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ABSTRACT OF DISSERTATION 
 
 
 
 

USING MANUAL DEFOLIATION TO SIMULATE SOYBEAN RUST: EFFECT ON 
GROWTH AND YIELD FORMATION 

 
 
 

Field experiments were conducted in Kentucky and Louisiana in 2008 and 2009 
(split-plot in a randomized complete block design with four replications) to 
investigate it is possible to simulate with manual defoliation the effect of soybean 
rust (SBR) (Phakopsora pachyrhizi Syd. and P. Syd) injury on a healthy soybean 
[Glycine max, (L.) Merr.] canopy, understand how defoliation affects the growth 
dynamics and canopy light interception, and if defoliation affectsleaf senescence 
and nitrogen remobilization during the seed-filling period. Two manual defoliation 
treatments based on changes in effective leaf area index (ELAI) (calculated as 
the reduction in leaf area equivalent to SBR-induced premature leaf abscission, 
loss in green leaf area, and reduction in photosynthetic capacity of diseased 
leaves) in infected canopies in Brazil were used to simulate SBR infection at 
growth stage R2 (full flowering) and R5 (beginning of seed-fill). Both defoliation 
treatments reduced yield in all experiments and the reduction was larger for the 
treatments at growth stage R2. The yield losses were equivalent to that observed 
in infected soybean canopies in Brazil. This suggests that a system of manual 
defoliation to simulate changes in effective leaf area duration shows promise as a 
tool to simulate the impact of SBR on soybean yield. The radiation use efficiency 
and crop growth rate from growth stage R2 to R5 were not influenced by 
defoliation. Defoliation started at growth stage R2 reduced seed number per unit 
area, while defoliation started at growth stage R5 reduced seed size due to 
shortening the seed-fill duration and a lower seed growth rate. There is no 
evidence that manual defoliation affected leaf senescence or nitrogen 
redistribution to the seed. This study found that the reduction of light interception 
by SBR was the main reason for the reductions in soybean growth and yield.  



 
 

KEY WORDS: Soybean rust, Defoliation, Effective leaf area index, Effective leaf 

area duration, Nitrogen redistribution. 
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CHAPTER ONE 

LITERATURE REVIEW 

Classification, History, and Importance of Soybean 

Soybean (Glycine max (L.) Merrill) is a legume, so it belongs in the 

Fabaceae, in the subfamily Faboideae. The genus Glycine Wild. is divided into 

two subgenera, Glycine and Soja (Moench) F.J. Herm. The subgenus soja 

includes the cultivated soybean, G. max (L.) Merr., and the wild soybean, G. soja 

Sieb. and Zucc. Both species are annual and diploid with 2n=40 (Palmer et al., 

1996).  

According to the Food and Agriculture Organization (FAO), the global 

production of soybean in 2007 was 220 million metric tons [MMT; 8X109 bushels] 

(FAO, 2010). Soybean is grown in many countries including the United States, 

Brazil, Argentina, India, China, Japan, Korea, Taiwan and Russia. The U.S. is the 

world's leading soybean producer and exporter. The total soybean production in 

the U.S. in 2008 was 80.7 MMT [3X109 bushels], followed by Brazil (59.2 MMT), 

Argentina (46.2 MMT), China (15.5 MMT), and India (9.9 MMT) (FAO, 2010). The 

U.S. exported 27.9 MMT [1.0 billion bushels] of soybean with a value of $12.9 

billion in 2007, accounting for 37% of the world's soybean trade. Soybean 

represents 54% of the world oilseed production. Other oilseed crops such as 

rapeseed (Brassica napus L.), cottonseed (Gossypium spp. L.), peanut (Arachis 

hypogaea L.), and sunflower (Helianthus annuus L.) accounted for 15, 10, 9, and 

8% of world oilseed production, respectively (FAO, 2010).  
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Physiology of Soybean Yield Production  

Understanding the physiology of soybean yield production is important to 

understand the effect of disease, e.g. soybean rust, on yield. Yield can be 

defined as a function of the radiation absorbed by the crop canopy over the 

growing season, the conversion of the absorbed solar radiation into plant dry 

matter (i.e, radiation use efficiency), and the proportion of total plant dry matter 

accumulated during the growing season that is allocated to the seed (i.e., harvest 

index) (Hay and Porter, 2006, p. 145-153). There are many factors that affect the 

plant’s ability to accumulate dry matter including the rate of photosynthesis per 

unit leaf area, leaf area duration (combination of leaf area and time), intercepted 

solar radiation, and the plant’s ability to tolerate stress. To understand the 

process of yield formation, focusing on the yield components can be helpful.  

Yield Components 

The basic soybean yield components are the number of plants per area, 

number of nodes per plant, number of pods per node, number of seeds per pod, 

the number of seed per unit area and seed size (weight/seed) (Egli, 1998, p. 86-

87). Understanding the role of yield components in yield determination may 

reveal the answer of how to improve yield. Yield involves the integration of 

numerous physiological processes over the plant’s life cycle. Therefore, it is 

useful to divide the plant’s life cycle into several phases based on the 

characteristics of the plant. 

 Murata (1969) divided crop development into three phases: Phase I, 

formation of organs for nutrient absorption and photosynthesis (vegetative 
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growth); Phase II, formation of flower organs and the yield container (flowering 

and pod set); and Phase III, production, accumulation and translocation of “yield 

contents” (seed filling). The phase I represents vegetative growth where the plant 

produces the leaf area and roots needed to provide and maintain canopy 

photosynthesis. This phase is represented in the Fehr and Caviness (1977) 

growth staging system by V stages. Phase II represents the development of 

reproductive structures and seed set, and it is represented in the Fehr and 

Caviness (1977) system by the period from growth stage R1 (initial flowering) 

until approximately shortly after growth stage R6 (seed fills pod cavity at one of 

the four uppermost nodes on the main stem with a fully developed leaf).   

The number of flowers produced during phase II was related to the 

number of nodes (Egli, 2005), and to environmental conditions (Jiang and Egli, 

1993). The number of seeds per unit area is fixed between the beginning of this 

phase and approximately 4 to 7 days after the beginning of growth stage R6 

(Egli, 2010). Seed number per area is related to canopy photosynthesis during 

flower and pod set (phase II), so the environmental conditions that affect 

photosynthesis will indirectly affect seed number. The variation in yield due to 

environmental conditions is usually associated with variability in seed number 

(Board and Harville, 1993; Hardman and Brun, 1971). Increasing photosynthesis 

with CO2 enrichment increases pod and seed number (Hardman and Brun, 

1971), while shade, water stress and defoliation reduce pod and seed number 

(Board and Tan, 1995; Egli and Zhen-wen, 1991; Kumudini et al., 2008a).  
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The beginning of phase III marks the beginning of the accumulation of 

yield. This phase is assumed to start at growth stage R5; by shortly after growth 

stage R6 all pods are established and there will be no changes in the number of 

pods during the rest of reproductive growth (Egli, 2010). The plants reach 

physiological maturity at growth stage R7 (at least one pod on main stem has 

reached mature color) (Fehr and Caviness, 1977). The period from growth stage 

R5 to physiological maturity (R7) is the seed-filling period. Seed size is 

determined during this period. In soybean the seed-filling period is usually 30 to 

40 days long, which is about 40% of the total growth cycle for most soybean 

cultivars grown in their area of adaptation (Egli, 1994, 2004).  

Seed size may or may not be related to yield (Egli, 1998, p. 76-80). 

Variation in environmental conditions or defoliation during the seed-filling period, 

that affect seed size also affect yield. Genetic variation in seed size, however, is 

not related to yield. Defoliation due to foliar disease during the seed-filling period 

reduced assimilate supply and therefore seed size was reduced (Board et al., 

2010; Kumudini et al., 2008a). Historically there is an inverse correlation between 

seed number and genetic variation in seed size (Board and Harville, 1993; 

Hartwig and Edwards, 1970). This is why the yield component approach used by 

some plant breeders failed to increase yield (Egli, 1998, p. 70-74).  

Murata’s (1969) three phases describe yield production as a sequential 

process and each yield component (seed number and seed size) is determined 

during a specific phase of plant development (Egli, 1998, p. 70-74). The length of 

each phase (i.e., time) may affect yield production (Egli, 1998, p. 70-74). There 



 
 

5 
 

are many crop process and characteristics that affect crop development and yield 

directly or indirectly, such as LAI, light interception (LI), and canopy 

photosynthesis, and these affect may be very phase specific.  These processes 

will be discussed in more detail.  

Leaf Area Index 

The LAI is defined as the ratio of leaf area to land area, and it is related to 

canopy photosynthesis and crop yield (Evan, 1993, p. 179-189; Loomis and 

Connor, 1992, p. 36-38). Some researchers estimated that the critical LAI (LAI 

that intercepted 95% or more of the incident solar radiation) for soybean was 

between 3 and 4 (Board, 2004; Board and Harville, 1992). Delayed planting of 

many field crops reduces LAI, as did shortening the vegetative growth period 

when day length triggered early flower initiation (Hay and Porter, 2006, p. 55-56). 

With many field crops, higher plant densities tend to have higher LAI (Hay and 

Porter, 2006, p. 55-56) and generally, plants that suffer water stress have lower 

LAI than well-watered plants. Nitrogen stress can also reduce LAI (Hay and 

Porter, 2006, p. 55-56).  Insects and foliar diseases also cause severe reductions 

in the quantity and quality of the leaf area which reduces solar radiation 

interception and photosynthesis (Hay and Porter, 2006, p. 59).  

Integrating LAI over time produces the leaf area duration (LAD) (Evan, 

1993, p. 179-189) which is also an important factor determining yield. Foliar 

diseases affect LAI and LAD (Bassanezi et al., 2001; Waggoner and Berger, 

1987). The LAD is a better predictor of yield than disease severity, because LAD 

(the duration of the healthy or effective leaf tissue) is directly related to yield, 



 
 

6 
 

(Waggoner and Berger, 1987). The relationship between LAD and yield has been 

tested in many crops including wheat (Triticum spp), maize (Zea mays L.), potato 

(Solanum tuberosum L.), and peanut (Arachis hypogaea L.) over a range of 

environmental conditions in many years. In these studies manual defoliation 

reduced the LAD (Rotem et al., 1983a; 1983b; Waggoner and Berger, 1987; 

Wilkerson et al., 1984), and yield loss was related to the reduction in LAD. 

Kumudini et al. (2001) reported that the high yield of newer soybean cultivars 

was attributed to a longer LAD. Bassanezi et al. (2001) found that foliar diseases 

of bean plants (Phaseolus vulgaris L.) affected the green LAD by reducing the 

area that was photosynthetically active. Other foliar diseases that caused 

defoliation also reduced the LAD (Bastiaans, 1993; Jesus Junior et al., 2003; 

Waggoner and Berger, 1987).  

Soybean rust decreases the photosynthetic activity of the leaf area 

surrounding the lesions (Kumudini et al., 2008b), which can be accounted for 

with an estimate of the equivalent leaf area called the effective leaf area index 

(ELAI) (Jesus Junior et al., 2003). The effective leaf area (ELA) is the leaf area 

that is photosynthetically active. The impact of foliar disease on yield is 

cumulative throughout seed filling (Bergamin Filho et al., 1997; Bassanezi et al., 

2001), and therefore, ELAI must be integrated over the course of the disease 

interaction with the host to produce the effective leaf area duration (ELAD) 

(Jesus Junior et al., 2003; Aquino et al., 1992).  
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The leaves store carbon and nitrogen that is mobilized to the seeds during 

seed filling. Therefore, reducing LAI during the seed-filling period may have a 

larger effect on yield than that due simply to the reduction in LI.  

Light Interception 

Solar radiation is the source of energy for photosynthesis for plant growth 

and development. Canopy photosynthesis is directly related to LAI and radiation 

interception. The LI will eventually reach a plateau with increasing LAI (Shibles 

and Weber, 1965, 1966). Therefore, increasing the LAI above the critical LAI (LAI 

between 3 and 4) will not increase LI or change the canopy photosynthesis 

(Shibles and Weber, 1965). When a healthy crop receives adequate water and 

nutrients, and reaches the critical LAI, dry matter production is at a maximum.  

There are several factors affecting LI, including cultural practices (i.e., 

planting date, row spacing, population density), and leaf angle (Hay and Porter, 

2006, p. 66). The cultural practices affect LAI which in return affects LI. 

Therefore, any change in these traits may affect canopy photosynthesis. Board 

and Harville (1992) found that growing late-planted soybean in narrow row 

spacings increased LI and prevented yield loss. Canopy defoliation that reduces 

LAI may reduce LI.  

Reducing critical LAI by biotic and abiotic stress will affect the ELAI, ELAD 

and may affect LI, and ultimately yield. However, the growth stage (i.e., time) 

when the stress occurres is very important in determining the affect on yield. 

Reductions in LAI early in the growing season during the vegetative phase may 

be compensated for by regrowth; however, if the reduction in LAI was larger than 
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the regrowth, a reduction in LI is likely. Jiang and Egli (1995) reported that stress 

during phase I before the reproductive phase began does not affect yield if the 

LAI was large enough to maximize LI by the beginning of flowering. Reducing LAI 

without affecting LI (i.e., LI ≥ 90%) may not reduce photosynthesis or yield.  

Radiation Use Efficiency 

The dry matter produced per unit of intercepted solar radiation is radiation 

use efficiency (RUE). Researchers use RUE to evaluate crop productivity per unit 

area (Bonhomme, 2000; Kiniry et al., 1989; Purcell et al., 2002; Sinclair and 

Shiraiwa, 1993).  However, estimating RUE requires frequent plant sampling to 

determine dry matter accumulation; thus, this method is not precise enough to 

detect small differences between treatments. Some researchers express RUE 

based on intercepted photosynthetically active radiation, while others express it 

based on solar radiation (Sinclair and Muchow, 1999). Radiation use efficiency is 

obviously photosynthesis dependent; therefore, any variation in photosynthesis 

will affect RUE (Sinclair and Muchow, 1999). The maximum RUE for soybean 

reported in the literature is 1.1 g MJ-1 (based on total solar radiation) (Sinclair and 

Shiraiwa, 1993).  

Foliar pathogens and environmental conditions, such as temperature, 

water stress, and nutrient availability, directly affect photosynthesis, and 

therefore, indirectly affect RUE (Sinclair and Shiraiwa, 1993). However, very few 

studies have investigated the effect of foliar diseases on RUE (Bastiaans, 1993; 

Beasse et al., 2000; Kumidini et al., 2008a). Kumudini et al. (2008a) reported that 

the RUE during reproductive phase did not change in SBR infected plants in one 
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year of the study but it changed in the other. The RUE of rice (Oryza sativa L.) 

inoculated with the foliar pathogen (Pyricularia oryzae Cav.) was reduced by 55% 

(Bastiaans, 1993). Beasse et al. (2000) reported a reduction in the RUE of pea 

plants (Pisum sativum L.) after inoculation with a foliar pathogen (Mycosphaerella 

pinodes). All of these studies concluded that the reduction in RUE was attributed 

to impact of the foliar disease on leaf photosynthetic activity. Foliar disease also 

increased growth respiration and that reduced the canopy photosynthesis 

(Beasse et al., 2000).  

Cultural practices also affect RUE. Purcell et al. (2002) found that the RUE 

unexpectedly decreased as soybean population density increased. They 

proposed that this reduction was due to the fact that biomass samples did not 

include the fallen leaves and petioles, and the amount of nitrogen obtained from 

soil was limited by plant competition which affected specific leaf nitrogen 

concentration and lessened the RUE (Purcell et al., 2002). Increasing nitrogen 

rate on hybrid maize (Zea Maize L.) in semi-arid regions had a significant effect 

on RUE, so the recommended nitrogen rate is at a level that produces maximum 

RUE (Khaliq et al., 2008). Sowing date also influenced RUE in faba bean (Vicia 

faba L.) (Confalone et al., 2010). Earlier sowing date increased the RUE, while 

delaing planting reduced it. Foliar diseases can directly affect RUE and indirectly 

affect the length of the seed-filling period, by inducing early leaf senescence and 

reducing the LAD.  
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Seed-Fill Duration 

Murata’s phase III is the seed-fill period, when seeds accumulate dry 

matter and yield is finally produced. Longer seed-fill durations (SFD) have 

contributed to higher yield in many crops. The SFD represents less than half of 

the total growth cycle for many crops (Egli, 2004), for example in soybean the 

SFD represented 26 to 41% of the total crop growth cycle (Egli, 1994; Zeiher et 

al., 1982).  

Many researchers have investigated the impact of abiotic stress on seed-

fill duration (de Souza et al., 1997; Egli et al., 1978; Rotundo and Westgate, 

2010). de Souza et al. (1997) and Brevedan and Egli (2003) reported that water 

stress during seed filling shortened the filling period by accelerating leaf 

senescence and reducing yield. This acceleration did not reverse when the 

stressed soybean plants were returned to well-watered conditions after 3 to 5 

days of stress (Brevedan and Egli, 2003), suggesting that relatively short periods 

of stress during seed filling may have a greater than expected effect on yield. 

Variation in the nitrogen supply may also effect soybean SFD. Hayati et al. 

(1995) reported that nitrogen stress during seed filling shortened the seed-filling 

period in soybean. 

The SFD may be influenced by biotic stress (Kumudini et al., 2008a), but, 

little information is available on the effect of foliar diseases on SFD. Foliar 

disease, such as SBR, may result in accelerated leaf abscission which may 

reduce yield. Board et al (2010) investigated the effect of partial and total 

defoliation during seed-filling. They reported that the yield loss was associated 
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with a reduction in LI. However, they failed to determine if the defoliation affected 

the SFD. Kumudini et al. (2008a) proposed that SBR infected canopy at growth 

stage R2 shortened the soybean life cycle. However, they also did not measure 

the seed-filling period.  

Because foliar diseases reduce LAI, LI, and LAD (Bassanezi et al., 2001; 

Kumudini et al., 2008a; Waggoner and Berger, 1987), it probably reduces the 

SFD. Severe defoliation, as caused by SBR, reduces LI and thus may shorten 

the SFD due to reduced assimilate availability to the seed. Seed filling continues 

as long as there is assimilate available to the seed and the seed is active in 

converting the assimilate into storage compounds; when seed growth stops due 

to a lack of assimilate as result of reduction of canopy photosynthesis, the filling 

period is terminated (Egli, 2004). 

Longer SFD’s are associated with a delay in leaf senescence (Egli, 2004). 

Modern soybean cultivars which have longer SFD, and thus higher yield, also 

exhibit a slower decline in canopy photosynthesis which is an indicator of 

delayed senescence (Wells et al., 1982). 

Senescence  

Leaf senescence is not separate from seed filling in grain crops; both are 

sequential and synchronous in monocarpic plants. Senescence is a “series of 

events concerned with cellular disassembly in the leaf and the mobilization of 

materials released during this process” (Thomas and Stoddart, 1980). 

Senescence during the seed filling period in soybean results in the remobilization 
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of nitrogen and other nutrients from the vegetative plant parts to the seed (Egli et 

al. 1983; Zeiher et al., 1982).  

Manipulation of leaf senescence could result in changes in seed fill-

duration and yield. Stresses such as water deficits or limited nitrogen supplies 

accelerated leaf senescence and shortened the seed fill period of soybean (de 

Souza et al., 1997; Hayati et al., 1995). De-podding and seed removal delayed 

senescence (Neumann et al., 1983; Wittenbach 1982). Wittenbach (1982) found 

that the delay in senescence and photosynthesis decline started one week after 

de-podding. Maize genotypes that exhibit delayed leaf senescence usually have 

higher yields (Tollenaar, 1991). Egli (2004) concluded that “delayed senescence 

will increase the seed-fill duration only when the seed has the ability to continue 

growth and increase in size”.  

Crop physiologists often use two main hypotheses to explain the cause of 

senescence in soybean. The first hypothesis states that the pods produce a 

killing hormone that is transported via phloem to the leaves and initiates 

senescence (Nooden, 1984, 1985). Leaves closest to the individual pod or pod 

cluster receive the signal that triggers leaf senescence. Soybean is a monocarpic 

plant in which de-podding can delay senescence, although it may not prevent the 

decline in photosynthesis and other parameters that are associated with 

senescence (Nooden and Leopold, 1988). In monocarpic plants, a tight 

correlation between the initiation of leaf senescence and development of 

reproductive organs has been observed which is possibly controlled by a 

coordinated signaling system (Biswal and Biswal, 1999). Investigations have 
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been carried out to elucidate the genetic mechanism of leaf senescence in the 

model plant Arabidopsis. However, specific genes for induction of senescence 

have not been identified; the down regulation of photosynthetic genes has been 

proposed to be the possible signal for up-regulation and induction of senescence. 

The second hypothesis is the “self-destruct” hypothesis, proposed by 

Sinclair and de Wit (1975) where nitrogen must be remobilized from the leaves to 

meet the high nitrogen demand by the developing seeds when nitrogen uptake 

from the soil is inadequate. The depletion of nitrogen from the leaves cause leaf 

senescence and regulates seed-fill duration.  Remobilization of nitrogen from the 

leaves results in destruction of the photosynthetic machinery, reduces the ability 

of the plant to maintain growth and thus the plant "self-destructs". They proposed 

that the self-destruct characteristic would limit the length of the seed-filling period 

and thus limit yield. Their simulation model was based on the “self-destruct” 

concept and relied on two assumptions. First, seed growth rate (SGR, g m-2 d-1) 

is determined by the amount of available assimilate (gross photosynthesis ̶ 

respiration); and second, the rate of nitrogen mobilization is dependent on the 

SGR. In the model, higher assimilate production would increase SGR and cause 

a more rapid remobilization of nitrogen from the leaves causing an accelerated 

rate of leaf senescence and the duration of the seed-filling period would be 

limited by the self-destruct characteristic (Sinclair and de Wit, 1976).   

Several crop physiologists have evaluated the “self-destruct” hypothesis 

(Egli, 2004; Hayati et al., 1995; 1996; Kumudini et al., 2002). Many studies of the 

effect of nitrogen supply on leaf senescence and seed-fill duration used plants 
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grown in liquid media because it was easier to manipulate the nitrogen supply. 

Streeter (1978) found that removing nitrogen from liquid culture media did not 

increase the rate of senescence. Also, Egli et al. (1978) reported that increasing 

the amount of nitrogen in the solution medium did not delay leaf senescence. 

Contrary to the predictions of the “self-destruct” hypothesis, Hayati et al. (1995) 

reported that increasing photosynthesis by shade removal at growth stage R5 

(beginning  seed fill) increased seed growth rate and seed yield but did not 

accelerate leaf senescence. Hayati et al. (1995, 1996) concluded that there was 

no seed-nitrogen demand.  

According to the Sinclair and de Wit model (1976), yield limitations in 

soybean can be overcome by prolonging the seed-filling period by lowering the 

seed growth rate and limiting nitrogen remobilization out of the leaves. However, 

Kumudini et al. (2002) found that soybean genotypes with higher yield did not 

remobilize more nitrogen to the seed than lower-yielding genotypes.  

There are many concerns about the validity of the “self-destruct” 

hypothesis as a model of senescence. Some crop physiologists suggested that 

the “self-destruct” model is not consistent with much of the literature on seed 

growth and senescence. Thus, it seems that the “self-destruct” hypothesis does 

not provide useful information about yield limitations in soybean.  

Harvest Index 

Harvest index (HI) is an indicator of partitioning of dry matter to the seed 

at maturity in grain crops.  The HI is equal to the seed mass (yield) divided by the 

total above ground biomass [vegetative mass + seed mass] at maturity (Donald, 
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1968). The HI is a final measure of the dry matter partitioned to the seed. The 

effects of foliar diseases on the partitioning of dry matter to the seed (i.e., HI) 

have been reported in only a few studies (Kumudini et al., 2008a). Board et al. 

(1994, 1997) reported a reduction in HI when manual defoliation was applied 

during seed-filling. Kumudini et al. (2008a) found that the reduction in HI due to 

SBR was higher when the infection occurred at growth stage R2, because of the 

severe reduction in yield as a result of defoliation. They also reported that the 

defoliation reduced yield through reduction in seed number with SBR onset at 

growth stage R2, and seed size with SBR onset at growth stage R5 which altered 

HI (Kumudini et al., 2008a). As seed filling progressed, the reductions in yield 

and HI due to defoliation diminished. Defoliation at growth stage R7 had no effect 

on yield and HI (Board et al., 2010). In summary, HI is influenced by the growth 

stage where the defoliation occurred. Earlier defoliation is expected to reduce HI 

more due to severe loss in yield.  

