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ABSTRACT OF THESIS

EVALUATION OF INTELLIGIBILITY AND SPEAKER SIMILARITY OF

VOICE TRANSFORMATION

Voice transformation refers to a class of techniques that modify the voice charac-
teristics either to conceal the identity or to mimic the voice characteristics of another
speaker. Its applications include automatic dialogue replacement and voice genera-
tion for people with voice disorders. The diversity in applications makes evaluation of
voice transformation a challenging task. The objective of this research is to propose
a framework to evaluate intentional voice transformation techniques. Our proposed
framework is based on two fundamental qualities: intelligibility and speaker similar-
ity. Intelligibility refers to the clarity of the speech content after voice transformation
and speaker similarity measures how well the modified output disguises the source
speaker. We measure intelligibility with word error rates and speaker similarity with
likelihood of identifying the correct speaker. The novelty of our approach is, we
consider whether similarly transformed training data are available to the recognizer.
We have demonstrated that this factor plays a significant role in intelligibility and
speaker similarity for both human testers and automated recognizers. We thoroughly
test two classes of voice transformation techniques: pitch distortion and voice con-
version, using our proposed framework. We apply our results for patients with voice
hypertension using video self-modeling and preliminary results are presented.

KEYWORDS: Audio Privacy Protection, Voice Transformation, Speech Recognition,
Speaker Identification, Speech Therapy.
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Chapter 1

Introduction

In this chapter we discuss the speech transformation techniques, its applications and

the practical challenges in the evaluation of the speech transformation techniques. We

then present the motivation behind this research and the main objective of the thesis.

We present an overview of our evaluation framework, the novelty of our approach to

evaluate the intelligibility and speaker similarity and an application based on our

evaluation results. We present the outline of the thesis at the end of the chapter.

1.1 Voice Transformation Techniques and Applications

Voice transformation refers to a class of techniques that modify the characteristics

of the speech such that the identity of the actual speaker is concealed or the actual

speakers voice is modified to resemble another speakers voice. Years of research in the

area of voice transformation has resulted in a number of techniques to achieve high

quality voice transformation. These include pitch synchronous overlap and add, vector

quantization by code book mapping and Gaussian mixture models [1] [2] [4] [6] [8]

[9]. The applications of voice transformation in various fields include

Automatic dialogue replacement in movies and TV shows: Movies and TV shows

are frequently dubbed into other languages. Voice transformation can replace the

voices of the actors in any target language.

Cross language voice conversion: Similar to dialogue replacement this is an ap-

1



plication where the same persons voice is generated in a language that the person

cannot speak.

Text-to-speech (TTS): TTS itself being a stand- alone technique, natural human

like voices or voices resembling a specific person can be generated by using voice

conversion to the persons voice. This type of application requires very few training

samples from the particular speaker.

Concealing the speaker identity: To protect the audio identity of the speaker and

to protect his/her privacy voice transformation techniques are applied to obfuscate

the characteristics of the speakers identity.

Healthcare applications: Voice transformation is also applied to generate voice

samples for training and rehabilitation of people suffering from various voice disorders.

When voice transformation techniques are applied on a speaker’s voice and the

voice characteristics are transformed to another target speaker’s voice, it is called voice

conversion. Mathematical or statistical models of the source speaker’s voice and target

speaker’s voice are constructed. Then a mapping function from the source to the

target model is built. This mapping function is used as the voice conversion function.

Different techniques of voice conversion work with one or more characteristics of

speech and aim at building a mapping function that can produce a converted voice

which resembles the target speaker most accurately.

When voice transformation is performed on the source speaker’s voice with no

specific target speaker, then there is a transformation function applied on the source

speaker’s voice model such that the speaker’s identity is modified. As specified earlier

voice transformation techniques aim at modifying the voice characteristics or speaker

2



identity of a speaker. These voice transformation techniques need to be evaluated so

as to determine the effectiveness of the applied technique.

The voice transformation techniques need to be evaluated so as to determine the

effectiveness of the applied transformation. But there are some conditions which

pose a technical challenge to building a standard methodology for evaluation of voice

transformation techniques.

The effectiveness of noise removal in speech or speech compression is frequently

evaluated with techniques like “Mean square error” (MSE) and “Signal to Noise

Ratio” (SNR). The original and the processed speech are compared in this case. But

similar approaches cannot be used to evaluate voice transformation techniques to

compare the original and the transformed speech.

Concealing the speaker’s identity is based on a number of speech characteristics

like tone, timbre, prosody and rhythm of speech. When an attacker tries to access a

voice transformed speech a minor speech sample from the family members might be

sufficient to identify the person.

Speaker similarity evaluation is also a function of the human auditory system.

Similarity seen in the waveform domain of speech may not necessarily mean a simi-

larity in the quality of speech.

1.2 Evaluation Framework of Voice Transformation

Given the technical challenges in evaluating the voice transformed speech, the

motivation behind this research is to build an evaluation framework for evaluating in-

tentional voice transformation techniques. The evaluation framework is based on two

3



fundamental qualities of the transformed speech: intelligibility and speaker similarity.

Intelligibility refers to the clarity of the content of the modified speech. As many

of the voice transformation techniques alter the speech characteristics, intelligibility

is a quality of primal importance. This evaluates whether the modified speech is still

useful with regard to the content of the speech.

In this research we study the intelligibility of “intentional” modifications. Speech

could be less intelligible due to the speakers physical characteristics like voice disorders

or voice imperfections. Intelligibility studies include factors like noise, attenuation

occurring during transmission, telephonic or mobile transmission of speech. But in

our research we focus on voice transformation techniques that are specifically applied

to conceal the identity of the speaker. In those cases, when the motive is to alter the

speaker identity, the modified speech should still be useful and be understood.

Intelligibility is measured in terms of accuracy or word error rate of the speech

that is recognized or understood correctly. The accuracy of speech can be evaluated

objectively or subjectively. Automatic speech recognizers are widely used to auto-

matically evaluate the intelligibility of speech. CMU Sphinx [11], HTK [12] are some

widely used speech recognizers.

Speaker similarity refers to the effectiveness of the transformation technique to

disguise the actual speakers voice identity. This is also of a great importance when

we use the voice transformation techniques to conceal the identity of the speaker.

Speaker similarity, in the context of concealing the identity of the speaker, is a

measure of how similar the modified speech is to the actual speaker. In applications

where the objective is to convert the speech to resemble a target, it is a measure of

4



how close the modified speech is to the target speaker. Effective voice conversion

techniques which very closely resemble the target speaker are best suited for the

applications discussed previously but on the other hand these techniques pose a threat

to speaker authentication verification applications.

Voice transformation techniques with the objective of concealing the speaker iden-

tity or resembling a specific target speaker are typically evaluated with subjective tests

with human listeners. ABX tests and opinion tests are most widely used evaluation

techniques. In ABX test, a test speech sample X is rated by choosing whether it

resembles the source speaker A or the target speaker B. In opinion test, the listeners

usually rate the quality of the modified speech based on specific questions on a given

scale.

1.3 Contributions of thesis

In our research we propose an evaluation framework that evaluates two voice trans-

formation techniques: pitch distortion and voice conversion to demonstrate the effec-

tiveness of these techniques in maintaining the intelligibility of the modified speech

and concealing the identity of the speaker. Protecting the audio privacy of the speaker

is an important concern in many audio applications. Medical therapy sessions might

be recorded for medical records but the privacy of the patient is an important con-

cern in this case. Surveillance cameras, tapping of phone lines for security are very

common these days but the audio privacy of the speakers need to be protected from

the attackers.

A complete evaluation framework with both subjective experiments and auto-

5



mated tools for objective evaluation for privacy and intelligibility is yet to be un-

dertaken. In our research we modify the speech data with pitch distortion [30] and

voice conversion [31] techniques. We have performed extensive experiments for both

intelligibility and speaker similarity. Intelligibility is evaluated with automatic speech

recognizers and listening experiments by human testers. Speaker similarity is evalu-

ated with automated speaker identifier and listening experiments by human testers.

The detail discussion of the techniques and the automatic tools is done in Chapters

3 and 4.

The novelty of our approach is to study the performance of the techniques in

situations where the modified speech data is available to the automatic tools and

human testers. This assumption and the evaluation provide a comprehensive and

objective approach in measuring any voice transformation techniques.

In addition, as a novel application of voice transformation, we propose a system

for voice therapy of people suffering from voice hypertension using video self-modeling

technique. Video self-modeling is a technique based on behavioral therapy where the

learner watches a video that models an unseen behavior and this provides a feedback

of the improved behavior. We use this modeling technique to build a video sequence

for people with voice hypertension. This video depicts the speaker with an improved

speech track. The voice transformation techniques discussed previously are used to

generate this new speech track. The effectiveness of this approach and the results of

the study are discussed in Chapter 6.

6



1.4 Organization of the Thesis

After providing the introduction and background of the research in this chap-

ter, the rest of the thesis is organized as follows. The related research in the areas of

voice transformation, their evaluation methodologies, speaker identification and video

self-modeling studies are discussed in Chapter 2. Chapter 3 describes the voice trans-

formation techniques and the how they modify the voice characteristics of the speaker.

Chapter 4 presents our evaluation framework and the automatic tools that constitute

our framework. Experiments for privacy protection and its results are discussed in

Chapter 5. Chapter 6 discusses the voice therapy study using video self-modeling,

the experiments conducted and its results. conclude the research in Chapter 7 with a

summary of the results and the observations from them and present the suggestions

for future work.

7



Chapter 2

Related Work

In this chapter we discuss the research works related to speech transformation, audio

privacy protection, methods of evaluation and studies for video self- modeling. The

first section discusses the various voice transformation techniques and their evaluation

methods. The second section discusses the techniques applied to protect the audio

privacy of the speaker and their evaluation methods. In last section we discuss the

works related to video-self modeling and its applications for behavioral therapy.

2.1 Evaluation of speech transformation techniques

Research in the area of voice transformation over the past years has given rise

to various approaches which modify different characteristics of human speech [1]- [9].

Pitch detection of the source and target speakers and voice conversion by PSOLA

method is discussed in [1]. The voice conversion algorithm is applied to English and

Arabic speech and the results are compared. The voice conversion is demonstrated

with time and frequency plots of actual and the voice converted waveforms at frame

level and complete speech level. Pitch conversion method for voice conversion is

discussed in [2]. Pitch extraction, pitch mark mapping, pitch scaling and “Pitch

Synchronous Overlap and Add” (PSOLA) are performed are male and female speech

data. The results of pitch conversion are demonstrated with pitch contour plots.

Voice transformation based on residual prediction methods for voice conversion is

presented in [3] and [4]. In [3], the authors discuss and compare the different residual
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predictions and evaluate the results subjectively using ABX test and “Mean Opinion

Score” (MOS) tests. In [4], the authors discuss a GMM based residual prediction

method using residual codebook mapping. The authors evaluate the performance

subjectively using ABX tests.

