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ABSTRACT OF DISSERTATION 

ROLE OF PI3K-AKT PATHWAY IN THE AGE ASSOCIATED DECLINE IN TLR 
MEDIATED ACTIVATION OF INNATE AND ADAPTIVE IMMUNE RESPONSES 

Immunosenescence results in reduced immune response to infections with Streptococcus 
pneumoniae as well as to pneumococcal polysaccharide vaccines. The antibody response to the 
capsular polysaccharide (CPS) provides protection against S. pneumoniae infection. CPS 
immunoresponse is T cell independent and needs the macrophage-derived cytokines such as IL-
12, IL-6 and IL-1β to elicit an antibody response. We showed a cytokine dysregulation, i.e. a 
decrease in IL-12, IL-6 and TNF-α but an increase in IL-10, in the aged (18-24 months old 
comparable to >65 years in human) compared to young adult mouse (8-12 weeks less than 65 
years old) splenic macrophages (SM) or bone marrow derived macrophages (BMDM) activated 
via TLR4, TLR2 or TLR9 as well as heat killed Streptococcus pneumoniae (HKSP). There is 
also an age-associated defect in splenic B cells in the production of IgG3 upon stimulation with 
these ligands. A microarray analysis in SM followed by validation by both qt-RTPCR and 
western blots indicated that this age-associated defect in aged SM, BMDM and B cells was due 
to a heightened activity of the PI3K-Akt signaling pathway.  We hypothesized that the 
senescence of immune responses in macrophages and B cells is due to an increase in activity of 
PI3K/Akt and decrease in the activity of GSK-3, the downstream kinase. Inhibition of the PI3-
kinase with either LY294002 or Wortmannin restored the TLR2, 4, 9 and HKSP induced 
cytokine phenotype of the aged to that of the young adult in both the SM and BMDM and an 
enhanced IgG3 production in aged mice.   

We also showed that inhibition of glycogen synthase kinase-3 (GSK-3) the downstream 
target of the PI3K-Akt signaling pathway with SB216763 in SM, BMDM and B cells resulted in 
an enhancement in production of IL-10, IL-6 and IL-1β by macrophages and in B cell activation. 
Treatment of B cells with SB216763 in the presence of ligands for TLR-1/2, 4 or 9 as well as 
HKSP under in vitro conditions led to enhanced production of IgG3 and IgA, plasma cell 
formation and a slight increase in the proliferation of the B-cells with no adverse effects on the 
viability of the cells. Therefore, targeting the PI3K-AKT-GKS-3 signaling pathway could rescue 
the intrinsic signaling defect in the aged macrophages, increase IL-12 and IL-6, and enhance 
anti-CPS antibody responses.  

 

KEYWORDS: Toll-like receptor, PI3 kinase, Glycogen synthase kinase-3, macrophages, aging,  
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 Chapter 1: LITERATURE REVIEW 

Introduction 

Immunosenescence: In humans and rodents it is known that the potency and vitality of 

life takes a downward trend with age resulting in increased neurological, metabolic and 

infectious diseases, as well as higher incidence of cancer as a result of defects in their 

immune system (15, 187, 288). This population of people becomes a candidate for 

vaccines to help them mount effective defenses against common pathogens that have the 

propensity to cause them to have higher hospitalization, morbidities and mortalities. 

Frustratingly, the vaccine response in this more vulnerable population is less efficacious 

than in their young counterpart. But an additional challenge is the fact that with the 

advent of modern technology and an improved health system, we see an ever increasing 

number of elderly people who are susceptible to these debilitating age-associated 

conditions. Mathematical modeling and other studies predict that 40% of the population 

in both in the USA and Europe will be above 65 years of age by 2050 (214). In spite of 

scientific efforts to improve the vitality and health conditions of this population,  an 

increase in incidence of infectious diseases is expected  (376). 

The elderly are more susceptible to diseases and mount impaired vaccine response to 

infections, such as Streptococcus pneumoniae, because there are defects in both their 

innate and adaptive immune systems. This generalized decline in innate and adaptive 

immunity is referred to as immunosenescence (15, 197). Aging affects the immune 

functions of innate cells like macrophages and dendritic cells which are critical for the 

early detection and clearance of infectious agents through early non-specific immune 
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response like phagocytosis and inflammatory mediated clearance of pathogens (5, 63, 

120). The age-associated defects in the innate cells, which are crucial for initiating the 

delayed but more specific adaptive immune system, result in defects in both the B cell 

and T cell mediated responses in the elderly (40, 92, 182, 234).  

T-cells and aging 

It is generally accepted that the T-cell arm of the adaptive immunity is seriously affected 

by aging due to thymic involution, which begins around late teens and, thus, negatively 

affects both humoral and cell mediated responses (236, 327).There is an age-related 

decrease in the naïve T cells but an increase in the memory T cells (92, 190). The 

memory T cells in the aged have impaired proliferation and IL-2 secretion, which 

associates with a defect in the MAP kinase pathway. These memory T cells have limited 

repertoire and thus are not able to repond to new pathogen (58, 370). Another mechanism 

for the age-related defect in T cells, especially the CD4 T compartment, is the formation 

of a weakened immunological synapse resulting in reduced proliferation, differentiation 

and cytokine production (136-138). 

In the frail elderly, when peripheral blood monocytes (PBM) are stimulated with 

Staphylococcus aureus Cowan (SAC) there is a predilection for the development of Th2 

cells (138) . Defects in Th1 development results in impaired delayed type hypersensitivity 

(DTH) reaction and higher incidence of intracellular infections, such as tuberculosis (TB) 

in the elderly (138). More recent studies show that the age-related defective polarization 

results in a reduction in the proliferation of both Th1 and Th2 subsets, with an 

enhancement of Th17 cells (138, 155). The age-associated increase in Th17 cells is due to 
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rapid production of these cells by memory T cells. The increase in Th17 cells is not due to 

any influence from dendritic cells as demonstrated by co-culture experiments. The most 

important finding is that Th17 cells (CD4+ CD45Rbhi ) from the aged upon transfer into 

Rag knockout mice induce more severe colitis than those from young mice (274). This 

could contribute to the increase in autoimmunity observed in the elderly. Another 

common feature in aged T cells is the decrease in the expression of CD28 costimulatory 

molecules with aging (57, 58). Aging is also associated with an overproduction of 

regulatory T cells (Treg) and a change in the T cell receptor (TCR) repertoire usage. The 

age-associated increase in Treg is considered another factor responsible for the 

suppression of immune response to pathogens and tumors, and for reactivation of chronic 

infections (138, 193, 364). Because of these defects in the helper T cells population in the 

aged, the T cells have a reduced ability to help B cells, which then negatively impinges 

upon antibody responses, both quantitatively and qualitatively,  and the eventual poor 

vaccine response (50, 138, 251). This may partly explain why the current conjugate 

vaccines or the improved pneumococcal conjugate vaccines may only have partial 

efficacy in the elderly as both vaccines function under the T-cell dependent mode to 

support B-cell mediated humoral responses (92). 

Aging also affects the immune potency of CD8 T cells. There is a reduction in CD8 TCR 

repertoire diversity and a shift in recognition of immunodominant viral epitopes. Because 

the naïve T cells in the aged have a limited T cell diversity there is a lack of robust 

response to infections and vaccines. This may be due to the lack of fresh T cell emigrant 

pool from the thymus, causing the T cell population in the periphery to increase by 
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homeostatic expansion. Thus, there will be an increase in T cells that have a limited 

repertoire (11, 138). 

B-cells and aging  

The two major changes that affect B cell immune function in the aged are changes in the 

B cell compartment and the impaired responsiveness of the peripheral B cells. While the 

total numbers of B cells remain constant, the follicular B cells are reduced which is 

compensated for by an increase in antigen experienced B cells. As a result, there is a 

restriction in naïve B cells with receptor repertoire diversity to respond to new and 

different antigens irrespective of the strain of mice (117, 165, 228).  

The  alteration in the peripheral B cell compartment which leads to impaired humoral 

response  associates with increased B cell longevity and decreased emigration of B cells 

from the bone marrow hematopoietic stem cell (HSC) compartment (182).  The 

peripheral B cell pool can exhibit homeostatic expansion and, thus, increase their 

population without migration of newly generated B cells to the periphery. In addition to 

these factors, the restricted B cell pool in the periphery can undergo clonal expansion 

leading to a restricted B cell repertoire (164, 234). Plausible mechanisms include defects 

in the pre B-cell compartment or inability of new B cells that are normally produced in 

the bone marrow to migrate to the periphery due to the presence of long-lived mature B-

cells in the periphery (165). During aging the B-cell repertoire changes from BCR with 

specificities for foreign antigens to autologous antigen as a result of shift in B-cell 

population from B-2 to B-1 cells.  There is also a reduction in the quality of the antibody 

response as measured by affinity and avidity (40, 394) (163, 327, 377). The B1 cells are 
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innate cells that constitutively produce natural antibodies in the absence of antigen. They 

are located in specialized areas like the spleen and peritoneal cavity unlike the B2 cells 

that circulate and initiate antibody response upon activation by antigens (91). These 

changes lead to such humoral defects as a reduction in the duration and protective 

abilities of the antibodies produced in the aged compared to the young.  The anti-

pneumococcal polysaccharide response upon vaccination of the elderly humans is found 

to be reduced in the elderly compared to the young. A study of both the healthy old and 

elderly nursing home residents compared to young adults shows that there is an age-

associated decrease in the memory B cell compartment compared to the young (40). Not 

only that, but there is a persistently higher IgM concentration in the aged that is attributed 

to impaired class-switching to other isotypes with specific effector functions (103, 220, 

256).  

Another consequence of this shift in peripheral B cell pool in the aged from young naive 

follicular B cells to antigen experienced B cells is the increase in auto-antibodies in the 

sera from aged mice and humans. However, the levels of auto-antibodies do not always 

correlate with autoimmunity probably due to a decrease in their binding affinity (164, 

183). This is validated in classic experiments in which lupus prone, autoimmune NZB 

and MRL/lpr mice are compared with normal Balb/c over a period of different ages 

(183). At eight months of age, the autoimmune mice have a repertoire biased towards 

autoantibodies production and indeed produce autoantibodies, while the nomal Balb/c 

mice do not exhibit any of these phenotypes. However, by 20 months, the NZB 

autoimmune mice have an accelerated autoimmune repertoire and autoantibody 

production and this is comparable to the normal, aged Balb/c mice.  
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 Studies from the Cancro laboratory highlight an exciting factor that may influence the B 

cell homeostatic regulation in response to the low emigration of B cells from the bone 

marrow. They show that the competition among various B cells for BAFF/BLYS, which 

is normally secreted by activated macrophages, dendritic cells or some subtypes of B 

cells greatly, influences the homeostatic process (232, 235). The ability of BAFF to 

influence this process is dependent on its specific binding to the BAFF receptor (BAFFR) 

expressed by transitional B cells. This specific interaction has  dual effects of guiding the 

B cell developmental process and  influencing the longevity of both marginal zone and 

mature B cells (133). The negative selection process of autoreactive B cells is efficient in 

young rodents and humans. As a result of this elimination process, there are adequate 

amounts of BAFF available for normal B cell development. With aging there is a 

reduction in the emigration of B cells from the bone marrow leading to a reduction in the 

competition for BAFF. This creates  favorable conditions  for the production and 

maintenance of autoreactive B cells in the peripheral B cell pool (235). The aged B cells 

become hyper responsive to the limited amounts of BAFF. Thus, they are able to bind 

more potently to BAFF which increases their survival, further enhancing these B cells 

with limited repertoire over naïve B cells (234). 

Age-associated bone marrow mediated defects affect B cells in aging 

The bone marrow is the site for antigen-independent development of  B cells, including 

pro- and pre-B cells. If the pro-B cell has a productive heavy chain rearrangement then it 

can proceed to the pre-B cell stage. During aging, the low production of pro-B cells and 

the impaired transition of Pro-B cells to pre-B cells is one of the factors responsible for 

the low emigration of B cells from the bone marrow (182, 233). The decrease in the 
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transition of the pro to pre- B cell is due to an age-related defect in productive V-DJ 

heavy chain rearrangements as a result of a defect in the E2A-encoded E12 and E47 

transcription factors. These transcription factors are known to regulate this process (104, 

345). Another mechanism for the impaired pro- to pre- B cell transition is attributed to 

the decreased production of IL-7 by the aged bone marrow stromal cells, as well as an 

impaired IL-7 receptor signal transduction (164, 233).  

Signaling mechanism governing the impaired humoral response in the elderly 

A critical hallmark of the humoral responses to pathogens is the ability to class switch to 

non IgM isotypes with functions more suitable to eliminate the pathogen. However, 

studies show that this ability to undergo class-switching is impaired in aged humans and 

mice. The Bloomberg laboratory showed that there is impaired class-switching to the 

typical Th2 –cell dependent isotypes IgE and IgG1. They further show a defect in class 

switching to the typical T-cell independent isotypes, IgG2a and IgG3 in senescent mice 

(105). Further they show that the impaired class switching in the elderly mice can be 

correlated with a decrease in activation-induced cytidine deaminase (AID), and E47, one 

of its transcriptional regulators. The enzyme AID is critical for both class switch 

recombination and somatic hypermutation which are necessary for enhancing both the 

effector function and increased affinity of antibodies produced by B cells (248). When 

the study is extended to human peripheral blood, there is a similar decrease in both AID 

and E47 in B cells recovered from aged compared to the young. Hence, they conclude 

that the impaired ability of the B cells to class-switch in response to  antigen and 

cytokines or CD-40 mediated signaling is due to an intrinsic signaling defect involving an 

age-associated decrease in both AID and E47 (103, 105). Other intrinsic signaling defects 
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in B cell signaling include  lower expression of costimulatory molecules like  CD86 

(396). Another study in human B cells  showed that the enzymatic activity of  protein 

tyrosine kinases and protein kinase C, major upstream signaling molecules of B cells, are 

impaired in the aged compared to the young (379).  

The microenvironmental and intrinsic signaling defects in bone marrow hematopoietic 

stem cells (HSC) affect B lymphopoiesis   

Aging also affects HSC which are the progenitors of lymphoid and myeloid cells. As a 

result of the age-related defects in the HSC, there is a decrease in lypmphopoiesis 

resulting in an increase in myelopoiesis (179, 305). Studies to date, point to a dual 

regulation of HSC by factors intrinsic to individual HSC and cues from the bone marrow 

microenvironment or stromal niches.  For example, age-related defects in both types of 

signals affect generation of B cells and macrophage lineage cells (33, 54, 170, 372, 386). 

Age-associated intrinsic signaling defects can affect HSC such as loss of the integrity of 

the genome. This is due to accumulation of DNA damage and downregulation of genes 

involved in maintaining the integrity of the genome as a result of epigenetic 

dysregulation at the chromatin level (59, 304, 372). The alteration in the expression of 

crucial genes in the long-term HSC sets the stage for the downstream defects observed in 

lymphoid and myeloid cells (305). Aging leads to a remodeling of the bone marrow, with 

a decrease in osteoblasts, which constitutes the stromal niche, but increase in adipocytes 

and osteoclasts (303). The age-related alterations in bone marrow microenvironemnt 

result in a decrease in B cell production and immunoglobulin diversity, due in part to an 

impaired expression of Rag2 at the level of the pro-B cells (192).   
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Aging and Dendritic cells (DC) 

DCs are crucial sentinel innate cells that bridge the innate and adaptive immunity via 

antigen presentation to T cells and expression of costimulatory molecues that are needed 

for T cell activation and cytokine production. Aging-related defects in DC function 

contribute to age-related impairment in T cells. Aged DCs exhibit reduced antigen 

processing, costimulatory molecules and IL-12 production leading to reduced capacity 

for antigen presentation (6). This is even more prominent in the frail elderly humans 

(354). However, studies in human blood monocyte derived DC via GM-CSF and IL-4 

show that the DCs from the aged and young are equally efficient in antigen presentation 

and inducing T cell activation (212). The migration of DCs in the aged is impaired as a 

result of their failure to upregulate chemokine receptors, such as CCR7, and due to 

reduced production of chemokines such as CCL19 and CCL21 in their microenviroment 

upon immunization. As a result there is decreased accumulation of DCs in draining 

lymph nodes in aged mice (187, 209).  Aged plasmacytoid dendritic cells (pDC) show a 

dysregulation (lower) in the secretion of type I interferon in response to CpG and HSV-2, 

which signal via TLR-9 and 7 respectively, and thus accounts for the higher incidence of 

viral and bacterial infections in the elderly (187, 211) . 

Aging and Macrophages: 

Resident tissue macrophages are affected in multiple ways in the aged which could 

account for age-related increases in viral and bacterial infections, as well as increase in 

cancers incidence. Aged peritoneal macrophages exhibit a decrease in adherence, 

opsonization, chemotaxis, phagocytosis and  antibody-dependent cytoxicity involved in 
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the killing of tumors when compared to similar macrophages recovered from the young 

(5, 77, 187, 264, 288). Liver macrophages (Kupffer cells) also exhibit age-associated 

reductions in respiratory burst and endocytotic capacity (288, 363).  A body of literature 

intimates that cytokine secretion is dysregulatated in both splenic and peritoneal 

macrophages activated through engagements of different TLRs. There is a decrease in 

pro-inflammatory cytokines like IL-6, IL-12, TNF-α, and an enhancement in the anti-

inflammatory cytokine, IL-10 by aged macrophages (34, 63, 65, 187). Both humans and 

rodent macrophages exhibit reduced expression of MHC-II (143, 288). While studies in 

human monocytes demonstrate similar number of cells between the aged and young, 

some studies indicate a reduction in the precursor cells in the bone marrow of the aged 

(264, 288).   

Several studies have investigated the signaling mechanisms governing the age-associated 

defect in macrophages. In this regards, studies in rodents and humans show age-

associated decreases in TLR expression (187). In contrast others including our laboratory, 

show no differences in TLR-2 and TLR4 expression by macrophages recovered from 

aged and young (63, 187, 298, 359). Another possible mechanism for the cytokine 

dysregulation and other aging defects is enhanced production of cycloxyenase-2 (COX-2) 

due to an increase in prostaglandin E2 (PGE). The enhanced COX-2 suppresses the pro-

inflammatory cytokines and enhances IL-10 secretion; and it is also known to suppress 

MHC-II (120, 289, 384). Studies which investigate the TLR-mediated signaling 

mechanism by aged phagocytic cells have come to different conclusions, and this may be 

due to the type of macrophages, purity, and experimental conditions. We show that 

increases in phosphorylated and total p38 MAP kinase levels have a role in cytokine 



11 
 

dysregulation which could be rescued with p38 MAP kinase inhibitors; however, others 

show an age-associated reduction in the activation of p38 MAP kinase (34, 65). We and 

others show a decrease in the NF-κB signaling pathway in the aged as a possible 

mechanism (34, 35, 65). In this thesis we tested the importance of PI3K pathway, since 

our microarray analysis showed an increased expression of PI3 kinase subunits in aged 

macrophages and since the pathway is known to have negative regulatory effects on 

macrophage-derived cytokines (107, 194). In summary, aging affects macrophages and 

may be a major player in the increased susceptibility of these individuals to infections 

and impaired immune response to vaccines. 

Streptococcus pneumoniae as a model pathogen to study the effect of aging on 

infection with gram positive bacteria 

History of S. pneumonia infection and pneumococcal vaccine  

The gram positive bacterium S. pneumoniae was independently isolated by Louis Pasteur 

and George Miller Sternberg in 1881 (373). Not long after that, the Klemperers made the 

startling discovery that serum from patients infected with S. pneumoniae could confer 

protection against homologous organisms (19, 369, 373). The first attempt to use the 

existing knowledge about S. pneumoniae in vaccine development was done by Sir 

Almroth E. Wright in 1911, when he showed that the use of killed whole pneumococci 

could confer some protection (369). However, the protection was suboptimal due to 

limited knowledge on serotype specific responses and the dosage. The evolution of the 

current pneumococcal polysaccharides vaccine is a result of the work of Felton and 

Bailey in 1926, who isolated pure pneumococcal polysaccharide for the first time (369). 
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As a result the first pneumococcal polysaccharide vaccine was developed from purified 

polysaccharides in 1931 and was shown to avert the spread of  pneumococcal infections 

(329). However, upon the development of antibiotics and the realization that they can 

serve as effective treatments for pneumococcal infections, the polysaccharide vaccine fell 

out of favor for almost forty years (20, 37). Renewed interest in the use of polysaccharide 

vaccine came from the seminal work of Robert Austrian and colleagues in the 1960s and 

1970s, which resulted in their creation of the 14-valent pneumococcal polysaccharide 

vaccine in 1977. Less than 10 years later, the vaccine was expanded to the current 23-

valent polysaccharide vaccine that contains the most common 23 serotypes that account 

for greater than 80% of pneumococcal infections (19, 21, 37). 

Ecology, Epidemiology and pathogenesis of S. pneumoniae 

Humans are the only natural reservoir for S. pneumoniae and the bacteria is found in the 

nasopharyngeal cavities (352). The carriage rate is between 30 to 40 percent in normal 

humans. There is a horizontal transfer from person to person by close contact, and this 

transfer is limited by competition with other microbial occupants of the nasopharyngeal 

flora, as well as the innate host defense mechanisms. The carriage and colonization rates 

has been associated  with the extremes in age, that is higher in children less than two 

years and elderly above 65 years (352, 357). There are other factors in addition to age 

that contribute to increases in colonization and carriage, which are considered 

precipitating factors for spread of the infection and invasive pneumococcal disease (IPD). 

Some of these factors among children less than 5 years include having young siblings, 

attendance at day care centers and for adolescent and young adults,  preexisting 

respiratory tract infections, primary or secondary smoke and being asthmatic (124, 148, 
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217, 260). If the  natural commensal relationship between the pneumococcal bacteria and 

the host is compromised due to breach in the host natural defense, then disease ensues 

and the bacteria migrate from the nasopharynx  to normally sterile sites in the upper or 

lower respiratory tracts. This results in infections, such as otitis media (if migration is to 

the middle ear), sinusitis (to the sinuses) and pneumonia (if migration is to the lungs). 

When the bacteria migrate from the middle ear or sinuses or through the blood stream to 

the meninges of the  brain it results in meningitis (281). This makes S. pneumoniae an 

etiological agent for meningitis, and bacteremia in adults and children, especially in 

people with comorbidities or impaired immune systems (180, 250, 312). 

Epidemiology 

S. pneumoniae  is the most common cause of bacterial pneumonia and other associated 

diseases like pleural effusion and emphysema (pus in the pleural space) (281). It affects 

people of all ages and all geographical regions, as well as those with chronic and 

immunocompromising diseases (156, 263). S. pneumoniae-related infections are the 

leading cause of death in the world (WHO, 2000). S. pneumoniae is a pathogen that 

associates with community acquired pneumonias both in the United States and the world. 

Pneumoccocal infections account for the most upper respiratory tract infections and otitis 

media in children (218).  Pneumococcal infections account for 20-70% of hospitalizations 

per year in the United States, 915,000 cases of community acquired pneumonia in the 

elderly and 4,600 deaths per year in adults greater than 50 years old. Other consequences 

include neurologic sequelae common among survivors (96, 218, 273).  
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 Invasive pneumococcal disease (IPD) 

Invasive pneumococcal disease (IPD) is defined as the presence of S. pneumoniae in 

normally sterile sites like the blood, cerebrospinal fluid, surgical sites, and lungs. It is a 

major cause of morbidity and mortality both in the United States and globally. In the 

United States, pneumococcal IPD is responsible for increased incidence of hospitalization 

due to bacteremia with 15-40 per 100,000 overall hospitalizations (16, 300, 380).  

Risk factors for IPD: The most common risk factors are genetic defects, such as defects 

in the classical complement pathway, the extremes of age, patients with comorbidities, 

defective immune defenses, living in crowded places like prisons or long term care 

facilities; abuse of alcohol and cigarettes and asthma (148, 149, 217, 300, 310, 357). 

Cell Surface and virulence Factors and host defense: 

Some of the virulence factors are polysaccharide capsule (CPS), cell wall and 

pneumolysin which are depicted in Figure 1.1. 

Polysaccharide capsule (CPS): The most important virulence factor of S. pneumoniae is 

the polysaccharide capsule, which encircles the cell wall and resists phagocytosis 

conferring greater survival of the bacteria (129, 218, 253, 352). The polysaccharide 

capsule is found in serotypes that are mostly pathogenic, resulting in colonization, 

invasion and causing IPD. It is used to determine the sereotypes of the various strains. 

There are about 91 different serotypes, each of which elicits a specific anti-capsular 

polysaccharide (CPS) antibody response. The global IPD are caused by 20% of these 

serotypes, which is the basis for their inclusion in the 23-valent polysaccharide vaccine. 
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These IPD causing serotypes include serotypes: 14, 4, 1, 6A, 6B, 3, 8, 7F, 23F, 18C, 19F 

and 9V (142, 273). 

The Cell Wall: The cell wall of S. pneumoniae is also a strong virulence factor as it 

recruits polymorphonuclear leukocytes to the lungs and enhances permeability of the 

alveolar epithelial cells. During progression of the infection, the cell wall is degraded 

releasing inflammatory materials leading to massive inflammation and this aggravates the 

disease condition, as well as the mortality (272). Lipoteichoic acid (LTA) is a component 

of the cell wall  and plays a major role in inducing inflammation (281). The cell wall also 

contains a polysaccharide called C-polysaccharide that is distinct from capsular 

polysaccharide. Phosphocholine is a major component of the C-polysaccharide. Naturally 

present antibodies expressing the T15 idiotype in many species react with C-

polysaccharide. Passive administration of the natural antibodies that express the T15 

idiotype protects against pneumococcal infection in animal models (43) 

Pneumolysin: Pneumolysin exhibits endotoxin-like properties and is found in all 

pathogenic strains. It is released during autolysis and becomes a pore forming cytotoxin. 

It is thought to stimulate macrophages via TLR4 and induce secretion of pro-

inflammatory cytokines. Once released by autolysis it lyses the host epithelial cells, 

inhibits mucociliary action, and impairs phagocytosis resulting in massive inflammation 

leading to morbidity and mortality associated with infection of S. pneumoniae (147, 357). 

Innate Immune response and Streptococcus pneumonia: TLRs and cytokines 

Host Response to S. pneumoniae: The lungs and the spleens are two of the most 

important organs in the clearance of infection by this normally commensal bacterial 
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organism, but deadly under disease conditions (37, 48). The first line of  defense in a 

normal host is the mucociliary movement, cough, sneeze and epiglottis reflexes which 

help to prevent the pathogen from penetrating beyond the superficial epithelium in the 

respiratory tract (281). The second layer of defense is by the host phagocytes, especially 

alveolar macrophages in the lungs and the neutrophils recruited by the inflammatory 

response. The alveolar macrophages have a critical role in the removal of bacteria via 

phagocytosis and intracellular killing. The phagocytic response is promoted by serotype 

specific antibodies, like IgA, IgM, and complement that bind the bacteria and allow for 

efficient clearance by a mechanism known as opsonophagocytosis.  

Toll like receptors (TLR) 

Toll like receptors (TLR) are the major class of receptors by which innate cells recognize 

microbial pathogens. The basis for recognition of microbial pathogens is recognition of 

specialized structures that are unique to the invading pathogens. These are known as 

pathogen associated molecular patterns (PAMP) and are recognized by the pattern 

recognition receptors (PRR) on the innate immune cells like macrophages, dendritic cells 

and other type of cells like epithelial cells (162, 174). These PRRs help in the recognition 

of germline encoded PAMPs that are associated with viruses, bacteria, yeast, fungi and 

even damaged tissues (288).  
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Figure 1.1: S. pnenmoniae morphology displaying virulence factors  

Streptococcus pneumoniae has a cell wall comprising of teichoic acid and is capsulated 

by by a polysaccharide. The capsular polysaccharide and other component of the cell wall 

constitute the virulence factors that are associated with the pathogen. 
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Figure 1.1 
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Once the PRR recognizes PAMP it initiates an intracellular signaling pathway that 

culminates in induction of cytokines, chemokines and interferons. This same intracellular 

signaling drives the maturation of dendritic cells which ushers in the adaptive immunity 

(174). 

Though Drosophilia lack an adaptive immunity, they elicit responses to fungal infections 

via toll like receptors. This supports the concept that toll like receptors are evolutionarily 

conserved across simple to more complex species (152). 

The TLRs have amino terminal leucine-rich repeats which are used to recognize PAMPs. 

The C-terminal domain which contains the Toll/interleukin-1 (IL-1) receptor homology 

(TIR) domain induces the intracellular signaling (348). As of now 11 TLRs have been 

discovered and each has specificity for distinct PAMPS, as well as self molecules under 

different conditions (174). The TLR-1/ 2 and TLR-2/ 6 heterodimers are activated by cell 

wall component of Gram positive bacteria while TLR4 is  recognized by 

lipopolysaccharide (LPS), a component of Gram negative bacteria, and endogenous heat 

shock proteins (31, 288). TLR-3, 5 and 9 receptors interact with double stranded RNA 

(PolyI:C), bacterial flagellin and CpG DNA motifs respectively (288).  Murine TLR-7 

and human TLR-8 recognize uracil-rich single stranded RNA present in many viruses 

(141). TLR-11 can be ligated by ligands from uropathogenic bacteria in mice but is 

nonfunctional in humans. TLR-10 is present in humans but has no known ligand. 

Currently, there are no TLR-10 homologs in mouse (347, 392). TLR-1, 2 and 4 are 

surface receptors while TLR-3,7, 8 and 9 are intracellular, residing on endosomes (347). 
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TLR signaling 

Ligand-mediated activation of TLRs results in intracellular signaling by means of their 

TIR domains which associate with the TIR domains of adaptor molecules such as 

MyD88, TIRAP–(MAL), TRIF–(TICAM1), and TRAM–(TICAM2).  All TLRs signal 

via MyD88 with the exception of TLR3.  This interaction further induces other adaptor 

molecules, such as TIRAP-MAL, TRIF-TICAM, depending on the specific type of TLR. 

The TLR-MyD88 interaction sequentially recruits IRAK-4 and IRAK1. IRAK-4 

undergoes autophosphorylation and then phosphorylates IRAK-1 leading to its 

disengagement from the MyD88 complex and association with TRAF-6 (162). This 

complex then activates TAK, which in turn activates intermediate molecules, like IKK. 

Upon activation IKK phosphorylates IκB, which inhibits the translocation of NF-κB. The 

phosphorylated IκB is degraded leading to an eventual nuclear translocation of NF-κB. 

