced model. The current version of the 
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model (without HVD mechanism) is able to predict changes in ventilation which are in 

agreement with experimental data of steady state hypoxic hypoxia and CO hypoxia. 

Peripheral chemoreceptors are reported to play an insignificant role during CO hypoxia, 

atleast for %HbCO <50 (Doblar et al., 1977). Also, changes in ventilation are reported to 

correlate with lactate acidosis in brain which occurs at %HbCO levels > 50 (Santiago and 

Edleman, 1976). Thus for simulations of CO exposures resulting in %HbCO < 50, inability 

to successfully implement HVD will not influence the simulation results. The model lacks 

implementation of effects of H+ on ventilation and lactate dynamics. In future, 

implementation of these mechanisms in addition to HVD may allow modeling appropriate 

changes in ventilation during CO hypoxia. Also, it may be necessary to develop models 

which implement HVD to modulate the central and peripheral chemoreceptors gains.  

 

CONCLUSIONS 

Overall, the enhanced and validated multicompartment mathematical model can be 

applied as a tool to accomplish the third specific aim of “comparing the current treatment 

strategies available to treat CO poisoned victims and determine the best treatment strategy 

ensuring fastest CO removal and O2 delivery after CO poisoning”. Also, a significant 

contribution to the database of mathematical models is made by developing this validated 

mathematical model to estimate O2, CO and CO2 levels in various tissues and blood vessels 

(brain, heart, skeletal muscle and nonmuscle tissue, arteries, veins, capillaries) for a variety 

of exposure conditions like hypoxia, CO hypoxia, hypercapnia, hypocapnia, hyperoxia, 

isoapnic hyperoxia, and hyperbaric oxygen.  

 

SUMMARY 

Mathematical models of human systems are excellent tools to understand and analyze 

physiological mechanisms, especially in situations where experiments either provide 

limited information about the physiological process or are unethical. To compare the 

current treatment strategies available to treat CO poisoned victims, a previously 

developed model (Erupaka et al., 2010) in our lab was enhanced and validated for various 

situations. Significant enhancements to the previously published model are addition of a 

two subcompartment brain tissue, mass balance equations for CO2, control of ventilation, 
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and regulation of blood flow. The enhanced model was validated for various conditions 

of changing O2 or CO2 concentrations like hypoxia, hyperoxia, hyperbaric oxygen, 

hypercapnia and hypocapnia. The capability of the model to predict brain tissue and 

venous PO2’s, ventilation, tissue and blood PCO2’s, tissue and blood pH in various 

compartments was assessed and compared with experimental data. Considering the 

limited availability and variability of experimental data for the various variables 

validated, the model predictions closely represented the trends in the experimental data. 

Overall, the enhanced and validated mathematical model can be applied as a tool to 

accomplish the third specific aim of “comparing the current treatment strategies available 

to treat CO poisoned victims and determine the best treatment strategy ensuring fastest 

CO removal and O2 delivery after CO poisoning”. 
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Table 3.1: Parameters and their default values  

Parameter Description and references Value, Units, Reference 

Dbvb_on Ratio of Dbb3O2 (t) and Dbb1O2 (t) +  0.075, none 

Dxb Mean intercapillary distance in brain tissue 0.1, cm, (Bruce et al., 2008) 

Fac Ratio of DiCO2 and DiO2 18, unitless, (Zhou et al.,2007) 

ff Brain blood flow adjustment factor during CO 

exposure+

0.369, unitless 

Fvb Brain tissue volume distribution fraction+ 0.2, none 

KbO2 PO2 at which MRbO2 decreases by 50% 0.5, Torr, (Erupaka et al.,2010) 

kc Central circulatory delay constant 0.9239, L, (Ursino et al., 2001) 

kp Peripheral circulatory delay constant 0.588,L, (Ursino et al., 2001) 

MRbO2/gram O2 consumption of brain 0.0365*, ml min-1 gm-1(Mintun et 

al.,2001 ; Zhou et al., 2007) 

PSbav_restO2 Permeability surface area product of O2 for 

arterioles/venules+ in brain 

69, ml min-1 Torr-1 gm-1

PSbcap_restO2 Permeability surface area product of O2 for 

capillaries+in brain 

127, ml min-1 Torr-1 gm-1

Q b/gram
Blood flow of brain tissue 0.55, ml min-1 gm-1 (Mintun et 

al.,2001) 

RQBB Respiratory quotient for brain tissue  1, unitless, (Zhou et al.,2007) 

RQCM Respiratory quotient for cardiac msucle tissue  0.8, unitless, (Zhou et al.,2007) 

RQM Respiratory quotient for skeletal muscle tissue  0.75, unitless, (Zhou et al.,2007) 

RQ Respiratory quotient for whole body  0.85, unitless, (Zhou et al.,2007) 

SCO2 Solubility of CO2 in plasma 8.071x10-4, ml ml-1 Torr-1, (Ursino 

et al., 2001) 

qτ  First order time constant for cardiac output 15, sec, (Wolf and Garner, 2007) 

bτ  First order time constant for brain blood flow 6, sec, (Wolf and Garner, 2007) 

Vbt Volume of brain tissue Male: 1425g; Female:1291g 

(Steven et al., 2005, Text book) 

Volfracb Fraction of volume of brain tissue compartment 

attributed to blood   

0.04, ml/gm, (Zhou et al.,2007) 

+ See text in section of the chapter entitled “Addition of brain compartment” 
* Values with ‘*’ are in STPD and all other values are in BTPS 
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Table 3.2:  Experimental data for brain tissue and blood oxygen tensions 

Source Species PaO2
+ PbvO2

+ PbO2
+ Condition*  

Demchenko et al., 2005 Rat - - 25±4 0.21, 1ATA 
Demchenko et al., 2005 Rat - - 34±5.5 0.3, 1ATA 
Demchenko et al., 2005 Rat - - 190 1, 2ATA 
Demchenko et al., 2005 Rat - - 287 1, 3ATA 
Jamieson and Vandenbrenk, 1963 Rat - - 34±4 0.21, 1ATA 
Jamieson and Vandenbrenk, 1963 Rat - - 90±13 1, 1ATA 
Jamieson and Vandenbrenk, 1963 Rat - - 244±39 1, 2ATA 
Jamieson and Vandenbrenk, 1963 Rat - - 452±68 1, 3ATA 
Jamieson and Vandenbrenk, 1963 Human 91 38 - 0.21, 1ATA 
Lambertsen et al., 1953 Human - 40 - 1, 1ATA 
Lambertsen et al., 1953 Human 2100 75 - 1, 3.5ATA 
Lambertsen et al., 1953 Human 97 34.8±1.1 - 0.21, 1ATA 
Lambertsen et al., 1953 Human 1740±33 66.4±5.3 - 1, 3ATA 
Lambertsen et al., 1953 Human 97 36.9±1.1 - 

0.21, 1ATA, 2.16% CO2  
Lambertsen et al., 1953 Human 97 41.1±1.3 - 

0.21, 1ATA,4.31% CO2  
Lambertsen et al., 1953 Human 97 48.2±2.3 - 

0.21, 1ATA, 5.48% CO2  
Rolette et al., 2000 Rat 145.1±11.7 - 15.1±1.8 0.3, 1ATA 
Rolette et al., 2000 Rat 56.5±4.4 - 8.8±0.4 0.15, 1ATA 
Rolette et al., 2000 Rat 40.7±2.3 - 6.8±0.3 0.10, 1ATA 
Zauner et al., 1995 Cat 160±22 - 42±9 0.3, 1ATA 
Zauner et al., 1995 Cat 36±4 - 28±5 0.15, 1ATA 
Martinez et al., 1999 Rabbit 95 

 
- 30±13 

 
0.21, 1ATA 

Martinez et al., 1999 Rabbit 30 - 11±3 0.12, 1ATA 
Martinez et al., 1999 Rabbit 27 

 
- 8±3 

 
0.10, 1ATA 

Martinez et al., 1999 Rabbit 21 - 6±3 0.08, 1ATA 
Charbel et al., 1997 Human - - 33±11 0.21, 1ATA 
Entrei and Lund, 1986 Swine 112.5±9 - 27.4 0.21, 1ATA 
Entrei and Lund, 1986 Swine 189±38 - 64.37 0.35, 1ATA 
Entrei and Lund, 1986 Swine 378±50 - 90.6 0.7, 1ATA 
Entrei and Lund, 1986 Swine 540±29 - 105.4 1, 1ATA 

 

PbvO2 = Brain venous PO2; PbO2 = Brain tissue PO2; +   Torr 

*(FIO2, PB); FIO2 = Fractional inspired O2, PB= Barometric pressure, 1ATA=760 Torr 
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Table 3.3: Slopes for the VE-PACO2 curves from my model and experiments 

Condition slope- model slope range from experiments 
Normoxia, PAO2=100 Torr 2.873 2.25±0.19 – 2.90±0.19 (Poulin et 

al.,1993) 
1.88±0.82 (Honda et al., 1983) 
2.4±0.94 (Fatemian and Robbins, 
1998) 

Hypoxia, PAO2=50 Torr 4.018 3.25±0.38 – 4.76±0.37 (Poulin et al., 
1993) 
3.59±1.57  (Fatemian and Robbins, 
1998) 

Hyperoxia, PAO2=200 Torr 2.216 2.39±0.25 – 2.61±0.31 (Poulin et 
al.,1993) 
2.14±0.22  (Ren et al., 2000) 
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: Architecture of enhanced model.  The model consists of seven mFigure 3.1 ajor 

PbvO2, PbvCO2

compartments: lungs, arterial blood compartment, mixed venous blood compartment, brain 

tissue with two subcompartments, non-muscle tissue, skeletal muscle tissue with two 

subcompartments and cardiac tissue with two subcompartments. The brain compartment is 

divided into two extravascular subcompartments of volumes (Vb1, Vb2) and three vascular 

subcompartments of volumes (Vbb1, Vbb2, Vbb3). Arterial blood enters the vascular 

subcompartment bb1 as
BQ . Solid double arrows indicate blood-tissue gaseous fluxes driven 

by partial pressure gradients. Dotted double arrows indicate diffusive gaseous fluxes driven 

by concentration gradients of dissolved gases. 
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Figure 3.2: Prediction of changes in cardiac output (ordinate) with increasing %HbCO 

levels (abcissa). Dashed line represents the linear fit to the experimental data (•) from 

Chiodi et al.(1941). 
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Figure 3.3: Prediction of changes in brain blood flow (ordinate) with increasing %HbCO 

levels (abcissa). Dashed line represents the piece wise linear fit to the experimental data 

(•). See text “Addition of regulation of blood flow” for references. 
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Figure 3.4: Validation of brain tissue and blood gas (O2, CO2) tensions.  Abscissa: 

Experimental gas tensions (Table 3.2, References in text “validation of tissue and blood 

PCO2).  Ordinate: Model predicted gas tensions.  The dashed lines are identity lines (IL).  

