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ABSTRACT OF DISSERTATION     

STUDIES RELATED TO COULOMBIC FISSIONS OF CHARGED DROPLETS 
AND HYGROSCOPIC BEHAVIOR OF MIXED PARTICLES   

This dissertation describes two independent studies related to charged aerosols.  
The first study examines the role of electrical conductivity on the amounts of charge and 
mass emitted during the break-up of charged droplets via Coulombic fission.  The second 
study examines the hygroscopic behavior of mixed particles.  The results from both 
studies are presented here in detail along with an in-depth discussion of pertinent 
literature and applications in modern technologies.    

Charged droplets break-up via a process termed Coulombic fission when their 
charge density reaches a certain level during which they emit a portion of their charge 
and mass in the form of progeny microdroplets.  Although Rayleigh theory can be used to 
predict the charge level at which break-ups occur, no equivocal theory exists to predict 
the amounts of charge or mass emitted or the characteristics of the progenies.  Previous 
investigations have indicated that the electrical conductivity of a charged droplet may 
determine how much charge and mass are emitted during its break-up via Coulombic 
fission.  To further examine this supposition, charged droplets having known electrical 
conductivities were observed through multiple break-ups while individually levitated in 
an electrodynamic balance.  The amounts of charge and mass emitted during break-ups 
were determined using a light scattering technique and changes in the DC null point 
levitation potentials of the charged droplets.  Here, electrical conductivity was found to 
increase and decrease the amounts of charge and mass emitted, respectively, while having 
no effect on the charge level at which break-ups occurred.  The findings of this 
investigation have significant bearing in nanoparticle generation and electrospray 
applications.   

The hygroscopic behavior of atmospherically relevant inorganic salts is essential 
to the chemical and radiative processes that occur in Earth’s atmosphere.  Furthermore, 
studies have shown that an immense variety of chemical species exist in the atmosphere 
which inherently mix to form complex heterogeneous particles with differing 
morphologies.  However, how such materials and particle morphologies affect the 
hygroscopic behavior of atmospherically relevant inorganic salts remains mostly 



unknown.  Therefore, the effects of water insoluble materials, such as black carbon, on 
the hygroscopic behavior of inorganic salts were examined.  Here, water insoluble solids 
were found to increase the crystallization relative humidities of atmospherically relevant 
inorganic salts when internally mixed.  Water insoluble liquids however, were found to 
have no effect on the hygroscopic behavior of atmospherically relevant inorganic salts.  
The findings of this investigation have significant bearing in atmospheric modeling.  

KEYWORDS: charged droplets, Coulombic fission, hygroscopic behavior, 
electrodynamic balance, light scattering                               
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Chapter 1: Introduction  

1.1 General Introduction  

Aerosols play an indispensible role in both atmospheric processing and modern 

technology.  As such, research in this field has found no shortage of relevance, interest, 

or application.  Although aerosols can be simply defined as solid particles or liquid 

droplets suspended in a gaseous medium, their behaviors are immensely complex and 

still not fully understood.  This dissertation examines two specific areas of aerosol 

research that remain unknown.  First, what are the physical properties of charged droplets 

that determine how much charge and mass are emitted during their break-up via 

Coulombic fission and how do such properties affect the characteristics of the progeny 

microdroplets formed during break-ups?  Furthermore, can these properties be 

manipulated to improve current industrial applications such as electrostatic spraying?  

Second, how is the hygroscopic behavior of atmospherically relevant inorganic salt 

particles affected when they are mixed with non-volatile, hydrophobic compounds?  

Also, how do the individual components within mixed particles combine and do different 

morphologies exhibit different behaviors?  The work presented here is a continued effort 

to resolve such questions.   

In Chapter 2, a detailed background of current and previous research and modern 

technological applications is given providing a basis for the focus of this dissertation.  

Chapter 3 describes in detail the equipment used for data collection to better understand 

the fission and growth processes of single particles.  Chapter 4 discusses the theories 

underlying the research performed here and their application in analyzing collected data.  

Chapters 5 and 6 are devoted to the results obtained from the Coulombic fissions of 

charged droplets and the hygroscopicity of mixed particles, respectively.  Chapters 5 and 

6 also include discussions related to pertinent literature and conclusions for the 

corresponding subjects.  Finally, Chapter 7 provides general conclusions to the work 

presented in this dissertation and its impacts on modern technology and future research.  
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1.2 Introduction to the Study of Charged Droplets  

Over a century ago, Lord Rayleigh (Rayleigh, 1882) theoretically determined the charge 

level at which a purely conductive, spherical droplet would break-up via Coulombic 

fission given by 

3
08 aqR                                                   (1.1) 

where 0, , and a are the permittivity of free space, the surface tension of the droplet, and 

the droplet radius, respectively.  Although Rayleigh’s limit has been repeatedly validated 

(Duft et al., 2002; Manil et al., 2003; Li et al., 2005; Hogan et al., 2009), even for 

dielectric droplets (Richardson et al., 1989; Grimm and Beauchamp, 2002; Li et al., 2005; 

Nakajima, 2006), no equivalent theory has been developed to explain the disparity 

reported for the amounts of charge and mass emitted during the break-up of charged 

droplets via Coulombic fission.  For example, droplets of sulfuric acid have been 

observed to emit 50% of their charge while emitting no detectable mass (Richardson et 

al., 1989) whereas droplets of diethyl phthalate have been observed to emit only 21% of 

their charge, but over 2% of their mass (Li et al., 2005) even though both types of 

droplets were observed to proceed through break-ups via Coulombic fission at their 

corresponding Rayleigh limits and both were studied using comparable electrodynamic 

balances.  Furthermore, the numerous hypotheses that exist for predicting the 

characteristics of progeny microdroplets often rely on assumed values for the amounts of 

charge and mass emitted during a break-up (Roth and Kelly, 1983; Tang and Smith, 

1999) or the charge level of the primary droplet after a break-up (Li et al., 2005) and 

none have been experimentally substantiated.  In order to more fully understand the 

factors pertaining to the amounts of charge and mass emitted by charged droplets during 

their break-ups at the Rayleigh limit and the characteristics of the progeny microdroplets 

formed, experiments were conducted on dielectric droplets containing various amounts of 

ionic dopants.  This dissertation details the work performed, results discovered, and a 

discussion of pertinent literature related to the break-up of charged droplets via 

Coulombic fission at the Rayleigh limit.   
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1.3 Introduction to the Study of Mixed Particles  

Hilding Kohler (1936) was the first to use thermodynamics to explain how the size and 

number density of droplets found in fogs and frosts were directly related to the amount of 

NaCl located within the droplets.  Since Kohler’s seminal paper, an immense variety of 

compounds have been identified in Earth’s troposphere (Saxena and Hildemann, 1996; 

Kanakidou et al., 2005) and observed to exist as mixed particles composed of multiphase 

mixtures of organic and inorganic components (Posfai et al., 1999; Semeniuk et al., 

2007a,b; Wise et al., 2007; Adachi and Buseck, 2008; Eichler et al., 2008).  Although 

certain hygroscopic properties of some mixed particles can typically be ascertained from 

their bulk solution counterparts (Tang, 1976; Tang et al., 1978; Cohen et al., 1987b; Tang 

and Munkelwitz, 1993), and several predictive models have been developed that provide 

reasonable estimates of particle properties such as composition and phase (Clegg, 

1992;1997;1998a,b; Carslaw et al., 1995; Clegg and Brimblecombe, 1995; Chan et al., 

1997), no widespread theory currently exists that can completely and accurately predict 

the hygroscopic behavior of mixed particles even though numerous mixed particle 

systems have been investigated (Martin, 2000).  Furthermore, many questions persist 

regarding how the individual components within mixed particles combine and how 

different particle morphologies may affect hygroscopic behavior.  For example, Colberg 

et al. (2004) have proposed eight different morphologies for mixed particles formed from 

various ratios of H2SO4, NH3, and H2O and reported that ascertaining the correct 

morphology is “…not easily predictable.”  Also, inorganic salt particles have been 

observed to still deliquesce and exhibit hygroscopic growth despite being completely 

externally coated by a non-volatile, hydrophobic compound (Otani and Wang, 1984; 

Hansson et al., 1990;1998; Hameri et al., 1992; Xiong et al., 1998).  In an effort to better 

understand how the hygroscopic behavior of mixed particles is affected by their 

individual components and morphologies, experiments were conducted on 

atmospherically relevant inorganic salts mixed with non-volatile, hydrophobic materials.  

This dissertation details the work performed, results discovered, and a discussion of 

pertinent literature related to the hygroscopic behavior of mixed particles.  
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Chapter 2: Background  

2.1 Characteristics of Charged Droplet Break-ups via Coulombic Fission  

2.1.1 Introduction  

The characteristics of charged droplets are vital to many current technologies as nearly 

every droplet generation process, even those in the absence of an external electric field, 

imparts a certain amount of positive or negative charge on a droplet.  The most familiar 

of these is likely the use of electrospray mass spectrometry for the ionization of large 

biomolecules.  However, many modern applications of charged droplets are likely 

implemented without realization.  The charging of insect repellent sprays used in 

agriculture allows farmers to extend protection to the underside of the leaves on their 

crops (Law, 2001).  Current electrostatic spray painting systems create less waste and 

provide a more even distribution since the paint molecules are charged opposite to the 

corresponding structure (Hines, 1966).  The charge to mass ratio of pharmaceutical 

ingredients can be manipulated to affect mixing kinetics (Lachiver et al., 2006) and 

determine their deposition in either the throat or lungs (Ali et al., 2009).  The 

developments of anti-static fuel additives and better grounding techniques have nearly 

eliminated hydrocarbon related explosions corresponding to static discharge (Bustin and 

Dukek, 1983).  Electrostatic precipitators filter industrial plumes as well as our homes by 

charging and then attracting unwanted contaminants (Constable and Somerville, 2003).     

Although charged droplets have become indispensible to modern life, the 

processes through which they are formed and eventually become gas phase ions remain 

an enigma.  In the remainder of this chapter, the current state of literary knowledge 

related to the break-up of charged droplets is discussed.  Of primary interest here is the 

break-up of charged droplets via Coulombic fission at their Rayleigh limit, the factors 

pertaining to the amounts of charge and mass emitted during a break-up, and the 

characteristics of the progeny microdroplets formed.    
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2.1.2 Coulombic Fission  

A Coulombic fission occurs according to Rayleigh theory as given by (1.1) when the 

charge density of a droplet increases to a certain level during the loss of neutral solvent 

molecules through evaporation.  As the droplet volume is reduced during evaporation, the 

net charges of like sign residing on the droplet surface are subsequently forced into a 

tighter proximity thereby increasing their combined electrostatic repulsion in opposition 

to the cohesive force of the droplet’s surface tension.  At a certain point, the electrostatic 

repulsion begins to disrupt the spherical geometry and the droplet is forced into a more 

elliptical shape similar to that of a lemon or a football (Duft et al., 2003; Achtzehn et al., 

2005; Giglio et al., 2008).  When the opposing forces of electrostatic repulsion and 

surface tension become equal, the droplet emits a portion of its charge and mass through 

the apices of conical shaped tips, termed cone-jets, located at the opposing ends of the 

ellipsoidal shaped droplet via a stream of monodisperse progeny microdroplets (Duft et 

al., 2003; Achtzehn et al., 2005; Giglio et al., 2008).     

The formation and structure of these cone-jets have been extensively studied 

using liquids charged to a sufficiently high electrical potential at the end of a capillary 

needle (Taylor, 1964;1966;1969; Melcher and Taylor, 1969).  Taylor (1964) has reported 

that a specific conical structure, currently termed a Taylor cone, having a semi-vertical 

angle of 49.3° results from the balance of electrostatic and capillary forces on the liquid 

surface.  However, Cloupeau (1986a,b) and Cloupeau and Prunet-Foch (1989;1990;1994) 

later described a wide variety of cone-jets and Giglio et al. (2008) has recently purported 

that the cone-jets are significantly narrower with an angle of 39° and are more ‘lemon-

like’ in shape.   

After emitting a certain portion of its charge and mass, the droplet then returns to 

a spherical geometry and the evaporation process continues.  The processes of 

evaporation and Coulombic fission continue for both the primary and progeny 

microdroplets until only gas phase ions remain.  Such charged droplets which break-up 
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via Coulombic fission at their Rayleigh limit are investigated and discussed in this 

dissertation.   

Figure 2.1 depicts the processes of evaporation, Coulombic fission, and progeny 

microdroplet formation for a droplet of diethyl phthalate (DEP).  For simplicity, the 

deformation of the droplet into an elliptical shape is omitted from the figure.  The droplet 

is shown with an initial radius of a = 15 µm and a charge of q = 4.5 × 10-13 C.  For a 

Coulombic fission to occur, the droplet must evaporate via loss of neutral solvent 

molecules until it has a radius of a = 10 µm assuming a surface tension of  = 36.1 mN/m 

(Li et al., 2005).  At the instant prior to its break-up, the droplet’s charge corresponds to 

only a single elementary charge per 4.5 × 106 molecules of DEP.  This exemplifies why 

even the slightest change in a droplet’s charge can affect the fission process.  Assuming 

such a droplet emits 20.8% of its charge and 2.28% of its mass during a fission (Li et al., 

2005), the droplet’s charge and radius are reduced to q = 3.56 × 10-13 C and a = 9.92 µm, 

respectively.  Li et al. (2005) have purported that such a droplet of DEP would form three 

progeny microdroplets having equal charge and size.  Therefore, the charge and radius of 

an individual progeny droplet would be q = 3.12 × 10-14 C and a = 1.97 µm, respectively.  

After a fission, the primary droplet must continue to evaporate until its radius is reduced 

to a = 8.56 µm for another Coulombic fission to occur.  In order for the size of the 

primary droplet to be reduced to that of the progeny microdroplets first produced, it must 

undergo ten additional fissions at which point its radius will have been reduced to a = 

1.79 µm.           
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Figure 2.1 Illustration of the evaporation, Coulombic fission, and progeny droplet 

formation for a droplet of diethyl phthalate.        
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2.1.3 Validity of Rayleigh Theory  

A common theme in the literature pertaining to the break-up of charged droplets is the 

validity of Rayleigh theory.  Specifically, investigators typically report the charge levels 

at which they observed break-ups to occur respective of the charge limits predicted by 

Rayleigh theory.  Most initial investigators reported they observed charged droplets to 

break-up via Coulombic fission at their respective Rayleigh limits (Doyle et al., 1964; 

Abbas and Latham, 1967; Schweizer and Hanson, 1971; Roulleau and Desbois, 1972) 

even though the droplets studied were not purely conductive as required under Rayleigh 

theory.  Several investigators however, have reported they observed charged droplets to 

break-up at charge levels from as low as 3% (Widmann et al., 1997) to as high as 200% 

(Li and Ray, 2004) of their respective Rayleigh limits.  However, the most recent and 

accurate investigations have shown Rayleigh theory to hold true (Duft et al., 2002; Manil 

et al., 2003; Li et al., 2005; Nakajima, 2006; Hogan et al., 2009), even for charged 

droplets as small as 40 nm in diameter (Hogan et al., 2009).     

In fact, most of the instances where non-Rayleigh break-ups have been observed 

have since been explained.  Duft et al. (2002) have asserted that even trace amounts of a 

contaminant can noticeably reduce the surface tension of a charged droplet and thereby 

lower the charge level at which break-ups occur.  Taflin et al. (1988) had previously 

suggested that the surface tensions of their droplets were possibly affected by 

contamination.  However, they stated that the surface tension of their dodecanol droplets 

would have to be reduced from 19.14 mN·m-1 to 13.3 mN·m-1 for break-ups to occur 

precisely at the Rayleigh limit.  They concluded that such a significant lowering in 

surface tension was unlikely and that the sub-Rayleigh break-ups they observed were 

valid.  In a later study by Taflin et al. (1989), they again acknowledged that 

contamination of the droplet surface could be responsible for their observations of sub-

Rayleigh break-ups.  They also purported that the applied electric fields could have 

affected the charge levels at which break-ups occurred.  However, Davis and Bridges 

(1994) have examined the role of the electric field and concluded that it did not affect 

droplet stability.  Only in the case of field-induced droplet ionization, where very high 
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electrical fields are applied, have the break-up of charged droplets been proven to occur 

at sub-Rayleigh charge levels.  Li et al. (2005) have also commented on the sub-Rayleigh 

break-ups reported by Taflin et al. (1989) and suggested that either the geometric balance 

constant they used was incorrect or their sizing technique used was inadequate.  Gomez 

and Tang (1994) have suggested that aerodynamic effects may have contributed to their 

observations of sub-Rayleigh break-ups.     

Widmann et al. (1997) have purported the sub-Rayleigh charge levels they 

observed at break-up resulted from the photosensitive nature of the halogenated 

compounds in their droplets.  They purport that decomposition of the compounds may 

have led to gas formation within the droplet or that Marangoni instability resulted from 

the polymerization of the monomer.  Their presumption may in fact be correct as 

Donaldson et al. (2001) have theoretically discussed the ability of droplets to 

spontaneously divide into equal fragments under certain thermodynamic conditions.  

Namely, they have discussed droplets coated with a thin film of a long-chain fatty acid 

that collapses in on itself causing droplet break-up to occur.  Donaldson et al. (2001) 

concluded that the same type of droplet break-up would be possible for droplets with 

surface active species that could undergo polymerization on the droplet surface.   

Shrimpton (2005) has proposed an extension to Rayleigh’s theory that 

incorporates the dielectric nature of some charged droplets in an attempt to explain sub-

Rayleigh limit break-ups.  He suggests that dielectric droplets contain an internal electric 

field that causes polarization and aligns the molecules within charged droplets according 

to the applied electric field.  The polarization is purported to induce a charge on the 

droplet surface which increases the total charge on one side and reduces it on the other 

such that one side of the droplet is always unstable relative to the other.  This effect is 

purported to be more prominent for larger size droplets and was found to be the case for 

low permittivity droplets.  The results from his model show that the droplet charge varies 

with a3/2 whereas the induced charge varies with a2, where a is the droplet radius, and 

that droplet break-up will always occur when the surface tangent is normal to the 

direction of the electric field. 
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Li and Ray (2004) have shown that charged droplets containing a precipitate will 

not break-up until they reach as much as twice their Rayleigh limit.  Their work explains 

why Cederfelt et al. (1990) and Smith et al. (2002) have both observed that charged 

droplets of various compounds containing NaCl experienced break-ups well above their 

respective Rayleigh limits.  The results by Li et al. (2004) were later supported by the 

findings of Bakhoum and Agnes (2005) who reported that droplets of water and 

water/glycerol containing either a NaCl precipitate or 20 nm fluospheres did not undergo 

Coulombic fission until the Rayleigh limit was significantly exceeded.      

The instances where charged droplets have been reported to break-up at charge 

levels other than predicted by Rayleigh theory have been shown to be the result of droplet 

contamination or an incorrectly determined charge level.  As such, Rayleigh theory is 

currently held as valid for charged droplets that are purely liquid in phase and are stably 

levitated.  This assertion is later shown to be true for the charged droplets studied as part 

of this dissertation.   

2.1.4 Charge and Mass Emissions during Coulombic Fission  

Although Rayleigh theory can be used to predict the charge level at which a charged 

droplet will break-up via Coulombic fission, no equivocal theory exists that can predict 

how much charge and mass will be emitted during fission.  The disparity between how 

much charge and mass is emitted by charged droplets during a Coulombic fission persists 

even where they have been observed to break-up precisely at their Rayleigh limit.  This is 

clearly shown by the results of Li et al. (2005) who have observed that charged droplets 

of triethylene glycol emitted over 40% of their charge and less than 0.03% of their mass, 

whereas charged droplets of diethyl phthalate emitted 21% of their charge and 2.3% of 

their mass, even though both droplet types were observed to break-up via Coulombic 

fission precisely at their Rayleigh limits.  In fact, the disparity between how much charge 

and mass is emitted by charged droplets found in recent literature ranges from 7% to 49% 

for the amount of charge emitted (Nakajima, 2006; Richardson et al., 1989) and from less 

than 0.03% to over 2% for the amount of mass emitted (Li et al., 2005) for pure 
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component droplets, and a wider disparity has been purported for other droplet conditions 

(Taflin et al., 1989) and in older literature (Abbas and Latham, 1967).   

Table 2.1 lists the charge and mass emissions from charged droplets found in 

literature.  The table lists the droplet compounds in alphabetical order, gives the amounts 

of charge and mass emitted by each droplet compound, the corresponding droplet size 

and equipment used, and the literature source.  When available, the diameter of the 

droplet immediately prior to fission was listed.  Also, several investigators were unable to 

measure the amount of mass emitted during a fission as it was below the detectable limit 

of their equipment.  These instances and others have been identified and explained with a 

corresponding tag number.  The equipment used for a particular investigation has been 

listed within the table using a set of corresponding initials which are expounded below it.  

The range of data values presented in the table exemplifies the need for a more thorough 

understanding of the droplet factors that determine how much charge and mass will be 

emitted during the break-up of a charged droplet via Coulombic fission.                  
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Table 2.1 List of droplet compounds and corresponding charge and mass emissions 

observed by previous investigators.  (Table 2.1 continues on pages 13 and 14.)  

Compound 

Charge 
Emitted 
during a 
Fission 

(%) 

Mass 
Emitted 
during a 
Fission 

(%) 

Droplet 
Diameter 

m 

Experimental 
Setup Investigators 

acetonitrile 15 - 20 [3] 5 – 40 PDI 
Smith et al., 

2002 

analine ˜ 25 ˜ 25 60 - 400 EDB 
Abbas & 

Latham, 1967 

analine ˜ 30 [3] 60 - 250 EDB 
Doyle et al., 

1964 
bromo-

dodecane 
12 N/A 43.48[1] EDB 

Taflin et al., 
1989 

BTD / IDD[9]

 

20.9 & 
74.0[2] 

24.3 & 
75.4[2] 

30.5 & 
27.8 

EDB 
Widmann et 

al., 1997 
dibromo-

octane 
14 - 18 1.55 - 2.23

 

27.722 - 
38.474[1] EDB 

Taflin et al., 
1989 

dibutyl 
phthalate[8] 1 - 63.1 2 – 75 

12.8 - 
21.2[1] EDB 

Taflin et al., 
1989 

dibutyl 
phthalate 

10 - 27 3 – 18 3 – 18 LDV 
Nakajima, 

2006 
diethylene 

glycol 
37.7 <0.03 30 EDB Li et al., 2005 

diethyl 
phthalate 

20.8 2.28 30 EDB Li et al., 2005 

dioctyl 
phthalate 

˜ 30 [3] 60 - 250 EDB 
Doyle et al., 

1964 
dioctyl 

phthalate 
15.0 2.25 1 – 10 EDB 

Richardson et 
al., 1989 

dodecanol 17.7 3.9 8.724[1] EDB 
Taflin et al., 

1988 

dodecanol 13 - 17 2.0 
32.26 - 
35.56[1] EDB 

Taflin et al., 
1989 

1-dodecanol N/A 
1.65 & 
2.35[2] 

22.40 & 
20.76[1] EDB 

Davis & 
Bridges, 1994 

ethylene 
glycol 

25 [3] ˜ 25.5[4] EDB 
Duft et al., 

2002 
ethylene 
glycol 

33 0.30 24[1] EDB 
Duft et al., 

2003 
ethylene 
glycol 

25 [3] 100 EDB 
Manil et al., 

2003 
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[Table 2.1 continued] 

ethylene 
glycol 

28 - 35 [3] 3 - 18 LDV Nakajima, 2006 

heptadecane 9.5 - 14 
0.98 - 

2.3 
29.072 - 
36.144[1] EDB Taflin et al., 1989 

n-heptane[6] 19 [3] 3 - 60 PDA 
Grimm & 

Beauchamp, 2002 

hexadecane 15.3 1.48 30 EDB Li et al., 2005 

hexadecane 14 - 18 1.5 - 1.6

 

29.12 - 65.16[1] EDB Taflin et al., 1989 

isopropyl 
benzene 

˜ 30 [3] 60 - 250 EDB Doyle et al., 1964 

methanol 81 ˜ 55[5] 84 EDB Feng et al., 2001 

methanol[7] 15 - 30 [3] 5 - 40 PDI Smith et al., 2002 

n-octane[6] 17 [3] 3 -60 PDA 
Grimm & 

Beauchamp, 2002 

n-octanol 23 5 15 - 40 EDB 
Schweizer & 
Hanson, 1971 

pentadecane 7 - 13 0.7 - 1 3 - 18 LDV Nakajima, 2006 

sulfuric acid 49.4 < 0.1% 1 - 10 EDB 
Richardson et al., 

1989 

toluene ˜ 25 ˜ 25 60 - 400 EDB 
Abbas & Latham, 

1967 
triethylene 

glycol 
41.1 <0.03 30 EDB Li et al., 2005 

water ˜ 30 [3] 60 - 250 EDB Doyle et al., 1964 

water ˜ 25 ˜ 25 60 - 400 EDB 
Abbas & Latham, 

1967 

water 16 - 40 [3] 50 - 200 EDB 
Roulleau & Desbois, 

1972 

water 20 - 40 [3] 5 - 40 PDI Smith et al., 2002 

p-xylene[6] 17 [3] 3 - 60 PDA 
Grimm & 

Beauchamp, 2002 

    



 

14

[Table 2.1 continued] 

N/A not available 

    
EDB electrodynamic balance 

PDA phase Doppler anemometer 

PDI phase Doppler interferometer 

LDV laser Doppler velocimeter 

    

[1] droplet diameter at fission 

[2] respective to order of corresponding droplet diameters given 

[3] below the detectable limit 

[4] estimated from Fig. 1 in Duft et al. (2002) 

[5] calculated from data given in Table 2 in Feng et al. (2001) 

[6] a small concentration of Stadis-450 was added to control droplet size 

[7] some droplets were reported to contain up to 10-4 M NaCl 

[8] droplets were exposed to gas ionized via 

 

emission 

  

from C14-tagged dibutyl phthalate 

[9] 1-bromotetradecane (BTD) with 33% by volume iododecane (IDD)                
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The disparity between how much charge and mass is emitted by charged droplets 

during a Coulombic fission has been previously noted and discussed by some 

investigators.  Schweizer and Hanson (1971) have acknowledged the variances observed 

between different droplet compounds during droplet break-ups and asserted that “…it is 

not inconceivable that the charge and mass of the mother [primary droplet] could depend 

on the substance used.”  Li et al. (2005) have stated that “…the amounts [of charge and 

mass emitted during Coulombic fission] are related to the droplet properties, such as the 

surface tension, dielectric constant, and electrical conductivity.”  Their findings mirror 

those of Richardson et al. (1989) who have observed that droplets with higher electrical 

conductivity emitted more charge and less mass than droplets that were relatively 

dielectric.  Shrimpton (2005) has also commented on the matter stating that, “It is notable 

that the measured critical charge for a particular liquid was similar, even for different 

sized droplets, and that it was different for each liquid which may suggest the critical 

charge depends in some way on the material properties.”  The comments by the 

aforementioned investigators and the data presented in Table 2.1 suggest that certain 

droplet properties may in fact determine how much charge and mass are emitted by a 

charged droplet during a break-up via Coulombic fission.  This assertion is later shown to 

be true for the charged droplets studied as part of this dissertation.   

2.1.5 Characteristics of Progeny Microdroplet Formation  

The lack of understanding pertaining to the disparity observed for the amounts of charge 

and mass emitted by charged droplets during their break-ups via Coulombic fission is 

directly extended to the characteristics of the progeny microdroplets formed during such 

break-ups.  Here too, no proven, comprehensive theory exists that can predict the size, 

charge density, or number of progeny droplets formed during the break-up of charged 

droplets.  As such, some investigators have assumed values for the amounts of charge and 

mass emitted by a droplet during break-up to predict the characteristics of the progeny 

microdroplets formed (Roth and Kelly, 1983; Tang and Smith, 1999).  Moreover, the 

number of progeny droplets predicted to be formed is found to range from a maximum of 

seven (Roth and Kelly, 1983) to several thousand (Li et al., 2005).  Investigators have 



 

16

also developed models that assert the progeny microdroplets are of equal size (Pfeifer and 

Hendricks, 1967; Li et al., 2005).  Such assumption is not without merit as photographs 

have long shown that progeny microdroplets are formed approximately equal in size 

(Macky, 1931; Duft et al, 2003).  Some investigators have also asserted that such 

progenies would be of equal charge (Li et al., 2005), although Konermann (2009) has 

recently developed a model suggesting that the charge on each successive progeny 

microdroplet formed is slightly reduced to the previous one.  Investigators have also 

developed predictive models that assume a relationship between the charge on the 

primary droplet and the charge on the progeny microdroplets (Li et al., 2005) rely on the 

surface and kinetic energies of the primary droplet (Storozhev and Nikolaev, 2004) and 

use scaling laws to relate the formation of progeny microdroplet from charged droplets to 

those formed from the tips of electrified capillary tubes (de la Mora, 1996; Gu et al., 

2007).     

De la Mora (1996) has purported that the sizes of the progeny microdroplets 

formed by the charge and mass emitted during the break-ups of charged droplets are 

determined by the charge relaxation length, dm, of the primary droplet according to 

3/1

2

2
0

2

K
d m                                                   (2.1) 

where 0 is the permittivity of free space, and , , and K are the surface tension, 

density, dielectric constant, and electrical conductivity of the liquid, respectively.  He 

suggests that progeny microdroplets are formed through either ‘rough fission’ or ‘fine 

fission’ modes where the latter occurs only when dm is much smaller than the diameter of 

the primary droplet.  During a rough fission, the progeny microdroplets that are formed 

are purportedly few in number and have sizes and charge densities that are comparable to 

that of the primary droplet.  For a fine fission however, a vast multitude of highly charged 

progenies having almost no mass, even collectively, are purported to be formed.  

According to de la Mora (1996), rough and fine fissions are likely to occur for droplets of 

dielectric and electrically conductive compounds, respectively.  His assertion is 

qualitatively supported by a previous study by Richardson et al. (1989) and has been 

more recently validated by the findings of Li et al. (2005).  In both studies, the 
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investigators found that relatively dielectric droplets emitted a small fraction of their 

charge and a noticeable amount of their mass, whereas more electrically conductive 

droplets were found to emit a large portion of their charge, but no detectable amount of 

mass.     

Figure 2.2 illustrates the two modes of fission purported by de la Mora (1996).  

The two droplets shown at the bottom of the figure have the same initial size and charge.  

However, the droplet on the left represents a dielectric droplet whereas the droplet on the 

right is more electrically conductive.  The dielectric droplet is shown to undergo a 

‘rough’ fission.  It produces only a few progeny microdroplets having sizes and charge 

densities that are comparable to the primary droplet.  The electrically conductive droplet 

is shown to undergo a ‘fine’ fission.  It produces a multitude of highly charged progenies 

and significant charge, but almost no mass.                   
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Figure 2.2 Illustration of the ‘rough’ and ‘fine’ fission modes purported by de la Mora 

(1996).     
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Recently, Gu et al. (2007) have added a constant to de la Mora’s (1996) charge 

relaxation length given by (2.1) and purport that the radius of a progeny microdroplet, ap, 

can be determined using 

jetp r
K

a
3/1

8

3/1

26

2
0

28

2

323
                                 (2.2) 

where , , , K, and rjet are the surface tension, permittivity of free space, density, 

electrical conductivity, and initial cone-jet radius, respectively.  The investigators suggest 

however, that the relationships provided in their publication should be used as scaling 

laws rather than exact equations.     

The findings of the aforementioned authors all strongly indicate that the electrical 

conductivity of the primary droplet plays a critical role in the determining the 

characteristics of progeny microdroplets.  From here, the logical point of departure is to 

more closely examine the effects of electrical conductivity on the amounts of charge and 

mass emitted by charged droplets during their break-ups at the Rayleigh limit and the 

characteristics of the progeny microdroplets formed during such break-ups.    