This pathway also works via the MAP kinase pathway to activate both NF-κB and AP-1 

trancription factors (162, 174, 348). The activation of these transcription factors results in 

induction of pro-inflammatory cytokines like TNF-α, IL-12 and IL-6. If TLR 2 and 4 are 

activated then the TIRAP-Mal adaptor molecules will associate with MyD88 (174, 

387)(Figure 1.2). While MyD88 may be dispensable to TLR4 signaling , TLR9 signaling 

totally depends on it (162). TLR4 has a MyD88-dependent and independent pathway. 

The MyD88 dependent pathway is dependent on an interaction of MyD88 with TIRAP-

MAL. The MyD88-independent pathway signals via TRIF-TRAM heterodimers and is 

activated via both the TLR4 and 3 pathways. The latter pathway activates IRF3 leading to 

production of type-1 interferon (162, 347). 
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Role of TLR in mediating Immune response to S. pneumonia 

 TLRs are some of the major PRRs necessary to sense S. pneumoniae and activate 

phagocytes to clear the pathogen via phagocytosis (185). TLR-2 is critical in the 

recognition of S. pneumoniae since its cell wall components contain peptidoglycan, 

lipoteichoic acid and other lipopeptides that are ligands for TLR2. 

TLR-2 knockout mice have impaired responses to infection with S. pneumoniae though 

the lethality is not greater; this is thought to be due to the role of other TLRs in immune 

response to S. pneumoniae (177, 184, 240). When the TLR-2 knockout mice are 

challenged with polysaccharide from serotype 3 and 14 bacteria and the 23-valent 

pneumococcal polysaccharide (PPS23) vaccine or the pneumococcal conjugate vaccine 

the anti-PPS IgG response disappears while the IgM response is much lower compared to 

the wild type. These studies show that both the PPS23 and the conjugate vaccine contain 

a TLR-2 ligand (317). Similarly, PPS23 vaccine is also reported to contains a ligand for 

TLR-4  (317). TLR-4 is important in the clearance of S. pneumoniae because of its ability 

to recognize pneumolysin (222, 240). Because of the existence of CpG motifs in the 

bacterial DNA, it is possible that TLR-9 is also critical for the recognition and clearance 

of S. pneumoniae. Thus, TLR-9 knockout mice exhibit an enhancement in susceptibility 

to S. pneumoniae (14). 

Pro-inflammatory cytokines are critical for the clearance of S. pneumoniae. 

The critical role of cytokines in protecting the human host from S. pneumoniae-mediated 

pathogenesis is highlighted in human genetic defects involving both the pro-

inflammatory cytokines and the inflammatory signaling pathways. A recurrence of 
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pneumococcal disease occurs in humans who are deficient in IL-12 (132). In animal 

studies a critical role of cytokines such as IL-1, TNF-α and IL-6 in the clearance of S. 

pneumoniae is seen (262, 398).  Mutations in IRAK4 and NF-κB result in  recurrent 

pneumococcal infections in the affected individuals emphasizing an important role for 

pro-inflammatory cytokines (286).  
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 Figure 1.2:  The TLR signaling pathway. 

The toll-like receptors are pattern recognization receptors that serve as sensors of both 

endogenous and external danger. The TLR mediated signaling culminates in the 

activation of crucial transcription factors like NF-ĸB and AP1 which regulate cytokine 

production. 
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 Figure 1.2 
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Some studies show that the anti-inflammatory cytokine, IL-10, either precipitates or 

attenuates the infections with S. pneumoniae depending on the stage of the infection and 

the level of the host immune response (358). IL-10 is an immunomoduatory cytokine that 

is known to suppress LPS-induced pro-inflammatory cytokines. If given exogenously, it 

suppresses the pro-inflammatory cytokines and increases the lethality of S. pneumoniae 

infection by inhibiting NF-κB activation and secretion of IL-12 and TNF-α by 

macrophages (358). Low levels of IL-10  induce resting and activated B-cells to switch 

from IgM to IgG3 (325). IL-10 can also inhibit B cell proliferation induced by TLR 

ligands (328). The ability to stimulate macrophage response when pathogens are 

encountered is partly dependent upon differential expression of IL-10 and pro-

inflammatory cytokines like IL-12. Interleukin-12 (IL-12) is produced mainly by 

macrophages and DCs and directly or indirectly (via IFN- γ) acts on B-cells and induces 

increased production of IgG2a and IgG3 (42). IL-12 is tightly regulated by several 

cytokines, including IFN-γ which enhances its production and IL-10 which is inhibitory 

(17, 203, 231).  

The adaptive immune response to S. pneumoniae: the role of B cells:  

The adaptive immune response to S. pneumoniae involves both humoral and cell 

mediated responses. There is a delicate interplay among the monocytes/macrophages, T 

cells, PMN and anticapusular  polysaccharide  antibodies produced by B-cells (352). The 

humoral response is directed against the capsular polysaccharide on the whole S. 

pneumononiae and is serotype specific (232, 352). The adaptive immune response is 

often initiated in situations where the pneumococcal bacteria are more virulent or the 

immune clearance mechanism is breached due to comorbidities (48). As a result, the 



26 
 

pathogen can escape this protective mechanism, penetrate the lung interstitium and 

become systemic via the blood or lymphatic system and, thus, result in the often-fatal 

condition known as bacteremia (48, 374). The spleen plays an important role in 

mediating adaptive responses to this latter stage of the pneumococcal infection. The 

indispensability of the spleen to the clearance of Streptococcus pneumoniae is clearly 

demonstrated in splenectomized patients from surgery or auto-infarction. In these patients 

there is an increase in bacteremia and sepsis due to S. pneumoniae (70, 366). Patients 

who have functional and anatomical aspleenia also show increased incidence of invasive 

pneumococcal disease (IPD) (142, 202). The spleen is basically divided into the red pulp, 

the white pulp and the marginal zone (MZ) (which is the specialized area between the red 

pulp and the white pulp and contains the marginal zone B cells and the marginal zone 

macrophages). TI-2 antigens localized exclusively within the marginal zone where they 

associate with the MZ macrophages and MZ B-cells (127, 360). When MZ macrophages 

engage S. pneumoniae via receptors such as SIGNR1, both the MZ macrophages and B-

cells migrate to the red pulp where they interact leading to rapid differentiation of the 

pre-primed B-cells to antigen forming cells (AFC) and subsequent rapid production of 

anti-pneumococcal antibodies by a mechanism that is still not delineated (169, 171, 224). 

T-cell independent B- cell mediated response to capsular polysaccharides 

B-cell responses to capsular polysaccharide can be elicited in nude mice that lack mature 

T cells, suggesting that these antigens did not need T-cell help to elicit an antibody 

response. This conclusion is supported more rigorously by Nemazee et al. using TCR β-/- 

and α-/- mice   (241, 254, 336, 368). Hence, the capsular polysaccharide is classified as a 

T cell independent (TI) antigen. These antigens can cross-link the B cell receptor and 
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induce B cell proliferation, but are incapable of inducing immunoglobulin (Ig) secretion 

or isotype switching. When the proliferating B cells are exposed to exogenous or 

macrophage derived cytokines such as IL-1, IL-6 or IL-12, or T cell derived cytokines 

such as IL-4 or IL-5, they could now differentiate into antibody producing B cells (38, 

63, 317, 331). However, there are studies that showed that TI antigen responses may be 

modulated by T-cells either directly or indirectly, but this is not an absolute requirement 

(73, 336). 

 Studies of TI antigens identified a subset of Ti antigens which included polysaccharides 

and haptenated-Ficoll that do not elicit antibody responses in mice with an X-linked 

imunodeficiency (XID), neonatal mice and human infants. These are referred to as TI-2 

antigens and are high molecular weight polymers with repeating antigenic determinants 

for which immune responses appeared after a year or so of age in humans. These are 

distinguished from the TI-1 antigens that can elicit responses in both the XID and 

neonatal mouse model and are characterized by their ability to activate B cells 

polyclonally. TI-antigens are often components of bacterial products with lipids attached 

and included groups like LPS, TNP-LPS and TNP coupled to inactivated bacteria like 

Brucella abortus (241, 244, 331, 336). 

T cell dependent antibody response:  B-cells can bind soluble antigens or whole bacteria 

via their membrane immunoglobulin receptor a resulting in the internalization processing 

and presentation of antigenic determinant to T-cells in the context of MHC-II. The 

resultant cognant interaction between B-cells and T-cells activates B-cell expansion and 

differentiation into plasma cells. Hence, the B-cell interaction with the antigen via its B 

cell receptor (BCR) is considered as signals 1 while the cognate T-cell interaction is 
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considered signal 2. Therefore, the activation and effector functions of the B cells are 

dependent on T-cells and such antigens are designated T-cell dependent (TD) (279, 336, 

368).  

Concept of signals 1 and 2 in the context of immune response to PS from S. pneumoniae 

 In a typical TD response the antigen binding by the BCR elicits the first signal for 

activation of B cell, but the second signal is derived from the cognate B cell: T cell 

interaction. However, in the context of the B cell mediated response to PS from S. 

pneumoniae, the T-cell signal 2 is either absent or not very critical. The capsular 

polysaccharide (CPS) of  S. pneumoniae contains  repetitive epitopes that provide 

maximum cross-linking with the B-cell receptor (BCR) and activate  B-cells, without  the 

participation of  T cells help, and thus engenders low isotype switching, low affinity 

antibody and no memory (38, 79, 207, 241, 336). But where does the second signal come 

from (49, 65) ? In this case the signal 2 is provided either by (1) stimuli that directly 

target the B-cell or (2) stimuli that indirectly target B-cells via induction of stimulatory 

cytokines like IL-1β, IL-6, IL-4 or IL-5 (Fig. 1.3). Such cytokines can be produced by 

phagocytes like splenic or alveolar macrophages, when the S. pneumoniae or some of its 

cell wall components like LTA, the bacterial DNA or peptidoglycan, engage the toll like 

receptors (Figure 1.2)  (65, 100, 325). Activation of T cells by bacterial proteins may also 

provide such cytokines. 

Antibiotics, success and failures in treating S. pneumoniae: 

The first recorded incidence of penicillin resistance by S. pneumoniae was reported in 

Australia in 1967 with additional episodes reported in North America in 1974. In 1992 
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there was about 69% resistance to penicillin in Hungary. Between 1988 and 1990, there 

was a report of 15-20% resistance in the United States. In 1977, the first reports of multi-

antibiotic resistant strains were reported in South Africa which were followed by reports 

of rapid global spread of antimicrobial resistance (216, 217).  Some strains of S. 

pneumoniae  have resistance to tetracycline, erythromycin, chloremphenicol, 

clindamycin, streptomycin and the beta-lactam antibiotics (281).  
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Figure 1.3:  Concept of Signal 1 and signal 2 in the immune response to 

Streptococcus pneumoniae.  

Upon engagement of the BCR by the repetitive epitopes of the capsular PS of S. 

pneumoniae (signal 1) there is B-cell proliferation, but the proliferating B cells require  

pro-inflammatory cytokines (signal 2) derived from macrophages, activated via S. 

pneumoniae engagement of TLRs, to  differentiate  into cells that secrete anti-capsular Ig. 
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Figure 1.3 
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The mechanism of resistance includes point mutations in genes encoding key bacterial 

proteins, such as penicillin binding protein (PBP) (281) (216, 217). As a result, it is 

crucial to develop effective vaccine adjuvants to confer greater efficacy of the current 

pneumococcal polysaccharide and conjugate vaccines in the elderly. Thus, this thesis 

attempted to explore potential signaling pathways that would enhance immune response 

to the current vaccines. 

Evolution of polysaccharide vaccine as a viable and cost efficient alternative to 

antibiotics 

The 23-valent capsular polysaccharide vaccine (PPSV23) 

A combination of increased antibiotic resistance and the differences in the degree of 

severity of the pneumococcal infections in different hospitalized patients led to the 

evolution of the polysaccharide vaccine as an efficacious alternative (21, 46) (20, 21). 

Hence, there is an advocacy for the reintroduction of the polysaccharide vaccines 

resulting in the approval of the 23-valent pneumococcal polysaccharide vaccine. The 

United States Food and Drug Administration (FDA) approved the 23-valent 

pneumococcal polysaccharide vaccine (PPSV23) in 1983 to be used in the elderly, 

children greater than two years who are at risk of the infection due to chronic diseases 

(like sickle cell anemia), and the immunocompromised (due to lymphoma, aspleenia and 

HIV/AIDS) and all adults at risk for chronic diseases. The PPSV23 vaccine is composed 

of purified capsular polysaccharides from 23 of the most common clinical serotypes. 

These serotypes account for 89% of all IPD (19, 46, 281). 
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Following the introduction of the (PPSV23) vaccine, post vaccine efficacy studies 

conducted in South Africa and other countries discovered that the vaccine elicits a robust 

response in the young, but only has a 60% efficacy in the elderly. The functional activity 

of the antibodies for the vaccine, and the ability to promote opsonophagocytosis is 

impaired in the elderly (>65) compared to the young (<45) (200). Another finding is that 

the vaccine can not elicit potent protective antibody response in children less than 24 

months old (46, 74, 321). A meta-analysis and systematic review of studies  of 19 trials 

comprising 82,665 participants from diverse settings in Western Europe, North America, 

Russia, Papua New Guinea and the Caribbean concludes that PPS23 offers little 

protection in the elderly over 65 years old and people in the ages from 2 to 64 years old 

with chronic respiratory illnesses (156). The vaccine elicits no memory and the serum 

antibodies did not last long (39, 69, 218, 272, 321, 357).  Since the vaccine confers 

protection in a serotype specific antibody response, it can not offer protection against 

serotypes not covered in the vaccine, i.e., serotype restriction which is dependent on the 

geographical region of the world (4, 18). Finally, revaccination with PPS23  is not 

recommended as it results in reduced antibody production (159). 

Immunological basis for the poor response of children less than 2 years to the 

polysaccharide vaccine 

A commonly held theory is that there is a selective and developmental disadvantage in 

eliciting an anti-polysaccharide response in young children (46, 93). A second concept is 

that in children and neonates there are tissue polysialylated glycoproteins that are capable 

of eliciting cross-reacting antibody responses in a similar manner as the bacterial 

polysaccharides and thus could be deleterious to the infants. Thus, there is a form of 
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tolerance to the polysaccharide antigens. These polysialated glycoproteins were found in 

human embryonic brains, new born rat kidney, heart and muscle, but not in the similar 

tissues in adults (98, 99). Another plausible explanation for the impaired response in 

children is the fact that the polysaccharides bind the complement factor C3d generated 

via the alternate pathway and form complexes which bind the complement receptor CD21 

on marginal zone B cells, and this is known to enhance BCR signaling. However, in 

children less than two years old, there is reduced expression of CD21 which may have a 

role in the impaired response to the polysaccharide vaccine due to a lack of CD21 

mediated amplification of the BCR signal. But with the conjugate vaccine this need for 

CD21 is overcome at least in the rat model (41). The defective antibody responses of  the 

human infants to model TI-2 antigens and pnemococcal polysaccharides is closely 

mimicked in the murine model (195). Our laboratory has shown that neonatal 

unresponsiveness to PS antigens is due to an inability of neonatal macrophages to 

produce adequate levels of IL-1, IL-12 and IL-6 (195). 

Immunological basis for the impaired antibody response of the elderly to PPS23 vaccine 

 A major factor that predisposes the elderly to increased infection with S. pneumoniae or 

impaired antipolysaccharide vaccine response is attributed to a compromised immune 

function as a result of the normal aging process (75). For example the naturally acquired 

IgG and IgM to six of the of the most common IPD causing serotypes (3, 4, 6B, 9V, 14 

and 23F) are impaired in the elderly compared to the young (327). Not only that, but the 

natural IgG and IgM antibodies to some common pneumococcal surface proteins 

including PspA are impaired in the elderly compared to the young (327).  Hence, this 

age-related defect can also account for the impaired PPS vaccine response in the elderly. 
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There are also studies that indicate that aging affects B cell immune functions and 

specificities, such as class switching to Ig Isotypes to IgG3 in mice and IgG2 in humans 

(43, 105, 227, 278). Since, the immune responses to S. pneumoniae and PPS vaccine are 

mainly B cell mediated, such age-associated defects in B cells can account for the lower 

vaccine efficacy in this population. Aging is also associated with a decrease in cytokines 

such as IL-12, IL-6 which are needed for the induction of antibody response to the TI 

antigens, like the PPS vaccine (38, 63). 

The shift to conjugate vaccine:  

The seven valent conjugate vaccine (PCV-7) 

 Because the immune response to the PPS23 was late onset and thus could not protect 

children less than two years from pneumococcal pneumonia or acute otitis media (AOM), 

the conjugate vaccine was developed by coupling some of the PS to a protein carrier to 

make the PS, a T dependent antigen. It was approved for use in the USA in 2000 by the 

FDA (218, 319). It is recommended for children within the first 6 months of their lives 

and children greater than 2 years who are at higher risk for IPD due to HIV/AIDS and 

sickle cell anemia (261, 357). The conjugate vaccine, designated PCV-7, is made up of 

the purified capsular polysaccharides of seven of the most common clinical isolate 

serotypes, which are 4, 6B, 9v, 14, 18C, 19F and 23F and they are conjugated to a protein 

carrier, such as tetanus-toxoid. As a result of this composition the antibody response is 

now shifted to a T-cell dependent response. The carrier protein is able to activate T-cells 

that are specific for the protein and thus provide help for the polysaccharide specific B-

cells. As a result B-cells can undergo affinity maturation, Ig class-switching and 
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induction of memory B-cells. The 7 serotypes  contained in the conjugate vaccine 

account for  more than 80% of all IPD in North America in  children less than two years 

of age and the elderly (69, 261). PCV-7 vaccine protects children less than two years old 

from IPD and offers some protection from otitis media, and also indirectly protects adults 

and elderly as a result of herd immunity (154, 218, 319).  

Upon the introduction of the conjugate vaccine it became obvious that non-clinical 

serotypes that are not included in the vaccine have emerged and are leading to increased 

incidence of IPD. For example, serotype 19A that is not included in the 7-valent 

conjugate vaccine began to emerge, thus reversing the initial gain in the reduction of 

otitis media in children (26, 218, 319). The heptavalent conjugate vaccine lacks a global 

appeal as the seven serotypes selected for inclusion are geographically restricted to North 

America. For instance, it will not work in sub-Saharan Africa because the predominant 

IPD causing S. pneumoniae consists of serotypes 1 and 5. The cost of producing the 

conjugate vaccine is too high and can not be afforded by poorer countries (2, 76, 79, 

276).  It also requires multiple immunizations to elicit long lasting protective antibody 

responses (69, 297). Five of the serotypes included in the PCV-7 vaccine are known to 

contribute to 80% penicillin resistance and thus with the introduction of the PCV-7 

vaccine there is an overall reduction in the IPD caused by the erythromycin and multiple 

drug resistant  strain through herd immunity (191, 283). 

The 13-valent conjugate vaccine 

 The 13-valent conjugate vaccine after some field testing is finally approved by the FDA 

on February 24, 2010. This new vaccine has broader serotype coverage and is expected to 
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prevent IPD among infants and children, and to help in the reduction of otitis media (32, 

261). The new 13-valent vaccine is made of serotypes from the initial PCV-7 conjugate 

vaccine along with six new serotypes (1, 3, 5, 6A, 7E, and 19A). Note that there is an 

inclusion of the newest nonclinical serotype that has become prominent, serotype 19A 

and the target population is for infants 2 – 59 months old and children between the ages 

60 to 71 months old who present with underlying medical condition or children who 

received only a single dose of the PCV-7 vaccine (242, 261, 287).  

Prime boost effect of PCV-7 and 23-PPSV 

 Studies show that an enhanced response can be elicited in a prime-boost immunization 

with the conjugate vaccine and with the 23-valent polysaccharide vaccine. If the priming 

is done with the PCV-7 vaccine followed by a boost with the PPSV23 vaccine there is an 

enhanced anti-capsular response (263). This prime-boost response is further potentiated 

with highly active antiretroviral therapy (HAART) treatment in HIV/AIDS children and 

infants (3). This latter regimen shows some promise in the elderly and the 

immunocompromised young adults (1, 160, 261). However, if the priming is done with 

the PPSV23 vaccine it results in hyporesponsiveness, even if the conjugate vaccine is 

used as a boost. 

Pneumococcal proteins as vaccine candidates 

 Due to the current disadvantages of both the polysaccharide and the conjugate vaccines, 

there have been efforts made to utilize the pneumococcal proteins that confer cross-

protection and, thus, are independent of any particular serotypes. There are many surface 

proteins that are being evaluated but  the three most promising ones are the 
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pneumococcal surface protein A (PspA), pneumococcal surface adhesion protein A 

(PsaA), and pneumolysin (37, 45). PspA is a choline binding protein on the surface of the 

S. pneumoniae that blocks the alternative complement pathway (252). Despite its 

antigenic variability among different strains, studies in mice show that it has a broad 

protective effect against invasive infections and nasopharyngeal carriage (44). In a Phase 

I clinical trial it is shown that recombinant PspA from a single strain along with alum as 

an adjuvant can elicit broadly cross reactive antibodies to different antigenic forms and 

that passive immunization with antibodies from the participants can confer protection to 

mice (44). PsaA is a member of the metal binding lipoproteins. Immunization with this 

protein has a greater effect on colonization and nasopharyngeal carriage with little or no 

effect on the invasive disease in mice (37, 42, 45). Pneumolysin is another choline 

binding protein shown to have the best effect in protecting against invasive diseases but 

not colonization in mice (265, 280). As a result of the unique action of each of these 

proteins, the studies show that combining them exploits the synergistic effects and 

induces protection. A combination of PspA and PSaA protects against both colonization 

and otitis media in a mouse model, while a combination of PspA and pneumolysin is 

additive in protecting against invasive disease (42, 265). Some of the advantages of the 

PS protein vaccines using a mixture of different pneumococcal proteins: (1) able to target 

diverse pathogenic mechanisms; (2) useful to both children less than two years and adults 

as the children elicit responses to conjugate vaccines but not polysaccharides; (3) less 

expensive as there is no need for conjugation or polysaccharide purification; and (4)  

totally avoid the problem of serotype replacement (44, 344).  However, there are several 
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challenges to develop a protein based vaccine, not the least of which is finding a suitable 

adjuvant.  

Cytokines as potential adjuvant for PS vaccines  

There are many vaccine adjuvants that have been evaluated in murine models and proven 

to potently enhance the immunogenicity of vaccines response. However, most of these 

adjuvants cannot be used in humans due to their severe side effects. For instance 

complete and incomplete Freund’s adjuvant are potent immunostimulatory adjuvants but 

are not approved for human use due to side effects (27). The approved adjuvant, alum, is 

of very low potency necessitating multiple immunizations (389). As a result of these 

short-comings, there are many attempts to find a potent adjuvant that can still be very 

tolerable in humans. MF-29 is a new vaccine adjuvant approved for use in Europe but not 

in the USA. Monophosphoryl lipid A (MPL) is an adjuvant recently approved for use in 

USA and is thought to work via ligation of TLRs (72). Many researchers have also 

started looking into cytokines as a potential answer due to some of their unique 

properties. Cytokines are endogenous potentiators of immune response; hence enhancing 

the appropriate types of cytokines with antigen can be more highly immunogenic (67) 

(Table 1.1). Luo et al. showed that supplementing Pnu-immune vaccine with IL-10 elicits 

a better immune response than the vaccine alone (213). In a mouse model injecting IL-12 

followed by PPS23 immunization resulted in an enhanced production of both IgG2a and 

IgG3 anti-vaccine antibodies. The IL-12 cytokine activates cell mediated immunity as 

well (49, 271). Physically fusing an antigenic protein with cytokines can elicit potent 

antibody responses consisting of various isotypes like IgG3and IgG1 (67, 383). Systemic 

immunization with PspA protein genetically fused to IL-2 produces higher anti-PspA 
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IgG1 and IgG2a responses compared to PspA adsorbed to alum (383). Another study 

demonstrates that immunizing mice with PspA along with IL-12 enhances sIgA and 

systemic IgG. This combination vaccine delivery strategy results in a dual protection 

against both carriage and fatal bacteremia, thus precluding the need to physically link 

different PPS proteins for different modes of infection and clearance (17). In another 

study recombinant PsaA fused to murine IL-2 or IL-4 is found to induce both IgG1 and 

IgG2a anti-PsaA antibodies, whereas combination with CFA generates only IgG1 

response. Also PsaA plus cytokines confers greater protection to mice challenged with 

virulence strains than pure PSaA antigen. Thus the protection is 30% with PSaA alone as 

opposed to 100% with PSaA plus cytokine (122). 
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Table 1.1:  Some Cytokines and their effects on modulating the humoral response to 

S. Pneumoniae 

 

 

 

 

 

 

Cytokine    Type Function in immune 
response to S. pneumoniae 

IL-10 Anti-inflammatory Suppresses pro-
inflammatory cytokines, 
optimal induction is needed 
for B cell differentiation. 
Enhances S. pneumoniae 
lethality in a mouse lung 
infection model. 

IL-12 Pro-inflammatory Enhances IgG2a and is 
critical for clearance of S. 
pneumoniae via generation 
of opsonic antibodies.  

IL-6 Pro-inflammatory Enhances formation of 
antibody producing cells 
against pneumococcal 
polysaccharide vaccine. 
Plays a crucial role in the 
clearance of S. pneumoniae. 

TNF-α Pro-inflammatory Acute early induction is 
needed for recruitment of 
leukocytes and clearance of 
S. pneumoniae. 
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The  adjuvant properties of –C-phosphote-G- (CpG) oligonucleotide are  due mostly to 

this ability to activate both innate (e.g. macrophages, dendritic cells) and adaptive 

immune cells (e.g. B-cells) to produce cytokines, like IFN-γ, IL-6, IL-12 and TNF-α, that 

are known to modulate antibody production (Table 1.1). Thus, in a study in which mice 

are immunized with conjugate vaccine in the presence of CpG, there is an enhancement 

of polysaccharide specific IgG2A and IgG3, as well as low levels of IgM and IgG1 (69, 

189, 334, 388). As a result, a couple of studies show that CpG can be used in 

combination with DNA vaccine with proteins from S. pneumoniae, or with conjugate or 

polysaccharide vaccines and induces some level of protection against pneumococcal 

infections (109, 316). 

Additional studies show that immunizing mice with TI antigens and subsequently 

inducing endogenous cytokines like IL-1, IL-4, IL-6, IL-12, IL-2, and IFN-γ via TLR 

mediated signaling has the ability to activate B cell proliferation, activation, class 

switching and secretion of Ig (178).  Hence, cytokines are potent providers of signal 2 

needed to work with TI-2 antigens in activation of B cells. Recently it was shown that the 

ability of the PPSV23 vaccine to elicit robust responses in some aged groups is due to its 

contamination with ligands for TLR-2 and 4. This allows the vaccine to mediate 

production of cytokines that are crucial for the enhancement of Ig secretion and class-

switching (178, 317, 331). Another study evaluated the role of monocyte derived 

cytokines, IL-6, IL-10 and TNF-α, in the increased susceptibility of patients with 

common variable immunodeficiency disease (CVID) to infection with Streptococcus 

pneumoniae. The results show that the pneumococcal-23 vaccination of these patients 

produces a less robust response than the normal healthy human controls due to a defect in 
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the vaccine-induced production of monocyte derived cytokines, IL-6, IL-10 and TNF-α 

(153). Thus, the levels of cytokines produced endogenously help to regulate the clearance 

of S. pneumoniae and this can be exploited in the immunocompromised host. Exogenous 

treatment with IL-1 confers protection in mice against lethal challenge with S. 

pneumoniae (167). IL-1 is known to regulate both B-cell expansion and differentiation 

into antibody forming cells (64, 167, 221). 

Challenges with the use of exogenous cytokines  

One of the current drawbacks in exogenous administration of cytokines as adjuvants in 

human studies is due to their pyrogenic properties as  shown with IL-1 and IL-12 (259).  

A human clinical trial that used exogenous recombinant human IL-12 in the presence of 

the polysaccharide vaccine demonstrates that the cytokines elicit a minimal, but non-

significant increase in pneumoccocal IgA, IgM, IgG1 and IgG2 antibodies over the 

placebo group, but have some adverse effects. These adverse effects include fever and 

generalized body pain in the participants resulting in discontinuation of the study (140). 

Another challenge in the use of exogenous cytokines is identifying the route of 

administration that will elicit a protective response and yet be physiologically relevant to 

humans (128, 291, 307). A final challenge in using exogenous cytokines as adjuvant is to 

consider what combinations of cytokines can be given to elicit maximum synergistic 

effects without side effects (7, 8) . 

Endogenous enhancement of cytokines is a biologically relevant alternative adjuvant 

There are still key unanswered questions in the use of the current polysaccharide or 

conjugate vaccines as well as potential challenges with the use pneumococcal protein 

vaccines or exogenous cytokines. Below, we investigate the plausible means for 
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enhancing endogenous production of macrophage-derived pro-inflammatory cytokines 

that provide the signal 2 needed for potent B cell activation, differentiation and anti-PS 

antibody responses in aged mice. Such an approach is not limited by serotype coverage, 

aging, T-cell dependency, health conditions or cost. In order to address these challenges 

with regards to the impaired antibody response to S. pneumoniae in the aged, there are 

four critical questions that must be answered and investigated with depth: (1) how does 

the age-related cytokine dysregulation in macrophages negatively impinge upon B-cell 

mediated signaling leading to impairment in class switching, affinity maturation and 

activation in response the pathogen; (2) How does aging affect the production of 

opsonizing IgG antibodies for host defense against S. pneumoniae (36, 157); (3) What 

signaling molecules are altered in either B cells, macrophages or both in the elderly that 

can be pharmacologically targeted to restore the impaired B-cell response to S. 

pneumoniae or pneumococcal vaccine;  (4) Can this system be developed as a potential 

vaccine adjuvant? Answers to these questions will provide critical information for the 

development of a more efficacious vaccine for pneumococcal infections (309, 366).   

