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ABSTRACT OF DISSERTATION

GAUGE-GRAVITY DUALITY
AND ITS APPLICATIONS TO COSMOLOGY AND FLUID DYNAMICS

This thesis is devoted to the study of two important applications of gauge-gravity
duality: the cosmological singularity problem and conformal fluid dynamics. Gauge-
gravity duality is a concrete dual relationship between a gauge theory (such as elec-
tromagnetism, the theories of weak and strong interactions), and a theory of strings
which contains gravity. The most concrete application of this duality is the AdS/CFT
correspondence, where the theory containing gravity lives in the bulk of an asymp-
totically anti-de-Sitter space-time, while the dual gauge theory is a deformation of a
conformal field theory which lives on the boundary of anti-de-Sitter space-time(AdS).

Our first application of gauge-gravity duality is to the cosmological singularity
problem in string gravity. A cosmological singularity is defined as a spacelike region
of space-time which is highly curved so that Einstein’s gravity theory can be no longer
applied. In our setup the bulk space-time has low curvature in the far past and the
physics is well described by supergravity (which is an extension of standard Einstein
gravity). The cosmological singularity is driven by a time dependent string coupling
in the bulk theory. The rate of change of the coupling is slow, but the net change of
the coupling can be large. The dual description of this is a time dependent coupling
of the boundary gauge theory. The coupling has a profile which is a constant in the
far past and future and attains a small but finite value at intermediate times. We con-
struct the supergravity solution, with the initial condition that the bulk space-time is
pure AdS in the far past and show that the solution remains smooth in a derivative
expansion without formation of black holes. However when the intermediate value
of the string coupling becomes weak enough, space-time becomes highly curved and
the supergravity approximation breaks down, mimicking a spacelike singularity. The
resulting dynamics is analyzed in the dual gauge theory with a time dependent cou-
pling constant which varies slowly. We develop an appropriate adiabatic expansion
in the gauge theory in terms of coherent states and show that the time evolution
continues to be smooth. We cannot, however, arrive at a definitive conclusion about
the fate of the system at very late times when the coupling has again risen and super-
gravity again applies. One possibility is that the energy which has been supplied to



the universe is simply extracted out and the space-time goes back to its initial state.
This could provide a model for a bouncing cosmology. A second possibility is that
dissipation leads to a thermal state at late time. If this possibility holds, we show
that such a thermal state will be described either by a gas of strings or by a small
black hole, but not by a big black hole. This means that in either case, the future
space-time is close to AdS.

We then apply gauge-gravity duality to conformal fluid dynamics. The long wave-
length behavior of any strongly coupled system with a finite mean free path is de-
scribed by an appropriate fluid dynamics. The bulk dual of a fluid flow in the bound-
ary theory is a black hole with a slowly varying horizon. In this work we consider
certain fluid flows which become supersonic in some regions. It is well known that
such flows present acoustic analogs of ergoregions and horizons, where acoustic waves
cannot propagate in certain directions. Such acoustic horizons are expected to ex-
hibit thermal radiation of acoustic waves with temperature essentially given by the
gradient of the velocity at the acoustic horizon. We find acoustic analogs of black
holes in charged conformal fluids and use gauge-gravity duality to construct dual
gravity solutions. A certain class of gravitational quasinormal wave modes around
these gravitational backgrounds perceives a horizon. Upon quantization, this implies
that these gravitational modes should have a thermal spectrum.

The final issue that we study is fluid-gravity duality at zero temperature. The
usual way of constructing gravity duals of fluid flows is by means of a small derivative
expansion, in which the derivatives are much smaller than the temperature of the
background black hole. Recently, it has been reported that for charged fluids, this
procedure breaks down in the zero temperature limit. More precisely, corrections to
the small derivative expansion in the dual gravity of charged fluid at zero temperature
have singularities at the black hole horizon. In this case, fluid-gravity duality is not
understood precisely. We explore this problem for a zero temperature charged fluid
driven by a low frequency, small amplitude and spatially homogeneous external force.
In the gravity dual, this force corresponds to a time dependent boundary value of
the dilaton field. We calculate the bulk solution for the dilaton and the leading
backreaction using a modified low frequency expansion. The resulting solutions are
regular everywhere, establishing fluid-gravity duality to this order.

KEYWORDS: String theory, Gauge-gravity duality, Matrix big-bang, Conformal
fluid dynamics
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Chapter 1 Introduction

In nature there are four different fundamental interactions: the electromagnetic,
strong, weak, and gravitational interactions. It is well known that the first three
forces have been successfully described by quantum field theory. For most practical
purposes it is enough to describe gravity classically by Einstein’s General Theory of
Relativity. However, at a very high energy scale known as the Planck scale, it is
necessary to treat the gravitational interaction quantum mechanically. Up to now
attempts to find a field theoretic formulation of quantum gravity have been unsuc-
cessful.

String theory has been widely regarded as a potentially complete theory of quan-
tum gravity[1]. In string theory, the fundamental constituents are one-dimensional
strings rather than zero-dimensional point particles. The infinitely many vibrational
modes of the string correspond to various kinds of particles, which include ordinary
matter particles as well as force-carrying particles like photons and gravitons. String
theories may include both open and closed strings. The massless spectrum of open
strings describes a gauge theory (which could include electromagnetism and the strong
and weak forces), whereas the closed string massless spectrum includes gravity.

One of the most important developments in string theory is “gauge-gravity dual-
ity” [2, 3, 4, 5]. This is a concrete relationship between a gauge theory and a theory
of strings containing gravity. When the interactions in the gauge theory are strong
enough(which means that we cannot deal with this theory by usual quantum field
theory methods), the dual string theory can be approximated by Einstein gravity.
On the other hand, when the string theory containing gravity is in a regime in which
the space-time is highly curved, the dual gauge theory may be in a regime in which
we can apply perturbative quantum field theory techniques. The chief merit of this
relationship is that one can analyze one theory in the regime where the dual theory
is intractable.

There are huge classes of applications of gauge-gravity duality. In this thesis, we
will restrict ourselves to two types of applications: to the cosmological singularity
problem and to fluid dynamics. The former attempts to understand cosmological
singularities by mapping them to a dual gauge theory. If we extrapolate the standard
cosmological picture of the expanding universe backward in time, we are led to the
conclusion that at some initial time, the entire universe was concentrated at a point
in space, an infinite-curvature singularity of the space-time metric known as the Big
Bang. In Einstein’s gravity theory, the Big Bang is a genuine singularity, a time
when gravitational forces become infinitely large. Within this classical framework
there is no sense in which we can talk of a time prior to the big bang: it represents
a “beginning of time”. A similar situation is a“big crunch” where the universe can
collapse into a small region of infinite curvature. While our universe most likely will
not have a big crunch, this is a theoretical possibility. Big bangs and big crunches
are examples of cosmological singularities.

Cosmological singularities troublesome because Einstein’s theory of gravity breaks
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down close to them and quantum gravity effects must be taken into account. Before
the advent of String Theory there was no consistent quantum theory of gravity, which
is why the nature of cosmological singularities has been a major puzzle for many
decades. Understanding cosmological singularities is not only a theoretical problem,
but could very well be necessary to interpret observational results in cosmology in
the coming decades.

Recently, there has been some progress in understanding the nature of cosmo-
logical singularities using gauge-gravity duality[16, 17, 18, 20, 21]. When the gauge
coupling is large, the dual string theory can be approximated by classical gravity. On
the other hand, in the case that the gauge coupling is small enough, this dual string
theory is strongly coupled and quantum effects dominate. Regions of space-time close
to singularities could thus be dual to weakly coupled gauge theories, and analyzing
these dual gauge theories could provide useful information about cosmological sin-
gularities. Several research groups have used this approach to provide toy models of
cosmological singularities [16, 17, 18, 20, 21]. In these models, the dual gauge theory
is driven by time dependent parameter(s), for example, the string coupling. The idea
is to see if the gauge coupling can be used to compute the time evolution of the
system in a regime where Einstein gravity fails.

In our research[72], we have studied one class of toy models for cosmological
singularities in which the gauge coupling is time-dependent. At early times and late
times, we consider the gauge coupling to be strong but at intermediate times we
suppose that it becomes small. We suppose that we start in a ground state at early
times, to which one can apply usual space-time notions. We can analyze and evolve
these grounds states from the point of view of the dual gravitational theory, which
incorporates the time-dependent coupling as a dilaton background. However, at the
intermediate times, when the space-time is highly curved – which means the energy
density is huge – Einstein gravity cannot be applied any longer. We regard this regime
as a model of a cosmological singularity. The cosmological singularity in our model is
rather special in the sense that the space-time is spoiled not by quantum mechanical
effects but by string effects. In this sense, our model is not a realistic model, but it
retains the essential feature of the problem in that the notion of space-time breaks
down near the singularities.

To deal with this, we have developed a new framework which allows us to study
the time dependence of this system. In the dual description of the string theory by a
gauge theory, time evolution is governed by a time-dependent quantum Hamiltonian
operator. We assume that the time-dependence of the parameters in the Hamiltonian
is slow, and that its parameters return at late times to their values at early times.
The assumption of slow time-dependence plays a crucial technical role by allowing us
to apply an “adiabatic approximation”. Then, if the Hamiltonian operator is slowly
varying with time, the expectation values of operators at late times will differ from
their initial values by exponentially small corrections.

In our work, we try to determine the late time behavior of the string theory system
after passing the cosmological singularity, by studying the hamiltonian evolution in
the dual gauge theory. Here we do not have a definitive conclusion, but we are
able to narrow down the outcome to a few possibilities. One such possibility is that
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the energy which has been supplied to the universe (by the time dependent coupling)
during the contracting phase is simply extracted out during a future expanding phase.
The second possibility is that the energy does not return, but gets dissipated, leading
to a thermal state at late times. Typically such a thermal state in the gauge theory
is described in the gravitational dual as a black hole. Our calculations show that
if such a thermal state indeed occurs, the corresponding black hole would be very
small compared to the overall size of the universe: so that most of the universe would
resemble a normal expanding universe. This is distinct from several other scenarios
that we examine, involving rapidly varying couplings, where almost the entire universe
is engulfed in a big black hole.

To determine which of the above possibilities actually occurs we need to under-
stand the process by which some amount of energy gets thermalized. While thermal-
ization is a common phenomenon, its theoretical understanding is rather primitive. In
the future, I plan to attack this problem by applying some models of thermalization
borrowed from other areas of physics.

In the second part of this thesis, we apply gauge-gravity duality to obtain a better
understanding of fluid dynamics. A famous example of a physical system described
by fluid dynamics is a strongly coupled gauge field theory of quarks and gluons. In
heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC), the quarks and
gluons produced in collisions come rapidly into a state of local thermal equilibrium,
known as the quark-gluon plasma (QGP). In this regime, until the quarks and gluons
cool and combine to produce heavier particles, hadrons, one can apply hydrodynamics
to describe the QGP.

Fluid dynamics has been widely studied using gauge-gravity duality[25, 42, 43, 44,
45, 60, 61, 68, 69], which has been used to obtain unexpected relationships between
thermodynamic quantities describing the fluid. The most celebrated example from
dual gravity calculations is that the ratio of shear viscosity to the entropy density of
a conformal fluid has a lower bound [42, 43].

Most research on fluids has been done in the local rest frame, in which all thermo-
dynamic quantities describing the fluid are locally constant. However, it is interesting
to study the global structure of the an inhomogeneous fluid (i.e., a fluid in which the
thermodynamics quantities are varying in space and time). An interesting example
of an inhomogeneous fluid flows is the so-called acoustic black hole (or dumb hole),
which was firstly found by Unruh[47] in 1995. To illustrate this example, let us
suppose that there is an inhomogeneous and steady (time-independent) fluid flow in
which the fluid velocity is varying, so that in certain “supersonic” regions the fluid
velocity becomes faster than the speed of sound waves, and in other regions the speed
is subsonic. In this case, any acoustic waves created in those supersonic regions can-
not propagate back in the direction from which the fluid is flowing. Such supersonic
regions are called acoustic ergoregions. In certain cases, an acoustic horizon forms,
bounding a region out of which the sound waves cannot escape. This is very similar
to the physics of ergoregions and horizons in general relativity. Ergoregions and the
horizons are generic features of black holes, which prevent light, rather than sound,
from traveling in certain directions.

Black holes also exhibit thermal radiation, known as Hawking radiation, and
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behave like thermal objects with a certain temperature. The same physics that leads
to Hawking radiation from black holes also leads to a Hawking-like radiation of sound
waves (or phonons) with thermal spectrum from acoustic horizons. The temperature
of this acoustic Hawking radiation is given by the same mathematical expression
from black hole physics, in which the black hole temperature is proportional to the
gravitational acceleration at the black hole horizon. Such fluid configurations have
been proposed as possible experimentally realizable systems for testing the physics of
Hawking radiations in the laboratory[53].

In our current research [73], we construct dual gravitational descriptions of such
flows as non-static black holes. The duals of sound waves around those inhomoge-
neous fluid flows are then gravitational wave modes which satisfy certain boundary
conditions — namely, that the gravitational waves become purely incoming waves at
the black hole horizon and decay sufficiently rapidly as the gravitational wave modes
approach the boundary of the space-time of the gravity system(Such wave modes
are called “Quasi-normal Modes”). It follows from fluid-gravity duality that upon
quantization one should find Hawking-like radiation into these quasi-normal modes
with an approximately thermal spectrum. We will find that the bulk gravity theory
contains a “quasi-normal mode horizon” which is dual to the acoustic horizon in the
fluid.

The precise set up is that we have constructed fluid flows in 4-dimensional space
time (three spatial dimensions with coordinates x,y and z and one time dimension
with t) in which the fluid velocity vanishes at z = −∞ and z = ∞. The fluid
velocity is entirely in the z-direction and is a function of z only. At intermediate
values of z the fluid speed passes the speed of sound at several different values of z,
producing a planar acoustic horizon at each such z. We expect Hawking-like thermal
radiation for each acoustic horizon, and corresponding Hawking-like radiation from
each corresponding “quasi-normal mode horizon” in the dual gravity theory.

It is important to note that there are two different temperatures in this system.
On one hand, the fluid itself has a temperature, and the quantum modes of the fluid
are populated thermally. On the other hand, the approximate thermal radiation from
the dumb hole horizon is at a temperature distinct from the temperature of the fluid
itself. In the dual gravity system, the former corresponds to Hawking radiation from
the black hole horizon whereas the latter corresponds to the Hawking-like radiation
of quasi-normal modes.

To observe thermal radiation from these quasi-normal mode horizons, it is desir-
able for the temperature of the black hole not to be comparable with that of quasi-
normal horizon. If this condition is not satisfied, it may be difficult to distinguish the
quasi-normal mode radiation from the thermal radiation of the black hole. To avoid
such a situation, one can adjust the black hole temperature (which is the same as the
temperature of the dual fluid) to be nearly zero. For example, one may consider a
Reissner-Nordstrom black hole (an electromagnetically charged black hole) and tune
its charge towards near extremality.

The last subject of this thesis is the resolution of a problem of fluid-gravity duality
in the zero-temperature limit. The usual way of obtaining gravitational solutions
dual to inhomogeneous fluids is to solve Einstein’s equations perturbatively under
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the condition that each thermodynamic quantity in the inhomogeneous fluid is slowly
varying. This perturbative expansion in Einstein’s equations is effectively the same as
the small frequency (and small momentum) expansion. The method has been nicely
applied to construct gravity duals of inhomogeneous uncharged fluids[25, 44, 45, 60,
61, 68, 69]. For charged fluids however, the gravity dual involves a Reissner-Nordstrom
black brane, and in regions where the local temperature approaches zero, the solutions
become singular at the horizon at leading order(and possibly up to certain subleading
orders) in perturbation theory. This singularity spoils the smoothness of physical
quantities like the electric field and gravitational force in the gravitational solution.

We point out that the failure of this method of obtaining the gravity dual solutions
does not agree with expectations from the dual fluid dynamics. In the dual fluid
dynamics, there is an effective length scale called mean free path. It is well understood
that in fluid dynamics as long as the mean free path is finite, the fluid dynamics is
well-defined. As was shown recently[25, 42, 43, 44, 45, 57, 60, 61, 68, 69, 70], it
is certain that the mean free path in the charged fluid is finite even in the zero
temperature limit, and so physical quantities should be well-behaved in both the
fluid and its gravity dual.

Similar types of divergences in the derivative expansion appear in the linearized
limit (which assumes that both the amplitudes and frequencies of the fields are small).
Recently, this problem has been considered for a linearized scalar field in a zero-
temperature black hole background[64]. The usual sort of small frequency expansion
of the scalar field is not straightforward at zero temperature, and leads to nonanalytic
solutions. However, this problem is resolved by the so-called modified low frequency
expansion[64], for which we introduce new coordinate variables near the horizon. The
new coordinate variables are obtained by a nonlocal (frequency-dependent) transfor-
mation from the original coordinates. With these new variables, we can reorganize
the small frequency expansion near the horizon. It turns out that the solution in this
modified expansion is completely regular.

In my recent research[74], I have solved the corresponding problem for fluid-gravity
duality using similar techniques. Specifically, I explore a charged fluid in the limit
of zero temperature, driven by an external force which is spatially homogeneous and
has small amplitude and low frequency. The gravity dual of this fluid is given by
a gravity system containing an electric field and a massless, slowly-varying scalar
field with negative cosmological constant. Some recent papers have considered a
similar setup[64, 65, 66]. However, we go beyond these works by calculating the
bulk solution for the dilaton and the leading back-reactions of the background space-
time and electric field, using the modified low frequency expansion. We find that
the back-reacted gravity solution is regular everywhere (up to certain order in the
modified small frequency expansion), as expected from fluid-gravity duality. This is
the first paper which shows explicitly that a modified expansion of this type can lead
to regular solutions once back-reactions are taken into account.
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Chapter 2 Strings and Gauge-Gravity Duality

2.1 Strings, Supergravity and Black p-Branes

Quantum field theory describes nature successfully up through experimentally ac-
cessible energies. However at the order of the Planck energy scale, we need to
consider quantum gravity effects which no one could have dealt with successfully
up to nowdays. It has not been possible to quantize gravity theories by usual path
integral methods (canonical quantization). One way to deal with quantum gravity
is by introducing strings[1]. Strings are one-dimensional objects which have no sub-
structures. What they carry are string tensions like rubber bands and the scale of
the string tensions is denoted by 1

α′ ≡ m2
s ≡ 1

l2s
. ms is string energy scale and ls is

called string length scale.(Tension has a dimension of energy per unit length, then the
string tension has a dimension of [E/L], where E is unit of energy and L is unit of
length. When we introduce natural units in which we set speed of light and Planck
constant to be 1, the energy dimension is inversely proportional to the length dimen-
sion: [E] ∼ 1

[L]
. Therefore, the dimension of tension becomes [E2] or 1

[L2]
, which is the

dimension of 1
α′ ). These strings can oscillate and with these oscillations, strings can

get mass and spin spectrum. There is an infinite number of the oscillation modes in
this string spectrum, by which strings can become various types of particles with dif-
ferent masses and spins. There are two types of strings: open string and closed string.
The oscillation modes of the both types of strings can have massless spectrums. The
massless spectrum of the closed string has spin 2, technically of which modes provide
fields with two space-time indices. The particles of such kinds in nature are gravi-
tons. Therefore, the closed string theory contains gravity. Massless modes of the
open string oscillations have spin 1, which are the fields having one space-time index.
These can be identified to photons or gauge bosons in nature because they are spin
1 particles.

For closed string, the oscillation modes become standing waves on them whose
boundary conditions are either periodic or anti-periodic ones. For open string(it has
two end points), there can be two different boundary conditions: Neumann bound-
ary condition and Dirichlet boundary condition. The Neumann boundary condition
allows that the two open string end points are freely moving with speed of light
whereas the Dirichlet one fixes its two end points at some spatial points. The Dirich-
let boundary condition naturally gives a concept of D-branes on which the open string
end points are attached for them not to move to the perpendicular directions of the
branes. The massless spectrum of open strings on the D-branes provides Gauge Field
Theory like theory of photons and gauge bosons. The most simple case is that we
have single D-brane. In this case, we have Abelian Gauge Field Theory. One can
generalize the situation to that open strings are attached to N-stacks of D-branes. In
this case, we have Non-Abelian Gauge Field Theory.

In low energy, the closed string theory provides Supergravity Theory. In the
string spectrum, there are finite number of massless excitations and infinite number
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of massive ones. In the low energy limit, one can obtain the low energy effective
action of massless fields by integrating out of the massive modes (Wilsonian effective
action). It is well known that the effective action can be represented by systematic
expansion in the number of derivatives(It is effectively a low frequency expansion).
The small expansion parameter becomes E

ms
, where E is energy(frequency) of the

massless fields. The effects from massive fields are contained in higher order terms
in this low frequency expansion. Then, the precise meaning of low energy limit is
that the energy of the string fields is much less than string energy scale ms. ms can
be treated as a bookkeeping parameter in the low frequency expansion. To get low
energy theory without higher order terms, one can take a limit as ms → ∞.

Now, let us discuss supergravity solutions. Consider type IIB supergravity theory
in 10-dimension and get a black hole solution which is called black p-brane solution[5,
6, 7]. Type IIB supergravity theory is the low energy effective theory of type IIB
string theory, whereD-branes carry Ramond-Ramond charges(R-R charge). TheseR-
R charges become electric charges in the IIB supergravity theory. Then,D-branes act
as electrons or other charged particles in nature. The only difference is that electrons
are zero-dimensional point particles, but D-branes are spatially extended objects. If
these D-branes are extended to p-spatial directions, they are called Dp-branes. Dp-
branes in the string theory couple to p + 2-form field strength in the supergravity
as electrons do to electromagnetic field(which is 0 + 2-form field strength). For each
Dp-brane, there is its magnetically charged dual brane which interacts with dual
(8 − p)-form field strength. For example, D3-brane couples to 5-form field strength,
F5 and its magnetic dual is also 5-form field strength. Black p-brane solution is
obtained from the type IIB supergravity action as

SIIB =
m8
s

(2π)7

∫

d10x
√−g

(

e−2φ(R + 4(∇φ)2)− 2

(8− p)!
F 2
p+2

)

, (2.1)

where p is odd number for this to become IIB supergravity action, R is curvature
scalar, φ is a massless scalar field which is called dilaton and Fp+2 is p+ 2-form field
strength from p+ 1 form gauge field, Ap+1. The other supergravity fields are simply
turned off.

The resulting solutions of metric, p + 2-form field strength and dilaton fields are
given by

ds2 = − f+(r)
√

f−(r)
dt2 +

√

f−(r)dx
2
p +

f−(r)
− 1

2
− 5−p

7−p

f+(r)
dr2 (2.2)

+ r2 (f−(r))
1
2
− 5−p

7−p dΩ2
8−p,

φ(r) =
p− 3

4
ln(f−(r)) and ∗ Fp+2 = Qǫ8−p.

where
f±(r) = 1− (

r±
r
)7−p. (2.3)

dx2p ≡ ∑p
i=1 dx

idxi, p-dimensional Euclidean space and dΩ2
8−p is 8 − p-dimensional

sphere. Q is an electric charge which couples to p+ 2 form field strength. Q = N
V8−p

,
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where N is number of Dp-branes and V8−p = (2π)
p+3
2 /p+1

2
!, the volume of 8−p-sphere.

ǫ8−p is 8− p-dimensional anti-symmetric tensor and ∗Fp+2 denotes magnetic dual of
Fp+2. The solution is asymptotically flat and has inner and outer horizons, r± which
are determined by mass of the black p-brane and N . r+ should not be less than
r−, otherwise the black brane has naked singularity. When r+ > r−, the black brane

present finite Hawking temperature which is given by TH = 7−p
4πr+

(

1−
(

r−
r+

)7−p
)

5−p
2(7−p)

.

The extremal limit(zero temperature limit) of the black brane can be achieved by
taking r+ = r−. The dialton solution has non-trivial r-dependence but when p = 3,
the dilaton becomes arbitrary constant. In the following section, we use black p-
brane solution to discuss conceptual derivation of gauge-gravity duality, in particular
extremal limit of the solution in p = 3 case.

The last subject to discuss is grey-body factors of black p-branes, which is impor-
tant to discuss the decoupling limits in the follwing section. The classical calculation
of black hole radiation by Hawking’s semi-classical approximation[8] is

dΓblack hole =
vσabsorption

e
ω

TH ± 1

ddk

(2π)d
, (2.4)

where v, ~k and ω are the transverse directional velocity, d-dimensional momentum and
frequency of the emitted particle from the black hole, and TH is Hawking temperature
of the black hole. + sign at the denominator is for fermionic particle and − sign is
for bosonic one. σabsorption is the absorption cross section of the black hole for the
particle coming from infinity. For the ideal black-body, the absoption cross section is
a constant. However black hole is not an ideal black-body. Then σabsorption has non-
trivial frequency dependence, so it is called grey-body. This feature is qualitatively
the same with that of the black p-brane solution. For simple example, let us suppose
a massless scalar field coming in from infinity to the black 3-brane. To simplify the
calculation, we assume that the the scalar field is s-wave(spherically symmetric wave)
and its frequency is low. Then, the absorption cross section is given by

σabsorption ∼ ω3. (2.5)

In the extremely low frequency, σabsorption vanishes and the low energy fields from
infinity decouple from the black 3-brane. This result will be used to discuss decoupling
limit in the following section.

2.2 AdS/CFT Correspondence

In this section we briefly review a conceptual derivation of AdS/CFT correspondence,
the most concrete example of gauge-gravity duality[2, 5]. Consider parallel D3-brane
stacks in 10-dimensional space-time. There are fundamental open and closed strings
in this background too. The closed string massless spectrum provides type IIB-
Super string theory whereas the open string massless spectrum on D3-brane does
N=4 U(N) Super-Yang Mills Theory(SYM).
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In the low energy, the effective action of this system can be witten as

S = Sbulk + Sbrane + Sint, (2.6)

where Sbulk, Sbrane and Sint are 10-dimensional supergravity action, Yang-Mills action
on D3-branes and interaction between the fields in 10-dimensional bulk and on the
branes respectively. This effective action is constructed by integrating out of all the
massive fields keeping massless ones as dynamical fields. In this action, we still keep
higher order terms of the low frequency expansion(See Sec.2.1), contributions from
massive string spectrum.

In the limit ofms → ∞(ls → 0), Sint disappears because it does not have any lead-
ing order terms in the low frequency expansion. The higher derivative terms in Sbulk
and Sbrane also disappear, then they become supergravity theory in 10-dimensional
flat space-time and pure Super Yang-Mills theory on the branes respectively. These
two theories are decoupled because the interaction vanishes. This regime is called
decoupling limit(decoupling limit 1).

There are another decoupling limit. As mentioned previously, stacks of N D3-
branes become a source of black hole to produce following geometry:

ds2 =
1√
f
(−dt2 +

3
∑

i=1

dx2i ) +
√

f(dr2 + r2dΩ2
5), (2.7)

F5 = (1 + ∗)dtdx1dx2dx3dx4df−1,

f = 1 +
R4
AdS

r4
, and R4

AdS = gsl
4
sN,

where RAdS is the radius of AdS space. In this background, there is infinite red
shift for the particles to climb up from the horizon of the geometry(r = 0) to the
AdS boundary(r = ∞). The energy measured on the AdS boundary EB(=

∂
∂t
) is

infinitely suppressed by red shift factor,
√
gtt, for any particles with arbitrary high

energy, EH(=
∂
∂τ

= f
1
4
∂
∂t

at r ∼ 0) near horizon. Therefore, any particles near
horizon can be observed as low energy excitations to the boundary observers. These
near horizon fields decouple from the low energy modes around far region(the far
region is asymptotically flat) in the bulk, because the absorption cross section of
black hole vanishes in the low frequency limit(See Eq(2.5)). Again, we have another
decoupling limit between any excitations near horizon and the low energy excitations
around the far region in the bulk. In this low energy decoupling limit, the former
becomes string theory on the near horizon geometry,

ds2 =
u2

R2
AdS

(−dt2 +
3
∑

i=1

dx2i ) +
R2
AdSdu

2

u2
+R2

AdSdΩ
2
5, (2.8)

whereas the later does supergravity theory on the flat background(decoupling limit 2).
The near horizon limit of the geometry is obtained by taking a double scaling limit
as

ls → 0, r → 0, and u ≡ r

l2s
= finite. (2.9)
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The near horizon geometry is called AdS5×S5. In Eq(2.8), dΩ2
5 denotes 5-dimensional

sphere and the other factors together constitute 5-dimensional negatively curved
space: AdS space-time.

In each decoupling limit, one of the decoupling systems is supergravity in the
flat background. Thus, it is natural to argue that the other systems are the same.
These two other systems are N = 4 U(N) Super Yang-Mills theory in 4-dimensional
space-time and type IIB Super String theory on AdS5 × S5 geometry: AdS/CFT
correspondence[5].

There are several quantities in both theories. In N = 4 SYM theory, there
are gauge coupling, gYM and rank of U(N) gauge group, N . On the other hand,
string theory on AdS space contains string coupling gs, string length scale ls(or string
energy scale ms), AdS radius RAdS and flux of D3-branes N . These quantities have
relationships between one and another by the correspondence. The string coupling
and SYM’s coupling have a relationship as gs = g2YM . The flux N in the string theory
can be identified to the rank N in the SYM’s theory. Finally, we have relation as
R4
AdS = gsl

4
sN by the supergravity solution(2.7).

Now, we take a limit as N → ∞, gs → 0 but λ ≡ gsN is kept to be fixed, where
λ is called ‘t Hooft coupling. When ‘t Hooft coupling becomes much smaller than
1, λ ≪ 1, large N expansion in N = 4 SYM is valid and we trust the perturbative
analysis in the gauge theory. However, in this case, the curvature radius of AdS space
becomes so much smaller than string length scale ls as

R4
AdS

l4s
= gsN = λ≪ 1. (2.10)

that we cannot trust supergravity in the bulk any longer due to huge amount of string
excitations. This is because when λ ≪ 1, supergravity modes have enough energy
to create any massive string excitations. On the other hand, if λ ≫ 1, in the bulk
supergravity description can stay in the valid regime, but large N expansion in the
dual gauge theory cannot be applied. As we mentioned in introduction, the chief
merit from gauge-gravity duality is that one can analyze one theory in the regime
that cannot be studied by usual techniques that we know by its dual theory. The
regime of difficulty or easiness can be determined by how large the ‘t Hooft coupling
becomes.

2.3 Bulk Fields-CFT Operators Correspondence

N = 4 U(N) SYM’s theory is a conformal field theory, in which the strengths of
coupling constants do not change as the energy scale changes. The conformal field
theory does not have asymptotic freedom, so the most natural objects to deal with are
operators and their correlation functions. According to AdS/CFT correspondence,
to each local operator Oi in SYM’s theory defined on the AdS boundary, there is a
corresponding field φi in its dual string theory in the bulk[5]. This field φi is one of
the string excitations. There are roughly O(N2) numbers of such fields in the bulk.
Boundary values of these bulk fields at u = ∞ can be treated as sources to be turned
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on which couples to the corresponding operators in the boundary conformal field
theory. Therefore, turning on a bulk field φi can add terms as

∫

d4xφ0i(x
µ)Oi(xµ) to

the conformal field theory action, where φ0i(x
µ) is boundary value of φi(u, x

µ). More
precisely, it is naturally proposed that

< e
∫

d4xφ0i(x
µ)Oi(xµ) >CFT= ZBulkfields

∣

∣

φi(r,xµ)|r=∞=φ0i(xµ) , (2.11)

where ZBulkfields is the partition function of bulk fields from string excitations as

ZBulkfields =

∫

Πi(Dφi)e
iSIIB string(φi) (2.12)

which satisfies the boundary condition, φi(u, x
µ)|u=∞ = φ0i(x

µ) on the AdS boundary,
u = ∞. The left hand side of Eq(2.11) is expectation value of operator e

∫

d4xφ0i(x
µ)Oi(xµ)

in the dual conformal field theory. In particular, in the supergravity regime, λ≫ 1, we
have roughly O(1) number of massless supergravity fields only. In this case, the string
partition function ZBulkfields is approximated to eiSsugra , where Ssugra is the super-
gravity action. In this approximation, we ignore all the string massive modes(ls → 0)
and loop contributions(N → ∞).

The correlation functions of the operator Oi can be obtained by applying usual
field theory techniques. To get n-point correlation functions, we act functional deriva-
tives on the string theory action as

< Oi1(xµ)...Oin(xµ) > =
1

n!

δ

δφ0i1(x
µ)
...

δ

δφ0in(x
µ)
< e

∫

d4xφ0i(x
µ)Oi(xµ) >CFT (2.13)

=
1

n!

δ

δφ0i1(x
µ)
...

δ

δφ0in(x
µ)
ZBulkfields

∣

∣

φi(u,xµ)|u=∞=φ0i(xµ) .

The second equality comes from the duality(2.11). In the supergravity limit, Eq(2.13)
becomes

< O1(xµ1)O2(xµ2)...On(xµ3) >=
1

n!

δ

δφ0i1(x
µ1)

δ

δφ0i2(x
µ2)

...
δ

δφ0i3(x
µn)

Ssugra(φ0i).

(2.14)
In the following, we would discuss a simple example for computing the correlation
functions of massive scalar field.

Massive Scalar field in AdS Space

We start with massive scalar field action in AdSd+1 space-time[9], which has a form
of

Sφ =

∫

dd+1x
√−g

(

gMN∂Mφ(x
P )∂Nφ(x

P ) +m2φ2(xP )
)

, (2.15)

where M ,N and P are d+1 dimensional bulk space-time indices. The equation of
motion is

1√−g∂M
(√−ggMN∂Nφ(x

P )
)

−m2φ(xP ) = 0 (2.16)
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In the following calculations, we use Poincare coordinate for the background metric
gMN , of which form is

ds2 =
1

z2
(−dt2 + dx2d−1 + dz2), (2.17)

where dx2d−1 ≡
∑d−1

i=1 dx
2
i and the AdS radial coordinate z ∼ 1

u
(See AdS metric(2.8)

and the scaling limit(2.9)). Then, the AdS boundary is at z = 0 and Poincare horizon
is at z = ∞. To solve the scalar field equation, it is convenient to separate the AdS
radial variable z from the boundary coordinate xµ ≡ (t, ~x) in which we set the solution
to the boundary direction to be plane waves as

φ(r, xµ) = e−iωt+i
~k·~xz

d
2ψ(z) (2.18)

Substituting this into Eq(2.16), we get

0 = z2∂2zψ(z) + z∂zψ(z)−
(

m2 +
d2

4
+ q2

)

ψ(z), (2.19)

where qµ = (ω,~k) and q2 = qµqνη
µν = −ω2 + ~k2. The solutions of Eq(2.19) can be

sorted by the signs of q2. When q2 > 0, there are two independent solutions as

φ1(x
M) = e−iωt+i

~k~xz
d
2Kν(qz), and φ2(x

M) = e−iωt+i
~k~xz

d
2 Iν(qz), (2.20)

where ν = 1
2

√
d2 + 4m2. The solution, φ2, is ill-behaved in the interior, which blows

up exponentially as z → ∞ whereas φ1 is well-behaved. Thus, φ1 is the only accept-
able solution. As φ1 approach the AdS boundary, it behaves as φ1 ∼ z2h− , where

h± =
d

4
± ν

2
. (2.21)

φ1 is divergent as z → 0 unless m = 0. When m = 0, φ1 = const asymptotically.
These kinds of asymptotically non-vanishing solutions are called non−normalizable
solutions. When q2 < 0, there are also two linearly independent solutions as

φ±(xM) = e−iωt+i
~k~xz

d
2J±ν(|q|z), (2.22)

if ν is non-integral or

φ+(xM) = e−iωt+i
~k~xz

d
2Jν(|q|z) and φ−(xM) = e−iωt+i

~k~xz
d
2Yν(|q|z), (2.23)

if ν is an integral number. These solutions are well-behaved in the interior. The solu-
tion, φ+ ∼ z2h+ which vanishes as z → 0. This kind of solution is called normalizable
solution whereas φ− is non-normalizable solution.