2.1.6 Formation of Gas Phase Ions  

The process by which a charged droplet eventually forms gas phase ions has been a 

source of dispute for nearly half of a century now and has culminated in two distinct 

ideologies.  The first of these was originally proposed by Dole et al. (1968) and has since 

been termed the charge residue model.  Here gas phase ions are formed after all neutral 

solvent molecules have evaporated.  Nearly a decade later, Iribarne and Thomson (1976) 

proposed a competing view for ion formation termed the ion evaporation model.  Here, 

an ion is emitted from a group of molecules.  It is important to note however, that the ion 

evaporation model does not necessarily contradict the charge residue model in that the 

hypothesis supporting the ion evaporation model is only valid so long as enough 

electrostatic energy is provided and that the critical size of the group of molecules is 

larger than the subsequent solid residue and the size corresponding for the Rayleigh limit.    
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Rollgen et al. (1987) and Schmelzeisen-Redeker et al. (1989) have disputed the 

validity of the ion evaporation model.  Rollgen et al. (1987) claimed “…that ion 

evaporation is unlikely to occur for most solute/solvent systems and of no significance in 

the formation of gaseous ions.”  However, Rollgen et al. (1987) did acknowledge that 

such mechanism could take place for ions with surface active properties.  Schmelzeisen-

Redeker et al. (1989) stated that, “The mechanism of field induced ion evaporation is 

shown to depend on some rather unrealistic assumptions and should not contribute to the 

desolvation of ions.”  Still, Fenn (1993) has commented that “…most investigators now 

believe that the IEM [ion evaporation model] of Iribarne and Thomson is more widely 

applicable than the CRM [charge residue model] of Dole”, although the charged residue 

model had been previously validated by the work of Nohmi and Fenn (1992) for the 

analysis of polyethylene oxide oligomers with molecular weights of 5,000,000.     

Loscertales and de la Mora (1995) have measured the charges and diameters of 

the particles from a monodisperse cloud of charged droplets and concluded that the 

resulting ‘small’ ions were produced via field-emission and could not be explained by the 

charge residue model.  Labowsky et al. (2000) have developed a model to determine the 

solvated energy of an ion inside of a liquid droplet based on the physical properties of the 

droplet.  They claim that their model, when applied with experimental data, predicts a 

small region where ion evaporation exists for small droplets charged near the Rayleigh 

limit having twelve or less individual charges.  Their work was later supported by Ichiki 

and Consta (2006) who conducted constant temperature molecular dynamics simulations 

of small clusters of up to 1600 water molecules with up to eleven chloride ions and 

primarily observed that the clusters emitted single ions solvated by a shell of water 

molecules and that such emissions occurred when the charge on the cluster was at 87% of 

the Rayleigh limit.  Hogan et al. (2009) have recently observed that mixed methanol-

water droplets having diameters between 10 and 40 nm emitted ions and maintained a 

constant electric field of 1.1 V·nm-1 as predicted by Iribarne and Thomson (1976).     
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Disagreement still exists however as Rohner et al. (2004) have purported that the 

model proposed by Iribarne and Thomson (1976) underestimates the number of surface 

charges for droplets produced in an external electrical field.  Recently, Consta (2010) has 

reported that single ions do not spontaneously escape droplets when a highly charged 

macroion is present, but form stable complexes, although only for brief time periods.  

Moreover, in such occurrences, the use of Rayleigh’s model was found to no longer be 

valid to describe the droplet energy.  The work by Consta (2010) is likely the first to 

begin bridging the gap between the charge residue model of Dole et al. (1968) and the ion 

evaporation model of Iribarne and Thomson (1976).  

2.1.7 Summary  

Although Rayleigh theory has been shown to be a valid means of predicting when a 

charged droplet will break-up via Coulombic fission, there are still no means by which to 

predict how much charge and mass will be emitted or the characteristics of the progeny 

microdroplets formed.  A review of relevant literature has shown that droplets that are 

relatively more electrically conductive tend to emit more charge and less mass in the 

form of a multitude of highly charged progeny microdroplets, whereas relatively more 

dielectric droplets tend to emit less charge and more mass in the form of a few 

moderately charged progeny microdroplets.  Furthermore, the means by which gas phase 

ions are produced has been shown to depend on the size of the charged molecules 

originally contained within a charged droplet.  Here, literature suggests that small ions 

will be formed via the ion evaporation model, whereas extremely large ions will form via 

the charge residue model.  The work presented in the remainder of this dissertation is an 

effort to better understand the role of electrical conductivity during the break-up of 

charged droplets via Coulombic fission at their Rayleigh limit.      
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2.2 Hygroscopic Behavior of Mixed Particles  

2.2.1 Introduction  

The hygroscopic behavior of atmospheric particles is directly related to the quality of life 

on Earth (Guenther et al., 1995; Raes et al., 2000; Kanakidou et al., 2005; Fuzzi et al., 

2006).  Therefore, a more complete understanding of such behavior is a truly important 

objective.  The complexity of this objective however, is further complicated by 

mankind’s impact on the atmosphere.  Anthropogenic contaminants in the atmosphere 

have been shown to negatively impact the quality of the air we breathe (Posfai et al., 

1999; Adachi and Buseck, 2008; Eichler et al., 2008), the water we drink (Rae et al., 

2000), and the ability of our skies to protect us from harmful radiation (Hobbs et al., 

1997; Haywood et al., 1999; Charlson et al., 2001).  Global atmospheric investigations 

conducted at the turn of the millennia found that over 10 × 1012 kg·yr-1 of particulate 

matter were emitted into Earth’s atmosphere, of which more than 50% was sea-salt from 

ocean spray and approximately 45% was mineral dust from wind-blown soils (Raes et al., 

2000).  The remainder of the annual global emission rate consisted of sulfates, organics, 

and black carbon primarily resulting from the intentional burning of biomass and fossil 

fuels (Raes et al., 2000).  Yet, even though anthropogenic materials constituted only a 

minute fraction of the global emissions, they accounted for almost 25% of the radiative 

climate forcing observed in the troposphere during the same time period (Haywood et al., 

1999).     

However, the true impact of anthropogenic particulates is not fully portrayed by 

global emission rates.  For example, the atmospheric concentration of black carbon over 

rural populated regions has been observed to be up to 40 times higher than over remote 

oceanic regions (Posfai et al., 1999) and biomass burning has been reported to account 

for over half of the organic fine particulate matter (= 2.0 m) that was emitted into the 

lower troposphere at the end of the millennia (Jacobson et al., 2000).   Furthermore, 

agricultural shifting via biomass burning continually exposes tens of thousands of square 

miles of land once covered by vegetation to the elements (Crutzen and Andreae, 1990; 
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Lauk and Erb, 2009) and therefore contributes to the emission rate of mineral dust.  In 

addition, the effects of biomass burning are compounded since more than half of the 

land-based biomass is located underground and is gradually uncovered during burnings 

(Crutzen and Andreae, 1990).     

Anthropogenic particles are not limited to geographic regions near populated 

areas, however.  Atmospheric particles collected over remote parts of the Southern Ocean 

found that up to 45% contained soot inclusions that were directly linked to anthropogenic 

sources (Posfai et al., 1999).  These types of particles have been observed to co-exist as 

heterogeneous mixtures of organic, inorganic, and carbonaceous materials (Semeniuk et 

al., 2007a,b; Wise et al., 2007; Adachi & Buseck, 2008; Eichler et al., 2008; Wex et al., 

2008) and to significantly impact atmospheric chemistry (Crutzen and Andreae, 1990; 

Ellison et al., 1999; Jacobson et al., 2000; Raes et al., 2000; Donaldson et al., 2001; 

Kanakidou et al., 2005; Donaldson and Vaida, 2006; Fuzzi et al., 2006).  However, the 

most significant effect of anthropogenic materials is possibly their effect on the 

hygroscopic behavior of atmospheric particles as it directly impacts the development, 

behavior, and lifetime of clouds (Kulmala et al., 1996; Charlson et al., 2001; Raymond 

and Pandis, 2003; Wex et al., 2008) and the radiative balance of Earth’s atmosphere 

(Pilinis et al., 1995; Hobbs et al., 1997; Haywood et al., 1999; Raes et al., 2000; 

Kanakidou et al., 2005).  Atmospheric chemistry involving organics has been found to 

affect rainwater acidification, NO2 production, biogeochemical processing, and the 

formation of secondary organic aerosols (Jacobson et al., 2000).  Furthermore, reactions 

occurring at the surface of organically coated particles can be significantly different than 

those of bulk phase reactions (Donaldson and Vaida, 2006).  Surface active organics, 

such as surfactants, have been reported to affect the surface tension, diffusion, and 

solubility of particles (Latif and Brimblecombe, 2004) and to even cause the spontaneous 

division of particles through film collapse (Donaldson et al., 2001).  As such, the 

presence of anthropogenic materials in the atmosphere immensely complicates the ability 

of investigators to accurately model atmospheric behavior (Jacobson et al., 2000; Raes et 

al., 2000; Ramanathan et al., 2001; Kanakidou et al., 2005; Fuzzi et al., 2006; Prather et 

al., 2008).     
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Although the presence of aerosols in our atmosphere is crucial to life on this 

planet, much remains unknown about their hygroscopic behavior.  Namely, how are the 

naturally occurring inorganic salt particles found in Earth’s atmosphere affected by the 

presence of anthropogenic materials, specifically those that are non-volatile and 

hydrophobic?  Also, how do the individual components within these mixed particles 

combine and what effects do these differing particle morphologies have on hygroscopic 

behavior?  

2.2.2 Hygroscopic Growth  

When a solid particle of a water soluble compound is initially exposed to humid air, 

water molecules can adhere to sites on its surface such as steps, edges, and kinks where 

the incomplete cancellation of electrical fields make the particle surface more susceptible 

to adsorption (Ewing, 2005).  As sufficient water becomes available on the particle 

surface, solute molecules begin to dissolve into the water thereby lowering its vapor 

pressure which in turn attracts additional gas phase water molecules to the liquid on the 

particle surface until equilibrium is regained.  Depending on the chemical and physical 

properties of the particle and the partial pressure of water vapor in the atmosphere, the 

processes of solute dissolution and the absorption of water vapor will continue until the 

particle is transformed into a solution droplet.  For some compounds, such as inorganic 

salts, this process occurs rapidly at a specific relative humidity (Cohen et al., 1987a) in a 

process termed deliquescence.  For other compounds however, such as sugars, this 

process occurs gradually and in a completely reversible manner (Chan et al., 2008).  The 

former of these two types of water soluble particles have been termed deliquescent, 

whereas the latter have been termed non-deliquescent (Chan et al., 2008) and are 

considered purely hygroscopic similar to water soluble liquids.  Although both types of 

particles are relevant to atmospheric research, the focus of this portion of study is 

restricted to those particles that are considered deliquescent.     
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An interesting phenomenon of deliquescent particles is their ability to exist in a 

supersaturated state at relative humidities well below that at which they underwent 

deliquescence.  If a deliquesced particle is exposed to a low enough relative humidity 

however, it will instantly shed nearly all its water and return to a solid state during a 

process termed crystallization.  Here it is appropriate to note that many investigators 

commonly use the term efflorescence in place of crystallization (Ansari and Pandis, 

1999; Lightstone et al., 2000; Martin, 2000; Colberg et al., 2004; Badger et al., 2005; 

Wise et al., 2005; Biskos et al., 2006a,b; Gao et al., 2007b,c,2008; Semeniuk et al., 

2007a; Takahama et al., 2007; Woods et al., 2007).  However, this term is typically used 

incorrectly as efflorescence is more accurately the loss of water of crystallization and not 

the process of crystallization itself.  Simply explained, a supersaturated particle may 

crystallize, but still retain significant water in the form of hydrates which it may later lose 

via efflorescence.  Once crystallization has occurred however, the water content of the 

particle is no longer related to the relative humidity of its surroundings until 

deliquescence again takes place.  An important aspect of these particles is that the 

crystallization relative humidity is lower than the deliquescence relative humidity and 

therefore their hygroscopic growth patterns exhibit a hysteresis.     

Figure 2.3 shows the hysteresis loop resulting from the deliquescence, water 

absorption and desorption, and crystallization of a NaCl particle observed as part of this 

study.  The particle is initially completely dry and in a moisture-free environment.  As the 

relative humidity of the air surrounding the particle is gradually increased, the particle 

retains its initial dry weight until the relative humidity is approximately 70%.  Here, the 

water content of the particle begins to rapidly increase.  By 75% relative humidity, the 

particle has taken on sufficient water to completely dissolve and has transitioned into a 

solution droplet.  After deliquescing, the water mass fraction of the droplet is dependent 

on the relative humidity of the surrounding air.  Here, the droplet can reversibly absorb 

and desorb water and can even exist in a supersaturated state at relative humidities below 

its deliquescence relative humidity.  As seen in the figure, a solution droplet of NaCl will 

exist as a supersaturated droplet until the relative humidity is reduced to 45%, at which 

point the droplet instantly loses much or all of its remaining water content during 
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crystallization.   After crystallization, the water mass fraction of the particle is no longer 

in equilibrium with its surroundings.  However, particles may still possess a certain 

amount of water that has been ‘trapped’ during crystallization.  This behavior has been 

reported by numerous investigators for similar types of particles (Choi and Chan, 2002a; 

Colberg et al., 2004; Badger et al., 2005; Rosenoern et al., 2008).  This trapped water will 

typically remain with the particle even when all the moisture has again been removed 

from the environment.                         
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Figure 2.3 Hysteresis of a NaCl particle observed during this study.        
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2.2.3 Traditional and Modified Kohler theory  

Kohler (1936) was the first to truly explain the role of hygroscopic particles in our 

atmosphere.  By analyzing the chlorine content of frosts and the sizes of droplets 

observed during fogs he was able to determine a relationship between the water content 

of a saturated NaCl droplet and its surrounding vapor pressure.  He used thermodynamics 

to explain the hygroscopic behavior that he observed and constructed graphical plots, 

currently termed Kohler curves, to predict the size and number density of NaCl particles 

under specific atmospheric conditions.  Traditional Kohler theory is used to predict the 

droplet radius, a, at which a cloud condensation nuclei (CCN) can undergo spontaneous 

hygroscopic growth, or become ‘activated’ as termed in current literature, by the 

coalescence of atmospheric moisture.  Kohler theory is typically expressed via the Kohler 

equation which relates relative humidity, RH, to the radius, a, of a solution droplet 

containing a water soluble inorganic salt through a combination of Raoult’s law for water 

activity, aw, and the Kelvin equation for curvature effect, given by 
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where Pw,drop is the equilibrium partial pressure of water above a solution droplet, 

vap
flatsatwp ,, is the saturation vapor pressure of pure water over a flat surface of infinite 

extent, Mw is the molecular weight of water, sol is the surface tension of the solution 

droplet, R is the universal gas constant, T is the absolute temperature, and sol is the 

density of the solution droplet.  For solution droplets containing an electrolyte, aw, can be 

expressed as 
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where 

 

is the total number of dissociated ions from one molecule of solute, 

 

is the 

osmotic coefficient of the solution, and m is the molality.    
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Expounding on Kohler’s (1936) work, several authors have developed modified 

forms of Kohler theory.  Laaksonen et al. (1998) have provided a simple algebraic form 

for this theory given by 

3
1

a

b

a

a
S sw

w                                             (2.5) 

where Sw is the saturation ratio, aw incorporates the curvature effect given by the Kelvin 

equation, and bs accounts for the reduction in the vapor pressure of water around the 

solution droplet due to dissolved solutes.  Brechtel and Kreidenweis (200a,b) have 

modified Kohler theory to predict the critical supersaturations of binary mixtures by 

fitting two chemical and composition dependent parameters to corresponding 

experimental data.  Petters and Kreidenweis (2007;2008) have further modified the work 

of Brechtel and Kreidenweis (200a,b) to require only a single hygroscopicity parameter 

that include solubility and is purported to better predict the hygroscopic behavior of 

solution droplets containing sparingly soluble or hydrophobic compounds given by 
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where aw is the activity of water in a solution droplet, 

 

is the hygroscopicity parameter 

describing the effect on the water activity of the solution, and Vs and Vw are the volumes 

of the dry particle matter and the water, respectively.  Kreidenweis (2008) has used the 

model developed by Petters and Kreidenweis (2007;2008) to predict the water content of 

atmospherically relevant particles from their dry volumes and tested the results against a 

more rigorous thermodynamic model over a wide range of stable and metastable solution 

droplets.  Significant errors were reported for droplets observed below 85% relative 

humidity.  Such findings however, are not unreasonable as the values suggested for 

 

by 

Petters and Kreidenweis (2007;2008) for use in (2.6) were specifically determined to 

predict the hygroscopic behavior of solution droplets above 90% relative humidity.  

2.2.4 Hygroscopic Behavior of Single Component Particles  

As traditional and modified Kohler theories require some a priori knowledge of the solute 

species, numerous investigators have examined the hygroscopic growth of particles 
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containing a single water soluble component, namely electrolytic compounds.  The works 

of Robinson and Stokes (1949) and Hamer and Wu (1972) have been instrumental in 

predicting the behavior of water soluble inorganic salts.  However, their studies were 

conducted using bulk solutions rather than individual particles.  Regardless, they 

provided the osmotic and water activity coefficients for more than one hundred 

electrolytic compounds over a wide range of molalities that are still in use by 

investigators today.  Although the thermodynamic data collected from studies using bulk 

solutions can be used to predict the deliquescence relative humidities and water content 

of post-deliquescent particles, the data fails to adequately predict the corresponding 

crystallization relative humidities.  Orr et al. (1958) were among the first to express 

concern over this issue and commented that, “At present there are no good methods for 

predicting the point at which a supersaturated solution will crystallize.”  The comments 

of Orr et al. (1958) were later reiterated by Tang et al. (1986) after they observed that 

individual droplets of NaCl and KCl achieved much higher levels of supersaturation that 

predicted by Hamer and Wu (1972).  Cohen et al. (1987a) have also commented on the 

subject stating that “…parameters estimated from low concentration data could not be 

reliably used to predict thermodynamic properties of the solution at high concentrations.”  

In a later investigation, Cohen et al. (1987c) suggested that bulk solutions nucleate via 

heterogeneous due to impurities, whereas droplets proceed through homogenous 

nucleation at a much higher concentration.  Such discrepancies had been previously 

discussed by Stokes and Robinson (1973) in an investigation that particularly examined 

very concentrated solutions of electrolytes.  However, Stokes and Robinson (1973) were 

still unable to ascertain the hygroscopic behavior of supersaturated droplets since their 

investigation again pertained only to aqueous solutions.     

Since data collected from bulk solutions often fails to adequately predict the 

behavior of individual particles (Tang et al., 1986; Cohen et al., 1987a), many 

investigators have specifically examined the hygroscopic properties of the particles 

themselves (Orr et al., 1958; Tang and Munkelwitz, 1984,1994; Tang et al., 1986; Cohen 

et al., 1987a,c; Brechtel and Kreidenweis, 2000a,b; Gysel et al., 2002; Wise et al., 

2005,2008; Biskos et al., 2006a,b; Gao et al., 2007a,c; Petters and Kreidenweis, 
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2007,2008; Kreidenweis et al., 2008).  Typical in many of these investigations is 

determining the relative humidities at which deliquescence and crystallization occur.     

The investigations pertaining to the hygroscopic properties of single component 

particles have revealed that many factors contribute to their behavior.  Cantrell et al. 

(2002) have shown that the crystalline surface of particles and their repeated exposure to 

humidification and dehumidification can affect the relative humidities at which 

deliquescence occurs.  The work of Cantrell et al. (2002) is supported by that of Ewing 

(2005).  He reported that the surface defects found at the steps, edges, and kinks of single 

NaCl crystals are more susceptible to adsorption and reactive processes due to the 

incomplete cancellation of electrical fields at such sites.  Biskos et al. (2006a) and Gao et 

al. (2007c) have shown that the relative humidities at which deliquescence and 

crystallization occur in NaCl particles are related to their dry particle size.  This behavior 

was also observed by Gao et al (2007c) to occur in (NH4)2SO4 particles whereas Biskos 

et al. (2006b) have reported that (NH4)2SO4 particles showed no dependence on dry 

particle size.  In a separate study, Biskos et al. (2006c) have also reported that the size of 

dry NaCl particles affected their water uptake and Gao et al. (2007a) have reported that 

the deliquescence relative humidity of NaCl particles can be affected by the type of 

substrate supporting the particles.  Gao et al. (2007a) have also reported that particle size, 

contact angles, and surface tension all affected the relative humidities at which particles 

deliquesced.     

Although some disagreements persist regarding the hygroscopic behavior of 

single component particles, they typically pertain to the behavior of nanometer sized 

particles (Biskos et al., 2006b; Gao et al., 2007c).  For the micrometer sized particles 

studied as part of this dissertation however, the relative humidities at which 

deliquescence and crystallization occur and the post-deliquescent water content of such 

particles have been well studied and accepted values exist in current literature (Cohen et 

al., 1987a; Tang and Munkelwitz, 1994; Martin, 2000; Wise et al., 2005; Biskos et al., 

2006a).  As such, it is not the focus of this study to determine such properties, but rather 

to examine how they are affected by the presence of additional components. 
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2.2.5 Hygroscopic Behavior of Multicomponent Particles  

While the study of single component particles is fundamental to atmospheric research, it 

is essential to understand how the intermingling of different chemical species affects the 

hygroscopic behavior of the combined particle since atmospheric particles have been 

observed to exist as multiphase mixtures of organic and inorganic components (Posfai et 

al., 1999; Semeniuk et al., 2007a,b; Wise et al., 2007; Adachi and Buseck, 2008; Eichler 

et al., 2008).   This area of study is made immensely complex when the vast number of 

currently identified atmospheric compounds is considered (Saxena and Hildemann, 1996; 

Kanakidou et al., 2005) and further compounded by the ability of some atmospheric 

particles to chemically react (Ellison et al., 1999; Kanakidou et al., 2005; Donaldson and 

Vaida, 2006).  Moreover, some investigators have reported conflicting findings regarding 

the hygroscopic behavior of mixed particles collected directly from the atmosphere.  

Saxena et al. (1995) have reported that the organic fraction of particles collected from the 

skies above the Grand Canyon and Los Angeles affected the water content of the particles 

by as much as 40% in comparison to that estimated for the corresponding inorganic 

fraction.  Semeniuk et al. (2007a) have reported however, that the hygroscopic behaviors 

of the particles they collected from various clean and polluted environments around the 

planet were dominated by the inorganic fraction.   

Although the study of atmospherically collected particles has yielded valuable 

information about mixed particles, the time and expense required for such studies is not 

available to most investigators.  As such, most studies involving mixed particles are 

conducted using laboratory generated particles.  In addition to being a more feasible 

means of investigation, particles generated in the laboratory give investigators control 

over composition and the environment the particles are exposed to.  Although some 

investigators have examined mixed particles composed of numerous components (Ming 

and Russell, 2001; Marcolli et al., 2004; Svenningsson et al., 2006; Moore and Raymond, 

2008), most studies are limited to the hygroscopic behavior of particles containing two 

components.  Here, the primary focus is typically to observe if and how one component 

affects the hygroscopic behavior of the other.  More specifically, investigators have 
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routinely examined how both anthropogenic and naturally occurring organics affect the 

deliquescence, hygroscopic growth, and crystallization of atmospherically relevant 

inorganic salts; namely NaCl and (NH4)2SO4 as they are the two dominant naturally 

occurring inorganic salts (Martin, 2000; Raes et al., 2000; Wise et al., 2007).  As such, 

further discussion is restricted to this area as it is also pertains to the area of study 

discussed in this dissertation.   

One type of commonly studied organics are the humic and fulvic acids isolated 

from the humus resulting from the decomposition of plant and animal matter (Brooks et 

al., 2004).  These acids typically exist as heterogeneous mixtures, have been observed to 

have a wide range of solubilities, are reported to account for up to one-half of the 

dissolved organic matter in water, and are known to complex trace metals (Thruman and 

Malcolm, 1981; Chan and Chan, 2003; Brooks et al., 2004).  When combined with 

inorganic salts, they have been found to have little effect on the amount of water 

absorbed by the inorganic fraction (Chan and Chan, 2003; Brooks et al., 2004), although 

they retain water at very low relative humidities (Chan and Chan, 2003; Badger et al., 

2005).  The two natural organics have been shown to have different effects on the 

hygroscopic properties of inorganics, however.  Chan and Chan (2003) and Parsons et al. 

(2004) have both reported that fulvic acids had no noticeable effect on the deliquescence 

and crystallization relative humidities of micrometer-sized NaCl and (NH4)2SO4 particles, 

whereas Badger et al. (2005) observed a significant decrease and increase in the 

deliquescence and crystallization relative humidities, respectively, for comparatively 

sized (NH4)2SO4 particles containing humic acids.     

Many investigators however, have examined the effects of simpler organic 

compounds that have better defined thermodynamic and hygroscopic properties.  

Disagreement persists here too, as several investigators have reported contradictory 

findings regarding the effects of these organics on the hygroscopic behavior of 

atmospherically relevant inorganic salts.  The most common of these disagreements 

pertain to the effects on the deliquescence and crystallization relative humidities of a 

specific inorganic salt and the subsequent hygroscopic growth of the mixed particles.  



 

34

Still, a closer inspection indicates that the solubility of the organic compounds studied 

may play a role in how they affect the deliquescence and crystallization relative 

humidities of inorganic salts.  To aid the reader in the following discussion, Table 2.2 is 

presented to provide a list of the organic compounds to be later mentioned.  The table 

lists the organic compounds in alphabetical order along with their chemical formula, 

molecular weight, and water solubility (when available).  The solubilities of the 

individual organics were obtained from Lide (2004) in g·l-1 along with their associated 

temperatures in degrees Celsius unless otherwise stated.  The solubility values are also 

given in units of mol·l-1 as calculated from the molecular weights of the corresponding 

compounds.                       
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Table 2.2  List of water solubilities of the organic compounds studied by previous 

investigators.  (Table 2.2 continues on page 36.) 

Compound Chemical 
Formula 

Mol. 
Wt. 

g·mol-1 

Solubility       
mol·l-1 

Solubility         
g·l-1 

Temp
. °C 

adipic acid C6H10O4 146.141 0.10 15.0 15 

cetyl alcohol C16H34O 242.440 1.2 × 10-7 3 × 10-5 25 

citric acid C6H8O7 192.124 3.07 590 20 

dioctyl phthalate C29H38O4 390.557 6.9 × 10-7 2.7 × 10-4 25 

glutamic acid C5H9NO4 147.130 0.16[1] & 0.06[2]

 

23.5[1] & 8.5[2] 25 

glutaric acid C5H8O4 132.116 4.4 582 25 

Glycerol C3H8O3 92.094 fully miscible in water 

hexadecane C16H34 226.441 2.6 × 10-8 6 × 10-6 25 

lauric acid C12H24O2 200.320 2.7 × 10-4 0.055 20 

leucine C6H13NO2 131.173 0.17[3] 22.0[3] 25 

levoglucosan C6H10O5 162.140 0.38 - 0.80[5] 62.3 - 128[5] 25 

maleic acid C9H4O4 116.073 3.8 441 25 

malic acid C4H6O5 134.088 4.4 590 26 

malonic acid C3H4O4 104.062 4.1 424 20 

norpinic acid C8H12O4 172.179 0.003[6] 0.47[6] N/A 

octadecane C18H38 254.495 2.4 × 10-8 6 × 10-6 25 

octanoic acid C8H16O2 144.212 0.0055 0.80 25 

oleic acid C18H34O2 282.462 < 1 × 10-5[7] < 0.003[7] 50 

oxalic acid C2H2O4 90.035 1.06 95.1 20 

palmitic acid C16H32O2 256.427 2.8 × 10-6 0.0072 20 

phthalic acid C8H6O4 166.132 0.042 6.977 25 

pinic acid C9H14O4 186.206 ˜ 0.05[6] ˜ 8.5[6] N/A 

pinonic acid C10H16O3 184.233 3.3 × 10-4[4,6] 0.06[4,6] N/A 

pyruvic acid C3H4O3 88.062 fully miscible in water 

stearic acid C18H36O2 284.478 1.0 × 10-5 0.0029 20 

succinic acid C4H6O4 118.089 0.71 83.5 25 

tetracosane C24H50

 

338.654 1.2 × 10-8

 

4 × 10-6

 

22 
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[Table 2.2 continued] 

 
Solubility values (g·l-1) were obtained from Lide (2004) unless otherwise 
noted. 

   

N/A not available 

    

[1] solubility of DL-glutamic acid 

[2] solubility of L-glutamic acid 

[3] solubility of L-leucine 

[4] Cruz and Pandis, 2000 

[5] range of solubility values obtained from  

  

http://mmcd.nmrfam.wisc.edu/test/cqsearch.py?cqid=cq_10725 

[6] Raymond and Pandis, 2003 

[7] Khuwijitjaru et al., 2004 (value given in mol/l and converted to g/l)                  

http://mmcd.nmrfam.wisc.edu/test/cqsearch.py?cqid=cq_10725
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Hameri et al. (1997;1998;2002) have studied the effects of adipic, phthalic, 

succinic, and malonic acids on the hygroscopic behavior of 100 nm (NH4)2SO4 particles.  

They observed that the relatively less water soluble organics, such as adipic and phthalic 

acids, acted as insoluble materials and did not affect the post-deliquescent water 

absorption and desorption by the inorganic salt, whereas the relatively more water soluble 

malonic acid made particles behave as a purely hygroscopic material.  They also found 

that the relative humidity at which mixed particles deliquesced was reduced relative to 

the pure inorganic salt as the organic fraction was increased and that mixed particles 

exhibited water uptake prior to deliquescence.     

Cruz and Pandis (2000) have studied the effects of pinonic and glutaric acids on 

the hygroscopic behavior of comparatively sized NaCl and (NH4)2SO4 particles.  They 

reported that increasing the organic fraction enhanced the water absorption of the 

particles, but did not affect the deliquescence relative humidities of the inorganic salts.  

However, Lightstone et al. (2000) have studied the effects of succinic acid on the 

hygroscopic behavior of 8 m NH4NO3 particles and observed the organic fraction to 

increase the relative humidity at which crystallization occurred.  Chen and Lee (2001) 

have studied the effects of glutaric and pyruvic acid on the hygroscopic behavior of 100 

nm NaCl particles and found that increasing the organic fraction decreased the 

deliquescence relative humidity of the mixed particle.     

Choi and Chan (2002a) have studied the effects of glycerol and succinic, malonic, 

citric, and glutaric acids on the hygroscopic behavior of micrometer sized NaCl and 

(NH4)2SO4 particles.  They observed that succinic acid increased the crystallization 

relative humidities of both inorganic salts, but had no effect on their deliquescence 

relative humidities.  Particles containing malonic or citric acid were reported to absorb 

significant amounts of water at low relative humidities prior to deliquescence and those 

containing glutaric acid were reported to become more hygroscopic and no longer have a 

sharp deliquescence.  However, particles containing succinic acid and glycerol were 

found to have no noticeable effect on the water absorption of either salt.    
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Prenni et al. (2003) have studied the effects of adipic, succinic, oxalic, malonic, 

and glutaric acids on the hygroscopic behavior of 100 nm (NH4)2SO4 particles and 

reported agreement with Hameri et al. (1997;1998;2002) and Choi and Chan (2002a) for 

particles containing adipic or succinic acid, but they did not observe an increase in the 

crystallization relative humidity of the particles containing succinic acid as reported by 

Choi and Chan (2002a).  Particles containing oxalic or malonic acid were observed to 

become fully hygroscopic in agreement with Hameri et al. (2002), while those containing 

glutaric acid did become fully hygroscopic as observed by Choi and Chan (2002a), but 

deliquesced at a slightly lower relative humidity than pure (NH4)2SO4 particles.  

However, the water uptake of particles containing glutaric acid was in agreement with 

that of Choi and Chan (2002a).     

Raymond and Pandis (2003) have studied the effects of leucine, glutamic, 

pinonic, pinic, and norpinic acids on the CCN activation of nanometer sized NaCl and 

(NH4)2SO4 particles.  Results from all particles, with one exception, containing 1% by 

mass of the selected organic were consistent with traditional Kohler theory.  The 

exception noted was for a leucine particle with 1% NaCl.  The investigators concluded 

that “…there were no strong interactions between inorganics and organics or among 

multiple organic species that would alter the CCN activation abilities of the constituent 

species of a multiple-component particle.”  This finding however, was in contradiction to 

a previous investigation by Cruz and Pandis (1998) that reported the CCN activations of 

comparatively sized (NH4)2SO4 particles were increased when mixed with glutaric acid.   

