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ABSTRACT OF THESIS 

 

 

FABRICATION OF MWCNT BASED GAS SENSOR USING SITE-SELECTIVE 

GROWTH OF NANOTUBES ON GOLD PATTERNED SILICON OXIDE 

SUBSTRATE 

 

Growth confinement techniques for multi walled carbon nanotubes on Au/SiO2 

surfaces was studied and incorporated into a gas sensor design. A device framework was 

conceived and a sensor was built to achieve this structure. The fabrication results were 

analyzed using scanning electron microscopy which confirmed the achievement of highly 

site-selective growth of carbon nanotubes, exclusively between the interdigitated 

electrodes. The sensor was then evaluated for its capacitance and conductance response 

when exposed to NO2 gas. Variation in sensitivities with frequency and flow rate were 

analyzed. A mathematical model was derived for such a device structure and the 

predictions of the model were compared with experimental results. 

 

KEYWORDS: MWCNTs, Gas, Sensor, Growth, Confinement. 
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1. Introduction: 

1.1. Gas sensors 

Gas sensors have always been an integral part of industrial processes. They provide 

critical information about the presence and concentration of a desired gas in a process 

which is crucial for feedback and process control. In addition, they are used to detect gas 

leaks that can be explosive or toxic. Gas sensors are being extensively used to monitor 

various gases in our ambient environment to assess the air quality and also to ensure 

sources of undesirable gases are controlled. Gas sensors are also found in space 

explorations to study a planet‘s atmospheric constituents. It is because of these important 

applications, extensive research is being done on gas sensors and with the advent of 

nanotechnology there seems to be a lot of potential for gas sensors research.  

1.2. Carbon Nanotubes as a gas sensing material 

One of the most common gas sensing principles is adsorption of gas molecules on the 

sensing material. This material can be a gas sensitive polymer, a semiconductor metal 

oxide or a porous material [1][2] [3]. Since adsorption and desorption is the driving 

mechanism for these sensors, increasing the surface area of the gas sensing material with 

the analyte molecules increases the sensing capability. Carbon nanotubes (CNTs), due to 

their large surface to volume ratio, therefore offer a tremendous potential as a gas sensing 

material. Also, the techniques used to grow carbon nanotubes, be it arc discharge, laser 

ablation or CVD, are well established laboratory processes with an excellent control over 

the yield, at a lower cost. Large surface area and ease of its growth in laboratory 

conditions therefore makes CNTs a strong candidate for gas sensing applications.  
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1.3. Conductance and Capacitance based sensors 

Carbon nanotubes show a significant change in their electronic properties such as 

resistance, thermo power and density of states when exposed to certain gases. Since 

fabrication and calibration of a sensor based on a resistance change is easy to implement, 

most of the CNT based sensors reported are of resistive type. Moreover, resistance based 

sensors have a low recovery time and a faster response. On the other hand, sensors that 

report a change in capacitance or dielectric properties have a slower response and a 

slower recovery profile [4]. However, capacitance based sensors have a few advantages 

over their resistive counterpart. Capacitive based CNT sensors can be integrated into an 

LC circuit, which can be used for remote gas sensing in a sealed chamber [5]. A circular 

disk type resonator with SWNTs on top of the disk which when exposed to different 

gases has been shown to give different changes in resonant frequency shift thus 

demonstrating selectivity [6][7]. The multitude of added advantages, including the ability 

to sense remotely as well as demonstrated gas selectivity through varying resonance 

conditions, calls for further studies into capacitive gas sensors in addition to the 

conventional conductance based sensors. Successful understanding and fabrication of 

such a device, holds great promise to the field of sensor devices.  

 

 

 

 



3 
 

1.4. Literature review 

Though a number of devices based upon conductance change have been reported, less 

information has been published regarding sensors working on capacitance change. Every 

effort has been made to identify and document such related sensors in this section. Snow 

et al. [4] was one of the first groups to build a sensor that shows a change in capacitance 

when exposed to volatile organics and low vapor pressure explosives. Their sensor 

consisted of a thick layer of oxide grown on a degenerately doped silicon wafer. A 

network of Single walled carbon nanotubes (SWNTs) grown on the oxide layer via 

chemical vapor deposition (CVD), formed the sensitive material. An interdigitated 

electrode (IDE) array of Pd patterned on this SWNT network provided one of the 

contacts while, the heavily doped Si substrate formed the other contact for measurement. 

When exposed to a gas under an applied AC bias, the fringing electric fields radiating 

outward from the SWNTs causes a change in net polarization of the adsorbates that is 

detected as change in final capacitance. For an exposure as low as P/P0 = 1% of N,N-

dimethylformamide (DMF), a capacitance change of 0.93%  was shown along with a 

good stability and a faster response time relative to SWNTs resistors. P0 is equilibrium 

vapor pressure at 25
0
 C and P is vapor concentration.  

Ong et al. [5] fabricated a wireless inductive-capacitive (LC) circuit gas sensor with a 

MWNT-SiO2 composite as a sensing layer. An electrically insulating SiO2 layer coated 

onto a printed LC circuit board provides the base onto which a gas sensitive MWNT-SiO2 

composite mixture is placed. When exposed to a gas, the complex permittivity ε of the 

composite material changes resulting in a change in the resonant frequency of the sensor, 
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which is picked up by a loop antenna. Decent sensitivities of 0.91%, 0.09% and 2% has 

been achieved for CO2, O2 and NH3 gases respectively.  