Operator Expectation Values

In this section, we precisely compute correlation functions of CFT operator O. In
particular, it would be pointed out that the normalizable and non-normalizable solu-
tions in the bulk supergravity are duals to states and sources in the dual conformal
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field theory respectively by analyzing the massive scalar field solutions obtained in
the previous section. It is convenient to deal with the scalar field solutions in mo-
mentum space on the boundary because the boundary derivatives ∂µ acting on the
scalar field can be replaced by boundary momentum qµ multiplying that. Therefore,
we perform Fourier transform as φ(z, qα) =

∫∞
−∞ d4xe−iqνx

ν

φ(z, xα). We set boundary
of AdS space to be at z = ǫ and take a limit z → 0 in the last step not to lose
any information. With this, the Dirichlet boundary condition on the AdS boundary
becomes φ(q, z)|z=ǫ = ǫ2h−eiqαx

α

φ0(qα). The extra factor of ǫ
2h− comes from the radial

coordinate dependence of the scalar field solution. We choose solution with q2 < 0
case because for q2 > 0 there is no normalizable solution. For q2 < 0, the most
general solution with Dirichlet boundary condition is given by

φ(qα, z) = Φ(qα)e
iqαxαφ+(qα, z) +K(qα, ǫ, z)ǫ

2h−eiqαx
α

φ0(qα), (2.24)

where

K(qα, ǫ, z) =
φ−(qα, z) + A(qα)φ

+(qα, z)

φ−(qα, ǫ) + A(qα)φ+(qα, ǫ)
. (2.25)

K(qα, ǫ, z) is boundary-bulk propagator, which becomes 1 at z = ǫ. The first term
in Eq(2.24) is normalizable solution of which Fourier coefficient is Φ(qα). The second
term is non-normalizable solution in which there is an ambiguity from normalizable
solutions with arbitrary coefficient A(qα). This is because one can freely add such
a term to non-normalizable solution without changing the Dirichlet boundary condi-
tion. To compute correlation functions, we substitute Eq(2.24) into the supergravity
action(2.15). Then, the action becomes

Sφ(Φ(qα), φ0(qα)) =
1

2

∫

z=ǫ

ddqddq′δd(qα + q′α)z
1−d (2.26)

× ∂z
(

Φ(qα)φ
+(qα, z)K(q′α, ǫ, z)φ0(q

′
α) + φ0(qα)K(q′α, ǫ, z)φ0(q

′
α)
)

.

1-point function can be read off from the action by taking functional derivative respect
to φ0 once(See Eq(2.13)), which is given by

< O(qα) >φ0= ∂z
(

Φ(−qα)φ+(−qα, z)K(qα, ǫ, z) + φ(−qα)KA(qα, ǫ, z)
)

|z→ǫ, (2.27)

where the subscript on the left hand side denotes that we do not turn off the source
terms. There are two different contributions to this 1-point function. The first term
is proportional to the Fourier coefficient of normalizable solution whereas the second
term does to that of non-normalizable one which is source term of the dual operator O
in the boundary conformal field theory. If we turn off the non-normalizable solution,
there become no sources at all. Without any sources, vacuum expectation values of
1-point functions should become zero, but the first term in Eq(2.27) still survives.
Non-zero expectation value of 1-point function can be obtained only when the states
that sandwich on the corresponding operator become excited states. This means that
turning on the normalizable solutions in the bulk correspondes to excited states in
the dual conformal field theory. Let us summarize this as

• Non-normalizable solutions correspond to turning on sources,
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• Normalizable solutions correspond to turning on excited states.

By the same method, 2-point correlation function can be computed, which has a form
of

< O(qα)O(kα) >φ0=< O(qα) >φ0< O(kα) >φ0 +δ
d(qα + kα)∂zK(qα, ǫ, z)|z→ǫ. (2.28)

2.4 Retarded Green’s function and Finite Temperature Field Theory

In this section, we extend our discussion of the correlation functions to more specific
correlators. The most natural extension of n-point correlators of operator O is com-
puting those correlation functions in the thermal background. Then, we will discuss
how to compute one of the correlators in the conformal field theory, retarded green’s
function from its dual gravity theory, in particular in the thermal background[10].

Retarded Correlators

In the linear response theory, if there is an external source S which couples to an
operator O, then the response function of this source, < δO > is given by

< δO >=< O >S − < O >0=

∫ ∞

−∞
dt′
∫

d3x′GR(x, t; x
′, t′)S(x′, t′) (2.29)

where
GR(x, t; x

′, t′) = Θ(t− t′) < [O(x, t), O(x′, t′)] >, (2.30)

where GR is called Retarded Green’s Function. < O >S indicates expectation value
of the operator O with the source term S whereas < O >0 does that without turning
on S. Θ(t− t′) is step function, which is 1 when t > t′ and becomes zero otherwise,
and the square bracket denotes commutator. It is firstly proposed by Dam T. Son
and Andrei O. Starinets that the retarded correlator in conformal field theory can
be calculated from its dual gravity theory[10]. In the previous section, we have com-
puted a massive scalar field solution in AdS background. In this case, two different
boundary conditions are imposed: one is that solutions are regular in the interior, an-
other is Dirichlet boundary condition of the solutions as the solutions approach AdS
boundary. However, the regularity condition cannot completely fix the solutions. As
seen in Eq(2.24) and Eq(2.25), the solutions still have ambiguity with arbitrary coef-
ficients as Φ(qα) and A(qα) even after requesting the boundary conditions. Therefore,
the correlation functions that we get previously are the most general type of those.
What Son and Starinets have shown is that types of the correlators depend on specific
boundary conditions in the interior. In this case, the most natural boundary condi-
tion is incoming boundary condition at the horizon, z = ∞. This incoming boundary
condition is that the waves can only travel into the black hole but cannot come out
from there. It is shown that a correlation function obtained by the method in Sec.2.3
obeying incoming boundary condition at the horizon of black hole correspondes to
the retarded green’s function in the dual conformal field theory. One can also get
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advanced green’s function by imposing the outgoing wave boundary condition at the
horizon.

The precise way of computing retarded green’s function is following. To simplify
the situation, let us deal with massive scalar field. The general calculations obtaining
correlators are already demonstrated in Sec.2.3. Therefore, we just provide crucial
intermediate steps to obtain retarded green’s function. Firstly, solve the massive
scalar field equation and request Dirichlet boundary condition as before. For the
zero temperature case, we just use the scalar field solutions in Sec.2.3. Secondly, we
request incoming boundary condition of the solutions at the horizon. The precise
boundary condition at the horizon is

• For q2 > 0, there is no normalizable solution. Therefore, we just request regu-
larity at the black hole horizon.

• For q2 < 0, there are both normalizable and non-normalizable solutions, φ±. In
this case, we request incoming boundary condition at the black hole horizon.
The solutions, φ±, do not individually satisfy incoming boundary condition at
the horizon, but linear combination of those can do. ξ1 and ξ2, linear combina-
tions of φ± as

ξ1(x
M) = φ+(xM) + iφ−(xM) for ω > 0, (2.31)

ξ2(x
M) = φ+(xM)− iφ−(xM) for ω < 0. (2.32)

can satisfy the incoming boundary condition. As we approach black hole hori-
zon, z → ∞, ξ1 ∼ z

d−1
2 e−i|ω|t+i|q|z and z → ∞, ξ2 ∼ z

d−1
2 ei|ω|t−i|q|z. They are

both ingoing waves at the horizon.

Substitute ξ1 and ξ2 into the scalar field action(2.15) and take functional derivatives.
Then 2-point correlation functions are obtained as

GR ∼ q4ln(q2) for q2 > 0, (2.33)

GR ∼ q4(ln(q2)− iπ sign(ω)) for q2 < 0,

in the momentum space on the boundary.

Quasi-normal Modes of Solutions

Quasi-normal modes in the AdS black hole background are defined as fields satisfying
equations of motion to obey following two boundary conditions: those become purely
incoming waves at the black hole horizon and normalizable solutions(as z → 0, the
solutions vanish). To be more precise, let us consider previous calculations of the
scalar field. Suppose that a scalar field solution satisfying incoming wave boundary
condition at the black hole horizon has a form of

ξ(qα, z) = Θ(qα)φ
+(z) + Ξ(qα)φ

−(z). (2.34)

Near the AdS boundary, the scalar field solution behaves as

ξ(qα, z → 0) = Θ(qα)z
h+ + ...+ Ξ(qα)z

h− + ... (2.35)
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Plug the asymptotic form of ξ into the scalar field action(2.15), and compute retarded
Green’s function. Then, one can obtain

GR(qα) ∼ (h+ − h−)
Θ(qα)

Ξ(qα)
ǫh+−h−−1 + some contact terms +O(ǫ). (2.36)

Ignoring the contact terms, the leading term of GR is proportional to the ratio of
the coefficients between the normalizable solution and the non-normalizable one. In
the usual field theory, poles of the correlator provide on-shell dispersion relation of
certain propagating waves. For example, if we have acoustic waves as a low frequency
modes in the conformal fluid dynamics on the boundary, then the retarded correlator
provides response functions of these acoustic waves. The retarded correlator has
poles when the phase velocity of this acoustic waves satisfy ω

k
= vs, where vs is the

velocity of the sound waves[44]. The poles of the retarded green’s function correspond
to zeros of the non-normalizable coefficient, Ξ(qα). Ξ(qα) = 0 is precisely vanishing
Dirichlet boundary condition on the AdS boundary, which defines quasi normal modes
of solutions. Therefore, we conclude that turning on quasi-normal modes correspond
to turning on certain classical modes(which satisfy certain equation of motion on the
boundary, similarly a certain dispersion relation) in the boundary conformal field
theory.

Retarded Green’s Function in the Thermal Background

In this section, we discuss calculating retarded green’s function in the thermal back-
ground. The basic idea is that introducing temperature in boundary conformal field
theory is the dual of non-extremal AdS black hole geometry in the bulk gravity theory,
which is given by

ds2 =
R2
AdS

z2

(

−f(z)dt2 +
3
∑

i=1

dx2i +
dz2

f(z)

)

+R2
AdSdΩ

2
5, (2.37)

where

f(z) = 1− z4h
z4
. (2.38)

The horizon of this black hole is located at z = zh. One can also calculate Hawking
temperature of this black hole geometry, which is given by TH = 1

πzh
. The black hole

temperature is identified to that in the conformal field theory, then we have thermal
field theory as a dual of this non-extremal black hole. The way of calculations of
retarded green’s function is the same with the steps shown in the previous sections,
except switching pure AdS geometry to AdS black holes.
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Chapter 3 Slowly Varying Dilaton Cosmologies and their Field Theory
Duals

The AdS/CFT correspondence [2, 3, 4] provides us with a non-perturbative formula-
tion of quantum gravity. One hopes that it will shed some light on the deep mysteries
of quantum gravity, in particular on the question of singularity resolution.

Motivated by this hope we consider a class of time dependent solutions in this
paper which can be viewed as deformations of the AdS5 × S5 background in IIB
string theory. These solutions are obtained by taking the boundary value of the
dilaton in AdS space to become time dependent 1 . We are free to take the boundary
value of the dilaton to be any time dependent function. To keep the solutions under
analytical control though we take the rate of time variation of the dilaton to be small
compared to the radius of AdS space, RAdS. This introduces a small parameter ǫ and
we construct the bulk solution in perturbation theory in ǫ. The resulting solutions
are found to be well behaved. In particular one finds that no black hole horizon forms
in the course of time evolution. The metric and dilaton respond on a time scale of
order RAdS which is nearly instantaneous compared to the much slower time scale at
which the boundary value of the dilaton varies. For dilaton profiles which asymptote
to a constant in the far future one finds that all the energy that is sent in comes back
out and the geometry settles down eventually to that of AdS space. What makes
these solutions non-trivial is that by waiting for a long enough time, of order RAdS

ǫ
,

a big change in the boundary dilaton can occur. The solutions probe the response of
the bulk to such big changes.

Consider an example of this type where the boundary dilaton undergoes a big
change making the ’tHooft coupling2 of order unity or smaller at intermediate times,

λ ≡ gsN ≤ O(1), (3.1)

when 3 t ≃ 0, before becoming large again in the far future. As was mentioned above,
the bulk responds rapidly to the changing boundary conditions and within a time
of order RAdS the dilaton everywhere in the bulk then becomes small and meets the
condition, Eq.(3.1). Now the supergravity solution receives α′ corrections in string
theory, these are important when RAdS becomes of order the string scale. Using the
well known relation,

RAdS/ls ∼ (gsN)
1
4 (3.2)

we then find that once Eq.(3.1) is met the curvature becomes of order the string scale
everywhere along a space-like slice which intersects the boundary. As a result the

1It is important in the subsequent discussion that we work in global AdS5 with the boundary
S3 ×R.

2When we refer to the ’tHooft coupling we have the gauge theory in mind and accordingly by
the dilaton in this context we will always mean its boundary value.

3Here N is the number of units of flux in the bulk and the rank of the gauge group in the
boundary theory.
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supergravity approximation breaks down along this slice and the higher derivative
corrections becomes important for the subsequent time development. This break
down of the supergravity approximation is the sense in which a singularity arises in
these solutions.

In contrast the curvature in units of the 10-dim. Planck scale lP l (or the 5-dim
Planck scale) remains small for all time. The radius RAdS in lP l units is given by,

RAdS/lP l ∼ N
1
4 (3.3)

We keep N to be fixed and large throughout the evolution, this then keeps the
curvature small in Planck units 4. The solutions we consider can therefore be viewed
in the following manner: the curvature in Planck units in these solutions stays small
for all time, but for a dilaton profile which meets the condition Eq.(3.1) the string
scale in length grows and becomes of order the curvature scale at intermediate times.
At this stage the geometry gets highly curved on the string scale. We are interested
in whether a smooth spacetime geometry can emerge again in the future in such
situations.

It is worth relating this difference in the behavior of the curvature as measured in
string and Planck scales to another fact. We saw that when the curvature becomes
of order the string scale α′ corrections become important. The second source of
corrections to the supergravity approximation are quantum loop corrections. Their
importance is determined by the parameter 1/N . Since N is kept fixed and large
these corrections are always small. From Eq.(3.3) we see that this ties into the fact
that the AdS radius stays large in Planck units.

To understand the evolution of the system once the curvature gets to be of order
the string scale we turn to the dual gauge theory. The gauge theory lives on an S3 of
radius R and the slowly varying dilaton maps to a Yang-Mills coupling which varies
slowly compared to R. Since these are the only two length scales in the system the
slow time variation suggests that one can understand the resulting dynamics in terms
of an adiabatic approximation.

In fact we find it useful to consider two different adiabatic perturbation theories.
The first, which we call quantum adiabatic perturbation theory is a good approxima-
tion when the parameter ǫ satisfies the condition,

Nǫ≪ 1. (3.4)

Once this condition is met the rate of change of the Hamiltonian is much smaller
than the energy gap between the ground state and the first excited state in the gauge
theory. As a result the standard text book adiabatic approximation in quantum
mechanics applies and the system at any time is, to good approximation, in the
ground state of the instantaneous Hamiltonian. In the far future, when the time
dependence turns off, the state settles into the ground state of the resulting N = 4
SYM theory, and admits a dual description as a smooth AdS space.

4The backreaction corrects the curvature but these corrections are suppressed in ǫ.
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Note that this argument holds even when the ’tHooft coupling at intermediate
times becomes of order unity or smaller. The fact that the states of the time inde-
pendent N = 4 SYM theory furnish a unitary representation of the conformal group
guarantees that the spectrum has a gap of order 1/R for all values of the Yang Mills
coupling, [11], see also, [12], [5]. Thus as long as Eq.(3.4) is met the conditions for
this perturbation theory apply. As a result, we learn that for very slowly varying
dilaton profiles which meet the condition, Eq.(3.4), the geometry after becoming of
order the string scale at intermediate times, again opens out into a smooth AdS space
in the far future.

The supergravity solutions we construct are controlled in the approximation,

ǫ≪ 1. (3.5)

This is different, and much less restrictive, than the condition stated above in Eq.(3.4)
for the validity of the quantum adiabatic perturbation theory. In fact one finds that a
different perturbation theory can also be formulated in the gauge theory. This applies
when the conditions,

Nǫ≫ 1, ǫ≪ 1 (3.6)

are met. This approximation is classical in nature and arises because the system is
in the large N-limit (otherwise Eq.(3.6) cannot be met). We will call this approxi-
mation the “Large N Classical Adiabatic Perturbation Theory” (LNCAPT) below.
The behavior of the system in this approximation reproduces the behavior of the
supergravity solutions for cases where the ’tHooft coupling is large for all times.

Let us now discuss this approximation in more detail. Each gauge invariant oper-
ator in the boundary theory gives rise to an infinite tower of coupled oscillators whose
frequency grows with growing mode number. The gauge invariant operators are dual
to bulk modes. The infinite tower of oscillators which arises for each operator is dual
to the infinite number of modes, with different radial wave functions and different
frequency, which arise for each bulk field. Of particular importance is the operator
dual to the dilaton Ô and the modes which arise from it. The time varying boundary
dilaton results in a driving force for these oscillators. When Nǫ≫ 1, these oscillators
are excited by the driving force into a coherent state with a large mean occupation
number of quanta, of order Nǫ, and therefore behave classically. This is a reflection
of the fact that at large N , the system behaves classically : coherent states of these
oscillators correspond to classical configurations (see e.g. Ref [13]).

Usually a reformulation of the boundary theory in terms of such oscillators is not
very useful, since these oscillators would have a nontrivial operator algebra which
would signify that the bulk modes are interacting. Simplifications happen in low
dimensional situations like Matrix Quantum Mechanics [14] where one is led to a
collective field theory in 1+1 dimensions as an explicit construction of the holographic
map [15]. Even in this situation, the collective field theory is a nontrivial interacting
theory, i.e. the oscillators are coupled. In our case there are an infinite number of
collective fields which would seem to make the situation hopeless.

In our setup, however, the slowness of the driving force simplifies the situation
drastically. The source couples directly to the dilaton in the bulk, and when ǫ ≪ 1,
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to lowest order the response of the dilaton as well as the other fields is linear and
independent of each other. This will be clear in the supergravity solutions we present
below. This implies that to lowest order in ǫ, the oscillators which are dual to these
modes are really harmonic oscillators which are decoupled from each other.

The resulting dynamics is then well approximated by the classical adiabatic per-
turbation theory, which we refer to as the LNCAPT as mentioned above. The crite-
rion for its applicability is that the driving force varies on a time scale much slower
than the frequency of each oscillator. In particular if the frequency of the driving
force is of order that of the oscillators one would be close to resonance and the per-
turbation theory would break down. In our case this condition for the driving force
to vary slowly compared to the frequency of the oscillators, becomes Eq.(3.5). When
this condition is met, the adiabatic approximation is valid for all modes - even those
with the lowest frequency. The expectation value of the energy and the operator dual
to the dilaton, Ô, can then be calculated in the resulting perturbation theory and we
find that the leading order answers in ǫ agree with the supergravity calculations 5.

Having understood the supergravity solutions in the gauge theory language we
turn to asking what happens if the ’tHooft coupling becomes of order unity or smaller
at intermediate times (while still staying in the parametric regime Eq.(3.6)). The new
complication is that additional oscillators now enter the analysis. These oscillators
correspond to string modes in the bulk. When the ’tHooft coupling becomes of order
unity their frequencies can become small and comparable to the oscillators which are
dual to supergravity modes.

At first sight one is tempted to conclude that these additional oscillators do not
change the dynamics in any significant manner and the system continues to be well
approximated by the large N classical adiabatic approximation. The following argu-
ments support this conclusion. First, the anharmonic terms continue to be of order
ǫ and thus are small, so that the oscillators are approximately decoupled. Second,
the existence of a gap of order 1/R for all values of the ’tHooft coupling, which we
referred to above, ensures that the driving force varies much more slowly than the
frequency of the additional oscillators, thus keeping the system far from resonance.
Finally, one still expects that in the parametric regime, Eq.(3.6), an O(Nǫ) number of
quanta are produced keeping the system classical. These arguments suggest that the
system should continue to be well approximated by the LNCAPT. In fact, since the
additional oscillators do not directly couple to the driving force produced by the time
dependent dilaton, but rather couple to it only through anharmonic terms which are
subdominant in ǫ, their effects should be well controlled in an ǫ expansion. If these
arguments are correct the energy which is pumped into the system initially should
then get completely pumped back out and the system should settle into the ground
state of the final N = 4 theory in the far future. The dual description in the far
future would then be a smooth AdS5 space-time.

However, further thought suggests another possibility for the resulting dynamics

5More precisely, both the supergravity and the forced oscillator calculations need to be renor-
malized to get finite answer. One finds that after the counter terms are chosen to get agreement
for the standard two point function ( which measures the response for a small amplitude dilaton
perturbation) the expectation value of the energy and Ô, agree.
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which is of a qualitatively different kind. This possibility arises because, as was
mentioned above, when the ’tHooft coupling becomes of order unity string modes
can get as light as supergravity modes. This means that the frequency of some
of the oscillators dual to string modes can become comparable to oscillators dual to
supergravity modes, and thus the string mode oscillators can get activated. Now there
are many more string mode oscillators than there are supergravity mode oscillators,
since the supergravity modes correspond to chiral operators in the gauge theory which
are only O(1) in number, while the string modes correspond to non-chiral operators
which are O(N2) in number. Thus once string mode oscillators can get activated
there is the possibility that many new degrees of freedom enter the dynamics.

With so many degrees of freedom available the system could thermalized at least
in the large N limit. In this case the energy which is initially present in the oscillators
that directly couple to the dilaton would get equi-partitioned among all the degrees
of freedom. The subsequent evolution would be dissipative and this energy would
not be recovered in the far future. At late times, when the ’tHooft coupling becomes
big again, the gravity description of the dissipative behavior depends on how small
is ǫ. From the calculations done in the supergravity regime one knows that the total
energy that is produced is of order N2ǫ2. When Nǫ ≫ 1, but ǫ ≪ (g2YMN)−7/8 the
result is likely to be a gas of string modes. However if ǫ > (g2YMN)−7/8, the energy
is sufficient to form a small black hole (with horizon radius smaller than RAdS). A
big black hole cannot form since this would require an energy of the order of N2,
and ǫ ≪ 1 always. Thus, in the far future, once the ’tHooft coupling becomes large
again, the strongest departure from normal space-time would be the presence of a
small black hole in AdS space. The small black hole would eventually disappear by
emitting Hawking radiation but that would happen on a much longer time scale of
order N2RAdS.

It is difficult for us to settle here which of the two possibilities discussed above,
either adiabatic non-dissipative behavior well described by the LNCAPT, or dissi-
pative behavior with organized energy being lost in heat, is the correct one. One
complication is that the rate of time variation which is set by ǫ is also the strength
of the anharmonic couplings between the oscillators. In thermodynamics, working
in the microcanonical ensemble, it is well known that with energy of order N2ǫ2 the
configuration which entropically dominates is a small black hole 6. This suggests that
if the time variation in the problem were much smaller than the anharmonic terms a
small black hole would form. However, in our case their being comparable makes it
a more difficult question to decide. One should emphasize that regardless of which
possibility is borne out our conclusion is that most of the space time in the far future
is smooth AdS, with the possible presence of a small black hole.

Let us end with some comments on related work. The spirit of our investigation
is close to the work on AdS cosmologies in [16] and related work in [17] - [20]. See
also [21], [22], [23] for additional work. Discussion of cosmological singularities in the
context of Matrix Theory appears in [24].

The supergravity analysis we describe is closely related to the strategy which was

6At least when the ’tHooft coupling is big enough so that supergravity can be trusted.
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used in the paper [25], for finding forced fluid dynamics solutions; in that case one
worked with an infinite brane at temperature T and the small parameter was the
rate of variation of the dilaton (or metric) compared to T . Our regime of interest is
complementary to that in [26] where the dilaton was chosen to be small in amplitude,
but with arbitrary time dependence and which leads to formation of black holes in
supergravity for a suitable regime of parameters.

This paper is organized as follows. In section §2 we find the supergravity solutions
and use them to find the expectation value of operators in the boundary theory like the
stress energy and Ô in §3. The quantum adiabatic perturbation theory is discussed in
§4. A forced harmonic oscillator is discussed in §5. This simple system helps illustrate
the difference between the two kinds of perturbation theory and sets the stage for the
discussion of the The Large N classical adiabatic approximation in §6. Conclusions
and future directions are discussed in §7. There are three appendices which contains
details of derivation of some of the formula in the main text.

3.1 The Bulk Response

In this section we will calculate the deformation of the supergravity solution in the
presence of a slowly varying time dependent but spatially homogeneous dilaton spec-
ified on the boundary. This will be a reliable description of the time evolution of the
system so long as eΦ(t) never becomes small.

Some General Considerations

IIB supergravity in the presence of the RR five form flux is well known to have an
AdS5 × S5 solution. In global coordinates this takes the form,

ds2 = −(1 +
r2

R2
AdS

)dt2 +
dr2

1 + r2

R2
AdS

+ r2dΩ2
3 +R2

AdSdΩ
2
5. (3.7)

Here RAdS is given by,
RAdS = (4πgsN)1/4ls ∼ N1/4lpl (3.8)

where ls is the string scale and lpl ∼ g
1/4
s ls is the ten dimensional Planck scale. gs

is the value of the dilaton, which is constant and does not vary with time or spatial
position,

eΦ = gs. (3.9)

In the time dependent situations we consider below N will be held fixed. Let us
discuss some of our conventions before proceeding. We will find it convenient to work
in the 10-dim. Einstein frame. Usually one fixes lP l to be of order unity in this frame.
Instead for our purposes it will be convenient to set

RAdS = 1. (3.10)

From Eq(3.8) this means setting lP l ∼ 1/N1/4. The AdS5×S5 solution then becomes,

ds2 = −(1 + r2)dt2 +
1

(1 + r2)
dr2 + r2dΩ2

3 + dΩ2
5, (3.11)

22



for any constant value of the dilaton, Eq.(3.9). Let us also mention that when we
turn to the boundary gauge theory we will set the radius R of the S3 on which it
lives to also be unity.

The essential idea in finding the solutions we describe is the following. Consider a
situation where Φ varies with time slowly compared to RAdS. Since the solution above
exists for any value of gs and the dilaton varies slowly one expects that the resulting
metric at any time t is well approximated by the AdS5×S5 metric given in Eq.(3.11).
This zeroth order metric will be corrected due to the varying dilaton which provides
an additional source of stress energy in the Einstein equations. However these changes
should be small for a slowly varying dilaton and should therefore be calculable order
by order in perturbation theory.

Let us make this more precise. Consider as the starting point of this perturbation
theory the AdS5 metric given in Eq.(3.11) and a dilaton profile,

Φ = Φ0(t) (3.12)

which is a function of time alone. We take Φ0(t) to be of the form,

Φ0 = f(
ǫt

RAdS

) (3.13)

where f( ǫt
RAdS

) is dimensionless function of time and ǫ is a small parameter,

ǫ≪ 1. (3.14)

The function f satisfies the property that

f ′(
ǫt

RAdS

) ∼ O(1) (3.15)

where prime indicates derivative with respect to the argument of f .
When ǫ = 0, the dilaton is a constant and the solution reduces to AdS5 × S5.

When ǫ is small,
dΦ0

dt
=

ǫ

RAdS

f ′(
ǫt

RAdS

) ∼ ǫ

RAdS

(3.16)

so that the dilaton is varying slowly on the scale RAdS, and the contribution that the
dilaton makes to the stress tensor is parametrically suppressed 7. In such a situation
the back reaction can be calculated order by order in ǫ. The time dependent solutions
we consider will be of this type and ǫ will play the role of the small parameter in
which we carry out the perturbation theory. A simple rule to count powers of ǫ is
that every time derivative of Φ0 comes with a factor of ǫ.

The profile for the dilaton we have considered in Eq.(3.12) is S5 symmetric. It
is consistent to assume that the back reacted metric will also be S5 symmetric with
the radius of the S5 being equal to RAdS. The interesting time dependence will then

7The more precise statement for the slowly varying nature of the dilaton, as will be discussed in
a footnote before Eq.(3.84), is that its Fourier transform has support at frequencies much smaller
than 1/RAdS .
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unfold in the remaining five directions of AdS space and we will focus on them in the
following analysis.

The zeroth order metric in these directions is given by,

ds2 = −(1 + r2)dt2 +
1

(1 + r2)
dr2 + r2dΩ3

3. (3.17)

And the zeroth order dilaton is given by Eq.(3.12),

Φ0 = f(ǫt). (3.18)

We can now calculate the corrections to this solution order by order in ǫ.
Let us make two more points at this stage. First, we will consider a dilaton

profile Φ0 which approaches a constant as t→ −∞. This means that in the far past
the corrections to the metric and the dilaton which arise as a response to the time
variation of the dilaton must also vanish. Second, the perturbation theory we have
described above is a derivative expansion. The solutions we find can only describe
slowly varying situations. This stills allows for a big change in the amplitude of the
dilaton and the metric though, as long as such changes accrue gradually. It is this
fact that makes the solutions non-trivial.

Corrections to the Dilaton

Let us first calculate the corrections to the dilaton. We can expand the dilaton as,

Φ(t) = Φ0(t) + Φ1(r, t) + Φ2(r, t) · · · , (3.19)

where Φ0 is the zeroth order profile we start with, given in Eq.(3.13). Φ1 is of order
ǫ, Φ2 is of order ǫ2 and so on. The metric can be expanded as,

gab = g
(0)
ab + g

(1)
ab + g

(2)
ab + · · · (3.20)

where g
(0)
ab is the zeroth order metric given in Eq.(3.17) and g

(1)
ab , g

(2)
ab ... are the first

order, second order etc corrections.
The dilaton satisfies the equation,

∇2Φ = 0. (3.21)

Expanding this we find that to order ǫ2,

∇2
0Φ0 +∇2

0Φ1 +∇2
1Φ0 +∇2

1Φ1 +∇2
0Φ2 = 0. (3.22)

Here ∇2
0 is the Laplacian which arises from the zeroth order metric, and ∇2

1,∇2
2 are

the corrections to the Laplacian to order ǫ, ǫ2 respectively, which arise due to the
corrections in the metric. The first term on the left hand side is of order ǫ2, since it
involves two time derivatives acting on Φ0. The second term is of order 8 ǫ, and so is

8It is easy to see that Φ1, if non-vanishing, must depend on the radial coordinate, this makes
∇2

0Φ1 of order ǫ. Φ1 would be r dependent for the same reason that Φ2 in Eq(3.25) is.
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the third term. However, we see in §2.3 that the O(ǫ) correction to the metric and
thus ∇2

1 vanishes. So the second term is the only one of O(ǫ) and we learn that

Φ1 = 0. (3.23)

The first correction to the dilaton therefore arises at O(ǫ2). Eq.(3.22) now becomes,

∇2
0Φ0 +∇2

0Φ2 = 0. (3.24)

Since Φ0 preserves the S
3 symmetry of AdS5, Φ2 will also be S3 symmetric and must

therefore only be a function of t, r. Further since Φ2 is O(ǫ2) any time derivative on
it would be of higher order and can be dropped. Solving Eq.(3.24) then gives,

Φ2(r, t) =

∫ r dr′

(r′)3(1 + (r′)2)

[

∫ r′ y3

1 + y2
dy Φ̈0(t) + a1(t)

]

+ a2(t). (3.25)

Here a1(t), a2(t) are two functions of time which arise as integration “constants”.
The integrations in (3.25) can be performed, leading to

Φ2(r, t) =
1

4
Φ̈0(t)

[

1

r2
log(1 + r2)− 1

2
(log(1 + r2))2 − dilog(1 + r2)

]

+a1(t)
1

2

[

log(1 + r2)− 1

r2
− 2 log r

]

+ a2(t). (3.26)

The first term in Φ2 is regular at r = 0, while the term multiplying a1(t) diverges here.
To find a self-consistent solution in perturbation theory Φ2 must be small compared
to Φ0 for all values of r, we therefore set a1 = 0. The first term in Φ2(r, t) has the
following expansion for large values of r,

Φ̈0(t)

[

π2

24
− 1

4r2
+

(

3

16
+

1

4
log r

)

1

r4
+ · · ·

]

. (3.27)

Since we are solving for the dilaton with a specified boundary value Φ0(t), Φ2(r, t)
should vanish at the boundary. This determines a2(t) to be,

a2(t) = −π
2

24
Φ̈0(t), (3.28)

leading to the final solution

Φ2(r, t) =
1

4
Φ̈0(t)

[

1

r2
log(1 + r2)− 1

2
(log(1 + r2))2 − dilog(1 + r2)− π2

6

]

. (3.29)

The solution is regular everywhere. Since Limt→−∞Φ̇0(t), Φ̈0(t) = 0, the correction
vanishes in the far past, as required.
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Corrections to the Metric

The time varying dilaton provides an additional source of stress energy. The lowest
order contribution due to this stress energy is O(ǫ)2 as we will see below. It then
follows, after a suitable coordinate transformation if necessary, that the O(ǫ) cor-
rections to the metric vanish and the first non-vanishing corrections to it arise at
order ǫ2. The essential point here is that any O(ǫ) correction to the metric must be
r dependent and thus would lead to a contribution to the Einstein tensor of order
ǫ, which is not allowed. This is illustrated by the dilaton calculation above, where a
similar argument lead to the O(ǫ) contribution, Φ1, vanishing. In this subsection we
calculate the leading O(ǫ2) corrections to the metric.

Before we proceed it is worth discussing the boundary conditions which must be
imposed on the metric. As was discussed in the previous subsection we consider a
dilaton source, Φ0, which approaches a constant value in the far past, t→ −∞. The
corrections to the metric that arise from such a source should also vanish in the far
past. Thus we see that as t → −∞ the metric should approach that of AdS5 space-
time. Also the solutions we are interested in correspond to the gauge theory living
on a time independent S3 × R space-time in the presence of a time dependent Yang
Mills coupling (dilaton). This means the leading behavior of the metric for large r
should be that of AdS5 space. Changing this behavior corresponds to turning on a
non-normalizable component of the metric and is dual to changing the metric of the
space-time on which the gauge theory lives.