Hence, in our laboratory, we are studying TLR-MyD88 signaling in the macrophages in 

order to elicit endogenous cytokine production to overcome this cytokine dysregulation 

as a means of enhancing robust B-cell activation, differentiation and anti-PS antibody 

responses (38, 63). We explore the TLR-cytokine mediated signaling pathways between 

the aged and the young as a means to identify specific steps in the pathways downstream 

of the TLR-MyD88 complex  that are dysregulated with aging so that they can be 

pharmacologically exploited to enhance cytokine and anti-capsular antibody response 

(63). In the studies described in this thesis, we attempt to address these questions in the 
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context of in vitro cultures of SM and BMDM and splenic B cells from aged and young 

adult Balb/c and C57BL/6 mice. We ask if an age-associated increased in PI3K-Akt 

activity plays a role in the cytokine dysregulation in aged splenic and bone marrow 

macrophages. We wonder further if similar heightened PI3K-Akt activities in B cells 

explain the age-related B cell defects (267, 268).  We also investigate the role of GSK-3, 

a downstream target of PI3K-Akt pathway in activating both B cells and macrophages.  

Role of PI3K-AKT-GSK-3 signaling pathway in macrophage activation                                                                               

PI3K enzymes form a group of lipid kinases consisting of Class I, II and III that are 

involved   many fundamental physiological processes and also play a role in modulating 

the activities of phagocytic cells such as macrophages, neutrophils and monocytes that 

are critical for the clearance of S. pneumoniae. PI3K signaling is also important in B and 

T cell survival and activation. The Class IA PI3K consists of regulatory subunits (p85α, 

p85β, p55α, p55γ and p50α) that bind to one of three catalytic subunits (p110α, p110β 

and p110δ) upon activation via a tyrosine-kinase coupled receptor. The Class IB PI3K 

catalytic subunit lacks the p85 binding domain and is activated by G protein coupled 

receptors, (173, 223). The PIP3 generated by PI3K activity serves as a docking site for 

the recruitment of signaling proteins via their pleckstrin homology domains. One of the 

kinases that is recruited to the membrane by PIP3 is the phosphoinositide-dependent 

kinase-1 (PDK-1), which then targets the serine-threonine kinase, Akt, for 

phosphorylation at Thr-308 (361). The activated Akt serves as a master kinase for a 

plethora of downstream substrates including IKK and GSK-3 (173)(Figure 1.4). The 

levels of PIP3 can be down-modulated by PTEN (phosphatase and tensin homolog) and 

SHIP (Src-homology-2 containing inositol 5′-phosphatase), which are phosphatases that 
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respectively target the D3 and D5 positions of PIP3 converting it to PIP2 (223). Recent 

pioneering studies show that PI3K signaling is a negative regulator of TLR-induced 

production of pro-inflammatory cytokines (107). Not only that, but the pharmacological 

inhibition of PI3K results in the suppression of IL-10 in macrophages and monocytes 

(108, 226, 308) (290, 308). Also, MyD88 directly interacts with the p85 subunit of PI3K 

(194).  In phagocytes PI3K modulates chemotaxis, phagocytosis, upregulation of 

activation markers, growth, migration and differentiation (5, 131, 139). The PI3K-Akt 

signaling pathway differentially regulates pro- and anti-inflammatory cytokines in 

macrophages by inhibiting glycogen synthase kinase (GSK-3) (139, 225, 382). 

GSK-3 is a direct downstream substrate of Akt and is phosphorylated on Serine-9 

resulting in its inactivation (225, 382). GSK-3 appears to regulate both the pro- and the 

anti-inflammatory cytokines by controlling the competitive interaction of either CREB or 

p65 NF-κB with the CREB binding protein (CBP)( Figure 1.4). Moreover, inhibition of 

GSK-3 via either siRNA or pharmacological inhibitors results in a cytokine profile that is 

the reverse of the cytokine profile seen when PI3K is inhibited (225, 382, 393). The 

ability of GSK-3 to negatively modulate IL-10 allows the induction of IFN-gamma and 

the associated enhancement in antigen presentation, which has been shown to be critical 

for the control of mycobateria (60). 
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Figure 1.4. The PI3K-Akt-GSK-3 signaling pathway in Macrophages. 

TLR mediated signaling in macrophages results in an interaction of MyD88 and PI3K 

resulting in the phosphorylation of Akt. Akt phosphorylates GSK-3 and the latter is 

inactivated. GSK3 regulates transcription factors like NF-κB and CREB. These 

transcription factors regulate the anti- and the pro-inflammatory cytokines. 
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 Figure 1.4 

 

 

 

 

 

 

 

 

 

  (Modified from D.A. Fruman, Current Opinion in Immunology, 2004)(106) 
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Role of PI3K-AKT in regulating B-cell activation 

 Several previous studies emphasize the ubiquitous role of the Class IA PI3K signaling in 

regulating both the innate and the adaptive  immune responses (188). The crucial role of 

PI3K in B-cell development, differentiation, activation, proliferation and survival is 

amply demonstrated using a combination of both pharmacological inhibitors and 

mutations that are specific for the PI3K pathway in B cells (268, 343). The class IA PI3K 

is downstream of signaling via B cell receptor (BCR), B-cell costimulatory molecules, 

toll like receptors and cytokine receptors. PI3K dependent phosphorylation of Akt is 

crucial for the regulation of B-cell proliferation and survival (81, 268, 333) (Figure 1.5). 

A B cell specific conditional knockout of PTEN, a negative regulator of PI3K-Akt 

signaling, results in enhanced activity of an Akt (343). The hyperactivity leads to a defect 

in expression of activation induced deaminase (AID), class switching and antibody 

responses to both TI and the TD antigens (343). 

 Activated Akt, phosphorylates and inactivates the forkhead transcription factors (Foxo). 

The suppression of the Foxo protein results in a down modulation of class-switch 

recombination. When PI3k is pharmacologically inhibited, using either a generic inhibitor 

like LY294002 or a Class I A (p110δ) specific inhibitor like IC7114, there is an 

enhancement in the expression of the enzyme AID and class switch recombination (267, 

268). Overall, PI3K regulates B cell homeostasis in the periphery, by regulating the 

different types of B cell subsets, their  survival and proliferation (22). On the basis of the 

foregoing, we attempt to first confirm in our hands that there is a defect in IgG3 in the 

aged splenic B cells compared to the young under in vitro conditions, and secondly to 

investigate if  PI3K-Akt signaling pathway plays a causal role in this age-associated 
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defect in IgG3 expression. IgG3 is crucial for the clearance of S. pneumoniae in mouse 

(227). We decided to use HKSP instead of live S. pneumoniae so that we could evaluate 

the cytokine regulatory effects of cell wall component of the bacteria without any lethal 

effects. 

 Role of GSK-3 in modulating B cell responses: GSK-3 is phosphorylated by a PI3K-Akt 

dependent signaling mechanism via BCR signaling. This phosphorylation inactivates 

GSK-3 and results in modulation of several of its downstream targets that are essential 

for B cell function. Two of these transcriptional targets of GSK-3 are NF-AT1c and beta-

catenin (118) (Figure 1.5). NFAT1c is a positive regulator of Ig class switch to IgG3 

upon immunization with Type-II TI antigens in splenic B cells. It is also a positive 

regulator of IgG3 +  plasmablast formation (29). Thus, by regulating NFAT1c, GSK-3 

may play a critical role during B cell immune responses. Beta-catenin accumulates in the 

nucleus of B cells following BCR signaling (391).  Studies in conditional knockout of β-

catenin specific for B cells showed that it is dispensable in terms of B cell response to 

both TI and TD antigen challenge in vivo. Nevertheless, these mice show a significant 

reduction in class switching to IgG1 and plasma cell generation in vitro (391). Under 

normal unstimulated conditions, GSK-3 is active and thus phosphorylates and degrades 

β-catenin. However, following BCR stimulation, GSK-3 is inactivated upon 

phosphorylation which allows β-catenin to accumulate in the nucleus of the B cell and 

regulate the transcription of several genes that are needed for B cell development and 

function (29, 68, 158, 391). Since GSK-3 is downstream of Akt and Akt has a role in 

class switch recombination, we hypothesized that GSK-3 has a role in IgG responses to 

HKSP. 
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Figure 1.5. The PI3K-Akt-GSK-3 signaling pathway in B cells. 

Signaling downstream of BCR, CD19 or TLR in B cells leads to the activation of PI3K 

which in turn leads to the phosphorylation of Akt. Akt phosphorylates and inactivates 

GSK-3 and thus indirectly controls its ability to regulate beta-catenin and NFATc1 that 

play a role in B cell mediated class switching and plasma cell formation. 
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Figure 1.5 

 

 

 

 

      

 

 

 

 

 

 

(Modified from D.A. Fruman, Current Opinion in Immunology, 2004)(106) 
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In vitro mouse model system of macrophage-derived cytokines on B cell response 

We used in vitro model systems to demonstrate that macrophages or macrophage derived 

cytokines enhance B cell response to the typical TI-2 antigen, TNP-Ficoll (63).  

Macrophage derived cytokines provide the critical second signal required for TI-2 

antigen specific response. We are able to further elucidate that the defective B cell 

mediated response to either the polysaccharide vaccine or the synthetic TI-2 antigen in 

the elderly compared to the young adult can be attributed to a defect in macrophage-

derived cytokines. We note an enhancement in the anti-inflammatory cytokine, IL-10, but 

a decrease in the pro-inflammatory cytokines, IL-6, IL-12, and IL-1 in aged macrophages 

triggered via TLR4. This age-associated cytokine profile is considered a “cytokine 

dysregulation”. 

To understand the molecular mechanism of this dysregulation in the aged SM; our 

laboratory performed a microarray analysis of genes expressed in young and aged 

macrophages activated via TLR-4. These studies showed that while the TLR expression 

is similar between the aged and young adult macrophages, there is a decrease in the 

MyD88 adaptor molecule, as well as several signaling molecules in the pathway that 

leads to activation of the transcription factor NF-κB (65).  Also there is an enhancement 

in p38 MAP kinase, as well as PI3K subunits in the aged compared to the young. When 

p38 MAP kinase is pharmacologically inhibited the age-associated cytokine defect is 

partially overcome (65).  

 On the basis of the previous findings, our literature search and preliminary data, we 

advanced the following hypotheses: 
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(1) Cytokine responses of aged splenic macrophages to TLR2 and TLR9 are similar 

to those induced by TLR4 as they all share the MyD88 signaling pathway. 

(2) An age-associated increase in the PI3K-Akt-GSK-3 signaling pathway has a role 

in the cytokine dysregulation in splenic macrophages and that inhibiting PI3K can 

reverse this dysregulation. 

(3) The cytokine dysregulation defect may be intrinsic to macrophages from the aged 

which is tested using BMDM from aged. We further hypothesized that the PI3K 

pathway will be upregulated in BMDM with age. 

(4) We hypothesized that GSK-3, a downstream target of PI3K pathway, will have a 

critical role in TLR responses of macrophages from the aged.  

(5)  The impairment in IgG3 production in the aged splenic B cells compared to 

young B cells may be due to enhancement in the activity of PI3K. 

(6) We hypothesized that inhibiting PI3K or GSK-3 in aged splenic B cells will 

increase IgG3 production by enhancing the expression of AID. 
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CHAPTER TWO: METHODOLOGY 

ANIMALS 

Female young (8-12 weeks old) and aged (18-22 months old) Balb/c and 

C57BL/6 mice were obtained from the National Institute of Aging (NIA), National 

Institute of Health (NIH, Bethesda, MD). The mice were kept in the facility at the 

Department of Laboratory Animal Research (DLAR) at our university on a 12 h daylight 

and 12 h night cycle and given food and water ad libitum. The protocols involving the 

animals were approved by the University of Kentucky Institutional Animal Care and Use 

Committee. 

  REAGENTS 

The TLR-4 agonist LPS (Escherichia coli 055:B5) and the TLR-2 ligands, Pam-3-CSK4 

and the GSK-3 inhibitor, SB216763 were obtained from Sigma Chemical Co. (St. Louis, 

MO), whereas the TLR-2 ligands, Pam2CSK4 and lipoteichoic acid were obtained from 

In Vivogen (San Diego, CA). LY294002 and wortmannin, the inhibitors for PI3K and the 

GSK-3 inhibitor 216763 were obtained from Calbiochem (San Diego, CA). FITC- 

conjugated anti-mouse LY-6G and anti-CD5 antibodies were obtained from BioLegend 

(San Diego, CA), while the FITC-conjugated anti-mouse CD45R (B220), FITC- 

conjugated anti-mouse CD11b, PE-conjugated anti-F4/80, biotin-conjugated anti-IgG3, 

PE-conjugated anti-CD138 antibodies and Strepavidin-conjugated APC were obtained 

from eBioSciences (San Diego, CA). The antibodies to p-Akt (S473), Akt, p-GSK-3αβ 

and GSK-3, were from Cell Signaling Technologies; to anti-PTEN and anti-β-actin were 

from Santa Cruz Biotechnology (Santa Cruz, CA). The immunoreactive proteins were 
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detected using horseradish peroxidase coupled secondary antibodies and the PICO 

Chemiluminescence substrate (Pierce Technology, Rockford, IL). The cytokine OptEIA 

ELISA kits for IL-10, IL-12(p40), IL-12(p70), IL-6 and TNF-α were all from BD 

Biosciences, San Diego, CA. The anti-FITC and the anti-B220 antibody coupled 

microbeads were obtained from Miltenyi Biotec (Auburn, CA). The OptEIA TMB 

peroxidase substrate for the ELISA was acquired from BD Biosciences (San Diego, CA). 

We used sterile RPMI 1640 (BioWhittaker) medium which was made complete by 

supplementing with 25 mM HEPES , 2 mM glutamine  (Invitrogen Gibco), and 

50 µg/ml gentamicin  (Sigma-Aldrich) and 10% Fetal bovine serum (FBS), (Atlanta 

Biologicals, Lawrenceville, GA). The IgG3 or IgA ELISA kits were from Bethyl 

Laboratories, (Montgomery, TX), while the IgM, IgG2a, IgG2b or IgG1 ELISA kits were 

from Southern Biotec (Birmingham, AL).  

HEAT KILLED STREPTOCOCCUS PNEUMONIAE (HKSP) 

Serotype-2 S. pneumoniae bacteria were obtained from Dr. Beth Garvy and plated on 

BBL pre-made blood agar plates (VWR International). Isolated colonies were grown in 

Todd Hewitt broth (BD Biosciences) to mid-log phase and collected for counting. 

Sterility was confirmed by subculture on blood agar plates. After extensive washings the 

bacterial suspension was adjusted with PBS to give an absorbance reading at 630 nm of 

0.59, which corresponded to 1.2 x108 CFU/ml using a turbidity curve. The bacteria were 

then heat killed by incubation at 60°C for 1 h or fixed in 10% formalin. Bacteria were 

then aliquoted at 3.3 x109 CFU/ml and frozen at –80°C until their use as Ag for 

macrophage stimulation.  
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L929 SUPERNATANT 

The L929 fibroblast cell line was obtained from Dr. Don Cohen, University of Kentucky, 

and cultured in 75 mm Flask in 25ml  at 1x106 cells/ml of RPMI complete media for 7 

days. At the end of the seventh day, the supernatant containing M-CSF was aspirated, 

spun down and sterile filtered. Aliquots were made and stored at -800 C for future use in 

the generation of BMDM. 

CELL PREPARATION:  

Splenic Macrophages (SM): Mice were euthanized via carbon dioxide asphyxiation and 

the spleens aseptically removed and crushed into a single cell suspension. After washing 

and erythrocyte lysis with lysing buffer (Sigma, Aldirch, St. Louis, MO) at 2ml/spleen 

for three minutes at room temperature, the FcγR were blocked with normal rat IgG for 15 

minutes. The splenocytes were then incubated with a cocktail of FITC conjugated 

monoclonal antibodies against B220, CD5 and Ly6G in the dark for 30 minutes. This was 

followed by washing with MACS buffer and incubation with anti-FITC microbeads at 4-

8o C for 15 minutes. The purified macrophages were obtained by separating the magnetic 

bead bound and unbound cells using the Miltenyi AUTOMACS Cell Separator using the 

program Deplete-05. The resulting untouched macrophages were found to be 90-95% F4-

80 positive cells (Appendix A). The purified macrophages were cultured at 2.5x105 

cells/ml in 48 well plates (Costar, Corning, NY) and in RPMI fetal calf serum (FCS) at 

370C in a humidified 5% CO2 atmosphere.                                                                                                                                                                                                                             

Bone marrow derived macrophages (BMDM): Mice were euthanized via carbon dioxide 

asphyxiation and bone marrow derived cells were isolated from young (8-12 weeks) and 

aged (18-24 months) Balb/c mice by flushing the bone marrow from the femur and tibia 
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with HBSS media. After washing and erythrocyte lysis with red blood cell lysing buffer 

at 2ml/20x106 cells, the bone marrow cells were cultured at 2 x106 cells/ml in 24 well 

plates. The cells were cultured in RPMI complete media supplemented with 30% L929 

cell supernatant containing M-CSF. On days 4 and 6, the media was completely removed 

and new RPMI complete plus 30% L929 supernatant was added. On day seven the newly 

derived BMDM were isolated by removing the entire old media and adding 2ml of 

trypsin-versene (Lonza Biosceince, Walkersville, MD) per well in a six-well plate and 

incubating the culture for 30 minutes at 370 C. This was followed by adding RPMI 

complete to reduce the toxicity of the trypsin. The cells were then washed twice, 

resuspended, counted and used for different experimental conditions. The resulting 

BMDM were found to be 96% F4-80 and CD11b positive cells. The purified BMDM 

were cultured in RPMI complete at 370C in a humidified 5% CO2 atmosphere at 2 x105 

cells/ml/well. Bone marrow derived macrophages (BMDC) were similarly generated 

except that GM-CSF was used with IL-4 and trysin was not used. The cells were 

harvested on day 8 which expressed CD11c and other phenotypes of BMDC.                     

 Splenic B cells: Mice were euthanized via carbon dioxide asphyxiation and the spleens 

aseptically removed and crushed into a single cell suspension. After washing and 

erythrocyte lysis, the FcγR were blocked with normal rat IgG for 15 minutes. The 

splenocytes were then incubated with anti-B220 microbeads at 4-8o C for 15 minutes. The 

purified splenic B cells were obtained by separating the magnetic bead bound and 

unbound cells using the Miltenyi AUTOMACS Cell Separator using the program Possel-

1. The resulting B cells were found to be 97% B220 positive cells. B220-microbead 

purified splenic B cells were cultured in RPMI complete medium + 10% fetal calf serum 
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(FCS) at 370C in a humidified 5% CO2 atmosphere at 2 x 106 cells in 2 ml of complete 

medium and stimulated in the 24 well plates with LPS (10µg/ml), CpG (5µg/ml), 

Pam3CSK4 (5µg/ml) and HKSP (2 x 108 CFU/ml). The stimulation was done with the 

various ligands alone or together with either the PI3K inhibitors, Wortmannin or 

LY294002 at various concentration or with the GSK-3 inhibitor SB216763 at different 

concentrations for 72 h. Optimal culture conditions were determined in preliminary 

experiments. The supernatants were assayed for IgG3 or IgA as well as IgM, IgG2a, 

IgG2b or IgG1 by ELISA (Southern Biotech, Birmingham, AL).  

FLOW CYTOMETRIC ANALYSES  

 Control and LPS (1μg/ml) or Pam3CSK4 (1μg/ml), Pam2CSK4 (1μg/ml) as well as 

LTA(1μg/ml)  stimulated splenic macrophages were cultured for 24 hours and gently 

removed by scraping them off the plate. The cells were over 80% viable. These 

macrophages from the aged and the young mice were stained for surface expression of 

CD86 and F4/80 using directly conjugated flourochrome antibodies (BD Pharmingen) for 

30 minutes on ice. Newly generated BMDM were stained with anti-CD11b-FITC, anti-

F4/80-PE or anti-TLR-2-biotin and then PE-strepavidin. Also the BMDM were either left 

untreated or stimulated with LPS(1μg/ml), CpG(1μg/ml), P3CSK4(1μg/ml),  or HKSP  

and cultured for 24 hours and gently removed by scraping them off the plate. These 

macrophages from the aged and the young mice were stained with FITC-anti CD86 or 

FITC anti-I-Ek  class-II (BD Pharmingen) for 30 minutes on ice. B cells from the 72 hour 

cultures were collected, washed and resuspended in FACS buffer. They were blocked 

with normal rat IgG to prevent non-specific antigen binding and then biotin-conjugated 

anti-IgG3 and APC-anti-B220 were added and incubated for 30 minutes in the dark. The 
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cells were then washed two times and were incubated in dark for 15 minutes with PE-

streptavidin.  The cells were stained with B220-PE-Cy5, FITC-anti-IgA, FITC-anti-IgG1, 

FITC-anti-IgG2b, APC-anti-IgM, APC-anti-B220 and PE-anti-CD138. The cells were 

washed once and analyzed on a flow cytometer.  

CYTOKINE ELISA 

Cell free supernatants from either basal or activated purified splenic or bone marrow 

macrophages (2.5x105 cells/ml) were harvested following culture with or without TLR 

ligands or HKSP for 24 hours from predetermined optimal dose concentrations. The 

supernatants were assayed for cytokines, IL-10, IL-12(p40), IL-12(p70), IL-6 and TNF-α, 

by ELISA using OptEIA kits. The dilution of the capture antibody, the biotin-conjugated 

detection antibody and the streptavidin-conjugated horseradish peroxidase (HRP) for IL-

10, IL-12 (p70), IL-12(p40)  and TNF-α was 1:250; while 1: 1000 dilution of the 

detection antibody for IL-12 (p40), t 1:250. For the IL-6, the capture antibody was diluted 

at 1:500, the biotin-conjugated detection antibody was diluted at 1:1000 and the 

strepavidin-conjugated HRP was diluted at 1:2000. All dilutions were done in assay 

diluents, made from 1X PBS with 10% fetal bovine serum (FBS). The optical densities 

(OD) were read on an HTS 7000 plate reader (Perkin Elmer, Norwalk, CT) using the 450 

and 560nM wavelength. The results were expressed as mean +/-SE of triplicate 

determinations of supernatants from duplicate cultures. 

Ig ELISA 

IgG3, IgA, IgM, IgG2a, IgG2b or IgG1 from the 72 hour supernatants were assayed in 

accordance with a sandwich protocol. Briefly, 96-well  flat bottom high binding 
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polystyrene EIA/RIA microtiter plates (Corning Inc., Corning, NY) were coated  with 

100 µl of a purified goat anti-mouse capture Ab  at a concentration of 1 µg/100 µl coating 

buffer and incubated at 1 hour at room temperature for the IgG3 and the IgA ELISA. For 

the  IgM, IgG2a, IgG2b or IgG1 ELISA, the coating was done overnight with the goat 

anti-mouse Ig at 1:2000 dilution in coating buffer (Southern Biotec, #1100-01) in 1x PBS 

at 40 C. Reactions were blocked by adding 200 µl of 1x PBS containing 10% BSA 

(blocking buffer) to each well for 30 min at room temperature. Wells were then washed 

three times with 1x PBS containing 0.05% Tween 20 (washing buffer). Serial dilutions of 

the culture supernatants or of purified mouse IgG3 or IgA, IgM, IgG2a, IgG2b or IgG1, 

at a concentration of 0.5 µg/ml in blocking buffer, were added to each well (100 µl/well) 

and incubated for 2 hours at room temperature. Wells were washed thoroughly three 

times with washing buffer before receiving (100 µl/well) the detecting Ab conjugated 

with HRP, (Bethyl Laboratories), for IgG3 and IgA, and with alkaline phosphatase (AP) 

conjugated for IgM, IgG2a, IgG2b or IgG1, (Southern Biotec) at a concentration of 

1:10,000 to 1:30,000. After 1 h incubation at room temperature, wells were washed five 

times and 100µl of TMB substrate for the IgA and IgG3 and PNPP dissolved in 

phenlylamin buffer (Diethanolamine plusMgCl2, PH9.8) at 1mg of mg/ml for the IgM, 

IgG2a, IgG2b or IgG1 was added. The TMB substrate was stopped with 2M H2SO4. 

Wells containing the TMB substrate was measured for absorbance at 450 nm, while the 

PNPP were measured at 405 nm.  

 WESTERN BLOT 

The SM or BMDM from aged and young adult Balb/c mice were plated at 2 x 106 

cells/well in 500 μl of RPMI 1640 + 2% FCS in 24 well tissue culture plates. These cells 
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are allowed to rest for 4 hours to allow macrophage adherence and recovery from 

handling and then stimulated with 1μg/ml LPS or 1μg/ml Pam-3-CSK4, for 15 or 30 

minutes. These time points and doses were chosen after performing a detailed kinetic 

analysis. For inhibition of PI3 kinase pathway, macrophages were pretreated with 

wortmannin or LY294002. The reaction was stopped by adding 1.0 ml of ice cold 1x 

phosphate buffered saline (PBS). The cells were washed twice with 1.0 ml 1x PBS. The 

macrophages were then lysed in a lysis buffer at 100μL/5x106 cells (Cell Signaling 

Technologies, Beverly, MA), to which was added protease inhibitor cocktail (10x), 

(containing leupetin, EDTA, pepstatin), and phenyl methyl sulfonyl fluoride (PMSF) 

(1mM) (Sigma Chemical Co.  St. Louis, MO).  Nuclear and cytosolic fractions from the 

aged and young BMDM were obtained using the NE-PER nuclear and cytoplasmic 

extraction kit from Thermo Scientific (Rockford, IL) in accordance with the 

manufacturer’s instructions. The total protein content of the sample was determined by 

BCA protein assay (Pierce, Rockford, IL). Equal amounts of protein were separated by 

electrophoresis on sodium dodecyl sulfate-polyacrylamide gels 10% (SDS-PAGE) and 

were transferred to nitrocellulose membranes for Western blot analyses. The membranes 

were blocked with 2% milk and were then probed with  antibodies to: p-Akt (S473), Akt, 

p-GSK-3αβ and GSK-3, all of which were from Cell Signaling Technologies; or to PTEN 

and β-actin from Santa Cruz Biotechnology (Santa Cruz, CA). The immunoreactive 

proteins were then detected using horseradish peroxidase coupled secondary antibodies 

and the PICO Chemiluminescence substrate (Pierce Technology, Rockford, IL) and by 

exposing to Kodak X-omat film. The relative ODs of the protein bands were estimated 

using the Kodak Image Station software (Eastman Kodak, New Haven, CT). Band 
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intensities were determined by dividing the phosphorylated protein by the total protein. 

The blots were stripped with stripping buffer (62.5mM Tris, PH6.8, 2%SDS, 0.1M 2-

mercoptoethanol) for 25 minutes at 500 C and then probed with anti-beta actin (Sigma, St. 

Louis, MO) to correct for differences in protein loading. This was done by comparing the 

protein levels of actin to the various proteins of interest. 

REAL-TIME RT-PCR 

Purified SM or BMDM (3x106 cells/3ml)  were  stimulated with  1 μg/ml LPS  for 

30 minutes and RNA extracted by TriZol extraction kit  and then reverse transcribed to 

cDNA using the High Capacity  cDNA Archive  kit (Applied biosystems, Foster, CA). 

The cDNA was later amplified by real-time PCR in a 25μL reaction volume containing 

SYBR Green (QIAGEN, Valencia, CA) and analyzed using an ABI Prism Sequence 

detection system (Applied Biosystems, Foster City, CA). The experimental cDNA was 

tested in triplicate and normalized to 18S RNA. The RNA levels of p85, p110 and 18S 

were measured with QuantiTect PCR probes obtained from QIAGEN (Alameda, CA). 

 LIGHT MICRSCOPY 

Newly generated BMDM were evaluated under the Olympus light microscope at a total 

magnification of 40X and snap shots taken.  

STATISTICAL ANALYSIS 

Statistical differences between groups were evaluated using an unpaired Student‘s t test, 

or one way ANOVA.  In both tests statistical significance was concluded when p<0.05. 

Copyright © Mosoka Papa Fallah 2011 
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CHAPTER 3:  Role of phosphoinositide 3-kinase – Akt signaling pathway in 
the age-related cytokine dysregulation in splenic macrophages 
stimulated via TLR2 or TLR 4 receptors 

Introduction 

Numerous studies have established the senescence of the immune system in aged human 

and murine populations resulting in reduced effectiveness of both the innate and the 

acquired arms of the immune system of the elderly. As a result, older individuals are 

more susceptible to infections, particularly with Gram positive bacteria such as S. 

pneumoniae, and consistently demonstrate an impaired immune response to 

pneumococcal polysaccharide vaccine (159, 217, 218, 302). Secreted cytokines like IL-

12 and IL-6 help B-cells to produce increased IgG3 or IgA in the absence of help from T-

cells (17, 38, 64, 178, 230).  Both IgA and IgG3 promote opsonization of the bacteria. 

TNF-α is another pro-inflammatory cytokine that is produced by S. pneumoniae activated 

macrophages and also aids in the recruitment of neutrophils and macrophages, which 

phagocytose the opsonized bacteria (176, 201). 

 We have previously  shown that  upon stimulation with LPS, a TLR-4 ligand, 

aged SM secrete lower levels of the pro-inflammatory cytokines, IL-6, IL-12, and TNF-α, 

but  higher levels  of IL-10, resulting in cytokine dysregulation (62, 63, 65). Similar 

defects in TLR-induced pro-inflammatory cytokine secretion by aged splenic 

macrophages are also seen by other investigators (34, 298). As a result, TLR-4 activated 

aged macrophages or their secreted pro-inflammatory cytokines are not able to 

effectively provide support to B-cell mediated anti-capsular polysaccharide antibody 

responses (38, 114). Here we investigated whether or not similar cytokine dysregulation 

is exhibited when aged macropahges are stimulated with different types of TLR-2 ligands 
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that are relevant in the context of pneumococcal infections. Unlike other TLRs that form 

homodimers, the TLR-2 receptor complex is a heterodimer which gives it the ability to 

recognize a broader spectrum of ligands. Gram positive bacteria contain lipoproteins that 

are known to be recognized by TLR-2 resulting in the initiation of inflammation and 

control of bacterial infection (311). We also investigated this phenomenon in the context 

of heat killed S. pneumoniae (HKSP).  

 The lipoproteins or lipopeptides derived from them are differentially recognized 

by either the TLR2/6 heterodimer or the TLR2/1 heterodimer depending on whether the 

cysteine residue is diacylated or triacylated.  TLR2/1 recognizes a variety of bacterial 

lipopeptide/lipoproteins including mycobacterial lipoprotein, meningococcal lipoprotein 

and synthetic Pam3CSK4, while TLR2/6 recognizes mycoplasma lipoprotein, 

peptidoglycan and the synthetic Pam2CSK4 (349, 378). However, some studies show that 

TLR-2 can recognize some bacterial ligands, such as lipoteichoic acids (LTA) 

independent of TLR-1 or 6 (52). LTAs are more restricted to Gram positive bacteria than 

synthetic Pam2CSK4 and Pam3CSK4 like lipopeptides that can be found in both Gram 

positive and Gram negative bacteria (130, 318). LTA is a potent inducer of inflammatory 

cytokines in macrophages and human PBMC and is important for innate responses to 

Gram positive bacteria (97, 318, 378). 