Suehiro et al. [8] developed an ammonia sensor using a process called dielectrophoresis 

(DEP). An interdigitated electrode array of chromium (Cr) was patterned on a glass 

substrate. MWCNTs purchased from a commercial supplier were ultra-sonicated in 

ethanol and the suspended solution was made to flow over the substrate at a controlled 

flow rate. Under an applied AC bias of 10V and 100 kHz, some of the MWCNTs were 

trapped between the electrodes by positive DEP. After a period of time, the process is 

stopped and ethanol solution was let to evaporate at room temperature. This sensor is 

then tested for ammonia gas with a lock in amplifier connected to the contact pads of the 

IDE array. At the end of 5 minutes, a change of 4pF was reported for this device.  

Yeow et al. [9] built a highly sensitive humidity sensor using two parallel steel plates 

separated by a small gap. One of the plates had a thick mat of MWCNTs grown on them. 

The screws on either of the plates serve as the electrical contacts during measurement. 

The device is shown to give a change of 3786 % in capacitance for a change of humidity 

from 70% RH to 80 % RH. This high sensitivity was achieved because of the capillary 

condensation effect at the carbon nanotubes surface. As vapor condenses at the surface of 

the CNTs, it converts to water, that has a higher dielectric constant. This results in overall 

increase in capacitance of the sensor.  

Chen et al. [10] fabricated a device for detecting ammonia and formic acid. CNTs were 

grown in a anodic alumina template (AAO) using acetone pyrolysis. Gold film deposited 

on the top and bottom surface of the template formed the two electrical contacts. AAO 
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was partially etched using 10% HF to expose the CNTs inside the template. This device 

was reported, to output a change of 2% in capacitance for ammonia and 10% for formic 

acid. Sensitivity is attributed to the change in net polarization caused by the adsorbate at 

the surface of the CNTs which gives a change in capacitance between the two electrodes.  

Almost all of the CNT sensors surveyed rely on changes in conductance or in dielectric 

constant, from the interactions between the CNT‘s and the gas molecules. Therefore, the 

study of these gas-CNT interactions is of utmost importance for conceiving a blue print 

of the device structure of a CNT based gas sensor.    
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2. Theory 

2.1. Carbon nanotubes 

Since their discovery in 1991 by Iijima [11], carbon nanotubes have been investigated by 

researchers all over the world. Due to their large aspect ratio (length: diameter) these 

materials are expected to possess additional interesting electronic, mechanical and 

molecular properties. Belonging to the family of fullerenes, carbon nanotubes can be seen 

almost as a one dimensional fullerene. Carbon Nanotubes are of two types – Single 

Walled and Multi Walled. [12]. An SWCNT can be considered as a layer of graphite 

rolled up into a cylinder with a diameter of several nanometers, and length on the order of 

microns [13].There are three distinct ways in which a graphene sheet can be rolled into a 

tube 

 

 

Figure 2.1: A one atom thick layer of graphite with carbon atoms placed at the numbered 

indices.  
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The way a graphene sheet is rolled up is specified by a vector (n,m) that defines the 

structure of a carbon nanotube. Rolling up the layer such that the (0,0) atom 

superimposes the (n,m) atom produces a carbon nanotube with (n,m) as indices. If 

n=m then such a tube has an armchair configuration. If m=0 then it‘s a zigzag 

configuration. Both armchair and zigzag structures have a high degree of 

symmetry .The rest of the configurations fall under chiral structure which is the most 

common form of a carbon nanotube. 

 

Armchair 

 

Zigzag 

 

Chiral 

Figure 2.2: Configurations of a Single Walled Carbon Nanotube [14] 
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Multi-walled carbon nanotubes can be considered as multiple layers of graphite rolled in 

such a manner so as to obtain a tube within a tube structure. 

2.2. Carbon nanotubes gas sensing mechanism 

Molecule adsorption and its effect on the electronic properties of a carbon nanotube is the 

primary gas sensing mechanism behind any CNT based gas sensor. Adsorption of NO2 

molecules on SWNTs, studied by first principle calculations, using density functional 

theory was carried by Peng and Cho [15]. The binding configuration for NO2 gas 

molecules on a (10, 0) SWNT is shown in Figure 2.3. The adsorption energy for this 

binding configuration was reported to be 0.3 eV. Charge transfer studies backed by 

electron density analysis showed hole doping of the semiconducting SWNT by the NO2 

gas molecules. 

 

Figure 2.3: Binding configuration of NO2 molecule on a (10,0) SWNT [15] 
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Adsorption of various gas molecules on a single nanotube and bundle of nanotubes was 

investigated by Zhao et al. [16] using the first principles method. Equilibrium tube 

molecule distance, adsorption energies and charge transfer for these molecules on a 

(10,0), (17, 0) and (5,5) SWNTs were calculated based on density functional theory. 

Except for NO2 and O2, most of the gas molecules were found to be charge donors with a 

small charge transfer and weak binding energies (<0.2 eV). NO2 and O2 were found to be 

charge acceptors with large adsorption energies. These calculated results were also 

consistent with the reported experimental results. [17] [18]. 