In ABX tests, an unknown sample, a test speech sample in this case, is compared

with two samples A and B and is rated as being similar to A or B. In listening

experiments, A is normally original speech or a speech sample from the source speaker

and B is the speech sample of the target speaker. The experiments are conducted

with test takers who are not aware of the processing techniques and they rate the

speech samples by choosing whether they sound similar to the source or the target

speaker.

MOS or Mean Opinion Score is another subjective evaluation technique using

listening experiments in which the quality of the transformed speech is evaluated.

The quality is rated on a numerical scale typically from 1 to 5 with 1 as the worst

and 5 as the best quality. The mean score is used to decide the quality of the

transformation technique.

In [5], the authors propose a voice conversion technique based on spectral mapping

and residual prediction. The results of voice conversion are evaluated through listen-

ing experiments. In [6], the authors propose Gaussian Mixture Model (GMM) based

dynamic frequency warping of the spectrum to avoid the over-smoothing in baseline

GMM methods. Additionally they propose weighted residual spectrum to avoid the

conversion accuracy deterioration on speaker individuality. The conversion accuracy

is objectively evaluated using cepstral distortion (CD) between the converted and
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target speech. Subjective evaluation is performed with ABX tests.

In [7], the authors propose a vocal tract parameter estimation technique for high

quality voice conversion. Spectral comparison, time domain waveform comparison and

SNR are used to evaluate the performance objectively. ABX tests through listening

experiments are used for subjective evaluation. Eigen voice conversion based on GMM

is proposed in [8]. Cepstral distortion is used to measure the performance of the voice

conversion algorithm. Voice conversion through nonparallel training based on GMM

parameter adaptation is proposed in [9]. The authors compare the voice conversion

with parallel training and non-parallel training. The results are objectively evaluated

using mean square error measure and by using a GMM based speaker identifier.

Subjective evaluation is also performed using ABX tests.

As we can see, in most of the voice transformation techniques discussed above, the

quality of the transformed voice or the effectiveness of the technique is evaluated using

either subjective listening experiments or some objective measures like distortion.

Only in [9], objective measurement is performed using automated speaker identifier.

But it has been demonstrated in [10] that both subjective methods and automatic

tools are necessary to show the effectiveness of intentional voice modification schemes.

We can also note that these techniques aiming at voice conversion evaluate only

the quality of the converted speech in terms of its naturalness and its similarity to the

target voice. There is no evaluation for the quality of the speech content or whether

it remains unmodified due to the transformation.

The objective measures used in the works cited above are based on the char-

acteristics of the waveform and measure the difference between the source and the
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transformed speech or transformed and the target speech. The objective measures

do not evaluate the quality of the resulting transformed speech or how natural they

sound to the ear. The naturalness and the quality are evaluated only with subjective

experiments.

Human listeners have their own limitations in terms of gender, race and age. Also

large data sets cannot be evaluated efficiently with human listening experiments.

This stresses the need for an objective or automatic evaluation techniques which are

computationally more efficient than human listeners. Additionally the evaluations

by automated techniques should be supported by subjective experiments to take

advantage of the fact that though automated techniques are efficient computationally,

the natural auditory capability, understanding and perception are best in the case of

human and can only modeled towards perfection in the automatic techniques.

2.2 Speaker privacy protection

In this section we discuss the voice transformation techniques that aim in conceal-

ing the voice identity of the speaker. In [13], the authors propose a voice morphing

technique that can hide the speaker’s gender, age and identity. This technique is

based on spectral mapping and residual prediction of syllables. In this case also the

performance of the algorithm is evaluated with listening experiments using ABX and

MOS tests. The evaluation for speaker identity being morphed is not performed in

this case. In [14], the authors propose a complete voice morphing system to overcome

the voice artifacts generated by spectral mapping systems and thus improving the

quality of the morphed speech. The evaluation is performed subjectively to compare

11



the baseline systems and the enhanced system. ABX tests and preference tests are

performed to judge the quality of the modified speech.

Privacy protection linked to speech recognition corpora content is studied in [15]

where generalization and iterative distortion are performed to protect sensitive data.

The results are evaluated with automatic speech recognition tools but no speaker iden-

tification testing is conducted. Privacy protection of speech content and anonymity

of the speaker/patient using keyword spotting and replacement is proposed in [16].

This preliminary work is specifically designed for clinical data and the performance

evaluations are still underway.

In [17], the authors analyze a pitch shifting algorithm that distorts the speech

and the speaker’s identity but maintains the speech content. The evaluations for the

clarity of the speech and the privacy of the speaker are evaluated with only subjective

listening experiments. Recently, voice transformation algorithms and their effective-

ness in protecting the privacy of the speaker are studied in [18]. The performance on

protecting speakers’ identity is measured using both subjective testing and a GMM

and phonetic based speaker identification system. The clarity of the speech, however,

is measured only by human testers.

A complete evaluation study using both subjective testing and automatic tools

for a wide range of voice transformation tools for privacy protection has yet to be

conducted.
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2.3 Video self-modeling

Watching video to learn or model a target positive behavior is in fact a proven

technique in behavior therapy. This is called the Video Modeling (VM) intervention,

widely used for rehabilitation and education of patients recovered from surgery [19]

and cancer [20] as well as job and safety training for hospital staffs [21] and office

workers [22]. VM is also effective in a school setting to teach children and young ado-

lescents various skills including social interactions, communication, self-monitoring

and emotional regulation [23].

Besides watching others, we can also watch and learn from our own positive be-

haviors. Such form of self- modeling is classically done with a mirror and one of the

most prominent examples is the use of the “mirror box” in treating phantom limb pain

among amputees [24]. Seeing or visualizing oneself accomplishing the target behavior

provides the most ideal form of behavior modeling. This is particularly true to one

of the major groups of VM users, namely children with autism, as it has been shown

that only face images of themselves rather than others can trigger the appropriate

neural response in their brain [25]. With the use of a camcorder and video editing

software, clips of positive behaviors can be spliced together to create video material

for behavioral modeling.

Compared with traditional VM, researchers have argued that such form Video Self

Modeling (VSM) is more effective at boosting confidence, capturing and maintaining

attention as well as shaping positive memories of the learner [26]. Though still in its

early development, effectiveness of VSM has been studied for many different types

of disabilities and behavioral problems ranging from stuttering, inappropriate social
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behaviors, autism, selective mutism to sports training. A summary of these researches

can be found in [26].

There are two forms of VSM: positive self-review and feed forward [27]. In positive

self-review, the portions of the recorded video showing bad or poorly executed routines

are removed leaving only the positive target behaviors. The resulting video will be

reviewed to enhance fluency of the skills that have already been acquired by the

learner but not yet perfected. On the other hand, the feed forward VSM shows novel

skills that have never been observed but still within the reach of the learner. The goal

is to teach new skills to a learner. An example of feed forward VSM can be found

in [26] where he splices short clips to form a long video of a full sentence from a child

who can only speak one or two-word utterances. It is the feed forward approach that

shows more dramatic learning effect than the positive self-review approach as there

is more room for improvements during the initial stages of learning.

With the given researches using VSM for various types of learning therapy, ap-

plying this VSM technique for voice therapy applications for people with voice hy-

pertension is a novel idea. The effectiveness of the VSM approach and its potential

to reduce the length of the treatment and the number of therapy sessions is a yet to

be studied.
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Chapter 3

Speech Transformation

In this chapter we discuss the voice transformation techniques used in our evalu-

ation framework. The main objective of our research is to compare and evaluate

the performance of two voice transformation techniques in maintaining the intelli-

gibility of the modified speech but conceal the identity of the source speaker. In

this research we have demonstrated the performance of the two voice transformation

techniques using the proposed framework. But the framework is not limited by the

voice transformation technique used and can be used to evaluate the performance of

any transformation techniques. We initially present the theory behind the selection

of pitch distortion and voice conversion as the voice transformation techniques for

our evaluation. We then describe the mechanism through which the pitch distortion

and voice conversion algorithms alter the speech characteristics. At the end of the

chapter we illustrate the modifications in the voice characteristics with samples of

actual and transformed speech.

3.1 Why pitch distortion and voice conversion.

Source - filter model of speech [28] is an approximation model for the speech

production process. According to this theory, airstream from the lungs is modulated

by the vocal folds vibration and this acts as the source of sound. The vocal tract

acts as a filter for the sound source and by taking different shapes produces different
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sounds. So the source filter theory models the source as a series of impulses which

pass through a linear filter to produce speech.

In [29] the author provides a survey of the various voice transformation techniques.

According to this source-filter model, the author classifies the voice transformation

techniques as source modification techniques, filter modification techniques and com-

bined source and filter modification techniques.

1. Source modification techniques are prosodic modifications and include time scale

modifications, pitch modifications and energy modifications.

2. The magnitude spectrum of the frequency response of speech carries the speaker

identity. Filter modification techniques alter the magnitude spectrum and these

modifications can be general or towards a specific target speaker.

3. Combined source and filter modification techniques are used in voice conversion

to a particular target speaker and they combine both the prosody and vocal

tract modifications.

For our evaluation framework we have chosen one source modification technique

and one filter modification techniques - pitch distortion [30] and voice conversion

based on vocal tract mapping [31] respectively. We compare the performance of these

techniques in maintaining the clarity of speech while concealing the identity of the

speaker.

3.2 Voice Transformation

Before we discuss the voice transformation techniques, here we try to illustrate how

speech is modified when voice transformation techniques are applied and its impact on
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intelligibility and speaker identity. The illustration provides a better understanding

in terms of the specific characteristics of speech that determine the speech content,

speaker identity and also how the transformation affects them. This also helps in

understanding the theory behind the automatic techniques of recognition. Figure 3.1

shows a sample speech waveform in time domain corresponding to “By the look of

him he wasn’t that far gone”. It shows the original speech on top, pitch distorted

speech for α = 0.75 in the middle and female to female voice converted speech with

α=0.9 and ρ=0.98 at the bottom. The segment highlighted corresponds to the word

“He” and is extracted and shown in Figure 3.2.

Figure 3.1: Speech signal of “By the look of him he wasnt that far gone”.

Figure 3.1 and 3.2 highlight the modification of the speech signal in the time do-

main. Both pitch distortion and voice conversion waveforms differ from the original

speech. In addition we see that pitch distorted speech shows higher degree of mod-

ification compared to voice converted speech. Figure 3.3 shows the spectrum of the
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Figure 3.2: Speech signal of “He”.

word “He”. The frequency spectrum gives the frequency content of the speech signal

and the spectral envelope of the speech. Comparing the shape of the spectrum and

the spectral envelope, again we can see that pitch distorted speech shows a higher

modification than voice converted speech. The speech waveforms are modified due to

pitch distortion and voice conversion. Though the speaker identity is modified, they

still represent the word “He”. The specific characteristics or features of speech which

determine the speech content and the speaker identity are discussed below.