Braban and Abbatt (2004) have studied the effects of malonic acid on the 

hygroscopic behavior of nanometer and micrometer sized (NH4)2SO4 particles.  Particles 

containing malonic acid were observed to have reduced deliquescence and crystallization 

relative humidities, with some particles exhibiting no crystallization at all as previously 

observed by Prenni et al. (2003).  Bilde and Svenningsson (2004) have studied the effects 

of adipic and succinic acid on the critical supersaturations and CCN activity of nanometer 

sized NaCl particles and found that even a slight amount of NaCl to significantly 

increased their CCN activity.  Parsons et al. (2004) have studied the effects of malonic 
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acid, glycerol, and levoglucosan on the hygroscopic behavior of micrometer sized 

(NH4)2SO4 particles deposited on the bottom surface of a flow cell and viewed with an 

optical microscope.  They observed that the deliquescence and crystallization relative 

humidities of the particles decreased as the molar fraction of organic material was 

increased.  Also, particles containing malonic acid were found to no longer crystallize 

once the mole fraction of the particles was > 0.5.     

Sjogren et al. (2007) have studied the effects of adipic acid on the hygroscopic 

behavior of both nanometer and micrometer sized (NH4)2SO4 particles.  The larger 

particles were examined using an electrodynamic balance and observed to have a reduced 

deliquescence relative humidity, whereas no such effect was observed for the smaller 

particles examined using tandem differential mobility analyzers (TDMA).  Zardini et al. 

(2008) have studied the effects of citric, glutaric, and adipic acids on the hygroscopic 

behavior of both nanometer and micrometer sized (NH4)2SO4 particles in a manner 

similar to Sjogren et al. (2007).  Here, the particles examined with an electrodynamic 

balance showed a distinct hysteresis, whereas those examined via TDMA appeared 

hygroscopic and did not crystallize.  The investigators suggest that the partial 

crystallization observed for particles in the balance system was due to the rapid 

evaporation experienced by the solution droplet upon injection to the balance.  Moreover, 

after the initial crystallization, the particles in the electrodynamic balance were no longer 

observed to crystallize upon subsequent humidification and dehumidification cycles.  

When the molar amount of citric acid was 50%, no deliquescence or crystallization was 

observed using either technique.  However, particles containing glutaric or adipic acids 

were observed to still undergo deliquescence and crystallization similar to pure 

(NH4)2SO4 particles.     

What is evident from the aforementioned investigations is the ability of some 

organics to affect the hygroscopic behavior of atmospherically relevant salts.  However, 

as many of these organics were water soluble, the expectation of such effects is not 

unreasonable.  Moreover, Cruz and Pandis (2000) and Choi and Chan (2002a) have both 

reported they were able to accurately predict the overall water content of their mixed 
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particles using a group contribution method, although Sjogren et al. (2007) and Zardini et 

al. (2008) have reported significant deviations using the same method for mixed particles 

containing a large or undissolved organic fraction.  Furthermore, as some of the organics 

studied have deliquescent and crystallization relative humidities other than those of the 

inorganic salts they were paired with, it is also not unreasonable that the mixed particles 

would deliquesce and crystallize at relative humidities other than those of the 

corresponding pure inorganic salts.  Therefore, further discussion is restricted to those 

organic compounds which are considered water insoluble. 

   

2.2.6 Effect of Water Insoluble Materials on the Hygroscopic Behavior of Inorganic Salts  

Some investigators have specifically examined how water insoluble compounds affect the 

hygroscopic behavior of atmospherically relevant inorganic salts.  A common 

misperception among these studies, however, was that the hygroscopic growth of 

inorganic salts could be prevented by externally coating the particles with layers of non-

volatile, hydrophobic organics.  Otani and Wang (1984) attempted and failed to prevent 

the hygroscopic growth of NaCl particles using cetyl alcohol.  They were however, able 

to significantly reduce the growth rate.  Similar studies were also conducted by Hansson 

et al. (1990;1998) and Hameri et al. (1992) wherein nanometer sized particles of NaCl 

and (NH4)2SO4 were coated with dioctyl phthalate, octadecane, tetracosane, octanoic 

acid, or lauric acid.  Here, the investigators applied a variety of coating techniques and 

even used scanning electron microscopy to insure that the particles were fully coated.  

Here too however, the particles were still observed to deliquesce and grow, even when 

coated with a solid layer of the designated organic applied as a liquid and allowed to 

solidify.  Xiong et al. (1998) have specifically studied how lauric, stearic, and oleic acids 

effect the hygroscopic growth rate of nanometer sized H2SO4 particles.  Here, particles 

were coated with up to 13 monolayers of the selected organic acid.  They observe that 

increasing the number of monolayers could reduce the growth rate, but only in the time 

range of up to 6 s and that additional monolayers beyond the 6th coating did not further 

reduce the growth rate.   
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Cruz and Pandis (1998) have studied the effects of dioctyl phthalate on the CCN 

activation of nanometer sized (NH4)2SO4 particles and found that even a coating of 70% 

by mass of the organic could not prevent their activation at supersaturations of 0.5% and 

1.0%.  In a similar study, Raymond and Pandis (2003) have reported that the CCN 

activation of comparatively sized particles of (NH4)2SO4 coated with up to 96% by mass 

of hexadecane were also unaffected at supersaturations of 0.3% and 1.0%.     

Garland et al. (2005) have reported that coatings of palmitic acid had no effect on 

the crystallization relative humidity of nanometer and micrometer sized (NH4)2SO4 

particles.  Here, it should be noted that the mixing procedure used by Garland et al. 

(2005) was stated to produce externally coated particles, but that “the internal mixing 

state of the aerosols is not known.”  Pictures of the particles taken by transmission 

electron microscopy indicate that some particles were in fact agglomerates of coated 

particles.   

However, Chan and Chan (2007) have studied the effects of octanoic acid 

coatings on the hygroscopic behavior of 10 m (NH4)2SO4 particles and noticed an 

increase in the deliquescence relative humidity and decreased in the crystallization 

relative humidity of the coated particles relative to the pure inorganic salt, but suggested 

that such changes could be the result of the manner in which the relative humidity was 

related to the coated particles and not the addition of the organic.     

From the previous discussion, it would appear that water insoluble organics have 

far less effect on the hygroscopic behavior of atmospherically relevant inorganic salts 

than water soluble organics, at least when externally coated.  Furthermore, it is clear that 

water insoluble organics cannot prevent the hygroscopic growth of the inorganic salt 

fraction, but only reduce the rate at which such growth occurs, despite the amount of 

coating.  However, as the inorganic salt particles in the aforementioned literature were 

externally coated, no conclusion can be drawn regarding the impact of such organics 

when internally mixed with inorganic salt fraction.  Moreover, naturally collected 

aerosols have been shown to be internally mixed (Semeniuk et al., 2007a,b; Wise et al., 
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2007; Adachi and Buseck, 2008).  Therefore, the particles studied as part of this 

dissertation were not coated, but rather generated from a bulk solution containing both 

the organic and inorganic components to produce mixed particles where all components 

have some degree of external exposure.    

2.2.7 Predicting the Hygroscopic Behavior of Multicomponent Particles  

Although a wide variety of particles have been studied (Martin, 2000), specifically 

examining the hygroscopic properties of all the possible combinations of compounds 

currently identified in the atmosphere is unfeasible and impractical due to their immense 

number (Saxena and Hildemann, 1996; Kanakidou et al., 2005).  As such, investigators 

typically rely on models to estimate the behaviors of mixed particles based on the 

thermodynamic properties of their individual components (Clegg, 1992;1997;1998a,b; 

Carslaw et al., 1995; Clegg and Brimblecombe, 1995; Chan et al., 1997).  Ansari and 

Pandis (1999) have developed a model that incorporates the adjusted thermodynamic 

parameters of selected inorganic compounds and minimizes the Gibbs free energy to 

accurately predict the multistage growth, deliquescence point depression, and 

crystallization behavior of multicomponent inorganic particles.     

Although each investigator may take a personalized approach towards their model 

development, most predictive models are modifications to Kohler theory (Laaksonen et 

al., 1998; Brechtel and Kreidenweis, 2000a,b) and utilize the Zdanovskii-Stokes-

Robinson (ZSR) model (Zdanovskii, 1948a,b; Stokes and Robinson, 1966).  The ZSR 

method provides a simple relationship between the activity coefficients and molalities of 

mixed systems to their individual counterparts at equilibrium.  The ZSR method is 

typically used to predict the overall water content of a mixed particle (Cohen et al., 

1987b, Wexler and Seinfeld, 1991; Ansari and Pandis, 1999; Cruz and Pandis, 2000; 

Choi and Chan, 2002a).  Cohen et al. (1987b), Cruz and Pandis (2000), and Choi and 

Chan (2002a) have all reported good agreement using the ZSR method for particles 

mixtures, although Cohen et al. (1987b) only reported agreement when they assumed that 

a certain portion of water was ‘trapped’ by the particle during crystallization.  However, 
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the assumption of Cohen et al. (1987b) is not unreasonable as particles have been 

observed to retain water after crystallization (Choi and Chan, 2002a; Colberg et al., 2004; 

Badger et al., 2005; Rosenoern et al., 2008).  However, Sjogren et al. (2007) have 

reported that the ZSR model failed for mixed particles containing a large organic fraction 

and Zardini et al. (2008) have reported that the ZSR model failed for mixed particles 

containing an undissolved portion of the organic.  Data from bulk multicomponent 

mixtures have also been shown to predict the behavior of corresponding mixed particles 

provided their diameters are such that the Kelvin effect is negligible and the particles are 

at relative humidities above their deliquescence point (Tang, 1976).  Bulk mixtures have 

also been found to correctly predict multistage growth characteristics (Tang et al., 1978; 

Cohen et al., 1987b) and reductions in the deliquescence relative humidity for mixed 

inorganic particles (Tang et al., 1978), as well as composition and temperature 

dependencies (Tang and Munkelwitz, 1993).     

However, several investigators have observed unique multicomponent particle 

behavior that is often difficult, if not currently impossible, to model.  Finlayson-Pitts and 

Hemminger (2000) have discussed the importance of understanding tropospheric 

reactions of gases with NaCl and NaBr and the role of surface-adsorbed water.  They 

have also discussed the role of hydroxyl and nitrate radicals and ozone in atmospheric 

chemistry and how heterogeneous chemistry must be included into atmospheric models.  

However, they did not mention a previous modification of Kohler theory by Laaksonen et 

al. (1998) that accounts for the inclusion of slightly soluble species and trace amounts of 

condensable gases.  Gibson et al. (2007) have found that the chemical composition and 

inclusion of even trace quantities (< 1%) of soluble components can significantly alter the 

ability of mineral dust to form cloud condensation nuclei.  Liu et al (2008) have found 

that atmospheric aging of mineral dust via reactive nitrogen species could significantly 

increase their hygroscopic properties.  Wise et al. (2007) have observed that naturally 

collected specimens of soluble and insoluble inorganics would absorb water and either 

‘engulf’ the insoluble portion or form a deliquescent ‘balloon’ adjacent to it.  As such, it 

is imperative to continue the examination of mixed particles and their hygroscopic 

properties. 
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2.2.8 Summary  

Despite the numerous studies that have been conducted into the hygroscopic properties of 

mixed particles and the improvements in predictive models, the complex behavior of the 

multiphase and multicomponent particles found in the atmosphere are still not acceptably 

understood.  Moreover, given their ability to significantly impact life on Earth, a better 

understanding of how atmospheric particles behave is crucial.  A review of the relevant 

literature has shown that the solubility of organics in water could possibly play a role in 

how they affect the hygroscopic behavior of mixed particles.  Furthermore, it is not fully 

understood how different particle morphologies affect the hygroscopic behavior of mixed 

particles.  The work presented in the remainder of this dissertation is an effort to better 

understand how non-volatile, hydrophobic organics affect the hygroscopic behavior of 

atmospherically relevant inorganic salts.                   
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Chapter 3: Experimental  

3.1 Experimental Setup  

3.1.1 Introduction  

Examining the properties and behavior of aerosols can be a daunting task considering 

their sizes are typically in the nanometer and micrometer range.  As such, research in this 

field has led to the development and advancement of many current technologies that 

afford investigators the ability to examine a single particle suspended in air and to 

determine its chemical and physical characteristics with a high degree of both precision 

and accuracy.  In this chapter, the equipment and methods used to study both charged 

droplets and mixed particles are described in detail.  

3.1.2 Combined Experimental Setup  

To examine the properties of the charged aerosols studied as part of this dissertation, an 

electrodynamic balance, thermal diffusion cloud chamber, and humid airflow system 

were all used collectively along with some additional accessories and a light scattering 

technique (van de Hulst, 1981; Bohren and Huffman, 1983; Kerker, 1983) based on 

Lorenz-Mie theory (Lorenz, 1890; Mie 1908).  Davis (1997) has discussed in detail the 

development of the electrodynamic balance and corresponding use of light scattering 

techniques.  In fact, many of the initial advancements and applications can be attributed 

to Davis and others in his group (Davis and Chorbajian, 1974; Davis and Ray, 

1977;1978;1980; Davis and Ravindran, 1982; Davis, 1985; Davis and Periasamy, 1985).     

Recent investigations have proven how accurate the combined application of the 

electrodynamic balance and light scattering technologies can be for determining the 

physical characteristics of charged droplets.  Chylek et al. (1983) have shown that the 

diameter and refractive index of optically levitated particles can be simultaneously 

determined with relative errors of 5 × 10-5.  Taflin et al. (1988) used an electrodynamic 
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balance in conjunction with two forms of light scattering techniques and were able to 

determine the sizes of binary droplets to within 0.1% and those of pure component 

droplets to within 0.01%.  Ray et al. (1991) also used an electrodynamic balance in 

conjunction with a light scattering technique and were able to determine the sizes and 

refractive indices of multicomponent and layered droplets with the same precision as 

Chylek et al. (1983).  Huckaby et al. (1994) used an electrodynamic balance in 

conjunction with a light scattering technique to ascertain the size, refractive index, and 

dispersion of single droplets of Invoil 740, a silicon oil, with relative errors of 3 × 10-5, 3 

× 10-5, and 2 × 10-5, respectively.  Ray and Nandakumar (1995) developed a technique 

using an electrodynamic balance in conjunction with a light scattering technique to 

simultaneously determine the size of the core, layer thickness, and refractive indices of 

single droplets of Santovac 5, a polyphenol ether, coated with an immiscible layer of 

Fomblin, a perfluorinated polyether.  They were able to determine the size of the core, 

layer thickness, and refractive indices of both with relative errors of 3.5 × 10-4, 4.5 × 10-2, 

2.3 × 10-4, and 4.4 × 10-4 respectively.  Recently, Nakajima (2006) has discussed a 

method to accurately determine the size and charge of individual charged particles with 

errors of less than 0.1% and 0.3%, respectively.  His method incorporates a quasi-

quadrupole levitator with a laser Doppler velocimeter and is a modified version of the 

electrical single particle aerodynamic relaxation time (E-SPART) analyzer proposed by 

Mazumder and Kirsch (1977) and Renninger et al. (1981).   

The particular setup used as part of this dissertation has been previously described 

in detail by Tu (2000) and shown to be accurate to within 0.1% for determining droplet 

size by Tu and Ray (2001).  Here, a description of the combined experimental system and 

how charged aerosols are generated, captured, observed, and measured is given.  Figure 

3.1 provides a top and side view of the combined setup.  The electrodynamic balance is 

situated such that the center of the rings is aligned with the aerosol injection port on the 

top plate and the twin posts do not interfere with either the illumination or observation of 

a suspended aerosol.  The polyethylene tubing for the saturated nitrogen gas feed is 

introduced through a port on the side of the chamber and winds around the inner 

circumference on the bottom of the chamber to acclimate the gas stream to the chamber 
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temperature before being connected to the manifold.  The manifold is centered in the 

chamber surrounding the balance and also lies directly on the bottom plate.  A tubing 

thickness of 3/8” O.D. was selected so that it would not interfere with the illumination or 

observation of suspended aerosols.  The DC and AC coaxial wires connected to the 

balance rings are individually routed over the tubing and out of the chamber in such as 

manner as to not interfere with particle illumination or observation.  The gas stream fed 

to the chamber is removed from a single 3/8” polyethylene tube that is attached to the 

post supporting the DC ring electrodes and exits through one of the chamber ports.  The 

temperature and relative humidity of the nitrogen gas immediately surrounding a 

suspended aerosol are measured directly by a hygrometer probe.  The tip of the probe is 

located only 1/2” from the center of the rings.  The probe is connected to a hygrometer 

located outside the chamber via a power cord routed through a port on the side of the 

chamber.  The hygrometer is a Traceable Digital Hygrometer with stated accuracies of ± 

1.5% relative humidity and ± 0.4°C.                    



 

48       

 

Figure 3.1 Side and top views of the combined experimental system.        
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For experiments involving the detection of scattered light intensity, two PMTs are 

incorporated into the experimental setup to observe the intensity of the light scattered by 

a levitated droplet.  Both PMTs are positioned at scattering angles 

 
˜ p/2 with respect to 

the polarization of the incident laser beam.  One PMT is mounted on the side of the 

chamber opposite the port used for droplet observation.  The side PMT detects the 

transverse electric (TE) mode resonances of the intensity of the light scattered by a 

droplet in the plane perpendicular to the polarization of the incident laser beam.  The 

other PMT is attached over the port on the top plate of the chamber after a droplet has 

been captured.  The top PMT detects the transverse magnetic (TM) mode resonances of 

the intensity of the light scattered by a droplet in the plane parallel to the polarization of 

the incident laser beam.  The scattered intensity resonances observed in the two planes 

are independent of each other allowing two sets of data to be simultaneously collected 

from a single droplet.  The PMTs are located behind apertures limiting their angular 

range of scattered light detection to 

 

˜ 0.05°.  They are type R374 and are 

manufactured by Hamamatsu.  Both PMTs are situated in protective enclosures 

previously made in-house that are custom fit to the chamber.  The PMTs are individually 

connected to intensity filters and amplifiers and adjustable power supplies also previously 

made in-house.  Outputs from the PMTs are recorded as functions of time by a computer 

and saved to a data file.  A detailed discussion of light scattering theory is provided in 

Chapter 4.   

The ports used for laser illumination, visual observation, and the detection of 

scattered intensity are sealed externally using custom window ports to permit light 

transmission.  When not being used for particle introduction, the port on the top chamber 

plate is also sealed in this manner.  The ports through which the power cords and tubing 

pass are sealed internally using a silicone caulk.  How well the chamber is sealed can be 

known by comparing the volumetric flowrates of the gas lines entering and exiting the 

chamber.    



 

50 

Charged droplets are generated from a high voltage pulse applied to a flat-tipped, 

20 gauge, stainless steel needle containing a portion of the desired solution.  During 

generation, the needle is housed in a Teflon apparatus situated over the port on the top of 

the chamber.  The housing apparatus has been specifically designed to allow the needle to 

protrude through the center of the port so that its injection tip is slightly above the top 

ring electrode of the balance to allow for easier capture of charged droplets.  The high 

voltage power supply is a Harrison 6525A DC power supply manufactured by Hewlett 

Packard and ranges from 0 – 4000 V and 0 – 50 mA.  During use, it is operated at its 

maximum voltage and minimum amperage and the duration of the voltage pulse is 

typically about one second.  The negative lead of the high voltage power supply is 

connected by a coaxial cable to a relay switch powered by a model LH 124 FM low 

voltage regulated power supply manufactured by Lambda Electronics Corp.  The positive 

lead of the high voltage power supply is capped by a terminated coaxial lead.  The relay 

switch was previously built in-house and operates by pressing a button which powers a 

relay via the low voltage power supply allowing for transmission of the high voltage 

power so long as the button is depressed.  The relay is grounded to the chamber via the 

optical table and connected to the needle with an alligator clip.  During droplet 

generation, the DC voltage applied to the balance rings is typically about 16 V and the 

AC voltage and frequency are about 1200 V and 400 hz, respectively.   

Once a charged aerosol has been generated and then captured by the ring 

assembly, the droplet is illuminated by a vertically polarized, 20 mW, He-Ne laser beam 

(

 

= 632.8 nm).  The laser is a model 1135P manufactured by JDS Uniphase and is 

powered by a 115 v turn-key power supply.  The laser beam is introduced to the chamber 

through a sealed window after making two 90° turns using optical mirrors.  The beam is 

then passed through the vertical and horizontal centers of the chamber and exits through a 

light trap.  The light trap is mounted to the side of the chamber opposite the incoming 

laser beam and deflects the path of the beam through a sealed tube to prevent 

backscattering of the laser light.  
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An illuminated aerosol can be visually observed either by the naked eye or 

through a 20X optical lens.  The lens is fitted with a fine crosshair and is situated in a 

telescoping tube that is elevated and horizontally positioned to correspond with one of the 

sealed windows on the side of the chamber.  The tube housing the lens can be precisely 

adjusted both vertically and horizontally so that a captured particle can be centered on the 

crosshairs of the lens.  An additional sealed window provides the observer a quick glance 

to ensure particle introduction and droplet stability.  The ability of the observer to clearly 

see the droplet in relation to the crosshair is crucial to acquiring an accurate levitation 

potential.  Here, a Protek digital multimeter is connected to outlets in the DC power 

supply box by electrical leads and used to measure the potential difference between the 

top and bottom ring electrodes to within 0.001 VDC.  The potentials are recorded as 

functions of time by the observer during an experiment.  

3.1.3 The Electrodynamic Balance  

The electrodynamic balance has been routinely used for investigating the characteristics 

of individual aerosols since Robert Millikan’s investigations into the charge on a single 

electron pioneered the observation of single charged droplets levitated in an electric field.  

During his observations of charged sprays of oil droplets, typically referred to as the 

Millikan oil drop experiment, Millikan (1910) found that a single charged droplet could 

be stably maintained by countering the gravitational force of the charged oil droplets with 

the repulsive and attractive electrostatic forces created by the potential applied between 

two metal plates vertically positioned above and below the droplet.  His work provided 

the fundamental basis for the development of the quadrupole trap by Wolfgang Paul for 

use in mass spectrometry (Paul and Steinwedel, 1953; Paul and Raether, 1955) and the 

current configurations of the electrodynamic balance.   

Although an electrical field is employed in nearly all balance systems, the 

physical application of such to stably levitate a charged aerosol may often vary from one 

research laboratory to another (Cohen et al., 1987a; Chan et al., 1997; Li et al., 2005).  In 

general, an electrodynamic balance levitates an individual charged aerosol by applying an 
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electric potential between two conductive bodies, such as plates or rings, positioned 

vertically above and below the aerosol.  The direction of the potential is determined by 

the sign of the charge on the aerosol, whether positive or negative.  For instance, if a 

negatively charged aerosol is to be levitated, a negative potential is applied to the bottom 

electrode to counter the gravitational force of the aerosol.  The vertical position of the 

droplet can then be manipulated by increasing or decreasing the applied potential.  

Typically, an AC power source is supplied to a central ring electrode to provide 

horizontal stability for the aerosol.  The degree of horizontal stability is optimized by 

tuning the frequency.  Davis (1997) has discussed in detail the evolution of the 

electrodynamic balance and provides a variety of balance configurations that were either 

in use or suggested for use at the time of publication.  In Chapter 4, an in-depth 

discussion of the theory supporting the application of the electrodynamic balance is 

given.   

Two electrodynamic balances of very similar configuration were used as part of 

this dissertation.  The first balance used was previously constructed in-house and has 

been thoroughly described by Tu (2000) and Tu and Ray (2001).  This balance was 

constructed of four ring electrodes constructed from molded copper wire and supported 

by a single polymer post.  However, during the course of investigations this balance was 

found to occasionally arc between the AC and DC ring electrodes and destabilize a 

levitated droplet.  As such, a new electrodynamic balance was constructed.   

The currently used electrodynamic balance consists of four rings supported by 

two posts, where each post supports two ring electrodes connected to either the DC or AC 

circuits.  Figure 3.2 provides a three-dimensional view of the four-ring electrodynamic 

balance used to levitate a charged aerosol.  The right and left posts shown in the figure 

support the DC and AC ring electrodes attached to the corresponding posts.  Two AC 

rings are used so that the particle can be illuminated, optically viewed, and the intensity 

of scattered light can be measured in the horizontal plane.  For the type of ring electrodes 

used here, a single AC ring would impede such observational abilities as the levitated 

aerosol would be horizontally centered within the confines of the ring.  The DC and AC 
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ring electrodes were placed on separate posts to reduce the electrical ‘leaking’ previously 

described between the DC and AC electrodes.  Both posts are identically constructed 

from ultra-high temperature glass-mica ceramic and measure 3/4” in width by 3/4” in 

depth by 1” in height.  They face each other squarely and are separated by 1 3/4" between 

their interior facing sides.  The posts are coated in black liquid electrical tape to improve 

their electrical insulation and reduce unwanted backscattering of light during illumination 

of a levitated aerosol.  Both posts have had four vertically aligned holes drilled 

completely through the center of one side.  The holes measure ˜ 1/16” in diameter and 

are equally spaced ˜ 3/16” apart.  The diameter of the holes is such to allow a single-

conductor, 600 VAC, 12 AWG building wire through.                      
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Figure 3.2 3D representation of the 4-ring electrodynamic balance.         
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Although each post is identically fitted with four holes, the solid copper wire is 

only run through two of the four holes on either post.  Here, the left-hand side post is 

equipped with wires through the center two holes and the right-hand side post is equipped 

with wires through the top and bottom holes.  The ends of each of the four wires are 

connected to a single, heavy duty ring terminal with a 1/2” interior diameter.  All four 

rings are positioned horizontally so that their interior holes are aligned vertically.  The 

rings have also been coated with a black, non-conductive paint to reduce unwanted 

backscattering and any electrical interference between the DC and AC rings.  The coating 

material used on the rings was originally designed for coating cathode ray tubes in 

televisions.   

The top and bottom endcap rings supported by the right post are individually 

connected to the positive and negative terminals of a DC power supply via coaxial cables 

attached to the ends of the corresponding solid copper wires on the opposite side of the 

post.  The central two rings supported by the left post have both been connected to a high 

voltage AC power supply via a single coaxial cable attached to the ends of both the solid 

copper wires on the opposite side of the post.  The connections between solid copper 

wires and coaxial cables are made using fully insulated quick connect terminals.  The DC 

and AC power supplies are situated in a single enclosed structure previously made in-

house.  The combined power supply allows for each of the power types to be individually 

switched on or off.  In addition, the DC power supply allows for coarse and fine 

adjustment of the potential from 0 to 40 V as well as the ability to reverse the potential.  

The combined power supply structure is fitted with coaxial connection ports for the 

output and monitoring of the DC potential and the input and output of the AC power 

supply.  The voltage of the AC power supply is controlled using a Realistic model SA-

150 integrated stereo amplifier and can be increased up to 1400 V and the frequency and 

wave type are established using a Dynascan 3010 function generator and typically 

operated in the region of 100 to 900 hz.      
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3.1.4 The Thermal Diffusion Cloud Chamber  

A thermal diffusion cloud chamber was used as part of this study to aid in the stable 

levitation of individual droplets and particles by the electrodynamic balance and to allow 

for the control of the temperature, pressure, and relative humidity in their surrounding 

environment.  The invention of the cloud chamber is credited to Langsdorf (1939) and a 

more modern version has since been employed for the study of levitated droplets by Tu 

and Ray (2001;2005) and Li et al. (2005).  The chamber used here has been previously 

described in detail by Tu (2000).  However, slight modifications have since been made 

and therefore it is further described in detail again here.   

Figure 3.3 provides an expanded illustration of the primary components that make 

up the cloud chamber used as part of this dissertation.  The chamber consists of three 

primary structures composed of 316 stainless steel; a top and bottom plate capable of 

coolant fluid circulation and a central ring containing a variety of ports.  The top and 

bottom plates measure 13” in diameter and 1 1/8” in thickness and have 30 identically, 

equally spaced 1/2" holes along their outer circumference.  Both plates have been 

machined to possess a hollow chamber for coolant fluid circulation.  The coolant 

chambers in the plates measure 11” in diameter and 1” deep.  The top and bottom plates 

both have removable covers to allow for cleaning.  The covers are 11 1/2” in diameter 

and 1/8” thick and are secured to the corresponding top or bottom plate using 15 equally 

spaced 3/8” length, 6-32 thread, coated alloy steel socket head cap screws around the 

outer circumference.  The covers have each been fitted with two straight thread tube 

adapters with o-ring connectors to permit coolant fluid circulation.          
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Figure 3.3 Expanded 3D view of the components of the thermal diffusion cloud chamber.        
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The top plate possesses a central port to allow for particle introduction into the 

chamber and detection of scattered light intensity via photomultiplier tubes (PMTs) 

whereas the bottom plate has a solid covering on both sides.  The hub is located in the 

center of the top plate and is 3 1/2” in diameter and is capped with a 316 stainless steel 

fitting measuring 2 3/4” in diameter and 1/2" in height to allow the PMT to be secured 

during droplet observations.  The fitting consists of 6 equally spaced 1/4" diameter 

threaded holes.  The port located in the center of the hub measures 3/8” in diameter at the 

top and tapers to 1/4” diameter at the bottom of the plate which corresponds to the inside 

of the overall cloud chamber.  The port has been coated with the same TV tube coating as 

the balance rings to reduce unwanted back-scattering of light when using the top PMT.   

The central ring has the same diameter and outer bolt pattern as the corresponding 

top and bottom plates.  The ring height and inside diameter measure 1 1/8” and 11”, 

respectively.  The ring has been fitted with 9 ports which are selectively used for particle 

illumination and observation, detection of scattered light intensity, entrance and exit of an 

airflow system, temperature and relative humidity measurements, and the connection of 

the electrodynamic balance to the DC and AC power supplies.   

The chamber is secured 10 1/2" above a vibration resistant optical table by three  

stainless steel posts.  The chamber is attached to the post using 9 bolts through the outer 

bolt holes located on the chamber.  The coolant fluid circulated through the top and 

bottom plates is a mixture of propylene glycol, water, and an algaecide.  The coolant fluid 

is first introduced through one of the tube adapters on the top plate.  It circulates through 

to the other top plate tube adapter before being directed to the bottom plate and finally 

returned to the coolant bath.  The direction of this flow system helps reduce unwanted 

vertical temperature gradients within the chamber.       
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3.1.5 The Humid Airflow System  

Investigations pertaining to hygroscopic materials typically involve observing a 

deliquescent salt or hygroscopic mixture at a particular relative humidity (RH).  

However, as the data obtained from these investigations is often directly related to the 

RH, ascertaining accurate RH values is essential.  One option for precisely determining 

RH is to use saturated solutions of a well-characterized inorganic salt (Stokes and 

Robinson, 1949).  However, this method can require days for equilibrium to occur and 

only provides a single RH data point.  Choi and Chan (2002a) have described a humidity 

controlled system for use in conjunction with an electrodynamic balance they term the 

scanning electrodynamic balance (SEDB).  Their procedure determines the solute mass 

fraction of a levitated particle as a function of relative humidity in the following manner.  

First, a particle is brought to equilibrium at a known relative humidity.  Then, the relative 

humidity of the feed stream is stepped down to a known point.  The solute mass fraction 

of the particle and corresponding relative humidity are observed as functions of time.  

The time dependence is calibrated using salts of known hygroscopic properties.  Finally, 

the time dependent relationships between the solute mass fraction and relative humidity 

are equated to remove the time dependence.  Although this procedure has been shown to 

produce reliable data (Choi and Chan, 2002a), it is only viable in regions where particle 

growth is reversible and is still on the time scale of an hour.   