In spite of the critical role of phosphatidyl inositol-3 kinase (PI3K) in modulating 

pro-inflammatory and anti-inflammatory cytokines in macrophages and dendritic cells 

(DC), little research has been done to investigate age-related changes in this important 

signaling molecule and its potential therapeutic value (173, 223).  PI3K is a lipid kinase 

that phosphorylates the inositide ring of PIP2 at the D3 position to generate PIP3.  PIP3 
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generated by PI3K activity serves as a docking site for the recruitment of signaling 

proteins via their pleckstrin homology domains. One of the kinases that is recruited to the 

membrane by PIP3 is the phosphoinositide-dependent kinase-1 (PDK-1), which then 

targets the serine-threonine kinase, Akt for phosphorylation at Thr-308. The activated 

Akt serves as a master kinase for many downstream substrates, including IKK and GSK-

3 (173). The levels of PIP3 can be down-modulated by PTEN (phosphatase and tensin 

homolog) and SHIP (Src-homology-2 containing inositol 5′-phosphatase), which are 

phosphatases that respectively target the D3 and D5 position of PIP3 converting it to 

PIP2 (223).  

Recent studies  show that PI3K signaling also plays a role in most TLR signaling 

as  inhibition of PI3K with pharmacological inhibitors results in differential regulation of  

anti- and  pro-inflammatory cytokines (108, 226, 308). In addition, it has been shown that 

the Class IA PI3K are activated after stimulation via diverse TLRs such as TLR2, 

TLR3,TLR4, TLR5, TLR9 and also the IL-1R signaling pathway (108). However, the 

connection between the TLR signaling and PI3K has recently been elucidated in gene 

knockout studies (215). These resuts show that MyD88 directly interacts with the p85 

subunit of PI3K (194). The PI3K pathway is known to negatively regulate the TLR 

induced production of pro-inflammatory cytokines (108, 226, 284, 308). Moreover, there 

is some evidence that this pathway is required for IL-10 production (290, 308). Hence, 

we questioned if PI3K levels are elevated with aging, and if inhibiting PI3K in aged SM 

restores the production of pro-inflammatory cytokines upon stimulation with either TLR 

ligands or HKSP. We found that there is an age-associated increase in the amount of 

PI3K subunit specific mRNA and its activity as shown by increased phosphorylation of 
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AKT and GSK-3. Inhibition of the PI3K-AKT signaling pathway enhances TLR2 and 

HKSP induced pro-inflammatory cytokines and decreases the anti-inflammatory cytokine 

levels in both the aged and young adult macrophages.  
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RESULTS 

 Age-associated cytokine dysregulation correlates with an enhancement of Class IA PI3K 

activity in TLR-4 stimulated macrophages. 

We have previously shown that LPS activated aged splenic macrophages exhibited a 

cytokine dysregulation with a decrease in the pro-inflammatory cytokines but an increase 

in IL-10, an anti-inflammatory cytokine (63). In these experiments macrophages were 

purified by adherence or by positive selection with anti-CD11b beads. In order to 

establish the role of PI3 kinase in this cytokine dysregulation and to avoid the inadvertent 

activation of splenic macrophages by either adherence or positive selection with CD11b 

magnetic beads, we purified splenic macrophages using negative selection procedures. 

This method involved staining splenocytes with anti-CD5-FITC, anti-B220-FITC and 

anti-LY6G-FITC and using anti-FITC coupled magnetic beads to remove non-

macrophages.   When these negatively selected macrophages from aged mice were 

stimulated with  LPS  they showed an increase in IL-10 secretion (Figure 3.1A) and a 

decrease in production of pro-inflammatory cytokines, IL-12(p40), IL-6 and TNF-α 

(Figure 3.1B)  compared to similar cells from young adult mice. Thus, these negatively 

selected SM continued to exhibit the same cytokine dysregulation that was observed with 

macrophages purified by other methods. 

We questioned if the observed dysregulation of cytokine secretion by the TLR-4 

activated SM was due to the differential expression of PI3 kinase Class I isoform of PI3K  

expressed in leukocytes, B-cells, T-cells, macrophages, and consistently shown to be a 

negative regulator of pro-inflammatory cytokines upon TLR stimulation (139, 188, 194, 
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219, 308). Hence, we examined our previously published microarray data (65) to 

determine if there were differences in the expression of the regulatory and the catalytic 

subunits (p110) of Class I PI3K between the young and the aged. The results indicated 

that there was a statistically significant increase in the expression of p110δ (Figure 3.1C) 

and p85β (Figure 3.1D) in aged compared to young adult murine SM, stimulated with 

LPS for six hours. These findings were confirmed by a quantitative reverse transcriptase 

real time polymerase chain reaction (qRT-PCR) which showed an increase in both p110δ 

(Figure 3.1E) and p85β (Figure 3.1F) in aged compared to  young adult macrophages. 

The increased magnitude of differences between young and aged in qRT-PCR versus 

microarray data could be due to the differences in macrophage isolation between the two 

studies (positive versus negative selection) and the time of stimulation (30 minutes versus 

6 hours). Therefore, we postulated that the age-associated decrease in pro-inflammatory 

cytokines and increase in anti-inflammatory cytokines was due to increased activity of 

PI3K.  

 Age-associated increase in the activity of PI3K as shown by changes in phosphorylation 

of Akt. 

It has been reported that the phosphorylation of Akt was an indirect way to determine the 

activity of PI3K (135, 308, 346) since PI3K activation resulted in phosphorylation of 

Threonine-308 and  serine-473 on Akt in a temporal manner leading to an increase in its 

activity (225, 226, 284). Therefore, levels of p-Akt were measured in young and aged 

SM, as a surrogate measure of PI3K activity. Western blot analysis showed that the 

phosphorylation of Akt was higher in aged compared to young adult SM stimulated with 

LPS. The age-associated increase in p-Akt could be seen as early as 15 minutes of 
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stimulation with LPS and was 2.4 times more in aged than the young adult (Figure 3.2A). 

The total levels of AKT (normalized to actin) were comparable in the elderly and the 

young mouse macrophages. 

GSK-3 is a direct downstream substrate of Akt and has been shown to be mainly 

involved in the differential regulation of the anti- and pro-inflammatory cytokines. GSK-

3 was phosphorylated on Serine-9 resulting in its inactivation (225, 382). An age-

associated increase in the phosphorylation of GSK-3 would provide additional support to 

our hypothesis that the activity of PI3K/Akt pathway was increased in aged splenic 

macrophages.  We employed western blot analysis to determine if the phosphorylation 

status of GSK-3 between the aged and the young correlated with the phosphorylation 

status of Akt. The phospho- GSK-3αβ subunits were normalized to the total GSK-3β 

subunit. GSK-3 phosphorylation was 3-fold more in the aged than the young by 15 

minutes after stimulation with LPS, the TLR-4 ligand (Figures 3.2B). Total GSK-3β 

levels (normalized to actin) were similar between the young and the aged.  

A defect in PTEN can lead to increased levels of PIP3 which in turn can result in 

increased PI3 Kinase activity (51). Tachado et al. have shown that in asymptomatic HIV 

positive patients TNF-α production by TLR-4 stimulated alveolar macrophages was 

suppressed due to a defect in PTEN expression leading to increased PI3K activity (346). 

Hence, we decided to quantify age-associated differences in total PTEN between the aged 

and the young adult splenic macrophages by Western blot. Surprisingly, there were no 

statistically significant differences in the total PTEN at either the basal level or upon 

activation with LPS (Figure 3.3A). We repeated this experiment using Pam2CSK4 as the 

ligand for TLR-2. Again, there were no differences in both the basal level or upon 



71 
 

stimulation with the synthetic TLR2/6 ligand (Figure 3.3B).  Thus, there was an increase 

in the activity of PI3K, as demonstrated by increased phosphorylation of AKT and GSK-

3, in aged macrophages stimulated with TLR-4 ligand that is independent of the activity 

of PTEN. 

Cytokine dysregulation in aged macrophages stimulated via TLR-2 and HKSP 

TLR2 was required for protection against S. pneumoniae infection (86, 222). 

Therefore, we tested if age associated cytokine dysregulation could be shown with 

Pam3Csk4, a synthetic ligand for TLR2/TLR1 heterodimer. It was observed that the aged 

splenic macrophages stimulated with Pam-3-CSK4 produced higher levels of IL-10 

compared to young adult macrophages (Figure 3.4A). However, there was a decrease in 

pro-inflammatory cytokines, such as IL-12 (Figure 3.4B) and IL-6 (Figure 3.4C).  

Since, there was an increased incidence of pneumococcal infections in the elderly, 

we inquired if this may be partly due to a similar dysregulation in the cytokine response 

of macrophages to stimulation with S. pneumoniae. To address this question, we 

stimulated aged and young adult purified SM with inactivated S. pneumoniae and assayed 

the cytokine response. The results demonstrated that there was an age-associated defect 

in TNF-α and IL-12(p40) production in the aged compared to the young adult 

macrophages (Figure 3.4D). Thus, age-associated cytokine dysregulation demonstrated 

with LPS can also be seen in both TLR-2 and HKSP activated SM. 
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Cytokine dysregulation in aged macrophages is seen with ligands that stimulate TLR-2 

receptors 

           The lipoproteins or lipopeptides derived from bacteria are differentially recognized 

by either the TLR2/6 heterodimer or the TLR2/1 heterodimer depending on whether the 

cysteine residue is diacylated or triacylated.  TLR2/1 ligands are typified by synthetic 

Pam3CSK4 while the natural ligands include mycobacterial lipoprotein and 

meningococcal lipoprotein.  TLR2/6 recognizes the synthetic ligand Pam2CSK4, as well 

as mycoplasma lipoprotein and peptidoglycan (349, 378). However, some studies show 

that TLR-2 recognized bacterial ligands such as lipoteichoic acid (LTA) independent of 

TLR-1 or 6 (52, 275, 314, 390). Having shown that aged SM have a defect in their ability 

to secrete cytokines upon stimulation with Pam3CSK4, we wondered if their responses to 

Pam2CSK4 and/or LTA were preserved to make them better candidates for adjuvants for 

the aged. Such an analysis wass important since some studies found that different TLR2 

ligands used distinct signaling pathways and had different in vivo effects while others 

found the two ligands use similar signaling pathways (168).  

 We stimulated SM from young and aged with the TLR2/6 ligand, Pam2CSK4 for 24 

hours and assayed for IL-10 (Figures 3.5A) and IL-12(p40) (Figures 3.5B). As shown in 

Figure 3.5A, the aged SM produced higher IL-10 than the young adult SM (almost 

undetectable) when stimulated with Pam2CSK4, but lower levels of IL-12 (p40) than the 

young (Figure 3.5B).   LTA is generally recognized by a TLR2/6 heterodimer (150) in 

macrophages similar to Pam2CSK4. Accordingly, we demonstrated that LTA was able to 

induce higher levels of IL-10 (Figure 3.5C) but lower levels of IL-12(p40) (Figure 3.5C) 

in the SM from aged than young mice. Since TLR4 stimulation induced increased 
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activation of the PI3-Akt-GSK pathway in aged versus the young macrophages, we tested 

if stimulation with the various TLR2 ligands also resulted in greater activation of this 

pathway in the aged. Western blot analysis of lysates from aged and young SM 

stimulated with Pam2CSK4 showed that there was a 2.7 and 3.5 fold increase in p-AKT 

in the aged versus the young adult macrophages stimulated for 15 and 30 minutes 

respectively (Figure 3.6A). We also investigated the effect of age-associated increase in 

the phosphorylation of AKT on phosphorylation of its downstream target, GSK-3, in the 

context of TLR2/6 (Pam2CSK4). The Western blot analysis showed that the levels of P-

GSK-3 were 3.3 and 10 fold more in the aged than in the young SM (Figure 3.6B) at zero 

and 15 minutes of Pam2CSK4 stimulation respectively.  Similarly stimulation of 

macrophages with LTA also demonstrated increased levels of P-GSK-3 in the aged 

compared to the young (Figure 3.6C). Thus PI3K pathway activity was increased in the 

aged SM upon stimulation with both TLR4 and TLR2 ligands. 

 PI3K inhibitors partially rescue the age-associated defect in TLR-4 induced cytokine 

production. 

 We wondered if the increase in the activity of PI3K had a role in the decreased 

production of the pro-inflammatory cytokines and increased IL-10 secretion in the aged 

SM (284, 308).  Hence, SM from aged and young adults were treated with either 

LY294002 or wortmannin, two well characterized PI3K inhibitors, and then stimulated 

with LPS, the TLR-4 ligand to initiate cytokine production. At 2 and 5 μM of LY294002 

there was a reduction in the levels of IL-10 in both aged and young SM stimulated with 

LPS (Figure 3.7A). At 50 nM, wortmannin had a more profound inhibitory effect on IL-

10 production by aged compared to young macrophages (Figure 3.7A). As predicted, 
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treatment with LY294002 resulted in the enhanced production of IL-12(p40) in aged SM, 

but not in the young adult SM (Figure 3.7B). The lack of enhancement in the young SM 

was surprising but was reproducible. However, when wortmannin was used as an 

inhibitor, there was a small but significant increase in IL-12(p40) in both age groups at 5 

nM and 50 nM (Figure 3.7B) but the magnitude of increase in IL-12 with wortmannin 

was smaller in the young than in the aged.  Thus, cytokine dysregulation in the aged 

appears to be linked to a defect in the PI3K-Akt pathway, and this can be partially 

rescued by inhibiting PI3K with either LY294002 or wortmannin. 

To be certain that the PI3K specific inhibitors were indeed blocking the PI3K/Akt 

pathway, Akt activation was evaluated by quantifying p-Akt levels in young 

macrophages treated with wortmannin or LY294002. LPS stimulation increased p-Akt 

levels compared to unstimulated cells. Inhibition of PI3K with wortmannin in the 

presence of LPS resulted in 1.6 fold reduction in the level of p-Akt compared to cells 

activated with LPS in the absence of the inhibitor at the 30 minute time point 

(Figure3.7C; Lanes 3 and 4). Similarly with LY294002, another PI3K inhibitor, there was 

a reduction in LPS induced activation of Akt by 3.7 fold at the 30 minute time point 

(Figure3.7C; Lanes 3 and 5). To demonstrate that phosphorylation of GSK-3 in SM was 

indeed dependent on the PI3K/Akt pathway, we determined if inhibition of PI3K with 

either LY294002 or wortmannin affected p-GSK-3 levels (225). As shown in Figure 3.7D 

stimulation of macrophages with LPS resulted in an increase in GSK-3 phosphorylation 

at 15 and 30 minutes of stimulation. Treatment with wortmannin or by LY294002 

decreased GSK-3 phosphorylation by 2.1 and 2.8 fold compared to untreated group after 

30 minutes of LPS stimulation.  Thus, activation of PI3K with TLR-4 ligand resulted in 



75 
 

an increase in phosphorylation of Akt and GSK-3, which was reduced significantly by 

inhibition of PI3K. 

  The ability of LY294002 or wortmannin to modulate the age-associated defect in PI3K 

signaling on cytokine production can also be shown with TLR-2 ligands 

We decided to investigate the possibility that decreased secretion of pro-

inflammatory cytokines in response to TLR2 ligands might also be rescued by PI3K 

inhibitors because TLR2 signaling used the same MyD88 adaptor as the TLR4 receptors 

(86, 134, 332). Purified SM from aged and young adult were pre-treated with LY294002 

or wortmannin and then stimulated with Pam-2-CSK4 (1μg/ml) or LTA. Treatment with 

the LY294002 reduced IL-10 secretion in the presence of both Pam2CSK4 and LTA 

(Figure 3.8A) and increased IL-12(p40) secretion when either Pam2CSK4 (Figure 3.8B) 

or LTA (Figure 3.8C) was used as the TLR-2 agonist in the aged SM. Interestingly, the 

PI3K inhibitor induced very little or no increase in cytokine secretion by young 

macrophages. Similar results were obtained when Pam-3CSK4 was used to stimulate 

macrophages in the presence of the PI3K inhibitor. Thus IL-10 was reduced in both aged 

and young splenic macrophages when PI3K was inhibited, (Figure 3.9A). Moreover, 

treatment with LY294002 resulted in an increase in IL-6 (Figure 3.9B) and IL-12(p40) 

(Figure 3.9C) in aged splenic macrophages, an effect that was not seen in the young adult 

(Figures 3.9 B and 3C).  

 Thus, PI3K inhibition resulted in reduced secretion of IL-10 but increased pro-

inflammatory cytokines in the aged SM when any of the TLR-2 ligands were used to 

stimulate the macrophages. Moreover, PI3K inhibition regulated cytokine secretion more 

in the aged than in the young adult. 
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 PI3K inhibition enhanced the HKSP mediated induction of pro-inflammatory cytokines 

in aged SM 

 As shown in Figure 3.4D, HKSP induced proinflammatory cytokines were decreased in 

aged SM. HKSP had been shown to interact with splenic macrophages via TLR-2, 4 and 

9 and to induce the secretion of both pro- and anti-inflammatory cytokines (85, 86, 201). 

Therefore, we tested if the impairment in HKSP-induced production of pro-inflammatory 

cytokines was also dependent on heightened PI3K activity in aged SM, using LY294002 

and wortmannin. Stimulating aged SM with HKSP in the presence of LY294002 resulted 

in enhanced HKSP induced secretion of IL-6 (Figure 3.10A). Similarly, treatment with 

wortmannin also enhanced secretion of both IL-6 (Figure 3.10B) and IL-12(p40) (Figure 

3.10D) by HKSP stimulated aged macrophages.  IL-12(p70) was measured (Figure 

3.10C) since the p40 subunit was also shared with IL-23. HKSP alone did not induce 

much p70 but treatment with wortmannin dramatically enhanced p70 levels. Similarly, 

induction of IL-12 (p70) by Pam-3-CSK4 was also enhanced by PI3K inhibition (data not 

shown).  

 Age-associated cytokine dysregulation involving TLR-2 and HKSP is due to a defect in 

the Akt-GSK-3 signaling axis 

Here we asked if the ability of the PI3K inhibitors to enhance TLR2 induced 

secretion of pro-inflammatory cytokines was associated with a reduction in the activation 

of p-Akt and p-GSK-3αβ, two downstream targets of the PI3K pathway.  Inhibition of 

PI3K with 20μM of LY294002 in the presence of Pam3CSK4 (1μg/ml) resulted in 40% 
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reduction in P-Akt compared to P3C activation without the inhibitor (Figure 3.11A: lanes 

2 and 3) when the densitometry of P-Akt was compared to total Akt. Since the loading 

was unequal between lanes 2 and lane 3, we also compared the band intensity of p-Akt to 

that of ß-actin band which showed a 76% reduction in p-Akt in LY pretreated cells 

compared to P3C stimulation without the inhibitor (Figure 3.11A: lanes 2 and 3). 

Treatment of Pam3CSK4 stimulated macrophages with wortmannin at 30 minutes 

resulted in a 28% reduction in p-GSK-3αβ (Figure 3.11B: lanes 3 and 4). When 

LY294002 was used, TLR-2 stimulated macrophages at 30 minutes showed a 56% 

reduction in p-GSK-3αβ levels (Figure 3.11B: Lanes 3 and 5). Given the consistency in 

the reduction of p-GSK-3αβ upon stimulation of purified SM with both TLR-2 and TLR-

4 ligands in the presence of PI3K inhibitors, it was of interest to evaluate the effect of 

stimulating aged SM with HKSP in the presence of LY294002.  HKSP was effective in 

activating the PI3K-Akt signaling pathway, as indicated by an increase in the 

phosphorylation of GSK-3 (Figure 3.11C: Lanes 1 and 2). Inhibition of PI3K with 

LY294002 resulted in a 52% reduction in the levels of p- GSK-3αβ (Figure 3.11C: Lanes 

2 and 3). Thus, activation of PI3K with TLR-2 or HKSP resulted in an increase in 

phosphorylation of Akt and GSK-3αβ, which was reduced significantly by inhibition of 

PI3K.  

 Effect of PI3K inhibition on cytokine secretion by SM stimulated with interleukin-1β (IL-

1 β) is similar to TLR induction. 

Thus far we have shown an age associated cytokine dysregulation using ligands 

for TLR1/2, TLR2/6 and TLR4 receptors, all of which use the MyD88/Mal heterodimer 

for signal transduction. One cannot distinguish if signal transduction via MyD88 or Mal 
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was different in the aged compared to the young. Hence, we tested the effect of aging on 

IL-1β induced responses of macrophages, since IL-1β had been shown to use MyD88 but 

not Mal for signal transduction (299). Moreover IL-1β was critical for the clearance of S. 

Pneumoniae via both macrophage activation and anti-polysaccharide antibody production 

by B-cells (64, 167). Very little was known about the role of the PI3K-AKT-GSK-3 

signaling axis in regulating IL-1β-mediated induction of IL-10 and the pro-inflammatory 

cytokines in the context of aged splenic macrophages. Inhibition of PI3K pathway with 

LY294002 resulted in a suppression of IL-1 induced IL-10 secretion (Figure 3.12A) but 

an enhancement of IL-6 secretion (Figure 3.12B) similar to our results with TLR2 and 

TLR4 ligands. This suggested that major target of PI3kinase-Akt-GSK-3 axis was the 

MyD88 pathway in macrophages, which was consistent with the recent findings that the 

p85 subunit of PI3K directly interacts with MyD88 (Laird et al 2009). 
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Discussion 
 
      Immune responses to infection, in particular to encapsulated bacteria, are decreased in 

the aged. Previously, we have shown that antibody responses to polysaccharide antigens, 

one of the protective antigens for infections with pneumococcal bacteria, are decreased in 

the aged, in part due to defects in macrophage function (63). Using TLR-4 activation as a 

model system we now show that the SM from the aged exhibit a cytokine dysregulation 

phenotype with a decrease in pro-inflammatory cytokines required for B cell activation. 

Using gene expression studies we also showed that this is due to a decrease in the 

activation of the MyD88 signaling pathway leading to a decrease in ERK activation with 

an aberrant increase in p38 MAP kinase activation (65).  Since the immune responses to 

Gram positive bacteria, such as S. pneumoniae, are also dependent on TLR2 activation 

(86, 318), and since TLR2 ligands also utilize the MyD88 signaling pathway, we 

hypothesize that SM from the aged would exhibit a cytokine dysregulation phenotype 

with synthetic TLR2 ligands or intact bacteria similar to that seen with TLR4 activation. 

Indeed, studies presented here demonstrate that activation with HKSP or any of the TLR-

2 ligands, Pam3-CSK4, Pam-2-CSK4 or LTA, induces lower levels of pro-inflammatory 

cytokines such as IL-12, but higher levels of anti-inflammatory cytokines such as IL-10 

in SM from the aged macrophages compared to macrophages isolated from young mice. 

Together with our previous studies, these results demonstrate that immunosenescence 

affects responses of SM to both TLR2 and TLR4 ligands.  

To understand the signaling mechanism governing this age-associated cytokine 

dysregulation, we evaluated the activity of PI3K, a well established switch-factor for pro- 

and anti- inflammatory cytokines (108, 290, 308). An analysis of our previous data on 
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gene expression in highly purified SM (65)  reveals that there is an age-associated 

increase in expression of genes encoding both the catalytic (p110δ) and the regulatory 

(p85β) subunits of the Class IA PI3 kinase, which is further validated by qRT real time 

PCR. There is an increase in functionally active PI3-kinase in the aged macrophages as 

shown by an increase in the phosphorylation of its downstream target, Akt, in splenic 

macrophages stimulated by ligands for TLR-2 and TLR-4. Moreover, phosphorylation of 

GSK-3, an immediate downstream target of Akt (139, 225), is also increased in TLR-2 

and TLR-4 stimulated SM from the aged compared to the young. Thus, the PI3K-Akt-

GSK-3 pathway that is known to negatively regulate pro-inflammatory cytokine 

production is upregulated in macrophages from the aged stimulated with TLR2 or TLR4 

ligands, as well as HKSP.  

We next asked if inhibitors of PI3K could restore pro-inflammatory cytokine 

production and decrease IL-10 production by TLR-2 or 4 stimulated macrophages from 

the aged. Accordingly, we show that PI3K inhibitors enhance IL-12(p40) production and 

decrease IL-10 secretion by aged mouse SM stimulated with either TLR-2 or TLR4 

ligands.  However, under these conditions PI3K inhibitors do not have much effect on 

cytokine secretion by young adult SM stimulated with TLR-2 or 4 ligands. Despite 

previous studies demonstrating specificity of wortmannin and LY294002 to Class I 

isoform, more recent studies find that one of the Class II isoforms is also inhibited by 

these reagents, albeit at 50-100 fold higher concentration (135, 238, 335, 338, 367). 

Currently we are devising an RNAi approach to establish the relative importance of PI3K 

isoforms in age-related cytokine dysregulation.     
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         Our finding that in vitro stimulation of purified SM produced higher IL-10 but 

lower pro-inflammatory cytokines in the aged than in young is consistent with other 

published studies (34, 63, 277, 298). In contrast, there are several reports that IL-6 levels 

are increased in the elderly and contribute to basal inflammation (47, 102). This apparent 

inconsistency between the in vitro and in vivo cytokine profile are attributed to the 

criteria used to select elderly subjects (9). It is known that the frail elderly already have 

predisposing underlying diseases that impact on basal inflammation, whereas, in the 

healthy elderly, the inflammation is controlled by the increase in the levels of IL-10 (9, 

198). Thus, Njemini  and colleagues (2007) show that IL-6 levels in healthy elderly are 

less than in young adults but the levels of IL-6 were more  in elderly than young when 

there is evidence of infection (257). Additionally, work from Kovacs’ laboratory (119)  

further confirms the in vitro defect in production of pro-inflammatory cytokines by LPS 

activated macrophages from the aged. Interestingly, IL-6 knockout mice made more 

TNF-α, IL-1, IL-12 than young wildtype mice suggesting a role for systemic IL-6 in the 

cytokine defect of aged mice. However, IL-6 regulation is complex since young IL-6 

knockout mice makes less IL-1, IL-12 and TNF-α than young wild type mice (119).  

Working with monocyte derived dendritic cells (MDDC) from the elderly 

Agrawal and colleagues (5) show that the age-associated increase in the pro-

inflammatory cytokines is due to a decrease in PI3K activity and increased activity of p38 

MAP Kinase. These discrepant results could be due to the use of SM in our study; while 

human peripheral blood monocyte derived dendritic cells are used by Agrawal and 

colleagues. In contrast to this study with DCs and in agreement with our studies Panda 

and colleagues report that elderly human myeloid and plasmacytoid DC from peripheral 



82 
 

blood mononuclear cells exhibit a defect in the production of proinflammatory cytokines 

(277).  

Using Zymosan, yeast derived TLR-2 ligand, to stimulate purified SM, Boehmer 

and colleagues (35) find that IL-6 is decreased in the aged. However, there was no 

difference in the cytokine levels between the aged and the young adult in terms of IL-10. 

This apparent contradiction from our findings that IL-10 is higher in the aged compared 

to the young can be explained by putative differences in the signaling mechanism 

between Zymosan and the other TLR2 ligands used here. Zymosan interacts with dectin-

1 to stimulate production of pro-inflammatory cytokines (84, 87, 90), while Pam-3-CSK4 

is not known to signal via dectin-1 to induce cytokine production (113). A second 

plausible reason for this apparent contradiction could be due to the method by which the 

macrophages are purified. We used negative selection to isolate the splenic macrophages 

and thus keep them unperturbed. Boehmer and colleagues used adherence to isolate 

macrophages, which is known to activate macrophages (80, 175). 

Although, we observed the expected negative effects of PI3K on pro-

inflammatory cytokines in the aged, the effects of PI3K inhibitors on cytokine secretion 

by young SM are very modest and are seen only in certain groups. Interestingly most of 

the studies performed with young macrophages to investigate the role of PI3K and 

cytokine regulation use human monocytes, murine peritoneal macrophages, alveolar 

macrophages or macrophage-derived cell lines like THP-1 and RAW 264.7 cells, but not 

SM (215, 226, 284, 308, 346, 375). It is possible that the PI3K pathway may not have 

major negative effects on TLR signaling in young adult SM, due to the low expression of 
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the PI3K enzyme. More profound effects are seen in the aged due to increased expression 

of PI3K subunits.  

The association between the increased activity of PI3K and a decrease in PTEN 

expression is well established (223). PTEN promotes pro-inflammatory activity of 

macrophages (56). MDDCs from elderly have increased PTEN levels (5). However, we 

do not note any difference in the level of PTEN between aged and young adult SM. This 

apparent contradiction regarding age associated changes in PTEN levels may also be due 

to differences between macrophages and DCs and/or due to differences between human 

and mouse.  

We propose a model (Figure 3.13) in which there is a heightened activity of PI3K 

in the aged macrophages (Figure 3.13A) resulting in increased phosphorylation of Akt. 

The increased activity of Akt results in a further phosphorylation of GSK-3 and reduction 

in its activity. We propose that the reduction in the activity of GSK-3 affects transcription 

factors like CREB, AP-1 and p65NFκB via inhibitory phosphorylation or export from the 

nucleus; resulting in increased IL-10 and a decrease in the pro-inflammatory cytokines 

such as IL-12, IL-6 and TNF-α. Inhibiting PI3K reverses this phenotype to that of a 

young adult (Figure 3.12B) with increases in the pro-inflammatory cytokines over IL-10. 

We are currently investigating the effect of modulating PI3K on transcription factors 

CREB, AP-1 and p65NFκB. Here, we have included TLR2/TLR6 heterodimers and IL-

1R since we find similar results with Pam2CSK4 (TLR2/6 ligand) and IL-1. 