(A) Brain tissue PO2, PbO2 (B) Brain venous PO2, PbvO2 (B) Brain tissue PCO2, PbCO2, 

(B) Brain venous PCO2, PbvCO2. Symbols: ‘o’- Hypoxia, ‘•’-Normoxia, ‘x’- Hyperoxia, 

‘*’-Hyperbaric Oxygen, ‘◊’- Hypocapnia, ‘∆’-Hypercapnia. 
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Figure 3.5: Comparison of model predicted values with experimental data: (i) arterial blood 

gas measurements on y-axis of upper panel  (A) ParO2 (B) ParCO2 (C) pHar , (ii) mixed 

venous blood gas measurements on y-axis of lower panel (D) PmxO2 (E) PmxCO2 (F) pHmx 

during different atmospheric pressures on x-axis. Different pressures are: 0.85 ATA air, 

0.85 ATA O2, 1.2 ATA O2, 2.0 ATA O2, 2 .5 ATA O2, and 3 ATA O2.  Model estimates 

are represented with symbols ‘o’ and experimental data with symbols ‘•’. The error bars are 

the SD for experimental data (Weaver et al., 2009). 
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Figure 3.6:  Comparison of: (A) model predicted arterial O2 saturations (SarO2) with 

experimentally measured data at various levels of hypoxia (B) model predicted change in 

ventilatory response with experimentally measured change in data at various levels of 

hypoxia. Model predictions represented by ‘o’ and experiment measurements as ‘•’. The 

error bars are the SD for experimental data (Bascom et al., 1992) and PETO2 is the end 

tidal PO2. 
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Figure 3.7: Comparison of model predicted ventilatory response with experimentally 

measured data at various levels of inspired oxygen fractions. Model predictions 

represented by ‘o’ and experiment measurements as ‘•’. The error bars are the SD for 

experimental data (Becker et al., 1996).  
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Figure 3.8: Comparison of: (A) model predicted ventilatory response with experimentally 

measured data at various levels of inspired oxygen fractions, (B) model predicted arterial 

PCO2 changes with changes in experimentally measured data at various levels of inspired 

oxygen fractions. Model predictions represented by ‘o’ and experiment measurements as 

‘•’. The error bars are the SD for experimental data (Nishimura et al., 2007). 
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Figure 3.9: Comparison of changes in ventilation with changes in alveolar PCO2 (PACO2) 

after breathing increasing inspired concentrations of CO2 in room air. Model predictions 

represented by ‘o’ and experiment measurements as ‘•’. All other symbols show 

predictions of other mathematical models for the same experiment of Reynolds et al. 

(1972).  
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Figure 3.10: Model predicted oxygen saturation (ordinate) with experimentally measured 

values (abscissa) for conditions of normoxia, CO hypoxia, hypercapnia, and hypoxia. 

Dashed line is the identity line. The values for SaO2 on the abcissa were obtained from 

modeling studies (Sharan et al, 1989; Severinghaus, 1966, 1979), human studies 

(Roughton and Darling, 1943, Weaver et al., 2009; Whalen et al., 1965) and animal 

studies (Doblar, 1977; Zhu and Weiss, 1995). 
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Chapter 4: Computational analyses of treatments after carbon monoxide (CO) 

poisoning in human 

 

Contents of this chapter will be submitted as a manuscript
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INTRODUCTION 

 Carbon Monoxide (CO) is an odorless, colorless, tasteless gas which is 

responsible for a large number of accidental and intentional poisonings reported 

throughout the world. CO is generated in toxic amounts by internal-combustion engines, 

faulty fossil-fuel heating systems, house fires or explosions in coal mines, and emissions 

from modern automobiles or gasoline powered equipment in poorly ventilated spaces. 

Exposure to CO concentrations exceeding permissible exposure levels (PEL) of an 

average of 50 ppm over 8 hr (EHC, 1979; Raub et al., 1999) is a significant 

environmental and occupational health concern. Despite improved efforts in awareness 

and prevention, CO poisoning is a severely and frequently overlooked international 

problem (Raub et al., 1999). There are approximately 4000 deaths per year, over 40,000 

emergency department visits and tens of thousands of people seeking medical attention as 

they loose several days to months of normal activity from CO exposure occurring in 

United States (Raub et al., 2000; Tucker and Eichold, 2005; Weaver, 1999).  

 

 CO produces tissue toxicity by impairing oxygen (O ) delivery to the 

tissues. CO is 
2

absorbed by the respiratory tract and diffuses through the alveolar-capillary 

membrane and enters the blood, following a path similar to that of O . CO poisoning 

causes tissue hypoxia as the binding of CO to the heme (Hb, Mb, CCO) pigments 

decreases the blood O  carrying capacity, reduces O  availability to tissues, and inhibits 

mitochondrial respiration (Piantadosi, 2004).

2

2 2

 Although CO poisoning does not cause a 

fever, other symptoms are similar to those of the flu (including nausea, severe headache, 

vomiting). At higher HbCO levels (>10%), the neurological sequelae range from mild 

symptoms such as headache, nausea, dizziness, and impaired manual dexterity to severe 

symptoms such as confusion, loss of consciousness, and brain damage due to cell death 

(Choi, 1983; Ernst and Zibrak,1998; Weaver, 1999; Weaver, 2009). Loss of 

consciousness is reported at %HbCO levels >40 (Parkinson et al., 2002; Stewart et al., 

1975). Also, myocardial injury (ECG abnormalities, elevated cardiac injury biomarkers, 

myocardial infarction, myocardial dysfunction) and cardiac arrest have been reported in 

patients with mild to severe CO poisoning (Anderson et al., 1967; Cosby and Bergeron, 

1963; Ernst and Zibrak, 1998; Gandini et al., 2001; Henry et al., 2006; Kalay et al., 2007; 

 113

http://www.coheadquarters.com/coPC96-97nos1.htm
http://www.coheadquarters.com/coPC96-97nos1.htm


Middleton et al., 1961;Satran et al,2005; Stewart et al., 1973; Weaver, 2009; Yanir et al., 

2002). 

 

 Treatment for CO poisoned victims involves removing the patient from the site of 

CO exposure and then administering supplemental O2. O2 hastens the dissociation of CO 

from heme proteins (Hb, Mb), thereby improving tissue oxygenation and enhancing 

elimination of CO. Choice of the treatment protocol is generally based on the measured 

HbCO levels in the venous blood and the state of consciousness of the poisoned victim. 

The treatment is with either normobaric hyperoxia (NBO2), where 100% O2 is 

administered if the victim is conscious and the HbCO levels in the blood are less than 

25%, or hyperbaric hyperoxia (HBO2) where 100% O2 is administered, at high pressures 

greater than 1.5 ATA but less that 3.5 ATA (1 atmosphere = 760 mm of Hg), if the victim 

is unconscious or the HbCO levels exceed 25%. The half time elimination of CO on 

breathing room air, NBO2 and HBO2 at 3 ATA are ~ 320 min, 80 min and 23min, 

respectively (Myers et al., 1985). Thus, the choice of the treatment protocol is generally 

based on the measured HbCO levels in the venous blood, the state of consciousness of the 

poisoned victim and availability of equipment for treatment (hyperbaric chamber). Blood 

%HbCO is readily measurable but is thought to be an unreliable measure of poisoning 

severity as the symptoms and signs of intoxication correlate poorly with the level of 

HbCO measured at the time of hospital arrival. NBO2 therapy is usually continued until 

the HbCO levels return to the near normal levels but CO may still be present in the 

tissues in the form of MbCO or bound to other heme structures in the cells. Specialized 

equipment for administration of HBO2 is not available at all hospitals. Also, treating a 

CO poisoned victim with HBO2 is more expensive than treating them with NBO2 and 

standardized HBO2 treatment protocols (optimal pressure, duration of treatment, and 

required number of sessions) for CO poisoning are currently unavailable and often 

debatable (Piantadosi, 2004; Raub et al., 2000; Weaver et al., 2002). However, 

mechanisms like improvement of mitochondrial oxidative metabolism and inhibition of 

lipid peroxidation are reported to be associated with HBO2 and not seen with NBO2 

(Brown and Piantidosi, 1992; Piantadosi, 2004; Thom, 1990)  
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Precise set conditions requiring treatment with either NBO  or HBO  do not exist, 

often leading to disagreement with choice of treatment (
2 2

Juurlink et al., 2005; Piantadosi, 

2004; Raub et al., 2000). Many randomized clinical trials have been conducted to 

compare the merits and disadvantages of NBO  and HBO  in CO poisoned victims2 2  

(Begany, 2001; Ducasse et al., 1995; Gorman, 1999; Isbister et al., 2003; Mathieu et al., 

1996;   Raphael et al., 1989; Scheinkestel et al., 1999; Scheinkeste et al., 2004; Thom et 

al., 1995; Weaver et al., 2002). Comparison of the treatment outcomes of NBO2 and 

HBO2 suggested that the trial results neither confirm nor deny the benefit of HBO2 over 

NBO2 (Juurlink et al., 2005; Piantadosi, 2004; Weaver et al., 2002). However, the clinical 

trials conducted varied in patient populations, durations and pressures in HBO2 treatment 

protocols, durations of treatment with NBO2, severity of poisoning and degree of follow 

up (Juurlink et al., 2005). Also, the potential scope of new treatments like normocapnic 

NBO2 hyperventilation or normocapnic HBO2 hyperventilation have not been tested in 

CO poisoning therapy management. Hyperoxia is reported to increase ventilation and 

decrease arterial PCO2 (Nishimura et al., 2007). Decreases in arterial PCO2 is 

accompanied by decreases in brain blood flow (Topor et al., 2004), which results in 

decreased O2 delivery to the brain tissue during treatment with NBO2 or HBO2 (Figure 

4.1). Maintaining isocapnia during NBO2 will eliminate the effects of hypocapnia 

induced decreases in brain blood flow (Figure 4.1), thereby increasing oxygen delivery to 

the brain. Fisher et al. (1999) and others (Ishida et al., 2007; 1999; Kreck et al., 2001; 

Rucker et al., 2002; Takeuchi et al., 2000) have reported (in dogs as well as humans) that 

treatment with normocapnic NBO2 increases the rate of CO elimination and improves O2 

delivery in CO-poisoned victims. For ethical reasons, the authors had limited HbCO 

levels in their subjects (Rucker et al., 2002) to 12% and whether normocapnic NBO2 

would be effective in patients with very high levels of HbCO is still unknown.  

 

These ambiguities and variations in the clinical trials or treatment procedures give 

rise to many unresolved issues in treatment of CO poisoning (Juurlink et al., 2005; 

Piantadosi, 2004). Some of these unresolved issues are to (i) understand the advantages 

of NBO2 and HBO2 for a population varying in health status (normal, anemic, coronary 

artery disease, etc.), fitness level (athletes, recreationally active, sendentary), severity of 
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poisoning (short vs. long or low %HbCO vs. high %HbCO) and intersubject variability 

(age, gender, blood volume, etc.) and (ii) suggest standardized treatment regimens for 

NBO2 and HBO2 (duration of treatment, number of treatment sessions, optimal pressures, 

cost-benefit assessment). The main goal of my study is to compare NBO2, HBO2 and 

normocapnic NBO2 to determine the best treatment strategy ensuring fastest CO removal 

and O2 delivery after CO poisoning in healthy subjects. To achieve this goal, I will use 

the validated mathematical model described in chapter 3. The mathematical model has 

many advantages over performing clinical trials, as the model can be used to specify the 

treatment regimens, poisoning severity, and health status of the population, thereby 

allowing fair comparison among the available therapies to treat otherwise-healthy CO 

poisoned victims. As conducting experiments involving high CO exposures is unethical, 

the model can be used to simulate and compare the treatments at high %HbCO levels. In 

addition to comparing the treatments, various issues (Table 4.1) pertaining to treatments 

of otherwise-healthy CO poisoned victims will be addressed in this study. 

  

METHODS 

 The validated mathematical model used in this study has been described in detail 

in chapter 3. This validated model was capable of predicting  brain tissue and venous 

PO2’s, ventilation, tissue and blood PCO2’s, tissue and blood pH in various compartments 

for changing CO, O2 or CO2 concentrations like CO hypoxia, hypoxic hypoxia, 

hyperoxia, hyperbaric oxygen, hypercapnia and hypocapnia. The ability of the validated 

model to estimate O2, CO and CO2 levels in various tissues and blood vessels (brain, 

heart, skeletal muscle and nonmuscle tissue, arteries, veins, capillaries) during CO 

exposures and treatments makes it a desirable tool to accomplish the goal of this study.  