The spectral envelope and its formants or resonant frequencies are the key for

recognizing the phonemes and the speaker characteristics. Vowels and consonants

are associated with a particular frequency pattern and frequency range. This pattern

and frequency range is used in identifying the corresponding phonemes. Similarly

the formant frequencies itself are unique for a speaker and are used in identifying a

speaker. The figure below shows how the formant frequency is associated with both

the phonemes and the speaker characteristics.
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Figure 3.3: Spectrum of the word “He”.

Figure 3.4 illustrate the formant peaks for male and female speakers for the vowel

/ae/ and /i/ respectively. Table 3.1 shows a list of average formant frequencies for

Figure 3.4: Male and female formant spectrum [32].

some basic vowels for male and female [32]. In the case of voice conversion, the

locations of the formant frequencies get modified and so the speaker’s identity is

modified. But the spectral shape is preserved thus preserving the content of the
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Table 3.1: Average formant frequencies for some basic vowels
Vowel Gender F1 F2 F3

ee
Male 270 2290 3010
Female 310 2790 3310

ae
Male 660 1270 2410
Female 850 2050 2850

oo
Male 300 870 2240
Female 370 950 2670

speech. On the other hand, in pitch distortion, the degree of modification in the

speech wave form is more compared to the original signal. Since the pitch of the

signal is modified, the identity of the speaker gets modified. The speech content

depends on how well the spectral envelope is preserved. The experimental results of

the techniques are discussed in Chapter 5.

3.3 Pitch distortion Technique

The pitch distortion technique comprises of two steps time stretching and resam-

pling by “Pitch Synchronous Overlap and Add” (PSOLA) method.

Time Stretching : Expands or contracts the speech signal without perceptually

modifying the signal. Time stretching operates on the number of samples of the

speech waveform and it replicates or discards samples to expand or contract the

speech signal. Time stretching is represented as

M ′ = α ·M (3.1)

In the above equation, M is the number of samples in the actual signal, M ′ is the

number of samples of the time stretched signal and α is the time stretching factor.

Resampling : Resampling or time scaling or varying the speed of the signal
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increases or decreases the actual time duration of the speech i.e. the original speech

is played within a shorter or longer duration of time. This modifies the frequency and

thus the perceived pitch of the signal. Time scaling is implemented by re-sampling

the signal at a higher or lower rate and is represented as

n · Tout = n · Tin/v (3.2)

fout = fin · v (3.3)

In the above equation, n is the number of samples, Tin and Tout are the input

and output sampling time periods, fin and fout are the input and output sampling

frequencies and v is the speed varying factor

The pitch distortion algorithm can be depicted as in the Figure 3.5 below.

Figure 3.5: Pitch distortion algorithm

Time Stretching Module - Step by Step: Time stretching expands or com-

presses the input signal from length N1 to N2.

1. The speech signal is divided into blocks of size N with a shift of Sa as shown

in Figure 3.6 below.

2. The blocks are reshifted to a length Ss = α. Sa, where α =N1/N2, the stretching

factor as shown in Figure 3.7.

21



Figure 3.6: Step 1 of Time stretching

Figure 3.7: Step 2 of Time Stretching

3. Cross correlation between the two blocks is computed to find the point of max-

imum similarity in the overlapping region as shown in Figure 3.8. This is given

by

rxL1xL2
(m) =

1

L

L−m−1∑
n=0

xL1(n)xL2(n+m) , 0 ≤ m ≤ L (3.4)

In equation 3.4 and are the speech segments xL1(n) and xL2(n) and L is the

overlap interval between the segments.

22



Figure 3.8: Step 3 of Time Stretching

4. The point of maximum cross correlation is calculated as k. The segments are

again shifted to this point k as shown in Figure 3.9.

Figure 3.9: Step 4 of Time Stretching

5. The overlapping regions are processed as follows - the first segment is weighted

by a fade out function from the point k to the end of the segment and the second

segment is weighted by a fade in function from the beginning of the segment to

the end of overlapping region. The fade-in, fade-out functions are used to avoid

transients in the signal. This process is shown in Figure 3.10.

23



Figure 3.10: Step 5 of Time Stretching

6. The steps 3 to 6 are repeated for every pair of segments.

7. Finally the faded in faded out regions are added together ,sample by sample,

for each pair of segments as shown in Figure 3.11.

Figure 3.11: Step 11 of Time Stretching

Resampling Module - Step by Step: Resampling distorts the pitch of the

speech signal and makes the signal back to the original length N1.

1. The time stretched signal from the previous step is resampled back to the orig-
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inal length of the signal x(n). Hanning window is used to segment the time

stretched speech signal.

2. The segments are resampled to reduce the length i.e., samples are dropped at

every pitch period so the pitch of the speech signal get distorted. The segments

are then added to produce pitch distorted speech signal.

3.4 Voice conversion algorithm

Voice conversion transforms a source speaker’s voice to a target speaker’s voice

using “Vocal Tract Length Normalization” (VTLN) technique. Vocal tract length is

unique for a speaker and forms a major characteristic of the voice identity. The vocal

tract length and shape impacts the spectral envelope and the formant structure which

in turn influence the phonetic content of the speech signal. The voice conversion

technique normalizes the vocal tract length by warping the frequency axis of the

source speaker towards the target speaker thus modifying the speaker’s identity.

The algorithm has training and testing phase. In the training phase the source and

the target speech samples are analyzed and the warping factor, α and fundamental

frequency ratio, ρ are estimated and warping function computed. In the testing phase

the warping function is applied to the source speech samples and converted to target

speaker’s voice. The working of the algorithm for a linear warping function is given

below.

In the training phase,

1. Pitch synchronous frames are extracted from the source and the target speech
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using short duration windows and frequency spectrum of the signals are esti-

mated.

2. The source and the target spectra are assumed to be piece-wise linear and the

warping parameters are estimated in the frequency domain as follows.

If ω is the normalized frequency of the source spectrum and ω̂ is the normalized

frequency of the target spectrum, then the warped frequency is given by [31]

ω̂(ω) = αiω + βi , ωi ≤ ω ≤ ωi+1; i = 0, . . . I

αi =
ω̂i+1−ωi

ωi+1−ωi

βi = ω̂i+1 − αiωi+1

The equation can be rewritten as

ω̂−1(ω) =
∑I

i=0
ω−βi

αi
R(αiω + βi | ωi, ωi+1)

where R is a rectangular function defined in terms of ω,ω′,ω”.

The warped spectrum is given by,

X̃(ω) =
I∑

i=0

X(
ω − β

α
)R(αiω + βi | ωi, ωi+1) (3.5)

The warped spectrum in the time domain is the inverse Fourier transform of

equation of equation (3.5).

x̃(t) = u(t) ∗ r(t) = F−1{X(
ω − β

α
)}(t) ∗ F−1{rectω}(t) = αeiβtx(αt) ∗ r(t) (3.6)

In the testing phase,

1. Pitch synchronous frames are extracted from the source speech samples, to be

converted, using short duration windows.
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2. The segments are warped to the target speaker’s voice using the warping param-

eters estimated in the training phase and are then combined back into trans-

formed speech signal.

The voice conversion technique and the warping of spectrum is illustrated in Figure

3.12

Figure 3.12: Warping function from two spectra
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Chapter 4

Evaluation Framework

In this chapter we present the overview of our evaluation system and discuss each of

its components in detail. We begin with the automatic speech recognition system,

the mathematical model behind it, the mechanism of speech modeling using “Hidden

Markov Models” (HMMs) and decoding of the speech samples into text. Similarly we

discuss the speaker identification system, the methodology involved in training the

system using mixture models and speaker identification by computing the likelihood

ratio. We also illustrate how the voice transformed data is correctly decoded by

speech recognizer but conceals the speaker identity and evades the speaker identifier.

4.1 System Overview

Figures 4.1 and 4.2 shows the block diagram of our evaluation framework. The

system used in training is shown in Figure 4.1 and testing is shown in Figure 4.2.

The voice transformation has been discussed in detail in Chapter 3. Intelligibility or

clarity of transformed speech is evaluated with automatic speech recognition engines

and its performance is measured in terms of “Word Error Rate” (WER) of the decoded

speech. Speaker similarity is evaluated with automatic speaker identification system

and the similarity to the source speaker is measured in terms of likelihood to the

speaker models available previously. These automatic systems are discussed in detail

in the following sections.
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Figure 4.1: Training system of Evaluation Framework

Figure 4.2: Testing System of Evaluation Framework

4.2 Novelty of the Evaluation framework

The novelty of this research work in evaluating the voice transformation techniques

are
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4.2.1 Automatic recognizers trained for Same Model and Cross Model

While evaluating the modified speech data using automatic speech recognizer and

speaker identifier, we consider two cases.

1. The recognizer is trained with the original speech data and then tested with

pitch distorted and voice converted data. With this set up, intelligibility and

speaker similarity are measured.

2. The recognizer is trained with modified data for each type of transformed

speech. In the testing phase again pitch distorted and voice converted data

are used (with corresponding training data) and results are evaluated. This

new approach where the recognizers have knowledge about the transformation

parameters, provided us with some interesting results for both intelligibility and

speaker similarity.

4.2.2 Subjective testing

The automatic recognizers are initially trained with a set of speech data. So the

performance of the recognizers depends on the training data. In addition to the

input speech the results are based on the probability determined by the acoustic

and language models. On the other hand, human beings naturally have knowledge

of the grammar, vocabulary and dialects of any particular language. To study this

difference, we have performed subjective evaluations with listening experiments for

both intelligibility and speaker similarity. Comparing the subjective test results with

those of automatic techniques shows interesting characteristics of human listeners.
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4.2.3 Subjective experiments with Same Model and Cross Model

Automatic recognizers have an advantage of taking modified data for training

and have been tested for performance with specific training data. Similar to this we

have performed subjective experiments with human testers by making them listen to

modified data and then evaluate the performance of the transformation techniques.

The results of experiments listening to actual data and modified data are discussed

in the experiments section.

4.3 Intelligibility evaluation with Automatic Speech Recognition

4.3.1 Computing Intelligibility

Intelligibility refers to the clarity of the speech content and we use “Automatic

Speech Recognition” (ASR) systems to evaluate clarity of the speech that has been

modified by pitch distortion and voice conversion. Speech recognition is a technique

that decodes speech into text/words uttered. Performance of a speech recognizer

is specified in terms of accuracy which is measured in terms of “Word Error Rate”

(WER) of the decoded content [34]. When comparing with the original text, lower

the WER of the decoded speech, better the accuracy of the ASR. WER is computed

in terms of number of insertions, substitutions and deletions in the decoded text

compared to the original text.

WER =
S +D + I

N
(4.1)

In the above equation S is the number of substitutions, D is the number of dele-

tions, I is the number of insertions and N is the number of words.
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Let us consider an example.