Collins et al. illustrated that parameters such as thermoelectric power and electrical 

resistance of the SWNTs are extremely sensitive to low concentrations of oxygen. 

[18].Theoretical studies consistent with experimental results were performed by Jhi et al. 

on electronic and magnetic properties of oxidized carbon nanotubes, which demonstrated 

the potential for carbon nanotubes in sensor applications. [19]. 

Changes in the dielectric properties of the carbon nanotubes as a result of molecular 

adsorption were studied by Langlet et al. A sensor model was built using a single (17, 0) 

SWNT with length and radius of 27.36 and 6.75 A
o 

respectively. A mathematical 

expression for the local electric field at a position, because of a carbon atom in the 

nanotube and an admolecule was derived that was used to calculate the interaction energy 

between the tube and the admolecule, and also to determine the linear dielectric 

susceptibility of the system formed by the SWNT and the admolecule. The mathematical 

model is solved to obtain an expression, which shows that the variation in linear 

dielectric susceptibility with molecular adsorption is proportional to the molecular 

polarizability of the constituents. Change in permittivity before and after molecular 
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adsorption for different gas species were calculated using this model. Results of this 

sensor model showed that the largest molecular polarizability (which corresponds to 

molecule size) produced the largest change in permittivity ratio. [20] 

 

2.3. Carbon nanotube growth confinement on Au patterned SiO2/Si substrate  

For a capacitive sensor the placement of the sensing dielectric (CNTs in this case), 

ideally should be between the metal electrodes. This arrangement reduces complications 

in developing a mathematical model for such a device which is crucial for its 

understanding. Achieving such a high degree of arrangement, it is essential that the 

growth of CNTs occur only in the desired area. Such a growth confinement technique has 

been demonstrated successfully by Cao et al on gold (Au) patterned quartz substrates [21]. 

In order to understand the nanotubes growth confinement mechanism, it is essential to 

know the science behind CNT growth on a given substrate. Laser ablation [22], arc 

discharge [11] and catalytic decomposition of hydrocarbons [23] have been the primary 

methods for CNT production for a long time. Since growth of nanotubes by catalytic 

decomposition of hydrocarbons, has been utilized in this study, only the growth 

mechanism for this technique is discussed in this work. 

Carbon nanotube growth can be assumed to be an extension of a process in which 

graphitic structures grow over metal surfaces at temperatures below 1100
o 
C by catalytic 

decomposition of a precursor containing carbon. The type of graphitic structures formed, 

closely depends on the dimensions of theses metal catalyst particles [24][25]. Growth of 

these structures have been shown repeatedly to be effective on iron (Fe), Nickel (Ni) and 
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Cobalt (Co) [26]. Andrews et al. have demonstrated the growth of MWCNTs via 

chemical vapor deposition and have proposed a growth model for these structures [27]. A 

combination of factors is responsible for the growth of these ordered carbon structures on 

such metal films. These factors include catalytic activity of the metal particles to 

decompose carbon compounds, ability to form stable metal carbides, and rapid diffusion 

of decomposed carbon through and into these metal particles. 

In the case of growth on thin films, carbon from the precursor dissolves into the metal 

film and upon cooling, precipitates on the surface as a thin film of highly crystalline 

graphite with the basal planes parallel to the substrate. In a floating catalyst method, 

(which has been utilized for CNT growth in this study) metal particles are introduced 

along with the precursor, which fall onto the substrate thus, promoting growth of carbon 

filaments of similar diameter. Carbon diffuses into these metal particles along the 

concentration gradient and precipitate on the other half of the particle. However, 

precipitation doesn‘t take place on the top most point of the metal particle, which 

explains the hollow core present inside these filaments. In this structure, the graphitic 

basal planes are tangential to the curved surface of the metal particles [27]. Filament 

growth on supported metal particles can be of two types, (i) extrusion, in which the 

filament grows upwards from the surface of the metal particle, which remains adhered to 

the substrate, (ii) tip-growth, in which the filament grows from beneath the metal particle, 

thus detaching it from the substrate [24].  
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The curvature of the metal surface plays an important role on the basal planes of the 

filaments formed. Therefore as the metal particle size reduces (which in turn increase the 

curvature), strain on the basal planes of these filaments also increases thus, promoting the 

growth of a continuous surface that is energetically more favorable. This is how multi 

walled carbon nanotubes are formed. If the particle size is further reduced, single walled 

carbon nanotubes are formed. 

The same growth mechanism theory can be used to explain the MWNT site selective 

growth on Au patterned quartz substrate via a floating catalyst method. During CVD, the 

nucleation of the floating iron catalyst particles falling on the Au film might be affected 

because of the localized surface energy of the film. Also, site selective decomposition of 

ferrocene particles on the oxide surface is possible. Huang et al. achieved a site selective 

growth of CNTs on silver patterned silicon oxide substrate [28]. EDX line analysis results 

showed fewer iron particles on the silver film when compared to the oxide surface. Gold 

and silver being present in the same group of the periodic table might also be the reason 

for this CNT growth prohibition.  

2.4. Device Structure and mathematical modeling 

In view of the potential applications of carbon nanotubes in gas sensing and the ability to 

achieve site selective growth of carbon nanotubes on Au patterned oxide substrates, the 

following device structure was conceived as shown in Figure 2.4 
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Figure 2.4: Sensor device structure showing the nanotubes between the interdigitated 

electrodes made of gold 

This device structure consists of an in-situ grown oxide layer on a silicon substrate. 