The humid airflow system used as part of this dissertation does not require the use 

of saturated salt solutions, allows equilibrium within minutes, and is viable over the full 

range of humidity.  Simply described, the humid airflow system used here precisely 

combines a dry nitrogen gas stream with one saturated at a known temperature into a 

single stream with constant volumetric flow.  This technique is routinely used to control 

the relative humidity in aerosol research (Cohen et al., 1987a,b,c; Andrews and Larson, 

1993; Chan et al., 1997; Liu et al., 2008).  The stream is introduced into the interior of the 

cloud chamber through a circular manifold constructed from 3/8” polyethylene tubing 

measuring 8” in diameter and having 16 equally spaced emission ports.  The temperature 

and RH are measured by a probe placed in the immediate vicinity of the particle.   
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Figure 3.4 provides a schematic of the humid airflow system.  Dry nitrogen gas is 

released from a cylinder of compressed nitrogen and passed through ¼” tubing.  The 

initial dry stream is divided into two separate streams using a splitter shown by box 1 in 

the figure.  Both of the streams leaving the splitter are routed through MKS mass airflow 

controllers, designated MAC 1 and 2, that are independently controlled by an interface.  

The stream passing through MAC 1 is maintained as dry nitrogen and sent directly to a 

merge point at box 2.  The stream passing through MAC 2 is directed into a 500 ml round 

bottom flask containing de-ionized ultra-filtrated (DIUF) water.  The flask is situated on 

top of a heater that maintains the water temperature at just below its boiling point.  The 

saturated vapor stream leaving the flask is directed upwards through a liquid cooled 

reflux condenser located immediately above the flask and connected by a 24/40 glass 

fitting.  The temperature of the humidified nitrogen gas stream leaving the reflux 

condenser is determined by the temperature of the coolant fluid circulated through the 

condenser and is measured by a probe attached to the top of the condenser.  The coolant 

fluid enters the top of the condenser, travels downward, and is then sent to a temperature 

control bath at a desired temperature.  After leaving the condenser, the humidified gas 

stream is at 100% relative humidity and is merged with the dry nitrogen gas stream 

shown by box 2 in the figure.  The relative humidity of the combined gas stream is 

determined by the ratio of the dry stream to the humidified one.  The flow rates of the 

two streams can be independently and precisely controlled (± 1 ml/min ) by the mass 

airflow controller interface.  However, their flow rates are manipulated in such as manner 

that the flow rate of their combined, humidified gas stream is constant at 1 l/min.  The 

combined humid gas stream leaving box 2 is sent directly to the cloud chamber.        
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Figure 3.4 Schematic of the humid airflow system.         
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3.2 Experiments Pertaining to the Coulombic Fissions of Charged Droplets   

3.2.1 Primary Focus of Investigation  

The primary focus of this area of study was to investigate the role of electrical 

conductivity on the break-ups of charged droplets via Coulombic fission in response to 

findings in previous literature (de la Mora, 1996; Li et al., 2005; Gu et al., 2007).  Here, 

the electrical conductivity of charged dielectric droplets has been manipulated via ionic 

dopants to observe the effects on their break-ups.  The underlying assumption here is that 

the break-up characteristics of dielectric droplets can be made to resemble those of 

electrically conductive droplets.  Specifically, by increasing the electrical conductivity of 

dielectric droplets, they should emit less mass and more charge during break-ups via 

Coulombic fission.  How such an increase in electrical conductivity will affect the charge 

levels at which break-ups occur remains purely speculative.  

3.2.2 Selection of Solvents  

A critical aspect of this study was the selection of solvents from which charged droplets 

would be generated.  As such, numerous solvents were initially evaluated against several 

criteria.  First, the solvents needed to be relatively dielectric such that the resulting 

charged droplets would emit a considerable portion of mass during a break-up.  Second, 

the solvents would have to be able to allow for the dissociation of the ionic dopants used.  

Finally, the evaporation rates of the solvents had to be considered.  Here, the temperature 

at which experiments were conducted (25.0° C), the time required to begin monitoring 

the evaporation of the droplets (˜ 2 min), and an assumption of isothermal droplet 

evaporation all dictated the rate at which the droplets needed to evaporate.     

Initially, ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol 

(TEG), diethyl phthalate (DEP), and hexadecane (HXD) were selected as their amounts 

of charge and mass emitted during break-ups via Coulombic fission have been previously 

determined (Duft et al., 2002;2003; Manil et al., 2003; Li et al., 2005; Nakajima et al., 



 

63

2006).  Tetraethylene glycol (T4EG) and dimethyl phthalate (DMP) were selected as they 

were currently available in the laboratory and were similar in nature to the glycol and 

phthalate solvents previously selected.  Finally, nonanoic acid (NNA) and phenylnonane 

(PNN) were selected based on their dielectric nature and evaporation rates to add 

diversity to the types of solvents selected.  All solvents were purchased from Sigma-

Aldrich and used without further purification.    

Not all the solvents originally selected for study however, were found to meet the 

required criteria.  The ethylene glycol was observed to evaporate too rapidly under the 

desired temperature.  When the temperature in the chamber was lowered sufficiently such 

that the evaporation rate was suitable, moisture was observed to condense inside the 

chamber.  As ethylene glycol is very hygroscopic, the moisture present in the chamber at 

the lower temperature also was found to affect the evaporation rate.  The solvent 

hexadecane was observed to evaporate suitably, but none of the observed intensity 

spectra were able to be correctly matched to corresponding theoretical spectra.  Here, it 

was believed that the size of the hexadecane droplets being generated were very large at 

which point the intensity spectra become less unique.    

3.2.3 Selection of Ionic Dopants  

The selection of the ionic dopants posed a unique challenge to this study as almost no 

information is available in current literature regarding their use in association with 

charged droplets (Grimm and Beauchamp, 2002).  As such, a wide variety of ionic 

dopants were selected and examined on a ‘trial and error’ basis.  Two solid ionophores, 

tridodecylmethylammonium chloride (TDMAC) and tridodecylmethylammonium nitrate 

(TDMAN), and two ionic liquids, 1-ethyl-3-methylimidazolium dicyanamide 

[EMIM][N(CN)2] and 1-methyl-3-octylimidazolium chloride [OMIM][Cl], were found to 

dissolve and increase the electrical conductivity in all of the phthalate and glycol solvents 

to some extent, but had no effect on the electrical conductivity of HXD, PNN, and NNA.  

Liquid hydrogen ionophore 1 and poly(3-hexylthiophene-2,5-diyl), regioregular (PHT), a 

conductive polymer, were also examined and found to be ineffective at increasing 



 

64

electrical conductivity of HXD, PNN, and NNA.  Only Stadis 450, a static dissipator 

containing dinonylnapthalene sulfonic acid, barium salt dissolved in toluene and 

isopropanol, was found to increase the electrical conductivity of HXD, PNN, and NNA.  

The ionophores and the conductive polymer were purchased from Sigma Aldrich and 

used without further purification.  The ionic liquids were purchased from Solvent 

Innovation and also used without further purification.  The static dissipator was currently 

available in the laboratory and made commercially available by Octel Stareon in Newark, 

New Jersey.  

3.2.4 Experimental Procedure  

Charged droplets of liquid solvents were observed both as pure components and when 

doped with a known concentration of a specified ionic material.  Droplets having initial 

diameters between 35 and 50 m were generated with a negative charge and studied 

using the electrodynamic balance, thermal diffusion cloud chamber, and light scattering 

equipment previously described.  The temperature and pressure inside the chamber were 

constantly maintained at 25.0° C and 1 atm.  Occasionally, more than one droplet was 

observed to be captured by the balance.  When this situation occurred, the AC power 

supply to the central ring electrodes was rapidly switched off and on until only the most 

stable droplet remained.  After visually verifying that only a single droplet exists, the DC 

potential was adjusted to position the droplet at its null point and the AC frequency was 

adjusted to center the droplet horizontally.     

Once a droplet is properly centered and levitated, its mass, m, and charge, q, can 

be related through a force relation given by 

0

0

z

qVC
mg DC                                                    (3.1) 

where g is the gravitational force acting on the droplet, C0 is the geometric constant of the 

balance, VDC is the potential required to levitate a charged droplet at is null point, and z0 

is the distance between the top and bottom electrodes.  A stream of dry nitrogen gas was 

passed through the chamber to remove unwanted solvent vapor released by droplet 
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evaporation.  The rate of the nitrogen gas flow was maintained at such a level to not alter 

the DC potential required to balance the droplet.     

Once a charged droplet of a desired composition had been captured and properly 

balanced, the DC potentials required to periodically balance it at its null point were 

recorded as functions of time.  The intensity of scattered light in the TE and TM modes 

were detected by the corresponding PMTs and recorded in arbitrary units as functions of 

time by a personal computer.  The scattering intensities in the two modes were plotted in 

real time and could be continuously viewed on a monitor by the observer during an 

experiment.  The ability to view the scattering intensities of a droplet in real time assists 

the observer in knowing when to record the balancing DC potentials.  The data collected 

by the observer and the computer are used along with Mie theory and the refractive index 

of the droplet to determine the size and charge of a droplet immediately before and after 

droplet break-up via Coulombic fission and therefore the amounts of mass and charge 

emitted and the corresponding charge limit.  The data analysis procedure is described in 

detail in Chapter 4.  

3.3 Hygroscopic Growth of Mixed Particles  

3.3.1 Primary Focus of Investigation  

The primary focus of this area of study was to investigate how non-volatile, water 

insoluble materials affect the hygroscopic behavior of atmospherically relevant inorganic 

salts.  Although similar studies have been previously conducted, disagreement persists on 

the hygroscopic effects of such materials (Garland et al., 2005; Chan and Chan, 2007).  

Furthermore, the inorganic salt particles in these studies were externally coated with the 

hydrophobic material (Otani and Wang, 1984; Hansson et al., 1990;1998; Hameri et al., 

1992; Xiong et al., 1998; Cruz and Pandis, 1998; Raymond and Pandis, 2003; Garland et 

al., 2005; Chan and Chan, 2007).  Here, the inorganic salt particles are internally mixed 

with the water insoluble material to also examine how different particle morphologies 

may impact the hygroscopic behavior. 
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3.3.2 Selection of Inorganic Salts  

The two inorganic salts typically selected for this type of study are NaCl and (NH4)2SO4 

as they are the most dominant inorganic salts in the atmosphere (Martin et al., 2000; Raes 

et al., 2000; Wise et al., 2007).  Here however, NaBr was selected in place of (NH4)2SO4 

since the deliquescence and crystallization relative humidities of NaCl and (NH4)2SO4 are 

relatively similar (Tang and Munkelwitz, 1994; Wise et al., 2005; Biskos et al., 2006a,b; 

Gao et al., 2007a,c).  Furthermore, the deliquescence and crystallization relative 

humidities and hygroscopic growth of NaBr particles are equally well studied and also 

occur as very sharp, distinct changes in the water content of the particles (Cohen et al., 

1987a; Wise et al., 2005).  Several additional inorganic salts were originally selected for 

study.  They are CaCl2, KCl, NaClO4, NH4Br, and NH4Cl, and LiCl.  CaCl2 particles 

were observed to form various hydrates and to behave almost purely hygroscopic and 

therefore no further studies were conducted.  Data from particles of KCl, NaClO4, 

NH4Br, and NH4Cl and their mixtures with selected hydrophobic materials were taken 

using an old chilled optical mirror currently available in the laboratory.  Later, and 

unfortunately, data from this piece of equipment was found to be unreliable.  Due to time 

constraints, such experiments were not repeated using the newly acquired hygrometer.  

The inorganic salt LiCl was used solely as a supersaturated solution, along with 

corresponding solutions of NaBr and NaCl, to occasionally calibrate the hygrometer.  All 

inorganics salts were purchased from Sigma-Aldrich and used without further 

purification.  

3.3.3 Selection of Non-Volatile, Hydrophobic Additives  

In previous relevant studies, only hydrophobic organics have been used (Otani and Wang, 

1984; Hansson et al., 1990;1998; Hameri et al., 1992; Xiong et al., 1998; Cruz and 

Pandis, 1998; Raymond and Pandis, 2003; Garland et al., 2005; Chan and Chan, 2007).  

Here, some of these organics have been re-examined during this study.  They are the 

dioctyl phthalate (DOP) and lauric acid (LA), which are liquid and solid, respectively, at 

the temperature studied (25° C).  Two additional liquids, Invoil 704 silicone diffusion 
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pump fluid (SIL) and Santovac-5-oil, a polyphenyl ether (PPE), and two solids, 

anthracene (AN) and a carbon black (BC), were examined.  Although SI and PPE have 

not been identified in the atmosphere, they serve as representative samples of non-

volatile, hydrophobic materials.  The PPE and SIL were currently available in the 

laboratory and used without further purification.  The BC was provided by Contintental 

Carbon (lot N234, Phenix City, Al plant) and used as received.  The DOP, LA, and AN 

were purchased from Sigma-Aldrich and used without further purification.   

The liquid additives DOP, SI, and PPE and the solid additive LA used in this 

study were all found to be miscible in a solution of the selected inorganic salt, 200 proof 

ethanol, and de-ionized, ultra-filtrated water.  Although the ratio of each of the solvents 

was unique to the particular additive, all the resulting solutions were completely 

homogeneous.  Droplets generated from these solutions are assumed to be internally 

mixed as previous studies have employed an identical approach using water soluble 

organics and inorganic salts and have reported the formation of internally mixed particles 

(Chan et al., 1997; Cruz and Pandis, 2000; Lightstone et al., 2000; Bilde and 

Svenningsson, 2004; Braban and Abbatt, 2004; Parsons et al., 2004; Gao et al., 2007b).   

The solid additives AN and BC had particle sizes below one micrometer and were 

mixed with a solution of the desired inorganic salt dissolved in de-ionized, ultra-filtrated 

water and 200 proof ethanol.  The resulting heterogeneous mixtures were placed in a 

Branson model 1210 ultrasonic vibrator for at least an hour prior to particle generation to 

sufficiently disperse the solid in the solution.  The water and ethanol were purchased 

from Sigma-Aldrich and used without further purification. Droplets generated from these 

solutions are also assumed to be internally mixed as previous studies have employed an 

identical approach using mineral dusts that are water insoluble or only slightly water 

soluble (Gibson et al., 2007; Liu et al., 2008).   

Pure component particle of each of the water insoluble additives were exposed to 

increasing relative humidity and none showed any hygroscopic growth at relative 

humidities below 85%. 
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3.3.4 Experimental Procedure  

Charged particles of inorganic salts were observed both as pure components and when 

internally mixed with a known concentration of a specified non-volatile, hydrophobic 

material.  Particle having initial diameters between 35 and 50 m were generated with a 

negative charge and studied using the electrodynamic balance, thermal diffusion cloud 

chamber, and humid airflow system previously described.  The temperature and pressure 

inside the chamber were constantly maintained at 21.5° C, the ambient temperature of the 

laboratory, and 1 atm.  The flow rate of the humid air entering the chamber was 

maintained at 1 l·min-1 and introduced by a circular manifold located inside the chamber.  

The relative humidity inside the chamber was controlled by adjusting the ratios of the 

water saturated and dry nitrogen gas streams as previously described.  The temperature 

and relative humidity of the atmosphere surrounding a levitated particle were measured 

by the aforementioned hygrometer probe located immediately outside the balance rings.  

Again, more than one particle was occasionally observed to be captured by the balance 

and the situation was remedied in the manner previously described for charged droplets.  

Particles were balanced at their null point by adjusting the DC potential and radially 

centered by adjusting the AC frequency in an identical manner to charged droplets.     

Prior to particle generation, all the humidity inside the chamber was removed by 

flushing with pure nitrogen gas.  Upon generation, the ethanol and water were observed 

to nearly instantly evaporate and be flushed from the chamber leaving a solid particle.  

After being properly levitated, the particle was continually exposed to the stream of dry 

nitrogen until its levitation potential was observed to be constant.  The relative humidity 

inside the chamber was then slowly increased to a desired point above the deliquescence 

relative humidity of the corresponding pure component inorganic salt and then decreased 

back to its starting point.  The potentials required to levitate the particle at its null point, 

VDC, were recorded as functions of relative humidity (RH) during the cycle.  Upon 

completion of an experiment, the VDC versus RH data was used to construct a hysteresis 

loop on an additive-free basis for comparison to the corresponding pure component 

inorganic salt.  The data analysis procedure is described in detail in Chapter 4. 
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Chapter 4: Data Analysis  

4.1 Theoretical Background  

4.1.1 Stable Electrodynamic Levitation of an Individual Charged Droplet  

The repulsion and attraction between charges of like and dislike signs, respectively, form 

the basis for the levitation of an individual droplet in an electrodynamic balance.  To 

briefly explain the electrodynamic levitation of a charged droplet, consider a droplet with 

a fixed amount of negative charge as it is vertically introduced to the top center of the 

electrodynamic balance illustrated by figure 3.2 and where the top and bottom electrodes 

of the balance possess a positive and negative DC potential, respectively.  The droplet is 

attracted vertically upwards to the top electrode, is repulsed vertically upwards away 

from the bottom electrode, and is pulled vertically downwards by gravity.  For the droplet 

to be properly levitated at its null point, sufficient potential must be applied to completely 

cancel the gravitational force acting upon the droplet.  In order to verify that the proper 

potential has been applied, the power supplied to the central AC rings of the balance is 

temporarily removed.  If the droplet is not properly levitated, it will instantly move either 

vertically upwards or downwards depending on whether there is too much or too little DC 

potential, respectively.  If the droplet is properly levitated at its null point however, it will 

not be observed to move for a brief period of time, after which it will eventually begin to 

lose its radial stability.  Adornato and Brown (1983) and Tsamopoulos et al. (1985) have 

provided an in-depth analysis of the shape and stability of charged droplets levitated in an 

electrical field.  Charged droplets examined as part of this study were observed while 

properly levitated and continuously maintained at their null point.    

This process of levitating a charged droplet in an electrical field is physically 

explained by first summing the individual forces acting on a spherical droplet having an 

overall force, F, given by 

DEG FFFF                                                   (4.1) 
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where FG, FE, and FD are the forces acting on the droplet due to gravity, the applied 

electric field, and drag from a vertically applied airflow, respectively, and are each 

further defined as 

mgFG                                                         (4.2) 

qEFE                                                          (4.3) 

AUCF fDD
2

2

1
                                                 (4.4) 

where E is the applied electric field, CD is the drag coefficient, U is the characteristic 

velocity of a droplet moving through a fluid of density f, A is the projected area of a 

spherical droplet, g is the gravitational force acting on the droplet, and m and q are the 

mass and charge of the droplet, respectively.  Assuming the airflow past a levitated 

droplet is well within the laminar flow region (Re = 0.1) so as not cause destabilization, 

the drag force, FD, given by (4.4) can be evaluated using Stokes law given by 

UaFD 6                                                     (4.5) 

where 

 

is the dynamic viscosity of the fluid surrounding the droplet and a is the droplet 

radius.  For the charged droplets investigated during this dissertation however, the airflow 

was reduced sufficiently low enough that the drag force term, FD, could be neglected 

entirely.  Therefore, the resulting force, F, on a levitated droplet applicable to the work 

here can be given by 

qEmgF                                                       (4.6) 

where E is further defined as 

z

V
CE 0                                                          (4.7) 

where V is the potential applied across two electrodes separated by a vertical distance z 

and C0 is a geometrical constant determined by the balance configuration.  To properly 

levitate a charged droplet at its null point, the total force acting on the droplet must be 

zero.  Therefore, (4.6) is rewritten as 

z

V
qCmg 0                                                        (4.8) 

and is identical to (3.1) when V is VDC, the DC potential required to levitate the droplet at 

its null point, and z is z0, the distance between the top and bottom DC electrodes.  
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Davis (1985) and Hartung and Avedisian (1992) have discussed in detail the 

theory pertaining to the stability of a charged droplet while levitated in an electrodynamic 

balance of a known configuration.  Stability theory assumes that the motion of a particle 

in an electrodynamic balance can be determined by Newton’s second law and requires 

knowledge of the electromagnetic force on the droplet.  The resulting equations for 

droplet motion in the radial and axial directions as given by Davis (1985) are 

recapitulated here by 

rrrD qEqEF
dt

rd
m ,2,1,2

2

                                           (4.9) 

mgqEqEF
dt

zd
m xzzD ,2,1,2

2

                                 (4.10) 

where the subscripts r and z refer to the radial and axial directions, respectively, t is time, 

z is the axial position of the droplet, m and q have been previously defined, FD is given by 

(4.5), and E1 and E2 are the electrical field vectors for the AC and DC fields, respectively, 

and are given by 

VE                                                      (4.11) 

where V is the superposition of the time-dependent ring potential, V1, and the DC 

potential across the top and bottom electrodes, V2, given by 

21 VVV                                                    (4.12) 

Furthermore, V must satisfy Laplace’s equation and is given in cylindrical coordinates by 

0
1

2

2

z

V

r

rVrr
                                      (4.13) 

The resulting equations for the AC electrical field in the radial and axial directions are 

given by 

2
0

,1
2

cos

z

rtVV
E ACb

r                                      (4.14) 

2
0

,1

cos

z

ztVV
E ACb

z                                       (4.15) 

where Vb is the DC bias potential, z0 is the distance between the top and bottom DC 

electrodes, and 

 

is given by 

ACf2                                                    (4.16) 
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where fAC is the AC frequency.  The resulting equations for the DC electrical field in the 

radial and axial positions are given by 

0

01
,2

,

z

VzrC
E r                                               (4.17) 

0

02
,2

,

z

VzrC
E z                                               (4.18) 

where V0 is the DC potential required to properly levitate a charged droplet at its null 

point, and C1 and C2 are radial and axial dependent geometric balance constants.     

The resulting solutions to the equations of motion have been previously given by 

Davis (1985) and Hartung and Avedisian (1992).  Therefore, further discussion is 

restricted to the determination of the geometric balance constant.  This procedure has 

been previously discussed in detail by several investigators (Ataman and Hanson, 1969; 

Schweizer and Hanson, 1971; Davis, 1985) and involves manipulating either the AC 

frequency, the AC voltage, or a combination of both until the droplet begins to vertically 

oscillate at its null point.  The point at which a charged droplet begins to oscillate is 

determined by the marginal stability envelope determined by relating the field strength 

parameter, , to the drag parameter, , for a particular VDC/VAC where VAC is the AC 

potential applied to the central balance rings and 

 

and 

 

are given by 

DcAC

AC

VfzC

gV
2

00
2

2
                                              (4.19) 

ACfa 22

9
                                                  (4.20) 

where 

 

is the droplet density, 

 

is the viscosity of the surrounding gas, and the 

remaining terms have been previously defined.  Davis (1985;1997) and Hartung and 

Avedisian (1992) have provided figures showing up to the first four stability envelopes 

including the changes in the marginal stability limits when Vb/VAC = ±0.1.     

For this study, C0 was determined using negatively charged droplets of diethyl 

phthalate properly levitated at their null point.  The droplets were allowed to evaporate in 

a vapor-free environment while being maintained at their null point until enough 
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scattering intensity versus time data was acquired to accurately determine droplet size at 

a specific time.  The AC potential was held constant at 1200 V and the AC frequency 

applied to the central balance rings was quickly reduced over a few seconds until the 

droplet was observed to oscillate.  The AC frequency at which the oscillation was 

observed was recorded along with the corresponding DC potential and the time.  The 

time was then used to determine the droplet diameter at the instant the oscillation 

occurred.  Using this method, a single droplet could be used to provide numerous data 

sets since the droplet could be re-stabilized and the process repeated.  After sufficient 

data points were collected, a series of values for 

 

were determined using (4.20).  Next, 

corresponding values for 

 

were determined using an equation developed from data 

located in Table 2 given by Ataman and Hanson (1969) that relates the two parameters.  

Using (4.19), a corresponding series of C0 values were obtained, the average of which 

was used as C0.  As more than one electrodynamic balance configuration was used during 

this dissertation to examine charged droplets, and the rings of each balance were 

occasionally replaced due to miscellaneous reasons, three different balance constants 

were determined for use and were 0.49, 0.55, and 0.84.  Figure 4.1 provides a plot of the 

individual data points used to calculate C0 for the electrodynamic balance constructed as 

part of this dissertation and described in detail in Chapter 3.  The solid line and 

corresponding equation were fitted to the data points (solid circles) obtained from 

Ataman and Hanson (1969) and used to develop the marginal stability curve relating 

 

and .  Here it should be noted that the equation fitted to the data given by Ataman and 

Hanson (1969) is a numerical fit only valid for the parameter ranges given within the 

figure.  The experimental data from charged droplets of diethyl phthalate are given by 

solid triangles.  Here, C0 was determined from the average of 39 data points and found to 

be 0.55 ± 0.02.  A density of 1118 kg·m-3 was used for diethyl phthalate (Li et al., 2005), 

a viscosity of 175.44 P (Stephan et al., 1987) was used for nitrogen gas at 25.0 °C, and a 

value of 0.01945 m was used for z0.  Droplets had diameters in the range of 20 to 40 m, 

DC potentials in the range of 2 to 40 V, and AC frequencies in the range of 80 to 450 hz.    
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Figure 4.1 Plot of the marginal stability envelope and experimental data points used to 

determine C0.    
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4.1.2 Evaporation of an Isolated Spherical Droplet  

The evaporation or growth of an isolated spherical droplet is affected by both its own 

characteristics and those of its immediate environment.  Here, the evaporation of an 

individual, homogenous, spherical, liquid droplet of component A having an initial 

radius, a, levitated in a stagnant, gaseous medium of component B is considered.  

Furthermore, it is assumed that the flux of the solvent molecules evaporating radially 

outwards from the surface of the droplet is dependent only on the radial position r, where 

r=0 at the center of the droplet, and is independent of azimuth and inclination.     

Assuming quasi-steady state, a one-dimensional material balance over a spherical 

shell between r and r where r>a gives 

04 2rN
dr

d
Ar                                                 (4.21) 

Integrating (4.21) gives 

AAr WrN 4                                                    (4.22) 

where WA is an unknown constant.  The flux term, NAr, can be expressed by combining 

the diffusive flux and flux due to the bulk motion caused by diffusion given by 

ArBArArAr yNNJN ,                                         (4.23) 

where yA is the vapor mole fraction of A and JAr is Fick’s first law of diffusion.   The flux 

of component B, NB,r, can be equated to zero since it is assumed to be stagnant. Assuming 

components A and B behave solely as ideal gases, JAr can be given by 

dr

dy
CDJ A

ABAr                                                 (4.24) 

where DAB is the diffusion coefficient of A in B and C is the molar concentration of an 

ideal gas given by 

RT

P
C                                                         (4.25) 

where P and T

 

are the total pressure and temperature, respectively, and R is the ideal gas 

constant.  For r>a, it is assumed that the temperature and pressure of the surrounding gas 
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are independent of radial position and therefore C can be treated as a constant.  

Incorporating (4.22) and  (4.24) into (4.23) and separating the variables gives 

A

A
AB

A

y

dy
CD

r

drW

14 2
                                         (4.26) 

Integrating (4.26) between the surface of the droplet, a, and some value of r sufficiently 

far way from the surface of the droplet such that yA becomes zero and solving in terms of 

WA gives 

             ASABA yCaDW 1ln4                                        (4.27) 

where yAS is the mole fraction of A at the surface of the droplet given by 

P

TP
y SA

AS                                                    (4.28) 

where PA and TS are the vapor pressure of A and temperature at the surface of the droplet.  

For relatively non-volatile droplets where yAS « 1, as is applicable for the charged droplets 

investigated during this dissertation, (4.27) can be simplified to 

              ASABA CyaDW 4                                               (4.29)   

Taking a time-dependent material balance at the surface of the droplet gives 

A
A M

a

dt

d
W

3

4 3

                                             (4.30) 

where MA is the molecular weight of A, 

 

is the density of the droplet, and t is time.  

Incorporating (4.29) into (4.30) and cancelling redundant terms gives 

A
ASAB M

a

dt

d
CyaD

3

3

                                         (4.31) 

Taking the derivative on the right-hand side of (4.31), removing the constant terms 

 

and 

MA from the derivative, and cancelling redundant terms gives 

dt

da

M

a
CyD

A
ASAB                                             (4.32) 

Separating the variables and integrating from t=0 where the radius of the droplet, a, has 

an initial radius, a0, to some arbitrary time, t, where 0 < a < a0 gives 
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2
0

2

2
aa

M
tCyD

A
ASAB                                       (4.33) 

Rearranging (4.33) in terms of a2 gives the surface evaporation rate of the droplet as a 

function of time given by 

t
MCyD

aa AASAB22
0

2                                          (4.34) 

Incorporating (4.25) and (4.28) into (4.34) gives 

t
RT

TPVD
aa

S

SAAAB22
0

2                                          (4.35) 

where VA is the molar volume of the droplet given by 

A
A

M
V                                                       (4.36)   

The relatively non-volatile solvents used as part of this study evaporate at a 

sufficiently low rate such that they can be considered to remain isothermal with respect to 

the surrounding temperature and TS can be very closely approximated by T .  Therefore, 

an analysis of the heat transfer by the droplets is not required to accurately model their 

evaporation.    

4.1.3 Light Scattering by a Homogeneous Sphere  

When an object is illuminated by electromagnetic waves, discrete electric charges within 

the object become oscillatory resulting in the scatter and absorption of the 

electromagnetic energy (Bohren and Huffman, 1983).  The theory of electromagnetism 

was first postulated by Maxwell (1865) wherein he showed that electricity, magnetism, 

and light were all interrelated.  Although the processes of electromagnetic scattering and 

absorption cannot be mutually excluded, one from the other, hereafter only the scattering 

of electromagnetic energy, specifically that of light in the visible spectrum, will be 

discussed.  Moreover, the following discussion will be restricted to the scattering of light 

by a homogeneous, spherical droplet as only this aspect of electromagnetic scattering is 

relevant to this dissertation.   
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From here, the logical point of departure is the solution of the Maxwell equations 

for microspheres having diameters slightly larger than the wavelength of light.  Several 

authors have published the solutions to Maxwell’s equations given by Lorenz (1890) and 

Mie (1908) for spheres (Born, 1980; van de Hulst, 1981; Bohren and Huffman, 1983; 

Kerker, 1983; Barber, 1990).  Furthermore, these solutions have been discussed in great 

detail by previous investigators (Chylek, 1973; Conwell et al., 1984; Probert-Jones, 1984; 

Johnson, 1993) and have also been applied to the observation of levitated droplets 

(Chylek et al., 1983; Ray and Huckaby, 1993; Huckaby et al., 1994; Huckaby and Ray, 

1995; Ray and Nandakumar, 1995).  Therefore, only the pertinent aspects of these 

solutions will be given corresponding to the light scattered by a homogenous, spherical 

droplet.  Here, the nomenclature and format used by Huckaby et al. (1994) will be 

repeated except that the term for refractive index, m, will be replaced by , to avoid 

confusion as m has been previously defined as a mass term.   

According to Lorenz-Mie theory, a homogenous, spherical body illuminated by a 

polarized light with wavelength, , scatters light with intensities I1 and I2, respectively, 

into the planes perpendicular (TE mode) and parallel (TM mode) to the plane of incident 

light given by   

2

122

2

1 )1(

12

4 n nnnn
i ba

nn

n

r

I
I                             (4.37) 

2

122

2

2 )1(

12

4 n nnnn
i ab

nn

n

r

I
I                             (4.38) 

where r is the radial distance out from the center of the sphere and must be much greater 

than 

 

and the angular functions pn and tn are given by  

sin
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                                                  (4.39)  
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d
                                                (4.40) 

where 

 

is the scattering angle and cos1
nP is a 1st order Legendre function of degree n.  

The scattering coefficients for the TM and TE modes are, respectively, an and bn and are 

given by 
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where i is the imaginary unit, 

 
is the refractive index of the droplet, x is the size 

parameter given by 

a
x

2
                                                       (4.43) 

and An, Bn, Cn, and Dn are given by 

xxxxxA nnnnn
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where n and n are the nth order Ricatti-Bessel functions of the 1st and 2nd kinds, 

respectively.     