Original utterance: “Scholastic aptitude is judged by standardized tests”.

Recognized text: “Scholastic aptitude is that by standardized tests”.

The values of the parameters are S = 1, D = 0, I = 1 and N = 7 so the WER%

is 28.57. The accuracy WAcc is computed from the WER as

WAcc = 1−WER =
N −D − S − I

N
(4.2)

The accuracy for the above example is 71.43

4.3.2 Speech Recognition

For recognizing the speech, the ASR system builds acoustic and language models

with the training speech data during the training phase which is a learning phase for

the recognizer [35] - [37]. These statistical models could be word level or phoneme

level depending on the complexity of speech and are based on the grammar, the

possible words and the probability of their occurrence in a sentence. So during the

training phase, the recognizer builds acoustic models act as reference templates, and

in the testing phase, the ASR acts as a classifier and decodes the test speech samples

by computing the likelihood to the reference templates.

The training phase

1. Generates feature vectors from the input speech samples.

2. Builds acoustic models with these observed feature vectors.

and the testing phase

1. Generates feature vectors for the test speech samples.
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2. Finds the most likely sequence of words (or phonemes) for this sequence of

feature vectors to the acoustic models.

4.3.2.1 Generating feature vectors:

First we present some basic concepts involved in speech processing. Speech is a

highly dynamic waveform with variations in pitch, rate of speech and speaker char-

acteristics. Mathematical representation of speech with its variations is a challenging

task. Statistical methods used currently to model speech, provide a close enough ap-

proximation of speech. To reduce the dynamics of the speech and to reduce the effects

of noise, speech is analyzed in short time segments across which it is assumed to be

stationary. Speech is segmented with short duration windows and transformed into

a different domain in which the segments are represented as vectors named features.

Phonemes are basic unit of sound and smallest unit of speech. Each phoneme

is associated with a particular vocal tract shape and each shape produces a set of

resonant frequencies which are unique for a speaker.

The resonant frequencies are represented by feature vectors and can be displayed

by computing the power spectrum of the speech signal. Power spectrum when com-

puted in the logarithmic domain is called as cepstrum.

When processing speech, cepstral features are widely used and they model the

spectral envelope of speech. The advantages of cepstral features include smaller num-

ber of features sufficient to represent the speech signal, features being uncorrelated

with each other and ease of computation.

Human ear has different responses for different frequencies. Mel scale and Bark

scale represent the perception of human ear at different frequencies. The feature
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vectors computed using these scales are called “Mel Frequency Cepstral Coefficients”

(MFCC) and “Perceptual Linear Prediction coefficients” (PLP) respectively. We also

have “Linear Prediction Coefficients” (LPC) which is based on autocorrelation of

speech.

Speech recognizers are built based on the above mentioned characteristics of

speech. The ASR used in our experiments uses MFCC coefficients. The cepstrum has

components from both the source and the filter of speech (based on the source filter

model of speech production) i.e., spectral envelope and the excitation. The lower

coefficients of the cepstrum model the vocal tract’s spectral envelope and so only the

first few coefficients of the cepstrum are sufficient to form a template of phonemes

for the recognizer. The Mel cepstrum is computed by applying logarithm to the

magnitude spectrum, converting to Mel scale, followed by discrete cosine transform.

The resulting coefficients are in a time-like domain called the quefrency domain. The

MFCC computation is shown in Figure 4.3

Figure 4.3: Mel frequency cepstrum computation
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4.3.2.2 Building acoustic models from the feature vectors:

From the feature vectors extracted from the training speech data, the recognizer

builds the acoustic model. As specified earlier, the feature vectors represent the

resonant frequencies which in turn constitute different phonemes. So the acoustic

model represents the phonemes and the probability of occurrence of the phonemes in

the training speech data.

Hidden Markov Model is used to model this acoustic data which is doubly stochas-

tic i.e., phoneme corresponding to a set of feature vector is stochastic and given a

phoneme x, the phoneme that could possibly follow the phoneme x is also stochas-

tic. The HMMs model the phonemes as states and the observed sequence of feature

vectors as the outcome of the states. The outcome of the states and the transition

between the states both are stochastic for the speech recognition problem.

At the end of the training phase, HMMs are generated and form the acoustic model

for the recognition. The training phase, while building the acoustic model/HMMs,

computes the probability of occurrence of every phoneme (or sequence of feature

vectors) and the probability for transition between the phonemes. Figure 4.4 shows

an example of HMM.

In Figure 4.4, S1, S2, S3, . . . , S6 are the states each existing at a time instant

t, O1, O2, . . . , O6 are the observed sequence of feature vectors, aij is the transition

probability from state i to state j and bj(ot) is the output probability distribution at

time instant t and when state j is entered.

As specified before, the training phase builds HMMs and computes the probabili-

ties. The training phase also computes the most likely state sequence for a given set
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Figure 4.4: HMM Example

of observation vectors. If X is the unknown state sequence, then the likelihood for

the observation O given the model M is P (O | M) and is expressed as the product

of transition probabilities and output probabilities.

P (O | M) = maxx{ax(0)x(1)
T∏
t=1

bx(t)(ot)ax(t)x(t+1)} (4.3)

Typically recognizers use 5 state HMMs per phoneme and these HMMs are con-

catenated to form a complete acoustic model for the entire training data. A concate-

nated two word HMM (at phoneme level) example for “She carry” is shown in Figure

4.5.

Figure 4.5: HMMs concatenation example

36



In addition to the acoustic model, a speech recognizer also uses a language model

for its decoding. A language model is also a stochastic model but is related to the

grammar of the language. It represents the probability of the words and the sequence

in which they can occur in any sentence. The probability of any group of words is

defined as,

p(W ) = p(w1, w2, w3, . . . , wn) =
n∏

i=1

p(wi | w0, w1, . . . wi−1) (4.4)

In equation (4.4) W represents any group of words and w1, w2, . . . , wn represent

a sequence of n words that constitute W .

4.3.2.3 Decoding the test speech samples:

In the recognition phase, feature vectors are extracted from the speech samples to

be recognized. With these feature vectors, decoding involves searching the HMM to

find the state sequence from that has the maximum probability of occurrence. Using

this state sequence and the language model, phonemes and words are decoded. If

OT = o1, o2, . . . , on is a sequence of observed feature vectors, then the recognition

phase involves finding the probability of a word W given the observation O is

Ŵ = argmaxW p(W | O) = argmaxW
p(O | W )p(W )

p(O)
(4.5)

In the above equation, p(O | W ) is the acoustic model and p(W ) is the language

model.
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4.3.3 Voice Transformation and Intelligibility

In Chapter 3 , we discussed the speech characteristics and how the voice trans-

formation affects the characteristics. The spectral envelope, formant frequencies and

their structure for different phonemes and for male and female were shown using the

Figure 3.4

Here we relate the intelligibility of speech and the cepstral features. The phonemes

are determined by the spectral envelope, its formants/resonant frequencies and their

pattern. The feature vectors used by the recognizers model this spectral envelope

of speech. Thus the initial coefficients of the cepstrum are used in building the

mathematical or probabilistic model which is in turn used in the recognition by the

automatic techniques.

Figure 4.6 shows the vowel cepstrum for male and female. The initial huge peak

in the cepstrum corresponds to the spectral envelope of the speech and the periodic

peaks correspond to the excitation of the speech. From the number of peaks in the

female cepstrum it is evident that the female pitch is higher than the male.

4.4 Automatic Speech Recognizer - Julius

For our experiments we use Julius [39] large vocabulary continuous speech recogni-

tion engine. Julius is a two pass speech recognition engine and can work with acoustic

and language models generated using “HMM Tool Kit” (HTK).

In our research we use HTK to generate the HMM definition files for acoustic and

language models. With training speech samples, a dictionary and transcription file,

HTK generates MFCC feature vectors and builds acoustic model. HTK also generates
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Figure 4.6: Male and female cepstrum for vowels [38]

the MFCC feature vectors for the test speech samples to be recognized. Julius uses

the acoustic model and decodes the test feature vectors.

4.5 Speaker Identification with GMM

Speaker similarity refers to the similarity between the speaker characteristics of

actual speech and the voice transformed speech. With speaker similarity we evaluate

the effectiveness of the voice transformation techniques in protecting the privacy of

the speaker by concealing the identity of the speaker. Speaker identification technique

using “Gaussian Mixture Model” (GMM) is used to measure the speaker similarity.

4.5.1 Speaker similarity vs. Speaker Identification

Speaker identification is a technique which examines a speech sample and identifies

the source speaker from the set of speakers available in the system [40] [41]. Source

speaker is identified using some features extracted from the speech sample and com-
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paring against the same features extracted from each speaker in the database. Like-

lihood is computed for each feature pair (speech sample and speaker from database)

and the mostly likely speaker is selected based on a threshold value.

In our experiment we use the speaker similarity to measure the similarity between

the source speaker and the database of speakers. The features are extracted, compared

against the features of each speaker in the database and likelihood computed similar

to speaker identification. But here based on the likelihood we rank the speakers in

the database and compare the rank of the source speaker.

4.5.2 Speaker Identification

Speaker identification as mentioned earlier compares a speech sample against a

database of speaker. For this the system requires knowledge of voice characteristics

of each speaker. The speaker identification system is also a statistically modeled

system and has a training phase and testing phase. During the training phase, with

the training speech data, the system learns the speaker characteristics and builds

mixture models which model the voice characteristics of each speaker. In the testing

phase the system computes likelihood for the test speech sample against the speaker

classes built during the training phase.

The speaker identification system extracts cepstral features from the speech sam-

ples and builds the mixture models. As discussed in section 4.3.2.1, the lower part

of the cepstral coefficients represent the spectral envelope carry the identity of the

speaker and first few coefficients are used to build a template for each speaker in the

training process.
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The training phase,

1. Extracts the feature vectors from the training speech.

2. Builds world model for all the speakers using Gaussian mixture model.

3. Adapts the world model to build speaker models.

and the testing phase,

1. Extracts feature vectors from the test speech.

2. Computes the likelihood of the features and identifies the speaker.

4.5.2.1 Feature Extraction:

The characteristics of speech, features, cepstral feature extraction and their ad-

vantages have been discussed in detail in section 4.3.2.1. For our evaluation we use

“Linear Frequency Cepstral Coefficients” (LFCC) [42] as the feature vectors. Similar

to MFCC, LFCC are also computed by applying logarithm to the power spectrum

of short duration speech segments followed by discrete cosine transform. The LFCC

computation is shown in Figure 4.7.

4.5.2.2 Building World Model:

The speaker identification system builds statistical models to represent the speaker

characteristics from the extracted features. Gaussian mixture models are widely used

for text-independent speaker identification. The choice of GMMs is mainly due to

the fact that no prior knowledge about the distribution is available. In addition they

are suited for cases where there are a set of data points which appear in groups.
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Figure 4.7: Linear Cepstral Coefficients computation

GMMs are well suited to model these kinds of data where each group of data can

be represented as a Gaussian distribution and the total distribution is given by the

mixture of these Gaussians and called a GMM. GMMs are represented in terms of

number of components, weight of each component and the density of each Gaussian

component. Figure 4.8 shows an example of GMM.