Interdigitated electrodes made of Au are patterned on the oxide upon which MWNTs are 

grown. 

To understand the operation of any device, it is necessary to study its mathematical 

model which is crucial for predicting its performance and its response under given 

conditions. Therefore, it is of utmost importance to derive a mathematical model for any 

newly built electronic device. An abstract model is derived for the sensor shown in 

Figure 2.5 and is presented here. 
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Figure 2.5 shows the top and cross sectional view of the interdigitated electrode 

configuration of the sensor. The schematic gives an idea of the variables of the electrodes. 

The variables associated with this model are as given below 

L - Length of the electrode finger in meters 

d - Distance between two fingers in meters 

w – Width of each finger in meters 

h – Height of each finger in meters 

N – Number of fingers (5 in this case) 

   - Dielectric constant of the medium present between each finger (CNTs+air) 

   - Conductivity of the medium present between each finger 
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Figure 2.5: Schematic of the interdigitated electrodes. (a) Top View. (b) Side View 
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The sensor can be modeled as a capacitor with capacitance C in parallel with a 

conductance G as shown in Figure 2.6 

 

Figure 2.6: Equivalent circuit for the sensor 

The total capacitance of the device can be calculated from the capacitance of a single unit 

cell from the expression below 

                            *         +(   )                                       (1) 

where       is capacitance contributed by the dielectric present between the horizontal 

fingers.     is the capacitance contributed by dielectric between the vertical fingers. Since 

these two capacitances are in parallel, their contribution adds up to the total capacitance.  

Similarly the total conductance of the device is given by the expression 

                              *         +(   )                                      (2) 
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The      ,    ,          components of a unit cell are shown in Figure 2.7. 

 

Figure 2.7: Capacitance contributions CL-X and Cd to the unit cell. 

 

The total capacitance of the device in room conditions without CNTs ( which is a known 

value from experimental measurement) is contributed by electrical field through the air 
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between the plates and through a small layer of silicon oxide beneath the elctrodes. The 

electriclal field configuration for such a device is shown in Figure 2.8 

 

Figure 2.8: Electrical field lines through air and the oxide layer beneath the electrodes 

The total capacitance of the device in air without CNTs is given by the expression 

                                    
                                                                     (3) 

where       is the component contributed by air and       is component contributed 

by the oxide. 

After the growth of MWCNTs, the electrical field configuration of a unit cell can be 

considered as in Figure 2.9. Field lines through oxide are neglected for an easier model. 
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Figure 2.9: Electrical field lines through air, CNTs between  

the electrodes and through the underlying oxide 

 

For calculation of L-X and d component,  

                                              
(   ) 

 
                                    (4) 

It is to be noted that    is a function of frequency and can be calculated only for a 

frequency at which measurements were done. Also,    is dielectric constant of the whole 

medium (CNTs+gas) present between the electrodes. Similarly the other component is 

given by 

                                              
  

   
                                           (5) 
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Therefore the total capacitance of the device can be calculated from equations (1),(4) and 

(5). 

From Fig 2.6 the conductance contributed by the L-X and d component is given by 

                                             
(   ) 

 
                                     (6) 

                                            
  

   
                                            (7) 

The total conductance can be calculated from equations (2), (6) and (7).  

3. Experimental procedures 

3.1. Fabrication 

Fabrication of a gas sensor, using the CNT growth confinement technique mentioned in 

section 2.3, requires utmost care and diligent handling of the device throughout the 

fabrication process. Figure 3.1 illustrates the flow of the fabrication process. 

 

Figure 3.1: Outline of fabrication process for the gas sensor 
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The entire process of fabrication can be classified into three categories: (i) SiO2 growth 

by thermal oxidation (ii) Photolithography and Lift off procedures for patterning of gold 

interdigitated electrodes. (iii) MWNTs growth via chemical vapor deposition 

(i) SiO2 growth by thermal oxidation: 

To obtain a passive insulating layer on a p-silicon substrate a thin layer of oxide is grown 

using the thermal oxidation. This layer of oxide is essential for the isolation of the 

MWNTs from the semiconducting silicon throughout the fabrication and measurement 

process. Standard RCA cleaning procedures were employed for the thorough cleaning of 

the p- silicon wafers. Wafers were immersed in a 5:1:1 H2O:H2O2:NH4OH solution at 80
o 

C for 10 minutes to get rid of any organic impurities present on the silicon surface, 

followed by a thorough rinse in DI water. During this step, a thin layer of silicon oxide is 

formed due to the metallic impurities present on the surface. A short immersion in a 50:1 

H2O:HF solution at room temperature  removes this oxide layer and other metallic 

contaminants. Wafers undergo a thorough DI water rinse before the last step, which 

involves immersion in a 6:1:1 H2O:H2O2:HCL solution at 80
o
 C .This step effectively 

removes any remaining traces of metallic impurities left on the silicon surface. [29]. 

Cleaned wafers were loaded into a Lindberg High Temperature furnace at an ambient 

temperature of 800
o 
C. The furnace undergoes a nitrogen flush for 30 minutes to remove 

any contamination inside the tube furnace. The temperature was hiked to 1100
o 

C after 

wafer loading. Oxygen gas was pumped into the tube for 30 minutes at a flow rate of 

500sccm after the temperature reaches 1100
o 

C. This is followed by post oxidation 
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annealing in nitrogen with the gas flowing at 1000 sccm for 2 hours. Finally the furnace 

was switched off and the wafers were allowed to cool down before taking them out. 