The mathematical model was used to simulate short (20 min) and long (480 min) CO 

exposures in healthy human subjects. At the end of CO exposure, NBO2, HBO2 or 

normocapnic NBO2 treatments were simulated. The time varying tissue PO2’s in the 

brain, heart and muscle compartments and CO levels in the blood, tissues and body were 

analyzed during CO exposures and treatments.  

 

Model description 
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 The mathematical model used in this study is a significant enhancement of the 

previous models developed in our lab (Bruce et al., 2008; Erupaka et al., 2010). This 

model consists of a (i) lung compartment (A), (ii) arterial blood compartment (ar), (iii) 

two subcompartment brain tissue (b1,b2) with three vascular subcompartments 

(bb1,bb2,bb3), (iv) two subcompartment heart tissue (c1,c2) with three vascular 

subcompartments (bc1,bc2,bc3), (v) two subcompartment skeletal muscle tissue (m1,m2) 

with three vascular compartments (bm1,bm2,bm3), (vi) single nonmuscle tissue 

compartment (ot) perfused by single vascular compartment (bot) and (vii) a mixed 

venous blood compartment (mx). The three vascular subcompartments surrounding the 

tissue compartments represent the arteriole, capillary and venule blood surrounding the 

tissue (Bruce et al., 2008; Erupaka et al., 2010). The first tissue subcompartment is 

envisioned as tissue perfused extensively by small arterioles and venules in first and the 

third vascular subcompartments. The second tissue subcompartment is assumed to be 

perfused mostly by capillaries in the second vascular subcompartment. As most of the gas 

exchange and energy production takes place in the tissues surrounded by capillaries, the 

model estimated O2 levels in the second tissue subcompartments of brain, heart and 

skeletal muscle tissue were analyzed in all the simulations. The model predicted tissue 

PO2’s in the second tissue subcompartments of brain (Pbt2O2), heart (Pct2O2) and skeletal 

muscle (Pmt2O2) were assumed as a correlate of tissue oxygenation and were used to 

determine the state of O2 delivery in the tissues during CO exposures and treatments. The 

CO levels in the blood (COblood), tissues (COtissue) and body (CObody) during CO exposure 

and treatments were calculated from the model using the Equations 4.1-4.3.  

CO CO V + CO V + CO V CO V + CO V + CO V .......4.1blood ar ar bb bb bc bc bm bm bot bot mx mxC C C C C C= +i i i i i i
CO CO V + CO V CO V + CO V ........................................................4.2tissue bt bt ct ct mt mt ot otC C C C= +i i i i
CO CO +CO CO V .......................................................................................4.3body blood tissue A LC= + i
where, CiCO and Vi are the concentrations of CO and volumes of compartment ‘i’. 

 

Simulation Description 

 ACSL 11.8 was used to simulate various CO exposures and treatments. 

Simulations were performed in double precision and a 30 minute stabilization period was 

initiated with every simulation run for the baseline simulation to reach a steady state. The 

values for various variables at the end of steady state were considered as the pre-CO 
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exposure or control values. The %HbCO levels, Pbt2O2, Pct2O2, Pmt2O2, COblood, COtissue, 

CObody, cardiac output ( ), and alveolar ventilation (Q AV ) were saved for the entire 

duration of the simulations to allow analysis of the data. Unconsciousness is reported to 

occur in CO poisoned subjects at a %HbCO levels ≥ 40 (Parkinson et al., 2002; Stewart, 

1975). Thus to determine the tissue oxygen threshold at which unconsciousness may 

possibly occur, a 20 min CO exposure of 6400 ppm of CO resulting in 40% HbCO was 

simulated and the PO2’s in the second tissue subcompartments of brain, heart and skeletal 

muscle at the end of the exposure were considered as the oxygen thresholds (PTHO2) for 

unconsciousness and other functional impairments to occur. Simulations in this study 

were designed to test two specific hypotheses. Analysis of the simulation results from 

testing these two hypotheses will allow comparison of different treatments and also aid in 

understanding of the unresolved issues related to CO poisoning therapies stated in Table 

4.1.  

 

Hypothesis 1: I hypothesize that “treating otherwise-healthy CO poisoned victims with 

HBO2 after a 6 hr treatment of NBO2 will not have any benefits in improving O2 delivery 

and CO removal.”  Testing this hypothesis will allow me to compare the merits of NBO2 

and HBO2 after CO poisoning occurs. Treatment duration of 6 hr is often considered as 

the window of opportunity in the clinical trials for comparing NBO2 and HBO2 (Weaver 

et al., 2002). This treatment window of 6 hr interval was suggested by Goulon et al. 

(1969) as the opportunity window for maximum benefit from HBO2 therapy. If my 

hypothesis is true, then I will determine the maximum duration of NBO2 after which 

administered HBO2 therapy may still have a favorable effect in improving O2 delivery to 

the tissues and speeding removal of CO from blood and tissues. 

 

Hypothesis 2: I hypothesize that “irrespective of the poisoning severity treating an 

otherwise-healthy CO poisoned victim with isocapnic (normocapnic) NBO2 will always 

have a favorable effect in improving O2 delivery and enhancing CO removal, when 

compared to treating the victim with poikilocapnic NBO2” 

 

Data set used for simulations of CO exposures and treatment protocols 
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Benignus et al. (1994) exposed fifteen healthy, male human subjects to high 

concentrations of CO for short durations. This data set was used to simulate CO 

exposures and three different treatments namely, poikilocapnic NBO2, poikilocapnic 

HBO2 and normocapnic NBO2. In this experiment (Benignus et al., 1994), measurements 

of age, body weight, height, blood volume, hemoglobin concentration, cardiac output, 

initial %HbCO and lung diffusivity coefficient of CO were provided by the investigators 

for each subject (Table 4.2). Alveolar ventilation was estimated by the model. Total body 

oxygen consumption was calculated as 3.2 ml/Kg. DMCO was varied in proportion to 

muscle mass, with a value of DMCO of 0.225 ml/min/Torr/Kg of muscle mass. Values for 

all other parameters that were not provided by the investigators have been referenced in 

my previous publication (Erupaka et al., 2010). From this data set of 15 subjects, only 6 

subjects (S108, S112, S115, S118, S119 and S120) were simulated in this study (Table 1 

of Benignus et al., 1994; Table 4.2 of this chapter). Subject 115 (S115) was the subject 

with subject specific parameters close to the mean values of the data set. S108 had the 

highest cardiac output and S118 had the lowest muscle mass, cardiac output and blood 

volume. S112 had the highest muscle mass and S119 had the largest blood volume. S120 

was randomly chosen from the data set. Intersubject variability in cardiac output, muscle 

mass, blood volume are known to influence the uptake and removal of CO.  These 

subjects were chosen to test my hypotheses in a range of subjects.  

 

Simulated CO exposures and treatment protocols 

To test my hypotheses the validated mathematical model was used to simulate the 

following CO exposures and treatments.  Simulation sets 1 and 2 were performed to 

determine if HBO2 had any merits in removing CO from the body and improving O2 

delivery after a NBO2 treatment for 6 hr, irrespective of the duration of CO exposure, 

intersubject variability and %HbCO level at the end of exposure. Simulation set 3 was 

performed to determine the maximum duration of NBO2 after which administered HBO2 

therapy may still have a favorable effect in improving O2 delivery to the tissues and 

speeding removal of CO from blood and tissues, irrespective of %HbCO level at the end 

of exposure. Simulation set 4 was performed to determine the best treatment strategy 

(among the available therapies) to treat otherwise-healthy CO poisoned victims to ensure 
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faster CO removal and O2 delivery, irrespective of %HbCO level at the end of exposure. 

Among the six subjects simulated, three subjects (S108, S112, S120) had HbCO levels of 

~42% during the first CO exposure level (6400 ppm). Simulating the second CO 

exposure level of 8000 ppm in these subjects (S108, S112, S120) resulted in HbCO levels 

greater than 50%.  As the confidence in model’s predictions for HbCO levels greater than 

50% is low (See discussion), subjects S115, S118 and S119 were chosen to simulate 

different treatments after CO poisoning of varying HbCO levels. Short CO exposures of 

(i) 6400, (ii) 8000 ppm and (iii) 10000 ppm of CO for a duration of 20 min were 

simulated and the end of CO exposure was followed by different treatment regimens. 

 

Simulation set 1-Short CO exposure followed by NBO2 treatment: Six healthy subjects 

(S108, S112, S115, S118, S119 and S120) were exposed to a concentration of 6400 ppm 

of CO for a duration of 20 min. The end of CO exposure was followed by a treatment on 

100% O2 at 1 ATA (760 Torr) for 360 min (6 hr). In addition, three subjects (S115, S118, 

and S119) were also exposed to a concentration of (i) 8000 ppm and (ii) 10000 ppm of 

CO for a duration of 20 min and the end of CO exposure was followed by a treatment on 

100% O2 at 1 ATA for 360 min. Treatment on NBO2 for 6 hr will be referred as 6 hrNBO2 

in the text.  

 

Simulation set 2-Long CO exposure followed by NBO2 treatment: Six healthy subjects 

(S108, S112, S115, S118, S119 and S120) were exposed to a concentration of 450 ppm 

of CO for a duration of 480 min. The end of CO exposure was followed by a treatment on 

100% O2 at 1ATA for 360 min (6 hr). 

 

Simulation set 3-Short CO exposures followed by HBO2 treatment: Three subjects 

subjects (S115, S118,  and S119) were exposed to a concentration of 6400 ppm of CO for 

a duration of 20 min and the end of CO exposure was followed by a treatment on (i) 

100% O2 at 1ATA for 120 min (2 hr) followed by 100% O2 at 3 ATA (HBO2) for 90 min 

(referred as 2 hrNBO2-1.5 hrHBO2), (ii) 100% O2 at 1ATA for 180 min (3 hr) followed by 

100% O2 at 3 ATA for 90 min (referred as 3 hrNBO2-1.5 hrHBO2) or (iii) 100% O2 at 1ATA 

for 240 min (4 hr) followed by 100% O2 at 3 ATA for 90 min (referred as 4 hrNBO2-1.5 
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hrHBO2). Also these three subjects were exposed to a concentration of (i) 8000 ppm and 

(ii) 10000 ppm of CO for a duration of 20 min and the end of CO exposure was followed 

by treatment regimens described above in simulation set 3.  

 

Simulation set 4-Short CO exposures followed by normocapnic NBO2 treatment: Three 

subjects subjects (S115, S118, S119) were exposed to a concentration of 6400 ppm of CO 

for a duration of 20 min and the end of CO exposure was followed by a treatment on 

100% O2 at 1ATA for 360 min, while maintaining isocapnia at the normocapnic level of 

the subject (referred as 6 hrINBO2). For these simulations the alveolar PCO2 was 

maintained constant for the duration of treatment at the pre-CO exposure levels 

(normoxia, room air). In addition, these three subjects were also exposed to a 

concentration of (i) 8000 ppm and (ii) 10000 ppm of CO for a duration of 20 min and the 

end of CO exposure was followed by a 6 hr, normocapnic NBO2 treatment.  

 

Data analysis 

 For each simulation set, the %HbCO levels, COblood, COtissue, CObody, tissue PO2’s 

in brain (Pbt2O2), heart (Pct2O2) and muscle tissue (Pmt2O2), cardiac output ( ), and 

alveolar ventilation (

Q

AV ) were analyzed. All the variables used for analyzing the 

simulations to determine the best treatment are defined in Table 4.3. 