We expect that these boundary conditions, which specify both the behavior as
t → −∞ and as r → ∞ should lead to a unique solution to the super gravity
equations. The former determine the normalizable modes and the latter the non-
normalizable modes. This is dual to the fact that in the gauge theory the response
should be uniquely determined once the time dependent Lagrangian is known (this
corresponds to the fixing the non-normalizable modes) and the state of the system is
known in the far past(this corresponds to fixing the normalizable modes).

Since Φ0 is S3 symmetric, we can consistently assume that the corrections to the
metric will also preserve the S3 symmetry. The resulting metric can then be written
as,

ds2 = −gtt(t, r)dt2 + grr(t, r)dr
2 + 2gtr(t, r)dtdr +R2dΩ2. (3.30)

Now as is discussed in Appendix A up to O(ǫ2) we can consistently set gtr = 0. In
addition we can to this order set R2 = r2. Below we also use the notation,

gtt ≡ e2A(t,r), (3.31)

grr ≡ e2B(t,r). (3.32)

The metric then takes the form,

ds2 = −e2A(t,r)dt2 + e2B(t,r)dr2 + r2dΩ2. (3.33)

The trace reversed Einstein equation are:

RAB = ΛgAB +
1

2
∂AΦ∂BΦ. (3.34)
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In our conventions,
Λ = −4. (3.35)

To order ǫ2 we can set Φ = Φ0 in the second term on the RHS.
A few simple observations make the task of computing the curvature components

to O(ǫ2) much simpler. As we mentioned above the first corrections to the metric
should arise at O(ǫ2). To order ǫ2 the metric is then

gab(t, r) = g
(0)
ab (r) + g

(2)
ab (t, r). (3.36)

Now the zeroth order metric, g
(0)
ab , is time independent. The time derivatives of g

(2)
ab are

non-vanishing but of order ǫ3 and thus can be neglected for calculating the curvature
tensor to this order. As a result for calculating the curvature components to order ǫ2

we can neglect all time derivatives of the metric, Eq.(3.36).
Before proceeding we note that the comments above imply that the equations

determining the second order metric components schematically take the form,

Ô(r)g
(2)
ab = fab(r)Φ̇

2
0 (3.37)

where Ô(r) is a second order differential operator in the radial variable, r. As a result
the solution will be of the form,

g
(2)
ab = F(r)abΦ̇

2
0, (3.38)

where F(r) are functions of r which arise by inverting Ô(r). We see that the correc-
tions to the metric at time t are determined by the dilaton source Φ0 at the same
instant of time time t. Note also that since we are only considering a dilaton source Φ0

which vanishes in the far past, the solution Eq.(3.38) correctly imposes the boundary

condition that g
(2)
ab vanishes in far past and the metric becomes that of AdS5.

Bearing in mind the discussion above, the curvature components are now easy to
calculate. The t− t component of Eq.(3.34) gives,

(A′e(A−B))′

e(A+B)
+ 3

A′e−2B

r
=

Φ̇2
0

2
e−2A + 4. (3.39)

The r − r component gives,

−(A′e(A−B))′

e(A+B)
+ 3

B′e−2B

r
= −4. (3.40)

The component with legs along the S3 gives,

B′ − A′

e2Br
+

2

r2
(1− e−2B) = −4. (3.41)

In these equations primes indicates derivative with respect to r and dot indicates
derivative with respect to time.
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Adding the t− t and r − r equations gives,

3(A′ + B′)
e−2B

r
=

Φ̇2
0

2
e−2A. (3.42)

Eq.(3.41) and Eq.(3.42) then lead to

2B′e−2B

r
− 1

6
Φ̇2

0e
−2A +

2

r2
(1− e−2B) = −4. (3.43)

This is a first order equation in B. Integrating we get to order ǫ2,

e−2B = 1 + r2 +
c1
r2

− 1

6

Φ̇2
0

r2
[

∫ r

0

e−2A0r3dr]. (3.44)

Here c1 is an integration constant and e2A0 = 1 + r2 is the zeroth order value of e2A.
We require that the metric become that of AdS5 space as t→ −∞ this sets c1 = 0 9.
A negative value of c1 would mean starting with a black hole in AdS5 in the far past.

The integral within the square brackets on the RHS in Eq.(3.44) is given by,

∫ r

0

e−2A0r3dr =
1

2
[r2 − ln(1 + r2) + d1]. (3.45)

This gives,

e−2B = 1 + r2 − 1

12

Φ̇2
0

r2
[r2 − ln(1 + r2) + d1]. (3.46)

A solution which is regular for all values of r, is obtained by setting d1 to vanish.
This gives,

e−2B = 1 + r2 − 1

12
Φ̇2

0[1−
1

r2
ln(1 + r2)]. (3.47)

We can obtain e2A from Eq.(3.42). To second order in ǫ2 this equation becomes,

A′ =
1

6
rΦ̇2

0e
−2(A0−B0) −B′, (3.48)

which gives,

A = −B +
1

12
Φ̇2

0[−
1

1 + r2
+ d3], (3.49)

with d3 being a general function of time. Eq.(3.49) and Eq.(3.47) leads to

e2A = 1 + r2 + Φ̇2
0[−

1

4
+

1

12

ln(1 + r2)

r2
+
d3
6
(1 + r2)]. (3.50)

The last term on the right hand side changes the leading behavior of e2A as r → ∞,
if d3 does not vanish, and therefore corresponds to turning on a non-normalizable

9Note that c1 could be a function of time and still solve Eq.(3.43), recall though that the
equations above were derived by neglecting all time derivatives of the metric, Eq.(3.36). Only a
time independent constant c1 is consistent with this assumption. A similar argument will also apply
to the other integration constants we obtain as we proceed.
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mode of the metric. As was discussed above we want solutions where this mode is
not turned on, and we therefore set d3 to vanish.

This gives finally,

e2A = 1 + r2 − 1

4
Φ̇2

0 +
1

12
Φ̇2

0

ln(1 + r2)

r2
. (3.51)

Eq.(3.47), (3.51) are the solutions to the metric, Eq.(3.33), to second order. Note that
the Einstein equations gives rise to three equations, Eq.(3.39), Eq.(3.40), Eq.(3.41).
We have used only two linear combinations out of of these to find A,B. One can
show that the remaining equation is also solved by the solution given above.

In summary we note that the Einstein equations can be solved consistently to
second order in ǫ2. The resulting solution is horizon-free and regular for all values of
the radial coordinate and satisfies the required boundary conditions discussed above.
The second order correction to the metric is parametrically suppressed by ǫ2 compared
to the leading term for all values of r, thereby making the perturbation theory self
consistent.

Let us end by commenting on the choice of integration constants made in obtaining
the solution above. The boundary conditions, as t → −∞ and r → ∞, determine
most of the integration constants. One integration constant d1 which appears in the
solution for e2B, Eq.(3.46) is fixed by regularity at r → 0 10. For d1 = 0 the second
order correction is small compared to the leading term, and the use of perturbation
theory is self-consistent. Moreover we expect that the boundary conditions imposed
here lead to a unique solution to the supergravity equations, as was discussed at the
beginning of this subsection. Thus the solution obtained by setting d1 = 0 should be
the correct one.

The solution above is regular and has no horizon. It has these properties due to the
slowly varying nature of the boundary dilaton. The dual field theory in this case is in a
non-dissipative phase. Once the dilaton begins to change sufficiently rapidly with time
we expect that a black hole is formed, corresponding to the formation of a strongly
dissipative phase in the dual field theory. In [26] the effect of a small amplitude time
dependent dilaton with arbitrary time dependence was studied. Indeed it was found
that when the time variation is fast enough there are no regular horizon-free solutions
and a black hole is formed.

Finally, the analysis of this section holds when eΦ is large enough to ensure appli-
cability of supergravity. The fact that a black hole is not formed in this regime does
not preclude formation of black holes from stringy effects when eΦ becomes small
enough. In fact we will argue in later sections that the latter is a distinct possibility.

Effective decoupling of modes

An important feature of the lowest order calculation of this section is that the per-
turbations of the dilaton and the metric are essentially linear and do not couple to
each other. To this order, the dilaton perturbation is simply a solution of the linear

10Similarly in solving for the dilaton perturbation the integration constant a1 is fixed by requiring
regularity at r = 0, Eq.(3.25).
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d’Alembertian equation in AdS5. Similarly the metric perturbations also satisfy the
linearized equations of motion in AdS, albeit in the presence of a source provided by
the energy momentum tensor of the dilaton. This is a feature present only in the
leading order calculation. As explained above, this arises because of the smallness
of the parameter ǫ. We will use this feature to compare leading order supergravity
results with gauge theory calculations in a later section.

3.2 Calculation of Stress Tensor and Other Operators

In this section we calculate the boundary stress tensor and the expectation value of
the operator dual to the dilaton, staying in the supergravity approximation. This
will be done using standard techniques of holographic renormalization group [27, 28,
29, 30, 56, 32, 33, 34].

The Energy-Momentum Tensor

The metric is of the form, Eq.(3.33), Eq.(3.47), Eq.(3.51). For calculating the stress
tensor a boundary is introduced at large and finite radial location, r = r0. The
induced metric on the boundary is,

ds2B ≡ hµνdx
µdxν = −e2Adt2 + r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2). (3.52)

The 5 dim. action is given by

S5 =
1

16πG5

∫

M

d5x
√−g

(

R + 12− 1

2
(∇Φ)2

)

− 1

8πG5

∫

r=r0

d4x
√
−hΘ. (3.53)

Here hµν is the induced metric on the boundary , and Θ is the trace of the extrinsic
curvature of the boundary. In our conventions, with RAdS = 1,

G5 =
π

2N2
. (3.54)

A counter term needs to be added, it is,

Sct = − 1

8πG5

∫

∂M

d4x
√
−h
[

3 +
R
4
− 1

8
(∇Φ)2 − log(r0)a(4)

]

. (3.55)

The last term is needed to cancel logarithmic divergences which arise in the action,
it is well known and is discussed in e.g. [27, 33]. From Eq(24) of [33] we have 11 that

a(4) =
1

8
RµνR

µν− 1

24
R2−1

8
Rµν∂µΦ∂νΦ+

1

24
Rhµν∂µΦ∂νΦ+

1

16
(∇2Φ)2+

1

48
{(∇Φ)2}2 .

(3.56)
Here ∇ is a covariant derivative with respect to the metric hµν .

11Note that our definition of the dilaton Φ is related to φ(0) in [33] by φ(0) = Φ/2.
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Varying the total action ST = S5 + Sct gives the stress energy,

T µν =
2√
−h

δST
δhµν

(3.57)

=
1

8πG5

[

Θµν −Θhµν − 3hµν +
1

2
Gµν − 1

4
∇µΦ∇νΦ +

1

8
hµν(∇Φ)2 + · · ·

]

.

Here Gµν is the Einstein tensor with respect to the metric hµν . The ellipses stand
for extra terms obtained by varying the last term in Eq.(3.55) proportional to a(4).
While these terms are not explicitly written down in Eq.(3.57), we do include them
in the calculations below.

The expectation value of the stress tensor in the boundary theory is then given
by,

< T µν >= r40T
µ
ν (3.58)

Carrying out the calculation gives a finite answer,

< T tt > =
N2

4π2
[−3

8
− Φ̇2

0

16
]

< T θθ >=< Tψψ >=< T φφ > =
N2

4π2
[
1

8
− Φ̇2

0

16
] (3.59)

where we have used Eq.(3.54). We remind the reader that in our conventions the
radius of the S3 on which the boundary gauge theory lives has been set equal to
unity. The first term on the right hand side of (3.59) arises due to the Casimir
effect. The second term is the additional contribution due to the varying Yang Mills
coupling.

From Eq.(3.59) the total energy in the boundary theory can be calculated. We
get,

E = − < T tt > VS3 =
3N2

16
+
N2Φ̇2

0

32
. (3.60)

where VS3 = 2π2 is the volume of a unit three-sphere. Note that the varying dilaton
gives rise to a positive contribution to the mass, as one would expect. Moreover this
additional contribution vanishes when the Φ̇ vanishes. In particular for a dilaton
profile which in the far future, as t → ∞, again approaches a constant value (which
could be different from the starting value it had at t→ −∞) the net energy produced
due to the varying dilaton vanishes.

Expectation value of the Operator Dual to the Dilaton

The operator dual to the dilaton has been discussed explicitly in [4], [35], [16].
It’s expectation value is given by,

< Ôl=0 >=
δST
δΦB

|ΦB→0 (3.61)

Here ST is the total action including the boundary terms, Eq. (3.55). Since ΦB is
a function of t alone the LHS is the l = 0 component of the operator dual to the
dilaton which we denote by, Ôl=0.
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The steps involved are analogous to those above for the stress tensor and yield,

< Ôl=0 >= −N
2

16
Φ̈0 (3.62)

Note that the LHS refers to the expectation value for the dual operator integrated
over the boundary S3. In obtaining Eq.(3.62) we have removed all the divergent
terms and only kept the finite piece. A quadratically divergent piece is removed by
the third term in Eq.(3.55) proportional to (∇Φ)2, and a log divergence is removed
by a contribution from the last term in Eq.(3.55) proportional to a(4).

Additional Comments

Let us end this section with a few comments.
The only source for time dependence in the boundary theory is the varying Yang

Mills coupling. A simple extension of the usual Noether procedure for the energy,
now in the presence of this time dependence, tells us that

dE

dt
= −Φ̇0 < Ôl=0 > . (3.63)

It is easy to see that the answers obtained above in Eq.(3.60), Eq.(3.62) satisfy this
relation. The relation Eq.(3.63) is a special case of a more general relation which
applies for a dilaton varying both in space and time, this was discussed in Appendix
A of [25].

In general, for a slowly varying dilaton one can expand < Ôl=0 > in a power series
in Φ̇0. For constant dilaton, the solution is AdS5 where one knows that the < Ôl=0 >
vanishes. Thus one can write,

< Ôl=0 >= c1Φ̇0 + c2Φ̈0 + c3(Φ̇0)
2 · · · (3.64)

where the ellipses stand for higher powers of derivatives of the dilaton. Comparing
with the answer in Eq.(3.62) one sees that in the supergravity limit c1 and c3 van-
ish. As a result dE

dt
is a total derivative, and as was discussed above if the dilaton

asymptotes to a constant in the far future there is no net gain in energy.
It is useful to contrast this with what happens in the case of an infinite black

brane at temperature T subjected to a time dependent dilaton which is slowly varying
compared to the temperature T . This situation was analyzed extensively in [25]. In
that case (see Eq(2.13), Eq(3.20) and section 7.2 of the paper) the leading term in
Eq.(3.64) proportional to Φ̇0 does not vanish. The temperature then satisfies an
equation,

dT

dt
=

1

12π
Φ̇2

0 (3.65)

As a result any variation in the dilaton leads to a net increase in the temperature, and
the energy density. Note the first term in Eq.(3.64) contains only one derivative with
respect to time and breaks time reversal invariance. It can only arise in a dissipative
system. In the case of a black hole the formation of a horizon breaks time reversal
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invariance and turns the system dissipative allowing this term to arise. In the solution
we construct no horizon forms and consistent with that the first term is absent.

We see in the solution discussed above that the second order corrections to the
dilaton and metric arise in an instantaneous manner - at some time t, and for all
values of r, they are determined by the boundary value of the dilaton at the same
instant of time t. This might seem a little puzzling at first since one would have
expected the effects of the changing boundary conditions to be felt in a retarded
manner. Note though that in AdS space a light ray can reach any point in the bulk
from the boundary within a time of order RAdS. When ǫ ≪ 1 this is much smaller
than the time taken for the boundary conditions to change appreciably. This explains
why the leading corrections arise in an instantaneous manner. Some of the corrections
which arise at higher order would turn this instantaneous response into a retarded
one.

From the solution and the expectation values of the energy and Ôl=0 it follows
that in the far future the system settles down into an AdS5 solution again. The near
instantaneous nature of the solution means that this happens quickly on the times
scale of order RAdS. This agrees with general expectations. The supergravity modes
carry an energy of order 1/RAdS and should give rise to a response time of order
RAdS.

Also note that in our units, where RAdS = 1, each supergravity mode carries an
energy of order unity. The total energy at intermediate times is of order N2ǫ2, so
we see that an O(N2ǫ2) number of quanta are excited by the time varying boundary
dilaton. This can be a big number when Nǫ≫ 1. In fact the energy is really carried
by the various dilaton modes. The metric perturbations are S3 symmetric and thus
contain no gravitons (in the sense of genuine propagating modes). One can think of
this energy as being stored in a spatial region of order RAdS in size located at the
center of AdS space. This is what one would expect, since the supergravity modes
which are produced by the time varying boundary dilaton have a size of order RAdS

and their gravitational redshift is biggest at the center of AdS space 12.
In summary, the response in the bulk to the time varying boundary dilaton is

characteristic of a non-dissipative adiabatic system which is being driven much more
slowly than its own fast internal time scale of response.

3.3 Gauge Theory : Quantum Adiabatic Approximation

We now turn to analyzing the behavior of the system in the dual field theory. The
motivation behind this is to be able to extend our understanding to situations in
which the ’tHooft coupling at intermediate time becomes of order one or smaller, so
that the geometry in the bulk becomes of order the string scale. In such situations
the supergravity calculation presented in the previous section breaks down and higher
derivative corrections become important. The gauge theory description continues to

12AdS is of course a homogeneous space-time, but our boundary conditions pick out a particular
notion of time. The center of AdS, where the energy is concentrated, is the region as mentioned
above where the redshift in the corresponding energy is the biggest.
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be valid, however. Using this description one can then hope to answer how the system
evolves in the region of string scale curvature, and in particular whether by waiting
for enough time a smooth geometry with small curvature emerges again on the gravity
side.

We saw in the previous subsection that the bulk response was characteristic of
an adiabatic system which was being driven slowly compared to the time scale of
its own internal response. This suggests that in the gauge theory also an adiabatic
perturbation theory should be valid and should prove useful in understanding the
response. A related observation is the following. The bulk solutions we have con-
sidered correspond to keeping the radius R of the S3 on which the gauge theory
lives to be constant and independent of time. We will choose conventions in which
R = RAdS = 1. The Yang Mills coupling is related to the boundary dilaton by,

g2YM = eΦ0(t). (3.66)

The dilaton profile Eq.(3.18) also means that Yang Mills coupling in the gauge theory
varies slowly compared to the radius R. Since this is the only other scale in the system,
this also suggests that an adiabatic approximation should be valid in the boundary
theory.

We will discuss two different kinds of adiabatic perturbation theory below. The
first, which we call Quantum adiabatic perturbation theory, is studied in this section.
This is the adiabatic perturbation theory one finds discussed in a standard text book
of quantum mechanics, see [36],[37]. Its validity, we will see below requires the con-
dition, Nǫ ≪ 1, to be met. We will argue that once this condition is met the gauge
theory analysis allows us to conclude that, even in situations where the curvature be-
comes of order the string scale at intermediate times, a dual smooth AdS5 geometry
emerges as a good approximation in the far future.

The supergravity calculations, however, required only the condition ǫ≪ 1, which
is much less restrictive than the condition Nǫ ≪ 1. Understanding the supergravity
regime on the gauge theory side leads us to formulate another perturbation theory,
which we call “Large N Classical Adiabatic Perturbation Theory” (LNCAPT). To
explain this we find it useful to first discuss the example of a driven harmonic oscil-
lator, as considered in §5. Following this, we discuss LNCAPT in the gauge theory
in §6. We find that its validity requires that the conditions Eq.(3.6) are met. Using
it we will get agreement with the supergravity calculations of sections §2, §3, when
the ’tHooft coupling remains large for all times.

Towards the end of §6, we discuss what happens in the gauge theory when condi-
tions Eq.(3.6) are met but with the ’tHooft coupling becoming small at intermediate
times. Two qualitatively different behaviors are possible, and we will not be able to
decide between them here. Either way, at late times a mostly smooth AdS description
becomes good on the gravity side, with the possible presence of a small black hole.

In the discussion below we will consider the following type of profile for the bound-
ary dilaton: it asymptotes in the far past and future to constant values such that the
initial and final values of the ’tHooft coupling, λ, are big, and attains its minimum
value near t = 0. If this minimum value of λ ≤ 1 the supergravity approximation will
break down. We will also take the initial state of the system to be the ground state
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of the N = 4 theory, on S3 the spectrum of the gauge theory is gapped and this state
is well defined.

The Quantum Adiabatic Approximation

• General Features

It is well known that the spectrum of the N = 4 theory on S3 has a gap between
the energy of the lowest state and the first excited state. This gap is of order 1/R
and thus is of order unity in our conventions. The existence of this gap follows very
generally just from the fact that the spectrum must provide a unitary representation
of the conformal group, [11], and the gap is therefore present for all values of the
Yang Mills coupling constant. In the supergravity approximation the spectrum can
be calculated using the gravity description and is consistent with the gap, the lowest
lying states have an energy E = 2. This is also true at very weak ’tHooft coupling.

Now for a slowly varying dilaton Eq.(3.18) we see that the Yang Mills coupling
and therefore the externally imposed time dependence varies slowly compared to this
gap. There is a well known adiabatic approximation which is known to work in such
situations, see e.g. [36],[37] whose treatment we closely follow. We will refer to this
as the quantum adiabatic approximation below and study the Yang Mills theory in
this approximation.

The essential idea behind this approximation is that when a system is subjected to
a time dependence which is slow compared to its internal response time, the system
can adjust itself very quickly and as a result to good approximation stays in the
ground state of the instantaneous Hamiltonian.

More precisely, consider a time dependent Hamiltonian H(ζ(t)), where ζ(t) is the
time varying parameter. Now consider the one parameter family of time independent
Hamiltonians given by H(ζ). To make our notation clear, a different value of ζ
corresponds to a different Hamiltonian in this family, but each Hamiltonian is time
independent. Let |φm(ζ) > be a complete set of eigenstates of the Hamiltonian H(ζ)
satisfying,

H(ζ)|φm(ζ) >= Em(ζ)|φm(ζ) >, (3.67)

in particular let the ground state of H(ζ) be given by |φ0(ζ) >. We take |φm(ζ) >
to have unit norm. Then the adiabatic theorem states that if ζ → ζ0 in the far past,
and we start with the state |φ0 > which is the ground state of H(ζ0) in the far past,
the state at any time t is well approximated by,

|ψ0(t) >≃ |φ0(ζ) > e−i
∫ t
−∞ E0(ζ)dt. (3.68)

Here |φ0(ζ) > is the ground state of the time independent Hamiltonian corresponding
to the value ζ = ζ(t). Similarly in the phase factor E0(ζ) is the value of the ground
state energy for ζ = ζ(t).

Corrections can be calculated by expanding the state at time t in a basis of energy
eigenstates at the instantaneous value of the parameter ζ. The first corrections take
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the form,

|ψ1(t) >=
∑

n 6=0

an(t)|φn(ζ) > e−i
∫ t
−∞ Endt (3.69)

where the coefficient an(t) is,

an(t) = −
∫ t

−∞
dt′
< φn(ζ)|∂H∂ζ |φ0(ζ) >

E0 − En
ζ̇ e−i

∫ t′
−∞(E0−En)dt′ (3.70)

In the formula above on the RHS |φn(ζ) >, ∂H
∂ζ
, En(ζ), are all functions of time,

through the time dependence of ζ.

• Conditions For Validity

For the adiabatic approximation to be good the first corrections must be small.
To ensure this we impose the condition,

| < φn|
∂H

∂ζ
|φ0 > ζ̇| ≪ (E1 − E0)

2 (3.71)

where (E1−E0) is the energy gap between the ground state and the first excited state
and |φn > is any excited state. (This would then imply that the LHS in Eq.(3.71)
is smaller than (En − E0)

2 for all n.) This condition is imposed for all time for the
adiabatic approximation to be valid 13 .

In our case the role of the parameter ζ is played by the dilaton Φ0(with the gauge
coupling g2YM = eΦ0). Thus Eq.(3.71) takes the form,

| < φn|
∂H

∂Φ0

|φ0 > Φ̇0| ≪ (E1 − E0)
2. (3.72)

Now, as we will see below in subsection §4.3, ∂H
∂Φ0

is, up to a sign, exactly the operator

Ôl=0 which is dual to the modes of the dilaton which are spherically symmetric on
the S3. Therefore Eq.(3.72) becomes

| < φn|Ôl=0|φ0 > Φ̇0| ≪ (E1 − E0)
2. (3.73)

We have argued above that the RHS is of order unity in our conventions due to
the existence of a robust gap. On the LHS, Φ̇0 ∼ O(ǫ), and as we will argue below
the matrix element, | < φn|Ôl=0|φ0 >∼ O(N). Thus Eq.(3.73) becomes,

Nǫ≪ 1. (3.74)

13The actual condition is that the corrections to |ψ0 > must be small. This means that at first
order < ψ1|ψ1 > should be small. When Eq.(3.71) is met |an| is small, but in some cases that might
not be enough and the requirement that the sum

∑ |an|2 is small imposes extra restrictions. There
could also be additional conditions which arise at second order etc.
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Highly Curved Geometries

Eq.(3.74) is the required condition then for the applicability of quantum perturbation
theory. When this condition is met, we can continue to trust the quatum adiabatic
approximation in the gauge theory even when the ’tHooft coupling becomes of order
unity or smaller at intermediate times. All the conditions which are required for the
validity of this approximation continue to be hold in this case. First, as was discussed
above the gap of order unity continues to exist. Second, the matrix elements which
enter are in fact independent of λ since they correspond to the two-point function of
dilaton which is a chiral operator. Thus the system continues to be well described
in the quantum adiabatic approximation so long as Eq.(3.74) is met. It follows then
that in the far future the state of the system to good approximation is the ground
state of the N = 4 theory. This implies that the dual description in the far future is
a smooth AdS5 geometry.

There is one important caveat to the above conclusion. It is possible that at
λ ∼ O(1) there are several states in the spectrum, scaling as a positive power of N ,
which accumulate near the first excited state. This does not happen for λ ≫ 1 and
for λ≪ 1 (where the spectrum of the free theory is of course known) but it remains
a logical possibility. If this is true the conditions for the adiabatic approximation will
have to be revised so that the dilaton varies even more slowly as a power of N . This
is a question which can be settled in principle once the spectrum of the N = 4 theory
is known for all λ. Similarly, the possibility for unexpected surprises at higher orders
can also be examined once enough is known about the N = 4 theory. The point is
simply that in this approximation all matrix elements and conditions can be phrased
as statements in the time independent N = 4 theory. As our knowledge of the N = 4
theory grows we will be able to check for any such unexpected surprises.

Let us also mention before proceeding that when the condition Eq.(3.74) is met
and for a dilaton profile where the ’tHooft coupling stays large for all time, the metric
is to good approximation smooth AdS5 for all time. However the small corrections to
this metric and dilaton cannot be calculated reliably in the classical approximation
used in section 2. This is because in this regime it is very difficult to even produce
one supergravity quantum as an excitation above the adiabatic vaccum. Therefore
quantum effects are important in calculating these corrections.

More Comments

We close this section by discussion two points relevant to the analysis leading up to
condition, Eq.(3.74).

First, let us argue why ∂H
∂Φ0

= −Ôl=0. The argument is sketched out below, more
details can be found in [16]. The action of the N = 4 theory is given by,

S =

∫

dt dΩ3

√−g(− 1

4eΦ0
)TrFµνF

µν + · · · (3.75)

where the ellipses indicate extra terms coming from scalars and fermions. Varying
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with respect to Φ0 gives us the operator dual to the dilaton,

Ô =
√−g( 1

4eΦ0
)TrFµνF

µν + · · · (3.76)

where the ellipses denote extra terms which arise from the terms left out in Eq.(3.75).
Henceforth, to emphasize the key argument we neglect the additional terms coming
from the ellipses.

Working in A0 = 0 gauge, the Hamiltonian density H is given by,

H = eΦ0
πiπ

i

2
+
e−Φ0

4
FijF

ij (3.77)

where
πi = e−Φ0∂0Ai (3.78)

is the momentum conjugate to Ai. Varying with respect to Φ0 gives,

∂H
∂Φ0

=
πiπ

i

2
eΦ0 − e−Φ0

4
FijF

ij. (3.79)

Substituting from Eq.(3.78) one sees that this agrees (up to a sign) with the operator
Ô given in Eq.(3.76). When the dilaton depends on time alone we can integrate the
above equations over S3, which leads to the relation ∂H

∂Φ0
= −Ôl=0, where H now

stands for the hamiltonian (rather than the hamiltonian density).
Second, we estimate how the matrix element, < φn|Ôl=0|φ0 >, which appears in

Eq.(3.73), scales with N . It is useful to first recall that the N = 4 theory, which is
conformally invariant, has an operator state correspondence. The states |φn > can be
thought of as being created from the vacuum by the insertion of a local operator. This
makes it clear that the only states having a non-zero matrix element, < φn|Ôl=0|φ0 >,
are those which can be created from the vacuum by inserting Ôl=0, since the only
operator with which Ôl=0 has a non-zero two point function is Ôl=0 itself.

Now in terms of powers of N the two-point function scales like,

< Ôl=0 Ôl=0 >∼ N2. (3.80)

The state |φn > which appears in the matrix element in Eq.(3.73) has unit norm and
is therefore created from the vacuum by the operator,

|φn >∼
1

N
Ôl=0|0 > (3.81)

From Eq.(3.80), Eq.(3.81), we then see that the matrix element scales like,

< φn|Ôl=0|φ0 >∼ N (3.82)

as was mentioned above.
Our discussion leading up to the estimate of the matrix element has been imprecise

in some respects. First, strictly speaking the operator state correspondence we used is
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a property of the Euclidean theory on R4, where as we are interested in the Minkowski
theory on S3 ×R. However, this is a technicality which can be taken care of by first
relating the matrix element in the Minkowski theory to that in Euclidean S3 × R
space and then relating the latter to that on R4 by a conformal transformation.

More importantly, the state created by Ôl=0 is not an eigenstate of energy, but is
in fact a sum over an infinite number of states labelled by an integer n with energies
ωn = 4 + 2n. This can be understood as follows. The operator Ô can be expanded
into positive and negative frequency modes, An, A

†
n respectively, for an infinite set n,

and acting with any of the A†
n’s gives a state,

|ϕn >≃ A†
n|0 > . (3.83)

One must therefore worry about the dependence on the mode number n in the matrix
element and the effects of summing up the contributions for all these modes. We will
return to address this issue in more detail in subsections 6.2 and 6.3, when we describe
the operatorsAn, A

†
n more explicitly and discuss renormalization. For now, let us state

that after the more careful treatment we will find that the condition for the quantum
adiabatic approximation Eq.(3.74) goes through unchanged. The physical reason is
simply this: we are interested here in the very low-frequency response of the system
and its very high frequency modes are not relevant for this.

3.4 The Slowly Driven Harmonic Oscillator

The supergravity calculations required the condition ǫ ≪ 1. To understand this
regime in the dual gauge theory it is first useful to consider a quantum mechanical
Harmonic oscillator with frequency ω0 driven by a time dependent source J(t) . We
will see that in this case a classical adiabatic perturbation theory becomes valid
when14

J̈

J̇ω0

≪ 1, (3.84)

J̇ ≫ ω
5/2
0 . (3.85)

Having understood this system we then return to the gauge theory in the following
subsection.

The Hamiltonian is given by

H =
1

2
Ẋ2 +

1

2
ω2
0(X +

J(t)

ω2
0

)2. (3.86)

In the quantum adiabatic approximation one considers the instantaneous Hamilto-
nian. At time t0 this is given by,

H0 =
1

2
Ẋ2 +

1

2
ω2
0(X +

J(t0)

ω2
0

)2 (3.87)

14Eq.(3.84), (3.85), clearly cannot hold when J̇ vanishes. The more precise versions of these
conditions are as follows. Eq.(3.84) is really the requirement that J is slowly varying. By this
one means that the Fourier transform of J has support, up to say exponentially small corrections,
only for small frequencies compared to ω0. Eq.(3.85) is the requirement that the coherent state
parameter, λ(t) given in Eq.(3.99), is large.
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where J(t0) is to regarded as a time independent constant in H0.
The ground state of H0 is a coherent state. Define,

X =
a+ a†√
2ω0

, P = −i√ω0(
a− a†√

2
) (3.88)

to be the conventional creation and destruction operators. Here,

P = Ẋ (3.89)

is the conjugate momentum. The ground state is

|φ0 >= Nαe
αa† |0 > . (3.90)

Here Nα is a normalization constant, determined by requiring that < φ0|φ0 >= 1.
The state |0 > is the vacuum annihilated by a, i.e.,

a|0 >= 0, (3.91)

and

α = − J
√

2ω3
0

. (3.92)

The ground state energy is

E0 =
1

2
ω0, (3.93)

it is independent of time.
A quick way to derive these results is to work with the shifted creation and

destruction operators,
ã = a− α, ã† = a† − α (3.94)

where α is given in Eq.(3.92). The Hamiltonian takes the form,

H = ω0(ã
†ã) +

1

2
ω0 (3.95)

It is clear then that the ground state is annihilated by ã, leading to Eq.(3.90) and
the ground state energy is Eq.(3.93).

For the quantum adiabatic theorem to be valid, the condition in Eq.(3.71) must
hold. For the harmonic oscillator it is easy to see that this gives,

J̇ ≪ ω
5/2
0 . (3.96)

In fact the time evolution in this case can be exactly solved. We consider the case
where J(t) → 0, t → −∞. Starting with the state |0 > in the far past, which is the
vacuum of the Hamiltonian in the far past, we then find that the state at any time t
is given by,

|ψ(t) >= N(t)eλ(t)a
†|φ0 > (3.97)
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where |φ0 > is the adiabatic vaccum given in Eq.(3.90), N(t) is a normalization
constant and the coherent state parameter is λ(t). Imposing Schrodinger equation
one gets

iλ̇ = i
J̇

√

2ω3
0

+ ω0λ. (3.98)

The solution for λ(t) with initial condition λ(−∞) = 0 is given by,

λ(t) =
e−iω0t

√

2ω3
0

∫ t

−∞
J̇(t′)eiω0t′dt′. (3.99)

Some details leading to Eq. (3.98) are given in Appendix A.2. This state will behave
like a classical state when the coherent state parameter is big in magnitude, i.e., when

|λ| ≫ 1. (3.100)

The integral on the RHS of Eq.(3.99) can be done by parts (we set J(−∞) = 0),

∫ t

−∞
dt′ J̇eiω0t′ = J̇(t)

eiω0t

iω0

−
∫ t

−∞
dt′J̈

eiω0t′

iω0

. (3.101)

Subsequent iterations obtained by further integrations by parts gives rise to a series
expansion15 for λ in terms of higher derivatives of J . The higher order terms are small
if J is slowly varying compared to the frequency of the oscillator ω0. Evaluating the
second term which arises in his expansion for example and requiring it to be smaller
than the first term in Eq.(3.101) gives,

J̈

J̇ω0

≪ 1 (3.102)

We assume now that J is slowly varying and the first term on the RHS of Eq.(3.101)
is a good approximation to the integral. This tells us that for Eq.(3.100) to be true
the condition which must be met is,

J̇ ≫ ω
5/2
0 . (3.103)

Note that this condition is opposite to the one needed for the quantum adiabatic
theorem to apply Eq.(3.96).