Figure 4.8: Example Gaussian mixture model with individual Gaussian densities [43]

In case of speaker identification, each component Gaussian can be assumed to

model a single speaker and the GMM modeling the complete set of feature vectors.
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A GMM distribution is defined as

p(x | θ) =
M∑
i=1

wipi(x) (4.6)

In equation (4.6), θ is the model parameter, M is the number of components in

the mixture model, w is the weight of the component, x is the feature vector, pi(x)

is the Gaussian distribution density.

The GMM has no prior knowledge of the distribution and so starts with approx-

imate model parameters and refines the model parameters iteratively using “Expec-

tation Maximization” (EM) algorithm [44]. The algorithm computes the parameters

of the model iteratively so as to maximize the likelihood of the model to represent

the given feature vectors. The likelihood ratio is given by

M = p(X | θ) (4.7)

In the above equation M is the estimated model, X is the feature extracted from

the test speech sample and θ is the model parameter. Initially the feature vectors

from all the speakers are used to build the model and this is called the world model.

4.5.2.3 Adapting World Models to build Speaker Models:

“Maximum A Posteriori” (MAP) estimate is used to build distributions that more

closely model the voice characteristics of individual speaker. This is done by adapting

the world model built previously. MAP differs from the “Maximum Likelihood Es-

timation” (MLE) in that it has a prior knowledge of the model parameters to begin

with. So with the world model, the EM algorithm iterates and refines the model

parameters now using the feature vectors of the individual speaker to build speaker
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models. These speaker models are more close approximations of each speaker’s voice

characteristics. MAP estimation is given by

θ̃ = argmaxθ p(θ | X) = argmaxθ p(X | θ)p(θ) (4.8)

In equation (4.8), p(θ) is the posterior probabilityworld model.

4.5.2.4 Classifying the features of test Speakers:

In the testing phase, the LFCC features are extracted from the test speech samples.

These features now have to be classified by checking for similarity with the speaker

classes built in the training. The decision for the speaker identity is accomplished

through hypothesis testing. Consider a speech sample s, which is hypothesized to

be from a speaker T . The decision about the speaker of s is based on the following

hypothesis.

Nullhypothesis, H0: s is from the speaker T .

Alternatehypothesis, H1: s is not from speaker T .

If θ is the decision threshold, the likelihood is computed as [40].

p(s|H0)
p(s|H1

= { ≥ θ acceptH0

< θ rejectH0

4.6 Speaker Identification ALIZE

For our experiments we use a text- independent speaker identification tool AL-

IZE [45]. ALIZE is a GMM based speaker identifier using LFCC features. 2048

components for the mixture model are used to compute the world and speaker mod-

els.

We generate feature vectors for all the speakers from the training speech samples.
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Then from these features we first generate the world model. Speaker models are

generated using the features specific to the each speaker. In the testing phase, features

are extracted from the test speech samples. Then we compute the likelihood ratio for

each test speech sample against each speaker in the database. We then compute the

rank of the speakers in the database in the order the likelihood ratio beginning from

highest. So higher the rank, the speech sample is most likely to be from that speaker.

Based on these ranks we identify the rank of the actual speaker of the speech sample

and compare this rank for the pitch distortion and voice conversion algorithms.
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Chapter 5

Experimental results for Privacy Protection

In this chapter we discuss the experimental setup of our evaluation framework. First

we describe the transformation parameters used for the pitch distortion and voice con-

version techniques. The intelligibility evaluation with the ASR, training and testing

procedure and the results of the speech recognition are presented for pitch distortion

and voice conversion. Similarly the speaker similarity evaluation with the speaker

identifier, its training and testing are also discussed.

5.1 Experimental data and parameters

5.1.1 TIMIT Dataset

For our evaluation experiments we use “Texas Instruments and Massachusetts In-

stitute of Technology” (TIMIT) [46] speech corpora. TIMIT speech data is widely

used for acoustic-phonetic knowledge and for evaluation of automatic speech recog-

nition systems. TIMIT corpus contains speech data from 630 speakers, both male

and female, from 8 major dialect regions of North America, thus making a total of

6300 sentences. We use this data set for both intelligibility/speech recognition and

speaker similarity/speaker identification experiments. Our evaluation experiments

with the automatic recognizers contain a set of training data and a set of test data.

The training data consists of utterances from 461 speakers: 136 female and 325 male.
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The test data has 5 male speakers and 5 female speakers, 10 utterances from each

speaker making a total of 100 utterances.

5.1.2 Pitch Distortion parameters

The parameter involved in pitch distortion techniques is and for our experiments

we consider 5 different values of α (based on allowable α range [17]). The complete

training data is distorted with these 5 α values. Similarly all the 100 utterances of

test data are distorted by the 5 α values and these test data sets are named SetA,

SetB, SetC, SetD and SetE corresponding to α = 1.0, α = 0.5, α = 0.75, α = 1.25

and α = 1.40. SetA with α = 1.0 corresponds to the test data set with no distortion.

These 5 sets of data are then evaluated for intelligibility and speaker similarity. The

data sets and α values are tabulated in Table 5.1.

Table 5.1: Pitch distortion parameters
Dataset α
Set A 1.0
Set B 0.5
Set C 0.75
Set D 1.25
Set E 1.4

5.1.3 Voice Conversion parameters

The 5 male and 5 female speaker utterances are converted towards a single target

male speaker and a single target female speaker. These target speakers are only

reference speakers and randomly chosen. The choice of a particular speaker as the

target does not have a significant influence on the evaluation because all the speakers

are uniformly converted towards the target speakers.
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In the case of voice conversion, we have 4 sets of data named FF , FM , MF and

MM corresponding to “Source Female to Target Female”, “Source Female to Target

Male”, “Source Male to Target Female” and “Source Male to Target Male”. The

warping parameters for each of the data sets are listed in Tables 5.2, 5.3, 5.4 and 5.5.

SF and SM are source female and source male respectively.

Table 5.2: Female to Female Voice distortion parameters
FF

Speaker α ρ
SF1 0.92 0.93
SF2 0.90 0.98
SF3 0.81 0.89
SF4 0.81 0.87
SF5 0.98 0.95

Table 5.3: Female to Male Voice distortion parameters
FM

Speaker α ρ
SF1 1.27 0.89
SF2 1.22 0.94
SF3 0.98 0.86
SF4 1.20 0.83
SF5 1.34 0.91

Table 5.4: Male to Female Voice distortion parameters
MF

Speaker α ρ
SM1 0.84 1.16
SM2 0.82 1.18
textbfSM3 0.81 1.38
SM4 0.76 1.84
SM5 0.85 1.62
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Table 5.5: Male to Male Voice distortion parameters
MM

Speaker α ρ
SM1 1.09 1.11
SM2 1.14 1.13
SM3 1.03 1.32
SM4 1.10 1.76
SM5 1.21 1.56

5.2 Intelligibility evaluation results

The intelligibility of the pitch distorted and voice converted speech is measured

in terms of Word Error Rate (WER) and Phoneme Error Rate. The ASR is trained

initially with the training data and then tested with different test data sets. For both

pitch distortion and voice conversion techniques we consider two cases: ASR trained

with the original data and ASR trained with modified data.

5.2.1 Pitch Distortion Algorithm results

1. Cross Model: The ASR is trained with original undistorted training data and

tested with the distorted SetA, B, C, D and E data sets.

2. Same Model: The ASR is trained using the same five α values as the test

data and tested with the distorted SetA, B, C, D and E data sets.

The average WER and phoneme error rate for both the cases are listed in Tables 5.6

and 5.7

5.2.2 Voice Conversion results

1. Cross Model: The ASR is trained with the original training data and tested

with the voice converted FF , FM , MF and MM data sets.
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Table 5.6: Average WER% with Pitch Distortion for Cross Model
Cross Model

Dataset WER% PhonemeErrorRate%
A 29.07 33.01
B 92.37 79.72
C 65.52 58.14
D 61.52 53.13
E 78.42 66.38

Table 5.7: Average WER% with Pitch Distortion for Same Model
Same Model

Dataset WER% PhonemeErrorRate%
A 29.07 33.01
B 31.76 34.8
C 29.81 33.01
D 30.25 33.66
E 32.46 34.03

2. Same Model: The ASR is trained with the same α and ρ values as the test

data and tested with the voice converted FF , FM , MF and MM data sets.

The average WER and phoneme error rate for both the cases are listed in Tables 5.8

and 5.9

Table 5.8: Average WER% with Voice Conversion for Cross Model
Cross Model

Dataset WER% PhonemeErrorRate%
FF 44.94 43.61
FM 39.69 38.77
MF 44.99 41.53
MM 39.47 39.18

Bar charts showing the accuracy% of Intelligibility evaluated using Automatic

Speech Recognizer with Pitch Distortion and Voice conversion are shown in Figures

5.1 and 5.2
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Table 5.9: Average WER% with Voice Conversion for Same Model
Same Model

Dataset WER% PhonemeErrorRate%
FF 28.94 32.35
FM 30.43 32.87
MF 29.64 33.21
MM 31.34 33.95

Figure 5.1: Bar chart showing Intelligibility accuracy% with Pitch Distortion using
ASR.

Figure 5.2: Bar chart showing Intelligibility accuracy% with Voice Conversion using
ASR.

5.2.3 Statistical significance test for Intelligibility

To verify the statistical significance of the intelligibility results from the ASR, we

performed the statistical z- tests. We consider the original speech data and compare
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its WER with that of the voice transformed data.

Let population proportion p1 be the average WER of original clips and population

proportion p2 the average WER of the voice transformed clips. Our null and alternate

hypotheses are:

NullHypothesis, H0: p1 = p2 =⇒ Average WER does not change due to voice

transformation.

AlternateHypothesis, H1: p1 ̸= p2 =⇒ Average WER changes due to voice

transformation.

We use standard two tail z-test to compare the populations since we consider the

WER difference in either direction. We use 95% confidence level to compare the

populations. If the calculated z value is less than the critical value (+1.96 or greater

than −1.96) then the null hypothesis is true. Otherwise we reject the null hypothesis.

Considering the average WER of the compared populations to be x1 and x2, the z-test

parameters are given in Table 5.10

Table 5.10: z-test parameter values for WER using ASR
Parameter Value
Zobs

x̄1−x̄2

SE(x1−x2)

Population size 100 (Pitch distortion), 50 (Voice Conversion)
Confidence Level 95%
Critical z-value (zα

2
) ±1.96

Rejection Criteria for H0 zobs ≤ −zα
2
or zobs ≥ zα

2

Tables 5.11, 5.12, 5.13 and 5.14 show the z-test results on the intelligibility eval-

uation results of pitch distortion and voice conversion techniques.

