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Chapter 1 Introduction

Chapter 1 contains an overview of results that are found in this dissertation as well

as a brief introduction to many of the mathematical ideas that will be contained

throughout. References for these topics will be given for readers who are interested

in a delving more deeply into these topics.

In Chapter 2 we extend the classical excedance statistic of the symmetric group

to the affine symmetric group S̃n and determine the generating function of its dis-

tribution. The proof involves enumerating lattice points in a skew version of the

root polytope of type A. We also show that the left coset representatives of the

quotient S̃n/Sn correspond to increasing juggling sequences and determine their

Poincaré series.

A formal study of the excedance set statistic began with a paper by Ehrenborg

and Steingŕımsson [39]. Based on their work, Chapter 3 introduces the excedance

algebra. We will provide a combinatorial interpretation for expansions in this algebra,

and derive operators that make computing these expansions more efficient.

Motivated by the classical Frobenius problem, Chapter 4 introduces the Frobe-

nius poset on the integers Z, that is, for a sub-semigroup Λ of the non-negative

integers (N,+), we define the order by n ≤Λ m if m − n ∈ Λ. When Λ is gen-

erated by two relatively prime integers a and b, we show that the order complex

of an interval in the Frobenius poset is either contractible or homotopy equivalent

to a sphere. We also show that when Λ is generated by the arithmetic sequence

{a, a + d, a + 2d, . . . , a + (a − 1)d}, the order complex is homotopy equivalent to a

wedge of spheres.

In Chapter 5 we provide a method for enumerating Q-factorial posets. This an-

swers a question and generalizes a result from work by Claesson and Linusson in [24].

The proof uses a q-enumeration that involves working with the polynomial part of

certain Puiseux polynomials.
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1.1 Dissertation results

Let Sn denote the symmetric group, that is, the group of permutations on the ele-

ments {1, 2, . . . , n}. A permutation statistic is a function from the symmetric group

to the non-negative integers. Some of the most well-known permutations statistics are

inversions, descents, excedances, and the major index. Given a permutation π ∈ Sn,

we define the inversion set, descent set, and excedance set as follows:

Inv(π) = {(i, j) ∈ [n]× [n] : i < j, π(i) > π(j)}, (1.1)

Des(π) = {i ∈ [n− 1] : π(i) > π(i+ 1)}, (1.2)

Exc(π) = {i ∈ [n] : π(i) > i}, (1.3)

where [n] = {1, 2, . . . , n}. The corresponding permutation statistics can then be

written as inv(π) = | Inv(π)|, des(π) = |Des(π)|, and exc(π) = |Exc(π)|, while the

major index is defined by

maj(π) =
∑

i∈Des(π)

i. (1.4)

Two classical results about permutation statistics are that excedances and descents,

as well as inversions and the major index, are equidistributed. In particular,

∑
π∈Sn

qexc(π) =
∑
π∈Sn

qdes(π) =
n−1∑
k=0

A(n, k + 1)qk,

where A(n, k) represents the Eulerian numbers. The Eulerian number A(n, k) is

simply defined as the number of permutations from Sn with k−1 descents. However,

they can also be defined in the following ways:

A(n, k + 1) = (k + 1)A(n− 1, k + 1) + (n− k)A(n− 1, k),

where A(n, 0) is defined as δn,0 and A(n, k) = 0 for k ≥ n+ 1 and

xn =
n∑
k=0

A(n, k)

(
x+ n− k

n

)
,

see [16, Chapter 1]. The symmetric group is a special case of a finite Weyl group

of type A. Weyl groups are a family of Coxeter groups motivated by root systems,

2



see Section 1.4. Every finite Weyl group has an associated affine Weyl group that is

infinite and obtained by adding a single generator to the group. Lusztig [57] provided

a permutation description of the affine group associated with the symmetric group,

see Section 2.1. Combinatorial descriptions of other affine Weyl groups can be found

in [42].

The wealth of combinatorics found in the symmetric group make it very natural

to study the affine symmetric group, S̃n. Björner and Brenti [10] extended the idea

of inversion to the affine symmetric group and found the generating function of its

distribution. By virtue of the fact that Shi [65] showed the inversion statistic of an

affine permutation is the same as its Coxeter length, this generating function is also

the Poincaré series.

Theorem 1.1.1. The Poincaré series for the affine Coxeter group S̃n is given by∑
π∈S̃n

qinv(π) =
∑
π∈S̃n

q`(π) =
1− qn

(1− q)n
.

This Poincaré series is a specific example of Theorem 1.4.2 due to Bott [56]. A

combinatorial proof of Theorem 1.1.1 using the theory of juggling patterns was first

given by Ehrenborg and Readdy in [38]. Björner and Brenti [10] also provided a com-

binatorial proof of this generating function identity by finding a bijection between S̃n

and Nn − Pn, that is, the collection of n-tuples with at least one zero.

In this dissertation, we first provide a different proof of this result using the

Ehrenborg-Readdy juggling technique applied to representatives of left cosets in the

quotient S̃n/Sn. We then extend the excedance statistic to the affine symmetric

group and find the generating function for its distribution (See Definition 2.3.1 and

Theorem 2.6.5).

Definition 1.1.2. Let π ∈ S̃n be an affine permutation. The excedance statistic is

given by

exc(π) =
n∑
i=1

∣∣∣∣⌈π(i)− i
n

⌉∣∣∣∣ .

3



Note that the symmetric group sits inside the affine symmetric group as a natural

subgroup. In fact, it is a maximal parabolic subgroup. It is straightforward to check

that Definition 1.1.2 agrees with the definition of excedance given in Equation (1.3)

when restricted to Sn. The following identity is proved in Chapter 2.

Theorem 1.1.3. The generating function for affine excedances is given by

∑
π∈S̃n

qexc(π) =
1

(1− q2)n−1

n−1∑
k=0

A(n, k + 1)
n−1−k∑
i=0

(
n− 1− k

i

)(
n− 1 + k

n− 1− i

)
q2i+k.

Observe that the Eulerian numbers appear in the generating function for the affine

case as well. The proof of this fact relies on enumerating lattice points in dilations of

a skew version of the root polytope.

In 2000 Ehrenborg and Steingŕımsson [39] studied the excedance set statistic of a

permutation. For every permutation π ∈ Sn they encoded the excedance information

into the excedance word w(π) = w1w2 . . . wn−1 where wi = b if i is an excedance of π

and wi = a if i is not an excedance of π. Given a word w of length n − 1, denote

by [w] the number of permutations of Sn whose excedance word is w. They proved

the following four relations:

[1] = 1,

[a · u] = [u · b] = [u],

[v · ba · w] = [v · ab · w] + [v · a · w] + [v · b · w].

They also provided an inclusion-exclusion formula for [w]. In an effort to find more

explicit formulas, Clark and Ehrenborg [25] proved the following results.

Theorem 1.1.4. For non-negative integers m and n, we have

[bnam] =
∑
i≥0

S(n+ 1, i+ 1) · S(m+ 1, i+ 1) · i! · (i+ 1)!,

and

[bnabam] =
∑
i≥0

S(n+ 2, i+ 2) · S(m+ 2, i+ 2) · (i+ 1) · (i+ 1)!2,

where S denotes the Stirling number of the second kind.

4



The expressions in Theorem 1.1.4 are particularly attractive because they are sign

free, that is, each term is non-negative.

In this dissertation, based on the relations proved by Ehrenborg and Steingŕımsson

about excedance sets and excedance words, we define the excedance algebra to be

the non-commutative algebra k〈a,b〉 quotiented out with the ideal generated by the

element ba−ab−a−b. A Ferrers shape can be generated from a given ab-monomial,

leading to the following result (see Theorem 3.2.1).

Theorem 1.1.5. Let u be an ab-monomial containing m copies of a and n copies

of b. Consider the expansion

u =
∑
i,j

ci,j · am−i · bn−j.

Then the coefficient ci,j enumerates the number of ways to place i copies of ← and j

copies of ↑ in the Ferrers shape F (u) such that

(a) All the boxes to the west of an ← must be empty.

(b) All the boxes to the north of an ↑ must be empty.

Theorem 1.1.5 appears without proof in [51]. A proof using permutation tableaux is

given by Corteel and Williams [30], and the bijection between permutations tableaux

and alternative tableaux can be found in [73]. We will provide formulas for specific

families of the coefficients ci,j.

We also define a linear map L from the excedance algebra to the polynomial

ring k[x, y] such that, given an ab-monomial u, L(u)|x=y=1 is the number of permu-

tations whose excedance word is u. We then show that the difference operator ∆

and the shift operator E can be used to compute L(u) in the following way (see

Theorem 3.3.4).

Theorem 1.1.6. Let u = u1u2 . . . uk be an ab-monomial. Let Ui and Vi be the

operators

Ui =

 x if ui = a,

yE1
x + x∆x if ui = b,

5



and

Vi =

xE1
y + y∆y if ui = a,

y if ui = b.

Then L(u) is evaluated by applying the operators U1U2 · · ·Uk(1) = VkVk−1 · · ·V1(1).

The second part of this dissertation deals with topological combinatorics. Many

times, combinatorial objects give rise naturally to topological spaces. These spaces

tend to have a nice topology. In particular, many are homotopy equivalent to wedges

of spheres. Examples include the independence complex of trees [36], the order com-

plex of semi-modular lattices [13], the complex of disconnected graphs [72], and the

neighborhood complex of the stable Kneser graph [12]. Forman [45] asked if there

was some explanation for this behavior. In this dissertation, we will add to the list

of examples of topological spaces that are homotopy equivalent to wedges of spheres.

The classical Frobenius problem asks for the largest integer that cannot be written

as a non-negative integer combination of a collection of relatively prime positive

integers, the so-called Frobenius number. It has received a great deal of attention

over the years. Closed formulas for the Frobenius number exist when there are only

two generators, when the generators form an arithmetic sequence [64], and when the

generators form a geometric sequence [58]. See [5, Section 1.2] for a more in-depth

introduction to this problem.

To define the Frobenius poset P = (Z,≤Λ), we first let Λ be the semigroup gener-

ated by a collection of relatively prime positive integers. We say n ≤Λ m if m−n ∈ Λ.

We show that the order complex of intervals in the Frobenius poset is homotopy

equivalent to a wedge of spheres or contractible in two cases (see Theorems 4.4.1

and 4.5.1).

Theorem 1.1.7. Let the sub-semigroup Λ be generated by two relatively prime posi-

tive integers a and b with 1 < a < b. The order complex of the associated Frobenius

interval [0, n]Λ, for n ≥ 1, is homotopy equivalent to either a sphere or contractible,

6



according to

∆([0, n]Λ) '



S2n/ab−2 if n ≡ 0 mod a · b,

S2(n−a)/ab−1 if n ≡ a mod a · b,

S2(n−b)/ab−1 if n ≡ b mod a · b,

S2(n−a−b)/ab if n ≡ a+ b mod a · b,

point otherwise.

Theorem 1.1.8. Let Λ be the semigroup generated by the integers {a, a + d, a +

2d, . . . , a + (a − 1)d} where a and d are relatively prime. The order complex of the

associated Frobenius interval [0, n]Λ is homotopy equivalent to a wedge of spheres

where the ith Betti number satisfies∑
n≥0

β̃iq
n = qa+(i+1)(a+d) · [a]qd · [a− 1]i+1

qd
,

where [a]qd represents the qd-analogue, see Section 1.2.

For example, consider Λ generated by 3 and 4, that is, Λ = N − {1, 2, 5}. The

order complex of the interval [0, 15]Λ contains the 32 chains

{{3}, {4}, {6}, {7}, {8}, {9}, {11}, {12}, {3, 6}, {3, 7}, {3, 9}, {3, 11}, {3, 12},

{4, 7}, {4, 8}, {4, 11}, {4, 12}, {6, 9}, {6, 12}, {7, 11}, {8, 11}, {8, 12}, {9, 12},

{3, 6, 9}, {3, 6, 12}, {3, 7, 11}, {3, 9, 12}, {4, 7, 11}, {4, 8, 11}, {4, 8, 12},

{6, 9, 12}, {3, 6, 9, 12}}.

The geometric representation of this simplicial complex is given in Figure 1.1. Observe

that it is homotopy equivalent to a circle, S1, as predicted by Theorem 1.1.7.

These theorems are explicit examples in an area of mathematics where more gen-

eral theory has been explored. For example, in d dimensions we can let Λ be a

semigroup of Nd and define a partial order on Zd by µ ≤Λ λ if λ − µ ∈ Λ. Hersh

and Welker [49] give bounds on the vanishing homology groups of the order complex

of intervals from this order. Additionally, the semigroup algebra k[Λ] = span{xλ =
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Figure 1.1: The geometric representation of the order complex ∆([0, 15]Λ) when Λ is
generated by 3 and 4.

xλ11 · · ·x
λd
d : λ ∈ Λ} is related to the homology of the order complex of the inter-

vals of this order. See the work of Laudal and Sletsjøe [55] and Peeva, Reiner, and

Sturmfels [61].

Lastly, we have a purely enumerative result about Q-factorial posets. Given a

poset Q, a poset P is said to be Q-factorial if

1. i <P j implies i <Q j,

2. i <Q j <P k implies i <P k.

See Figure 1.2 an example. Claesson and Linusson [24] showed that if Q is an

n-chain, then there are n! Q-factorial posets. Given an arbitrary poset Q, we provide

a way to determine the number of Q-factorial posets. See Theorems 5.2.3 and 5.3.3.

1.2 Permutations, partitions, and rooks

A permutation is a bijection π : [n] −→ [n]. These bijections form a group under

composition called the symmetric group, denoted Sn. Throughout this dissertation,

we will denote permutations using one line notation π = π1π2 · · · πn where πi = π(i).

Define a board B to be a finite subset of Z2. A rook placement on the board B

is a finite subset C of the set B such that every two elements of C differ in both

coordinates. That is, if C is the set of rooks, each pair of rooks is non-attacking.
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Figure 1.2: Let Q be a chain of 4 elements. Then P1, (a), is a Q-factorial poset. P2,
(b), is not because 1 <Q 2 <P2 4 but 1 6<P2 4.

Let rk(B) be the number of ways to place k non-attacking rooks on the board B. It

is straightforward to see there is a bijection between permutations from Sn and rook

placements using n rooks on a square board of size n× n.

A partition of the set [n] is a collection of sets (called blocks) {B1, B2, . . . , Bk}

such that

• Bi 6= ∅,

• Bi ∩Bj = ∅ for i 6= j,

• [n] =
k⋃
i=1

Bi.

Partitions of [n] into k blocks are enumerated by the Stirling numbers of the second

kind, denoted S(n, k). These numbers follow the recursion

S(n, k) = S(n− 1, k − 1) + k · S(n− 1, k),

where S(0, 0) = 1 and S(n, 0) = S(0, k) = 0 for n, k ≥ 1.

A partition of the non-negative integer n is a sequence λ = (λ1, λ2, . . . , λk) where

λ1 ≥ λ2 ≥ · · ·λk ≥ 1 and n =
k∑
i=1

λi. A partition λ can be visualized as a Young

diagram or Ferrers board. This is a left-justified array of squares where there are λi

squares in row i. See Figure 1.3. Rook placements on Ferrers boards have been well

studied. The next theorem can be found in Stanley’s book [69, Corollary 2.4.2].

Theorem 1.2.1. Let B be the “triangular board” associated with the partition (n, n−

1, . . . , 2, 1). The rook number rk(B) is given by the Stirling number S(n+1, n+1−k).

9



Figure 1.3: The Young diagram for the partition (4, 3, 1, 1, 1) of the integer 10.

For positive integers n and d, the qd-analogue of n is defined as follows:

[n]qd = 1 + qd + (qd)2 + · · ·+ (qd)n−1.

If it is clear from context that we are using q-analogues and d = 1, this will be written

simply as [n]. Let [n]! = [n] · [n − 1] · · · [1], and define the q-binomial coefficient, or

Gaussian polynomial, as [
n

k

]
=

[n]!

[k]! · [n− k]!
.

These q-analogues are powerful counting tools. For example, let p(j, k, n) be the

number of partitions of n using k parts where each part is less than or equal to j.

Then we have the identity ∑
n≥0

p(j, k, n) · qn =

[
j + k

j

]
,

see [69, Proposition 1.3.19]. Also, consider the finite field GF(q) where q is a prime

power, then
[
n
k

]
gives the number of k-dimensional subspaces of an n-dimensional

vector space over GF(q).

Using these, we can clarify the earlier statement that inversions and the major

index, recall Equations (1.2) and (1.4), are equidistributed. Thus, we have∑
π∈Sn

qinv(π) =
∑
π∈Sn

qmaj(π) = [n]! (1.5)

Additionally, by setting q = 1 in the q-analogue [n], we get n. Therefore, q-

analogues are useful in refining enumeration. For example,
(
n
k

)
counts the number

of k element subsets of n elements, while
[
n
k

]
is the generating function for the number

10



of k element subsets of n elements weighted by the sum of their elements, see [16,

Theorem 2.25]. That is, we have[
n

k

]
=

∑
1≤i1<i2<···<ik≤n

qi1+i2+···+ik−1−2−···−k.

1.3 Posets

A partially ordered set, or poset, P is a set of elements along with an order relation

denoted ≤P (or ≤ if P is understood) that satisfies reflexivity, antisymmetry, and

transitivity. We denote by 0̂ and 1̂ the unique minimal and maximal elements of

the poset, respectively, if they exist. A chain of length n in the poset is any set

of n+ 1 comparable elements {x0 < x1 < · · · < xn} from P . We say that y covers x

in P , denoted x ≺ y, if there is no z ∈ P such that x < z < y. An interval [x, y]

in the poset P is the collection of elements z ∈ P such that x ≤ z ≤ y. A chain

{x0 < x1 < · · · < xn} is said to be maximal (or saturated) in the interval [x, y] if

x = x0 ≺ x1 ≺ · · · ≺ xn = y. An upper bound of the two elements x and y is an

element z ∈ P such that z ≥ x and z ≥ y. The element z is the least upper bound of x

and y if for all upper bounds w of x and y, we have z ≤ w. The least upper bound

of x and y is denoted x ∨ y and is read “x join y.” The greatest lower bound of two

elements can be dually defined, and is denoted as x∧ y, or “x meet y.” A lattice is a

poset for which every pair of elements has a least upper bound and a greatest lower

bound. The Hasse diagram of a poset is a graph whose vertices are the elements of

the poset and whose edges represent cover relations. See Figure 1.4 (a).