 

 To determine the state of oxygenation in the tissues during CO exposure and 

various treatments the following calculations were made: (i) during a CO exposure, the 

duration for which the tissue PO2’s are below the threshold PO2 (PTHO2) for 

unconsciousness and other functional impairments to occur (referred as t<PTHO2), (ii) 

during a treatment, time taken for the tissue PO2’s in brain, heart and muscle to reach a 

value above PTHO2 (referred as tbPTHO2, tcPTHO2, tmPTHO2, respectively), and (ii) during a 

treatment, time taken for the tissue PO2’s in brain, heart and muscle to reach a value 

above or equal to the pre-CO exposure tissue PO2, PrO2 (referred as tbPrO2, tcPrO2, tmPrO2 

respectively). The time taken to reach PrO2’s is computed to determine the suggested 

duration of each administered treatment. Among the simulated therapies to treat 

otherwise-healthy CO poisoned patients, the treatment strategy in which time taken to 
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attain tissue PO2’s above PTHO2 is fastest, will be considered as a therapy ensuring faster 

O2 delivery to the tissues. If the time taken to reach tissue PO2’s above PTHO2 is the same 

for two or more treatments, then the treatment taking less time to remove CO from the 

body will be considered to be the best treatment ensuring faster O2 delivery to the tissues 

and CO removal.  

 

 To determine the rate of CO removal from the body during various treatments the 

following calculations were made: (i) the time taken by a treatment to remove 50% of the 

total CO body burden (CObody) at the time of exposure (CObody T1/2),  and (ii) the time 

taken by a treatment to reach %HbCO levels <10 (T%HbCO<10). A 10% HbCO level was 

chosen as no adverse effects of CO have been reported at these levels. CObody T1/2 is 

calculated to determine the treatment ensuring fastest CO removal from the body. 

T%HbCO<10 is computed to determine the minimum duration of each administered 

treatment.  Also, the CO washout curves (CObody) were fit to exponential functions to 

determine the time constants of these curves. The early (τe)  and late (τl) time constants of 

these CO washout curves after short and long CO exposures were determined to compare 

the washout times during different treatments and CO exposures. To calculate the early 

and late time constants of CO washout curves, these curves were fit to a exponential 

function of the form Aebt+Dect using least squares method in Matlab, version 6.5. In the 

exponential functions, 1/b (τe) and 1/c (τl) are the early and late time constants. A and D 

are the magnitudes of the early (Ge) and the late (Gl) exponential decay functions. Early 

and late time constants of CO washout curves were determined only for the treatments, 

where the CO washout curves followed an exponential function.  

 

RESULTS 

The main goal of my study is to compare NBO2, HBO2 and normocapnic NBO2 to 

determine the best treatment strategy ensuring fastest CO removal and O2 delivery after 

CO poisoning in healthy subjects. The validated mathematical model was used to 

perform simulation sets 1-4 to achieve this goal.  Unconsciousness is reported to occur in 

CO poisoned subjects at a %HbCO levels ≥ 40 (Parkinson et al., 2002; Stewart, 1975). 

Prior to analyzing the results of the simulation sets 1-4, a CO exposure resulting in 
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HbCO’s ≥ 40% was simulated. Thus to determine the tissue oxygen threshold at which 

unconsciousness may possibly occur, a 20 min CO exposure of 6400 ppm of CO 

resulting in ≥40% HbCO was simulated  in six Benignus’s subjects (S108, S112, S115, 

S118, S119 and S120). The PO2’s in the second tissue subcompartments of brain, heart 

and skeletal muscle at 40% HbCO levels were assumed as the tissue oxygen threshold 

(PTHO2) at which unconsciousness and functional impairments may possibly occur. From 

the results of these simulations in six subjects, PTHO2 was determined as 15 Torr. A tissue 

PO2 below PTHO2 in the brain tissue is assumed to cause unconsciousness and tissue PO2 

below PTHO2 in the heart and skeletal muscle tissue is assumed to cause functional 

impairments. Unconsciousness is reported at a cerebral venous PO2 of 16-20 Torr 

(Purves, 1972). Thus, a value of 15 Torr for PTHO2 in the brain is a reasonable 

assumption for unconsciousness to occur in a CO poisoned victim.  

 

Results of simulation set 1: In this simulation set, 6 subjects were exposed to a 

concentration of 6400 ppm of CO for a duration of 20 min followed by a treatment on 

NBO2 for 6 hr (6 hrNBO2). For the same inspired CO concentrations, the %HbCO levels in 

the subjects at the end of exposure ranged from 34%- 45% (Table 4.4). The durations for 

which the PO2’s were below the threshold PO2 (PTHO2) were calculated for the brain 

(tb<PTHO2), heart (tc<PTHO2) and muscle (tm<PTHO2) tissues. Also the time taken to reach 

PO2’s above the threshold values and the pre-CO exposure tissue PO2’s (PrO2) were 

calculated for the brain (tbPTHO2, tbPrO2), heart (tcPTHO2, tcPrO2) and muscle (tmPTHO2, 

tmPrO2) tissues. In 3 (S108, S112, S120) of the 6 subjects tb<PTHO2 was ~3 min, 

suggesting a possibility of occurrence of unconsciousness at the end of CO exposure in 

these subjects. The mean±SD values for tc<PTHO2 and tm<PTHO2 in 5 of the 6 subjects 

were 4.3±2.7 and 4.5±2.5 min, respectively. These values suggest that except in S119 

(t<PTHO2=0, i.e., during CO exposure, PO2 in the brain was never below 15 Torr), there is 

a possibility of occurrence of functional impairment in the heart and muscle tissues. The 

mean±SD values for tbPTHO2, tcPTHO2, and tmPTHO2 are 1.2±0.5, 3.7±2.4, and 4±1.2 min, 

respectively. Thus during treatment with 6 hrNBO2, the PO2’s in all the vital tissues are 

above PTHO2 in ~4 min for an otherwise-healthy CO poisoned subject with an average 

%HbCO level of 40. It should be noted that at ~4 min, though the PO2’s in all the vital 
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tissues are above PTHO2, the body burden of CO (CObody) is still greater than 50% (Table 

4.5).  Also, the PO2’s in the brain, heart and muscle tissues reach PrO2’s within 4.8±0.4, 

4.2±0.3, and 2.8±0.1 hr respectively (Table 4.5). The %HbCO levels after 4.8 hr of 

treatment on NBO2 immediately after end of CO exposure is ~4.5%.  The CObody T1/2 and 

T %HbCO<10 values are 1.4±0.2 and 2.8±0.1 hr, respectively (Table 4.5). Also after short 

CO exposures resulting in higher %HbCO values followed by a treatment on 6 hrNBO2, 

the PO2’s in the brain, heart and muscle tissues are above PTHO2 and PrO2 levels and the 

%HbCO levels are less than 10 at the end of the treatment (Table 4.5). These results 

(Table 4.5-4.6A-C) suggest that in healthy subjects poisoned by short CO exposures, the 

O2 levels and CO levels in the body are restored to control or pre-CO exposure values 

within 6 hr of treatment on NBO2.   

 

Results of simulation set 2: In this simulation set, 6 subjects were exposed to a 

concentration of 450 ppm of CO for duration of 480 min (8 hr) followed by 6 hrNBO2 

treatment. The mean %HbCO level at the end of exposure is ~42% (Table 4.4). In five of 

the 6 subjects t<PTHO2 at the end of exposure was greater than 0 in all the tissues, 

suggesting a possible occurrence of unconsciousness and functional tissue impairments in 

these subjects. In one subject S 119, tb<PTHO2 at the end of exposure was equal to 0. In 

the same subject, tc<PTHO2 and tm<PTHO2 at the end of exposure was greater than 0 , 

suggesting a possible occurrence of functional impairments in the tissues. The mean±SD 

values for tb<PTHO2, tc<PTHO2 and tm<PTHO2 in these subjects were 84±38 min (5 

subjects), 168±69 min (6 subjects) and 209±98 min (6 subjects), respectively. The 

mean±SD values for tbPTHO2, tcPTHO2, and tmPTHO2 are 1.6±0.75, 10.5±9, and 4.7±1.4 

min, respectively. When compared to short CO exposures, though the tissue PO2’s are 

below PTHO2 for a longer duration in long CO exposures, during treatment with 6 hrNBO2, 

the PO2’s in all the vital tissues are above PTHO2 in ~11 min for the otherwise-healthy CO 

poisoned subjects with an average %HbCO level of 42. It should be noted that at ~11 

min, though the PO2’s in all the vital tissues are above PTHO2, the body burden of CO 

(CObody) is still greater than 50% (Table 4.5). Also, the PO2’s in the brain, heart and 

muscle tissues reach PrO2’s within 5 ±0.3, 4.4±0.4, and 3±0.3 hr respectively (Table 4.5). 

The %HbCO levels after 5 hr of treatment on NBO2 immediately after end of CO 

 124



exposure is ~3.5%.  The CObody T1/2 and T %HbCO<10 values are 1.4±0.2 and 3.0±0.2 hr 

respectively (Table 4.5). These results (Table 4.5) suggest that in a healthy subject 

poisoned by long CO exposures, the O2 levels and CO levels in the body are restored to 

control or pre-CO exposure values within 6 hr of treatment on NBO2.   

 

Analysis of results from simulation sets 1 and 2, suggests that administering 

HBO2 after 6 hrNBO2 will have no additional benefits of improving O2 delivery and CO 

removal in healthy subjects exposed to long or short durations of varying CO 

concentrations. Thus, for HBO2 to have merit in treating a CO poisoned victim, this 

treatment may have to be applied within 6 hrNBO2. To determine the maximum duration 

of NBO2 after which administered HBO2 therapy may still have a favorable effect in 

improving O2 delivery to the tissues and speeding removal of CO from the body, 

simulation set 3 was performed.  

 

Results of simulation set 3: In this simulation set, three subjects were exposed to CO 

levels of three different concentrations (6400, 8000, and 10000 ppm) for a duration of 20 

min (See Table 4.6A-C for %HbCO levels). At the end of CO exposure, the subject was 

treated with one of the three different treatment protocols: (i) 2 hr NBO2 followed by 1.5 

hr HBO2 at 3 ATA (2 hrNBO2-1.5 hrHBO2), (ii) 3 hr NBO2 followed by 1.5 hr HBO2 at 3 

ATA (3NBO2-1.5HBO2) or (iii) 4 hr NBO2 followed by 1.5 hr HBO2 at 3 ATA (4 hrNBO2-
1.5hrHBO2). The variables useful in assessing the state of O2 delivery in the tissues and CO 

removal from the body during the treatments (6 hrNBO2, 2 hrNBO2-1.5 hrHBO2, and 
3hrNBO2-1.5 hrHBO2) after different severities of CO poisoning are listed in Table 4.6A-C. 

In all the simulations of set 3, the treatment for the initial two hours after end of CO 

exposure was on NBO2 and hence the tbPTHO2, tcPTHO2, and tmPTHO2 were not calculated 

for this simulation set (as they would be similar to that of 6 hrNBO2 ). Thus in this 

simulation set, the criterion for determining the best treatment is based on CObody T1/2 and 

T %HbCO<10 (as values for tbPTHO2, tcPTHO2, and tmPTHO2 are the same). The CObody T1/2 

and T %HbCO<10 values for treatment with 4 hrNBO2-1.5hrHBO2 were not different from the 

values with treatment on 6 hrNBO2 (Table 4.6A-C).  Also, the goodness of fit for the CO 

washout curves (CObody) to fit the exponential functions (Aebt+Dect) was statistically 
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poor. Thus, the early and late time constants were not calculated for this simulation set. 