The biological significance of our findings is that these inhibitors can reverse the 

effect of aging on macrophage function. We show that macrophages and macrophage-
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mediated cytokine defects in the aged are critical factors responsible for the impaired 

anti-CPS antibody response in the aged (38, 63). We also show that the humoral response 

of the aged to PS or TNP-Ficoll and TNP-LPS, representative TI antigens, is enhanced if 

aged B-lymphocytes are provided with either young macrophages or macrophage-derived 

cytokines like IL-6 and IL-1β (63, 114). Others show that antibody responses to infection 

with S. pneumoniae are enhanced in the presence of IL-12 (17, 230, 341). We propose 

that PI3K inhibition can enhance the macrophage-derived cytokines that are known to 

provide the signal 2 needed to activate B cells and mount an effective antibody response 

to S. pneumoniae and/or PPS vaccines in the elderly. In conclusion, our novel observation 

that the age-associated increase in PI3K-Akt activity is a signaling defect that contributes 

to the cytokine dysregulation observed in the aged and that PI3K inhibitors may be useful 

as unique adjuvants to enhance immune responses in the aged. 
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Figure 3.1: Age-associated changes in cytokine production and levels of PI3K 

subunits in SM stimulated via TLR4.   

SM (2.5x105 cells/ml) from young (2-4 months) and aged (20-24 months old) mice 

purified by negative selection using an AUTOMACS cell separator were stimulated with 

LPS (1µg/ml) for 24 hours (Panels A and B) and the supernatants were collected and 

analyzed for IL-10 (Panel A) or  pro-inflammatory cytokines, IL-12(p40), IL-6, and 

TNF-α (Panel B) . Panels C and D represent levels of RNA for p110δ and p85β subunits 

derived from microarray analysis performed on gene expression in young and aged 

macrophages. QRT-PCR analysis of mRNA was shown in panels E and F for P110δ and 

p85β subunits respectively of PI3 kinase in purified splenic macrophages from young and 

the aged. The Ct values for each probe were normalized to the 18S RNA. The symbols * 

and #  indicate the statistical significance and was set to p<0.05.  

 

 

 

 

 

 

 

 

 



87 
 

 

Figure 3.2: The age-associated increase in phosphorylation of AKT and GSK-3 in 

TLR-4 stimulated macrophages. 

Purified young adult and aged SM were stimulated with LPS 1μg/ml for 15 minutes. 

Panels A and B show the phosphorylation of Akt and GSK-3 respectively in the aged and 

the young splenic macrophages stimulated with LPS. The blots were stripped and probed 

for total AKT and actin   in panel A and for total GSK-3β and actin in panel B. The 

numbers represent densities of bands normalized to total AKT with the values for 

unstimulated aged macrophages set to one.  

The figure in panel A is a composite of blots for P-Akt, Akt and actin from the same 

membrane that was stripped and reprobed. The same method was employed to assemble 

panel B for P-GSK-3αβ, GSK-3β and actin.  The young and aged cell lysates were 

electrophoresed on the same gel and the membranes were exposed for identical time 

periods. Although a detailed kinetic analysis of LPS stimulation was performed, only the 

lanes representing 0 minutes and 15 minutes time points was shown for clarity. 
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Figure 3.3. Age-associated increase in PI3K activity is not due to changes in the 

levels of PTEN 

Lysates from young and aged SM stimulated with LPS (1µg/ml) for 15 minutes (Panel A) 

or P2C (Panel B) and analyzed by SDS PAGE and Western blots. The blots were first 

probed for PTEN and then for actin after stripping. The graphs showed the arbitrary units 

of band intensities normalized to actin with the values for unstimulated aged 

macrophages set to one.The final figure was a composite of blots for PTEN and actin for 

aged and young samples run on the same membrane that was stripped and reprobed. The 

intervening space, as well as the right end were for the 30 minute time point but were 

deleted for consistency and clarity. 
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Figure 3.4: TLR-2 and HKSP-mediated cytokine dysregulation in young and aged 

splenic macrophages. 

Macrophages (2.5x105 cells/ml) purified from the spleens of young and aged mice were 

stimulated with the TLR-2 agonists, Pam3CSK4 (1µg/ml) (Panels A, B and C) or killed 

S. pneumoniae (2x106 CFU/ml) (panel D) for 24 hours. The supernatants were collected 

and analyzed by a sandwich ELISA for IL-10 (Panels A), IL-12(p40) (Panels B and D), 

IL-6 (Panel C) and TNF-α (Panel D). In panel A, IL-10 levels in unstimulated young and 

aged macrophages were undetectable. Results from one of three experiments were shown 

as Mean + SE values of 8-12 determinations. The statistical significance of differences in 

cytokine secretion between the young and the aged was indicated by the symbols * and 

@ and was set to p<0.05. 
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Figure 3.5: Age-related cytokine dysregulation in response to stimulation of 

macrophages with TLR2 ligands.  

 SM (2.5x105 cells/ml) from young and aged Balb/c mice purified by negative selection 

were stimulated with either Pam2CSK4 (1µg/ml) (Panels A and B) or LTA (1μg/ml) 

(Panel C). Supernatants were collected at 24 hours and analyzed for IL-10 (Panel A and 

C) or IL-12(p40) (Panels B and C). The results were shown as mean +/- SE of duplicate 

determinations from triplicate cultures, and representated three independent experiments. 

The symbols * and ** indicated the statistical significance (Student’s t test) of differences 

in cytokine secretion between the young and the aged and was set to p<0.05.  
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Figure 3.6: Age-related increase in activation of AKT and GSK-3 in splenic 

macrophages stimulated with TLR2 ligands.   

Panel A represents Western blot analysis of levels of P-AKT, total AKT and actin 

loading control; while Panel B represents P-GSK-3, total GSK-3 and actin loading 

control in Pam2CSK4 stimulated purified SM from the aged. The blots were 

stripped and probed for total AKT and actin. The numbers represent densities of 

bands normalized to total AKT with the values for unstimulated aged 

macrophages set to one. Panel C represents levels of P-GSK-3, total GSK-3 and 

actin loading control in LTA stimulated purified splenic macrophages. The final 

figures in both B and C are a composite of blots for P-GSK-3, GSK-3 and actin 

from the same membrane that was stripped and reprobed. The intervening deleted 

space in the middle was for 30 minutes but this was removed for the sake of 

clarity 
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Figure 3.7: PI3K inhibitors partially rescue the age-associated defect in TLR-4 

induced cytokine production by inhibiting phosphorylation of Akt and GSK-3. 

The graphs show cytokine secretion by purified aged and young adult SM pretreated with 

either 2 or 5 μM LY294002 or 5 or 50 nM wortmannin (panels A and B) for 60 minutes 

and then stimulated with LPS (1µg/ml) for 24 hours. Supernatants were collected and 

assayed for IL-10 (panel A) and IL-12 (p40) (panel B) by sandwich ELISA.  Data were 

presented as mean+/-SE values of 6-10 determinations and were representative of three 

independent experiments. The symbols * and # indicated statistical significance of 

differences in responses in groups treated with LPS alone compared to groups treated 

with LPS + PI3K inhibitor and was set to p<0.05. Purified young adult splenic 

macrophages were pre-treated with either LY294002 or wortmannin for 1 hour and then 

stimulated with LPS (Panel C) for 15 or 30 minutes. The blots were probed for p-Akt and 

later probed for total Akt and actin after stripping. The numbers represented densities of 

bands normalized to total AKT with the values for unstimulated aged macrophages set to 

1. Panel D shows relative changes in phosphorylated GSK-3 in young splenic 

macrophages stimulated with LPS in the presence of PI3K inhibitors. The numbers 

represent densities of both GSK-3alpha and GSK-3beta bands normalized to total GSK-

3β with the values for unstimulated aged macrophages set to one. Results were 

representative of two independent experiments. 
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Figure 3.8: Cytokine dysregulation in aged splenic macrophages stimulated with 

TLR2 ligands can be partially rescued by inhibiting PI3K. 

The graphs show cytokine secretion by purified aged and young adult SM pretreated with 

LY294002 for 60 minutes and then stimulated with  Pam2CSK4 (Panels A and B ), LTA 

(1μg/ml) (Panels A and C)  for 24 hours. Supernatants were collected and assayed for IL-

10 (Panel A) or IL-12(p40) (Panels B and C) by sandwich ELISA. Data were presented 

as mean +/- SE of duplicate cultures and duplicate ELISA’s. The symbols * and # 

indicated statistical significance of responses in the aged splenic macrophages treated 

with Pam2CSK4 or LTA with or without the PI3K inhibitor set to p<0.05. 
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Figure 3.9: The cytokine dysregulation in TLR1/2 stimulated aged macrophages can 

also be reversed with PI3K inhibition. 

Macrophages (2.5x105 cells/ml) purified from the spleens of young and aged mice were 

stimulated with the TLR-1/2 agonist, Pam3CSK4 (P3C) (1µg/ml) (Panels A, B and C) for 

24 hours in the presence or absence of LY294002. The supernatants were collected and 

analyzed by a sandwich ELISA for IL-10 (panel A), IL-6 (Panel B) and IL-12(p40) 

(Panel C). Results from one of three experiments were shown as Mean + SE values of 8-

12 determinations. The statistical significance of differences in cytokine secretion 

between the young and the aged macrophage treated with P3C alone compared to groups 

treated with PI3K inhibitors was indicated by the symbols * and #. 
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Figure 3.10.  The inhibition of PI3K by either LY294002 or wortmannin enhanced 

the HKSP-mediated induction of pro-inflammatory cytokines in aged splenic 

macrophages. 

The graphs show cytokine secretion by purified aged SM pretreated with LY294002 

(panel A) or wortmannin (Panels B, C and D) for 60 minutes and then stimulated with 

HKSP (2x 108 CFU/ml) for 24 hours. Supernatants were collected and assayed for IL-6 

(Panels A and B), IL-12(p40) (Panel D) and IL-12(p70) (Panel C) by sandwich ELISA. 

Data were presented as mean +/- SE of duplicate cultures and duplicate ELISA’s. The 

symbol * indicated statistical significance of responses in the aged SM treated with 

HKSP alone compared to the responses obtained by treating with HKSP + PI3K inhibitor 

set to p<0.05.   



97 
 

 

Figure 3.11. Age-associated cytokine defect in TLR-2 and HKSP activated 
macrophages is due to a defect in the AKT-GSK-3 signaling axis.  

Purified aged SM were pre-treated with either LY294002 or wortmannin for 1 hour and 

then stimulated with Pam-3-CSK4 (Panels A and B) or HKSP (2x108 CFU/ml) (Panel C) 

for 15 or 30 minutes, respectively. The blots were probed for p-Akt (Panel A), p-GSK-

3αβ (Panels B and C) and later probed for total Akt (Panel A), total GSK-3β (panels B 

and C) and actin after stripping. The numbers represent densities of bands normalized to 

total AKT, actin or GSK-3 with the values for unstimulated aged macrophages set to 1.  

Results were representative of two independent experiments.The final figure in A was a 

composite of blots for P-Akt, Akt and actin for aged samples run on the same membrane 

that was stripped and reprobed. The intervening space (between second and third lane) 

was for lanes loaded with lysates from other time points or treated with other inhibitors 

but were deleted  to focus on the effect of P3C on Akt activation at 15 minutes, which 

was maximum in this experiment.  
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Figure 3.12.  The effect of PI3K inhibition on IL-1 β induced cytokine production in 

splenic macrophages. 

 Panels A and B respectively showed the levels of IL-10 and IL-6 secreted by IL-1 

(400U/ml) stimulated aged SM pretreated with LY294002 for 60 minutes. Supernatants 

were collected and assayed for IL-10 and IL-6 by sandwich ELISA.  Data represent mean 

+/- SE of duplicate determinations of supernatants from duplicate cultures. The symbol * 

indicated the statistical significance of differences in cytokine levels between cells treated 

with IL-1 alone or IL-1 + the PI3K inhibitor  set to p<0.05.   
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Figure 3.13: Schematic model of differing roles of PI3 Kinase and P38 MAP Kinase 

pathways in cytokine secretion by young and aged splenic macrophages. 

The interaction of aged SM with ligands for TLR-4, TLR-2/1 or TLR2/6 heterodimers, or 

HKSP induces the activity of an already heightened PI3K, as well as p38 MAPkinase via 

MyD88 signaling adaptor molecule (Panel A). The activated AKT and GSK-3, as well as 

the phosphorylated p38 MAP kinase interact with transcription factors like CREB, AP-1 

and p65NκB to suppress the pro-inflammatory cytokines but increase IL-10. The effect of 

this pathway is biased towards pro-inflammatory cytokines in the young due to lower 

levels of PI3 kinase and p38 MAP Kinase activity (Panel B). 
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CHAPTER 4:   Intrinsic defect in the phosphoinositide 3-kinase – Akt                      
pathway plays a role in cytokine dysregulation in aged                      
bone marrow derivedmacrophages stimulated with TLR                   
ligands or heat killed Streptococcus pneumoniae 

Introduction 

The immune system is dysregulated with age resulting in higher susceptibility to 

bacterial and viral infections, as shown with an increase in pneumococcal infections, as 

well as a reduction in the efficacy of pneumococcal and influenza vaccines (236). It has 

been shown in several species (human, rat and mice) that aging affects the innate 

components of the immune system, like macrophages and dendritic cells. These effects 

include impaired antigen presentation and decreased production of critical pro-

inflammatory cytokines that help to induce the adaptive immune response (288). The 

efficacy of the pneumococcal vaccination is low in older adults due to a reduction in 

opsonophagocytosis of the pneumococal bacteria as a result of a decrease in high affinity 

IgM  antibody response (278). 

 Macrophages are known to act in resident tissues to destroy invading pathogens and 

lead to adaptive immunity by expression of co-stimulatory molecules, cytokine 

production and antigen presentation to lymphocytes upon activation by Toll-like 

receptors (TLRs). In a physiological situation, a macrophage sees multiple TLR ligands 

and thus, may produce pro- or anti-inflammatory cytokines depending on the context 

(219). Macrophage-derived cytokines, like IL-1, IL-12 and IL-6, help B-cells to produce 

increased IgG3 and IgA in the absence of help from T-cells (17, 38, 64, 178, 230).  Both 

IgA and IgG3 promote opsonization of many bacteria. TNF-α is another pro-

inflammatory cytokine that is produced by S. pneumoniae activated macrophages and 
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also aids in the recruitment of neutrophils and macrophages, which phagocytose the 

opsonized bacteria (176, 201). IL-12 can directly or indirectly act on B-cells to induce B-

cell proliferation, activation and differentiation, mostly through intermediaries like Th1 

type cells and interferon gamma to enhance production of  IgG2a (12, 350). TNF-α and 

IL-6 play critical roles in the clearance of lung burdens of pneumococcal bacteria (355, 

356). TLR2, TLR4 and TLR9 appear to play an important role in host immunity against 

pneumococcal infections. We have previously shown that upon stimulation with LPS, a 

TLR-4 ligand; in comparison to the young, aged splenic macrophages secrete lower 

levels of the pro-inflammatory cytokines, IL-6, IL-12, and TNF-α, but higher levels of 

IL-10, resulting in cytokine dysregulation (62, 63, 65). We also show a similar cytokine 

dysregulation when SM is stimulated with ligands for TLR-2/1, 2/6 and TLR-2 

homodimer (Fallah et al manuscript in press). Similar defects in TLR-induced pro-

inflammatory cytokine secretion by either aged splenic or peritoneal macrophages 

(resident or thioglycollate induced) are observed in other studies (34, 35, 62, 63, 144, 

298). As a result, TLR-2 or TLR-4 activated aged macrophages or their secreted pro-

inflammatory cytokines are not able to effectively provide support to B-cell mediated 

anti-capsular (CPS) antibody responses. Moreover, the increased IL-10 has a role in 

increased pneumococcal infections in the aged. IL-10 is increased after pneumococcal 

infection in naïve hosts or hosts previously exposed to influenza virus. Prior influenza 

virus infection increases lethality of subsequent pneumococcal infection. Anti-IL-10 

treatment reduces lethality of S. pneumoniae in naïve, as well as influenza in exposed 

hosts (306, 358). 
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While investigating the signaling components associated with the defect in TLR-

induced  activation of aged macrophages, we found that the cytokine dysregulation is  in 

part due to  heightened activity of phosphatidyl inasitol 3-kinase (PI3K).

Current consensus on the effect of aging on hematopoietic stem cells (HSC) points 

to a dual regulation of HSC by intrinsic factors and cues from the bone marrow 

microenvironment or stromal niches. Both of these are altered during aging resulting in 

skewing of the differentiation of HSC towards myeloid lineages. These age-associated 

effects on HSC have a role in narrowing the immune repertoire and blunting the immune 

function in the aged (33, 54, 170, 372, 386). Hence, in this study we attempt to reduce the 

influence of the aging microenvironment by growing a homogenous population of 

macrophages under in vitro conditions (143, 315). 

 Inhibition of the 

PI3K with two well known pharmacological inhibitors (LY294002 and wortmannin) 

partially rescues this age-associated cytokine dysregulation (Fallah et al manuscript in 

press).  Presently, it is unclear whether the cytokine dysregulation is due to intrinsic 

signaling defects or defects in the tissue microenvironment or both in the aged (143, 187, 

212, 315, 339, 354). 

We test the in vitro TLR responses of 

bone marrow derived macrophages (BMDM) from the young and the aged, thus 

eliminating the microenvironment of the aged spleen or peritoneum (315).  

These in vitro generated BMDM exhibit all of the characteristics of mature 

macrophages and are phenotypically similar in the young and the aged. Upon stimulating  

with ligands specific for TLR-4, TLR2/1, TLR2/6 and TLR-9 receptors or HKSP, the 

BMDM from the aged exhibited cytokine dysregulation which are  similar to that  seen 
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with purified SM (62, 63, 65). Furthermore, BMDM from the aged behave like the SM

 

 in 

having an elevation in the activity of the PI3K-Akt signaling pathway and inhibition of 

this pathway restores pro-inflammatory cytokine production. 
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 RESULTS 
 

 The newly derived BMDM from the aged and young adult exhibit similar purity, 

recovery and activation status. 

We first characterized the newly generated BMDM to ensure that they exhibited 

phenotypes of macrophages and that these phenotypes were similar between the two age 

groups. There was a similar expression of F4/80 and CD11b markers for macrophages 

between the aged and the young BMDM (Figure 4.1A) and in both cases greater than 

96% of the cells expressed both F4/80 and CD11b.. We then showed by light microscopy 

that the morphologies of the newly generated BMDM from the aged and the young were 

similar (Figure 4.1B). Although the absolute recovery of BMDM varied from experiment 

to experiment (Figure 4.1C), the recoveries of BMDM from the bone marrow cell 

cultures from the young and the aged were similar in each experiments. Thus, we 

recovered 0.33+/- 0.06 x 106 BMDM from the young and 0.28+/- 0.05 x 106 BMDM 

from the aged (n=15 experiments and p=0.52) per 1.0x106 bone marrow cells cultured. 

The extent of activation as determined by CD86 expression was not different between the 

aged and the young under basal conditions or after stimulation with LPS (TLR-4) (Figure 

4.1D), Pam3CSK4 (TLR-2) (Figure 4.1E) and HKSP (Figure 4.1F). These results 

provided a basis for us to conclude that the newly generated BMDM from young and 

elderly mice independent of an in vivo microenvironment exhibited similar 

characteristics. 
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Cytokine secretion defects in aged BMDM stimulated with TLR4 and 9. 

We stimulated the newly derived BMDM from the aged and the young mice with LPS, 

Pam3CSK4 and CpG for 24 hours and measured the levels of IL-10, IL-12, IL-6 and 

TNF-α in the supernatants. Similar to our previous data with SM (62, 63), LPS induced 

higher IL-10 and reduced levels of IL-12, IL-6 and TNF-α in the BMDM from elderly 

mice compared to the young (Figures 4.2A, 4.2B, 4.2C and 4.2D). We observed a similar 

age associated increase in IL-10 and decline in IL-12 secretion from BMDM stimulated 

with Pam3CSK4, the TLR2 ligand (Figures 4.2E and 4.2F) similar to our recent results 

with SM (Fallah et al manuscript In Press). The TLR9 ligand, CpG, also induced more 

IL-10 and less IL-6 from the aged than young BMDM (Figures 4.2G and 4.2H). Thus, the 

cytokine phenotype of newly generated BMDM from the aged was similar to the 

previously reported cytokine phenotype of SM from the aged stimulated via different 

TLR receptors suggesting that the splenic microenvironment of the aged was not 

necessary for the age associated cytokine dysregulation in macrophages.  

HKSP-mediated cytokine dysregulation in young and aged BMDM. 

Since whole bacteria can stimulate macrophages via several TLR receptors, we decided 

to test if cytokine response of BMDM to whole pneumococcal bacteria was also affected 

with aging. After 24 hours of stimulation with HKSP, supernatants from young and aged 

BMDM cultures were collected and assayed for IL-10, IL-12 and IL-6. In agreement with 

our previous data on SM activated with HKSP (Fallah et al Manuscript In press) we were 

able to show an age-related increase in IL-10 (Figure 4.3A) but a decrease in both IL-12 

(Figure 4.3B) and IL-6 (Figure 4.3C).  Thus, the intrinsic defects in aged macrophage 
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secretion of pro-inflammatory cytokines observed with individual TLR ligands were also 

demonstrated with the whole bacteria. Just like with the individual TLR ligands, the 

decrease in IL-12 was accompanied by an increase in the anti-inflammatory cytokine, IL-

10.  

The activity of PI3K-Akt pathway is increased in the aged BMDM 

We had earlier shown in SM (Fallah et al Manuscript In Press) that the heightened 

activity of the PI3K/Akt pathway was in part responsible for the cytokine dysregulation 

in the aged. Hence, we decided to determine if the activity of PI3K-Akt pathway was 

altered between the aged and the young BMDM grown in vitro without any 

microenvironmental influences of the aged spleen. The QRT-PCR for the mRNA of the 

p110δ subunit showed that resting young BMDM had higher levels than the aged BMDM 

but the message levels declined rapidly upon LPS stimulation in the young cells. In 

contrast there was no decrease in p110δ mRNA in the LPS stimulated  aged BMDM, but 

there was a small increase with the net result that TLR activated aged BMDM had more 

p110δ message than the young BMDM (Figure 4.4A). We then measured the activity of 

the PI3K in the aged and the young BMDM by way of the phosphorylation status of p-

Akt. Western blot analysis showed that the phosphorylation of Akt was higher in the aged 

compared to young adult BMDM stimulated with LPS. The age-associated increase in p-

Akt was seen as early as 15 minutes of stimulation with LPS and was 2.45+/-0.6 (n=4) 

times more in the aged than the young adult cells treated with LPS (Figure 4.4B). The 

total levels of Akt (normalized to actin) were comparable in the elderly and the young 

mouse BMDM (data not shown).  
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PI3K inhibitors partially rescue the age-associated defect in TLR-4 and TLR-9 induced 

pro-inflammatory cytokine production. 

On the basis of our previous findings that inhibiting PI3Kinase with LY294002 or 

wortmannin could partially reverse the age-related cytokine dysregulation in SM (Fallah 

et al., Manuscript in press), we attemped to recapitulate this phenomenon in the context 

of the BMDM. Hence, BMDM was pretreated with either LY294002 or wortmannin and 

then stimulated them with LPS, the TLR-4 ligand, to initiate cytokine production. Both 

the PI3K inhibitors (Figures 4.5A and 4.5C) reduced LPS induced IL-10 production by 

the aged BMDM. The PI3K inhibitors had similar effects on IL-10 secretion by the 

young BMDM treated with LPS, but the effect of wortmannin was less pronounced. As 

predicted, treatment of BMDM with LY294002 resulted in the enhancement of IL-

12(p40) in the aged but the effect on the young was modest (Figure 4.5B). Treatment of 

aged and young adult BMDM with wortmannin also induced an increase in IL-12 (p40) 

(Figure 4.5D) and TNF-α (Figure 4.5E) in both the aged and young adult. Similar results 

were obtained when aged and young BMDM were stimulated with the TLR-9 ligand, 

CpG in the presence of PI3K inhibitors (data not shown). 

The ability of PI3K inhibitors to rescue the cytokine defect is applicable to aged BMDM 

stimulated via different TLR-2 heterodimers. 

 We have shown that TLR-2 ligands behave like TLR4 ligands in their ability to induce 

high levels of IL-10 and low levels of IL-12-like cytokines from BMDM. Although both 

TLR2 and TLR4 use the same MyD88 molecule, TLR2 utilizes TICAM/MAL while 

TLR-4 uses both TICAM and TRIF for complete signal transduction in macrophages (86, 
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134, 332).  Therefore, it was of interest to know if the PI3K/AKT pathway affects the 

TLR2 mediated cytokine response of aged BMDM similar to the TLR4 response in the 

aged. BMDM from aged adult were pre-treated with LY294002 and then stimulated with 

Pam3CSK4 (1μg/ml), the ligand for the TLR2/1 heterodimer (Figure 4.6A and 4.6B) or 

Pam2CSK4 (1μg/ml), the ligand for the TLR2/6 heterodimer (Figures 4.6C and 4.6D). 

Treatment with both TLR2 ligands in the presence of the PI3K inhibitors, LY294002, 

resulted in reduced IL-10 secretion (Figure 4.6A and 4.6C) and increase in IL-12 

secretion (Figure 4.6B and 4.6D) in BMDM. Thus, despite differences in adaptors used 

by TLR2 and TLR4 receptors, the PI3K pathway appeared to play a role in cytokine 

dysregulation observed in response to both receptors. The reason why P3C induced ten-

fold more IL-10 than P2C was not known but a similar result was obtained with young 

BMDM (data not shown).  

 Age-associated cytokine defect shown with HKSP activated macrophages can be rescued 

by inhibiting PI3K  

Since TLR2 plays a major role in immune response to HKSP, we predicted that 

the PI3K pathway will also regulate HKSP induced macrophage activation. Accordingly, 

we found that PI3K inhibition reduced IL-10 secretion and enhanced IL-12 secretion by 

HKSP treated BMDM from both age groups (Figures 4.7A and 4.7B). The absolute 

quantity of reduction in IL-10 was lower in the aged relative to the young (Figure 4.7A), 

but they had similar enhancement in IL-12 (Figure 4.7B).  
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Effect of PI3K inhibition on Akt and p65Nf-ĸB, downstream targets of the PI3K pathway 

To be certain that the PI3K inhibitors were inhibiting the PI3K-Akt pathway, we 

evaluated the phosphorylation status of Akt upon inhibiting PI3K with LY294002 in TLR 

activated BMDM. The results of the western blot from young BMDM pretreated with 

LY294002 and then stimulated with LPS were shown in Figure 4.8A. There was a 1.9-

fold induction in p-Akt with LPS compared to media treated young BMDM (Figure 4.8A, 

Lanes 1 and 2). When 5 and 20 μM of LY294002 was used in the presence of LPS, there 

was a 9.5-fold and 6.3-fold reduction, respectively, in the levels of p-Akt compared to 

LPS stimulated young BMDM (Figure 4.8A, Lanes 2, 3 and 4).  Thus, we confirmed that 

the proximal signaling defect responsible for the age-related cytokine dysregulation 

involved the PI3K-Akt signaling pathway. 

It was well established in literature that p65N-F-κB was a transcription factor that 

was capable of regulating the pro-inflammatory and the anti-inflammatory cytokines (55, 

219). It was also known that p65NF-κB was regulated by PI3K-Akt signaling at several 

stages including IkB degradation, Ikkα phosphorylation and p65 translocation (13). Akt 

enhanced IκB phosphorylation leading to its degradation enabling increased p65NF-κB 

nuclear translocation. However, inhibition of PI3K in human peripheral blood monocytes 

(PBM) enhanced LPS-induced translocation of p65NF-κB (226). Similarly, PI3K 

inhibition enhanced TRIF-dependent NF-κB activation and production of IFN-β (13). 

When young BMDM were treated with wortmannin in the presence of LPS, there was a 

1.9-fold increase in nuclear p65 NF-κB compared to stimulation with LPS alone (Figure 

4.8B, Lanes 2 and 3). Thus, murine BMDM behave like human PBM in responding to 

LPS by increased NF-κB activation upon inhibition of PI3K pathway.  
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 Discussion 
 
SM in the aged exhibit a cytokine dysregulation which impacts on their ability to support 

antibody responses to polysaccharide antigens that are important for protection against 

encapsulated bacteria like pneumococci. In the aged, there is a decrease in production of 

pro-inflammatory cytokines and an increase in the anti-inflammatory cytokine, IL-10, 

upon stimulation with a variety of TLR ligands that utilize the MyD88 pathway. 

Previously we showed that alteration in cytokine production in the aged is due to a 

decrease in the MyD88 signaling pathway leading to a decrease in ERK activation 

accompanied by an aberrant increase in activation of PI3K/Akt pathway and of p38 MAP 

kinase (65, 95) (Chapter 3). In this study we determined if the imbalance in the 

production of pro- and anti-inflammatory cytokines by SM is an intrinsic defect or is due 

to the exposure of the macrophages to the aged spleen microenvironment. We used 

freshly generated BMDM from both age groups to address this question. We find that the 

BMDM generated from the young and the aged are equally pure and have a similar basal 

state of activation. Interestingly, our studies showed that BMDM from the aged also 

produce less of IL-12 and IL-6, but more of IL-10 than young BMDM upon stimulation 

with TLR2, TLR4 and TLR9 ligands recapitulating the cytokine phenotype of the aged 

SM. Similar results are obtained with HKSP which may utilize both TLR2 and TLR9 to 

activate BMDM but not TLR4, as pneumolysin, a ligand for TLR4 is inactivated in 

HKSP.  Expression of TLR2 is similar between the young and aged BMDM (data not 

shown) which is consistent with the report of Boehmer et al (35) who find that expression 

of TLR2 and TLR4 in peripheral macrophages is not affected by age . Moreover, the 

PI3K-Akt signaling pathway that is previously shown by us to be elevated in the aged 
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SM (95)(Chapter 3) is also found to be elevated in the BMDM. Furthermore, just like in 

the SM, inhibition of the PI3K-Akt pathway enhanced the TLR ligand induced 

production of pro-inflammatory cytokines and decreased IL-10 in the aged BMDM.  