A poset is said to be (2+2)-free if it does not contain an induced sub-poset that is

isomorphic to the union of two disjoint 2-chains. Fishburn [43] showed that a poset is

(2+2)-free when it is isomorphic to an interval order. Bogart [15] also proved a poset

is (2 + 2)-free if and only if the set of strict downsets of P can be linearly ordered by

inclusion. See Section 5.1. The following result is due to Bousquet-Mélou, Claesson,

Dukes, and Kitaev [17].

Theorem 1.3.1 (Bousquet-Mélou, et. al). The generating function of unlabel (2+2)-
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free posets is

P (t) =
∑
n≥0

n∏
i=1

(1− (1− t)i).

Similarly defined are the (3 + 1)-free posets. Interestingly, it is well-known that

the number of posets that are both (2+2)-free and (3+1)-free is given by the Catalan

numbers Cn = 1
n+1

(
2n
n

)
, see [70, Exercise 6.19 ddd].

The Möbius function µ on intervals of a poset has many important uses in com-

binatorics. For x < y, it is defined recursively on the interval [x, y] with

µ(x, y) = −
∑
x≤z<y

µ(x, z),

and the base case µ(x, x) = 1. When applied to the divisor lattice, Dn, we see this

is a generalization of the Möbius function from number theory. The Möbius function

also, through the Möbius inversion theorem, generalizes the Principle of Inclusion-

Exclusion, see the second paragraph of [69, Chapter 3].

Among other topics, this dissertation deals with poset topology. As such, we

need a way to obtain a topological space from a given poset. This space will be

a simplicial complex. A simplicial complex ∆ on a vertex set V is a collection of

subsets of V that is closed under containment, that is, if S, T ⊆ V , S ⊆ T ⊆ V ,

and T ∈ ∆, then S ∈ ∆. The elements of ∆ are called faces of the simplicial

complex. Maximal faces are called facets. The order complex of a poset P with a

minimal and maximal element, denoted ∆(P ), is a simplicial complex where the faces

of dimension k are given by chains of length k in the poset P −{0̂, 1̂}. See Figure 1.4

for the Boolean algebra on three elements and its order complex. We remove the

minimal and maximal element because, otherwise, the order complex will always be

contractible.

One important tool in the study of the topology of a simplicial complex ∆ is the

Euler characteristic, χ(∆). It is defined as the alternating sum f0−f1 +f2−· · · of the

number of i-dimensional faces of the complex. It is sometimes convenient to use the

reduced Euler characteristic χ̃(∆). This comes from the alternating sum of the faces

of the complex including the empty face. That is, the reduced Euler characteristic is

12



Figure 1.4: The Hasse diagram of the Boolean algebra on three elements and its order
complex.

given by

χ̃(∆) = −f−1 + f0 − f1 + f2 − · · · = χ(∆)− 1.

Therefore, if ci denotes the chains of length i in the order complex ∆(P ), we have

χ̃(∆(P )) = c0 − c1 + c2 − · · · = µ(P ),

where the second equality is a classic theorem due to Philip Hall [47].

Another important poset is the face poset of a simplicial complex ∆, denoted F(∆).

Its vertex set is the set of faces of the complex with order defined by inclusion. Note

that order complexes and face posets are related. Given a simplicial complex Ψ, the

order complex of the face poset of Ψ, ∆(F(Ψ)), produces the barycentric subdivision

of the original complex Ψ.

The theory of posets covers a great deal of topics. For the early work in poset and

lattice theory, see the work of Birkhoff [8]. For a contemporary treatment of posets,

including theory related to the Möbius function and additional references, see [69,

Chapter 3].
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Figure 1.5: The Coxeter graph of the symmetric group Sn.
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Figure 1.6: The Coxeter graph of the affine symmetric group S̃n.

1.4 Coxeter groups

A group W is a Coxeter group if it has a set of generators S whose only relations

are of the form (ss′)m(s,s′) = 1 for all s, s′ ∈ S where m(s, s′) is a (possibly infinite)

positive integer and m(s, s) = 1. The group along with the generating set is known

as the Coxeter system, (W,S).

A Coxeter group is frequently represented by its Coxeter graph (or Dynkin dia-

gram) whose vertices are the elements of the generating set S and whose edges are

the pairs {s, s′} such that m(s, s′) ≥ 3. If m(s, s′) ≥ 4 or m(s, s′) = ∞, the edge

in the graph is labeled by m(s, s′). A Coxeter system is said to be irreducible if the

Coxeter graph is connected.

The standard example of a Coxeter group is the Coxeter group of type An−1. This

is isomorphic to the symmetric group Sn. Its generating set is S = {s1, s2, . . . , sn−1}

where si is the adjacent transposition (i, i+1). For example, the permutation 2314 is

obtained by s2s1(1234). We see that sisj = sjsi for |i− j| ≥ 2. That is, m(si, sj) = 2

for |i − j| ≥ 2. However, we see that m(i, i + 1) = 3. It remains to show that there

are no relations among the generators other than the Coxeter relations. The Coxeter

graph of Sn is given in Figure 1.5.

The length of an element w in a Coxeter group, denoted `(w), is the minimum

number of generators required to express w as a product of generators. The Poincaré

series (or polynomial if W is finite) of a Coxeter group is the length generating

function, that is, W (q) =
∑
w∈W

q`(w). The following theorem, found in [11, Chapter 7],
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gives a formula for the Poincaré series of finite Coxeter groups.

Theorem 1.4.1. Let (W,S) be a finite irreducible Coxeter system, and let n = |S|.

Then there exists positive integers e1, e2, . . . , en, called the exponents of (W,S), such

that the Poincaré series W (q) is given by the product

W (q) =
n∏
i=1

[ei + 1]q.

For the symmetric group Sn, the exponents are 1, 2, . . . , n− 1. Therefore, since the

inversion statistic on the symmetric group is equal to the length, see [11, Proposi-

tion 1.5.2], Theorem 1.4.1 implies Equation (1.5).

Every finite Coxeter group can be viewed as a reflection group, that is, a group

generated by reflections in certain hyperplanes in Euclidean space. For the symmetric

group, these hyperplanes are xi = xi+1 for 1 ≤ i ≤ n−1 in Rn. A special class of these

reflection groups are the Weyl groups of root systems. These groups arise naturally

in the study of Lie algebras. A finite subset Φ of Rn−{0} is called a crystallographic

root system if it spans Rn and for all elements α and β of Φ, the following hold.

1. The only integral multiple of α in Φ are α and −α.

2. Φ is closed under reflection through the hyperplane orthogonal to α.

3. The reflection of β through the hyperplane orthogonal to α can be computed

by adding an integral multiple of α to β.

See [11, Chapter 1] and [50] for more about root systems. Given a root system Φ, the

Weyl group is the group generated by reflections about the hyperplanes orthogonal

to α for all α in Φ. As an example, consider Φ = {ei − ej : 1 ≤ i, j ≤ n, i 6= j}, the

root system of type An. Most of the finite, irreducible Coxeter groups are also Weyl

groups. The only exceptions are H3, H4, and I2(m). These root systems also give

rise to a family of polytopes. The root polytope of a root system Φ is given by the

convex hull of the elements of Φ. For an example of a root polytope, see Figure 2.3.
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To each of these finite Weyl groups is an associated affine Weyl group that results

from adding a reflection in an affine hyperplane. This makes the group infinite.

The hyperplane added to create the affine symmetric group, denoted Ãn or S̃n,

is x1 = xn+1. The Coxeter graph of the affine symmetric group is given in Figure 1.6.

The Poincaré series for affine Weyl groups have been completely determined by

Bott. The following theorem is due to him, and can be found in [11, 50, 56].

Theorem 1.4.2 (Bott). Let (W,S) be an affine Weyl group, and let e1, e2, . . . , en be

the exponents of the corresponding finite group. Then the Poincaré series of W is

given by the rational function

W (q) =
n∏
i=1

[ei + 1]q
1− qei

.

Using the exponents for the symmetric group Sn, 1, 2, . . . , n− 1, this implies Theo-

rem 1.1.1.

The affine symmetric group also has a more combinatorial description given by

Lusztig [57]. A bijection π : Z −→ Z is an element of S̃n if and only if it satisfies the

following two properties:

1. π(i+ n) = π(i) + n for all integers i.

2.
n∑
i=1

(π(i)− i) = 0.

Thus, we can think of these bijections as “infinite,” but periodic, permutations.

The symmetry group of regular polytopes is another example of a Coxeter group

and were studied long before the formal definition of Coxeter group was given. How-

ever, the formal study of Coxeter groups began with Coxeter [31] and Witt [75],

where the finite irreducible Coxeter groups were classified. Coxeter groups show up

in a many different contexts, including combinatorics, algebra, and geometry. For an

introduction to Coxeter and reflection groups in general, see [50]. The combinatorial

properties of Coxeter groups can be found in [11].
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Figure 1.7: The two ball juggling pattern a = (1,2,3).

1.5 Juggling

The mathematics of juggling began to receive serious attention around 1994 when

the paper by Buhler, Eisenbud, Graham, and Wright [18] was published. Since then,

it has generated quite a following. See, for example, [19, 23, 62, 66]. Most of the

terminology from this section can be found in [38].

Juggling patterns can be viewed geometrically, see Figure 1.7. The horizontal axis

represents time, and at each point one juggling ball is caught and thrown. Such a

juggling pattern is called simple. The arcs of this figure represent the paths of the

juggling balls. We can see that the balls thrown at time steps 0, 3, 6, etc. are thrown

high enough to land one time unit later. Likewise, the balls thrown at time steps 1,

4, 7, etc. and 2, 5, 8, etc. are thrown high enough to land two and three times units

later, respectively. This is a periodic pattern with period d = 3. Since there are two

infinite paths, this is a juggling pattern with two balls. This pattern is described by

the vector a = (1, 2, 3). That is, for 0 ≤ i ≤ d− 1, the ball thrown at time i mod d

is thrown so that it lands ai time units later.

Buhler, Eisenbud, Graham, and Wright [18] showed that the number of simple

juggling patterns of period d and at most n balls is equal to nd. Ehrenborg and

Readdy [38] generalized this result in two ways. They included juggling patterns
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where the juggler is allowed to catch and thrown more than one ball at any given

time step, called a multiplex, and provided a q-analogue of the result. We see that

the paths of the juggling balls in Figure 1.7 cross between time steps 1 and 2; this is

called a crossing. Another crossing occurs between time steps 2 and 3. Due to the

periodic nature of the juggling pattern, crossing occur later in the pattern as well.

However, in a single period of this pattern, there are two crossings. Using q to the

number of crossings as a weight, we get the following q-analogue result.

Theorem 1.5.1 (Ehrenborg, Readdy). The sum of the weight of simple juggling

sequences, with period d and at most n balls is equal to

[n]d = (1 + q + q2 + · · ·+ qn−1)d.

Using this result, they were then able to give an elementary computation of the

Poincaré series of the affine Weyl group Ãd−1.

1.6 Topological tools

Topology is the study of topological spaces and invariants of these spaces. The most

well-known invariants are the homology and cohomology groups of a space which

assign an algebraic structure to each space. Homology will be briefly defined later

in this section. However, there are spaces with the same homology groups that are

not homeomorphic, that is, homology can not distinguish between these spaces. This

motivates the notion of homotopy equivalence; it is a finer invariant than homology.

That is, if two topological spaces are homotopy equivalent then they have the same

homology groups, but the reverse is not true.

A standard example of a topological space is the n-dimensional sphere, Sn, which

is the collection of points of distance one from the origin in the (n + 1)-dimensional

Euclidean space. That is, the sphere is given by

Sn =

{
(x1, x2, . . . , xn+1) ∈ Rn+1 :

n+1∑
i=1

x2
i = 1

}
.

The wedge sum of two connected topological spaces X and Y is a way to create

a new space. Let x and y be elements of X and Y , respectively. Then the wedge
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Figure 1.8: The wedge of spheres S1 ∨ S1.

X ∨ Y is the space created by identifying the points x and y to the same point.

See Figure 1.8. In Chapter 4, we extend this notion so that the wedge sum with the

sphere S0 is defined. That is, given a space X, the wedge X∨S0 is obtained by adding

an isolated point to the space X. For more about wedge sums, see [48, Chapter 0].

A CW complex or cell complex is an example of a topological space. It is a

collection of cells, or topological spaces homeomorphic to a closed ball, along with

maps describing how the cells are glued together. The technical definition of a CW

complex along with many of their properties can be found in [48, Appendix].

Two continuous functions f, g : X → Y are homotopic if there exists a continuous

function h : X × [0, 1]→ Y such that for x ∈ X, h(x, 0) = f(x) and h(x, 1) = g(x).

Two topological spaces X and Y are homotopic if there exists two continuous func-

tions f : X → Y and g : Y → X such that f ◦ g is homotopic to the identity on Y

and g ◦ f is homotopic to the identity on X. Here, f and g are called homotopy

equivalences.

Slightly weaker than homotopy is the idea of homology. Given an n-dimensional

simplicial complex ∆, define Ak as the Abelian group generated by the k-dimensional

faces of ∆. Let ∂k : Ak → Ak−1 be the map that sends a face to its boundary, that is,

∂k({x1, . . . , xk+1}) =
k+1∑
i=1

(−1)i{x1, . . . , x̂i, . . . , xk+1},

where x̂i means that the vertex xi is deleted. Observe that applying the boundary

map twice gives us zero, that is, ∂i ◦ ∂i+1 = 0. Using this collection of sets and maps,

we can form a chain complex,

0 −→ An
∂n−→ · · · ∂1−→ A0 −→ 0.
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Since ∂i ◦ ∂i+1 = 0 we have im(∂i+1) ⊆ ker(∂i). Using this containment, the kth

homology group is defined as

Hk(∆) =
ker(∂i)

im(∂i+1)
.

The Betti numbers, denoted βk, of a space ∆ are defined as the rank of the homology

groups, that is, βk is the rank of Hk(∆).

Closely related to homology is reduced homology. For reduced homology, the

group A−1
∼= Z corresponding to the span of the empty set is added to the chain

complex, giving

· · ·A0
∂0−→ A−1 −→ 0.

Therefore, the reduced homology groups H̃k of a space are equal to the homology

groups for all k 6= 0. However, H0 and H̃0 differ by a rank of one. The reduced

Betti numbers, β̃k are then the Betti numbers associated to the reduced homology.

Intuitively, the reduced Betti numbers of a space counts the number of “holes.” That

is, for a sphere Sn, we have β̃n = 1 and β̃k = 0 for 0 ≤ k ≤ n− 1. More generally, we

have the following proposition.

Proposition 1.6.1. Let X be a wedge of spheres containing αk spheres of dimen-

sion k. Then the reduced Betti number β̃k of X is given by αk.

The Betti numbers are also related to the Euler characteristic defined in Sec-

tion 1.3. Namely, for a simplicial complex ∆, we have

χ(∆) = β0 − β1 + β2 − · · · ,

and

χ̃(∆) = β̃0 − β̃1 + β̃2 − · · · .

These relations show that the Euler characteristic is invariant under homotopy equiv-

alences.
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1.7 Discrete Morse theory

Discrete Morse theory is a technique developed by R. Forman used to simplify the

topology of a simplicial complex while preserving its homotopy type. This is done by

describing the given simplicial complex as a CW complex. Discrete Morse theory is a

combinatorial extension of Morse theory, a technique used to analyze the topology of

a manifold. Since its development in the late nineties, discrete Morse theory has been

used to determine the topology of simplicial complexes that arise from combinatorial

objects.

For example, the independence complex of a graph G, Ind(G) is the set of inde-

pendent sets of vertices of G, that is, sets I such that for u, v ∈ I, (u, v) is not an

edge of G. Discrete Morse theory can be used to show the following for chains on n

elements, Ln, and n-cycles, Cn, see [53].

Theorem 1.7.1 (Kozlov). The independence complex of a path, respectively a cycle,

is given by

Ind(Ln) '


Sk−1 if n = 3k,

point if n = 3k + 1,

Sk if n = 3k + 2,

Ind(Cn) '

 Sk−1 ∨ Sk−1 if n = 3k,

Sk−1 if n = 3k ± 1.

Discrete Morse theory can also be used to study the order complex of posets. The

partition lattice Πn is the poset whose elements are partitions of the set {1, 2, . . . , n}

ordered by refinement. Björner [9] proved the following.

Theorem 1.7.2 (Björner). The simplicial complex ∆(Πn) is homotopy equivalent to

a wedge of (n− 1)! copies of Sn−3.

This result has been generalized several times, most recently by Ehrenborg and Jung

in [37].

We now consider the original formulation of discrete Morse theory. We begin with

definitions and theorems given by Forman [44, 45]. Given a simplicial complex ∆,
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Figure 1.9: A discrete Morse function on the complex ∆ along with subcomplexes
obtained from the order prescribed by the function.

let β ∈ ∆ be a simplex with p + 1 vertices. Since β is a p-dimensional simplex, we

denote it β(p).

Definition 1.7.3. A function f : ∆− {∅} −→ R is a discrete Morse function if for

every β(p) ∈ ∆ the following two conditions hold.

1. |{γ(p+1) ⊃ β : f(γ) ≤ f(β)}| ≤ 1,

2. |{α(p−1) ⊂ β : f(α) ≥ f(β)}| ≤ 1.

If both of these are zero, the simplex β is said to be critical.

For an example of a discrete Morse function, see the complex ∆ in Figure 1.9.

Thus, we get the following theorem.

Theorem 1.7.4 (Forman). Suppose ∆ is a simplicial complex with a discrete Morse

function. Then ∆ is homotopy equivalent to a CW complex with exactly one cell of

dimension p for each critical simplex of dimension p.

Essentially, a discrete Morse function gives an order to build the complex. See

Figure 1.9. Following this order, note non-critical simplices will be added in pairs.

For example, in Figure 1.9, in order to add the line segment f−1(1) the point f−1(2)

must also be added. Going backwards, removing these pairs of non-critical simplices

is known as a simplicial collapse. A simplicial collapse is the removal of two simplices
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Figure 1.10: The gradient vector field on ∆ associated to the discrete Morse function
given in Figure 1.9.

α(p−1) ⊂ β(p) such that β is a facet of ∆ and β is the only simplex containing α. It

is straightforward to see that performing a simplicial collapse does not change the

homotopy type of the complex. Therefore, the homotopy type of the complex only

changes when a critical simplex is added.

In general, finding a discrete Morse function can be tedious. However, based on

the discussion in the previous paragraph, we are simply looking for pairs of simplices.

Therefore, Forman gave the following definitions.