On analysis of the results from this simulation set, the maximum duration of NBO2 after 

which administering HBO2 therapy may still have a favorable effect in improving O2 

delivery to the tissues and speeding removal of CO from the body is suggested as 3 hr for 

%HbCO levels <50. For CO poisonings resulting in %HbCO levels >50, the maximum 

duration of NBO2 can be suggested as 3 hr. Thus for any severity of poisoning when 

compared to 6hrNBO2, treatments on 2hrNBO2-1.5 hrHBO2 suggests faster removal of CO 

from the tissues and the maximum duration of NBO2 after which administering HBO2 

therapy may still have a favorable effect in speeding removal of CO from the body is 

suggested as 3 hr. 

 

Results of simulation set 4: This simulation set was performed to test my hypothesis that 

“irrespective of the poisoning severity treating an otherwise-healthy CO poisoned victim 

with isocapnic (normocapnic) NBO2 will always have a favorable effect in improving O2 

delivery and enhancing CO removal, when compared to treating the victim with 

poikilocapnic NBO2”. Three subjectswere exposed to three different concentrations of 

CO levels (6400, 8000, and 10000 ppm) for a duration of 20 min and the end of CO 

exposure was followed by a treatment with NBO2 for 6 hr while maintaining isocapnia at 

the normocapnic level of the subject (6 hrINBO2). The durations for which the PO2’s in the 

tissues are less than PTHO2 (tc<PTHO2) is greater for the higher %HbCO levels and the 

values for tbPTHO2 are similar for all the treatments for any severity of poisoning (Table 

4.6A-C). For %HbCO levels <50, the values for tcPTHO2 are smaller in 6 hrINBO2 than all 

other treatments, suggesting faster O2 delivery to cardiac tissues during 6 hrINBO2. It is to 

be noted that tbPrO2 in 2 hrNBO2-1.5 hrHBO2 is always less than tbPrO2 in 6 hrINBO2, 

indicating a smaller suggested treatment duration in 2 hrNBO2-1.5 hrHBO2. Simulation 

results (Table 4.6A-C) suggests that for an otherwise-healthy CO poisoned subject with 

any degree of poisoning severity, 6 hrINBO2 is the best treatment strategy to ensure faster 

CO removal from the body when compared to treatments on 6 hrNBO2, 
3 hrNBO2-1.5 

hrHBO2 or 4 hrNBO2-1.5 hrHBO2.  Thus, treating an otherwise-healthy CO poisoned victim 

with 6hrINBO2 is the best treatment to be administered. 

 126



Overall analysis of results from simulation sets 1-4 suggests that treating an 

otherwise-healthy human subject with hyperbaric oxygen immediately after a treatment 

on normobaric oxygen for 6 hr, may not have any benefits of improving oxygen delivery 

to the tissues or removal of CO from the body. Also, normocapnic normobaric oxygen 

(INBO2) treatment seems to be a promising therapy to allow fast removal of CO from the 

body and thereby improve oxygen delivery to the tissues. In cases of high CO exposures 

(%HbCO >50%), treating an otherwise-healthy subject with HBO2 (followed by <4 hr of 

treatment on NBO2) or normocapnic NBO2 is suggested. In cases of CO exposures of 

%HbCO <50, treating an otherwise-healthy subject with INBO2 is suggested.  

 

 DISCUSSION 

 In this study,  a validated mathematical model was used to compare O2 delivery 

and CO removal during three treatments namely NBO2, HBO2 and INBO2 administered 

after varying severities of CO poisoning in healthy subjects. The time varying tissue 

PO2’s in the second compartments of the brain, heart and skeletal muscle were assumed 

as correlates of state of oxygenation during CO exposure and treatments. The time taken 

by the treatment to remove 50% of the CO from the body and to reach %HbCO 

levels<10% were the criterion to determine the efficacy of a treatment to remove CO 

during the course of the treatment.  

Treatment for short vs. long CO exposures: A 6 hr, NBO2 treatment was simulated 

immediately after short or long CO exposures in 6 healthy subjects. The inhaled 

concentrations of CO were intended to achieve similar %HbCO levels in a given subject 

at the end of exposure irrespective of the duration of the exposure. In 3 (S108, S112, 

S120) of the 6 subjects, similar %HbCO levels were reached at the end of short and long 

CO exposures. At the end of short CO exposures, the model predicted that 3 of the 6 

subjects may be unconscious and 5 of the 6 subjects may have mild functional 

impairments.  At the end of long CO exposures, 5 out of 6 subjects are predicted to be 

unconscious and 6 subjects may have severe functional impairments (as the tissue PO2’s 

< 15 Torr for a longer duration). Despite similar %HbCO levels compared to a long 

duration CO exposure, less CO diffuses into the tissues and the increases in cardiac 
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output and blood flow to other tissues is faster (due to rapidly increasing %HbCO) during 

a short CO exposure (Bruce et al, 2008; Erupaka et al., 2010).  Thus, the values for 

tb<PTHO2, tc<PTHO2 and tr<PTHO2 were larger during long CO exposures compared to 

short CO exposures.    During treatment on 6 hr NBO2, time taken to reach tissue PO2’s 

above PTHO2 were greater in a treatment followinglong CO exposure compared to the 

short CO exposure (especially heart tissue). Prior to treatment, the tissue was hypoxic for 

a longer duration in long CO exposure. During CO exposure, the model predicted PCO2’s 

in the cardiac and muscle tissue compartments are increasing. Greater extent of 

accumulation of metabolites like CO2 in the tissues and decreases in pH as a consequence 

of prolonged tissue hypoxia may be a contributing factor for larger values of tPTHO2 in 

long CO exposures. Irrespective of the duration of exposure, the times taken to reach 

PrO2’s in the tissues were similar during treatment on 6 hr NBO2 for a short or a long CO 

exposure. During treatment on 6 hr NBO2, removal of CO from the body followed by long 

and short CO exposures was not different (Table 4.5). As the O2 delivery to tissues and 

CO removal from the body was similar during treatment on 6hrNBO2 followed by short or 

long CO exposure, other treatments (6 hrINBO2, 2 hrNBO2-1.5 hrHBO2, etc), were not 

simulated for a long CO exposure. 

Suggested tissue specific treatments: In this study, oxygen delivery to the brain, heart and 

muscle tissues during various treatments after varying levels of poisoning severity (Table 

4.6A-C) were assessed. For an otherwise- healthy CO poisoned subject, irrespective of 

the poisoning severity, the time to reach PTHO2 are similar in all treatments. However, 

treatment on 2 hrNBO2-1.5 hrHBO2 has the advantage of availability of larger 

concentrations of dissolved O2 when compared to treatments with 6 hrNBO2 or 6 hrINBO2. 

The advantage of enhanced O2 delivery with treatment on 6 hrINBO2 over treatment with 6 

hrNBO2 or other treatments (2 hrNBO2-1.5 hrHBO2, 3 hrNBO2-1.5 hrHBO2, 4 hrNBO2-1.5 

hrHBO2) are due to greater blood flows to the tissues and hyperventilation during 

isocapnia (Figure 4.1).  Poikilocapnic hyperoxic treatments are accompanied with 

decreases in blood flow due hypocapnia and hyperoxia induced vasoconstriction. 

Maintaining isocapnia at the normoxic levels eliminates the effects of hypocapnia 

induced decreases in blood flow, thereby improving O2 delivery to the tissues. 

Considering the difficulty and cost of administering any HBO2 treatment (especially 
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within 2 hr of NBO2), 6 hrINBO2 seems to be the suggested treatment of choice. At the 

end of treatment, when compared to 6 hrNBO2, treatment with 4hrNBO2-1.5 hrHBO2 seems 

to improve O2 delivery to the brain tissues but not the heart or skeletal muscle tissues, 

thereby suggesting advantages of using HBO2 to treat unconscious subjects or subjects 

showing symptoms of neurological impairments on admission (Table 4.6A-C).  For the 

same level of CO poisoning severity administering 6 hrINBO2 allows faster O2 delivery to 

the heart and muscle tissues when compared to treatment with 6 hrNBO2 3hrNBO2-1.5 

hrHBO2, or 4 hrNBO2-1.5 hrHBO2 (Table 4.6A-C). This could be due to faster removal of 

CO2 and CO from the tissues containing myoglobin due to increased blood flows and 

increased ventilation in isocapnia compared to poikilocapnia. Thus, subjects showing 

cardiovascular abnormalities on admission should be treated with 6 hrINBO2 to ensure 

faster O2 delivery to the heart tissues.  

Suggested treatments for fast CO removal: The goal of any treatment administered after 

CO poisoning is to improve tissue oxygenation and enhance elimination of CO. Except 

for treatment on room air, administering NBO2, INBO2 or HBO2 rapidly increases the 

tissue PO2’s during treatment. Irrespective of the duration and severity of poisoning, the 

maximum time taken by the tissues to reach PO2’s above PTHO2 is ~30 min (Table 4.5, 

4.6A-C). But the half time elimination of CO on breathing room air, NBO2 and HBO2 at 

3 ATA are ~ 320 min, 80 min and 23 min, respectively (Myers et al., 1985). Considering 

the difficulty of administering HBO2 immediately after CO poisoning, emphasis of 

determining an efficient treatment should be based on its capability to quickly remove 

CO. In this study among the treatments compared (Table 4.5, 4.6A-C) for any level of 

poisoning severity in a healthy subject, the treatment with the fastest CObody T1/2 and T 

%HbCO<10 was found to be for 6 hrINBO2. A %HbCO of 10 was chosen as the adverse 

effects of exposure at these levels are reported to be minimal in humans (Rucker et al., 

2002; Stewart, 1975). This treatment allows faster elimination of CO due to 

hyperventilation and increases in blood flow, when compared to other treatments 

analyzed in this study.  

Suggested treatments for otherwise healthy CO poisoned subjects: Analysis of simulation 

sets 1-4, suggests that INBO2 is the best treatment available to ensure fast O2 delivery and 
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removal of CO from the body. For high %HbCO levels, my study confirms the findings 

of Fisher et al. (1999) and Rucker et al. (2002) for otherwise-healthy CO poisoned male 

subjects. Treatment with 2 hrNBO2-1.5hrHBO2 also improves O2 delivery and enhances 

removal of CO from the body. But the superiority of INBO2 is established over HBO2 

considering the limited availability of hyperbaric chambers in hospitals, cost of 

administering HBO2, complications like barotrauma, claustrophobia arising from 

hyperbaric treatment (Juurlink et al., 2005) and faster removal of CO in INBO2 when 

compared to HBO2. It may also be hypothesized that maintaining isocapnia at levels 2-3 

Torr greater than normocapnia (i.e., hypercapnic NBO2) will prove to be more beneficial 

in ensuring fast O2 delivery and removal of CO from the body as the increase in blood 

flow and ventilation will be greater in hypercapnic NBO2 when compared to 

normocapnic NBO2. I also hypothesize that hypercapnic HBO2 or normocapnic HBO2 

will be highly beneficial in CO poisoning cases with high %HbCO levels as it would 

have the advantage of availability of high concentrations of dissolved O2 in addition to 

increases in blood flow and ventilation. However, in CO poisoned patients with 

depressed ventilation or cardiovascular impairments at the time of hospital admission, 

INBO2 may not be the suggested treatment (reasons discussed below). 

Anticipated suggestions for treating high risk CO poisoned populations:  Groups 

especially susceptible to the hypoxic stress of CO exposure would potentially be 

individuals with anemia (decreased hemoglobin content) (Penney, 1988; Weaver et al., 

2002) and individuals with cardiovascular or coronary artery diseases (Penney, 1988; 

Raub et al., 2000; Satran et al., 2005; Stewart et al., 1973). These groups are assumed to 

be at increased risk because of the anticipated reduced (O2 delivering) capacity to 

accommodate hypoxic stress caused due to CO. In these patients, the regulatory 

mechanisms are already activated in basal conditions to compensate the dysfunction and 

depending on the severity additional compensation during CO exposure may be difficult. 

