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Abstract 

 

 

 ANALYSIS OF DIFFERENTIAL GENE EXPRESSION AND ALTERNATIVE 
SPLICING IN THE LIVER AND GASTROINTESTINAL TRACT IN THE LACTATING 

RAT 

Rat exon microarrays were utilized to detect changes in mRNA expression and 
alternative splicing in the liver, duodenum, jejunum, and ileum of the lactating rat when 
compared to age-matched virgin controls.  Analysis of data at the level of gene 
expression revealed differential expression of genes involved in cholesterol biosynthesis 
in each tissue examined, suggesting increased Sterol Response Element Binding 
Protein activity.  We also detected decreased mRNA from components of the T-cell 
signaling pathway in the jejunum and ileum.  We characterized expression of solute 
carrier and adenosine triphosphate binding cassette proteins.  In addition to 
characterizing genes by pathway, we have also grouped genes based on their pattern 
of expression to identify important genes.  Amongst genes upregulated in all tissues 
was Slc39a4, which is a critical transporter in the absorption of zinc in enterocytes.  
Alternative splicing analysis detected a substantial amount of alternative splicing in the 
ileum compared to other tissues.  In addition, in the liver Abcg8, a protein that functions 
as a heterodimer to export cholesterol in the bile, shows differential splicing in the liver, 
but not in other tissues.   We also detected differential expression of Ugt1a6 in the liver 
based on usage of an alternative first exon, which is consistent with altered protein 
levels observed previously.  Differential splicing also appears to occur in Ace2 in the 
ileum, which could have consequences on the renin-angiotensin pathway.   

Multimedia formats: .jpeg, pdf 
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Chapter 1 

 

Physiology and Endocrinology of Lactating Animals 

Introduction 

 

Lactation is a time of increased energy demand, as lactating mothers must 

provide nutrients for both themselves and their offspring.  In rats, who have large 

litters, energy demand is increased four to five fold, while food intake increases 

two to three fold [1-3].  Several changes in hormone levels occur to stimulate the 

physiologic changes that take place during lactation.  Prolactin (Prl) is critical in 

the development of the mammary gland and stimulates milk secretion [4-7], and 

its levels are increased in lactation.  Thyroid hormone, leptin, and insulin serum 

levels are all decreased, possibly to maintain energy balance within the lactating 

animal by decreasing its energy expenditure.  Amongst changes seen in lactating 

rats are increased liver size [8] , growth of the small intestine [1], increased 

cholesterol synthesis [9], and increased hydrophobicity and size of the bile acid 

pool [10].  Growth of visceral tissue and improved cholesterol synthesis are also 

observed in bovines [11, 12]. 

 

In this study, we analyzed the liver, duodenum, jejunum, and ileum of lactating 

dams and compared these tissues against the same tissues in virgin controls.  
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The liver is the primary site of drug metabolism, and is also responsible for the 

production of the various components of bile, which is important for lipid 

absorption and the absorption of lipid soluble vitamins.  The small intestine is 

divided into three parts, the duodenum, jejunum, and ileum.  The three parts 

have different physiologic properties, and therefore were analyzed as three 

different tissues.  The duodenum, jejunum, and ileum as whole tissues also 

include many different cell types.  The duodenum includes Brunner’s glands, 

which are mucuous secretory cells, while the ileum contains lymph nodules 

known as Peyer’s patches [13].  Gene expression of transporters differs between 

parts of the small intestine.  For example, Abcc3 expression increases 

substantially in the ileum [14], while Abcc2 expression is high in the duodenum 

and is lower in the ileum [15-17].  A review of the expression of Solute carrier 

(Slc) and Adenosine triphosphate binding cassette (Abc) proteins in the parts of 

the small intestine can be found in Oostendorp et al [15].  These transporters can 

control oral availability of various drugs.   

Thyroid Hormone in the Lactating Animal 

 

Thyroid hormone comes in multiple forms, with 3,5,3′-L

18

-triiodothyronine (T3) being 

the form that is considered biologically active [ ].  Serum concentrations of 

thyroid hormone are decreased in lactating rats [19].  Thyroid hormone is 

required for milk secretion [7, 20, 21], and serum thyroid levels are below optimal 

for maximal secretion [7, 21].  5’ Monodeiodinase activity is increased in the 

mammary tissue, which allows for the mammary gland to locally produce active 
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thyroid hormone, permitting the mammary gland to meet energy demands, while 

conserving energy in other tissues [22].  The decrease in serum thyroid levels is 

likely to be in order to conserve energy, as thyroid hormone is strongly 

associated with energy metabolism.  The actions of the thyroid hormone are 

divided into “genomic” effects and “non-genomic” effects.  There are multiple 

forms of the thyroid receptor, which mediates the genomic effects of thyroid 

hormone, and are produced by two genes, Thra and Thrb.  In the liver and small 

intestine, Thrb is the dominant form of the receptor [23].  Microarray technology 

has been used to characterize how  thyroid hormone influences gene expression 

in cultured human fibroblasts [24], mouse brain [25], mouse liver [26-29], mouse 

osteoblasts [30], and rat liver [31].  Among genes regulated in human fibroblasts 

in response to T3 treatment is Kruppel Like Factor 9 (KLF9, also known as BTE 

binding protein or BTEB1).  Knockout of Klf9 in mice results in shorter intestinal 

villi [32].  However, Klf9 is a transcriptional repressor and may also be involved in 

inhibiting growth [33].  In addition, thyroid hormone is associated with 

mitochondriogenesis [18].  Mitochondria are the major site of energy production 

within a cell, and increasing the number of mitochondria aids in a cell’s ability to 

produce energy.  Truncated variations of isoform one of Thra and isoform one of 

Thrb (TRα1 and TRβ1), have been shown to be specifically imported into 

mitochondria, suggesting a mechanism for thyroid hormone to control 

mitochondrial gene expression [34-36].   
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Nongenomic interactions of T3 are created through interactions with various 

proteins.  One pathway that is influenced by a direct protein interaction is the 

PI3K/AKT pathway.  T3 interacts directly with PI3K, which leads to 

phosphorylation of AKT [37, 38].  The PI3Ks are a group of lipid kinases that are 

subdivided into three classes based on sequence homology [39].  These 

enzymes catalyze the conversion of phosphatidyl inositol (4,5) bisphosphate 

(PIP2) into phosphatidyl inositol (3,4,5) triphosphate  (PIP3) [40].  PIP3 can then 

be converted back into PIP2 by phosphorylates phosphatase and tensin homolog 

(PTEN), or PIP3 can phosphorylate the kinase 3'-Phosphoinositide-dependent 

protein kinase 1 (PDK1) [39, 40].  PDK1 in turn phosphorylates the protein 

product of v-akt murine thymoma viral oncogene homolog (AKT) [39, 41].  AKT in 

turn controls a large number of cellular responses, including phosphorylating the 

forkhead box transcription factors (FOXOs) and the mechanistic target of 

rapamycin (mTOR) when it is part of mTOR complex 1 (mTORC1) [41, 42].  Both 

of these processes control the ability of the cell to mobilize energy, the former by 

deactivating transcription factors, and the latter by inhibiting the ability of 

eukaryotic initiation factor 4E binding protein 1 (4EBP1) to bind to and inhibit 

eukaryotic initiation factor 4E.  Decreased 4EBP1 binding allows for additional 

protein translation.  The FOXO transcription factors control the expression of 

phophoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6P), 

two of the key enzymes for gluconeogenesis [43, 44]. 

   

Leptin and insulin in the Lactating Animal 
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Leptin is a cytokine secreted by adipose tissue and aids in regulating dietary 

intake by acting on leptin receptors in the hypothalamus [45].  In general, high 

leptin levels inhibit dietary intake.  During lactation, leptin levels are low, 

encouraging nutrient uptake through increased feeding [19].  Reducing leptin 

activity reduces Adenosine Monophosphate Activated Kinase (AMPK) activity, 

decreasing β-oxidation.  AMPK is a major energy sensor for cells and plays a 

major role in control of several metabolic pathways, including downregulating 

gluconeogenesis in the liver, decreasing cholesterol synthesis by 

phosphorylating 3-Hydroxy-3-methylglutaryl Coenzyme A reductase (Hmgcr), 

controlling glucose uptake in muscle by upregulating Glut4, and improving fatty 

acid oxidation and decreasing fatty acid biosynthesis by inhibiting acetyl-CoA 

carboxylase (Acc), the rate limiting step of fatty acid synthesis [46, 47].  AMPK is 

an enzyme composed of a combination of three subunits [48, 49].  The 

completed enzyme functions as an energy sensor for the cell and is regulated by 

the AMP/ATP ratio in the cell as well as multiple hormone signals [47].  Reduced 

AMPK activity also encourages fatty acid synthesis, including stimulation of Acc, 

[46], through decreased phosphorylation [47].  AMPK downregulates 

gluconeogenesis by decreasing expression of PEPCK and G6P [47].  AMPK can 

also suppress Pparγ coactivator 1α (Ppargc1α) by decreasing CRE-binding 

protein-regulated transcription coactivator 2 (CRTC2) activity [47, 50].    AMPK 

activity overlaps with several other signaling pathways, including those of insulin 

and adiponectin .  Decreased AMPK activity also encourages cholesterol 
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synthesis through decreased phosphorylation of 3-hydroxy-3-methylglutaryl-CoA 

reductase, which is the rate limiting step of cholesterol synthesis [47].  AMPK 

decreases ACC transcription through decreasing the activities of the transcription 

factors SREBP-1c and carbohydrate responsive element binding protein 

(ChREBP) [47].  Insulin, which also shows decreased levels in lactation, 

decreases expression of the leptin receptor [51].  In cows, expression of the short 

and long forms of hepatic leptin receptor increases 40% during the transition 

from late pregnancy to early lactation [51].  Leptin mediates many of its 

downstream signaling through JAK2/STAT3 activation [52].   

 

Prolactin in the Lactating Animal 

 

Prolactin is a hormone secreted from lactotrophic cells in the pituitary gland [53, 

54], and is also secreted from the mammary epithelium, placenta, brain, and 

immune system [53].  It is associated with mammary gland development and milk 

secretion.  It is closely related to growth hormone and placental lactogen, which 

are believed to all have been derived from a common ancestral gene [54, 55].  

Prl and placental lactogen bind to the prolactin receptor (Prlr), which has a long 

form, an intermediate form, and a short form in the rat [54, 56], while growth 

hormone has its own receptor [4].  Homodimerization of the Prlr in turn triggers a 

JAK2/STAT5 signaling cascade, which is considered the canonical mechanism 

for Prl signaling [4, 54].  Two JAK2 proteins phosphorylate each other and the 

activated JAK2 proteins in turn phosphorylate STAT5a.  STAT5a dimerizes and 
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transports to the nucleus, where it functions as a transcription factor and 

regulates transcription 

  

Hormones that have altered serum levels in lactation influence alternative 

splicing 

 

The decrease in insulin and leptin levels and the increase in Prl signaling during 

lactation may lead to changes in pathways that ultimately control alternative 

splicing of genes.  All three of these hormones lead to downstream PI3K 

signaling through different receptors [52, 57-61].  PI3k signaling in turn can lead 

to downstream phosphorylation of several serine-arginine (SR) proteins.  SR 

proteins control splicing events through their interactions with RNA, allowing 

recruitment of the ribonuclear proteins that perform the splicing reaction [62-64].  

SR proteins require phosphorylation to recognize the potential splice site, and 

dephosphorylation for the splicing reaction to be catalyzed [62, 65, 66].  Insulin 

signaling can trigger differential splicing of protein kinase C β II through the PI3K 

pathway and ultimately through differential phosphorylation of SRp40, a member 

of the SR family of proteins that are often involved in the regulation of alternative 

splicing [67].  Likewise, Prlr activation leads to differential splicing of neuronal 

nitric oxide synthase (nNOS) in the rat anterior pituitary cell line GH3 68 [ ].  

Consequently, differential alternative splicing through differential phosphorylation 

of SR proteins downstream of PI3k signaling seems likely in lactating animals.      
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Energy Demands of Lactating animals 

 

During lactation, many species are in negative energy balance [69].  Maintaining 

a negative energy balance can produce a state where the animal is conserving 

energy.  Both thyroid and insulin, hormones that encourage energy expenditure, 

have decreased serum levels in lactation, which is consistent with an energy-

poor state [3, 19, 70].  This negative energy balance has been proposed to be 

causative of the hypoleptinemia seen in lactation [69] and is proposed to be 

responsible for the increase in food intake during lactation [69].  However, this 

explanation does not fully account for changes in food intake or in leptin levels.  

In addition to energy demands, the suckling response has an influence on the 

diurnal regulation of serum leptin levels [69].  Also, although leptin levels may be 

reduced to compensate for negative energy balance, dietary intake does not 

increase sufficiently to  offset negative energy balance, as treatment of lactating 

rats with exogenous leptin only decreases their dietary intake by 20% [3, 69].   

Increased dietary consumption is associated with increased liver and intestinal 

growth during lactation. In ruminants, several studies indicate an increase in liver 

and intestinal growth corresponding to increased caloric uptake.  Prl was initially 

believed to be responsible for gut hypertrophy [71], as treatment with 

bromocriptine, a drug that blocks Prl release, decreases small intestinal growth.  

However, a later study directly investigating Prl showed that increased prolactin 

levels are insufficient for intestinal hypertrophy [72].    
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Zinc absorption in lactating animals 

 

Zinc (Zn+2 73-75) absorption is improved during lactation in both women [ ] and 

rats [76].  Duodenums from lactating rats display an increased uptake of 65

76

Zn.  

Duodenal zinc absorption increases throughout pregnancy and lactation and 

returns to normal levels after weaning [ ].  Zinc is an essential micronutrient 

involved in bone formation, with calcium, phosphorus and magnesium being the 

others [75].  In humans, zinc is the only one of these nutrients to continue to have 

an increased absorption rate after birth [75], although evidence exists for Prl 

improving intestinal absorption of calcium in the duodenum [77].  In lactating rats, 

Prl increases the duodenum’s ability to uptake calcium through increased 

expression of multiple transporters, including transient receptor potential vanilloid 

family members five and six (Trpv5 and Trpv6) [77].   

 

The Slc39 proteins are metal transporters.  Of these, Slc39a4 has been 

described as the primary transporter for intestinal uptake of zinc, and failure to 

produce a functional form of this protein in humans leads to a disease state 

known as acrodermatitis enteropathica [78].  There is an alternative mechanism 

for zinc uptake.  Although this mechanism is not well understood, the primary 

method for treatment of acrodermatitis enteropathica is a high zinc diet.  Because 

lactating animals have improved zinc absorption, one of these mechanisms may 

be improved in the lactating dam.  Mechanisms controlling expression of Slc39a4 

are poorly understood, but another zinc transporter in the same family, Slc39a1, 
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is upregulated in response to Prl treatment in prostrate-derived cancer cell lines 

[78, 79].   

 

Changes in the bile acid pool in lactating dams 

 

The hepatocyte produces bile acids, which function in the intestine to solubilize 

cholesterol and other lipids and facilitate their absorption.   The bile acid pool size 

and its hydrophobicity are increased in lactation.  During a time course study 

over days of lactation, a statistically significant increase in the bile acid pool size 

is first noticed on day 10 of lactation [10].  A shift in the diurnal rhythm regulating 

Cyp7a1, the rate limiting step of bile acid synthesis, and a significant increase in 

Cyp7a1 transcription occurs at 16 h when compared against age matched virgin 

controls.  No such increase was detected in Cyp27a1, suggesting that the 

primary mechanism for increased bile acid pool size is an increase in Cyp7a1 

activity.  The increase in transcription occurs alongside increased recruitment of 

LXRα to the Cyp7a1 promoter, possibly through increased availability of LXR 

substrate in the form of cholesterol [80].  Decreased repression of Cyp7a1 

transcription plays a role in Cyp7a1 upregulation during lactation.  Expression of 

Fibroblast growth factor 15 (Fgf15) is downregulated in the ileum in lactation, 

leading to decreased extracellular signal related kinase 1 and 2 (Erk1/2) 

phosphorylation, as shown by the 88% decrease in phosphorylated Erk1/2 in the 

liver of lactating rats [80].Coupled with the knowledge that in primary human 

hepatocytes, FGF19, the homolog of Fgf15, inhibits CYP7a1 through the ERK1/2 
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pathway [81], these data provide a likely mechanism by which Cyp7a1 

expression is increased in the liver of the lactating dam.     

 

Changes in bile acid transport in lactating dams 

  

In addition to the increased production of bile acids, expression of the bile acid 

transporters Abcb11(Bsep), Slc10a2 (Asbt), and Slc10a1 (Ntcp),  is also 

upregulated.  Bile acids are synthesized in the liver, exported into bile through 

Abcb11, taken into the enterocyte by Asbt, transported into the portal circulation 

by Ostα/β, and then taken back up in the hepatocyte by Ntcp.  Abcb11and Ntcp 

show a significantly increased level of protein relative to virgin controls on day 2 

post partum as a response to Prl, as shown by treating rats with Prl and 

measuring resulting Ntcp and Abcb11 levels [82].  The increase in Ntcp mRNA 

and protein can be directly linked to increased JAK/STAT5 signaling at a Stat5 

response element at -1237 to -758 bps in the Ntcp promoter and is mediated by 

the long form of the Prlr [83].  Ntcp shows a two fold increase in protein and a 1.7 

fold increase in Vmax for transport of taurocholate at day two post-partum, and 

the increase in expression and protein is maintained for two weeks [82].   

Regulation of Asbt appears to be posttranscriptional, as levels of Asbt mRNA are 

not different between control and post-partum day 14-21 rats despite increased 

Asbt protein expression [84].  Bile flow, which is generated by secretion of bile 

salts, is essential for the biliary secretion of cholesterol and many xenobiotics, 

and is increased in lactating rats [8, 85].  Bile flow, bile acid secretory rate, and 
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hepatic clearance of taurocholate in response to taurocholate infusion was 

shown to be mediated by Prl [8].  

 

 

Increased cholesterol synthesis in lactating animals 

 

Cholesterol biosynthesis is increased in both the small intestine and the liver 

during lactation.  This was initially shown by an increase in incorporation of 

tritiated water into newly synthesized cholesterol [9].  At day 14 postpartum, a 

significant increase in cholesterol synthesis was detected per total organ in both 

the small intestine and liver in lactating rats when compared against nonlacting 

postpartum rats.  3-Hydroxy-3-methylglutaryl Coenzyme A reductase (Hmgcr) 

shows increased activity in the liver of lactating rats sacrificed at 10:00 and 14:30 

on day 10 post-partum compared to age-matched virgin controls [86].  Because 

cholesterol biosynthetic enzymes are all sensitive to SREBP-2 activity [87, 88], 

one possible mechanism is that SREBP-2 activity is increased during lactation in 

these tissues.  A similar trend has also been observed in the mammary gland 

[89].  Increased amounts of cholesterol are essential in lactation, due in part 

because it is needed for incorporation into the milk for growth and neural 

development in the pups.  However, cholesterol is also required for bile acid 

synthesis, which is also increased in lactation.  As indicated above, bile acids are 

required for efficient intestinal absorption of cholesterol, lipid, and lipid-soluble 

vitamins [90]. 
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Cholesterol synthesis and lipogenesis are controlled by three transcription 

factors, known as Srebps, which are made by two genes, the Srebfs.  The Srebf1 

gene codes for the transcription factors Srebp-1a and Srebp-1c, while Srebf2 

codes for the protein Srebp-2.  The three proteins differ in their ability to regulate 

the processes of lipid synthesis and cholesterol biosynthesis, but there is overlap 

between the target genes [87, 88].  Srebp-1a is more closely associated with 

fatty acid synthesis, while Srebp-2 is more closely associated with cholesterol 

biosynthesis, as shown in mice expressing dominant positive forms of the two 

proteins [88].  The rate limiting steps of the two processes, Acetyl-CoA 

carboxylase (Acaca or Acc) for fatty acid synthesis, and HMGCR for cholesterol 

synthesis, are shown to be upregulated in mice expressing the dominant positive 

form of Srebp-1a and Srebp-1c, as well as downregulated in Srebp chaperone 

(Scap) knockout mice [87].   

 

The Srebps share a common mechanism for activation [91].  Under conditions of 

sufficient cholesterol concentrations, the protein product of insulin stimulated 

gene (Insig) is bound to cholesterol, and keeps an Insig/Scap/Srebp complex 

sequestered in the endoplasmic reticulum.  When not bound to cholesterol, Insig 

is degraded, freeing Scap to escort the Srebp to the Golgi where it is cleaved and 

activated.  The N-terminal of the Srebp protein can then travel to the nucleus, 

where it functions as a transcription factor and stimulates the production of target 
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genes, including genes involved in fatty acid synthesis and/or genes involved in 

cholesterol biosynthesis [91]. 

 

Microarray analyses of various models have identified several potential 

downstream targets of Prl [53].  Amongst these targets is Srebf1, which codes for 

the Srebp1a and Srebp1c proteins.  The protein products of Srebf1 are strongly 

associated with controlling fatty acid and cholesterol biosynthesis [87].  Srebf1 is 

consistently downregulated in three different models of Prl deficiency, indicating 

that Prl can control transcription of Srebf1 [53, 92].  Due to the increased need of 

the lactating dam for both fatty acids and cholesterol, the activity of all three 

Srebp proteins may be improved.  