Soybean Rust 

Importance and Threat of Soybean Rust   

Phakopsora pachyrhizi Syd., the causal organism of SBR, has a broad 

host range and it can infect many legume species including lima bean 

(Phaseolus lunatus L.), lupine (Lupinus L.), green bean (Phaseolus vulgaris L.), 

jicama (Calopogonium caeruleum (Benth.) Suoev.), and the wild legume kudzu 

(Pueraria montana var. lobat (Lour.) Merr.) (Ono et al., 1992; Rytter et al., 1984). 

Phakopsora pachyrhizi was restricted for a long time to tropical and sub-tropical 

countries in Asia, Africa, and South America, where it causes significant yield 
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losses every year (Kawuki et al., 2003a; Levy, 2005; Wrather et al., 2001; 

Yorinori et al., 2005). Since then, the pathogen has spread to other countries 

including the U.S., where SBR was first reported in 1994 in Hawaii on islands of 

Oahu, Kakaha, Kauai, and Hilo (Killgore and Heu, 1994). On 6 November 2004, 

plants exhibiting SBR symptoms were discovered in a soybean field on a 

research farm near Baton Rouge, Louisiana (Schneider et al., 2005). A few 

weeks later, scientists in Alabama, Arkansas, Georgia, Florida, Mississippi, 

Missouri, South Carolina, and Tennessee confirmed the presence of SBR 

(Dorrance et al., 2007; Mullen et al., 2006).  Soybean rust was confirmed for the 

first time In Kentucky in 2006 on the alternative susceptible host kudzu 

(Hershman et al., 2006).  

Soybean rust is a devastating disease (Kuchler et al., 1984). It can cause 

yield losses from 40 to 80% (Hartman et al., 1991; Ogle et al., 1979). The 

optimum temperature for development of this disease is 15 to 28oC, with 6 to 12 

hours of moisture on the leaf required for spore germination (Dorrance et al., 

2007). It is possible that SBR infection will spread to the central regions of the 

U.S. because the weather conditions in these regions are often within the range 

of conditions favorable for rapid disease development. If the disease is 

established in the main soybean production states in the U.S., it could cause 

losses of up to $7.1 billion annually (Livingston et al., 2004).   

Pathogen Biology and Disease Cycle 

Phakopsora pachyrhizi is an obligate parasite that needs living hosts for 

survival and reproduction (Agrios, 2005, p. 571-573). Environmental conditions 
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that negatively affect the host’s survival can also decrease the ability of the 

pathogen to reproduce and overwinter. At tropical locations, there is no restriction 

to P. pachyrhizi overwintering except for areas at higher elevations and some 

heat-stressed areas in South America and central Africa (Pivonia and Yang, 

2004). In the U.S., P. pachyrhizi is likely to overwinter in the southern states and 

especially southern Florida (Pivonia and Yang, 2004). In Florida, the pathogen 

overwinters on an alternative susceptible host kudzu and other susceptible 

legumes, where it is protected from low temperatures by the plant’s foliage 

(Jurick et al., 2007).  

Once soybean is infected, the pathogen produces asexual reproductive 

structures called uredia, which continues to reproduce for several days (Goellner 

et al., 2010; Melching et al., 1979). One mature uredinium can produce over 

2000 uredinospores in 40 days (Goellner et al., 2010; Yeh et al., 1982). However, 

environmental conditions affect formation and sporulation of the uredia. 

Inoculated plants incubated at temperatures of less than 20oC had longer latent 

periods (infection without symptoms) than plants incubated at 20 to 25oC 

(Goellner et al., 2010; Kochman, 1979). Development of uredia and uredinospore 

production are usually more frequent on abaxial surfaces of leaves, which 

escape exposure to direct sunlight and ultraviolet radiation (Bromfield et al., 

1980; Goellner et al., 2010; Isard et al., 2006; Marchetti et al., 1975; Melching et 

al., 1979, 1988). The uredia are the most common reproductive structures that P. 

pachyrhizi produces. Telia were observed only under laboratory conditions; after 
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incubation for 40 days at a 17–22oC daily temperature cycle under high humidity 

(Poonpolgul and Surin, 1985). 

Fresh uredinospores emerge from the uredia and are dispersed by air. Li 

et al. (2006a) reported that the clumps of 4 to 30 spores were collected from 

infected kudzu leaves. The aggregation of spores may reduce the distance of 

spore movement, but spore clumping probably protects the internal spores from 

desiccation (Li et al., 2006a).  

After landing on susceptible host tissue, uredinospores germinate in the 

presence of free moisture (Goellner et al., 2010; Magnani et al., 2007; Marchetti 

et al., 1976). In general, developing germ tubes can elongate up to 185 μm, 

although they usually exhibited reduced growth under direct light (Koch and 

Hoppe, 1987). Six hours after germination, the uredinospores develop 

appressoria (Koch et al., 1983; Magnani et al., 2007; Mclean and Byth, 1981). 

Twelve hours after inoculation, appressoria were mature and the penetration 

process was started (Koch et al., 1983). In the appressorium, a funnel-shaped 

structure called the penetration hypha develops (Koch et al., 1983; Magnani et 

al., 2007). The hypha penetrates the host’s epidermal cell wall to reach the 

mesophyl where the fungal colonization begins. This process is usually 

completed 20 to 24 hours after inoculation (Koch et al., 1983). Obligate parasites, 

such as P. pachyrhizi, develop haustoria structures that are responsible for 

nourishing the fungus and the maintenance of the parasitic relationship with host 

cells (Agrios, 2005, p. 87-88; Goellner et al., 2010). Few studies have 

successfully demonstrated formation of haustoria during P. pachyrhizi 
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colonization due to the difficulties associated with staining colonizing hyphae. 

Seven to nine days after infection, the reproductive structures are formed and the 

life cycle restarts.  

Disease Symptoms  

The symptoms of SBR are small (2 to 5 mm) green to brownish or red-

brown lesions on lower leaflets with observable pustules (uredia). In most cases, 

initial lesions can be observed 7 to 9 days after infection; the uredia emerge on 

abaxial surface 2 days later. In severe infection, the lesions can be observed on 

stems and petioles (Hartman et al., 1999). Severely infected leaflets will 

eventually turn yellow, resulting in premature leaf abscission (Kumudini et al., 

2008a). 

Soybean rust is often confused with other common soybean diseases; 

especially at early developmental stages before uredia are formed (Dorrance et 

al. 2007). However, the structure of the uredia is unique to soybean rust. 

Incubation of leaflets with suspect lesions for a few hours will allow uredia 

emergence and sporulation (Dorrance et al. 2007). Further diagnostic techniques 

include observation of uredinospores, serologic tests, and PCR analysis (Lamour 

et al., 2006).  

Effect of Soybean Rust on Soybean  

Foliar pathogens such as SBR reduce LAI, LAD, and photosynthetic 

efficiency (Bastiaans, 1991; Goodwin, 1992; Kumudini et al., 2008b). 

Consequently, soybean rust affects the plant canopy by accelerating leaf 

abscission and reducing effective green leaf area due to necrotic and chlorotic 
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lesions on the remaining leaves, which limits photosynthesis and yield by 

reducing the plant’s ability to intercept and absorb solar radiation (Kumudini et 

al., 2008a). However, the reduction in the photosynthesis of infected leaves 

extends beyond the area of the lesion.  

Bastiaans (1991) proposed the calculation of a virtual lesion as a means 

of quantifying the effect of foliar disease on photosynthesis, and this concept has 

been used in several studies (Bassanezi et al., 2001; Bastiaans, 1991, 1993). 

The term virtual lesion was used to describe the area of the diseased leaf where 

photosynthesis was negligible. Bastiaans (1991) related the photosynthetic rate 

of a diseased leaf (Px) to that of a healthy leaf (Po) by: Px = Po (1-X)β, where X is 

the proportion of the leaf area covered by visible lesions and β is defined as the 

ratio between the sizes of the virtual and the visual lesions. The value of β is 

determined experimentally from the relationship between disease severity and 

the proportionate reduction in photosynthesis. When the β coefficient is equal to 

1, the virtual lesion area is the same as the visual lesion area, and there is no 

effect of the pathogen on photosynthesis of the remaining green tissue.  On other 

hand, when β is larger than 1, the virtual lesion is larger than the visual lesion.  

The β coefficients of a number of plant pathosystems have been determined to 

assess the impact of lesions on leaf photosynthetic capacity (Bassanezi et al., 

2001; Hartman et al., 1991; Garry et al., 1998; Robert et al., 2005), and 

substantial variation in β, ranging from 1 to 13, has been reported for 

pathosystems that included biotrophic or necrotrophic microorganisms. Recently, 

Kumudini et al. (2010) reported that β ranged from 2.1 to 3.0 for SBR.  
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Large economic losses are reported in areas where SBR occurs regularly 

(Bromfield and Hartwig, 1980; Kawuki et al., 2003b; Poonpolgul and Surin, 1980; 

Poonpolgul and Surin, 1985; Sharma and Mehta, 1996). After pathogen 

establishment on the North American continent, the expected net economic 

losses to growers, based on a theoretical model, were predicted to range from 

$640 million to $1.3 billion (Daberkow, 2004; Livingston et al., 2004) and were 

expected to vary by region. 

The pattern of occurrence of SBR from 2005 until 2009 in the U.S. 

suggests that the disease may not reach epidemic proportions in the major 

soybean producing regions in upcoming seasons. The occurrence of SBR 

seasonal epidemics above 37°N latitude depends upon the build-up of inoculum 

in southern areas followed by its subsequent northward movement, and on local 

environmental conditions that are favorable for disease development (Dorrance 

et al., 2007). The current recommendation to determine if an SBR epidemic is 

possible in the next growing season is to monitor kudzu and other susceptible 

legumes for SBR development during winter to early summer period in the 

southern states.  

Control Measures  

To date, most, if not all, soybean cultivars grown in the U.S. are highly 

susceptible to SBR. Therefore, current control of SBR relies primarily on 

fungicides. Early research showed that three to five applications of mancozeb 

and benzimidazole fungicides suppressed SBR development (Sinclair and 

Hartman, 1995). Compounds from the triazole and strobilurin fungicide groups 
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exhibited relatively high levels of SBR control (Levy, 2005; Miles et al., 2007; 

Patil and Anahosur, 1998). Individual formulations of azoxystrobin, tebuconazole, 

difenconazole, and mixed formulations of epoxiconazole with pyraclostrobin 

reduced SBR severity for 4 to 14 days after application (Godoy and Canteri, 

2004). In addition to these chemicals, strobilurins, the newest class of fungicides, 

showed effective control of SBR. 

With polycyclic diseases such as SBR, chemical control efficiency 

depends upon the correct timing of application (Mueller et al., 2009). In the first 

two seasons after the discovery of SBR in Brazil, severe epidemics were 

observed in regions where fungicide applications were delayed as a 

consequence of late disease diagnosis (Yorinori et al., 2005). Limited fungicide 

supplies, reduced availability of equipment for spraying, and wet weather 

conditions may also contribute to delayed fungicide applications which increase 

yield loss. 

In Brazil, fungicides are recommended as a preventive measure or after 

early disease detection in the field (Godoy and Canteri, 2004). In regions of 

Brazil with extremely high disease pressure due to frequent rainfall, growers 

make up to five five fungicide applications to control SBR, but yield losses are 

still observed (Godoy and Canteri, 2004)  

Few studies have evaluated the effect of cultural practices on SBR control 

(Kawuki et al., 2003a). Most SBR epidemics develop from secondary infections, 

which depend upon environmental conditions. Secondary infections can be 

reduced by cultural practices that reduce crop exposure to favorable conditions 
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for SBR infection. Early planting of early maturity cultivars reduced the impact of 

SBR on soybean (Kawuki et al., 2003a; Yorinori et al., 2007). Yorinori et al. 

(2007) observed that the early planted crops were exposed to smaller amounts of 

natural inoculum, which delayed the onset of the epidemic. The early planting 

and early maturity reduced the period that the crop was exposed to 

environmental conditions favorable for SBR development. However, they did not 

investigate the impact of inoculum amount (low vs. high) on yield with early 

planting. 

To date, there are six major genes known to confer resistance to SBR in 

soybean. These single dominant genes are designated Rpp1 (Mclean and Byth, 

1981), Rpp2 (Bromfield et al., 1980), Rpp3 (Bromfield and Hartwig, 1980; 

Bromfield et al., 1980; Hartwig and Bromfield, 1983), Rpp4 (Hartwig, 1986), and 

Rpp5 (Garcia et al., 2008). There is also a more recently discovered unnamed 

gene (Monteros et al., 2007). However, some aggressive isolates of P. pachyrhizi 

are able to overcome these sources of single gene resistance (Bonde et al., 

2006).To date, there are no commercial soybean cultivar containing all these 

genes or expressing resistance to all P. pachyrhizi races.  

The mechanism by which resistant genotypes reduce the effect of SBR on 

yield is not well known. But, it is well known that SBR reduces the photosynthesis 

capacity of susceptible genotypes (Kumidini et al., 2008a; Kumudini et al., 2010). 

Fewer lesions formed on the canopy of resistant accessions (i.e., reduced 

disease severity) and there was less impact on leaf photosynthesis. Resistant 

genotypes also showed a lack of pathogen sporulation lesions on the leaf which 
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minimizes the impact of the disease on canopy photosynthesis and yield 

(Kumudini et al., 2010).  

In summary, fungicides are the only effective method available to control 

SBR. Cultural practices may reduce the SBR severity but they do not prevent 

yield loss. Incorporating all resistance genes in commercial soybean cultivars is 

necessary to develop resistant cultivars.  

Effect of Defoliation on Yield  

Defoliation, caused by biotic and abiotic stress, may occur at any time 

during Murata’s three phases of yield production. Yield is more sensitive to 

defoliation during the reproductive phase than the vegetative phase because 

yield is determined during this phase (Egli, 2004; Murata, 1969; Schaafsma and 

Ableet, 1994). Defoliation during the vegetative phase may or may not affect 

yield (Pickle and Caviness, 1984; Weber, 1955). Canopy recovery from leaf 

regrowth after defoliation during the vegetative phase may compensate for the 

reductions in leaf area and produce high LI during the flowering and pod set 

phase (Higley, 1992; Peterson and Higley, 1996), which could maintain 

maximum photosynthesis rates. However, Hunt et al. (1994) reported that severe 

defoliation delayed the achievement of the critical LAI, thus LI and dry matter 

accumulation were limited.  

Defoliation during the reproductive phase may reduce LAI, LAD, and LI 

which, depending upon the amount results in lower yield (Board et al., 1994; 

Board et al., 2010; Kumudini et al., 2008a) as a result of reductions in canopy 

photosynthesis (Ingram et al., 1981). This reduction in photosynthesis limited 
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both carbon and nitrogen supplies with the end result a reduction in dry matter 

accumulation (Kumudini et al., 2008a). Defoliation of the upper canopy reduced 

yield because of a severe reduction in LI inspite of a stimulation of 

photosynthesis of the remaining leaves (Higley, 1992; Klubertanz et al., 1996; Li 

et al., 2006b) due to exposure to more solar radiation. Board et al. (2010) found 

that narrow row spacings tolerated defoliation better than wide rows spacing 

because of improved the LI and larger LAI. Recently, Quijano and Morandi 

(2011) reported that the lateral leaflet removal of every developed trifoliolate 

increased pod initiation due to improved light penetration to the lower part of the 

canopy. 

Yield loss at a given developmental stage is determined by the amount or 

percent of LAI removed and if the remaining LAI is below the critical level (Board 

et al., 1994; Board et al., 2010; Kumudini et al., 2008a; Peterson and Higley, 

1996; Pickle and Caviness, 1984; Schaafsma and Ableet, 1994; Weber, 1955). 

For example, removing 20% of the LAI at growth stage R5 does not have the 

same effect on yield as removing 20% at growth stage R1, because the canopy 

at growth stage R1 would probably be below the critical level. Haile et al. (1998) 

found that high levels of defoliation (about 55%) at growth stage R2 reduced LI 

and yield and concluded that yield loss was directly related to the reduction in LI 

after defoliation. Fehr et al. (1981) reported that 80% yield loss occurred when 

100% defoliation was applied during the growth stage R5 to R6 period. Board et 

al. (1994) reported that 100% defoliation at beginning of growth stage R6 

resulted in a 40% yield loss, but the yield loss was only 20% for defoliation three 
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weeks after beginning of growth stage R6. Board et al. (1997) found that removal 

of 41% of the LAI at growth stage R6 caused only an 8% yield loss, while 56% 

removal reduced yield by 17%. They concluded that, at growth stage R6, a 

significant yield loss occurred whenever defoliation reduced LI below 95%. In 

more recently study, Board et al. (2010) reported that soybean yield loss 

occurred when defoliation is large enough to reduce LI by 18 to 23%. Defoliation 

at growth stage R7 has no impact on yield. Generally, yield sensitivity to 

defoliation is high at beginning of reproductive phase and declines as seed filling 

progresses (Board et al., 2010), so the affect of defoliation is depends upon the 

reduction in LI and on the proportion of the yield that is accumulated when the 

defoliation occurs.  

Several researchers reported that defoliation altered the reproductive 

cycle in soybean and corn (Barimavandi et al., 2010; Board et al., 1994; 

Kumudini et al., 2008a; Ingram et al., 1981; Jones and Simmons, 1983; Tollenaar 

and Daynard, 1978). One hundred percent defoliation of soybean and corn 

reduced photosynthesis to near zero and that caused seed growth to stop and 

reduced the duration of seed filling in both crops (Hunter et al., 1991; Jones and 

Simmons, 1983; Tollenaar and Daynard, 1978; Vieira et al., 1992).  

Soybean compensates for defoliation by delaying senescence and leaf 

abscission (Higley, 1992); however, the level of compensation depended on the 

amount of defoliation and the growth stage. Board et al. (2010) reported that 

defoliation shortened the effective filling period, and reduced crop growth rate 

from growth stage R1 to R5 (Board 1994; Board and Harville, 1993). Also, 



 
 

27 
 

Schaafsma and Ablett (1994) documented that removing 66% of navy bean 

(Phaseolus vulgaris L.) canopy at growth stage R6 reduced time to maturity by 

one week. 

Several studies reported that reductions in yield due to defoliation during 

the reproductive phase were associated with reductions in seed number (Board 

and Harville, 1993; Board et al., 2010; Caviness and Thomas, 1980; Higgins et 

al., 1984; Kumudini et al., 2008a), whereas others found that defoliation also 

reduced seed size (Board et al., 2010; Fehr et al., 1981; Ingram et al., 1981). 

This apparent controversy was due to the timing of defoliation treatments. If 

defoliation occurs early during the reproductive phase (Murata’s phase II) it will 

primarily effect seed number (Board and Harville, 1993). When defoliation was 

applied during seed filling (phase III), a significant reduction in seed size 

occurred (Ingram et al., 1981).  

In summary, the reproductive phase is the most sensitive stage for 

defoliation, and defoliation during reproductive phase may effect soybean yield 

and yield components. The amount of defoliation and the growth stage at which 

defoliation occurs determines which of the yield components is effected; usually 

only one is affected but not both. Determining the effect of defoliation on SFD 

and leaf senescence of soybean is warranted to develop effective management 

practices for SBR control. 

Predicting Yield loss  

Few studies have simulated foliar disease injury (Vasilas et al., 1989). Any 

effective simulation method that mimics disease injury would explain the 
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reduction in plant growth. To develop accurate simulation methods that explain 

yield reductions across a wide range of environmental conditions, it is important 

to understand the impact of the injury on crop growth and the yield formation 

process (Savary et al., 2006). Plant injury is defined as a “stimulus producing an 

abnormal change in a physiological process” (Peterson and Higley, 2001, p. 6-7). 

Peterson and Higley (2001, p. 6-7) listed several types of canopy injury caused 

by pests including reductions in plant population, leaf mass, photosynthesis and 

assimilate supply, alternations in leaf senescence and LI, water balance 

disruption, fruit destruction and phenological disruption. Yield loss is a function of 

the magnitude and duration of the injury. 

Some crop-loss assessments depend upon the relationship between yield 

and disease incidence or severity, and the area under the disease progress 

curve (AUDPC) (Jeger and Viljanen-Rollinson, 2001; Nutter et al., 2002; Schoeny 

et al., 2001; Subba Rao et al., 1990). The AUDPC is the intensity of disease 

integrated between two times of interest which is the quantitative disease injury 

over time (Jeger and Viljanen-Rollinson, 2001). Plant pathologists use AUDPC 

for yield loss assessment (Schoeny et al., 2001; Subba Rao et al., 1990). The 

AUDPC was used to quantify the level of resistance to many plant diseases, 

where higher AUDPC represented susceptible plants. It provides an effective, 

fast, and robust method to assessing disease progress because it makes it 

possible to characterize the disease intensity on plant canopy during the time 

period of interest (Jeger and Viljanen-Rollinson, 2001; Schoeny et al., 2001; 

Subba Rao et al., 1990). However, Waggoner and Berger (1987) reported that 
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using disease severity and AUDPC to explain yield reductions did not provide a 

valid comparison among the treatments or between seasons because the LAI 

was not the same. Also, Jesus Junior et al. (2003) and Waggoner and Berger 

(1987) found that the AUDPC and disease’s severity was not directly related to 

LI. 

In the late 1980s and early 1990s, scientists started studying yield loss by 

investigating the relationship between disease infection and the physiology of 

yield formation. Some researchers used defoliation to estimate the relationship 

between the amounts of vegetation lost or the remaining healthy green leaf area, 

and yield (Bancal et al., 2007; Haile et al., 1998). Others accounted for disease 

effects on photosynthesis, assimilate supply, and biomass accumulation to 

estimate yield loss (Aggarwal et al., 2006; Bancal et al., 2007). Boote et al. 

(1983) and Johnson (1992) used the relationship between the LAI, LI and RUE to 

estimate yield loss from pests. Boote et al. (1983) developed a crop growth 

simulation model that provided a framework for estimating the effects of pests on 

crop growth and yield. Johnson (1992) used the relationship between the pest 

damage and yield to develop an empirical model to estimate the impact of pests 

on potato (Solanum tuberosum L.) productivity. Bancal et al. (2007) investigated 

the relationship between green leaf area and growth and developed a simple 

yield loss model for foliar diseases of wheat (Triticum aestivum L.).  

Disease lesions on the leaf surface can compromise the ability of the 

canopy to absorb radiation. Bastiaans (1991; 1993) found that rice blast disease 

(Magnaporthe grisea [T.T. Hebert] M.E. Barr) reduced LI as a result of reduction 
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in leaf area, and reduced photosynthesis of the remaining healthy leaf area which 

affect the RUE, both factors were related to the yield loss. Jesus Junior et al. 

(2003), Kumudini et al. (2008a), and Waggoner and Berger (1987) suggested 

that healthy leaf area (i.e., total leaf area minus the area of the leaves that is 

diseased), healthy LAD, ELAI, and ELAD are good estimates the impact of the 

disease on yield. Indeed, healthy LAD and the absorption of incident solar 

radiation by healthy leaf area have been shown to be excellent predictors of yield 

(Bancal et al., 2007; Bergamin Filho et al., 1997; Leite et al., 2006; Jesus Junior 

et al., 2003; Waggoner and Berger, 1987).  

In summary, simulating disease injury could help predict yield loss. 

Investigation of the relationship between the disease injury and yield is essential 

to developing yield loss prediction tools. There are several factors involved in 

these relationships including LAI, LAD, and RUE, and any reduction in these 

traits may reduce yield. 

Simulating Foliar Disease Injury  

Many researchers investigated the impact of insects (Browde et al., 1994; 

Gustafson et al., 2006a, 2006b; Haile et al., 1998; Hammond et al., 2000; 

Herbert et al., 1992; Higgins et al., 1984; Hunt et al., 1994; Ingram et al., 1981; 

Peterson and Higley, 2001, p. 6-7; Talekar and Lee, 1988) and diseases 

(Schoney et al., 2001; Vasilas et al., 1989; Waggoner and Berger, 1987) on crop 

productivity. However, the objective of many of these investigations was to 

simulate the insect’s impact, but not the disease’s, on yield (Browde et al., 1994; 

Gustafson et al., 2006a; Haile et al., 1998; Hammond et al., 2000; Herbert et al., 
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1992; Higgins et al., 1984; Hunt et al., 1994; Ingram et al., 1981). Some 

researchers simulated insect injury with crop growth models (Yadav and 

Chander, 2010), while other developed models based on the epidemiology of the 

insect (Berger et al., 1995).  