The answer for the < X > can be easily obtained by inserting the expression for
λ obtained in Eq.(3.99) in the wave function, Eq.(3.97). Let us obtain it here in a
slightly different manner. When Eq.(3.100) is true the system behaves classically and
its response to the driving force can be obtained by solving the classical equation of
motion for the forced oscillator. In terms of the Fourier transform of J this gives,

X(t) =

∫

J(ω)

ω2 − ω2
0

e−iωtdω (3.104)

15In general one expects this to be an asymptotic rather than convergent series.
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The correct pole prescription on the RHS is that for a retarded propagator.
When the source is slowly varying compared to ω0, the denominator ω2 − ω2

0

in Eq.(3.104) can be expanded in a power series in ω2

ω2
0
and the resulting Fourier

transforms can be expressed as time derivatives of J . The first two terms give,

X = −J(t)
ω2
0

+
J̈

ω4
0

+ · · · (3.105)

The first term on the RHS is the location of the instantaneous minimum. The second
term is the first correction due to the time dependent source. Subsequent corrections
are small if the source is slowly varying and condition Eq.(3.102) is met. It is useful
to express this result as,

X +
J(t)

ω2
0

=
J̈

ω4
0

+ · · · . (3.106)

The left hand side is the expectation value of X after adding a shift to account for
the instantaneous minimum of the potential. The right hand side we see now only
contains time derivatives of J . Before proceeding let us note that the expanding the
denominator in Eq.(3.104) in a power series in ω2

ω2
0
gives a good approximation only

if J(ω) has most of its support for ω ≪ ω0. This is how the more precise condition
mentioned in the footnote before Eq.(3.84) arises.

It is also useful to discuss the energy. From Eq.(3.105) and the Hamiltonian we
see that the leading contribution comes from the Kinetic energy term and is given to
leading order by,

E =
1

2

J̇2

ω4
0

(3.107)

(strictly speaking this is the energy above the ground state energy).
The external source driving the oscillator changes its energy. Noether’s argument

in the presence of the time dependent source leads to the conclusion that

∂H

∂t
= J̇(X +

J

ω2
0

) (3.108)

(this also directly follow from the Hamiltonian, Eq.(3.86)). From Eq.(3.106) and
Eq.(3.107) we see that this condition is indeed true. Let us also note that the rate of
change in energy can be expressed in terms of the shifted operators, Eq.(3.94), as,

∂H

∂t
= J̇(

ã+ ã†√
2ω0

), (3.109)

this form will be useful in our discussion below.
To summarize, we find that when the conditions Eq.(3.103), Eq.(3.102), are met

the driven harmonic oscillator behaves like a classical system. Its response, for exam-
ple, < X >, and the energy, E, can be calculated in an expansion in time derivatives
of J , which is controlled when Eq.(3.102) is valid and the source is slowly varying.
We will refer to this perturbation expansion as the classical adiabatic perturbation
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approximation below. Note that the condition, Eq.(3.103) is opposite to the one re-
quired for the quantum adiabatic perturbation theory to hold. In the next subsection
we will discuss how a similar classical adiabatic approximation arises in the gauge
theory.

3.5 Gauge Theory: Large N Classical Adiabatic Perturbation Theory

We now return to the gauge theory and formulate a large N classical adiabatic ap-
proximation based on coherent states in this theory. This will allow us to obtain
results in the gauge theory which agree with those obtained using supergravity in §2,
§3.

Adiabatic Approximation in terms of Coherent States

The supergravity solution in §2 describes classical solutions rather than states which
contain a small number of bulk particles. The AdS/CFT correspondence implies that
bulk classical solutions corresponds to coherent states in the boundary gauge theory
with a large number of particles in which operators like Ô have nontrivial expectation
values. On the other hand, states obtained by the action of a few factors of Ô on the
vaccum are few-particle states in the bulk. The quantum adiabatic approximation
described in §4 attempts to determine the wave function in a basis formed out of such
single particle states and does not apply to the supergravity solution in §2.

We, therefore, need to formulate an adiabatic approximation in terms of coherent
states of gauge invariant operators in the boundary theory to try and understand the
supergravity solutions of §2 in a dual description. As is well known, these coherent
states become classical in a smooth fashion in the N → ∞ limit. (See e.g. [13]).
Consider a complete (usually overcomplete) set of gauge invariant operators in the
Schrodinger picture, ÔI . A general coherent state is of the form

|Ψ(t) >= exp

[

iχ(t) +
∑

I

λI(t)ÔI
(+)

]

|0 >A . (3.110)

Here ÔI
(+) denotes the creation part of the operator and |0 >A denotes the adiabatic

vacuum corresponding to some instantaneous value of the dilation Φ0,

H[Φ0]|0 >A= EΦ0|0 >A (3.111)

with the ground state energy EΦ0 .
The algebra of operators ÔI , together with the Schrodinger equation then leads

to a differential equation which determines the time evolution of the coherent state
parameters λI(t) in terms of the time dependent source Φ0(t). The idea is then to
solve this equation in an expansion in time derivatives of Φ0(t). This is the coherent
state adiabatic approximation we are seeking.

In general it is almost impossible to implement this program practically, since
the operators ÔI have a non-trivial operator algebra which mixes all of them. The
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coherent state (3.110) is in the co-adjoint orbit of this algebra [13]. The resulting
theory of fields conjugate to these operators would be in fact the full interacting string
field theory in the bulk. In our case, however, the situation drastically simplifies for
large ’t Hooft coupling at the lowest order of an expansion in Φ̇0. This is because
these various operators decouple and their algebra essentially reduces to free oscillator
algebras.

We have already found this decoupling in our supergravity calculation. The de-
parture of the solution from AdS5×S5 is due to the time-dependence of the boundary
value of the dilaton, and are small when the time variations are small, controlled by
the parameter ǫ. To lowest order in ǫ (which is O(ǫ2)) the deformation of the bulk
dilaton in fact satisfied a linear equation in the AdS5 background in the presence of
a source provided by the boundary value Φ0(t). This equation does not involve the
deformation of the metric. Similarly, the equation for metric deformation does not
involve the dilaton deformation to lowest order.

This allows us to treat each supergravity field and its dual operator separately.
With this understanding we will now consider the coherent state (3.110) with only the
operator dual to the dilaton, Ô. Since our source is spherically symmetric and higher
point functions of the operators are not important in this lowest order calculation,
we can restrict this operator to its spherically symmetric part.

Large N Classical Adiabatic Perturbation Theory (LNCAPT)

Let us now elaborate in more detail on the LNCAPT.
The linearized approximation in the gravity theory means that only the two point

function is non-trivial and all connected higher point functions vanish. The non-linear
terms correspond to nontrivial higher order correlations. In this approximation the
gauge theory simplifies a great deal. Each gauge invariant operator- which is dual to
a bulk mode- gives rise to a tower of harmonic oscillators. The response of the gauge
theory can be understood from the response of these oscillators.

In fact in the quadratic approximation the only oscillators which are excited are
those which couple directly to the dilaton and so we only have to discuss their dy-
namics. We have already discussed the operator dual to the dilaton in section §4.3.
The dilaton excitations we consider are S3 symmetric and correspondingly the only
modes of Ô which are excited are S3 symmetric. Here we denote these by Ôl=0.

In the Heisenberg picture Ôl=0 can be expanded in terms of time dependent modes,
this is dual to the fact that the S3 symmetric dilaton can be expanded in terms of
modes with different radial and related time dependence in the bulk. One finds, as
is discussed in Appendix A.3, that only even integer frequencies appear in the time
dependence giving,

Ôl=0 = N
∞
∑

n=1

F (2n)[A2ne
−i2nt + A†

2ne
i2nt]. (3.112)

HereA2n, A
†
2n are canonically normalized creation and destruction operators satisfying

the relations,
[Am, An] = [A†

m, A
†
n] = 0 [Am, A

†
n] = δm,n. (3.113)
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Their commutators with the gauge theory hamiltonian are

[H,A†
2n] = (2n)A†

2n [H,A2n] = −(2n)A2n (3.114)

The normalization factor F (2n) may be computed by comparing with the standard
the 2-point function as is detailed in Appendix A.3. The result is

|F (2n)|2 = Aπ4

3
n2(n2 − 1) (3.115)

for n ≥ 2. F (0) and F (2) vanish, so this means that the sum in Eq.(3.112) receives
its first contribution at n = 2. It also means that the lowest energy state which can
be created by acting with Ôl=0 on the vacuum has energy equal to 4. This is what we
expect on general grounds, since the energies of states created by an operator with
conformal dimension ∆ are given by

ω(n, l) = ∆ + 2n+ l(l + 2) n = 0, 1, 2 · · · (3.116)

The constant A in Eq.(3.115) is the normalization of the 2-point function which
may be determined e.g. from a bulk calculation. Before proceeding let us also note
that F (2n) grows like F (2n) ∼ n2, Eq.(3.115), for large mode number n. This
enhances the coupling of the higher frequency modes to the dilaton and will be
important in our discussion of renormalization below.

From now onwards we will find it convenient to work in the Schrodinger rep-
resentation, in which operators are time independent. The operator Ôl=0 in this
representation is given by,

Ôl=0 = N
∑

n

F (2n)[A2n + A†
2n]. (3.117)

From Eq.(3.114) it follows that the Hamiltonian for A2n, A
†
2n modes can be written

as,

H =
∑

n

2nA†
2nA2n. (3.118)

Note this Hamiltonian measures the energy above that of the ground state.
The operators, A†

2n, A2n create and destroy a single quantum of excitation when
acting on the vaccum of the N = 4 theory with the instantaneous value of g2YM = eΦ0 .
Thus they are the analogue of the shifted creation and destruction operators we had
defined in the harmonic oscillator case, ã, ã†. The Hamiltonian, Eq.(3.118), is the
analogue of the Hamiltonian, Eq.(3.95) in the harmonic oscillator case.

The time dependence of the Hamiltonian due to the varying dilaton can be ex-
pressed as follows,

∂H

∂t
=
∂H

∂Φ
Φ̇0 = −Ôl=0Φ̇0 (3.119)

leading to,
∂H

∂t
= −Ôl=0Φ̇0 = −N

∑

n

F (2n)[A2n + A†
2n]Φ̇0, (3.120)
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where we have used Eq.(3.117). It is useful to write this as

∂H

∂t
= −N

∑

F (2n)
√
4nΦ̇0[

A2n + A†
2n√

4n
], (3.121)

which is analogous to the time dependence in the forced oscillator system, Eq.(3.109).
So we see that the gauge theory, in the quadratic approximation maps to a tower

of oscillators, with frequencies, ωn = 2n. Comparing with Eq.(3.109) we see that the
oscillator with energy 2n couples to a source,

J̇n = −NF (2n)
√
4nΦ̇0. (3.122)

The analysis of the harmonic oscillator now directly applies. The resulting state
is a coherent state,

|ψ >= N̂(t)e(
∑

n λnA
†
2n)|φ0 > . (3.123)

Here |φ0 > is the adiabatic vacuum, which in is the ground state of the N = 4 theory
with coupling g2YM = eΦ0 . N̂(t) is a normalization constant and the coherent state
parameter λn is given from Eq.(3.99) by,

λn =
e−iωnt

√

2ω3
n

∫ t

−∞
J̇n(t

′)eiωnt′dt′. (3.124)

The condition that the source is varying slowly, Eq.(3.102), becomes,

| Φ̈0

nΦ̇0

| ≪ 1 ∀n. (3.125)

It is clearly sufficient to satisfy this condition for n = 1,

|Φ̈0

Φ̇0

| ∼ ǫ≪ 1. (3.126)

This condition is met for the dilaton profile we have under consideration 16. When
this condition is true λn can be evaluated by keeping the first term in Eq.(3.101). The
condition that the state is classical, is that λn ≫ 1, this gives17,

|NF (2n)
√
4nΦ̇0| ≫ (2n)5/2. (3.127)

Noting from Eq.(3.115) that F (2n) ∼ n2 for large n we see that the factors of n
cancell out on both sides, leading to the conclusion that when,

|NΦ̇0| ∼ Nǫ≫ 1 (3.128)

16This condition is analogous to Eq.(3.84) for the driven harmonic oscillator. As discussed in
that context in the footnote before Eq.(3.84) there is a more precise version of this condition. It is
the statement that for all modes, n, the Fourier transform of Jn must have essentially all its support
at frequencies much smaller than the oscillator frequency, 2n.

17The more precise condition is simply that λn ≫ 1, ∀n. This gives, Eq.(3.127) provided that
the integral in Eq.(3.124) can be approximated by the first term of the derivative approximation.
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all the oscillators are in a classical state. In this way we recover the first condition
discussed in Eq.(3.6).

The summary is that when the two conditions,

ǫ≪ 1, Nǫ≫ 1 (3.129)

are both valid, the gauge theory is described to leading order in ǫ as a system of
harmonic oscillators. The oscillators which couple to the dilaton are excited by it
and are in a classical state.

This description can be used to calculate the resulting expectation value of oper-

ators. The calculation for <
A2n+A

†
2n√

4n
> is analogous to that for < X + J

ω2 > in the

harmonic oscillator case (since the A2n, A
†
2n are analogous to the shifted operators,

ã, ã† Eq.(3.94)). From Eq.(3.106) and Eq.(3.122) we get that to leading order in ǫ,

<
A2n + A†

2n√
4n

>= −NF (2n)
√
4n

(2n)4
Φ̈0. (3.130)

Substituting in Eq.(3.117) next gives,

< Ôl=0 >= −CN2Φ̈0 (3.131)

where C is

C =
∑ F (2n)2

4n3
. (3.132)

The functional dependence on Φ0 and N in Eq.(3.130) agrees with what we found in
the supergravity calculation, Eq.(3.62). The constant of proportionality C is in fact
quadratically divergent. This follows from noting that for large n, F (2n) ∼ n2.

A little thought tells us that the divergence should in fact have been expected.
The supergravity calculation also had a divergence and the finite answer in Eq.(3.62)
was obtained only after regulating this divergence and renormalizing. Therefore it is
only to be expected that a similar divergence will also appear in the description in
terms of the oscillators. In the subsection which follows we will discuss the issue of
renormalization in more detail. The bottom line is that counter terms can be chosen
so that the coefficient in Eq.(3.62) agrees with that in the supergravity calculation.

It is also important to discuss how the energy behaves. From Eq.(3.107) and
Eq.(3.122) we see that the energy above the ground state is

< E > −Egnd =
1

2
CN2Φ̇2

0 (3.133)

We note that the functional dependence on Φ̇0, N match with those obtained in
the supergravity calculations, Eq.(3.60). The constant of proportionality which is
obtained by summing over the oscillator modes in the case of the energy is the same
as C defined above, Eq.(3.132). It is also therefore quadratically divergent.

The fact that the two constants of proportionality in Eq.(3.133) and Eq.(3.131)
are the same follows on general grounds. Noether’s argument in the presence of the
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time dependence means that each oscillator satisfies the relation, Eq.(3.108). On
summing over all of them we then get the relation

<
dE

dt
>= −Φ̇0 < Ôl=0 > (3.134)

leading to the equality of the two constants. Earlier we had also seen that the super-
gravity calculation satisfies this relation, Eq.(3.63). It follows from these observations
that if after renormalization the answer for < Ôl=0 > agrees between the supergravity
theory and the oscillator description developed here, then the expectation value for
E will also agree in the two cases.

Here we have analyzed the gauge theory to leading order in ǫ. Going to higher
orders introduces anharmonic couplings between the different oscillators. These cou-
plings arise because of connected three-point and higher point correlations in the
gauge theory. The three point function for example is suppressed by 1/N , the four
point function by 1/N2 and so on. For computations in the ground state these would
therefore be suppressed in the large N limit. However as we have seen here the time
dependence results in a coherent state which contains O(Nǫ)2 quanta being produced.
The 3- pt function in such a state is suppressed by O(ǫ) and not by O(1/N). Since
ǫ≪ 1, this is still enough though to justify our neglect of the cubic terms to leading
order in ǫ. Similarly the effect of 4-pt correlators in the coherent state are suppressed
by O(ǫ)2 etc. This is in agreement with the supergravity calculation, where the cubic
terms in the equations of motion are suppressed by O(ǫ) etc.

To go to higher orders in ǫ using the oscillator description the effect of the anhar-
monic couplings induced by the higher order correlations would have to be introduced.
In addition one would have to keep the contributions from the quadratic approxima-
tion to the required order in ǫ. As long as the ’tHooft coupling stays big for all times
and the supergravity approximation is valid, there is no reason to believe that these
effects will be significant and the behavior of the system should be well described
by the leading harmonic oscillator description, in agreement with what we saw in
supergravity. When the ’tHooft coupling begins to get small though the anharmonic
couplings could potentially significantly change the behavior of the system, as we will
discuss in section 6.4.

Renormalization

Let us now return to the constant C Eq.(3.132). One would like to know if it can
be made to agree with the supergravity answer Eq.(3.62). Since the mode sum in C
diverges, at first sight it would seem that by suitably removing the infinities this can
always be done. To be explicit, imposing a cutoff on the mode sum in C one gets
from Eq.(3.132),

C =
∑ F (2n)2

4n3
= c1n

2
max + c2 ln(nmax) + finite term (3.135)

(A term linear in nmax can always be removed by shifting nmax). Removing the
infinities would mean removing the first two terms, but by changing nmax by a finite
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amount the finite term left over will clearly change and can be made equal to any
answer we want.

However this seems too superficial an answer. One would like to ensure that the
freedom to adjust C corresponds to the freedom to add local counterterms in the
theory, and also that once the counter terms are chosen so that C agrees no other
discrepancy appears with supergravity.

This is in fact true and can be easily seen by relating the calculation for < Ô >
in Eq.(3.131) to the two-point function for the dilaton. In fact we will only need the
two point function of the S-wave dilaton which is equal to the two-point function of
< Ôl=0Ôl=0 > in the gauge theory. Since the S-wave dilaton couples directly to Ôl=0,
we have

< Ôl=0(t) >=

∫

dt′ < Ôl=0(t)Ôl=0(t
′) > Φ(t′) (3.136)

Using Eq.(3.112) we find that

< Ôl=0(t)Ôl=0(t
′) >= N2

∑

n

F (2n)2(4n)

∫

dω

2πi

e−i(t−t
′)ω

(ω2 − (2n)2)
(3.137)

where we have expressed the answer in terms of a Fourier transform in frequency
space. We are not being explicit about the pole prescription here, this will deter-
mine which propagator (Feynman, Retarded etc) one requires. From Eq.(3.137) the
propagator in frequency space can be read off to be,

G(ω) = N2
∑

n

F (2n)2(4n)

(ω2 − (2n)2)
(3.138)

Since F (2n) ∼ n2 the sum over modes on the RHS is quartically divergent.
For purposes of comparing with the adiabatic approximation we expand this prop-

agator in powers in ω2. This gives,

G(ω)

N2
= −

∑ F (2n)2(4n)

(2n)2
− ω2

∑ F (2n)2(4n)

((2n)2)2
− ω4

∑ F (2n)2(4n)

((2n)2)3
+ · · · (3.139)

The terms within the ellipses contain powers higher than ω4 and are not divergent.
The first term on the RHS must be set to zero after renormalization to preserve
conformal invariance, otherwise the vacuum expectation value for < Ô > in the
N = 4 theory with constant coupling would not vanish. The leading contribution
to < Ô > in the adiabatic approximation then arises from the second term which is
quadratically divergent. After Fourier transforming the ω2 dependence of this term
gives rise to the second derivative with respect to the time of the dilaton. And the
sum over modes is the same as that in C, Eq.(3.132).

Now the point is that all divergences in the two-point function can be removed
by local counterterms since they correspond to contact terms. In fact the gravity
calculation also needed counterterms and from our discussion in §3.1 we know that
these counterterms are of the form given in Eq.(3.55). In particular the third term in
Eq.(3.55) proportional to (∇Φ)2 cancels the quadratic divergence while the last term
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in Eq.(3.55), a(4), contains terms which cancel the subleading logarithmic divergence.
Also once the counter terms are chosen so that C agrees no other discrepancy can
appear. The point here is that the leading order in ǫ calculations are only sensitive
to the two-point function. And the finite terms in the two-point function are well
known to agree between the gravity and gauge theory sides. In fact the finite two
point function is just determined by conformal invariance and since the anomalous
dimension of Ô does not get renormalized, it can be calculated in the free field limit
itself.

The bottom line then is that using the freedom to adjust the counter terms, C
can be made to agree with the supergravity calculations in §3.

Let us end by pointing out that the supergravity value for C, Eq.(3.62) is,

Csugra =
1

16
(3.140)

which means that the effect of renormalization is to only include the contributions of
modes with mode number n ∼ O(1). This makes good physical sense, we are dealing
with the low frequency response of the system here, and the high frequency modes
should not be relevant for this purpose.

This last comment also has a bearing on our discussion in §4 of the quantum
adiabatic perturbation theory. The criterion for the validity of this approximation
was stated in Eq.(3.74). Now what this condition really ensures is that the amplitude
to excite the system to a state |φn >= A†

n|0 > containing any one single oscillator
excitation is small. However there are an infinite number of such single excitation
states, corresponding to the infinite number of values that n takes, and one might be
worried that this condition is not sufficient. Even though the amplitude to excite the
system into any given state |φn > is small the sum of these amplitudes, more correctly
the norm of the first order correction of the wave function < ψ1|ψ1 >, Eq.(3.69), is
still be large and in fact would diverge when summed over all the modes. This would
invalidate the approximation. The reason this concern does not arise is tied to our
discussion above. After renormalization only a few low frequency modes contribute
to the response of the system and one is only interested in how the wave function
changes for these modes. For this purpose the condition in Eq.(3.74) is enough and
we see that when it is met the quantum adiabatic approximation is indeed valid.

Highly Curved Geometry

So far we have considered what happens in the parametric regime, Eq.(3.129), when
the ’tHooft coupling stays big all times. In this case the supergravity description is
always valid. We saw above that the gauge theory can be described in this regime in
terms of approximately decoupled classical harmonic oscillators and this reproduces
the supergravity results.

Now let us consider what happens when the dilaton takes a larger excursion so that
the ’tHooft coupling at intermediate times becomes of order unity or even smaller.
Some of the resulting discussion is already contained in the introduction above.

A natural expectation is that description in terms of classical adiabatic system of
weakly coupled oscillators should continue to apply even when the ’tHooft coupling
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becomes small. There are several reasons to believe this. First, anharmonic terms
continue to be of order ǫ and thus are small. The leading anharmonic terms arise
from three -point correlations, < Ô1Ô2Ô3 >. In the vaccum these go like 1/N . In the
coherent state produced by the time dependence these go like ǫ. The enhancement by
Nǫ arises because the coherent state containsO((Nǫ)2) quanta, so that the probability
goes as (Nǫ)2/N2 ∼ ǫ2. Four-point functions give rise to terms going like O(ǫ2)
and so on, these are even smaller. In the absence of anharmonic terms the theory
should reduce to a system of oscillators. Second, the existence of a gap of order
1/R means that for each oscillator the time dependence is slow compared to its
frequency. Therefore the system continues to be very far from resonance and should
evolve adiabatically. Finally, in the parametric regime, Eq.(3.129) the analysis of the
previous subsections should then apply leading to the conclusion that an O(Nǫ) ≫ 1
quanta are produced making the coherent state a good classical state.

If this expectation is borne out the system should settle back into the ground
state of the final N = 4 theory in the far future and should have a good description
in terms of smooth AdS space then.

However, as discussed in the introduction, there are reasons to worry that this
expectation is not borne out. New features could enter the dynamics when the ’tHooft
coupling becomes small at intermediate times, and these could change the qualitative
behavior of the system. These new features have to do with the fact that string
modes can start getting excited in the bulk when the curvature becomes of order
the string scale. These modes correspond to non-chiral operators in the gauge theory
and the corresponding oscillators have a time dependent frequency. When the ’tHooft
coupling is big these frequencies are much bigger than those of the supergravity modes
and as a result the string mode oscillators are not excited. But when the ’tHooft
coupling becomes of order unity some of the frequencies of these string modes become
of order the supergravity modes and hence these oscillators can begin to get excited
18. In fact the string modes are many more in number than the supergravity modes,
since there are an order unity worth of chiral operators in the gauge theory and an
O(N2) worth of non-chiral ones.

The worry then is that if a significant fraction of these string oscillators get excited
the correct picture which could describe the ensuing dynamics is one of thermalization
rather than classical adiabatic evolution. In this case the energy pumped into the
system initially would get equipartitioned among all the different degrees of freedom.
Subsequent evolution would then be dissipative, and the energy would increases in a
monotonic manner, as it does for a large black hole, Eq.(3.65).

Due to the dissipative behavior the energy which is initially pumped in would not
be recovered in the future. Rather one would expect that when the ’thooft coupling
becomes large again, the energy, which is of order N2ǫ2 remains in the system. The
gravity description of the resulting thermalized state depends on the value of ǫ relative
to λ ≡ g2YMN and N . In this late time regime of large ’t Hooft coupling, the various
possibilities can be figured out from entropic considerations in supergravity ( see e.g.

18The primary reason for them getting excited are the anharmonic terms which couple them to
the modes dual to the dilaton.
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section 3.4 of [5]). The result in our case is the following. For ǫ ≪ (g2YMN)5/4/N
a gas of supergravity modes is favored. For (g2YMN)5/4/N < ǫ ≪ (g2YMN)−7/8 one
would have a gas of massive string modes. For (g2YMN)−7/8 < ǫ ≪ 1 one gets a
small black hole, i.e. a black hole whose size is much smaller than RAdS. A big black
hole requires O(N2) energy which is parametrically much larger. Thus, the strongest
departure from AdS space-time in the far future would be presence of small black
holes. Such black holes would eventually evaporate by emitting Hawking radiation.
However this takes an O(N2RAdS) amount of time which is much longer than the
time scale O(RAdS/ǫ) on which the ’tHooft coupling evolves. As a result for a long
time after the ’tHooft coupling has become big again the gravity description would
be that of a small black hole in AdS space.

An important complication in deciding between these two possibilities is that
the rate of time variation is ǫ which is also the strength of the anharmonic couplings
between the supergravity oscillators and string oscillators. If the rate of time variation
could have been made much smaller, thermodynamics would become a good guide for
how the system evolves. In the microcanonical ensemble, which is the correct one to
use for our purpose, with energy N2ǫ2 the entropically dominant configurations are
as discussed in the previous paragraph, and this would suggest that dissipation would
indeed set in. However, as emphasized above this conclusion is far from obvious here
since the time variation is parametrically identical to the strength of the anharmonic
couplings.

In fact we know that the guidance from thermodynamics is misleading in the
supergravity regime, where the ’tHooft coupling stays large for all times. In this case
we have explicitly found the solution in §2. It does not contain a black hole. Moreover,
it does not suffer from any tachyonic instability - since it is a small correction from
AdS space which does not have any tachyonic instability 19. The only way a black
hole could form is due to a tunneling process but this would be highly suppressed in
the supergravity regime.

One reason for this suppression is that the energy in the supergravity solution
discussed in §2 is carried by supergravity quanta which have a size of order RAdS. This
energy would have to be concentrated in much smaller region of order the small black
hole’s horizon to form the black hole and this is difficult to do. In contrast, away from
the supergravity regime this could happen more easily. When the ’tHooft coupling
becomes small at intermediate times, strings become large and floppy, of order RAdS,
at intermediate times. If a significant fraction of the energy gets transferred to these
strings at intermediate times it could find itself concentrated within a small black
hole horizon once the ’tHooft coupling becomes large again.

In summary we do not have a clean conclusion for the future fate of the system in
the parametric regime, Eq.(3.129). Note however that in both possibilities discussed
above most of space-time in the far future is smooth AdS space, with the possible
presence of a small black hole. Hopefully, the framework developed here will be useful
to think about this issue further.

19Note that we are working on S3 here.

52



3.6 Conclusions

In this paper we examined the behavior of the AdS5×S5 solution of IIB supergravity
when it is subjected to a time dependent boundary dilaton. This is dual to the
behavior of the N = 4 Super Yang -Mills theory subjected to a time dependent
gauge coupling. The AdS5 solution was studied in global coordinates and the dual
field theory lives on an S3 of fixed radius R. We worked in units where RAdS = R = 1.
Three parameters are relevant for describing the resulting dynamics:

1. N - which is the number of units of flux and is dual to the rank of the gauge
group. This was held fixed during the evolution.

2. λ = eΦ(t)N - which determines the value of RAdS in string units is the ’tHooft
coupling in the gauge theory. Especially relevant is its minimum value λmin
during the time evolution. When λmin ≫ 1 supergravity is a good approxima-
tion for all times. When λmin ≤ O(1) supergravity breaks down at intermediate
times.

3. ǫ ∼ Φ̇ - which determines the rate of change of the boundary dilaton in units of
RAdS. Throughout the analysis we worked in the slowly varying regime where
ǫ≪ 1.

Our results are as follows:

• When Nǫ ≪ 1 the dynamics can be described by a quantum adiabatic ap-
proximation. The gauge theory stays in the ground state of the instantaneous
Hamiltonian to good approximation. At late times the system is well described
by smooth AdS5 spacetime. This is true even when λmin ≤ 1 as discussed in
§4.

• When Nǫ≫ 1 and λmin ≫ 1, the system is well described by a supergravity so-
lution, which consists of AdS5 spacetime with corrections which are suppressed
in ǫ. The gauge theory provides an alternate description in terms of weakly
coupled harmonic oscillators which are modes of gauge invariant operators dual
to supergravity modes. These oscillators are subjected to a driving force that
is slowly varying compared to their frequency. A classical adiabatic perturba-
tion theory, the LNCAPT, describes the dynamics of the system. This dual
description reproduces the supergravity answers for the energy and < Ô >, as
discussed in §6.1, §6.2.

• When Nǫ≫ 1, and λmin ≤ O(1), supergravity breaks down. In this case we do
not have a clean conclusion for the final state of the system. Additional oscil-
lators which correspond to string modes can now get activated. There are two
possibilities : either the description in terms of classical adiabatic dynamics for
the oscillators continues to apply, or a qualitative new feature of thermalization
sets in. In the former case spacetime in the far future is well approximated by
smooth AdS space. In the latter case the gravity description depends on the
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value of ǫ and may consist of a string gas or small black holes. This is discussed
in §6.3.

• We have not addressed here what happens when the dilaton begins to vary
more rapidly and ǫ becomes ∼ O(1). It is natural to speculate that a black hole
forms eventually in this case. The oscillators in the gauge theory now become
strongly coupled with O(1) anharmonic couplings.

If λmin ≫ 1 this parametric regime can be studied in supergravity itself. When
ǫ ≪ 1 the calculations in §2 showed that no black hole forms. As ǫ increases
the natural expectation is that eventually a black hole should begin to form
at some critical value. The size of this black hole should then grow with ǫ,
leading to a big black hole with radius bigger than AdS scale. Very preliminary
indications for this come from the calculations in §2 where we see that as ǫ
increases the value of |gtt| becomes smaller at the center of AdS Eq.(3.51),
suggesting that a horizon would eventually form at ǫ ∼ O(1). Better evidence
comes from studying a region of parameter space where ǫ ≫ 1 but where the
total amplitude of the dilaton variation is small. In this case 20 one finds that
a boundary variation of the dilaton, which is sufficiently fast compared to its
amplitude, always produces a black hole.

When λmin ≤ O(1), and ǫ becomes ∼ O(1), supergravity breaks down at inter-
mediate times. If thermalization has already set in in the parametric regime,
Nǫ ≫ 1, ǫ ≪ 1, as discussed above, then one expects that the small black hole
which has formed for ǫ ≪ 1 would grow and become of order the AdS scale or
bigger when ǫ ≥ O(1). If thermalization does not set in when ǫ ≪ 1, then at
some critical value ǫ ∼ O(1) one would expect that this does happen leading to
the formation of a black hole whose mass then grows as ǫ further increases.

It will be interesting to try and analyze this regime further in subsequent work.

• Finally one can consider a regime where ǫ → ∞ at time t → 0. This regime
was considered in [16] where the dilaton was taken to vanishes like eΦ ∼ (t)p

as t → 0, leading to a diverging value for Φ̇. In a toy quantum mechanics
model it was argued that the response of the system in this case is singular,
suggesting that this singularity is a genuine pathology which is not smoothened
out. However the conclusions for the toy model do not directly apply to the
field theory. Important questions regarding the renormalization of this time
dependent field theory remain and could invalidate this conclusion.

One is hesitant to try and draw general conclusions about the possibility of emer-
gence of a smooth spacetime from string scale curved regions on the basis of the very
limited analysis presented here. One lesson which has emerged is that, at least for
the kind of time dependence studied in this paper, AdS space has a tendency to form
a black hole 21. This fate can be avoided (as in the case when Nǫ≪ 1) but it requires

20The results reported in [26] are for the case of AdSd+1 spacetimes with d odd.
21AdS space is of course homogeneous so the reader might be puzzled about where the black

hole forms. The point is that the time dependence imposed on the boundary picks out a particular
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slow time variation or perhaps more generally rather finally tuned conditions. To
understand in greater detail when this fate of black hole formation can be avoided
requires a deeper understanding of the process of thermalization in the dual field
theory.

In this paper we analyzed the effects of a time dependent dilaton. It will be inter-
esting to extend this to other supergravity modes as well by making their boundary
values time dependent - e.g, making the radius of the S3 on which the gauge theory
lives time dependent or introducing time dependence along the other exactly flat di-
rections in the N = 4 theory besides the dilaton. Also, we have kept the parameter
N fixed in this work. As was discussed in the introduction N measures the strength
of quantum corrections and is also the value of RAdS in Planck units Eq.(3.3). It
would be interesting to consider cases where N changes and become smaller thereby
increasing the strength of quantum effects and making the curvature of order lP l.
One way to do this might be by introducing time dependence that moves the system
onto the Coulomb branch. This could reduce the effective value of N in the interior.
For recent interesting work see, [38], also the related earlier work, [39], [40]. Finally,
a length scale was introduced in the gauge theory by working on S3 here. Instead
one could consider a confining gauge theory like the Klebanov-Strassler kind 22, [41],
which has a mass gap on R3. In this case one could consider the response of the
system to time dependence slow compared to the confining scale and hope to use an
adiabatic approximation to understand this response.

Copyright c© Jae-Hyuk Oh, 2011.

notion of time and the black hole forms where the redshift factor for this time is smallest, this is
the “center of AdS space” in global coordinates.