 

 

Changes in cholesterol and phospholipid transport into bile in lactation 

 

Components of bile include cholesterol and phospholipids, in addition to bile 

acids.  While Abcb11 transports bile acids into bile, Abcg5 and Abcg8 function as 

a heterodimer to transport cholesterol, and Abcb4 (Mdr2) transports 

phospholipids into bile.  mRNA expression of Abcg5 and Abcg8 in liver 

decreases over 90% throughout lactation [93], and despite this loss of 

Abcg5/Abcg8 in expression in liver there is no change in the cholesterol or 

phospholipid concentration in bile during lactation.  However, following infusion of 

taurocholate, increased secretion of cholesterol was impaired relative to controls 
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indicating a decreased coupling of taurocholate and cholesterol excretion into 

bile [93].  Western analysis does not detect Abcg8 protein in the livers of lactating 

rats [93].  The decreased presence of function Abcg5/Abcg8 dimer uncouples 

taurocholate and cholesterol transport into bile and could provide a mechanism 

for retention of cholesterol while the lactating dam is in a physiologic state that 

requires more cholesterol [93] 

 

The Ugt1a Locus in Lactation 

 

The UDP glucuronosyltransferase (Ugt) superfamily of proteins is responsible for 

transferring glucuronic acid to their respective substrates in order to form water 

soluble molecules that are often biologically inactive and are subsequently 

excreted into urine or bile [93].  The Ugt1 gene associated with these proteins 

generates several possible proteins based on usage of an alternative first exon 

and common exons 2-5 [93].  In transgenic mice expressing the human form of 

the UGT1A locus, UGT1A4 and UGT1A6 expression are both elevated during 

lactation [93].  In rats, protein and mRNA levels of Ugt1a6 are increased in the 

liver, and its expression is also increased by treatment of rats with Prl, 

suggesting that Ugt1a6 expression is sensitive to Prl levels [94].  These data 

provide the rationale for studying expression of the alternative exons in the rat 

Ugt1a locus.  The Affymetrix Rat Exon 1.0 ST array (Affymetrix, Santa Clara, CA) 

provides probes that interrogate these exons, and consequently allow for 

detection of differential expression of the various mRNAs produced by the Ugt1a 
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locus.  Substrates of Ugt1a6 include phenols such as acetaminophen, and 

consequently Ugt1a6 is important in drug metabolism in the lactating animal [95].   

 

Rationale 

 

In light of the large number of physiologic changes that occur in lactating animals 

relative to virgin animals of the same species, characterization of every 

transporter, enzyme, hormone, and transcription factor that has altered 

expression during lactation would be inefficient, time consuming, and expensive.  

Characterization of the transcriptome of the lactating animal allows a better 

understanding of the ability of lactating animals to absorb and metabolize 

nutrients and respond to changes in hormone levels.  Understanding the 

transcriptome can in turn lead to hypotheses regarding mechanisms of how 

lactating animals absorb key nutrients, synthesize important metabolites, and 

respond to altered levels of hormones in serum.  Here, we utilized the Affymetrix 

Rat Exon 1.0ST exon chip to characterize mRNA expression and differential 

alternative splicing in tissues from day 10, 16 h lactating rats compared to age-

matched virgin controls.  Day 10, 16h lactating rats were chosen because this is 

the first time point at which a statistically significant increase in expression and 

activity of Cyp7a1, the rate limiting step of bile acid biosynthesis, is observed 

[10].  The microarray analyses should support our previous results regarding 

expression of key enzymes, such as Cyp7a1, in bile acid and cholesterol 

synthesis as well as transporters important for their transport into bile [10, 93], in 
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addition to providing insight into their mechanisms of regulation.  Finally, new 

information regarding expression and regulation of additional pathways important 

for changes of biological importance in the lactating dam should be discovered. 
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Chapter 2 

Microarray Design 

Analysis of Microarray Data 

While technology now exists for high throughput analysis of large biological 

datasets, biological systems are extremely complicated and require advanced 

techniques to mine and interpret the data.  For example, microarray technology 

allows for the measurement of most RNAs within a given sample.  Bioinformatics 

is the field of study in which “information sciences” such as computer science 

and statistics are utilized to interpret biological data.    

Microarray technology is based on nucleotide hybridization methods.  

Oligonucleotide probes are utilized to detect the presence of cDNA synthesized 

from RNA samples and tagged with a fluorescent dye.  Original microarrays 

utilized probes designed for the 3’ ends of genes and were utilized for the 

estimation of overall gene expression.  Newer designs can contain probes 

designed to span an entire transcript.  These arrays also allow the estimation of 

differential alternative splicing between different experimental conditions.  

Affymetrix is a supplier of chips utilizing oligonucleotide probes synthesized in 

situ on a glass plate.  For simplicity’s sake, data analysis will be discussed with 

respect to the Affymetrix platform, but many of the same concepts are applicable 

to other platforms.  
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Pooling 

Microarray chips can be expensive when compared to the cost of individual 

biological samples.  Consequently, one method to circumvent the cost of a 

microarray experiment is to combine mRNA/cDNA from several samples to 

reduce the variance between individual chips.  As more samples are pooled, the 

mRNA/cDNA concentration for a given gene approaches the population average 

for the new pooled sample, reducing the effect an individual rat would have on 

the measurement of gene expression.   Power calculations demonstrate that 

increasing the number of samples pooled and loaded onto a chip can give similar 

power to that obtained by running a larger number of arrays.  In an experiment in 

which p samples are mixed, the number of arrays needed to obtain a similar 

power in the absence of pooling is approximately 1/p, assuming a large number 

of samples [96].  Therefore, an experiment utilizing six chips, each containing 

mRNA from five individual samples would be comparable in statistical power to 

an experiment containing thirty individual samples.  

Preanalysis Data Treatment 

When fluorescence intensities are initially measured from the array, a number of 

biases exist that are independent of the biological sources of variance [97].  For 

example, a difference in lighting on individual chips would lead to a chip effect 

that could influence interpretation of the results.  Consequently, a number of pre-

analysis steps are required to convert the fluorescence intensities into data that 

have biological relevance.  These steps usually include a background correction 
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step, a normalization step, and a transformation step, as described below.  One 

commonly used method for performing these tasks is the Robust Multichip 

Averaging (RMA) method, although other techniques exist. 

The first step in adjusting the data is background correction.   Affymetrix originally 

utilized intentionally mismatched probes at the thirteenth nucleotide in a 25mer 

oligonucleotide probe to determine amounts of nonspecific binding.  However, 

this method was found to not be effective, as the measured intensity of the 

mismatch probe was found to increase as the intensity of the perfect match 

probe increased [98], suggesting that the mismatch probe had specific affinity for 

the target sequence. One method to circumvent the usage of mismatch probes is 

to assume that the background is based on random error, and calculate it from 

the standard deviation of perfect match signals, as is done in RMA.  The RMA 

background correction assumes that the observed signal is produced as the sum 

of the actual signal from the bound target and random error.  The bound target 

signal is assumed to be exponential and the error is assumed to be normally 

distributed.  A description of the normalization procedure can be found at 

http://bmbolstad.com/misc/ComputeRMAFAQ/ComputeRMAFAQ.html.  

Normalization is performed in order to make each chip comparable by removing 

nonbiological effects and allows for measurements on separate chips to be 

comparable to each other.  The RMA algorithm utilizes quantile normalization 

[99].  In this method, probe intensities are ranked for each chip.  Then for each 

rank (e.g., the highest, 50th highest, 100th highest, etc), the average across all 
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chips is taken, and the corresponding values are all set to the average.  This 

forces the distribution of measurements on all chips to be equal [100].   

The final steps toward getting the data into a workable format are 1) log2 

transformation of the intensities allowing for the use of parametric statistical tests 

by adjusting the distribution of the measurements, and 2) summarizing the 

intensity values of individual probes into a single measurement for the 

corresponding exon or gene.  In RMA, Tukey’s median polish [99] is utilized to 

summarize the data, but other methods such as Tukey’s biweight have also been 

utilized [99]. 

Detection of Differential Gene Expression 

Once the data between each individual microarray chip is comparable to data 

from the other chips, a method of analysis needs to be chosen.  Early microarray 

experiments utilized a fold-change approach.  The problem with this approach is 

that it only compares the means of a given gene’s expression between two 

groups, and not the variance within those measurements.  Consequently, this 

method does not allow for the calculation of the likelihood of a false positive.  

Correcting for the likelihood of false positives within the experiment is discussed 

in the “Multiple Testing in Microarray Data” section below.   

Either a parametric or nonparametric approach can be chosen to identify 

differentially expressed genes.  The nonparametric approach makes no 

assumptions about the distribution of the data, but at the loss of statistical power.  
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The parametric approach requires that the data being tested be approximately 

normally distributed.  ANOVA and Kruskal-Wallis tests have been frequently 

used in microarray datasets to detect differential gene expression. 

We have studied a system in which lactating rats were compared against age-

matched virgin controls.  We analyzed four tissues from each rat and pooled 

RNA from the same tissue from four rats within the same physiologic state 

(control or lactating).  The pools of four rats were consistent between tissues.  In 

other words, if rats 1,2,3, and four composed pool one in the liver, the same four 

rats would compose pool one in the duodenum, jejunum and ileum.  This led to a 

two-way, mixed models, repeated measures experimental design.  Mixed models 

approaches can be utilized when multiple samples are taken from the same 

subject.  In this case, the four tissues were all taken from the same sets of four 

rats.  This led to a design in which we had two fixed effects (tissue and 

physiologic state) and one random effect (the subject variable, which in this case 

is a set of four rats.)  A mixed model is comparable to the corresponding linear 

model, except that the model is now expanded so that each term contains a 

matrix that accounts for the individual samples.  Accounting for the presence of 

the individual subjects also generates a second error term that accounts for 

differences between unique samples and is based on the covariance matrix.  

This means that a method for approximating the covariance matrix must be 

applied. One method, known as compound symmetry, was to assume that all 

covariances are equal. 
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Multiple Testing in Microarray Data 

Due to the large size of a microarray data set, multiple tests have been 

performed in order to detect changes in gene expression. Two types of error 

could be made, rejecting the null hypothesis (measurements are made from the 

same distribution) when it should not have been rejected (Type I error, or a false 

positive) and failing to reject the null hypothesis when it should have been (Type 

II error, or a false negative). Although the probability of any given test producing 

a type I error (alpha) is small, the probability that a false positive exists within the 

entire data set, (the family-wise error rate) may still be very high.  There are 

several ways to correct for this.  One of the earliest methods to correct for 

multiple testing was the Bonferroni procedure [101].  However, this test is 

extremely conservative, and leads to a very small list of differentially expressed 

genes.  A second approach is to correct for the family-wise error rate (FWER) 

[101].  This method attempts to control the probability that a false positive 

appears anywhere in the dataset.  However, because of the exploratory nature of 

many microarray studies, this test is still overly conservative, as many 

experimenters would be willing to accept the existence of a few false positives 

within the dataset.  The false discovery rate (FDR) method attempts to fix the 

ratio of false positives to total positives in a given dataset [102].  The Benjamini-

Hochberg procedure for calculating false discovery rates lets p1,p2,…pm be the 

rank ordered p-values, where m is the total number of tests.  [All hypotheses 

where pi 102<iα/m are rejected [ ], where i is the i’th ranked p value and α is the 
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cutoff value for the FDR.]   A common cutoff for the FDR is 0.05, but even this 

may be too conservative for some studies.  An alternative to fixing the FDR is to 

fix a set p-value cutoff, and calculate what the FDR or proportion of false 

positives (PFP) is at the given p-value.  The challenge in choosing an appropriate 

cutoff is that as the probability of a type I error decreases, the probability of a 

type II error increases.  Note that although the Benjamini-Hochberg [102] method 

was the first described to control the FDR, other methods exist [101].  Here we 

set the p value cutoff threshold and calculated the PFP. 

Detection of Trends and Pathways in A List of Differentially Expressed 

Genes 

Once a list of differentially expressed genes has been generated, the 

experimenter must determine which genes are of particular interest.  Given a list 

of the differentially expressed genes and a database that organizes these genes 

into various categories (for example, organizing genes by pathway or function), a 

test can be performed to identify whether a given category is overrepresented in 

this list of genes.  Several methods exist for detecting overrepresented groups of 

differentially-expressed genes [103].  One method is to utilize a right-tailed 

Fisher’s Exact test to identify the probability that a number equal to or higher than 

the number of genes actually detected within a group would appear by chance 

[104].  This method is utilized by DAVID [104, 105] and Ingenuity Pathways 

Analysis (IPA) (Ingenuity Systems, www.ingenuity.com).  Because a test is 

performed for each category of genes, multiple testing is an issue, and a multiple 
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testing procedure such as the FDR can be applied to correct for the possibility of 

a high number of type I errors [104]. 

Analysis of differential alternative splicing provides many additional challenges.  

On an Affymetrix exon array, the probes on the array are divided into probesets, 

which correspond to regions of a transcript.  For the purposes of analysis, the 

probesets are each treated as independent exons, although large exons are 

often assigned multiple probesets.  Based on the source of information Affymetrix 

utilized to design the probes, Affymetrix assigns each probeset to a “confidence 

level”.  “Core” probesets are regions that are drawn from a curated database 

such as Refseq.  “Extended” probesets are derived from expressed sequence 

tag (EST) databases.   “Full” probesets are derived from software predictions.  

There are 92,354 probesets at the Core confidence level on the Affymetrix Rat 

Exon 1.0 ST array.  Consequently, a large number of exons could test positive by 

chance, and multiple testing is problematic.  The Benjamini-Hochberg approach 

has been applied to address this issue [106], and is readily available in software 

packages, but to our knowledge, the multiple testing issue has not been 

addressed specifically for exon arrays.   

Detection of Differential Alternative Splicing 

After performing a data treatment algorithm such as RMA, data can be 

summarized at both the probeset and transcript level.  Summarizing data at the 

probeset level permits analysis at the exon level.  However, a large difference 

between intensities of a given probeset is not sufficient for identifying 
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differentially alternatively spliced transcripts.  Although a specific probeset may 

display differential expression, the transcript itself may be differentially 

expressed.  Consequently, determination for whether or not a specific treatment 

triggers differences in alternative splicing must take into account differences in 

mRNA expression.   

Affymetrix arrays lack junction-specific probes, and therefore methods designed 

for detecting alternative splicing using this information is invalid.  Three of the 

methods that do not take into account this information are Analysis of Splicing 

Variance (ANOSVA) [107], Microarray Dectection of Alternative Splicing (MiDAS) 

[97], and Finding Isoforms from Robust Multichip Analysis (FIRMA) [108].   

Affymetrix proposed the MiDAS method as a means of detecting differential 

alternative splicing between multiple groups.  In this method, probeset intensities 

are divided by transcript level intensity to create a gene-normalized intensity.  

Then, a statistical test (an ANOVA, if done as originally proposed by Affymetrix) 

is utilized to determine differences in gene-normalized intensities between 

treatment groups.  The first problem to address is that without adequate filtering, 

every exon in the dataset is tested at least once for alternative splicing.  This 

leads to a very high number of statistical tests, and the problem of multiple 

testing becomes substantial, especially if the treatment triggers a relatively small 

number of changes in differential splicing when compared to the entire dataset.  

The second is that the calculated transcript level intensity needs to be accurate, 

because the algorithm is dependent on using the transcript level estimate to 
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normalize all probesets within that transcript.  This can be particularly 

problematic in a gene that has a large number of splicing events, since the 

transcript level measurement is summarized from the probeset level 

measurements (even if in principle, the individual probes are treated separately 

for the purposes of summarization.)  Reports exist stating that the distribution of 

p-values resulting from MiDAS are not normally distributed in the non-significant 

range [109]. 

The ANOSVA method utilizes a linear model to determine if differences in 

alternative splicing occur between groups.  The model follows the form of 

yijkl=μ+αi+βj+γij+error, where the error is normally distributed around mean zero 

and random, μ is the baseline intensity, αi is the “exon effect”, βj is a “treatment 

effect”, and γij is the interaction term between αi and βj.  The interaction term 

(treatment*exon) is utilized as a means of determining if a transcript is 

differentially alternatively spliced between treatment groups [107].  A significant 

interaction term is determined to be a positive test.  This conclusion operates 

under the assumption that if a probeset’s intensity is not the sum of random error, 

the treatment effect, and the individual exon effect (which can also be considered 

as a probe affinity term) then the difference must be caused by differential 

alternative splicing.  A significant interaction is graphically visible by plotting 

intensities as a function of exon for all treatment groups.  In the absence of an 

interaction term, the intensities for each group will be parallel when plotted as a 

function of the individual probesets (Figure 2.1).  This can be seen in that the 
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intensities of both control and lactation are parallel for Abcg5 in the ileum, but in 

Ace2 there is a point where the two lines were not parallel, indicating possible 

alternative splicing at that point.  However, there are a number of situations 

where events other than differential alternative splicing cause a significant 

interaction effect.  This will lead to false positives, and because the underlying 

assumptions regarding what is defined as alternative splicing are violated, even a 

transcript with a low interaction p-value may be a false positive under certain 

circumstances.  These circumstances are discussed below.   

FIRMA is a method based on utilizing the RMA algorithm.  The model 

(PMik)=ci+ρk+Є ik, is utilized to calculate residuals for each individual probe, 

where PMik is the measured intensity from the probe, ci is the chip effect 

(expression level), pk is the probe effect (or probe affinity), and Єik

108

 is the random 

error [ ].  The median residual (the difference from the mean) divided by the 

standard deviation is used as a score to identify exons that are differentially 

spliced.  Unfortunately, a good guideline for a significance cutoff based on 

FIRMA scores has not been developed [108].     

A number of events can occur that will lead to false positives.  The first is the 

absence of either a gene that is not expressed in a treatment group, or an exon 

that is expressed in no treatment groups.  Because the methods for detection are 

based on the relative expression of a probeset relative to the gene, the absence 

of a probeset in both groups or the absence of the gene in one group lead to 

false assumptions in the algorithm.  In order to filter out poorly expressed 
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probesets, Affymetrix has developed the Detection Above Background Algorithm 

(DABG) algorithm [110], as exon arrays do not have single nucleotide mismatch 

probes.  In this method, background probes of random sequences of the 26 

possible GC contents for a 25-mer oligonucleotide sequences are measured.  

These probes are used as a background for probes of the same GC content.  

Probesets with a DABG p-value of less than 0.05 can be considered present at 

above background levels, although making the threshold more stringent is 

possible. No method for specifically determining the presence or absence of a 

given gene has been developed, so genes have a presence/absence call based 

on the exons within the same transcript [97]. 

Cross-hybridization can also be problematic.  In the presence of cross-

hybridization, an increase in measured intensity will appear, and the 

measurement may often be higher than constitutively expressed exons.  

Affymetrix recommends eliminating measurements that appear at a much higher 

or much lower intensity than other probesets in the gene. Removing highly 

expressed probesets is not problematic, as the intensity appears higher than 

other constitutively expressed exons.  However, removing poorly expressed 

exons is problematic, as it is difficult to tell whether poor expression is caused by 

poor hybridization or by only a fraction of the transcripts in fact containing 

sequences corresponding to the probeset of interest, in which case the exon 

positive test is detecting differential alternative splicing.    
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Another risk is if the probe sequences are annotated incorrectly.  Affymetrix 

assigns each probeset a “confidence level” based on the line of evidence utilized 

to identify the transcript associated with the probes.  Selecting to analyze genes 

only at the “Core” confidence level reduces the chance of misassignment. 

A final potential problem Affymetrix warns about is extremely low variance across 

a specific probeset, since the low variance could be mediated by an event such 

as the probe not hybridizing to the target sequence.  Affymetrix does not 

recommend a specific filter for identifying regions with excessively low variance, 

but the possibility of an exon showing low variance for reasons independent of 

alternative splicing should be taken into account.  
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Figure 2.1: Genes that test negative (Abcg5 top) and positive (Angiotensin 

converting enzyme 2, bottom) for alternative splicing in the ileum.  Chromosome 

position is plotted on the x-axis, chromosome number is listed on the left y-axis, 

and probeset intensity is plotted on the right y-axis.  Note that for the gene 

(Abcg5) that tests negative, the exon intensities appear to be parallel between 

control and lactating groups as a function of chromosome position, while this is 

not true for the gene (Ace2) that tests positive.  Along the top of each figure is the 

gene and its corresponding refseq entry, with the boxes representing individual 

exons.  Both Abcg5 and Ace2 are annotated as being on the minus strand.  In 

order to show both strands, Partek draws genes on the minus strand with the 5’ 

end on the right and the 3’ end on the left. 
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Chapter 3 

 

Differential gene expression in liver and small intestine from lactating rats 

compared to age-matched virgin controls detects increased mRNA of 

cholesterol biosynthetic genes 

 

Background 

  

Lactation is a time of a four- to five-fold increased energy demand imposed by 

the suckling young that requires a proportional adjustment in the ability of the 

lactating dam to absorb nutrients and to synthesize critical biomolecules to meet 

the dietary needs of both the offspring and the dam [1-3].  Lactating rats have a 

two- to three-fold increase in food consumption (hyperphagia) [1-3], in part 

through the decreased suppression of appetite accompanying decreased serum 

leptin [19]. 