The intensities of light scattered by a homogeneous, spherical droplet in the TE 

and TM modes are dependent on the wavelength of incident light, , the refractive index, 

, and the droplet radius, a, and can be independently altered by each variable.  From 

here, further discussion is restricted to droplets of a known 

 

that are illuminated by a 

polarized light source with a constant 

 

and are observed at a specific 

 

in both the 

perpendicular and parallel planes as is relevant to this dissertation.  Therefore, all effects 

on the scattering intensities in the both the TE and TM modes can be attributed to the 

reduction in the radius of an evaporating droplet.  Furthermore, when 

 

˜ 90°, the angular 

functions given by (4.39) and (4.40) can be expressed with acceptable accuracy using the 

asymptotic relationships (Tu, 2000) given by 
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where c(n) is given by 
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when n is zero or an even integer and 
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when n is an odd integer.  As a result, (4.37) and (4.38) can be simplified and given by 
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The importance of (4.52) and (4.53) is that the scattering amplitudes of an and bn can be 

mutually excluded from each other by independently observing the scattering intensities 

in the TE and TM modes.  

Tu (2000) has previously described in detail the manner in which intensities are 

numerically calculated for a homogeneous, spherical droplet.  For this study, three 

Fortran programs labeled TT1, TT2, and TT3 previously developed in-house were used 

to compute the intensities of scattered light in both the TE and TM modes.  The first 

program, TT1, returns the scattered intensities as a function of the droplet size.  The 

second program, TT2, returns the scattered intensities as a function of time and is 

discussed later in this chapter.  The third program, TT3, returns the scattered intensities 

as a function of the refractive index.    
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Figure 4.2 provides an example of the intensity spectra in both the TE (lower 

spectrum) and TM (upper spectrum) modes for a homogeneous, spherical droplet of pure 

DEP ( =1.4972) illuminated by a vertically polarized He-Ne laser ( =632.8 nm) during 

evaporation as a function of the square of the droplet radius from 15.02 to 14.02 m2.  The 

scattering intensities I1 and I2, respectively, in the TE and TM modes were both 

determined at a scattering angle exactly 90

 

using Fortran program TT1.  Evident in both 

intensity spectra are very sharp intensity ‘spikes’ known as morphology dependent 

resonance (MDRs) that occur when the wavelength of incident light is totally, internally 

reflected within the sphere and correspond to when the imaginary parts of the 

denominators of the scattering coefficients, an and bn, become zeros.  The intensity spikes 

may appear as peaks or troughs or may not appear at all.  To retain consistency when 

describing a particular optical resonance, investigators have classified each MDR by its 

polarization, TE or TM, by the mode number, n, of the scattering coefficient, and by an 

order number, l, where l=1 corresponds to the first positive root of Cn(x, )=0 or 

Dn(x, )=0 (Huckaby et al., 1994).  Chylek et al. (1983) and Huckaby et al. (1994) have 

shown that light scattering theory can be used to precisely determine the size of a droplet 

with a relative error of 5 × 10-5 by relating the intensity spectra and MDRs obtained from 

a levitated droplet to corresponding theoretically generated spectra.  More recently, this 

technique has been used by Li et al. (2005) to determine the amount of mass ejected by 

charged, levitated droplets during Coulombic fissions within a relative error of 1 part in 

104.           
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Figure 4.2 Example of the scattering intensity versus square of the droplet radius spectra 

for the TE and TM modes.       
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4.2 Analysis of Droplet Break-up Data  

4.2.1 Analysis of Scattering Intensity Versus Time Data  

During experiments involving a charged, levitated droplet, the intensities of the light 

scattered in the TE and TM modes were each independently measured by two PMTs and 

recorded as functions of time at a specified time interval by a personal computer.  

Typically, charged droplets were observed over a time interval of 30 minutes to two 

hours, depending on the evaporation rate of the droplet.  The time interval between two 

successive data points for all experiments was set at 1/100 of a second.  The interval was 

determined from initial experiments by evaluating the quality of the scattering intensity 

versus time data for various time intervals.  Here, slower time intervals produced 

intensity spectra that lacked the detail necessary to observe the sharp MDR peaks and 

faster time intervals failed to improve spectra resolution while also decreasing the 

computational efficiency of subsequent data analysis.     

Concluding the observation of a droplet, the intensity versus time data recorded 

for the TE and TM modes were used to construct intensity spectra using Grapher 3 

software.  Here, a number, N, of sharp MDR peaks or troughs, typically between 20 and 

40, are selected from each of the spectra that will be used to independently determine 

both the initial size of the droplet and its evaporation rate.  Tu and Ray (2001) have 

previously discussed the selection of MDR peaks suitable for further analysis.  At this 

point, the experience of the investigator can be very beneficial in correctly ascertaining 

which peaks or troughs to select.  To precisely identify the exact times at which the 

selected MDR peaks and troughs had their highest or lowest intensities, respectively, the 

times immediately before and after each selected MDR were recorded using an 

application with the Grapher 3 software.  The recorded pairs of times were then inputted 

into a Fortran program previously developed in-house labeled ResonfinderA.  The 

program compares the inputted time pairs for each MDR selected to the raw intensity 

versus time data file and returns the exact time at which each selected MDR had it 

highest or lowest intensity.  When finished, the program provides an output data file 
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containing times, ti, corresponding to each of the selected MDRs for both the TE and TM 

modes.   

The output data file from the ResonfinderA program for the TE and TM modes 

are then input into a corresponding pair of Fortran programs previously developed in-

house labeled TimalignaTE and TimalignaTM, respectively, to independently determine 

the initial size and evaporation rate of the droplet using a procedure previously described 

in detail by Tu and Ray (2001) and Li et al. (2005) and shown to determine droplet size 

within 0.1%.  Both the TimalignaTE and TimalignaTM programs also require the user 

input an estimate for the size parameter range in which the MDRs occurred and to specify 

the refractive index.  The estimated size parameter range should reasonably encompass 

that observed for the droplet.  Here, the experience of the investigator is again very 

beneficial in estimating the correct size parameter range.  However, the size parameter 

for a particular time in an intensity spectrum can be reasonably estimated in the following 

manner.  First, (3.1) is expressed in terms of the droplet radius, a, given by 
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Next, (4.54) is incorporated with (4.43) and rearranged in terms of x to give 
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assuming that q remains constant and where k is given by 
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Next, (4.55) is applied to two successive MDRs having the same order and mode and 

recast as 
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where the subset numbers 1 and 2 correspond the 1st and 2nd successive MDRs selected 

and where x can be approximated according to Huckaby et al. (1994) as 

1tan
x                                                    (4.58) 
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where 

 
is given by 

2/12 1                                                   (4.59) 

The potentials V1 and V2 corresponding to x1 and x2 can be related via the times at which 

the selected MDRs occurred.  The relationship between the DC levitation potential and 

time is discussed in detail later in this chapter.   

To correctly determine the initial size and evaporation rate of a droplet, each of 

the N selected MDRs occurring at a time, ti, are aligned with one of M theoretical MDRs, 

where M > N, occurring at a size parameter, xi, for a particular mode.  The estimated size 

parameter range input by the user dictates the number, M, of theoretical MDR peaks 

having a specific width range that will be generated by the program.  Furthermore, it is 

assumed that the refractive index of the droplet remains constant during evaporation. The  

times corresponding to the array of N selected MDRs and the size parameters 

corresponding to the array of M theoretically generated MDRs are arranged such that 

when properly aligned the earliest time corresponds to the largest size parameter.  To 

relate the size parameter to time, (4.43) is incorporated into (4.35) and recast as  

2
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2
iii ttxx                                             (4.60) 

where 1 and 2 are constants and the second order term has been included to account for 

slight errors in the evaporation rate due to the presence of trace impurities within the 

droplet and partial saturation of the vapor immediately surrounding the droplet (Tu and 

Ray, 2001; Li et al., 2005).  Next, each of the xi versus ti data are regressed to compute 

the alignment error Y( ) using 
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The alignment procedure is then repeated with a corresponding error analysis for all 

logical alignments between the selected and theoretical MDRs.  The computer program 

then returns to the user the values for x0, 1, and 2 that yielded a minimum in alignment 

error for each specified refractive index.  A range of refractive indices is typically 

selected based on the droplet material selected or an a priori knowledge and inputted to 

the computer program along with a specific interval at which to implement (4.61).  The 
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refractive index that returns the alignment with the best error is assumed correct.  The 

ability to simultaneously determine both the size and refractive index of a droplet with a 

high degree of accuracy has previously been proven using this method (Chylek et al., 

1983; Huckaby et al., 1994; Ray and Nandakumar, 1995; Tu and Ray, 2001).  The 

refractive index and surface evaporation rates obtained from the TE and TM modes are 

then compared as each mode provides an independent set of results that should be 

identical for a correct alignment.  Although the results from the two modes are rarely 

identical, their differences are nearly always negligible and only noticeable in the second 

order term corresponding to the error in the evaporation rate due to surface impurities on 

a droplet or some localized vapor saturation.   

Table 4.1 provides an example of the output from the TimalignaTM program for a 

negatively charged droplet of pure DEP with an assumed refractive index of =1.4972.  

The program returns to the user the number of selected MDRs and the size parameter 

range originally inputted by the user along with the surface evaporation rate with the 

corresponding average time and size parameter errors and a breakdown of the individual 

times, size parameters, mode and order numbers, and time and size parameter errors for 

each of the xi versus ti data for the alignment producing the minimum error.  The average 

time error and the value of 2 are typically the defining values used by the observer to 

determine the validity of the experiment.   Here, an average time error greater than 0.4 s 

or a 2 value greater than 1 

 

10-4 warrants repeating the experiment as they correspond 

to an unsteady droplet evaporation rate and add significant difficulty in further data 

analysis.  Here, N=24 MDR peaks were selected from the observed time versus intensity 

spectrum obtained in the TM mode and their corresponding occurrence times, ti, used as 

input.  {As a note to the reader, the TM mode typically produces a more distinct selection 

of sharp MDRs.  This can be easily seen by re-examining Figure 4.2 wherein the top 

portion (TM mode) of the figure has very sharp and distinct MDRs that appear with a 

regular periodicity as compared to the lesser distinguishable MDRs found in the lower 

portion (TE mode) of the figure.}  To generate the array of theoretical MDRs, a size 

parameter range of xinitial=300 to xfinal=100 was inputted from which M=715 theoretical 

MDR peaks occurring at size parameters, xi, were calculated.   
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Table 4.1 Example of the output from the TimalignaTM program for a droplet of pure 

DEP observed in the TM mode. 

Number of selected MDRs: N=24 
Size parameter range: xinitial=300 to xfinal=100 
Number of theoretically generated MDRs: M=715 

  

Surface evaporation rate: x2 = 3.00405 

 

104 - 7.49412t + (6.11880 

 

10-6)t2 

  

Average time error: 0.04407 s 
Average size parameter error: 0.001087  

Observed 
Times         
(ti in s) 

Theoretical 
Size 

Parameter (xi)

 

Mode 
Number 

(n) 

Order 
Number 

(l) 

Time 
Error           

s 

Size 
Parameter 

Error 

47.280 172.29704 182 13 -0.00819 -0.00018 
115.870 170.79859 180 13 0.01301 0.00029 
183.985 169.29841 178 13 -0.00409 -0.00009 
246.700 167.90334 180 12 0.07468 0.00167 
313.255 166.41405 178 12 -0.01160 -0.00026 
379.220 164.92325 176 12 -0.02660 -0.00060 
444.660 163.43087 174 12 -0.03429 -0.00079 
509.550 161.93685 172 12 -0.00865 -0.00020 
573.930 160.44111 170 12 0.01123 0.00026 
637.860 158.94359 168 12 -0.03396 -0.00080 
701.295 157.44422 166 12 -0.09896 -0.00235 
759.990 156.04006 168 11 0.01293 0.00031 
821.720 154.55237 166 11 0.01977 0.00048 
882.915 153.06309 164 11 0.04127 0.00101 
943.580 151.57215 162 11 0.07342 0.00181 

1003.780 150.07947 160 11 0.05224 0.00130 
1063.490 148.58497 158 11 0.00369 0.00009 
1122.690 147.08856 156 11 -0.05146 -0.00131 
1181.330 145.59018 154 11 -0.06286 -0.00161 
1239.395 144.08977 152 11 -0.01573 -0.00041 
1293.020 142.68918 154 10 0.06720 0.00176 
1349.505 141.20172 152 10 0.05187 0.00137 
1405.515 139.71250 150 10 -0.00938 -0.00025 

1460.990 138.22143 148 10 -0.05552 -0.00150 
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The refractive index and surface evaporation rate from the alignment with the 

minimum error are then used as input into the Fortran program TT2 to generate a 

theoretical scattered intensity spectrum as a function of time for each mode.   The user is 

also required to input a time period and range of scattering angles at a corresponding 

interval for which to generate the intensity spectra.  The theoretical intensity spectra 

generated by the computer program are then plotted versus the corresponding observed 

intensity spectrum to visually determine the correct theoretical spectrum and thus the 

scattering angle of the observed spectrum.  Here more than ever, the experience of the 

investigator is possibly the best tool for correctly determining the scattering angle of the 

observed spectrum as an incorrect scattering angle can lead to misalignment of the two 

spectra and therefore an inaccurate determination of droplet size.   

Figure 4.3 provides an example of how a theoretical intensity spectrum can be 

misaligned with a corresponding observed intensity spectrum.  Here, both spectra were 

theoretically generated for a droplet of pure DEP with =1.4972 and are in terms of 

scattering intensity (arbitrary units) versus the square of the size parameter.  The lower 

spectrum was generated for a scattering angle, =94.55 , over the range, x2=49,551 to 

x2=43,098.  The upper spectrum was generated for a scattering angle, =95.20 , over the 

range, x2=52,900 to x2=46,225.  To the untrained eye, the two spectra appear strikingly 

similar, and differ only by minute details.  However, such minute details are crucial in 

determining the correct scattering angle.  Since both the scattering angle and droplet size 

are not known a priori, figure 4.3 highlights how one may incorrectly match a 

theoretically generated spectrum to an observed spectrum and therefore incorrectly 

determine the droplet size at a particular location in the intensity spectrum.  Moreover, 

this dilemma is not resolved by analysis of the TM spectra assuming the same scattering 

angles and size parameter range as the same similarities will again be observed.  An 

incorrect alignment is typically the result of using data from an alignment with too much 

associated error however, and illustrates why such tight restrictions are used in the 

aforementioned procedure pertaining to the TimalignaTE and TimalignaTM programs.  

Fortunately, the similarities only exist for a finite size parameter range.  Therefore, by 
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comparing the observed and theoretical spectra over a sufficient size parameter range, the 

correct scattering angle and therefore correct droplet size can be determined.     

When an observed intensity spectrum is correctly matched with its theoretical 

counterpart however, the two spectra are typically so well aligned that they cannot be 

distinguished, one from the other, when overlapped.  Figure 4.4 provides an example of 

observed and theoretical spectrums that have been correctly aligned.  The intensities of 

all spectra are in arbitrary units.  Here, a scattering intensity spectrum observed in the TE 

mode for a droplet of pure DEP over a time range of 400 s is shown at the bottom of the 

figure.  The matching theoretical scattering intensity spectrum for a sphere in the TE 

mode with a refractive index, =1.4972, scattering angle, =95.400 , and over the range 

of the square of the size parameter from  x2=27,044 to x2=30,045 is shown at the top of 

the figure.  The scattering intensity spectrum shown in the middle of the figure is an 

overlapping of the observed and theoretical spectra and illustrates the precision of a 

correctly determined scattering angle.   

Once the correct TE and TM mode scattering intensity angles have been 

determined, the theoretical intensity spectra are used to independently and precisely 

determine the squares of the size parameters that correspond to the times immediately 

before and after each droplet break-up.  Since a portion of droplet mass is emitted during 

break-up, the size of the droplet is instantly reduced and therefore a discontinuity in both 

the observed TE and TM intensity spectra exist where each break-up occurred.  No 

discontinuity however, will exist for the corresponding theoretical intensity spectra.  

When properly aligned with the corresponding theoretical intensity spectra, the 

discontinuities appear as ‘gaps’ in the observed spectra.  Furthermore, the sections of an 

observed intensity spectrum occurring before a break-up typically lack detail due to the 

geometric distortion experienced by a droplet immediately prior to a break-up via 

Coulombic fission.  The sections of an observed intensity spectrum occurring after a 

break-up are nearly identical to that of a theoretical spectrum however, since the droplet 

has returned to a spherical shape.  
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Figure 4.3 Example portraying the similarities between two different scattering intensity 

versus size the square of the parameter spectra.        
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Figure 4.4 Example of a correct alignment between the theoretical (top) and observed 

(bottom) intensity spectrums.  Middle spectrum is an overlapping of the top and bottom 

spectra.     
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Figure 4.5 provides an example for a properly aligned theoretical and observed 

intensity spectra in the TE mode in the region where a break-up via Coulombic fission 

has occurred during the evaporation of a negatively charged droplet of pure DEP.  Due to 

the instantaneous emission of mass during a break-up, a discontinuity results in the 

observed intensity spectrum from the rapid change in the droplet radius.  When the 

observed (bottom) and theoretical (top) intensity spectra are aligned, the discontinuity in 

the observed spectrum appears as a ‘gap’ since the theoretical spectrum does not account 

for a break-up.  Here, the refractive index of the DEP droplet was =1.4972 and the 

scattering angle was found to be =95.400 .  The scattering intensities of both spectra are 

given in arbitrary units.  After aligning the theoretical and observed intensity spectra, the 

times immediately before and after the break-up were determined to be ti=1899.14 s and 

tf=1899.70 s, respectively.  The corresponding squares of the size parameters 

immediately before and after the break-up were determined to be (xi)
2=15663.5 and 

(xf)
2=15837.2, respectively.       

After determining the squares of the size parameters that correspond to the times 

immediately before and after a droplet break-up via Coulombic fission, the percentage of 

mass emitted by the droplet, fm, can be calculated using 

3
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f                                            (4.62) 

Using the values for xi and xf given in figure 4.5, fm is calculated to be 1.64% which is 

just below the range of fm =2.28% 

 

0.45 for a pure DEP droplet given by Li et al. (2005).     

The procedure just described for determining the percentage of mass emitted by a 

charged droplet during its break-up via Coulombic fission was repeated for all break-ups 

observed during the evaporation of a charged droplet.  The aforementioned procedures 

used for droplet observation, data collection, data analysis, the generation of theoretical 

scattering intensity spectra, and the correct alignment of theoretical and observed spectra 

were repeated for all charged droplets.    
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Figure 4.5 Example of a properly aligned theoretical and observed intensity spectra in the 

TE mode in which a break-up via Coulombic fission has occurred during the evaporation 

of a negatively charged droplet of pure DEP.        



 

94

4.2.2 Analysis of DC Levitation Potential Versus Time Data  

During the evaporation of a charged droplet, the observer manually records the change in 

the DC potential required to levitate a charged droplet at its null point as a function of 

time.  Since the droplet mass is reduced during evaporation, the DC potential must by 

periodically adjusted to insure the droplet remains at its null point.  To verify the position 

of the droplet in relation to its null point, the AC power is temporarily shut off for about a 

second by the observer.  Depending on the response of the droplet in the absence of the 

AC voltage and frequency, an experienced observed can correctly and quickly return the 

droplet to its null point with minimal impact on the droplet.  By precisely maintaining a 

droplet at its null point, the scattering angles in the TE and TM modes will remain 

constant and therefore subsequent data analysis will be more accurate.  The time interval 

at which the DC potential is adjusted depends on the evaporation rate of the droplet, and 

can range from a few seconds to a few minutes.  An additional effort is made to record 

the DC potentials immediately after a break-up has been observed.     

To relate the change in the DC potential to time, (4.54) is incorporated into (4.35) 

to give 
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which is simplified into 

32
0,

3/2
DCDC VtV                                                  (4.64) 

where VDC is the DC potential required to levitate a charged droplet precisely at its null 

point and 

 

is a constant assuming the charge on a droplet remains constant between 

break-ups.  Here, it is important to note that the times recorded by the observer are in 

sync with the times recorded by the personal computer used to record the intensities of 

scattered light in the TE and TM modes.  To synchronize the two times, the observer 

maintains a stop watch that is started at the instant the computer is keyed to begin 

recording.  This is critical in accurately determining the DC levitation potential at the 

times immediately before and after a droplet break-up.  The times immediately before, ti, 

and after, tf, each break-up are precisely determined from the times corresponding to the 
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beginning and ending of the ‘gap’ in the observed intensity spectrum after being properly 

aligned with the correct theoretical intensity spectrum.  Note the times recorded along 

with null point levitation potentials are only used to determine the corresponding 

relationships between 3/2
DCV  and t.  The times ti and tf are then inputted to the 

corresponding equations determined for 3/2
DCV as a function of t and used to extrapolate 

the DC levitation potentials of a droplet immediately before and after a break-up.  In this 

manner, a DC null point levitation potential, VDC,i, at a specific time, ti, can be accurately 

related to a corresponding xi.  The ability to relate VDC to x is critical in determining the 

amount of charge emitted by a droplet during its break-up via Coulombic fission.   

Figure 4.6 provides an example of the 3/2
DCV versus time data for a negatively 

charged droplet of pure DEP.  Here, the droplet of DEP is the same droplet that was 

observed to produce Figure 4.5.  Moreover, the timescale used in this figure directly 

corresponds to that used in Figure 4.5.  The solid diamonds represent the raw data points 

recorded by the observer.  The data points before and after the break-up were fitted to 

(4.64) to determine the values for 

 

and 3/2
0,DCV for Fit 1 and Fit 2, respectively.  The times, 

ti and tf, given in Figure 4.5 are inputted into the equations given by Fit 1 and Fit 2, 

respectively, to determine the corresponding values of VDC,i and VDC,f.  Here, the DC 

levitation potentials immediately before and after the droplet break-up were determined 

to be VDC,i =4.91 V and VDC,f =5.45 V using the corresponding times, ti=1899.14 s and 

tf=1899.70 s, obtained from Figure 4.5.            
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Figure 4.6 Example of 3/2
DCV versus time plot for a droplet of pure DEP.    
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After determining the DC levitation potentials, VDC,i and VDC,f, of a droplet 

immediately before and after a droplet break-up via Coulombic fission, the percentage of 

charge emitted, fq, can be calculated using 

fDCi

iDCf

q
Vx

Vx
f

,
3

,
3

1100%                                        (4.65) 

Using the values of xi, xf, VDC,i, and VDC,f obtained from Figures 4.5 and 4.6,  fq is 

calculated to be 11.4% which is below the range of fq =20.8% 

 

4.9 for a pure DEP 

droplet given by Li et al. (2005).     

After ascertaining the values for the size and DC levitation potential of a droplet 

immediately before its break-up via Coulombic fission, the charge limit, q, and 

corresponding Rayleigh limit, qR, at which the droplet break-up occurred can be 

calculated using (3.1) and (1.1), respectively, and expressed as a percentage of the 

Rayleigh limit, fR, using 
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q
f                               (4.66) 

Using (4.43) to determine the droplet radius, ai, from the size parameter, xi, occurring at 

the time ti=1899.14 s in Figure 4.5 and the corresponding value of the DC levitation 

potential, VDC,i, from Figure 4.6, the resulting values for q and qR are 6.456 10-13 C and 

6.411 10-13 C, respectively, where m=9.534 10-12 kg, g=9.81 m·s-2, z0=0.01664 m, 

C0=0.491, VDC,i=4.91 V, e0=8.8542 10-12 s4·A2·m-3·kg-1, =0.0361 N·m-1, and 

ai=1.2674 10-5 m.  The result of (4.66) is a value of fR=100.7%.  Therefore, the 

assumptions previously made regarding the data analysis procedure are validated as the 

break-up of the pure DEP droplet occurred via Coulombic fission precisely at its 

Rayleigh limit.  Moreover, the values determined for fm and fq, although below the ranges 

given by Li et al (2005), can also be assumed to be valid.     
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4.2.3 Relating Ionic Dopant Concentration to Electrical Conductivity  

To determine the role of electrical conductivity on the amounts of mass and charge 

emitted during a break-up via Coulombic fission and the charge limit at which the break-

up occurred, droplets were generated from solutions doped with a known amount of an 

ionic additive.  In order to determine the electrical conductivity of a droplet containing a 

specified amount of ionic dopant, a series of solutions were prepared from the desired 

solvent and known amounts of the selected ionic dopant.  The electrical conductivity of 

each solution was then measured using a YSI 3200 Conductivity Instrument equipped 

with a model 3256 glass probe.  For a particular series of solvent-dopant solutions, a plot 

of electrical conductivity versus dopant concentration was developed.  For each solvent-

dopant pair, an equation was fitted to the data that gave the best R2 value.  This equation 

was then used to calculate the electrical conductivity for a known concentration of ionic 

dopant.   

Figure 4.7 provides an example of an electrical conductivity versus molar ionic 

dopant concentration plot developed from 10 solutions of DEP doped with TDMAC.  The 

solid diamonds represent the raw data points.  Here, the electrical conductivity, K, of pure 

DEP was measured to be 0.69 S·m-1 and incorporated into the equation fitted to the 

data.  The form of the fitted equation given by Fit 1 was chosen solely on its ability to 

best fit the data.           
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Figure 4.7 Example of an electrical conductivity versus molar ionic dopant concentration 

for mixtures of DEP and TDMAC.   
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To apply the relationship determined for a particular solvent-dopant pair to a 

charged droplet, it was assumed that the concentration of ionic dopant in a droplet at 

generation was equal to that of the corresponding bulk solution.  For droplets 

experiencing multiple break-ups, it was also assumed that the amount of dopant emitted 

during a break-up was negligible.  This assumption is later shown to be valid since 

droplets having noticeable mass emissions had very low dopant concentrations and 

droplets with high dopant concentrations had negligible mass emissions.  Therefore, the 

concentration, Ci, of a droplet at a particular size, xi, could be determined using 

3

3
0

0,

i

ii
x

x
CC                                                    (4.67) 

where Ci,0 and x0 are the droplet concentration and size at generation.     

Given the underlying assumption pertaining to (4.67), it is important to note that 

there is a period of approximately four minutes that elapses between the instant a droplet 

is generated and when data collection begins.  This ‘gap’ in the time arises from using the 

same location on the top of the cloud chamber to position both the electrified needle used 

for droplet generation and the PMT used to detect the intensities of scattered light in the 

TM mode.  After a droplet is generated, the needle assembly must be carefully removed 

and the port sealed.  Next, the PMT and its housing assembly are installed and covered in 

the same location.  Finally, the signal strength of both PMTs is checked before data 

collection can begin.   

Due to the time lapse between the generation and observation of charged droplets, 

the initial droplet size calculated from the fitted surface evaporation rate cannot be used 

to determine the concentration of ionic dopant in the droplet relative to its concentration 

at generation.  Therefore, the amount of time elapsed prior to observation is precisely 

measured and used to extrapolate the true droplet size at the instant of generation, x0, 

from the surface evaporation rate equation.    
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4.3 Analysis of Hygroscopic Particle Growth Data  

4.3.1 Analysis of Pure Component Hygroscopic Growth  

To construct a hysteresis loop for the pure component inorganic salt particles studied as 

part of this dissertation required only a simple analysis procedure.  An example of a 

hysteresis loop for a particle of pure NaCl exposed to relative humidities from 0% to 80% 

and back to 0% has been previously provided by Figure 2.3 in Chapter 2.  To develop a 

hysteresis loop requires knowledge of how the water mass fraction of a particle changes 

as it is exposed to a cycle of humidification and dehumidification.  Since the water mass 

fraction of a particle at a specific relative humidity, fwater,i, could not be directly measured 

during its observation, it was determined from the change in its DC null point levitation 

potential relative to its DC null point levitation potential at a relative humidity of zero 

using 

iDC

DCiDC
iwater V

VV
f

,

0,,
,                                                 (4.68) 

where VDC,i and VDC,0 are the DC null point levitation potentials of the particle at a 

specific relative humidity and at a relative humidity of zero, respectively.  Here, two 

basic assumptions were made.  First, the charge on the particle was assumed to remain 

constant.  Therefore, the mass of the particle can be directly related to its DC null point 

levitation potential by a simplified form of (3.1) given by 

DCVm                                                       (4.69) 

where the terms g, C0, q, and z0 have been grouped into the constant a.  Second, it was 

assumed that the only changes in mass by the particle are due to the changes in its water 

content.    

The value of VDC,0 was obtained by exposing a properly levitated particle to dry 

nitrogen gas until its levitation potential remained constant.  Here, it was assumed that the 

particle was completely dry.  The values for VDC,i were obtained from the DC levitation 

potentials of a particle at specific relative humidities.  The values of VDC,i were typically 

recorded in intervals of 5% relative humidity, but were taken at much shorter intervals in 
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the regions where deliquescence and crystallization were known to occur.  After 

determining VDC,0 and the VDC,i values over a complete cycle of humidification and 

dehumidification, (4.68) was used to calculate fwater,i for each relative humidity at which 

the DC levitation potential was recorded.  Finally, all fwater,i versus relative humidity 

values were plotted to construct the hysteresis loop for a pure component particle.  

4.3.2 Analysis of Mixed Particle Hygroscopic Growth  

The analysis procedure for constructing a hysteresis loop for the mixed particles studied 

as part of this dissertation was similar to that described for pure component particles.  

Here however, the addition of the hydrophobic material had to be accounted for so that 

the mixed particles could be qualitatively compared to their pure component counterparts.  

To assess the impact of the hydrophobic material on the hygroscopic behavior of the 

inorganic salt, the water mass fraction of the particle at a specific relative humidity was 

determined on an additive-free basis, as compare to the hygroscopic growth of the whole 

particle.  To determine the mass of the inorganic salt portion of a mixed particle, it was 

first assumed that the ratio of the hydrophobic additive to the inorganic salt in the particle 

was equal to that of the bulk solution from which the particle was generated.  Second, it 

was assumed that the additive is completely hydrophobic and non-volatile.  This 

assumption was tested by observing pure component particles of the hydrophobic 

materials and none were observed to have any hygroscopic growth for relative humidities 

up to 95% or to exhibit any mass loss when continually exposed to a relative humidity of 

zero.  Finally, it was again assumed that the only changes in mass by the particle are due 

to the changes in its water content and that the particle charge remained constant.   

As with a pure component particle, a mixed particle was initially exposed to dry 

nitrogen until its DC null point levitation potential remained constant to obtain a value for 

VDC,0 and its VDC,i values were obtained from the its DC levitation potentials at specific 

relative humidities.  The difference between the two values was taken to be the change in 

mass by a mixed particle due to the hygroscopic growth of the inorganic salt.  The water 

mass fraction of a mixed particle at a specific relative humidity was then calculated using 
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where Xadd is the mass fraction of the water insoluble additive of the mixed particle when 

completely dry.  Since all additives were assumed to be completely hydrophobic, (4.70) 

was valid regardless if the additive was liquid or solid.  After determining VDC,0 and the 

VDC,i values over a complete cycle of humidification and dehumidification, (4.70) was 

used to calculate fwater,i for each relative humidity at which the DC levitation potential 

was recorded.  Finally, all fwater,i versus relative humidity values were plotted to construct 

the hysteresis loop for a mixed particle.   