22We thank M. Mulligan for a related discussion.
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Chapter 4 On Dumb Holes and their Gravity Duals

In recent years, gauge-string duality [2, 5] has been useful in exploring properties
of strongly coupled field theories in regimes where their duals may be truncated
to classical gravity. In particular, application of gauge-string duality to the hydro-
dynamic regime of these field theories has led to a “fluid-gravity correspondence”
[25, 42, 43, 44, 45, 46]. Properties of solutions of classical gravity then lead to predic-
tions for interesting properties of the dual fluid, the most celebrated example being
the ratio of shear viscosity to the entropy density of a conformal fluid [42, 43].

In this note we use the fluid–gravity correspondence in the opposite direction. We
use properties of supersonic fluid flows to predict interesting properties of fluctuations
around a class of deformed black brane spacetimes in asymptotically AdS spacetimes.
These spacetimes are duals of inhomogeneous flows of conformal fluids where the fluid
velocity exceeds the speed of sound in some region. Unruh [47] showed that such flows
lead to the formation of an “acoustic ergoregion” and, under suitable conditions, to
an “acoustic horizon”. The same physics which leads to Hawking radiation from black
holes in General Relativity now leads to a Hawking-like radiation of quantized sound
waves (or phonons) with a thermal spectrum, the temperature being proportional
to the gradient of the velocity field at the acoustic horizon [49, 50]. Even when an
acoustic horizon is not present, the presence of an ergoregion leads to characteristic
properties like superradiance [52] . Fluid configurations with such acoustic horizons
have been termed “dumb holes”, and have been proposed as possible experimentally
realizable systems for testing the physics of Hawking radiation in the laboratory [53]
.

We will show that the gravity duals of such supersonic flows are non-static black
holes. The duals of sound waves are then certain quasinormal modes around such
black holes, and it follows from the fluid-gravity correspondence that at the quantum
level one should find a Hawking-like radiation of these modes with an approximately
thermal spectrum [44]. This Hawking-like radiation is distinct from the usual Hawk-
ing radiation associated with the black hole horizon, and would be present even when
the background black hole is extremal and hence at zero temperature. The tempera-
ture of this quasinormal mode radiation depends on the properties of a “quasinormal
mode horizon”, which is an extension into the bulk of the acoustic horizon of the
boundary fluid.

It should be emphasized that this phenomenon could have been found purely
in General Relativity (or its supergravity extensions relevant to our considerations)
by studying the fluctuation problem around these non-static black holes. However,
without the fluid gravity correspondence and knowledge of acoustic Hawking radia-
tion, there would not have been an obvious motivation to look for quasinormal mode
horizons in non-static black brane backgrounds.

While we believe that the phenomenon of Hawking radiation or super-radiance
of quasinormal modes is quite general, it turns out to be rather difficult to come up
with examples within a controlled approximation scheme. The simplest and perhaps
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most interesting background where such a phenomenon could be present is a Kerr
black hole in asymptotically AdS5 spacetime. The dual of such a background is
a rotating conformal fluid on S3 [56, 57]. There is a regime of parameters of the
black hole geometry for which the dual rotating fluid has supersonic velocities in a
band around the equator of the S3, thus producing an ergoregion for sound modes.
The physics of sound waves around such a rotating fluid background would have a
dual description in terms of quasinormal modes of gravitational perturbations around
the Kerr black hole in AdS5. However, this flow has vorticity, and the existence of
acoustic Hawking radiation has been demonstrated mostly for irrotational flow. In
the presence of nonzero vorticity, the sound modes get mixed up badly with other
modes and analysis becomes difficult [58].

The situation simplifies, however, if the flow is irrotational. As shown in [47] for
non-relativistic perfect fluids, and extended to relativistic perfect fluids in [59], the
velocity potential then obeys the wave equation for a minimally coupled massless
scalar field propagating on a curved background, the metric of which is determined
by the underlying flow. The mathematical problem of quantizing sound waves or
phonons around such a flow is then quite similar to that of quantizing a massless
scalar field in an ordinary black hole background. This implies the existence of an
acoustic analog of Hawking radiation.

Known examples of supersonic flows of perfect fluids often lead to infinite “acoustic
surface gravity” (which is proportional to the gradient of the velocity at the acoustic
horizon). The presence of viscosity usually regulates this divergence and renders it
finite [55]. The incorporation of viscosity, however, makes the analysis complicated.

In this paper we find simple examples of acoustic horizons in ideal relativistic
conformal fluids with finite acoustic Hawking temperature. The simplest example
involves a fluid moving in a background spacetime of the form

ds2B = −dt2 + dz2 +R(z)2(dθ2 + sin2 θdφ2) (4.1)

where R(z) is a slowly varying function which has the behavior R(z) → |z| as |z| →
∞. The fluid flow is steady and the only nonzero component of the fluid velocity
is vz(z), with all derivatives bounded. Starting with vz = 0 at z = −∞ we will
show that vz reaches the speed of sound – producing an acoustic horizon – at minima
of R(z). If the function R(z) has only one minimum, e.g. R(z) =

√

(z2 + z20), the
assumption of a smooth solution of the fluid equations of motion implies that the fluid
velocity continues to increase beyond the acoustic horizon until it reaches the speed
of light at z = ∞. However, if R(z) has multiple extrema, e.g. two minima separated
by a maximum, we will find smooth flows where the fluid velocity reaches a maximum
supersonic value at the maximum of R(z) and then decreases, then turns subsonic at
the second minimum, and finally reaches zero at z = ∞. Sound waves cannot escape
to the asymptotic region z = −∞ from beyond the first acoustic horizon (which is
therefore like a black hole horizon), and cannot cross the second acoustic horizon
(which behaves more like a white hole horizon) from the z = ∞ asymptotic region .

We also study flows in a warped R1,1 × T 2 geometry

ds2 = −dt2 +R(z)2(dθ21 + dθ22) + dz2 (4.2)
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and find very similar phenomena.
The acoustic Hawking radiation that arises when the sound modes of these flows

are quantized will be detectable only if the acoustic Hawking temperature TH is larger
than the ambient temperature of the fluid, TH > T . For an uncharged conformal
fluid, the only scale is the temperature, so that hydrodynamics is valid only when all
derivatives are small compared to the temperature. However TH itself is proportional
to the gradient of the velocity field, TH ∼ dvz

dz
|z=z̄. Thus it is not possible to discuss

this phenomenon consistently in an uncharged conformal fluid.
This leads us to consider conformal fluids which carry a global charge density q

with a conjugate chemical potential µ. For such a fluid in equilibrium, the ambient
temperature can be made to vanish provided the charge density is chosen properly. In
analogy with the gravitational duals of such fluids considered below, we will call such
a fluid “extremal”. We will consider isentropic flows of such a fluid where the charge
density q, energy density ǫ and the velocity vary slowly (in a sense defined precisely
below) but whose variations can themselves beO(1). In an isentropic flow, the entropy
density per unit charge density is, however, a constant. For such flows q ∝ ǫ3/4 where
ǫ is the energy density. Then T ∝ ǫ

1
4 is the only independent energy scale in the

theory. T is in general a function of the chemical potential µ and the temperature T .
As shown below, the isentropic condition allows us to keep the local temperature T
to be always much smaller than T , even though the other hydrodynamic quantities
can change by O(1). In the limit of very small temperature T ∝ µ. One would
expect that the hydrodynamic approximation is valid so long as all gradients are
small compared to T . We will show that it is consistently possible to construct fluid
flows described above with all gradients dvz

dz
and 1

R(z)
dR
dz

much smaller than T , thus
ensuring T ≫ TH ≫ T .

The spacetimes (4.1) and (4.2) may be regarded as the boundary of an asymptot-
ically AdS5 near-extremal charged black brane geometry which is deformed due to a
nonzero boundary curvature. This deformation can be large though slowly varying,
i.e. 1

R(z)
dR
dz

is much smaller than the radius of the outer horizon R+ in AdS units.
Very close to extremality, R+ ∼ T ∼ µ, so that this condition is in fact the condition
for validity of hydrodynamics in the boundary theory. In the second example, the
boundary metric has two compact directions. This means that the nature of the dual
geometry depends on the size of the compact directions compared to R+ [62]. We
will choose R(z) ≫ R+ so that the dual is a near-extremal black brane rather than
an AdS soliton with a small temperature.

A fluid flow profile in the boundary theory is then described by a normalizable
deformation of this bulk metric. We construct the deformed bulk metric using a
derivative expansion, following [45], [60] and [61]. The straightforward derivative
expansion breaks down in “tubes” of constant retarded time where the geometry be-
comes exactly extremal; therefore, we consider fluid flows where the local temperature
is small but nonzero. We then consider the class of linearized fluctuations around this
background geometry - quasinormal modes - which are dual to sound waves in the
presence of the corresponding fluid flow. Note that while the deformations of the bulk
metric due to a nontrivial R(z) and a nontrivial velocity profile vz(z) are typically
large, the quasinormal mode amplitudes are small.
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The behavior of the quasinormal modes clearly shows that at leading order in the
derivative expansion, the acoustic horizon of the fluid extends into the bulk in the
following sense. Let r denote the radial coordinate in the AdS space and let z = z̄
be the location of the acoustic horizon in the boundary flow. We find that for any
value of r, these quasinormal modes suffer an infinite blue-shift as we approach z = z̄:
modes which travel along the direction of the fluid flow are smooth at z = z̄, while the
modes which travel in the direction opposite to the flow have rapid oscillations. Thus,
in an eikonal approximation these quasinormal modes cannot cross the quasinormal
mode horizon at z = z̄, which extends radially from the acoustic horizon into the
bulk.

Standard arguments imply that upon quantization1, one would find a thermal
distribution of these quasinormal modes with a temperature TH , which is the gravity
dual of the acoustic Hawking radiation in the fluid. Only these specific quasinormal
modes perceive the quasinormal mode horizon; other modes can cross it with ease. By
the same token, the thermal distribution will be made up only of these quasinormal
modes; it exists independently of (and at a different temperature from) the usual
Hawking radiation associated with the event horizon of the background black brane.

Our discussion is restricted to the lowest non-trivial order in the derivative expan-
sion, which is consistent with the perfect fluid approximation. However we expect
that the physical consequences should survive higher derivative corrections. Further-
more our discussion of fluctuations, both in the boundary fluid and in bulk gravity, is
restricted to the linearized limit. We do not address the effect of nonlinear interactions
of the sound waves and other modes.

Admittedly, our setup is a bit contrived and is meant to provide a simple toy
model in which this novel gravitational phenomenon can be studied in a controlled
fashion. We expect, however, that the phenomenon is quite general and would be
present in more interesting situations (e.g. the Kerr black hole mentioned above).

The paper is organized as follows. In Section 4.1, we give a self-contained discus-
sion of acoustic metrics and dumb holes for conformal relativistic fluids. In Section
4.2, we describe the bulk dual. In Section 4.3 we discuss the regime of validity of our
solutions.

4.1 Acoustic metric for relativistic conformal fluid

In this section we derive the equation governing the propagation of sound around
gradient flows of a perfect relativistic conformal fluid. For such fluids, the pressure p
and the energy density ǫ are related by

p =
ǫ

3
. (4.3)

For a charged conformal fluid with charge density q, there is an additional equation
of state ǫ = ǫ(s, q), or equivalently s = s(ǫ, q), that relates the energy, entropy and

1Quantization of bulk modes corresponds to 1/N corrections in the SU(N) gauge theory on the
boundary.
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charge densities. 2 We will eventually be considering charged fluids with gravity duals,
and will write down an explicit equation of state for such fluids in Section (4.2).

The first law of thermodynamics reads

dǫ = T ds+ µ dq , (4.4)

where T and µ are the intensive quantities temperature and chemical potential re-
spectively and can be obtained from the equation of state by taking derivatives:

T =
∂ǫ(s, q)

∂s

∣

∣

∣

∣

q

, µ =
∂ǫ(s, q)

∂q

∣

∣

∣

∣

s

. (4.5)

For a homogeneous system, it follows from extensivity that all thermodynamic vari-
ables are related by a Gibbs-Duhem relationship, which using (4.3) may be written
as

4
3
ǫ = Ts+ µq . (4.6)

In the following, we will define a quantity T with dimensions of energy by

p =
ǫ

3
= cT 4 , (4.7)

where c is a dimensionless constants depending on the underlying system. T will be
a function of T and µ (or q), which reduces to T in the uncharged limit. Our fluids
will also admit a zero-temperature, finite-µ limit, close to which T is proportional to
µ. T sets the energy scale of our conformal fluid, and will play an important role in
defining limits in which our approximations are valid.

The equations of motion of fluid dynamics are conservation of the energy momen-
tum tensor and conservation of the currents associated with any conserved charges,
including the conserved particle number:

∇µT
µν = 0

and ∇µj
µ
i = 0 . (4.8)

The stress tensor T µν depends on the 3 independent components of velocity v(xµ),
the energy density, the pressure and their derivatives. The currents jµi additionally
depend on the densities qi of the conserved charges. To leading order in the derivative
expansion,

T µν = p gµν + (ǫ+ p)uµuν = cT 4 (gµν + 4uµuν) (4.9)

jµi = qiu
µ . (4.10)

Here uµ ≡ (γ, γv) and γ = 1√
1−v2 . Conformal invariance implies that the stress tensor

is traceless. In a general curved background there is a trace anomaly; however this
is a higher order effect in the derivative expansion and we have ignored it. We have
also ignored the viscous and diffusive terms – which are again higher order in the

2For an uncharged conformal fluid, such a relation is trivial and s ∼ ǫ
4

3 .
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derivative expansion – and we therefore work in the perfect fluid limit. In addition
we will also restrict attention to the case of a single charge of density q(xµ).

The parallel component of the equations of motion (4.8), uν∇µT
µν = 0, leads to

the conservation law
∇µ

(

T 3uµ
)

= 0 . (4.11)

In the uncharged case T 3 is proportional to the entropy density of the fluid and
the above equation is the conservation of the entropy current. The perpendicular
component P λ

ν ∇µT
µν = 0 (where the projector P λ

ν ≡ δλν + uλuν) gives

uµ∇µ(T uν) = −∇νT (4.12)

which can be manipulated to yield

∇µ(T uν)−∇ν(T uµ) = −T ωµν , (4.13)

where ωµν ≡ P λ
µP

κ
ν (∂λuκ − ∂κuλ) = 0 is the vorticity of the fluid.3 Therefore, for an

irrotational flow, we can define a potential φ such that

T uµ = ∂µφ . (4.14)

Thus to solve for irrotational flows of an uncharged fluid, it is sufficient to solve (4.14)
and (4.11), along with an additional equation like (4.10) for every conserved charge.
Note that since uµuµ = −1, the equation (4.14) may be used to express T in terms
of the potential φ

T 2 = −(∂µφ)(∂
µφ) (4.15)

so that φ determines both uµ and T .
In general, the charge density q is not related to T . We will, however, restrict our-

selves to solutions where q/T 3 is a constant. The current conservation equations (4.8)
are then automatically solved once the equation (4.11) is solved. For such flows T (x)
is the only independent dimensionful quantity that governs the flow. φ(x) determines
all the hydrodynamic quantities once the ratio q/T 3 is specified. In fact, substituting
(4.15) in (4.14) and finally in (4.11) one gets a single complicated nonlinear differential
equation for φ(xµ).

Although the restriction that q ∼ T 3 might seem quite ad hoc at this stage, for
fluids with gravity duals that we will be considering in Section (4.2), this will turn out
to imply that the flow is isentropic. Isentropic flows also allow us to parametrically
control the temperature of the fluid. As discussed above, we need to consider fluids
at low temperatures. In the flows we consider, derivatives of the velocity, entropy etc.
are small, even though their values can and should change by O(1). The equation
(4.65) shows that once we fix the ratio q/s so that T is small at some time, it remains
parametrically small at all times, since the change of s is of order 1.

Isentropic sound waves in such a gradient flow are described by small amplitude
fluctuations of the velocity potential φ → φ + δφ. This induces variations of uµ, T

3It can be shown that the condition of vanishing vorticity is identical to the condition ∂µ(fuν) =
∂ν(fuµ) for any scalar function f . In (4.14) f is simply the temperature T .
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and qi, T → T + δT , uµ → uµ+ δuµ, qi → qi+ δqi. Plugging these into the equations
of motion (4.14), we get

(T + δT )(uµ + δuµ) = ∂µφ+ ∂µδφ

or uµδT + T δuµ = ∂µδφ . (4.16)

Using uµδu
µ = 0 we get

δT = −uµ∂µδφ
and T δuµ = P µν∂ν(δφ) . (4.17)

Plugging (4.17) in (4.11)

∇µ

[(

3T 2δT uµ + T 3δuµ
)]

= 0

=⇒ ∂µ
[√−gT 2 (gµν − 2uµuν) ∂ν

]

(δφ) = 0 (4.18)

For sound waves in a static equilibrium fluid in flat spacetime, this gives (−3∂2t +
∂2i )(δφ) = 0, from which we can read off the speed of sound cs =

1√
3
.

More generally (4.18) is the Klein-Gordon equation of motion of a massless scalar
field in a non-trivial background metric,

∂µ

[√
−GGµν∂ν

]

(δφ) = 0 (4.19)

where
√
−GGµν =

√−gT 2 (gµν − 2uµuν)

Gµν =
√
3T 2

(

gµν +
2

3
uµuν

)

. (4.20)

The metric Gµν above, termed the “acoustic metric”, is described by the line element 4

ds̃2 =
√
3T 2

{

−(1− 2

3
γ2)dt2 − 4

3
γ2vidx

idt+

(

gij +
2

3
γ2vivj

)

dxidxj
}

. (4.21)

If we make the transformation dτ = dt+
2
3
γ2vi

1− 2
3
γ2
dxi, the metric becomes

ds̃2 =
√
3T 2

{

−(1− 2

3
γ2)dτ 2 +

(

gij +
2
3
γ2

1− 2
3
γ2
vivj

)

dxidxj
}

. (4.22)

This is the most general form of the acoustic metric for a relativistic conformal fluid.

Note that the metric factors vanish or become singular at γ =
√

3
2
which precisely

corresponds to the speed of sound v = cs = 1√
3
. This indicates that an “acoustic

horizon” is formed where the flow becomes supersonic and sound waves do not emerge
from out of that horizon.

4We will use Gµν and ds̃2 for the acoustic metric to distinguish it from the spacetime metric.
Here the spacetime metric has the form ds2 = −dt2 + gijdx

idxj
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Steady flows leading to acoustic horizons

In this section we will find steady fluid flows with acoustic horizons when the back-
ground spacetime has a metric of the form

ds2 = −dt2 + dz2 +R(z)2dΩ2
2 . (4.23)

R(z) = z corresponds to flat spacetime; we will later consider more general functions
R(z) and work on spacetimes that are asymptotically flat. We also assume that
the thermodynamic quantities depend only on z and that vz(z) is the only nonzero
component of the velocity. The form of the acoustic metric is then

ds̃2 =
√
3T 2

{

−(1− 2

3
γ(z)2)dτ 2 +

dz2

3(1− 2
3
γ(z)2)

+R(z)2dΩ2
2

}

(4.24)

=
√
3T 2

{

−c2s γ(z)2(1−
vz(z)

2

c2s
)dτ 2 +

dz2

γ(z)2(1− vz(z)2

c2s
)
+R(z)2dΩ2

2

}

.

Up to an overall conformal factor the metric is remarkably similar to that of a
Schwarzschild black hole and a horizon is present at the radius where the flow be-
comes supersonic. An acoustic Hawking temperature TH and a surface gravity κ can
be defined by the standard process of Euclidean continuation of the acoustic metric
near the horizon; then

TH =
κ

2π
=

3

4π

∣

∣

∣

∣

dvz
dz

∣

∣

∣

∣

zh

. (4.25)

Thermal radiation of quantized phonons is expected from the horizon since Hawking
radiation is a purely kinematic effect independent of the underlying dynamics [54].

In order to get an explicit solution, we need to solve the equations of motion (4.13)
and (4.11)

∂z(T γ) = 0 =⇒ T γ = T∞ (4.26)

∂z
(

R(z)2T 3γvz
)

= 0 =⇒ R(z)2T 3γvz = ΦS (4.27)

where we have identified the integration constants as the “asymptotic temperature”
T∞ and the “entropy flux” ΦS. From (4.26) and (4.27)

vz(1− v2z) =
ΦS

T 3
∞

1

R(z)2
. (4.28)

From the isentropic condition q ∼ T 3 it follows that

q(z) =
q∞
γ3(z)

. (4.29)

Singular radially symmetric solution If we take R(z) = z with z ∈ (0,∞),
the metric (4.23) describes flat spacetime. The LHS of Eq(4.28) has a maximum value
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Figure 4.1: Plot of vz(z) for the spherically symmetric case given by Eq.(4.31) with
zh = 1. There are two physical branches; neither is valid for z < zh. The third branch
is superluminal.

of 2
3
√
3
for v = cs = 1√

3
, and therefore there is no solution for z below a minimum

value of

zh =

(

ΦS

T 3
∞

3
√
3

2

)
1
2

. (4.30)

⇒ vz(1− v2z) =
ΦS

T 3
∞

1

z2
=

2

3
√
3

z2h
z2
. (4.31)

This cubic equation has two physical branches, one subsonic and the other supersonic;
the third branch is superluminal. The physical branches are plotted in Fig. 1. In the
subsonic branch, as z → ∞, v → 0 which is consistent with the identification (4.26).
At the horizon the derivatives blow up and the hydrodynamic description breaks
down:

−dvz
dz

=
ΦS

T 3
∞

2

3z3(1− 3v2z)
→ ∞ at z = zh. (4.32)

Solution in more general geometries To obtain solutions that are valid
globally, we can choose a more general R(z) such that

• the spacetime is asymptotically flat, R(z) ∼ |z| for z → ±∞

• the maximum value of the RHS of (4.28) is 2
3
√
3
, the same as the maximum pos-

sible value of the LHS. This condition implies that the minimum value attained
by R(z) is

R min =

(

3
√
3

2

ΦS

T 3
∞

)1/2

. (4.33)
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Figure 4.2: Plot of vz(z) for the wormhole geometry Eq(4.35) with z0 = 1. There
are two physical branches, making a subsonic to supersonic (supersonic to subsonic)
transition at the acoustic horizon at z = 0.

Then we can construct a smooth solution that changes over from subsonic to super-
sonic or vice-versa every time R(z) attains the above minimum value. For a generic
velocity profile, the derivatives at the horizon do not blow up because the divergence
of dvz

dR(z)
at the horizon is canceled by the fact that

dR(z)

dz
= −R(z) 1− 3v2z

2vz(1− v2z)

dvz
dz

= 0 at z = zh. (4.34)

The simplest example is the wormhole geometry given by

R(z) = R min

√

1 +
z2

z20
. (4.35)

There are two asymptotically flat sheets as z → ±∞ which are connected by a throat
at z = 0, where R(z) = R min. Using (4.33), we get for (4.28)

vz(1− v2z) =
ΦS

T 3
∞

1

R(z)2
=

2

3
√
3

z20
z2 + z20

. (4.36)

Again there are two physical branches of the cubic equation. One of them smoothly
increases from v = 0 to v = 1 for z ∈ (−∞,∞) while the other one smoothly
decreases. Both solutions have acoustic horizons at z = 0. A plot of the velocity is
given in Fig. 2. The velocity and its derivatives remain finite near the horizon, as
seen from the near-horizon expansion of the increasing solution:

vz =
1√
3
+

√
2

3

z

z0
(4.37)

and the acoustic Hawking temperature is

TH =
3

4π

∣

∣

∣

∣

dvz
dz

∣

∣

∣

∣

z=0

=
1

2
√
2πz0

. (4.38)

65



Figure 4.3: Plot of vz(z) for the geometry with two throats given by Eq.(4.39) with
z0 = 1. There are two horizons located at zh = ±z0. The red branch remains
subluminal for all z.

An obvious problem with this solution is that it reaches the speed of light asymptot-
ically on one of the sheets.

To fix this problem, we can choose, for example

R(z) = R min
(z4 − 2z2z20 + 2z40)

1
4

z0
(4.39)

which has minima at z = ±z0 where R(z) = R min. This R(z) again corresponds to
a wormhole with two asymptotically flat regions. Again using (4.33) we have

vz(1− v2z) =
ΦS

T 3
∞

1

R(z)2
=

2

3
√
3

z20
√

z4 − z2z20 + 2z40
. (4.40)

Now we can find a solution that crosses over from subsonic to supersonic and back
to subsonic at the horizons and remains subluminal for all z, as shown in Fig. 3.

Nozzle geometry We can also choose the spatial section of the metric to be
asymptotically cylindrical with R(z) → constant at z → ±∞. For variety we consider
geometries with a toroidal cross-section

ds2 = −dt2 + dz2 +R(z)2(dθ21 + dθ22). (4.41)

The form of the acoustic metric (4.23) remains very similar with the replacement of
dΩ2

2 by dθ21 + dθ22. The acoustic Hawking temperature is still given by (4.25). As an
example, we can take the following profile for v(z) and then solve (4.28) for R(z):

vz = v min + (v max − v min) sech

(

z

z0

)

. (4.42)
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Figure 4.4: Velocity profile (in red) for the nozzle geometry given by Eq.(4.42) with
v min = 0.1, v max = 0.9, z0 = 1 and the corresponding R(z)/R min (in green). The
minima in R(z) at z = ±z0 correspond to v = cs.

The v min term ensures that R(z) → constant for large |z|. The profiles of v(z) and
R(z) are shown in Fig. 4. There are two horizons located at

z± = ±z0 cosh−1 v max − v min

cs − v min

. (4.43)

Assuming vz > 0, the fluid passes the speed of sound at the left horizon z− and again
returns to subsonic speeds as it crosses the right horizon z+.

Sound waves

In this subsection we examine the behavior of sound waves around the background
flows described in the previous subsections. Sound waves are fluctuations of the
velocity potential φ which satisfy a massless Klein-Gordon equation in the background
acoustic metric (4.24). We will consider background flows on a simple wormhole
geometry - more complicated wormholes or nozzle geometries can be treated along
similar lines.

Near the acoustic horizon (chosen at z = 0), the metric is similar to the usual
Schwarzschild metric, so we expect a large blueshift effect for outgoing modes. To
display this, it is sufficient to consider modes in the s-wave. Let us first rewrite the
metric in terms of null coordinates u, v as follows

ds̃2 =
√
3T 2(z)

{

−(1− 2

3
γ2)dudv +R2(z)(dθ2 + sin2 θdφ2)

}

, (4.44)

where

du = dτ − dz√
3(1− 2

3
γ2)

= dt+
2
3
γ2v dz

1− 2
3
γ2

− dz√
3(1− 2

3
γ2)

= dt− dz

v+(z)

dv = dτ +
dz√

3(1− 2
3
γ2)

= dt+
2
3
γ2v dz

1− 2
3
γ2

+
dz√

3(1− 2
3
γ2)

= dt− dz

v−(z)
.(4.45)
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Here v±(z) =
v(z)±cs
1±v(z)cs is the relativistic sum of the local fluid velocity and the velocity

of sound cs = 1/
√
3. Then close to the acoustic horizon R(z) → R(0) is finite, and

the s-wave solutions of the Klein-Gordon equation are approximately

ψ+ ∼ e−iωu ψ− ∼ e−iωv . (4.46)

In the asymptotic region, where the velocity becomes constant, we obtain the usual
spherical Bessel functions. To analyze the near-horizon behavior, we can expand the
velocity field near the horizon as v(z) ≈ cs +

2
3
κz + . . ., where κ = 3

2

∣

∣

dv
dz

∣

∣

zh
is the

surface gravity at the horizon. Using this in (4.46), we find

ψ+ ∼ e
−iω

[

t− 2z√
3
+O(z2)

]

(4.47)

ψ− ∼ e
−iω

[

t− 1
κ
ln|z|+ z√

3
+O(z2)

]

(4.48)

The ψ+ mode is continuous at the horizon and is right moving with a velocity
√
3
2
,

which is the relativistic sum of 1√
3
with itself. The ψ− mode has rapid oscillations

near the horizon:

z . 0 : ψ− ∼ e−iω[t−
1
κ
ln(−z)] (left-moving)

z & 0 : ψ− ∼ e−iω[t−
1
κ
ln(z)] (right-moving)

indicating that inside the horizon, both modes are right-moving.
To extend these modes away from the horizon, we employ an eikonal approxima-

tion. We decompose the sonic fluctuation into a rapidly varying phase or “eikonal”
(here λ≫ 1) times a slowly varying envelope

ψ(xµ) = A(xµ)e−iλS(x
µ) (4.49)

and plug it into the wave equation ∂µ
[√

−GGµν∂ν
]

ψ = 0 with the acoustic metric
(4.21) written out in the original t-z coordinates

ds̃2 = T 2

{

−(1− 2

3
γ2)dt2 − 4

3
γ2vzdtdz + (1 +

2

3
γ2v2z)dz

2 +R(z)2(dθ2 + sin2 θdφ2)

}

.(4.50)

We then get a sequence of differential equations for S(xµ) and A(xµ) by expanding
the wave equation order by order in λ:

O(λ2) : ∂µS(x
α)∂µS(xα) = 0 (4.51)

O(λ) : 2∂µS(x
α)∂µA(xα) + A(xα)∇2S(xα) = 0 (4.52)

...

The leading equation (4.51) can be used to solve for S(xα). Let us consider s-wave
solutions independent of θ, φ. With the ansatz

λS(xα) = ωt− f(z) (4.53)
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we can solve for the phase,

λS±(x
α) = ωt+ ω

∫

dz

2
3
γ2v ∓ 1√

3

1− 2
3
γ2

= ωt− ω

∫

dz
1± v√

3

v ± 1√
3

(4.54)

The momenta of the wavepackets are given by derivatives of the eikonal 5 pµ ≡
−∂µ[λS(xα)] giving

pt = ω

pz = ω
1± vcs
v ± cs

=
ω

v±
, (4.55)

where v± has been defined above. The upper and the lower signs would normally
correspond to right- and left-moving sound modes. However, if the fluid (assumed to
be right moving) has a velocity greater than the speed of sound, then both the modes
become right-moving. Using the ansatz A(xα) = A(z) in the subleading equation
(4.52), a full solution is obtained:

ψ± =
A0

T R(z)e
−iω[t−

∫

dz
v±(z) ] (4.56)

4.2 Gravity dual of acoustic solution

The fluid-gravity correspondence [42, 43, 44, 45, 46, 25, 60, 61] provides a correspon-
dence between solutions of certain fluids with classical solutions of suitable Einstein-
Maxwell equations in a 4 + 1 dimensional spacetime with a negative cosmological
constant. In our case the fluid is a conformal fluid with a global U(1) charge and the
higher dimensional bulk theory is given by the five-dimensional action

S =
1

16πG

∫

d5x
√−g

[

R + 12− FABF
AB − 4κ

3
ǫEABCDAEFABFCD

]

(4.57)

where G is the five dimensional Newton constant, the indices A,B run from 0 to
4, AB is a U(1) gauge field, and we have chosen units in which the cosmological
constant is Λ = −6. The above action is a consistent truncation of IIB supergravity
for κ = 1/(2

√
3). We will, however, allow arbitrary values of κ.

A uniform charged black brane solution of this action is given in a boosted refer-
ence frame by

ds2 = −2uµdx
µdr − r2V (r,m, q̃)uµuνdx

µdxν + r2Pµνdx
µdxν

A =

√
3q̃

2r2
uµdx

µ (4.58)

where uµ are constant 4-velocities (the indices µ, ν = 0 · · · 3) and Pµν = ηµν + uµnν is
the spatial projection operator. The function V (r,m, q̃) is given by

V (r,m, q̃) = 1− m

r4
+
q̃2

r6
(4.59)

5The leading order equation (4.51) is thus a null geodesic equation, pµp
µ = 0 for the phonons.
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where m and q̃ are parameters of the solution and we are using the notation of [61].
This solution is dual to a charged fluid in equilibrium living on the flat boundary

of the five-dimensional spacetime. The fluid is strongly-coupled N = 4 SU(N) Yang-
Mills theory, viewed in a boosted frame with coordinates xµ. The temperature T ,
charge density q, energy density ǫ and entropy density s of the fluid are given by [61]

T =
R+

2π

(

2− q̃2

R6
+

)

, q =
√
3αq̃, ǫ = 3αm, s = 4παR3

+, α ≡ 1

16πG
(4.60)

where R+ denotes the radius of the outer horizon, i.e. the largest root of the equation
V (r,m, q̃) = 0. The energy momentum tensor Tµν and the charge current Jµ of the
fluid are given by

Tµν =
ǫ

3
(ηµν + 4uµuν) Jµ = quµ (4.61)

The expressions (4.60) and (4.61) involve the bulk parameter G. In our units, G is
related to the rank of the gauge group of the boundary theory by

G =
π

2N2
, α =

1

16πG
=
N2

8π2
. (4.62)

With the substitutions in (4.60), the equation of state ǫ(s, q) becomes identical to the
condition V (R+(s),m(ǫ), q̃(q)) = 0. The equation of state for a charged conformal
fluid with a gravity dual is thus

1− ǫ

3αR4
+

+
q2

3α2R6
+

= 0, with R+ =
( s

4πα

)
1
3

(4.63)

⇒ ǫ(s, q) = 3α
( s

4πα

)
4
3
+
q2

α

(

4πα

s

)
2
3

(4.64)

The temperature and chemical potential can be obtained by taking derivatives of
ǫ(s, q) using (4.5):

T =
1

π

( s

4πα

)1/3
(

1− 8π2q2

3s2

)

µ = 2
( q

α

)

(

4πα

s

)2/3

(4.65)

This temperature reproduces the value quoted in (4.60). In the uncharged limit
R+ = πT , and one can fix the value of c defined in (4.7) by comparing it with (4.63)
and requiring that T = T for uncharged fluids; this gives c = απ4 and hence

ǫµ=0 = 3α(πT )4 , sµ=0 = 4πα(πT )3 . (4.66)

For charged fluids at finite µ there is a zero-temperature limit, reached when R+ =
µ/(2

√
6) and T = µ/(192

1
4π). In this limit,

qT=0 =
α

48
µ3 , ǫT=0 =

α

64
µ4 , sT=0 =

πα

12
√
6
µ3 . (4.67)
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As discussed in Section 2 we restrict our attention to isentropic flows. For such
flows q/T 3 is constant and since ǫ = 3απ4T 4, it follows from the equation of state
(4.63) that T /R+ is a constant, and therefore that for such flows the entropy per unit
charge s/q is constant. The first equation in (4.65) shows that by choosing

1− 8π2

3

(

s

q

)2

≪ 1 (4.68)

we can keep the temperature T ≪ R+ everywhere and at all times.
The gravity dual of a general fluid motion is then constructed in a derivative

expansion as follows. First, we replace the parameters of the solution by functions of
the boundary coordinates xµ, uµ → uµ(x),m → m(x), q̃ → q̃(x) which respectively
represent the velocity field, energy density field and the charge density field of the
fluid. We also replace the flat boundary metric ηµν with a curved metric gµν(x). With
these replacements, (4.58) is no longer a solution of the bulk equations of motion.
Second we need to add correction terms to the metric and the gauge field so that the
full metric and the gauge field now solve the equations of motion. This second step is
of course impossible to perform in an exact fashion. However, these corrections can be
calculated systematically in a derivative expansion, provided that the derivatives of
uµ(x), m(x), q̃(x) with respect to xν are small compared to the outer horizon radius
R+. To lowest nontrivial order in the derivative expansion, the modified metric and
gauge fields are

ds2 = −2uµdx
µdr − r2V (r,m, q̃)uµuνdx

µdxν + r2Pµνdx
µdxν

+
2

3
r(∇αu

α)uµuνdx
µdxν +

2r2

R+

σµνF2(ρ,M)dxµdxν

− 2ruµu
α(∇αuν)dx

µdxν

− 2uµ

(√
3κq̃3

mr4
lν +

6r2

R7
+

(P λ
ν ∂λq̃ + 3(uλ∇λuν)q̃)F1(ρ,M)

)

dxµdxν , (4.69)

A =

[√
3q̃

2r2
uµ +

3κq̃2

2mr2
lµ −

√
3r5

2R8
+

(P λ
µ ∂λq̃ + 3(uλ∇λuµ)q̃)

]

dxµ (4.70)

where we have defined the quantities

M =
m

R4
+

Q =
q̃

R3
+

ρ =
r

R+

. (4.71)

∇µ is a covariant derivative with boundary metric gµν , and

lµ = gµγǫ
ναβγuν∇αuβ , σµν =

1

2
P µαP νβ (∇αuβ +∇βuα)−

1

3
P µν(∇αu

α) . (4.72)

The functions F1(ρ,M,Q) and F2(ρ,M) are defined as

F1(ρ,M,Q) =
1

3

(

1− M

ρ4
+
Q2

ρ6

)
∫ ∞

ρ

dp
1

(1− M
ρ4

+ Q2

ρ6
)2

(

1

p8
− 3

4p7
(1 +

1

M
)

)

,(4.73)

F2(ρ,M) =

∫ ∞

ρ

dp
p(p2 + p+ 1)

(p+ 1)(p4 + p2 −M + 1)
(4.74)
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Note that in the above expressionsm, q̃, R+,M,Q, ρ are also functions of the boundary
coordinates xµ since m and q̃ are functions of xµ.