(ii) Patterning of Au interdigitated electrodes on SiO2 /Si substrate: 

Oxidized silicon wafers cut into smaller substrates of about 1 inch by 1inch undergo a 

thorough rinse with acetone, Isopropyl alcohol (IPA) followed by DI water. S1813 

positive photo resist spun on each substrate at 4000 rpm formed the photo sensitive layer 

on the substrate. The substrates were soft baked at 95
o 

C for 1 minute. Ultra violet 

exposure (350nm~500nm) of about 12 seconds formed the patterns on the photoresist 

defined by the photomask using a Karl Suss MJB-3 mask aligner. The substrates went 

through a development process in MF-319 solution for about 30 seconds at room 

temperature, followed by a DI water rinse. The substrates were hard baked at 115
o 

C for 

about 3 minutes to harden the remaining photoresist. 

After defining the patterns on the substrate, gold was sputtered on to these substrates 

using argon plasma inside a sealed chamber maintained approximately at 3~4 milli torr. 

Prior to gold deposition, a titanium layer of about 5 nm was sputtered, which served as a 

seed layer for gold film .The seed layer ensures better adhesion of gold film on the 

substrate and plays an important role during lift off process. Power of the RF gun was 

maintained at 35 watts and the purity of the gold target was 99%. A Controlled deposition 

rate of 7 A
o
/min was utilized to get a film of 1 micron thick. To obtain the final pattern of 

gold, the substrates were immersed in S1165 solution at 80
o 

C for about 5 minutes 

followed by a short ultra-sonication in IPA. This process removes the hardened 

photoresist defined by the patterns along with the gold film present on the resist.  



23 
 

 

(iii) MWNTs growth via chemical vapor deposition 

Multi walled carbon nanotubes were grown on the sample by a process described by 

Andrews et al. [30]. Patterned samples were loaded into a Lyndberg tube furnace with a 

diameter of 96 mm. The furnace was heated to 750
o 

C in an argon atmosphere with the 

flow rate controlled at 750 sccm. The tube was purged with hydrogen gas at a flow rate of 

75sccm after the temperature reached 750
o 

C. Ratio of 9:1 for Ar/H2 inside the CVD 

chamber was ensured. A ferrocene and xylene mixture in a ratio of 1:0.1148 (11.48 gms 

of ferrocene per 100gms of xylene) was pumped into the CVD chamber at a rate of 30 

ml/hr for about 2 minutes until the vapors are visible at the other end of the tube. This 

rate was then reduced to 3ml/hr for the whole synthesis. After a synthesis time of 10 

minutes, the hydrogen flow was cut off immediately and the syringe pump was stopped 

and withdrawn. Samples were allowed to cool down in argon and then removed. 

3.2. Measurement  

After the CVD growth, the MWCNT based gas sensor is ready for evaluation for its 

capacitance and conductance response to an analyte gas exposure. The sensor was kept in 

a sealed chamber equipped with gas inlets and probe connections for measurement. IDE 

electrodes were connected to the probes which were in turn connected to an HP 4192A 

impedance analyzer. Prior to measurement, the setup underwent an open and closed 

compensation to remove any errors, contributed by the parasitic capacitance offered by 

the probes and the test fixture. Capacitance and conductance response was monitored 

continuously and recorded every minute for a frequency range of 20 kHz to 1000 kHz, 
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with a step size of 20 khz. Before the sensor evaluation, N2 was flushed into the test 

chamber for about 30 minutes. Alternate cycles of N2 and analyte gas were flushed into 

the chamber, such that each cycle lasted 10 minutes long. Flow rates of N2 and analyte 

gas were 1000sccm and 500sccm respectively. The experimental setup is shown in Figure 

3.2 below. 

 

  

Figure 3.2: Experimental setup for the capacitance and conductance response 

measurement of a sensor 
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4. Results and Discussions 

4.1. Scanning Electron Microscopy Observations: 

As discussed in the previous sections, only site-selective growth of MWCNT‘s on 

Au/SiO2 surfaces via floating catalyst methods have been reported. This is the first time 

that a device has been fabricated, using this growth confinement technique for 

MWCNT‘s on Au/SiO2 surfaces. Figure 4.1 shows a photograph of a sensor built using 

this principle. It can be observed that MWCNTs grew selectively on the oxide surface 

between the electrodes.    

 

Figure 4.1: Sensor with the MWCNT‘s grown in between the gold inter-digitated 

electrodes. 
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Figure 4.2 shows the SEM images of the sensor from various views. The top view of the 

sensor is shown in Figure 4.2a which gives an indication of the difference in growth 

morphologies on the gold electrodes and the SiO2 surfaces in between. Figure 4.2b gives 

the side view of the device that illustrates the MWCNT‘s growth pattern on the electrodes 

and the oxide layer. The micrographs clearly indicate minimal growth of MWCNT‘s on 

the electrodes as conceived in the previous section. This can be attributed to the negative 

effect of the gold film on the nanotube growth as demonstrated by Cao et al. [21]. The 

ferrocene catalyst particles on the oxide surface are able to promote a dense growth of 

MWCNT‘s whereas the catalytic activity of the same ferrocene particles on the gold 

surface seems to be severely inhibited. Vajtai et al. reported the cause of this site 

selective growth to be due to the presence of pure gamma iron (FCC Fe) particles on the 

silicon oxide surface which is an excellent catalyst for MWCNT growth [31]. The cause 

of this site selective growth could be due to the difference in binding energies of iron 

particles on the oxide and gold films. Localized surface energies of the gold film, 

prohibiting the nucleation of the iron particles is also a possibility. 