Based on the simulation results, it is suggested that the anemic patient populations should 

be treated with INBO2. Compared to NBO2, the increases in blood flow to vital organs 

(like brain and heart) and ventilation are greater in INBO2.  Despite decreased O2 

delivering capacity due to low hemoglobin levels, treating anemic populations with 

INBO2 compared to NBO2 will increase O2 delivery and CO removal (Figure 4.1). 
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However, treatment with INBO2 is not suggested for CO poisoned patients with 

cardiovascular or coronary artery diseases. This is because during INBO2 treatment, there 

is an increased work load on heart as the cardiac ouput and myocardial blood flow is 

increased (Figure 4.1). This increased workload may lead to myocardial injury in these 

patient populations during treatment. Thus it is anticipated that NBO2 or HBO2 may be a 

better treatment than INBO2.  

 Also, there is evidence that healthy humans who are chronically or acutely 

exposed to CO under high work loads or physical stress (like exercise) have an increased 

risk for morbidity and mortality (Koskela, 1994; Stern et al., 1981). Groups exposed to 

CO during exercise are at increased risk of tissue injury, because the hypoxic stress on 

tissues due to increased O2 demands (increased O2 consumption) will increase. Also in 

conditions of exercise, there is increased uptake of CO due to increases in blood flow to 

the tissues and ventilation. In these populations, if the patients do not exhibit 

cardiovascular abnormalaties or depressed ventilation at the time of hospital admission, 

then INBO2 may be the preferred treatment over NBO2 or HBO2.  

 Other populations susceptible to hypoxic stress of CO exposure are the fetus, 

pregnant women (Penney, 1988; Weaver et al., 2002), and patients with obstructive lung 

diseases, cerebrovascular and peripheral vascular diseases.  For patient populations with 

cerebrovascular and peripheral vascular diseases, INBO2 may be the preferred treatment 

over NBO2 due to the advantage of increased cerebral oxygenation (Figure 4.1). Patients 

with obstructive lung diseases should be treated with either NBO2 or HBO2, as INBO2 is 

accompanied with increases in ventilation. In these patient populations flow of air in and 

out of the lungs is either impaired or limited and additional increases in ventilation during 

treatment on INBO2 may have deletorious effects. The effects of INBO2 on the human 

fetus and pregnant women are not known. Thus it would be difficult to suggest a 

treatment for these patient populations.  

Limitations of the study: The foremost limitation of this study is lack of availability of 

experimental data to compare tissue O2 levels in various tissues during high CO 

exposures and various treatments. Model predictions of possibility of occurrence of 
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unconsciousness or functional impairments are based on PTHO2 estimated by the model 

for tissues representing an average brain, heart or skeletal muscle. The model estimated 

times for t< PTHO2, tPTHO2 or tPrO2 during different CO exposures and treatments may 

either be an overestimate or underestimate in certain regions of the brain, heart or muscle 

tissues (cortex, gray matter, endocardium, epicardium, lower limb muscles, etc)  with 

statistically significant differences in  blood flow, oxygen consumption, capillary density, 

etc. Considering this limitation, I interpret my results with acknowledging the fact that 

the values for PTHO2, t< PTHO2, tPTHO2 or tPrO2 may be poor approximations of the actual 

values.  

 During CO exposures, cardiac output and blood flow to tissues (brain, heart and 

muscle) increases as a function of %HbCO (Equations 3.18-3.17 of Chapter 3). These 

increases in blood flow are attributed to the vasodilatatory effects of CO. Also, during 

treatment it is not known if the hyperoxia and hypocapnia induced vasoconstriction, 

compensates the vasodilatatory effects of CO. The regression equations were developed 

from animal and human data during or at the end of CO exposure (Chapter 3). 

Contribution of CO to increases in blood flow during various treatments is not known. 

Rucker et al. (2002) compared brain blood flow during NBO2 and INBO2 in humans after 

a CO exposure resulting in ~10 %HbCO. The blood flow in this study decreased during 

the normocapnic treatment but the fall was not rapid, indirectly suggesting the possibility 

of the presence of vasodilatatory effect of CO during treatment. However the contribution 

of CO to increases in blood flow at 10% HbCO may be smaller compared to a high 

%HbCO level (>25).   For very high %HbCO levels (>50), the estimates of blood flows 

from the regression equations may be overestimating the increases in blood flow. Thus 

the uptake and removal of CO during CO exposure and treatment for the highest 

exposure level in this study may be underestimating the values for CObody T1/2, T%HbCO<10, 

t< PTHO2, tPTHO2 or tPrO2.  

In this study O2 delivery and CO removal was compared in healthy, adult, male 

subjects exposed to different concentrations and durations of CO.  Treatments to ensure 

fast O2 delivery and CO removal were suggested for otherwise-healthy CO poisoned, 

adult, male subjects. I hypothesize that the suggested treatments in this study will be 
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applicable to (i) otherwise-healthy CO poisoned, adult, nonpregnant, female subjects, (ii) 

anemic subjects, (iii) otherwise-healthy, elderly CO poisoned subjects, and (iv) subjects 

with coronary artery disease, cerebrovascular or peripheral vascular diseases. 

Applicability of the suggested treatments to enhance O2 delivery or CO removal in other 

populations like the fetus, infants, children, pregnant women and patients with 

obstructive lung diseases is not predictable due to the complexity involved in the 

adaptation mechanisms in these groups. Also variations in treatments like administering 

<100% O2 (in ambulance), room air (removing victim from site of CO exposure) or 

HBO2 at lower atmospheric pressures have not been simulated in this study. Even if these 

variations were simulated, the treatments suggested in this study will still be the best 

therapies to treat otherwise-healthy CO poisoned subjects. 

 

CONCLUSIONS 

The main goal of my study was to compare NBO2, HBO2 and normocapnic NBO2 to 

determine the best treatment strategy ensuring fastest CO removal and O2 delivery after 

CO poisoning in healthy subjects. A validated mathematical model was used to compare 

these treatments after exposure to CO of different durations and concentrations. Among 

the treatments compared, analysis of my simulation results suggests that normocapnic 

normobaric oxygen (INBO2) is the best treatment available to ensure fast O2 delivery and 

removal of CO from the body.  Physicians and care givers should consider treating 

otherwise-healthy CO poisoned victims with normocapnic normobaric oxygen instead of 

poikilocapnic normobaric oxygen. Also, clinical trails should be conducted comparing 

the merits of treating CO poisoned victims with NBO2 and INBO2. 

 

SUMMARY 

 Carbon Monoxide (CO) is responsible for a large number of accidental and 

intentional poisonings reported throughout the world. CO produces tissue toxicity by 

impairing oxygen (O ) delivery to the tissues. 2 Treatments for CO poisoned victims 

involve administering supplemental O2 at normal (NBO2) or high pressures (HBO2). The 

merits of NBO2 or HBO2 with regards to improving O2 delivery to the tissues and 

removing CO from the body during the treatments are not known. In this study, I use a 
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validated mathematical model to compare O2 delivery and CO removal during three 

different treatments (NBO2, HBO2 and isocapnic NBO2). In my simulations, these 

treatments are administered immediately after exposure to long or short durations of 

varying CO concentrations. Analysis of the results of various simulations of treatments 

followed after varying severities in CO poisoning suggests that among the treatments 

compared, isocapnic NBO2 is the most efficient therapy to ensure faster O2 delivery to 

the tissues and CO removal from the body.  
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Table 4.1: Questions related to CO poisoning treatments 

1. Are there any merits of treating otherwise-healthy CO poisoned subjects with 

HBO2 after a 6 hr treatment of NBO2? 

2. For otherwise-healthy CO poisoned subjects, what is the maximum duration of 

NBO2 after which administered HBO2 therapy may still have a favorable effect 

in improving O2 delivery to the tissues and speeding removal of CO from blood 

and tissues?  

3. For otherwise-healthy CO poisoned subjects, are there any benefits of treating 

with normocapnic NBO2 over poikilocapnic NBO2? 

4. Among the therapies available (NBO2, HBO2, normocapnic NBO2) to treat 

otherwise-healthy CO poisoned subjects, which is the best treatment strategy 

that will ensure fastest CO removal and O2 delivery during treatment? 
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Table 4.2: Subject specific parameters 

Subject 
*MRO2, 
ml/min/Kg

Cardiac 
output 
(Q ), 
L/min 

Blood 
volume 
(VB),  L 

Muscle 
mass (VM), 
Kg 

+DMCO, 
ml/min/Torr 

115 240 6.6 5.1 31.8 7.19
108 194 7.5 4.0 28.0 6.34
112 320 6.7 5.3 38.8 8.80
118 167 5.1 3.5 25.6 5.81
119 285 6.9 6.9 36.2 8.20
120 231 5.8 4.4 31.3 7.08

 

 

* Total body oxygen consumption; + Muscle diffusion coefficient of CO 
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Table 4.3: Symbols and Definitions 

Symbol Definition 

PTHO2 Threshold PO2, the PO2 below which unconsciousness or other functional 

impairments in the tissues may occur. 

t<PTHO2 Before treatment, duration for which PO2 is below PTHO2 in the brain tissue 

t<PTHO2 Before treatment, duration for which PO2 is below PTHO2 in the heart tissue 

t<PTHO2 Before treatment, duration for which PO2 is below PTHO2 in the muscle tissue 

tbPTHO2 Time taken by a treatment to reach a PO2 above PTHO2 in the brain tissue 

tcPTHO2 Time taken by a treatment to reach a PO2 above PTHO2 in the heart tissue 

tmPTHO2 Time taken by a treatment to  reach a PO2 above PTHO2 in the muscle tissue 

PrO2 Control or pre-CO exposure tissue PO2. 

tbPrO2 Time taken by a treatment to reach a PO2 above PrO2 in  the brain tissue 

tcPrO2 Time taken by a treatment to reach a PO2 above PrO2 in  the heart tissue 

tmPrO2 Time taken by a treatment to reach a PO2 above PrO2 in  the muscle tissue 

COblood Total CO blood burden (CO in all vascular compartments of the model) 

COtissue Total CO tissue burden (CO in all the tissue compartments of the model) 

CObody Total CO body burden (CO in the blood and tissue compartments and the 

lungs) 

CObody T1/2 Time taken by a treatment to remove 50% of the total CO body burden  

T %HbCO<10 Time taken by a treatment to reach %HbCO levels <10 
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Table 4.4: %HbCO levels at the end of  CO exposure 

Subject  *Short, %HbCO +Long, %HbCO  

115 37.48 40.72 
108 42.01 42.97 
112 44.79 44.21 
118 39.40 41.66 
119 34.04 38.61 
120 43.74 43.67 

 

 

* Short CO exposure = 6400 ppm, 20 min; + Long CO exposure = 450 ppm, 480 min 
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Table 4.5: O2 delivery and CO removal during 6 hr NBO2 treatment 

Variable (Mean ±SD) *Short exposure +Long exposure   

%HbCO 40.2±4.1 41.9±2.1
tbPrO2, min 286±23 303±19
tcPrO2, min 250±18 265±23
tmPrO2, min 166±7.1 180±16

CObody T1/2 , min 84.1±11 83.9±11
T %HbCO<10, min 167±7.9 179±14

τe, min 40.2±6.5 43.9±6
Ge 80.9±18 97.6±22

τl, min 149±17 151±18
Gl 417±81 459±101

 

 

* Short CO exposure = 6400 ppm, 20 min; + Long CO exposure = 450 ppm, 480 min 
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Table 4.6 A: O2 delivery and CO removal during different treatments for subject, S115 

Variable #%HbCO=37.5 $%HbCO=46.7 &%HbCO=56.8 

Treatment*  T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

tbPrO2, min 312 127 184 139 340 135 185 159 360 139 186 182 

tcPrO2, min 272 200 245 165 296 210 253 190 320 210 260 210 

tmPrO2, min 176 128 168 111 199 131 186 135 225 133 187 157 

tb<PTHO2 ,min 0 0 0 0 4 4 4 4 7 7 7 7 

tc<PTHO2 ,min 1.4 1.4 1.4 1.4 8 8 8 8 10 10 10 10 

tm<PTHO2 ,min 1.3 1.3 1.3 1.3 9 9 9 9 10 10 10 10 

tbPTHO2, min 0 0 0 0 3 3 3 4 16 16 16 18 

tcPTHO2, min 1.5 1.5 1.5 1 15 15 15 5 35 35 35 35 

tmPTHO2, min 1.5 1.5 1.5 3 6.5 6.5 6.5 22 15 15 15 3 

CObody T1/2 , 
min 

91.