This is a solution of the bulk equations of motion, provided that m(x), q̃(x) and
uµ(x) are such that the energy momentum tensor and current

Tµν =
m(x)

16πG
(gµν(x) + 4uµ(x)uν(x)) Jµ =

√
3q̃(x)

16πG
uµ(x) (4.75)

are covariantly conserved,
∇µT

µν = ∇µJ
µ = 0 (4.76)

Thus every solution of fluid dynamics leads to a bulk solution.

Gravity duals of dumb holes

We now apply the results of the preceding subsection to construct gravitational duals
of the fluid flows with acoustic horizons that were studied in Section 2. These flows
are special in several ways: first, the background spacetime metric of the fluid is of
the form (4.23) or (4.41) where the only inhomogeneity is in the z direction. Second,
both the background flow and the sound wave fluctuations have vanishing vorticity.
Third, the background flows as well perturbations around them are isentropic.

It follows from the isentropic condition that the quantitiesM and Q are constants.
As argued above (see discussion following equation (4.15)), for isentropic flows there is
just one length scale, and all quantities are related to this length scale by dimensional
analysis. In particular, the dimensionless quantities M and Q must be constant. In
addition, the inhomogeneous parts of all quantities which appear in the bulk metric
and the gauge field are determined in terms of a single scalar field φ(x).

As discussed in the introduction, in order for the acoustic Hawking radiation to be
detectable we need to consider fluids which have a very small ambient temperature.
This means that the constant quantities Q and M need to be close to their extremal
values, Q ≈

√
2 and therefore M ≈ 3. While the various quantities like ǫ(x), q(x) can

change by O(1) amounts (only their derivatives are small), the isentropic condition
ensures that if the fluid temperature is initially small it will remain small (see the
discussion in Section 2 above).

To construct the background fluid flow, we simply need to insert the velocity
potential φ0 for the solutions of Section 2 into the general metric and gauge field in
(4.69) and (4.70). The conditions of vanishing vorticity and isentropic flow simplify
these general expressions somewhat. The most drastic simplification appears in the
expression for the gauge field, equation (4.70). In fact the first order corrections (in
the derivative expansion) to the gauge field vanish for isentropic gradient flows. To
see this we note first that ∇αuβ can be replaced by ∂αuβ in the expression lµ of (4.72).
Then using T uµ = ∂µφ we get

lµ = gµγǫ
ναβγ ∂νφ

T [− 1

T 2
∂αT ∂βφ+

1

T ∂α∂βφ] = 0 (4.77)

due to antisymmetry of the epsilon symbol. The third term on the RHS of (4.70)
also vanishes, as can be seen by applying the isentropic condition q/T 3 =constant
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and the relations (4.14) and (4.15) to the expression

P λ
µ∇λq̃ + 3(uλ∇λuµ)q̃ = 3aT

[

T ∂µT + T uλ∇λ(T uµ)
]

= 3aT
[

−1

2
∂µ(∂αφ∂

αφ) + ∂λφ∇λ∂µφ

]

= 0 (4.78)

Thus, to first order in the derivative expansion, the bulk gauge field is given by
the first term of the right hand side of (4.70), which is just the term which would
have resulted from a simple boost of the original black brane solution. In our case the
charge density and the 4-velocity appearing in (4.70) are functions of z, as determined
by the fluid flow on the boundary. So there is a nonzero electric field component along
the z direction, given by

F0z = −
√
3q̃∞
r2

vz∂zvz (4.79)

where we have used (4.29) to express q(z) in terms of the velocity vz.
The expression for the bulk metric simplifies as well. In the fourth line of (4.69),

the first term is proportional to lµ which vanishes for our flows. The second term is
proportional to Hµ defined in (4.78) and vanishes as shown above.

In the derivative expansion, the relationship between the boundary and the bulk
becomes essentially local. The bulk solution can in fact be constructed approximately
by patching together tube geometries obtained by extending the boundary data in
a given region of the boundary to the bulk using the radial equations of motion.
Consequently we expect that the acoustic horizon of the fluid flow on the boundary
extends trivially into the bulk. We will explicitly verify this in the next subsection.

However, this tubular approximation breaks down in regions where the local geom-
etry is exactly extremal. This is apparent in the results of [60] and [61]. Furthermore,
recent work on perturbations around extremal black holes shows that the relevant low
energy expansion is different from the naive derivative expansion [63, 64, 65, 66, 74].
Our results hold close to extremality, but not exactly at extremality.

Gravity duals of phonons

The gravity duals of phonons in the fluid are quasinormal modes of metric and gauge
field perturbations. Once again, construction of these modes is trivial. We need to
write

φ(xµ) = φ0(x
µ) + βδφ(xµ), (4.80)

compute T (x) and hence m(x), q(x), uµ(x) in terms of δφ, substitute into (4.69) and
(4.70), and consider the terms which are linear in β. By construction, these modes
satisfy ingoing boundary conditions at the bulk horizon.

The fluctuations of the gauge field Aµ obtained by this procedure have a partic-
ularly simple form

δAµ = −β
√
3a

2r2
[(∂βφ0)(∂

βφ0)δ
α
µ + (∂µφ0)(∂

αφ0)]∂α(δφ) (4.81)
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For the background flows considered in Section 2, we have found solutions to the wave
equation (4.18) for δφ in the region close to the acoustic horizon. Upon inserting these
solutions into (4.81), we see that the fluctuations δAµ have a characteristic behavior
near the acoustic horizon, viz. ingoing waves are smooth while outgoing waves have
rapid fluctuations. This is the precise sense in which the fluctuations perceive the
acoustic horizon, which has now extended into the bulk. From the nature of the
solution that the extension of the acoustic horizon into the bulk is rather trivial - i.e.
the horizon perceived by these modes is at the same value of z as the acoustic horizon
on the boundary, and for all values of r.

The fluctuations for the components of the metric can be similarly worked out and
also see a horizon structure at the same value of z. We therefore conclude that there
are certain quasinormal modes of the bulk metric and the gauge field which perceive
a horizon. If these bulk modes are quantized, one should find a thermal bath of such
modes characterized by the temperature of the acoustic horizon on the boundary.

4.3 Regime of validity

It is important to check that the fluid flow described above is consistent with the
standard conditions for validity of hydrodynamics. Roughly speaking, hydrodynamics
is valid when the gradients of velocities, temperature and charge densities are small
compared to the inverse mean free path lm. For charged conformal fluids considered
above, there are two scales - the temperature T and the chemical potential µ ≡ νT ,
so that lm ∼ f(ν)/T . The function f(ν) is of order one for generic values of ν, but
there is an upper bound on ν, νc where f(ν) has a simple zero. It is possible to take
the limit of ν → νc simultaneously with T → 0 such that lm is finite - the dual of this
is in fact the extremal black hole. For the flow described in the previous section, in
this limit we have

∣

∣

∣

∣

dvz(z)

dz

∣

∣

∣

∣

≪ 1

lm
∣

∣

∣

∣

1

T
dT (z)

dz

∣

∣

∣

∣

≪ 1

lm
(4.82)

In particular, since the acoustic Hawking temperature TH is 3
4π

∣

∣

dvz
dz

∣

∣

z∓
, this implies

that

TH ≪ 1

lm
(4.83)

For observable acoustic Hawking radiation, the Hawking temperature should be
higher than the fluid temperature. So we require

T . TH (4.84)

Furthermore, the frequency of the sound waves should also be small compared to the
basic scale, ω ≪ 1/lm. However, the finite Hawking temperature is going to introduce
an upper bound on the allowed wavelengths, due to periodicity in Euclidean time;
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thus ω > TH . Thus we need

T . TH < ω ≪ 1

lm
(4.85)

For fluids with no conserved charge, there is only one energy scale, namely, the
temperature T ; thus 1/lm ∼ T and (4.84) cannot be satisfied. Although the solution
is otherwise valid, the Hawking radiation, at a temperature much lower than the
ambient temperature, is not going to be observable. For fluids with a conserved
charge the condition (4.84) does not pose a problem because now we have two length
scales, the temperature T and the chemical potential µ. For fluids very close to zero
temperature, the mean free path will be governed only by µ. We can thus have

0 ≈ T . TH < ω ≪ 1

lm
≈ T ≈ µ (4.86)

The ability to construct a gravity dual using a derivative expansion imposes fur-
ther conditions. In the presence of a nonconstant R(z), the validity of the derivative
expansion of the solutions of the bulk equations of motion requires

∣

∣

∣

∣

1

R(z)

dR(z)

dz

∣

∣

∣

∣

≪ 1

lm
(4.87)

We get an additional condition if some of the boundary directions are compactified
as in the nozzle geometry of Section (4.1). If one boundary direction of a AdS × S
geometry is made compact with a radius R, the dual is an AdS soliton [67] which
caps off the geometry at a value of the radial coordinate r = 1/(2R). For a black
brane geometry, compactification of a boundary direction would lead to a similar
modification of the usual black brane geometry. However if R ≫ 1/(2R+), where R+

is the location of the black brane horizon, the place where the bulk geometry would
cap off is far inside the black brane horizon. In this situation we can continue to use
the standard black brane geometry with a compact longitudinal direction. We will
therefore require that for all z,

R(z) ≫ 1/R+ (4.88)

for the solution of Section (4.1). Finally we require for the nozzle solution that R(z)
be finite for large z. The geometry is then asymptotically R × T 2 and has an AdS
dual.

Validity of our solutions

Finally, we determine the range of parameters for which our approximations are valid,
for the specific flows studied in Section 2. Let us first discuss the wormhole solution
of equations (4.39) and (4.40). The solution has four parameters, T∞, q∞, z0 and
R min. ΦS is fixed by (4.33) once R min is chosen. Since v < 1, γ remains finite for
all z. T = T∞

γ
> 0 and we can have a valid derivative expansion w.r.t. T∞. All the

derivatives, dvz
dz
, 1
T
dT
dz
, 1
R(z)

dR(z)
dz

are proportional to 1
z0
. q∞ can be chosen such that we
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are always at very low temperatures, following the discussion around equation (4.68).
Thus we require

T → 0,
1

z0
< ω ≪ T∞ . (4.89)

For the nozzle solution described by (4.42), the parameters are z0, v max, v min, T∞,
q∞ and ΦS. As in the previous case, all derivatives in the solution are proportional
to 1

z0
. We need v max < 1 for derivative expansion and we obtain the same conditions

as (4.89). In addition, we require from (4.88) that R min ≫ 1/T∞. Since R min is
given by (4.33), this implies ΦS ≫ T∞. Moreover, we need v min > 0 in order that
R(z) be finite at large z – the asymptotic geometry remains R× T 2, and we have an
asymptotically AdS gravity dual. Summarizing, for the nozzle solution, we require

T → 0,
1

z0
< ω ≪ T∞ ≪ ΦS, 0 < v min < v max < 1. (4.90)
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Chapter 5 Small Amplitude Forced Fluid Dynamics from Gravity at
T = 0

The AdS/CFT correspondence has provided useful insight into the dynamics of
strongly coupled quantum field theories, particularly nonabelian gauge theories. Re-
cently this has led to a fluid-gravity correspondence which provides a study of confor-
mal fluid dynamics, an effective description of strongly coupled conformal field theory
at long wavelengths in local equilibrium. In fact there is a precise mathematical con-
nection between a long distance limit of the Einstein gravity and its holographic
dual fluid dynamics [25, 44, 45, 60, 61, 68, 69]. Explicitly, it has been demonstrated
that certain deformations of asymptotically AdSd+1 black branes which are slowly
varying along the boundary directions (but can have O(1) amplitudes) provide dual
descriptions of solutions of the equations of fluid dynamics.

In fluid dynamics, there are local thermodynamic quantities such as local temper-
ature, chemical potentials, R-charges or d-velocity, which are slowly varying along the
boundary directions compared to effective equilibrium length scale of the fluid, the
mean free path lmfp. Bulk dual solutions of this inhomogeneous fluids are constructed
order by order in derivatives respect to boundary coordinate.

More precisely, the asymptotically AdS space is foliated into a collection of tubes,
each characterized by a value of the boundary coordinate. Each tube is centered
about a radial ingoing null geodesic starting from AdS boundary. The width of each
tube in the boundary direction is smaller than the scale of dual fluid dynamics. The
gravity solution is developed locally in each tube, which turns out to be black brane
with local thermodynamic quantities of the boundary fluid. The global geometry is
constructed by gluing the tubes, in which the local thermodynamic quantities change
along the boundary direction.

One crucial aspect of this construction is ultra-locality. The local thermodynamic
quantities and metric corrections are expanded around a point on the boundary, which
may be chosen to be xµ=0. For some local thermodynamic quantity qi(x

µ),

qi(x
µ) = qi(0) + xµ∂µqi(0) +

1

2
xµxν∂µ∂νqi(0) + ... (5.1)

In equilibrium these quantities are independent of xµ so that all the higher terms
vanish. The bulk then corresponds to some static black brane. These quantities
appear in the bulk metric and other fields, generically denoted by g(r, xµ), where r is
the AdS radial coordinate. One then expands

g(r, xµ) = g(0)(r, xµ) + g(1)(r, xµ) + g(2)(r, xµ) + ..., (5.2)

where g(0)(r, xµ) is the bulk field obtained by replacing qi in the equilibrium solu-
tion by qi(x

µ). g(0)(r, xµ) is clearly not a solution of the bulk equations of motion.
The higher order terms g(n)(r, xµ) are then determined by requiring that the full
g(r, xµ) solves the bulk equations of motion. The expansion above then constitutes a
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derivative expansion of a bulk solution. The equation satisfied by g(n) is of the form

H
(

g(0)(qi(0))
)

g(n)(r, xµ) = sn. (5.3)

H is a linear differential operator in the second order in the radial variable. sn is a
source term from mth order corrections where m < n. The operator does not contain
any derivative in the boundary directions, since this would produce terms of higher
order. In other words, in this derivative expansion, H becomes ultra-local operator.
The corrections g(n)(r, xµ) are required to be regular everywhere outside the black
brane horizon. They are also required to fall of sufficiently fast at the boundary
r = ∞, so that they do not lead to additional sources in the boundary theory.

In [60, 61, 68], this program has been carried out for conformal fluids carrying a
global R charge. However, it was found that in the tubes where the local temperature
is zero, i.e. the black hole locally looks like an extremal black hole, the solutions are
singular at the horizon. These singularities seem to be genuine in that those possibly
cause singularities in the curvature invariants at black brane horizon.

The failure of the derivative expansion method of deriving the bulk solution in
these tubes does not agree with expectations from the dual fluid dynamics. In the
dual fluid dynamics, the effective equilibrium length scale is the mean free path, which
is given by lmfp ∼ η

ǫ
[42, 57]. η is shear viscosity and ǫ is energy density. For the fluids

described by the gravity solutions in [25, 43, 44, 45, 60, 61, 68, 70], η = s
4π
, where

s is entropy density. Consequently, lmfp ∼ s
4πǫ

. In a tube where the local geometry
becomes extremal, the zeroth order gravity solutions in the derivative expansion in
these papers have finite entropy and energy densities. This implies that there should
be a reasonable fluid dynamics even at zero temperature.

These divergences appear even in the linearized regime, i.e small amplitude and

small frequency perturbations around an extremal black brane. Consider for example
a linearized scalar field in the extremal background. It has been shown in [64] that
in this case performing a small frequency expansion in the scalar field equation is not
straight-forward. Technically, this is because the equation contains terms which have
powers of the frequency multiplied by functions which blow up at the horizon. This
may be traced to the fact that the components of the background metric have double
zeroes or poles at the horizon as opposed to single zeroes or poles for a geometry at
finite temperature.

A clue to resolve this problem is obtained by observing that the near horizon
geometry of the charged black brane becomes AdS2 × Rd−1, where d + 1 becomes
bulk space-time dimension. For the near horizon region, it is natural to introduce a
new radial coordinate ζ ∼ ω

r−r0 , where ω is frequency of the scalar field, r is radial
coordinate of the black brane, and r0 is the horizon of the black brane. Motivated
by the fact that in the near horizon region, the equations involve ζ with no further
ω dependence, the small frequency expansion is then obtained by writing everything
in terms of ζ and then expanding in powers of ω. To lowest order in this modified
small frequency expansion, the equations are then solved in two regions : (i) the
inner region close to the horizon, which is defined as ζ → ∞ with ω

ζ
→ 0, and (ii)

the outer region which corresponds to small ζ or r ≫ r0. It is essential to use the
coordinate ζ in the inner region rather than r. The solution in the full space is
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then obtained by matching the inner and outer region solutions. By construction,
a solution which is regular at the horizon exists. This technique has been used to
obtained various response functions by solving the linearized gravity equations and
gauge field equations [65, 66].

As will be clarified below, this modified low frequency expansion implies that
the tubewise approximation used in obtaining gravity duals of boundary fluid flows
breaks down. This is because the change of radial coordinates from r to ζ involves
the frequency, so that in position space this implies a non-local (on the boundary)
redefinition of fields. This reorganizes the low frequency expansion in which differ-
ential operators in the equations are not ultra-local any longer. The implications of
this fact for fluid mechanics are not clear at the moment.

In this paper we consider a related problem where similar divergences appear
and show how these get resolved. We consider four dimensional Einstein-Maxwell-
dilaton theory with a negative cosmological constant. All bulk fields are spatially
homogeneous but time dependent. The dilaton has a nonzero boundary value and the
velocity of the boundary fluid is zero. First we consider slowly varying deformations
of a charged black hole in this geometry in the presence of the dilaton source. These
deformations are entirely due to the dilaton source. The setup is similar to that
of [72] where a time dependent boundary value of the dilaton evolves an initially
pure AdS geometry into that with a space-like region of large curvature. In the
sense of fluid dynamics, our set up is a natural extension of [25] to R-charged fluid
with vanishing velocities. The authors in [25] solve the Einstein-dilaton system with
negative cosmological constant in which the boundary value of the dilaton field is
slowly varying with arbitrary large amplitude. The field theory dual of the gravity
system becomes a certain fluid dynamics satisfying Navier Stokes equations with
dilaton dependent forcing term. We first treat the problem in a naive derivative
expansion. In this expansion, only the dilaton can have O(1) changes, as in [72]. The
changes of the metric and gauge fields are due to the backreaction of the dilaton,
and therefore suppressed by powers of the frequency. In [72] (as in [25, 45, 68]), the
equations which determine the corrections to the fields at any given order n are linear
and contain fields of order (n−1). As expected, we find that the derivative expansion
breaks down and solutions are singular at the horizon.

We then explore if the modified low energy limit can tame these divergences,
keeping the variation of the dilaton field O(1). We find that the effect of backreaction
cannot be ignored in solving for the corrections to the dilaton and other fields even in
the lowest order, even though the backreaction is small. This is because the nonlocal
change of the radial coordinate typically implies that radial derivatives are large (in
terms of the parameter of the derivative expansion) rather than O(1), thus making
the effect of the backreaction large.

This motivates us to consider the problem for the case where the dilaton has both
small frequency as well as a small amplitude. We calculate the bulk dilaton and its
backreaction to the metric and gauge fields to the leading order in amplitude. We
find that in this case the modified low frequency expansion of [64] and the matching
procedure indeed leads to bulk solutions which are smooth everywhere. This setup
is similar to [64, 65, 66]. In these papers, the linearized problem was solved for fields
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which also depend on the spatial coordinates on the boundary, but the backreaction
of the fields were not calculated. In our problem there is no such spatial dependence;
the change of the metric and the gauge fields are entirely due to the backreaction
of the dilaton. A consistent treatment of the backreaction however require us to go
to higher orders in the frequency(in some case up to the fourth order). At the same
time, we need to go to the second order in the amplitude of the boundary dilaton.
The fact that this scheme works to lowest non-trivial order in the presence of back-
reaction indicates that there is a systematic double expansion in the frequency and
the amplitude which leads to non-singular solutions.

5.1 Charged Black Brane with Dilaton Field

In this section, we define our model to address the problem. We consider 4-dimensional
Maxwell-Gravity theory with time dependent dilaton. The solutions are constructed
order by order in small frequency in the perturbation theory. It turns out that leading
corrections in the perturbation theory are divergent as they approach the black brane
horizon in the extremal limit.

Derivative Expansion

A consistently truncated theory from M -theory with S7 compactification [71] mo-
tivates us to consider Einstein-Maxwell-dilaton theory with negative cosmological
constant,

S =
2

κ24

∫

d4x
√−g

(

1

4
R− 1

4
FMNF

MN +
3

2L2
− 1

8
∂Mφ∂

Mφ

)

, (5.4)

where κ4 is the gravitational constant. Indices M ,N .. run from 0 to 3, and FMN is
field strength from U(1) gauge field AM . We choose units with L = 1. The equations
of motion are

WMN ≡ RMN + 3gMN − 2FMPF
P
N +

1

2
gMNFPQF

PQ (5.5)

− 1

2
∂Mφ∂Nφ = 0,

Y N ≡ ∇MF
MN = 0, (5.6)

X ≡ ∇2φ = 0, (5.7)

where ∇ denotes a covariant derivative with bulk metric gMN . A charged black
brane solution of these equations of motion in Eddington-Finkelstein coordinates
with constant dilaton is

ds2 = 2dvdr − U0(r)dv
2 + r2dxidxi, (5.8)

A = ρ

(

1

r0
− 1

r

)

dv, (5.9)

φ = const, (5.10)
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where U0(r) = r2 + ρ2

r2
− 2ǫ

r
and r0 is the outer horizon of the black brane, the largest

root of U0(r0) = 0. v is the ingoing null coordinate which is time coordinate in the
AdS4 boundary. ρ and ǫ are charge density and energy density of the black brane
respectively.

Let us consider time dependent dilaton which is slowly varying compared to r0,
φ = φ(0)(v). More precisely, the dialton has a form of

φ(0)(v) = f(
εv

r0
), (5.11)

where ε is dimensionless small parameter. The function f satisfies

f ′(
εv

r0
) ∼ O(1), (5.12)

where prime denotes derivative with respect to its argument. The derivative of the
dilaton with time is suppressed by ε.

dφ0(v)

dv
=

ε

r0
f ′(

εv

r0
) ∼ ε

r0
∼ O(ε). (5.13)

φ(0)(v) is obviously not a solution of the equations of motions. To solve the dilaton
equation perturbatively, we add correction terms. The dilaton is expanded as

φ(r, v) = φ(0)(v) + φ(1)(r, v) + φ(2)(r, v)..., (5.14)

where φ(0) is zeroth order in ε, and φ(1) is 1st order in ε and so on. The dilaton
solution can be calculated perturbatively order by order in ε, which becomes the
expansion parameter of the perturbation theory. We promote the energy density and
the charge density to be functions of time as

ρ(v) = ρ0 + r20C(v), (5.15)

ǫ(v) = ǫ0 + r30E(v), (5.16)

where ρ0 and ǫ0 are constants. For further convenience, we set C(−∞) = E(−∞) = 0
as initial conditions. We expand C(v) and E(v) as

C(v) = C(0)(v) + C(1)(v) + C(2)(v)... (5.17)

E(v) = E(0)(v) + E(1)(v) + E(2)(v)... (5.18)

The dilaton equation up to first order in ε becomes

0 = ∂r
(

r2U(r, v)∂rφ(1)(r, v)
)

+ 2r∂vφ(0)(v), (5.19)

where U(r, v) = r2 +
(ρ0+r20C(v))2

r2
− 2(ǫ0+r30E(v))

r
. As we will show below (See Eq(5.35)

and Eq(5.36)), C(v) and E(v) are higher order in ε. The first order correction to the
dilaton is given by

φ(1)(r, v) =

∫ r r20Λ1(v)− r2

r2U0(r)
(∂vφ(0)(v)) + Λ2(v), (5.20)
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where U0(r) = r2 +
ρ20
r2
− 2ǫ0

r
and Λ1(v) and Λ2(v) are integration constants which are

to be determined by boundary conditions that we demand. The regularity condition
at the black brane horizon requires Λ1(v) = 1. Moreover, we want a specific boundary
condition that as r → ∞, φ(r, v) = φ(0)(v). Λ2(v) is determined by this boundary
condition.

We pause here to demonstrate the relationship of the tube-wise solution with
derivative expansion. Consider the congruence of null geodesics emanating from
AdS4 boundary and tubes which are centered along the null geodesics. The set up is
spatially homogeneous, so we classify the tubes by v. Without loss of generality, we
set v = 0 for every individual tube. We expand φ(0)(v) in the neighborhoods of v = 0
as

φ(0)(v) = φ(0)(0) + εv∂vφ(0)(0) +
1

2
ε2v2∂2vφ(0)(0) + ... (5.21)

The charge density and energy density can be expanded as

ρ(v) = ρ(0) + εv∂vρ(0) +
1

2
ε2v2∂2vρ(0)..., (5.22)

ǫ(v) = ǫ(0) + εv∂vǫ(0) +
1

2
ε2v2∂2vǫ(0)... (5.23)

We add correction terms to the dialton field as

φ(r) = φ(0) + εφ(1)(r) + ε2φ(2)(r)... (5.24)

We omit v-dependence in the correction terms because the differential operator acting
on these becomes ultra-local as argued below Eq(5.3). Plugging these into the dialton
equation and evaluating it up to first order in ε at v = 0, we obtain

0 = ∂r
(

r2U(r)∂rφ(1)(r)
)

+ 2r∂vφ(0)(0), (5.25)

where U(r) = r2 + ρ2(0)
r2

− 2ǫ(0)
r

. The solution of this equation becomes

φ(1)(r) =

∫ r r20Λ1(0)− r2

r2U(r)
(∂vφ(0)(0)) + Λ2(0), (5.26)

where Λ1(0) = 1 for the regularity of the solution φ(1)(r) at the horizon and Λ2(0) is
determined by the same boundary condition of our solution at AdS4 boundary. To
get global solution, we should patch every local solution. Even if the way of getting
solution is different, Eq(5.20) and Eq(5.26) have the same form at least in the first
order in small frequency expansion. This is also true for its back reactions.

Back reactions are obtained perturbatively order by order in ε with gauge field
and metric being expanded as

gMN = g
(0)
MN + g

(1)
MN + g

(2)
MN ... (5.27)

AM = A
(0)
M + A

(1)
M + A

(2)
M ... (5.28)
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For leading order correction, we try following form of metric and gauge field solutions:

ds2 = 2dvdr − U(r, v)dv2 + r2dxidxi +
k(r, v)

r2
dv2 − 2h(r, v)drdv, (5.29)

A = ρ(v)(
1

r0(v)
− 1

r
)dv + a(r, v)dv,

where k(r, v), h(r, v), and a(r, v) are leading order corrections in the perturbation
theory. Details of equations of motions and calculations of the solutions are in Ap-
pendix B.1. We briefly list the leading back reactions. The leading corrections to
gauge field and metric are

g
(1)
MN = A

(1)
M = 0, (5.30)

h(r, v) ≡ −g(2)rv = −1

4
(∂vφ(0)(v))

2

∫ r

r′
(

r20 − r′2

r′2U0(r′)

)2

dr′ + h̄1(v), (5.31)

k(r, v) ≡ r2g(2)vv = −r
2

2
U0(r)(∂vφ(0))

2

∫ r

r′
(

r20 − r′2

r′2U0(r′)

)2

dr′ (5.32)

+
r

4
(∂vφ(0)(v))

2

∫ r (r20 − r′2)2

r′2U0(r′)
dr′ + rk̄1(v)− 2ρ0ā1(v) + 2r2U0(r)h̄1(v),

a(r, v) ≡ A(2)
v =

ρ0
4
(∂vφ(0)(v))

2

∫ r dr′

r′2

∫ r′

r′′
(

r20 − r′′2

r′′2U0(r′′)

)2

dr′′ (5.33)

− ā1(v)− ρ0h̄1(v)

r
+ ā2(v).

h̄1(v), ā1(v), ā2(v) and k̄1(v) are integration constants. They are determined by
specific boundary conditions that we demand. At the black brane horizon, these
solutions are already regular by choosing Λ1(v) = 1. For the boundary condition at
r = ∞ we demand that each leading correction of the perturbation theory behaves
as

h(r, v) ∼ O(r0), (5.34)

k(r, v) ∼ O(r3),

a(r, v) ∼ O(r−2).

The motivation behind these boundary conditions is that there are no non-normalizable
modes which deform the boundary metric, chemical potential or charge density
[45, 25, 68, 60, 61].

There are the constraint equations which are certain combinations of the equations
of back reactions. They are in fact the equations of dual fluid dynamics [25].

C(0)(v) = C(1)(v) = E(0)(v) = 0, (5.35)

Ė(1)(v) =
1

4r0
(∂vφ(0)(v))

2. (5.36)

The other components of gauge field and metric are trivial.
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Divergences of the Leading Order Corrections in the Extremal Limit

The regularity of the solution that we impose for each perturbative correction in the
previous section breaks down in the background of extremal black brane. In Appendix
B.2, we derive the near horizon behavior of leading corrections of the dilaton and its
back reactions in the extremal limit by expansion in u−1, where u is a rescaled radial
coordinate, u ≡ r

r0
. To be more general, we keep Λ1(v) to be arbitrary in Eq(B.9).

As shown above, Λ1(v) = 1 ensures regularity at the horizon for non-extremal black
brane. However in the extremal limit, all the corrections, Eq(5.20),Eq(5.31),Eq(5.32)
and Eq(5.33) have singularities at the horizon. For example,

φ(u, v) = φ(0) −
∂vφ(0)(v)

3r0
ln(u− 1) +O(1), (5.37)

as u → 1. The near horizon expansion of the back reactions are also leading to
divergences in physical quantities like curvature invariants and field strengths. The
u→ 1 behavior of the leading correction to the gauge field is given by

a(u, v) = −
√
3

108

(∂vφ(0)(v))
2

r0

(

3ln(u− 1)− 2(u− 1)ln(u− 1) +O(u− 1)2
)

+O(1).

(5.38)
The first two terms can cause singularity in the field strength, Frv. The divergences
of metric corrections are

h(u, v) = −1

4

(∂vφ(0)(v))
2

r20

(

− 1

9(u− 1)
+

2

27
ln(u− 1) +O(1)

)

, (5.39)

k(u, v) = −1

4
r20(∂vφ(0)(v))

2

(

8

9
(u− 1)2ln(u− 1) +O(1)

)

. (5.40)

In particular the term multiplying (u − 1)2ln(u − 1) in k(u, v) can possibly cause
singularities in curvature invariants.

Divergence Resolution (The Main Result)

In this subsection we briefly discuss the main result of this paper without much
technical details. To deal with divergences discussed in Sec.5.1, we follow Ref.[64]
and divide the radial coordinate into two regions.

Inner Region : u− 1 =
ν

ξ
for δ < ξ <∞, (5.41)

Outer Region :
ν

δ
< u− 1,

with a certain scaling limit,

ν → 0, ξ = finite, δ → 0, and
ν

δ
→ 0. (5.42)

where ν is frequency of the fields in the perturbation theory. Note that switching the
radial variable u to ξ is a non-local transformation. For this transformation, we need
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to evaluate our equations in the frequency space. We use ξ as a radial coordinate for
the inner region and u as that for the outer region. We also define overlapping region
(or matching region)as a region that ξ ∼ δ. The black brane horizon is located at
ξ = ∞. As ξ → 0, we approach the overlapping region by the scaling limit(5.42).
The solutions listed in Sec.5.1 are the outer region solutions. The expansions of the
dilaton and its back reactions as u → 1 in Sec.5.1 are therefore the fields in the
overlapping region. With the scaling limit we define a new perturbation theory in
small frequency in the inner region. If the inner region solutions are

• Regular at the black brane horizon,

• Smoothly connected to the outer region solutions in the overlapping region,

the solutions are regular everywhere.
The dilaton equation in the extremal background is

∇2φ(u, v) =
1

u2

(

∂u(u
2U(u, v)∂uφ(u, v)) +

1

r0
∂u(u

2∂vφ(u, v)) +
u2

r0
∂u∂vφ(u, v)

)

= 0,

(5.43)
where again we define dimensionless radial coordinate, u ≡ r

r0
. The metric factor

U(u, v) = (u−1)2

u2
(u2 + 2u + 3) + 2

√
3C(v)+C2(v)

u2
− 2E(v)

u
. More explicitly, the equation

has a form of

0 = ∂u
(

(u− 1)2(u2 + 2u+ 3)∂uφ(u, v)
)

+
1

r0
∂u(u

2∂vφ(u, v)) (5.44)

+
u2

r0
∂u∂vφ(u, v)− 2E(v)∂u (u∂uφ(u, v)) .

In this equation, we see that the term multiplying the energy density E(v) is of
O(ε2) whereas the terms proportional to ∂2uφ(u, v) is of O(ε), using the constraint
equation(5.36)(which shows E(v) ∼ O(ε)) and the dilaton solution(5.20). Then, it
may appear that the last term in Eq(5.44) can be ignored for obtaining the first order
solution in ε. However, this is no longer true when we switch the radial variable u to
ξ. The momentum ν which appears in Eq(5.41) is effectively proportional to ε. This
is because the dilaton field is localized around ν ∼ ε in the momentum space(See the
discussion in the beginning of Sec.5.2). In ξ coordinate, each u-derivative in Eq(5.44)
produces extra factor of 1

ε
. Therefore, the first term in Eq(5.44) becomes the higher

order in ε than the term multiplying the energy density in ξ coordinate. This means
that this later term cannot be ignored any longer. We have not yet been able to solve
this type of equation. In the following we will choose a regime where the amplitude
of the dilaton field is small. This will allow us to ignore the last term in Eq(5.44),
but retain the essential feature of the problem.