Figure 4.3(a) shows a magnified view of the MWCNT‘s on the silicon oxide surface. The 

micrograph illustrates an aligned growth of MWCNT‘s, length of about 50 microns 

similar to the conventional CVD growth achieved by Andrews et al. [30]. Figure 4.3(b) 

shows the top view of the nanotubes present on the oxide layer. The MWCNT‘s seem to 

get entangled at the top after a particular length of aligned CNTs has been obtained. A 

highly magnified view of the nanotubes along with some particles adhered to them is 

displayed in Figure 4.4 a. This concurs with the results obtained by Cao et al.[21] to a 

similar CVD growth process on gold patterned quartz substrates. These are suspected to 
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be gold particles chipped off from the electrode film that get stuck to the nanotube 

surface during the CVD process. Figure 4.4(b) shows an image of the nanostructures 

sprouted from the sparsely distributed fissures on the gold film. Growth of nanotubes on 

the oxide surface, beneath the gold film could be the reason for these fissures. Breakdown 

of the gold film can also be a result of a complex thermal dynamics during the CVD 

process. 

 

 

           

(a)                                                                       (b) 

 

Figure 4.2: (a) SEM image with a magnified view of the top view of the sensor. (b) Cross 

sectional view of the sensor 
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     (a)                                                                                      (b) 

Figure 4.3: (a) Aligned growth of MWCNT‘s on the oxide surface. (b)Top view of the 

MWCNT‘s 

                    

(a)                                                                                              (b) 

Figure 4.4: (a) Highly magnified image of the nanotubes. (b) MWCNT‘s growth from the 

fissures on the gold film. 
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From the SEM images it can be concluded that a good control of site selective growth has 

been achieved and a sensor device has been fabricated, to a large extent that is similar to 

the proposed device structure. However it would be interesting to see the performance of 

this device for a test gas in real time environment.   

4.2. Sensor Results:  

Figure 4.5 below shows the 
 

  
 value versus frequency for the device. The plot shows 

that the device obtained is a conductive device. However it would be interesting to see 

the capacitance response for this device to a gas exposure, along with its conductance 

response. 

 

Figure 4.5:  
 

  
 variation with frequency plot 
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4.2.1. Capacitance Response: 

The capacitance versus frequency plot of a sensor is shown in Figure 4.6. It illustrates the 

effect of CNT‘s as a dielectric, on the capacitance of the device against the frequency. 

After the nanotube growth, the capacitance of the device increased almost by a factor of 

20 for lower frequencies of measurement. As the frequency increases this factor 

decreases, but the value is still larger when compared to the device without the CNT‘s 

amidst the electrodes. As the change in the dimensions of the electrodes is minimal 

before and after the CVD, the increase in capacitance could be the result of an increase in 

conductivity of the device which has a secondary effect on the capacitance of the device.  

 

Figure 4.6: Capacitance against frequency plot for a sensor before and after the growth of 

MWCNTS.  
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The performance of a sensor for 0.01% NO2 gas can be seen in Figure 4.7. The plot 

shows the capacitance response of the device at 201 kHz to alternate cycles of N2/NO2 

gases exposure, each cycle lasting 10 minutes each. When exposed to NO2 gas, 

capacitance of the device decreases, which can be attributed to the adsorption of gas 

molecules on the inner walls of the nanotubes which in turn has an increasing effect on 

the overall conductivity (which has a secondary effect on the capacitance). A small effect 

on the dielectric constant is also a possibility. During N2 purge, the capacitance of the 

sensor increases as the weakly bonded physisorbed gas molecules desorb, decreasing the 

net conductivity of the device.  

 

Figure 4.7: Capacitance against time response of the sensor for alternate cycles of 

N2/NO2, each cycle lasting for 10 minutes each. Concentration of NO2 being 0.01%. 
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The device response was recorded at four different frequencies 21kHz, 201kHz, 401kHz 

and 801kHz simultaneously. The sensor doesn‘t seem to respond to the test gas at lower 

frequencies, however for higher frequencies above or in the range of 201 kHz the device 

gives a response to the test gas. Response at 401 kHz and 801 kHz is shown below in 

Figure 4.8   

 

Figure 4.8: Capacitance response for alternate cycles of N2/NO2 gases at 401 kHz and 801 

kHz. 
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The capacitance against time response plots in Figures 4.6 and 4.7 gives a fair idea, as to 

how the test gas NO2 has an effect on the sensor. However percentage sensitivity, a 

parameter of the sensor is also critical for qualitative analysis of the sensor. % Sensitivity 

of the sensor used for test gases is calculated as given below 

                              

                                        
         

   
                                    (8)                                         

                               

                                                                                                                                                                                                                          