Figure 5.3 shows the z-test results for accuracy of Intelligibility evaluated using

Automatic Speech Recognizer with both Pitch Distortion and Voice conversion.

From the intelligibility evaluation results we can observe the following:
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Table 5.11: z-test results for WER with Pitch Distortion for Cross Model
Cross Model

Population z-test values
A vs. B -12.03 =⇒ Ha

A vs. C -5.54 =⇒ Ha

A vs. D -4.87 =⇒ Ha

A vs. E -8.05 =⇒ Ha

Table 5.12: z-test results for WER with Pitch Distortion for Same Model
Same Model

Population z-test values
A vs. B -0.41 =⇒ H0

A vs. C -0.11 =⇒ H0

A vs. D -0.18 =⇒ H0

A vs. E -0.51 =⇒ H0

Figure 5.3: z-test results for accuracy of Intelligibility using ASR with Pitch Distortion
and Voice Conversion

• In the cross model, for the pitch distortion algorithm, all α values give a poor

recognition with SetB having the least recognition.

• When the ASR is trained with similar α values, all the sets of data perform

very well with SetC and SetD very close to the original.

• On the other hand, voice conversion gives an overall good performance in terms

of intelligibility.
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Table 5.13: z-test results for WER with Voice Conversion for Cross Model
Cross Model

Population z-test values
A vs. FF -1.89 =⇒ H0

A vs. FM -1.28 =⇒ H0

A vs. MF -1.90 =⇒ H0

A vs. MM -1.25 =⇒ H0

Table 5.14: z-test results for WER with Voice Conversion for Same Model
Same Model

Population z-test values
A vs. FF 0.02 =⇒ H0

A vs. FM -0.17 =⇒ H0

A vs. MF -0.07 =⇒ H0

A vs. MM -0.28 =⇒ H0

• The cross model results are only slightly lower than the same model indicating

that voice converted speech can be understood even without prior training.

5.3 Speaker similarity using Speaker Identifier

The speaker similarity of the pitch distorted and voice converted speech is mea-

sured in terms of average rank of the actual speaker. For every test speech data, we

find the rank of the actual speaker and then compute the average rank among all the

speakers in the database (136 female speakers and 325 male speakers). We compare

this average rank for pitch distortion and voice conversion. The speaker identifier

is trained initially with the training data and then tested with different test data

sets. For both pitch distortion and voice conversion techniques we consider two cases:

speaker identifier trained with the original data and the speaker identifier trained

with the modified data.
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5.3.1 Pitch Distortion Algorithm results

1. Cross Model: The speaker identifier is trained with original undistorted train-

ing data and tested with the distorted SetA, B, C, D and E data sets.

2. Same Model: The speaker identifier is trained using the same five α values as

the test data and tested with the distorted SetA, B, C, D and E data sets.

The average rank of the speakers for both the cases is given in Table 5.15.

Table 5.15: Average Speaker rank with Pitch Distortion
Dataset Cross Model Same Model

Male Female Male Female
A 33.2 7.40 33.2 7.40
B 59.0 61.8 40.6 11.7
C 56.7 58.9 36.4 11.1
D 51.2 60.5 39.6 16.7
E 54.2 47.2 40.2 20.9

5.3.2 Voice Conversion results

1. Cross Model: The speaker identifier is trained with the original training data

and tested with the voice converted FF , FM , MF and MM data sets.

2. Same Model: The speaker identifier is trained with the same α and ρ values

as the test data and tested with the voice converted FF , FM , MF and MM

data sets.

The average rank of the speakers for both cases is listed in Table 5.16.

Bar charts showing the speaker rank% of evaluated using Speaker Identifier with

Pitch Distortion and Voice conversion are shown in Figures 5.4 and 5.5.
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Table 5.16: Average Speaker rank with Voice Conversion
Dataset Cross Model Same Model
FF 36.9 10.5
FM 48.2 8.0
MF 55.4 41.7
MM 40.9 31.9

Figure 5.4: Bar chart showing speaker rank% with Pitch Distortion using Speaker
Identifier

Figure 5.5: Bar chart showing speaker rank% with Voice Conversion using Speaker
Identifier

5.3.3 Statistical significance test for Speaker similarity

Similar to the intelligibility, to verify the statistical significance of the speaker

similarity results from the speaker identifier, we performed the statistical z-tests. We

consider the original speech data and compare its speaker rank with that of the voice
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transformed data.

Let population proportion p1 be the average speaker rank of original clips and

population proportion p2 the average speaker rank of the voice transformed clips.

Our null and alternate hypotheses are

NullHypothesis, H0: p1 = p2 =⇒ Average speaker rank does not change due

to voice transformation.

AlternateHypothesis, H1: p1 ̸= p2 =⇒ Average speaker rank changes due to

voice transformation.

We use standard two tail z-test to compare the populations since we consider the

WER difference in either direction. We use 95% confidence level to compare the

populations. If the calculated z value is greater than the critical value (−1.96) then

the null hypothesis is true. Otherwise we reject the null hypothesis. Considering the

average WER of the compared populations to be x1 and x2, the z-test parameters are

given in Table 5.17

Table 5.17: z-test parameter values for Speaker rank using Speaker Identifier
Parameter Value
Zobs

x̄1−x̄2

SE(x1−x2)

Population size 50 (Pitch distortion), 50 (Voice Conversion)
Confidence Level 95%
Critical z-value (zα

2
) −1.96

Rejection Criteria for H0 zobs ≤ −zα
2

Tables 5.18, 5.19, 5.20 and 5.21 show the z-test results on speaker similarity eval-

uation results of pitch distortion and voice conversion techniques.

Figure 5.6 shows the z-test results for speaker rank evaluated using Speaker Iden-

tifier with both Pitch Distortion and Voice conversion.

From the speaker similarity evaluation we can observe the following
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Table 5.18: z-test results for Speaker rank with Pitch Distortion for Cross Model
Cross Model

Population z-test values
Male Female

A vs. B -2.79 =⇒ Ha -6.96 =⇒ Ha

A vs. C -2.43 =⇒ Ha -6.53 =⇒ Ha

A vs. D -1.85 =⇒ H0 -6.77 =⇒ Ha

A vs. E -2.17 =⇒ Ha -5.92 =⇒ Ha

Table 5.19: z-test results for Speaker rank with Pitch Distortion for Same Model
Same Model

Population z-test values
Male Female

A vs. B -0.77 =⇒ H0 -0.73 =⇒ H0

A vs. C -0.34 =⇒ H0 -0.64 =⇒ H0

A vs. D -0.67 =⇒ H0 -1.44 =⇒ H0

A vs. E -0.74 =⇒ H0 -1.99 =⇒ Ha

Figure 5.6: z-test results for speaker rank using Speaker Identifier with Pitch Distor-
tion and Voice Conversion.

• In general speaker’s identification is better in the case of female speakers most

likely due to smaller number of female speakers.

• The cross model performs worse in identifying the speaker as expected in the

case of both pitch distortion and voice conversion.
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Table 5.20: z-test results for Speaker rank with Voice Conversion for Cross Model
Cross Model

Population z-test values
A vs. FF -3.80 =⇒ Ha

A vs. FM -5.12 =⇒ Ha

A vs. MF -2.30 =⇒ Ha

A vs. MM -0.79 =⇒ H0

Table 5.21: z-test results for Speaker rank with Voice Conversion for Same Model
Same Model

Population z-test values
A vs. FF -0.53 =⇒ H0

A vs. FM -0.12 =⇒ H0

A vs. MF -0.89 =⇒ H0

A vs. MM 0.14 =⇒ Ha

• In the cross model itself there are two cases-SetD in pitch distortion and

SetMM in voice conversion where the identity of the speaker is not protected.

• In the case of same model, it is unsettling to note that except for two cases-

SetE in pitch distortion and SetMM in voice conversion, the speaker’s identity

is not protected.

• This means that if an attacker is able to acquire some prior training data, then

the voice transformation mat not be able to conceal the speaker’s identity.

5.4 Intelligibility evaluation with Subjective Experiments

The performance of the voice transformation techniques in maintaining the in-

telligibility is evaluated with subjective experiments also. For the subjective tests,

we perform listening experiments and evaluate the recognition accuracy with human

testers. In the case of intelligibility evaluation we have 8 testers who are randomly

selected and are a balanced set of normal people, voice experts, male and female. The
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listening experiments consist of two parts similar to the cross model and same model

of the ASR.

5.4.1 Subjective experiment results

The experiment consists of 10 tests. In each test the test takers were asked to

listen to 4 reference speech clips from 4 different speakers and then identify the words

uttered in by the test data clips. The test data consists of 2 clips and one of the test

clips is from one of the speakers of the reference clips. In addition the test takers were

provided with a set of words for each test clip and asked to provide the transcription

of the utterance.

The first test is similar to the cross model test of the ASR. The reference clips are

original speech data and the test data consists of 16 clips, 2 clips each from the sets -

SetsB, C, D, E, FF , FM , MF and MM . The other 9 tests are similar to the same

model test of the ASR and each test corresponds to the SetsA, B, C, D, E, FF ,

FM , MF and MM . So in this case the reference and the test speech clips are from

same set data [47]. The average recognition accuracy of the listening experiments is

given in Tables 5.22 and 5.23.

Table 5.22: Average recognition accuracy% for Subjective test with Pitch Distortion
Dataset Cross Model Same Model
A 96.87 96.87
B 38.75 43.08
C 76.25 88.28
D 76.63 70.99
E 57.82 70.42

Bar charts showing the Recognition accuracy% evaluated using Subjective tests

with Pitch Distortion and Voice conversion are shown in Figures 5.7 and 5.8.
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Table 5.23: Average recognition accuracy% for Subjective test with Voice Conversion
Dataset Cross Model Same Model
FF 80.68 78.57
FM 77.64 90.74
MF 80.21 89.32
MM 85.40 86.53

Figure 5.7: Bar chart showing Recognition accuracy% with Pitch Distortion using
Subjective tests.

Figure 5.8: Bar chart showing Recognition accuracy% with Voice Conversion using
Subjective tests.

5.4.2 Statistical significance test

We verify the statistical significance of the subjective tests for intelligibility through

the statistical t-tests. We consider the accuracy results for the original speech data
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and compare it with that of the voice transformed data.

Let population proportion p1 be the average recognition accuracy of original clips

and population proportion p2 the average recognition accuracy of the voice trans-

formed clips. Our null and alternate hypotheses are

NullHypothesis, H0: p1 = p2 =⇒ Average accuracy does not change due to

voice transformation.

AlternateHypothesis, H1: p1 ̸= p2 =⇒ Average accuracy changes due to voice

transformation.