These in vitro generated aged BMDM are a pure homogeneous population of cells 

that are not exposed to other cells that constitute the microenvironment of the aged 

animal, especially the spleen but share many of the phenotypic and functional 

characteristics (secretion of several cytokines in response to stimulation with  different 

TLRs and increased activation of PI3K pathway) of the splenic resident macrophages in 

the aged (143). Thus, the cytokine dysregulation in the aged SM appears to be due to an 

intrinsic defect in the BMDM which also manifests in the SM. However, one cannot rule 

out that bone marrow stromal cells in the aged have some effects on the properties of 

BMDM (145, 372). It should be noted that multiple phenotypes (secretion of four 

different cytokines in response to three different TLR receptors, changes in PI3K, Akt 

and NF-κB and effects of PI3K inhibition) are shared between BMDM and SM.  If the 

macrophage phenotype is due to the microenvironment, then it has to affect similarly 

several of the phenotypes listed above. Nonetheless, there are many studies 

demonstrating that the HSCs are altered by a combination of age-associated defects in the 

bone marrow microenvironment and intrinsic signaling mostly due to epigenetic 

modifications. The genome integrity is lost due to accumulation of DNA damage with 

aging and downregulation of genes involved in the maintaining of the integrity of the 

genome (59, 304, 372). The importance of genetic influence on intrinsic defect in HSC 

has been shown by the differences in the effect of aging on HSCs in aged mice from 

different genetic backgrounds (305). A study by Larsson and colleagues showed that an 
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alteration in the bone marrow microenvironment (niche) may affect the functional 

properties and homeostasis of HSC (199). Aging results in decreased activity of 

osteoblasts and increased infiltration of adipocytes with a concomitant increase in 

osteoclasts which affects the bone marrow microenvironment (303). These age-associated 

alterations in HSCs and progenitors might precede the downstream age-associated defects 

in B-cells, T cells, macrophages and overall immunosenescence (246, 372).  

We note that the recoveries of BMDM are similar in both age groups. This is 

rather surprising considering that several studies report an increase in myeloid precursors 

in the aged bone marrow (25, 208). It is conceivable that despite increased numbers of 

precursors, the burst size of each myeloid progenitor is less in the aged resulting in 

similar numbers of macrophages in both age groups. In this context, Sebastian and 

colleagues show that M-CSF induced proliferation (the assay used does not distinguish 

between increased progenitors and clonal output) is equivalent in young and aged 

BMDM whereas GM-CSF induced growth response is substantially lower in the aged due 

to increased oxidation of Stat-5a transcription factor (315).  Their observation that the 

teleomers are shorter in the aged than in young BMDM is consistent with reduced ability 

to undergo cell division. Our study emphasizes that despite an increase in numbers of 

myeloid lineage stem cells with age, the differentiated macrophages are not as 

immunocompetent as in the young.  

The increased levels of PI3K p110delta and of phospho-Akt in TLR activated 

BMDM with age is consistent with the well known negative regulatory effects of PI3K 

pathway on TLR induced pro-inflammatory cytokine production (107, 308), as we find 

an increase in IL-10 and a decrease in IL-12 like pro-inflammatory cytokines in the aged. 
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Inhibition of Akt pathway with PI3K inhibitors results in a further increase in nuclear p65 

(Fig 8B) which is consistent with the observed increase in pro-inflammatory cytokine 

production. The increase in NF-κB upon inhibition of PI3K pathway could be due to the 

reported positive effects of GSK-3 (an enzyme inhibited by Akt) on NF-κB activation 

(225). This is consistent with similar enhancing effects of PI3K inhibitors on the NF-κB 

activity observed in human embryonic kidney cells lines (HEK293) stimulated via NOD2 

(395). Despite the links between Akt, GSK and NF-κB, it is possible that other pathways 

also modify the TLR induced cytokine secretion. Thus, aging enhances COX-2 mediated 

induction of prostaglandin-2 (PGE2), which is known to enhance IL-10 but suppress pro-

inflammatory cytokines under certain conditions (71, 324, 342, 385). In turn COX-2-

PGE2 pathway is enhanced in aged macrophages via upregulation of NF-κB (71, 239, 

285, 353, 385). Moreover, PI3K-Akt pathway has been shown to positively regulate 

COX-2-PGE2 signaling complex which could in turn enhance IL-10 while suppressing 

pro-inflammatory cytokines (239). The interrelationships between PI3K-Akt pathways 

and the COX-2-PGE2 axis in aged BMDM have not been investigated thus far and will 

be a subject of future efforts.  

Several previous studies including our own observe defects in cytokine secretion 

by TLR activated spleen and thioglycollate elicited peritoneal macrophages and support 

the notion that aged macrophages have intrinsic signaling defects (34, 63, 65, 298). A 

study by Chen et al (66) came to a different conclusion. In this study nitric oxide 

production by BMDM is found to be the same in young and the aged, whereas 

thioglycollate elicited and resident macrophages from the two age groups differ in their 

ability to produce NO suggesting that the microenvironment in the aged affected 
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macrophage function. Such conclusions are further supported by the studies by Stout et 

al. (339, 340) in which exposure of macrophages to different cytokines prior to TLR 

stimulation altered the cytokine responses. It turns out that Chen and colleagues utilize 

thioglycollate induced macrophages. But Stout and colleagues use only young BMDM, 

young thioglycollate elicited peritoneal macrophages and resident macrophages. These 

studies are unlike ours and other recent studies that focuse on spleen resident 

macrophages. Although one cannot rule out the ability of cytokines like gamma-

interferon to alter the TLR responses to macrophages, the present study establishes that 

BMDM from the aged behave similar to spleen resident macrophages with respect to 

responses to three different TLRs and the increased activity of  PI3K-Akt enzymes, 

strongly supporting the concept that the aged macrophages do have intrinsic defects. As 

noted above aged BMDM have shortened teleomers which is consistent with an intrinsic 

defect hypothesis for the phenotype of splenic macrophages from the aged (315).  

These observations about the ability of PI3K-Akt pathway to modulate cytokine 

production by aged macrophages are relevant in the context of reduced immune 

responses of the aged to S. pneumoniae. The pro-inflammatory cytokines, IL-6, TNF-α 

and IL-12 are all critical for  antibody response to polysaccharide antigen and the 

subsequent clearance of S. pneumoniae infection as depletion of these cytokines by 

antibody treatment or gene knockouts increases bacterial load and overall lethality in 

infected mice (17, 38, 64, 178, 230, 355, 356). Moreover, enhanced IL-10 associates with 

poor clearance, increased lethality and bacterial load in infected mice (357, 358). IL-10 

mediated downregulation of p65NF-κB also correlates with increased susceptibility to S. 

pneumoniae infection (61, 293). Thus, our finding that PI3K inhibition by 
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pharmacological inhibitors not only reduces IL-10 but also increases p65 NF-κB and 

critical cytokines, IL-12, TNF-α and IL-6 upon stimulation with individual TLR ligands 

and HKSP, provides a novel approach to enhance immune responses to pneumococcal 

infections in the aged.  
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Figure 4.1: The purity, recovery, morphology and activation status of BMDM is 

similar between the aged and young. 

 Expression of CD11b and F-4/80 by BMDM from aged and young mice (Figure 1A). 

Photographs of newly generated BMDM from aged and young Balb/c mice seen at 40X 

total magnification with an Olympus microscope (Figure 1B). Bone marrow cells 

(2.5x106 cells/ml) were cultured for seven days with 30% L929 supernatant. The newly 

derived BMDM were enumerated and the number of BMDM recovered per 106 BM cells 

was calculated for the aged and the young (Figure 1C). The graph represented results 

from ten of 15 experiments.  BMDM from young and aged mice were cultured in 

medium or LPS (Figure 1D), or Pam3CSK4 (P3C) (Figure 1E) or HKSP (Figure 1F) and 

then stained with anti- CD86 FITC.  
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Figure 4.2: Cytokine production by young and aged BMDM stimulated with TLR2, 

4 and 9 ligands. 

BMDM (2.5x105 cells/ml) from young and aged mice were stimulated with the TLR 

agonists, LPS (1µg/ml) (Panels A, B, C and D), P3C (1µg/ml) (Panels E and F) or CpG 

(2µg/ml) (Panels G and H) for 24 hours. The supernatants were collected and analyzed by 

a sandwich ELISA for IL-10 (Panels A, E and G), IL-12(p40) (Panels B and F), IL-6 

(Panel C and H) and TNF-α (Panel D). In panels A, C, D, G and H levels of cytokines in 

unstimulated BMDM from one or both age groups were undetectable. The constitutive 

production of IL-12 by aged BMDM seen in panel F was not observed in other 

experiments. Results from one of five experiments were shown as Mean + SE values of 

8-12 determinations. The statistical significance of differences in cytokine secretion 

between the young and the aged was indicated by the symbol *  and it was set at p<0.04. 
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Figure 4.3:  Cytokine production by young and aged BMDM stimulated with HKSP 

The newly derived BMDM from young and aged mice were stimulated with HKSP 

(2x106 CFU/ml) for 24 hours. The supernatants were collected and analyzed by a 

sandwich ELISA for IL-10 (Panel A), IL-12(p40) (Panel B), and IL-6 (Panel C). In panel 

A, IL-10 levels in unstimulated young BMDM were undetectable. Results from one of 

four experiments were shown as Mean + SE values of 8-12 determinations. The statistical 

significance of differences in cytokine secretion between the young and the aged was 

indicated by the symbol * and it wass set at p<0.0003. 
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Figure 4.4: Age-associated changes in expression of mRNA for p110δ subunit of 

PI3K and activation of AKT in TLR4 activated BMDM  

Panel A: mRNA was isolated from young and aged mice BMDM (3x106 cells/ml) after 

stimulation with LPS (1μg/ml) and converted to cDNA. QRT-PCR analysis of mRNA 

was shown in panel A for P110δ subunit of PI3 kinase in the newly derived BMDM from 

young and the aged. The Ct values for each probe were normalized to the 18S RNA. The 

symbols *, ** and *** indicated the statistical significance (p<0.05) of differences in RNA 

expression between the young and the aged at different time points. Panel B: The BMDM 

were stimulated with LPS 1.0 μg/ml for 15 minutes, total cell lysates were isolated and 

immunoblotted for p-Akt. The blots were stripped and probed for total Akt and for beta-

actin. The numbers represent densities of bands normalized to total Akt between aged and 

young with the values for unstimulated cells from both aged and young mice set to one.  

The figure in panel B was a composite of blots for p-Akt and Akt from the same 

membrane that was stripped and reprobed. The young and aged cell lysates were 

electrophoresed on the same gel and the membranes were exposed for identical time 

periods. Although a detailed kinetic analysis of LPS stimulation was performed, only the 

lanes representing 0 and 15 minutes time points were shown for clarity.  Results were 

representative of four experiments.  
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Figure 4.5: PI3K inhibitors partially rescue the age-associated defects in TLR-4 

induced cytokine production. 

The graphs show cytokine secretion by aged and young adult BMDM pretreated with 

LY294002 (Panels A and B) or wortmannin (Panels C, D and E) for 60 minutes and then 

stimulated with LPS (1.0µg/ml) for 24 hours. Supernatants were collected and assayed 

for IL-10 (panels A and C), IL-12(p40) (panels B and D) and TNF-α (Panel E) by 

sandwich ELISA.  Data were presented as mean+/-SE values of 6-10 determinations and 

were representative of three independent experiments. The symbols * and # indicated 

statistical significance (p<0.005) of differences in responses in groups treated with LPS 

alone compared to groups treated with LPS + PI3K inhibitor. 
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Figure 4.6: PI3K inhibitors alter the pattern of cytokine secretion by aged BMDM 

stimulated with ligands for TLR-2 heterodimers. 

The graphs show cytokine secretion by aged BMDM pretreated with LY294002 for 60 

minutes and then stimulated with P3C (Panels A and B) or P2C (Panels C and D) for 24 

hours. Supernatants were collected and assayed for IL-10 (Panels A and C) or IL-12(p40) 

(Panels B and D) by sandwich ELISA and were representative of three experiments. Data 

were presented as mean +/- SE of quadruplicate wells. The symbol * indicated statistical 

significance (p<0.03) of differences in responses in the aged BMDM treated with 

Pam3CSK4 (or Pam2CSK4) with or without the PI3K inhibitor.  
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Figure 4.7.  The inhibition of PI3K by either LY294002 or wortmannin differentially 

regulates the HKSP-mediated induction of anti- and pro-inflammatory cytokines in 

BMDM. 

The graphs show cytokine secretion by aged and young BMDM pretreated with 

LY294002 (Panels A and B) for 60 minutes and then stimulated with HKSP (2x 108 

CFU/ml) for 24 hours. Supernatants were collected and assayed for IL-10 (Panel A) and 

IL-12(p40) (Panel B) by sandwich ELISA. Data were presented as mean +/- SE of 

quadruplicate determinations. The symbols * and # indicated statistical significance 

(p<0.03) of differences in responses in the aged BMDM treated with HKSP alone 

compared to the responses obtained by treating with HKSP + PI3K inhibitor.  Results 

were representative of four experiments. 

 

 

 



124 
 

 

 

 

Figure 4.8.   PI3K inhibitors reduce activation of Akt but enhance nuclear 

translocation of p65 NF-κB. 

Panel A: The newly derived BMDM from young mice were pre-treated with either 

LY294002 or medium for 1 hour and then stimulated with LPS (1μg/ml) for 15 minutes. 

The blots were probed for p-Akt and total Akt and actin after stripping (panel A). The 

numbers represent densities of bands normalized to total Akt.  The final figure in A was a 

composite of blots for p-Akt, Akt and actin for young samples run on the same membrane 

that was stripped and reprobed.  Panel B: The newly derived BMDM from young were 

pretreated with or without wortmannin and then stimulated with LPS (1μg/ml) at 30 

minutes and the nuclear extract was isolated. The lysate was run on an SDS-PAGE gel, 

transferred to a membrane and then immnoblotted for p65 NF-κB. The numbers represent 

densities of bands normalized to LaminA/C, with the values for unstimulated BMDM set 

to 1.  The final figure in B was a composite of blots for p65NF-κB and Lamin A/C for 

young samples run on the same membrane that was stripped and reprobed. The 

intervening space (between second and third lane) was for lanes loaded with lysates from 

other time points or treated with other inhibitors but were deleted  to focus on the effect 

of LPS on p65 translocation at 30 minutes, which was maximum in this experiment. 

Results were representative of three to five independent experiments.   

Copyright © Mosoka Papa Fallah 2011 
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CHAPTER 5:   Novel role of glycogen synthase kinase-3 in secretion of IL-10 and                                       
  pro-inflammatory cytokines activated via TLR2 and TLR4 receptors 

 

INTRODUCTION 

There are several studies exploring the possibility of modulating macrophages or 

dendritic cells as potential vaccine adjuvants especially for populations like the elderly 

with impaired vaccine response (94, 301). Some studies are beginning to focus on 

modulating glycogen synthase kinase-3 (GSK-3) to enhance  cytokine production by  

myeloid cells such as dendtritic cells, human peripheral blood monocytes and 

macrophages, which are targets for adjuvants (28, 115, 225). GSK-3 is an enzyme that is 

emerging as a prominant pleoitropic kinase in modulating numerous cellular processes. It 

is a focal point for an array of upstream signaling cascades. GSK-3 regulates a diverse 

array of proteins and transcription factors such as CREB and NF-κB (125, 255). It is 

ubiquitously expressed in B-cells, macrophages, T-cells, NK cells and neutrophils which 

play crucial roles in both innate and adaptive immunity (28). It has two isoforms, GSK-

3α and GSK-3β, which are encoded by different genes. Though the two isoforms share 

very high homology in their kinase domain, there are some reports of a lack of 

redundancy between the two isoforms (151).   

Macrophages  upregulate costimulatory molecules and secrete cytokines to modulate the 

shift from innate immunity to adaptive immunity (292). Macrophages can also present 

antigen to T cells in the context of MHC-II and produce cytokines, such as IL-1, which 

help activate T cells.  Macrophages interact with T cells via CD40:CD40 ligands to 

provide critical co-stimulatory signals (362). DCs are even more efficient in antigen 

uptake, transport and presentation to T-cells. They are also known to upregulate 
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costimulatory molecules and secrete some critical pro-inflammatory cytokines that are 

crucial for both innate and adaptive immunity (161, 326, 337). 

Several studies show that inhibition of GSK-3 in either DC or human peripheral blood 

monocytes in the presence of TLR stimulation results in a suppression of the pro-

inflammatory cytokines along with an enhancement in IL-10. While the role of GSK-3 

inhibition on the activation of innate cells likes DC and monocytes are thoroughly 

investigated, there is a conspicuous absence of studies on the role of GSK-3 in cytokine 

regulation in primary splenic or bone marrow derived macrophages (225, 295, 301). To 

fill this gap of knowledge, we investigated the role of GSK-3 in cytokine production in 

SM and BMDM. We earlier established that the PI3K-Akt pathway is more active in 

TLR stimulated aged SM compared to the young. This led to increased phosphorylation, 

and that inhibiting PI3K led to decreased phosphorylation of GSK-3 (Fallah et al., 

manuscript in press). Here we report the surprising result that inhibition of GSK-3 in the 

presence of ligands for TLR-2 or -4, leads to an increase in both IL-10 and the pro-

inflammatory cytokines in macrophages. The increase in cytokines appears to be due to 

an increase in activation of transcription factor NF-κB.  
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Results 

 Inhibition of GSK-3 enhances both pro- and anti-inflammatory cytokines in young and 

aged splenic macrophages  

Purified SM  from aged mice were stimulated with either TLR-2 or TLR-4 ligands in the 

presence of SB216763, a well characterized specific inhibitor of GSK-3, for 24 hours and 

the supernatant was assayed for cytokines by ELISA. Inhibition of GSK-3 enhanced the 

production of IL-10 when TLR-4 or TLR-2 ligands were used for stimulation (Figures 

5.1A and 5.1D) which is in agreement with previous reports that used DCs (225). 

However, inhibition of GSK-3 in the presence of LPS, a TLR-4 ligand, significantly 

enhanced IL-12(p40) and TNF-α production (Figures 5.1B and 5.1C). Similarly, 

inhibition of GSK-3 in the presence of P3C, a TLR2/1 ligand, resulted in enhancement of 

TNF-α (Figure 5.1E) and IL-12 (Figure 5.1D). This result was contrary to what had been 

reported in literature in regards to human blood monocytes or BMDC. Hence, the GSK-3 

signaling pathway could be modulating key transcription factors differently than what 

had been reported in blood monocytes or BMDC (151, 322, 365, 393).  We wondered if 

this effect of GSK-3 inhibition to enhance both the anti- and the pro-inflammatory 

cytokines was unique to macrophages from aged mice. Therefore, we evaluated the 

cytokine response of SM stimulated with LPS or P3C in the presence of GSK-3 

inhibitors. Similar to the result with aged macrophages, there was an increase in IL-10 

and IL-12p40 when young adult SM were stimulated with LPS (Figures 5.2A) or P3C in 

the presence of SB216763 (Figure 5.2B). Thus, the ability of SB216367 to enhance IL-10 

and the pro-inflammatory cytokines in splenic macrophages appeared to be independent 

of the age of the mice. 
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GSK-3 inhibition enhances both pro- and anti-inflammatory cytokines in BMDM 

independent of the age of the mice.  

Previously, we had shown that inhibition of PI3K enhanced the pro-inflammatory 

cytokines but suppressed of IL-10 in either splenic or bone marrow macrophages, 

indicating that the effect of this signaling pathway on macrophages was independent of 

the microenvironment. Hence, it was of interest to evaluate the effect of GSK-3 inhibitor 

on cytokine response of BMDM stimulated with TLR ligands. Interestingly, inhibition of 

GSK-3 in the presence of LPS in aged BMDM enhanced both IL-10 and the pro-

inflammatory cytokines, IL-12 and TNF-α (Table 5.1). When young BMDM were 

evaluated in the presence of LPS and SB216764, there was an increase in IL-10, IL-12 

and TNF-α (Table 5.2). This showed that the ability of GSK-3 inhibition to enhance IL-

10 and the pro-inflammatory cytokines was applicable to different types of primary 

macrophages. 

We next asked if the ability of GSK-3 inhibition to enhance both IL-10 and the pro-

inflammatory cytokines was influenced by the time of stimulation. Hence, we did a time 

kinetics analysis of young BMDM treated with SB216763 in the presence of LPS for 6, 

24 and 48 hours. We found that GSK-3 inhibitor significantly enhanced IL-10 at all 

concentrations and at all time points tested (Figure 5.3A). In the case of IL-12, there was 

a moderate but statistically significant increase at all concentrations of SB216763 at 24 

hours, but only at 10 µM at 48 hours (Figure 5.3B). 

 

 



129 
 

 Enhancement of pro-inflammatory cytokines upon GSK-3 inhibition is independent of its 

effects on IL-10 production in macrophages 

We asked if the ability of GSK-3 inhibitor to enhance IL12 was influenced by IL-10, 

which was known to inhibit pro-inflammatory cytokines. Accordingly, we cultured young 

BMDM from IL-10 knockout mice in C57BL/6 background with SB216763 in the 

presence of LPS for 6, 24 and 48 hours. We then assayed for IL-12 and found that GSK-3 

significantly enhanced IL-12 at all concentrations of the inhibitor at 24 and 48 hours 

(Figure 5.4).  

The enhancement of pro-inflammatory cytokines with GSK-3 inhibitor is not seen with 

BMDC 

We have shown that the effects of GSK-3 inhibition on both SM and BMDM were 

similar irrespective of the duration of the cultures or IL-10 expression. We decided to 

evaluate the effects of GSK-3 inhibition on the cytokine profile in BMDC. We cultured 

BMDC in the presence of SB216763 and LPS for 24 hours and measured IL-10, IL-

12p40 and IL-12p70 by ELISA. GSK-3 inhibition in the presence of LPS resulted in 

increased IL-10 production (Figure 5.5A) just like in splenic macrophages and BMDM. 

However, inhibition of GSK-3 reduced production of IL-12p40 (Figure 5.5B) and IL-

12p70 (Figure 5.5C) in agreement with the reported results using rodent and human 

monocyte derived dendritic cells (210, 301). Thus, the role of GSK-3 in modulating IL-

10 and the pro-inflammatory cytokines in both splenic macrophages and BMDM was 

unique and different from its role in BMDC. 
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The PI3K-Akt signaling pathway modulates the ability of GSK-3 to regulate cytokines in 

macrophages  

We had shown in SM that Akt phosphorylation via PI3K led to phosphorylation of GSK-

3 which was known to result in inactivation of GSK-3 (Chpater 3 Figure 11A, B and C). 

We asked if the activity of GSK-3 in BMDM was also regulated via PI3K/Akt pathway. 

Upon inhibition of PI3K in BMDM with LY294002, there was a 30% reduction in p-

GSK-3 in the aged BMDM compared to LPS stimulation (Figure 5.6A, lanes 2, 3 and 4). 

Since, the modulatory role of GSK-3 on IL-10 and the pro-inflammatory cytokines was 

independent of the age of the BMDM; we extended this study to BMDM isolated from 

young adult mice.  There was a 45% reduction in GSK-3 posphorylation in BMDM 

treated with LY294002 compared to LPS stimulation at 30 minutes (Figure 5.6B, lanes 3 

and 4).  

Inhibition of GSK-3 enhances activation of p65NF-ĸB  

We next evaluated the effect of GSK-3 inhibition on nuclear translocation of p65 NF-ĸB, 

a known transcription factor that regulates the production of pro-inflammatory cytokines 

(255). In the presence of SB216763, the stimulation of young BMDM with LPS resulted 

in a 2.8-fold increase in nuclear localization of p65NF-ĸB (Figure 7 lanes 2 and 3). Thus, 

in macrophages, the ability of GSK-3 inhibition with SB216763 to enhance the pro-

inflammatory cytokines involved the enhancement of NF-ĸB translocation, a known 

modulator of pro-inflammatory cytokines. 
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Discussion 

Using SM purified by negative selection from both aged and young mice, we 

demonstrated that inhibition of GSK-3 by SB216763 enhanced both IL-10 and the pro-

inflammatory cytokines, IL-12 and TNF-α. We further showed that GSK-3 inhibition 

enhanced these cytokines in vitro generated BMDM from aged and young Balb/c, and 

from young C57BL/6 mice. The current study indicates that this phenomenon is unique to 

macrophages as we are able to demonstrate in BMDC that upon inhibition of GSK-3 in 

the presence of ligand for TLR-4 there is an enhancement in IL-10 with suppression of 

the pro-inflammatory cytokines, IL-12p40 and IL-12p70. This finding in BMDC is 

supported by numerous other findings in both human peripheral blood derived dendritic 

cells and mouse BMDC, which show a reduction in  12p40, IL-6, TNF-α, and  IFN-γ 

with an enhancement in IL-10 (225, 295). 

Macrophages and dendritic cells share many similar functional characteristics. BMDC 

from both Balb/c and C57Bl/6  express CD80, CD86 and produce similar levels of IL-6, 

IL-12p40 and TNF-α upon stimulation with LPS (292). We demonstrated that upon 

stimulation of both BMDM and SM with LPS, IL-12p40, TNF-α and IL-6 are produced. 

Macrophages are able to present antigen and produce relevant cytokines that activate T 

cells and increase CD80 just like dendritic cells (292). 

As a result, one might wonder why we had arrived at seemingly discordant results with 

monocytes and DC. However, there are studies that point to the fact that cytokine-

regulatory capacity of GSK-3 is cell type-specific (166). Thus, Martin and colleagues 

evaluated the effects of GSK-3 inhibitors on cytokine production in the presence of 
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ligands to several different TLRs in human peripheral blood monocytes. They showed 

enhanced secretion of IL-10 with a suppression of pro-inflammatory cytokines (225). 

Overall, GSK-3 inhibition has anti-inflammatory effects on mature DCS derived from 

human monocytes (MoDC) (225). This cell-specific modulatory role of GSK-3 is also 

seen by Liu et al (211). They showed that immature DCs (iDC) generated from human 

monocytes with GMCSF plus IL-4 in the presence of GSK-3 inhibitor, LiCl, upregulated 

CD86, IL-6, IL-8, TNF-α, IL-1β with a  slight increase in IL-10. However, when these 

very iDCs are matured by LPS stimulation in the presence of LiCl there is an increase in 

IL-10 with a reduction in IL-6, TNF-α and IL-1β (210).   

Several other studies report results similar to ours but different from the Martin group in 

the context of different cell types. Using the ST2 Stromal cell line derived from mouse 

bone marrow, it is shown that IL-17 enhances the production of IL-6 at the mRNA level 

in the presence of GSK-3 inhibitors, indicating an anti-inflammatory property of GSK-3 

(323). It is demonstrated in neonatal cardiomyocytes that GSK-3 is a negative regulator 

of pro-inflammatory cytokines. Upon LPS stimulation of the cells in the presence of 

GSK-3 inhibitor there is an enhancement of TNF-α. Not only that but when a dominant 

negative GSK-3 is over-expressed similar enhancing results are observed, but these could 

be reversed by over-expressing normal GSK-3 (322).  Other studies with fibroblasts and 

human microvascular cells also support an anti-inflammatory role for GSK-3 (151, 365).  

When RAW cells are stimulated with LPS in the presence of GSK-3 inhibitor with or 

without IFN-γ there is a higher production of IL-10 with suppression of INOS and NOS 

(206). Another study shows that activating RAW cells with IFNγ plus GSK-3 inhibitors 

or SiRNA knockdown of GSK-3 results in a suppression of TNF-α, Rantes, INOS and 



133 
 

NOS.  The mechanism accounting for this effect is shown to be via phosphorylation of 

GSK-3α at Tyr-279 and GSK-3β at Tyr-216 by the proline rich tyrosine kinase (Pyk2) 

(351). There are two central issues that one can garner from this study; one is that the 

agonist is IFNγ and not LPS. The paper shows that the mechanism involves 

phosphorylation mediated activation of GSK-3. This is contrary to the findings of LPS 

mediated regulation of GSK-3, which is a phosphorylation-mediated inactivation at the 

serine position by the protein kinase family (PKA, PKB, PKC) on the N-terminal serine 

residues. GSK-3α and GSK-3β are inhibited when phosphorylated by protein kinase 

B/Akt on serine -21 and GSK-3β on serine-9 (88, 101, 126, 225). Studies show that 

signaling cascades differ from transformed cell lines and primary macrophages during 

infections or even between cell lines. This is demonstrated in both P388D1 and 

RAW264.7, two macrophage cell lines, stimulated with LPS (23, 112, 294). Hence, the 

findings in RAW cells on the role of GSK-3 on cytokines, though share some similarity 

with our findings in primary splenic and bone marrow macrophages, they are not 

comparable because of the inherent signaling differences between these two categories of 

cells.  

In explaining the paradoxical regulation of anti- and pro-inflammatory cytokines by 

GSK-3 inhibitors in different cell types, one has to take into consideration the uniqueness 

of this multifunctional kinase. The multi-signaling ability of GSK-3 is due to its unique 

ability to target and modulate a plethora of transcription factors which include NF-κB, 

NFATC and CREB (28, 166). Similarly upstream several kinases, such as Akt and 

mTOR, are known to affect GSK-3 activity. Accordingly, we are able to demonstrate in 

aged and young BMDM that GSK-3 is regulated by TLR-4 induced PI3K-Akt signaling 
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pathway. We show in both aged and young groups that inhibition of PI3K results in a 

decrease in the phosphorylation of GSK-3. Similar results are obtained by Wang and 

colleagues in TLR dependent regulation of GSK-3 (371) . 

Since IL-10 is known to inhibit IL-12 like cytokines, we evaluated if GSK-3 dependent 

regulation pro-inflammatory cytokines involves IL-10. We showed that the ability of 

GSK-3 to regulate the pro-inflammatory cytokines is independent of IL-10 using BMDM 

from IL-10-/- mice. This is in agreement with a study by Ohtani and colleagues, who find 

that upregulation of IL-12 upon GSK-3 inhibition is independent of IL-10 (266).  

When we stimulated young BMDM with LPS in the presence of GSK-3 inhibitor, there is 

an increase in the translocation of p65NF-ĸB. The role of GSK-3 in the regulation of 

p65NF-ĸB is multi-faceted and is dependent on the type of cell or its activation status. 

GSK-3 is considered by many studies to be a positive regulator of p65NF-ĸB activity 

(322, 365). On the other hand, studies of human intestinal epithelial cells show that LiCl, 

an inhibitor of GSK-3, enhances p65NF-ĸB binding and transcriptional activities (255). 