8 

92.

0 

92.

0 

66.

8 

85.

6 

85.

6 

85.

6 

67.

4 

78.

1 

78.

0 

78.5 69.4 

T %HbCO<10, 
min 

175 143 175 120 202 152 191 142 222 158 198 163 

 

*T1= CO exposure followed by treatment on NBO2 for 6 hr (6 hrNBO2) 

*T2= CO exposure followed by treatment on NBO2 for 2 hr followed by 1.5 hr (90 min) 

treatment on HBO2 at 3ATA (2 hrNBO2-1.5 hrHBO2). 

*T3= CO exposure followed by treatment on NBO2 for 3 hr followed by 1.5 hr (90 min) 

treatment on HBO2 at 3ATA (3 hrNBO2-1.5 hrHBO2). 

*T4= CO exposure followed by treatment on isocapnic NBO2 for 6 hr (6 hrINBO2) 
# Exposure to 6400 ppm of CO for 20 min 
$ Exposure to 8000 ppm of CO for 20 min 
& Exposure to 10000 ppm of CO for 20 min 
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Table 4.6B: O2 delivery and CO removal during different treatments for subject, S118 

Variable #%HbCO=39.4 $%HbCO=48.9 &%HbCO=59 

Treatment*  T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

tbPrO2, min 272 126 184 135 300 132 185 154 315 134 186 163 

tcPrO2, min 254 197 244 145 280 205 247 198 300 208 257 209 

tmPrO2, min 164 129 186 99 187 128 185 115 200 127 184 130 

tb<PTHO2 ,min 0 0 0 0 4.5 4.5 4.5 4.5 7.5 7.5 7.5 7.5 

tc<PTHO2 ,min 6 6 6 6 9 9 9 9 11 11 11 11 

tm<PTHO2 ,min 

4 4 4 4 9.5 .5 9.5 9.5 10.

5 

10.

5 

10.5 10.5 

tbPTHO2, min 0 0 0 0 4 4 4 4 15 15 15 17 

tcPTHO2, min 6 6 6 4 10 10 10 6 15 15 15 13 

tmPTHO2, min 

4 4 4 4 9.5 9.5 9.5 9 10.

5 

10.

5 

10.5 11 

CObody T1/2 , 
min 

80.

2 

80.

6 

80.

6 

52.

5 

74.

5 

74.

6 

74.

6 

53.

8 

68 67.

8 

67.8 54.5 

T %HbCO<10, 
min 

159 137 160 94 182 144 182 141 199 149 190 153 

 

*T1= CO exposure followed by treatment on NBO2 for 6 hr (6 hrNBO2) 

*T2= CO exposure followed by treatment on NBO2 for 2 hr followed by 1.5 hr (90 min) 

treatment on HBO2 at 3ATA (2 hrNBO2-1.5 hrHBO2). 

*T3= CO exposure followed by treatment on NBO2 for 3 hr followed by 1.5 hr (90 min) 

treatment on HBO2 at 3ATA (3 hrNBO2-1.5 hrHBO2). 

*T4= CO exposure followed by treatment on isocapnic NBO2 for 6 hr (6 hrINBO2) 
# Exposure to 6400 ppm of CO for 20 min 
$ Exposure to 8000 ppm of CO for 20 min 
& Exposure to 10000 ppm of CO for 20 min 
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Table 4.6C: O2 delivery and CO removal during different treatments for subject, S119 

Variable #%HbCO=34 $%HbCO=42.3 &%HbCO=51.4 

Treatment*  T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

tbPrO2, min 309 126 184 140 340 135 185 160 350 137 186 180 

tcPrO2, min 261 193 236 160 295 203 241 182 315 207 249 205 

tmPrO2, min 170 128 185 170 200 131 186 130 225 135 187 153 

tb<PTHO2 ,min 0 0 0 0 1.5 1.5 1.5 1.5 5 5 5 5 

tc<PTHO2 ,min 0 0 0 0 4 4 4 4 7 7 7 7 

tm<PTHO2 ,min 3.5 3.5 3.5 3.5 7 7 7 7 9.5 9.5 9.5 9.5 

tbPTHO2, min 0 0 0 0 1 1 1 1 7 7 7 8 

tcPTHO2, min 0 0 0 0 2.5 2.5 2.5 2 10 10 10 9 

tmPTHO2, min 2 2 2 2 3.5 3.5 3.5 3.5 10 10 10 11 

CObody T1/2 , 
min 

103 103 103 73 97 97 97 73.

5 

90 89.

8 

89.8 74.2 

T %HbCO<10, 
min 

179 145 180 122 209 155 195 145 232 163 203 167 

 

*T1= CO exposure followed by treatment on NBO2 for 6 hr (6 hrNBO2) 

*T2= CO exposure followed by treatment on NBO2 for 2 hr followed by 1.5 hr (90 min) 

treatment on HBO2 at 3ATA (2 hrNBO2-1.5 hrHBO2). 

*T3= CO exposure followed by treatment on NBO2 for 3 hr followed by 1.5 hr (90 min) 

treatment on HBO2 at 3ATA (3 hrNBO2-1.5 hrHBO2). 

*T4= CO exposure followed by treatment on isocapnic NBO2 for 6 hr (6 hrINBO2) 
# Exposure to 6400 ppm of CO for 20 min 
$ Exposure to 8000 ppm of CO for 20 min 
& Exposure to 10000 ppm of CO for 20 min 
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NBO2  
 
↓ Brain blood flow: due to O2 
breathing causing 
cerebrovascular 
vasoconstriction 
 
↑ Brain tissue PCO2
 
↑ Ventilation 
 
↓Arterial PCO2
 
↓Brain tissue PCO2
 
 
 
↓Brain blood flow: due to 
decreasing arterial PCO2, 
resulting in decreased cerebral 
O2 delivery 
 
↓Cardiac output: due to 
decreasing arterial PCO2, 
resulting in decreased O2 
delivery 

INBO2 
 

↓ Brain blood flow: due to O2 
breathing causing 
cerebrovascular 
vasoconstriction 
 
↑ Brain tissue PCO2
 
↑ Ventilation 
 
 No change or slight rise in 
arterial PCO2
 
↑ Brain tissue PCO2* 
 
↑ Ventilation*: resulting in 
improved CO removal. 
 
↑ Brain blood flow*: resulting 
in  increased cerebral O2 
delivery 
 
↑ Cardiac output *: resulting in  
increased O2 delivery 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1: Poikilocapnic normobaric oxygen (NBO2) vs.  Isocapnic normobaric oxygen 
(NBO2).  * INBO2 is administered using a mixture of 98% O2 + 2% CO2 and inspiration 
of CO2 is accompanied with increases in brain blood flow, brain tissue PCO2’s, and 
ventilation.  
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Chapter 5: Conclusions and Future work 
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CONCLUSIONS 

 

 In my dissertation, I have applied validated mathematical models (Erupaka et al., 

2010, second specific aim) of human systems to understand and analyze physiological 

mechanisms in situations where experiments either provide limited information about the 

physiological process (first specific aim) or are unethical (third specific aim). I 

hypothesized that “accurately estimating the amount of CO bound to myoglobin during 

and after CO inhalation will (i) allow improving the accuracy of CO-rebreathing methods 

to determine hemoglobin mass and (ii) aid in suggesting treatments ensuring fast CO 

removal from the body.” As determination of amount of CO bound to myoglobin is 

diffcult because non-invasive measurements of MbCO are not possible, a mathematical 

model was enhanced to address knowledge gaps in the literature. My dissertation has 

given me the opportunity to (i) analyze CO-rebreathing techniques used to estimate total 

hemoglobin mass, (ii) develop and validate a multicompartment model to compare O2 

delivery and CO removal during different treatments administered after CO poisoning 

and (iii) analyze treatment protocols for otherwise-healthy CO-poisoned subjects.  

 

 My project 1 (first specific aim) is the first study to determine the sources 

of errors in the existing CO rebreathing methods to estimate hemoglobin mass, MHb. 

Inaccuracies in estimation of volume of CO bound to myglobin were determined as the 

major source of error. The existing CO rebreathing methods are used to estimate MHb to 

determine the effects of adaptation to exercise training, environmental stresses, illness or 

trauma. Also, reference ranges of MHb are developed for athletic and clinical purposes. 

The errors in estimation of hemoglobin mass from the current CO rebreathing methods 

were in the range of 2%-6% depending on the blood site sampled, CO rebreathing 

method applied, and intersubject variability. These errors suggest that in order to compare 

the mean MHb values among different studies and to develop accurate reference ranges 

for MHb, information about the source of error and the approximate magnitude of errors 

associated with each CO rebreathing method and sampling site should be considered. 

Thus, determining the magnitude and sources of errors in the existing CO rebreathing 

methods to estimate MHb is vital in interpreting and comparing the results of different 
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studies done in clinical and sports medicine. Also, if the errors in estimation of MHb are 

small then significant changes in MHb can be easily detected with a smaller population 

size, whereas a larger population is needed to detect significant changes with a method 

which has larger errors. Using a validated mathematical model to estimate the amount of 

CO bound to myoglobin during and after CO inhalation aided in improving the accuracy 

of CO-rebreathing methods to determine hemoglobin mass. Based on the simulation 

results, I have suggested modifications to the existing CO rebreathing methods to 

estimate total hemoglobin mass with low errors (Protocols Bmodified and Pmodified). The 

proposed modifications to these methods were to use the suggested (i) regression 

equations to estimate volume of CO bound to myoglobin, (ii) Tsample’s, and (iii) blood 

sites. I have also proposed a new CO rebreathing method to estimate hemoglobin mass 

with low errors (Protocol N). In this study, I have made an attempt to understand the 

reasons for variability in the values reported in the literature for hemoglobin mass (MHb) 

estimates and mixing times from CO rebreathing studies differing in methods, durations 

of CO rebreathing, intial dose of CO administered and recruited subjects. I have also 

suggested optimal blood sites and sampling times to estimate hemoglobin mass with low 

errors. Making use of the optimal sampling time and blood site to obtain estimates of 

hemoglobin mass will make the CO rebreathing methods less inconvenient to the subject, 

and inexpensive. Following suggestions for shorter CO rebreathing durations will make 

these procedures easy to perform. In conclusion, estimating hemoglobin mass with 

modified versions of the existing CO rebreathing methods or the proposed new method 

will be less inconvenient to the subject, inexpensive, reliable, accurate, easy to perform 

and will make comparison of hemoglobin mass among different studies possible. 