By attributing all the hygroscopic growth of the mixed particle to the inorganic 

salt, the hysteresis loops of corresponding pure and mixed particles could be directly 

compared to ascertain the effects of the hydrophobic additive on the hygroscopic 

behavior of the mixed particle.  Figure 4.8 provides an example of the comparison of the 

hysteresis loops of a mixed particle containing 32% SIL and 68% NaCl and a pure 

component particle of NaCl.  The mixed particle clearly shows a significant increase in 

its water content prior to deliquescence and that its water uptake began at a much lower 

relative humidity.  Here, the mixed particle begins to absorb water at a relative humidity 

of ˜ 57% whereas the pure component particle does not begin its water uptake until just 

prior to its deliquescence at a relative humidity of ˜ 70%.  However, the deliquescence 

relative humidities (DRH) of both particles are nearly identical and their post 

deliquescent water absorptions and desorptions are indistinguishable.  Prior to its 

crystallization relative humidity (CRH), the mixed particle is observed to remain in a 

highly supersaturated state slightly longer than its pure component counterpart.          
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Figure 4.8 Example of the comparison of the hysteresis loops of a mixed particle and its 

pure component counterpart.        
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Chapter 5: Role of Electrical Conductivity on the Break-up of Charged Droplets via 

Coulombic Fission  

5.1 Results and Discussion  

5.1.1 Pure Component Droplets  

Charged droplets of diethylene glycol (DEG), triethylene glycol (TEG), tetraethylene 

glycol (T4EG), dimethyl phthalate (DMP), diethyl phthalate (DEP), nonanoic acid 

(NNA), and phenylnonane (PNN) were each individually levitated in an electrodynamic 

balance and observed until a break-up via Coulombic fission had occurred.  Typically, 

more than one break-up was observed for a single droplet during its evaporation.  Using 

the data analysis procedure described in Chapter 4, the percentages of mass, fm, and 

charge, fq, emitted by each of the charged droplets and the percentage of the Rayleigh 

limit, fR, at which break-ups occurred were determined.  These values are given in Table 

5.1 for each of the droplet compounds.   The droplet compounds are listed in the column 

labeled ‘Compound’ by a set of abbreviated capital letters that have previously been 

assigned to them.  Each break-up is identified by a pair of numbers given in the column 

labeled ‘ID’ where the first number corresponds to the droplet that was observed and the 

second number corresponds to the order in which break-ups occurred.  For example, an 

ID number pair of (5,2) for DEP would equate to the second break-up of the fifth charged 

droplet of diethyl phthalate.  The next two columns provide the densities and surface 

tensions of each of the droplet compounds when available.  Superscripted numbers are 

used to reference the literature source used to obtain the values and are provided at the 

bottom of the table.  The last three columns provide the values of fm, fq, and fR that were 

determined for each of the droplet break-ups except for PNN.  The values listed in the fR 

column for PNN represent a constant value calculated using an alternate method to assess 

the charge limit at which break-ups occurred since no value for the surface tension of 

PNN could be found in literature.  Also, the averages and standard deviations for the fm, 

fq, and fR of DMP, DEP, NNA, and PNN are given. 
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Table 5.1 Results for the values of fm, fq, and fR obtained from the break-ups of pure 

component droplets examined as part of this study.  (Table 5.1 continues on page 107.) 

Compound ID Density      
kg·m-3 

Surface 
Tension         
N·m-1 

fm(%) fq(%) fR(%)[6]

 

DEG 
1,1 

1118[1] 0.0448[1] 0.66 37.24 96.9 

1,2 0.48 40.69 98.6 

TEG 1,1 1125[1] 0.0451[1] 
0.15 43.67 100.8 

T4EG 2,1 1124[2] 0.044[2] <0.10 40.83 N/A 
2,2 <0.10 51.68 N/A 

DEP 

4,1 

1118[1] 0.0361[1] 

1.65 12.97 100.5 

4,2 1.95 16.05 99.9 

4,3 2.60 17.28 99.5 

4,4 2.70 18.21 98.9 

5,1 1.97 16.21 100.6 

5,2 1.77 12.67 99.6 

5,3 1.79 15.86 101.1 

5,4 2.63 19.52 102.4 

6,1 2.32 19.39 102.3 

6,2 1.95 17.61 100.5 
6,3 2.24 19.29 101.1 

Average

 

2.14 16.82 100.6 
Standard Deviation

 

0.37 2.38 1.1 

DMP 

1,1 

1175[3] 0.0405[3] 

2.23 17.12 99.7 

1,2 1.92 14.43 96.8 

3,1 2.07 19.50 103.2 

3,2 2.50 18.65 100.5 
3,3 2.59 19.24 99.6 

Average

 

2.26 17.79 100.0 
Standard Deviation

 

0.28 2.09 2.3 

NNA 

2,1 

921[4] 0.0331[4] 

2.07 17.73 100.2 

2,2 1.52 14.91 102.9 

2,3 1.48 11.84 105.0 

4,1 1.08 11.95 113.0 

4,2 1.35 14.27 114.7 
4,3 1.92 16.36 117.7 

Average

 

1.57 14.51 108.9 
Standard Deviation

 

0.37 2.35 7.1 
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[Table 5.2 continued] 

PNN 

3,1 

858[5] N/A 

0.61 7.22 N/A 
3,2 0.72 8.31 N/A 
3,3 0.89 10.20 N/A 
3,4 0.80 6.85 N/A 
3,5 1.15 11.01 N/A 
4,1 1.21 11.83 N/A 
4,2 1.09 10.81 N/A 
4,3 1.27 15.26 N/A 
4,4 1.37 15.54 N/A 
4,5 1.66 15.06 N/A 

Average

 

1.08 11.21 N/A 
Standard Deviation

 

0.32 3.25 N/A 

 

N/A not available 

[1] Li et al., 2005 
[2] http://www.dow.com/ethyleneglycol/about/properties.htm 
[3] http://www.thegoodscentscompany.com/data/rw1018891.html 
[4] http://www.thegoodscentscompany.com/data/rw1012131.html 
[5] http://www.chemcas.com/AnalyticalDetail.asp?pidx=1&id=16438 

&cas=1081-77-2&page=411 

[6] values for PNN are not fR, but a constant related to charge limit              

http://www.dow.com/ethyleneglycol/about/properties.htm
http://www.thegoodscentscompany.com/data/rw1018891.html
http://www.thegoodscentscompany.com/data/rw1012131.html
http://www.chemcas.com/AnalyticalDetail.asp?pidx=1&id=16438
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The average values of fm, fq, and fR for DEP and the values for fq and fR for DEG 

and TEG agree well with the corresponding values reported by Li et al. (2005).  

However, the average values for fm for DEG and TEG are higher than those given by Li 

et al. (2005), especially for DEG which was observed here to have a noticeable amount of 

emitted mass whereas Li et al. (2005) reported that the amounts mass emitted were below 

their detectable limit.  No literature data exist to compare the values obtained for the 

remainder of the droplet compounds.     

Charged droplets of NNA were observed to increase the percentage of the 

Rayleigh limit, fR, at which break-ups occurred with each successive break-up.  This type 

of behavior has only been previously reported to occur for charged droplets containing a 

precipitate (Li and Ray, 2004).  This suggests that the NNA may have become 

contaminated.  However, no tests were conducted to verify this assertion.      

The percentage of the Rayleigh limit, fR, at which break-ups occurred for charged 

droplets of PNN could not be directly determined as no value was found in literature for 

its surface tension.  Therefore, an alternate analysis procedure was used to evaluate the 

charge limit at which break-ups occurred.  This method has previously been described 

and used by Li et al. (2005).  Here, (1.1), (3.1), and (4.43) are combined to give a 

constant, c, according to 
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                                          (5.1) 

assuming the charge on the droplet remains constant during evaporation and where xb and 

VDC,b are the size parameter and DC null point levitation potential of the charged droplet 

immediately before a break-up via Coulombic fission.  Assuming that the break-ups 

observed for PNN droplet occurred via Coulombic fission precisely at the Rayleigh limit, 

a value for the surface tension of PNN was estimated to be =0.0297 N·m-1 

 

0.0019.   

The amounts of mass and charge emitted during the break-up of charged droplets 

of pure DEP and DMP via Coulombic fission were analyzed to determine their 

relationship to the corresponding mass and charge, respectively, of the droplets 
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immediately before break-up.  Figure 5.1 shows the relationship between both the amount 

of mass emitted and the percentage of mass emitted during a break-up to the mass of the 

droplet immediately before a break-up.  The solid diamonds and solid circles represent 

the data from charged droplets of pure DEP and pure DMP, respectively.  Here, the 

amount of mass emitted during a break-up is clearly shown to decrease as the mass of the 

droplet decreases (bottom half of figure) whereas the percentage of the mass emitted by 

the droplet during its break-up shows no relationship to the droplet mass whatsoever (top 

half of figure).  A nearly identical finding was reported by Richardson et al. (1989) for 

droplets of dioctylphthalate.                         
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Figure 5.1 The relationship between both the amount of mass emitted and the percentage 

of mass emitted during a break-up to the mass of the droplet immediately before a break-

up.    
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Figure 5.2 shows the relationship between both the amount of charge emitted and 

the percentage of charge emitted during a break-up to the charge of the droplet 

immediately before a break-up.  The solid diamonds and solid circles represent the data 

from charged droplets of pure DEP and pure DMP, respectively.  Here, the amount of 

charge emitted during a break-up is clearly shown to decrease as the charge of the droplet 

decreases (bottom half of figure) whereas the percentage of the charge emitted by the 

droplet during its break-up shows no relationship to the droplet charge whatsoever (top 

half of figure).  A nearly identical finding was reported by Richardson et al. (1989) for 

droplets of sulfuric acid.                         
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Figure 5.2 The relationship between both the amount of charge emitted and the 

percentage of charge emitted during a break-up to the charge of the droplet immediately 

before a break-up.   
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5.1.2 Droplets Containing an Ionic Dopant  

To evaluate the role of electrical conductivity on the characteristics of charged droplet 

break-ups via Coulombic fission, charged droplets were generated from solutions 

containing a dielectric solvent and a known quantity of an ionic dopant.  Here, only the 

solvents TEG, DMP, DEP, and PNN were combined with ionic dopants for further study.  

The ionic dopants used during this area of investigation were 

tridodecylmethylammonium chloride (TDMAC), tridodecylmethylammonium nitrate 

(TDMAN), 1-ethyl-3-methylimidazolium dicyanamide (IL1), 1-methyl-3-

octylimidazolium chloride (IL2), and Stadis 450.  Moreover, each of the solvents was 

only combined with some of the ionic dopants.   

The solvent DEP was chosen as the prime candidate for ionic doping as it has 

been previously observed as a pure component (Li et al., 2005) and the amounts of 

charge and mass emitted during a Coulombic fission are sufficient enough that any 

changes due to an increased electrical conductivity can be more readily determined.  The 

ionic dopants TDMAC, IL1, and IL2 were each independently combined with DEP in 

various known concentrations to increase its electrical conductivity.  Negatively charged 

droplets from each of the solutions were individually observed through one or more 

break-ups via Coulombic fission.  Using the data analysis procedure described in Chapter 

4, the percentages of mass and charge emitted by each of the charged droplets and the 

percentage of the Rayleigh limit at which break-ups occurred were determined.  These 

values were plotted versus the electrical conductivities, K, determined for each droplet 

immediately before a break-up.   

The data collected from the break-ups of charged droplets of DEP containing and 

ionic dopant are given in Figure 5.3.  The raw data points are indicated by a hollow 

square for pure DEP, a solid diamond for DEP-TDMAC, a solid circle for DEP-IL1, and 

a solid square for DEP-IL2.  Here, the effects of electrical conductivity on fm, fq, and fR 

are given by the lower, middle, and upper plots, respectively.  The corresponding values 

of fm, fq, and fR for pure DEP have also been included for comparison and are those given 
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in Table 5.1.  The electrical conductivity of pure DEP was measured to be 0.69 S·m-1 

during this study and therefore all pure DEP values appear to reside on the y-axis.  The 

raw data points given for droplets of DEP-TDMAC represent 39 break-ups from 14 

droplets generated from 8 different initial concentrations.  The raw data points given for 

droplets of DEP-IL1 represent 8 break-ups from 7 droplets generated from 7 different 

initial concentrations.  The raw data points given for droplets of DEP-IL2 represent 5 

break-ups from 3 droplets generated from 3 different initial concentrations.                           
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Figure 5.3 The effects of electrical conductivity on fm, fq, and fR for charged droplets of 

DEP doped with either TDMAC, IL1, or IL2.      
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The data presented in Figure 5.3 clearly indicate that increasing the electrical 

conductivity of a dielectric droplet effects the percentages of mass and charge emitted 

during break-ups via Coulombic fission, but has no observable effect on the 

corresponding charge limits at which the break-ups occurred.  Here, an increase in the 

electrical conductivity of a dielectric droplet is seen to decrease the percentage of mass 

emitted and increase, to a point, the amount of charge emitted during a break-up via 

Coulombic fission, regardless of the type of ionic dopant used.  The percentage of mass 

emitted is decreased from 2.14 ± 0.37% (pure DEP average) to below the detectable limit 

of the equipment (<0.1%) and the percentage of charge emitted is increased from 16.82 ± 

2.38% (pure DEP average) to over 35%.   

Similar effects were observed for charged droplets of DMP that contained various 

amounts of TDMAC or TDMAN.  The data collected from charged droplets of DMP 

containing an ionic dopant are given in Figure 5.4.  The raw data points are indicated by a 

hollow square for pure DMP, a solid diamond for DMP-TDMAC, and a solid circle for 

DEP-TDMAN.  Here, the effects of electrical conductivity on fm, fq, and fR are given by 

the lower, middle, and upper plots, respectively.  The corresponding values of fm, fq, and 

fR for pure DMP have also been included for comparison and are those given in Table 

5.1.  The electrical conductivity of pure DMP was measured to be 0.50 S·m-1 during this 

study and therefore all pure DMP values appear to reside on the y-axis.  The raw data 

points given for droplets of DMP-TDMAC represent 4 break-ups from 3 droplets 

generated from 2 different initial concentrations.  The raw data points given for droplets 

of DMP-TDMAN represent 2 break-ups from 2 droplets generated from 1 initial 

concentration.          
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Figure 5.4 The effects of electrical conductivity on fm, fq, and fR for droplets of DMP 

doped with either TDMAC or TDMAN.  
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The data presented in Figure 5.4 again clearly indicate that increasing the 

electrical conductivity of a dielectric droplet effects the percentages of mass and charge 

emitted during break-ups via Coulombic fission, but has no observable effect on the 

corresponding charge limits at which the break-ups occurred.  Here again, an increase in 

the electrical conductivity of a dielectric droplet is seen to decrease the percentage of 

mass emitted and increase, to a point, the amount of charge emitted during a break-up via 

Coulombic fission, regardless of the type of ionic dopant used.  The percentage of mass 

emitted is decreased from 2.26 ± 0.28% (pure DMP average) to below 0.3% and the 

percentage of charge emitted is increased from 17.79 ± 2.09% (pure DMP average) to 

over 35%.   

In a separate study, a charged droplet of DMP doped TDMAN was observed to 

undergo two successive break-ups at charge limits significantly above the corresponding 

Rayleigh limits.  Here, the initial concentration of TDMAN in the DMP droplet was 5.28 

g·l-1, and was much higher than that of the initial concentrations of the two DMP-

TDMAN droplets represented in figure 5.4.  The resulting percentages of the Rayleigh 

limit from the 1st and 2nd fissions were 157.3% and 143.5%, respectively, and occurred 

when the droplet had electrical conductivities of 331 S·m-1 and 481 S·m-1, 

respectively.  The resulting amounts of mass and charge emitted during the 1st and 2nd 

fissions from this particular droplet were 0.30% and 0.16% for mass and 24.12% and 

26.77% for charge, respectively.  Li and Ray (2004) have previously shown that the 

charge limits of droplets containing a precipitate at the instant prior to a Coulombic 

fission are significantly higher than the corresponding Rayleigh limits.  As such, here it is 

assumed that the concentration of TDMAN in the DMP droplet at the instants prior to the 

two Coulombic fissions was greater than the solubility limit and therefore some of the 

TDMAN existed as a solid.     

A single experiment was conducted to observe the effect of increased electrical 

conductivity on TEG.  Although the percentage of mass emitted by a charged droplet of 

pure TEG during its break-up via Coulombic fission was already determined to occur 

near the detectable limit (<0.10%) and a reduction in such would be undetectable, the 
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goal here was to observe how much the percentage of charge emitted would possibly 

increase.  Here, a single charged droplet of TEG was doped with TDMAC at an initial 

concentration of 5.35 g·l-1 and observed through 2 successive break-ups via Coulombic 

fission.  The percentages of mass emitted during the break-ups were below the detectable 

limit (<0.10%) as expected.  In fact, the theoretical and observed intensity spectra were 

nearly indistinguishable in the region where the break-ups occurred.  Only a slight 

distortion in the observed intensity spectrum could be seen; likely due to the change in 

the droplet geometry prior to its break-up.  The times at which the break-ups occurred 

were determined from the observed intensity spectra and used to determine the 

percentages of charge emitted during each break-up.  The values of fq were determined to 

be 43.27% and 49.18% for the 1st and 2nd fissions, respectively.  These values are 

comparable to those of pure TEG given in Table 5.1 although the electrical conductivities 

at the instants prior to the 1st and 2nd break-ups were estimated to be 4000 S·m-1 and 

8700 S·m-1, respectively.  The electrical conductivity of pure TEG was measured to be 

21.4 S·m-1 during this study.  Here again it appears that at some point the amount of 

charge emitted during the break-up of a charged droplet via Coulombic fission reaches a 

maximum value regardless of the amount of electrical conductivity as previously shown 

in figures 5.3 and 5.4 for droplets of DEP and DMP, respectively.   

A study was also conducted to examine the effects of electrical conductivity on 

the break-up characteristics of charged droplets of PNN.  Only the static dissipator Stadis 

450 was found to work as an ionic dopant in PNN.  It is important to note that no 

relationship between the concentration of Stadis 450 in PNN and electrical conductivity 

could be determined.  The problem here arises from a combination of factors.  First, 

Stadis 450 is a proprietary blend of dinonylnapthalene sulfonic acid, barium salt 

dissolved in toluene and isopropanol and therefore the exact amount of the active salt per 

unit of Stadis 450 could not be determined.  Second, during the evaporation of a charged 

droplet containing Stadis 450, the toluene and isopropanol will evaporate and change the 

concentration of Stadis 450 in the droplet.  Finally, the solubility of the active salt in 

Stadis 450 is unknown in PNN, but is likely insoluble without a suitable co-solvent.  
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Therefore, as the toluene and isopropanol are lost during the evaporation of a charged 

droplet, the active salt in Stadis 450 will precipitate out.   

Despite an inability to exactly relate the amount of Stadis 450 in PNN to an 

electrical conductivity value, two charged droplets of PNN doped with an equal, but 

unspecified initial concentration of Stadis 450 were observed through a multitude of 

successive break-ups via Coulombic fission.  The data collected from the two droplets are 

presented in Table 5.2.  Each break-up is again identified by a pair of numbers given in 

the column labeled ‘ID’ where the first number corresponds to the droplet that was 

observed and the second number corresponds to the order in which break-ups occurred.  

The values of fm and fq determined for each droplet break-up are also given.  Here, the 

values listed in the column labeled fR are equivocal to the percentages of the Rayleigh 

limit, but were determined by first computing the constant, c, using (4.71) for each 

droplet break-up and then dividing that value by the average value of c for pure PNN 

given in Table 5.1.                   
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Table 5.2 Data collected from the break-ups of two PNN droplets doped with Stadis 450. 

ID fm(%) fq(%) fr(%) 

1,1 0.98 10.85 121.1 
1,2 0.97 11.72 125.7 
1,3 1.14 13.11 126.0 
1,4 1.17 14.32 130.8 
1,5 1.22 19.17 137.7 
1,6 1.37 20.11 145.0 
1,7 1.48 21.57 151.6 
1,8 1.87 27.09 167.1 

1,9 1.54 32.30 195.8 

2,1 1.045 14.99 133.4 
2,2 1.255 15.55 139.5 
2,3 1.461 14.17 143.2 

2,4 1.605 21.61 158.8 
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The values of fm, fq, and fR presented in Table 5.2 reveal that Stadis 450 had a 

much different effect on the break-up characteristics of PNN droplets than expected from 

the results previously obtained by dielectric droplets containing an ionic dopant.  Here, 

the values of fm can be seen to increase with each successive break-up whereas they had 

previously been shown to decrease for droplets of DEP and DMP containing an ionic 

dopant.  In the studies involving DEP and DMP, the ionic dopants remained dissolved in 

the solvents during droplet evaporation and therefore the electrical conductivity was 

increased.  As such, it would appear that the Stadis 450 did not remain soluble in the 

PNN droplets as the toluene and isopropanol evaporated out of the droplet as proposed 

earlier.  As such, the electrical conductivity of the droplet would have decreased during 

evaporation.  This could explain why fm was observed to increase with each successive 

droplet break-up.  As fR was also observed to increase with each successive break-up, the 

logical assumption is that a precipitate formed during droplet evaporation and supports 

the assumption that the active salt in Stadis 450 is not soluble in PNN.  The trend 

observed for fq however, must be more closely examined.  Here, the percentages of 

charge lost during each successive break-up were observed to increase as had been 

previously shown for charged droplets of DEP and DMP containing an ionic dopant.  

However, the percentages of charge emitted from the two aforementioned droplets of 

DMP doped with an initial concentration of 5.28 g·l-1 of TDMAN where a precipitate 

was believed to be formed were also observed to increase relative to that of pure DMP 

droplets.  Furthermore, it would make sense that droplets having break-ups at charge 

limits in excess of their Rayleigh limits would need to emit more charge in order to return 

to a stable geometry.  As such, here it is asserted that charged droplets of PNN doped 

with Stadis 450 possessed their highest electrical conductivity upon generation and that 

the electrical conductivity decreased with subsequent evaporation of the solvent and that 

a precipitate was formed from the active salt in the Stadis 450.  The resulting decrease in 

electrical conductivity increased the percentages of mass emitted during successive 

droplet break-ups and the formation of the precipitate increased both the percentages of 

charge emitted during successive break-ups and the charge limit at which such break-ups 

occurred.  However, further investigation into this phenomenon would be required to 

truly understand all the factors involved. 
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5.1.3 Role of Electrical Conductivity  

To better understand the role of electrical conductivity, along with the role of other 

relevant physical properties, the data collected from 79 break-ups of charged droplets of 

DEG, TEG, DEP, DMP, DEP-TDMAC, DEP-IL1, DEP-IL2, DMP-TDMAC, and DMP-

TDMAN that occurred via Coulombic fission at the Rayleigh limit were dimensionally 

analyzed using the Buckingham Pi theorem.   Initially, the amounts of charge and mass 

emitted during each droplet break-up were calculated.  Next, the possible relevant factors 

affecting the break-up of an individual charged droplet were assumed to be density, 

surface tension, relative permittivity, dynamic viscosity, electrical conductivity, charge, 

and size.  Since the effects of the ionic dopants on the physical properties, excluding 

electrical conductivity, were not determined, the values for the pure solvents were used.  

The values for density and surface tension of DEP and DMP are given in Table 5.1.  The 

relative permittivities of DEP and DMP were found to be 7.86 and 8.66, respectively, 

from Lide (2004) and were incorporated into the dimensionless analysis after 

multiplication with the permittivity of free space.  The viscosity of DEP was found to be 

0.0105 kg·m-1·s-1 from Lorenzi et al. (1997) and the viscosity of DMP was found to be 

0.0144 kg·m-1·s-1 from Lide (2004).     

To ascertain the role of the individual fluid properties on the amounts of charge 

and mass emitted during the break-up of charged droplets via Coulombic fission at their 

Rayleigh limit, the relationships given by (5.2 and 5.3) were developed.  Since the data 

being analyzed were collected from droplets having break-ups via Coulombic fissions 

very near their Rayleigh limit, the charge and size of the droplet immediately before a 

break-up could be related using Rayleigh theory.  Therefore, either the radius or the 

charge of a droplet was used during regression, but not both.   

qKfq ,,,,, 0                                           (5.2) 

aKfm ,,,,, 0                                          (5.3)  

qKff q ,,,,, 0                                           (5.4) 

aKff m ,,,,, 0                                           (5.5) 
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The variables given in (5.2) through (5.5) were expressed in terms of their 

fundamental units and are given by   

Qq                                                        (5.6) 

Mm                                                       (5.7) 

Q

Q
f q                                                         (5.8) 

M

M
f m                                                        (5.9) 

Qq                                                       (5.10) 

La                                                       (5.11) 

3

2

ML

tQ
K                                                    (5.12) 

3

22

0
ML

tQ
                                                 (5.13) 

3L

M
                                                    (5.14) 

Lt

M
                                                    (5.15) 

2t

M
                                                    (5.16) 

where M is mass (in kg), L is length (in m), t is time (in s), and Q is charge (in C).  Note, 

that (5.8) and (5.9) are both already in a dimensionless form.  Since (5.2) through (5.5) 

each contain seven variables possessing a total of four fundamental units they can 

expressed using three dimensionless groups having the form 

321 f                                                 (5.17) 

where each 

 

term represents a dimensionless group containing an experimental variable 

and a specific combination of the core variables.  Here, q, m, fq, fm, q, a, and K were 

selected as the experimental variables and were each formed into a dimensionless group 

containing the core variables 0, , , and 

 

given by 
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32/1
0

2/3q
q                                                (5.18) 

6

32m
m                                                  (5.19) 

qf f
q

                                                      (5.20) 

mf f
m

                                                     (5.21) 

32/1
0

2/3q
q                                                 (5.22) 

2

a
a                                                    (5.23) 

2
0

3K
K                                                  (5.24)    

Using the 

 

terms given by (5.18) through (5.24), the relationships given by (5.2) 

through (5.5) were linearly recast in a dimensionless form as  

Kqq AAA lnlnlnln 321                             (5.25) 

Kmm BBB lnlnlnln 321                            (5.26) 

Kqf CCC
q

lnlnlnln 321                             (5.27) 

Kmf DDD
m

lnlnlnln 321                            (5.28) 

where A1-3 through D1-3 are constants.   

Prior to regressing the data inputted for the 

 

terms given by (5.18) through 

(5.24), a simple check was conducted to insure that the charge and size values calculated 

for each droplet immediately before a break-up were correctly paired.  According to 

Rayleigh theory, charge is equal to the droplet radius raised to the 3/2 power times some 

constant.  Since all the data being used were collected from the break-ups of charged 

droplets via Coulombic fission very near their Rayleigh limits, this relationship was 
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tested by fitting the values calculated for (5.22) and (5.23) for each droplet break-up 

using  

aq x ln2/3lnln                                     (5.29) 

Here, the fitted equation was found to have R2=0.9728 and validates that the values for 

charge and size are correctly paired for each droplet break-up.       

Assuming that the remainder of the values calculated for (5.18) through (5.24) are 

correct, (5.25) through (5.28) were regressed to determine the constants A1-3 through D1-3 

and found to be 

Kqq ln1169.0ln9904.01248.1ln                     (5.30)  

Kam ln2924.0ln2188.36154.3ln                    (5.31) 

Kqfq
ln1169.0ln0096.01248.1ln                     (5.32)  

Kafm
ln2924.0ln2188.00478.5ln                    (5.33) 

with R2 values of 0.9798, 0.9046, 0.8355, and 0.5638 respectively.  Here, only (5.30) was 

found to have an acceptable value of R2 to validate the expression.  However, as both 

(5.32) and (5.33) can be developed by rearrangement of (5.30) and (5.31), respectively, 

the significant decrease in the R2 values determined for (5.32) and (5.33) are likely due to 

the fewer number of significant figures used for fq and fm .  Furthermore, the coefficients 

determined for (5.30) through (5.33) suggest that fq and fm are strongly dependent on q 

and a as initially shown by Figures 5.1 and 5.2, respectively, and are only weakly 

dependent on K.    

5.1.4 Determining the Electrical Conductivity at the Droplet Surface  

In the previous analysis, the amounts of charge and mass emitted during the break-ups of 

charged droplets via Coulombic fission were found to be only weakly related to electrical 

conductivity.  However, the electrical conductivity used for that analysis was the bulk 

electrical conductivity of the solvent.  Several investigators however, have asserted that a 

droplet’s excess ionic charges reside either on the surface on in a diffuse layer just below 

the surface (De Juan and De la Mora, 1997; Labowsky, 1998; Zhou and Cook, 2000; 
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Mylan and Oldham, 2002; Storozhev, 2004) and follow a Poisson-Boltzmann distribution 

(Mylan and Oldham, 2002).  This assertion has also been applied to dielectric droplets 

(Labowsky, 1998; Storozhev, 2004) and droplets containing ionic species (Zhou and 

Cook, 2000; Myland and Oldham, 2002) as were studied as part of this dissertation.  

Therefore, it is a logical assumption that the electrical conductivity within a charge 

droplet would follow the same distribution.  Moreover, it follows that the electrical 

conductivity at the surface of dielectric droplets would be much greater than the bulk 

electrical conductivity of the corresponding solvent.  As such, the role of electrical 

conductivity at the droplet surface on the amounts of charge and mass emitted during the 

break-ups of charged droplets via Coulombic fission was examined.  The following 

results and discussion are presented as found in Hunter and Ray (2009).  Here, only the 

data from the break-ups of charged droplets of DEP-IL1, DEP-TDMAC, and DMP-

TDMAN were evaluated.     

The electrical conductivity, K, of a charged droplet immediately before a break-up 

via Coulombic fission was related to the molar concentration of dissociated ions, Cdiss, in 

the droplet using  

dissCununK                                         (5.34) 

where 

 

is the conductance, n± are the ion concentrations, and u± are the corresponding 

ion mobilities.  Here, the ion mobilities were assumed to be inversely proportional to the 

square root of their molecular weights and calculated using 

AB

AB

MM

MM
u

1
                                          (5.35) 

AB
MM

u
1

1
                                          (5.36) 

where 
A

M and 
B

M are the molecular weights of the cations and anions, respectively, 

formed by the dissociation of the ionic dopant.     

The molar concentration of dissociated ions, Cdiss, present in a droplet at the 

instant prior to break-up was determined from the total molar concentration of ionic 
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dopant, CAB, present in a droplet at the instant it was generated.  Here, it is assumed that 

the total concentration of ionic dopant in the droplet is equal to that of the bulk solution 

from which the droplet was generated.  Therefore, CAB is given by 

dissBAAB CCC                                              (5.37) 

where 
BA

C is the molar concentration of ionic dopant that is undissolved and where 

BAdiss CCC since all of the ionic dopants used during this study possess a single 

cation and a single anion.  Their equilibrium with 
BA

C was expressed assuming a fully 

reversible dissociation using 

BABA eqK
                                             (5.38) 

where Keq is the equilibrium constant given by 

dissAB

diss

BA

diss
eq CC

C

C

C
K

22

                                         (5.39) 

Chapter 4 has previously described in detail how CAB was determined and related to the 

electrical conductivity, K, for each solvent-ionic dopant pairing.  Incorporating (5.34) and 

(5.39) gives 

yKxKC AB
2                                                (5.40) 

where x and y are given by 

2

1

eqK
x                                                     (5.41) 

      
1

y                                                       (5.42) 

The coefficients x and y were determined via regression of ionic dopant concentration 

versus electrical conductivity for each solvent-dopant mixture.  The values of Keq were 

determined to be 0.27, 5.21, and 5.45 mol·m-3 for DEP-TDMAC, DEP-IL1, and DMP-

TDMAN, respectively. Likewise, the values of 

 

were determined to be 48.6, 86.5, and 

47.0 S·m2·mol-1 for DEP-TDMAC, DEP-IL1, and DMP-TDMAN, respectively.  The 

corresponding values of Keq and CAB were then used to determine Cdiss using 

2

4

2

2
ABeqeqeq

diss

CKKK
C                                 (5.43) 
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Here it is appropriate to note that molar concentrations of cations and anions produced 

from the dissociation of the ionic dopants are assumed to be equal and that Cdiss is more 

accurately the molar concentration of either the cationic species or the anionic species, 

but not their combined concentration.      

To determine the number of ions present at the droplet surface, their location 

within a droplet was assumed to follow a Boltzmann distribution where cations and 

anions that posses a single charge are related to the electrostatic potential by 

00 exp
Tk

e
nrn

B

                                   (5.44) 

where n±(r) are the number density ion concentrations at a radial position r, 

 

is the local 

potential, e is the charge on an electron, kB is Boltzmann’s constant, T is the absolute 

temperature of the droplet, and 0n are the ion concentrations at the reference potential, 

0.  The distribution of the potential was assumed to follow a Poisson distribution given 

by 

r

dr

d
r

dr

d

r
e2

2

1
                                        (5.45) 

where 

 

is the permittivity of the droplet and e is the charge density given by the 

difference between the ion concentrations of the cations and anions according to 

rnrnere                                            (5.46) 

The boundary conditions applied to solve the Poisson-Boltzmann equation are given by 

0
0rdr

d
                                                     (5.47) 

24 a

q

dr

d R

ar

                                               (5.48) 

where (5.47) is given by the symmetry at the center of a spherical droplet and (5.48) is 

Gauss’ law.  Two additional relations were developed from the conservation of charge 

and mass to account for the ion concentrations at the reference potential and are given, 

respectively, by 
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e

q
Cadrrrn R
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0

4
3

1
4                                    (5.49)  

                                            (5.50) 

Here, it should be noted that the excess anions are solely those of the solvent molecule 

produced during droplet generation and not those of the dissociated ionic dopant.  Also, 

the number of excess charges is assumed to be equal to the number of elementary charges 

present within the droplet at the Rayleigh limit.  Finally, the reference potential was taken 

as zero at the droplet center since (5.49) is not truly independent as it can be developed 

by integrating (5.45) using (5.47) and (5.48).  The solution of the Poisson-Boltzmann 

equation was solved by Ray of Hunter and Ray (2009) wherein a finite difference method 

was used to determine 0n and (r), given a and Cdiss, and Newton’s method was used to 

determine 0n such that (5.50) was satisfied and (0)= 0=0.     