We use paired, two sample, two tailed t-test to compare the populations since

we consider the accuracy difference in either direction. We use 95% confidence level

to compare the populations. If the calculated t value is less than the critical value

(+2.36 or greater than −2.36) then the null hypothesis is true. Otherwise we reject

the null hypothesis. Considering the average recognition accuracy of the compared

populations to be x1 and x2, the z-test parameters are given in Table 5.24

Table 5.24: t-test parameter values for Recognition accuracy using Subjective tests
Parameter Value
tobs

x̄1−x̄2

SE(x1−x2)

Population size 8
Degrees of freedom 7
Confidence Level 95%
Critical t-value (tα

2
) ±2.36

Rejection Criteria for H0 tobs ≤ −tα
2
or tobs ≥ tα

2

Tables 5.25, 5.26, 5.27 and 5.28 show the t-test results on recognition accuracy of

subjective experiments for pitch distortion and voice conversion techniques.

Figure 5.9 shows the t-test results for Recognition accuracy evaluated using Sub-

jective tests with both Pitch Distortion and Voice conversion.
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Table 5.25: t-test results for intelligibility with Pitch Distortion for Cross Model
Cross Model

Population t-test values
A vs. B 3.17 =⇒ Ha

A vs. C 1.29 =⇒ H0

A vs. D 1.25 =⇒ H0

A vs. E 2.11 =⇒ H0

Table 5.26: t-test results for intelligibility with Pitch Distortion for Same Model
Same Model

Population t-test values
A vs. B 2.92 =⇒ Ha

A vs. C 0.69 =⇒ H0

A vs. D 1.52 =⇒ H0

A vs. E 1.56 =⇒ H0

Figure 5.9: t-test results for Recognition accuracy using Subjective tests with Pitch
Distortion and Voice Conversion.

From the subjective experiment results for intelligibility we can be observe that,

• For both the same model and the cross model case the pitch distortion Set B

performs poor in terms of recognition accuracy.

• All the other sets have good performance accuracy for both same and cross

model.

• We provided the set of possible words for the listeners to choose from while

transcribing the utterances. This was done to build a platform similar to the
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Table 5.27: t-test results for recognition accuracy with Voice Conversion for Cross
Model

Cross Model
Population t-test values
A vs. FF 1.06 =⇒ H0

A vs. FM 1.20 =⇒ H0

A vs. MF 1.11 =⇒ H0

A vs. MM 0.86 =⇒ H0

Table 5.28: t-test results for recognition accuracy with Voice Conversion for Same
Model

Same Model
Population t-test values
A vs. B 1.15 =⇒ H0

A vs. C 0.51 =⇒ H0

A vs. D 0.63 =⇒ H0

A vs. E 0.75 =⇒ H0

automatic speech recognizers operation, where the training data is available as

template and the recognition is based on those templates.

• Though the speech clips were modified, the human listeners were able to identify

most of the words correctly which could be attributed to the fact that they were

able to identify the sounds and then choose the words form the word pool. In

addition human beings possess a natural knowledge of the vocabulary of the

language, correctness and meaning of the sentence construction - which is a

technical challenge for the large vocabulary automatic speech recognizers.

5.5 Speaker similarity evaluation with Subjective Experiments

The performance of the voice transformation techniques in concealing the identity

of the speaker is evaluated with subjective experiments also. For the subjective tests,

we perform listening experiments and evaluate the performance with human testers.
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In the case of speaker similarity evaluation we have 12 testers who are randomly

selected and are a balanced set of normal people, voice experts, male and female.

The listening experiments consist of two parts similar to the cross model and same

model of the speaker identifier.

5.5.1 Subjective experiment results

The experiment consists of 11 tests. In each test the test takers were asked to

listen to 10 reference speech clips corresponding to 10 speakers from the test data

and then identify the speaker of the test data clips. The test data consists of 5 clips

chosen randomly from the TIMIT test data.

The first 9 tests are similar to the same model test of the speaker identifier and

each test corresponds to the SetsA, B, C, D, E, FF , FM , MF and MM . So in

this case the reference and the test speech clips are from same dataset [48]. The test

10 and 11 are similar to the cross model test of the speaker identifier. The reference

clips are original speech data and the test data corresponds to the sets - SetsB, C,

D, E for test 10 and SetsFF , FM , MF , MM for test 11 [49].The average speaker

accuracy of the listening experiments are given in Tables 5.29 and 5.30.

Table 5.29: Average Speaker accuracy% for Subjective test with Pitch Distortion
Dataset Cross Model Same Model
A 80.00 80.00
B 0 28.33
C 33.33 63.33
D 0 65.00
E 75.00 73.33

Bar charts showing the Speaker accuracy% of evaluated using Subjective tests

with Pitch Distortion and Voice conversion are shown in Figures 5.10 and 5.11.
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Table 5.30: Average Speaker accuracy% for Subjective test with Voice Conversion
Dataset Cross Model Same Model
FF 58.33 88.33
FM 16.67 75.00
MF 8.33 85.00
MM 83.33 86.67

Figure 5.10: Bar chart showing speaker accuracy% with Pitch Distortion using Sub-
jective tests.

Figure 5.11: Bar chart showing speaker accuracy% with Voice Conversion using Sub-
jective tests.

5.5.2 Statistical significance test

We verify the statistical significance of the subjective tests for intelligibility through

the statistical t-tests. We consider the speaker recognition accuracy results for the

original speech data and compare it with that of the voice transformed data.
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Let population proportion p1 be the average speaker recognition accuracy of orig-

inal clips and population proportion p2 the average speaker recognition accuracy of

the voice transformed clips. Our null and alternate hypotheses are

NullHypothesis, H0: p1 = p2 =⇒ Average accuracy does not change due to

voice transformation.

AlternateHypothesis, H1: p1 ̸= p2 =⇒ Average accuracy changes due to voice

transformation.

We use paired, two sample, two tailed t-test to compare the populations since

we consider theaccuracy difference in either direction. We use 95% confidence level

to compare the populations. If the calculated t value is less than the critical value

(+2.20 or greater than −2.20) then the null hypothesis is true. Otherwise we reject

the null hypothesis. Considering the average recognition accuracy of the compared

populations to be x1 and x2, the t-test parameters are given in Table 5.31

Table 5.31: t-test parameter values for Speaker Accuracy using Subjective test
Parameter Value
tobs

x̄1−x̄2

SE(x1−x2)

Population size 12
Degrees of freedom 11
Confidence Level 95%
Critical t-value (tα

2
) ±2.20

Rejection Criteria for H0 tobs ≤ −tα
2
or tobs ≥ tα

2

Tables 5.32, 5.33, 5.34 and 5.35 show the t-test results on speaker accuracy of

subjective experiments for pitch distortion and voice conversion techniques.

Figure 5.12 shows the t-test results for Speaker accuracy evaluated using Subjec-

tive tests with both Pitch Distortion and Voice conversion.
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Table 5.32: t-test results for Speaker Accuracy with Pitch Distortion for Cross Model
Cross Model

Population t-test values
A vs. B 6.93 =⇒ Ha

A vs. C 2.64 =⇒ Ha

A vs. D 6.93 =⇒ Ha

A vs. E 0.29 =⇒ H0

Table 5.33: t-test results for Speaker Accuracy with Pitch Distortion for Same Model
Same Model

Population t-test values
A vs. B 2.99 =⇒ Ha

A vs. C 0.94 =⇒ H0

A vs. D 0.83 =⇒ H0

A vs. E 0.41 =⇒ H0

Figure 5.12: t-test results for Speaker accuracy using Subjective tests with Pitch
Distortion and Voice Conversion.

From the subjective experiment results for speaker similarity it can be observed

that,

• In the case of cross model, the speaker identification is poor for the pitch dis-

tortion case except for SetE.

• But for the voice conversion case the speaker’s identity is not protected for two

cases FF and MM .
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Table 5.34: t-test results for Speaker Accuracy with Voice Conversion for Cross Model
Cross Model

Population t-test values
A vs. FF 1.20 =⇒ H0

A vs. FM 3.98 =⇒ Ha

A vs. MF 5.16 =⇒ Ha

A vs. MM -0.19 =⇒ H0

Table 5.35: t-test results for Speaker Accuracy with Voice Conversion for Same Model
Same Model

Population t-test values
A vs. B -0.54 =⇒ H0

A vs. C 0.29 =⇒ H0

A vs. D -0.32 =⇒ H0

A vs. E -0.46 =⇒ H0

• The same model case is similar to the results of the speaker identifier and shows

that when training samples are available, the listeners can identify the speaker.

5.6 Observations from the Privacy Protection experiments

Based on the experimental results from the automatic techniques and the sub-

jective experiments, we can observe that pitch distortion conceals the identity of the

speaker comparatively more than voice conversion. On the other hand though voice

conversion provides less protection to the privacy of the speaker comparatively, it

is better in terms of the intelligibility of the modified speech. So among the two

techniques we have trade-off between the degree of privacy protection and intelligibil-

ity. For applications where privacy is the priority than intelligibility pitch distortion

particularly the SetC provides a good performance for intelligibility and speaker’s

privacy. For applications where human listeners are the end users and intelligibility

is the main requirement, the voice conversion technique can be used.
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We apply these observations for a video self-modeling therapy for people with

voice hypertension. In this application, the people undergoing the voice therapy are

the end users and so we use the voice conversion technique for generating a clean

voice.
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Chapter 6

Experimental Results for Voice Therapy

In this chapter we discuss the proposed video self-modeling (VSM) technique for voice

therapy of people with voice hypertension. We propose a novel system that re-renders

new talking-head sequence that is suitable for the voice therapy. We describe the

experimental set up for this VSM: the audio-video capture of the patient undergoing

voice therapy, the audio tracks segmentation phase for extracting the time markers

and the voice transformation techniques for generating the new speech track. For

our preliminary experiments, we also perform subjective and objective evaluation on

the synthesized speech. We present the evaluation results which demonstrate the

effectiveness of this approach.

6.1 VSM for voice therapy

Video self-modeling (VSM) is a behavioral intervention technique in which a

learner models a target behavior by watching a video of him or herself. Vocal hy-

per function is one type of voice disorders that is defined as the use of excessive

muscle force and physical effort in the production of voice [50]. Generally, vocal

hyper function can be effectively treated with behavioral voice treatment or voice

therapy. Participation in voice therapy requires regular (at least once a week) voice

therapy sessions with the speech-language pathologist over a period of at least two

months [51]. Access to voice therapy services in rural areas and developing countries

is particularly lacking, due to difficulties in recruiting and retaining speech-language
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pathologists and the expenses of time and travel for the required voice therapy pro-

gram. The use of VSM for voice therapy is a novel application where the pathologist

can use the proposed system to create videos of a patient speaking with an improved

voice. This new form of treatment has the potential of reducing the length of the

treatment program and the number of therapy sessions, thereby reducing health dis-

parities in rural populations. A clinical study is currently underway at the University

Of Kentucky Clinical Voice Center to test the effectiveness of the proposed VSM

therapy.