Where      is the capacitance of the sensor when exposed to the test gas and     is the 

value during N2 purge. Percentage sensitivity was thus calculated for every minute of the 

test run using the above expression and is plotted against time. Such a plot is shown in 

Fig 4.9 where it illustrates the sensitivity profile of the same sensor at 201 kHz. The plot 

shows a negative sensitivity which is the result of decrease in capacitance under NO2 

exposure. A sensor response of 24.03 % for the first pulse and a cumulative response of 

27.97 % is obtained for 0.01% of NO2  

Plots in Fig 4.6 and 4.8 also give an idea about the sensor recovery profile. There seems 

to be substantial recovery during the N2 gas cycle. However the recovery seems to be 

slow and not complete. This is due to poor desorption of the strongly bonded gas 

molecules at the defect sites present on the surface or the inner walls of nanotubes.  
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Figure 4.9: % Sensitivity versus Time plot for the sensor to alternate cycles of N2 and 

0.01% NO2. 

 

 

% Sensitivity of the above sensor for different frequencies is also plotted and shown in 

Figure 4.10. The sensitivity against time profile looks almost similar at all the three 

frequencies. However there is slight increase in sensitivity as frequency increases to 401 

kHz and again decreases as the frequency increases to 801 kHz.  
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Figure 4.10: % Sensitivity versus Time plot for the sensor at different frequencies 201 

kHz, 401 kHz and 801 kHz. 

 

A study of effect of flow rate on sensitivity is done and shown in Figure 4.11. Flow rates 

of 100 sccm, 300 sccm and 500 sccm of the test gas have been utilized for this study. 

Sensitivities at 801 kHz are plotted against time for these flow rates. The plot shows that 

an increase in flow rate from 100 sccm to 500 sccm increases the overall sensitivity of the 

sensor. % sensitivity for the first pulse obtained are 4.01, 2.95 and 3.01 for the 

corresponding flow rates of 500 sccm, 300 sccm and 100 sccm respectively. Higher 

availability of gas molecules for adsorption may be the reason for this increased response.  
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Figure 4.11: Effect of flow rate on % sensitivity for 0.01 % NO2 test gas at 801 kHz. 

4.2.2. Conductance Response 

Figure 4.12 below shows the conductance response of the sensor to similar cycles of 

N2/NO2 gases at 201 kHz. It clearly shows that the conductance increases for NO2 gas 

exposure which is expected of a conductance based CNT sensor. Since NO2 is a charge 

acceptor it withdraws the electrons from the carbon nanotubes therefore increasing its 

conductivity (Since the nanotubes grown using the process mentioned in section 3, results 

in a p-type CNT) [32]. 
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Figure 4.12: Conductance response of the sensor at 201 kHz 

 

Also Figure 4.13: shows the conductance response at 201 kHz, 401 kHz and 801 kHz on 

a single plot. It can be clearly seen that all the three responses almost superimpose on 

each other. This is because of the frequency independent value of the conductance of the 

device. Sensitivity for conductance response is calculated in a similar fashion as given by 

equation 

                                                        
         

   
                             (9) 
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Figure 4.13: Conductance against Time at different frequencies 

 

 

Figure 4.14 shows the percentage sensitivity against time profile for the conductance 

response of the sensor at different frequencies. A percentage sensitivity of 18.63 for the 

first pulse and an overall sensitivity of 20.01% have been achieved at 201 kHz.  
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Figure 4.14: Plot for %sensitivity (conductance) against time at 201 kHz, 401 kHz and 

801 kHz 

Comparing the percentage sensitivities of the sensor for both the conductance and 

capacitance response we can see that the values obtained for capacitance response is 

higher than the conductance response. This can be attributed to the possibility of an 

additional change in dielectric constant along with the change in conductivity. Therefore 

the capacitance response obtained due to secondary effects of the conductance, along 

with a change in dielectric constant results in better sensitivities for capacitance response 

than the conductance response.   
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Table 4.1 Device structure, growth conditions and their results 

Device  Structure/Growth conditions Result 

 

Srk_1 to srk_4 

 

Bus bars on AAO with CNTs 

embedded in it 

 

 

No response 

 

Srk_4 to srk_8 

 

Bus bars on spin coated CNTs 

suspended in DMF 

 

 

No response 

 

Srk_8,srk_9_srk_10 

 

Bus bars on dip coated CNTs 

suspended in DMF 

 

 

No response 

 

Srk_11,srk_12 

 

DEP on IDE electrodes at 10V 

1MhZ 

 

 

No response 

 

Srk_13 to srk_26 

 

CNTs grown via CVD at 800
0
 

C with varying growth times(8 

to 15min) 

 

 

CNT growth all 

over electrodes 

 

Srk_27 

 

CNT growth on Titanium 

electrodes 

 

 

CNT growth all 

over electrodes 

 

Srk_28 to srk_40 

 

CNT grown via CVD at 750
0 

C 

for various growth times (3 to 

15 min) 

 

 

Excellent growth 

confinement with 

good response 

 

 