Most of the simulation methods relied on manual defoliation to investigate 

the relationship between crop injury and yield loss (Gustafson et al., 2006a, 

2006b; Hammond 1989; Hammond et al., 2000; Herbert et al., 1992; Hunt et al., 

1994; Talekar and Lee, 1988). Many of these researchers found that manual 

defoliation was an efficient and reliable method to simulate insect injury 

(Gustafson et al., 2006a; Hammond 1989; Hammond et al., 2000; Herbert et al., 

1992; Higgins et al., 1984; Hunt et al., 1994), and helped to understand how 

insect caused yield loss (Gustafson et al., 2006a; Hammond et al., 2000).  

Gustafson et al. (2006a) simulated the early season insect defoliation that 

is associated with weed interference to determine the effect on soybean growth 

and yield. They used three defoliation levels (0, 33, and 66%) conducted 

sequentially over a period of 7 days starting at growth stage VC. The simulation 

was effective in estimating yield loss from weed interference and insect 

infestation (Gustafson et al., 2006a). Hammond et al. (2000) used defoliation to 

develop a model to simulate insect injury.  They found that the relationship 

between insect injury and yield loss was similar across the row widths tested, 

and the simulation accurately explained the yield loss (Hammond et al., 2000).  

Very few studies used defoliation to simulate the impact of foliar diseases 

on crop productivity (Kumudini et al., 2008a; Vasilas et al., 1989). Vasilas et al. 
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(1989) simulated the impact of Septorla brown spot disease on soybean yield by 

manually defoliating from the bottom of the canopy upward to mimic the natural 

infection of the disease. The defoliation was applied at growth stage R5 and one 

week later by removing the leaf blades and petioles from the lowest three or four 

leaf-bearing nodes four times at four days intervals so that only three or four 

nodes at the top of the plant remained leaf-bearing when defoliation ceased. 

They found that yield responded to manual defoliation in similar way that it 

respond to diseased canopies. The defoliation at growth stage R5 reduced yield 

by 19% and 9% when defoliation was applied one week after R5. 

One general approach to simulating defoliation can be extracted from the 

literature. This approach involves reducing the leaf area to the level caused by 

the pest; this reduction was expressed as percent of LAI removal or percent of 

the remaining leaf area (Bancal et al., 2007; Board et al., 2010; Fehr et al., 1977; 

Gustafson et al., 2006a, 2006b; Hammond 1989; Hammond et al., 2000; Herbert 

et al., 1992; Hunt et al., 1994; Kumudini et al., 2008a; Talekar and Lee, 1988). 

However, Herbert et al (1992) reported that defoliation based on reducing LAI did 

not predict yield loss as well as the total leaf area remaining after defoliation.  

Cultural practices, such as row width, may affect the effectiveness of the 

simulation method through indirect effects on LI. Hammond et al. (2000) found 

that the relationship between the LAI or percent of LI and yield was dependent on 

row width. Also, they reported that large canopies (i.e., high LAI) tolerated larger 

amounts of defoliation without significant reductions in LI and, therefore, no 

significant reduction in yield. On the other hand, defoliation in small canopies 
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(i.e., low LAI) reduced yield more, because there were significant reductions in LI 

(Hammond et al., 2000). However, the growth stage at which the pests infect 

crop is important when determining the relationship between a defoliation and 

yield loss. Kumudini et al. (2008a) found that the relationship between yield loss 

and the defoliation due to SBR at growth stage R2 and R5 was explained better 

than defoliation at growth stage R6.  

Some studies used a single defoliation to simulate pest injury (Hammond 

1989; Talekar and Lee, 1988) while other used sequential defoliation treatments 

(Gustafson et al., 2006a, 2006b; Kumuduni et al., 2008a). Comparison of single 

and sequential defoliation revealed that the sequential defoliation provided a 

better simulation of pest injury (Board et al., 2010; Fehr et al., 1977; Gustafson et 

al., 2006a, 2006b; Kumudini et al., 2008a). To develop an effective injury 

simulation method, an understanding of the mechanism of how the pest caused 

yield loss is needed.   

In summary, many of the insect and disease simulations used manual 

defoliation to study the impact on yield. The effectiveness of defoliation 

depended on the ability to reduce LAI to similar levels as caused by the insects 

or plant diseases. Sequential defoliation probably is a better method for canopy 

defoliation because it simulates injury over time. There is very little information 

available about the impact of SBR on LAI and LAD. To our knowledge, no one 

has simulated SBR injury or investigated the impact of canopy defoliation on crop 

and seed growth rate or nitrogen mobilization.   
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Statement of Purpose 

Soybean rust (SBR) (caused by Phakopsora pachyrhizi Syd. and P. Syd) 

is a devastating soybean disease, causing yield loss of up to 80%. If SBR is 

established in the soybean production regions of the U.S., severe yield losses 

could occur. Fungicides are the only means of control, since all currently 

available commercial soybean cultivars grown in the U.S. are susceptible to 

SBR. Understanding how SBR affects the soybean canopy and the yield 

formation process is critical to developing effective strategies to control SBR. 

Soybean rust affects the plant canopy by three mechanisms: i) it accelerates leaf 

abscission and reduces green-leaf area which limits yield by reducing the plant’s 

ability to intercept and absorb solar radiation, and ii) SBR lesions reduce 

photosynthesis by reducing the green leaf area, but the reduction in 

photosynthesis of green leaf area extends beyond the actual lesion area.  

The impact of foliar disease on yield is cumulative throughout the seed 

formation process. Previous research showed that foliar pathogens, such as P.  

pachyrhizi, affect the leaf area duration (LAD) and effective leaf area index 

(ELAI). Reduction in LAI reduces the carbon and nitrogen available for 

remobilization to the seed during the seed-filling period. Therefore, 

understanding how SBR impacts LAD and ELAI is critical to managing SBR.  

In the U.S. field inoculation of plants with SBR that is necessary to study 

the impact of SBR on soybean growth and yield production is difficult due to 

possibility of spreading the pathogen inoculum into neighbor field or states. 

Therefore, developing a method to simulate SBR injury and estimate yield loss 
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was warranted. Reliable estimates of yield losses from SBR infestation in field 

conditions is a prerequisite for the rational development of any protection 

program. In this dissertation, healthy soybean canopies were artificially defoliated 

to simulate the impact of SBR on yield by changing the leaf area index based on 

data obtained from diseased canopies in Brazil. The purpose of this dissertation 

is (i) to develop a method to simulate SBR injury under field conditions, (ii) to 

investigate how SBR affects the growth dynamic of soybean, and (iii) to study 

how defoliation affects nitrogen remobilization to the seed during seed filling 

period.  
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CHAPTER TWO 

SIMULATION THE IMPACT OF SOYBEAN RUST ON SOYBEAN YIELD WITH 

MANUAL DEFOLIATION 

Introduction 

 Soybean rust (SBR), a destructive foliar disease caused by Phakopsora 

pachyrhizi Syd. and P. Syd, is major threat to U.S. soybean production (Hartman 

et al., 1991; Ogle et al., 1979).  In areas where this disease is endemic, yield 

losses can be as high as 80%.  Since its introduction to the U.S. in 2004, yield-

damage levels of SBR have been restricted to the Southeastern production 

regions, but it could cause serious yield losses in the Midwest if the disease 

spreads to the Midwest with the right climatic conditions (Dorrance et al., 2007).  

Coping with this disease threat requires reliable estimates of yield losses from 

SBR under field conditions, which will help us understanding how the disease 

impacts yield production. Estimating yield losses is hampered by restrictions of 

spreading SBR to healthy neighbor field or states. An alternative approach is to 

use manual defoliation to simulate the impact of SBR on yield. 

 Previous levels and timings of defoliation research produced variable yield 

responses among environments and genotypes (Timsina et al., 2007).  However, 

when defoliation effects across genotypes and environments were analyzed 

through their effect on light interception (i.e., their effect on canopy 

photosynthetic activity), genotype and environments effects disappeared (Board, 

2004; Board et al., 2010; Browde et al., 1994; Ingram et al., 1981).  In the current 

study we used a similar approach that involved the effective leaf area index 
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(ELAI) (Jesus Junior et al., 2003), which accounts for the effect of SBR on 

defoliation, the reduction in green leaf area (due to necrotic and chlorotic lesions) 

and the reduced photosynthetic rate of the remaining green leaves (Kumudini et 

al., 2008a, 2010).  Because foliar diseases affect yield formation across an 

extended period rather than at one specific time (Aquino et al., 1992; Bassanezi 

et al., 2001; Bergamin et al., 1997; Jesus Junior et al., 2003), yield losses from 

SBR are best analyzed by integrating ELAI across time into the effective leaf 

area duration (ELAD) (Omielan et al., 2009). 

 Our hypothesis is that field plants manually defoliated to achieve ELAD that 

simulate the progress of SBR will have yields similar to those from the SBR-

infested plants. Field inoculation of soybean with SBR that is necessary to study 

the impact of SBR on soybean growth and yield production and help determine 

the effective management practices to control SBR. Validity of this hypothesis 

would indicate that yield losses from possible SBR attacks in the U.S. could be 

approximated by manual defoliation.  Although such a hypothesis is best tested 

in side-by-side studies with SBR-infested plots, this option is difficult in absent of 

SBR.  Therefore, our objective was to test the aforementioned hypothesis by 

comparing ELAD and yields from a SBR-infested field in Brazil with manually-

defoliated trials in the U.S. designed to simulate the ELAD of the Brazilian tests.    

Materials and Methods  

Culture 

Field studies were carried out in Kentucky and Louisiana during the 2008 

and 2009 growing seasons. 
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Kentucky Site 

Studies at Lexington, Kentucky (38o N Latitude) were conducted at the 

Spindletop Research Farm on a Maury silt loam soil (fine, mixed, semiactive, 

mesic Typic Paleudalfs). Seed of ‘AG3905’ (maturity group III, indeterminate) 

was machine planted on 13 May 2008 and 21 May 2009 into 38-cm rows 8-m 

long. Experimental units were nine-rows wide. Fertilizer was applied pre-plant 

only in 2008 according to soil test recommendations at a rate of 0-0-112 (kg ha-1 

N-P-K). Lime was also added at a rate of 3362 kg ha-1 in 2008 and 2242 kg ha-1 

in 2009. Seed were sown at a rate of 58 seed m-2 in 2008 and 67 seed m-2 in 

2009. Recommended practices were used for control of weeds, diseases, and 

insects. Sprinkler irrigation was applied as needed to avoid drought stress. 

Louisiana Site 

Studies in Louisiana were conducted at the Ben Hur research station near 

Baton Rouge, LA (30o N Latitude) on a Commerce silty clay loam soil (fine-silty, 

mixed, superactive, nonacid, thermic Fluvaquent Endoaquepts). Seed of 

‘DP4331’ (maturity group IV, indeterminate) was machine planted on 17 April 

2008 and 16 April 2009 into 97-cm rows 7.3-m long. Experimental units were four 

rows wide. Fertilizer was applied prior to planting according to soil test 

recommendations at the rate of 0-15-56-21 kg ha-1 N-P-K-S. Seed were sown at 

a rate of 28 seed m-2. Recommended practices were used to control weeds, 

diseases, and insects. Sprinkler irrigation was applied as needed to avoid 

drought stress. 
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Defoliation Treatments 

Defoliation during reproductive development was used to simulate the 

effect of SBR on soybean growth and yield starting at full bloom (growth stage 

R2, Fehr and Caviness, 1977) and the beginning of the seed-filling period 

(growth stage R5). The treatments were defoliation starting at growth stage R2, 

defoliation starting at growth stage R5, and an undefoliated control (Table 2.1). 

All defoliations were applied by removing leaves (leaving the petioles on the 

plant) from the bottom of the canopy upward to mimic the natural progression of 

leaf loss due to SBR (Kumudini et al., 2008a).  

 
Table 2.1. Defoliation treatments used to simulate the effect of soybean rust 

(SBR) on leaf  area in Kentucky and Louisiana. 

Growth Stage LAI removal to simulate SBR infection 
at growth stage R2  at growth stage R5 

 
R2 

 ــــــــــــــــــــــــــ†Percent of controlــــــــــــــــــــــــــ
                   2 --- 

R3 3  --- 
R4 3  --- 
R5 39  15 
R5+1week 43  10 
R5+2weeks 10  31 
R5+4weeks ---  44 
Total removal 100  100 

 
†Percent of control LAI. 

 

Briefly, the leaf removal levels in the defoliation treatments were 

determined as follows: 1) Leaf abscission and disease severity in an infected 

soybean canopy in Brazil (Kumudini et al., 2008a) were used to calculate the 

effective leaf area index (ELAI) during reproductive growth; 2) This ELAI and the 

LAI on the fungicide-protected control in Brazil were used to estimate the 
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reduction in the ELAI resulting from SBR infection (Table 2.1, Fig. 2.1); and 3) 

The LAI of the defoliation treatments in the experiments reported here was 

reduced below the control at frequent intervals by the amount in Table 2.1 to 

simulate SBR infection starting at growth stage R2 and R5. 

 

 

Figure 2.1. Effect of soybean rust (SBR) on effective leaf area index (ELAI) in a 

field trial with plants inoculated with Phakopsora pachyrhizi in Brazil in 

2006/2007. Plants were inoculated at growth stage R2 and R5. Symbols and 

arrows at the x-axis indicate when the control reached growth stage R5 and R7.  

 

The LAI of the control plots in Kentucky and Louisiana was determined 

four times at weekly intervals during growth stage R2 to R5 by removing all the 

leaflets from all plants in 0.5 m2 from interior portions of the plot. The leaf area of 
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a sub-sample of 150 leaflets selected randomly from lower-, mid-, and upper- 

locations in the canopy was measured with a LI-3000 leaf area meter (LI-COR 

Corp., Lincoln, NE). The fresh and dry weight of the sub-sample and the leaves 

remaining in the 0.5-m2 sample were determined and used to estimate the leaf 

area of the entire sample. The sub-sample represented approximately 30% of the 

total sample, on average. 

The maximum LAI occurs approximately at growth stage R5 (Carpenter 

and Board, 1997), and the LAI of the standing crop in the control plots from this 

point until physiological maturity (growth stage R7) was determined weekly by 

subtracting the LAI of the abscised leaves lost due to natural senescence from 

the LAI of control plots at growth stage R5. One m2 wire enclosures were 

installed in the control plots to collect fallen leaves from growth stage R5 to R7 

and the LAI of the fallen leaves was calculated as (number of fallen leaves) x 

(average area per leaf) per m2. 

The affect of SBR on leaf area and function was estimated in Brazil by the 

effective leaf area index (ELAI) which includes the  reduction in green leaf area 

index as function of disease severity (Fig. 2.1) (Godoy et al., 2006) and the 

reduction in photosynthesis due to the SBR lesions (Bassanezi et al., 2001). The 

ELAI over time (Bassanezi et al., 2001; Jesus Junior et al., 2003) was calculated 

from ELAI = LAI (1−X)β where X is the disease severity and the β is the ratio 

between virtual and visual lesions. We used a β value of 3.0 based on estimates 

on field grown soybean genotypes (Kumudini et al., 2008a, S. Kumudini, 

personal communication, 2008). The effect of SBR was determined by 
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comparing the ELAI of infected plants with LAI of fungicide protected controls 

and this ratio was used to calculate the defoliation level in Kentucky and 

Louisiana (Table 2.1). In the non-infected canopies in Kentucky and Louisiana 

the ELAI and LAI were equal.  

Experiment Design  

The experiments at both locations were randomized complete block 

designs with split-plot treatment arrangement with four replications. Main plots 

were the eight sampling periods simulating onset of SBR at growth stages R2 

and R5, and split plots were the control and two defoliation treatments. Because 

yield was measured at maturity (growth stage R8) it was analyzed as RCBD with 

four replications.  

Plant Phenology 

Plant growth stage of 10 consecutive plants in the row was recorded twice 

a week (Fehr and Caviness, 1977). The same plants were measured throughout 

the season. A plot was considered to be at a particular growth stage when 50% 

or more of the plants had reached that stage.  

Kentucky Yield 

Plants from 4.6 m2 of bordered rows were hand-harvested and threshed 

and weighted. Seed moisture concentration was determined and yield was 

adjusted to 130 g kg-1 moisture concentration.   

Louisiana Yield 

Yield was determined at maturity by sampling 4 m2 of interior rows and 

determining the total fresh weight of the entire sample using a field scale. A 0.5-
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m2 sample was harvested to determine fresh weight and dry weight (oven dried 

at 60oC for 4 days), then threshed to determine seed weight, leaf and petiole dry 

weight, and HI. Yield calculated as follows: Yield = [(total fresh weight of 4-m2) x 

(dry weight of 0.5-m2/fresh weight 0.5-m2)  ̶  leaf and petiole dry weight] x harvest 

index (fraction) (Board et al., 2010). Yield was adjusted to 130 g kg-1 moisture 

concentration. Yield data from the Louisiana-2009 experiment was not available. 

Effective Leaf Area Duration 

At both locations, the effective leaf area duration (ELAD) was calculated 

by integrating ELAI over time (Jesus Junior et al., 2003) as in the equation ELAD      

=       [(ELAIi + ELAIi+1)/2] × (ti+1 – ti), where n is the number of assessments, ti is 

the time at which ELAI was evaluated, and (ti+1−ti) is the interval (days) between 

two consecutive assessments.  

Data Analysis 

To verify assumptions of independently and normally distributed error, the 

means were plotted against their variance to confirm the errors homogeneity. 

Two-tailed F-test test was conducted to determine the homogeneity of variance 

among the experiments before the data were analyzed. The data were analyzed 

using Proc MIXED and significant means differences were determined by the 

SAS LSMEANS procedure (SAS 9.1; SAS Institute Inc., Cary, NC).  Year and 

location were considered random effects, while treatments were considered a 

fixed effect.   

∑
=in

1
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Results and Discussion 

In this study healthy soybean canopies were artificially defoliated to 

simulate the impact of SBR on the yield. Previous reports have shown that 

accelerated leaf abscission, reduction in the green leaf area, and reduced 

photosynthesis are all SBR-induced factors that can influence yield (Kumudini et 

al., 2008a; 2008b; 2010). There are many reports of the effect of defoliation on 

soybean yield (Board et al., 1994; Goli and Weaver, 1986; Haile et al., 1998; 

Vasilas et al., 1989); however, simulating SBR through modification of the 

canopy’s ELAD has not been previously reported. 

There was variability in maximum LAI among the four location/years of the 

experiment (Fig. 2.2 and 2.3). Leaf area index of healthy canopies increases until 

the crop reaches growth stage R5 (Fig. 2.2 and 2.3). This is in agreement with 

Board and Harville (1992), and Carpenter and Board (1997) who reported that 

soybean reaches maximum LAI approximately at growth stage R5, after which 

natural senescence causes a slow decline (Fig. 2.2 and 2.3). The larger LAI in 

Kentucky in 2009 compared with 2008 may be due to variation in ambient air 

temperatures between the two years, and the precipitation during vegetative 

growth (Fig. 2.4). The cumulative precipitation from planting until the plants 

reached growth stage R5 was 252 mm in 2008 and 344 mm in 2009 which, in 

combination with the cooler temperature and supplemental irrigation, may have 

created a more favorable environment for growth.  
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Figure 2.2. Leaf area index from flowering until physiological maturity for control 

and manual defoliation treatments simulating soybean rust onset at growth stage 

R2 and R5 in Kentucky in 2008 and 2009. Arrows on the x-axis indicate the 

occurrence of beginning seed fill (growth stage R5), and physiological maturity 

(growth stage R7). Vertical bars represent ± standard error of the mean. 
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Figure 2.3. Leaf area index from flowering until physiological maturity for control 

and manual defoliation treatments simulating soybean rust (SBR) onset at growth 

stage R2 and R5 in Louisiana in 2008 and 2009. Arrows on the x-axis indicate 

the occurrence of beginning seed fill (growth stage R5), and physiological 

maturity (growth stage R7). Vertical bars represent ± standard error of the mean. 
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Figure 2.4. Temperature and precipitation for vegetative growth period (planting 

until growth stage R5) in 2008 and 2009 in Kentucky, data from weather station 

installed at the site of the field plots.  
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The defoliation treatments simulated the change in ELAI due to SBR, and 

were based on the percentage change in ELAI of infected plants relative to the 

control (Fig. 2.1). Therefore there was a proportionate reduction in LAI, although 

the absolute LAI values varied among the four years/locations (Fig. 2.2 and 2.3). 

The LAI declined faster when defoliation started at growth stage R2 compared 

with defoliation starting at growth stage R5 at both locations across years (Fig. 

2.2 and 2.3). The trends were similar to those observed due to leaf abscission in 

the SBR-infected treatments (Fig. 2.1). The defoliation treatments also produced 

differences in leaf area duration (LAD) (Table 2.2); the LAD of defoliation 

treatment started at growth stage R2 was always significantly less than 

defoliation treatment started at R5. Leaf area duration of both treatments was 

much lower than the control.  

There was also variation in the time to reach growth stage R7 among the 

years/locations; plants in Kentucky reached growth stage R7 sooner than plants 

in Louisiana. Interestingly, the time that plants took to reach physiological 

maturity varied among treatments. Plants where defoliation started at growth 

stage R2 reached growth stage R7 sooner than when defoliation started at 

growth stage R5 which, in turn, reached growth stage R7 sooner than control 

(Fig. 2.2 and 2.3). Similar trends occurred in both locations and both years (Fig. 

2.2 and 2.3). Thus, the time to reach physiological maturity was directly 

associated with the LAD. In soybean the length of seed filling period (R5 to R7) is 

related to the yield; shortening in the seed-filling period would have negative 

effect on yield (Egli, 1998, 2004). These results are in agreement with 



 
 

 
 
 

Table 2.2. Effect of simulating soybean rust injury using manual defoliation on effective leaf area duration (ELAD) from R5 

to R7 in Kentucky and Louisiana. 

 
 Effective Leaf Area Duration (ELAD) 
 Brazil†   Kentucky‡  Louisiana ‡ 
Treatment 2007   2008 2009 Mean  2008 2009 Mean 
 
 Days % of 

control  Days % of 
control Days % of 

control Days % of 
control 

 
Days 

% of 
control Days 

% of 
control Days 

% of 
control 

Control 81 a§ 100  173 a 100 216 a 100 195 a 100  137 a 100 217 a 100 177 a 100 
Manual defoliation at                  
      Growth stage R2 ---   11 c 6 16 c 7 13 c 7  26 c 19 72 c 33 49 c 28 
      Growth stage R5 ---   60 b 34 82 b 38 71 b 36  63 b 46 110 b 50 87 b 49 
                 

Infected with SBR at                 

     Growth stage R2 10 c 12  --- --- --- --- --- ---  --- --- --- --- --- --- 
     Growth stage R5 39 b 48  --- --- --- --- --- ---  --- --- --- --- --- --- 

 

†Plants growing in field where plants inoculated with SBR causal organism (P. pachyrhizi) in 2007, and the control plots 
were protected with fungicides. From Kumudini et al. (2008a). 
 
‡In 2008 and 2009 SBR effects were simulated by matching the change in ELAI observed in Brazil with manual defoliation 
in Kentucky and Louisiana. 
 
§Means in the same column not followed by the same letter are significantly different at P < 0.05. 
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Kumudini et al. (2008a) who reported that SBR changed the natural cycle of 

soybean canopy development and caused rapid premature leaf abscission. 

Field studies with SBR infection in Brazil showed that inoculations earlier 

in reproductive growth had a greater impact on yield than inoculation later in 

reproductive growth (Kumudini et al., 2008a). Yield was reduced by both SBR 

and manual defoliation (Table 2.3). Defoliation starting at growth stage R2 

caused larger yield reductions than defoliation at growth stage R5 and this 

response was consistent across year and locations (Table 2.3). These finding 

were in agreement with Hartman et al. (1991) and Yang et al. (1992) who found 

yield reductions up to 80% for SBR infection at R1, and up to 50% for SBR 

infection at R5. Board et al. (2010) reported that partial defoliation after R5 

resulted in 78% of yield reduction. This response was nearly identical to the 

response to SBR in Brazil (Table 2.3). The greater effect of the earlier defoliation 

is probably due to less of light intercepted by the canopy (chapter three) leading 

to reduction in canopy photosynthesis and the assimilate available for seed filling 

(Board et al., 2010), as shown by the treatments affect on LAD and the duration 

of the seed-filling period (i.e., earlier occurrence of growth stage R7). 

Omielan et al. (2009) developed a simple model to estimate the yield loss 

from SBR infestations. The data obtained from the study using field inoculation of 

SBR and simulated SBR injury at growth stage R1 and R5 in Brazil (Fig. 2.1) 

showed that there was a significant relationship between proportional decreases 

in ELAD and proportional decreases in yield (Fig. 2.5A) (Kumudini et al., 2008a). 

The ELAD data obtained from the Kentucky and Louisiana also predicted a 

 
 



 
 

 
 
 

Table 2.3. Effect of soybean rust (SBR) and manual defoliation that simulates SBR on soybean yield at three locations. 
 