 

Diet and hyperphagia have been shown to influence the rate of cholesterol 

synthesis, which is increased in the liver and small intestine in the lactating rat [9, 

111].  Of these tissues, the liver is the primary contributor to serum levels of 

cholesterol, and shows a quantitatively greater increase in the rate of cholesterol 

synthesis during lactation [9].  3-Hydroxy-3-methylglutaryl-coenzyme A reductase 

(Hmgcr), the enzyme catalyzing the rate-limiting step of cholesterol synthesis, 
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shows significantly increased activity in the liver during lactation compared to 

virgin and nonlactating control rats [86, 112].  Cholesterol synthetic and lipogenic 

genes are regulated by transcription factors termed sterol regulatory element 

binding proteins (Srebp); the activity of Srebp proteins is in turn regulated by the 

Srebf chaperone (Scap) and the Insulin induced genes (Insig).   

 

Circulating serum levels of several hormones that regulate metabolism are 

decreased during lactation in the rat, including thyroid hormone, insulin and leptin 

[19].  Such changes in hormone signaling and diet are likely to have large 

influences on the activation of their corresponding pathways.  Receptors for 

leptin, thyroid hormone, and insulin are expressed in both the liver and small 

intestine [23, 113-117], with liver being considered a major site of insulin 

signaling [113] and thyroid receptor β (TRB, Thrb) being the dominant form of the 

thyroid receptor in both tissues [23].  Leptin acts on the small intestine and 

inhibits sugar uptake [115], and the liver is a major source of the soluble form of 

the leptin receptor, particularly under conditions of negative energy balance 

[116], as occurs in lactation [3].  Therefore, altered serum levels of these 

hormones would be expected to influence mRNA expression of downstream 

genes.    

 

Our laboratory has been investigating the effects of lactation on the synthesis 

and transport of bile acids in the liver and small intestine in the rat [10].  Bile 

acids are synthesized in the liver from cholesterol, and are essential for the 
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biliary excretion of cholesterol and for the efficient intestinal absorption of 

cholesterol, lipid-soluble vitamins and lipids [90].  Bile acids are secreted into bile 

by the Bile salt export pump (Bsep; Abcb11), taken up across the apical 

membrane of the enterocyte in the terminal ileum by the Apical sodium-

dependent bile acid transporter (Asbt; Slc10a2), effluxed into portal blood by the 

Organic solute transporter heterodimer (Ostα/β), and then taken up in the 

hepatocyte by the Sodium-dependent taurocholate co-transporting polypeptide 

(Ntcp; Slc10a1) [118].  Expression of Ntcp, Bsep and Asbt  are all increased in 

lactation [82, 84],  as is the size of the bile acid pool [10].  We recently 

demonstrated that expression and activity of Cyp7a1, the enzyme catalyzing the 

rate limiting step in the conversion of cholesterol to bile acids, is increased at 

mid-lactation (day 10 – 14 postpartum) [10].  Further, this increase occurs at 16 h 

(10 h of light on a 12 h/light dark cycle; 4 PM) and represents a shift in the diurnal 

rhythm of Cyp7a1 expression, which is normally maximal in the dark cycle (i.e., 

22 h).  Increased expression of Cyp7a1 is apparently due to decreased 

expression of Fibroblast Growth Factor 15 (Fgf15) in the ileum, resulting in 

decreased FGF15 signaling via Fibroblast Growth Factor Receptor 4 (Fgfr4) and 

Erk1/2 in liver and decreased repression of Cyp7a1 transcription [119].   

 

In order to identify further changes in expression of genes important in the 

regulation of bile acid and cholesterol synthesis, as well as other genes important 

in meeting nutritional demands and physiological changes of the lactating rat, we 

carried out a microarray experiment in the liver and small intestine of the lactating 



37 

 

dam at 16 h on days 10 -11 postpartum and compared these to gene expression 

in female virgin control rats. 
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RESULTS  

Detection of differentially expressed genes 

 

A repeated measures mixed model ANOVA was used to test for effects of tissue 

and lactation, as described in Methods.  A statistically significant difference was 

determined to exist when the physiologic state effect (comparison between all 

control samples against all lactating samples) yielded a p< 0.05 and the effect of 

lactation within a given tissue (physiologic state simple effect) yielded a p< 0.01.  

Analyzed data are available in Additional File 3.1: 

Statistical_Analysis_and_Statistical_Pattern_Matching_Results.txt.  These p-

values were used as cutoffs for differentially expressed genes and led to the 

proportions of false positives that are listed in the section titled “Approximation of 

false discoveries” below.   

 

A number (1,114) of genes demonstrated an interaction at p< 0.01 and 556 

genes passed a Benjamini-Hochberg false discovery rate correction at FDR=0.05 

(Additional File 3.2: Benjamini_Hochberg_False_Discovery_Rates.txt).  These 

genes represent those that displayed a different response to lactation in one 

tissue with respect to the other tissues.  However, it should be noted that this list 

was not a useful cutoff, as genes that responded uniformly to lactation across all 

tissues would be ignored.  Also, five genes that passed the Benjamini-Hochberg 

correction did not show any significant changes at p<0.01 when the effect of 

lactation was tested within each tissue.  Since the primary purpose of this study 
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was to characterize the influence of lactation on gene expression on these 

tissues, the interaction term was not used.  The tissue effect p-values indicated 

that many (70% at p<0.01) genes were differentially expressed across tissues, 

due to the large difference in cell types between the liver and the small intestine.  

Therefore, we chose the cutoffs of a physiologic state main effect at p<0.05 and 

the effect of lactation within at least one tissue at p<0.01, as described in the 

Methods.   

 

 Although not as many genes were detected as significantly differentially 

expressed compared to the overall tissue effect, the overall physiologic state 

effect and the pairwise comparisons (effect of lactation in each tissue) showed a 

high number of low p-values, indicating that the tissues in question responded to 

lactation at the level of mRNA.  Several genes were downregulated in the 

duodenum only (34 genes), with 23 genes showing over a 50% decrease.  

Members of this group are listed as pattern “-100” in Additional File 3.1.   

Histograms displaying the distribution of p-values are in Additional File 3.3: 

Histograms_of_p_values.ppt , and volcano plots displaying each tissue’s 

response to lactation are in Additional File 3.4: Volcano_plots.pdf.   

 

Approximation of false discoveries 

 

The proportion of false positives is an approximation of the ratio of false positives 

in the list of genes listed as differentially expressed.  An estimate of the number 
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of false positives was calculated for all tissues using genes where p<0.05 for an 

overall physiologic state effect, and for each tissue using genes with an effect of 

lactation within each tissue (here defined as a simple effect) of p<0.01.  Thus, the 

proportion of false positives (PFP) was calculated as (p-value cutoff X number of 

genes tested)/number of genes detected below the p-value cutoff.  The PFP as 

defined by Fernando et al [120], is E(V)/E(R) where E(V) is the expected number 

of false rejections of the null hypothesis and E(R) is the expected number of 

rejections of the null hypothesis.  Here we utilized the actual number of rejections 

of the null hypothesis as the expected value.  Of all of the genes on the chip, 

14,129 genes were found to be annotated and expressed in at least one tissue/ 

physiologic-state combination and were used for statistical tests.  Of those 

genes, 1,924 had an overall physiologic state p-value of less than 0.05, yielding a 

PFP of 0.37; at an overall physiologic state p<0.01, 690 genes were detected, 

yielding a PFP of 0.20.  PFPs for the individual tissues at a cutoff of p<0.01 for 

the pairwise comparisons (simple effects) were 0.17 for the liver, 0.28 for the 

duodenum, 0.22 for the jejunum, and 0.18 for the ileum.  The PFPs for the 

individual tissue calculations examined only the genes detected at a simple effect 

p<0.01, and not at the combined overall physiologic state cutoff of p < 0.05 

together with the within-tissue cutoff of p< 0.01, as some genes passed the p< 

0.01 cutoff within a given tissue, but did not pass the initial overall physiologic 

state effect cutoff of p< 0.05.  The rationale for not utilizing the overall physiologic 

state effect together with the within tissue physiologic state effect in the 

calculation was that these multiple tests were utilized for the same gene.  
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Consequently, the list of genes reported at both p<0.05 for the physiologic state 

and p<0.01 for the comparison within a tissue was a subset of the list of genes 

that only show a p<0.01 within a tissue.  The physiologic state cutoff of p< 0.05 

was chosen to protect against repeated testing for each tissue; this value was 

also chosen because changes that only occurred within one tissue would be 

difficult to detect if the overall physiologic state cutoff was made at p< 0.01.  

Approximations of the proportion of false positives in this range (0.17 – 0.28) 

have been reported previously [121].   

 

RT-PCR Validation of Microarray Data 

 

Results from RT-PCR analyses agreed with the trends detected in the microarray 

analyses (Table 3.1).  In some cases, significance calls differed, but the 

directionality of the changes observed was consistent with the microarray data.  

Possible causes for disagreement included the fact that different methods of 

normalization were used between RT-PCR and the microarray.     

 

Patterns  

 

Patterns were identified using statistical pattern matching [122, 123] by assigning 

each gene as significantly “up”, “down”, or “no change” detected in each tissue.  

The results of the statistical pattern matching showed that fifteen genes were 

upregulated in all four tissues, while thirty-one genes were downregulated in all 
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four tissues.  Seventy-two genes were upregulated in liver only, and another 

ninety-nine genes were downregulated in liver only.  Results from analyses of 

each pattern using DAVID [104] are shown in additional file 3.5: 

DAVID_output_file.txt. 

 

Of the fifteen genes upregulated in every tissue (Table 3.2), seven were 

identified by DAVID as being involved in the Biosynthesis of Sterols pathway, 

where p=4.59X10-13

88

, using the list of “Up in All Tissues” for the DAVID analysis.  

One gene, transmembrane protein 97 (Tmem97), has been identified as being 

regulated by the Srebp proteins [ , 124], and was recently suggested to aid in 

Low density lipoprotein receptor (Ldlr) function [124].  Amongst genes not 

associated with biosynthesis of sterols, RNA (guanine 9) methyltransferase 

domain containing 2 (Rg9mtd2), is the homolog for a tRNA methyl transferase 

that occurs in yeast [125]. Slc39a4_predicted was upregulated in all tissues, 

consistent with increased zinc absorption during lactation, and is discussed 

further below.   

 

Thirty-one genes were identified as downregulated in all tissues (Additional File 

3.6: Genes_with_decreased_mrna_all_tissues.pdf).  According to the over-

representation analysis in DAVID, the KEGG T cell receptor pathway was over-

represented in this group (p=0.004) [105, 126] (Additional File 3.5), although only 

three genes appeared in this list.  This pathway did not pass any of the multiple 

testing procedures available in DAVID, but is consistent with the IPA results, 
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which flagged “T-cell signaling and differentiation” to be downregulated in the 

jejunum and ileum (Figure 3.1). 

 

Genes downregulated only in the duodenum were also investigated using 

DAVID, as several genes revealed a strong downregulation in this tissue 

(Additional File 3.5).  Many of these genes have been identified as being 

expressed in the pancreas, i.e., eight of the 34 genes in this group matched the 

Sp_PIR keyword “pancreas” (p=5.00X10-15

 

).  The function of these genes in the 

duodenum and the reason for their poor expression in lactation is not known.   

The list of genes upregulated in all parts of the small intestine was not 

significantly enriched by any KEGG pathways in DAVID.  The term Lipid 

Biosynthetic Process was overrepresented (p=0.001), although this term did not 

pass any multiple testing correction available in DAVID. 

 

“The Fibronectin Type III fold” Interpro entry was flagged as overrepresented in 

the list of genes downregulated in the small intestine, but not in liver. [The genes 

associated with the Fibronectin Type II fold entry were Interleukin receptor 22, 

alpha 2 (Il22ra2), Immunoglobulin superfamily 9 (Igsf9), Insulin receptor (Insr), 

Rims binding protein 2 (Rimbp2), and Protein tyrosine phosphate receptor type g 

(Ptprg)].  However, the relevance of the downregulation of these genes in 

lactation is not known.    
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Categories overexpressed in the list of genes upregulated in the liver only 

included the gene ontologies for “response to nutrient levels” and “cholesterol 

metabolic process”.  The list of genes downregulated in the liver showed the 

gene ontology associated with positive regulation of programmed cell death and 

may partially explain the increased liver size during lactation [8, 127]. 

 

Bile acid biosynthesis 

Expression of Cyp7a1, the enzyme catalyzing the rate limiting step of bile acid 

biosynthesis, was detected to be increased (p=0.0002) in the liver with a 1.76-

fold change.  Few other changes were detected in the bile acid biosynthetic 

pathway.  Expression of Cyp46a1, Ch25h, Cyp27a1, Cyp39a1, Cyp7b1, Cyp8b1, 

Akr1d1, Slc27a5, Acox2, Scp2, and Baat [128] did not show a significant change 

in the liver, suggesting that the increase in bile acid biosynthesis observed was 

triggered by the increase in Cyp7a1 mRNA [10].  These data are consistent with 

our earlier detailed characterization of mRNA and protein expression of Cyp7a1, 

Cyp27a1 and Cyp8b1 in lactation [10].   

 

Ingenuity Pathways Analysis  

 

The lists of differentially expressed genes for each tissue, based on the overall 

physiologic state effect p-value and the respective simple effects were examined 

by IPA.  The three overrepresented pathways with the lowest p-values in each 

tissue are shown in Table 3.3, and selected pathways are discussed below. 
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Cholesterol synthesis and metabolism 

 

 “Biosynthesis of steroids” had the lowest p-value among IPA’s “Canonical 

Pathways” in three of the four tissues, with the jejunum being the exception.  At 

the designated cutoff (p< 0.01), the jejunum showed a much more modest 

change in the “biosynthesis of steroids” pathway (p = 0.011 for 

overrepresentation in jejunum; p<1X10-6 

87

in all other tissues).  Detailed 

visualization of the pathway revealed that the upregulated sections of the 

“biosynthesis of steroids” pathway corresponded with cholesterol synthesis 

(Additional Files 3.7-3.10: Biosynthesis_of_sterols_in_liver.jpg, 

Biosynthesis_of_sterols_in_duodenum.jpg, 

Biosynthesis_of_sterols_in_jejunum.jpg, and 

Biosynthesis_of_sterols_in_ileum.jpg).  Since cholesterol synthesis is regulated 

by Srebp proteins, Srebp-regulated genes were investigated further.  To 

determine if an exceptionally large number of Srebp-regulated genes were in the 

list of differentially expressed genes, a list of genes shown to be regulated by 

Srebp by detection through microarray analysis in Srebp-overexpressing and 

Scap knockout mice was used for a right-tailed Fisher’s Exact test [ ] using an 

online calculator (www.Langsrud.com/Fisher.htm).  Here, a p-value of <0.01 in 

the tissue being tested was defined as a positive test for the purpose of 

determining whether a given gene was differentially expressed.  
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Of the 33 genes reported to be regulated by nuclear Srebp proteins [87], 29 were 

present in the data set.  A Fisher’s exact test p-value of p<0.001 was calculated 

for each tissue, with the jejunum (p=0.00029) having the fewest genes displaying 

a significant change (eight genes).  Additional File 3.11: 

Genes_Regulated_by_Srebp_proteins.pdf lists members of the cholesterol 

biosynthetic pathway and other genes that have been shown to be differentially 

expressed in Srebp-overexpressing mice and Scap knockout mice [87] and 

indicates the p-values for each tissue and the ratio of the background-corrected, 

normalized, untransformed intensities (lactation intensity/control intensity).  As 

shown in Figure 3.2, Hmgcr mRNA expression was increased in three of the four 

tissues, with no change detected in the jejunum (p = 0.14).  mRNA expression for 

the genes (Srebf1, Srebf2) encoding the Srebp proteins were not differentially 

expressed, although a tendency for a change was detected in the jejunum, where 

the simple effect comparison p-value for Srebf1 was 0.0006, and the overall 

physiologic state effect p value was 0.054.  Expression of Insig1 mRNA, which is 

regulated by Srebp activity, showed a significant increase in each part of the 

small intestine.  In contrast, an increase in Scap mRNA occurred in the liver only 

(p = 2.18E-7).  Ldlr mRNA was upregulated in the duodenum and jejunum, and 

Tmem97 mRNA, an Srebp target [124], was upregulated in all tissues; both Ldlr 

and Tmem97 proteins aid in LDL uptake by cells [124].   

 

Cholesterol uptake 
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The only gene known to mediate cholesterol uptake in the gut, Npc1l1 [129], is 

not contained in the extended dataset for the Affymetrix Rat Exon 1.0ST.  

Investigation of the “full” and “all” datasets indicated that no probeset on the chip 

was annotated as Npc1l1.  Therefore, expression of Npc1l1 was investigated by 

RT-PCR (Table 3.1).   No significant changes were detected in Npc1l1 

expression in any tissue.   Abcg5 and Abcg8, which function as a heterodimer to 

efflux cholesterol from the enterocyte into the gut lumen and from the hepatocyte 

into bile [130], showed decreased expression in the liver (Abcg5 p=2.9X10-7; 

Abcg8 p=3.6X10-6

 

) and in the ileum (Abcg5 p=0.0062; Abcg8 p=0.0048) (Table 

3.4).  

Transporters 

 

The ATP binding cassette (ABC) transporters that showed a significant change in 

at least one tissue were also investigated (Table 3.4).  The ABC transporters are 

a superfamily of membrane transporters with diverse substrates that in 

eukaryotes mediate the ATP-dependent efflux of endogenous substrates, 

including bile acids and cholesterol, as well as of xenobiotics, including many 

drugs.  The ABC transporter Abcb1a (Mdr1a) was downregulated in every tissue.  

This protein effluxes xenobiotics across the apical domain of the hepatocyte into 

bile, and in the enterocyte and plays an important role in limiting absorption of 

orally administered substrates [131].  Two members of the Abcc (Mrp) subfamily, 
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Abcc5 and Abcc6, were downregulated in the ileum, while Abcg2 expression was 

increased in the duodenum. 

 

Solute carrier proteins (Slcs) are a superfamily of proteins that transport many 

different molecules, including amino acids and ions (www.bioparadigms.org).  All 

Slcs on the chip were investigated and those with a detected significant change 

in lactation in any tissue are shown in Additional File 3.12: Slcs.pdf.  For each 

tissue, nearly 20% of the Slcs showed a change at an overall physiologic state 

effect of p <0.05, and approximately 5% were declared significant after applying 

a p<0.01 cutoff within a tissue (simple effect) 

 

Slc39a4 is a transporter mediating the uptake of zinc into the intestine [132].  

Slc39a4_predicted was one of fifteen genes to be significantly upregulated in 

every tissue (p<1X10-5

 

) (Additional File 3.1).  Fold changes for Slc39a4 predicted 

based on untransformed intensity values ranged from 1.65 in the jejunum to 2.81 

in the liver (Table 3.1). 

Thyroid signaling 

 

A Fisher’s exact test using IPA detected significant overrepresentation in the 

TR/RXR pathway in every tissue.  (Additional Files 3.13-3.16: 

Liver_canonical_pathways.txt, Duodenum_canonical_pathways.txt., 

Jejunum_canonical_pathways.txt., and Ileum_canonical_pathways.txt).  Thyroid 
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hormone receptor α (TRA, Thra) and thyroid hormone receptor β (TRB, Thrb) 

were both downregulated in the ileum and jejunum.  A decrease was also seen in 

the liver, but the change was not significant (p = 0.07 for TRA; p = 0.018 for 

TRB).    Surprisingly few of the downstream genes of TR/RXR were 

downregulated in the IPA depiction of this pathway.  In some cases, overlap 

occurred with Srebp signaling, and increased signaling from Srebp appeared to 

have overridden decreased thyroid signaling.  This seems to have occurred with 

Acetyl-CoA Carboxylase alpha (Acaca) in the liver and Ldlr in both the duodenum 

and jejunum [87].  One TRB/RXR regulated gene [24], Kruppel like factor 9 

(Klf9), which is a transcription factor associated with intestinal proliferation, was 

downregulated in every tissue (Additional Files 3.17-3.20: 

Liver_thyroid_pathway.jpg, Duodenum_thyroid_pathway.jpg, 

Jejunum_thyroid_pathway.jpg, and Ileum_thyroid_pathway.jpg).  Klf9 knockout 

mice have shorter intestinal villi, although Klf9 is typically considered a 

transcriptional repressor and can also negatively regulate growth [33].   

 

Decreased mRNA from T-Cell receptor signaling and related pathways 

 

mRNA of genes coding for the components of T-Cell receptor signaling pathway 

in IPA showed significant downregulation in the jejunum and ileum (p = 1.68X10-7 

and p = 4.7X10-4, respectively) (Figure 3.1).  A similar pathway, the “CD28 

receptor signaling in T helper cells” pathway was also downregulated in the 

jejunum, but substantial overlap between the two pathways suggested 
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observation of the same events.  These pathways are upstream of IL-2 

production [133], however, the microarray detected no change in IL-2 mRNA in 

any tissue.  



51 

 

Discussion  

 

Cholesterol Biosynthesis 

 

IPA and DAVID both flagged “Biosynthesis of Steroids” to be overrepresented in 

the list of differentially expressed genes in lactation in three of the four tissues 

(the jejunum displayed a p-value near the cutoff), and the list of genes 

upregulated in all tissues during lactation, respectively (Additional Files 3.7-3.10).  