Definition 1.7.5. A gradient vector field V on ∆ is a collection of pairs of simplices

of ∆, {α(p) ⊂ β(p+1)}, such that each simplex is in at most one pair of V . A V -path

is a sequence of simplices

α
(p)
0 ⊂ β

(p+1)
0 ⊃ α

(p)
1 ⊂ · · · ⊂ β(p+1)

r ⊃ α
(p)
r+1,

such that, for all i = 0, 1, . . . , r, the pair {αi, βi} is an element of V and αi 6= αi+1.

The V -path is said to be a non-trivial closed path if r ≥ 1 and α0 = αr+1.

See Figure 1.10. Finally, we get the following theorem which relates gradient vector

fields to discrete Morse functions.

Theorem 1.7.6 (Forman). A discrete vector field V is the gradient vector field of a

discrete Morse function if and only if there are no non-trivial closed V -paths.
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Figure 1.11: An empty triangle and an acyclic matching on its face poset. The critical
0-cell and 1-cell indicate that the triangle is homotopy equivalent to a 1-sphere.

There is a more combinatorial way to view discrete Morse theory. The following

formulation is due to Chari [22] and is the way discrete Morse theory will be used in

this dissertation. Further details on this formulation can be found in [53].

A partial matching in a poset P is a partial matching in the underlying graph

of the Hasse diagram of P , that is, a subset M ⊆ P × P such that (x, y) ∈ M

implies x ≺ y and each x ∈ P belongs to at most one element of M . For (x, y) ∈ M

we write x = d(y) and y = u(x), where d and u stand for down and up, respectively.

A partial matching M on P is acyclic if there does not exist a cycle

z1 � d(z1) ≺ z2 � d(z2) ≺ · · · ≺ zn � d(zn) ≺ z1,

in P with n ≥ 2 and all zi, i = 1, . . . , n distinct. Given a partial matching, the

unmatched elements are called critical. If there are no critical elements, the acyclic

matching is perfect.

We now state the main result from discrete Morse theory. For a simplicial com-

plex ∆, let F(∆) denote the face poset of ∆.

Theorem 1.7.7 (Chari). Let ∆ be a simplicial complex. If M is an acyclic matching

on F(∆) − {0̂} and ki denotes the number of critical i-dimensional cells of ∆ then

the complex ∆ is homotopy equivalent to a CW complex ∆k which has ki cells of

dimension i.

Given an acyclic matching, it is straightforward to construct a discrete Morse

function by induction. At each step, select either a critical cell α(p) or a matched pair

α(p) ⊂ β(p+1) all of whose proper faces have been mapped previously by the discrete
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Morse function, and assign values larger than those already used to the selected

face(s). Therefore, we see that Theorem 1.7.7 is equivalent to Theorem 1.7.4.

In some cases it is possible to know exactly the homotopy type of ∆k. For example,

if ∆k has one 0-cell and n i-cells then ∆k is homotopy equivalent to a wedge of n

i-dimensional spheres. See Figure 1.11. Additionally, when the critical cells are facets

of the original complex, we get the following theorem (see Theorem 4.2.7).

Theorem 1.7.8. Let M be a Morse matching on F(∆) such that all ki critical cells

of dimension i are facets of ∆. Then the complex ∆ is homotopic equivalent to a

wedge of spheres, that is,

∆ '
∨
i

ki∨
j=1

Si.

However, given a set of critical cells having different dimensions, in general it is

impossible to conclude from this data that the CW complex ∆k is homotopy equiva-

lent to a wedge of spheres. For example, a torus has a 0-cell, two 1-cells, and a 2-cell

as its cellular decomposition and this is certainly not homotopy equivalent to a wedge

of 1- and 2-dimensional spheres.

Some work has been done to determine when the exact homotopy type can be

determined. For example, Kozlov [54] gives a more general sufficient condition on

an acyclic Morse matching for the complex to be homotopy equivalent to a wedge of

spheres enumerated by the critical cells.

In order to use discrete Morse theory, it is necessary to determine when a matching

is acyclic. The Patchwork theorem [53, Theorem 11.10] gives one way to construct

an acyclic matching from smaller acyclic matchings.

Theorem 1.7.9. Assume that ϕ : P → Q is an order-preserving poset map, and

assume that there are acyclic matchings on the fibers ϕ−1(q) for all q ∈ Q. Then the

union of these matchings is itself an acyclic matching on P .

Copyright c© Eric Logan Clark, 2011.
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Chapter 2 Affine excedances

2.1 Introduction

The symmetric group Sn has many interesting permutation statistics. The most

well-known statistics are inversions, descents, excedances, and the major index. The

two most classical results are the descent statistic and the excedance statistic are

equidistributed, and the inversion statistic and the major index are equidistributed.

The symmetric group Sn is also a finite Weyl group, which is a special case of Coxeter

groups. In this terminology the group is known as An−1 and it is viewed as the group

generated by reflections in the hyperplanes xi = xi+1, 1 ≤ i ≤ n− 1. To every finite

Weyl group W there is the associated affine Weyl group W̃ . Geometrically this is

obtained by adding one more generator to the group corresponding to a reflection in

an affine hyperplane which makes the group infinite. In the case of the symmetric

group the affine hyperplane is x1 = xn + 1 and the group is denoted by Ãn−1.

Lusztig [57] found the following combinatorial description of the affine Weyl

group Ãn−1. Define an affine permutation π to be a bijection π : Z −→ Z satis-

fying the following two conditions:

π(i+ n) = π(i) + n for all i, and
n∑
i=1

(π(i)− i) = 0. (2.1)

Let S̃n be the set of all affine permutations. It is straightforward to see that S̃n forms

a group under composition. Lusztig then asserts that the group of affine permuta-

tions S̃n and the affine Weyl group Ãn−1 are isomorphic. Viewing S̃n as a Coxeter

group, it has n generators s1, . . . , sn given by

si(j) =


j + 1 if j ≡ i mod n,

j − 1 if j ≡ i+ 1 mod n,

j otherwise.

Furthermore, the Coxeter relations when n ≥ 3 are

s2
i = 1, (sisi+1)3 = 1, and (sisj)

2 = 1 for i− j 6≡ −1, 0, 1 mod n,
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where we view the indices modulo n. For n = 2 the relations are s2
1 = s2

2 = 1 and

there is no relation between s1 and s2. Observe that the symmetric group Sn is

embedded in the group of affine permutations. We can view the symmetric group as

generated by the reflections s1, . . . , sn−1.

Shi [65] and Björner and Brenti [10] were the first to study the group of affine

permutations S̃n. Björner and Brenti extended the inversion statistic from the sym-

metric group Sn to the group of affine permutations S̃n by defining

inv(π) =
∑

1≤i<j≤n

∣∣∣∣⌊π(j)− π(i)

n

⌋∣∣∣∣ , for π ∈ S̃n. (2.2)

Recall that the length of an element in a Coxeter group is given by the minimum

number of generators required to express the group element as a product of gen-

erators. Shi showed that the inversion number is equal to the length of the affine

permutation [65].

The next step is to look at the distribution of the inversions statistic, i.e., the

length. Bott’s formula, Theorem 1.4.2, solves this for any affine Weyl group in terms

of the exponents of the finite group [56]. In the An−1 case one has∑
π∈S̃n

q`(π) =
1− qn

(1− q)n
.

Björner and Brenti gave a combinatorial proof of this generating function identity

by finding a bijection between S̃n and Nn − Pn, that is, the collection of n-tuples

with at least one zero. An earlier combinatorial proof was given by Ehrenborg and

Readdy [38] using juggling sequences.

In this paper we will refine the Ehrenborg–Readdy juggling approach to give a

proof of the length distribution of the coset representatives of the parabolic subgroup.

We then extend the excedance statistic from the symmetric group Sn to affine permu-

tations. It is well-known that the generating polynomial for the excedance statistic

is given by the Eulerian polynomial, that is,

∑
σ∈Sn

qexc(π) =
n−1∑
k=0

A(n, k + 1)qk,
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where A(n, k) is the Eulerian number. For affine permutations we determine the

associated generating function for the excedance statistic. In doing so we reformulate

the problem to instead counting lattice points on the hyperplane x1 + · · · + xn = 0

which are certain distances in the L1-norm from the point (−1, . . . ,−1, 0, . . . , 0). The

proof involves working with the (n − 1)-dimensional root polytope Rn−1 of type A

defined as the convex hull of the vectors vi,j = ei − ej for 1 ≤ i, j ≤ n. The Ehrhart

series for the root polytope is given by

Ehr(Rn−1, t) =

∑n−1
i=0

(
n−1
i

)2
ti

(1− t)n
; (2.3)

see [2, 21, 59, 60].

Recently Ardila, Beck, Hosten, Pfeifle, and Seashore gave a natural triangulation

of the root polytope and a combinatorial description of this triangulation [1]. Unfor-

tunately the excedance statistic requires us to work with a skew version of the root

polytope, but the triangulation still applies to the skew root polytope.

The faces of the Ardila–Beck–Hosten–Pfeifle–Seashore triangulation are in a nat-

ural correspondence with a combinatorial structure they named staircases. For a

quick example of a staircase, see Figure 2.2. Ardila et al. enumerated the number

of staircases and used this to give a combinatorial proof of the Ehrhart series of the

root polytope. In order to count lattice points inside the skew root polytope we use

an additional parameter ` corresponding to an extra additive term in the dilation of

the associated simplex in the triangulation of the skew root polytope; compare Fig-

ures 2.4 and 2.5. This extra condition requires the associated staircase to have ` of

the first k columns non-empty. Completing this enumeration allows us to count the

lattice points inside the skew root polytope and determine the generating function

for the affine excedance set statistics.

This chapter also appears in [26].

2.2 Coset representatives and increasing juggling patterns

The affine symmetric group S̃n consists of all bijections satisfying the relations in

equation (2.1). This is a group under composition. From the first condition observe
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that the affine permutation π is uniquely determined by the entries π(1), π(2), . . . , π(n).

Moreover, since π is a bijection, it permutes the congruency classes modulo n. Hence

we can write

π(i) = nri + σ(i),

where ri is an integer such that
∑n

i=1 ri = 0 and σ = (σ(1), σ(2), . . . , σ(n)) is a

permutation in Sn. Following Björner and Brenti [10] we write this as

π = (r1, . . . , rn|σ) = (r|σ).

Observe that the embedding of the symmetric group Sn in the group of affine per-

mutations is exactly the map which sends the permutation σ to the affine permuta-

tion (0|σ).

Consider a left coset D in the quotient S̃n/Sn. To pick a coset representative it is

natural to choose the element π of least length in the coset D. This element π satisfies

the inequalities π(1) < π(2) < · · · < π(n). We will study these coset representatives

by considering their associated juggling sequences.

We refer the reader to the papers [18, 35, 38] and the book [62] for more on the

mathematics of juggling. Here we give a brief introduction. A juggling sequence of

period n is a sequence a = (a1, . . . , an) of positive integers such that ai+ i are distinct

modulo n. This can be viewed as a directed graph where there is an edge from t

to t+at mod n for all integers t. This symbolizes that a ball thrown at time t is caught

at time t+at mod n. At each vertex of this graph the indegree and outdegree are each 1.

This directed graph decomposes into connected components and each component is

an infinite path. A path corresponds to a ball in the time-space continuum. The

number of balls of is given by the mean value (a1 + · · ·+ an)/n; see [18].

A crossing is two directed edges i −→ j and k −→ ` such that i < k < j < `;

see [38]. The number of crossings cross(a) of a juggling sequence a is the number of

crossings such that 1 ≤ i ≤ n. This extra condition implies that number of crossings

is finite and we are not counting crossings that are equivalent by a shift of a multiple

of the period n.
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u u u u
Figure 2.1: The four juggling cards C∗0 , C∗1 , C∗2 and C∗3 .

We call a juggling sequence a = (a1, a2, . . . , an) increasing if a1 ≤ a2 ≤ · · · ≤ an.

In juggling terms this states that a ball thrown at time i is caught before the ball

thrown at time j, for 1 ≤ i < j ≤ n.

Theorem 2.2.1. The sum of qcross(a) over all increasing juggling sequences a of pe-

riod n having at most m balls is given by the Gaussian coefficient∑
a

qcross(a) =

[
m+ n− 1

n

]
.

Similarly, the sum of qcross(a) over all increasing juggling sequences a of period n

having exactly m balls is given by the Gaussian coefficient∑
a

qcross(a) = qm−1

[
m+ n− 2

n− 1

]
.

Proof. We prove this using juggling cards. See Figure 2.1. Note that these juggling

cards are the mirror images of the cards introduced in [38]. As in [38] by taking n

juggling cards C∗i1 , C
∗
i2
, . . . , C∗in and repeating them we construct a juggling pattern

of period n having max(i1, i2, . . . , in) + 1 number of balls. However, note that with

these cards it is always the ball in the lowest orbit that lands first. That is, the balls

land according to their height.

If we use the cards C∗i1 , C
∗
i2
, . . . , C∗in , where i1 ≤ i2 ≤ · · · ≤ in, the ball thrown at

time j will be in an orbit lower than the ball thrown at time j + 1. Hence the ball
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thrown at time j will land before the next ball thrown. Hence the juggling pattern

will be increasing.

Also observe that if ij > ij+1 then the jth ball would land after the (j + 1)st ball

and the pattern would not be increasing. Thus all increasing juggling sequences are

in bijective correspondence with weakly increasing lists of indices.

Since the card C∗i has i crossings, the sought after sum is given by∑
a

qcross(a) =
∑

0≤i1≤i2≤···≤in≤m−1

qi1+i2+···+in ,

which is one of the combinatorial expressions for the Gaussian coefficient
[
m+n−1

n

]
.

To obtain the number of increasing juggling patterns having exactly m balls,

we require the last card to be C∗m−1. Thus the sum is restricted by the condition

in = m− 1, giving the factor qm−1. The sum is now over 0 ≤ i1 ≤ i2 ≤ · · · ≤ in−1 ≤

m− 1 which produces the desired Gaussian coefficient.

There is a natural bijection between juggling patterns a having exactly m balls

and affine permutations π such that i − π(i) < m for all i. Namely, given an affine

permutation π, define the juggling pattern a = (a1, a2, . . . , an) by ai = m − i + π(i)

for i = 1, . . . , n. This states that the ball thrown at time i is caught at time π(i)+m.

Furthermore, Theorem 4.2 in [38] states that the length of the affine permutation π

and the number of crossings of the juggling pattern are related by

`(π) + cross(a) = n · (m− 1). (2.4)

Theorem 2.2.2. The sum q`(π) over all affine permutations π ∈ S̃n such that π(1) <

π(2) < · · · < π(n) is given by∑
π

q`(π) =
1

(1− q)n−1[n− 1]!
.

Proof. Consider a coset representative π with the extra condition that i− π(i) < m

for all i. The condition π(1) < · · · < π(n) implies that π corresponds to an increasing
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juggling pattern having exactly m balls. By equation (2.4) and Theorem 2.2.1, we

have ∑
π(1) < · · · < π(n)
i− π(i) < m

qn(m−1)−`(π) = qm−1

[
m+ n− 2

n− 1

]
.

By dividing by qn(m−1), substituting q 7−→ q−1 and using the fact that Gaussian

coefficients are symmetric, we obtain∑
π(1) < · · · < π(n)
i− π(i) < m

q`(π) =

[
m+ n− 2

n− 1

]
=

[m+ n− 2][m+ n− 3] · · · [m]

[n− 1]!
.

Finally by letting m tend to infinity the result follows.

Observe that this gives another evaluation of the Poincaré series of the group of

affine permutations.

Corollary 2.2.3. The Poincaré series for S̃n is given by∑
π∈S̃n

q`(π) =
1− qn

(1− q)n
.

Proof. We have that

∑
π∈S̃n

q`(π) =

 ∑
π∈S̃n/Sn

q`(π)

(∑
σ∈Sn

q`(σ)

)

=
[n]!

(1− q)n−1[n− 1]!

=
1− qn

(1− q)n
.

The approach in Theorems 2.2.1 and 2.2.2 presents a bijection between the coset

representatives and partitions λ of length at most n− 1. Such a bijection was given

in [10, Theorem 4.4]. Given a partition λ = (λ1 ≤ · · · ≤ λn−1), let (a1, a2, . . . , an) be

the increasing juggling sequence defined using the juggling cards C∗0 , C
∗
λ1
, . . . , C∗λn−1

.

Note that a1 = 1, that is, this juggling sequence begins with a 1 throw. Hence we

cannot subtract a positive integer from each entry to make another juggling sequence.
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Let m be the number of balls of this juggling pattern, that is, m = λn−1 + 1. Now

construct the affine permutation by π(i) = ai + i − m for 1 ≤ i ≤ m. The inverse

of this bijection is given by letting m = 2 − π(1) and ai = π(i) − i + m. Then

the partition is obtained by determining which juggling cards are used to create the

juggling sequence (a1, . . . , an).

This bijection differs from the one given by Björner and Brenti [10]. Their bijection

has the extra advantage that the entries of the partition record inversions of the affine

permutation.

2.3 Affine excedances

Recall that for a permutation σ ∈ Sn, an excedance of σ is an index i such that

i < σ(i). The excedance statistic of σ is the number of excedances, that is,

exc(σ) = |{i ∈ [n] : i < σ(i)}|.

Observe that a permutation has at most n− 1 excedances. The number of permuta-

tions in Sn with k excedances is given by the Eulerian number A(n, k + 1).

Definition 2.3.1. For an affine permutation π ∈ S̃n define the excedance statistic

by

exc(π) =
n∑
i=1

∣∣∣∣⌈π(i)− i
n

⌉∣∣∣∣ .

Observe that this definition of excedances agrees with the classical definition on the

symmetric group, that is, for a permutation σ we have that exc((0|σ)) = exc(σ).

In order to analyze the distribution of the excedance statistic, we need to introduce

a few notions. The L1-norm of a vector x = (x1, x2, . . . , xn) ∈ Rn is given by

‖x‖1 =
n∑
i=1

|xi|.

The n-dimensional crosspolytope is given by ♦n = conv{±e1, . . . ,±en}, where the

vector ei is the ith standard unit vector in Rn. Note that ∂♦n is the unit sphere in
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the L1-norm. Let Hn be the hyperplane in Rn defined by

Hn =

{
(x1, x2, . . . , xn) ∈ Rn :

n∑
i=1

xi = 0

}
.

and let Ln be the lattice Ln = Hn ∩ Zn.

We now reformulate the excedance statistic of an affine permutation.

Proposition 2.3.2. For σ ∈ Sn, define the vector pσ ∈ {−1, 0}n by pσ(i) = −1 if i

is an excedance of σ and 0 otherwise. Then for an affine permutation π ∈ S̃n with

π = (r1, . . . , rn|σ) = (r|σ), the excedance statistic is given by

exc(π) = ‖r− pσ‖1.