 

The mathematical model developed in my project 2 (second specific aim) is a 

significant contribution to the database of mathematical models. Significant 

enhancements made to my previous upgraded model (Erupaka et al., 2010) are addition 

of: (i) brain compartment (Figure 3.1), (ii) mass balance equations for CO2, (iii) control 

of ventilation, (iv) regulation of blood flow: cardiac output, cerebral blood flow, 

myocardial blood flow, skeletal muscle tissue and non-muscle tissue blood flow with 

changes in arterial O2 saturation (SO2), PO2, PCO2, %HbCO and (v) Bohr effect on O2 
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dissociation curve and Haldane effect on CO2 dissociation curve. Regression relations to 

predict cardiac output and cerebral blood flow during high CO exposure levels 

(%HbCO>30) were developed. Regression relationships to predict cardiac output and 

brain blood flow during hyperoxic and hyperbaric conditions were developed as a 

function of arterial PO2 and PCO2’s.  This developed multicompartment model has the 

capability to estimate O2, CO and CO2 tensions, bicarbonate levels, pH levels, blood 

HbCO levels, and MbCO levels (in myoglobin containing tissues) in all the vascular and 

tissue compartments in normoxia, hypoxia, CO hypoxia, hyperoxia, isocapnic hyperoxia 

and hyperbaric oxygen.  Furthermore, reliable measurements of tissue oxygenation, PtO2, 

in healthy human tissues (brain, heart and skeletal muscle) are difficult to make. To 

assess the quality of treatment (NBO2 or HBO2) administered to CO-poisoning patients, it 

is difficult to conduct large, controlled, randomized treatment clinical studies on CO 

poisoned victims. Thus, a better approach would be to use a validated mathematical 

model to estimate CO burden in different tissues (brain, heart, skeletal muscle) for 

various CO exposures and treatment sessions. Determination of PtO2 in the human brain, 

heart, and skeletal muscle tissues by the model, during CO exposure and treatment will 

provide valuable information on tissue oxygenation as noninvasive measurement of these 

values is difficult. 

 

In project 3 of my dissertation, the most important issues (like comparision of 

merits of hyperbaric O2, normobaric O2 and iscocapnic normobaric O2) pertaining to 

treatments of otherwise-healthy CO poisoned victims were addressed. Long and short CO 

exposures followed by treatment on normobaric O2 (NBO2) were simulated in healthy 

adult subjects. Also simulations of varying levels (%HbCO= 37.5, 47, 57) of short CO 

exposures followed by 6 hr on NBO2, 2 hr on NBO2 followed by 1.5 hr on HBO2, 3 hr on 

NBO2 followed by 1.5 hr on HBO2, 4 hr on NBO2 followed by 1.5 hr on HBO2, or 6 hr 

on NBO2 with maintaining isocapnia at normocapnic levels were administered. 

Administering HBO2 after 6 hr on NBO2 did not have any merit in improving O2 delivery 

or CO removal after long and short CO exposures in healthy, adult subjects. The 

maximum interval of NBO2 after which administering HBO2 had the benefit of 

improving O2 delivery to the tissues and CO removal from the body was 4 hr.  
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A treatment protocol is optimal only if it can provide sustained high tissue PO2’s, 

together with rapid clearance of CO and other metabolites. The time taken to reach a PO2 

above the threshold PO2 was similar in all the treatments. However, the time taken to 

reach the resting PO2 was shorter in normocapnic normobaric O2 (INBO2) treatments. 

Also the time taken to reach %HbCO levels <10, was shorter for INBO2 treatment.  For 

any severity of poisoning, administering normocapnic normobaric oxygen was beneficial 

in improving CO removal and oxygen delivery, when compared to poikilocapnic 

normobaric oxygen. In all the simulations for HbCO levels <50%, during treatment with 

INBO2, the HbCO levels are <10% and the tissue PO2’s also reach the control values 

(PO2’s prior to CO exposure) withing 3 hrs of treatment. Thus for %HbCO’s less than 50, 

the normocapnic normobaric O2 treatment duration can be reduced to 3 hrs for otherwise 

healthy CO poisoned subjects. Approximately normocapnic normobaric oxygen therapy 

can be administered by using a gas mixture of 2-3% of CO2 in O2. The other best 

alternative to INBO2 treatment is treating the otherwise healthy CO poisoned subjects 

with NBO2 for 2 hr followed by 1.5 hr on HBO2 (based on its availability). Also 

compared to poikilocapnic normobaric O2, hyperbaric O2 treatment will always be 

benefical in improving tissue O2 delivery and CO removal to the otherwise-healthy CO 

poisoned subjects, provided it is administered within 6 hrs of administration of NBO2. 

Based on the analysis of my simulations, I have proposed a treatment protocol 

(normocapnic normobaric oxygen) which enhances CO removal from the body and 

improves oxygen delivery after any severity of CO poisoning in healthy adults. This 

treatment was reported to improve O2 delivery and enhance CO removal in humans for 

%HbCO levels <15. During normocapnic NBO2 treatment, my simulation results confirm 

improved O2 delivery and enhanced CO removal in humans for HbCO levels up to 50%. 

Physicians should consider the benefits of administering normocapnic NBO2 over 

poikilocapnic NBO2. However it should be noted that this therapy cannot be expected to 

reverse cell injury or prevent sequelae (neurological or myocardial) that may have 

occurred before the end of CO exposure. I have also suggested anticipated optimal 

treatments for “high risk” populations, but these suggestions were based on 

understanding of physiology and may have to be tested through simulations. Comparison 

of isocapnic treatments with poikilocapnic treatments have helped me in understanding 
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the role of CO2 during treatments and suggest new treatment strategies (hypercapnic 

normobaric oxygen, normocapnic or hypercapnic hyperbaric oxygen) for treating CO 

poisoned victims. Irrespective of the poisoning severity, the suggested normocapnic 

normobaric oxygen therapy ensures fast removal of CO from the body, improves O2 

delivery to the tissues, and is easy and affordable to administer.  

 

In this dissertation suggestions made for improving (i) CO rebreathing methods to 

estimate hemoglobin mass and (ii) treatments for fast CO removal in otherwise healthy 

CO poisoned populations are based on analysis of predictions from validated 

mathematical models. However, the findings from this study should be confirmed by 

conducting experiments.  Experiments should be conducted to estimate hemoglobin mass 

using the suggested CO rebreathing methods and the estimated hemoglobin mass from 

these studies should be compared with the measurements made from the gold standard 

radioactive techniques. Also, physicians should conduct trials comparing normocapnic 

normobaric oxygen treatments with poikilocapnic normobaric oxygen and hyperbaric 

oxygen treatments in CO poisoned subjects.   

 149



FUTURE WORK

1. Conduct experiments in human subjects to estimate hemoglobin mass using the 

three CO rebreathing protocols suggested in this dissertation. These experiments 

should be conducted to ensure the validity of the conclusions made in my 

dissertation that using the modified versions of the existing CO rebreathing 

methods (Protocols Bmodified and Pmodified) or the newly proposed CO rebreathing 

method (Protocol N) to determine hemoglobin mass, the variability in the estimated 

values of hemoglobin mass will be negligible for a given subject. Also, the 

hemoglobin mass estimated from protocols Bmodified, Pmodified, and N can be 

compared to a known hemoglobin mass of a subject determined from any other 

method (except from a CO dilution technique), to verify the results of my model 

simulations that determination of hemoglobin mass from the CO rebreathing 

methods proposed (protocols Bmodified and Pmodified and N) in this study result in low 

errors. 

 

2. Conduct clinical trials on patients with similar poisoning severities and symptoms 

randomized to receive poikilocapnic normobaric oxygen and normocapnic 

normobaric oxygen. In the literature, clinical trials comparing poikilocapnic 

normobaric oxygen and normocapnic normobaric oxygen have not been conducted. 

Prior to conducting clinical trials in humans, experiments to determine a better 

treatment for CO poisoned victims can be done in human like species e.g., 

monkeys.  In these species, different treatments can be compared after a short (20 

min) and long (8 hr) duration CO exposures resulting in HbCO levels upto 40%.  

My simulation results suggest that compared to poikilocapnic normobaric oxygen, 

normocapnic normobaric oxygen improves O2 delivery and CO removal during 

treatment. Based on my simulation results, I suggest that these experiments should 

be conducted to compare the merits of poikilocapnic normobaric oxygen and 

normocapnic normobaric oxygen after CO poisoning occurs. Data concerning to (i) 

time taken for %HbCO levels to reach < 10% after treatment is administered, (ii) 

occurrence of myocardial abnormalities (ECG abnomalities, arrythimias etc.) 

during treatment, (iii) blood flow during treatments, (iv) blood gases and O2 
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content during the treatments (v) neuropsychological tests after treatments and (vi) 

volume of CO exhaled during treatments should be recorded. The information from 

determining the time taken for %HbCO levels to reach < 10% and volume of CO 

exhaled during treatments will allow comparision of a treatment’s efficiency to 

remove CO. The product of blood flow and oxygen content can be used as measure 

of O2 delivery during the treatments. Also, the results from neuropsychological 

tests and myocardial performance tests may furthur assist in determining the state 

of oxygenation during treatments. In these clinical trials, continual statistical 

assessment of collected data should be done. If the statistical assessments favour a 

particular type of treatment, then the trial should be stopped and the physicians 

should be encouraged to administerd the favoured treatment.  

 

3. Apply mathematical model to compare NBO2, HBO2, normocapnic NBO2, 

hypercapnic NBO2 and hypercapnic HBO2 therapies to determine the best 

treatment strategy ensuring fastest CO removal and O2 delivery after CO poisoning 

of varying severities in healthy populations consisting of young, middle aged, and 

elderly male and nonpregnant female subjects. Determine the sensitivity of these 

different treatments to intersubject variability in specific parameters like blood 

volume, cardiac output, muscle mass, ventilation, and fitness level.  

 

4. Enhance and validate the model by implementing compensatory mechanisms 

accompanied with high altitude living, anemia, and by implementing disease states 

associated with impaired oxygen delivery, e.g., coronary artery diseases, 

cerebrovascular diseases or peripheral vascular diseases. Generally in patients with 

coronary artery diseases, there is decreased blood flow to the heart due to narrowed 

or blocked arteries. In my model, the blood flow to the myocardium can be reduced 

depending on the degree of blockage and myocardial oxygen tensions and body CO 

burden can be predicted during CO exposure and treatments. Then I can use the 

enhanced and validated mathematical model (suitable for simulating the disease 

state) to compare NBO2, HBO2, normocapnic NBO2, hypercapnic NBO2 and 

hypercapnic HBO2 therapies to determine the best treatment strategy ensuring 
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fastest CO removal and O2 delivery after CO poisoning of varying severities in 

these populations consisting of young, middle aged, and elderly male and 

nonpregnant female subjects.  

 

5. Compare CO dose to myocardium with occurrence of abnormal features in ECG 

(ElectroCardioGram). Myocardial hypoxia during CO exposures has been reported 

to produce changes in ECG (S-T segment elevation, QT dispersion, T wave 

changes). The extent to which the CO load (HbCO and MbCO levels) contributes 

to ECG alterations seen in CO poisoning victims is unknown. Assessing the 

correlations between the occurrence of predicted peak MbCO and HbCO levels 

with occurrence of abnormalities in ECG will aid in understanding the CO 

poisoning related increased risk of cardiac injury during treatments.  

 

6. Develop and validate a multicompartment brain model representing different 

regions of the brain (cortex, white matter, gray matter, basal ganglia, and 

hippocampus) and assess the state of oxygenation in these regions during CO 

exposures and treatments.  

 

7. Enhance the model further by implementing anaerobic metabolic pathways to 

understand energy production and utilization during CO induced hypoxic stress. 

Introduce interactions of cytochrome c oxidase with CO. Cytochrome c oxidase is 

also known to bind reversibly with CO. Understanding the contribution of this 

protein will further enhance the knowledge database for CO toxicity. Improve 

control of ventilation in the model by implementing effects of changes in H+ ions 

on ventilation. Also implement lactate dynamics to determine lactate threshold for 

anaerobic metabolism to occur.  
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