To determine the electrical conductivity at the droplet surface, Ks, the ion 

concentrations were calculated for a thin layer at the droplet surface having a thickness, 

, given by   

D5                                                       (5.51) 

where D is the Debye length given by 

2
02 en

Tk B
D                                                       (5.52) 

where n0 is the ion concentration in the core.  The results obtained from the numerical 

analyses were validated by comparing them to the results from an analytical analysis 

developed by approximating the thin surface layer as a planar film.  After determining the 

ion concentrations at the surface for each break-up, the corresponding surface electrical 

conductivities were calculated using 

ununK sss                                               (5.53) 

where sn are the surface ion concentrations.    
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Hunter and Ray (2009) have provided an example of the results obtained from 

this analysis.  Here, it is repeated.  Consider a negatively charged droplet of DEP-

TDMAC having a=10 m and Cdiss=0.05 mol·m-3.  Such a droplet would have 

sn =3.27×1021 and sn =2.80×1023 ions·m-3, respectively, wherein the concentration of 

surface anions is nearly two orders of magnitude greater than the concentration of surface 

cations.  Furthermore, such a droplet would have a bulk electrical conductivity of K=2.43 

S·m-1 and a surface electrical conductivity of Ks=5.01 S·m-1.  This example provides 

an initial understanding of why the previous data analysis using bulk electrical 

conductivity values returned a weak dependence on electrical conductivity.   

Myland and Oldham (2002) have also presented solutions to the Poisson-

Boltzmann equation for the distribution of electrolytic ions in a charged droplet 

determined by a numerical simulation and an algebraic series.  Here, the thickness of the 

thin layer at the surface of the droplet was taken to be 0.31073 nm and was determined 

from the cubic root of the molecular volume of a molecule of water as water was the 

droplet solvent chosen for study in their investigation.  They reported that a positively 

charged droplet having a radius of 1 m and an electrolyte concentration of 5.002 eq·m-3 

would have 17,062 cations and 8096 anions at the surface.  Here, the number ions 

possessing a like charge to the overall droplet charge are again significantly higher than 

those of the opposite sign.     

5.1.5 Role of Surface Electrical Conductivity on the Characteristics of Charged Droplet 

Break-ups   

The role of electrical conductivity at the surface of charged droplets on the characteristics 

of progeny microdroplets was also examined and is presented here as found in Hunter 

and Ray (2009).  Here, the conservation of charge and mass was again employed to relate 

the amounts of charge, q, and mass, m, emitted by a charged droplet during its break-

up via Coulombic fission at the Rayleigh limit to the characteristics of the progeny 

microdroplets formed during such break-up by 
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pp qnq                                                      (5.54) 

pp mnm                                                     (5.55) 

where np is the number of progeny microdroplets and qp and mp are the charge and mass 

of a progeny microdroplet, respectively.  Li et al. (2005) have previously determined the 

characteristics of progeny microdroplets under the same assumption and photographs of 

the formation of progeny microdroplets have shown that they are approximately equal in 

size (Macky, 1931; Duft et al, 2003).  Konermann (2009) however, has disputed the 

claim that progeny microdroplets would carry equal charge and suggests that each 

successive progeny microdroplet would carry slightly less charge.   

Assuming that progeny microdroplet are formed having equal charge and mass, it 

was assumed that the charge to mass ratio of a progeny microdroplet could be related to 

the surface electrical conductivity of the mother droplet immediately before a break-up 

by 

s
p

p
BK

m

q

m

q
                                                (5.56) 

where B is a constant.  Assuming the charge on the primary droplet immediately before a 

break-up can be given by Rayleigh theory, (5.55) was recast in terms of the percentages 

of charge, fq, and mass, fm, emitted by a droplet using 

2/3

06
aBK

f

f
s

m

q                                            (5.57) 

Linear regression of the fq/fm versus Ks·a
3/2 data obtained from break-ups of charged 

droplets of DEP-TDMAC, DEP-IL1, and DMP-TDMAN using (5.57) yielded slopes of 

4.70±0.19, 4.71±0.14, and 3.92±0.51, respectively.  What is intriguing about these results 

is that the slopes determined for linear fits of the DEP-IL1 and DEP-TDMAC data were 

nearly identical at 4.70 and 4.71 although the ionic dopants used were very different.  

Furthermore, (5.57) is nearly identical to a previous postulation by de la Mora (1996) 

given by 

2
3

min212

D

d

fqq

mm
                                         (5.58) 
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where D is the droplet diameter, f( ) is a function given by de la Mora and Loscertales 

(1994), and dmin ~ dm given by (2.1).  In fact, after incorporation of dm and a slight 

rearrangement, (5.58) can be given by 

2/3Ka
c

f

f

m

q                                                  (5.59) 

and differs from (5.57) only by a constant and the use of bulk electrical conductivity 

rather than surface electrical conductivity.   

To determine values for qp, mp, and np, an assumption was made relating qp to qR 

since droplets were observed to break-up precisely at their Rayleigh limits.  Previous 

investigators have reported that the charge on progeny microdroplets can range from 60% 

to 100% of the charge on the primary droplet immediately before break-up via 

Coulombic fission (de la Mora, 1996; Tang and Smith, 1999; Li et al., 2005, Gu et al., 

2007).  However, none of these findings have been theoretically substantiated.  Here, the 

relationship between qp and qR was developed by Ray of Hunter and Ray (2009) by 

minimizing the Gibbs free energy change associated with the emission of charge and 

mass during the break-up of a charged droplet via Coulombic fission at the Rayleigh limit 

according to 
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                    (5.60) 

assuming that fm is small and therefore the change in the size of the primary droplet is 

negligible.  To evaluate (5.60), qp, ap, and np were all expressed in terms of fq, fm, and fRP, 

where fRP is the percentage of the Rayleigh limit on a progeny, as 
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08 pRPRRPp afqfq                                       (5.61) 
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and incorporated into (5.60) to give 
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After differentiating (5.64) with respect to fRP, the minimum in G is found to occur 

where fRP=50% from 
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Therefore, progeny microdroplets are assumed to carry 50% of the charge of the primary 

droplet immediately before a break-up via Coulombic fission at the Rayleigh limit.  

Using fRP=50%, qp, ap, and np were determined for each of the 32 observed break-ups 

where droplets produced progenies having   

8

a
a p                                                          (5.66) 

The values of ap were regressed according to  

s
p

K
a                                               (5.67) 

which was developed by incorporating (5.59) and (5.62) where 

 

and 

 

are constants.  

Here, 

 

and 

 

were found to be 0.394 and -0.664, respectively.  The coefficient 

 

is 

essentially -2/3 which is required for validation of (5.67).    

5.1.6 Comparison of the Bulk and Surface Electrical Conductivity Results  

Comparison of the results obtained from the Buckingham Pi theorem using the bulk 

electrical conductivity of the droplet and the solution of the Poisson-Boltzmann equation 

using the electrical conductivity at the surface of the droplet reveal two dramatically 

different relationships.  Here, the differences in the role of electrical conductivity and 

droplet size will be primarily discussed as they are the only two variable droplet 

properties that were examined.  To more equally compare the two analyses, the 

relationships for fq/fm will be examined.  Although this relationship was not initially 

determined using dimensionless analysis, it can be developed using (5.32) and (5.33) and 

is given by 
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Assuming that the power term for q is zero, and reducing the number of significant 

figures, (5.68) can be simplified and given by  
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which is further simplified to give 
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Here it is important to note that (5.70) does not return the correct value for fq/fm 

when the corresponding values for , , 0, , a, and K are inputted; likely due to the 

large amount of error incorporated by the reduction of significant figures.  As such, only 

a generic comparison can be made.  Comparison of (5.70) to (5.57) reveals that fq/fm is 

significantly more dependent on Ks as opposed to K.  Moreover, when the role of Ks is 

considered, the role of a also becomes more dominant.  Finally, only the analysis using K 

had any dependence on .   

It is evident that the distribution of charge within a dielectric droplet significantly 

affects the role of electrical conductivity and size on the characteristics of charged droplet 

break-ups via Coulombic fission at the Rayleigh limit.  This further suggests that the 

characteristics of charged droplet break-ups are almost completely dominated by their 

surface properties and can only be estimated from bulk properties.  As such, a more in-

depth analysis of how , , , and 

 

exist at the droplet surface may reveal a more 

detailed illustration of the break-up process.    
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5.1.7 Prediction of Ion Emission  

A common theme in literature pertaining to the break-ups of charged droplets and the 

formation of progeny microdroplets is discussion regarding the ability of charged 

droplets to emit gas phase ions (Iribarne and Thomson, 1976; Rollgen et al., 1987; 

Schmelzeisen-Redeker et al., 1989; Fenn, 1993; Loscertales and de la Mora, 1995; de la 

Mora, 1996; Labowsky et al., 2000; Rohner et al., 2004; Ichiki and Consta, 2006; Hogan 

et al., 2009; Consta, 2010.  Here, the relationships developed are used to estimate the 

droplet characteristics necessary for ion emission.     

Given the error associated with (5.70), the relationships given by (5.30) and 

(5..31) were used to estimate the conditions required for a charged droplet of pure DEP to 

emit only ions during its break-up via Coulombic fission at the Rayleigh limit.  Here, 

(5.30) and (5.31) are recast as 
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assuming the power originally assigned to q can be considered equal to one.  Assuming 

that the charge term, q, in (5.71) can be expressed using Rayleigh theory, (5.71) is 

rewritten as 
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To predict the droplet radius, a, where only ions will be emitted during the break-up of a 

charged droplet via Coulombic fission at the Rayleigh limit, the number of molecules 

emitted must equal the number of ions emitted.  Assuming each ionized solvent molecule 

will possess only a single charge, the number of ions emitted was determined by dividing 

(5.73) by the charge on an electron, e-.  The number of molecules emitted during the 

break-up of a charged droplet was determined by multiplying (5.72) by Avogadro’s 

number, NA, and dividing by the molecular weight, MW, of the solvent.  The equations 
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representing the number of ions and solvent molecules were then equated in terms of the 

droplet radius to give 
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where aion is the radius at which a charged droplet will break-up via Coulombic fission at 

its Rayleigh limit and only ions will be emitted.  When (5.74) is applied to pure DEP 

(K=0.69 S·m-1), aion is found to be 5.76 nm which represents a cluster of 2420 solvent 

molecules of which 39 are ionized with a single charge.  Such a droplet is predicted to 

emit seven ionized solvent molecules during its break-up via Coulombic fission at the 

Rayleigh limit.  The value of aion indicates that dielectric droplets are not likely to 

proceed through an ion evaporation mechanism until they are small clusters of molecules 

and ions.  For a droplet of DEP having an artificially increased electrical conductivity of 

K=2000 S·m-1, the upper limit of electrical conductivity for DEP droplets containing an 

ionic dopant observed in this study, aion is increased to 38.42 nm and calculated to emit 

320 of its 667 ionized molecules during its break-up.  In fact, for a droplet of DEP to 

have aion = 100 nm, its electrical conductivity would have to be 120000 S·m-1.  This 

hypothetical droplet would emit 2230 of its 2880 charges during a break-up via 

Coulombic fission representing a charge loss of 77%, but a mass loss of less than 0.02%.     

When (5.74) is applied to a more electrically conductive droplet however, the 

droplet size is reduced although the electrical conductivity is significantly increased.  For 

example, when the properties of sulfuric acid are applied (K=500000 S·m-1), aion is 

found to be 59.25 nm and to emit 80% of its charge whereas a DEP droplet having an 

equivalent electrical conductivity would have aion=143.10 nm and emit 92% of its charge.  

Here, the role of other relevant physical properties of charged droplets become apparent.  

Moreover, this example demonstrates why dielectric droplets may have more application 

in the generation of nanoparticles.  



 

138 

Although (5.74) has no underlying physical basis, the estimated values 

determined for aion are supported by the findings of Labowsky et al. (2000) who predicted 

that ion evaporation would occur for small droplets having 12 or less individual charges 

and by Hogan et al. (2009) who have reported that droplets having diameters between 10 

and 40 nm, well within the size range determined here, emitted only ions during their 

break-ups.      

When the droplet characteristics required for ion emission are determined using 

the results obtained for surface electrical conductivity however, the findings are much 

different.  Here, consider a charged droplet of DEP-IL1 having aion=100 nm.  Assuming 

that only ions are emitted by such a droplet during its break-up via Coulombic fission at 

the Rayleigh limit, fq/fm can be determined in the following manner.  First, fq/fm will be 

expressed using 

q
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Next, assuming that all ions are singly charged solvent molecules, the ratio of q/ m can 

be given by 
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Note that (5.76) is independent of the number of ions emitted.  The droplet charge, q, can 

be determined using (1.1) where a is given by aion and the droplet mass, m, can be 

determined using 
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4
ionam                                                    (5.77) 

Such a droplet is found to have fq/fm=4530.55.  Using the fit previously given by (5.57) 

where the slope has been determined to be 4.71±0.14 for charged droplets of DEP-IL1, 

the Ks·a
3/2 term is found to be 961.90 pS·m1/2.  Therefore, the surface electrical 

conductivity, Ks, required for ion emission is determined to be 30.42 S·m-1.  Here, Ks is 

found to be two orders of magnitude greater than the bulk electrical conductivity 

previously determined for an equivocal droplet.   
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What is intriguing about this result is that when the droplet characteristics 

previously determined for ion emission using bulk conductivity are inputted, the value for 

Ks is again determined to be precisely 30.42 S·m-1 regardless of aion.  For example, the 

aforementioned droplet of pure DEP having aion=5.76 nm has fq=(7/39) and fm=(7/2420).   

Here, fq/fm is found to be 62.57 from which Ks=30.42 S·m-1 is again determined.  

Although the droplet size was significantly reduced from the previous example, the value 

of Ks remained constant whereas K was previously found to decrease as aion decreased.  

As such, the results from this analysis indicate that the surface electrical conductivity of a 

charged droplet must reach a certain point determined by the physical properties of the 

solvent before ion emission can occur.  Moreover, here Ks is eight orders of magnitude 

greater than K.  Therefore, charged droplets of dielectric solvents such as DEP are 

unlikely to emit only ions during their break-ups via Coulombic fission at the Rayleigh 

limit.  Here, the findings are more in support of the charge residue model of Dole (1968) 

in that gas phase ions would only result from dielectric droplets by the evaporation of 

their neutral solvent molecules and that an ionic dopant would be required for the ion 

evaporation model of Iribarne and Thomson (1976) to be applicable.  In fact, the study by 

Ichiki and Consta (2006) in support of the ion evaporation model was conducted using 

water doped with chloride ions.  However, Ichiki and Consta (2006) and Consta (2010) 

have both shown that Rayleigh theory is no longer valid for very small droplets.  As such, 

the earlier assumptions that break-ups would occur precisely at the Rayleigh limit may 

not have been valid for the very small droplet sizes examined.  

5.2 Conclusions  

In this chapter, the role of electrical conductivity on the characteristics of break-ups of 

negatively charged droplets via Coulombic fission at the Rayleigh limit has been 

examined.  Initially, pure component droplets of DEG, TEG, T4EG, DMP, DEP, NNA, 

and PNN were observed through multiple break-ups and the percentages of charge and 

mass emitted and the charge limits at which break-ups occurred were recorded.  Here, 

droplets of DEG, TEG, and T4EG were observed to emit 37% to 52% of their charge and 
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0.7% to less than 0.1% of their mass during break-ups via Coulombic fission that 

occurred precisely at the Rayleigh limit.  Droplets of DMP and DEP however, were 

observed to emit only 12% to 20% of their charge, but 1.7% to 2.7% of their mass during 

break-ups via Coulombic fission that occurred precisely at the Rayleigh limit.  Droplets 

of NNA were observed to have charge and mass emissions similar to DMP and DEP 

droplets, but to have break-ups that occurred above the Rayleigh limit.  Finally, droplets 

of PNN were observed to emit 7% to 16% of their charge and 0.6% to 1.7% of their mass 

during break-ups via Coulombic fission.  Although the charge level at which break-ups 

were observed could not be directly determined, they were observed to occur at a 

reproducible charge level.   

To examine the role of electrical conductivity, the ionic dopants TDMAC, 

TDMAN, IL1, IL2, and Stadis 450 were used.  All of the ionic dopants, except for Stadis 

450, were found to completely dissolve in and predictably increase the electrical 

conductivity of the solvents used.  Here, droplets of DEP and DMP were doped with 

known amounts of either TDMAC, TDMAN, IL1, or IL2 and observed through multiple 

break-ups and the percentages of charge and mass emitted and the charge limits at which 

break-ups occurred were again recorded.  Here, the percentages of charge and mass 

emitted were observed to increase to 40% and decrease to below 0.1% as the amount of 

ionic dopant was increased.  Also, the increase in the percentage of charge emitted by 

doped droplets was found to increase to a certain point and then remain nearly constant.  

No effect on the charge level at which break-ups occurred however, with one exception, 

was observed.  The exception noted here was for a single droplet of DMP doped with a 

high concentration of TDMAN.  In this situation, the charge level was observed to 

increase to 150% of the corresponding Rayleigh limit and assumed to be the result of 

solid TDMAN present in the droplet.   

In separate studies, charged droplets of TEG-TDMAC and PNN-Stadis 450 were 

observed during their break-ups via Coulombic fission.  The TEG-TDMAC droplet was 

observed to have charge and mass emissions similar to pure TEG droplets and to again 

have break-ups that occurred at the Rayleigh limit, although its electrical conductivity 
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was increased.  Here again, the results indicate that the percentage of charge emitted by a 

droplet may be limited.  The PNN-Stadis 450 droplets were observed to give very 

dissimilar results to those obtained from other droplets containing an ionic dopant.  Here, 

the percentages of charge and mass emitted and the charge levels at which break-ups 

occurred were all observed to increase with each successive break-up.  It is assumed that 

the Stadis 450 precipitated out of the PNN during evaporation and that the electrical 

conductivity of the droplets actually decreased as a result of evaporation of the co-

solvents found in the ionic dopant.  However, no tests were performed to verify this 

assumption.   

To evaluate the role of electrical conductivity, as well as other physical droplet 

properties, a dimensionless analysis was performed using the Buckingham Pi theorem.  

Here, both the amounts and percentages of charge and mass emitted during break-ups 

were expressed as functions of density, relative permeability, surface tension, viscosity, 

electrical conductivity, and either the radius or the charge of the droplet.  Data collected 

from the break-ups of pure and doped droplets were used to fit the equations.  Both the 

amounts and percentages of charge and mass emitted during break-ups were found to 

have a weak dependence on the electrical conductivity relative to the other physical 

droplet properties.     

A more detailed inspection into the role of electrical conductivity was performed 

by determining the electrical conductivity of droplets over a narrow layer at their surface.  

Here, the Poisson-Boltzmann equation was used to determine the distribution and 

therefore the densities of ions at the droplet surface for droplets of DEP-TDMAC, DEP-

IL1, and DMP-TDMAN.  The ratio of the percentages of charge emitted to mass emitted, 

fq/fm, was found to be linearly related to the surface electrical conductivity droplet times 

the radius to the 3/2 power, Ks·a
3/2.  An extension of this analysis also found that the 

radius of the progeny microdroplets, ap, produced from the mass emitted during a break-

up was dependent on Ks to the -2/3 power.  To equivocally compare the results using 

surface electrical conductivity to those obtained using bulk electrical conductivity, fq/fm 
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was determined using the results the Buckingham Pi theorem.  Here, fq/fm was found to 

be linearly related to a0.22·K0.41. 

    

The results from both analyses were used to predict the droplet characteristics 

required for charged droplets to emit only gas phase ions.  Here, the relationship 

determined using bulk electrical conductivity found that a charged droplet of DEP would 

have a radius of less than 6 nm before ion emission could occur and that its electrical 

conductivity would have to be artificially increased to 120000 S·m-1 before ion 

emission would occur for a droplet having a radius of 100 nm.  When the relationship 

determined for fq/fm as a function of Ks·a
3/2 is used however, a much different trend 

appears.  Here, charged droplets are only found to undergo an ion emission when 

Ks=30.42 S·m-1, regardless of the droplet size.  This finding suggests that dielectric 

droplets are unlikely to ever emit only gas phase ions.   

In conclusion, electrical conductivity has been found to significantly affect how 

much charge and mass are emitted during the break-ups of charged droplets via 

Coulombic fission, but to have no effect on the charge levels at which such break-ups 

occur.  However, electrical conductivity alone is not solely responsible for all the effects 

observed as part of this study.  Physical droplet properties such as size, density, surface 

tension, and relative permeability all affect the characteristics of charge droplet break-

ups.  To fully understand the break-up phenomena, a more detailed investigation of how 

each of the physical properties of a charged droplet are related to its break-up is required.         



 

143

Chapter 6: Role of Water Insoluble Materials on the Hygroscopic Behavior of 

Atmospherically Relevant Inorganic Salts  

6.1 Results  

6.1.1 Hysteresis of Pure NaCl and NaBr Particles  

Charged particles of NaCl and NaBr were each individually levitated in an 

electrodynamic balance and observed during cycles of humidification and 

dehumidification over a specified range of relative humidity (RH).  Using the data 

analysis procedure described in Chapter 4, hysteresis loops were constructed for the two 

inorganic salts.  The goal here was not to determine the deliquescence relative humidities 

(DRH), crystallization relative humidities (CRH), or hygroscopic growth for the pure 

component inorganic salts, but to establish a baseline from which change could be 

ascertained.  Since the hysteresis loops of both inorganic salts will be repeatedly given in 

the following figures along with their mixed component counterparts, they are not given 

independently.  Furthermore, an example of the hysteresis loop for pure NaCl has been 

previously given in Chapter 2 by Figure 2.3.  Although multiple hysteresis loops were 

constructed for both of the inorganic salts, only a representative sample for each 

inorganic salt will be shown for comparison with mixed particles.   

During some experiments, the DRH and CRH of the pure component salts were 

observed to ‘shift’ below the values previously established for the individual salts.  This 

was found to occur when the battery for the relative humidity meter was nearly depleted.  

As such, hysteresis loops for pure component NaBr and NaCl particles were routinely 

constructed to monitor this problem.  To maintain consistency between experiments, the 

data collected from the pure component inorganic salt particles were calibrated using the 

DRH and CRH values found in current literature.  Here, the DRH and CRH of NaCl were 

taken as 75% and 45% RH, respectively, and the DRH and CRH of NaBr were taken as 

45% and 22% RH, respectively (Cohen et al., 1987a; Tang and Munkelwitz, 1994; 

Martin, 2000; and Wise et al., 2005; Biskos et al., 2006a).  The post-deliquescent 
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hygroscopic growth of the particles was taken from the equilibrium data given by Hamer 

and Wu (1972) and is presented in all relevant subsequent figures.    

6.1.2 Hygroscopic Behavior of NaCl and NaBr Particles Containing a Water Insoluble 

Solid  

Here, the effects on the hygroscopic behavior of NaCl and NaBr particles internally 

mixed with a water insoluble solid are reported.  The two inorganic salts were each 

individually combined with each of three selected water insoluble solids.  Here, the water 

insoluble solids selected for study were a carbon black (BC) provided by Contintental 

Carbon (lot N234, Phenix City, Al plant), lauric acid (LA), and anthracene (AN).  Each 

of the water insoluble solids was combined, although in different amounts, to both of the 

inorganic salts.  The mixed particles generated from each of the inorganic salt-water 

insoluble solid pairs were each observed through a cycle of humidification and 

dehumidification over a specific range of RH.  The data analysis procedure described in 

Chapter 4 was used to construct hysteresis loops for all the mixed particles that were 

observed.    

Three NaCl-BC particles were individually generated from three different 

solutions having known dry-mass ratios of NaCl to BC.  The hysteresis loops constructed 

from the mixed particles are presented in Figure 6.1 along with a hysteresis loop for a 

pure NaCl particle and data points representing the hygroscopic growth of pure NaCl 

obtained from Hamer and Wu (1972).  Since the hygroscopic growth of both the pure and 

mixed particles were in agreement with that given by Hamer and Wu (1972), the raw data 

points obtained from Hamer and Wu (1972) given by hollow diamonds cannot be easily 

seen.  The raw data points used to construct the hysteresis loop for pure NaCl are given 

by a solid circle and connected by a solid line.  The raw data points used to construct the 

hysteresis loops for the three NaCl-BC particles are given by a solid diamond, a solid 

square, and a solid triangle and correspond to mixed particles having a dry-mass mixtures 

containing 40% NaCl and 60% BC, 57% NaCl and 43% BC, and 70 % NaCl and 30% 

BC, respectively, and are all connected by a solid line. 
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Figure 6.1 Effect of BC on the hysteresis of NaCl particles.      
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All three NaCl-BC particles were observed to begin their initial water uptake at a 

lower RH than pure NaCl, but eventually exhibited the same DRH as pure NaCl.  After 

deliquescence, all three particles showed no noticeable difference in the amount of water 

absorbed or desorbed as compared to pure NaCl until they crystallized.  All mixed 

particles were observed to crystallize at a much higher RH than the pure NaCl particle.  

The particle containing a dry-mass content of 70% BC was observed to crystallize 

between 55% and 50% RH and the particles containing dry-mass contents of 40% and 

57% were observed to crystallize between 52% and 50% RH.  After crystallization, all 

three mixed particles appeared to retain some fraction of water.  No relationship between 

the amount of water retained after crystallization and the dry-mass ratios of the NaCl-BC 

particles was observed.    

A separate study was performed in which three NaCl-BC particles having dry-

mass contents of 43% NaCl and 57% BC were individually examined.  Here, the particles 

were subjected to different rates of change in the surrounding RH.  The hysteresis loops 

constructed from the mixed particles are presented in Figure 6.2 along with a hysteresis 

loop for a pure NaCl particle.  The raw data points used to construct the hysteresis loop 

for pure NaCl are given by a solid circle and connected by a solid line.  The raw data 

points used to construct the hysteresis loops for the three NaCl-BC particles are given by 

a solid diamond, a solid square, and a solid triangle and correspond to mixed particles 

having a dry-mass mixtures containing 57% NaCl and 43% BC that were observed under 

‘fast’, ‘normal’, and ‘slow’ rates of change to the surrounding RH, respectively, and are 

all connected by a solid line.  Here, the hysteresis loop for the ‘normal’ NaCl-BC particle 

is the same as the NaCl-BC particle having a dry-mass content of 57% BC in Figure 6.1.  

The ‘normal’ rate of change in the surrounding RH is consistent with the rate of change 

in all other related studies and corresponds to increasing the RH by about 1% per minute.  

The ‘fast’ and ‘slow’ rates correspond to a change in the RH by about 5% per minute and 

1% per 5 minutes, respectively.      
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Figure 6.2 Effect of the rate of change in the surrounding RH on the hysteresis of NaCl-

BC particles.     
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All three particles were observed to initiate water uptake at a much lower RH than 

pure NaCl, but eventually exhibited the same DRH and hygroscopic growth as pure 

NaCl.  Also, all mixed particles were again observed to crystallize at a much higher RH 

than the pure NaCl particle.  The particle labeled ‘fast’ was observed to crystallize 

between 62% and 59% RH and the particles labeled ‘normal’ and ‘slow’ were observed 

to crystallize between 53% and 50% RH.  After crystallization, the three particles 

appeared to retain some fraction of water.  No relationship between the amount of water 

retained after crystallization and the rate of change in the surrounding RH was observed.   

Two NaBr-BC particles were individually generated from a solution having a dry-

mass composition of 75% NaBr and 25% BC.  The hysteresis loops constructed from the 

mixed particles are presented in Figure 6.3 along with a hysteresis loop for a pure NaBr 

particle and data points representing the hygroscopic growth of pure NaBr obtained from 

Hamer and Wu (1972) given by hollow diamonds.  Here, the hygroscopic growth of the 

pure and mixed particles appears to differ slightly from that given by Hamer and Wu 

(1972).  The raw data points used to construct the hysteresis loop for pure NaBr are given 

by a solid circle and connected by a solid line.  The raw data points used to construct the 

hysteresis loops for the two NaBr-BC particles labeled (1) and (2) are given by a solid 

diamond and a solid square, respectively, and are both connected by a solid line.             
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Figure 6.3 Effect of BC on the hysteresis of NaBr particles.       
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Both mixed particles were observed to begin their initial water uptake at the same 

RH as pure NaBr and exhibited the same DRH as pure NaBr.  After deliquescence, the 

two mixed particles showed no noticeable difference in the amount of water absorbed or 

desorbed as compared to pure NaBr until they crystallized.  Both the mixed particles 

were observed to crystallize at a much higher RH than the pure NaBr particle.  Here, the 

two mixed particles were observed to crystallize between 33% and 29% RH.  After 

crystallization, both mixed particles appeared to retain some fraction of water.     

Two NaCl-LA particles were individually generated from a solution having a dry-

mass composition of 51% NaCl and 49% LA.  The hysteresis loops constructed from the 

mixed particles are presented in Figure 6.4 along with a hysteresis loop for a pure NaCl 

particle and data points representing the hygroscopic growth of pure NaCl obtained from 

Hamer and Wu (1972).  Since the hygroscopic growth of both the pure and mixed 

particles were in agreement with that given by Hamer and Wu (1972), the raw data points 

obtained from Hamer and Wu (1972) given by hollow diamonds cannot be easily seen.  

The raw data points used to construct the hysteresis loop for pure NaCl are given by a 

solid circle and connected by a solid line.  The raw data points used to construct the 

hysteresis loops for the two NaCl-LA particles labeled (1) and (2) are given by a solid 

diamond and a solid square, respectively, and are both connected by a solid line.               
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Figure 6.4 Effect of LA on the hysteresis of NaCl particles.     
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Both mixed particles were observed to begin their initial water uptake at a slightly 

lower RH than pure NaCl, but eventually exhibited the same DRH as pure NaCl.  After 

deliquescence, the two mixed particles showed no noticeable difference in the amount of 

water absorbed or desorbed as compared to pure NaCl until they crystallized.  Both the 

mixed particles were observed to crystallize at a RH significantly higher than the pure 

NaCl particle.  Here, the two mixed particles were observed to crystallize between 68% 

and 65% RH which is just below their DRH.  After crystallization, both mixed particles 

appeared to retain some fraction of water.   

Two NaBr-LA particles were individually generated from a solution having a dry-

mass composition of 82% NaBr and 18% BC.  The hysteresis loops constructed from the 

mixed particles are presented in Figure 6.5 along with a hysteresis loop for a pure NaBr 

particle and data points representing the hygroscopic growth of pure NaBr obtained from 

Hamer and Wu (1972) given by hollow diamonds.  Here, the hygroscopic growth of the 

pure and mixed particles appears to differ slightly from that given by Hamer and Wu 

(1972).  The raw data points used to construct the hysteresis loop for pure NaBr are given 

by a solid circle and connected by a solid line.  The raw data points used to construct the 

hysteresis loops for the two NaBr-LA particles labeled (1) and (2) are given by a solid 

diamond and a solid square, respectively, and are both connected by a solid line.             
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Figure 6.5 Effect of LA on the hysteresis of NaBr particles.      
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Both mixed particles were observed to begin their initial water uptake at 

approximately the same RH as pure NaBr and exhibited the same DRH as pure NaBr.  

After deliquescence, the two mixed particles showed no noticeable difference in the 

amount of water absorbed or desorbed as compared to pure NaBr until they crystallized.  

Both the mixed particles were observed to crystallize at a RH significantly higher than 

the pure NaBr particle.  Here, the two mixed particles were observed to crystallize 

between 43% and 41% RH which is just below their DRH.  After crystallization, both 

mixed particles appeared to retain some fraction of water.     