Proof. For 1 ≤ i ≤ n we have that∣∣∣∣⌈π(i)− i
n

⌉∣∣∣∣ =

∣∣∣∣⌈nri + σ(i)− i
n

⌉∣∣∣∣
=

 |ri| if i ≥ σ(i),

|ri + 1| if i < σ(i).

That is, we get this “+1” wherever we have an excedance in the permutation σ. The

result follows by summing over all i.

The next lemma expresses the generating function of affine excedances in terms

of Eulerian numbers and generating functions of distances.

Lemma 2.3.3. Let pk be the lattice point (−1, . . . ,−1︸ ︷︷ ︸
k

, 0, . . . , 0) in Rn. Then the

following identity holds:∑
π∈S̃n

qexc(π) =
n−1∑
k=0

A(n, k + 1)
∑
r∈Ln

q‖r−pk‖1 .

Proof. Let σ be a permutation with k excedances. By permuting the coordinates of

the vector r, we have that ∑
r∈Ln

q‖r−pσ‖1 =
∑
r∈Ln

q‖r−pk‖1 .

Since there are A(n, k + 1) permutations with k excedances, the lemma follows.
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This lemma reduces the problem of determining the number of affine permutations

with i excedances to computing the number of points in the lattice Ln at distance i

from the points p0, . . . ,pn−1. We begin by noting the following lemma.

Lemma 2.3.4. For r ∈ Ln and 0 ≤ k ≤ n − 1 we have that ‖r − pk‖1 ≥ k and

‖r− pk‖1 ≡ k mod 2.

Proof. For an integer x we have that |x| ≥ x, hence

‖r− pk‖1 =
n∑
i=1

|ri − pi| ≥
n∑
i=1

(ri − pi) = k.

Also observe that |x| and x have the same parity. That is |x| ≡ x mod 2. Therefore,

‖r− pk‖1 =
n∑
i=1

|ri − pi| ≡
n∑
i=1

(ri − pi) = k mod 2.

This lemma tells us that for 0 ≤ k ≤ n − 1, the boundary of the crosspolytope

centered at pk will not intersect lattice points in Ln until its kth dilation and then

only every other integer dilation after that. Thus we are interested in lattice points r

at distance 2t + k from pk, where t is a non-negative integer. Therefore, we define

the following polytope which will be the focus of our study.

Definition 2.3.5. For non-negative integers t and k, we define Pt,k to be the set

Pt,k = ((2t+ k)♦n + pk) ∩Hn.

That is, x ∈ Pt,k if and only if ‖x− pk‖1 ≤ 2t+ k and x ∈ Hn.

In the case t = k = 0 we have that P0,0 is a point. In the other cases, Pt,k is

obtained by cutting a dilated crosspolytope with a hyperplane which is parallel to

two facets of the crosspolytope. For k ≥ 1 and t = 0 the hyperplane is the affine

span of a facet of the crosspolytope and hence the set P0,k is an (n− 1)-dimensional

simplex. Finally, for t > 0 the hyperplane cuts the interior of crosspolytope. Hence

the combinatorial type of Pt,k in this case does not depend on the parameters t and k.
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Figure 2.2: A visualization of the staircase I = ((1, 2), (3, 2)). Observe that this
staircase is only contained in two other staircases, namely by adding either (4, 2)
or (3, 4).

2.4 The root polytope

We begin to study the case t = 1 and k = 0. That is, we are intersecting the

crosspolytope 2♦n with the hyperplane Hn. This is the root polytope and its structure

will be used in developing the other cases. We first verify that P1,0 is the root polytope.

Proposition 2.4.1. The polytope P1,0 is the (n− 1)-dimensional root polytope Rn−1,

that is, its vertices are vi,j = ei − ej for 1 ≤ i, j ≤ n and i 6= j.

Proof. The vertices of the crosspolytope 2♦n are partitioned into the two sets {2ei}1≤i≤n

and {−2ei}1≤i≤n by the hyperplane Hn. Hence the edges of the crosspolytope that

are cut by Hn are of the form [2ei,−2ej] for i 6= j. The midpoint of these edges are

ei − ej = vi,j, which are precisely the vertices of P1,0.

We introduce now the work of Ardila, Beck, Hosten, Pfeifle, and Seashore [1] who

have studied the combinatorial structure of the root polytope in depth. The next

definition and theorem are due to them.

Definition 2.4.2 (Ardila, et al.). We call the list I = ((i1, j1), (i2, j2), . . . , (im, jm))

a staircase of size m in an n by n array if

1. 1 ≤ i1 ≤ i2 ≤ · · · ≤ im ≤ n and 1 ≤ j1 ≤ j2 ≤ · · · ≤ jm ≤ n,

2. (is, js) 6= (it, jt) for s 6= t, and
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3. is 6= jt, 1 ≤ s, t ≤ m.

Let vI denote the set vI = {vi1,j1 , vi2,j2 , . . . , vim,jm}.

Note that the third condition above is the essential condition. One of its impli-

cations is that the diagonal element (i, i) is not part of any staircase. In pictures

we always shade these diagonal elements. Also note that if we remove a pair from

a staircase, the resulting list is also a staircase. That is, the collection of staircases

forms a simplicial complex. This simplicial complex is in fact spherical.

Theorem 2.4.3 (Ardila, et al.). The collection {conv(vI)}I , where I ranges over all

staircases in an n by n array, is a triangulation of the boundary the root polytope Rn−1,

that is, ∂Rn−1.

The three dimensional root polytope R3 is the cuboctahedron, which consists of 8

triangles and 6 squares. However, in the triangulation of its boundary, each square

is cut into 2 triangles. Hence the triangulation in this case has 8 + 2 · 6 = 20 facets.

The staircase in Figure 2.2 corresponds to an edge of the cuboctahedron. This edge

lies in two facets: the facet conv(v1,2,v3,2,v4,2), which is a triangular face of the

cuboctahedron, and the facet conv(v1,2,v3,2,v3,4), which is one-half of the square

face conv(v1,2,v3,2,v3,4,v1,4).

Definition 2.4.4. For a staircase I = ((i1, j1), (i2, j2), . . . , (im, jm)) let ΓI be the

m-dimensional simplex conv({0} ∪ vI). Furthermore, let CI be the simplicial cone

generated by the set vI , that is,

CI =

{
m∑
s=1

λsvis,js : λs ≥ 0

}
.

Theorem 2.4.3 implies that {CI : I is a staircase} is a complete simplicial fan.

In particular, we know that the hyperplane Hn is the disjoint union of the relative

interiors of the cones CI , that is,

Hn =
⊎
I

relint(CI),
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Figure 2.3: The root polytope P1,0 (hexagon) with faces labeled with the associated
staircases.

where I ranges over all staircases. Thus, for every lattice point w ∈ Ln we know

that w is contained in the relative interior of one cone CI for exactly one staircase

I = ((i1, j1), . . . , (im, jm)). In that case we may write

w =
m∑
s=1

λsvis,js ,

where each λs is a positive integer.

2.5 The skew root polytope

We now investigate the number of lattice points contained in the polytope Pt,k.

Proposition 2.5.1. Let w be a lattice point in the relative interior of the cone CI ,

that is, w ∈ Ln ∩ relint(CI), where I is the staircase ((i1, j1), . . . , (im, jm)). In other

words, we can write w as the positive linear combination w =
∑m

s=1 λsvis,js. Then
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the L1-norm between the two points w and pk is given by

‖w− pk‖1 = k − 2`+ 2
m∑
s=1

λs,

where ` = |[k]∩{j1, j2, . . . , jm}|, that is, ` is the number of non-empty columns among

the first k columns of the staircase I.

Proof. Consider the difference

w− pk =
m∑
s=1

λs(eis − ejs) +
k∑
i=1

ei

=
k∑
r=1




λs + 1 if r = is,

−λs + 1 if r = js,

1 otherwise

 · er +
n∑

r=k+1




λs if r = is,

−λs if r = js,

0 otherwise

 · er.
Using that λs ≥ 1 we have that the L1-norm is given by

‖w− pk‖1 =
k∑
r=1


λs + 1 if r = is,

λs − 1 if r = js,

1 otherwise

+
n∑

r=k+1


λs if r = is,

λs if r = js,

0 otherwise.

Each λs appears twice in this sum. Furthermore, there are k− ` ones and ` negative

ones also in the sum. This proves the proposition.

Definition 2.5.2. For a staircase I = ((i1, j1), . . . , (im, jm)) define the apex aI to be

the sum aI =
∑m

s=1 vis,js. Furthermore, let ∆t,k(I) be the simplex

∆t,k(I) = aI + (t−m+ `)ΓI ,

where ` is defined as in Proposition 2.5.1.

Theorem 2.5.3. The collection of simplices {∆t,k(I)}I , where I ranges over all stair-

cases, partitions the lattice points of Pt,k into disjoint sets.

Proof. Observe that the simplex ∆t,k(I) is contained in the relative interior of CI and

that the relative interiors are pairwise disjoint. Hence the simplices {∆t,k(I)}I are
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Figure 2.4: Partitioning the lattice points of Pt,0. The origin corresponds to the
empty face, the six lines to the vertices, and the six triangles to the edges. Hence the
number of lattice points in Pt,0 is

(
t
0

)
+ 6
(
t
1

)
+ 6
(
t
2

)
.

pairwise disjoint. Now assume that w is a lattice point inside the polytope Pt,k. Then

there is exactly one staircase I = ((i1, j1), . . . , (im, jm)) such that w =
∑m

s=1 λsvis,js ,

where each λs is a positive integer. By Proposition 2.5.1 and the definition of the

polytope Pt,k, we have that

k − 2`+ 2
m∑
s=1

λs = ‖w− pk‖1 ≤ 2t+ k.

By cancelling k on both sides, dividing by 2 and subtracting m, we have

m∑
s=1

(λs − 1) ≤ t+ `−m. (2.5)

We can now write w as

w =
m∑
s=1

λsvis,js = aI +
m∑
s=1

(λs − 1)vis,js .

Now by the inequality (2.5) we have w ∈ aI + (t+ `−m)ΓI = ∆t,k(I), proving that

each lattice point is inside at least one simplex ∆t,k(I).

Proposition 2.5.4. Let I be a staircase of size m and let ` be the number of non-

empty columns among the first k columns. Then the number of lattice points con-
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tained in the simplex ∆t,k(I) and the number of lattice points in the simplex ∆t,k(I)

intersected with the boundary of Pt,k are given by

|∆t,k(I) ∩ Ln| =

(
t+ `

m

)
,

|∆t,k(I) ∩ ∂Pt,k ∩ Ln| =

(
t+ `− 1

m− 1

)
.

Proof. We know by definition that ∆t,k(I) is the (t−m+ `)-dilation of a standard m-

simplex. It is well-known that the number of lattice points contained in this dilation is(
m+(t−m+`)

m

)
=
(
t+`
m

)
. Furthermore, for a lattice point w to be on the boundary of Pt,k,

there is equality in inequality (2.5). Hence ∆t,k(I) ∩ ∂Pt,k is the (t−m+ `)-dilation

of a standard (m− 1)-simplex and the result follows.

We are using the convention that
(
n
−1

)
= δn,−1, so that Proposition 2.5.4 also holds

for the empty staircase. Note that this convention agrees with the formal power series∑
t≥0

(
t+m
m

)
xt = 1

(1−x)m+1 .

Combining Theorem 2.5.3 and Proposition 2.5.4 we have the following result.

Proposition 2.5.5. The number of lattice points in the polytope Pt,k and on its

boundary ∂Pt,k are given by∑
I

(
t+ `

m

)
, respectively,

∑
I

(
t+ `− 1

m− 1

)
,

where I ranges over all staircases in an n by n array, m is the size of the staircase I

and ` is the number of non-empty columns among the first k columns of I.

Example 2.5.6. We can visualize Proposition 2.5.5 as follows. Consider the case

when n = 3, that is, the associated root polytope is a hexagon; see Figure 2.3. First

we view the case k = 0. The partitioning of the lattice points in the polytope Pt,0

is shown in Figure 2.4. In this case each simplex ∆t,0(I) contains
(
t
m

)
lattice points.

Next consider the case k = 2; see Figure 2.5. Going from the simplices ∆t,0(I) to

the simplices ∆t,2(I) observe that some of them have been stretched by an additive

41



........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...

...........................................................................................................................................

...........................................................................................................................................

........
........
........
........
........
........
........
........
........
........
........
.....

........
........
........
........
........
........
........
........
........
........
........
.....

........
........
........
........
........
........
........
........
........
........
........
.....

.............................................................................................

.............................................................................................

.............................................................................................

.............................................................................................

........
........
........
........
........
........
........
........
........
........
........
.....

..
..
..
..
..

..
..
..
..
..............................

..............................
..
..
..
..

..
..
..
..
..

..
..
..
..
..............................

..............................
..
..
..
..

..
..
..
..
..
..
..
..
..
. ...................

•

••

••

• •

••

• •••

• • • •

• • • • •

•••••

• • ••

••••

• •

• • • • •

••

• •

••

• •

••

• •

••

• • • • •

• • • • •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • • • •

Figure 2.5: Partitioning the lattice points of Pt,2. Observe that the number of lattice
points is

(
t
0

)
+ 2 ·

(
t
1

)
+ 4 ·

(
t+1

1

)
+
(
t
2

)
+ 4 ·

(
t+1

2

)
+
(
t+2

2

)
.

term of `. By comparing the stretching factor with the labels in Figure 2.3, we note

that this additive term ` is exactly the number of non-empty columns among the first

k = 2 columns of the staircase diagram.

2.6 Enumerating staircases

Proposition 2.6.1. The number of staircases of size m in an n by n array with ` of

the first k columns nonempty is given by(
k

`

)(
n− 1

m

)(
n+m− k − 1

m− `

)
.

Proof. We begin by assuming a staircase will go through exactly a rows and b columns

in the n by n array. We must first choose the ` of the first k columns that will be

used in
(
k
`

)
ways. We pick the remaining columns in

(
n−k
a−`

)
ways. Now picking the

disjoint rows can be done in
(
n−a
b

)
ways. We have to get a path from the upper left to

the lower right of this a by b subarray that goes through every row and column of the

subarray. We must do this in m−1 steps where the steps are horizontal (1, 0), vertical

(0, 1) and diagonal (1, 1). Note that we have to cover a vertical distance of a−1 and a
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horizontal distance of b−1. This can only be done with m−a horizontal steps, m− b

vertical steps and a+ b−m− 1 diagonal steps. Hence the number of possibilities is

given by the trinomial coefficient
(

m−1
m−a,m−b,a+b−m−1

)
. Thus, the number of paths is

given by ∑
a,b

(
k

`

)(
n− k
a− `

)(
n− a
b

)(
m− 1

m− a,m− b, a+ b−m− 1

)
.

To evaluate this sum, consider(
n− 1

`− 1

)(
n− `
n− k

)∑
a,b

(
n− k
a− `

)(
n− a
b

)(
m− 1

m− a,m− b, a+ b−m− 1

)
=

(
n− 1

m

)(
m− 1

`− 1

)∑
a

(
m− `
a− `

)(
n− a
k − `

)∑
b

(
m

b

)(
n−m− 1

n− a− b

)
=

(
n− 1

m

)(
m− 1

`− 1

)∑
a

(
m− `
a− `

)(
n− a
k − `

)(
n− 1

n− a

)
=

(
n− 1

m

)(
m− 1

`− 1

)(
n− 1

k − `

)∑
a

(
m− `
a− `

)(
n+ `− k − 1

n− a− k + `

)
=

(
n− 1

m

)(
m− 1

`− 1

)(
n− 1

k − `

)(
m+ n− k − 1

n− k

)
=

(
n− 1

`− 1

)(
n− `
n− k

)(
n− 1

m

)(
m+ n− k − 1

m− `

)
.

The Vandermonde identity was used in second and fourth steps. The other three

steps are a veritable orgy of expressing the binomial coefficients in terms of factorials

and shuffling the factorials around. The result now follows by multiplying by
(
k
`

)
and

dividing by
(
n−1
`−1

)
and

(
n−`
n−k

)
.

Now, combining Propositions 2.5.5 and 2.6.1, we immediately obtain the following

theorem.

Theorem 2.6.2. The number of lattice points contained in the polytope Pt,k and on

its boundary ∂Pt,k is

|Pt,k ∩ Ln| =
n−1∑
m=`

k∑
`=0

(
k

`

)(
n− 1

m

)(
n+m− k − 1

m− `

)(
t+ `

m

)
,

respectively,

|∂Pt,k ∩ Ln| =
n−1∑
m=`

k∑
`=0

(
k

`

)(
n− 1

m

)(
n+m− k − 1

m− `

)(
t+ `− 1

m− 1

)
.
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Lemma 2.6.3. For non-negative integers n and k,

k∑
`=0

n−1∑
m=`

(
k

`

)(
n− 1

m

)(
n+m− k − 1

m− `

)
xm−`(1− x)n−m−1

=
n−1−k∑
i=0

(
n− 1− k

i

)(
n− 1 + k

n− 1− i

)
xi.

Proof. We start with

k∑
`=0

n−1∑
m=`

(
k

`

)(
n− 1

m

)(
n+m− k − 1

m− `

)
xm−`(1− x)n−m−1

=
k∑
`=0

n−1−`∑
p=0

(
k

`

)(
n− 1

p

)(
2n− 2− k − p
n− 1− k + `

)
xn−1−`−p(1− x)p

=
k∑
`=0

n−1−`∑
p=0

(
k

`

)(
n− 1

p

)

·
n−1−k∑
i=0

(
n− 1− k

i

)(
n− 1− p

n− 1− k + `− i

)
xn−1−`−p(1− x)p

=
n−1−k∑
i=0

(
n− 1− k

i

)
xn−1−k−i

k∑
`=0

(
k

`

)(
n− 1

i+ k − `

)

·
i+k−`∑
p=0

(
i+ k − `

p

)
(1− x)pxi+k−`−p

=
n−1−k∑
i=0

(
n− 1− k

i

)(
n− 1 + k

i+ k

)
xn−1−k−i

=
n−1−k∑
i=0

(
n− 1− k

i

)(
n− 1 + k

n− 1− i

)
xi.

In the first equality we make the substitution p = n −m − 1. The second equality

comes from expanding the term
(

2n−2−k−p
n−1−k+`

)
using the classical Vandermonde identity.
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The third equality is the trinomial coefficient identity(
n− 1

p

)(
n− 1− p

n− 1− k + `− i

)
=

(
n− 1

p, n− 1− k + `− i,−p+ k − `+ i

)
=

(
n− 1

n− 1− k + `− i

)(
k − `+ i

p

)
=

(
n− 1

i+ k − `

)(
i+ k − `

p

)
.