Schwabe and colleagues show that in hepatocytes stimulated by TNF-α, GSK-3 

inhibition induces p65 phosphorylation and upregulates its transctivation in agreement 

with our studies (313). However, Martin and colleagues do not find any differences in the 

nuclear translocation of the p50 or p65 subunits in LPS stimulated human monocytes in 

the presence of GSK-3 inhibitors (225). Hence, the ability of GSK-3 inhibition to induce 

the production of the pro-inflammatory cytokines in SM and BMDM could be due to the 

induction of p65NF-ĸB, which is a transcription factor that regulates pro-inflammatory 

cytokines. 
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We can not account for the transcriptional regulation of IL-10 and this will be the focus 

of future experiments. We propose that IL-10 upregulation depends on the transcription 

factor CREB and GSK-3 negatively regulates both CREB and p65NF-ĸB. Hence, 

inhibition of GSK-3 upregulates both pro- and anti-inflammatory cytokines via increased 

activities of p65NF-ĸB and CREB respectively; presently we can not rule out that the 

effects of GSK-3 on these transcription factors are indirect by its ability to modulate other 

regulators of these pathways (Figure 5.8). 
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 Figure 5.1: Pharmacological inhibition of GSK-3 results in increased production of 

IL-10 and the pro-inflammatory cytokines in aged splenic macrophages  

The graphs showed cytokine secretion by purified aged SM pretreated with SB216763 

(Panels A,B, C, D and E)  for 60 minutes and then stimulated with either LPS (1.0µg/ml) 

(Panels A, B and C) or Pam3CSK4 (1.0µg/ml) (Panels D and E) for 24 hours. 

Supernatants were collected and assayed for IL-10 (panels A and D), IL-12(p40) (panels 

B and D) and TNF-α (Panels C and E) by sandwich ELISA.  Data are presented as 

mean+/-SE values of 6-10 determinations and are representative of three independent 

experiments. The symbols * and # indicated statistical significance (p<0.05) of differences 

in responses in groups treated with LPS or P3C alone compared to groups treated with 

LPS (or P3C) + GSK-3 inhibitor. SB in the graphs represents SB216763. 
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Figure 5.2:  GSK-3 inhibition enhances both IL-10 and IL-12 in young splenic 
macrophages 

Young adult purified SM (2.5x105 cells/ml) were pretreated with SB216763 (Panels A 

and B) for 60 minutes and then stimulated with either LPS (1.0µg/ml) (Panel A) or 

Pam3CSK4 (1.0µg/ml) (Panel B) for 24 hours. Supernatants were collected and assayed 

for IL-10 (panels A) and IL-12(p40) (panels A and B) by sandwich ELISA.  Data were 

presented as mean+/-SE values of 6-10 determinations and were representative of three 

independent experiments. The symbols * and # indicated statistical significance (p<0.05) 

of differences in responses in groups treated with LPS or P3C alone compared to groups 

treated with LPS (or P3C) + GSK-3 inhibitor. SB in the graphs represents SB216763. 
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Table 5.1: Inhibition of GSK-3 with SB216763 enhances both pro- and anti-

inflammatory cytokines in aged BMDM  

Aged BMDM (2.5x105 cells/ml) were pretreated with SB216763 (Table 5.1) for 60 

minutes and then stimulated with LPS (1.0µg/ml) for 24 hours. Supernatants were 

collected and assayed for IL-10  and IL-12(p40)  and TNF-α (Table 5.1) by sandwich 

ELISA.  Data are presented as mean+/-SE values of 6-10 determinations and are 

representative of three independent experiments. Statistical significance was indicated by 

p<0.05, which compared the differences in responses in groups treated with LPS alone to 

groups treated with LPS + GSK-3 inhibitor. 
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Table 5.2:  SB216763 upregulates both pro- and anti-inflammatory cytokines in 

young BMDM just like the aged BMDM  

Young adult purified BMDM (2.5x105 cells/ml) were pretreated with SB216763 for 60 

minutes and then stimulated with either LPS (1.0µg/ml) for 24 hours. Supernatants were 

collected and assayed for IL-10, IL-12(p40) and TNF-α (Table 5.2) by sandwich ELISA.  

Data are presented as mean+/-SE values of 6-10 determinations and are representative of 

three independent experiments. The p-values indicate statistical significance (p<0.05) of 

differences in responses in groups treated with LPS alone compared to groups treated 

with LPS + GSK-3 inhibitor. 
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Figure 5.3:  Kinetics of cytokine production in young BMDM treated with GSK-3 

inhibitor. 

 Young adult purified BMDM (2.5x105 cells/ml) from Balb/c mice were pretreated with 

SB216763 (Panels A and B) for 60 minutes and then stimulated with LPS (1.0µg/ml) 

(Panels A and B) for 6, 24 and 48 hours. Supernatants were collected at each of these 

different time points and assayed for IL-10 (panel A) and IL-12(p40) (panel B) by 

sandwich ELISA.  Data are presented as mean+/-SE values of 6-10 determinations and 

are representative of three independent experiments. The p-values indicate statistical 

significance (p<0.05) of differences in responses in groups treated with LPS alone 

compared to groups treated with LPS + GSK-3 inhibitor at the different time points. 
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Figure 5.4:  The ability of GSK-3 inhibitors of GSK-3 to induce higher production 

of pro-inflammatory cytokines is independent of IL-10  

BMDM (2.5x105 cells/ml) from young adult IL-10 knockout mice on a C57BL/6 

background were evaluated for the production of IL-12 at 6, 24 and 48 hours (Panel A). 

The BMDM were   pretreated with SB216763 (Panels A) for 60 minutes and then 

stimulated with LPS (1.0µg/ml) (Panels A) for 6, 24 and 48 hours. Supernatants were 

collected at each of these different time points and assayed for IL-12(p40) (panel A) by 

sandwich ELISA.  Data were presented as mean+/-SE values of 6-10 determinations and 

were representative of three independent experiments. The symbols * , ** and *** indicated 

statistical significance (p<0.05) of differences in responses in groups treated with LPS  

alone compared to groups treated with LPS + GSK-3 inhibitor  at the different time 

points. 
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Figure 5.5:  GSK-3 inhibitors enhance IL-10 but inhibit IL-12 production by BMDC 

BMDC (2.5x105 cells/ml) from young adult C57BL/6 mice were evaluated for the 

production of IL-10, IL-12 (p40) and IL-12(p70) at 24 hours (Panels A, B and C). The 

BMDC were   pretreated with different concentrations of SB216763 for 60 minutes and 

then stimulated with LPS (1.0µg/ml)  for 24 hours. Supernatants were collected and 

assayed for IL-10 (panel A), IL-12(p40) (panel B) and IL-12(p70) (panel C).  Data are 

presented as mean+/-SE values of duplicate cultures and duplicate ELISA of each 

culture. The symbol * indicates statistical significance (p<0.05) of differences in 

responses in groups treated with LPS alone compared to groups treated with LPS + GSK-

3 inhibitor. 
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Figure 5.6.  The PI3K-Akt signaling pathway modulates the ability of GSK-3 to 

regulate cytokine production in macrophages 

 Panels A and B: The newly derived BMDM from aged (Figure 5.7A) and young (Figure 

5.7B) mice were pre-treated with either LY294002 for 1 hour and then stimulated with 

LPS (1μg/ml) for 15 and 30 minutes. The blots were probed for p-GSK and total GSK-3 

and actin after stripping (Figure 5A and B). The numbers represented densities of bands 

normalized to total GSK-3, with the values for unstimulated aged macrophages set to 1.  

Results are representative of three to independent experiments. The final figure in A was 

a composite of blots for P-GSK-3, GSK-3 and actin for young or aged samples run on the 

same membrane that was stripped and reprobed.   
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Figure 5.7.   GSK-3 upregulates cytokine production in macrophages via p65NF-ĸB.  

BMDM from the young were harvested via trypsin-EDTA, washed and allowed to rest 

for three hours and then cultures were set up where some were pretreated with 

SB216763, while others were not treated for one hour. At the end of the hour, the cultures 

were activated with LPS (1μg/ml) at 30 minutes. The nuclear extract was isolated and run 

on an SDS-PAGE gel, transferred to a membrane and then immonoblotted for p65 NFκB. 

The numbers represented densities of bands normalized to LaminA/C, with the values for 

unstimulated BMDM set to 1.  Results were representative of three independent 

experiments. The final figure was a composite of blots for p65NFκB and Lamin A/C that 

were run on the same membrane, stripped and reprobed. The intervening space (between 

second and third lane) was for lanes loaded with lysates from other time points or 

inhibitors but were deleted  to focus on the effect of LPS+ SB216763 on p65 

translocation at 30 minutes, which was maximum in this experiment.  
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Figure 5.8.   Schematic model for GSK-3 inhibition in the regulation of IL-10 and 

pro-inflammatory cytokine production in splenic and bone marrow macrophages 

via p65NF-ĸB and CREB.  

Activated GSK-3 negatively regulates p65Nf-ĸB and CREB: Upon inhibition of GSK-3 

both p65NF-ĸB and CREB functions were enhanced leading to an increase in IL-10, IL-

12 and TNF-α. IL-12 and TNF-α can also be induced independent of GSK-3 via Akt- 

p65Nf-ĸB or p38 MAP Kinase. 

.  

Copyright © Mosoka Papa Fallah 2011 
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CHAPTER 6:  Role of PI3K-AKT-GSK-3 pathway in TLR 
                           Induced B cell activation and differentiation. 
 
Introduction 

During aging, the B cell mediated responses, including affinity and avidity of the 

antibodies, are decreased (40, 103, 220, 327). There is also an age-related decrease in 

antibody responses to the pneumococcal polysaccharide vaccine  in both elderly humans 

and rodents compared to the young leading to an impairment in opsonophagocytosis of 

pneumococci  (278). To effectively eliminate pathogens the humoral response must be 

able to effectively class switch from a predominant IgM to non-IgM isotypes. This defect 

in the elderly is in turn attributed to impairment in class-switch recombination (CSR) to 

other isotypes, such as IgE, IgG1, IgG2a or IgG3 with specific effector functions (103, 

220, 256).  The impaired class switching in the elderly mice is shown to be associated 

with a decrease in the enzyme, activation-induced cytidine deaminase (AID), due to 

defects in signaling molecules that govern the expression of this molecule (103, 379). 

Under normal conditions, B cell receptors sense the capsular polysaccharide of S. 

pneumoniae, which is a TI antigen. In the presence of certain cytokines B cells can 

produce IgG3 via CSR that helps clear the pathogen by opsonophagocytosis (227). 

However, this is impaired in the aged due to a defect in AID and CSR (103, 105, 220).  

 PI3K-Akt signaling plays a crucial role during B cell proliferation, survival, activation 

and differentiation (267, 268). PI3K mediated activation of Akt results in 

phosphorylation and inactivation of the Foxo-1 transcription factor in B cells. 

Inactivation of Foxo-1 results in the impairment of B cell development in the bone 

marrow, fewer lymph node cells in the peripheral and the ability of B cells to undergo 
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class switch recombination and expression of the enzyme AID (53, 83). Overall, PI3K 

also regulates B-cell homeostasis  by regulating B cell development in the bone marrow, 

the different types of B-cell subsets, B-cell survival and proliferation (22). Yet no studies 

have evaluated the PI3K-Akt signaling pathway in the context of the B cells or its role in 

the impaired class switching in the aged. Since we showed earlier that increased activity 

of PI3K-Akt pathway is responsible for age-related cytokine defect in macrophages 

(Chapters 3 and 4), we asked if the PI3K-Akt pathway plays any role in the impaired 

humoral responses of aged B cells. Glycogen synthase kinase-3 (GSK-3) is a direct 

downstream substrate of Akt, but its role in B cell immune function like CSR and plasma 

cell formation is unknown. GSK-3 modulates beta-catenin and NFATc transcription 

factors as well as cyclin D2 that facilitate B cell survival, proliferation and differentiation 

(24, 29, 118, 391). 

Hence, in this chapter we investigated the role of the PI3K-Akt-GSK-3 signaling pathway 

in the impaired humoral response with a future goal of pharmacologically modulating this 

pathway for potent antibody immune responses in the aged. We demonstrate lower 

production of IgG3 in aged mouse compared to the young upon stimulation with TLR2,-4 

and HKSP and that it is in part due to a dysregulation of the PI3K-Akt-GSK-3 pathway.  
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Results 

IgG3 production by splenic B cells activated via TLR2, 4 and HKSP is decreased in the 

aged. 

 Aged and young purified splenic B cells were stimulated with LPS (20 µg/ml) (Figure 

6.1A), P3C (5µg/ml) (Figure 6.1B) and HKSP (2 x 108 CFU/ml) (Figure 6.1C) for three 

days. Total IgG3 levels were quantified by ELISA. There was lower production of IgG3 

in TLR2 (Figure 6.1A), TLR4 (Figure 6.1B) and HKSP (Figure 6.1C) activated aged 

splenic B cells compared to the young.   

 Increased activation of Akt in the aged splenic B cells correlates with the defect in IgG3 

production  

Akt was activated via phosphorylation by the PI3 kinase resulting in  suppression of IgG, 

IgA and IgE production in B cells (269). We inquired if there was an age-related increase 

in p-Akt which could account for the lower production of IgG3.  Levels of p-Akt were 

determined by Western blot analysis of lysates from aged and young adult splenic B cells 

stimulated with LPS (20µg/ml). Under unstimulated conditions, there was a higher level 

(1.5 fold, after normalization to total Akt) of p-Akt in the young compared to the aged, 

which was suppressed strongly after 120 minutes of stimulation with LPS (Figure 6.2 A, 

lanes 1 and 4). Reduction of p-Akt levels in young B cells activated with LPS at early 

time points (15 and 30 minutes, Figure 6.2A, lanes 5, 6 and 7) was very small. In 

contrast, there was no reduction in p-Akt levels in LPS stimulated aged B cells at early 

time points (Figure 6.2A, lanes 1, 2, 3). At 120 minutes of stimulation there was only a 

20% reduction in P-Akt in aged B cells; unlike young B cells where p-Akt was reduced 
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by ~87% (Figure 6.2A, lanes 5, 8). Having established that LPS activated aged B cells 

had higher activated Akt than the young; we next asked if this differential activation of 

Akt was associated with differences in the protein levels of PTEN, an antagonist of the 

PI3 kinase pathway. Surprisingly, there was no change in PTEN levels beteen the aged 

and young B cells (figure 6.2B) at all time points tested. 

 PI3K inhibition leads to increase in production of IgG3 in both the aged and young adult 

splenic B cells 

We asked if the increased levels of p-Akt had a role in decreased IgG3 in the aged since 

Akt pathway was known to inhibit IgG3. Since p-Akt activation was dependent on PI3K 

activity, we tested if inhibition of PI3K enhanced IgG3 expression in aged B cells. We 

stimulated splenic B cells with LPS (20μg/mL) and HKSP in the presence of wortmannin 

or LY294002 for 3 days and the supernatants were assayed by ELISA for IgG3 

production. There was a 2-fold increase in IgG3 production in the young splenic B cells, 

while in aged splenic B cells there was a 6-fold increase with LPS stimulation in the 

presence of wortmannin (Figure 6.3A). When LY294002 was used, there was a two-fold 

increase at 5µM of LY294002 compared to LPS stimulation in a dose dependent manner 

(Figure 6.3B). When wotmannin was used in the presence of HKSP, there was a greater 

increase in IgG3 production in the young B cells at 10 nM of wortmannin compared to 

the aged, yet both were greater than B cells stimulated with HKSP without the inhibitor 

(Figure 6.3 C). At 25 nM of wortmannin, the aged B cells had a greater increase in 

production of IgG3 compared to the young. However, at both concentrations of 

wortmannin there was a higher IgG3 production compared to HKSP stimulated B cells 

without the inhibitor (Figure 6.3C).  In the case of HKSPstimulation, the enhancement of 
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IgG3 by PI3K inhibitor was more in the aged than the young (Figure 6.3D). Finally, we 

asked if the ability of LY294002 to enhance IgG3 production in aged B cells was 

dependent on a specific strain of mouse. Splenic B cells from C57BL/6 mice were 

stimulated with LPS in the presence of LY294002. There was a significant increase in 

IgG3 production in the presence of LY294002 (Figure 6.3 E). Thus, inhibiting PI3 kinase 

partially rescued the age-related defects in IgG3 production.  

Inhibition of PI3K with wortmannin induces AID. 

PI3K-Akt pathway regulates immunoglubulin production by inhibiting the expression of 

the enzyme AID which facilitates class switch recombination (268). On the basis of this 

finding and the fact that wortmannin elicited enhanced IgG3 production by both aged and 

the young B cells at all concentrations evaluated (Figure 6.3 A), we measured the 

expression of AID in young splenic B cells stimulated with Pam3CSK4, a ligand for 

TLR-2/1 that is associated with HKSP lipoproteins, in the presence of different doses of 

wortmannin for 72 hours. There was a 1.3 fold increase in AID levels at 25nM and 1.8-

fold increase at 50nM of wortmannin+ P3C activated B cells compared to P3C 

stimulation alone (Figure 6.4). Thus, PI3K inhibtion induces increased expression of AID 

that plays a role in IgG3 production.  

GSK-3 inhibition in the presence of LPS induces higher production of IgG3 and IgA in 

young splenic B cells. 

Glycogen synthase kinase-3 had been shown to influence B cell survival, proliferation 

and activation (391). Since GSK-3 was an immediate downstream substrate of Akt, we 

evaluated the effect of GSK-3 inhibition on LPS induced IgG3 and IgA secretion. Splenic 

B cells from young mice were stimulated with LPS in the presence of SB216764, a well 
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characterized inhibitor of GSK-3 (Figures 6.5 A and B). There was a 2.6-fold increase in 

IgG3 production in the young splenic B cells at 5 and 10 µM of the inhibitor (Figure 

6.5A), while there was a 3 and 6-fold increase in production of IgA at 5 and 10 µM 

respectively (Figure 6.5B).  

 SB216763 enhances secretion of IgA and surface expression of switched isotypes of 

young mouse B cells stimulated with Pam3CSK4, a TLR2/1 ligand. 

  IgA immunoglubulin conferred protection against S. pneumoniae in aged mice at 

mucosal sites like the lungs (110, 111, 172). Hence, we asked whether GSK-3 inhibition 

enhanced production of IgA if we use Pam3CSK4, the TLR2/1 ligand. We demonstrated 

that SB216763 enhanced the production of IgA (Figure 6.6A) in splenic B cells stimuated 

with Pam3CSK4. We next asked if this effect could be shown via surface expression of 

the IgA. B cells were stimulated with Pam3CSK4 in the presence of SB216763 and 

cultured for 3 days. Figure 6.6 B showed that SB216763 increased the surface expression 

of IgA compared to B cells treated with LPS alone. 

Pharmacologically inhibiting GSK-3 results in increased production of IgA and IgG3 as 

well as enhanced expression of surface IgA in young splenic B cells stimulated with CpG, 

a TLR-9 ligand. 

 TLR9 signal has been implicated in immune response to S. pneumoniae presumably via 

bacterial DNA containing CpG motifs (14). Therefore; it was of interest to know if TLR9 

mediated IgG3 expression was enhanced by GSK-3 inhibition. We demonstrated an 

enhanced production of IgA (figure 6.7A) and IgG3 (Figure 6.7B) at all concentrations of 

the GSK-3 inhibitor tested.  We then asked if this effect could be shown via the surface 
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expression of switched isotypes of IgA. B cells were stimulated with CpG (Figure 6.7 C) 

in the presence of SB216763 and cultured for 3 days. The B cells were collected and 

analyzed by flow cytometry. Figure 6.7C showed that SB216763 increased the surface 

expression of IgA compared to B cells treated with LPS alone. 

Activation of young adult splenic B cells with HKSP in the presence of SB216763 

increase the production of IgG3 as well as surface expression of IgA and IgG3. 

Now that we had shown that synthetic ligands for TLR-2,-4 and -9 which were associated 

with S. pneumoniae enhanced the production and surface expression of different 

immunoglobulin, we decided to approximate as closely as possible the normal host-

bacterial interaction. For this purpose, S. pneumoniae was grown to mid-log phase, heat 

killed and used to activate B cells in the presence of SB216763. We cultured the B cells 

for 3 days and assayed the supernatants by Ig ELISAs. There was enhanced in the 

production of IgG3 (Figure 6.8A) at all concentrations of SB in HKSP stimulated B cells.  

We tested if GSK-3 affected switching to IgA and IgG3 isotypes. Therefore, surface 

expression of IgA and IgG3 was analyzed by flow cytometry. B cells expressing IgA 

(Figure 6.8B) and IgG3 (Figure 6.8C) switched isotypes were enhanced when GSK-3 was 

inhibited. Please note the magnitute of the HKSP induced IgG3 response in these 

experiments was significantly lower than in experiments shown in Figures 6.3. We 

attribute this to a new batch of HKSP which was not as potent as the one used in PI3K 

inhibitor studies. However, the enhancement of IgG3 response by the GSK-3 inhibitor 

was highly reproducible. 

 



153 
 

GSK-3 inhibitor enhances plasma cell formation in TLR-2,-4,-9 and HKSP stimulated 

splenic B-cells  

Previous studies by Omori and colleagues showed that PI3K inhibition enhanced class 

switching at the expense of plasma cell formation via differential regulation of BLIMP 

and FOXO trancription factors (268, 269). Since, GSK-3 was a downstream substrate of 

PI3K-Akt and had multi-factorial roles in regulating B cells we evaluated the effect of 

GSK-3 inhibition on plasma cell formation. We stimulated young adult splenic B cells 

with LPS, P3C, CpG and HKSP in the presence of SB216763 for three days, collected the 

B cells and quantified the expression of the plasma cell marker, CD138 by flow 

cytometry. Surprisingly, there was an increase in plasma cells (B220lo CD138hi ) upon B 

cell activation with LPS (Figure 6.9 A), P3C (Figure 6.9 B, upper panel) and CpG 

(Figure 6.9 B, middle panel) at all concentrations of SB216763 tested. Interestingly, LPS 

and HKSP stimulation induced CD138 expression without reducing B220 levels. Though 

the significance of this difference between P3C and CpG versus LPS and HKSP was 

unclear, B220hi CD138hi cells represented an early stage of plasma cells. 

SB216763 modulates B cell activation and differentiation in the presence of ligands for 

TLR-2, 9 and HKSP without any toxicity.  

Since inhibition of GSK-3 imposed greater metabolic demands on the B cells to both 

class switch and form plasma cells, we wondered if this was at the expense of viability or 

proliferation of the B cells. The viability of the young splenic B cells  was examined by 

trypan blue count following 3 days of culture in the presence of  SB216763 with CpG 

(Figure 6.10 A), Pam3CSK4  (Figures 6.10 B),  and HKSP  (Figure 6.10C). The recovery 
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of viable B cells increased by 3-4-fold upon stimulation with CpG and Pam3CSK4, 

which was further enhanced slightly by GSK-3 inhibition. Stimulation with HKSP had 

only a modest effect on B cell recovery, which was enhanced at one concentration of the 

GSK-3 inhibitor.  

SB216763 enhances the expression of AID in TLR-4 stimulated B cells. 

GSK-3 regulates beta-catenin and NFATc1, transcription factors that play a role in CSR, 

which can be determine by the expression of AID. B cells were stimulated with LPS with 

our without SB216763 for 72 hours and the probed for AID. Our results show that 

SB216763 increased AID expressions at all concentrations (Figure 6.11, lanes 2, 3, 4 and 

5). We conclude that the ability of SB216763 to increase IgG3 and IgA may be via CSR.  
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DISCUSSION 

Our ultimate goal is to establish a possible link between alteration in the PI3K-Akt 

pathway in the aged mice compared to the young that explains the impaired IgG3 

production in aged splenic B cells and whether we can rescue this defect 

pharmacologically. We also wanted to create a proof of principle that pharmacologically 

inhibiting GSK-3, a downstream kinase of the PI3K-Akt signaling induces greater B cell 

differentiation, activation and thus, serves as a potential vaccine adjuvant in the aged 

mice. We demonstrate that aged splenic B cells produce lower levels of IgG3 compared 

to the young and that this is associated with an increase in the activation of Akt, which is 

known to downregulate AID and class switching (268). We establish a causal role of the 

activated Akt in blunting the IgG3 production as we are able to rescue the age-related 

defect in IgG3 production upon inhibition of PI3K in the context of TLR-4 and HKSP. 

We make a notable finding that inhibiting GSK-3 with SB216763 results in an enhanced 

class-switching and plasma cell formation. Inhibitors of PI3K and GSK-3 indicate that 

both signaling molecules are able to upregulate AID expression. 

Aging is associated with impaired humoral  and vaccine responses to pathogens such as 

the Gram positive  S. pneumoniae that is the leading etiological agent for community 

acquired pneumonia (CAP) (278). The impaired humoral response in the aged associates 

with a decrease in AID, class switch recombination and other signaling molecules like 

protein tyrosine kinase (PTK) and protein kinase C isoforms and transcription factors like 

E 47 (105, 379). Hence, these aging markers can be pharmacologically modified to create 

a close approximation of the effective young adult immune responses. 
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We established in vitro conditions which mimicent the defective B cell response to 

pneumococcal polysaccharide vaccine or TNP-Ficoll, a model TI-II antigen and showed 

that the response can be enhanced by macrophage derived cytokines (38, 114). We also 

demonstrated that the age-associated defect in B cell antibody responses to these antigens 

is due to a cytokine dysregulation in the aged macrophages (63). We further showed that 

inhibiting PI3K in aged macrophages rescues this cytokine defect and serves as a 

potential target for providing endogenous cytokines needed for B cells to overcome the 

defective humoral response (Chapter 4). The in vivo use of PI3K inhibitor also affects B 

cells. Hence, we established that PI3K-Akt is also dysregulated in the aged B cells and 

can be rescued by pharmacological inhibition. 

  The Class IA PI3K plays a very important role in modulating B-cell immune functions 

and activities (89). It is one of the key signaling molecules downstream to B cell receptor 

(BCR), B-cell costimulatory molecules, toll like receptors and cytokine receptors and can 

be activated by one or a combination of these receptors. Once activated, it phosphotylates 

Akt, which in turn modulates B-cell proliferation and survival (81, 268). The p110 delta 

(p110δ) catalytic subunit is critical for the phosphorylation of Akt. Phosphorylated Akt 

then phosphorylates and inactivates Forkhead box-1 containing transcription factor, 

Foxo1 (205). Genetic or pharmacological inactivation of p110δ prevents B cells from 

entering the cell cycle by inhibiting upregulation of cyclin D2 (30, 267).   

In this study we show that p-Akt is increased with age and explains the defective IgG3 

production observed in the aged. Our finding is supported by studies showing that 

activation of Akt via a B cell specific PTEN conditional knockout leads to a defect in the 

production of most isotypes of IgG upon B cell stimulation by either TI or TD antigens 
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(343). Though we show a correlation between increased p-Akt and defective IgG3 

production in aged B cells, we still need to establish causation. Hence, we demonstrate 

that inhibition of PI3K-Akt signaling pathway by either LY294002 or wortmannin is able 

to rescue the age-associated defect in IgG3 production. This finding is supported by 

several studies that demonstrate that pharmacological or genetic inhibition of PI3K-Akt 

signaling enhances Ig production (30, 81, 268, 269). AID plays a crucial role in CSR and 

somatic hypermutation which are critical for a potent humoral response to pathogens 

(248). Our studies indicate that inhibition of the PI3K-Akt signaling pathway resultes in a 

higher expression of AID and thus increased production of IgG3.  

Having established that PI3K-Akt can be pharmacologically modulated to shift from a 

decreased AID and IgG3 production, a hallmark of aging, to enhanced AID expression 

and IgG3 production, a marker of young adult mediated immune response, we decided to 

look at downstream of this pathway. A downstream molecule can be modulated under in 

vivo conditions with fewer side effects. Hence, we evaluated the role of GSK-3 in 

enhancing Ig production, AID expression and plasma cell formation in a young splenic B 

cell in vitro model. BCR signaling triggers PI3K-Akt activation resulting in the 

phosphorylation and inactivation of GSK-3 activities. Since GSK-3 negatively regulates 

several of its downstream transcription factors, the phosphorylation mediated inactivation 

of GSK-3 leads to an increase in the activities of transcription factors such as NF-ATc 

and beta-catenin. These transcription factors are important in modulating the immune 

functions of B cell (118, 391).  

We inhibited GSK-3 with SB216763 in B cells that are then activated via TLR-2,4 and 9, 

as well as HKSP and demonstrated an enhanced production of different isotypes of IgG, 
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as well as IgM and IgA. This is the first study to show that GSK-3 inhibition can lead to 

increased production of immunoglobulin. In support of this notion, a conditional 

knockout of beta-catenin, one of the downstream targets of GSK-3 shows a significant 

reduction in class switching to IgG1 and plasma cell generation in vitro (391). Since the 

activity of unphosphorylated GSK-3 is known to phosphorylate and degrade beta-catenin, 

thus inhibiting GSK-3 by SB216763 results in increased beta-catenin which in turn may 

enhance Ig production and plasma cell generation. In the future we will evaluate the role 

of GSK-3 inhibition on beta-catenin in B cells and evaluate its effects on Ig production. 

We wonder if the increased production in IgA and IgG3 is due to class switching or 

expansion of an already class-switched group of B cells. To address this question we 

evaluated the generation of B cells with switched isotypes IgG3 and IgA on their surface 

by FACS. We consistently show that SB216763 enhances the surface expressions of the 

IgG3 and IgA isotypes indicating that this phenomenon is due to class switching. Similar 

results are obtained for surface IgG1 and IgG2b positive B cells (data not shown). We 

further validate that GSK-3 is mostly inducing increased production of the 

immunoglobulin by class switch recombination by Western blot for AID expression. As 

mentioned earlier AID upregulation is a very good indicator of class switch 

recombination (249).  

It is known that plasma cell formation is the terminal and irreversible differentiation state 

of B cells where they lose their B cell characteristics and become potent antibody 

producing cells. This process is aided by antagonistic interactions of transcription factors 

like BLIMP1, BCL6, Pax5 (320). Since switched cells can eventually become  plasma 

cells, the CSR may correlate with plasma cell development in a  sequential manner (270). 
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Recently, Omori and colleagues show that PI3K inhibition leads to increase CSR at the 

expense of plasma cell production (268, 269). Yet in our hands, we show that GSK-3 

inhibition upregulates both CSR and plasma cell formation at the end of three days. This 

is supported by other studies that show that CSR is a prelude to plasma cell formation 

(181). 

In spite of this novel finding with GSK-3, there is a caveat we must point out in our work. 

We have not as of yet clearly delineated the transcription factors that are being regulated 

by either PI3K-Akt or GSK-3 inhibition in our studies. GSK-3 is known to regulate 

transcription factors like NF-κB (p65 and p105), beta-catenin  and NFATc1 that are 

known to regulate CSR or plasma cell formation (166). Hence, a future challenge for us 

will be to clearly delineate the downstream signaling pathway to Akt and GSK-3 that are 

inducing CSR and plasma cell formation, respectively.  Our observation can be 

summarized in a model wherein increased activity of the PI3K-Akt pathway in the aged 

suppresses AID and CSR and resulting in reduction of IgG3 production (Figure 6.12 A). 