The inner region solutions that we solve are completely agree with above two
conditions for the entire solutions to be regular everywhere. To be precise, we briefly
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list our inner region solutions. The inner region solution of the dilaton has a form of

φ(in)ν(ξ) = φ(0)
ν + ν

(

A(1)
ν − iφ

(0)
ν

3r0
e

i
3r0

ξ
E1(

i

3r0
ξ)

)

+ ν2A(2)
ν (5.45)

− ir0ν
2

2

(
∫ ξ

∞

g(2)ν(ξ
′)

ξ′2
dξ′ − e

i
3r0

ξ

∫ ξ

∞

g(2)ν(ξ
′)

ξ′2
e
− i

3r0
ξ′
dξ′
)

+O(ν)3,

where

g(2)ν(ξ) =
2iA

(1)
ν

r0
− 4iφ

(0)
ν

3r0ξ
+

2iφ
(0)
ν

3r0ξ

(

1− 4iξ

3r0

)

e
iξ
3r0E2(

iξ

3r0
). (5.46)

Ek(x) ≡
∫∞
1

e−xt

tk
dt is The Integral Exponential Function, where k is an integer. The

numerical coefficients, A
(1)
ν , A

(2)
ν and so on, are determined by matching with the

outer region dilaton solution(5.37) in the overlapping region, more explicitly with
Eq(B.9). The inner region solutions are developed in the frequency space. Therefore,
for matching we need to take the outer region solution to momentum space by Fourier
transformation defined in Eq(5.59). The precise expression of the outer region solution

of the dilaton in frequency space is in Sec.5.2. We have a precise form of A
(1)
ν as

A(1)
ν =

iφ
(0)
ν

36r0

(

6
√
2tan−1(

√
2)− 6ln(6)− 6π√

2

)

+
iγ

3r0
φ(0)
ν +

iφ
(0)
ν

3r0
ln

(

iν

3r0

)

, (5.47)

where γ = 0.57721.. is Euler’s constant. For the regularity at the horizon and the
matching with the outer region dilaton solution, only ingoing waves at the black brane
horizon are allowed in Eq(5.45). As a homogeneous solution of the dilaton equation

we could add outgoing waves as B
(n)
ν e

iξ
3r0 to Eq(5.45), where B

(n)
ν is a constant of

order n in ε. The matching condition forces B
(0)
ν = 0. For n > 1, it turns out that

B
(n)
ν spoils the regularity of the dilaton solution in n + 1th order in ǫ. Thus, we

naturally impose ingoing boundary condition at the horizon for the smooth dilaton
field. The other coefficients are obtained by matching with higher order solutions in
the outer region. Near horizon, the inner solutions behave as

φ(in)ν(ξ) ∼ φ(0)
ν + ν

(

A(1)
ν − φ

(0)
ν

ξ
+ ...

)

+ ν2

(

A(2)
ν − A

(1)
ν

ξ
(5.48)

+
φ
(0)
ν − 3ir0A

(1)
ν

ξ2
+ ...) + ...,

which is manifestly regular as ξ → ∞.

86



We evaluate back reactions from the dilaton up to the second order in small
frequency as

h(in)ν(ξ) = h
(1)
(in)ν(ξ) + ν2H̄(2)

ν + νh
(2)
(in)ν(ξ)..., (5.49)

a(in)ν(ξ) = ν2Ā(2)
ν + ν2Ã(2)

ν +
√
3r0ν

∫ ξ

∞

dy

y2
h
(1)
(in)ν(y)−

√
3r0ν

3 H̄
(2)
ν

ξ
+ ν3Ā(3)

ν (5.50)

+ ν3Ã(3)
ν +

√
3r0ν

2

∫ ξ

∞

dy

y2

(

h
(2)
(in)ν(y)−

2

y
h
(1)
(in)ν(y)

)

...,

k(in)ν(ξ) = ν2K̄(2)
ν + ν3K̃(3)

ν + 6r40ν
2

(

h
(1)
(in)ν(ξ)

ξ2
− 2

∫ ξ

∞

dy

y3
h
(1)
(in)ν(y)

)

(5.51)

+ ν3

(

K̄(3)
ν +

K̄
(2)
ν

ξ

)

+ ν4

(

K̄(4)
ν +

K̄
(3)
ν

ξ

)

+ ν4

(

K̃(4)
ν +

K̃
(3)
ν

ξ

)

− 2r40ν
3

(

6

∫ ξ

∞

dy

y3
h
(2)
(in)ν(y) + 3

∫ ξ

∞

dy

y4
h
(1)
(in)ν(y)− 3

h
(2)
(in)ν(ξ)

ξ2
− 2

h
(1)
(in)ν(ξ)

ξ3

)

+ 12r40ν
3

∫ ξ

∞

dy

y2

∫ y

∞

dz

z3
h
(1)
(in)ν(z) + 12ν4r40

H̄
(2)
ν

ξ2
...,

where

h
(1)
(in)ν(ξ) = νH̃(1)

ν − 1

36r20

∫ ∞

−∞
dωφ(0)

ω φ
(0)
ν−ω

ω(ν − ω)

ν

∫ ξ

∞
dy (5.52)

×
(

1− 2iωy

3r0ν
e

iωy
3r0νE1(

iωy

3r0ν
)− ω(ν − ω)y2

9r20ν
2

e
i

3r0
y
E1(

iωy

3r0ν
)E1(

i(ν − ω)y

3r0ν
)

)

,

h
(2)
(in)ν(ξ) = νH̃(2)

ν − 1

36r20

∫ ∞

−∞
dωφ(0)

ω φ
(0)
ν−ω

ω(ν − ω)

ν

∫ ξ

∞

dy

y
(5.53)

×
(

1− 2iωy

3r0ν
e

iωy
3r0νE1(

iωy

3r0ν
)− ω(ν − ω)y2

9r20ν
2

e
i

3r0
y
E1(

iωy

3r0ν
)E1(

i(ν − ω)y

3r0ν
)

)

− i

36r0

∫ ∞

−∞
dωφ

(0)
ν−ω

ω3(ν − ω)2

ν4

∫ ξ

∞
y2dy

(

ν

(ν − ω)y
e

iωy
3r0ν

− i

3r0
e

i
3r0

y
E1(

i(ν − ω)y

3r0ν
)

)
∫ ω

ν
y

∞
dz
g(2)ω(z)

z2
e
− i

3r0
z
.

H̄
(2)
ν , Ā

(2)
ν , Ā

(3)
ν , K̄

(2)
ν , K̄

(3)
ν and K̄

(4)
ν are integration constants which are determined

by matching with the outer region solutions. Eq(5.49), Eq(5.50) and Eq(5.51) are
smoothly connected to frequency space expressions of the outer region solutions of
Eq(5.39), Eq(5.38) and Eq(5.40) respectively. Details are discussed in Sec.5.3. We
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determine some of the integration constants in the inner region solutions with this as

H̄(2)
ν =

1

864r20

∫ ∞

−∞
dω
ω(ν − ω)

ν2
φ(0)
ω φ

(0)
ν−ω

(

8 +
13
√
2π

2
− 13

√
2tan−1(

√
2)(5.54)

+ 16ln(ν)− 8ln(6)) ,

Ā(2)
ν = −

√
3

288

∫ ∞

−∞
dω
ω(ν − ω)

ν2
φ(0)
ω φ

(0)
ν−ω

(

−10 + 2
√
2tan−1(

√
2)−

√
2π (5.55)

− 8ln(ν) + 4ln(6)) ,

K̄(2)
ν =

1

4
r20

∫ ∞

−∞
dω
ω(ν − ω)

ν2
φ(0)
ω φ

(0)
ν−ω

(√
2tan−1(

√
2)− 1

)

+
r0k̄

ν
1

ν2
. (5.56)

Ā
(3)
ν , K̄

(3)
ν and K̄

(4)
ν are determined by higher orders in the outer region solutions.

k̄ν1 is the Fourier transform of k̄1(v). H̃
(1)
ν , H̃

(2)
ν , Ã

(2)
ν , Ã

(3)
ν , K̃

(3)
ν and K̃

(4)
ν are finite

numerical constants, which cannot be obtained analytically(In principle we can. See
Sec.5.3 for the discussion about these constants). The near horizon behaviors of the
back reactions are given by

h(in)ν(ξ) ∼ νH̃(1)
ν + ν2H̄(2)

ν + ν2H̃(2)
ν ...+O(

1

ξ
), (5.57)

a(in)ν(ξ) ∼ ν2Ā(2)
ν + ν2Ã(2)

ν + ν3Ā(3)
ν + ν3Ã(3)

ν ...+O(
1

ξ
),

and k(in)ν(ξ) ∼ ν2K̄(2)
ν + ν3K̄(3)

ν + ν3K̃(3)
ν + ν4K̄(4)

ν + ν4K̃(4)
ν ...+O(

1

ξ
).

Thus the solutions are regular everywhere.
Finally, the constraint equations in the inner region turns out to be the same with

those in the outer region(5.35), which have forms of

C(0)
ν = C(1)

ν = E(0)
ν = 0, (5.58)

ν2E(1)
ν = − 1

4ir0

∫ ∞

−∞
dωω(ν − ω)φ(0)

ω φ
(0)
ν−ω and so on...,

in the frequency space.

5.2 Divergence Resolution of Dilaton Field

In this section, we solve the dialton equation in the inner region. The scaling
limit(5.42) cannot be applied to Eq(5.44) because switching radial variable u to ξ
is non-local transformation. To deal with this, we need to rewrite the equation in the
frequency space by Fourier transformation as

φ(u, v) =

∫ ∞

−∞
eiωvφω(u)dω, (5.59)

where φω(u) is a localized and normalizable function in frequency space. For example,
we can choose φω(u) to be

φω(u) ∼ e−
ω2

ε2 e−
ε2

ω2 f(
ω

ε
)gω(u), (5.60)
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where gω(u) is a function carrying radial variable u and f(ω
ε
) is arbitrary O(1) function

of in frequency space. Then, φω(u) is suppressed as ω approach either zero or ∞
by the exponential factors in it. Consequently, this function is extremely localized
around ω = ±ε and normalizable. Using the argument in Appendix B.4, one can
show that Fourier transformation of Eq(5.60) becomes a form as Eq(5.11) in the
frequency space. This shows that the properties of Eq(5.60) is consistent with those
of φ(0)(v) introduced in Sec.5.1. The dilaton equation in momentum space can be
read off by acting an integral operator 1

2π

∫∞
−∞ e−iνvdv on Eq(5.44). The equation in

the momentum space has a form of

0 = ∂u
(

(u− 1)2(u2 + 2u+ 3)∂uφν(u)
)

+
iν

r0
∂u(u

2φν(u)) +
iνu2

r0
∂uφν(u)(5.61)

− 2

∫ ∞

−∞
∂u (u∂uφω(u))Eν−ωdω,

where Eν−ω is Fourier transfor of E(v) as defined in Eq(B.25). In the inner and outer
region, we expand the dilaton field as

Inner Region : φ(in)ν(ξ) = φ
(0)
(in)ν(ξ) + νφ

(1)
(in)ν(ξ) + ν2φ

(2)
(in)ν(ξ) + ..., (5.62)

Outer Region : φν(u) = φ(0)
ν + νφ(1)

ν (u) + ν2φ(2)
ν (u) + ..., (5.63)

respectively. To avoid confusion, we do not tag outer region solutions with “(out)”.

Inner Solution

As discussed in Sec.5.1, we solve linear dilaton equation by ignoring the last term in
Eq(5.61). Switching radial variable u to ξ, the dilaton equation in the inner region
becomes

ξ2∂ξ

(

(6 +
4ν

ξ
+
ν2

ξ2
)∂ξφ(in)ν(ξ)

)

−2iξ2

r0
(1+

ν

ξ
)2∂ξφ(in)ν(ξ)+

2iξ2

r0
(
ν

ξ2
+
ν2

ξ3
)φ(in)ν(ξ) = 0.

(5.64)
The zeroth order equation in ν is

6ξ2∂2ξφ
(0)
(in)ν(ξ)−

2iξ2

r0
∂ξφ

(0)
(in)ν(ξ) = 0. (5.65)

This equation gives two linearly independent solutions,

φ
(0)
(in)ν = A(0)

ν + B(0)
ν e

i
3r0

ξ
, (5.66)

where A
(0)
ν is purely incoming wave and the term multiplying B

(0)
ν is purely outgoing

wave at the extremal black brane horizon: ξ = ∞. The subscript “ν” denotes that
the integration constants depend on frequency. These two independent solutions are
regular at the horizon up to the zeroth order in ν. First order equation in ν is

6ξ2∂2ξφ
(1)
(in)ν(ξ)−

2iξ2

r0
∂ξφ

(1)
(in)ν(ξ) +

2i

r0

(

A(0)
ν + B(0)

ν e
i

3r0
ξ
)

= 0. (5.67)
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The solution of this equation is

φ
(1)
(in)ν = − iA

(0)
ν

3r0

∫ ξ

∞
e

i
3r0

ξ′
dξ′

(

∫ ξ′

∞

e
− i

3r0
ξ′′

ξ′′2
dξ′′ + B(1)

ν

)

+ A(1)
ν +

iB
(0)
ν

3r0

∫ ξ

∞

e
i

3r0
ξ′

ξ′
dξ′,

(5.68)

where A
(1)
ν and B

(1)
ν are integration constants, which are corresponding to incoming

and outgoing waves at the horizon respectively. Using

∫ x

eiαx
′
dx′
∫ x′ e−iαx

′′

x′′2
dx′′ = eiαxE1(iαx), (5.69)

Eq(5.68) becomes

φ
(1)
(in)ν(ξ) = A(1)

ν − A(0)
ν B(1)

ν e
iξ
3r0 − iA

(0)
ν

3r0
e

i
3r0

ξ
E1(

i

3r0
ξ)− iB

(0)
ν

3r0
E1(−

i

3r0
ξ) (5.70)

The first and the third terms are incoming waves at the horizon, whereas the others
are outgoing waves. Let us discuss the asymptotic form of the solution. For large y,
E1(y) is expanded as

E1(y) =
e−y

y

∞
∑

n=0

(−1)n(n)!

yn
, (5.71)

where y is pure imaginary number, so e−y term is bounded. It is manifest that E1(y)
is regular as y approaches infinity. In the case that y goes to zero, the function E1(y)
becomes divergent. Let us argue what the leading divergence is. To see the leading
divergence, we calculate following object:

lim
y→0

E1(y)

ln(y)
= lim

y→0

dE1(y)
dy

dln(y)
dy

= −1, (5.72)

where we have used Hospital’s theorem for the first equality. Then, the leading
divergent term is logarithmic. Consequently, this solution is regular at the horizon
and divergent logarithmically near the matching region.

Outer Solution

In Appendix B.2, we evaluate the dilaton in outer region as u → 1 in the extremal
limit. The solution in momentum space is given by

φν(u) ≡ (φ(0)
ν + νφ(1)

ν (u)) = φ(0)
ν +

iνφ
(0)
ν

r0

∫ u Λ1 − u2

u2U0(u)
du+ Λ2, (5.73)
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where Λ1 and Λ2 come from the Fourier transforms of the integration constants Λ1(v)
and Λ2(v). They depend on ν. Near matching region expansion of Eq(5.73) is

φν(u) = φ(0)
ν +

iνφ
(0)
ν

6(u− 1)r0
(1− Λ1)−

iνφ
(0)
ν

9r0
ln(u− 1) (2 + Λ1) (5.74)

+
iνφ

(0)
ν

36r0

(

(Λ1 − 7)
√
2tan−1(

√
2) + 2(Λ1 + 2)ln(6) +

π√
2
(7− Λ1)

)

+
iνφ

(0)
ν

18r0
(u− 1) +O(u− 1)2.

Matching

For the inner solution to match the outer one, we need to switch the radial coordinate
ξ to u near matching region. The matching region is defined as a region with ν

u−1
∼ δ.

The scaling limit(5.42) shows that ν
u−1

can become a small expansion parameter near
matching region. The outer region solution is perturbative solution order by order in
ν. It is justified that one can do series expansion of φ(in)ν in ν for matching the outer
solution. The inner region solution up to the leading order correction in ν, Eq(5.70),
in the radial variable u is given by

φ(in)ν(u) = A(0)
ν +B(0)

ν e
iν

3r0(u−1) + ν
(

A(1)
ν − A(0)

ν B(1)
ν e

iν
3r0(u−1) (5.75)

− iA
(0)
ν

3r0
e

iν
3r0(u−1)E1(

iν

3r0(u− 1)
)− iB

(0)
ν

3r0
E1(

−iν
3r0(u− 1)

)

)

.

Using asymptotic expansion of E1(y) for small y as

E1(y) = −γ − ln(y)−
∞
∑

n=1

(−1)nyn

nn!
, (5.76)

we expand the inner region solution in terms of ν
u−1

. The expansion has a form of

φ(in)ν(u) = A(0)
ν +B(0)

ν + ν

(

iB
(0)
ν

3r0(u− 1)
− i

3r0
(A(0)

ν + B(0)
ν )ln(u− 1) + A(1)

ν (5.77)

− A(0)
ν B(1)

ν +
iγ

3r0
(A(0)

ν +B(0)
ν ) +

iA
(0)
ν

3r0
ln

(

iν

3r0

)

+
iB

(0)
ν

3r0
ln

(

− iν

3r0

)

)

+ O(
ν

u− 1
)2

We compare the asymptotes of φ(in)ν(u) with Eq(5.74) to determine each coefficient
in it. At the zeroth order in ν,

A(0)
ν + B(0)

ν = φ(0)
ν . (5.78)
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At the first order,

A(0)
ν + B(0)

ν =
2 + Λ1

3
φ(0)
ν , (5.79)

B(0)
ν =

1− Λ1

2
φ(0)
ν , (5.80)

A(0)
ν B(1)

ν − A(1)
ν = − iγ

3r0
(A(0)

ν + B(0)
ν )− iA

(0)
ν

3r0
ln

(

iν

3r0

)

− iB
(0)
ν

3r0
ln

(

− iν

3r0

)

(5.81)

+
iφ

(0)
ν

36r0

(

(Λ1 − 7)
√
2tan−1(

√
2) + 2(Λ1 + 2)ln(6) +

π√
2
(7− Λ1)

)

Eq(5.78), Eq(5.79), Eq(5.80) and Eq(5.81) provide

Λ1 = 1, A(0)
ν = φ(0)

ν , B(0)
ν = 0, (5.82)

and

A(1)
ν − A(0)

ν B(1)
ν =

iφ
(0)
ν

6r0

(√
2tan−1(

√
2)− ln(6)− π√

2

)

+
iγφ

(0)
ν

3r0
+
iφ

(0)
ν

3r0
ln

(

iν

3r0

)

.

(5.83)

More on Dilaton Solution in Inner Region

As is clear from Eq(5.77), the lowest order solution in the inner region, expressed
in terms of coordinate u contains all power of ν. This is true for all higher order
corrections to the inner region solution as well. More precisely, νnφ

(n)
(in)ν(ξ), expressed

in terms of u will have terms of O(νm) with m > 1. These terms are crucial in
ensuring a smooth matching with the outer region solution. For example, in Eq(5.74)

there is a term ∼ νφ
(0)
ν (u− 1)- but such a term is not present in νφ

(1)
(in)ν(u). We now

show that such a term is actually present in ν2φ
(2)
(in)ν(u) with precisely the correct

coefficient. To see this, let us evaluate the second order correction of dialton field.
The second order equation is

6ξ2∂2ξφ
(2)
(in)ν(ξ)−

2iξ2

r0
∂ξφ

(2)
(in)ν(ξ) + g(2)ν(ξ) = 0, (5.84)

where g(2)ν(ξ) is

g(2)ν(ξ) = 4ξφ
(1)′′
(in)ν(ξ)− 4(1 +

iξ

r0
)φ

(1)′
(in)ν(ξ) +

2i

r0
φ
(1)
(in)ν(ξ) +

2i

ξr0
φ
(0)
(in)ν . (5.85)

The prime indicates derivative respect to ξ. The solution of this equation is

φ
(2)
(in)ν(ξ) = A(2)

ν +
iB

(2)
ν r0
2

e
i

3r0
ξ − ir0

2

(
∫ ξ

∞

g(2)ν(ξ
′)

ξ′2
dξ′ − e

i
3r0

ξ

∫ ξ

∞

g(2)ν(ξ
′)

ξ′2
e
− i

3r0
ξ′
dξ′
)

,

(5.86)
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where we set B
(2)
ν = 0 because it cause logarithmic divergence at the horizon in the

third order in ν. Near horizon, φ
(2)
(in)ν(ξ) is expanded as

φ
(2)
(in)ν(ξ) =

∞
∑

n=0

αnν
ξn

+ φ(0)
ν B(1)

ν

(

− 4i

9r0
lnξ +

1

ξ
+ ...

)

, (5.87)

where α0
ν = A

(2)
ν , α1

ν = −A(1)
ν , α2

ν = φ
(0)
ν − 3ir0A

(1)
ν and so on. Regularity condition

of φ
(2)
(in)ν(ξ) at the horizon forces B

(1)
ν = 0. Only incoming wave is allowed in φ

(1)
(in)ν(ξ)

too. Near the matching region, we switch the radial variable ξ to u for matching with
the outer solution. Defining a new integral variable y as ξ′ ≡ ν

y−1
, Eq(5.86) becomes

φ
(2)
(in)ν(u) = A(2)

ν +
ir0
2ν

(
∫ u

g(2)ν(
ν

y − 1
)dy − e

iν
3r0(u−1)

∫ u

g(2)ν(
ν

y − 1
)e

− iν
3r0(y−1)dy

)

.

(5.88)

For matching, we expand φ
(2)
(in)ν(u) in ν as

φ
(2)
(in)ν(u) =

iφ
(0)
ν (u− 1)

18r0ν
+

∞
∑

j=0

νj

(u− 1)j

(

β
(2)
jν + β

(2)′
jν ln(u− 1) + β

(2)′′
jν (ln(u− 1))2

)

,

(5.89)

where β
(2)
jν ,β

(2)′
jν and β

(2)′′
jν are O(1) constants, some of which are given by β

(2)′
0 =

6iA
(1)
ν r0+φ

(0)
ν

18r20
, β

(2)′′
0 = − φ

(0)
ν

54r20
and so on. The first term in Eq(5.89) is proportional to ν,

which matches the last term in Eq(5.74) precisely. We expect that similar mechanism
ensures matching of the higher order terms.

5.3 Divergence Resolution of Back Reacted Metric and Gauge Field

In this section, we extend our discussion into back reactions. In Appendix.B.3, we
obtain the equations of the back reactions without ignoring time derivatives. These
equations are the starting point for our discussion.

Inner Solution

We begin with Eq(B.24). To solve this equation in the inner region, we need to
substitute the inner region solution of the dilaton field into it. To do this, we take
the inner region dilaton solution back to the outer region: φ(in)ω(ξ) → φ(in)ω(

ω
u−1

)
and plug it into Eq(B.24). With this, Eq(B.24) becomes

∂uhν(u) = −u
4

∫ ∞

−∞
dω∂uφ(in)ν−ω(

ν − ω

u− 1
)∂uφ(in)ω(

ω

u− 1
). (5.90)

The u-derivative acting on the dilaton can be switched to derivative with respect to
its argument as

∂uφ(in)ω(
ω

u− 1
) = − ω

(u− 1)2
φ′
(in)ω(

ω

u− 1
). (5.91)
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After this, we replace the radial coordinate u with ξ. Then, Eq(B.24) becomes

h′(in)ν(ξ) =
ξ2(1 + ν

ξ
)

4ν3

(
∫ ∞

−∞
dωω(ν − ω)φ′

(in)ω(
ω

ν
ξ)φ′

(in)ν−ω(
ν − ω

ν
ξ)

)

, (5.92)

where the prime on the dilaton denotes derivative with respect to its argument,
whereas the prime on h(in)ν(ξ) does derivative with respect to ξ. Plugging the dilaton
expansion(5.62) into Eq(5.92), it becomes

h′(in)ν(ξ) =
ξ2

4ν3
(1 +

ν

ξ
)

∫ ∞

−∞
dωω2(ν − ω)2

(

φ
(1)′
(in)ω(

ω

ν
ξ)φ

(1)′
(in)ν−ω(

ν − ω

ν
ξ) (5.93)

+ ωφ
(2)′
(in)ω(

ω

ν
ξ)φ

(1)′
(in)ν−ω(

ν − ω

ν
ξ) + (ν − ω)φ

(1)′
(in)ω(

ω

ν
ξ)φ

(2)′
(in)ν−ω(

ν − ω

ν
ξ)

+ ...) .

h(in)ν(ξ) is also localized function around ν ∼ ±ε in frequency space as the dilaton
field (See the discussion below Eq(5.60) in Sec.5.2). Then, we expand h(in)ν(ξ) as

h(in)ν(ξ) = H̄ν + h
(1)
(in)ν(ξ) + νh

(2)
(in)ν(ξ) + ..., (5.94)

where h
(1)
(in)ν(ξ) is in the first order in small frequency and νh

(2)
(in)ν(ξ) is in the second

order and so on. We expand the other corrections of the back reactions in the same
way. H̄ν is an integration constant which can be expanded as H̄ν = νH̄

(1)
ν +ν2H̄

(2)
ν ...,

where H̄
(1)
ν and H̄

(2)
ν ... are O(1) constants. We note that counting power of ε of

the solutions to show that each solution is in the correct order in small frequency
expansion is not manifest in the frequency space. In Appendix B.4, we discuss details
about this power counting by scaling all the frequencies appeared in the solutions with
ε. The solutions up to the second order in small frequency are

h
(1)
(in)ν(ξ) = νH̃(1)

ν +

∫ ξ

∞

ξ′2dξ′

4ν3

∫ ∞

−∞
dωω2(ν − ω)2φ

(1)′
(in)ω(

ω

ν
ξ′)φ

(1)′
(in)ν−ω(

ν − ω

ν
ξ′),(5.95)

h
(2)
(in)ν(ξ) = νH̃(2)

ν (5.96)

+

∫ ξ

∞

ξ′2dξ′

4ν4

∫ ∞

−∞
dωω2(ν − ω)2

(

ν

ξ′
φ
(1)′
(in)ω(

ω

ν
ξ′)φ

(1)′
(in)ν−ω(

ν − ω

ν
ξ′)

+ ωφ
(2)′
(in)ω(

ω

ν
ξ′)φ

(1)′
(in)ν−ω(

ν − ω

ν
ξ′) + (ν − ω)φ

(1)′
(in)ω(

ω

ν
ξ′)φ

(2)′
(in)ν−ω(

ν − ω

ν
ξ′)

)

.

As will be shown below, the terms containing ξ′-integrations appearing in Eq(5.95)
and Eq(5.96) vanish as ξ → ∞. However, the near matching region expansions

of those terms present additive constant terms. H̃
(1)
ν and H̃

(2)
ν are O(1) numerical

constants which are designed so that they precisely cancel those additive constant
terms. With such a choice of H̃

(1)
ν and H̃

(2)
ν , the only constant term in the overlapping

region expansion of h(in)ν(ξ) to match that in the outer region solution hν(u) become

H̄ν (See Eq(5.94) and Eq(5.124)). There will be numerical constants as Ã
(2)
ν , Ã

(3)
ν , K̃

(3)
ν
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and K̃
(4)
ν appearing in a(in)ν(ξ) and k(in)ν(ξ) to be determined by the same manner.

They provide the near matching region expansions of a(in)ν(ξ) and k(in)ν(ξ) to be
exactly given by Eq(5.127) and Eq(5.128). We cannot determine these numerical
constants analytically but in principle one can obtain the precise values.

Let us discuss regularity of the solutions. H̄ν is regular everywhere. To see the
behaviors of h

(1)
(in)ν(ξ) and h

(2)
(in)ν(ξ) we expand φ

(1)′
(in)ω(x) and φ

(2)′
(in)ω(x) in Eq(5.95) and

Eq(5.96) in the limit of large value of their argument x using that Eq(5.70), Eq(5.71),

Eq(5.87) and B
(0)
ν = B

(1)
ν = 0. They are given by

φ
(1)′
(in)ω(x) = − iφ

(0)
ω

3r0x

∞
∑

n=1

(−1)nn!

( ix
3r0

)n
, (5.97)

φ
(2)′
(in)ω(x) = −

∞
∑

n=1

nαnω
xn+1

. (5.98)

Substitution of Eq(5.97) to Eq(5.95) provides near horizon expansion of h
(1)
(in)ν(ξ) as

h
(1)
(in)ν(ξ) = νH̃(1)

ν +
∞
∑

n,m=1

Amn
ξm+n−1

, (5.99)

where

Amn =
1

4

m!n!(−1)m+n+1

m+ n− 1
νm+n−1

(

i

3r0

)2−m−n ∫ ∞

−∞
φ(0)
ω φ

(0)
ν−ωω

1−n(ν − ω)1−mdω,

(5.100)
where m and n are integers. We note that the ω-integration in Eq(5.100) seems to
have poles at ω = 0 and ω = ν for m+n > 2 and could lead to an infinite integrand.

However, we set φ
(0)
ω ∼ e−

ε2

ω2 as ω → 0 as discussed in the beginning of Sec.5.2 (See
Eq(5.60)). This ensures that the integration is finite. Then, near horizon behavior of

h
(1)
(in)ν(ξ) is given by h

(1)
(in)ν(ξ) ∼ νH̃

(1)
ν +O(1

ξ
).

We obtain near horizon behavior of h
(2)
(in)ν(ξ) by plugging Eq(5.97) and Eq(5.98)

into Eq(5.96), which is given by

h
(2)
(in)ν(ξ) = νH̃(2)

ν +
∞
∑

n,m=1

(

m+ n− 1

m+ n

Amn
ξm+n

+
Bmn

ξm+n−1

)

, (5.101)

where

Bmn =
m!(n)(−1)m+1

4(m+ n− 1)
νm+n−2

(

i

3r0

)1−m ∫ ∞

−∞

(

φ
(0)
ν−ωα

n
ωω

2−n(ν − ω)1−m(5.102)

+ φ(0)
ω αnν−ωω

1−m(ν − ω)2−n
)

dω,

The αnω in Eq(5.102) are proportional to φ
(0)
ω (See Eq(5.82), Eq(5.83), Eq(5.87)

and discussion below it). This ensures that the integration in Eq(5.102) is also finite.

Consequently, h
(2)
(in)ν(ξ) ∼ νH̃

(2)
ν +O(1

ξ
) near horizon.
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Secondly we solve Eq(B.29) which provides solutions of gauge field corrections in
the inner region. Switching radial variable u to ξ, Eq(B.29) becomes

a′(in)ν(ξ) =
νr0

ξ2(1 + ν
ξ
)2

(

Cν +
√
3h(in)ν(ξ)

)

. (5.103)

We expand the charge density as Cν = C
(0)
ν + νC

(1)
ν + ν2C

(2)
ν .... a(in)ν(ξ) can be

expanded as a(in)ν(ξ) = Āν + a
(1)
(in)ν(ξ) + νa

(2)
(in)ν(ξ) + ν2a

(3)
(in)ν(ξ)..., where again Āν is

an integration constant which is also expanded as Āν = νĀ
(1)
ν +ν2Ā

(2)
ν ... The solutions

up to the third order expansion are given by

a
(1)
(in)ν(ξ) = −r0ν

C
(0)
ν

ξ
, (5.104)

a
(2)
(in)ν(ξ) = νÃ(2)

ν +
√
3r0

∫ ξ

∞

dξ′

ξ′2
h
(1)
(in)ν(ξ

′)−
√
3r0ν

ξ
H̄(1)
ν (5.105)

+ r0ν

(

C
(0)
ν

ξ2
− C

(1)
ν

ξ

)

,

a
(3)
(in)ν(ξ) = νÃ(3)

ν +
√
3r0

∫ ξ

∞

dξ′

ξ′2

(

h
(2)
(in)ν(ξ

′)− 2

ξ′
h
(1)
(in)ν(ξ

′)

)

(5.106)

+
√
3r0ν

(

H̄
(1)
ν

ξ2
− H̄

(2)
ν

ξ

)

− r0ν

(

C
(0)
ν

ξ3
− C

(1)
ν

ξ2
+
C

(2)
ν

ξ

)

.

The reason why we need to obtain a(in)ν(ξ) up to the third order in the small frequency
is that when we plug the nth order solution of h(in)ν(ξ) into Eq(5.103), we get n+1th
order solution of a(in)ν(ξ). For the same reason, we need to get the inner solution of
k(in)ν(ξ) up to the fourth order in small frequency.

Let us explore near horizon limit of the solutions. a
(1)
(in)ν(ξ) is manifestly regular

at the horizon. Using Eq(5.99) and Eq(5.101), we evaluate near horizon expansions

of a
(2)
(in)ν and a

(3)
(in)ν which have forms of

a
(2)
(in)ν = νÃ(2)

ν −
√
3r0

∞
∑

m,n=1

Amn
m+ n

1

ξm+n
−

√
3r0ν

ξ
H̄(1)
ν (5.107)

+ r0ν

(

C
(0)
ν

ξ2
− C

(1)
ν

ξ

)

−
√
3r0ν

ξ
H̃(1)
ν ,

a
(3)
(in)ν = νÃ(3)

ν +
√
3r0

∞
∑

m,n=1

(

Amn
m+ n

1

ξm+n+1
− Bmn

m+ n

1

ξm+n

)

(5.108)

+
√
3r0ν

H̄
(1)
ν

ξ2
−
√
3r0ν

H̄
(2)
ν

ξ
− r0ν

(

C(0)

ξ3
− C(1)

ξ2
+
C(2)

ξ

)

+
√
3r0ν

(

H̃
(1)
ν

ξ2
− H̃

(2)
ν

ξ

)

.
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Then, a(in)ν(ξ) is finite at the horizon.
Combining Eq(B.28) and Eq(B.30), we get

0 = −6(u4 − 1)hν(u)− u(u4 − 4u+ 3)h′ν(u) +
1

r40
(uk′ν(u)− kν(u)) + 2

√
3Cν , (5.109)

which gives solutions of k(in)ν(ξ). Changing radial coordinate u into ξ, this equation
becomes

0 = 2
√
3νCν −

1

r40

(

νk(in)ν(ξ) + (ξ2 + νξ)k′(in)ν(ξ)
)

(5.110)

+ ν2
(

6 +
10ν

ξ
+

5ν2

ξ2
+
ν3

ξ3

)

h′(in)ν(ξ)− 6ν

(

4ν

ξ
+

6ν2

ξ2
+

4ν3

ξ3
+
ν4

ξ4

)

h(in)ν(ξ).