Visualization of this pathway revealed that the genes identified were components 

of the cholesterol biosynthetic pathway.  Statistical pattern matching as well as 

results from overrepresentation analyses in both DAVID and IPA indicated that 

expression of cholesterol biosynthetic genes was induced in all tissues 

examined, although to a lesser extent in the jejunum (p=0.011; Benjamini-

Hochberg corrected p=0.048, values calculated by IPA).   Cholesterol and lipid 

biosynthetic genes are known to be regulated by transcription factors known as 

the Srebp proteins.  Three Srebp proteins are encoded by two genes, Srebf1 and 

Srebf2.  Srebf1 codes for Srebp-1a and Srebp-1c, while Srebf2 codes for Srebp-

2.  The Srebp proteins differ in their control of fatty acid synthesis and cholesterol 

biosynthesis [88, 91, 134].  Srebp-2 is associated with cholesterol biosynthesis, 

while the Srebp1 proteins are associated with fatty acid synthesis [88], although 

there appears to be overlap in the genes that are responsive to these 

transcription factors [87].  Srebp-1c is sensitive at the transcriptional level to LXR 

signaling [91, 135, 136], while all three share a mechanism for becoming an 
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active transcription factor [91].  Under conditions of sufficient cholesterol 

concentrations, the protein product of Insulin stimulated gene (Insig) binds to 

Srebf Chaperone (Scap) to retain an Insig/Scap/Srebp complex in the 

endoplasmic reticulum [91, 137].   In the absence of oxysterols and cholesterol, 

Insig is degraded and Scap is released from the endoplasmic reticulum; Scap 

then escorts the bound Srebp to the Golgi, where the N-terminus of the Srebp is 

cleaved from the full protein to generate the active form that functions as a 

transcription factor [134]. As indicated above, cholesterol synthesis is increased 

during lactation in both the liver and the small intestine [2, 3] and Srebp target 

genes have also been shown to be upregulated in mammary tissue in lactating 

dams [89].  In a review article, Shimano lists in a table (Shimano, Table 1) a 

series of genes with known SRE elements and their promoter sequences [138].  

Of the genes in this table, low density lipoprotein receptor (Ldlr), HMG CoA 

synthase1 (Hmgcs1), HMG CoA reductase (Hmgcr), farnesyl diphosphate 

farnesyl transferase 1 (Fdft1), Cytochrome P450 family 51 (Cyp51), Acetyl CoA 

carboxylase (Acc), Stearoyl CoA desaturase 2 (Scd2), and malic enzyme 1 

(ME1) are all upregulated in at least one tissue.    

 

The observation that Srebp-regulated genes were upregulated is consistent with 

early data showing an overall increased cholesterol biosynthesis in lactation [9].  

We currently do not know which Srebp isoforms are involved in the changes 

seen in lactation, as Srebp-1c, Srebp-1a and Srebp-2, are all able to regulate 

expression of cholesterol synthetic genes.  However, Srebp-2 plays a stronger 
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role in regulating these genes [88].  The only potential change detected in the 

mRNA for a Srebf gene was Srebf1, the gene associated with Srebp-1a and 

Srebp-1c, which showed increased mRNA levels in the jejunum.   

 

In the liver, Scap mRNA showed a significant increase (p = 2.2X10-7

91

).  If this 

change were associated with an increase in Scap protein levels, then a probable 

mechanism for the increase in Srebp target genes in the liver would be increased 

transport of Srebp proteins to the Golgi, and their subsequent delivery to the 

nucleus [ ].  Insig1 mRNA also showed a significant increase in all parts of the 

small intestine, but not in the liver.  Insig1 functions to retain Srebp in the 

endoplasmic reticulum.  Thus, increased expression of Scap in liver and 

increased expression of Insig1 in intestine provide a likely mechanism for the 

greater increase in cholesterol synthesis in liver vs. intestine observed by 

Feingold et al [9].   

  

A number of factors contribute to the increased need for cholesterol in the 

lactating dam.  The dam requires significant cholesterol for the increased 

synthesis of bile acids; 50% of cholesterol catabolized in the liver from 

nonlactating rats is used for bile acid synthesis [139].  Since the size of the bile 

acid pool increases 2-3-fold at 10 -14 d of lactation [10], greater than 50% of 

cholesterol is likely catabolized to bile acids in lactation.  The proportion of 

dietary cholesterol vs. endogenously synthesized cholesterol that is catabolized 

to bile acids in nonlactating vs. lactating rats is not known.  Most importantly, 
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cholesterol is an essential component of milk that supports membrane synthesis 

and neurodevelopment in the pups [140].  About 16 mg per day of cholesterol is 

secreted into the milk in rats [141]; between 32 and 40% of this cholesterol is 

synthesized in the mammary gland, while 11% is absorbed from the diet [86].  

Thus, cholesterol synthesized in the liver makes up about 50% of cholesterol 

secreted in milk [86].   

 

In addition to detecting a change in cholesterol synthesis, a possible mechanism 

for improved net cholesterol uptake was found.  Abcg5 and Abcg8 show 

decreased levels of mRNA expression in the liver and ileum.  A decrease in the 

concentration of active Abcg5/Abcg8 heterodimer in the intestine would be 

expected to yield an increase in net cholesterol uptake through decreased efflux 

from the enterocyte into the gut lumen, while decreased hepatic expression 

would minimize cholesterol secretion into bile [93].  The decreased expression of 

Abcg5/g8 mRNA in the liver, together with increased expression of cholesterol 

synthetic genes, likely serve to enhance conservation of cholesterol to allow for 

sufficient transfer of cholesterol into the milk and for synthesis of bile acids.  

Increased synthesis of bile acids would in turn serve to increase cholesterol 

absorption [90].   Taken together, these data suggest a concerted mechanism for 

enhancing net cholesterol absorption and minimizing its elimination to ensure 

sufficient cholesterol for incorporation into milk and bile acid synthesis, both 

important factors in maintaining the health of both the dam and pups.   
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Zinc 

 

Statistical pattern matching found that Slc39a4_predicted mRNA was increased 

(1.65 to 2.81 fold) in all tissues.  Slc39a4 is a major zinc transporter associated 

with zinc import into the enterocyte [132], and zinc absorption is up-regulated in 

lactation [73-76].  Taken together, these data imply that the increased expression 

of Slc39a4 mediates the increased zinc absorption that occurs in lactation.  Zinc 

is an essential nutrient shown to be important in bone development [75], to play a 

role in stimulating the insulin pathway [142] and in controlling T-Cell activity [143].  

Zinc requirements are increased during lactation relative to pregnancy, and 

therefore net zinc uptake needs to be increased to maintain zinc homeostasis 

during lactation in humans, particularly during early lactation [144].  Interestingly, 

alpha-2-macroglobulin (A2m) showed a substantial increase in mRNA expression 

(~15-fold) in the liver. Zinc can directly regulate A2m’s ability to sequester 

cytokines [143, 145, 146] by enhancing formation of a form of A2m that contains 

free sulfhydryl groups, which serve as binding sites for the cytokines [146]. 

 

Downregulation of mRNA from the T-Cell signaling pathway 

 

Both the jejunum and ileum showed strong downregulation at the mRNA level of 

the proteins composing the T-Cell signaling pathway in IPA.  These changes may 

reflect a decrease in the number of actual T-Cells in the small intestine of 

lactating rats.   
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Xenobiotic Transporters 

 

Table 3.4 displays significantly different changes in mRNA concentration for the 

ABC transporters.  Included in this list of genes are Abcb1a (Mdr1a), Abcc5, 

Abcc6, and Abcg2.  Abcb1a showed decreased expression in all tissues in the 

microarray and this was successfully validated for the jejunum and ileum by RT-

PCR.  Abcc5 and Abcc6 also showed decreased mRNA expression in the ileum.  

Decreased expression of these efflux transporters would in general lead to an 

increased net absorption of their substrates.  In contrast, Abcg2 showed 

increased expression in the duodenum, which would decrease absorption of 

substrates.  Sample substrates for these proteins include drugs such as digoxin 

and cyclosporine A  (Abcb1a, [147]), cGMP (Abcc5 [148]), the glutathione 

conjugate leukotriene C4 149 (Abcc6 [ ] [150]), and 2-amino-1-methyl-6-

phenylimidazo[4,5-b] pyridine, a dietary carcinogen (Abcg2 [151]).  Further work 

is needed to understand the impact of these specific changes within the context 

of lactation on the lactating dam and her pups.     

 

TR/RXR Pathway 

  

IPA found members of the TR/RXR pathway to be overrepresented in the list of 

differentially expressed genes in each tissue. In both the ileum and jejunum, both 

TRA and TRB showed down-regulation.  Although lactating rats are hypothyroid 
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[19] and expressed lower levels of mRNA for thyroid receptor in these tissues, 

not all thyroid responsive genes were down-regulated, including Apoa5, Eno1, 

and Glut1, which showed no change in any tissue.  A more detailed picture of the 

thyroid receptor pathway can be found in Additional Files 3.17-3.20. Serum 

thyroid hormone levels and early steps in the pathway are likely downregulated 

as an attempt to conserve energy [19, 152].  Fisher’s exact test determines its p-

values based on the counts of the number of genes in the list of differentially 

expressed genes and compares these to the total number of genes in the 

pathway relative to the total number of genes in the microarray.  Therefore, 

pathways that overlap are likely to be detected as overrepresented if the 

overlapping genes are in the list of differentially expressed genes.  Because 

some Srebp regulated genes are considered to be part of the TR/RXR pathway, 

the p-values for overrepresentation may be low, even if thyroid signaling overall 

was unchanged.  However, changes in the mRNA levels of the thyroid receptors 

argue against this, since these receptors have not been shown to be Srebp 

targets. 
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Conclusions  

 

The present studies have shown an increase in the mRNA of enzymes involved 

in the cholesterol biosynthesis pathway, implying that the sterol regulatory 

element binding proteins are more active in the liver and small intestine in 

lactating vs nonlactating rats.  The data are consistent with a coordinated 

response to the overall increased energy demands of lactation and the specific 

needs of the pups for cholesterol so that there is adequate cholesterol for 

incorporation into milk and increased synthesis of bile acids; the latter in turn 

function to increase the intestinal absorption of cholesterol and lipids.   We also 

demonstrated a marked increase in the expression of a key transporter important 

in the uptake of the essential element, zinc.  Finally, we detected decreased 

mRNA from genes associated with T-cell signaling in the jejunum and ileum.   
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Methods 

 

Animals 

 

Sixteen Sprague-Dawley rats that were lactating for 10-11 days and sixteen age-

matched virgin controls were obtained from Harlan (Indianapolis, IN) and 

maintained on a 12 h light/dark cycle (6 AM lights on/6 PM lights off).  Rats had 

free access to Teklad Global Diet 2018 (Harlan Laboratories, Cincinnati, OH) and 

water. In order to minimize the variance in energy demands on the lactating dam, 

pups were removed from large litters within 24 hours of birth so that all litters 

contained 8-11 pups.  All animals were sacrificed at 16 h (10 h of light on a 12 h 

light/dark cycle; 4 PM), and the liver, duodenum, jejunum, and ileum were 

removed for total RNA extraction from each tissue.  The first 5 cm of the small 

intestine following the pyloric sphincter was taken as the duodenum, while the 10 

cm following the ligament of Trietz was discarded and the next 20 cm used as 

the jejunum.  The 20 cm segment preceding the cecal valve was taken as ileum.  

The mucosal layer was removed by scraping at 4°C, and used for isolation of 

RNA from intestinal segments.  RNA was extracted from homogenized tissue 

using Trizol (Invitrogen, Carlsbad, CA), and purified using RNeasy Mini Kit 

DNAse and columns (Qiagen, Valencia, CA).  The integrity of all RNA samples 

was verified using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 

Clara, CA).  Animal protocols were conducted in accordance with the National 

Institutes of Health Guidelines for the Care and Use of Laboratory Animals and 
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were approved by the Institutional Animal Care and Use Committee of the 

University of Kentucky.   

 

Each rat was assigned to one of four pools within the respective physiologic state 

(four control pools and four lactating pools).  Pooled RNA samples, consisting of 

the RNA from the four rats within the same group, were created for each tissue, 

with individual rats composing the pools consistent across tissues. Each pooled 

sample (RNA from one tissue from one set of four rats) was loaded onto a 

separate chip.  This resulted in the use of 32 chips (4 tissues X 2 “physiologic 

states” X 4 pools).  Samples were prepared and processed according to the 

manufacturer’s instructions by the University of Kentucky Microarray Core Facility 

(Lexington, KY).   

 

Selection of Genes on Which to Perform Statistical Analysis 

 

Affymetrix Expression Console software was used to perform the Robust 

Multichip Average (RMA) [99, 100] algorithm, which background corrected, 

quantile normalized, and log2-transformed gene level summaries of the Extended 

dataset.  Affymetrix has divided the chip into various datasets, which represent 

different confidence levels with respect to the complementarities between the 

probe and the sense strand of the gene sequences.  The Extended dataset 

consists of the Core dataset, which is made up of Refseq entries and full length 

mRNAs, as well as additional multiple annotations based on cDNA libraries.  
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Although the Core dataset probes are the best annotated, the rat genome is not 

as well annotated as the human and mouse genomes, with many of the genes in 

the rat Extended dataset identified based on their similarity to human or mouse 

genes. Use of the Extended dataset allowed a more thorough analysis of the 

genome.  The summarized values are an average taken across all exons.   

 

The exon level Affymetrix DABG (Detection Above Background) values and the 

Affymetrix annotation file (version raex_1_0-st-v1.na27.rn4) were used to filter 

the data [110].  Exon level data was opened in Expression Console and the RMA 

algorithm and log2

110

 transformations were performed.  An exon was considered 

present if it had a DABG p < 0.01, indicating that the exon in question had an 

intensity greater than 99% of the background probes with the same GC content 

[ ].  A gene was considered for analysis if at least one exon was detected on 

at least two chips within the same tissue and the same physiologic state, e.g., 

presence on two control liver chips.  Genes were also removed if the Affymetrix 

annotation file contained a “---“ or a blank for the “mRNA description” entry 

(Annotation file: raex_1_0-st-v1.na27.rn4).  Of the 19,434 genes in the Extended 

dataset, 14,129 were utilized for statistical tests based on these criteria.    

 

Statistical Analysis 

 

Since all four tissues were taken from each rat, a repeated measures mixed 

model ANOVA was used to determine if changes in expression were statistically 
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significant for each gene [153].  JMP genomics version 4.1 (SAS Institute Inc, 

Cary, NC, 2011) was used to perform the ANOVA using compound symmetry to 

model the covariance matrices.  Tissue, physiologic state, and the 

tissue*physiologic state interaction were treated as fixed effects, while “pool”, a 

variable describing the combination of four individual rats to create a sample, 

was treated as a random subject variable.   

 

A common method for addressing multiple testing issues involved in the analysis 

of microarrays is the Benjamini-Hochberg false discovery rate (FDR) correction.    

Several possibilities existed for attempting to address the issue of multiple 

testing.  First, the physiologic state p-value could be adjusted to a fixed FDR.  

Alternatively, the individual unadjusted p-values for the simple effects could be 

set to a given value and an approximation of the number of false positives within 

a group could then be calculated.  We chose the latter approach, set p<0.01 as a 

cutoff and calculated the proportion of false positives (PFPs) for the simple 

effects that represented the pairwise comparisons within a tissue.  We chose this 

method to balance the risk of false positives with the risk of false negatives.  

False negatives in the list of differentially expressed genes could interfere with 

downstream pathway analyses. 

 

The overall physiologic state effect of p< 0.05 also served as an additional cutoff 

to reduce the total number of statistical tests performed.  Selection of an overall 

physiologic state p-value of p< 0.01 was problematic, as genes that displayed 
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differential expression in only one tissue might not be noticed due to the lack of 

change in the remaining tissues. In summary, genes were considered 

differentially expressed between control and lactation within a tissue if a 

significant physiologic state effect was observed at p<0.05 and a simple effect for 

the pairwise comparison within a tissue was p< 0.01.   

 

.CEL files and .CHP files describing the data are available through GEO under 

GSE19175 and analyzed data is available in Additional File 3.1. 

 

Detection of Biological Trends 

 

Ingenuity Pathways (IPA) (www.ingenuity.com) was used to screen the results 

for biological trends.  Differentially expressed genes were determined as 

described in the “Statistical Analysis” section above.  The Rat Exon 1.0 ST chip 

was used as a background list.   

 

A right tailed Fisher’s Exact test was used to screen the IPA database and detect 

categories that were overrepresented based on genes detected to have a 

significant difference in expression.  Available in IPA is the Benjamini-Hochberg 

correction, which attempts to control the number of false positives.  This 

calculation is dependent on the size of the database.   We chose not to use the 

Benjamini-Hochberg correction, but chose to fix the significance threshold at 

p<0.01 for any given test.  A p< 0.01 for the Fisher’s Exact test indicated that 
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more genes in the list of differentially expressed genes appeared in a pathway 

than would be expected by chance if the same number of differentially expressed 

genes were to be selected randomly from all genes on the chip.  Both these p-

values and the Benjamini-Hochberg p-values are provided in Table 3.3.   

 

The lists generated by statistical pattern matching were analyzed by DAVID [104, 

105] with the 14,129 genes used for statistical analyses as the background list.   

The lists screened for overrepresentation were the Canonical Pathways category 

in IPA and several databases in DAVID (see below). For the Srebp transcription 

factors, a report of the differential gene expression in mice overexpressing 

isoforms of Srebp and in Scap knockout mice was used to create an additional 

list of genes known to be regulated by the Srebp proteins [87]. Out of the 33 

genes listed as regulated by nuclear Srebp-1a and Srebp2, 29 were identified as 

being on the chip at the level of the Extended dataset and were used to perform 

a right tailed Fisher’s Exact test. 

 

We used IPA’s Canonical Pathways database for all changes detected within a 

tissue, while we used all Gene Ontology terms, COG ontology, Sp_PIR Keyword 

[154, 155], UP_SEQ_Feature [154, 155], Interpro [156], PIR_Superfamily [157], 

SMART [158, 159], and KEGG [126, 160, 161] as databases in DAVID for testing 

each pattern detected by statistical pattern matching.   

 

Statistical Pattern Matching 



65 

 

 

In order to assign changes of RNA expression into biologically meaningful 

groups, a method of statistical pattern matching was used analogous to the one 

used by Arzuaga et al [122] and Hulshizer and Blalock [123].  mRNA from any 

given gene could increase expression, decrease expression, or show no change 

in expression in samples from lactating animals compared to controls in each 

tissue.  The method for pattern matching is described in a step by step manner 

as follows.   Only genes that tested positive for differential expression were used 

for pattern matching.  These genes were assigned an additional significance call 

at p<0.05 for each simple effect within a tissue.  This was done to protect against 

incorrectly assigning a gene that systematically had low p-values as differentially 

expressed in only one tissue.  For example, if a gene was downregulated with p 

values of less than 0.01 in the liver, duodenum, and jejunum, and a p of 0.03 in 

the ileum, the gene was assigned as differentially expressed in all tissues rather 

than in three of the four tissues.  Although the gene would not have been 

considered differentially expressed for the purposes of evaluating which genes 

were differentially expressed in the ileum, the gene was considered differentially 

expressed for the purposes of assigning a pattern.  This reduced the risk of 

falsely assigning the gene to another pattern in the presence of a false negative.  

The fold-change within a given tissue was then utilized to determine if a gene 

was upregulated or downregulated in each tissue.  For each tissue, three values 

were multiplied to define the change in that tissue.  One value was an integer 

that represented the tissue itself: 1000 for liver, 100 for duodenum, 10 for 
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jejunum, and 1 for ileum.  The second value was a multiplier to define whether or 

not there was a tendency (p<0.05) for the gene to change expression in the given 

tissue, where p<0.05 = 1; p>0.05 = 0).  The third value defined the directionality 

of the change, where upregulation = 1 and downregulation = - 1.  The products of 

these values were used to define the change that occurred within a given tissue.  

For example, a gene upregulated in the liver would have a value of 1000, i.e., 

1000*1*1.  The sum of this value for all tissues was taken to generate a unique 

value for every set of possible changes that could occur across tissues.   For 

example a gene that was upregulated in every tissue except the ileum, where it 

was downregulated would have a value of 1009 (1000 + 100 + 10 - 1).    The 

following groups were defined to be of particular importance and were 

investigated: up in all tissues, down in all tissues, up in all parts of small intestine, 

down in all parts of small intestine, up in liver, down in liver, and down in 

duodenum only.   

 

RT-PCR validation of microarray findings 

 

The same total RNA samples used for the microarray were used for RT-PCR 

validation; RT-PCR was performed as reported previously [162], using the 

geometric average of Ctsb, Tmbim6, and Tmed2 as a normalization constant 

[10].  An aliquot of all cDNA samples was used to generate a standard curve.  

RT-PCR experiments were performed by Dr. Tianyong Zhao in our laboratory.  
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Choosing an appropriate normalization constant was performed using 

methodology similar to that described by Andersen et al [163].  Methods for 

detecting valid internal controls require a list of candidate genes with little or no 

bias, since any bias that exists within the genes detected as valid internal 

controls would be transferred over to the newly calculated normalization factor 

[163].  Genes with high expression (mean log2 

163

intensity from the microarray 

greater than or equal to 10) were sorted by their coefficients of variance.  

Microarray data for the twenty genes with the lowest coefficients of variance were 

input into Normfinder [ ].  The single best gene to use as a control was Ctsb, 

and the best combination of two was found to be Tmbim6 and Tmed2.  We 

performed RT-PCR on these genes and chose to use the geometric mean of the 

three genes as a normalization constant.  The same statistical model that was 

used to analyze the microarray results was used to analyze the normalized RT-

PCR data.    