 Brazil†  Kentucky  Louisiana 
Treatment    2008  2009 Mean  2008 
 Kg ha-1 % of control  Kg ha-1 % of control  Kg ha-1 % of control Kg ha-1 % of control  Kg ha-1 % of control 

Control 3166 a‡ 100  4514 a 100  4765 a 100 4640 a 100  4442 a 100 
Simulate SBR at               
      Growth stage R2 --- ---  1235 c   27  1700 c 36 1468 c 32  1381 c 31 
      Growth stage R5 --- ---  2614 b   58  3410 b 72 3012 b 65  2466 b 56 
              
Infected with SBR at              
     Growth stage R2 1078 c 34  --- ---  --- --- --- ---  --- --- 
     Growth stage R5 2070 b 65  --- ---  --- --- --- ---  --- --- 
 
†Plants growing in field were inoculated with the SBR causal organism (P. pachyrhizi) , and the control plots were 
protected with fungicides. From Kumudini et al., 2008a.  
 
‡Means in the same column not followed by the same letter are significantly different at P < 0.05. 
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Yield (% of control) = 0.73 X ELAD (% of control) + 27 
r² = 0.93** 
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Figure 2.5. Relationship between effective leaf area duration (integrated from R5 

to R7) and yield in A) Brazil, and B) Kentucky and Louisiana. The Brazil data are  

from a field trial when plants inoculated with Phakopsora pachyrhizi and  

simulated SBR by manual defoliation at growth stage R2 and R5 in 2006/2007 

were compared with fungicide protected controls. In Kentucky and Louisiana the 

change in effective leaf area duration was created by manual defoliation that 

simulated SBR injury. 
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significant relationship between the relative ELAD and relative yield (Fig. 2.5B). 

The regression equation from the Kentucky and Louisiana data agreed very well 

with the model from the Brazil data (Fig. 2.5A, Table 2.2). Thus the model 

derived from the SBR infected field trial conducted in Brazil in 2007 (Fig. 2.5A) 

could predict the yield losses from the manual defoliation in Kentucky and 

Louisiana. The fact that the model derived from SBR infected data in Brazil could 

be used to accurately predict the yield losses in trials with manual defoliation 

confirms the effectiveness of the use of ELAD to simulate the damage caused by 

SBR (Fig. 2.5B). For both locations, the models affirm the relationship between 

the ELAD and yield across environments, cultivars, and production practices. 

The fact that ELAD is related to yield loss is in agreement with Bassanezi et al. 

(2001), Jesus Junior et al. (2003), and Waggoner and Berger (1987). 

Conclusions 

Manual defoliation of soybean canopy from the bottom simulating soybean 

rust accelerated the decline in leaf area index compared to the control and 

reduced yield. Defoliation starting at growth stage R2 caused larger yield loss 

than defoliation starting at growth stage R5. The ELAD (R5 to R7) was closely 

associated with yield loss in diseased canopies and in manually defoliated 

healthy canopies where the disease did not exist.  

This study provides clear evidence that manual defoliation impacts yield in 

similar manner as SBR when the ELAI is used to represent the effect of the 

disease on the plant. Thus, manual defoliation can be used to simulate soybean 

rust injury. This simulation method can be applied in any region where the 
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soybean crop is at risk from SBR. This method was efficient and reliable and 

helps us understand how soybean rust reduces yield. These finding open an 

avenue to study the impact of the foliar disease on yield reduction without the 

need for field inoculation. The use of ELAD could be an effective way to develop 

a yield loss prediction model for other foliar crop diseases.  

Abstract 

The field inoculation necessary to study the impact of soybean rust (SBR) 

caused by Phakopsora pachyrhizi Syd. and P. Syd on soybean [Glycine max, (L.) 

Merr.] production in the United States. Inspite there is no regulation prevent 

soybean field inoculation with P. pachyrhizi, the scientists cannot do that 

because the highly possibility of spread the inoculum to neighbor healthy fields or 

carried by wind to neighbor states. One alternative is to simulate the impact of 

the disease on soybean yields. The objective of this study was to determine 

whether simulated injury on a healthy soybean canopy can reduce yields to the 

same level as SBR injury. Experiments (split-plot in a randomized complete block 

design with four replications) were carried out in Kentucky and Louisiana in 2008 

and 2009. Manual defoliation based on changes in effective leaf area index 

(ELAI) (calculated as the reduction in leaf area equivalent to SBR-induced 

premature leaf drop, loss in green leaf area, and reduction in photosynthetic 

capacity of diseased leaves) in infected canopies in Brazil was used to simulate 

SBR infection at growth stage R2 and R5. The yield loss in Kentucky and 

Lousiana was then related to the yield loss of SBR infected crops in Brazil. 

Defoliation of healthy soybean canopies reduced crop yield an average of 68% 
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and 69% when imposed at growth stage R2, and 35% and 44% when imposed 

starting at growth stage R5 in Kentucky and Louisiana, respectively. These yield 

losses were equivalent to losses observed in infected soybean canopies in 

Brazil. There was a close association between leaf area duration and yield at all 

locations. The proportionate reduction in yield was similar across the years, 

locations, and cultivars tested. These results suggest that a system of manual 

defoliation to simulate changes in effective leaf area duration shows promise as a 

tool to simulate the impact of SBR on soybean yield. 
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CHAPTER THREE 

INFLUENCE OF DEFOLIATION ON INTERCEPTED SOLAR RADIATION AND 

SOYBEAN GROWTH DYNAMIC 

Introduction 

Solar radiation is the source of energy for photosynthesis for plant growth, 

and canopy photosynthesis is directly related to LAI and light interception (LI). 

The LI will eventually reach a plateau with increasing LAI (Shibles and Weber, 

1965; Shibles and Weber, 1966); therefore, increasing the LAI above the critical 

LAI (usually between 3 and 4) will not increase LI or change canopy 

photosynthesis (Shibles and Weber, 1965). When a healthy crop receives 

adequate water and nutrients, and reaches the critical LAI, dry matter production 

reaches a maximum. Reducing LAI by biotic and abiotic stress affects LI, leaf 

area duration (LAD), and ultimately yield. However, this effect depends upon the 

level of the stress and the growth stage (i.e., time) when the stress occurs. 

The dry matter produced per unit of intercepted solar radiation is radiation 

use efficiency (RUE). Researchers use RUE to evaluate crop productivity per unit 

area (Bonhomme, 2000; Kiniry et al., 1989; Purcell et al., 2002; Sinclair and 

Shiraiwa, 1993). Radiation use efficiency depends upon photosynthesis; 

therefore, any variation in photosynthesis will affect RUE (Sinclair and Muchow, 

1999). 

Foliar pathogens such as soybean rust (Phakopsora pachyrhizi Syd. and 

P. Syd.), and environmental conditions, such as temperature, water stress, and 

nutrient availability, directly affect photosynthesis, and therefore, indirectly affect 
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RUE (Sinclair and Shiraiwa, 1993). However, few studies have investigated the 

effect of foliar diseases on RUE (Bastiaans, 1993; Beasse et al., 2000; Kumidini 

et al., 2008a). Kumudini et al. (2008a) reported that the RUE during the 

reproductive phase was not affected by SBR infection in one year of the study 

but it was in a second year. The RUE of rice (Oryza sativa L.) inoculated with a 

foliar pathogen (Pyricularia oryzae Cav.) was reduced by 55% (Bastiaans, 1993). 

Beasse et al. (2000) reported a reduction in the RUE of pea plants (Pisum 

sativum L.) after inoculation with the foliar pathogen Mycosphaerella pinodes. All 

of these studies concluded that the reduction in RUE was a result of the impact 

of the foliar disease on leaf photosynthetic activity. 

Yield is a function of the amount of solar radiation intercepted and the 

efficiency of its use in biomass production (i.e., RUE). In soybean, the RUE in 

non-stress environments was found to be within a range from 0.70 to 0.90 g MJ-1 

of intercepted solar radiation (Egli, 1993; Egli and Bruening, 2000; Board et al., 

1994b). Many researchers used RUE (De Bruin and Pederson, 2009; Muchow et 

al., 1993; Purcell et al., 2002; Sinclair and Shiraiwa, 1993) and crop growth rate 

(CGR) to study crop growth (Egli and Zhen-wen, 1991; Karimi and Siddique, 

1991), and the effects of environmental modification and abiotic stress on crop 

development (Egli and Zhen-wen, 1991; Egli and Bruening, 2001; Jiang and Egli, 

1995).   

Defoliation, caused by biotic and abiotic stress, may occur at any time 

during the plant’s growth cycle. The reproductive phase is more sensitive to 

defoliation than the vegetative phase because yield is determined during this 
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phase (Egli, 2004; Murata, 1969; Schaafsma and Ableet, 1994). Defoliation 

during the vegetative phase may or may not affect yield (Pickle and Caviness, 

1984; Weber, 1955) depending on the ultimate effect on LI during reproductive 

growth (Board et al., 2010). Defoliation during the reproductive phase that 

reduces LAI, LAD, and LI decreases yield (Board et al., 1994a; Board et al., 

2010; Kumudini et al., 2008a) as a result of reduction in photosynthesis (Ingram 

et al., 1981; Klubertanz et al., 1996). Reduction in photosynthesis during the 

seed-filling period, due to SBR infection that caused premature leaf drop, limited 

both carbon and nitrogen supplies, with the end result a reduction in CGR and 

RUE (Kumudini et al., 2008a). 

A method to simulate injury from soybean rust (SBR) was developed using 

manual leaf defoliation (chapter two). The defoliation was from the bottom of the 

canopy upward to mimic the natural progress of leaf loss in canopies infected 

with SBR. To our knowledge there is no published research that characterized 

the effect of defoliation, to similar level as that caused by SBR, during the 

reproductive phase on CGR. Identifying the impact of defoliation on RUE, CGR, 

and LI would help crop physiologists understand how SBR impacts the crop 

growth dynamic.  

Since the SBR simulation method was reliable and accurately simulated 

SBR injury, we hypothesized that the defoliation technique could be used to 

develop a yield loss model that could be used  to develop management practices 

that minimize the effect of SBR on yield. The objectives of this study, therefore, 

were to characterize the effect of defoliation at growth stage R2 and R5 on the 
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yield production process by determining its effect on i) LI, CGR, and RUE, and ii) 

seed number and size, and seed growth rate.  

Materials and Methods 

Culture 

Field studies were carried out in Kentucky and Louisiana during the 2008 and 

2009 growing seasons. 

Kentucky Site 

Studies at Lexington, Kentucky (38o N Latitude) were conducted at the 

Spindletop Research Farm on a Maury silt loam soil (fine, mixed, semiactive, 

mesic Typic Paleudalfs). Seed of ‘AG3905’ (maturity group III, indeterminate) 

was machine planted on 13 May 2008 and 21 May 2009 into 38-cm rows 8-m 

long. Experimental units were nine-rows wide. Fertilizer was applied pre-plant 

only in 2008 according to soil test recommendations at a rate of 0-0-112 (kg ha-1 

N-P-K). Lime was also added at a rate of 3362 kg ha-1 in 2008 and 2242 kg ha-1 

in 2009. Seed were sown at a rate of 58 seed m-2 in 2008 and 67 seed m-2 in 

2009. Recommended practices were used to control weeds, diseases, and 

insects. Irrigation was applied as needed to avoid drought stress. 

Louisiana Site 

Studies in Louisiana were conducted at the Ben Hur research station near 

Baton Rouge, LA (30o N Latitude) on a Commerce silty clay loam soil (fine-silty, 

mixed, superactive, nonacid, thermic Fluvaquent Endoaquepts). Seed of 

‘DP4331’ (maturity group IV, indeterminate) was machine planted on 17 April 

2008 and 16 April 2009 into 97-cm rows 7.3-m long. Experimental units were 
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four-rows wide. Fertilizer was applied prior to planting according to soil test 

recommendations at the rate of 0-15-56-21 kg ha-1 N-P-K-S. Seed were sown at 

a rate of 28 seed m-2. Recommended practices were used to control weeds, 

diseases, and insects. Irrigation was applied as needed to avoid drought stress. 

Statistical Design  

The experiments at both locations used randomized complete block 

designs with a split-plot treatment arrangement with four replications. Main plots 

were the eight sampling periods simulating onset of SBR at growth stages R2 

and R5, and split plots were the control and two defoliation treatments. Because 

yield was measured at maturity (growth stage R8) it was analyzed as RCBD with 

four replications.  

Defoliation Treatments 

Defoliation during reproductive development was used to simulate the 

effect of SBR on soybean growth and yield starting at full bloom (growth stage 

R2, Fehr and Caviness, 1977) and the beginning of the seed-filling period 

(growth stage R5). The treatments were defoliation starting at growth stage R2, 

defoliation starting at growth stage R5, and an undefoliated control (Table 3.1). 

All defoliations were applied by removing leaves (leaving the petioles on the 

plant) from the bottom of the canopy upward to mimic the natural progression of 

leaf loss due to SBR (Kumudini et al., 2008a).  

Briefly, the leaf removal levels in the defoliation treatments were 

determined as follows: 1) Leaf abscission and disease severity in an infected 

soybean canopy in Brazil (Kumudini et al., 2008a) were used to calculate the 
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effective leaf area index (ELAI) during reproductive growth; 2) This ELAI and the 

LAI on the fungicide-protected control in Brazil were used to estimate the 

reduction in the ELAI resulting from SBR infection (Table 3.1); and 3) The LAI of 

the defoliation treatments in the experiments reported here was reduced below 

the control at frequent intervals by the amount in Table 3.1 to simulate SBR 

infection starting at growth stage R2 and R5. 

 

Table 3.1. Defoliation treatments used to simulate the effect of soybean rust 

(SBR) on leaf area in Kentucky and Louisiana. 

Growth 
Stage 

LAI removal  
Simulate SBR at R2  Simulate SBR at R5 

 
R2 

 ــــــــــــــــــــــــــ†Percent of controlــــــــــــــــــــــــــ
                 2 --- 

R3 3  --- 
R4 3  --- 
R5 39  15 
R5+1week 43  10 
R5+2weeks 10  31 
R5+4weeks ---  44 

†Percent of control LAI. 

 

The LAI of the control plots in Kentucky and Louisiana was determined at 

four weekly intervals during growth stage R2 to R5 by removing all the leaflets 

from all plants in 0.5 m2 from interior portions of the plot. The leaf area of a sub-

sample of 150 leaflets selected randomly from lower-, mid-, and upper- locations 

in the canopy was measured with a LI-3000 leaf area meter (LI-COR Corp., 

Lincoln, NE). The fresh and dry weight of the sub-sample and the leaves 

remaining in the 0.5-m2 sample were determined and used to estimate the leaf 
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area of the entire sample. The sub-sample represented approximately 30% of the 

total sample, on average. 

  The maximum LAI occurs approximately at growth stage R5 (Carpenter 

and Board, 1997) and the LAI of the standing crop in the control plots from this 

point until physiological maturity (growth stage R7) was determined weekly by 

subtracting the LAI of the abscised leaves lost due to natural senescence from 

the LAI of control plots at growth stage R5. One m2 wire enclosures were 

installed in the control plots to collect fallen leaves from growth stage R5 to R7 

and the LAI of the fallen leaves was calculated as (number of fallen leaves) x 

(average area per leaf) per m2. 

The affect of SBR on leaf area and function was estimated in Brazil by the 

effective leaf area index (ELAI) which includes the  reduction in green leaf area 

index as function of disease severity (Godoy et al., 2006) and the reduction in 

photosynthesis due to the SBR lesions (Bassanezi et al., 2001). The ELAI over 

time (Bassanezi, et al., 2001; Jesus Junior et al., 2003) was calculated from ELAI 

= LAI (1−X)β where X is the disease severity and the β is the ratio between virtual 

and visual lesions. We used a β value of 3.0 based on estimates on field     

grown soybean genotypes (Kumudini et al., 2008a, S. Kumudini, personal 

communication, 2008). In the non-infected canopies in Kentucky and Louisiana 

the ELAI and LAI were equal.  

Crop Growth Measurements  

The growth stage of 10 consecutive plants in the row was recorded twice 

a week (Fehr and Caviness, 1977). The same plants were measured throughout 
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the season. A plot was considered to be at a particular growth stage when ≥ 50% 

of the plants reached that stage.  

Light Interception 

Light interception (LI) in Kentucky and Louisiana was estimated by first 

measuring photosynthetic active radiation (PAR) at the soil surface using a 1-m-

long Line Quantum Sensor (LI-191, LI-Cor, Lincoln, NE) connected to a LI-1000 

data logger (average of three measurements made by placing the bar diagonally 

across the inter-row space) (Board, 2000; Board, 2004). The ambient light 

intensity at the top of the canopy was then measured using a Quantum Sensor 

(LI-190, LI-Cor, Lincoln, NE) and LI was calculated (Board, 2000; Board, 2004). 

All measurements were made between 1100 and 1300 h under full-sun 

conditions at weekly intervals from growth stage R2 until growth stage R7. 

Crop Growth Rate 

After each defoliation (and before the first defoliation) all plants 2 m2 from 

interior portions of bordered rows were harvested by cutting the main stem at 

ground level, dried to constant dry weight and weighed. Crop growth rate (CGR, 

g m-2 day-1) in Kentucky and Louisiana was estimated by linear regression of the 

weight of biomass from growth stage R1 to R5 versus time (Hunt and Parsons, 

1981). All regression model were significant (P <0.001) and all r2 were > 0.9.  

Seed Growth Rate 

In Kentucky, a sub-sample of five arbitrarily chosen plants was taken from 

each 2 m2 sample during seed-filling period. The seeds were separated and 

dried to constant dry weight and weight. Seed growth rate (SGR, g m-2 day-1) was 
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estimated as the slope of linear regression of seed weight and time (Munier-

Jolain et al., 1993). All regression model were significant (P <0.001) and all r2 

were > 0.7.  

Radiation Use Efficiency 

In Kentucky, the daily incident solar radiation (MJ m-2 day-1) was 

measured at a weather station located beside the plots. In Louisiana, the incident 

solar radiation was obtained from a weather station of the agriclimatic information 

system at the Ben Hur research station. The RUE was estimated for the period 

between R2 and R5 for all treatments. Intercepted solar radiation was calculated 

as the product of LI and incident solar radiation. The RUE (g MJ-1) was estimated 

as the slope of the linear regression between cumulative biomass and cumulative 

intercepted solar radiation (Sinclair and Muchow, 1999). All regression models 

were significant (P <0.001) and all r2 were > 0.7. 

Yield and Yield Components 

In Kentucky, yield was measured by harvesting the plants from 4.6 m2 at 

maturity and threshing the plants in small plot thresher. Seed moisture 

concentration was determined and yield was adjusted to 130 g kg-1 moisture 

concentration.  Yield in Louisiana was determined at maturity by sampling 4 m2 

of interior rows and determining the total fresh weight of the entire sample using 

a field scale. A 0.5 m2 sample was harvested to determine fresh weight and dry 

weight (oven dried at 60oC for 4 days), then threshed to determine seed weight, 

and leaf and petiole dry weight. Yield calculated as follows: Yield = [(total fresh 

weight of 4-m2 sample) x (dry weight of 0.5-m2/fresh weight 0.5 m2) - leaf and 
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petiole dry weight] x harvest index (fraction) (Board et al., 2010). The harvest 

index was determined from 0.5 m2 (HI = seed dry weight/total dry weight 

[exclusive of leaf and petiole material]). Yield was adjusted to 130 g kg-1 moisture 

concentration. Yield data from the Louisiana-2009 experiment were not available. 

In both locations, seed size (weight/seed) was determined on all plots by 

counting 300 seed from each yield sample, drying them to constant weight in a 

70oC oven for 7 days, and weighing the sample. Also, seed number was 

determined on a dry weight basis by dividing yield (g m-2) by weight per seed (g 

seed-2). 

Data Analysis 

To verify assumptions of independently and normally distributed error, the 

means were plotted against their variance to confirm the homogeneity of error. 

Two tailed F-test was conducted to determine the homogeneity of variance 

among the experiments before the data were analyzed. The data were analyzed 

using Proc MIXED and significant means differences were determined by the 

SAS LSMEANS procedure (SAS 9.2; SAS Institute Inc., Cary, NC). Year and 

location were considered random effects, while treatments were considered a 

fixed effect.   
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Results 

Light Interception 

 The maximum LI occurred at approximately growth stage R5 except for 

KY 2009 when it was nearly 100% a few days after growth stage R1 (Fig. 3.1 and 

3.2). There was very little affect of defoliation on LI growth stage R1 to R5. The 

decline in LI was larger and occurred sooner when defoliation began at growth 

stage R2 compared with growth stage R5 (Fig. 3.1 and 3.2) and that was 

consistent across locations and years. The LI of the growth stage R2 treatment 

was less than 50% (control > 80% LI) one week after plants reaches growth 

stage R6 (45 to 53 days after R1) in all experiments which was much lower than 

the growth stage R5 treatment. In Kentucky in 2009 the LI was relatively high 

from growth stage R1 until growth stage R6 in all treatments because of 

excessive growth (the control LAI was 7, see Fig. 2.2 in chapter two) that caused 

substantial lodging. In all locations and years plants from the defoliation starting 

at growth stage R2 reached physiological maturity (growth stage R7) sooner than 

those in the defoliation at growth stage R5 treatment.  
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Figure 3.1. The effect of defoliation on light interception (LI) in Kentucky during 

reproductive growth in 2008 and 2009. Vertical bars represent ± standard error of 

the mean. Arrows on the x-axis indicate the occurrence of beginning seed fill 

(growth stage R5), growth stage R6, and physiological maturity (growth stage 

R7). 
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Figure 3.2. The effect of defoliation on light interception (LI) in Louisiana during 

reproductive growth in 2008 and 2009. Vertical bars represent ± standard error of 

the mean. Arrows on the x-axis indicate the occurrence of beginning seed fill 

(growth stage R5), growth stage R6, and physiological maturity (growth stage 

R7). 
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Yield and Yield Components 

Yield was reduced by defoliation treatments (Table 3.2). Defoliation 

starting at growth stage R2 caused larger yield reductions (64 to 73%) than 

defoliation at growth stage R5 (28 to 44%) and this response was consistent 

across years and locations (Table 3.2). Defoliation at growth stage R2 reduced 

seed number per area, while defoliation at growth stage R5 had no effect. The 

defoliation at growth stage R5 reduced seed size much more than defoliation at 

growth stage R2 (Table 3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

Table 3.2. Effect of defoliation that simulated soybean rust (SBR) on yield and yield components of soybean in two 

locations.  

 
 Kentucky  Louisiana 
Treatment† 2008  2009  2008 
 Yield Seed No. Seed Size  Yield Seed No. Seed Size  Yield Seed No. Seed Size 
 Kg ha-1 No. m-2 mg seed-1  Kg ha-1 No. m-2 mg seed-1  Kg ha-1 No. m-2 mg seed-1 
Control  4514 a‡ 2510 a 180 a  4765 a 2650 a 180 a  4443 a 2880 a 154 a 
Defoliation at R2 1235 c 1280 b 96 c  1700 c 1620 b 105 c  1382 c 1970 b 70 c 
Defoliation at R5 2614 b 2425 a 108 b  3411 b 2350 a 145 b  2466 b 2645 a 93 b 

 

†In 2008 and 2009 SBR effects were simulated by matching the change in ELAI observed in Brazil with manual defoliation 
in Kentucky and Louisiana. Defoliation started at growth stage R2 or R5. 
‡Means in the same column not followed by the same letter are significantly different at P < 0.05. 
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Radiation Use Efficiency, Crop Growth Rate, and Seed Growth Rate 

 The radiation use efficiency (RUE) and crop growth rate were measured 

from growth stage R1 to R5 (Table 3.3). There was no affect of defoliation on 

RUE or crop growth rate (CGR). The seed growth rate (SGR) was measured only 

in Kentucky, and both defoliation treatments reduced the SGR (Table 3.3). 

Defoliation at growth stage R2 reduced SGR more than defoliation at growth 

stage R5.  

Seed Filling Duration 

 Defoliation shortened the seed-fill duration (Table 3.2). Defoliation at 

growth stage R2 reduced the seed-filling period by 6 to 20 days, while defoliation 

at growth stage R5 shortened the seed-filling period by 2 to 9 days. Defoliation at 

growth stage R2 had no affect on time that plants reached beginning of seed 

filling (growth stage R5) (Fig. 3.1 and 3.2). 
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Table 3.3. Effect of defoliation simulating soybean rust (SBR) on soybean growth 

dynamic. 