Also note that that the last binomial coefficient is zero for i+ k − ` < p ≤ n− 1− `.

The fourth equality is the binomial theorem applied to ((1−x)+x)i+k−` = 1 followed

by collapsing the sum over ` using the Vandermonde identity. The last step is by the

substitution i 7−→ n−1−k− i and by the symmetry of the binomial coefficients.

Proposition 2.6.4. For any 0 ≤ k ≤ n− 1,∑
r∈Ln

q‖r−pk‖ =
1

(1− q2)n−1

n−1−k∑
i=0

(
n− 1− k

i

)(
n− 1 + k

n− 1− i

)
q2i+k.

Proof. First observe that by the substitution t = s+m− `,∑
t≥0

(
t+ `− 1

m− 1

)
q2t+k = q2(m−`)+k

∑
s≥`−m

(
s+m− 1

m− 1

)
q2s

=
qk

(1− q2)n−1
q2(m−`)(1− q2)n−1−m. (2.6)

Hence we have that∑
r∈Ln

q‖r−pk‖ =
∑
t≥0

|∂Pt,k ∩ Ln|q2t+k

=
∑
t≥0

n−1∑
m=`

k∑
`=0

(
k

`

)(
n− 1

m

)(
n+m− k − 1

m− `

)(
t+ `− 1

m− 1

)
q2t+k

=
qk

(1− q2)n−1

n−1∑
m=`

k∑
`=0

(
k

`

)(
n− 1

m

)
·
(
n+m− k − 1

m− `

)
q2(m−`)(1− q2)n−1−m

=
qk

(1− q2)n−1

n−1−k∑
i=0

(
n− 1− k

i

)(
n− 1 + k

n− 1− i

)
q2i,

where the third step is by equation (2.6) and the last step is Lemma 2.6.3.
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Observe that Proposition 2.6.4 reduces to the Ehrhart series of the root poly-

tope Rn−1 in the case k = 0; see equation (2.3). The difference in the power of

1− t = 1− q2 comes from Proposition 2.6.4 counting lattice points on the boundary,

while the Ehrhart series counts lattice points in the polytope.

Finally, combining Lemma 2.3.3 with Proposition 2.6.4, we obtain the generating

function associated with the excedance statistic of affine permutations.

Theorem 2.6.5. The generating function for affine excedances is given by

∑
π∈S̃n

qexc(π) =
1

(1− q2)n−1

n−1∑
k=0

A(n, k + 1)
n−1−k∑
i=0

(
n− 1− k

i

)(
n− 1 + k

n− 1− i

)
q2i+k.

2.7 Concluding remarks

We end with some open problems and directions for continued research.

Question 2.7.1. There is not much known about how classic permutation statistics

generalize to affine permutations. In analogy with the definitions of the inversion and

excedance statistics (equation (2.2) and Definition 2.3.1), it is natural to consider the

expression

f(π) =
n∑
i=1

∣∣∣∣⌊π(i+ 1)− π(i)

n

⌋∣∣∣∣ (2.7)

as an affine analogue of the descent statistic though it does not exactly generalize the

descent statistic. However, there are only a finite number of affine permutations with

a given value of the f statistic. Hence the generating function∑
π∈S̃n

qf(π)

is well-defined. Does this have a nice generating function?

Question 2.7.2. The numerator in Proposition 2.6.4 has a nice combinatorial in-

terpretation. The coefficient of q2i+k counts the number of lattice paths from (0, 0)

to (n− 1, n− 1) which go through the point (i, n− 1− k− i). In particular, the sum

of these coefficients is
(

2n−2
n−1

)
. Is there a more bijective reason for this interpretation?
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Question 2.7.3. Observe that the numerator in Proposition 2.6.4 is symmetric.

Recall that the Ehrhart series of reflexive polytopes have this property and the root

polytope is reflexive. Are there other reflexive polytopes that have a skew version

with a symmetric numerator?

Question 2.7.4. Proposition 2.6.1 enumerates staircases where ` of the first k

columns are non-empty. The result is a product of three binomial coefficients. Is

there a more bijective proof, which avoids all the binomial coefficient manipulations?

Question 2.7.5. Since simple juggling patterns are so closely related with the affine

Weyl group Ãn−1, it is natural to ask for juggling interpretations for the other Weyl

groups. See the paper [42] for permutation interpretations for these groups.

Question 2.7.6. Is there an excedance statistic for finite Coxeter groups in general?

Bagno and Garber [3] have extended the excedance statistic to the infinite classes Bn

and Dn. Furthermore, could the statistic be extended to the associated affine groups?

A first step in this direction would be to consider the Bn case, that is, the group of

signed permutations, and see if their excedance statistic can be extended to the affine

group B̃n. Would the associated calculations involve a skew version of the root

polytope of type B?

Copyright c© Eric Logan Clark, 2011.
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Chapter 3 The excedance algebra

3.1 Introduction

The excedance set of a permutation π = π1 · · · πn+1 in the symmetric group Sn+1

is the set {i : πi > i}. Note that this set is a subset of the set {1, . . . , n}. In

order to study the number of permutations with a given excedance set, Ehrenborg

and Steingŕımsson [39] introduced the equivalent notion of the excedance word, that

is, u(π) = u1 · · ·un where ui = a if πi ≤ i and ui = b otherwise. They denoted

the number of permutations with a given excedance word u by [u] and proved the

following four relations:

[1] = 1,

[a · u] = [u · b] = [u],

[v · ba · w] = [v · ab · w] + [v · a · w] + [v · b · w].

It is straightforward to see that these relations allow us to compute the excedance

set statistic. Inspired by the last relation, we have the following definition.

Definition 3.1.1. Let the excedance algebra E be the non-commutative algebra k〈a,b〉

quotiented out with the ideal generated by the element ba− ab− a− b.

Notice that this algebra has a linear basis of monomials of the form ambn. Thus,

we will be interested in the expansion of an arbitrary monomial into this standard

basis, that is, given an ab-monomial u with m copies of a and n copies of b,

u =
∑
i,j

ci,j(u) · am−ibn−j.

We will write just ci,j if the monomial u is clear from the context.

Other references to the excedance set statistic are [25], where an explicit expression

for [bnam] and [bnabam] are given, [41], where the excedance set statistic is related to

the linear coefficient of the chromatic polynomial of Ferrers graphs, and [74] where one
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of the many conjectures by Ehrenborg and Steingŕımsson is proved. The excedance

set is also explored in [71, Exercise 3.40e].

3.2 Expansion

Given an ab-monomial u = u1 · · ·un, define the associated Ferrers shape F (u) by

the following procedure. First create a lattice walk in the plane where the ith step

is a unit north step if ui = a and a unit east step if ui = b. Complete this walk to

a Ferrers shape by adding the walk where we first take all the north steps followed

by all the east steps. This Ferrers shape of a word is essentially described in [70,

Exercise 7.59].

Note that if u = bnam then the shape F (u) is a rectangle, whereas in the other

extreme u = ambn, F (u) is the empty shape. Furthermore, the number of boxes in

the Ferrers shape F (u) is the number of inversions in the word u, that is, the number

of pairs of b and a where the b is before the a.

Theorem 3.2.1. Let u be an ab-monomial containing m copies of a and n copies

of b. Consider the expansion

u =
∑
i,j

ci,j · am−i · bn−j.

Then the coefficient ci,j enumerates the number of ways to place i copies of ← and j

copies of ↑ in the Ferrers shape F (u) such that

(a) All the boxes to the west of a ← must be empty.

(b) All the boxes to the north of a ↑ must be empty.

Theorem 3.2.1 appears without proof in [51]. A proof using permutation tableaux is

given by Corteel and Williams [30], and the bijection between permutations tableaux

and alternative tableaux can be found in [73]. For completeness, we provide a direct

proof of Theorem 3.2.1 below.

Note that c0,0 = 1 because of the empty placement. Moreover cm,n = 0 since

with m copies of ← there is no position to place a ↑ in the first column.
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Before proving this combinatorial expansion we digress with a combinatorial in-

terpretation of the analogous result in the Weyl algebra.

Theorem 3.2.2. The Weyl algebra is defined by k〈a,b〉/(ba−ab−1). Assume that

the ab-monomial u contains m copies of a and n copies of b. Then the following

expansion holds

u =
∑
i

ri · am−i · bn−i,

where ri is the number of rook placements of i rooks on the Ferrers board F (u).

This result is implicit in [68, Theorem 3.7]. The proof of Theorem 3.2.2 follows

the same outline as the proof of Theorem 3.2.1, but it is easier.

Proof of Theorem 3.2.1: The proof is by induction on the number of inversions of the

word u. When u has no inversions, we have that u = ambn and there is nothing to

prove.

Consider the case when u = v ·ba·w. Then we have u = v ·ab·w+v ·b·w+v ·a·w.

For each of these terms we have a case.

(ab) Consider a placement of i copies of← and j copies of ↑ on the board F (vabw).

By adding an empty square we obtain the board F (vbaw).

(b) Consider a placement of i − 1 copies of ← and j copies of ↑ on the Ferrers

board F (vbw). By adding a row we obtain the board F (vbaw). Furthermore,

place a ← in the last entry of this new row.

(a) This case is similar to the previous case with the change that we add a column

and place a ↑ in its last entry.

In each case we obtain a legal placement on the board F (vbaw) with i copies of ←

and j copies of ↑. Furthermore each legal placement on this board is obtained by one

of these three cases, proving the equality.

Example 3.2.3. Consider the monomial baba which has the expansion

baba = b + 2bb + a + 4ab + 3abb + 2aa + 3aab + aabb.
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←

↑

←

↑ ← ↑ ←

↑

Figure 3.1: The four valid placements of one ← and one ↑ in the Ferrers
shape F (baba).

For the monomial ab in this expansion, we must place 2 − 1 = 1 copy of ← and

2− 1 = 1 copy of ↑ in the Ferrers shape, F (baba). There are four such placements,

giving the monomial ab a 4 as its coefficient. See Figure 3.1.

Corollary 3.2.4. The coefficient ci,0 is given by the ith elementary symmetric func-

tion ei(λ1, . . . , λm), where λ = (λ1, . . . , λm) is the partition associated to the shape F (u).

Similarly, the dual statement is c0,j = ej(λ
∗
1, . . . , λ

∗
n), where λ∗ = (λ∗1, . . . , λ

∗
n) is the

dual partition of λ.

Proof. When j = 0 we only have to place← in the Ferrers shape and the condition of

Theorem 3.2.1 reduces to at most one ← in each row. Since the partition λ contains

the length of each row, the enumeration is given by the ith elementary symmetric

function. The dual result follows by only placing ↑ and using the column lengths,

which are given by the dual partition.

In analogue with the equality
m∑
i=0

n∑
j=0

ci,j(u) = [u], we have the next corollary.

Corollary 3.2.5. Let u be an ab-monomial containing m copies of a and n copies

of b. Then the following three statements are true.

(a) If u = va then
m∑
i=0

ci,n(u) = [v].

(b) If u = bv then
n∑
j=0

cm,j(u) = [v].

(ba) If u = bva then cm−1,n(u) = [v] = cm,n−1(u).
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Proof. When u = va observe that the Ferrers shape F (v) is obtained from F (u) by

removing the first row. Hence, given a legal placement using ← and ↑ on F (v), we

obtain a legal placement on F (u) by adding another row on top and inserting copies

of ↑ in the top row in the columns that are missing a ↑. This placement has exactly

n copies of ↑ and the statement (a) follows.

Note that statements (a) and (b) are equivalent under the involution u 7−→ u∗

where ∗ denotes reading the monomial backwards and the bar exchanges the as

and bs.

When u = bva observe that the Ferrers shape F (v) is obtained by removing the

first row and the first column from F (u). Given a legal placement on F (v), first add

back the first column and insert copies of ← in this column in the rows that are

missing a ←. Next add back the top row and insert copies of ↑ in the top row in

every column that are missing a ↑. Observe that we obtain a legal placement on F (u)

that has m− 1 copies of ← and n copies of ↑. This proves the first equality in (ba).

The second follows by first adding the column and then the row.

A quick algebraic observation also gives the following relations among the coeffi-

cients.

Lemma 3.2.6. For a non-negative integer k we have the identity∑
i+j=k

(−1)j · ci,j = δk,0.

Proof. Consider the map φ : E −→ k[x] defined by φ(a) = x and φ(b) = −x. Observe

that φ is a well-defined ring homomorphism since φ(ba− ab− a− b) = 0. Directly

we have φ(u) = (−1)n · xm+n but also

φ(u) = φ

(∑
i,j

ci,j · am−ibn−j
)

=
∑
i,j

ci,j · (−1)n−j · xm+n−i−j.

The result follows by comparing the coefficients of xm+n−k.

Example 3.2.7. As example we have that

c1,1 = c2,0 + c0,2 = e2(λ) + e2(λ∗).
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This can also be seen by Theorem 3.2.1 and using the identity

(λ1 + · · ·+ λm) · (λ1 + · · ·+ λm − 1) −((
λ1

2

)
+ · · ·+

(
λm
2

))
−

((
λ∗1
2

)
+ · · ·+

(
λ∗n
2

))
= e2(λ) + e2(λ∗).

3.3 The operators E and ∆

Lemma 3.3.1. Let p be a polynomial in one variable. In the excedance algebra, the

following two identities hold.

1. b · p(a) = p(a + 1) · b + a · (p(a + 1)− p(a)),

2. p(b) · a = a · p(b + 1) + b · (p(b + 1)− p(b)).

Proof. We start by proving the first identity. Expand the ab-monomial b · ak. As

we expand, the b will move further right through the word. There are two cases.

The b either reaches the end of the word, killing i copies of a in the process, or the b

kills i−1 copies of a and is then itself killed by the ith a. In both cases, there are
(
k
i

)
ways of choosing the as. Hence, we have

b · ak =
k∑
i=0

(
k

i

)
ak−i · b +

k∑
i=1

(
k

i

)
ak−i+1

= (a + 1)k · b + a ·
(
(a + 1)k − ak

)
.

This completes the proof for p(a) = ak. The result for a general polynomial follows

by linearity. The second identity follows by the symmetry u 7−→ u∗.

Let p(x) be a polynomial in x and define Ec
x to be the shift operator

Ec
x(p(x)) = p(x+ c).

Also, let ∆x represent the difference operator

∆x(p(x)) = p(x+ 1)− p(x).

Using these, the result of Lemma 3.3.1 can be rewritten as follows.

53



Lemma 3.3.2. Let p be a polynomial in one variable. In the excedance algebra, the

following two identities hold.

1. b · p(a) = E1
a(p(a)) · b + a ·∆a(p(a)),

2. p(b) · a = a · E1
b(p(b)) + b ·∆b(p(b)).

Define the linear map L : E −→ k[x, y] by L(ambn) = xmyn. Note that L is not

an algebra homomorphism, but it is a vector space isomorphism. Also, denote by x

and y the two operators on k[x, y] defined by multiplication by x and y, respectively.

It is also clear from the definition of L that for ab-monomial u, [u] = L(u)|x=y=1 .

Lemma 3.3.3. Let u be an ab-polynomial. Then we have

1. L(a · u) = xL(u),

2. L(b · u) = (yE1
x + x∆x) (L(u)),

3. L(u · b) = yL(u),

4. L(u · a) =
(
xE1

y + y∆y

)
(L(u)).

Proof. Since every term in the expansion of the polynomial a · u starts with an a,

part one follows. For part two, we note that by linearity it is enough to consider

u = ambn. Then, using Equation 1 from Lemma 3.3.2, we have

L(b · ambn) = L
(
E1

a(am)bn+1 + a∆(am)bn
)

= E1
x(x

m)yn+1 + x∆(xm)yn

=
(
E1
xy + x∆x

)
(xmyn)

=
(
yE1

x + x∆x

)
(L(ambn)).

Parts three and four are exactly analogous, using Equation 2 from Lemma 3.3.2.

Using this lemma, we are able to evaluate the map L for an arbitrary ab-monomial u.
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Theorem 3.3.4. Let u = u1u2 . . . uk be an ab-monomial. Let Ui and Vi be the

operators

Ui =

 x if ui = a,

yE1
x + x∆x if ui = b,

and

Vi =

xE1
y + y∆y if ui = a,

y if ui = b.

Then L(u) is evaluated by applying the operators U1U2 · · ·Uk(1) = VkVk−1 · · ·V1(1).

Proof. This is a straightforward proof by induction on the length of the monomial u.

Example 3.3.5. Applying this theorem to the monomial baba, we get

L(baba) = U1U2U3U4(1)

= (yE1
x + x∆x)x(yE1

x + x∆x)x(1)

= (yE1
x + x∆x)x(y(x+ 1) + x)

= (yE1
x + x)∆x(x

2y + xy + x2)

= (x+ 1)2y2 + (x+ 1)y2 + (x+ 1)2y + x(2x+ 1)y + x · 1 · y + x(2x+ 1)

= y + 2y2 + x+ 4xy + 3xy2 + 2x2 + 3x2y + x2y2.

Notice that with the substitution x 7−→ a and y 7−→ b, this expansion coincides with

the expansion of baba in Example 3.2.3.

There are several corollaries to Theorem 3.3.4 which we now discuss.

Corollary 3.3.6. Let u be the ab-monomial u = apnbapn−1b · · ·bap0 . Then we have

L(u)|y=0 = xpn+1∆xx
pn−1+1∆x · · ·∆xx

p1+1∆xx
p0 .

Likewise, for u = bqmabqm−1a · · · abq0 , we have

L(u)|x=0 = yq0+1∆yy
q1+1∆y · · ·∆yy

qm−1+1∆yy
qm .
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Corollary 3.3.7. Consider the ab-monomials (ba)n and bnam. Then

1. L((ba)n)|y=0 = (x∆xx)n(1),

2. L(bnam)|y=0 = (x∆x)
n(xm).

Corollary 3.3.8. The following operator identities hold.

1. (yE1
x + x∆x)

nxm = (xE1
y + y∆y)

myn.

2. (yE1
xx + x∆xx)n = (xE1

yy + y∆yy)n.

Proof. The first identity holds by equating the expansions of L(bnam) using Ui and Vi.

The second identity comes from equating the different expansions of L((ba)n).

3.4 Gandhi polynomials and Genocchi numbers

Permutations that have an alternating excedance set, that is, permutations with

excedance word (ba)n, have been well studied. They are enumerated by the Genocchi

numbers, Gn. Specifically, we have [(ba)n] = G2(n+2). These numbers can be defined

by the generating function ∑
i≥1

G2n
x2n

(2n)!
= x · tan

(x
2

)
.