 

cDNA was synthesized using High-Capacity cDNA Reverse Transcription Kits 

from Applied Biosystems (Foster city, CA) according to the manufacturer’s 

instructions.  Primers and Universal Probes Library (UPL) probes for real time RT 

PCR were designed and ordered from Roche Applied Science (Mannheim, 

Germany) using online software (www.universalprobelibrary.com).  A list of 

primers is provided in Additional File 3.21: RT_PCR_primers.pdf.   The Roche 

Light Cycler 480 was used for performing the RT-PCR.  Briefly, 1 μg of total RNA 

was used for cDNA synthesis, the synthesized cDNA diluted to 500 μL, and 5 μL 
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of diluted cDNA used as template in a 20 μL reaction volume.    For quantification 

analysis of real time RT-PCR data, a standard curve was generated by pooling 

all the cDNA samples to form one cDNA mixture and then diluting this cDNA 

mixture 10-, 100-, 1000- and 10,000-fold so that expression of the gene of 

interest was within the range of the standard curve.    
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Figure 3.1.  T-cell signaling in lactating jejunum and ileum 

Downregulation of T-cell signaling in the jejunum (top, p = 1.68X10-7) and ileum 

(bottom, p = 4.7X10-4).  Green shading indicates downregulation of the 

corresponding gene during lactation. 
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Figure 3.2.  Plot of Mean Intensities for Known Cholesterol Biosynthetic 

Enzymes 

The mean untransformed intensities were plotted against tissue/physiologic state 

combination.  C and L indicate the mean of Control and Lactating samples, 

respectively, within each tissue.  Abbreviations for genes are as follows.  Dhcr7: 

7-dehydrocholesterol reductase; Fdft1: farnesyl-diphosphate farnesyltransferase 

1; Sc4mol: sterol-C4-methyl oxidase-like; Idi1: isopentenyl-diphosphate delta 

isomerase 1; Mvd: mevalonate (diphospho) decarboxylase; Hmgcs: 3-hydroxy-3-

methylglutaryl-Coenzyme A synthase 1; Hmgcr: HMG Coenzyme A reductase; 
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Lss: lanosterol synthase; Cyp51: cytochrome P450 family 51; Sqle: Squalene 

Epoxidase.  A red line between Control and Lactating symbols for a given gene 

indicates that p>.0.01 for the tissue pairwise comparison within the tissue from 

the mixed models repeated measures ANOVA on the log2

 

 transformed 

intensities; the change was not considered significant for the purposes of 

determining a list of differentially expressed genes.  A black line between C and L 

symbols indicates p< 0.01 as described above.   
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Table 3.1. RT-PCR validation of selected genes from the microarray.   

Gene Symbol 

Transcript 

Cluster ID RL RD RJ RIL 

Tmem97 

7080099 1.52  

(p=0.021) 

1.92 

(p<0.01) 

2.60 

(p<0.01) 

2.03 

(p<0.01) 

1.59 

(p=0.42) 

1.82 

(p<0.01) 

1.73 

(p=0.072) 

2.15 

(p<0.01) 

Npc1l1 

- 1.00 

(p=1.00) 

1.27 

(p=0.49) 

1.22 

(p=0.16) 

0.88 

(p=0.72) 

Abcb1a 

7250393 0.82 

(p=0.91) 

0.63 

(p<0.01) 

0.83 

(p=0.77) 

0.66 

(p<0.01) 

0.72 

(p=0.09) 

0.65 

(p<0.01) 

0.65 

(p<0.01) 

0.70 

(p=0.01) 

Cyp1a1 

7336681 2.98 

(p=0.93) 

2.29 

(p<0.01) 

1.12 

(p=0.64) 

1.23 

(p=0.35) 

2.06 

(p<0.01) 

1.71 

(p=0.02) 

0.78  

(p=0.89) 

0.67 

(p=0.03) 

Cyp3a23/3a1 

7100149 1.83 

(p=0.12) 

1.69 

(p<0.01) 

1.30 

(p=1.00) 

1.23 

(p=0.35) 

BDL 

1.05 

(p=0.50) 

BDL 

1.04 

(p=0.58) 

Fdft1 

7139070 1.36 

(p=0.11) 

1.38 

(p<0.01) 

2.58 

(p=0.22) 

1.98 

(p<0.01) 

1.02 

(p=0.99) 

1.42 

(p<0.01) 

2.41 

(p=0.018) 

1.55 

(p<0.01) 
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Hmgcr 

7202670 2.05 

(p<0.01) 

1.97 

(p<0.01) 

1.52 

(p=0.30) 

1.64 

(p<0.01) 

1.14 

(p=0.80) 

1.17 

(p=0.14) 

1.18 

(p=0.48) 

1.38 

(p<0.01) 

Slc39a4 

7329323 2.71 

(p=0.59) 

2.81 

(p<0.01) 

2.92 

(p<0.01) 

1.89 

(p<0.01) 

2.20 

(p<0.01) 

1.65 

(p<0.01) 

1.99 

(p<0.01) 

1.68 

(p<0.01) 

Sqle 

7317317 

1.80 

(p<0.01) 

1.83 

(p<0.01) 

2.66 

(p=0.03

4) 

2.27 

(p<0.01) 

1.71 

(p=0.50) 

1.72 

(p<0.01) 

1.59 

(p=0.056) 

1.70 

(p<0.01) 

Ugt2b36 

(Ugt2b4) 

7117373 0.85 

(p=0.047) 

0.96 

(p=0.86) 

0.76 

(=0.41) 

0.57 

(p<0.01) 

0.39 

(p=0.21) 

0.37 

(p<0.01) 

0.62 

(p=1.00) 

1.00 

(p=0.97) 

 

Ratios were calculated as Lactating measurement divided by Control 

measurement.  RT-PCR data is reported as the ratio of normalized 

measurements, and microarray data is reported as the ratio of normalized, 

untransformed intensities.  p-Values were calculated using a mixed models 

approach as described in methods.  RL, RD, RJ and RIL are the Ratio of 

Lactation to Control in liver (L), duodenum (D), jejunum (J), and ileum (IL), 

respectively.  BDL, below detection limit.  RT-PCR results are listed as the top 

set of values, and microarray results are listed below. 
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Table 3.2.  Genes that displayed increased mRNA during lactation in all 

tissues 

Transcript 

Cluster ID Gene Name 

RL RD  RJ RIL 

7027017 

Acetyl-Coenzyme A 

acetyltransferase 

1.98 

(p=0.0173) 

2.40 

(p=0.0049) 

1.80 

(p=0.0363) 

2.19 

(p=0.0128) 

7080099 Transmembrane protein 96 

1.92 

(p=0.0001) 

2.03 

(p=2.8e-05) 

1.82 

(p=0.0002) 

2.15 

(p=8.7e-06) 

7113785 

Hydroxysteroid(17-beta) 

dehydrogenase 7 

1.71 

(p=2.1e-06) 

1.54 

(p=4.7e-05) 

1.19 

(p=0.045) 

1.51 

(p=0.0001) 

7132836 

PDZ binding kinase 

predicted* 

1.56 

(p=0.0222) 

1.88 

(p=0.0031) 

1.66 

(p=0.0054) 

1.54 

(p=0.0227) 

7139070 

Farnesyl diphosphate 

farnesyl transferase 

1.38 

(p=0.0009) 

1.98 

(p=4.7e-08) 

1.42 

(p=0.0004) 

1.55 

(p=4.1e-05) 

7144691 

Sterol-C4-methyl oxidase-

like 

1.41 

(p=0.0015) 

2.19 

(p=1.9e-07) 

1.45 

(p=0.0008) 

1.80 

(p=8.2e-06) 

7166170 

Isopentenyl-diphosphate 

delta isomerase 

1.61 

(p=0.0006) 

2.11 

(p=2.8e-06) 

1.33 

(p=0.0226) 

1.91 

(p=2.6e-05) 

7169182 

Kinesin family member 

20a_predicted* 

1.46 

(p=0.0012) 

1.50 

(p=0.0010) 

1.33 

(p=0.0104) 

1.45 

(p=0.0013) 

7186293 

Mevalonate (diphospho) 

decarboxylate 

2.65 

(p=3.8e-05) 

2.15 

(p=0.0004) 

1.49 

(p=0.0316) 

1.73 

(p=0.0042) 

7199743 

RNA (guanine-9-) 

methyltransferase domain 

containing 2 

1.18 

(p=0.009) 

1.42 

(p=3.6e-06) 

1.19 

(p=0.0066) 

1.30 

(p=0.002) 

7250653 CYP51 1.24 2.14 1.50 1.89 
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(p=0.0116) (p=1.8e-09) (p=4.2e-05) (p=6.7e-08) 

7280610 

UDP-Galactose-4-

epimerase 

1.65 

(p=0.0006) 

1.50 

(p=0.0042) 

1.36 

(p=0.0243) 

1.53 

(p=0.0023) 

7291805 

Dehydrodolichyl 

diphosphate synthase 

1.37 

(p=0.0003) 

1.36 

(p=0.0005) 

1.27 

(p=0.0041) 

1.17 

(p=0.0447) 

7317317 Squalene epoxidase 

1.83 

(p=2.4e-05) 

2.27 

(p=5.6e-07) 

1.72 

(p=0.0001) 

1.70 

(p=0002) 

7329323 

Solute carrier 39 (zinc 

transporter) member 4 

2.81 

(p=2.5e-10) 

1.89 

(p=9.9e-08) 

1.65 

(p=2.1e-06) 

1.68 

(p=1.2e-06) 

 

To be considered part of a grouping, genes must have had a physiologic state p 

<0.05 and at least one tissue simple effect p <0.01.  Reported p-values are the 

tissue simple effect p-values.  The tissue simple effect p-value represents the 

comparison between Lactation and Control in the corresponding tissue.  For the 

purposes of assigning patterns, the significance cutoff for the remaining tissues’ 

simple effect p-values was set to p< 0.05.  Abbreviations used as in Table 3.1.  

*Gene is at the Extended confidence level. 
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Table 3.3. Top three pathways for overrepresentation in each tissue 

Liver    

Pathway Fisher’s Exact test 

p-value 

BH 

p-value 

Members 

 

Biosynthesis of steroids 3.50E-07 5.80E-05 ↑Dhcr7, ↑Fdft1,↑Hmgcr,↑Idi1, ↑Lss, ↑Mvd, 

↑Sqle 

LXR/RXR Activation 1.57E-04 1.30E-02 ↓Abcg5, ↓Abcg8, ↑Acaca, ↑Cyp7a1, ↓Hadh, 

↑Hmgcr, ↓Lcat 

Pentose/Phosphate  

Pathway 

3.01E-04 1.67E-02 ↑Aldoc, ↑G6pd, ↑Gpi, ↓H6pd, ↓Pgm5 

    

Duodenum    

Pathway    

Biosynthesis of steroids 1.13E-10 1.74E-08 ↑Dhcr7, ↑Fdft1, ↑Fntb, ↑Hmgcr, ↑Idi1, ↑Lss, 

↑Mvd, ↑Sc5dl, ↑Sqle 

Androgen and  

estrogen metabolism 

1.35E-04 1.04E-02 ↑Ftsj1, ↑Hsd11b1, ↑Hsd17b7, ↑Nsdhl, 

↓Srd5a2, ↓Ugt2b7 

Glycerolipid metabolism 1.46E-03 7.50E-02 ↓Cel, ↓Clps, ↓Glb1l2, ↓Pnlip, ↓Pnliprp1, 

↓Pnliprp2 

    

Jejunum    

Pathway    

T-Cell receptor signaling 1.68E-07 2.78E-05 ↓Bmx, ↓Cd8b, ↓Grap2, ↓Itk, ↓Malt1, 

↓Pik3cg, ↓Pik3r1, ↓Ppp3cc, ↓Prkcq, ↓Ptprc, 

↓Rasgrp1, ↓Trb 
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CD28 signaling in  

T helper cells 

1.17E-05 6.74E-04 ↓Grap2, ↓Itk, ↓Malt1, ↑Mapk9, ↓Pik3cg, 

↓Pik3r1, ↓Ppp3cc, ↓Prkcq, ↓Ptprc, ↓Trb 

TR/RXR activation 1.23E-05 6.74E-04 ↑Fga, ↑Gh1, ↓Klf9, ↑Ldlr, ↓Pik3cg, ↓Pik3r1, 

↓Thra, ↓Thrb, ↓Thrsp 

    

Ileum    

Pathway    

Biosynthesis of steroids 9.42E-08 1.71E-05 ↑Cyp24a1, ↑Dhcr7, ↑Fdft1, ↑Hmgcr, ↑Idi1, 

↑Mvd, ↑Sc5dl, ↑Sqle 

TR/RXR activation 3.16E-07 2.86E-05 ↑Fga, ↑Gh1, ↓Klf9, ↑Me1, ↓Nfcor2, ↓Pck1,  

↓Pik3c2b, ↓Pik3cg, ↓Pik3r5, ↓Ppargc1a, 

↓Thra, ↓Thrb 

Thrombopoietin signaling 4.85E-05 2.53E-03 ↓Irs2, ↓Pik3c2b, ↓Pik3cg, ↓Pik3r5, ↓Plcg1, 

↓Plcg2, ↓Prkce, ↓Prkcq 

 

The pathways with the three lowest p-values from Fisher’s exact test for 

pathways from IPA’s “Canonical Pathways” database for each tissue are 

reported here along with the corresponding p-value from a right-tailed Fisher’s 

exact test, the Benjamini-Hochberg (BH) adjusted p-value, and the genes within 

the pathway that showed differential expression within the respective tissue 

(Members).  Arrows in the Members column indicate the direction of change in 

lactating animals relative to controls. 
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Table 3.4.  ATP-Binding Cassette (ABC) transporters detected to be 

differentially expressed between Control and Lactating dams.  

Gene Symbol 

Transcript 

Cluster ID RL RD RJ RIL p<0.01 

Abca3 

7065486 0.888 

(p=0.138) 

0.931 

(p=0.329) 

0.99 

(p=0.874) 

0.8 

(p=0.007) IL 

Abca8a_predicted* 

7083965 0.567  

(p=7.0E-04) 

0.885 

(p=0.273) 

0.942 

(p=0.744) 

0.763 

(p=0.054) L 

Abcb1a 

7250393 0.63 

(p=0.001) 

0.663 

(p=0.002) 

0.652 

(p=0.002) 

0.697 

(p=0.005) L,D,J,IL 

Abcc5 

7089622 0.818 

(p=0.021) 

1.065 

(p=0.476) 

0.938 

(p=0.471) 

0.672 

(p=8E-05) IL 

Abcc6 

7051110 0.886 

(p=0.109) 

0.852 

(p=0.03) 

0.884 

(p=0.089) 

0.73 

(p=2.0E-04) IL 

Abcg2 

7254219 0.949 

(p=0.666) 

1.55 

(p=6.0E-05) 

1.049 

(p=0.613) 

1.203 

(p=0.049) D 

Abcg5 

7303106 0.321 

(p=3.0E-07) 

0.762 

(p=0.095) 

0.901 

(p=0.515) 

0.656 

(p=0.006) L, IL 

Abcg8 

7294657 0.297 

(p=4.0E-06) 

0.67 

(p=0.039) 

0.803 

(p=0.261) 

0.592 

(p=0.005) L, IL 

The p<0.01 column indicates in which tissues a change was detected. 

Abbreviations are as defined for Table 3.1.   *Gene is at the Extended level of 

confidence. 

  



81 

 

 

Additional files 

Additional File 3.1: Statistical analysis and statistical pattern matching 

results (Statistical_Analysis_and_Statistical_Pattern_Matching_Results.txt) 

Results from statistical pattern matching are reported as a .txt file. Results are 

reported for all 14,129 genes considered for statistical analysis, but genes that 

were not differentially expressed in any tissue are assigned a pattern of zero.  

Transcript_ID is an identifier associated with the gene analyzed.  The gene 

assignment entry was taken from the Affymetrix annotation file and displays 

which gene is associated with the given transcript ID.  Tissue p, physiological 

state p, and tissue*physiological state p correspond to the p-values associated 

with the tissue main effect, physiological state main effect, and the interaction, 

respectively.  p Liver, p duodenum, p jejunum, and p ileum represent the p-

values associated with the corresponding simple effects  Pattern indicates in 

which pattern a gene is detected.  A zero indicates no differential expression.  

Otherwise, patterns are assigned as described in the Methods.  Ratio liver, ratio 

duodenum, ratio jejunum, and ratio ileum represent the ratio of the mean of 

samples from lactating animals to the mean of samples from controls utilizing the 

untransformed microarray data. 

 

Additional File 3.2:  Benjamini-Hochberg false discovery rates 

(Benjamini_Hochberg_False_Discovery_Rates.txt) 
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False Discovery Rate corrections [102] for all genes studied is presented in .txt 

format.  Transcript_ID is an Affymetrix Identifier for each gene.  False discovery 

rates are provided for the tissue*physiological state interaction term and the 

overall physiological state effect.  Q-values were calculated as the number of 

false positives expected by chance (uncorrected p* total number of tests) divided 

by the total number of results with an equal or lower p-value. 

 

Additional File 3.3:  Histograms of p-values (Histograms_of_p_values.jpg) 

Histograms for A) tissue effect p-values, B) physiological state effect p-values, C) 

physiological state*tissue interaction p-values, and pairwise comparison p-values 

for D) the liver, E) duodenum, F) jejunum, and G) ileum presented as a .ppt file.  

While a large tissue effect was observed, a visible treatment effect (control vs. 

lactation) was also observed. 

 

Additional File 3.4: Volcano plots (Volcano_plots.pdf) 

Volcano plots comparing the log2 fold changes (reported as mean untransformed 

lactating intensity divided by untransformed mean control intensity) against the 

calculated pairwise comparison p-value for each individual tissue in .pdf format.  

Volcano plots are for A) Liver, B) Duodenum, C) Jejunum, and D) Ileum.  Each 

tissue responded differently to lactation.  The blue line indicates the significance 

cutoff of p< 0.01.  The number of differentially expressed genes were 420 in the 

liver, 337 in the duodenum, 402 in the jejunum, and 523 in the ileum, when an 

overall treatment main effect p-value cutoff of p<0.05 was incorporated.  Of 
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particular note is a series of genes that were strongly downregulated in the 

duodenum (Additional File 3.1 pattern -100; discussed in Results.)     

 

Additional File 3.5:  DAVID output (DAVID_output_file.txt) 

DAVID was utilized to test specific patterns from statistical pattern matching.  

Patterns were chosen based on similarity between tissues and were “Up in All 

Tissues”, “Down in all tissues”, “Up in all parts of small intestine”, “Down in all 

parts of small intestine”, “Up only in liver”, “Down only in liver”, and “Down only in 

duodenum”. Table truncated from output in DAVID.  Genes listed by Affymetrix 

transcript cluster ID, which may be referenced in Additional File 3.1. 

 

Additional File 3.6. Genes with decreased mRNA in all tissues 

(Genes_with_decreased_mrna_all_tissues.pdf)   

To be considered part of a grouping, genes must have a physiologic state p< 

0.05 and at least one tissue simple effect p <0.01.  Reported p-values are tissue 

simple effect p-values and represent the comparison between Lactation and 

Control in the corresponding tissue.  For the purposes of assigning patterns, the 

significance cutoff for the remaining tissue simple effect was set to p <0.05.  

Abbreviations used as in Table 3.1.  *Gene is at the Extended confidence level.   

 

Additional File 3.7: Biosynthesis of sterols in liver 

(Biosynthesis_of_sterols_in_liver.jpg)  
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Image from IPA representing the “Biosynthesis of Sterols” in the liver as a .jpg 

file.  Numbering system for enzymes in the pathway is taken from KEGG [160].  

Components of the cholesterol biosynthetic pathway include 1.1.1.34 (Hmgcr), 

2.7.1.36 (Mvk), 2.7.4.2 (Pmvk), 4.1.1.83 (Mvd), 5.3.3.2 (Idi1), 2.5.1.21 (Fdft1), 

and 1.14.99.7 (Sqle), 5.4.99.7 (Lss), and 1.3.1.21 (Dhcr7).  Red shading 

indicates increased mRNA during lactation from the corresponding gene.   

 

Additional File 3.8: Biosynthesis of sterols in duodenum 

(Biosynthesis_of_sterols_in_duodenum.jpg) 

Image from IPA representing the “Biosynthesis of Sterols” in the duodenum as a 

.jpg file.  Numbering system for enzymes in the pathway is taken from KEGG 

[160].  Components of the cholesterol biosynthetic pathway include 1.1.1.34 

(Hmgcr), 2.7.1.36 (Mvk), 2.7.4.2 (Pmvk), 4.1.1.83 (Mvd), 5.3.3.2 (Idi1), 2.5.1.21 

(Fdft1), and 1.14.99.7 (Sqle), 5.4.99.7 (Lss), and 1.3.1.21 (Dhcr7).  Red shading 

indicates increased mRNA during lactation from the corresponding gene. 

 

Additional File 3.9: Biosynthesis of sterols in jejunum 

(Biosynthesis_of_sterols_in_jejunum.jpg) 

Image from IPA representing the “Biosynthesis of Sterols” in the jejunum as a 

.jpg file.  Numbering system for enzymes in the pathway is taken from KEGG 

[160].  Components of the cholesterol biosynthetic pathway include 1.1.1.34 

(Hmgcr), 2.7.1.36 (Mvk), 2.7.4.2 (Pmvk), 4.1.1.83 (Mvd), 5.3.3.2 (Idi1), 2.5.1.21 
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(Fdft1), and 1.14.99.7 (Sqle), 5.4.99.7 (Lss), and 1.3.1.21 (Dhcr7).  Red shading 

indicates increased mRNA during lactation from the corresponding gene. 