Treatment† RUE‡ CGR§ R1-R5 SFD†† SGR 
 g MJ-1 g m-2 day-1 ـــــــــــdaysـــــــــــ g m-2 day-1 
Kentucky 2008      
      Control 0.82 12.3 30  43 a# 6.89 a 
      Defoliation at R2 0.72 11.1 30 37 b 2.95 c 
      Defoliation at R5 0.81 11.0 30 41 a 4.95 b 
 NS¶ NS NS   
Kentucky 2009      
      Control 1.06 15.2 33 46 a 9.35 a 
      Defoliation at R2 0.97 14.7 33 37 c 1.95 c 
      Defoliation at R5 0.98 14.2 33 42 b 4.38 b 
 NS NS NS   
Louisiana 2008      
      Control 0.80 10.1 33 54 a --- 
      Defoliation at R2 0.72   7.5 33 34 c --- 
      Defoliation at R5 0.80   9.3 33 45 b --- 
 NS NS NS   
Louisiana 2009      
      Control 0.87 15.9 28 53 a --- 
      Defoliation at R2 0.85 15.4 28 44 c --- 
      Defoliation at R5 0.85 15.7 28 47 b --- 
 NS NS NS   

 

†In 2008 and 2009 SBR effects were simulated by matching the change in ELAI 
observed in Brazil with manual defoliation in Kentucky and Louisiana. Defoliation 
started at growth stage R2 or growth stage R5. 
 
‡Radiation use efficiency, the RUE was determined from growth stage R2 to R5 
using total solar radiation. 
 
§Crop growth rate, CGR determined from growth stage R1 to R5. 
 
¶NS, not significant at P < 0.05. 
 
#Means in the same column not followed by the same letter are significantly 
different at P < 0.05. 
 
††Seed-fill duration is the days from growth stage R5 to R7. 
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Discussion  

 The hypothesis of this study was that defoliation could be used to 

understand the impact of soybean rust (SBR) on yield production. Characterizing 

the effect of defoliation during reproductive growth on the yield production 

process (i.e., on light interception (LI), crop growth rate (CGR), radiation use 

efficiency (RUE), seed number and size, and seed growth rate) could help 

develop a yield loss model, which would facilitate the development of 

management practices that minimize SBR impact on yield.  

 Defoliation beginning in phase II (growth stage R2 treatment) (Murata, 

1969) reduced yield, seed number per unit area and seed size in all experiments. 

Defoliation had no affect on LI before growth stage R5, but LI started to decline 

after growth stage R5 and continued declining until maturity.  

 The CGR (10-15 g m-2 d-1) and RUE (0.7-1.0 g MJ-1) reported in this study 

are in the range of some previous reports by Egli (1993), Egli and Bruening 

(2000), Egli and Zhen-wen (1991), and Board et al. (1994b), but lower than 

others (maximum of 28 g m-2 d-1, and 1.1 g MJ-1) (Egli and Zhen-wen, 1991; 

Sinclair and Muchow, 1999). There are no reports of RUE determined under 

stress conditions, such as defoliation caused by a foliar disease. Defoliation did 

not affect CGR or RUE (determined between growth stage R1 to R5) since it had 

no affect on LI during this period. Kumudini et al (2008a) found differences in 

RUE between manual defoliation and SBR-infected canopies; the RUE (during 

growth stage R2 to R7) of the inoculated plants was 40% lower than the 

manually defoliated plants. Radiation use efficiency was not influenced by 
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defoliation treatments at growth stage R5 simply because no leaf removal 

occurred until growth stage R5. 

Defoliation starting at growth stage R2 did not affect CGR but it always 

reduced seeds number m-2, which was unexpected given the close association 

between CGR and seed number reported by Egli and Zhen-wen (1991) and 

others (Charles-Edward et al., 1986; Herbert and Litchfield, 1984, Ramseur et al., 

1985). The critical period for the determination of seed number per unit area is 

from initial flowering to shortly after the beginning of growth stage R6 (Egli, 

2010). Defoliation that started at growth stage R2 covered the critical period 

(Egli, 2010), but LI was not reduced until after growth stage R5 and this reduction 

no doubt reduced the assimilate supply to the seed while the plants was still in 

the critical stage, thus reducing seed number. Some of the reduction in yield from 

defoliation starting at growth stage R2, can therefore be attributed to lower LI 

between growth stage R5 and R6. Many researchers reported that reductions in 

yield were attributed to reductions in LI (Board et al., 1994a, 2010; Browde et al., 

1994; Haile et al., 1998; Higley, 1992; Ingram et al., 1981; chapter three). Our 

results are in agreement with Hardman and Brun (1971), Egli and Zhen-wen 

(1991), Board and Tan (1995), and Schou et al. (1978) who reported that 

modification of photosynthesis during the flowering and pod set phase (i.e., from 

initial flowering until growth stage R6) with CO2 enrichment, shade, defoliation, 

and extra light caused corresponding changes in pods and seeds per unit area.  

Another possible explanation for the reduction in seed number when there 

was no affect on CGR in the R2 treatment is that defoliation from the bottom of 



 
 

75 
 

the plant increased pod abortion without affecting LI. Heitholt et al. (1986) 

reported that defoliation increased flower abortion, but the processes that control 

pod abortion are more complex than simple relationships between pod survival 

and assimilate supply especially when time and pod location are included. Egli 

and Bruening (2006) found that removing the leaf to eliminate the assimilate 

supply to an individual node had minimal impact on pod abortion at that node, but 

removing three adjacent leaves reduced pod number on the target node. In our 

study, at least three leaves were removed from the bottom of the canopy at 

growth stage R2 and this number increased as LAI increased and defoliation 

continued. The affect of local defoliation and inter-node interactions may 

influence the processes that control pod abortion, so removing the assimilate 

sources (i.e., the leaves) from the bottom nodes may make pods at that node 

more likely to abort even though CGR is not affected. This scenario agrees with 

Heitholt et al. (1986) who suggested that abortion was regulated by processes 

occurring at individual nodes, rather than responding to the whole plant 

assimilate supply. 

Defoliation during phase III (Murata, 1969) reduced seed size of both 

defoliation treatments by reducing LI, the leaf area duration, which probably 

reduced the assimilate supply, the SGR, and shortening the seed-fill duration. 

Seed size of R2 defoliation treatment was smaller than the treatment starting at 

growth stage R5.  

Defoliation reduced the SGR (the rate of dry matter accumulation in the 

seeds) because of a reduction in LI. Defoliation beginning at growth stage R2 
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caused a larger reduction in SGR than defoliation starting at growth stage R5 

because the decline in LI occurred earlier in the seed-filling period (Fig. 3.1 and 

3.2). The reduction in LI was less and LAI reached zero (Chapter two) later in the 

seed-filling period for the defoliation treatment beginning at growth stage R5 and 

the effects on seed size (Table 3.2) were also less. Defoliation probably limited 

both carbon and nitrogen supplies to the seeds with the end result a reduction in 

SGR. Egli (1997) found that the shade that reduced photosynthesis resulted in 

reduced SGR and seed size. These findings also agree with Board et al. (2010) 

who reported that partial defoliation (33% leaf removal) after R5 resulted in 78% 

of yield reduction due to reduction in seed size. 

In soybean, the length of seed filling period (R5 to R7) is related to yield; 

shortening the seed-filling period would have a negative effect on seed size and 

yield (Egli, 2004). Defoliation beginning at growth stage R2 and R5 that reduced 

leaf area and leaf area duration (LAD) (chapter two) also shortened the seed-fill 

duration. Several researchers also reported that defoliation shortened the 

reproductive cycle in soybean and corn (Zea mays L.) (Barimavandi, 2010; 

Ingram et al., 1981; Jones and Simmons, 1983; Tollenaar and Daynard, 1978). 

Kumudini et al. (2008a) reported similar findings with soybean.  

Seed filling continues as long as there is assimilate available to the seed 

and the seed is active in converting the assimilate into storage compounds; when 

seed growth stops as a result of a reduction in canopy photosynthesis and a lack 

of assimilate, the filling period is terminated (Egli, 2004). The amount of 

assimilate available to the seed in these experiments was reduced by defoliation 
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which shortened the seed-filling period.  These results suggest that defoliation 

during the seed-filling period affects yield by a reduction in LI and photosynthesis 

which agrees with Board et al. (2010) who reported similar findings.  

  In conclusion, the affect of defoliation on yield production depended upon 

the growth stage when it occurred and the magnitude of the defoliation.  If 

defoliation began earlier in the flowering and seed set stage (growth stage R1 to 

R6), seed number per unit area was reduced, while defoliation during the seed-

filling period reduced seed size. Canopy assimilate availability (as estimated by 

CGR and RUE) is not the only factor determining seed number, local assimilate 

availability to specific nodes may also be important. Defoliation during the seed-

filing period that was enough to reduce assimilate supply to the seeds reduced 

SGR and shortened the seed-fill duration. Soybean rust reduced photosynthesis 

and causes defoliation from the bottom of the plant (Kumudini et al., 2008a) so 

the mechanisms by which it would affect soybean growth dynamics and yield if 

infection occurs during reproductive phase, should be similar to the responses to 

manual defoliation reported here.  

Abstract 

Defoliation of a soybean canopy, as caused by soybean rust (SBR) 

(Phakopsora pachyrhizi Syd. and P. Syd) reduces yield, but how defoliation 

impacts yield components is not fully understood. The aim of this research was to 

determine the effect of manual defoliation on the interception of solar radiation 

and growth dynamics of the soybean canopy. Defoliation treatments beginning at 

growth stage R2 (full bloom) and R5 (beginning of seed-fill) that mimicked 
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defoliation measured in infested soybean canopies were applied in the field in 

Kentucky and Louisiana for two years. All leaf removal was from the bottom of 

the canopy. Both defoliation treatments reduced yield in all experiments and the 

reduction was larger for the treatments at growth stage R2. The radiation use 

efficiency and crop growth rate from growth stage R2 to R5 were not influenced 

by defoliation since there was no effect on light interception. Defoliation started at 

growth stage R2 reduced seed number per unit area due to reduction in light 

interception between growth stage R5 and R6. The reduction in light interception 

reduced the assimilate needed for successful pod set. Defoliation during seed 

filling (in both treatments) also reduced seed size due to a shortened seed-fill 

duration and lower seed growth rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Abdullah M. Aqeel 2011 



 
 

79 
 

CHAPTER FOUR 

EFFECT OF DEFOLIATION ON PHOTOSYNTHESIS AND NITROGEN 

REMOBILIZATION DURING THE SEED-FILLING PERIOD IN SOYBEAN 

Introduction  

Manual defoliation was recently used to simulate soybean rust (SBR) 

injury by determining the changes in effective leaf area in diseased canopies and 

imposing these changes onto healthy canopies where the disease was not 

present (chapter two). With this method, SBR infection during the reproductive 

phase was simulated under field conditions. That experiment provided evidence 

that manual defoliation could be used to simulate the impact of SBR on yield. 

Soybean rust reduces soybean yield through a number of mechanisms. 

First, it impacts the plant’s ability to intercept and absorb radiation by accelerated 

leaf abscission and a reduction in green leaf area (due to necrotic and chlorotic 

lesions on the remaining leaves). Secondly, it impacts the photosynthetic 

efficiency of the apparently healthy remaining green leaves (Kumudini et al. 

2008a). Leaf loss reduces the nitrogen stored in the leaves, leaf area duration 

(LAD), effective leaf area index (ELAI), and light interception (LI) which results in 

decreased canopy photosynthesis and yield (Board et al., 2010; Burton et al., 

1995; Kumudini et al., 2001, 2008a; Li et al., 2009). Reduction in photosynthesis 

during the seed-filling period, due to leaf loss, limits both carbon and the nitrogen 

supply to the seed (Burton et al., 1995; Li et al., 2009).  

Nitrogen affects crop growth through its effect on leaf growth and 

photosynthesis which is dependent upon leaf nitrogen concentration. The 
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enzymes involved in photosynthesis, including RUBISCO and the other light 

harvesting complex proteins, represent a large proportion of leaf nitrogen 

(Staswick, 1994). The leaf nitrogen distribution within the canopy affects canopy 

photosynthesis and radiation use efficiency (RUE) (Sinclair and Horie, 1989). 

Leaves with high nitrogen concentrations have been shown to accumulate more 

assimilate and have high RUE (Sinclair and Horie, 1989). Reducing leaf mass 

reduces the nitrogen stored in leaf tissue which could be remobilized to the seed 

during the seed-filling period. This loss of nitrogen could contribute to the seed 

yield reduction.  

Soybean seed nitrogen comes from nitrate uptake from soil, N2 fixation, 

and redistribution from vegetative plant parts and pod walls. Redistribution 

occurs as the protein in the vegetative plant parts are broken down and the 

amino acids are remobilized to the seed (Liu et al., 2008; Staswick, 1994). The 

contribution of redistributed nitrogen to the seed nitrogen varied from 30 to 100% 

(Egli et al., 1978, 1983; Zeiher et al., 1982). This loss of nitrogen from leaves is a 

sign of senescence which is associated with a decline of photosynthesis.   

A model to explain nitrogen uptake and partitioning in soybean was 

developed by Sinclair and de Wit (1975). They proposed that the high nitrogen 

demand of the developing soybean seed could not be sustained by nitrogen 

uptake from the soil and therefore, nitrogen must be remobilized from the 

vegetative organs to meet the seed nitrogen demand. This remobilization 

process results in the destruction of the photosynthetic capacity and accelerates 

leaf senescence. This hypothesis was called the “self-destruct” hypothesis. 
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Sinclair and de Wit (1976) believed that the self-destruction phenomena limited 

the length of the seed filling-period and yield. 

Several scientists evaluated the validity of the “self-destruct” hypothesis 

(Egli, 2004; Egli and Leggett, 1976; Egli et al., 1978; Hayati et al., 1995; 1996; 

Kumudini et al., 2002; Streeter, 1978). Streeter (1978) found that removing 

nitrogen from a hydroponics system did not increase the rate of senescence in 

soybean. Also, Egli et al. (1978) reported that increasing the amount of nitrogen 

in the solution did not delay leaf senescence. Hayati et al. (1996) invistigated the 

effect of nitrogen supply on soybean seed growth in vitro. They found that 

soybean seeds can sustain dry matter accumulation with only minimal supplies of 

ntrogen in the media. These data support the concept that there is no seed 

nitrogen demand, and are in direct conflict with the “self-destruct” model. Some 

researchers reported that defoliation shortened the reproductive cycle in soybean 

(Kumudini et al., 2008a; Ingram et al., 1981). However, no one quantified the 

impact of defoliation on the rate of senescence of the remaining leaves.  

There is no information available describing how defoliation by SBR 

effects nitrogen redistribution to the soybean seed. The objective of this study 

was to determine if defoliation as caused by SBR affects the rate of leaf 

senescence and nitrogen remobilization during seed filling.  

Materials and Methods 

Culture 

Field studies were carried out during the 2010 growing season at 

Spindletop Research Farm (Lexington, Kentucky, 38o N Latitude) on a Maury silt 
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loam soil (fine, mixed, semiactive, mesic Typic Paleudalfs). Seed of ‘AG4005’ 

(MG IV, indeterminate) was hand planted on 26 May 2010 at a 38-cm row 

spacing in 6-m long rows. Experimental units were eleven-rows wide. Seed were 

sown at the rate of 52 seed m-2. Herbicides and hand cultivation were used to 

control weeds. Soil moisture was monitored by placing two tensiometers in the 

soil at depth of 0.20 m. The plots were irrigated when the tensiometer reading 

was above -0.05 MPa with an overhead sprinkler irrigation system to minimize 

moisture stress. Reproductive stages were determined from initial flowering 

(growth stage R1) until maturity (growth stage R8) using the Fehr and Caviness 

(1977) system. Ten consecutive plants in the row in four plots, (one plot in each 

replication), were marked with flags and were staged twice a week, and every 

other day as physiological maturity (growth stage R7) approached. 

Defoliation Treatments 

The treatments were a single defoliation, sequential defoliation, and an 

undefoliated control. Both defoliation treatments involved removing leaves 

manually (leaving petioles on the plant) from the bottom of the canopy upward to 

mimic leaf loss of plants infected with SBR (Kumudini et al., 2008a). The 

sequential defoliation treatment was initiated at the beginning of the seed-filling 

period (growth stage R5) (Table 4.1) to simulate defoliation of a natural 

infestation of SBR in Brazil (chapter two). The single defoliation treatment, 

designed to reduce the amount of vegetative nitrogen available for redistribution, 

was applied at the beginning of growth stage R6. 
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Table 4.1: The defoliation level used in the sequential defoliation treatment 

applied at the beginning of seed-filling (growth stage R5). 

Growth Stage LAI removal (% of control) 
R5 15 
R5+1week 10 
R5+2weeks 31 
R5+4weeks 44 

 

Briefly, the level of leaf removal in the sequential defoliation treatment was 

determined as follows: 1) Leaf abscission and disease severity in an infected 

soybean canopy in Brazil (Kumudini et al., 2008a) was used to calculate the 

effective leaf area index (ELAI) during seed filling, 2) This ELAI and the LAI on 

the fungicide protected control in Brazil was used to estimate the reduction in the 

ELAI resulting from SBR infection (Table 4.1), and 3) The LAI of the sequential 

defoliation treatment was reduced below the control at frequent intervals by the 

amount in Table 4.1.  

The LAI for the control plots during the growth stage R2 to R5 period was 

determined as previously described in chapter two by removing the leaflets from 

all plants in 0.5 m2 from interior portions of the plot. The leaf area of a sub-

sample was measured with a LI-3000 leaf area meter (LI-COR Corp., Lincoln, 

NE).  

The maximum LAI occurs approximately at growth stage R5 (Carpenter 

and Board, 1997). The LAI of the standing crop in the control plots was 

determined weekly from beginning of seed-filling period (growth stage R5) to 

physiological maturity (growth stage R7) by subtracting the LAI of the abscised 

leaves from the LAI of control plots at growth stage R5 (chapter two). The LAI 
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lost due to natural senescence was measured as previously described in chapter 

two using 1 m2 wired enclosures to collect fallen leaves. 

The affect of SBR on leaf area was estimated in Brazil by the effective leaf 

area index (ELAI) which includes the  reduction in green leaf area index as 

function of disease severity (Godoy et al., 2006) and the reduction in 

photosynthesis due to the SBR lesion (Bassanezi et al., 2001). Determination of 

the ELAI in an infected canopy was discussed in chapter two. 

The single defoliation treatment was applied early in the seed-filling period 

(beginning growth stage R6) to reduce vegetative mass and stored nitrogen as 

much as possible without reducing LI (i.e., LI maintained at ≥ 90%). The critical 

period for seed number determination in soybean is between flowering (growth 

stage R1) and a little after beginning of growth stage R6 (Egli, 2010). Therefore, 

defoliation was applied at beginning of growth stage R6 to avoid any effect of 

defoliation on seed number. Practice defoliation on rows outside the 

experimental plot was used to determine the leaf area to remove. After removed 

the desired LAI from the experimental plots the LI was measured one day after 

defoliation using Quantum Sensors (LI-190 above canopy, and LI-191 below 

canopy LI-Cor, Lincoln, NE) to confirm that the LI was ≥ 90%. 

Photosynthesis  

Single leaf carbon exchange rate (CER) was measured with an open-path, 

portable photosynthesis system (LI-6400-02B, LI-Cor, Lincoln, NE) fitted with a 

LI-6400 fluorometer chamber, a red/blue LED light source (LI-6400–02B) and a 6 

cm2 leaf cuvette. Measurements were made in the field between 1000 and 1500 
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h on clear sunny days at weekly intervals from growth stage R2 until growth 

stage R7. The relative humidity in the cuvette was maintained as closely as 

possible to ambient air with the LI-6400 desiccant tube. All of the measurements 

were taken at photosynthetic active radiation (PAR) of 1500 μmol m-2 s-1 and at a 

constant airflow of 400 μmol s-1. The concentration of CO2 in the cuvette was 400 

± 2 μmol CO2 mol air-1, and the air temperature was maintained at 28 ± 2°C. 

Carbon exchange rate was determined on illuminated upper trifoliolioate leaves 

on the main stem. Three or four measurements were taken from each plot from 

separate plants. Chlorophyll levels of the same leaves were estimated with a 

SPAD-502 hand-held chlorophyll meter (Minolta Corp.) after the CER was 

determined.   

Light Interception 

Light interception (LI) was estimated by first measuring light intensity at 

the soil surface using a 1-m-long Line Quantum Sensor (LI-191, LI-Cor, Lincoln, 

NE) connected to a LI-1000 data logger (average of three measurements made 

by placing the bar diagonally across the inter-row space) (Board, 2000; Board, 

2004). The ambient light intensity at the top of the canopy was then measured 

with a Quantum Sensor (LI-190, LI-Cor, Lincoln, NE) and LI was calculated. All 

measurements were made between 1100 and 1300 h under full-sun conditions at 

weekly intervals from growth stage R2 until growth stage R7. 

Nitrogen Redistribution  

Plants were harvested from a 1 m2 of interior rows of the plots at the 

beginning of the seed-filling period (growth stage R5) on the sequential 
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defoliation treatment, when single defoliation was applied (growth stage R6), and 

at physiological maturity (growth stage R7). The plants were separated into 

leaves, petioles, stems, pod walls, and seeds, and dried at 60oC to determine dry 

weight. The leaves removed in the defoliation treatments were collected after 

each defoliation and dried at 60oC to determine dry weight. The abscised leaves 

and petioles were collected from the cages every other day and combined over 

the period from growth stage R5 or R6 to R7 and dried at 60oC to determine dry 

weight. After drying, the samples from all plant parts were ground to estimate 

total nitrogen concentration in the tissue based on the Berthelot reaction using 

Dual Technicon System II Autoanalyzer (wavelength was 660nm) (Chaney and 

Marbach, 1962). 

Redistributed nitrogen is the nitrogen translocated from all vegetative plant 

parts and pod walls to the seed during the seed-filling period. The amount of 

redistributed nitrogen was calculated from the differences in the nitrogen content 

(g m-2) of each plant part at beginning of the seed-filling period (growth stage R5 

or R6) and at physiological maturity and in the abscised leaves (including the 

leaves removed by defoliation) and petioles as described previously by Zeiher et 

al. (1982) and Egli et al. (1983). Thus, the nitrogen redistributed from the leaves 

was represented by the total nitrogen in the leaf blades at growth stage R5 minus 

the total nitrogen in the abscised and defoliated leaves and in the leaf blades on 

the plant at growth stage R7. Similar calculations were performed for the 

petioles, stems, and pod wall, except that there was no abscised materials for the 

stem and pod walls. It was assumed that nitrogen lost from the vegetative plant 
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parts and the pod walls was redistributed to the seeds. The total nitrogen (g m-2) 

in the seed at the beginning of seed-filling period (growth stage R5) was minimal 

and therefore was not subtracted from the total nitrogen in the seed at the final 

harvest to give the net gain in seed nitrogen. 

Yield and Yield Components 

 Yield was measured by harvesting 4 m2 from bordered rows at maturity 

and threshing the plants in a small plot thresher. Seed moisture concentration 

was determined and yield was adjusted to 130 g kg-1 moisture concentration. 

Additional plants from 1 m2 area were cut and threshed manually to estimate the 

apparent harvest index (HI). The apparent HI was calculated on a dry basis as 

follows:  seed mass divided by [seed mass + vegetative mass + abscised leaves 

and petioles] at physiological maturity. Seed size (weight/seed) was determined 

on all plots by counting 300 seed from each yield sample, drying them to 

constant weight in a 70oC oven for 7 days, and weighing the sample. Seed 

number was determined on a dry weight basis by dividing yield (g m-2) by weight 

per seed (g seed-2). 

Statistical Design and Analysis 

The statistical design was a randomized complete block with four 

replications. Data were analyzed using PROC MIXED (SAS ver. 9.2, SAS 

Institute, Cary, NC). Mean comparisons were made with F-test at α=0.05. 
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Results  

Light Interception  

 Light interception (LI) was influenced by the time and level of defoliation 

(Fig. 4.1). The rate of LI decline was higher with sequential defoliation than with 

the single defoliation treatment, which was similar to the control. The LI of the 

sequential defoliation treatment reached 50% at physiological maturity which was 

much lower than the single defoliation treatment and the control (both > 90%). 

The LI at physiological maturity was still relatively high in all treatments because 

of the excessive growth that occurred during the season which caused 

substantial lodging. 

 Plants in the sequential defoliation treatment reached growth stage R7 

four days earlier than the single defoliation treatment, which reached growth 

stage R7 at the same time as the control (Fig. 4.1).  