Inhibiting PI3K-Akt relieves this suppression and enhances AID, CSR and IgG3 

production (Figure 6.12B). TLR-2, 4 or 9 and HKSP mediated stimulation of B cells in 

the presence of SB216763 reduces p-GSK-3β, leading to increased GSK-3β activity, and 

increased AID, CSR and immunoglobulin production through transcription factors that 

are yet to be charaterized (Figure 6.12B).  
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Figure 6.1. Age-associated decrease in IgG3 production by splenic B cells activated 
via TLR2, 4 and HKSP. 

 Splenic B cells (1.0 x 106 cells/ml) from young (open box) and old (filled black box) 

mice were cultured with LPS (20 µg/ml) (6.1A), P3C (5µg/ml) (6.1B), and HKSP (2 x 

108 CFU/ml) (6.1C), for 3 days. At the end of three days supernatants were collected and 

assayed for IgG3 by ELISA.  Results were expressed as means ± SE which were 

representative of four independent experiments.  The symbol *  indicated  statistical 

significance (p<0.03) of differences in responses of young and  aged B cells. 
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Figure 6.2. Age-associated increase in activation of Akt without changes in PTEN in 

splenic B-cells. 

Purified splenic B cells (2.0 x106 cells/ml) from aged and young adult B cells were 

stimulated with LPS (20 µg/ml) and total cell lysates were isolated and immunoblotted 

for p-Akt (Figure 6.2A) and PTEN (Figure 6.2B). The blots were stripped and probed for 

total Akt and for beta-actin. The numbers represented densities of bands normalized to 

total Akt with the values for unstimulated aged and young B cells set to one.  
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Figure 6.3. Inhibition of PI3K activity increases the production of IgG3 in both the 

aged and young adult splenic B cells 

Splenic B cells (1.0 x 106 cells/ml) from young (open box) and old (filled black box) 

Balb/c mice were pretreated for 1 hour, with the PI3K-inhibitors, LY294002 (Figures 6.3 

B,D and E) or wortmannin (Figures 6.3A and C) at different concentrations that were 

previously tested and optimized. The B cells were then activated with LPS (20 µg/ml) 

(Figures 6.3 A, B and E) or HKSP (2x 108 Cfu/ml) (Figures 6.3 C and D).  After three 

days of culture the supernatant was collected and assayed by ELISA for IgG3. (E) IgG3 

ELISA from splenic B cells of aged C57BL/6 mice activated by LPS in the presence of 

LY294002.  Results were presented as mean ± SE of four independent experiments.  The 

symbol * and # indicated statistical significance (p<0.04) of differences in responses in the 

aged and young B cells treated with LPS (or HKSP) with or without the PI3K inhibitor.  

 

 

 

 

 

 

 

 



164 
 

 

Figure 6.4. Wortmannin, a PI3K inhibitor, enhances AID expression in B cells. 

Purified  splenic B cells (2.0 x106 cells/ml)  in  5 ml of RPMI complete from young adult 

mice were stimulated with  P3C (10 µg/ml) for three days and total cell  lysates were 

isolated and immunoblotted for AID  (Figure 6.4A) . The blot was stripped and probed 

for beta-actin. The numbers represent densities of bands normalized to beta-actin with the 

values for LPS stimulated young B cells set to one.  
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Figure 6.5. GSK-3 inhibition induces higher production of IgG3 and IgA in young 

splenic B cells stimulated via TLR-4. 

Splenic B cells (1.06 cells/ml) from young  Balb/c mice were cultured with SB216763 for 

1 hour, then stimulated with LPS (20 µg/ml) for 3 days and the supernatant was collected 

and evaluated by sandwich ELISA for IgG3 (Figure 6.5A) and IgA (Figure 6.5B). Results 

were means ± SE of four independent experiments.  The symbol * indicated statistical 

significance (p<0.01) of differences in responses in the young B cells treated with LPS 

with or without the GSK-3 inhibitor.  

 

 

 

 

 

 



166 
 

 

 

 

 

 

 

 

Figure 6.6. Inhibition of GSK-3 enhances secretion of IgA and surface expression of 

IgA in young mouse B cells stimulated with Pam3CSK4. 

Splenic B cells (1.06 cells/ml) from young Balb/c mice were cultured with SB216763 for 

1 hour, then stimulated with P3C (5µg/ml) for 3 days and the supernatant was collected 

and evaluated by  ELISA for IgA (Figure 6.6A). Results were means ± SE of four 

independent experiments.  The symbol * indicated statistical significance (p<0.03) of 

differences in responses of young B cells treated with LPS with or without the GSK-3 

inhibitor. (Figure 6.6B) After culture for 3 days B cells are removed, washed and then 

analyzed by FACS for the expression of membrane IgA using PE-Cy5-labeled anti-B220 

Abs and FITC-labelled IgA anti-mouse Ab. Results were representative of five 

independent experiments.  
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Figure 6.7. GSK-3 inhibition leads to increase in production and expression of 

surface IgA and IgG3 in young splenic B cells stimulated with CpG, a TLR-9 ligand. 

Splenic B cells (1.06 cells/ml) from young  Balb/c mice were cultured with SB216763 for 

1 hour, then stimulated with CpG (5µg/ml) for 3 days and the supernatant was collected 

and evaluated by  ELISA for IgA (Figure 6.7A) and IgG3 (Figure 6.7B). Results were 

given as means ± SE and are representative of four independent experiments.  The 

symbol * indicated statistical significance (p<0.03) of differences in responses in the 

young B cells treated with LPS with or without the GSK-3 inhibitor.  (Figure 6.6C) 

FACS analysis was done on B cells cultured for 3 days for the expression of membrane 

IgA using PE-Cy5-labeled anti-B220 Abs and IgA FITC-labelled IgA anti-mouse Abs. 

Results were representative of five independent experiments.  
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Figure 6.8. HKSP activates young splenic B cells in the presence of SB216763 to 

increase the production of IgG3 as well as surface expression of IgA and IgG3. 

Splenic B cells (1.06 cells/ml) from young  Balb/c mice were cultured with SB216763 for 

1 hour, then stimulated with HKSP (2.0 x 108 CFU/ml) for 3 days and the supernatant 

was collected and evaluated by  ELISA for IgG3 (Figure 6.8A). Results were indicated as 

means ± SE and were representative of four independent experiments.  The symbol * 

indicated statistical significance (p<0.03) of differences in responses in the young B cells 

treated with HKSP with or without the GSK-3 inhibitor. FACS analysis was done on B 

cells cultured for three days  for the expression of membrane IgA (Figure 6.8B) and IgG3 

(Figure 6.8C)  using PE-Cy5-labeled anti-B220 Abs,  FITC-labelled to antibodies to IgA 

and biotin-labelled anti-IgG3  Abs. After incubation for 30 minutes, the biotin-labeled 

cells were washed two times and resupended in APC-strepavidin for additional 15 

minutes. All the cells were finally washed once and were analyzed on FACS Calibur. 

Results were representative of five independent experiments.  
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Figure 6.9. SB216763 induces increased plasma cell formation in TLR-2,-4,-9 and 

HKSP stimulated splenic B-cells  

Splenic B cells (1.06 cells/ml) from young Balb/c mice were cultured with SB216763 for 

1 hour, then stimulated with LPS (20 µg/ml) (Panel A), Pam3CSK4 (5µg/ml), CpG 

(5µg/ml) and HKSP (2.0 x 108 CFU/ml) (Panel B) for 3 days.  FACS analysis was 

performed on B cells stained with PE-Cy5-labeled anti-B220 and PE-labelled anti-CD-

138 antibodies. Results were representative of five independent experiments.  
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Figure 6.10. SB216763 is not toxic to young splenic B cells activated via TLR-2, 9 
and HKSP  

Splenic B cells (1.06 cells/ml) from young Balb/c mice were cultured with SB216763 for 

1 hour, then stimulated with CpG (5µg/ml) (Figure 6.10 A), Pam3CSK4 (5µg/ml) 

(Figures 6.10 B),  and HKSP (2.0 x 108 CFU/ml) (Figure 6.10C) for 3 days. The cells 

were harvested and washed twice with 1X PBS and then resuspended in RMPI. The 

viable cells were counted by trypan blue-mediated enumeration. Results were 

representative of three independent experiments. 
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Figure 6.11. SB216763 enhances expression of AID in young splenic B cells activated 

via TLRs.  

Purified  splenic B cells (2.0 x106 cells/ml)  in  5 ml of RPMI complete from  young adult 

mice were were either treated with SB216763 or left untreated  for 1 hour and then 

stimulated with LPS (20 µg/ml) for three days and total cell  lysates were isolated and 

immunoblotted for AID (Figures 6.11) . The blot was stripped and probed for beta-actin. 

The numbers represented densities of bands normalized to beta-actin with the values for 

unstimulated young B cells set to one.  
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Figure 6.12.   Schematic model for PI3K-Akt and GSK-3 inhibition in positively 

modulating B cell immune functions.  

The HKSP or TLR-2,-4 and -9 activation of aged splenic B cells triggers activation of 

PI3K, increased activity of  PI3K-Akt pathway (increased p-Akt, p-GSK-3) leading to 

suppression of AID, CSR and IgG3 production (Figure 6.12A). This age-related defect 

can be rescued by inhibiting PI3K or GSK-3 leading to reduction in p-Akt relieving the 

suppression of AID which then promotes CSR and IgG3 production at levels similar to 

the young (Figure 6.12B).  
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CHAPTER 7: OVERALL DISCUSSION 

Biomarkers of aging- macrophages: Aging has become a challenging global health 

concern as the development in health and technology is giving rise to an ever increasing 

elderly population. This population exhibits a unique aging phenomenon referred to as 

immunosenecence, which is associated with impaired innate and adaptive immune 

functions (197, 220, 228). As a result of these defects, this population is affected with 

pathologies that are neurological, metabolic, plastic and systemic. There is increased 

incidence of dementia, Alzheimer disease, diabetes, cancers and infections resulting in 

higher morbidities, mortalities and costly hospitalization (58, 204). These age-related 

pathologies have led to frantic efforts to identify markers of aging so that effective 

therapeutics can be developed. In any disease entity the identification of biomarkers is 

very relevant as it leads to the ability to (1) predict the disease progression and intensity 

(2) develop effective therapeutics and (3) effectively measure the efficacy of the existing 

and newly developing therapeutics. In the aged humans and rodents, a couple of these 

markers are known and are paving the way to (1) predict the aging population that are 

more susceptible to age-related disease syndromes, (2) develop  therapeutics, such as 

exogenous cytokines, ligands for TLRs such as CpG, that show promises in mouse 

models to rescue these aging defects; and (3) lead the way in measuring intervention in 

age such as increase in CSR and antibody responses that are of higher affinity and avidity 

(78, 196). 

  In the context of immunosenecence, there are still many challenges in adequately 

defining such markers, tailoring patented therapeutics and developing assays that will 

give a good measure of outcomes. One of the challenges is that aging markers are not 
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restricted to one type of cell or tissue as aging is known to affect all innate and adaptive 

immune cells. Hence, a marker in one group of cells may only provide for partial 

therapeutics and outcome measure of disease state and progression. For instance, while 

the level of AID could serve as a very good marker for B cell immunosenescence, it will 

not serve similar purposes in macrophages or T cells (196).  

Macrophage and macrophage-derived cytokines are crucial in modulating both the innate 

and immune responses, and a dysregulation in cytokines is a chief predisposing factor for 

age-abnormalities like Alzheimer’s disease, cancer and increased susceptibilities to 

infectious diseases. Age-related defects in macrophages are a contributing factor to the 

diminished immune responses in the host (186, 282, 288).  The sentinel functions of 

macrophages in the respiratory tract are defective which contribute to mortality from 

pneumonia and influenza among the elderly (186, 397). In the context of immune 

responses to S. pneumoniae, a dysregulation in IL-6, TNF-α, IL-1β in alveolar 

macrophages increases the susceptibility to the disease leading to increased lethality (355, 

357). The age-related decline in vaccine responses has also been attributed to defect in 

macrophage function (58, 186). The prognosis of elderly patients with acute pneumonia 

are very poor if they produce lower TNF-α and IL-1β compared to their young adult 

counterparts (121). IFN-γ has also been shown to cause hypo-responsiveness to S. 

pneumoniae in the post-influenza recovery period. 

If macrophage and macrophage-derived cytokines are crucial biomarkers for aging, and 

modulating their age-related defects could provide effective measurable therapeutics, 

why is there an absence of research to therapeutically modulate macrophage and 

macrophage-derived cytokines to restore immune functions? There are several challenges 
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such as (1) establishing the dichotomy between cytokine dysregulation and 

“inflammaging”; (2) uniform characterization of aged macrophages in terms of 

phenotypes and signaling molecules; and (3) evaluating age-related impairment in terms 

of intrinsic and extrinsic defects. 

Cytokine-dysregulation and inflammaging:In this thesis, we report in chapter 3 that upon 

stimulating negatively selected splenic macrophages with  ligands for TLR-4, TLR2/1 

and TLR2/6 there is a reduction in pro-inflammatory cytokines, IL-12, IL-6 and TNF-α, 

but an increase in IL-10. We repeat this with a ligand for the IL-1 receptor and heat killed 

Streptococcus pneumoniae (HKSP) that contain ligands for TLR2 and TLR9. This is 

established in literature as “cytokine dysregulation”, and is reported in both peritoneal 

and splenic macrophages by many other investigators (34, 63, 277, 298). However, this 

finding runs contrary to the concept of “inflamm-aging” which indicates increased basal 

inflammation is the norm in the elderly.  IL-6 and TNF-α are the two common cytokines 

that gave rise to this basal inflammation and predispose such individuals to several 

inflammatory disease such as atherosclerosis (47, 102). This low grade inflammation has 

several contributing factors including: frailty of the elderly, obesity, lack of exercises and 

prior infections among others  (9). The frail elderly already have predisposing underlying 

diseases that impact on basal inflammation, whereas, in the healthy elderly, the 

inflammation is controlled by the increase in the levels of IL-10 (10).  For instance IL-6 

is less in normally healthy elderly than the young adult, but this is reversed in elderly 

having infections (257).  

A recent study shows that the apparent discrepancies in age-related macrophages in terms 

of cytokine-dysregulation and to age-related inflammation are due to differences in 
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strains, sex, site and methods of macrophage collection and experimental conditions 

(186). But we are able to show in chapter 4 that cytokine dysregulation can also be 

demonstrated in in vitro generated BMDM stimulated with several TLR ligands and 

HKSP. Since two different groups of macrophages (spleen and BMDM) are isolated 

under different conditions and treated similarly to yield cytokine-dysregulation, we 

conclude the method of macrophage isolation or the site of macrophages does not explain 

this deviation in cytokine prolife. If cytokine dysregulation represents an aging marker 

for effective therapeutics, there must be a careful selection of healthy elderly candidates 

to account for other co-morbidities.  

Another issue with the use of cytokine dysregulation in macrophage as a marker for aging 

for the development of effective therapeutics is the fact that there are differences in 

macrophages in terms of phenotype, function and effects on the surrounding cells (245). 

Thus, human intestinal macrophages do not produce inflammatory cytokines and do not 

express complement receptor (CR/CD11b) (330).  There is a classification of M1 and M2 

macrophages, in which the M1 macrophages are associated with the Th1 strain of mice 

(C57BL/6) and produce high levels of nitric oxide (NO) in response to LPS or interferon 

gamma (IFN-γ), while the M2 are associated with Balb/c, the Th2 strain and produce 

arginase which converts arginase to L-Ornithine in response to LPS alone (237). The 

most commonly identified macrophages are the classically activated macrophages 

(CAM/M1) and the alternatively activated macrophages (AAM/M2) (123). The CAM 

and the AAM are relevant to our studies as each of these classes of macrophages is 

influenced by different cytokines and they in turn produce different cytokines. Not only 

that, they can each respond to different classes of pathogens and thus the appropriate 
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microenvironment must be created to tailor a response for a specific pathogen. In our 

case, the goal is to design therapeutics that precisely orchestrate a particular phenotype of 

macrophages that  target extracellular pathogens like S. pneumoniae;  as in the case of the 

CAM which  are effective against intracellular pathogens like Mycobacterium 

tuberculosis (245, 258). 

The  CAM are activated by a dual signaling involving first a priming by IFN-γ, produced 

by Th1 cells, and then  a subsequent signal by microbial LPS, but the AA macrophages 

don’t need a priming as IL-4 and/or IL-13 produced by Th2 cells can activate these cells 

(123). The CAM have higher phagocytic and antigen presentation functions than AAM. 

They produce chemokines like IL-8 and Rantes that help in the recruitment of NK cells, 

neutrophils, T cells and even immature DCs.  In addition, they produce pro-inflammatory 

cytokines like IL-1β, IL-6 and TNF-α (245, 258).  However, they have a tendency to 

produce massive inflammation and  uncontrolled activation that can result in tissue 

damage, type I autoimmunity and tumors (123). The AAM also upregulate MHC-II and a 

distinct set of chemokines like CCL-17, 18 and 22, which help in the recruitment of 

leukocytes. Unlike CAM, AAM do not produce NO from L-arginine (247).  Once 

activated they can pinocytose antigens via their mannose receptor (MR), which are 

specific to the AAM, and present these antigens to T cells in the context of MHC-II. They 

also upregulate the enzyme arginase-I, a hallmark of AAM, that help produce proline 

required for rebuilding of extracellular matrix that is destroyed by the overly activated 

CAM (123, 247). AAM can down-modulate the massive pro-inflmmatory cytokines 

produced by the CAM via the production of anti-inflammatory cytokines like IL-10, 

TGF-β and IL-1Ra. They are also involved in would healing, angiogenesis and tissue 
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repairs (245, 258). The AAM like the CAM, have beneficial and pathological effects. 

While the AAM are involved in mediating humoral immunity and anti-parasitic 

responses, such as Shistosomiasis, they are associated with common pathologies like 

allergy and asthma (123). 

In this thesis we demonstrated that both in splenic and bone marrow derived 

macrophages inhibiting PI3K-Akt signaling pathway orchestrates a macrophage 

population that is specifically producing the pro-inflammatory cytokines, while 

suppressing IL-10, one of the anti-inflammatory cytokines used by the AAM to down-

modulate pro-inflammatory cytokines. We could probably say that PI3K-Akt inhibition 

produces a macrophage population that is closer to CAM in terms of the cytokines 

profile. A recent study indicates that PI3K is needed for the development of AAM, where 

a deficiency of SHIP, a negative regulator of PI3K, leads to the production of AAM, but 

that SHIP-mediated negative regulation of PI3K had a propensity for CAM  (296).  

Hence, by modulating PI3K-Akt we can drive the AAM or CAM dichotomy for rescuing 

the age-related defects in macrophage and macrophage-derived cytokines for potent 

immune response to specific type of infections. However, we cannot clearly identify 

whether these pharmacological inhibitors are able to produce either CAM or AAM. We 

will need additional assays to determine NO and arginase-I for CAM and AAM 

respectively under these conditions.  Our microarray shows that neither iNOS nor 

arginase is selectively increased in the aged versus young macrophages (65). 

Finally, for the use of cytokine-dysregulation in macrophages as a marker for aging in the 

development of therapeutics, there is the challenge of clearly establishing the contribution 

of the intrinsic and extrinsic factors (186). Until these can be resolved, it becomes 
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difficult to develop effective therapeutics and to rely on reversing cytokine-dysregulation 

as treatment marker. In the context of viral infection, it is known that macrophages can 

exert both intrinsic (limiting viral growth in vivo) and extrinsic (preventing viral 

production in other cells via the induction of interferons or TNF-α) modulatory effects 

(229, 243, 381).  Macrophage function in terms of cytokine production and antiviral 

resistance can be positively modulated by exercise, which is an extrinsic modulatory 

effect (146, 186). To address this important question, we used negatively selected SM 

and BMDM that are grown under in vitro conditions and treated them with ligands for 

TLR-2, 4 and/or -9 as well as HKSP with or without PI3K inhibitors. By demonstrating 

similar signaling mechanisms and cytokine profile in BMDM and SM we showed that the 

age-related defect in macrophages is most likely due to intrinsic signaling defects. We 

also demonstrated that PI3K-Akt inhibition can rescue this cytokine dysregulation in 

macrophages from either of these sources. Thus, we established that the cytokine 

dysregulation can be considered an aging marker, which can be treated in the context of 

intrinsic signaling defect in the PI3K-Akt pathway (17, 38, 64, 178, 230, 355, 356). We 

further show that inhibiting GSK-3, a downstream kinase of Akt, can potently activate 

macrophages to secrete IL-10 and pro-inflammatory cytokines needed for B cell 

mediated humoral responses to S. pneumoniae, as well as co-stimulatory molecues that 

are necessary for activation of the adaptive immunity (213, 325). Our studies do not 

address the reasons for elevation of PI3 kinase subunits in the aged SM and BMDM. 

Presently little is known about how genes for the p85 and p110δ are regulated (116). It is 

conceivable that epigenetic changes have a role in increased expression with ageing. 
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Future studies will have to address the kinetics and mechanism of regulation of such 

genes with increasing age. 

  Biomarkers of aging-B cells: Even, if we assume that AID levels are a very significant 

all-encompassing marker for aging, there is the additional challenge to establish whether 

the B cell immunosenescene is due to age-related intrinsic defects or extrinsic 

environmental defects or a combination. If it is possible to show that both intrinsic and 

extrinsic defects are affecting B cells in the aged it will be difficult to develop a unified 

therapeutics that modulates both the intrinsic and the extrinsic defects simultaneously. 

One group of studies  show that over expressing transcription factors like E47 or 

genetically down-modulating Akt  increases AID, CSR and upregulates antibody 

production and thus serves as a potential method to rescue the age-related intrinsic 

defects in B cells. We and others show that providing an extrinsic microenvironmental 

support like macrophage-derived cytokines could similarly rescue B cells in terms of 

antibody production under in vitro conditions (38, 63, 114, 196, 268). 

Our laboratory has been studying the effect of  aging  on B cell response in the context of 

S. pneumoniae, a Gram positive bacterium that affects the elderly more than any other 

pathogen and is responsible for very long expensive hospitalization, morbidity and 

mortalities (218). We show that B cells from the aged Balb/c mice have an impaired 

response to both pneumococcal polysaccharide vaccine (Pnu-Immune) and the TNP-

Ficoll, a typical TI-2 antigen. These age-related defects can be rescued by macrophages 

or macrophage-derived cytokines from young adult mice. We further demonstrate that the 

age-related defects in B cell responses are due to extrinsic defects due to cytokine 

dysregulation in aged macrophages (38, 63, 114). However, these studies still have some 
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unanswered questions, such as (1) is the increase in antibody responses due to CSR and 

to what extent is AID involved?  (2) are there intrinsic signaling pathways that are 

defective in the aged B cells that are contributing to the B cells defect? (3) is the 

modification of the extrinsic cytokines  that positively upregulate the B cell antibody 

response also regulate a signaling pathway in B cell? (4) can we modify B cell responses 

by modifying the age-related cytokine dysregulation in macrophages? (5) is cytokine-

dysregulation a good aging biomarker that can be used to design therapeutics and to 

reverse immunosenence in B cells and thus enhance immunity to S. pneumoniae and 

other pathogenic infections?  and (6) can we correlate this cytokine dysregulation with a 

signaling pathway that can be pharmacologically modulated to reverse age-related B cell 

defects? 

As alluded to earlier, the immunsenescence markers in B cells include impaired AID and 

CSR leading to a decrease in the quality and quantity of antibodies that are needed for the 

clearance of infections (196). These defects have been shown to be both intrinsic and 

extrinsic by us and many other laboratories and can be potentially rescued by modulating 

either the intrinsic factors or the extrinsic factors like the cytokine milieu (38, 114, 196). 

On the basis of literature on the role of the PI3K-Akt-GSK-3 pathway in modulating B 

cell immune function (103, 105, 268, 269), we investigated this pathway. We showed in 

Chapter 6 that the age-related heighted activity of the PI3K-Akt pathway correlates with 

a defect in the production of IgG3 in the aged splenic B cells and that inhibiting this 

pathway can rescue this pathway. We further show that inhibiting this pathway can 

enhance the AID marker for CSR. The finding that PI3K-Akt is an inhibitor of AID and 
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that this pathway is crucial to pathway for humoral responses including CSR is supported 

by many studies (22, 30, 81, 343). 

Finally, we show that GSK-3 has comparable effects to the PI3K-Akt pathway in young 

adult splenic B cells. Inhibiting GSK-3 pharmacologically induces higher production of 

different isotypes of IgG, IgA and IgM, as well as increased production of plasma cells. 

The inhibition also leads to the induction of AID and CSR. The transcriptional factors 

responsible for these effects are not presently known, but on the basis of previous studies 

we are postulating that β-catenin, NFATc1 and NF-κβ may be involved and will be 

included in future studies (29, 82, 391). 

In conclusion, we show in this thesis that the age-asscociated cytokine dysregulation in 

macrophages and impaired humoral response of B cells when activated via TLR-2, 4 and 

9 and HKSP are crucial biomarkers for aging. We showed that PI3K pathway plays a 

critical role in both macrophages and B cells. We will have to test the effect of the 

inhibitors in models of challenge with live S. pneumoniae. Also, these biomarkers and the 

effects of PI3K and GSK-3 inhibitors have to be further validated in aged humans. We 

propose an overall model in Figure 7.1 to summarise the findings from the work of this 

thesis. We demonstrate that the cytokine dysregulation in aged macrophage is a factor 

that can possibly account for the inability of macrophages to provide extrinsic support to 

the already intrinsically defective aged B cell resulting in overall impaired B cell function 

which may have a role in the clearance of S. pneumoniae.   
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Figure 7.1: Age-related cytokine dysregulation provides a less robust support for B 

cell humoral response to S. pneumoniae. This can be overcome by inhibiting the 

PI3K-Akt-GSK-3 pathway. 

Upon inhibiting the PI3K-Akt pathway in the presence of TLR-2, 4, and 9 or HKSP the  

cytokine dysregulation in macrophages is reversed and B cells are able to induce AID and 

CSR that may be more effective in pathogen clearance. 
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Appendices 

Appendix A – Purity of splenic macrophages: (A) FACS staining by PE-conjugated 
F4/80 on the Y-axis and X-axis is CD11b  negative. (B) Average purity of 
macrophages from seven experiments. 
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Appendix B - Abbreviations 

AID              activation-induced cytidine deaminase  
AP-1   Activator protein-1 
AAM   alternatively activated macrophages  
BMDM  bone marrow derived macrophages 
BCR    B cell receptor 
BAFF               B cell activating factor 
BLyS                B lymphocyte stimulator 
BAFFR              B cell activating factor receptor 
COX-2   cycloxyenase-2  
CSR    class switch recombination 
CR    complement receptor  
CAM   classically activated macrophages  
CBP   choline binding protein 
CVID   common variable immunodeficiency disease  
CREB   cAMP-response element-binding protein 
DCs   dendritic cells 
DTH              Delayed type hypersensitivity 
ERK   extracellular-signal-regulated kinase 
ELISA   enzyme-linked immunosorbent assay 
FOXO3a   forkhead transcription factor/Forkhead box 3a  
FcγR    Fc γ receptor  
FITC   Fluorescein isothiocyanate (FITC)  
GM-CSF  granulocyte-macrophage colony stimulating factor 
GSK-3   Glycogen synthase kinase-3 
HSC                         Hematopoietic stem cell 
HKSP   Heat killed Streptococcus pneumoniae     
IPD   Invasive pneumococcal disease 
IRAK-4  Interleukin-1 receptor-associated kinase 4 
 IRAK1   Interleukin-1 receptor-associated kinase 1 
IL-1β   Interleukin -1 beta 
IKK   Inhibitor of nuclear factor kappa B kinase 
IRF3   Interferon regulator factor 3 
IFN- γ   Interferon-gamma 
LPS   Lipopolysaccharide 
LY   LY294002  
LTA   Lipoteichoic acid (LTA) 
LRR   leucine-rich repeats 
MyD88   Myeloid differentiation primary response gene 88 
MAPK   Mitogen activated protein kinase 
MDDC  Monocyte derived dendritic cells 
MZ   Marginal zone  
MHC-II   Major histocompatibility complex II 
MPL   Monophosphoryl lipad A sIgA 
NF-ATc   Nuclear factor of activated T cells 
NF-κB                 Nuclear factor kappa B 
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Pam-3-CSK4 N-Palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-[R]-C-S-
Lys4  

PMSF    phenyl methyl sulfonyl fluoride 
PBP   penicillin binding protein  
PCV-7   the seven valent conjugate vaccine  
PI3K    phosphatidyl inositol 3-kinase (PI3K)  
PTEN   phosphatase and tensin homolog  
PspA   pneumococcal surface protein A  
PsaA    pneumococcal surface adhesion protein A  
PRR   pattern recognition receptors  
PPS-23   23-valeent pneumococcal polysaccharide vaccine 
PTK              Protein tyrosine kinase   
PKC             Protein kinase C 
pDC   plasmacytoid dendritic cells  
PGE2   prostaglandin E2  
PPS    polysaccharide capsule 
PH   pleckstrin homology domain  
PDK-1                         phosphoinositide-dependent kinase-1                                                           
PAMPs   pathogen associated molecular patterns  
PBM   peripheral blood monocytes 
qRT RT-PCR quantitative real time reverse transcriptase polymerase chain 

reaction 
RPMI    Roswell Park Memorial Institute media 
SAC              Staphylococcus aureus cowan 
SM   splenic macrophages 
S. pneumoniae  Streptococcus pneumoniae  
TCR                   T cell receptor 
TLR   Toll like receptor 
Treg                 regulatory T cells 
TIR     Toll/interleukin-1 (IL-1) receptor homology  
TIRAP   TIR domain containing adaptor protein 
TRIF   TIR domain containing adaptor -inducing interferon-β 
TNP-Ficoll  trinitrophenol conjugated to Ficoll 
 TNP-LPS  trinitrophenol conjugated to LPS  
TICAM1  TIR domain containing adaptor molecule likes MyD88                                                                                                                                         
TRAM   TRIF-related adaptor molecule 
TRAF-6  TNF receptor associated factor-6 
TD   T-cell dependent  
TGF-β    transforming growth factor beta 
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