 

Additional File 3.10: Biosynthesis of sterols in ileum 

(Biosynthesis_of_sterols_in_ileum.jpg) 

Image from IPA representing the “Biosynthesis of Sterols” in the ileum as a .jpg 

file.  Numbering system for enzymes in the pathway is taken from KEGG [160].  

Components of the cholesterol biosynthetic pathway include 1.1.1.34 (Hmgcr), 

2.7.1.36 (Mvk), 2.7.4.2 (Pmvk), 4.1.1.83 (Mvd), 5.3.3.2 (Idi1), 2.5.1.21 (Fdft1), 

and 1.14.99.7 (Sqle), 5.4.99.7 (Lss), and 1.3.1.21 (Dhcr7).  Red shading 

indicates increased mRNA during lactation from the corresponding gene. 

 

Additonal File 3.11. Genes regulated by Srebp proteins 

(Genes_Regulated_by_Srebp_proteins.pdf)   

Genes that increase expression in Srebp-1a overexpressing mice and Srebp-2 

overexpressing mice, and decrease expression in Scap knockout mice [87].  

Overrepresentation analysis showed that genes in this list occurred more 

frequently than expected by chance in the lists of differentially expressed genes 

(p<1X10-4

 

 in each tissue.) Abbreviations used as in Table 3.1.   *Gene is at the 

Extended confidence level.   

Additional File 3.12.  Members of the Slc superfamily (Slcs.pdf) 
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Table displaying members of the Slc superfamily.  The p<0.01 column indicates 

in which tissues a change was detected.  Abbreviations are as defined for Table 

3.1.  * Gene is at the Extended level of confidence.  a

http://www.bioparadigms.org/

Substrates taken from the 

SLC tables database ( ) 

 

Additional File 3.13: Canonical pathways in the liver 

(Liver_canonical_pathways.txt)   

This file contains the canonical pathways in IPA and the corresponding –log10 p-

values and the individual molecules that were detected as being in the list of 

overrepresented genes and part of each pathway (listed in the “molecules” 

column.)  FDRs for the individual pathways are shown in a separate series of 

rows underneath the –log10

 

 p-values.  This table shows results utilizing the list of 

differentially expressed genes in the liver.    

Additional File 3.14: Canonical pathways in the duodenum 

(Duodenum_canonical_pathways.txt) 

This file contains the canonical pathways in IPA and the corresponding –log10 p-

values and the individual molecules that were detected as being in the list of 

overrepresented genes and part of each pathway (listed in the “molecules” 

column.)  FDRs for the individual pathways are shown in a separate series of 

rows underneath the –log10

 

 p-values.  This table shows results utilizing the list of 

differentially expressed genes in the duodenum.    
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Additional File 3.15: Canonical pathways in the jejunum 

(Jejunum_canonical_pathways.txt) 

This file contains the canonical pathways in IPA and the corresponding –log10 p-

values and the individual molecules that were detected as being in the list of 

overrepresented genes and part of each pathway (listed in the “molecules” 

column.)  FDRs for the individual pathways are shown in a separate series of 

rows underneath the –log10

 

 p-values.  This table shows results utilizing the list of 

differentially expressed genes in the jejunum. 

Additional File 3.16: Canonical pathways in the ileum 

(Ileum_canonical_pathways.txt)  

This file contains the canonical pathways in IPA and the corresponding –log10 p-

values and the individual molecules that were detected as being in the list of 

overrepresented genes and part of each pathway (listed in the “molecules” 

column.)  FDRs for the individual pathways are shown in a separate series of 

rows underneath the –log10

 

 p-values.  This table shows results utilizing the list of 

differentially expressed genes in the ileum.    

Additional File 3.17: Thyroid pathway in liver (Liver_thyroid_pathway.jpg) 

Images from IPA for the TR/RXR pathway for the liver.  Red shading indicates 

increased mRNA amounts of the respective gene during lactation, and green 

shading indicates decreased amounts of mRNA.  
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Additional File 3.18: Thyroid pathway in duodenum 

(Duodenum_thyroid_pathway.jpg) 

Images from IPA for the TR/RXR pathway for the duodenum.  Red shading 

indicates increased mRNA amounts of the respective gene during lactation, and 

green shading indicates decreased amounts of mRNA. 

 

Additional File 3.19: Thyroid pathway in jejunum 

(Jejunum_thyroid_pathway.jpg) 

Images from IPA for the TR/RXR pathway for the jejunum.  Red shading 

indicates increased mRNA amounts of the respective gene during lactation, and 

green shading indicates decreased amounts of mRNA. 

 

Additional File 3.20: Thyroid pathway in ileum (Ileum_thyroid_pathway.jpg) 

Images from IPA for the TR/RXR pathway for the ileum.  Red shading indicates 

increased mRNA amounts of the respective gene during lactation, and green 

shading indicates decreased amounts of mRNA. 

 

Additional File 3.21: RT-PCR primers (RT_PCR_primers.pdf) 

Primer sequences for all genes analyzed by RT-PCR.   

 

 

 

© Antony Athippozhy 2011
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Chapter 4 

Detection of Differential Alternative Splicing in the Lactating Rat 

 

Introduction 

Lactating dams have increased energy demands.  Several physiologic changes 

occur in the animal to accommodate the need to provide for both themselves and 

their pups.  These changes include increased cholesterol synthesis [9], increased 

zinc absorption [74], increased bile acid pool size [10], and increased 

hydrophobicity of the bile acid pool [10].  In addition, a number of hormone 

signaling pathways are altered, including those for insulin, thyroid, and leptin [19].  

We have previously characterized the changes in mRNA expression in the liver 

and gastrointestinal tract (duodenum, jejunum, ileum) of the lactating dam 

compared to age matched virgin controls using an Affymetrix Rat Exon 1.0 ST 

microarray (Affymetrix, Santa Clara, CA) [164].   

In addition to changes in gene expression, alternative splicing is also a 

mechanism for controlling gene function.  To our knowledge, no work has been 

done to characterize changes in mRNA splicing during lactation.  One tool that 

has been developed to characterize differences in splicing between two different 

groups is the Exon Array.  In contrast to traditional 3’-expression arrays, probes 

in the Exon Array are designed to detect individual exons.  This allows for 

measurements of individual exons, and a comparison of exon expression 
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between two groups relative to the corresponding gene expression allows for 

identification of genes that are differentially spliced between the groups. 

In spite of the minimal work done to characterize splicing within the context of the 

lactating animal, the serum levels of several hormones that affect splicing are 

known to be altered.  Lactating rats are hypoinsulinemic [19], hypoleptinemic 

[19], and hyperprolactinemic when compared to nonlactating animals.  These 

pathways influence PI3K signaling [37, 38, 52, 54, 57, 58, 60, 61].  Insulin 

signaling can trigger differential splicing of protein kinase C β II through the PI3K 

pathway and ultimately through differential phosphorylation of SRp40, a member 

of the serine-arginine (SR) family of proteins which are often involved in the 

regulation of alternative splicing [68].  Likewise prolactin receptor activation leads 

to differential splicing of neuronal nitric oxide synthase (nNOS) in the rat anterior 

pituitary cell line, GH3 67[ ].  Consequently, differential alternative splicing through 

differential phosphorylation of SR proteins downstream of PI3k signaling seems 

likely in lactating animals.      

Several methods have been developed to analyze data from exon array chips.  

Two of these methods are ANOSVA [107] and MiDAS [97].  ANOSVA is a 

method based on a two-way ANOVA, utilizing the factor (i.e. source of variance) 

of interest and an exon effect as the two main effects.  A significant interaction 

term between the effect of interest and the exon is considered a positive test.  

This method operates under the model yijk=µ+αi+β j+γ ij+error, where yijk is the 

measured expression level for probe k in probeset i in experiment j, µ is a 



91 

 

baseline measurement, αi is the linear contribution of probeset i, β j is the linear 

contribution of the other factor, and γij

165

 is the interaction effect.  In the presence of 

differential alternative splicing, the addition of a splicing event creates a situation 

where the sum of µ, αi, and βj do not fully explain the model, and the difference is 

explained in the interaction term.  However, problems have been reported with 

this model, as an Affymetrix white paper discussing the method described that it 

“did not yield good performance” but specific flaws were not discussed [ ].  

Also, because the test is performed for the entire gene, the method does not give 

a direct measure of where the potential splice sites occur. 

Another method used to detect differential alternative splicing is called MiDAS 

[97].  This method utilizes “gene normalized intensities” to identify where splicing 

has occurred.  The gene normalized intensities are calculated as the ratio of an 

individual exon’s expression to an estimate of the gene’s overall expression.  If a 

significant difference occurs between “gene normalized intensities” for a given 

exon, then that exon may be differentially spliced.  Analysis is often done by 

utilizing a t-test on the gene normalized intensities [97].  In some cases, this 

method has reported low validation rates, as there are several well-known 

sources of false positives in exon microarrays.  These include failure of a probe 

to hybridize to its target cDNA, hybridization to nontarget cDNAs, and a gene not 

being expressed in one of the treatment groups [97].  Because of these 

problems, adequate prefiltering before analyzing the data is a necessity [97].   
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We have utilized a combination of ANOSVA and MiDAS to detect differential 

splicing.  We have characterized differential alternative splicing in the liver, 

duodenum, jejunum, and ileum of lactating rats compared to age matched virgin 

controls by running ANOSVA to identify differentially spliced genes, followed by 

MiDAS to identify differentially spliced exons.   
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Results 

ANOSVA Overestimates p-values 

The physiologic state*probeset interaction p-values were plotted as histograms 

for each tissue (Figure 4-2).  In the absence of any significant interactions (and 

under the assumptions of the algorithm, in the absence of alternative splicing), 

the interaction p-values would be expected to be normally distributed.  However, 

histograms of the p-values show that p-values were biased toward one (1) in 

each tissue, although in the ileum, there was both a bias toward zero (0) and one 

(1).  This indicates that the ANOSVA method is in general, overestimating the p-

values, as the expected uniform distribution of nonsignificant results was not 

present.  Histograms of MiDAS p-values (Figure 4.3) appeared to follow a similar 

trend, but the effect was much less pronounced, since there were multiple exons 

for each gene.     

Number of genes that tested positive in each tissue for alternative splicing 

Because low validation rates have been reported for microarray experiments, 

and validation can be a time-consuming and costly endeavor, we chose a 

relatively stringent cutoff at the level of ANOSVA (FDR=0.05).  In three of the four 

tissues, very few genes (i.e., less than 20) were detected as positives (Tables 

4.1-4.3).  Given that an FDR of 0.05 indicates that approximately 1 in 20 genes 

are false positives, and fewer than 20 genes appear in these lists, it is plausible 

that some of these genes tested positive by chance.  However, the ileum 
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displayed a much higher incidence of positive tests (Additional File 4.1).  This is 

indicative of a unique event occurring within the ileum, as all tissues were 

analyzed using the same model.   

UGTs Test Positive for Alternative Splicing 

In both the liver and the ileum, the gene associated with the UDP 

glucuronosyltransferase 1 family polypeptide a (UGT1a) tested positive for 

alternative splicing.  The UGT1a differ by usage of an alternative first exon.  The 

splicing events that tested positive by the microarray were associated with 

probesets that match the alternative first exons.  In the liver, probesets 6347739 

and 6443473 tested positive for differential alternative splicing, while in the ileum, 

no individual probesets tested positive in MiDAS, although the ANOSVA for the 

gene gave a significantly low p-value.  By using University of California, Santa 

Cruz (UCSC) genome browser [166, 167] to align the target sequence against 

the genome, we identified probeset 6347739 as being associated with the first 

exon of Ugt1a7c, and probeset 6443473 as being associated with the first exon 

of Ugt1a6.  

Alternative Splicing of Abcg8 

Initial analyses of the extended dataset prior to filtering out poorly expressed 

probesets resulted in a larger number of positive tests.  Within this dataset, 

Abcg8 was flagged as a likely candidate for alternative splicing in the liver only 

(positive at FDR<0.05; Figure 4.4).  RT-PCR detected a splice variant that was 
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present in lactating samples, and this variant was sequenced.  (Additional File 

4.2).  Only one transcript variant was sequenced, although others were identified 

in the RT-PCR products.     
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Discussion 

A Series of Events Occur in the Gastrointestinal Tract That is Unique to the 

Ileum 

 

The same algorithm was utilized to detect the possibility that lactation triggers 

changes in alternative splicing in each tissue.  In three of the tissues, very few 

positive tests were detected.  However, the ileum showed substantially more 

positive alternative splicing events (89 in the ileum, less than 20 in each of the 

other tissues).  Although events such as alternative start site and stop site usage 

would also test positive as alternative splicing events, this indicated that a unique 

physiologic event was occurring in the ileum of lactating rats that was not 

occurring in the liver, duodenum, or jejunum.  Based on differences in serum 

hormone levels reported in lactation, we had reason to hypothesize that levels of 

alternative splicing in the gastrointestinal tract were altered during lactation.  

Thus, changes in signaling via the PI3k/Akt pathway could affect splicing 

mechanisms.  However, in three of the four tissues, the number of splicing 

events detected by the microarray chip was small.  Alternative splicing events in 

any of these tissues in the lactating animal have not been characterized 

previously.  Further work needs to be done to characterize what changes in the 

local environment of the ileum might trigger differences in alternative splicing that 

are unique to the ileum when compared to the other more proximal parts of the 

small intestine and the liver.   
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Abcg8 is Differentially Spliced in the Liver of Lactating Dams, but not in the 

Small Intestine 

 

Our previous analyses [5] showed that Abcg8 is differentially expressed in the 

livers of lactating rats.  mRNA and protein levels are significantly decreased, and 

functional heterodimer was not detectable in livers of lactating dams.  Initial 

analyses of the microarray data for the detection of alternative splicing prior to 

filtering out poorly expressed genes indicated that Abcg8 might be differentially 

spliced in the liver of lactating animals.  From the plots of probeset intensity, the 

probesets in the liver of lactating rats show a clearly different pattern of 

expression than in any other tissue or physiologic state group (Figure 4.4).  We 

investigated the cause of the unique expression pattern in these livers.  RT-PCR 

identified a transcript variant within the lactating liver samples.  This variant was 

sequenced and found to be missing part of exon 4, all of exons 5,- 8, and part of 

exon 9.  Blasting the sequence of the clone against the rat genome identified the 

best match was Abcg8, with several regions having 100% identity and others 

varying only by a single nucleotide mismatch or a gap.  Comparing the 

determined sequence against NCBI’s NM_130414 mRNA entry and NP_569098 

protein entry, it was determined that this transcript most likely would not have 

been able to produce functional protein.  In addition to the possibility that the 

transcript’s product may not have been able to form a dimer with Abcg5, this 

transcript would likely not include many key features of the transporter, including 
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the Walker B motif in the nucleotide binding domain where ATP is bound.  This 

result indicated that within the lactating liver, incomplete transcripts of Abcg8 

were being formed, and these transcripts may not be able to form the functional 

protein, providing further description for the lack of functional Abcg8 protein 

detected in the liver of lactating dam. This, in addition to the substantially 

decreased amounts of Abcg8 mRNA, suggested that control of Abcg8 levels in 

lactating dams happened at least in part at the level of transcription.  As we have 

described in Chapter 3, loss of Abcg5/g8 requires that cholesterol be secreted 

into bile through an alternative mechanism rather than through transport 

mediated by the Abcg5/Abcg8 heterodimer.  Abcg5 was not detected to be 

differentially spliced in the same manner, but failure to produce functional Abcg8 

interferes with the formation of functional heterodimer [168].  Abcg8 was 

removed from the final analysis in liver due to its already low expression in liver 

samples from lactating animals. 

 

The Gene Associated with Members of the Ugt1a Family of Enzymes Shows 

Differential First Exon Usage in the Microarray Data in Both the Liver and 

the Ileum 

 

mRNA associated with the Ugt1a proteins tested positive for differential 

alternative splicing in the liver and ileum.  The Ugt1a locus codes for a family of 

proteins that differ in their amino termini, but have consistent carboxy termini.  

This is accomplished through utilization of a variable first exon, followed by the 
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consistent usage of exons 2-5.  These enzymes are responsible for transferring 

glucuronic acid to the substrate, which generally creates a water soluble, 

biologically inactive product.  These enzymes are important in both elimination of 

endogenous substrates and various drugs.  A review of many example drug 

substrates can be found in Kiang et al [169].   

 

Because the microarray makes measurements on each individual exon, 

differences in the usage of the differential first exon can be identified when 

testing for alternative splicing.  In both the liver and the ileum, the Ugt1a locus 

was identified as a site of “differential alternative splicing”, and further analyses 

revealed that the detected sites were located in the alternative first exons.  In the 

liver, Ugt1a6 and Ugt1a7 were identified as having higher expression of the 

corresponding first exon present in the lactating samples compared to controls, 

while in the ileum, no forms were found differentially expressed by MiDAS, but 

Ugt1a3 and Ugt1a5 appeared to have slightly decreased expression of mRNA 

from the respective first exons in lactating dams (Figure 4.5).  However, the 

constituitive exons 2-5 did not display a change in expression.  These results 

suggested that drug metabolism may be altered in lactating dams.  For example, 

Ugt1a6 can metabolize acetaminophen.  The results from Ugt1a6 were 

consistent with reports of transgenic mice expressing the human UGT1A locus 

having higher levels of UGT1A6 post-partum [170].  Also, Ugt1a6 mRNA and 

protein have been shown to be increased in lactating rats and in rats treated with 

ovine prolactin [94], indicating that our results regarding Ugt isoforms were 
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consistent with previous literature.   Further studies need to be performed to 

elucidate how differences in Ugt levels actually influence drug metabolism. 

 

Other Genes Detected to be Differentially Spliced and Biological Roles 

 

Because the ileum showed a substantially higher number of splicing events 

compared to the other three tissues, we chose to focus on it for further analyses.  

Additional File 4.1 displays genes that tested positive in the ileum and 

corresponding physiologic state*probeset_ID interaction p-values as calculated 

by Partek.  Angiotensin converting enzyme 2 (Ace2) showed the lowest p-value 

for alternative splicing in ileum using the two-way ANOVA model in Partek 

(Figure 4.6).  MiDAS results, in conjunction with plotting exon intensities as a 

function of chromosomal position in both groups, revealed that probeset 

5728701, which maps to the 3’ end of exon 9 in the UCSC genome browser, was 

a possible site of differential alternative splicing, as a drop in both groups 

occurred, but the magnitude of the drop was greater in the control group.  This 

would indicate that proportionately fewer transcripts contained the exon in control 

than lactating animals.  In the duodenum and jejunum, a large decrease in 

expression of the probeset was observed, but there was no statistically 

significant difference in the gene normalized intensities between the groups.  

These results indicate that the splicing event was unique to the ileum.   
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Ace 2 catalyzes conversion of angeniotensin II into the inactive heptapeptide 

Ang1-7.  Active angiotensin II is responsible for triggering increased blood 

pressure [171] and secretion of aldosterone, which leads to sodium retention 

[172].  The degradation of angiotensin II prevents further activity, meaning that 

ACE2 plays a key role in regulating blood pressure and sodium levels.  

Furthermore, the heptapeptide Ang1-7 can inhibit angiotensin II activity [173].   

 

Using BLAT [174] against the Nov. 2004 (Baylor 3.4/rn4) assembly [175] to map 

the location of probeset 5728701’s target sequence in the UCSC genome 

browser did not reveal any ESTs for Ace 2 that were spliced in the corresponding 

region.  The most likely explanations for the results observed are that the probe 

hybridizes poorly, as marked by the large decrease in intensity relative to other 

probes in the same gene in all parts of the small intestine, or that the splicing 

event was real and was unique only to the ileum.  The region corresponding to 

probeset 5728701 matches the mRNA refseq entry NM_001012006 from 

nucleotides 1301 to 1326.  This was consistent with amino acids 434-442 in the 

translated protein, which can also be viewed in the NCBI refseq entry 

NM_001012006 or in the protein entry NP_001012006.  This region was included 

with the peptidase region from amino acids 22-612, but was not associated with 

any active sites within the protein entry, which map to amino acids 345-348,374-

375,378,382,401-402,449,503,505,512, and 515.  Consequently, if this splice 

form interfered with function of the full protein, it would likely be from a 

conformational change through missing residues near the active sites; the 



102 

 

closest active site was threonine 449.  Because this splice form retains its active 

sites and its transmembrane domain, the splice variant may still be biologically 

active, however this requires independent verification.   

 

DAVID [105] was used to identify similarities amongst genes that were 

differentially alternatively spliced in the list of 89 genes detected in the ileum.  

Amongst these, four members of the renin angiotensin (p=5.4X10-4) pathway 

were detected, including the previously mentioned Ace2.  Figure 4.7 shows the 

KEGG renin angiotensin pathway, as displayed from within DAVID.  Members 

marked with stars were members of the renin angiotensin pathway. The other 

three members were alanyl (membrane) amino peptidase (Anpep), leucyl/cystinyl 

peptidase (Lnpep), and membrane metallo endopeptidase (Mme).   

 

Seventeen members of the SP_PIR_Keywords group “alternative splicing” tested 

positive for differential alternative splicing (p=4.1X10-3

 

) (Table 4-4).  Amongst 

these was the Ugt1a locus, which produces different proteins based on usage of 

an alternative first exon and is discussed in detail above. These are proteins that 

have been previously associated with alternative splicing.  