In 1970, Gandhi [46] conjectured that the following family of polynomials provided a

formula for the Genocchi numbers:

An(x) = x2 · An−1(x+ 1)− (x− 1)2 · An−1(x),

where A0(x) = 1. This conjecture was independently proven a few years later by

Carlitz [20] and Riordan and Stein [63]. Dumont [32] also provided a combinatorial

interpretation for Gandhi’s conjecture. He also introduced a related family of poly-

nomials, Bn(x) = x2 ·An−1(x+ 1), and showed that this family follows the recursion

Bn(x) = x2(Bn−1(x+ 1)−Bn−1(x)),

B1(x) = x2.
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It is straightforward from the definition of Bn(x) that the coefficient of x2 is equal

to An−1(1), that is, Bn,2 = An−1(1) = G2n. For more information about Genocchi

numbers and some of their generalizations, see [33, 34, 40].

From Corollary 3.3.7, we know that

L((ba)n)|y=0 = (x∆xx)n(1).

By comparing this with the recursion defining the polynomial Bn, it is straightforward

to see that they differ only by a factor of x. Therefore, we get the following theorem.

Theorem 3.4.1. Consider the expansion of the ab-monomial (ba)n. Then we have

ci,n = [xn+1−i]Bn(x),

where [xn+1−i] indicates the coefficient of xn+1−i.

3.5 Concluding remarks

We are left with some open questions.

Question 3.5.1. The placements of← and ↑ in the Ferrers shape F (u) are examples

of alternative tableaux, introduced by X. Viennot in [73]. Alternative tableaux of a

given shape can be enumerated using a method called matrix Ansatz. Can this method

be used to find explicit expressions for any of the coefficients ci,j other than ci,0

and c0,j? See [29, 51] for more information about matrix Ansatz.

Question 3.5.2. Do the coefficients of expansions of other specific families of mono-

mials, such as bnam, have other combinatorial interpretations like the coefficients

of (ba)n? For more about the monomial bnam, see [25].

Question 3.5.3. For positive integers n and k, let Φn,k be the collection of surjections

φ : [−n]∪ [n] −→ [n] such that φ(m) ≤ |m| for all m ∈ [−n]∪ [n] and the cardinality

of φ−1(1) is k. Dumont showed in [32] that the coefficient of xk in Bn(x) is equal

to the cardinality of Φn,k, that is Bn,k = |Φn,k|. Using this, is there a combinatorial

proof of Theorem 3.4.1?
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Question 3.5.4. What can be said about the excedance algebra itself? What

algebraic properties does it have?

Copyright c© Eric Logan Clark, 2011.
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Chapter 4 The Frobenius complex

4.1 Introduction

The classical Frobenius problem is to find the largest integer for which change can-

not be made using coins with the relatively prime denominations a1, a2, . . . , ad; see

for instance [5, Section 1.2]. We will reformulate this question by introducing the

following poset.

Let Λ be a sub-semigroup of the non-negative integers N, that is, Λ is closed under

addition and the element 0 lies in Λ. We define the Frobenius poset P = (Z,≤Λ) on

the integers Z by the order relation n ≤Λ m if m− n ∈ Λ. We denote by [n,m]Λ the

interval from n to m in the Frobenius poset, that is,

[n,m]Λ = {i ∈ [n,m] : i− n,m− i ∈ Λ}.

Observe that the interval [n,m]Λ in the Frobenius poset is isomorphic to the interval

[n+ i,m+ i]Λ, that is, the interval [n,m]Λ only depends on the difference m−n. Also

note that each interval is self-dual by sending i in [0, n]Λ to n− i.

In this form, the original Frobenius problem would be to find the largest inte-

ger n that is not comparable to zero in the Frobenius poset when Λ is generated

by {a1, a2, . . . , ad}. The largest such integer is known as the Frobenius number. In

general, calculating the Frobenius number is difficult. However, in the case where the

semigroup is generated by two relatively prime integers a and b, it is well known that

the Frobenius number is given by ab− a− b. Also, when the semigroup is generated

by the arithmetic sequence {a, a + d, . . . , a + (a − 1)d}, the Frobenius number was

shown by Roberts [64] to be (a− 1) · d. We study the topology of the order complex

of intervals of this poset in these two cases.

The technique we use is discrete Morse theory which was developed by Forman,

see [44, 45]. Thus we construct an acyclic partial matching on the face poset of the

order complex by using the Patchwork Theorem. We then identify the unmatched

(critical) cells. These cells tell us the number and dimension of cells in a CW complex
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Figure 4.1: The filter generated by 0 in the Frobenius poset corresponding to the
semigroup Λ generated by a = 3 and b = 4, that is, Λ = N− {1, 2, 5}. Note that you
get a better picture by rolling the page into a cylinder.

to which our order complex is homotopy equivalent. Using extra structure about the

critical cells, we can determine exactly what the homotopy type is.

For the semigroup Λ generated by two relatively prime integers a and b with

1 < a < b, our first result is that the order complex of an interval [0, n]Λ in the

Frobenius poset is either contractible or homotopy equivalent to a sphere. The exact

statement depends on the congruence class of n modulo a · b; see Theorem 4.4.1. The

second result handles the case when the semigroup is generated by the arithmetic

sequence {a, a + d, . . . , a + (a − 1)d}. In this case the order complex is homotopy

equivalent to a wedge of spheres of different dimensions. The generating function of

the ith reduced Betti number is a polynomial that factors into explicit terms; see

Theorem 4.5.1.

This chapter also appears in [27].
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4.2 Discrete Morse theory

Discrete Morse theory, developed by Forman, is a tool used to study the topology of

simplicial complexes. We recall the following definitions and theorems from discrete

Morse theory. See [44, 45] for further details.

For a simplicial complex Λ, let β(p) denote a p-dimensional faces of Λ.

Definition 4.2.1. A function f : Λ −→ R is a discrete Morse function if for every

β(p) ∈ Λ we have

1. |{γ(p+1) ⊃ β : f(γ) ≤ f(β)}| ≤ 1,

2. |{α(p−1) ⊂ β : f(α) ≥ f(β)}| ≤ 1.

If both of these are zero, the simplex β is said to be critical.

We now state Forman’s original formulation of discrete Morse theory; see [45].

Theorem 4.2.2 (Forman). Suppose Λ is a simplicial complex with a discrete Morse

function. Then Λ is homotopy equivalent to a CW complex with exactly one cell of

dimension p for each critical simplex of dimension p.

Chari [22] provided a combinatorial reformulation of discrete Morse theory. It is

this reformulation that will be used in this chapter, so we now discuss it. See [53] for

more details.

Definition 4.2.3. A partial matching in a poset P is a partial matching in the

underlying graph of the Hasse diagram of P , that is, a subset M ⊆ P × P such that

(x, y) ∈ M implies x ≺ y and each x ∈ P belongs to at most one element of M . For

(x, y) ∈ M we write x = d(y) and y = u(x), where d and u stand for down and up,

respectively.

Definition 4.2.4. A partial matching M on P is acyclic if there does not exist a

cycle

z1 � d(z1) ≺ z2 � d(z2) ≺ · · · ≺ zn � d(zn) ≺ z1,
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in P with n ≥ 2, and all zi ∈ P distinct. Given a partial matching, the unmatched

elements are called critical. If there are no critical elements, the acyclic matching is

perfect.

We now state the reformulated main result from discrete Morse theory. For a

simplicial complex ∆, let F(∆) denote the poset of faces of ∆ ordered by inclusion.

The following can be found in [53, Theorem 11.13].

Theorem 4.2.5 (Chari). Let ∆ be a simplicial complex. If M is an acyclic matching

on F(∆) − {0̂} and ki denotes the number of critical i-dimensional cells of ∆, then

the complex ∆ is homotopy equivalent to a CW complex ∆k which has ki cells of

dimension i.

For us it will be convenient to work with the reduced discrete Morse theory, that

is, we include the empty set.

Corollary 4.2.6. Let ∆ be a simplicial complex and let M be an acyclic matching

on F(∆). Then the complex ∆ is homotopy equivalent to a CW complex ∆k which

has k0 + 1 cells of dimension 0 and ki cells of dimension i for i > 0.

In particular, if the matching from Corollary 4.2.6 is perfect, then ∆k is con-

tractible. Also, if the matching has exactly one critical cell then ∆k is a combinatorial

d-sphere where d is the dimension of the cell.

Given a set of critical cells of differing dimension, in general it is impossible to

conclude that the CW complex ∆k is homotopy equivalent to a wedge of spheres. See

Kozlov [54, Section 3] for an example. However, in certain cases, this is possible.

Theorem 4.2.7. Let M be a Morse matching on F(∆) such that all ki critical cells

of dimension i are facets of ∆. Then the complex ∆ is homotopic equivalent to a

wedge of spheres, that is,

∆ '
∨
i

ki∨
j=1

Si.
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Proof. By the above statement, the complex ∆ without the critical cells is con-

tractible. In particular, the boundary of each of the critical cells contract to a point.

Since all of the critical cells are maximal, they can be independently added back into

the complex.

Kozlov [54] gives a more general sufficient condition on an acyclic Morse matching

for the complex to be homotopy equivalent to a wedge of spheres enumerated by the

critical cells.

We are interested in finding an acyclic matching on the face poset of the Frobenius

complex. The Patchwork Theorem [53, Theorem 11.10] gives us a way of constructing

one.

Theorem 4.2.8 (The Patchwork Theorem). Assume that ϕ : P → Q is an order-

preserving poset map, and assume that there are acyclic matchings on the fibers ϕ−1(q)

for all q ∈ Q. Then the union of these matchings is itself an acyclic matching on P .

4.3 Generating functions

Recall that the order complex ∆(P ) of a bounded poset P is the collection of chains

in P , that is,

∆(P ) = {{x1, x2, . . . , xk} : 0̂ < x1 < x2 < · · · < xk < 1̂}

ordered by inclusion. Also, the reduced Euler characteristic of the order complex ∆(P )

is given by the Möbius function of P . We call the order complex of the face poset of

a Frobenius interval the Frobenius complex.

Consider the interval [0, n]Λ. Observe that if n does not belong to the semigroup Λ

then we consider the order complex ∆([0, n]Λ) to be the empty set which we view as

contractible. This is distinct from the case when n equals one of the generators, that

is, when the order complex ∆([0, n]Λ) only contains the empty set. In this case, we

view this as a sphere of dimension −1.
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We begin our study of the topology of the Frobenius complex by finding the

reduced Euler characteristic. Let ck(n) denote the number of chains of length k in

the Frobenius interval [0, n]Λ.

Theorem 4.3.1. The generating function for the f -polynomial of an order complex

is given by ∑
n≥0

f(∆(n), x) · qn =
1

1− x
∑

n≥1 c1(n) · qn
.

Proof. ∑
n≥0

f(∆(n), x) · qn =
∑
n≥0

∑
k≥0

fk−1(∆(n)) · xk · qn

=
∑
k≥0

∑
n≥k

ck(n) · qn · xk

=
∑
k≥0

(∑
n≥1

c1(n) · qn
)k

· xk

=
1

1− x
∑

n≥1 c1(n) · qn

Corollary 4.3.2. Let µ(n) denote the Möbius function of the interval [0, n]Λ. Then∑
n≥0

µ(n) · qn =
1

1 +
∑

n≥1 c1(n) · qn
.

Proof. By setting x = −1 in Theorem 4.3.1 and using Philip Hall’s expression for the

Möbius function, the result follows.

Now assuming that Λ is generated by two relatively prime positive integers a

and b, we have that

1 +
∑
n≥1

c1(n) · qn =
1− qab

(1− qa) · (1− qb)
;
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see [4, Exercise VIII.1.5]. Hence the Möbius function is given by∑
n≥0

µ(n) · qn =
(1− qa) · (1− qb)

1− qab

= 1− qa − qb + qa+b + qab − qab+a − qab+b + qab+a+b + · · · .

Since the reduced Euler characteristic of the Frobenius complex takes on the values

+1, −1, or 0, we are lead to conjecture Theorem 4.4.1.

Now assume that Λ is generated by {a, a + d, a + 2d, . . . , a + (a − 1)d} where a

and d are relatively prime.

Lemma 4.3.3. Any non-zero element of Λ can be written uniquely as a sum of one

generator and a multiple of the positive integer a.

Proof. Assume that n is an integer that can be written as a sum of k generators

where k > 1. That is,

n = (a+ s1d) + (a+ s2d) + · · ·+ (a+ skd)

= ka+ (s1 + s2 + · · ·+ sk)d.

Using the division algorithm, we write s1 +s2 + · · ·+sk = qa+r where 0 ≤ r ≤ a−1.

Therefore, we get n = (k + q − 1)a+ (a+ rd).

From this lemma, it is straightforward to see that

1 +
∑
n≥1

c1(n) · qn =
1

1− qa

(
1 +

a−1∑
i=1

qa+id

)

=
1− qd + qa+d − qa+ad

(1− qa) · (1− qd)

Hence, using Corollary 4.3.2, the Möbius function is given by∑
n≥0

µ(n) · qn =
(1− qa) · (1− qd)

1− qd + qa+d − qa+ad
.

4.4 Two generators

When the semigroup Λ is generated by two generators a and b which are not relatively

prime, the case can be reduced by dividing by their greatest common divisor. Hence
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we assume that they are relatively prime, that is, gcd(a, b) = 1. Furthermore, we also

assume that 1 < a < b.

With two generators, the associated Frobenius poset can be embedded on a cylin-

der. By Bezout’s identity there are two integers p and q such that p · a + q · b = 1.

Define a group morphism γ : Z −→ Z2ab × Z by γ(x) = ((p · a − q · b) · x, x), that

is, the first coordinate is modulo 2 · a · b which corresponds to encircling the cylin-

der. Observe that γ(a) = ((p · a − q · b) · a, a) = ((p · a + q · b) · a, a) = (a, a) and

γ(b) = ((p·a−q ·b)·b, b) = ((−p·a−q ·b)·b, b) = (−b, b). Hence the two cover relations

x ≺ x+ a and x ≺ x+ b in the Frobenius poset translates to γ(x) + (a, a) = γ(x+ a)

and γ(x) + (−b, b) = γ(x + b). In other words, to take an a step we make the step

(a, a) on the cylinder and a b step corresponds to the step (−b, b). As an example,

see Figure 4.1 where a = 3 and b = 4.

In general, the Frobenius poset is not a lattice. We have the four relations a <Λ

a + b, b <Λ a + b, a <Λ ab, and b <Λ ab. However, since ab − a − b is the Frobenius

number we have a + b 6≤Λ ab, showing that the poset is not a lattice. In Figure 4.1,

we see that 3 and 4 are both lower bounds for 7 and 12.

In the case where the two generators are 2 and 3, the semigroup is N − {1} and

the order complex ∆([0, n]Λ) consists of all subsets of the interval [2, n − 2] that do

not contain two consecutive integers. This is known as the complex of sparse subsets.

Its homotopy type was first determined by Kozlov [52, Proposition 4.6]. See also [36,

Corollary 6.3] where it appears as the independence complex of a path. Billera and

Myers [7, Corollary 2] showed this complex is non-pure shellable.

Theorem 4.4.1. Let the sub-semigroup Λ be generated by two relatively prime posi-

tive integers a and b with 1 < a < b. The order complex of the associated Frobenius

interval [0, n]Λ, for n ≥ 1, is homotopy equivalent to either a sphere or contractible,
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according to

∆([0, n]Λ) '



S2n/ab−2 if n ≡ 0 mod a · b,

S2(n−a)/ab−1 if n ≡ a mod a · b,

S2(n−b)/ab−1 if n ≡ b mod a · b,

S2(n−a−b)/ab if n ≡ a+ b mod a · b,

point otherwise.

We now turn our attention to the proof of this result. Consider the Frobenius

interval [0, n]Λ. Define the three sets B`, C` and D` as follows:

B` = {`ab+ 2b, `ab+ 3b, . . . , `ab+ (a− 1)b},

C` = {b, ab, ab+ b, 2ab, 2ab+ b, 3ab, . . . , (`− 1)ab+ b, `ab},

D` = C` ∪ {`ab+ b}.

Note that C0 = ∅, D0 = {b}, and C`+1 = D` ∪ {(`+ 1)ab}.

Example 4.4.2. (Part 1) For a = 3, b = 4 and n = 20, the Frobenius complex

consists of 216 chains (faces) and has f -vector (f0, f1, . . . , f5) = (1, 13, 51, 80, 56, 15).

Let Q be the infinite chain {a < a + b < ab + a < ab + a + b < 2ab + a < · · · }

adjoined with a new maximal element 1̂Q, that is,

Q = {m ∈ N : m ≡ a, a+ b mod ab} ∪ {1̂Q}.

We now define a map ϕ from the face poset of the order complex ∆([0, n]Λ) to the

poset Q. We will later show that ϕ is an order-preserving poset map with natural
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matchings on the fibers. Let ϕ be defined by

ϕ(x) =



`ab+ a if `ab+ a <Λ n,

C` ⊆ x,

Bt ∩ x = ∅ for 0 ≤ t ≤ `,

and `ab+ b 6∈ x;

`ab+ a+ b if `ab+ a+ b <Λ n,

D` ⊆ x,

Bt ∩ x = ∅ for 0 ≤ t ≤ `,

and `ab+ ab 6∈ x;

1̂Q otherwise.

In order to make acyclic pairings on the fibers of ϕ, it will be useful to have a de-

scription of the chains that are mapped to the maximal element 1̂Q and their structure.

Let Γ denote this collection of chains in the Frobenius poset, that is, Γ = ϕ−1(1̂Q).

Lemma 4.4.3. The collection Γ consists of the chains x that satisfy one of the fol-

lowing four conditions:

1. There exists a non-negative integer λ such that Cλ ⊆ x, λab+b 6∈ x, Bλ∩x 6= ∅,

and Bt ∩ x = ∅ for 0 ≤ t ≤ λ− 1.

2. There exists a non-negative integer λ such that Dλ ⊆ x, Bλ ∩ x 6= ∅, and

Bt ∩ x = ∅ for 0 ≤ t ≤ λ− 1.

3. There exists a non-negative integer λ such that x = Cλ and λab+ a 6<Λ n.

4. There exists a non-negative integer λ such that x = Dλ and λab+ a+ b 6<Λ n.

We will refer to the condition met by a chain as its type and the associated λ as

its parameter. For example, any chain containing both b and 2b would be a chain of

type 2 with parameter 0.