Photosynthesis 

 The carbon exchange rate (CER) of an upper leaf declined slowly early in 

seed-filling, and then declined rapidly after the plants reached growth stage R6, 

51 days after R1 (Fig. 4.2). However, there was no difference among the 

treatments. Leaf chlorophyll level, estimated with a SPAD chlorophyll meter, 

started to decline about 60 days after growth stage R1, again with no difference 

among the treatments (Fig. 4.3).  
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Figure 4.1. The effect of defoliation on light interception (LI) during reproductive 

growth, 2010. Vertical bars represent ± standard error of the mean. Arrows on 

the x-axis indicate the occurrence of beginning seed fill (growth stage R5), 

growth stage R6, and physiological maturity (growth stage R7). 
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Figure 4.2. The effect of defoliation on carbon exchange rate (CER) during 

reproductive growth, 2010. Vertical bars represent ± standard error of the mean. 

Arrows on the x-axis indicate the occurrence of beginning seed fill (growth stage 

R5), growth stage R6, and physiological maturity (growth stage R7). 
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Figure 4.3. The effect of defoliation on leaf chlorophyll levels (estimated by a 

SPAD meter) during reproductive growth, 2010. Vertical bars represent ± 

standard error of the mean. Arrows on the x-axis indicate the occurrence of 

beginning seed fill (growth stage R5, and R6), and physiological maturity (growth 

stage R7). 
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Yield and Yield Components 

 Sequential defoliation reduced yield by 33% because of fewer seeds (18% 

less than control) and smaller seeds (18% less than control) and a shortened 

seed-filling duration (10% less than control), while the single defoliation had no 

significant effect on yield (Table 4.2). The sequential defoliation treatment also 

reduced the apparent HI by 30%.  

Nitrogen Redistribution  

The nitrogen concentration in the vegetative plants parts and the pod walls 

at growth stage R5 of the sequential defoliation treatment was equal to the 

control, but the single defoliation treatment tended to be less than control 

(significant only for stems and pod walls) at growth stage R6 because it was 

collected later than the control (Table 4.3). The nitrogen concentration in 

vegetative plant parts and pod walls decreased from the beginning of the seed-

filling period (growth stage R5 or R6) to physiological maturity (growth stage R7) 

(Table 4.3) for all treatments. This lost nitrogen is assumed to be remobilized to 

the seed. The nitrogen concentration was higher in the leaves removed by 

defoliation than in the leaves still attached to plant at physiological maturity for all 

treatments. This difference occurred because the leaves were removed early in 

the seed-filling period when they were still green and functional. There was, 

however no effect of defoliation on the nitrogen concentration in the leaves that 

remained attached to the plants at physiological maturity or in the abscised 

leaves (Table 4.3). Defoliation had no effect on nitrogen concentration in the 

stem, pod walls, and the seed at physiological maturity. 



 
 

 
 

Table 4.2. Effect of defoliation during seed filling on total dry matter, yield and yield components. 
 

Treatments 
Vegetative mass 

HI¶ 
SFD# 
R5-
R7 

Seed 
number 

Seed 
size Yield Beginning seed-

filling (R5 or R6) 
Physiological 
maturity (R7)† 

ـــــــــــــــــــــــــــــــــــ  g m-2 ـــــــــــــــــــــــــــــــــــــ  % days Seed m-2 mg seed-

1 g m-2 

Control 602 508 50 a†† 41 a 3110 a 160 a 495 a 
Sequential defoliation‡ 611 437 35 b 37 b 2542 b 131 b 335 b 
Single defoliation§ 776 457 48 a 41 a 3004 a 155 a 465 a 
 NS‡‡ NS      

†Leaves, petioles, and stem dry weight, not including the leaves removed by defoliation or the abscised leaves and 
petioles. 
 
‡Four defoliations at weekly intervals based on defoliation targets calculated from a SBR infected soybean canopy 
(Kumudini et al., 2008a). Plants were harvested at beginning of the seed-filling period (growth stage R5) after the 
treatment was applied. 
 
§One defoliation at the beginning of growth stage R6. Plants were harvested at beginning of growth stage R6 after the 
treatment was applied. 
 
¶HI, harvest index: seed mass divided by [seed mass + vegetative mass + abscised leaves and petioles]. Mass 
determined at physiological maturity (growth stage R7) and expressed on dry mass basis. 
 
#SFD, seed-filling duration.  
 
††Means in the same column not followed by the same letter are significantly different at P < 0.05. 
 
‡‡NS, not significant at P < 0.05.
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Table 4.3. The effect of defoliation on tissue nitrogen concentrations at beginning seed filling (R5 or R6) and physiological 
maturity (R7).  
 
Treatments Leaves  Petioles Stem Pod wall Seeds 
mg g-1ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  

Beginning seed filling (R5 or R6)          
Control  48   14 19 a# 31 a 56 
Sequential defoliation†  48   14 20 a 30 a 57 
Single defoliation‡  45   13 16 b 26 b 56 
  NS††   NS   NS 
Physiological maturity (R7)§          
 On plant Defoliated Abscised¶  On plant Abscised¶    
Control 26 --- 18  9 5 5 11 62 
Sequential defoliation   --- 37 19  6 6 5 9 61 
Single defoliation 22 36 18  7 6 4 8 62 
 NS NS NS  NS NS NS NS NS 

†Four defoliations at weekly intervals based on defoliation targets calculated from a SBR infected soybean canopy 
(Kumudini et al., 2008a). Plants were harvested at beginning of the seed-filling period (growth stage R5) after the 
treatment was applied. 
 
‡One defoliation at the beginning of growth stage R6. Plants were harvested at beginning of growth stage R6 after the 
treatment was applied. 
 
§Plants were harvested at physiological maturity (growth stage R7).  
 
¶The abscised leaves and petioles represent material collected between the beginning of the seed-filling period (growth 
stage R5) and physiological maturity (growth stage R7). 
 
#Means in the same column not followed by the same letter are significantly different at P < 0.05.  
 

††NS, not significant at P < 0.05.
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Sequential defoliation starting at growth stage R5 reduced the nitrogen 

content of the remaining leaves by 13% (Table 4.4). Defoliation had no effect 

nitrogen content (g m-2) in stems and pod walls at physiological maturity (Table 

4.4), but the abscised leaves (includes leaves removed by defoliation) from the 

sequential defoliation treatment contained more nitrogen (Table 4.4). However, at 

physiological maturity the nitrogen content of the abscised petioles from the 

defoliation treatments was similar to the control.   

 Sequential defoliation reduced seed nitrogen content by 23% at 

physiological maturity (Table 4.4). Sequential defoliation also, reduced the 

nitrogen that was redistributed to the seed by 22% (Table 4.5); however, this 

reduction was not significantly different from the control (P=0.44). The proportion 

of the seed nitrogen that came from redistribution (39 to 42%) was not 

significantly affected by the defoliation treatments (Table 4.5). 



 

 
 

Table 4.4. Effect of defoliation on nitrogen content in soybean vegetative parts and pod wall. 
 
 Beginning seed fill (R5 or R6)†  Physiological maturity (R7)  R5 to R7§ 
Treatment Leaf Petioles Stem Pod wall Seed   Leaves‡ Petioles Stem Pod wall Seed  Abscised 

Leaf 
Abscised 
Petioles 

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  g m-2ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ 
Control 7.89 a# 1.44 4.41 2.28 1.75 b   0.30 a  0.30 a 1.13 1.11 25.63 a 2.11 b 0.38 
Sequential defoliation¶ 6.87 ab 1.54 4.88 2.44 2.06 b ---  0.20 ab 1.11 1.03 19.67 b 4.70 a 0.44 
Single defoliation 5.63 b 1.58 3.95 2.73 2.75 a    0.14 b  0.10 b 0.96 1.06 24.16 a 1.66 b 0.46 

 NS†† NS NS     NS NS    NS 
 

†For the control and sequential defoliation treatment the plants were harvested at the beginning of the seed-filling period 
(growth stage R5) after the treatment was applied. For the single defoliation treatment the plants were harvested at the 
beginning of growth stage R6 after the treatment was applied. 
 
‡Leaves on plant. 
 
§Abscised material collected between the beginning of the seed-filling period (growth stage R5) and physiological maturity 
(growth stage R7) and it includes the leaves removed by defoliation. 
 
¶Four defoliations at weekly intervals based on defoliation target calculated from SBR infected soybean canopy (Kumudini 
et al., 2008a).  
 
#Means in the same column not followed by the same letter are significantly different at P < 0.05.  
 
††NS, not significant at P < 0.05. 
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Table 4.5. Nitrogen redistribution to the seed from vegetative plant parts and pod walls during seed filling. 
 
 Source of redistributed N   Proportion of seed N from N redistributed 
Treatment Leaves Petioles Stem Pod wall total  RN/SN‡ 
ـــــــــــــــــــــــــــ  % of total†ـــــــــــــــــــــــــ g m-2  % 
Control    51 a#   7 b 31 b 11 b 10.7  42 
Sequential defoliation§   26 b   11 a 46 a 17 a   8.3  42 
Single defoliation¶  40 ab 11 a 31 b 18 a   9.5  39 
     NS††  NS 

 

†The amount of redistributed nitrogen contributed by each plant part, as a percent of the total nitrogen redistributed.  
 
‡Proportion of the total seed nitrogen (SN) that came from redistributed nitrogen (RN). 
 
§Four defoliations at weekly intervals based on defoliation targets calculated from a SBR infected soybean canopy 
(Kumudini et al., 2008a). Plants were harvested at beginning of the seed-filling period (growth stage R5) after the 
treatment was applied. 
 
¶One defoliation at the beginning of growth stage R6. Plants were harvested at beginning of growth stage R6 after the 
treatment was applied. 
 
#Means in the same column not followed by the same letter are significantly different at P < 0.05. 
 
††NS, not significant at P < 0.05.
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Discussion 

Soybean rust (SBR) causes defoliation from the bottom of the canopy 

upward, which reduces LI and therefore yield. Defoliation may also influence 

senescence and nitrogen redistribution to the seed by reducing the nitrogen 

available for redistribution, and that may limit yield. The objective of this study 

was to investigate the affect of defoliation on the rate of leaf senescence and 

nitrogen redistribution during seed filling.  

Yield and Seed-Filling Duration 

 Defoliation reduced yield. Seed number per unit area and seed size were 

both reduced when sequential defoliation was applied at growth stage R5 due to 

a reduction in LI and the assimilate supply as reported in chapter three. A single 

defoliation early in seed-filling, which as intended, had no affect on LI, did not 

affect yield. The yield reduction from the sequential defoliation treatment was the 

result of fewer and smaller seeds suggesting that events during flowering and 

pod set, and seed filling were responsible. Many researchers reported that 

reductions in yield were attributed to reductions in LI (Board et al., 1994, 2010; 

Ingram et al., 1981; Browde et al., 1994; Higley, 1992; Haile et al., 1998; chapter 

three). Our results are also in agreement with those of Vasilas et al. (1989) who 

reported that severely sequential defoliation from the bottom of the canopy 

upward reduce yield. They found that the sequential defoliation started at growth 

stage R5 and a week after R5 reduced yield by 18% and 9%, respectively. The 

failure of the single defoliation treatment, that did not reduce LI, to affect yield 

supports the contention that yield reduction from sequential defoliation was a 
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result of a lower LI. The sequential defoliation treatment started at growth stage 

R5, there was reduction in LI occurred before the end of critical phase for 

determining seed number (Egli, 2010), in contrary to the results in chapter three 

the seed number was reduced. More research is needed to investigate these 

results. 

The sequential defoliation shortened the seed-fill duration by four days 

(about 10% of control). This result agrees with the results in chapter three for 

2008 and 2009, where seed-fill duration was reduced by the same sequential 

defoliation treatment. Several researchers reported that defoliation shortened the 

reproductive cycle in soybean and corn (Zea mays L.) (Barimavandi, 2010; 

Ingram et al., 1981; Jones and Simmons, 1983; Tollenaar and Daynard, 1978). In 

chapter two we found that sequential defoliation at beginning of seed-filling 

period (growth stage R5) reduced the leaf area duration (LAD) as did Kumudini 

et al. (2008a). Thus, in this study, the reduction in LAI most likely reduced the 

LAD which caused a shorter seed-fill duration. 

The sequential defoliation treatment reduced LI and shortened the seed-

filling duration due to the reductions in the assimilate available to the seed. Seed 

filling continues as long as there is assimilate available to the seed and the seed 

is active in converting the assimilate into storage compounds; when seed growth 

stops due to a lack of assimilate as result of reduction of canopy photosynthesis, 

the filling period is terminated (Egli, 2004). The single defoliation treatment did 

not reduce the assimilate supply and had no affect on seed-fill duration. These 
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results suggest that, as reported in chapter three, defoliation affects yield only by 

reduction in LI.   

Senescence  

The chlorophyll content and carbon exchange rate (CER) of upper leaves 

were measured to characterize potential affects of defoliation on senescence of 

the remaining leaves. Defoliation during the reproductive growth phase also 

reduces the nitrogen potentially remobilizable to the seed. This reduction in 

nitrogen could accelerate leaf senescence and shorten the seed-fill duration 

according to the model of Sinclair and de Wit (1975, 1976). There was, however, 

no effect of defoliation on CER and leaf chlorophyll level as estimated by SPAD. 

In this study, the leaf chlorophyll level and CER started to decline at 

approximately the beginning of growth stage R6 and reached minimal levels near 

physiological maturity. These results agree with Crafts-Brander and Egli (1987a, 

1987b), and Egli and Bruening (2003). Our finding is also in agreement with 

Peterson and Higly (1996) who reported that removal of a portion of a soybean 

leaflet does not change the photosynthesis rate of the remaining leaf. Haile 

(2001) proposed that the impact of defoliation on photosynthesis was explained 

by plant-water relations. He found that the defoliation had no effect on the 

photosynthesis rate of well-watered soybean plants. Instead, defoliation 

improved the leaf water potential of soybean under water stress. In this study the 

plants in the field plots were well-watered, so our results are consistent with Hail 

finding (2001). In opposition to the “self-destruct” hypothesis (Sinclair and de Wit, 

1975, 1976) and to our findings, Klubertanz et al. (1996) found that defoliation 
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delayed the senescence of lower leaves. However, in that study, the defoliation 

occurred at growth stage R2 at the top of the canopy and exposed the lower 

leaves to higher levels of solar radiation, which probably accounted for the delay 

in senescence. 

Our results provide no evidence that defoliation accelerates leaf 

senescence. This provides additional support to the proposition that the main 

effect of defoliation on yield is by reducing LI.  

Nitrogen Redistribution   

During the seed-filling period nitrogen in the leaves translocated to the 

seed from vegetative plant parts and pod walls. Sinclair and de Wit (1975, 1976) 

proposed that the amount of nitrogen in the vegetative plant parts at growth 

stage R5 is important to the yield production process.  

In this study the nitrogen in the abscised leaves and those leaves 

removed by defoliation, in the abscised petioles, and in the stem at physiological 

maturity was not available for redistribution to the seed. Thus, the amount of 

nitrogen redistributed was the nitrogen in the vegetative plant parts at the initial 

harvest minus the amount not available for redistribution. Defoliation increased 

the amount that was not available for redistribution. The initial harvest was earlier 

in the control and sequential defoliation treatment (by 12 days) than in the single 

defoliation treatment. The rate of leaf senescence from growth stage R5 to R6 

was slow (Fig. 4.2 and 4.3), therefore, the amount of nitrogen that was 

redistributed between the imposition of the sequential and single defoliation 

treatments to the seed was minimal. Most of the nitrogen redistribution occurred 
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after growth stage R6 suggesting that comparison of the defoliation treatments 

that began at growth stage R5 and R6 was valid.  

The primary source of redistributed nitrogen was the leaves, followed by 

stems and pod walls. Similar observations have been reported for soybean by 

Egli et al. (1983) and Zeiher et al. (1982). Sequential defoliation reduced the leaf 

nitrogen available for redistribution (increased the amount in abscised leaves, 

including those removed by defoliation), the leaf nitrogen content (g m-2) at 

beginning of the seed filling, seed nitrogen content at physiological maturity (due 

to lower yield), and the total nitrogen redistributed to the seed; however the latter 

reduction was not significantly different from the control (Table 4.5, P=0.44). The 

nitrogen redistributed from stem, petioles, and pod walls, however, was higher 

than the control, which with the reduction in total seed nitrogen (due to the lower 

yield) maintained the same proportion of nitrogen that came from redistribution 

as the control.  

The proportion of seed nitrogen that came from redistribution ranged from 

39 to 42% across treatments, which falls in the range (33 to 100%) reported by 

Egli et al. (1983) and Zeiher et al. (1982). Our findings indicate that when the 

soybean plant experiences accelerated defoliation stress during the seed-filling 

period, such as that caused by SBR, yield and seed nitrogen content (g m-2) are 

reduced, so less nitrogen from redistribution is needed, but, the plant also 

remobilizes more nitrogen from stem, petioles, and pod walls to help sustain the 

contribution from redistribution. Interestingly, in this study the sequential 
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defoliation which shortened the seed-fill duration and reduced yield had similar 

proportion of seed nitrogen from nitrogen redistribution as the control. 

The single defoliation treatment reduced leaf nitrogen content and caused 

a reduction (11%) in the total nitrogen redistributed to the seed, but the reduction 

was not significantly different from the control (P=0.44). On other hand, the seed 

nitrogen content at physiological maturity was similar to the control because the 

nitrogen content of the leaves removed by defoliation had only minimal effect on 

the nitrogen redistributed to the seed and the plant remobilized more nitrogen 

from petioles, and pod wall.  

Sequential defoliation reduced LI and seed yield, but it did not change the 

nitrogen concentration in the seed. The single defoliation treatment that reduced 

the vegetative mass (stored nitrogen and carbon) without reducing LI below 90% 

(i.e., did not affect assimilate production) had no effect on yield or seed nitrogen 

concentration. These results suggest that carbon assimilation limits yield more 

than nitrogen does because manipulation of the carbon supply had a greater 

effect than manipulation nitrogen. Our results agree with Hayati et al. (1996) who 

found that carbon and nitrogen metabolism in soybean seeds were not tightly 

linked, and that the accumulation nitrogen in the seed was not an absolute 

requirement for seed dry matter accumulation.  

  According the to “self-destruct” model, increasing seed nitrogen per unit 

area (i.e., increasing yield without changing seed nitrogen concentration) without 

increasing vegetative mass will accelerate leaf senescence and shorten the 

seed-filling period (Sinclair and de Wit, 1976). Contrary to the “self-destruct” 
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hypothesis, the single defoliation reduced the vegetative nitrogen but had no 

effect on yield, seed nitrogen content or seed fill duration comparing it to the 

control. This finding agrees with Egli and Bruening (2007a; 2007b) who reported 

that there was no evidence that the accumulation of a larger amount of nitrogen 

in the seed accelerated leaf senescence or shortened the seed-filling period.  

In summary, defoliation that mimicked SBR at growth stage R5 did not 

accelerate leaf senescence in the remaining leaves (i.e., did not affect leaf 

photosynthesis or chlorophyll level), but it reduced yield, shortened the seed-

filling duration and reduced the nitrogen redistributed to the seed but not its 

contribution to seed nitrogen. The main effect of defoliation was reduction in the 

assimilate supply as result of reduction in the leaf area and LI, which ultimately 

shortened the seed-filling duration and reduced yield.  

Abstract 

 Defoliation of a soybean canopy may affect leaf senescence and nitrogen 

remobilization during the seed-filling period. Two defoliation treatments- 

sequential removal of leaf area between growth stage R5 and R7 and a single 

defoliation at growth stage R6 that did not reduce light interception below 90%- 

were applied in the field. All leaf removal was from the bottom of the canopy. The 

rate of senescence during seed filling of an upper leaf on the defoliation 

treatments, as estimated by the change in leaf carbon exchange rate and 

chlorophyll concentration, did not differ from the control plants. Thus there was 

no evidence that defoliation accelerated leaf senescence. The single defoliation 

treatment did not reduce yield or the total nitrogen redistributed to the seed. 
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Sequential defoliation reduced light interception, seed number, seed size, yield, 

and shortened the seed-fill period by 10%. Sequential defoliation reduced the 

nitrogen redistributed to the seed (not significantly different from the control). The 

amount of nitrogen redistributed from stems, petioles, and pod walls in the 

sequential defoliation treatment was slightly higher than the control, which, 

coupled with the reduction in yield and seed nitrogen content, resulted in the 

same proportion of redistributed nitrogen to total seed nitrogen as the control.  

The primary effect of defoliation, such as that caused by soybean rust, was to 

reduce the assimilate supply as result of reduction in the leaf area and light 

interception, which ultimately shortened the seed-filling duration and reduced 

yield. The effects on leaf senescence and nitrogen redistribution were minimal.  
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CHAPTER FIVE 

CONCLUDING REMARKS 

 Soybean rust (SBR) (caused by Phakopsora pachyrhizi Syd. and P. Syd) 

is a serious threat to soybean [Glycine max (L.) Merr.] production in the U.S. All 

currently available commercial soybean cultivars grown in the U.S. are 

susceptible to SBR and cultural controls are very limited in effectiveness, 

consequently, fungicides are the only means of control if this disease invades the 

major soybean growing regions of north-central United States. The disease 

accelerates leaf abscission from the bottom of the plant and reduces green leaf 

area (due to necrotic and chlorotic lesions on the remaining leaves) which limits 

yield by reducing the plant’s ability to intercept and absorb solar radiation. 

 In the United States, field inoculation study that is necessary to study the 

effect of the disease on soybean is prohibited due to possibility of spread the 

inoculum to healthy neighbor fields or states. Thus, artificial simulation of the 

disease’s impact is the only option available to United States researchers. When 

the project described in this dissertation began there was no method available to 

simulate SBR effects on plant growth and yield. Developing a simulation method 

to estimate yield loss under field conditions would be a vital step toward 

developing effective SBR control practices. A reliable and accurate method of 

simulating SBR injury should also contribute to the development of a yield loss 

prediction tool.  

 The objectives of this study were i) to evaluate the use of manual 

defoliation to simulate SBR damage to a healthy soybean canopy; ii) to 
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characterize the effect of defoliation on the yield production process by 

determining its effect on light interception, crop growth rateand radiation use 

efficiency, seed number and size, and seed growth rate; and iii) to determine if 

defoliation affects the rate of leaf senescence and nitrogen remobilization during 

the seed-filling period. 

 To effectively simulate SBR injury we should understand the mechanisms 

responsible for the reductions in plant growth and yield. It was confirmed here 

that manual defoliation that mimicked SBR damage reduced light interception by 

the soybean canopy, and this reduction was the driving force for all of the 

consequent events in the reduction of plant growth and yield loss. The main 

affect of the reduction in light interception during seed filling was a reduction in 

the seed growth rate and the seed-fill duration leading to smaller seed, and lower 

yield. There was evidence that manual defoliation reduced seed number, but light 

interception was not reduced during the critical period between growth stage R2 

and R5 and there was no reduction in crop growth rate during this period. Thus, 

the mechanism of how seed number was reduced was not clear. Light 

interception was significantly lower only at the end of the critical period (i.e., 

between growth stage R5 and the beginning of R6) which could have accounted 

for the lower seed number. Alternatively, removal of the lower leaves could have 

reduced pod set of lower nodes without any affect on light interception. Additional 

research is needed to resolve these issues.  

 Simulation of SBR by manual defoliation predicted that SBR infestation at 

growth stage R2 would cause a larger yield loss (about 70%), due to reduced 
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seed number per unit area and seed size, than onset of SBR at the beginning of 

the seed-filling period, i.e., growth stage R5 (about 40% due to primarily to small 

seed). Thus, maintaining soybean fields free of SBR from flowering (growth stage 

R2) until physiological maturity (growth stage R7) is warranted to avoid any yield 

loss.  

 There are some theories in the literature suggesting that defoliation, 

especially from the bottom of the canopy, which reduces the total plant nitrogen, 

might accelerate leaf senescence, shorten the seed-fill duration, and reduce 

yield. However, in this research we found no evidence that these mechanisms 

contributed to the reduction in yield from simulated SBR, suggesting that there 

may be more than one factor controlling leaf senescence and that it is not just 

simply controlled by nitrogen supply and demand. 

 Manual defoliation was very effective in simulating the impact of SBR on 

yield. Defoliation simulated the change in effective leaf area index due to SBR, 

and was based on the percentage change in effective leaf area index of infected 

plants relative to the control. The relationship between the effective leaf area 

duration and yield loss as percent of control was significant and strong. The 

relative reduction in the effective leaf area duration predicted the relative 

reduction in yield very well across two states (Kentucky and Louisiana) using 

different cultural practices (i.e., row spacing, maturity group, and cultivars). The 

reductions were close to what was found with diseased soybean plants in Brazil. 