In the liver, probesets associated with Ugt1a6 and Ugt1a7 were detected as 

differentially spliced.  This suggested possible differences in improved ability to 

conjugate phenols, such as acetaminophen.  In the rat, Ugt1a6 and Ugt1a7 are 

co-regulated through Ahr [95], suggesting that these results may have been a 
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response to the same mechanism.  However, this result is not directly 

transferable to humans, as humans do not express Ugt1a7 in the liver [176]. This 

result was consistent with previous reports that Ugt1a6 mRNA and protein ares 

increased during lactation and in response to prolactin [94]. 

 

Using a network drawn around Ahr in Ingenuity Pathways Analysis (Ingenuity 

Systems, www.ingenuity.com), we found that four genes differentially expressed 

in the liver would be influenced by Ahr.  Two changes were consistent with 

increased Ahr activity: increased Cyp1a1 [177] and decreased Serpina7 [178].  

The other two changes that would be influenced by Ahr activity occured in the 

direction opposite of the expected change.  Hmgcr [179] transcription was 

increased [164]  and Phophoenolpyruvate carboxykinase 1 (Pck1, also known as 

Pepck), a key regulator in gluconeogenesis, transcription was decreased [178].  

The inconsistent changes were easily explained by the change in the lactating 

rats’ metabolic state, as discussed in Chapter 3.   

 

RT-PCR Validation of Alternative Splicing Events 

 

The following factors should be considered when determining which alternative 

splicing events are likely true positives.  First, does the exon in question show a 

substantial difference in intensity and gene normalized intensity from the other 

exons?  Low variance across the measurement could lead to a statistically 

significant result, but if the cause of that low variance was not a direct result of 
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the treatment, then the answer would be a false positive.  Relative expression of 

the exon to the other exons in the gene may be an indication of actual alternative 

splicing, since it should be expressed at a lower level than constitutively 

expressed exons, although probe affinity should be accounted for when 

comparing across exons.   

 

Another factor to take into account when choosing genes for which to validate 

splicing events is the presence of existing known splicing events [97].  The 

existence of known exons indicates that the transcript variant in question exists, 

and the only thing needed to be validated is the relative level of transcripts in 

each treatment.  In some cases, the experimenter may be interested in novel 

splice variants or the animal model’s transcriptome has been poorly sequenced.  

In these cases, the experimenter may need to consider if consensus or 

alternative acceptor and donor sites exist within the sequence.  The donor and 

acceptor sites indicate the 5’ and 3’ ends of the splice site, respectively [180].   If 

the region of interest is on the 5’ or 3’ end of the message, alternative initiation 

and poly adenylation sites may need to also be considered.   
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Conclusions 

 

The results of this study are consistent with previous findings that Ugt1a6 

expression is increased in the liver of lactating dams. Our results indicated that 

Ugt1a7 may be regulated in a similar manner.  We have detected an mRNA 

transcript variant of Abcg8 in the liver that further indicates that control of the 

levels of functional Abcg5/Abcg8 heterodimer are controlled at the level of 

mRNA.  Our results also suggested possible differential alternative splicing of 

four members of the renin-angiotensin pathway, especially Ace2, which is key in 

inhibiting the renin-angiotensin pathway.   Further work needs to be performed in 

order to validate exactly how splicing events are regulated in the gastrointestinal 

tract in lactating animals when compared to virgins.  For example, the ileum was 

more responsive to changes in alternative splicing than the liver, duodenum, or 

jejunum.  Current methods for identifying differential alternative splicing, 

particularly ANOSVA and MiDAS need to be refined to be applicable to the 

microarray dataset, as p-values did not form a uniform distribution for non-

significant tests, indicating that assumptions within the model were violated. We 

have specified a minimal difference filter in order to attempt to rectify some of the 

false positives.  Finally, RT-PCR using primers flanking probable splice sites for 

genes that were strong candidates for differential splicing, such as Ace2 in the 

ileum needs to be performed.  Validating the RT-PCR results will describe how 
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well the additional filters work, as well as provide insights regarding the biology of 

the lactating animal, as differential splice variants may play different biological 

roles.   



107 

 

Materials and Methods 

Animals 

The data used here were obtained as described in Chapter 3 and published 

recently [164].  Briefly, sixteen Sprague-Dawley rats at day 10-11 of lactation and 

sixteen age matched virgin controls were obtained from Harlan (Indianapolis, IN). 

All animals were sacrificed at 16 h (10 h of light on a 12 hour light/dark cycle; 4 

PM), and the liver, duodenum, jejunum, and ileum removed for total RNA 

extraction from each tissue.  The integrity of all RNA samples was verified by an 

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA).  Animal 

protocols were conducted in accordance with the National Institutes of Health 

Guidelines for the Care and Use of Laboratory Animals and were approved by 

the Institutional Animal Care and Use Committee of the University of Kentucky.  

Each rat was assigned to one of four pools within the respective physiologic state 

(treatments; four control pools and four lactating pools.)  Pooled RNA samples, 

consisting of the RNA from the four rats within the same group, were created for 

each tissue, with individual rats composing the pools consistent across tissues. 

resulting in the use of 32 chips (4 tissues X 2 “treatments” X 4 pools).  Samples 

were prepared and processed according to the manufacturer’s instructions by the 

University of Kentucky Microarray Core Facility (Lexington, KY) 

Data Filtration 
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The data were filtered in order to reduce the risk of false positives.  Affymetrix 

Expression Console software (Affymetrix, Santa Clara, CA) was used to perform 

the Robust Mutichip Averaging (RMA) [98, 99] algorithm on each tissue 

separately on the “Core” dataset.   For example, the eight chips associated with 

the liver were analyzed at the same time, but were analyzed separately from the 

eight chips associated with the duodenum.  During these calculations, Detection 

Above Background (DABG) values were calculated.  A DABG of less than 0.01 

was considered a positive test, and probesets (treated as exons for the purposes 

of the calculations) with DABG values of less than 0.01 were considered present 

on the respective chip.  If a probeset was present in at least three of four chips in 

control or lactating groups, the exon was considered present in that group.  If a 

probeset was not considered present in both groups, it was removed from 

analysis for determining differential splicing.  A column determining whether a 

given probeset was present for a given group (control or lactation) (in which case 

a value of “1” was assigned) or absent (in which case a value of “zero” was 

assigned) was added to the spreadsheet.  A second presence call was 

generated with a value of “1” indicating that the probeset was present in at least 

one group, and a value of “0” indicating the probeset was present in neither 

group.  This was repeated for probeset intensity, where a cutoff of the log2 RMA 

intensity was 4 rather than applying a DABG cutoff, and the presence/absence 

assignment was done in the same way.  The Affymetrix Rat Exon 1.0ST 

annotation file (raex-1_0-st-v1-na30.rn4) was also used to identify genes that 

have been characterized as risks of cross-hybridizing to nontarget cDNAs.  Any 
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exon identified as a risk was removed from analysis.  Affymetrix has identified 

probesets that may have issues with cross-hybridizing to cDNA other than the 

intended target.  In the Affymetrix annotation file, a value of “1” in a column 

labeled “Crosshyb_type” is assigned to probesets that are not likely at risk to 

cross-hybridize to nontarget cDNA.  Any value other than “1” in the annotation file 

under the column “Crosshyb_type” was determined to be a risk for cross-

hybridization.  In our dataset, a column containing a “1” for the row if the probeset 

in question was determined not likely to cross-hybridize and a “0” if the probeset 

was likely to cross-hybridize was created.  The product of the three 

presence/absence calls was used to determine if a probeset was present or 

absent.  Presence calls were made for each group and overall.  A gene was 

considered present overall if both the DABG cutoff and the intensity cutoff 

indicated half of the probesets were present in both control and lactation.     

JMP Genomics (SAS Institute Inc, Cary, NC) was used to summarize each of the 

probeset_IDs into transcript clusters (genes).  The sum of present exons in 

control or lactating samples were calculated for each gene.  If 50% of the exons 

in a given gene were not expressed in either control or lactation, the gene was 

removed from analysis.  An intensity cutoff at the gene level was applied in a 

similar manner to the intensity cutoff applied at the exon level.  If a gene 

expressed an intensity of at least four in three of the four chips within a group, it 

was considered present for the group; otherwise, it was considered absent for 

that group.  This time, a gene needed to be present in both groups to be 
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considered present overall.  These steps were repeated for each tissue.  

Presence/absence calls were used to generate a text file that contained a list of 

probesets to be used in the final analysis.     

Detection of Differentially Spliced Genes 

Affymetrix .CEL files were uploaded into Partek Genomics Suite ©2011 (Partek 

Incorporated, St. Louis, MO) [181], and the RMA algorithm was utilized to treat 

the data.  After implementing the RMA algorithm, a list of probesets to be utilized 

according to the filtration procedures described above was used to filter the 

dataset.  Each tissue was loaded separately into Partek, and the RMA algorithm 

was performed separately for each tissue.  Partek was then used to run a two 

way ANOVA treating physiologic state and exon as the two main effects.   The 

physiologic state*exon interaction term was used as an estimate for the likelihood 

that a gene was differentially spliced within lactating animals compared to virgin 

controls.  A false discovery rate (FDR) was calculated by Partek and a value of 

0.05 was used as a cutoff for a positive alternative splicing test in each tissue.     

Detection of Differential Splice Sites 

RMA values of exon and gene intensities from the RMA algorithm performed in 

the Affymetrix Expression Console software was used to calculate “gene 

normalized intensities”.  The gene normalized intensity was defined as the RMA 

calculated intensity value of a probeset_ID divided by the intensity value of the 

corresponding gene level intensity.  A t-test for these values with respect to 
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physiologic state was performed for each exon within a gene that tested positive, 

and this procedure was repeated for each tissue.  A p < 0.01 in MiDAS was 

considered a positive test for differential splicing of a given exon.  The t-tests 

were performed in Microsoft Excel (Microsoft Corporation).  Graphs of exon level 

intensities as a function of treatment and exon for genes that tested positive were 

also investigated in Partek.  Because low variance appeared to be an issue in 

some positive tests, we also specified that a minimal difference of 0.5 on a log2 

scale between mean exon intensities be present.  The minimal difference filter 

would filter out situations where poor probe expression occurred but failed the 

presence/ absence filter.  There were other cases in which the difference 

between exon expression appeared minimal when the data were displayed 

graphically (Figure 4-1), and consequently only positive tests that also displayed 

a large difference (0.5 on a log2

RT-PCR and Sequencing of an Abcg8 Splice Variant 

 scale) were considered positive for the purposes 

of detecting the locations of potential splice sites.   

RT-PCR was performed on a Roche Light Cycler 280 instrument (Roche Applied 

Sciences, Manheim, Germany).  The forward primer for Abcg8 was 

ATGGCTGAGAAGACCAAAGAGG, and the reverse primer was 

 ATCATTGTCCTCAGTCGGGCTC.  Samples were taken from the original RNA 

samples from the liver used for the microarray.  RT-PCR products were 

separated on an agarose gel.  A single RT-PCR product was extracted that was 

detected in the lactating sample, and this product was sequenced at MWG 
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biotech (Huntsville, AL).  This portion of the study was carried out by Dr. 

Tianyong Zhao in our laboratory.   
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Figures 

 

 

Figure 4.1: A sample case of low variance leading to a likely false positive in 

MiDAS.   Lnpep tests positive by ANOSVA, and three probesets test positive at 

p<0.01 in MiDAS.  Although these probesets have low p-values due to low within-

group variance, validation of an actual splicing event and its biological relevance 

at these sites would be difficult.  The figure was extracted from Partek genomics 

suite, with probesets that test positive for MiDAS being circled.  The circled 

exons were removed from the list of positive exons if a minimal difference of 0.05 
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between probeset intensities was enforced.  Intensities (right axis) are plotted as 

a function of chromosome position (bottom axis).  Chromosome number is listed 

on the left axis.  The two Refseq transcripts are listed across the top 

(NM_001113403 and NM_133574), with boxes representing individual exons. 
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Figure 4.2: Histograms of alternative splicing p-values calculated by Partek.  

Values show a bias toward p=1.0, suggesting that underlying assumptions within 

the model are violated.  On the x-axis are p-values and the y-axis represents the 

number of genes at the corresponding p-value.   A. Liver, B. Duodenum, C. 

Jejunum, and D. Ileum.  The darker shaded region represents p<0.01. 
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Figure 4.3:  Histograms of MiDAS p-values for probesets detected as present on 

the microarray chips in the respective tissue (A. Liver, B. Duodenum, C. 

Jejunum, and D. Ileum).  On the x-axis are p-values and the y-axis represents 

the counts of probesets at the corresponding p-value.  In the liver, duodenum, 

and jejunum, an upward shift appears toward p=1, indicating that nonsignificant 

results were not uniformly distributed, suggesting some underlying assumptions 

regarding the MiDAS algorithm have been violated.   Darker shaded regions 

represent p<0.01. 
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Figure 4.4: Abcg8 probeset expressionin A. Liver, B. Duodenum, C. Jejunum, 

and D. Ileum.  Data compare probeset expression in  lactation (blue line) against 

control (red line) before setting filters to remove absent exons and genes.  The 

liver responds substantially differently to lactation at the level of individual 

probesets than the other tissues.  This has been validating using RT-PCR.  .  

Intensities (right axis) are plotted as a function of chromosome position (bottom 

axis).  The left axis lists the chromosome number.  Along the top is the NCBI 

refseq entry for Abcg8, with boxes representing individual exons. 
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Figure 4.5:  Probeset expression of the Ugt1a locus in liver (A) and ileum (B).  In 

the liver, genes that tested positive by MiDAS at p<0.01 are circled.  In the ileum, 

no probesets passed this test.  In the liver, exons associated with Ugt1a6 and 

A 

B 
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Ugt1a7 show increased expression during lactation (blue line) compared to virgin 

controls (red line).   
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Figure 4.6:  Ace2 probeset expression in duodenum (A), jejunum (B), and ileum 

(C).  Individual probeset intensities are plotted as a function of chromosome 

position as indicated by Partek.  Each tissue displays a substantially lower 

expression for probeset 5728701, but only in the ileum was significant differential 

relative expression detected between control (red line) and lactation (blue line).   
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Figure 4.7: The renin angiotensin system from KEGG [126, 160, 161] as 

displayed in DAVID.  Stars denote specific enzymes detected as differentially 

alternatively spliced within the pathway.  Using the list of genes differentially 

alternatively spliced in the ileum, the renin angiotensin pathway displays a p-

value of 5.4X10-4. 
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Tables 

 

Table 4-1: Genes detected to be differentially spliced in the liver of lactating 

animals  

 

Gene 

Symbol 

# of 

probesets 

Transcript 

Cluster ID RefSeq alt splicing p 

Bhmt 7 7202449 NM_030850 1.07E-08 

Cdc42 8 7292247 AF205635 1.79E-08 

Cpa1 9 7252157 NM_016998 1.07E-07 

Gck 13 7127894 NM_012565 1.55E-07 

Lss 26 7221620 NM_031049 1.63E-06 

Ugt1a 23 7357340 NM_201425 1.19E-05 

Slc6a13 14 7258065 NM_133623 2.59E-05 

Comt 6 7089781 NM_012531 3.64E-05 

      

 

ANOSVA was utilized to identify genes that were likely differentially spliced with a 

cutoff of an FDR of 0.05. Bhmt: Betaine-homocysteine methyltransferase; Cdc42: 

cell division cycle 42; Cpa1: Carboxypeptidase A1; Gck: glucokinase; Lss: 
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Lanosterol synthase; Ugt1a: UDP glucuronosyl transferase 1 family; Slc6a13: 

Solute carrier family 6 member 13; Comt: Catechol-O-methyltransferase.  “Gene 

symbol” is the NCBI official gene symbol for the respective transcript, “# of 

probesets” indicates the number of probesets associated with the transcript, 

“Transcript Cluster ID” indicates the Affymetrix transcript cluster ID associated 

with the transcript, “RefSeq” identifies the Refseq entry for the corresponding 

transcript, and “alt splicing p” indicates the interaction p-value between probeset 

ID and physiologic state effect given by Partek. 
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Table 4-2: Genes were detected to be differentially spliced in the duodenum 

of lactating animals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANOSVA was utilized to identify genes that were likely differentially spliced with a 

cutoff of an FDR of 0.05. Reg1a: Regenerating islet derived alpha 1; Ebp4.1l3: 

Erythrocyte membrane protein band 4.1-like 3; Ppap2a: Phosphatidic acid 

phosphatase type 2A; Slc34a2: Solute carrier family 34 member 2; Ctrl: 

Chymostrypsin-like; Ptprh: Protein tyrosine phosphatase receptor type H; Abcb9: 

ATP-binding cassette subfamily b member 9; Fbxo8: F-box protein 8; Atf2: 

Activating transcription factor 2.   Column headings are as used in table 4.1.   

Gene 

Symbol 

# of 

probesets 

Transcript 

Cluster ID 
RefSeq alt splicing p 

Reg1a 6 7255179 --- 9.19E-10 

Epb4.1l3 28 7358708 NM_053927 3.57E-08 

Ppap2a 7 7189673 NM_022538 1.36E-06 

Slc34a2 15 7126150 NM_053380 1.48E-06 

Ctrl 7 7184989 NM_054009 1.77E-05 

Ptprh 14 7028616 D45413 1.95E-05 

Abcb9 12 7098148 NM_022238 2.87E-05 

Fbxo8 8 7150879 --- 4.50E-05 

Atf2 12 7240317 --- 7.32E-05 



127 

 

 

 

Table 4-3: Genes detected to be differentially spliced in the jejunum of 

lactating animals. 

 

Gene 

Symbol 

# of 

probesets 

Transcript 

Cluster ID RefSeq 

alt splicing 

p 

Acta1 7 7186461 NM_019212 6.10E-09 

Alpi2 15 7357124 NM_022680 3.82E-08 

LMO7 31 7134690 NM_001001515 4.38E-06 

Maob 16 7373289 NM_013198 2.09E-05 

Ppap2a 7 7189673 NM_022538 4.01E-05 

Tpm4 8 7149580 NM_012678 7.02E-05 

    

 

 

ANOSVA was utilized to identify genes that were likely differentially spliced with a 

cutoff of an FDR of 0.05.  Acta1: actin alpha 1, Alpi2: Alkaline phosphatase 3;   

LMO7: Lim domain 7; Maob: monoamine oxidase b; Ppap2a: Protein tyrosine 

phosphatase type 2A; Tpm4: Tropomyosin 4.   Column headings are as used in 

Table 4.1.   
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Table 4.4: Genes found in the “alternative splicing” Sp-Pir keywords 

category.   

 

Transcript_Cluster_ID Gene Name 

7314252 

ATPase, Ca++ transporting, plasma 

membrane 1 

7137113 ERO1-like (S. cerevisiae) 

7094780 

ST6 beta-galactosamide alpha-2,6-

sialyltranferase 1 

7357340 

UDP glucuronosyltransferase 1 family, 

polypeptide A2; UDP glucuronosyltransferase 

1 family, polypeptide A5; UDP 

glycosyltransferase 1 family polypeptide A3; 

UDP glucuronosyltransferase 1 family, 

polypeptide A6; UDP glucuronosyltransferase 

1 family, polypeptide A9; UDP 

glycosyltransferase 1 family, polypeptide A8; 

UDP glucuronosyltransferase 1 family, 

polypeptide A7C; UDP 

glucuronosyltransferase 1 family, polypeptide 

A1 

7070578 acetyl-coenzyme A carboxylase alpha 

7083901 archaelysin family metallopeptidase 2 

7085242 casein kinase 1, delta 
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7292247 cell division cycle 42 (GTP binding protein) 

7353844 interleukin 1 receptor-like 1 

7146425 neuregulin 1 

7160039 Optineurin 

7033968 

phosphatidylinositol binding clathrin assembly 

protein 

7192686 phospholipase D1 

7289791 sterol carrier protein 2 

7091588 synaptojanin 1 

7347403 transcription factor 12 

7346991 tropomyosin 1, alpha 

 

Transcript_Cluster_ID refers to the Affymetrix transcript clusters that identify 

each gene on the exon array, and gene name identifies the genes by name.   
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Additional File 4-1:  Differentially_spliced_genes_ileum.txt.  ANOSVA was 

utilized to identify genes that were likely differentially spliced with a cutoff of an 

FDR of 0.05.  Column headings are as used in Table 4.1.  Gene assignment is a 

detailed description of the full name of the gene, and contains the refseq entry 

and gene symbol.  Given in .txt format. 

 

Additional File 4-2:  Abcg8_sequence.txt Sequence of both the full Abcg8 

transcript and the detected splice variant.  Given in .txt format. 

 

 

 

 

 

 

 

 

 

 

© Antony Athippozhy 2011
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Chapter 5 

Discussion, Additional Studies, and Conclusions 

Cholesterol Biosynthesis is upregulated at the mRNA level in lactating 

dams 

Analysis of the rat exon array data revealed several changes at the mRNA level 

that aid in defining the physiology of the lactating rat.  Fisher’s exact test in 

Ingenuity Pathways (IPA) (Ingenuity Systems, www.ingenuity.com) identified 

pathways that were altered at day 10, 16h lactating rats when compared to virgin 

controls.  The most evident change was increased mRNA from genes in the 

cholesterol biosynthetic pathway.  Lactating rats need cholesterol both for 

secretion into the milk as well as to account for the increased production of bile 

acids [10].  3-Hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr), the rate 

limiting step of cholesterol synthesis was upregulated in the liver, duodenum, and 

ileum.  This was consistent with early data demonstrating increased cholesterol 

synthesis in the liver and small intestine [9, 111], and increased Hmgcr activity in 

the liver during lactation [86, 112].  As the cholesterol biosynthetic genes are 

collectively controlled by sterol response element regulatory element binding 

protein 2 (Srebp-2), a very likely mechanism for increased mRNA production of 

the cholesterol biosynthetic enzymes was increased Srebp-2 activity.    