We expand k(in)ν(ξ) as k(in)ν(ξ) = K̄ν(ξ) + k
(1)
(in)ν(ξ) + νk

(2)
(in)ν(ξ) + ν2k

(3)
(in)ν(ξ)..., where

K̄ν(ξ) is a homogeneous solution of Eq(5.110) which satisfies

νK̄ν(ξ) + (ξ2 + νξ)K̄ ′
ν(ξ) = 0. (5.111)

The solution of Eq(5.111) is given by

K̄ν(ξ) = νK̄(1)
ν + ν2

(

K̄(2)
ν +

K̄
(1)
ν

ξ

)

+ ν3

(

K̄(3)
ν +

K̄
(2)
ν

ξ

)

..., (5.112)

where K̄
(1)
ν , K̄

(2)
ν and K̄

(3)
ν ... are arbitrary O(1) constants. We solve Eq(5.110) up to

fourth order in small frequency which are given by

k
(1)
(in)ν(ξ) = −2

√
3r40ν

C
(0)
ν

ξ
(5.113)

k
(2)
(in)ν(ξ) = −2

√
3r40ν

C
(1)
ν

ξ
(5.114)

k
(3)
(in)ν(ξ) = νK̃(3)

ν + 6r40

∫ ξ

∞

dξ′

ξ′2

(

h
(1)′
(in)ν(ξ

′)− 4

ξ′
h
(1)
(in)ν(ξ

′)

)

+ 12r40ν
H̄

(1)
ν

ξ2
(5.115)

− 2
√
3r40ν

C
(2)
ν

ξ
,

k
(4)
(in)ν(ξ) = νK̃(4)

ν − 6r40

∫ ξ

∞

dξ′

ξ′2

∫ ξ′

∞

dξ′′

ξ′′2

(

h
(1)′
(in)ν(ξ

′′)− 4

ξ′′
h
(1)
(in)ν(ξ

′′)

)

(5.116)

− 2r40

∫ ξ

∞

dξ′

ξ′2

(

12

ξ′
h
(2)
(in)ν(ξ

′) +
6

ξ′2
h
(1)
(in)ν(ξ

′)− 3h
(2)′
(in)ν(ξ

′)− 2

ξ′
h
(1)′
(in)ν(ξ

′)

)

+ 12r40ν
H̄

(2)
ν

ξ2
+ 8r40ν

H̄
(1)
ν

ξ3
− 2

√
3r40ν

C
(3)
ν

ξ
+ ν

K̃
(3)
ν

ξ
.
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K̄ν(ξ), k
(1)
(in)ν(ξ) and k

(2)
(in)ν(ξ) are manifestly regular at the horizon. We list behaviors

of k
(3)
(in)ν(ξ) and k

(4)
(in)ν(ξ) near horizon:

k
(3)
(in)ν(ξ) = 12r40ν

H̄
(1)
ν + H̃

(1)
ν

ξ2
− 2

√
3r40ν

C
(2)
ν

ξ
+ 6r40

∞
∑

m,n=1

m+ n+ 3

m+ n+ 1

Amn
ξm+n+1

(5.117)

+ νK̃(3)
ν ,

k
(4)
(in)ν(ξ) = 12r40ν

H̄
(2)
ν + H̃

(2)
ν

ξ2
+ 8r40ν

H̄
(1)
ν + H̃

(1)
ν

ξ3
− 2

√
3r40ν

C
(3)
ν

ξ
+ ν

K̃
(3)
ν

ξ
(5.118)

+ r40

∞
∑

m,n=1

6(m+ n+ 3)

m+ n+ 1

Bmn

ξm+n+1
+ r40

∞
∑

m,n=1

Amn
ξm+n+2

(

10m+ 10n+ 2

m+ n+ 2

+
6(m+ n+ 3)

(m+ n+ 1)(m+ n+ 2)
+

24(m+ n− 1)

(m+ n)(m+ n+ 2)

)

+ νK̃(4)
ν .

As ξ → ∞, k
(3)
(in)ν(ξ) ∼ νK̃

(3)
ν + O(1

ξ
) and k

(4)
(in)ν(ξ) ∼ νK̃

(4)
ν + O(1

ξ
). Therefore, the

inner region solutions are regular solutions.
Finally, we solve Eq(B.19) to obtain the constraint equations in the inner region,

which are given by

0 = E(0)
ν −

√
3C(0)

ν , (5.119)

0 = iν2r0

(

−2
√
3C(1)

ν + 2E(1)
ν +

K̄
(1)
ν

r40

)

+
1

2

∫ ∞

−∞
dω(ν − ω)ωφ

(0)
ν−ωφ

(0)
ω ,(5.120)

0 = iν3r0

(

−2
√
3C(2)

ν + 2E(2)
ν +

K̄
(2)
ν

r40

)

−
∫ ∞

−∞
dω(ν − ω)ω2φ

(0)
ν−ωA

(1)
ω .(5.121)

Matching

In this subsection, we show that the inner region solutions solved in the previous
subsection are smoothly connected to the outer region solutions in Sec.5.1. Let us
start with h(in)ν(ξ). Near matching region, we expand Eq(5.95) with small ξ using
Eq(5.70) and Eq(5.76). Integrating by ξ, Eq(5.95) becomes

h
(1)
(in)ν(

ν

u− 1
) =

1

4

(

i

3r0

)2 ∫ ∞

−∞
dωω(ν − ω)φ(0)

ω φ
(0)
ν−ω

1

u− 1
+ subleading terms...,

(5.122)

where the “subleading terms” denote terms which are higher order in ν when h
(1)
(in)ν(ξ)

is expressed in terms of u (We obtain leading corrections only in the outer region). The
same procedure is applied to Eq(5.96). Near the overlapping region, the expansion

of h
(2)
(in)ν(u) becomes

νh
(2)
(in)ν(

ν

u− 1
) = −1

6

(

i

3r0

)2 ∫ ∞

−∞
dωω(ν−ω)φ(0)

ω φ
(0)
ν−ωln

(

u− 1

ν

)

+ subleading terms...

(5.123)
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Combining these, we get near matching region expansion of h(in)ν(u) which is a form
of

h(in)ν(u) = νH̄(1)
ν +ν2H̄(2)

ν +
1

4

(

i

3r0

)2 ∫ ∞

−∞
dωω(ν−ω)φ(0)

ω φ
(0)
ν−ω

(

1

u− 1
− 2

3
ln(

u− 1

ν
)

)

...

(5.124)
As u→ 1, the outer region solution of hν in momentum space is expanded as

hν(u) =
1

4
(
i

3r0
)2
∫ ∞

−∞
dωω(ν − ω)φ(0)

ω φ
(0)
ν−ω

(

1

u− 1
− 2

3
ln(u− 1) (5.125)

− 1

24

(

8 +
13
√
2π

2
− 13

√
2tan−1(

√
2)− 8ln(6)

)

+ ...

)

(See Appendix B.2). Consequently, Eq(5.124) completely matches Eq(5.125) request-
ing that

H̄(1)
ν = 0, (5.126)

ν2H̄(2)
ν =

1

864r20

∫ ∞

−∞
dωω(ν − ω)φ(0)

ω φ
(0)
ν−ω

(

8 +
13
√
2π

2
− 13

√
2tan−1(

√
2)

− 8ln(6) + 16ln(ν)) ,

and so on.
In the overlapping region, a(in)ν(u) and k(in)ν(u) are obtained in the same way.

As ξ approaches zero, a(in)ν(u) and k(in)ν(u) are expanded as

a(in)ν(u) = −r0C(0)
ν

(

(u− 1)− (u− 1)2 + (u− 1)3...
)

(5.127)

− r0νC
(1)
ν

(

(u− 1)− (u− 1)2...
)

− r0ν
2C(2)

ν (u− 1)...+ νĀ(1)
ν + ν2Ā(2)

ν + ν2Ā(3)
ν ...

−
√
3r0νH̄

(1)
ν

(

(u− 1)− (u− 1)2...
)

−
√
3r0ν

2H̄(2)
ν (u− 1)...

+

√
3r0
4

(
i

3r0
)2
∫ ∞

−∞
dωω(ν − ω)φ(0)

ω φ
(0)
ν−ω

(

−ln
(

u− 1

ν

)

+
2

3
(u− 1)ln

(

u− 1

ν

)

+
4

3
(u− 1)...

)

,

k(in)ν(u) = νK̄(1)
ν + ν(u− 1)K̄(1)

ν + ν2K̄(2)
ν + ν2(u− 1)K̄(2)

ν + ν3K̄(3)
ν (5.128)

+ ν3(u− 1)K̄(3)
ν + ν4K̄(4)

ν ...

− 2
√
3r40(u− 1)

(

C(0)
ν + νC(1)

ν + ν2C(2)
ν + ν3C(3)

ν ...
)

+ 4r40νH̄
(1)
ν

(

3(u− 1)2 + 2(u− 1)3...
)

+ 12r40ν
2(u− 1)2H̄(2)

ν ...+ ν3K̃3
ν (u− 1)...

+
1

4
r20

∫ ∞

−∞
dωω(ν − ω)φ(0)

ω φ
(0)
ν−ω

(

8

9
(u− 1)2ln

(

u− 1

ν

)

− 2(u− 1)

− 5

3
(u− 1)2...

)

.
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In the overlapping region, the outer region solutions aν(u) and kν(u) in momentum
space are given by

aν(u) =

√
3r0
4

(
i

3r0
)2
∫ ∞

−∞
dωω(ν − ω)φ(0)

ω φ
(0)
ν−ω (−ln(u− 1) (5.129)

+
2

3
(u− 1)ln(u− 1) +

1

8

(

−10 + 2
√
2tan−1(

√
2)−

√
2π + 4ln(6)

)

+
1

24

(

40− 13
√
2tan−1(

√
2)− 8ln(6) +

13
√
2π

2

)

(u− 1) +...) +O(u− 1)2,

kν(u) =
1

4
r20

∫ ∞

−∞
dωω(ν − ω)φ(0)

ω φ
(0)
ν−ω

(

8

9
(u− 1)2ln(u− 1)− 1 (5.130)

+
√
2tan−1(

√
2) + (

√
2tan−1(

√
2)− 3)(u− 1) +

(

13
√
2π

36
− 11

9
− 4ln(6)

9

− 13tan−1(
√
2)

9
√
2

)

(u− 1)2

)

+ r0k̄
ν
1 + r0k̄

ν
1(u− 1) +O(u− 1)3,

where again k̄ν1 is the Fourier transform of k̄1(v). We compare Eq(5.127), Eq(5.128)

with Eq(5.129), Eq(5.130) respectively to decide that C
(0)
ν = C

(1)
ν = C

(2)
ν = Ā

(1)
ν =

K̄
(1)
ν = 0,

ν2Ā(2)
ν = −

√
3

288

∫ ∞

−∞
dωω(ν − ω)φ(0)

ω φ
(0)
ν−ω

(

−10 + 2
√
2tan−1(

√
2)−

√
2π

+ 4ln(6)− 8ln(ν))

and ν2K̄(2) =
1

4
r20

∫ ∞

−∞
dωω(ν − ω)φ(0)

ω φ
(0)
ν−ω

(√
2tan−1(

√
2)− 1

)

+ r0k̄
ν
1 .

Ā
(3)
ν , K̄

(3)
ν and K̄

(4)
ν are determined by matching with higher orders in the outer

region solutions. With the coefficients determined in this fashion, two solutions are
connected smoothly in the matching region.

The constraint equations in the inner region are the same with those in the outer
region. Plugging C

(0)
ν = 0 into Eq(5.119), we obtain E

(0)
ν = 0. By using C

(1)
ν =

K̄
(1)
ν = 0, Eq(5.120) becomes

ν2E(1)
ν = − 1

4ir0

∫ ∞

−∞
dωω(ν − ω)φ(0)

ω φ
(0)
ν−ω, (5.131)

They are the same with the momentum space expression of Eq(5.35) and Eq(5.36).

Copyright c© Jae-Hyuk Oh, 2011.
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Chapter A Appendices of Chapter3

A.1 Comments on Metric to O(ǫ2)

We are interested in calculating the back reaction on the metric to O(ǫ2) that arises
due to the dilaton Φ0. Without loss of generality we can assume that the metric is
S3 symmetric and therefore of form,

ds2 = −gttdt2 + grrdr
2 + 2gtrdtdr +R2dΩ2 (A.1)

where the metric coefficients are functions of r, t. The zeroth order metric is that of
AdS5, Eq(3.7). We argued above that the backreaction to the dilaton source arises
at order ǫ2. Thus gtr in Eq(A.1) is of order ǫ2.

We now show that by doing a suitable coordinate transformation, the mixed
component gtr can be set to vanish up to order ǫ2. The coordinate transformation is,
from (t, r) to (t, r̃), where,

r = r̃ − gtr
grr

t, (A.2)

which leads to
dr = dr̃ − (

gtr
grr

)′tdr̃ − gtr
grr

dt+O(ǫ3). (A.3)

Prime above indicates derivatives with respect to r, We can drop the ǫ3 terms for our
purpose, these originate from additional time derivatives on the metric components.
Substituting in Eq(A.1) we see that in the new coordinates the gtr̃ components of
the metric vanish up to O(ǫ3) corrections which we are neglecting anyways. To avoid
clutter we will henceforth drop the tilde on the r coordinate and write the metric as

ds2 = −gttdt2 + grrdr
2 +R2dΩ2 (A.4)

Next we show that up to O(ǫ2) we can set R equal to the coordinate r without
reintroducing the mixed components. First define,

r̄ = R (A.5)

leading to,
dr̄ = R′dr + Ṙdt (A.6)

where dot indicates a time derivative. Now any time dependence in R arises only
due to the dilaton and therefore is of order ǫ2. This means that Ṙ is O(ǫ3) and can
be neglected. So up to O(ǫ2) no mixed components arise in the metric due to this
coordinate transformation. We now drop the bar on the radial coordinate and write
the final metric as,

ds2 = −gttdt2 + grrdr
2 + r2dΩ2. (A.7)
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A.2 More on the Driven Harmonic Oscillator

In this appendix we provide the steps leading to (3.98) and (3.99). The time derivative
of the state vector |ψ(t) > in (3.97) is

i
∂

∂t
|ψ(t) >= i(λ̇+ α̇)a†|ψ(t) > +i(

Ṅ

N
+
Ṅα

Nα

)|ψ(t) > (A.8)

where we have used the expression for |φ0 > in (3.90). The action of the hamiltonian
H on the state is easily obtained by noting that

[H, eλa
†
] =

(

ω0λa
† +

Jλ√
2ω0

)

eλa
†
. (A.9)

This leads to

H|ψ(t) >=
(

ω0λa
† +

Jλ√
2ω0

)

|ψ(t) > +
ω0

2
|ψ(t) > . (A.10)

It may easily be checked that the states |ψ(t) > and a†|ψ(t) > are linearly inde-
pendent. Equating the coefficients of a†|ψ(t) > in Eq(A.8) and (A.10) and using
Eq.(3.92) then leads to Eq.(3.98). Equating the coefficients of |ψ(t) > in Eq.(A.8)
and (A.10) gives an equation that determines N(t). Note that |N(t)| is determined
directly from the requirement that < ψ|ψ >= 1.

A.3 The normalization factor F (2n)

In computing the normalization F (2n) in (3.115) it is best to first continue to eu-
clidean signature and then perform a conformal transformation from R × S3 to R4.
The radial coordinate on the R4 is given by r = eτ . where τ is the euclidean time in
R× S3. Then the Heisenberg picture operator on R4 is given by

Ôl=0 =
∞
∑

m=−∞

Om

rm+4
(A.11)

The factor of rm+4 in the denominator reflects the fact that the operator Ôl=0 has
dimension 4. The conformally invariant vacuum satisfies

Om|0 > = 0 m ≥ −3

< 0|Om = 0 m ≤ 3 (A.12)

Then the radial time ordered 2 point function is given by

< Ôl=0(r)Ôl=0(r
′) >=

∞
∑

m=4

−4
∑

n=−∞

< 0|OmOn|0 >
rm+4(r′)n+4

(A.13)
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The 2 point function only involves the central term in the operator algebra. This
means we can write

Om = NF (m)Am (m > 0)

O−m = NF ⋆(m)A†
m (m > 0) (A.14)

where the operators Am, A
† satisfies an operator algebra and F (m) is a normalization

[Am, An] = [A†
m, A

†
n] = 0 [Am, A

†
n] = δmn (A.15)

Note that because of (A.13) only terms for n ≥ 4 contribute to the sum. This leads
to the result

< Ôl=0(r)Ôl=0(r
′) >=

N2

r8

∞
∑

m=4

|F (m)|2
(

r′

r

)m−4

(A.16)

On the other hand since the dimension of the operator ÔΦ(r,Ω3) is 4 we know the 2
point function on R4. This is given by

< Ô(r,Ω3)Ô(r′,Ω′
3) >=

AN2

|~r − ~r′|8 (A.17)

where A is a order one numerical constant. Here ~r = (r,Ω) etc., is the location of the
operator on R4. Integrating over Ω3,Ω

′
3 we get

∫

dΩ3

∫

dΩ′
3 < Ô(r,Ω3)Ô(r′,Ω′

3) >= AN2(8π3)

∫ π

0

sin2 θ dθ

(r2 + (r′)2 − 2rr′ cos θ)4

(A.18)
The integral can be performed. The result is, for r > r′

∫

dΩ3

∫

dΩ′
3 < Ô(r,Ω3)Ô(r′,Ω′

3) >= N24Aπ
4

r8

(

r′

r

)2
+ 1

(1−
(

r′

r

)2
)5

(A.19)

Using the power series expansion

1 + x

(1− x)5
=

∞
∑

m=0

1

12
(m+ 1)(m+ 2)2(m+ 3)xm (A.20)

we finally get

∫

dΩ3

∫

dΩ′
3 < Ô(r,Ω3)Ô(r′,Ω′

3) >= N2Aπ
4

3

1

r8

∞
∑

m=0

(m+1)(m+2)2(m+3)

(

r′

r

)2m

(A.21)
The result clearly shows that only operators with even mode numbers are present in
the expansion (A.11). Comparing (A.21) and (A.16) we get

F (2m+ 1) = 0 |F (2m)|2 = Aπ4

3
m2(m2 − 1) (A.22)

which is the result in equation (3.115).
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Chapter B Appendices of Chapter5

B.1 Leading Corrections of the Toy-Model

Equations of motions

With Eq(5.29), the leading order Einstein equations for h(r, v), a(r, v) and k(r, v)
become

Wrr = −2h′(r, v)

r
− 1

2
(∂vφ0)

2

(

r20 − r2

r2U0(r)

)2

= 0 (B.1)

Wrv =
1

2r4
(

−12r4h(r, v)− 2r(r4 + rǫ0 − ρ20)h
′(r, v) (B.2)

− 2rk′(r, v) + 4r2ρ0a
′(r, v) + 2k(r, v) + r2k′′(r, v)

)

− 1

2
(∂vφ0)

2

(

r20 − r2

r2U0(r)

)

= 0

Wvv = −U0(r)

2r4
(

−12r4h(r, v)− 2r(r4 + rǫ0 − ρ20)h
′(r, v) (B.3)

− 2rk′(r, v) + 4r2ρ0a
′(r, v) + 2k(r, v) + r2k′′(r, v)

)

− 1

2
(∂vφ0)

2 +
1

r3
(2rr30Ė(v)− 2ρ0r

2
0Ċ(v)) = 0

Wii = − 1

r2
(6r4h(r, v) + k(r, v) + r3U0(r)h

′(r, v) (B.4)

− rk′(r, v) + 2r2ρ0a
′(r, v))) = 0

,where Wii ≡ Wxx = Wyy and dots and primes indicate derivatives with respect to v
and r respectively. The gauge field equations are

Y v = − 1

r2
(

ρ0h
′(r, v) + 2ra′(r, v) + r2a′′(r, v)

)

= 0, (B.5)

Y r =
r20
r2
Ċ(v) = 0. (B.6)

The other components of the Einstein equations and gauge field equations are zero.
These are the leading order equations in the naive derivative expansion. This means
that v-derivatives on h(r, v), a(r, v) and k(r, v) are ignored.

Eq(B.6) shows that there is no dynamics for the charge density. By the initial
conditions mentioned in Sec.5.1, C(v) = 0. A particular combination of Einstein
equations, WrvU0(r, v) +Wvv = 0, gives

Ė(v) =
1

4r0
(∂vφ(0)(v))

2 (B.7)

This equation indicates that E(v) ∼ O(ε). This justifies that E(v) in the metric
factor U(r, v) is suppressed by ε to produce the second order terms in Eq(5.19). We
solve Eq(B.1), Eq(B.5), Eq(B.4) to get Eq(5.31), Eq(5.33),Eq(5.32) respectively. The
other Einstein equations are satisfied with the solutions.
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B.2 Outer Solution in Extremal Limit

Dilaton solution

We start with Eq(5.20). In the case of extremality, Eq(5.20) can have a form of

φ(u, v) = φ(0)(v) +
∂vφ(0)(v)

6(u− 1)r0
(1− Λ1(v))−

∂vφ(0)(v)

9r0
ln(u− 1) (2 + Λ1(v)) (B.8)

+
∂vφ(0)(v)

36r0

(

(Λ1(v)− 7)
√
2tan−1(

u+ 1√
2

) + 2(Λ1(v) + 2)ln(u2 + 2u+ 3)

)

+ Λ2(v).

As u → ∞, a boundary condition that we demand for the dialton is φ(u, v)|u=∞ =
φ(0)(v). This boundary condition yields Λ2(v) = − iπφ0

36
√
2r0

(Λ1(v) − 7). With this,

φ(r, v) has an asymptotic behavior of

φ(u, v) = φ(0)(v) +
∂vφ(0)(v)

6(u− 1)r0
(1− Λ1(v))−

∂vφ(0)(v)

9r0
ln(u− 1) (2 + Λ1(v)) (B.9)

+
∂vφ(0)(v)

36r0

(

(Λ1(v)− 7)
√
2tan−1(

√
2) + 2(Λ1(v) + 2)ln(6) +

π√
2
(7− Λ1(v))

)

+ O(u− 1),

as u→ 1, near the black brane horizon.

Metric and Gauge Field Solution

As we discussed in Sec.5.2, the regularity condition of the dilaton field forces Λ1(v) =
1. In this subsection, we follow this. For the extremal limit, we set ǫ0 = 2r30 and
ρ0 =

√
3r20. Eq(5.31) becomes

h(u, v) = h̄1(v)−
1

864

(∂vφ(0)(v))
2

r20

(

6(u2 − 10u− 15)

(u− 1)(u2 + 2u+ 3)
− 13

√
2tan−1(

1 + u√
2

)(B.10)

+ 16ln(u− 1)− 8ln(u2 + 2u+ 3)
)

.

As u→ 1, this can be expanded as

h(u, v) = h̄1(v)−
1

4

(∂vφ(0)(v))
2

r20

(

− 1

9(u− 1)
+

2

27
ln(u− 1) (B.11)

+
1

216
(8− 13

√
2tan−1(

√
2)− 8ln(6)) +O(u− 1)

)

.
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The near horizon expansions of Eq(5.33) and Eq(5.32) are also given by

a(u, v) =

√
3

864

(∂vφ(0)(v))
2

r0

(

−8(
2

u
+ 1)ln(u− 1)− 30

u
+
√
2(
13

u
− 7)tan−1(

1 + u√
2

)(B.12)

+ 4(
2

u
+ 1)ln(u2 + 2u+ 3)

)

+ ā2(v)−
ā1(v)−

√
3r20h̄1(v)

r0u
,

k(u, v) = −1

4
r20(∂vφ(0)(v))

2

(

4

27
(u− 1)2(u2 + 2u+ 3)ln(u− 1)− u2 (B.13)

−
√
2tan−1(

u+ 1√
2

)

(

−u+ 13

108
(u− 1)2(u2 + 2u+ 3)

)

− 2(u− 1)2(u2 + 2u+ 3)

27
ln(u2 + 2u+ 3) +

1

18
(u2 − 10u− 15)(u− 1)

)

+ r0uk̄1(v)− 2
√
3r20ā1(v) + 2r40(u− 1)2(u2 + 2u+ 3)h̄1(v),

The integration constants,h̄1(v), ā1(v), ā2(v) and k̄1(v) are determined by the bound-
ary condition (5.34). As u→ ∞, the asymptotic expansion of k(u, v) can have terms
of O(u4). These are non-normalizable modes which give deformation of the boundary

metric. The terms are removed by imposing h̄1(v) = − 13
√
2π

1728r20
(∂vφ(0)(v))

2. Near AdS4

boundary, a(u, v) presents O(1) and O( 1
u
) terms. The former corrects the chemical

potential and the later does the charge density. To eliminate these terms, ā1(v) and

ā2(v) should be properly chosen as ā1(v) = 0 and ā2(v) =
7
√
6π

1728r0
(∂vφ(0)(v))

2.
Near the black brane horizon, the behavior of the leading back reactions are given

by

h(u, v) = −1

4

(∂vφ(0)(v))
2

r20

(

− 1

9(u− 1)
+

2

27
ln(u− 1) (B.14)

+
1

216
(8 +

13
√
2π

2
− 13

√
2tan−1(

√
2)− 8ln(6)) +O(u− 1)

)

,

a(u, v) =

√
3

864

(∂vφ(0)(v))
2

r0

(

−8ln(u− 1)(3− 2(u− 1) +O(u− 1)2)− 30 (B.15)

+ 6
√
2tan−1(

√
2)− 3

√
2π + 12ln(6)

+

(

40− 13
√
2tan−1(

√
2)− 8ln(6) +

13
√
2π

2

)

(u− 1) +O(u− 1)2

)

,

k(u, v) = −1

4
r20(∂vφ(0)(v))

2

(

8

9
(u− 1)2ln(u− 1)− 1 +

√
2tan−1(

√
2) (B.16)

+ (
√
2tan−1(

√
2)− 3)(u− 1) +

(

13
√
2π

36
− 11

9
− 4ln(6)

9

− 13tan−1(
√
2)

9
√
2

)

(u− 1)2

)

+ r0k̄1(v) + r0k̄1(v)(u− 1) +O(u− 1)3.
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B.3 Equations in Extremal Backgrounds with v-derivative Retained

In this section, we develop the Einstein equations(5.5) and the gauge field equa-
tions(5.6) without ignoring v-derivatives. We start with Eq(5.29). The only assump-
tion in this section is that the equations are linear in h(u, v), a(u, v) and k(u, v). The
Einstein equations are

r20Wrr = −2h′(u, v)

u
− 1

2
∂uφ(u, v)∂uφ(u, v) = 0, (B.17)

Wrv =
1

2u4

(

−12u4h(u, v) + 2u(3− u4 − 2u)h′(u, v) +
2u4

r0
ḣ′(u, v) (B.18)

+
4
√
3u2

r0
a′(u, v) +

1

r40

(

2k(u, v)− 2uk′(u, v) + u2k′′(u, v)
)

,

− 1

2r0
∂vφ(u, v)∂uφ(u, v) = 0,

W̄ ≡ Wvv +

(

r4 − 4rr30 + 3r40
r2

)

Wrv (B.19)

=
r0
u3

(

−2
√
3Ċ(v) + 2uĖ(v)− 2(u4 − 4u+ 3)ḣ(u, v) +

k̇(u, v)

r40

)

− 1

2
∂vφ(u, v)∂vφ(u, v)− r0

(

u4 − 4u+ 3

2u2

)

∂uφ(u, v)∂vφ(u, v) = 0,

r2

r20
Wii = −6u4h(u, v)− u(u4 − 4u+ 3)h′(u, v)− 2

√
3u2

r0
a′(u, v) (B.20)

+
1

r40
(uk′(u, v)− k(u, v)) = 0,

where u = r
r0
, the rescaled radial coordinate again. The primes and dots denote

derivatives with respect to u and v respectively. Gauge field equations are

r2

r20
Y r = Ċ(v) +

√
3ḣ(u, v) +

u2

r0
ȧ′(u, v) = 0, (B.21)

r2Y v = −2ua′(u, v)−
√
3r0h

′(u, v)− u2a′′(u, v) = 0. (B.22)

As discussed in the beginning of Sec.5.2, for introducing the scaling(5.42) the
equations in position space of v should be transformed to the momentum space. It is
worth showing how one gets an expression Eq(B.17) in momentum space, for example.
We define the Fourier transform of h(u, v) by

h(u, v) =

∫ ∞

−∞
hω(u)e

iωvdω. (B.23)

Substituting of Eq(5.59) and Eq(B.23) into Eq(B.17) and acting an integral operator
1
2π

∫∞
−∞ e−iνvdv on it, we get

r20Wrr = −2h′ν(u)

u
− 1

2

∫ ∞

−∞
dω∂uφν−ω(u)∂uφω(u) = 0. (B.24)
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To deal with other equations, we define Fourier transforms of a(u, v) and k(u, v) as
that of h(u, v). For E(v) and C(v),

E(v) =

∫ ∞

−∞
eiωvEωdω, (B.25)

C(v) =

∫ ∞

−∞
eiωvCωdω.

With these, the other Einstein equations in momentum space are given by

Wrv =
1

2u4

(

−12u4hν(u) + 2u(3− u4 − 2u)h′ν(u) + iν
2u4

r0
h′ν(u) (B.26)

+
4
√
3u2

r0
a′ν(u) +

1

r40

(

2kν(u)− 2uk′ν(u) + u2k′′ν(u)
)

− 1

2r0

∫ ∞

−∞
dωi(ν − ω)φν−ω(u)∂uφω(u) = 0,

W̄ ≡ Wvv +

(

r4 − 4rr30 + 3r40
r2

)

Wrv (B.27)

=
iνr0
u3

(

−2
√
3Cν + 2uEν − 2(u4 − 4u+ 3)hν(u) +

kν(u)

r40

)

− r0

(

u4 − 4u+ 3

2u2

)
∫ ∞

−∞
dωi(ν − ω)φν−ω(u)∂uφω(u)

+
1

2

∫ ∞

−∞
dω(ν − ω)ωφν−ω(u)φω(u) = 0,

r2

r20
Wii = −6u4hν(u)− u(u4 − 4u+ 3)h′ν(u)−

2
√
3u2

r0
a′ν(u) (B.28)

+
1

r40
(uk′ν(u)− kν(u)) = 0.

The gauge field equations become

r2

r20
Y r = iν

(

Cν +
√
3hν(u) +

u2

r0
a′ν(u)

)

= 0, (B.29)

r2Y v = −2ua′ν(u)−
√
3r0h

′
ν(u)− u2a′′ν(u) = 0. (B.30)

B.4 Counting Power of ε

In this section, we argue the parametric order of the inner region solutions in ε. The
basic idea is that we transfrom the inner region solutions to the position space and
check their powers of ε. For a simple example, we discuss the dilaton solution. We
design the zeroth order dilaton solution in position space as in Eq(5.11). By Fourier
transformation, we obtain its expression in frequency space as

φ(0)
ω =

1

2π

∫ ∞

−∞
e−iωvf(

εv

r0
)dv. (B.31)
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Scaling of the integration variable v as τ = εv takes this expression to

φ(0)
ω =

1

2πε

∫ ∞

−∞
e−i

ω
ε
τf(

τ

r0
)dτ ≡ 1

ε
g(
ω

ε
), (B.32)

where g(ω
ε
) becomes an O(1) function. By observing Eq(B.32) and dilaton solution

in the inner region(5.45), one can recognize that each subleading correction to the
dialton field in momentum space can be written as

φ
(i)
(in)ω ≡ 1

ε
g(
ω

ε
)
(

h(i)(ξ) + a(i)(ξ)ln(ν)
)

, (B.33)

where φ
(i)
(in)ω denotes ith order correction in small frequency to the dilaton field.

h(i)(ξ) and a(i)(ξ) are functions of ξ only. It turns out that the terms multiplying
a(i)(ξ) produce terms which are proportional to εiln(ε) in the position space. It is
obscure to count power of ε of these terms. In this discussion, we exclude these. The
perturbation expansion of the dilaton solution becomes a form of

φ(in)ω =
1

ε
g(
ω

ε
)
(

1 + νh(1)(ξ) + ν2h(2)(ξ)...
)

, (B.34)

up to the logarithmic terms. Fourier transformation defined in Eq(5.59) takes this
expression to position space, which is given by

φ(u, v) =

∫ ∞

−∞
eiωvdω

1

ε
g(
ω

ε
)
(

1 + ωh(1)(ξ) + ω2h(2)(ξ)...
)

. (B.35)

Again we rescale the integration variable ω as ω = εω̄, then the expression becomes

φ(u, v) =

∫ ∞

−∞
eiεω̄vdω̄g(ω̄)

(

1 + εω̄h(1)(ξ) + ε2ω̄2h(2)(ξ)...
)

(B.36)

≡ F (0)(εv) + (−i)εF (0)′(εv)h(1)(ξ) + (−i)2ε2F (0)′′(εv)h(2)(ξ),

where F (0)(εv) =
∫∞
−∞ eiεω̄vdω̄g(ω̄) and the prime indicates derivative with respect to

its argument. The property of F (0)(εv) as noted in Eq (5.12) shows that F (0)(εv) and
its derivatives with its argument are O(1) functions. Compare Eq(B.34) to Eq(B.36).
This shows that counting power of ν in the momentum space is the same as the
counting power of ε in the position space.

We apply this argument to the back reactions in the inner region. For the simplest
case, let us check h

(1)
(in)ν(ξ) with Eq(5.95). This contains derivative of the dilaton field,

which can be expressed as φ
(1)′
(in)ω(

ω
ν
ξ) = 1

ε
f(ω

ε
)k(ω

ν
ξ). We switch Eq(5.95) to position

space with Fourier transformation as defined in Eq(B.23) and rescale integration
variables as in the discussion of the dilaton. This time, we scale ω as well as ν in
Eq(5.95). Then, we obtain following expression:

h
(1)
(in)(v, ξ) = ε

∫ ξ ξ′2dξ′

4ν3

∫ ∞

−∞
eiν̄εvdν̄dω̄ω̄2(ν̄ − ω̄)2f(ω̄)f(ν̄ − ω̄)g(

ω̄

ν̄
ξ)g(

ν̄ − ω̄

ν̄
ξ)(B.37)

≡ εG(εv),
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where G(εv) is an O(1) function. Consequently, it turns out that h
(1)
(in)(v, ξ) is in the

first order in ε in position space. Comparing Eq(B.37) to Eq(5.95), one can recognize
that the correct power counting of the small frequency in the momentum space is to
count not only ν but also ω and ν −ω in the integrand of Eq(5.95). By the the same
argument, we get

a
(1)
(in)(v, ξ) ∼ k

(1)
(in)(v, ξ) ∼ O(ε), (B.38)

h
(2)
(in)(v, ξ) ∼ a

(2)
(in)(v, ξ) ∼ k

(2)
(in)(v, ξ) ∼ O(ε2),

a
(3)
(in)(v, ξ) ∼ k

(3)
(in)(v, ξ) ∼ O(ε3) and k

(4)
(in)(v, ξ) ∼ O(ε4).
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