This correlation model can be used to predict yield loss in areas where SBR 
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infection is expected and it will help growers and the extension service allocate 

their efforts to effectively control SBR. 

 This association between the effective leaf area duration and yield loss 

was used to develop a yield loss prediction model that is available to growers 

and extension agents. This model includes a fungicide spray decision tool based 

on our understanding of how SBR develops and damages soybean plants. The 

tool calculates yield losses based on three SBR infection levels or epidemic type 

(low, medium, and high) and soybean growth stage, and estimates the economic 

benefits of spraying based on the yield response, the cost of spraying and other 

related costs. The model is available at http://dept.ca.uky.edu/sbrtool/.  

 The data presented in this dissertation are novel and are valuable to help 

to control SBR by develop a model to estimate the yield-loss. This research could 

have been improved if we had been able to compare the manual defoliation to a 

natural SBR infected canopy in the U.S. Also, we did not compare low vs. high 

SBR infestation in Brazil, thus we don’t know for sure how the level of infestation 

will affect leaf abscission and the seed-fill duration. The manual defoliation 

process per se caused plant injury and that would expose plants to pathogenic 

microorganism infestation which could impact leaf abscission.  

 Suggestions for future studies include investigation of the mechanism(s) 

by which defoliation reduces seed number per unit area. Is this reduction due to 

increased a pod abortion, decreased flower production, or reduced number of 

seed per pod? Also, we recommend investigating the affect of manual defoliation 

http://dept.ca.uky.edu/sbrtool/
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on nitrogen redistribution in soybean plant for second year to confirm our 

preliminary results.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Abdullah M. Aqeel 2011 



 

111 
 

REFERENCES 

Aggarwal P.K., B. Banerjee, M.G. Daryaei, A. Bhatia, A. Bala, S. Rani, S.  
Chander, H. Pathak, and N. Kalra. 2006. InfoCrop: a dynamic simulation 
model for the assessment of crop yields, losses due to pests, and 
environmental impact of agro-ecosystems in tropical environments. II. 
Performance of the model. Agri. Syst. 89:47-67. 

 
Agrios, G.N. 2005. Plant Pathology, 5th ed. Elsevier Academic Press, San Diego,  

CA. 922 pp. 

Aquino, V. M., F. M. Shokes, R. D. Berger, D. W. Gorbet, and T. A. Kucharek.  
1992. Relationships among late leaf spot, healthy leaf area duration, canopy 
reflectance, and pod yield of peanut. Phytopathology 82:546-552. 

 
Bancal M., C. Robert, and B. Ney. 2007. Modeling wheat growth and yield losses  

from late epidemics of foliar diseases using loss of green area per layer and 
pre-anthesis reserves. Ann. Bot. 99:1-13 

 
Barimavandi, A. R., S. Sedaghathoor, and R. Ansari. 2010. Effect of defoliation  

treatments on yield and yield components in maize (Zea mays L.) cultivar of 
S.C704. Aus. J. Crop Sci. 4:9-15. 

 
Bassanezi, R. B., L. Amorim, A. B. Filho, B. Hau, and R. D. Berger. 2001.  

Accounting for photosynthetic efficiency of bean leaves with rust, angular leaf 
spot and anthracnose to assess crop damage. Plant Pathol. 50: 443–452. 

 
Bastiaans, L. 1991. Ratio between virtual and visual lesion size as a measure to  

describe reduction in leaf photosynthesis of rice due to leaf blast. 
Phytopathology 81:611-615. 

 
Bastiaans, L. 1993. Effects of leaf blast on photosynthsis of rice: Leaf  

photosynthsis. Neth. J. Plant Pathol. 99:197-203. 
 
Beasse C., B. Ney, and B. Tivoli. 2000. A simple model of pea (Pisum sativum)  

growth affected by Mycosphaerella pinodes. Plant Pathol. 49:187-200. 
 
Bergamin Filho A., S. M. Carneiro, C. V. Godoy, L. Amorim, R. D. Berger, and B.  

Hau. 1997. Angular leaf spot of Phaseolus beans: relationships between 
disease, healthy leaf area, and yield. Phytopathology 87: 506-515. 

 
Berger, R.D., B. Hau, G.E. Weber, L.M.A. Bacchi, A. Bergamin, and L. Amorim.  

1995. A simulation model to describe epidemics of rusts of phaseolus beans I.  
development the model and sensitivity analysis. Phytopathology 85:715-721. 

 
 



 

112 
 

Biswal, B., and U.C. Biswal .1999. Leaf senescence: physiology and molecular  
biology. Current Science 77: 775-782. 

 
Board, J.E. 2000. Light interception efficiency and light quality affect yield  
    compensation of soybean at low plant populations. Crop Sci. 40:1285–1294 
 
Board, J. E. 2004. Soybean cultivar differences on light interception and leaf area  

index during seed filling. Agron. J. 96:305-310 
 
Board, J.E., and B.G. Harville. 1992. Explanations for greater light interception in  

narrow- vs. wide-row soybean. Crop Sci., 32:198-202. 
 
Board, J.E., and B.G. Harville. 1993. Soybean yield component responses to a  

light interception gradient during the reproductive period. Crop Sci. 33:772-
 777. 
 
Board, J.E., B.G. Harville, and M. Kamal. 1994b. Radiation use efficiency in  

relation to row spacing for late-planted soybean. Field Crops Res. 36:13-19. 
 
Board, J.E., S. Kumudini, J. Omielan, E. Prior, and C S. Kahlon. 2010. Yield  

response of soybean to partial and total defoliation during the seed filling 
period. Crop Sci. 50:703-712. 

 
Board, J.E. and Q. Tan. 1995. Assimilatory capacity effects on soybean yield 

components and pod number. Crop Sci. 35:846–851. 
  
Board, J.E., A.T. Wier, and D.J. Boethel. 1994a. Soybean yield reductions  

caused by defoliation during mid to late seed filling. Agron. J. 86:1074-1079. 
 
Board, J.E., A.T. Wier, and D.J. Boethel. 1997. Critical light interception during  

seed filling for insecticide application and optimum soybean grain yield. Agron. 
J. 89:369-374. 

 
Bonde, M.R., S.E. Nester, G.L. Hartman, M.R. Miles, C.N. Austin, C.L. Stone,  

and R.D. Frederick. 2006. Evaluation of virulence of Phakopsora pachyrhizi 
and P. meibomiae isolates. Plant Dis. 90:708-716. 

 
Bonhomme R. 2000. Beware of comparing RUE values calculated from PAR vs  

solar radiation or absorbed vs intercepted radiation. Field Crops Res. 68:247-
252. 

 
Boote, K.J., J.W. Jones, J.W. Mishoe, and R.D. Berger. 1983. Coupling pests to  

crop growth simulators to predict yield reduction. Phytopathology 73:1581 
 
Brevedan, R.E., and D.B. Egli. 2003. Short periods of water stress during seed  

filling, leaf senescence and yield of soybean. Crop Sci. 43:2083-2088. 



 

113 
 

Bromfield, K.R., and E.E. Hartwig. 1980. Resistance to soybean rust  
(Phakopsora pachyrhizi) and mode of inheritance. Crop Sci. 20:254-255. 

 
Bromfield, K.R., J.S. Melching, and C.H. Kingsolver. 1980. Virulence and  

aggressiveness of Phakopsora pachyrhizi isolates causing soybean rust.  
Phytopathology 70:17-21. 

 
Browde, J.A., L.P. Pedigo, M.D.K. Owen, and G.L. Tylka. 1994. Soybean yield  

and pest management as influenced by nematodes, herbicides, and 
defoliating insects. Agron. J. 86:601-608. 

 
Burton, J.W., D. W. Israel, R. E Wilson, and T. E. Carter. 1995. Effects of  

defoliation on seed protein concentration in normal and high protein lines of 
soybean. Plant and Soil 172: 131-139. 

 
Carpenter, A.C., and J.E. Board. 1997. Growth dynamic factors controlling  

soybean yield stability across plant populations. Crop Sci. 37:1520–1526. 
 
Caviness, C.E., and J.D. Thomas. 1980. Yield reduction from defoliation of  

irrigated and non-irrigated soybeans. Agron. J. 72:977-980. 
 
Chaney, A.L., and E.P. Marbach. 1962. Modified reagents for determination of  

urea and ammonia. Clin. Chem. 8:130-132. 
 
Charles-Edwards, D.A., D. Doley, and G.M. Rimmington. 1986. Modeling plant  

growth and development. Academic Press, Australia, North Ryde, NSW. 
 
Confalone A., J.I. Lizaso, B. Ruiz-Nogueira, F.  Lo´ pez-Cedro´n, F. Sau. 2010.  

Growth, PAR use efficiency, and yield components of field-grown Vicia faba L. 
under different temperature and photoperiod regimes. Field Crops Res. 
115:140-148. 

 
Crafts-Brander, S.J., and.D.B. Egli. 1987a. Sink removal and leaf senescence in  

soybean. Plant Physiol. 85:662-666. 
 
Crafts-Brander, S.J., and D.B. Egli. 1987b. Modification of seed growth in  

soybean by physical restrain effect on leaf senescence. J. Exp. Botany 
38:2043-2049. 

 
Daberkow, S. 2004. Economic risks of soybean rust in the U.S. vary by region.  

Amber Waves 2:8. Economic Research, USDA. Washington, D. C., USA. 
http://www.ers.usda.gov/AmberWaves/September04/Findings/economicrisks.h
tm(verified 5 May 2011). 

 
De Bruin, J.L., and P. Pedersen. 2009. New and old soybean cultivar responses  

to plant density and intercepted light. Crop Sci. 49:2225-2232. 

http://www.ers.usda.gov/AmberWaves/September04/Findings/economicrisks.htm
http://www.ers.usda.gov/AmberWaves/September04/Findings/economicrisks.htm


 

114 
 

de Souza P.I., D.B. Egli, W.P. Bruening. 1997. Water stress during seed filling  
and leaf senescence in soybean. Agron. J. 89:807-812. 

 
Donald, C.M. 1968. In search of yield. J. of Aust. Inst. of Agri. Sci. 28:171-178. 
 
Dorrance, A.E., M.A. Draper, and D.E. Hershman. 2007. Using foliar fungicides  

to manage soybean rust. NC-504 Land Grant Universities Cooperating. 
Bulletin SR-2005. 

 
Egli, D.B. 1981. Species differences in seed growth characteristics. Field Crops  

Res. 4:1-12. 
 
Egli, D.B. 1993. Cultivar maturity and potential yield of soybean. Field Crops Res.  

32:147–158. 
 
Egli, D.B. 1994. Cultivar maturity and reproductive growth duration in soybean. J.  

Agron. Crop Sci. 173, 249-254. 
 
Egli, D.B. 1997. Cultivar maturity and response of soybean to shade stress  

during seed filling. Field Crops Res. 52:1-8. 
 
Egli, D.B. 1998. Seed Biology and the Yield of Grain Crops. CAB International,  

Wallingford, UK. 171 pp. 
 
Egli, D.B. 2004. Seed fill duration and yield of grain crops. Adv. Agron. 83:243- 

279. 
 
Egli, D.B. 2005. Flowering, pod set and reproductive success in soya bean. J.  

Agron. Crop Sci. 191:283–291. 
 
Egli, D.B. 2006. The role of the seed in the determination of yield of grain crops.  

Aust. J. of Agri. Res. 57:1237-1247. 
 
Egli, D.B. 2010. Soybean reproductive sink size and short-term reductions in  

photosynthesis during flowering and pod set. Crop Sci. 50:1971-1977. 
 
Egli, D.B., and W. P. Bruening. 2000. Potential of early-maturing soybean  

cultivars in late plantings. Agron. J. 92:532-537. 
 
Egli, D.B., and W. P. Bruening. 2001. Source-sink Relationships, Seed Sucrose  

Levels and Seed Growth Rates in soybean. Ann. of Bot. 88: 235-242. 
 
Egli, D. B., and W. P. Bruening. 2003. Increasing sink size does not increase  

photosynthesis during seed filling in soybean. Field Crops Res. 19:289-298. 
 
Egli, D.B., and W. P. Bruening. 2006. Fruit development and reproductive  



 

115 
 

survival in soybean: position and age effect. Field Crops Res. 98:195-202. 
 
Egli, D.B.  and W.P. Bruening. 2007a. Nitrogen accumulation and redistribution in  

soybean genotypes with variation in seed protein concentration. Plant Soil 
301:165-172. 

 
Egli, D.B.  and W.P. Bruening. 2007b. Accumulation of nitrogen and dry matter  

by soybean seed with genetic differences in protein concentration. Crop Sci. 
47:359-366. 

 
Egli, D.B., R.D. Guffy, L.W. Meckel, and J.E. Leggett. 1985. The effect of source  

sink alternations on soybean seed growth. Ann. Bot. 55:395-402. 
 
Egli, D.B., and J.E. Leggett. 1976. Rate of dry matter accumulation in soybean  
 seed with varying source-sink ratios. Agron. J. 68:371-374. 
 
Egli, D. B., J.E. Leggett, and W.D. Duncan. 1978. Influence of N stress on leaf  

senescence and N redistribution in soybean. Agron. J. 74, 375-379. 
 
Egli, D.B., L. Meckel, R.E. Phillips, D. Radcliffe, J.E. Leggett. 1983. Moisture  

stress and nitrogen redistribution in soybean. Agron. J. 75:1027-1031. 
 
Egli, D.B., and Y. Zhen-wen. 1991. Crop growth rate and seed number per unit  

area in soybean. Crop Sci. 31: 439-442. 
 
Evans, L.T. 1993. Crop evolution, adaptation and yield. Cambridge University  

Press, Cambridge. 500 pp. 
 
Fehr, W.R., and C.E. Caviness. 1977. Stages of soybean development. Iowa  

State University, Special Report 80, Ames, Iowa.  
 
Fehr, W.R., C.E. Caviness, and J.J. Vorst. 1977. Response of indeterminate and  

determinate soybean cultivars to defoliation and half plant cut off. Crop Sci. 
17:913-917. 

 
Fehr, W.R., B.K. Lawrence, and T.A. Thompson. 1981. Critical stage of  

development for soybean defoliation. Crop Sci. 21:259-262. 
 
Food and Agriculture Organization (FAO). Statistical web page. Available at  

http://faostat.fao.org/ (verified 5 May 2011). 
 
Garcia, A., E.S. Calvo, R.A. de Susa, A. Harada, D. M. Hiromto, and L.G.E.  

Vieira. 2008. Molecular mapping of soybean rust (Phakopsora pachyrhizi) 
resistance genes: Discovery of a novel locus and alleles. Theor. Appl. Genet. 
117:545-553. 
 

http://faostat.fao.org/


 

116 
 

Garry G., M.H. Jeuffroy, B. Ney, and B. Tivoli. 1998. Effects of Ascochyta blight   
(Mycosphaerella pinodes) on the photosynthesizing leaf area and the 
photosynthetic efficiency of the green leaf area of dried-pea (Pisum sativum). 
Plant Pathol. 47: 473–479. 

 
Godoy, C.V., and M.G. Canteri. 2004. Protector, curative and eradicative effects  

of fungicides to control soybean rust caused by Phakopsora pachyrhizi in 
greenhouse. Fitopatologia Brasileira 29:97-101. (Abstract in English). 

 
Godoy, C.V., L.J. Koga, and M.G. Canteri. 2006. Diagrammatic scale for  

assessment of soybean rust severity. Fitopatol. Bras. 3:63–68. 
 
Goodwin P.H. 1992. Effect of common bacterial blight on leaf photosynthesis of  

bean. Can. J. of Plant Pathol. 14:203-206. 
 
Goellner K., M. Loehrer, C. Langenbach, U. Conrath, E. Koch, and U. Schaffrath.  

2010. Phakopsora pachyrhizi, the causal agent of Asian soybean rust.  Mol. 
Plant Pathol. 11:169-177 

 
Goli, A., and D.B. Weaver. 1986. Defoliation responses of determinate and   

indeterminate late-planted soybean. Crop Sci. 26:156–159. 
 
Gustafson, T.C., S. Z. Knezevic, T. E. Hunt, and J. L. Lindquist. 2006a.  

Simulated insect defoliation and duration of weed interference affected 
soybean growth. Weed Sci. 54:735-742. 

 
Gustafson, T.C., S. Z. Knezevic, T.E. Hunt, and J.L. Lindquist. 2006b. Early  

season insect defoliation influences the critical time for weed removal in 
soybean. Weed Sci. 54:509-515. 

 
Haile, F. J. 2001. Drought stress, insect, and yield loss. p. 117-134. In R.K.D.  

Peterson and L.G. Higley (ed.) Biotic stress and yield loss. CRC Press. Boca 
Raton, FL.  

 
Haile, F.J., L.G. Higley, and J.E. Specht. 1998. Soybean cultivars and insect  

defoliation: yield loss and economic injury levels. Agron. J. 90:344-352. 
 
Hammond, R.B. 1989. Effects of leaf removal at growth stage V1 on yield and  

other growth parameters. J. Kans. Entomol. Soc. 62:96-102. 
 
Hammond, R.B., L.G. Higley, L.P. Pedigo, L.Bledsoe, S. M. Spomer, and T.A.  

Degooyer. 2000. Simulated insect defoliation on soybean: influence of row 
width. J. Econ. Entomol. 93:1429-1436. 

 
Hardman, J.J., and W.A. Brun. 1971. Effects of atmospheric carbon dioxide  



 

117 
 

enrichment at different development stages on growth and yield components 
of soybeans. Crop. Sci. 11:886-888. 
 

Hartman, G.L., J.B. Sinclair, and J.C. Rupe. 1999. Compendium of soybean  
diseases. 4th Ed. APS Press, 100 pp. 

 
Hartman, G.L., T.C. Wang, and A.T. Tschanz. 1991. Soybean rust development  

and the quantitative relationship between rust severity and soybean yield. 
Plant Dis. 75:596-600. 

 
Hartwig, E.E. 1986. Identification of a fourth major gene conferring resistance to  

soybean rust. Crop Sci. 26:1135-1136. 
 
Hartwig, E.E., and K.R. Bromfield. 1983. Relationships among three genes  

conferring specific resistance to rust in soybeans. Crop Sci. 23:237-239. 
 
Hartwig, E.E., and J. Edwards. 1970. Effect of morphologically characteristics  

upon seed yield in soybean. Agron. J. 62:64-65. 
 
Hay, R.K.M., and J.R. Porter. 2006. The Physiology of Crop Yield, 2nd  ed.  

Blackwell Publishing Ltd, Oxford, UK. 314 pp. 
 
Hayati, R., D.B. Egli, and S.J. Crafts-Brandner. 1995. Carbon and nitrogen  

supply during seed filling and leaf senescence in soybean. Crop Sci. 35, 1063-
1069. 

 
Hayati, R., D.B. Egli, and S.J. Crafts-Brandner. 1996. Independence of nitrogen  

supply and seed growth in soybean: studies using an in vitro culture system. J.  
Exp. Bot. 47, 33-40. 

 
Heitholt, J.J., D.B. Egli, J.E. Leggett. 1986. Characteristics of reproductive  

abortion in soybean. Crop Sci. 26:589-595. 
 
Herbert, S.J., and G.U. Litchfield. 1984. Growth response of short season  

soybean to variations in row spacing and density. Field Crop Res. 9:163-171. 
 
Herbert, D.A., T.P. Mack, P.A. Backman, and R. Rodriguez-Kabana. 1992.  

Validation of a model for estimating leaf-feeding by insects in soybean. Crop 
Prot. 92: 27-34. 

 
Hershman, D.E., P.R. Bachi, C.L. Harmon, P.F. Harmon, M.E. Palm, J.M.  

McKemy, K.A. Zeller, and  L. Levy. 2006. First Report of Soybean Rust 
Caused by Phakopsora pachyrhizi on Kudzu (Pueraria montana var. lobata) in 
Kentucky. Plant Dis. 90:834-834. 
 

Higley, L.G. 1992. New understandings of soybean defoliation and their  



 

118 
 

implication for pest management. p. 56-66. In: L.G. Copping, M.B. Green and 
R.T. Rees (ed.) Pest management in soybean. Elsevier Science Publishers, 
London.  

Higgins, R A., L.P. Pedigo, and D.W. Staniforth. 1984. Effect of velvetleaf 
competition and defoliation simulating a green cloverworm (Lepidopter 
Noctuidae) outbreak in Iowa on indeterminate soybean yield, yield 
components, and economic decision levels. Environ. Entomol. 13:917-
925.Abstract.  

Hunt, T.E., L.G. Higley, and J.F. Witkowski. 1994. Soybean growth and yield  
after simulated bean leaf beetle injury to seedlings. Agron. J. 86:140-146. 

 
Hunt, R. and Parsons, E.T., 1981. Plant Growth Analysis: Users instructions for  

the stepwise and spline programs. Unit of comparative ecology, University of 
Sheffield, Sheffield, UK. 

 
Hunter, J.L., D.M. TeKrony, D.F. Miles, and D.B. Egli. 1991. Corn seed maturity  

indicators and their relationship to uptake of carbon-14 assimilate. Crop Sci. 
31:1309-1313. 

 
Isard, S.A., N.S. Dufault, G.L. Hartman, J.M. Russo, E.D. De Wolf, and W. Morel.  

2006. The effect of solar irradiance on the mortality of Phakopsora pachyrhizi 
urediniospores. Plant Dis. 90:941-945. 

 
Ingram, K.T., D.C. Herzog, K.J. Boote, J.W. Jones, and C.S. Barfield. 1981.  

Effects of defoliating pests on soybean canopy CO2 exchange and 
reproductive growth. Crop Sci. 21:961-968. 

 
Jeger, M.J., and S.L.H. Viljanen-Rollinson. 2001. The use of the area under the  

disease-progress curve (AUDPC) to assess quantitative disease resistance in 
crop cultivars. Theor. Appl. Genet. 102:32-40 

 
Jesus Junior, W.C., F.X.R. Vale, R.R. Coelho, P.A. Paul, B. Hau, A. Bergamin  

Filho, L. Zambolim, and R.D. Berger. 2003. Relationships between angular 
leaf spot, healthy leaf area, effective leaf area and yield of Phaseolus vulgaris. 
Eur. J. Plant Pathol. 109:625–632. 

 
Jiang H., and D.B. Egli. 1993. Shade induced changes in flower and pod number  

and fruit abscission in soybean. Agron. J. 85:221-225. 
 
Jiang, H., and D.B. Egli. 1995. Soybean seed number and crop growth rate  

during flowering. Agron. J. 87:264-267. 
 
Jones, R.J., and S.R. Simmons. 1983. Effect of altered source–sink ratio on  

growth of maize kernels. Crop Sci. 23:129-135. 
 



 

119 
 

Johnson, K.B. 1992. Evaluation of a mechanistic model that describes potato  
crop loss caused by multiple pests. Phytopathology 82:363 

 
Jurick, W.M., D.F. Narvaez, J.J. Marois, D.L. Wright, and P.H.  Harmon. 2007.  

Over-winter survival of Phakopsora pachyrhizi on kudzu in Florida. 
Phytopathology 97:S54. 

 
Karimi, M., and K. H. Siddique. 1991. Crop growth and relative growth rates of  

old and modern wheat cultivars. Aust. J. Agric. Res. 42:13-20. 
 
Kawuki, R.S.,  E. Adipala, J. Lamo, P. Tukamuhabwa. 2003a. Responding to the  

soybean rust epidemic in sub-Saharan Africa: a review. African Crop Sci. J. 
11:301-318. 

 
Kawuki, R.S., E. Adipala, and P. Tukamuhabwa. 2003b. Yield losses associated  

with soya bean rust (Phakopsora pachyrhizi Syd.) in Uganda. J. Phytopathol. 
151:7-12. 

 
Khaliq, T., A. Ahmad, A. Hussain, A.M. Ranjha, and M.A. Ali. 2008. Impact of  

nitrogen rates on growth, yield, and radiation use efficiency of maize under 
varying environments. Pak. J. Agri. Sci. 45:1-7 

 
Killgore, E., and R. Heu. 1994. First report of soybean rust in Hawaii. Plant Dis.  

78:1216-1216. 
 
Kiniry J.R., M. Cabelguenne, D.A. Spanel, R. Blanchet, C.A. Jones, J.C. O'Toole.  

1989. Radiation use efficiency in biomass accumulation prior to grain-filling for 
five grain-crop species. Field Crops Res. 20:51-64. 

 
Klubertanz, T.H., R.E. Carlson, and L.P. Pedigo. 1996. Soybean physiology,  

regrowth, and senescence in response to defoliation. Agron. J. 88:577-582. 
 