A separate study was performed in which three NaBr-LA particles having dry-

mass contents of 82% NaBr and 18% LA were individually examined.  Here, two of the 

particles were subjected to multiple cycles of humidification and dehumidification.  The 

hysteresis loops constructed from the mixed particles are presented in Figure 6.6.  The 

raw data points used to construct the hysteresis loop for pure NaBr are given by a solid 

circle and connected by a solid line.  Here, the particle labeled (1) is identical to the 

particle labeled (1) in figure 6.5 whereas the particles labeled (2) and (3) are unique to 

Figure 6.6.  The subscripts ‘a’, ‘b’, and ‘c’ attached to particles (2) and (3) indicate the 

order of the cycles of humidification and dehumidification experienced by the particle 

where ‘a’ is the first cycle, ‘b’ is the second cycle, and ‘c’ is the third cycle.  Particle (2) 

and particle (3) were exposed to two and three cycles of humidification and 

dehumidification, respectively.  Particle (1) is represented by a solid diamond, particle (2) 

is represented by a solid square for its first cycle (2a) and by a hollow square for its 

second cycle (2b), particle (3) is represented by a solid triangle for its first cycle (3a), by 

a hollow triangle for its second cycle (3b), and by an inverted hollow triangle for its third 

cycle (3c).  The data points representing each cycle of humidification and 

dehumidification are connected by a solid line.      



 

155      

 

Figure 6.6 Effect of exposing mixed particles of LA and NaBr to repeated hysteresis on 

the CRH of the mixed particles.      
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With the exception of particle (2) during its first cycle, all particles during all 

cycles of humidification and dehumidification were observed to have the same initial 

water uptake, DRH, and post-deliquescence water absorption and desorption as pure 

NaBr.  During their first dehumidification cycle, all mixed particles were observed to 

crystallize at a significantly higher RH than the particle of pure NaBr.  Particle (1), and 

the first cycles of particles (2) and (3) given by (2a) and (3a), respectively, were observed 

to crystallize between 43% and 38% RH which is just below their DRH.  However, when 

particles (2) and (3) were again subjected to a cycle of humidification and 

dehumidification given by (2b) and (3b), respectively, they were both observed to 

crystallize at the same CRH as the pure NaBr particle.  Furthermore, this behavior was 

observed again by particle (3) when it was exposed to a third cycle given by (3c).  After 

crystallization, all mixed particles appeared to retain some fraction of water at the end of 

each cycle.     

Three NaCl-AN particles were individually generated from a solution having a 

dry-mass composition of 57% NaCl and 43% LA.  The hysteresis loops constructed from 

the mixed particles are presented in Figure 6.7 along with a hysteresis loop for a pure 

NaCl particle and data points representing the hygroscopic growth of pure NaCl obtained 

from Hamer and Wu (1972) given by hollow diamonds.  The raw data points used to 

construct the hysteresis loop for pure NaCl are given by a solid circle and connected by a 

solid line.  The raw data points used to construct the hysteresis loops for the three NaCl-

AN particles labeled (1), (2), and (3) are given by a solid diamond, a solid square, and a 

solid triangle, respectively, and are all connected by a solid line.         
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Figure 6.7 Effect of AN on the hysteresis of NaCl particles.      
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The mixed particles labeled (1) and (2) were observed to begin their initial water 

uptake at a slightly lower RH than pure NaCl, whereas particle (3) began its initial water 

uptake identically to the particle of pure NaCl.  All particles however, eventually 

exhibited the same DRH as pure NaCl.  After deliquescence, all three mixed particles 

showed a noticeable difference in the amount of water absorbed or desorbed as compared 

to pure NaCl.  Here, the water mass fraction of the mixed particles appeared to be much 

higher than that of the pure NaCl particle.  The three particles however, were observed to 

crystallize at the same CRH as pure NaCl.  After crystallization, two of the three mixed 

particles appeared to retain some water after crystallization   

As the behavior of the three NaCl-AN was dramatically different from that of the 

other mixed particles in relation to their pure component counterparts, an alternative 

analysis of the collected data was performed.  Here, it was assumed that no AN was in 

fact present ion the mixed particle.  Therefore, the raw data used to construct the 

hysteresis loops in Figure 6.7 was re-analyzed to construct the hysteresis loops given in 

Figure 6.8.  Here, the mixed particles are identical to those in Figure 6.7 where particles 

(1), (2), and (3) are relabeled as (1a), (2a), and (3a), respectively.  Furthermore, the dry-

mass compositions of the particles are listed in the figure as 00% AN and 100% NaCl to 

reflect the assumption used to re-analyze the data.             
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Figure 6.8 Alternative analysis of AN-NaCl data presented in figure 6.7.      
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After re-analyzing the data originally presented in Figure 6.7, the data presented 

in Figure 6.8 suggest that no AN was likely present in any of the mixed particles 

generated from a solution containing 57% NaCl and 43% AN on a dry-mass basis as all 

particles are nearly identical.  While it is possible that significant settling of the AN could 

have occurred prior to the instant that the mixed particles were generated, no further tests 

were conducted to verify this assumption.   

Three NaBr-An particles were individually generated from three solutions having 

different dry-mass ratios of NaBr to AN.  The hysteresis loops constructed from the 

mixed particles are presented in Figure 6.9 along with a hysteresis loop for a pure NaBr 

particle and data points representing the hygroscopic growth of pure NaBr obtained from 

Hamer and Wu (1972) given by hollow diamonds.  Here, the hygroscopic growth of the 

pure and mixed particles appears to differ slightly from that given by Hamer and Wu 

(1972).  The raw data points used to construct the hysteresis loop for pure NaCl are given 

by a solid circle and connected by a solid line.  The raw data points used to construct the 

hysteresis loops for the three NaBr-An particles are given by a solid diamond, a solid 

square, and a solid triangle and correspond to mixed particles having a dry-mass mixtures 

containing 90% NaBr and 10% AN, 60% NaBr and 40% AN, and 25 % NaBr and 75% 

AN, respectively, and are all connected by a solid line.             
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Figure 6.9 Effect of AN on the hysteresis of NaBr particles.      
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All three NaBr-AN particles were observed to begin their initial water uptake at 

approximately the same RH as pure NaBr and exhibited the same DRH as pure NaBr.  

After deliquescence, the mixed particle having a dry-mass composition of 40% AN 

showed no noticeable difference in the amount of water absorbed or desorbed as 

compared to pure NaCl until about 34% RH where it begin desorbing water at a faster 

rate.  The other two mixed particles appeared to absorb slightly more water than the pure 

NaBr particle.  However, all three mixed particles crystallized at the same CRH as the 

pure NaBr particle.  All three mixed particles were observed to retain a noticeable 

amount of water after crystallization, but no relationship was observed between the 

amount of water retained and the dry-mass composition of the particles.  

6.1.3 Hygroscopic Behavior of NaCl and NaBr Particles Containing a Water Insoluble 

Liquid  

Here, the effects on the hygroscopic behavior of NaCl and NaBr particles internally 

mixed with a water insoluble liquid are reported.  The two inorganic salts were each 

individually combined with one of three selected water insoluble liquids.  Here, the water 

insoluble liquids selected for study were dioctyl phthalate (DOP), Invoil 704 silicone 

diffusion pump fluid (SIL), and Santovac-5-oil, a polyphenyl ether (PPE).  Each of the 

water insoluble liquids was combined, although in different amounts, to both of the 

inorganic salts.  The mixed particles generated from each of the inorganic salt-water 

insoluble liquid pairs were each observed through a cycle of humidification and 

dehumidification over a specific range of RH.  The data analysis procedure described in 

Chapter 4 was used to construct hysteresis loops for all the mixed particles that were 

observed. For figures involving NaCl mixed with a liquid additive, a different pure 

component NaCl particle hysteresis is given as a reference than was seen in figures 

involving NaCl with a solid additive.  The change in the pure NaCl particle hysteresis 

shown in the following corresponding figures reflects a recalibration of the humidity 

meter used.  
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A single NaCl-DOP particle was generated from solutions having a dry-mass 

ratios composition of 33% NaCl and 67% DOP.  The hysteresis loops constructed from 

the mixed particle is presented in Figure 6.10 along with a hysteresis loop for a pure 

NaCl particle and data points representing the hygroscopic growth of pure NaCl obtained 

from Hamer and Wu (1972).  Since the hygroscopic growth of both the pure and mixed 

particles were in agreement with that given by Hamer and Wu (1972), the raw data points 

obtained from Hamer and Wu (1972) given by hollow diamonds cannot be easily seen.  

The raw data points used to construct the hysteresis loop for pure NaCl are given by a 

solid circle and connected by a solid line.  The raw data points used to construct the 

hysteresis loops for the NaCl-DOP particle is given by a solid diamond and connected by 

a solid line.                     
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Figure 6.10 Effect of DOP on the hysteresis of NaCl particles.      
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The NaCl-DOP particle was observed to begin its initial water uptake at a much 

lower RH than pure NaCl and had a DRH that was slightly reduced (about 1%) as 

compared to pure NaCl.  After deliquescence, the mixed particle showed no noticeable 

difference in the amount of water absorbed or desorbed as compared to pure NaCl.  The 

mixed particle was observed to crystallize at a slightly lower RH than the pure NaCl 

particle (about 2%).  After crystallization, the mixed particle appeared to retain some 

fraction of water.     

A single NaBr-DOP particle was generated from solutions having a dry-mass 

ratios composition of 64% NaBr and 36% DOP.  The hysteresis loops constructed from 

the mixed particle is presented in Figure 6.11 along with a hysteresis loop for a pure 

NaBr particle and data points representing the hygroscopic growth of pure NaCl obtained 

from Hamer and Wu (1972) given by hollow diamonds.  Here, the hygroscopic growth of 

the pure and mixed particles appears to differ slightly from that given by Hamer and Wu 

(1972).  The raw data points used to construct the hysteresis loop for pure NaBr are given 

by a solid circle and connected by a solid line.  The raw data points used to construct the 

hysteresis loops for the NaBr-DOP particle is given by a solid diamond and connected by 

a solid line.              
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Figure 6.11 Effect of DOP on the hysteresis of NaBr particles.      
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The NaBr-DOP particle was observed to begin its initial water uptake at a 

somewhat lower RH than pure NaCl and had a DRH that was slightly reduced (about 1%) 

as compared to pure NaCl.  After deliquescence, the mixed particle showed no noticeable 

difference in the amount of water absorbed or desorbed as compared to pure NaBr.  The 

mixed particle was observed to crystallize at essentially the same RH as the pure NaBr 

particle.  After crystallization, the mixed particle appeared to retain some fraction of 

water.     

A single NaCl-SIL particle was generated from solutions having a dry-mass ratios 

composition of 68% NaCl and 32% SIL.  The hysteresis loops constructed from the 

mixed particle is presented in Figure 6.12 along with a hysteresis loop for a pure NaCl 

particle and data points representing the hygroscopic growth of pure NaCl obtained from 

Hamer and Wu (1972).  Since the hygroscopic growth of both the pure and mixed 

particles were in agreement with that given by Hamer and Wu (1972), the raw data points 

obtained from Hamer and Wu (1972) given by hollow diamonds cannot be easily seen.  

The raw data points used to construct the hysteresis loop for pure NaCl are given by a 

solid circle and connected by a solid line.  The raw data points used to construct the 

hysteresis loops for the NaCl-SIL particle is given by a solid diamond and connected by a 

solid line.              
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Figure 6.12 Effect of SIL on the hysteresis of NaCl particles.       
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The NaCl-SIL particle was observed to begin its initial water uptake at a much 

lower RH than pure NaCl and had a DRH that was slightly reduced (about 1%) as 

compared to pure NaCl.  After deliquescence, the mixed particle showed no noticeable 

difference in the amount of water absorbed or desorbed as compared to pure NaCl.  The 

mixed particle was observed to crystallize at precisely the same RH as the pure NaCl 

particle.  After crystallization, the mixed particle appeared to retain some fraction of 

water.     

A single NaBr-SIL particle was generated from solutions having a dry-mass ratios 

composition of 58% NaBr and 42% SIL.  The hysteresis loops constructed from the 

mixed particle is presented in Figure 6.13 along with a hysteresis loop for a pure NaBr 

particle and data points representing the hygroscopic growth of pure NaCl obtained from 

Hamer and Wu (1972) given by hollow diamonds.  Here, the hygroscopic growth of the 

pure and mixed particles appears to differ slightly from that given by Hamer and Wu 

(1972).  The raw data points used to construct the hysteresis loop for pure NaBr are given 

by a solid circle and connected by a solid line.  The raw data points used to construct the 

hysteresis loops for the NaBr-SIL particle is given by a solid diamond and connected by a 

solid line.              
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Figure 6.13 Effect of SIL on the hysteresis of NaBr particles.       
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The NaBr-SIL particle was observed to begin its initial water uptake at a 

significantly lower RH than pure NaBr and had a DRH that was slightly reduced (about 

1%) as compared to pure NaBr.  After deliquescence, the mixed particle showed no 

noticeable difference in the amount of water absorbed or desorbed as compared to pure 

NaBr.  The mixed particle was observed to crystallize at precisely the same RH as the 

pure NaBr particle.  After crystallization, the mixed particle appeared to retain some 

fraction of water.     

A single NaCl-PPE particle was generated from solutions having a dry-mass 

ratios composition of 62% NaCl and 38% PPE.  The hysteresis loops constructed from 

the mixed particle is presented in Figure 6.14 along with a hysteresis loop for a pure 

NaCl particle and data points representing the hygroscopic growth of pure NaCl obtained 

from Hamer and Wu (1972).  Since the hygroscopic growth of both the pure and mixed 

particles were in agreement with that given by Hamer and Wu (1972), the raw data points 

obtained from Hamer and Wu (1972) given by hollow diamonds cannot be easily seen.  

The raw data points used to construct the hysteresis loop for pure NaCl are given by a 

solid circle and connected by a solid line.  The raw data points used to construct the 

hysteresis loops for the NaCl-PPE particle is given by a solid diamond and connected by 

a solid line.             
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Figure 6.14 Effect of PPE on the hysteresis of NaCl particles.      
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The NaCl-PPE particle was observed to begin its initial water uptake at a much 

lower RH than pure NaCl and had a DRH that was slightly reduced (about 1%) as 

compared to pure NaCl.  After deliquescence, the mixed particle showed no noticeable 

difference in the amount of water absorbed or desorbed as compared to pure NaCl.  The 

mixed particle was observed to crystallize at precisely the same RH as the pure NaCl 

particle.  After crystallization, the mixed particle appeared to retain some fraction of 

water.     

A single NaBr-PPE particle was generated from solutions having a dry-mass 

ratios composition of 57% NaBr and 43% PPE.  The hysteresis loops constructed from 

the mixed particle is presented in Figure 6.15 along with a hysteresis loop for a pure 

NaBr particle and data points representing the hygroscopic growth of pure NaCl obtained 

from Hamer and Wu (1972) given by hollow diamonds.  Here, the hygroscopic growth of 

the pure and mixed particles appears to differ slightly from that given by Hamer and Wu 

(1972).  The raw data points used to construct the hysteresis loop for pure NaBr are given 

by a solid circle and connected by a solid line.  The raw data points used to construct the 

hysteresis loops for the NaBr-PPE particle is given by a solid diamond and connected by 

a solid line.              
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Figure 6.15 Effect of PPE on the hysteresis of NaBr particles.      
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The NaBr-PPE particle was observed to begin its initial water uptake at about the 

same RH as pure NaBr, but exhibited a sharp ‘jump’ in its initial water uptake.  The 

water mass fraction of the mixed particle then remained nearly constant over a range of 

about 5% RH before beginning to deliquesce at a DRH that was slightly reduced (about 

1%) as compared to pure NaBr.  After deliquescence, the mixed particle showed no 

noticeable difference in the amount of water absorbed or desorbed as compared to pure 

NaBr.  The mixed particle was observed to crystallize at very near the same RH as the 

pure NaBr particle.  After crystallization, the mixed particle appeared to retain a small 

fraction of water.    

6.2 Discussion   

The initial water uptakes of nearly all the mixed particles observed during this 

study were observed to occur at noticeably lower relative humidities than what were 

observed for the corresponding pure component inorganic salts regardless of the additive 

used.  This finding is fairly common within relevant literature, although more so for 

particles containing slightly soluble organics (Andrews & Larson, 1993; Lightstone et al., 

2000; Choi & Chan, 2002a; Chan & Chan, 2003; Prenni et al., 2003; Braban & Abbatt, 

2004; Brooks et al., 2004; Badger et al., 2005; Semeniuk et al., 2007a; Sjogren et al., 

2007; Wise et al., 2007).  Sjogren et al. (2007) have commented on the initial water 

uptake of pure (NH4)2SO4 particles mixed with adipic acid.  They have suggested that 

veins of the inorganic salt exist within the mixed particle and that the initial water uptake 

is aided by capillary forces that allow partial dissolution of the inorganic salt prior to 

deliquescence.     

The deliquescence relative humidities and subsequent hygroscopic growth of all 

the mixed particles observed during this study were observed to be nearly identical to 

those of the corresponding pure component inorganic salts regardless of the additive 

used, within the range of error specified for the humidity meter (±1.5% RH).  Previous 

investigators have reported similar findings for a wide variety of organic-inorganic 

particle mixtures.  Cruz and Pandis (2000) and Choi and Chan (2002a) reported that the 
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water soluble organic acids they studied had no effect of the DRH of NaCl particles.  

Chan and Chan (2003), Brooks et al. (2004), and Parsons et al. (2004) have reported 

similar findings for NaCl particles containing humic and fulvic acids.  Moreover, 

Semeniuk et al. (2007a) have reported that the inorganic fractions of naturally collected 

atmospheric particles dominated their hygroscopic behavior.     

Slight disagreement was observed between NaBr-bearing particles and the 

literature data given by Hamer and Wu (1972).  However, such disagreement is not 

unreasonable as the raw data points taken from Hamer and Wu (1972) are for bulk 

solutions and not particles.  The disparity between bulk solutions and individual particles 

has been previously discussed by Tang et al. (1986) and Cohen et al. (1987a).   

Some variance was also observed between the hygroscopic growth of NaBr-AN 

particles and pure NaBr particles.  Here, two of the three mixed particles were observed 

to have increased water mass fractions relative to pure NaBr particles.  The deviations 

noted here are most likely the result of assuming that the particles retained the same dry-

mass ratio of NaBr to AN as the bulk solution they were generated from as even a slight 

change in the ratio could account for the differences observed.    

The crystallization relative humidities of the mixed particles containing either BC 

or LA were observed to occur at much higher relative humidities than those of the 

corresponding pure component inorganic salts whereas mixed particles containing either 

AN, DOP, SIL, or PPE had crystallization relative humidities nearly identical to the 

corresponding pure component inorganic salts.   Previous investigators have reported that 

the crystallization relative humidities of atmospherically relevant inorganic salts were 

affected by the inclusion of an organic, although such organics were typically water 

soluble.  Lightstone et al. (2000) have reported they observed an increase in the 

crystallization relative humidities of NH4NO3 particles internally mixed with succinic 

acid.  Furthermore, Choi and Chan (2002a) have reported they observed the same effect 

NaCl and (NH4)2SO4 particles when internally mixed with succinic acid.  Both 

investigators have attributed the increase in the crystallization relative humidity to the 
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heterogeneous nucleation of the corresponding inorganic salt by the organic.  However, 

these effects are not mentioned by investigators who have used water insoluble liquids 

and solids (Otani and Wang, 1984; Hansson et al., 1990;1998; Hameri et al., 1992; 

Garland et al., 2005; Chan and Chan, 2007).  Garland et al. (2005) have specifically 

stated that palmitic acid, a slightly soluble organic, did not act as heterogeneous nuclei 

for (NH4)2SO4 particles.  Furthermore, heterogeneous nucleation does not explain why 

the crystallization relative humidities of the NaBr-AN particles and the NaBr-LA 

particles exposed to repeated cycles of humidification and dehumidification were 

unaffected.  The effect of water insoluble solids on the hygroscopic behavior of 

atmospherically relevant inorganic salts is discussed in greater detail in the following 

section of this chapter.   

Nearly all particles observed during this study were observed to retain some 

amount of water after crystallization.  Numerous investigators have also previously 

reported this finding (Cohen et al., 1987b; Chan et al., 1997; Peng & Chan, 2001; Choi & 

Chan, 2002; Colberg et al., 2004; Badger et al., 2005; Rosenoern et al., 2008).  However, 

no independent tests were conducted to verify if the particles truly contained water after 

crystallization or if the particles emitted some portion of their charge during 

crystallization.  Since the mass of the particles was determined via their DC null point 

levitation potential, both are possible.  As such, no conclusions can be drawn from this 

aspect of the hygroscopic behavior of the particles.  

6.3 Examination of the Water Insoluble Solids Used During this Study  

During examinations conducted as part of this study, water insoluble solids were 

observed to affect the crystallization relative humidities of NaCl and NaBr particles.  

Namely, three types of water insoluble solids were examined, but only two were found to 

significantly increase the relative humidity at which the crystallization occurred.  Since 

the three solids are completely different from each other, the physical and chemical 

properties of the three water insoluble solids used during this study were more closely 

examined.  The goal here is to ascertain which, if any, of the physical and chemical 
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properties of the three solids affected the hygroscopic behavior of the NaCl and NaBr 

particles.  As such, the contact angle, solubility, crystallinity, and functional groups 

associated with each of the water insoluble solids used as part of this study were more 

closely examined.   

The role of contact angle has been previously reported by Gao et al. (2007) to 

affect the deliquescence relative humidity of NaCl nanoparticles residing on a substrate.  

However, no effect on the deliquescence relative humidity of any of the mixed particles 

was observed.  The contact angle of AN and water is 93° - 94° (Fox et al., 1953; Maleki 

et al., 2006) and of LA and water is 78.5° - 111° (Nietz, 1928; De Keyser & Joos, 1984; 

Minami et al., 2008).  The contact angle for the BC used in this study is unknown.  

Moreover, the contact angles of BC have been previously observed to be between 0° and 

180° depending on composition (Studebaker &  Snow, 1955) making it unreasonable to 

assume a probable value.  However, as the contact angle of AN falls within the range 

given for LA, and only LA affected the crystallization relative humidity of the two 

inorganic salts, it is unlikely that the contact angle is a significant factor.  It is noted here 

however, that the contact angles cited are for interaction with pure water, whereas the 

solids used this study were in contact with water containing dissolved ions from the 

inorganic salts which may significantly affect their wettability.    

Lightstone et al. (2000) and Choi and Chan (2002a) have reported that succinic 

acid, a slightly soluble organic with a solubility of 83.5 g·l-1 (Lide, 2004), increased the 

crystallization relative humidities of atmospherically relevant inorganic salt particles.  

Although BC and AN are completely insoluble in water and none of the solids exhibited 

any hygroscopic growth as pure particles at relative humidities up to 95%, LA in fact has 

a very slight solubility of 0.055 g·l-1 (Lide, 2004) and was observed to increase the 

crystallization relative humidities of NaCl and NaBr particles.  However, assuming that 

slightly soluble organics can affect the crystallization relative humidities of 

atmospherically relevant inorganic salt particles, why then where they not affected for the 

successive cycles of humidification and dehumidification of NaBr-LA particles and why 

where the crystallization relative humidities of NaC-BC and NaBr-BC particles also 
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increased?  As these questions remained unanswered, it is unlikely that the solubility of 

an additive is a significant factor.   

The crystallinity of the three solids was considered.  Here, the LA and AN used in 

this study were most likely in a crystalline or microcrystalline form (Robertson, 1933; 

Vand et al., 1951; Lomer & Spanswick, 1961; Lomer, 1963; Bordat & Brown, 2009), 

whereas the BC would be considered non-crystalline (Biscoe & Warren, 1942; Zhu et al., 

2004).  It should be noted here that the exact composition and physical structure of the 

BC used as part of this study are unknown.  Regardless, as BC and LA were observed to 

affect the crystallization of the NaCl and NaBr particles and AN was not, no relationship 

between the physical structure of the additive and its effect on the crystallization relative 

humidities of atmospherically relevant inorganic salts can be inferred.  

The functional groups present in each of the water insoluble solids were also 

evaluated.  Although the exact composition of the BC used as part of this study is not 

known, other forms of BC have been consistently observed to contain a wide variety of 

functional groups and metal ions (Hallum & Drushel, 1958; O’Reilly & Mosher, 1983; 

Boehm, 1994).  O’Reilly & Mosher (1983) have reported they observed COOH+ 

functional groups in commercially available BC.  This same functional group is also 

present in LA.  In fact, the COOH+ functional groups is also present in the succinic acid 

reported to increase the crystallization relative humidities of atmospherically relevant 

inorganic salts by Lightstone et al. (2000) and Choi and Chan (2002a).  Furthermore, the 

COOH+ functional group is not found in AN.  In fact, AN possess no functional groups at 

all, but is rather a highly stable, planar, aromatic hydrocarbon.  Here at last, an inference 

can be made between the two water insoluble solids that affected the crystallization 

relative humidities of the NaCl and NaBr particles and the one that did not.  Namely, the 

presence of a chemical functional group, more specifically the COOH+ group, appears to 

increase the crystallization relative humidities of atmospherically relevant inorganic salts.  

However, no explanation still exists for why the crystallization relative humidities of 

NaBr-LA particles were unaffected when they were exposed to repeated cycles of 

humidification and dehumidification.  Here it is proposed that a more specific array of 
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water insoluble solids containing a single, but known, functional group should be 

examined.  

6.4 Conclusions  

In this chapter, the effects of water insoluble materials on the hygroscopic behavior of 

atmospherically relevant inorganic salts have been discussed.  Particles of NaCl and 

NaBr were examined both as pure components and when internally mixed with one of six 

different water insoluble materials; three of which were solids and three of which were 

liquids.  Hysteresis loops for both the pure and mixed particles were constructed to 

examine the effects of the water insoluble materials on their hygroscopic behavior.   

The deliquescence relative humidities and subsequent hygroscopic growth of all 

mixed particles were observed to be unaffected by the presence of any of the water 

insoluble materials.  However, the crystallization relative humidities of NaCl and NaBr 

particles were observed to be increased when they were internally mixed with either BC 

or LA.  However, no such effect was observed for mixtures involving AN, DOP, SIL, or 

PPE.  Furthermore, the crystallization relative humidities of NaBr-LA particles were only 

observed to be affected during their first cycle of humidification and dehumidification.     

The results ascertained from this study indicate that the hygroscopic behavior of 

atmospherically relevant inorganic salts can be affected by water insoluble solids.  

Specifically, the crystallization relative humidities of NaCl and NaBr particles can be 

significantly increased when a water insoluble solid is present.  These results suggest that 

the solid additive somehow alters the point where it is more energetically favorable for 

the particle to exist in a solid state.  However, the morphology of the mixed particle may 

also play a role in the observed effects to hygroscopic behavior.  The particles observed 

during this study were internally mixed whereas previous investigations have examined 

atmospherically relevant salts that were externally coated with water insoluble solids and 

have not reported changes in the crystallization relative humidities (Otani and Wang, 

1984; Hansson et al., 1990;1998; Hameri et al., 1992, Garland et al., 2005).  Moreover, 
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not all the water insoluble solids examined as part of this study were found to affect the 

hygroscopic behavior of the NaCl and NaBr particles and none of the water insoluble 

liquids were found to affect the hygroscopic behavior of the NaCl and NaBr particles.  

Therefore, the particle morphology developed between an atmospherically relevant 

inorganic salt and a specific additive may have a greater effect on the hygroscopic 

behavior of the particle than the additive itself.    

An in-depth study was performed to ascertain why only two of the three water 

insoluble solids used as part of this study were observed to increase the crystallization 

relative humidities of the NaCl and NaBr particles.  Here, the contact angle, solubility, 

crystallinity, and functional groups associated with each of the three solids were more 

closely examined.  No inferences could be made regarding the effects of the contact 

angle, solubility, or crystallinity of the three solids.  However, the presence of a COOH+ 

functional group in both the BC and LA additives, but absent in the AN additive, was 

attributed to the increases observed by BC and LA to the crystallization relative 

humidities of the NaCl and NaBr particles as it has also been found to be present in 

previous literature where such an increase has been reported (Lightstone et al., 2000; 

Choi and Chan, 2002a).              
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Chapter 7: Conclusions  

In an effort to better understand the role of electrical conductivity on the break-ups of 

charged droplets via Coulombic fission and the hygroscopic behavior of mixed particles, 

two independent studies were conducted.  The first of these studies examined the role of 

electrical conductivity on the amounts of charge and mass emitted by charged droplets 

during their break-ups via Coulombic fission and the charge limit at which break-ups 

occurred.  Here, increasing the electrical conductivity of dielectric droplets via an ionic 

dopant was found to increase the amount of charge emitted and decrease the amount of 

mass emitted during droplet break-ups via Coulombic fission, but not to affect the charge 

limit at which the break-ups occurred.  Two different analyses of the data revealed that 

droplet size, electrical conductivity, viscosity, density, and permittivity all play a role in 

determining the characteristics of charged droplet break-ups.     

The second study examined how certain water insoluble materials affected the 

hygroscopic behavior of atmospherically relevant inorganic salts.  Here, some water 

insoluble solids were found to increase the relative humidity at which crystallization 

occurs for NaCl and NaBr particles.  However, the effects were only observed to occur 

for the first cycle of humidification and dehumidification for one of the solids.  As such, 

many questions remain unanswered in this portion of the study.  An analysis of the water 

insoluble solids found to elicit a change in the crystallization relative humidities of the 

NaCl and NaBr particles indicated that the presence of a COOH+ functional group may 

play a role.  Further study in this area however, would be required to assume a more 

formal relationship.     

In conclusion, both studies discussed herein have contributed to the basic 

understanding of charged aerosols and the results obtained have promising applications in 

both modern industry and atmospheric research.      
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Nomenclature  

A           projected area of an aerosol 

An         grouping term 

a           droplet radius 

an          scattering coefficient 

aw          activity of water 

Bn         grouping term 

bn          scattering coefficient 

C           molar concentration 

C0          geometric constant 

CD         drag coefficient 

CKelvin     Kelvin correction factor 

Cn          grouping term 

DAB        diffusion coefficient of species A in species B 

Dn          grouping term  

d            droplet diameter  

dm          charge relaxation length 

E            electric field 

F            force 

fAC          AC frequency 

fm           percentage of mass  

fq            percentage of charge  

fR            percentage of Rayleigh limit 

fwater        water fraction  

g            acceleration due to gravity 

I             intensity  

Jr           radial diffusive flux  

K           electrical conductivity 

Keq        equilibrium constant 

k            grouping constant 
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kB         Boltzmann constant 

l             order number 

Mw         molar mass 

m           mass 

N           number 

Nr         radial flux  

n            degree of Legendre function 

P            pressure 

1
nP          1st order Legendre function of degree n 

q             charge on an aerosol 

qR           Rayleigh limit charge 

R            ideal gas constant 

r             radial distance from the center of a droplet 

rjet          radius of the initial cone-jet 

Sw          saturation ratio of water 

T            temperature 

U           characteristic velocity 

V           potential 

X           mass fraction  

x            size parameter 

Y( )     sum of squares 

y           vapor mole fraction 

z            distance between two electrodes         
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Greek symbols  

            grouping constant 

            field strength parameter 

            surface tension of a liquid droplet 

Kelvin     influence of surface tension from Kelvin effect 

sol         surface tension of a bulk solution 

            drag parameter 

 

           dielectric constant 

0           permittivity of free space 

            grouping constant 

            scattering angle             

grouping constant 

            wavelength 

           dynamic viscosity of fluid surrounding a levitated aerosol 

           pi term used in dimensionless analysis 

n          1
st angular function term for a grouping with an nth degree Legendre function 

           density of a liquid droplet 

f          density of the fluid displaced by a levitated aerosol 

s           grouping constant 

n          2
nd angular function term for a grouping with an nth degree Legendre function 

n          n
th order Ricatti-Bessel functions of the 2nd kind 

n         n
th order Ricatti-Bessel functions of the 1st kind 

          refractive index       
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