Proof of Lemma 4.4.3. It is straightforward to see that any element of type 1, 2, 3,

or 4 would indeed be mapped to 1̂Q by the map ϕ.
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Suppose x is a chain belonging to Γ but is not of type 1, 2, 3, or 4. We claim that

if C` ⊆ x then D` ⊆ x. Suppose not, that is, suppose `ab + b 6∈ x. Since x is not

mapped to `ab+a, we must have either Bt∩x 6= ∅ for some 0 ≤ t ≤ ` or `ab+a 6<Λ n

by definition of ϕ. Let t be the smallest integer such that Bt ∩x 6= ∅. If t = `, then x

is a chain of type 1 with parameter `. If 0 ≤ t ≤ ` − 1 then x is a chain of type 2

with parameter t. This is a contradiction. Therefore, we must have Bt ∩x = ∅ for all

0 ≤ t ≤ ` and `ab+ a 6<Λ n.

We claim this forces x to be a chain of type 3 with parameter `, that is, x = C`.

We already know C` ⊆ x so we must show that x ⊆ C`. Note that we can write

all elements of C` in the form tab + ia + jb where 0 ≤ t ≤ `, ia + jb < ab, and

(i, j) = (0, 0) or (0, 1). Note, however, that the elements 0 and `ab + b are of this

form but are in neither C` nor x. Thus, we must show that all elements that are not

of this form are not elements of x.

Suppose 0 ≤ t ≤ ` − 1. If i = 0 and 2 ≤ j ≤ a − 1, we know that tab + jb 6∈ x

because Bt ∩ x = ∅. Now assume 1 ≤ i ≤ (b − 1) and j = 0. Then tab + ia cannot

be in x since it is not comparable to tab+ b ∈ x. Similarly, if i, j ≥ 1, we know that

tab+ ia+ jb cannot be in x since it is not comparable to (t+ 1)ab ∈ x.

We now let t = `. Again, we cannot have i = 0 and 2 ≤ j ≤ a − 1 because

B` ∩ x = ∅. If i ≥ 1, since `ab+ a 6<Λ n, we see that `ab+ ia+ jb is not comparable

to n and cannot be in x.

Finally, we suppose t ≥ `+ 1. Using the Frobenius number, we know that

n ≤ `ab+ a+ (ab− a− b)

= (`+ 1)ab− b

since `ab+ a would be comparable to any larger integer. This means that tab+ ia+

jb 6<Λ n for t ≥ ` + 1 and thus cannot be an element of x. Therefore, x = C` and x

is a chain of type 3. This is also a contradiction, so we must have D` ⊆ x.

By an analogous argument, using the fact that x is not mapped by ϕ to `ab+a+b,

we see that D` ⊆ x implies C`+1 ⊆ x. The only difference occurs when we are

assuming Bt ∩ x = ∅ for 0 ≤ t ≤ ` and `ab + a + b 6<Λ n and are trying to prove
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`ab + ia + jb is not an element of x for i ≥ 1. Here we must separate the cases

j = 0 and j ≥ 1. If j = 0, the sum `ab + ia is not in x since it is not comparable

to `ab + b ∈ x. If j ≥ 1, the sum `ab + ia + jb is not comparable to n because

`ab+ a+ b 6<Λ n.

Since C0 = ∅ ⊆ x, these two claims together show that C0 ⊆ D0 ⊆ C1 ⊆ D1 ⊆

· · · ⊆ x. This cannot happen since x is a finite chain. Therefore, every element in Γ

must be one of the above four types.

Continuation of Example 4.4.2. (Part 2) The fiber Γ consists of the following 24

chains given by type.

• Type 1: {8}, {8, 11}, {8, 12}, {8, 14}, {8, 16}, {8, 17}, {8, 11, 14}, {8, 11, 17},

{8, 12, 16}, {8, 14, 17}, {8, 11, 14, 17}. These chains all have parameter λ = 0.

• The chains of type 2 are obtained by adjoining the element 4 to every chain of

type 1. Each of these has parameter λ = 0. This is an example of (i) and (ii)

of the next lemma.

• Type 3: There is one chain {4, 12} and it has parameter λ = 1.

• Type 4: There is one chain {4, 12, 16} and it has parameter λ = 1.

The structure of Γ is given in the following lemma.

Lemma 4.4.4. The following four conditions hold for the collection Γ.

(i) Let x be a chain of type 1 with parameter λ in Γ. Then x∪{λab+ b} is a chain

in Γ of type 2 with the same parameter λ.

(ii) Let y be a chain of type 2 with parameter λ in Γ. Then y−{λab+ b} is a chain

in Γ of type 1 with the same parameter λ.

(iii) Let x be a chain of type 1 with parameter λ and y be a chain of type 2 with

parameter µ such that x ≺ y. Then λ ≥ µ holds with equality if and only if

y = x ∪ {λab+ b}.
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(iv) If z is an element of type 4, then z does not cover any element of type 1 or 2.

Proof. Suppose x is a chain of type 1 with parameter λ. In order to prove the first

statement, we must ensure that x∪{λab+ b} is a valid chain. By definition we know

that λab and λab + jb are elements of x for some 2 ≤ j ≤ (a − 1). It is clear that

λab+ b lies in the interval [λab, λab+ jb]Λ because

λab+ b− λab = b and λab+ jb− (λab+ b) = (j − 1)b

which are both elements of the semigroup Λ. Thus, x ∪ {λab + b} is a valid chain

in Λ. Since Dλ is a subset of x ∪ {λab + b} and the other requirements are met by

the elements from x, we see that x∪{λab+ b} is a chain of type 2 with parameter λ.

To prove the second statement, we simply note that if y is a chain of type 2

with parameter λ, removing the element λab+ b from y gives a chain of type 1 with

parameter λ.

Let x and y be chains as described in the third statement. If we assume that

y = x ∪ {λab + b} then it is clear from the definition of the types in Lemma 4.4.3

that λ = µ. Now suppose that y is not x ∪ {λab + b}. Since λab + b is not an

element of y, we know that Dt for t ≥ λ is not contained in y. Therefore we cannot

have λ ≤ µ.

The fourth statement can be proven by noting every chain of type 1 or 2 has a

non-empty intersection with Bλ for some λ. However, any chain z of type 4 does not

intersect Bλ for any λ. Therefore z cannot cover any element of type 1 or 2.

We now turn our attention to the map ϕ.

Lemma 4.4.5. The map ϕ : F(∆([0, n]Λ)) −→ Q is an order-preserving poset map.

Proof. To show that ϕ is order-preserving, let x and y be elements of the Frobenius

complex such that x ⊆ y.

Suppose ϕ(x) = `ab + a. This means we have C` ⊆ x ⊆ y. Since tab + b ∈ y for

0 ≤ t ≤ `− 1, y cannot be mapped to tab+ a by the definition of ϕ. Likewise, since
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tab + ab ∈ y, y cannot be mapped to tab + a + b. Therefore, ϕ(x) ≤Q ϕ(y). The

argument is similar if ϕ(x) = `ab+ a+ b.

Suppose ϕ(x) = 1̂Q and x is a chain of type 1 or type 2 with parameter λ. Then

Cλ ⊆ x ⊆ y. Again, since tab+ b and tab+ ab are elements of y for 0 ≤ t ≤ λ− 1, y

cannot be mapped by ϕ to tab+ a or tab+ a+ b, respectively. Also, since Bλ∩ y 6= ∅,

we cannot have y mapped to tab+ a or tab+ b for t ≥ λ. Therefore ϕ(y) = 1̂Q.

Suppose x is of type 3 with parameter λ. As before, since Cλ ⊂ y, the element y

cannot be mapped to tab+ a or tab+ a+ b for 0 ≤ t ≤ λ− 1. Since λab+ a 6<Λ n, y

cannot be mapped to λab + a or λab + a + b. Finally, using the Frobenius number

as we did in Lemma 4.4.3, we know that n ≤ (λ + 1)ab − b. Thus y cannot be

mapped to tab+ a or tab+ a+ b for t ≥ λ+ 1 since they are not comparable with n.

Thus ϕ(y) = 1̂Q. Using similar reasoning, we see this holds if x is of type 4 as well.

Therefore, ϕ is order-preserving.

Lemma 4.4.6. For m <Q 1̂Q, the collection {(x, x ∪ {m}) : m 6∈ x ∈ ϕ−1(m)} is a

perfect acyclic matching on the fiber ϕ−1(m).

Proof. Let x ∈ ϕ−1(`ab + a) and suppose `ab + a ∈ x. It is clear that d(x) =

x − {`ab + a} belongs to the Frobenius complex ∆([0, n]Λ) since we simply remove

the element `ab + a. Also, since `ab + a <Λ n, we see from the definition of ϕ that

removing the element `ab + a will not affect where x is mapped. Thus, we have

ϕ(d(x)) = `ab+ a.

Suppose `ab + a 6∈ x. We need to argue that u(x) = x ∪ {`ab + a} is an element

of the Frobenius complex and that it is mapped to `ab + a. By definition of ϕ we

know that `ab ∈ x. Thus we only need to ensure that elements which are comparable

to `ab but not to `ab + a are not contained in x. The only such elements are those

that can only be written as `ab + jb for 1 ≤ j ≤ a− 1. However, these are elements

of B` ∪ {`ab + b} and are therefore not in x. Again, since the element `ab + a does

not affect where x is mapped, we conclude ϕ(u(x)) = `ab+ a.

Now suppose that x ∈ ϕ−1(`ab+ a+ b) with `ab+ a+ b ∈ x. By similar reasoning

as above, we see that d(x) = x − {`ab + a + b} is an element of the Frobenius
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complex that is also mapped to `ab + a + b. Suppose `ab + a + b 6∈ x. To see that

u(x) = x ∪ {`ab + a + b} is an element of the Frobenius complex that is mapped

to `ab + a + b, we note that `ab + b ∈ x by definition. The only elements that are

comparable to `ab+ b but not to `ab+ a+ b are elements that can only be written as

`ab + jb where 2 ≤ j ≤ a. Since these are elements of B` ∪ {`ab + ab}, they are not

allowed to be in x. Therefore, ϕ(u(x)) = `ab+ a+ b and this matching is perfect.

Finally, the matching on each fiber is clearly acyclic since the same element is

either added or removed from a chain.

Continuation of Example 4.4.2. (Part 3) In our example, 152 chains are mapped

to the element 3 in Q, 40 chains are mapped to 7 in Q, and none are mapped to 15

and 19. All of these chains are matched perfectly in our Morse matching.

Thus we have reduced the problem to finding an acyclic matching on the fiber

Γ = ϕ−1(1̂Q).

Lemma 4.4.7. The collection {(x, x ∪ {λab + b}) : x is a chain of type 1 with

parameter λ} is an acyclic matching on Γ where the critical cells are the chains of

type 3 and 4.

Proof. We have seen from parts (i) and (ii) of Lemma 4.4.4 that to every element x

of type 1 there exists a corresponding element y of type 2 with the same parameter

and vice-versa. In other words, this is a perfect matching on chains of type 1 and 2.

Chains of type 3 and 4 are left unmatched.

We must now show that this matching is acyclic, that is, a directed cycle of

the form described in Definition 4.2.4 cannot exist. Let z1 be a chain of type 2

with parameter λ. Then d(z1) = z1 − {λab + b} is an element of type 1 with the

same λ. Part (iii) of Lemma 4.4.4 tells us that any z2 different from z1 will have a

smaller parameter. Therefore, we cannot return to z1 using our matching. Hence the

matching is acyclic.

Continuation of Example 4.4.2. (Part 4) All type 1 chains are matched with

chains of type 2. We are only left with the two chains {4, 12} and {4, 12, 16} of
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type 3 and 4, respectively. As we will see in the proof of Theorem 4.4.1, these two

can be matched together without creating any cycles in the matching. Hence, the

complex is contractible.

Lemma 4.4.8. Let n = kab + r for 0 ≤ r < ab. If r = 0, a, b, or a + b, then the

matching given in Lemma 4.4.7 has exactly one critical cell. If r = jb for 2 ≤ j ≤

a− 1, there are exactly two unmatched chains of Γ. Otherwise, there are no critical

cells in Γ. More precisely, the critical cells of Γ are given by

{Dk−1} if n = kab,

{Ck} if n = kab+ a,

{Ck} if n = kab+ b,

{Dk} if n = kab+ a+ b,

{Ck, Dk} if n = kab+ ib, 2 ≤ i ≤ a− 1,

∅ otherwise.

Proof. The only elements of Γ that were not matched are those of type 3 and 4 in

Lemma 4.4.3. Thus, we need to determine the number of type 3 and 4 elements in Γ,

that is, the number of integers λ such that λab <Λ n and λab + a 6<Λ (type 3) and

integers λ such that λab+ b <Λ n and λab+ a+ b 6<Λ n (type 4).

Using the Frobenius number, we know that every integer smaller than

n− (ab− a− b) = (k − 1)ab+ a+ b+ r

is comparable with n with respect to the order <Λ. We do not need to check tab+ a

or tab+a+b for 0 ≤ t < k because these numbers are always comparable to n (unless

r = 0 when we must check (k− 1)ab+a+ b). We also do not need to consider tab+a

or tab+ a+ b for t ≥ k+ 1 because we would have tab+ a, tab, tab+ a+ b, and tab+ b

all not contained in [0, n]Λ. Thus, we only need to check (k − 1)ab+ a+ b (if r = 0),

kab+ a, and kab+ a+ b

There are nine cases to consider.
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– r 6∈ Λ. Then we have both

kab+ a 6<Λ n and kab 6<Λ n

and

kab+ a+ b 6<Λ and kab+ b 6<Λ n.

Therefore, there are no critical cells.

Otherwise, r belongs to the semigroup Λ and we can write r = ia+ jb, where i and j

are unique non-negative integers.

– (i, j) = (0, 0). We see that kab+ a 6<Λ n, but also kab 6<Λ n. Similarly, we have

kab+ a+ b 6<Λ n and kab+ b 6<Λ n. Finally, we check and see that

(k − 1)ab+ a+ b 6<Λ n

since kab− ((k−1)ab+a+ b) = ab−a− b which is the Frobenius number. Also

(k − 1)ab+ b <Λ n

because kab− ((k−1)ab+ b) = ab− b = (a−1)b ∈ Λ. Thus we have one critical

cell Dk−1.

– (i, j) = (1, 0). We can easily see that kab + a + b 6<Λ n and kab + b 6<Λ n.

However, we have kab+a 6<Λ n while kab <Λ n. Therefore, we have one critical

cell Ck.

– (i, j) = (0, 1). In this case we again see that kab+a+ b 6<Λ n and kab+ b 6<Λ n.

However, we still have kab+a 6<Λ n, while kab <Λ n. Thus we have one critical

cell Ck.

– (i, j) = (1, 1). First we note that kab+ a <Λ n. Thus we only check to see that

kab + a + b 6<Λ n and kab + b <Λ n. This is easily true, so there is one critical

cell Dk.

– i = 0, 2 ≤ j ≤ a − 1. Clearly kab + a 6<Λ n while kab <Λ n. Also, we see that

kab+ a+ b 6<Λ n while kab+ b <Λ n. Thus the unmatched cells are Ck and Dk.
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– i ≥ 1, j ≥ 2. Both kab+a and kab+a+b are both comparable with n. Therefore

there are no critical cells.

– i ≥ 2, j = 0. We see that kab+ a is comparable with n. Also, both kab+ a+ b

and kab+ b are not comparable with n. Therefore there are no critical cells.

– i ≥ 2, j = 1. Then kab + a and kab + a + b are both comparable with n.

Therefore there are no critical cells.

Proof of Theorem 4.4.1. By applying the Patchwork Theorem to the function ϕ we

see that the homotopy type of ∆([0, n]Λ) depends only on the fiber ϕ−1(1̂Q) = Γ.

Applying Lemmas 4.4.7 and 4.4.8, there is only one critical cell when n ≡ 0, a, b, a+ b

mod ab and no critical cells in every other case except when i = 0 and 2 ≤ j ≤ a− 1.

However, we claim in this last case we can add the pair (Ck, Dk) to the matching

on Γ and still be left with an acyclic matching.

Lemma 4.4.4 (iv) shows that a chain of type 4 does not cover any chain of type 1.

Hence, when adding the edge (Ck, Dk) to the Morse matching of Γ, it will not create

any directed cycles through the chain Dk. Hence the matching is still acyclic and

there are no critical cells in this case.

The critical cells for n ≡ 0, a, b, a+b mod ab can be easily seen to be of dimension

2n/ab−2, 2(n−a)/ab−1, 2(n−b)/ab−1, and 2(n−a−b)/ab, respectively. Therefore,

applying the main theorem of reduced discrete Morse theory, Corollary 4.2.6, proves

the result.

4.5 Generators in the arithmetic sequence {a, a+ d, . . . , a+ (a− 1)d}

Recall that the qd-analogue of a non-negative integer a is defined as follows:

[a]qd = 1 + qd + (qd)2 + · · ·+ (qd)a−1.

Theorem 4.5.1. Let Λ be the semigroup generated by the integers {a, a + d, a +

2d, . . . , a + (a − 1)d} where a and d are relatively prime. The order complex of the
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associated Frobenius interval [0, n]Λ is homotopy equivalent to a wedge of spheres

where the ith Betti number satisfies∑
n≥0

β̃iq
n = qa+(i+1)(a+d) · [a]qd · [a− 1]i+1

qd
.

Example 4.5.2. For the generators {4, 5, 6, 7}, that is a = 4 and d = 1, we have∑
n≥0

β̃1q
n = q14 · [4] · [3]2 = q14 + · · ·+ 3q20 + q21,∑

n≥0

β̃2q
n = q19 · [4] · [3]3 = q19 + 4q20 + · · ·+ q28,

and no other generating polynomial contains the q20 term. Hence the Frobenius

complex ∆([0, 20]Λ) is homotopy equivalent to a wedge of three circles and four 2-

spheres.

Roberts showed in [64] that the Frobenius number of the arithmetic sequence

{a, a+ d, a+ 2d, . . . , a+ sd} is given by(⌊
a− 2

s

⌋
+ 1

)
· a+ (d− 1) · (a− 1)− 1.

Therefore, for the generators {a, a+d, a+2d, . . . , a+(a−1)d}, we have the Frobenius

number (⌊
a− 2

a− 1

⌋
+ 1

)
· a+ (d− 1)(a− 1)− 1 = (a− 1)d.

We will proceed as before and use discrete Morse theory and the Patchwork The-

orem. Define the set A as follows:

A = {a+ d, a+ 2d, . . . , a+ (a− 1)d}.