From Table 4.1 we can see that almost all the devices with CNTs grown at 800
0
 C have 

not achieved growth confinement. However CVD temperature of 750
0
 C supported the 

growth confinement of CNTs. Quality of gold film deposited plays a very important role 
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in determining the extent of growth confinement achieved. Minute degradation of the 

film quality results in carbon nanotube growth even on the electrodes. Three devices were 

fabricated using the same CNT growth condition (750
o 

C for 6minutes) and sensitivities 

for conductance response were found to be 11.17, 20.23 and 8.7 percent respectively. The 

sensitivities for capacitance response were found to be 18.49, 28.13 and 14.3 percent 

respectively. These differences in sensitivities can be explained by the inconsistency in 

amorphous carbon layer formation. CVD process is initiated once the vapors of ferrocene 

xylene mixture are observed at the other end of the tube. These vapors are observed 

usually in between 2 to 3 minutes with no control over the time. This causes huge 

differences in the morphology of amorphous carbon layers formed over the CNTs, that in 

turn has an effect on the sensitivities  However high sensitivities of about >10 percent has 

been achieved for growth times in range of 3~10minutes, which are of significant value 

with respect to the devices mentioned in section 1.4. 

4.3. Mathematical Model Results 

 

For the sensor discussed above the conductance measured between the electrodes is 

0.06058 Siemens which can be substituted in equation (3) as below. 

         *         +(   ) 

Which implies 

          *         +(   ) 
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Which further reduces to 

           (   )*
(   )

 
 

 

(   )
+ 

Substituting the values of  N=5, H= 50*10
-6

 m, L= ½ 
― 
, X=d= 1/16

‖ 
in the above equation 

we get 

              

The capacitance measured between the electrodes of the sensor discussed above is 

1.498 nF. Using an estimated value of       value in equation (3) we have 

         *         +(   )  

which reduces to 

          (   )*
(   ) 

 
  

 

(   )
+ 

Using   =   0 where  0 = 8.85 * 10
-12

 F.m
-1

 , h = 1 * 10
-6

 m 

we get        = 1.06 * 10
-15 

F 

which is not in comparable terms to the measured value. Only a very large value of  r 

(order of 10
5
) can satisfy the model to fit to the measured value. The other theory which 
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can support this capacitance is a very small value of the denominators in equations (3) 

and (4). 

Assuming a denominator D in both equations (3) and (4) we have 

                            (   )*
(   ) 

 
  

 

 
+                              (11) 

 

If we use   =   0 in the above equation, to get a capacitance of 1.5 nF, ‗D‘ must have a 

value of 119.88 nm. Capacitance due to such a short value of ‗D‘ can arise only due to 

junction capacitance of a diode. Therefore we can model our device with two back to 

back schottky diodes separated by a MWCNT resistive layer. These schottky diodes are 

present at the metal semiconductor interface. The depletion layer in the CNT matrix 

might be responsible for this junction capacitance. Figure 4.15 shows the equivalent 

circuit for this model. 

 

Figure 4.15: Equivalent circuit for the back to back diode model 
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Figure 4.16 shows the V-I characteristics of a sensor device. The plot clearly shows a 

nonlinear behavior for the electrode-graphite contact (graphite paste applied on CNTs 

serve as an ohmic contact). 

 

 

Figure 4.16: Diode behavior of a sensor for the contacts. This device can be modeled as a 

diode with a shunt resistance. 
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Figure 4.17: Ohmic behavior of the sensor for the electrode- CNT contact. 

 

 

 

Figure 4.17 shows the V-I characteristics of another device fabricated with similar 

growth conditions. This ohmic behavior might be due to barrier tunneling. Typically gold 

makes an ohmic contact with most of the semiconductors. However the phenomenon of 

Fermi pinning might be the possible reason for the schottky behavior. If a high number of 

surface states are present on the nanotube (because of the dangling bonds on the surface), 

these states act as charge traps which pull the charges from the bulk material, thus 

forming a depletion layer pushing the fermi level down. This makes the metal 

semiconductor interface a schottky contact irrespective of the metal work function. 
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5. Conclusions and Suggestions for future work: 

Multi walled carbon nanotube growth confinement has been achieved on Au patterned 

SiO2 substrates to a large extent. A device structure was conceived to exploit this 

technique to build a capacitance based gas sensor. A sensor was successfully built to 

achieve the desired device structure with the carbon nanotubes grown in between the 

electrodes. However due to highly conductive amorphous carbon layer formed on the 

carbon nanotubes during the CVD growth, the device was found to be a conductive 

sensor. The capacitance and the conductance response of the device to 100 ppm of NO2 

gas exposure were studied. A cumulative response of 27.97% and 20.01% has been 

achieved for capacitance and conductance response respectively. The sensitivity obtained 

for capacitance response was higher than the conductance response.  

A lot of potential is present for the capacitive sensor because of its wireless monitoring 

capabilities. This can be particularly useful in the case of gas sensing from a sealed 

chamber. Also because of the expensive gold electrodes being used in fabrication, the 

thickness of the electrodes was limited to only 1 micron. The carbon nanotubes grown in 

between the electrodes however were about 50 microns in size. Increasing the height of 

the gold electrodes might significantly improve the capacitance response of the sensor 

due to more number of field lines passing through the tubes. Since gold is a fairly 

expensive material to use, research has to be done to find alternate metals which have a 

similar growth prohibiting effect on carbon nanotubes. Also getting rid of amorphous 

carbon layer through oxidation techniques might lead to a less conductive dielectric 

between the electrodes, resulting in a device with a dominating capacitance behavior. 

This will also fairly improve the mathematical fit in the discussed model. 
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