Koch, E., F. Ebrahim-Nesbat, and H.H. Hoppe. 1983. Light and electron  

microscopic studies on the development of soybean rust (Phakopsora 
pachyrhizi Syd.) in susceptible soybean leaves. J. Phytopathol. 119:64-74. 

 
Koch, E., and H.H. Hoppe. 1987. Effect of light on uredospore germination and  

germ tube growth of soybean rust (Phakopsora pachyrhizi Syd.). J. 
Phytopathol. 119:64-74. 

 
Kochman, J.K., 1979. The effect of temperature on development of soybean rust  

(Phakopsora pachyrhizi). Aust. J. Agri. Res. 30:273-277. 
 
Kuchler, F., M. Duffy, R.D. Shrum, and W.M. Dowler. 1984. Potential economic  

consequences of the entry of an exotic fungal pest: the case of soybean rust. 
Phytopathology 74:916-920. 



 

120 
 

Kumudini, S., C.V. Godoy, J.E. Board, J. Omielan, and M. Tollenaar. 2008a.  
Mechanisms involved in soybean rust induced yield reductions. Crop Sci. 
48:2334-2342. 
 

Kumudini, S., C.V. Godoy, B. Kennedy, E. Prior, J. Omielan, H. R. Boerma, and  
D. Hershman. 2010. Role of host-plant resistance and disease development 
stage on leaf photosynthetic competence of soybean rust Infected leaves. 
Crop Sci. 50:2533-2542. 

 
Kumudini, S., D.J. Hume, and G. Chu. 2001. Genetic improvement in short  

season soybeans: I. dry matter accumulation, partitioning, and leaf area 
duration. Crop Sci. 41:391–398. 

 
Kumudini, S., D.J. Hume, and G. Chu. 2002. Genetic improvement in short- 

season Soybeans: II. nitrogen accumulation, remobilization, and partitioning. 
Crop Sci. 42:141–145. 

 
Kumudini, S., E. Prior, J. Omielan, and M. Tollenaar. 2008b. Impact of  

Phakopsora pachyrhizi infection on soybean leaf photosynthesis and radiation 
absorption. Crop Sci. 48:2343–2350.  

 
Lamour, K.H., J.P. Stack, J. Pierzynski, L. Finley, K.L. Snover-Clift. 2006. Early  

detection of Asian soybean rust using PCR. Plant Health Progress. Available 
at http://www.plantmanagementnetwork.org/pub/php/research/2006/pcr/ 
(verified 5 May 2011). 

 
Leite, R.M.B.V.C., L. Amorim, and A. Bergamin Filho. 2006. Relationships of  

disease and leaf area variables with yield in the Alternaria helianthi sunflower 
pathosystem. Plant Pathol. 55:73-81. 

 
Levy, C. 2005. Epidemiology and chemical control of soybean rust in southern  

Africa. Plant Dis. 89:669-674. 
 
Li, X., P. An, S. Inanaga, A. E. Eneji, and X. Liu. 2009. Nitrogen accumulation in  

soybean following defoliation. J. Plant Nutrit. 32:71–83. 
 
Li, X., P. An, S. Inanaga,  A. E. Eneji, and K. Tanabe. 2006b. Salinity and  

defoliation effects on soybean growth. J. of Plant Nutri. 29:1499-1508. 
 
Li, X., J. Y. Mo, and X. B. Yang. 2006a. Frequency distribution of soybean rust  

uredinospore clumps collected from naturally infected kudzu leaves in 
Nanning, China. Poster presentation in 2006 National Soybean Rust 
Symposium, St. Louis, MO. 

 
Liu, J., Y.H. Wu, J.J. Yang, Y.D. Liu, and F.F. Shen. 2008. Protein degradation  

and nitrogen remobilization during leaf senescence.  J. Plant Biol. 51:11-19. 

http://www.plantmanagementnetwork.org/pub/php/research/2006/pcr/


 

121 
 

Livingston, M., R. Johansson, S. Daberkow, M. Roberts, M. Ash, and V.  
 
Breneman. 2004. Economic and policy implications of wind-borne entry of Asian  

soybean rust into the United States. Outlook Report No. OCS-04-D02. 
Economic Research Service. Washington, D. C., USA. Available at 
http://www.ers.usda.gov/publications/OCS/Apr04/OCS04D02/OCS04D02.pdf 
(verified 5 May 2011). 

 
Loomis, R.S., and D.J. Connor. 1992. Crop ecology: productivity and  

management in agricultural systems. Cambridge University Press. London. 
 
Magnani, E.B.Z., E. Alves,  and D.V. Araújo. 2007. Events pre-penetration,  

penetration and colonization processes by Phakopsora pachyrhizi in soybean 
leaflets. Fitopatologia Brasileira, 32:156-160. (Abstract in English). 

 
Marchetti, M.A., F.A. Uecker, and K.R. Bromfield. 1975. Uredial development of  

Phakopsora pachyrhizi in soybeans. Phytopathology 65:822-823. 
 
Marchetti, M.A., J.S. Melching, and K.R. Bromfield. 1976. The effects of  

temperature and dew period on germination and infection by uredospores of 
Phakopsora pachyrhizi. Phytopathology 66:461-463 

 
Mclean, R.J., and D.E. Byth. 1981. Histological studies of the pre-penetration  

development and penetration of soybean by rust, Phakopsora pachyrhizi Syd. 
Aust. J. Agri. Res. 32:435-443. 

 
Melching, J.S., K.R. Bromfield, and C.H. Kingsolver. 1979. Infection, colonization  

and uredospore production on Wayne soybean by four cultures of Phakopsora 
pachyrhizi, the cause of soybean rust. Phytopathology 69:1262-1265. 

 
Melching, J.S., W.M. Dowler, D.L. Koogle, and M.H. Royer. 1988. Effects of plant  

and leaf age on susceptibility of soybean to soybean rust. Can. J. Plant Pathol. 
10:30-35. 

 
Miles, M.R., C. Levy, W. Morel, T. Mueller, T., Steinlage, N. Van Rij, R.D.  

Frederick, and G. L. Hartman. 2007. International fungicide efficacy trials for 
the management of soybean rust. Plant Dis 91, 1450–1458. 

 
Monteros, M.J., A.M. Missaoui, D.V. Phillips, D.R. Walker, and H.R. Boerma.  

2007. Mapping and confirmation of the ‘Hyuuga’ Red–Brown lesion resistance 
gene for Asian soybean rust. Crop Sci. 47:829-836. 

 
Muchow, R.C., M.J. Robertson, and B.C. Pengelly. 1993. Radiation use  

efficiency of soybean, mugbean and cowpea under different environmental 
conditions. Field Crops Res. 32:1-16. 
 

http://www.ers.usda.gov/publications/OCS/Apr04/OCS04D02/OCS04D02.pdf


 

122 
 

Mullen, J.M., E.J. Sikora, J.M. McKemy, M.E. Palm, L.  Levy, and D.R. Paterson.  
2006. First report of Asian soybean rust caused by Phakopsora pachyrhizi on 
soybean in Alabama. Plant Dis. 90:112-112. 
 

Munier-Jolain NG, Ney B, Duthion C. 1993. Sequential development of flowers  
and seeds on the mainstem of an indeterminate soybean. Crop Science 33, 
768–71. 

 
Murata, Y. 1969. Physiological responses to nitrogen in plants. p. 235–259. In:  

J.D. Eastin, F. A. Haskins, C. Y. Sullivan, and C. H. M. Van Bavel (ed.) 
Physiological aspects of crop yield. American Society Agronomy. Madison, WI. 

 
Mueller, T.A., M.R. Miles, W. Morel, J.J. Marois, D.L. Wright, R.C. Kemerait, C.  

Levy, and G.L. Hartman. 2009. Effect of fungicide and timing of application on 
soybean rust severity and yield. Plant Dis. 93:243-248. 

 
Neumann, P.M., A.T. Tucker, and L.D. Nooden. 1983. Characterization of 

leaf senescence and pod development in soybean explants. Plant Physiol. 
72:182-185. 

 
Nooden, L.D. 1984. Integration of soybean pod development and monocarpic 

senescence. Physiologia Plantarum 62, 273–284. 
 
Nooden, L.D. 1985. Regulation of soybean senescence. p. 891-900. In: R.  

Shibles (ed.) World soybean research conference III: Proceedings. Westview 
Press, Boulder, CO, USA. 

 
Nooden, L.D., and A.C. Leopold. 1988. Senescence and aging in plants.  

Academic Press, San Diego, XVIII: p. 526. 
 
Nutter F., J. Guan, A.R. Gotlieb, L.H. Rhodes, C.R. Grau, and R.M. Sulc. 2002.  

Quantifying alfalfa yield loss caused by foliar diseases in Iowa, Ohio, 
Wisconsin, and Vermont. Plant Dis. 86:269-277. 

 
Ono, Y., P. Buritica, and J.F. Hennen. 1992. Delimitation of Phakopsora,  

Physopella and Cerotelium and their species on Leguminosae. Mycol. Res. 
96:825-850. 

 
Ogle, H.J., D. E. Byth, and R. McLean. 1979. Effect of rust (Phakopsora  

pachyrhizi) on soybean yield and quality in south-eastern Queensland. Aust. J. 
Agri. Res. 30:883-893. 

 
Omielan, J., A. M. Aqeel, E. Prior, J. Board, C. Godoy, D. Wright, B. Kemerait,  

W. Dong, and S. Kumudini. 2009. The development and validation of a simple 
yield loss prediction model for soybean rust. Abstract. ASA, CSSA, and SSSA 
meeting.1-5 November 2009.  Pittsburg, PA. 



 

123 
 

Palmer, R.G., T. Hymowitz, and R.L. Nelson. 1996. Germplasm diversity within  
soybean. p. 1-36. In: D. P. S. Verma, and R. C. Shoemaker (ed.) Soybean: 
genetics, molecular biology and biotechnology. CAB International. Wallingford, 
UK. 

 
Patil, P.V., and K.H. Anahosur. 1998. Control of soybean rust by fungicides.  

Indian Phytopathol. 51, 265–268. 
 
Peterson, R.K.D., and L.G. Higley. 1996. Temporal changes in soy bean gas  

exchange following simulated insect defoliation. Agron  J. 88:550-554. 
 
Peterson, R.K.D., and L. Higley. 2001. Biotic stress and yield loss. CRC Press  

Boca Raton, FL.261 pp. 
 
Pickle, C.S., and C.E. Caviness. 1984. Yield reduction from defoliation and plant  

cutoff of determinate and semi determinate soybean. Agron. J. 76:474-476. 
 
Pivonia, S., and X.B. Yang. 2004. Assessment of potential year-round  

establishment of soybean rust throughout the world. Plant Dis. 88:523-529. 
 
Poonpolgul, S., and P. Surin. 1980. Study on host range of soybean rust fungus  

in Thailand. Soybean Rust News. 3:30-31. 
 
Poonpolgul, S., and P. Surin. 1985. Physiological races of soybean rust in  

Thailand. Phytopathology 5:119-120. 
 
Purcell, L.C., R.A. Ball, J.D. Reaper, and E.D. Vories. 2002. Radiation use  

efficiency and biomass production in soybean at different plant population 
densities. Crop Sci. 42:172–177. 

 
Quijano, A., and E.N. Morandi. 2011. Post-flowering leaflet removals increase  

pod initiation in soybean canopies. Field Crops Res. 120: 151-160. 
 
Ramseur, E.L., S.U. Wallace, and V.L. Quisenberry. 1985. Growth of “Braxton”  

soybeans as influenced by irrigation and intrarow spacing. Agron. J. 77:163-
168. 

 
Robert, C., M.O. Bancal, C. Lannou, and B. Ney. 2005. Quantification of the  

effects of Septoria tritici blotch on wheat leaf gas exchange with respect to 
lesion age, leaf number, and leaf nitrogen status. J. Exp. Bot. 57: 225-234. 

 
Rotem, J., E. Bashi, and J. Kranz. 1983a. Studies of crop loss in potato blight  

caused by Phytophthora infestans. Plant Pathol. 32:117-122. 
 
Rotem, J., J. Kranz, and E. Bashi. 1983b. Measurement of healthy and diseased  



 

124 
 

haulm area for assessing late blight epidemics in potatoes Plant Pathol. 
32:109-115. 
 

Rotundo, J., and M.E. Westgate. 2010. Rate and duration of seed component 
accumulation in water-stressed soybean. Crop Sci. 50:676–684 

 
Rytter, J.L., W.M. Dowler, and K.R. Bromfield. 1984. Additional alternative hosts  

of Phakopsora pachyrhizi, causal agent of soybean rust. Plant Dis. 68:818-
819. 

 
Savary S., P.S. Teng, L. Willocquet, and F.W. Nutter. 2006. Quantification and  

modeling of crop losses: a review of purposes. Annu. Rev. of Phytopathol. 
44:89-112. 

 
Schaafsma, A.W., and G.R. Ableet. 1994. Yield loss response of navy bean to  

partial or total defoliation. J. Prod. Agric. 7:202-205. 
 
Schneider, R.W.,  C.A. Hollier, H.K. Whitam, M.E. Palm, J.M. Mckemy, L. Levy,  

R.D. Paterson. 2005. First report of soybean rust caused by Phakopsora 
pachyrhizi in the continental United States. Plant Dis. 89:774. 

 
Schoney A., M. Jeuffory, and P. Lucas. 2001. Influence of take all epidemics on  

winter wheat yield formation and yield loss. Phytopathology 91:694-701. 
 
Schou, J.B., D.L. Jeff ers, and J.G. Streeter. 1978. Effects of reflectors, black  

boards, or shades applied at different stages of plant development on yield of 
soybeans. Crop Sci. 18:29–34. 

 
Sharma, N.D., and S.K. Mehta. 1996. Soybean rust in Madhya Pradesh. Acta  

Botanica Indica 24:115-116. 
 
Shibles, R.M. and C.R. Weber. 1965. Leaf area, solar radiation interception and  

dry matter production by soybean. Crop Sci. 5:575-577. 
 
Shibles, R.M. and C.R. Weber. 1966. Intercepted of solar radiation and dry  

matter production by various soybean planting patterns. Crop Sci. 6:55-59. 
 
Sinclair T.R., and C.T. de Wit. 1975. Photosynthate and nitrogen requirements  

for seed production by various crops. Science 189:565-567. 
 
Sinclair, T.R., and C.T. de Wit. 1976. Analysis of the carbon and nitrogen  

limitations to soybean yield. Agron. J. 68, 319-324. 
 
Sinclair, J.B., and G.L. Hartman. 1995. Management of soybean rust. p. 6-11. In:  

Proc. 3rd Soybean Rust Workshop. National Soybean Research Lab, 
University of Illinois Urbana-Champaign, USA. 



 

125 
 

Sinclair, T.R., and T. Horie. 1989. Leaf nitrogen, photosynthesis, and crop  
radiation use efficiency: a review. Crop Sci. 29:90-98. 

 
Sinclair, T.R., and R.U. Machow. 1999. Radiation use efficiency. Field Crops  

Res. 65:215-265. 
 
Sinclair, T.R., and T. Shiraiwa. 1993. Soybean radiation use efficiency as  

influenced by nonuniform specific leaf nitrogen distribution and diffuse 
radiation. Crop Sci. 33:808-812. 

 
Staswick, P.E. 1994. Storage proteins of vegetative plant tissues. Annu. Rev.  

Plant Physiol. Plant Mol. BioI. 45:303-22. 
 
Streeter, J.C. 1978. Effect of N starvation of soybean plants at various stages of  

growth on seed yield and N concentration of plant parts at maturity. Agron. J. 
70:74-76. 

 
Subba Rao, K.V., G.T. Berggren, J.P. Snow. 1990. Characterization of wheat leaf  

rust epidemics in Louisiana. Phytopathology 80:402-410. 
 
Talekar, N.S., and H.R. Lee. 1988. Response of soybean to foliage loss in 

Taiwan. J. Econ. Entomol. 81:1363-1368. 
 
Thomas W.W., and K.A. Stoddart. 1980. Leaf senescence. Annu. Review Plant  

Physiol. 31:83-111.  
 
Timsina, J., K.J. Boote, and S. Duffield. 2007. Evaluating the CROPGRO  

soybean model for predicting impacts of insect defoliation and depodding. 
Agron. J. 99:148-157. 

 
Tollenaar, M. 1991. Physiological basis of genetic improvement of maize hybrids  

in Ontario from 1959 to 1998. Crop Sci. 31:119-124. 
 
Tollenaar, M., and T.B. Daynard. 1978. Effect of defoliation on kernel  

development in maize. Can. J. Plant Sci. 58:207-212. 
 
Vasilas, B.L., Fuhrmann, and L.E. Gray. 1989. Response of soybean to lower- 

canopy defoliation during the seed fill. Can. J. Plant Sci. 69:17-22. 
 
Vieira, R. D., D.M. TeKrony, and D.B. Egli. 1992. Effect of drought and defoliation  

stress in the field on soybean seed germination and vigor. Crop Sci. 32:471-
475. 

 
Waggoner, P.E., and R.D. Berger. 1987. Defoliation, disease, and growth.  

Phytopathology 77:393-398.  
 



 

126 
 

Weber, C.R. 1955. Effect of defoliation and topping simulating hail injury to  
soybeans. Agron. J. 47:262-266. 

 
Wells, R., L.L. Schulze, D.A. Ashley, H.R. Boerma, and R.H. Brown. 1982.  

Cultivars differences in canopy apparent photosynthesis and their relationship 
to seed yield in soybean. Crop Sci. 22:886-890. 

 
Wilkerson, G.G., J.W. Jones, and S.L. Poe. 1984. Effect of defoliation on peanut  

plant growth. Crop Sci. 24:526-521. 
 
Wittenbach, V.A. 1982. Effect of pod removal on leaf photosynthesis and soluble 

protein composition of field-grown soybeans. Plant Phsyiol. 73, 121-124. 
 
Wrather, J.A., T. R. Anderson, D.M.  Arsyad, Y. Tan, L.D. Ploper, A. Portapuglia,  

H.H. Ram, J.T. Yorinori. 2001. Soybean disease loss estimates for the top ten 
soybean producing countries in 1998. Cana. J. of Plant Pathol. 23:115-121. 

 
Yadav, D.S., and S. Chander. 2010.  Simulation of rice plant hopper damage for  

developing pest management decision support tools. Crop Prot. 29:267-276 
 
Yang, X.B., W.M. Dowler, A.T. Tschanz, and T.C. Wang. 1992. Comparing the  

effects of rust on plot yield, plant yield, yield components, and vegetative parts 
of soybean. J. Phytopathol. 136:46–56. 

 
Yeh, C.C., J.B. Sinclair, and A. T.Tschanz. 1982. Phakopsora pachyrhizi: Uredial  

development, uredospore production and factors affecting teliospores 
formation on soybeans. Aust. J. Agri. Res. 33:25-31. 

 
Yorinori, J.T. 2007. Control of Asian soybean rust. (in Portuguese). Available at  

http://www.cnpso.embrapa.br/download/Tadashi_set_2006.doc (verified 5 May 
2011). 

 
Yorinori, J.T., W.M. Paiva, R.D. Frederick, L.M. Costamilan, P. F. Bertagnolli, G.  

E. Hartman, C.V. Godoy, and J. Nunes Jr. 2005. Epidemics of soybean rust 
(Phakopsora pachyrhizi) in Brazil and Paraguay from 2001 to 2003. Plant Dis. 
89:675-677. 

 
Zeiher, C., D.B. Egli, J.E. Leggett, and D.A. Reicosky. 1982. Cultivar differences  

in nitrogen redistribution in soybeans. Agron. J. 74, 375-379. 

http://www.cnpso.embrapa.br/download/Tadashi_set_2006.doc


 

127 
 

VITA 

 
Author’s Name Abdullah Aqeel 
 
Birthplace AL-Ramtha, Jordan 
 
Birthdate February 21, 1976 
 
Education 
 
Master of Science in Agronomy. 
Jordan University of Science and Technology 
May – 2001 
 
Bachelor of Science in Plant Production.  
Jordan University of Science and Technology 
May – 1998 
 
Research Experience 
Graduate Research Assistant 
University of Kentucky 
Lexington, KY 
June/2008 – July/2011. 
 
Graduate Teaching Assistant, and 
Graduate Research Assistant 
Jordan University of Science and Technology 
Department of Plant Production 
October 1998 – May 2001.  
 
 
Peer Reviewed Publications 
 
Aqeel A.M., Hameed, K., and  Alaudat, M. 2007. Effect of olive mill by-products 
on mineral status, growth, and productivity of faba bean. J. of Agronomy 6:403-
408.  
 
Aqeel A.M. 2007. Implantation of olive mill by-products in agriculture. World J. of 
Agricultural Sciences. 3(3):380-385.  
 
Turk, M.A., Hameed, K.M., Aqeel, A. M., and Tawaha, A. M. 2003. Nutritional 
status of cereal and legume crop in soil supplemented with organic waste. 
International J. of Plant Chemistry, Soil Science and Fertilization. Vol. 47 (5/6): 
209-219.  
 



 

128 
 

Published Abstracts 
 
Aqeel A.M., E. Prior, J. Omielan, J. Board, and S. Kumudini. Can we simulate 
the impact of soybean rust in the south central soybean production regions of the 
United States?. Abstract. Proceedings of the American Society of Agronomy 
Annual Meeting – The American Society of Agronomy, 01-05 Nov 2009. 
Pittsburgh, PA, USA; Nov 2010 Supplement.  
 
J. Omielan, Aqeel A.M. E. Prior, J. Board, C. Godoy, D. Wright, B. Kemerait, W. 
Dong, and S. Kumudini. The development and validation of a simple yield loss 
prediction model for soybean rust. Abstract. Proceedings of the American Society 
of Agronomy Annual Meeting – The American Society of Agronomy, 01-05 Nov 
2009. Pittsburgh, PA, USA; Nov 2009 Supplement.  
 
Honors, Awards, and Activities 

• 3rd place, graduate student competition poster, ASA meeting, Pittsburgh 
2009 

 
• Two years on university honor list 1999, and 2000, Jordan Univ. of Sci and 

Technology. 
 

• Member of the American Society of Agronomy (ASA).  
 
 
 
 
 
 
 


	USING MANUAL DEFOLIATION TO SIMULATE SOYBEAN RUST: EFFECT ON GROWTH AND YIELD FORMATION
	Recommended Citation

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER ONE
	LITERATURE REVIEW
	Classification, History, and Importance of Soybean
	Physiology of Soybean Yield Production
	Yield Components
	Leaf Area Index
	Light Interception
	Radiation Use Efficiency
	Seed-Fill Duration
	Senescence
	Harvest Index

	Soybean Rust
	Importance and Threat of Soybean Rust
	Pathogen Biology and Disease Cycle
	Disease Symptoms
	Effect of Soybean Rust on Soybean
	Control Measures

	Effect of Defoliation on Yield
	Predicting Yield loss
	Simulating Foliar Disease Injury

	Statement of Purpose


	CHAPTER TWO
	 SIMULATION THE IMPACT OF SOYBEAN RUST ON SOYBEAN YIELD WITH MANUAL DEFOLIATION
	Introduction
	Materials and Methods 
	Culture
	Kentucky Site
	Louisiana Site

	Defoliation Treatments
	Experiment Design
	Plant Phenology
	Kentucky Yield
	Louisiana Yield
	Effective Leaf Area Duration
	Data Analysis

	Results and Discussion
	Conclusions
	Abstract


	CHAPTER THREE
	INFLUENCE OF DEFOLIATION ON INTERCEPTED SOLAR RADIATION AND SOYBEAN GROWTH DYNAMIC
	Introduction
	Materials and Methods
	Culture
	Kentucky Site
	Louisiana Site

	Statistical Design
	Defoliation Treatments
	Crop Growth Measurements
	Light Interception
	Crop Growth Rate
	Seed Growth Rate
	Radiation Use Efficiency
	Yield and Yield Components

	Data Analysis

	Results
	Light Interception
	Yield and Yield Components
	Radiation Use Efficiency, Crop Growth Rate, and Seed Growth Rate
	Seed Filling Duration

	Discussion
	Abstract


	CHAPTER FOUR
	EFFECT OF DEFOLIATION ON PHOTOSYNTHESIS AND NITROGEN REMOBILIZATION DURING THE SEED-FILLING PERIOD IN SOYBEAN
	Introduction 
	Materials and Methods
	Culture
	Defoliation Treatments
	Photosynthesis 
	Light Interception
	Nitrogen Redistribution 
	Yield and Yield Components
	Statistical Design and Analysis

	Results 
	Light Interception 
	Photosynthesis
	Yield and Yield Components
	Nitrogen Redistribution 

	Discussion
	Yield and Seed-Filling Duration
	Senescence 
	Nitrogen Redistribution  

	Abstract


	References
	Vita