Definition 4.5.3. Given n, let R be the chain {1, 2, 3, 4, . . . , n− a} with a maximal

element 1̂R adjoined. That is,

R = {1, 2, 3, . . . , n− a} ∪ {1̂R}.
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If x = {x1, x2, . . . , xk} ∈ ∆([0, n]Λ) and we define x0 = 0, let ψ : F(∆([0, n]Λ)) → R

be a map defined by

ψ(x) =



xi−1 + a, xi − xi−1 6∈ A,

xj − xj−1 ∈ A

for 1 ≤ j ≤ i− 1,

xk + a, n− xk 6∈ {a} ∪ A,

xj − xj−1 ∈ A

for 1 ≤ j ≤ k,

1̂R, otherwise.

Example 4.5.4. Suppose a = 3, d = 1, and n = 19. Then A = {4, 5}.

• ψ({3, 7, 12}) = 3 since x1 − x0 = 3.

• ψ({4, 8, 15}) = 11 since x3 − x2 = 7.

• ψ({5, 9, 13}) = 16 since n− x3 = 6.

• ψ({5, 9, 14}) = 1̂R.

Lemma 4.5.5. The element m · d is not contained in the semigroup Λ for any 1 ≤

m ≤ a− 1.

Proof. Suppose m · d ∈ Λ. Then, by Lemma 4.3.3 we know m · d = (a+ i · d) + j · a.

Thus, we see that (m− i) · d = (j + 1) · a. Since a and d are relatively prime, it must

be that m− i ≥ a, that is, m ≥ a+ i ≥ a. Since m ≤ a− 1, the result follows.

Lemma 4.5.6. Let xi and xj be elements of a chain x such that xi − xj ∈ {a} ∪ A.

Then the open interval (xi, xj)Λ is empty.

Proof. Suppose xj − xi = a+md ∈ {a} ∪A and e = xi + (a+ `d) ∈ (xi, xj), that is,

0 ≤ ` < m ≤ (a − 1). Then xj − e = (m − `)d. By the previous lemma, we know

that xj and e are not comparable. Therefore, e cannot exist.

The following lemma is an immediate consequence of Lemma 4.5.6 and the defi-

nition of the function ψ.
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Lemma 4.5.7. If x and y are chains such that x ⊆ y and ψ(x) = xi−1 + a then

xj = yj for 1 ≤ j ≤ i− 1. In particular, if ψ(x) = 1̂R then x = y.

We can finally give a few properties of the map ψ.

Lemma 4.5.8. The map ψ : F(∆([0, n]Λ))→ R is an order preserving poset map.

Proof. Suppose x and y are chains such that x ⊆ y with ψ(x) = xi−1 +a. We wish to

show that ψ(y) ≥ xi−1 + a. The previous lemma says that xj = yj for 1 ≤ j ≤ i− 1.

In particular, yj − yj−1 ∈ A. Therefore, by definition of the function ψ, we have

ψ(y) ≥ yi−1 + a = xi−1 + a.

Lemma 4.5.9. For m <R 1̂R, the collection {(x, x ∪ {m}) : m 6∈ x ∈ ψ−1(m)} is a

perfect acyclic matching on the fiber ψ−1(m).

Proof. Suppose ψ(x) = xi−1 + a and xi−1 + a ∈ x. That is, xi = xi−1 + a. It is clear

that d(x) = x − {xi} is a valid chain in the Frobenius complex since we are simply

removing an element. We need to check that ψ(d(x)) = xi−1 + a. We know that

d(x)j − d(x)j−1 = xj − xj−1 ∈ A for 1 ≤ j ≤ (i − 1). Suppose d(x)i − d(x)i−1 =

xi+1 − xi−1 ∈ A. Then, by Lemma 4.5.6, (xi−1, xi+1)Λ would have to be empty. This

contradicts the fact that xi ∈ (xi−1, xi+1)Λ in the chain x. Since d(x)i − d(x)i−1 6∈ A

and d(x)j−d(x)j−1 ∈ A for 1 ≤ j ≤ (i−1), we have ψ(d(x)) = d(x)i−1 +a = xi−1 +a.

Now suppose that ψ(x) = xi−1 + a and xi−1 + a 6∈ x. It is clear that u(x) =

x ∪ {xi−1 + a} would be mapped to xi−1 + a. Thus, it must be shown that u(x) is

a valid chain, that is, xi−1 + a is comparable to xi. We know that xi − xi−1 6∈ A.

Suppose

xi − xi−1 = (a+ s1d) + (a+ s2d) + · · ·+ (a+ skd)

where s1 ≤ s2 ≤ · · · ≤ sk ≤ a− 1 and k ≥ 2. Then

xi − (xi−1 + a) = (a+ (s1 + s2)d) + (a+ s3d) + · · ·+ (a+ skd).

If s1 + s2 ≤ a − 1, then we have written this difference as a sum of generators.

Therefore, xi and xi−1 + a are comparable.
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If s1 +s2 > a−1, then the difference is larger than (a−1)d, which is the Frobenius

number of the generators. Thus, xi and xi−1 + a are comparable. Therefore, u(x) is

a valid chain.

Finally, the matching on the fiber is clearly acyclic since the same element is either

added or removed from a chain.

Using the Patchwork Theorem, we have an acyclic matching on F(∆([0, n]Λ))

whose only critical cells are the elements of the fiber ψ−1(1̂R). Note that Lemma 4.5.7

says that each of these cells are maximal. Therefore, due to Theorem 4.2.7, we will

have that ∆([0, n]Λ) is homotopy equivalent to a wedge of spheres whose number and

dimension corresponds to the number and dimension of the critical cells.

Thus, we are interested in counting the number of chains that are mapped to 1̂R.

The following lemma is straightforward from the definition of the function ψ.

Lemma 4.5.10. The fiber ψ−1(1̂R) consists of elements x = {x1, x2, . . . , xk} where

xi − xi−1 ∈ A for 1 ≤ i ≤ k and n− xk ∈ {a} ∪ A.

Proof of Theorem 4.5.1. We know from Lemma 4.5.10 that the critical cells are in

bijection with compositions of n where the last part belongs to the set {a} ∪ A and

the remaining parts belong to the set A. Furthermore, if such a composition has i+2

parts, it will contribute to the i-dimensional homology. Hence, fixing i, we obtain the

generating function

∑
n≥0

β̃iq
n =

(
a−1∑
k=0

qa+kd

)
·

(
a−1∑
`=1

qa+`d

)i+1

= qa+(i+1)(a+d) ·

(
a−1∑
k=0

qkd

)
·

(
a−2∑
`=0

q`d

)i+1

= qa+(i+1)(a+d) · [a]qd · [a− 1]i+1
qd
.
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4.6 Concluding remarks

A more general situation is to consider a sub-semigroup Λ of Nd and define a partial

order on Zd by µ ≤Λ λ if λ − µ ∈ Λ. Define the semigroup algebra k[Λ] as the

linear span of the monomials whose powers belong to Λ, that is, k[Λ] = span{xλ =

xλ11 · · ·x
λd
d : λ ∈ Λ}. Laudal and Sletsjøe [55] and Peeva, Reiner, and Sturmfels [61]

make the connection between the homology of the order complex of intervals in this

partial order and the semigroup algebra k[Λ].

Theorem 4.6.1 (Laudal–Sletsjøe and Peeva–Reiner–Sturmfels). For Λ a sub-semigroup

of Nd with the associated monoid Λ, the following two equalities hold

dimk Tor
k[Λ]
i (k, k)λ = dimk H̃i−2(∆([0, λ]Λ), k),

dimk Extik[Λ](k, k)λ = dimk H̃
i−2(∆([0, λ]Λ), k),

for all λ ∈ Λ and i ≥ 0.

For more information, see the dissertation of Stamate [67].

The papers [14, 49, 61] continue to study the topology of the intervals in this

partial order. Hersh and Welker [49] give bounds on the indices of the non-vanishing

homology groups of the order complex of the intervals. Peeva, Reiner, and Sturm-

fels [61] show that the semigroup ring k[Λ] is Koszul if and only if each interval in Λ

is Cohen-Macaulay.

As a corollary, we obtain

Corollary 4.6.2. Let a and b be relatively prime integers such that 1 < a < b. Let R

denote the ring k[y, z]/(yb − za). Then the multigraded Poincaré series

PR
k (t, q) =

∑
n∈Λ

∑
i≥0

dimk

(
TorRi (k, k)n

)
tiqn

=
∑
n∈Λ

∑
i≥0

dimk

(
ExtiR(k, k)n

)
tiqn

is given by the rational function

1 + tqa + tqb + t2qa+b

1− t2qab
.
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Proof. Let Λ be the semigroup generated by a and b. Observe that the ring R is

isomorphic to the semigroup ring k[Λ]. By combining Theorems 4.4.1 and 4.6.1 the

multigraded Poincaré series is given by

PR
k (t, q) = 1 + tqa + tqb + t2qa+b + t2qab + t3qab+a + t3qab+b + t4qab+a+b + · · · ,

which is the sought-after rational generating function.

We now highlight three open questions.

Question 4.6.3. The Frobenius poset generated by two relatively prime integers

can be embedded on a cylinder. There are many results (see, for example, [6, 28]) on

posets that can be embedded in the plane. Can any of these results be extended to

cylindrical posets?

Question 4.6.4. There are other classes of generators, such as a geometric sequence,

that have closed formulas for the Frobenius number, see [58]. Does the Frobenius

complex have a nice topological representation in this case?

Question 4.6.5. More generally, all computational evidence suggests that the Frobe-

nius complex – even for randomly selected generators – has a relatively simple topol-

ogy, that is, it is torsion-free. Is there a set of generators that creates torsion in the

associated Frobenius complex?

Copyright c© Eric Logan Clark, 2011.
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Chapter 5 Enumerating Q-factorial posets

5.1 Introduction

A poset is said to be (2 + 2)-free if it does not contain an induced sub-poset that

is isomorphic to the union of two disjoint 2-chains. These (2 + 2)-free posets have

been completely categorized by Bogart [15]. Given a poset P , he defined the strict

downset of x ∈ P by

D(x) = {y : y < x}

and proved the poset is (2 + 2)-free if and only if the set of strict downsets of P can

be linearly ordered by inclusion. Fishburn [43] also showed that a poset is (2 + 2)-

free when it is isomorphic to an interval order. Bousquet–Mélou, Claesson, Dukes,

and Kitaev [17] found bijections between the following four sets: unlabeled (2 + 2)-

free posets, a class of involutions, a family of permutations, and ascent sequences.

Claesson and Linusson [24] then constructed a family of (2+2)-free posets they called

factorial posets. They were then able to show that there were n! such posets with n

vertices. In the following chapter, we will extend the construction used by Claesson

and Linusson to create and enumerate a new family of posets. We will end with a

few open questions and directions for further research.

5.2 Q-factorial posets

Definition 5.2.1. Let P and Q be labeled posets on the set [n] = {1, 2, . . . , n}. The

poset P is said to be Q-factorial if

1. i <P j implies i <Q j,

2. i <Q j <P k implies i <P k.

Let F(Q) denote the collection of Q-factorial posets.
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An example was given in Figure 1.2. Given an arbitrary poset Q, we would like to

know the number of Q-factorial posets, that is, the cardinality |F(Q)|.

For a poset Q, we will denote by I(Q) the set of all strict inequalities in Q. For

example, I(B2) = {1 < 2, 1 < 3, 1 < 4, 2 < 4, 3 < 4}, see Figure 5.1. If P is a

Q-factorial poset, it is clear from the first condition that the set of strict inequalities

of P is a subset of the set of strict inequalities of Q, that is I(P ) ⊆ I(Q). In other

words, we can create P by removing inequalities from Q. However, care must be taken

when removing relations because removing one might force the removal of others.

Lemma 5.2.2. Suppose P is a Q-factorial poset, i <Q j <Q k, and i 6<P k. Then it

must be that j 6<P k.

Proof. Suppose j <P k. Then we have i <Q j <P k. The second condition from

Definition 5.2.1 forces i <P k which is a contradiction.

When removing relations we must also be aware of transitivity. That is, we must

have i <P k if i <P j and j <P k. However, the forced removal of elements in

Lemma 5.2.2 breaks this chain of transitivity. Other than this, the relations can be

removed independently of each other. More specifically, the removal of h <Q i does

not force the removal of j <Q k for any k 6= i.

For every poset Q define the polynomial R(Q) by

R(Q) =
∑

P∈F(Q)

q|I(Q)−I(P )|.

Note that we can compute |F(Q)| by setting q = 1 in R(Q).

Let k be an element of Q. Define Fk(Q) ⊆ F(Q) as the collection of Q-factorial

posets P that can only be created by removing inequalities of the form i ≤Q k. That

is,

Fk(Q) = {P ∈ F(Q) : a <Q b but a 6<P b implies b = k}.

Likewise, let Rk(Q) be the polynomial defined by

Rk(Q) =
∑

P∈Fk(Q)

q|I(Q)−I(P )|.
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Theorem 5.2.3. For a poset Q, the polynomial R(Q) is given by the product

R(Q) =
∏
k∈Q

Rk(Q).

Proof. On the left hand side, the coefficient of qm is the number of posets P ∈ F(Q)

formed by removing m inequalities from I(Q). Since inequalities of the form i <Q k

for different values of k can be removed independently, on the right hand side we get

a contribution to qm when the number of inequalities of the form i <Q k removed for

every k ∈ Q sum to m. This gives precisely a poset P ∈ F(Q).

Thus, it remains to compute Rk(Q).

5.3 Computing Rk(Q)

Definition 5.3.1. A Puiseux polynomial f on the variables x1, x2, . . . , xn is a linear

combination of the terms xp11 x
p2
2 · · ·xpnn where the exponents p1, p2, . . . , pn are rational

numbers. The polynomial part of a Puiseux polynomial is the sum of all the terms

that have only non-negative integer exponents, denoted poly(f).

Example 5.3.2. Consider the Puiseux polynomial f(x1, x2, x3) = 1+2x1x2+x
1/2
2 x3+

x2
1x2x3 + x

5/3
3 . Then we have the polynomial part

poly(f) = 1 + 2x1x2 + x2
1x2x3.

For each v ∈ Q, let xv be a variable associated with the vertex v. For k ∈ Q and v

an element of the sub-poset Q≤k, let C(v) be the number of maximal chains of Q≤k

that contain v. Now define the weight

`(v) =

 1 if v = k,

x
1/C(v)
v otherwise.

Theorem 5.3.3. The polynomial Rk(Q) is given by

Rk(Q) = poly

(∏
c

m∑
i=1

i∏
j=1

`(vj)

)∣∣∣∣∣
xv=q ∀ v≤Qk
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Figure 5.1: The Hasse diagram of the Boolean algebra on two elements, B2. R(B2) =
1 · (1 + q)2 · (1 + 2q + q2 + q3) = 1 + 4q + 6q2 + 5q3 + 3q4 + q5.

where the first product is over all maximal chains c = {k = v1 > v2 > · · · > vm}

in Q≤k.

Proof. We consider removing inequalities from one maximal chain at a time. Let

c = {k = v1 > v2 > · · · > vm} be a maximal chain. Suppose the relation vi <Q k is

removed from this maximal chain. Then vi <Q k must also be removed from every

maximal chain that contains vi. Since the exponent of xvi is 1/C(vi), the only way

to get integral exponent on xvi is if vi <Q k is not removed from any maximal chain

containing vi or is removed from all maximal chains containing vi.

By removing vi <Q k, Lemma 5.2.2 states that we must also remove the relation

vj <Q k for 1 ≤ j < i. Hence, for this maximal chain we get the sum of the

products
i∏

j=1

`(vj).

The terms of this product with a fractional exponent indicate that a relation was

removed from some but not all of the maximal chains containing it. Since this is

not possible, those terms are discarded. What remains, the polynomial part, indicate

exactly which relations can be removed. By setting all of the variables equal to q, we

get exactly how many relations were removed.

Example 5.3.4. Consider the poset in Figure 5.1. We first need to computeR4(B2).

The weights for each element are:

`(1) = x
1/2
1 , `(2) = x2, `(3) = x3, `(4) = 1
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Since there are two maximal chains, we have the product(
1 + x2 + x2 · x1/2

1

)
·
(

1 + x3 + x3 · x1/2
1

)
.

The polynomial part of this product is

1 + x2 + x3 + x2 · x3 + x2 · x3 · x1.

This means that for inequalities of the form i <B2 4 we could remove none of them,

we could remove only the inequality where i = 2, only the inequality where i = 3,

both where i = 2 and i = 3, or all three where i = 2, i = 3 and i = 1. However, in

order to find R4, we set all variables equal to q. That is

R4(B2) = 1 + 2q + q2 + q3.

Following the same process, we get R2(B2) = R3(B2) = 1 + q and R1(B2) = 1.

Therefore, by Theorem 5.2.3,

R(B2) = 1 · (1 + q)2 · (1 + 2q + q2 + q3)

= 1 + 4q + 6q2 + 5q3 + 3q4 + q5.

In particular, setting q = 1, there are 20 B2-factorial posets.

Corollary 5.3.5. Assume that the poset Q is a tree, that is, Q has a minimal el-

ement 0̂ and every other element covers exactly one other element. Then Rk(Q) is

given by

Rk(Q) = 1 + q + q2 + · · ·+ q|[0̂,k]|−1.

Proof. Assume the one maximal chain in Q≤k has m elements. Since there is only

one, the first product in Theorem 5.3.3 will only have one term. Also, the exponent on

every variable will be one eliminating the possibility of getting fractional exponents.

Therefore

Rk(Q) = 1 +
m∑
i=2

i∏
j=2

xvj

∣∣∣∣∣
xv=q ∀ v≤k

= 1 + q + · · ·+ q|[0̂,k]|−1.
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By letting Q be an n-chain and using this corollary, the result by Claesson and

Linusson that F(Q) = n! is straightforward.

5.4 Concluding remarks

We end this chapter with a few open questions.

Question 5.4.1. Claesson and Linusson [24] showed that when Q is an n-chain,

the number of posets P satisfying the three constraints x <P y implies x <Q y,

x <Q y <P z implies x <P z, and x <P y <Q z implies x <P z is given by Cn, the

nth Catalan number. Does this result extend to the other posets Q?

Question 5.4.2. Are there any posets Q other than trees where the number of

Q-factorial posets can be calculated? If so, can the finer statistic R(Q) also be

determined?

Copyright c© Eric Logan Clark, 2011.
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(Budapest, 1999).

[13] A. Björner and M. Wachs. On lexicographically shellable posets. Trans. Amer.
Math. Soc., 277(1):323–341, 1983.

[14] A. Björner and V. Welker. Segre and Rees products of posets, with ring-theoretic
applications. J. Pure Appl. Algebra, 198(1-3):43–55, 2005.

[15] K. P. Bogart. An obvious proof of Fishburn’s interval order theorem. Discrete
Math., 118(1-3):239–242, 1993.

89
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