6.2 Experimental Setup

The first phase of the voice therapy experiment is audio-video capture where a

raw video of the patients head and his voice are recorded. Figure 6.1 shows the raw

video capture setup. The red box highlights that only the head of the patient is being

focused and captured.

Figure 6.1: Video capture for VSM

After the raw footage is captured, the audio track is extracted. The audio is

segmented to extract the time markers corresponding to word boundaries. A new

speech track is synthesized using either text-to-speech or selecting a similar voice

from a database of clean speech. Voice conversion is then applied to match the new
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speech to the patient’s voice. Time markers extracted from the original and new

speech track are passed to the video module which produces new video sequences for

lip synchronization. Details of the algorithms used for video and audio processing

are provided in the next two sections. Figure 6.2 shows the VSM’s audio content

generation process. In the figure, Track 1 is the speech track generated using text-to-

speech voice, Track 2 is the text to speech voice with voice conversion applied, Track

3 is the similar voice from the clean speech database and Track 4 is the similar voice

with voice conversion applied.

Figure 6.2: VSM content generation process

6.3 Audio Segmentation Algorithm

The audio segmentation module is used to extract the time markers in the audio

track. Currently we detect the word boundaries as the time markers and use them

for the synchronization in the video module.

The audio segmentation module has an initial training period for a few seconds
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before the patient starts speaking. During this training period, the module deter-

mines the ambient noise amplitude level which acts as the threshold level for the

segmentation. The remaining audio is segmented using this threshold value. The

module extracts the time markers at instances when the amplitude increases above

the threshold as the beginning of the word, and at instances when it decreases below

the threshold for a sufficiently long period of time as the end of word. For our ex-

periment we have 30s as the initial training period. The segmentation algorithm is

shown in Figure 6.3.

Figure 6.3: Audio Segmentation Algorithm.

6.4 Speech synthesis

To generate the replacement speech track, we have tested two different approaches.

The scripts used in a typical therapy session are usually fixed and are available to

us before the actual experiments with the VSM. In our first approach, we use a

commercially available text-to-speech synthesizer from Cereproc [52]. While the text-

to-speech engine offers great flexibility in generating arbitrary scripts, the quality of

synthetic speech is still not as good as human voices. The other approach is to first

collect speech clips from a diverse set of individuals with healthy voice reciting the
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same script used in the therapy session and then identifying the clip that is most

similar to the patient’s voice. These two approaches generate the speech tracks 1 and

3 shown in Figure 6.2.

For the second approach, to compute the similarity of the voices in database

with the patients voice, we use the text independent speaker identification system,

ALIZE [45] discussed in Chapter 4. The speech data collected from the speakers are

used to construct a 2048 component world GMM model, which is then adapted to

individual speaker models. In the testing phase, we use the patient’s voice as input

and find the speaker with the maximum likelihood among all speakers in the database.

To make the selected similar voice or text-to-speech generated speech signal sound

even closer to the patients voice, the two speech tracks are further processed using

the time domain voice conversion technique [31] discussed in Chapter 3. In this case

text-to-speech generated speech and the selected similar voice are the source voices

and they are voice converted towards target voice: patient’s voice to generate speech

tracks 2 and 4 as shown in Figure 6.2.

6.5 VSM Experimental Results

In our preliminary experiment, we capture two video sequences of a voice expert

who is familiar with the voice characteristics of vocal hyper function. He prepared

two sequences one using his natural voice and the other mimicking that of a patient

with vocal hyper function. The two videos are on average 43 seconds long and are

captured at a video frame rate of 30 fps and audio sampling rate at 16 kHz. The

script recited consists of isolated words and a couple of sentences with pauses between
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each.

Despite the fact that we have the normal voice of our voice expert, this normal-

voice clip is never used in any of the training of our speaker identification system

for identifying similar voices or the vocal tract modeling used in the voice conversion

module. In all cases, we use the mimicked voice as the target as it would have been

the only data available if he was a true patient. The normal-voice is only used for

comparison.

For the CereProc text-to-speech synthesizer, we manually identify one character

with southern English accent named “William” to be the closest match to our voice

expert. For the clean speech database, we have identified three individuals in the

same gender, age and race group as our voice expert and have recorded their voices

reciting the same script. None of these three individuals claim to have any voice

disorder.

6.5.1 Speaker similarity results

Apart from using ALIZE for selecting the most similar voice from the clean speech

database, we also use it to evaluate the quality of the generated speech tracks by com-

paring with the normal healthy voice. We use log likelihood ratio measured by ALIZE

in ranking the similarity between the normal healthy voice, s and the hypothetic tar-

get speaker model, L, which in our case is the speaker model generated for different

speech tracks.

LLR(S | L) = log(
l(s | L)
l(s | L)

) (6.1)
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In the above equation, l(s | L) is the likelihood of s against the target speaker

model L and l(s | W ) is the likelihood of s against the world model W .

For our experiment ALIZE was trained with the text-to-speech voice, text-to-

speech voice with voice conversion, best human voice from database, best human

voice with voice conversion and the mimicked voice. The testing was performed with

the normal voice of the speaker. The synthesized voice closest to the normal healthy

voice is evaluated based on the computed likelihood. Table 6.1 shows the likelihood

values for the different voices synthesized.

Table 6.1: Likelihood of synthesized voice compared to healthy voice
Synthesized speech LLR
Mimicked Voice 9.03e-2
Best Human 2.26e-2
Text-to-speech 1.39e-2
Best Human with Voice conversion 0.47e-2
Text-to-speech with Voice conversion -0.63e-2

A bar chart showing the Likelihood of the synthesized voices against normal

healthy voice is shown in Figure 6.4.

Figure 6.4: Bar chart showing Likelihood of synthesized voices against the normal
healthy voice.

From Table 6.1, it is not surprising to see that the mimicked voice is the one closest

to the healthy voice. Among the synthetic voices, the best human voice is ranked
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top followed by the text-to-speech version. On the other hand, the application of

voice conversion seems to have a detrimental effect. One possible explanation is

the warping parameter α and the fundamental frequency ratio ρ. The parameters

computed directly by the software produce voices that are non-human like, mostly

likely due to the unnatural hoarseness in the mimicked voice. We have tuned the

parameters in such a way that the voice is more human but it adversely affects the

overall similarity to the target voice.

6.5.2 Subjective evaluation

We have also performed a series of subjective evaluation tests to determine the

overall quality of the synthesized speech [53]. Two sets of questions are administered

to five test takers who are unaware of the details of our proposed system. The test

takers were asked to watch and compare the different videos to determine the voice

that is more natural and of high quality.

The first test aims in comparing the different speech synthesis techniques and

select the better one in terms of quality and naturalness. The test takers were made

to watch pairs of videos and then select one of them as a better technique. The

average results of the preferred techniques of the test takers are tabulated in Table

6.2.

The second test is to rate the different synthesized speech tracks, including the

normal healthy voice, in the order of most likely normal voice of the speaker. The

test takers were first made to view the mimicked voice video. Then, they were asked

to view the five different videos and rank them based on their likelihood of being the
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Table 6.2: Results of forced choice test
Common parameter Test % favoring 1st technique
Text-to-speech without Voice Conversion

vs. with Voice Conversion
100

Best Human without Voice Conversion
vs. with Voice Conversion

100

Voice Conversion Best human voice vs. Text-
to-speech voice

100

With Voice Conversion Best human voice vs.Text-
to-speech voice

100

voice without disorder. The results of the subjective evaluation are given in Table

6.3.

Table 6.3: Results of rank test
Test Average Rank
Healthy Voice 1.8 ± 1.8
Best Human 2.0 ± 0.7
Best Human with Voice Conversion 3.4 ± 1.3
Text-to-speech 3.2 ± 0.4
Text-to-speech with Voice Conversion 4.6 ± 0.5

The results of the tests are as expected. In the first test, the testers prefer best-

human voice over text-to-speech voice and the absence of voice conversion. In the

second test, while most users choose the “correct” answer, i.e. the video with healthy

voice, the synthetic video with best human voice comes quite close. This result is

promising as it demonstrates the possibility of using synthetic video in depicting

unseen behavior of an individual, which is precisely the goal of the VSM therapy. We

are currently conducting more experiments with a larger user group.
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Chapter 7

Conclusions and Future Work

In this research, we have presented an evaluation framework for the voice transfor-

mation techniques. We evaluated two techniques which operate on different charac-

teristics of the voicepitch and the spectral envelope and both these characteristics

control the identity of the speaker. We have evaluated the performance of the two

algorithms: pitch distortion and voice conversion, based on two key qualities of the

modified speech: intelligibility or clarity of the modified speech and privacy of the

speaker or degree to which the speaker’s identity is concealed.

We have performed extensive experiments for the evaluation of the transformation

techniques with both subjective and objective experiments. The intelligibility evalua-

tion was done with automatic speech recognizers and with human testers. The speech

recognizers outperform human listeners when trained with modified data. But on the

other hand human listeners have an advantage of the better grammatical knowledge

and sentence construction compared to the speech recognizers which rely on the train-

ing data. In the case of speaker identification also, the automated speaker identifier

can find a similar match to the speakers for some cases where human testers could

not identify.

Among the two techniques, the voice converted speech has an overall better per-

formance in terms of intelligibility. But when specific training models are used there

is no difference in intelligibility between pitch distortion and voice conversion tech-
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niques. The privacy of the speaker is better protected when pitch distortion is used

as the transformation technique. But in the case of speaker identity too when specific

training speech samples are used, neither technique effectively conceals the identity

of the speaker. In real world application, we cannot assume a scenario where the

attackers may not acquire the training samples. So we see than better voice trans-

formation techniques are needed to protect the privacy of the speaker such that both

human users and automatic techniques fail to identify the actual speaker.

Based on our evaluation results we propose a novel voice therapy technique using

video self-modeling for people with voice hypertension. We have conducted prelimi-

nary experiments for this behavioral intervention technique which uses video feedback

of the patient with an improved good voice. The experiments performed with a mim-

icked voice and alternate speech tracks generated using text-to-speech and similar

voice from a clean speech database are evaluated subjectively and objectively. The

evaluation results show that these synthesized voice tracks provide a close approxi-

mation to the actual voice of the speaker.

In our future work, we plan to build an interface for the audio-video capture which

is automated and operating in real time. This interface captures the video with head

position alignment and the script to be spoken as a scrolling text. The other phases of

the audio processing, audio segmentation and voice transformation will generate the

new speech tracks in real time. Better voice conversion techniques to closely resemble

the patients voice need to be applied. The advantage of using multimedia techniques

in the voice therapy and its effectiveness needs to be studied with a clinical test.

While our proposed system is domain specific, we believe that the concept of using
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multimedia techniques for video self -modeling has far-reaching importance in many

different areas of health care that can benefit from behavioral modification.
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