 As the cholesterol biosynthetic genes are all controlled by the transcription factor 

Srebp-2, the activity of Srebp-2 in hepatocytes, enterocytes, and mammary 

epithelial cells could prove useful in characterizing how gene expression is 
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controlled during lactation.  As there is some overlap between targets of the 

Srebp proteins [87], the activities of Srebp-1a and Srebp-1c should also be 

investigated.  In addition, Srebp-1a and Srebp-2 can form a heterodimer, and 

activity of the heterodimer may also be relevant in the tissues studied [182, 183].  

It has been proposed that in the lactating mammary gland, exposure to prolactin 

activates Akt, which in turn results in increased amounts of nuclear Srebp-1c 

[184].   

Nuclear amounts of Srebp-1a, Srebp-1c and Srebp-2 can be determined by 

Western analysis of  nuclear extracts of the tissues of interest [185] (in this case 

the hepatocyte and enterocytes from each part of the small intestine.)  Srebp-1c 

has also been specifically identified in the nuclear extracts of rat hepatocytes by 

Western blot [186].   

Slc39a4 shows increased mRNA in the gastrointestinal tract of lactating 

dams 

In addition to utilizing pathway analysis through Ingenuity Pathways, genes were 

grouped according to where in the gastrointestinal tract they display differential 

gene expression.  The zinc transporter Slc39a4 was in the list of genes 

upregulated in the liver, duodenum, jejunum, and ileum. 

Increased Slc39a4 is consistent with reports of increased zinc uptake during 

lactation in rats [76] and humans [73, 74].  As Slc39a4 is the major, although not 

only route through which zinc is absorbed in the small intestine [132], its 
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increased expression during lactation provides a likely mechanism for increased 

zinc absorption.   

Here, we hypothesize that increased expression of active Slc39a4 on the apical 

domain of enterocytes is responsible for the improved zinc absorption observed 

during lactation.  First, if the increase in Slc39a4 is leading to increased 

absorption, then the increase is likely happening at the level of protein as well, 

and this should be detectable on the apical membrane of enterocytes by Western 

blot and immunohistochemistry [187].  Because increased mRNA levels were 

detected in the microarray, it is worth detecting if the relative amounts of Slc39a4 

protein are consistent with the level of gene expression detected in the 

microarray. Under conditions of sufficient zinc concentration, Slc39a4 is rapidly 

degraded.  Therefore, it would be important to analyze levels of the protein 

throughout the day in order to detect if and when protein levels are altered.  In 

addition, because intracellular zinc concentration regulates stabilization of 

Slc39a4 mRNA and protein, dietary intake of could be monitored in order to 

compare presence of Slc39a4 protein relative to the amount of zinc consumed in 

the diet.     

The ileum expresses increased differential alternative splicing in lactating 

animals compared to the liver, duodenum, and jejunum 

Utilization of a two-way ANOVA for probeset effect and physiologic state effect in 

Partek (Partek Incorporated, St. Louis, Missouri)  resulted in detection of a much 

higher number of positive tests for the interaction term in the ileum (89) than in 
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the liver, duodenum, and jejunum (less than 20 in each tissue).  A positive test 

was indicative of differential alternative splicing, suggesting that regulation of 

differential splicing differs in the ileum relative to the other tissues.   Currently, we 

do not have an explanation regarding what could be regulating differential 

splicing in the ileum.   

The models for Analysis of Splicing Variance (ANOSVA) and Microarray 

Detection of Differential Alternative Splicing (MiDAS) overestimate p-values 

Histograms of p-values for both ANOSVA in Partek and MiDAS indicated a bias 

toward p-values at one (1), rather than p-values being uniformly distributed when 

not significant.  This bias has been indicated in the literature [109] and suggested 

that the models do not accurately reflect the data.  We propose the following 

workflow to evaluate the current existing methods for differential analysis of 

alternative splicing.   

Considering that both linear models (ANOSVA and MiDAS) appear to 

overestimate p-values, as shown by our own data and reported elsewhere [97, 

109], perhaps a parametric statistical model is not optimal for identifying locations 

of alternative splicing.  Regarding non-parametric tests, a Rank Product 

approach has been applied, but it is computationally demanding at the gene level 

[109].  In addition, although corporate software such as JMP Genomics and 

Partek allow for some filtering steps to be readily applied, such as specifying a 

metaprobeset file which defines which of Affymetrix’s confidence levels are used 

and setting a minimal intensity filter, other filtering steps need to be applied 
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manually.  For example, Affymetrix suggests that probesets with intensities that 

are higher than the constitutively expressed exons are likely cross-hybridizing 

with cDNA other than the expected target [97].  Validation rates through RT-PCR 

in published literature range from less than 50% [188] to above 80% [110] .  This 

clearly indicates the need for effective filtering to remove genes that appear to 

test positive for various reasons, but are not differentially alternatively spliced.  

Note that the phrase “differentially alternatively spliced” is used loosely, as 

calculations are based on a measurement of exon intensity relative to gene 

intensity.  Consequently, events such as alternative transcription start sites and 

polyadenylation site usage will also be detected as “alternative splicing”.   

A front end package that allows the user to readily apply various filtering 

algorithms as well as run a variety of statistical measures for differential 

alternative splicing would prove very useful.  We propose the following workflow 

to integrate the existing methods for detection of alternative splicing into one 

package (Figure 5.1).  It has been proposed that utilizing multiple methods and 

selecting the overlapping region of significant genes reduces the risk of false 

positives [109], so providing a package that reports the results from these tests 

and is able to generate a Venn Diagram of the overlapping regions of different 

tests could prove useful.  Although software such as JMP and Partek exist, these 

software packages tend to rely on an ANOVA model to detect differences in 

differential alternative splicing. 
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The first step to analyzing the microarray alternative splicing data  is allowing the 

software to access the data.  There are two possible situations in which an 

investigator may wish to import the data.  In the first case, the investigator has 

raw files directly following analysis of a dataset.  In the second case, the  

investigator has already converted the data into a workable format (for example, 

by running RMA) and simply wishes to import the data as a spreadsheet.  In the 

first case, various options for background correction, normalization, and 

summarization should be available.  Note that the option to not summarize the 

data, but rather work with the probe level data should be available in case the 

experimenter wishes to work directly from this data [189].  It is important that we 

include options for RMA when importing (RMA background correction, quantile 

normalization, and median polish) although other options may be included such 

as median normalization, and Tukey’s biweight for summarization.  Note that 

separate code would probably need to be written for each platform when 

importing raw data files, as each company uses its own file format.  

Consequently, it may be simpler to assume that the experimenter has the data 

already transformed and ready to be analyzed in a .txt format, in which case the 

data can be input as a large matrix.  In order to perform all of the previously 

described algorithms, data need to be available at the probe level, probeset (or 

exon) level, and gene level, meaning three datasets ultimately need to be input, 

in addition to a file that relates the multiple datasets.  For Affymetrix datasets, this 

is the cel design file (cdf), but a table with three columns (probe identifier, 

probeset (or exon) identifier, and gene identifier) should be sufficient and readily 
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available with a small amount of work for most experimenters on most platforms.  

Also, it should be worthwhile to note that information other than expression 

measurements may wish to be imported, such as DABG p-values for Affymetrix 

datasets for the purposes of filtering out poorly expressed probesets.  When 

importing, investigators should be asked which values are associated with 

microarrays, which microarrays are associated with respective treatment groups, 

and which columns include other data. 

Filtering data is an essential step in removing false positives, as nearly all 

methods for detecting differential splicing events run into similar problems with 

genes that are poorly expressed in a single group, exons that are poorly 

expressed in all groups, and probes that cross-hybridize.  Affymetrix has a series 

of recommended filtering procedures [97], but finding software that readily 

applies all of the available filters is difficult.  Through spreadsheet manipulation, 

the filters can be applied in JMP Genomics (SAS Institute Inc., Cary NC) or Excel 

(Microsoft Corporation), but a streamlined approach has not been taken for many 

of the possible filters.  Filtering out genes that are poorly expressed in either 

group, exons that are poorly expressed in all groups, and probesets that are 

likely to cross-hybridize are all essential [97].  Presence/absence calls can be 

made based on a value in a column being greater than or less than a specified 

number.  For example, one could make a first set of presence/absence calls 

under the conditions where if intensity for a given exon on a chip>3, then that 

exon on that chip is present; otherwise the exon is absent.  We could do the 
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same for DABG values (if DABG<0.05 then present, otherwise is absent).  The 

“cross-hyb type” column in the Affymetrix annotation files indicates whether or 

not a probe is predicted to cross-hybridize with non-target cDNA.  If cross-hyb 

type does not equal one (which is defined as not likely to cross-hybridize to non-

target cDNA), then an absence call can be made for that probe on all chips, 

indicating that the respective exon is to be filtered out.  Affymetrix’s 

recommendation for applying a presence/absence call for gene level data is 

whether 50% of the exons are present, so a presence/absence call could be 

made from the probeset level data accordingly.  Under normal circumstances, a 

gene should be removed if it is not expressed in any group, and a probeset/exon 

should be removed if none of the groups express the probeset/exon.   

Both JMP Genomics and Partek rely on a two-way ANOVA method for detection 

of differential splicing analogous to the ANOSVA method.  However, other 

methods exist including MiDAS [97], FIRMA [108], PECA-SI [189], and analysis 

of the rank products of splicing indices or intensities [109].  R-code exists for 

these methods, and given the open-source nature of R, these codes could be 

edited with credit to the original authors [108, 109, 189].   Ideally, software would 

ask the investigator which method should be applied and then analyze the 

corresponding method.  Like many other steps, clever spreadsheet manipulation 

makes these methods technically available using other software, although code 

to run these methods has not been specifically written for the spreadsheet 

management software.  However, organizing the methods so that they are 
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readily executable would be a useful tool.  Following analyses, spreadsheet 

software or the proposed software should be able to generate a Venn diagram of 

genes that test positive at various cutoffs (either raw p-values or FDR correcting 

methods can be used) from the various output files.  Note that many of these 

steps are computationally intensive, so managing how memory is used could 

become an issue.  Ideally, this should give a mechanism for readily comparing 

the large number of methods for detecting alternative splicing that exist.  The 

overall workflow can be found in Figure 5.1.   

An alternative transcript was detected for Abcg8 in the lactating liver 

Abcg8, part of a heterodimer that transports cholesterol into bile, shows 

decreased mRNA in the liver of lactating rats [93, 164], and functional Abcg8 

protein is not detectable in the hepatocytes of lactating dams [93].  In preliminary 

analysis of the alternative splicing dataset, Abcg8 was identified as a likely 

candidate for differential alternative splicing in the liver of lactating dams.  We 

therefore ran RT-PCR on the liver samples and isolated a band that was unique 

to a clone in lactating liver.  Sequencing revealed that a region that begins in part 

of exon four and ends in part of exon nine was spliced out in the splice variant.  

This further indicated part of the control of Abcg5/Abcg8 activity in the liver in 

lactating rats is controlled at the mRNA level.     

Possible differential alternative splicing in the renin-angiotensin system 

was detected in the ileum 
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Analysis of the list of genes that tested positive in the ileum by DAVID [105] 

resulted in identification of the renin-angiotensin as being a candidate for 

differential regulation in lactation through alternative splicing.  Of the four genes 

detected to be differentially alternatively spliced in Partek, one, angiotensin 

converting enzyme 2 (Ace2) had the lowest alternative splicing p-value amongst 

any gene in the dataset.  Ace2 is important in inhibiting the renin-angiotensin 

pathway, so validating the presence of the detected splice variant, and 

characterizing if it has altered function would be useful in describing the renin-

angiotensin pathway in the lactating rat.   

Future work: Characterization of Differences in Gene Expression in the 

liver Throughout Pregnancy and Lactation 

Our present work identified differences in gene expression in the liver and small 

intestine of lactating rats compared to age matched virgin controls at day 10 

postpartum, 16 h.  This only characterizes the difference in gene expression 

relative to controls at one specific time point.  One important question would be 

how the changes identified in lactating rats at this time point differ from changes 

at other time points.  For example, our laboratory has identified that day 10, 16h 

is the first point at which Cyp7a1, the rate limiting step for bile acid synthesis, 

shows a statistically significant increase in mRNA expression [10].  However, we 

have noted a number of physiologic differences regarding expression of hepatic 

bile acid transporter in early (day 2 postpartum) lactation [82].  Taking samples 

across several stages in lactation and pregnancy would allow an investigation for 
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when changes in gene expression begin and end.  If trends in gene expression 

are associated with specific pathways or transcription factors, this would also 

allow characterization of the roles of these pathways during lactation.  We 

propose measuring gene expression through microarray at the following time 

points: virgin (16 h), early pregnancy, late pregnancy, early lactation (day 2 

postpartum, 16 h), middle lactation (day 10 postpartum, 16h), and late lactation.  

Following the previous pooling scheme of four replicates per group and four 

individual rats composing a single replicate may lead to an excessive number of 

required rats (4 rats X 4 replicates X 6 groups = 96 rats).  The absence of a 

pooling scheme would result in higher variance amongst individuals, meaning 

that the statistical power would be based solely on the four replicates.  A possible 

compromise would be to reduce the number of rats pooled in a sample to three, 

requiring a total of 72 rats for the entire experiment.  We chose to focus on the 

liver because of its role in regulating bile acid synthesis, metabolizing 

xenobiotics, as well as being a major site of cholesterol biosynthesis.  Similar 

experiments have been performed in the mammary gland of pregnant and 

lactating mice [184, 190].  If we choose to only analyze a specific pathway, such 

as the cholesterol biosynthetic pathway, a small custom chip or nanostring 

experiment would be more efficient, and statistical power would be improved by 

reducing the number of genes queried. 

A one-way ANOVA model would be used for the purposes of determining 

statistical significance of each gene, with time being treated as a class variable.  
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The overall ANOVA would initially be fitted to an FDR of 0.2.  Genes that pass 

the initial test will need to be tested for pairwise comparisons between the 

respective time points.  To simplify comparisons, we would only consider the 

differences of each time point relative to the virgin controls.  This reduces the 

number of pairwise comparisons performed for each positive testing gene from 

15 to 5.  We currently propose a significance cutoff of p<0.0020 for the statistical 

contrasts, but both this value and the FDR may need to be adjusted based on the 

size of the list of significant genes.  (The p-value for contrasts within a gene is 

based on a modification of the Bonferroni procedure at α=0.01, as 

0.01/5=0.0020).  If the list is not sufficiently large, then pathway analysis 

becomes difficult.    Statistical pattern matching could then be used to assign 

genes to groups.  Each time point other than the virgin time point could be 

assigned to increased, no detectable change, or decreased relative to virgins for 

each gene.  For the purposes of pattern matching, the pairwise comparison p 

value cutoff may need to be relaxed to p<0.05, but only if the gene was 

previously defined as differentially expressed.  This is caused by the fact that a 

false negative would lead to assignment of a gene to a separate group.  

Characterization of these groups should give an indication as to when genes 

increase and decrease expression during pregnancy and lactation, and could 

lead to identification of signaling pathways that mediate changes in gene 

expression.   

Conclusion 
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We showed through microarray studies increased mRNA of cholesterol 

biosynthetic genes in the liver and small intestine and a likely mediator of 

increased zinc uptake (Slc39a4).  We propose that increased Srebp activity, 

particularly Srebp-2 is involved in the increased cholesterol synthesis detected in 

the liver and small intestine of lactating dams. In addition, we propose that the 

difference in expression in Insig in the small intestine and Scap in the liver 

causes the more dramatic increase in cholesterol synthesis in the liver relative to 

the small intestine.  Further work needs to be done to elucidate the mechanisms 

regarding how these changes in mRNA influence the physiology of the lactating 

animal.  In addition, we have proposed candidates for differential alternative 

splicing between lactating animals and virgin controls and have detected a splice 

variant of Abcg8 in the livers of lactating animals.  We also identified a possible 

splice variant for Ace2 in the ileum that requires verification.  Depending on the 

function of the splice variant, the Ace2 variant may influence sodium absorption 

and blood pressure in the lactating animal.  A number of additional studies can 

be performed, both to further characterize alternative splicing in more detail, and 

to elucidate how the detected changes in gene expression and alternative 

splicing influence the physiology of the lactating animal.   
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Figure 5.1: Workflow for detection of differential alternative splicing.  Data are 

initially imported and saved as gene level, probeset level (exon level), and/or at 

the level of individual probes, depending on the summarization method used.  

From here, data that would likely contribute to false positives are filtered out.  

Following the filtering algorithm, various methods can be applied to analyze the 

datasets, calling up filtered data at the appropriate summarization levels (gene, 

probeset, or probe) as input.  Venn diagrams can be used to compare results 

across the various methods by cross-referencing which genes, and in some 

cases exons, test positive by the various tests.   
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Appendix A: List of Abbreviations 

Prl-Prolactin 

Abc-Adenosine Triphosphate Binding Cassette 

Thra- Thyroid receptor alpha 

Thrb-Thyroid receptor beta 

Klf9-Kruppel like factor 9 

TRα1-Thyroid receptor alpha isoform 1 

TRβ1-Thryroid receptor beta isoform 1 

T3-triiodothyrodine 

PI3K-phosphoinositide 3 kinase 

AKT- v-akt murine thymoma viral oncogene homolog 

PIP2-Phosphotidyl inositol 4,5 bisphosphate 

PTEN-Phosphotase and tensin homolog 

PDK1-Pyruvate dehydrogenase kinase 1 

FOXO-Forkhead box transcription factor 

mTOR- Mechanistic target of rapamycin 

4EBP1-Eukaryotic initiation factor 4E binding protein 1 

PEPCK-Phosphoenolpyruvate carboxykinase  

G6P-Glucose 6 Phosphotase 

AMPK-Adenosine monophophate kinase 

Hmgcr-3-Hydroxy-3-methylglutaryl Coenzyme A reductase  

Glut4- Glucose transporter 4 

Acc-Acetyl-Coa Carboxylase 

CRTC2-CREB regulated transcription coactivator 2 

SREBP-Sterol regulatory element binding protein 

Ppargc1α-Ppar gamma coactivator 1α 
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JAK-Janus Kinase 

STAT-Signal transducer and activator of transcription 

Prlr-Prolactin receptor 

SR-Serine arginine 

Slc-Solute carrier 

Cyp-Cytochrome P450 

Erk-Extracellular signal related kinase 

Asbt- Apical sodium dependent bile acid transporter 

Ntcp- Sodium taurocholate cotransporting polypeptide 

Srebf- Sterol regulatory element binding factor 

Scap-SREBP chaperone 

Ugt- UDP glucuronosyltransferase  

DNA-Deoxyribonucleic acid 

RNA-Ribonucleic Acid 

RMA-Robust multichip averaging 

ANOVA-Analysis of variance 

FWER-Family wise error rate 

FDR-False Discovery Rate 

PFP-Proportion of false positives 

DAVID-Database for annotation visualization and integrated discovery 

EST-Expressed sequence tag 

MiDAS-Microarray detection of alternative splicing 

FIRMA-Finding isoforms through robust multichip averaging 

ANOSVA-Analysis of splicing variance 

DABG-Detection above background 

Ace2-Angiotensin converting enzyme 2 
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Ostα/β-Organic solute transporter alpha/beta 

Bsep-Bile salt export pump 

FGF-Fibroblast growth factor 

Fgfr-Fibroblast growth factor receptor 

RT-PCR-Reverse transcriptase polymerase chain reaction 

Rg9-mtd2- RNA guanine-9 methyltransferase domain containing 2 

KEGG-Kyoto Encyclopedia of genes and genomes 

Ch25h-Cholesterol-25 hydrolase 

Akr1d1-Aldo keto reducatase family 1 member d1 

Acox2-Acetyl-CoA oxidase 2 

Scp2-Sterol carrier protein 2 

Baat-Bile acid-CoA:amino acid N-acyltransferase 

IPA-Ingenuity Pathways Analysis 

CD28-Cluster of differentiation 28 

IL-2- Interleukin 2 

Insig-Insulin induced gene 

Scd2-Stearoyl-Coenzyme A desaturase 2 

ME1- Malic enzyme 1 

Ctsb-Cathepsin B 

Tmbim6-Transmembrane BAX inhibitor motif containing 6 

Tmed2-Transmembrane emp24 domain trafficking protein 2 

Tmem97-Transmembrane protein 97 

NPC1l1-Niemann Pick 1 like 1 

Fdft1-Farnesyl-diphosphate farnesyl transferase 1 

Mvk-Mevalonate Kinase 

Pmvk-Phosphomevalonate kinase 
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Mvd-Mevalonate decarboxylase 

Idi1-Isopentyl-diphosphate delta isomerase 1 

Sqle-Squalene epoxidase 

Lss-Lanosterol synthase 

Dhcr7-7-dehydro cholesterol reductasse 

BLAT-BLAST like alignment tool 

UCSC-University of California, Santa Cruz 

Anpep-Alanyl aminopeptidase 

Lnpep-Leucyl/cystinyl peptidase 

Mme-Membrane metallo-endopeptidase 

Ahr-Aromatic hydrocarbon recptor 
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