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Chapter 1 Outline of the Dissertation

This dissertation is organized as follows:

In Chapter 2, we review the empirical-likelihood-ratio test for both uncensored

and censored data.

In Chapter 3, we discuss some results for empirical likelihood and general es-

timating equations developed by Qin and Lawless (1994) [30]. Qin and Lawless

worked with uncensored data and used distribution-type empirical likelihood and

constraint/estimating equations. We present a parallel construct to that of Qin and

Lawless, using a hazard-type empirical likelihood with over-determined hazard-type

estimating equations/constraints with right-censored data. This approach naturally

incorporates the censoring, and the empirical-likelihood estimator and test statistic

also have nice asymptotic properties, similar to what Qin and Lawless obtained.

In Chapter 4, we present a mathematical derivation for the case where a two-

sample mixed hazard-type hypothesis is used. This chapter is a collaboration with

Dr. Bill Barton. We believe that the analysis of this hazard-type hypothesis is a

valuable theoretical contribution in its own right. In addition we believe it represents

another step after Chapter 3 toward establishing a relationship between distribution-

type hypothesis and hazard-type hypothesis for right-censored data. The martingale

central limit theorem is used. We show that the empirical-likelihood-ratio statistic

has an asymptotic χ2
(1) distribution.

In Chapter 5, we study the relationship between the constrained Kaplan-Meier

1



estimator and the corresponding constrained Nelson-Aalen estimator under certain

conditions. Akritas (2000) [1] established a relationship between the Kaplan-Meier

estimator and the corresponding Nelson-Aalen estimator. Such a relationship is valu-

able since hazard-type hypotheses are typically more mathematically tractable than

distribution-type hypotheses, for censored data. So we hope to get a further rela-

tionship between a general constrained Kaplan-Meier estimator and the correspond-

ing constrained Nelson-Aalen estimator and we argue that once such relationship is

constructed in a certain format, many existing distribution-type empirical-likelihood

results can be converted to hazard-type empirical-likelihood results for handling cen-

sored data.

Simulation studies and examples showing how to implement the theory in Chapter

3 are presented and discussed in Chapter 6.

Chapter 7 summarizes our findings and discusses possible future investigations.

Finally, the R code for the simulations is listed in the Appendix.

Copyright c© Yanling Hu, 2011.
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Chapter 2 Introduction

2.1 Empirical Likelihood Ratio Test for Uncensored Data

The method of maximum likelihood is one of the most popular techniques for

deriving estimators. The likelihood-ratio tests are widely used for the maximum like-

lihood estimation. Let us consider the parametric likelihood-ratio test (LRT) first.

Suppose that X1, X2, . . . , Xn are i.i.d. random variables from a population with

pdf or pmf f(x|θ1, . . . , θk), and x1, x2, . . . , xn are the corresponding observations. The

likelihood function is defined by

L(θ|x) = L(θ1, . . . , θk|x1, . . . , xn) =
n∏

i=1

f(xi|θ1, . . . , θk). (2.1)

The likelihood-ratio test statistic for testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc
0 is

defined as

λ(x) =
supΘ0

L(θ|x)

supΘ L(θ|x)
, (2.2)

where Θ denotes the full parameter space, Θ0 is some subset of Θ, and Θc
0 is its

complement. We reject H0 when λ(x) is less than some threshold value c, where

0 < c < 1. Wilks (1938) [32] showed that when the null hypothesis H0 : θ = θ0

is true, then the test statistic −2 log λ(x) has an asymptotic χ2
(p) distribution under

certain regularity conditions, where p is the number of restrictions imposed on the

parameters by H0.

The parametric LRT is useful for finding efficient estimators, constructing tests,

and finding confidence intervals. However, it is only applicable when we know what

the parametric family is. If we do not know what the parametric family is then we

may use an empirical likelihood-ratio test (ELRT), which is a LRT without distribu-
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tional assumptions.

The ELRT is one of the most useful nonparametric methods for statistical infer-

ence. It can be used to conduct hypothesis tests and to find confidence intervals in

ways that are analogous to those of the parametric LRT, but which make no strong

distributional assumptions. Let us now consider the ELRT.

Let X1, X2, . . . , Xn be i.i.d. random variables with an unknown distribution F0,

and let x1, x2, . . . , xn be the corresponding observations. The empirical likelihood

function based on the observations is defined as

L(F ) =
n∏

i=1

[F (xi)− F (xi−)]

=
n∏

i=1

dF (xi)

=
n∏

i=i

pi, (2.3)

where

pi = dF (xi) = F (xi)− F (xi−), (2.4)

and L(F ) is the probability of getting exactly the observed sample values x1, . . . , xn

from the cumulative distribution function F .

It can be shown that the empirical cumulative distribution function (ECDF), or

empirical distribution, maximizes L(F ) over all possible distribution functions (Owen

(2001) [26]). The ECDF for x1, x2, . . . , xn is defined as

Fn(x) =
1

n

n∑
i=1

I(xi ≤ x), for−∞ < x < ∞. (2.5)

Thomas and Grunkemeier (1975) [31] first investigated the ELRT for randomly-

censored data. They proposed empirical-likelihood-ratio test methods for confidence-

interval estimation of survival or life-time probabilities for randomly censored data.
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They showed heuristically that the empirical likelihood ratio for a survival probability

has a limiting χ2
(1) distribution under the constraint P (X > a) = p, where a is a real

number and p is a hypothesized probability.

Building on the preceding proposition of Thomas and Grunkemeier (1975), Owen

(1988, 1990) [22] [23] developed the ELRT for constructing confidence intervals and

tests for uncensored data.

The empirical-likelihood-ratio function for i.i.d. uncensored data is defined as

R(F ) =
L(F )

L(Fn)

=
n∏

i=1

npi. (2.6)

Note that this formula does not require that Xi’s be distinct. We reject H0 when

R(F ) is less than some threshold value c, where 0 < c < 1.

Suppose that we are interested in a parameter θ = T (F ), where T is a given

real-valued function. For simplicity, we consider the mean of F , so θ =
∫

xdF (x). To

make an inference about θ, we follow Owen and define the profile empirical likelihood

ratio function

R(θ) = sup
F
{R(F )|

n∑
i=1

pixi = θ, pi ≥ 0,
n∑

i=1

pi = 1}. (2.7)

Owen has shown that under the null hypothesis: T (F0) = θ0, the empirical-likelihood-

ratio statistic −2 log R(θ0) has an asymptotic χ2
(1) distribution. Thus the empirical-

likelihood-ratio method developed by Owen can be used analogously to the likelihood-

ratio method in parametric settings, but without strong distribution assumptions.

Hypothesis tests and confidence intervals can be similarly obtained. Later, Owen

(1991) [24] made extensions to regression problems, and Kolaczyk (1992) [16] and

Owen (1992) [25] made further extensions to generalized linear models and projec-
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tion pursuit regression.

Other asymptotic properties of empirical-likelihood-ratio statistics have been stud-

ied by DiCiccio, Romano, Hall, and many others. Parametric and empirical likeli-

hood functions or surfaces were compared by DiCiccio, Hall and Romano (1989) [5].

DiCiccio and Romano (1989) [7] considered the standard multivariate-normal ap-

proximation to the distribution of the signed root of the empirical-likelihood-ratio

statistic in cases where inference is required for a smooth function of the mean of the

distribution from which the sample is drawn. Hall (1990) [10] proved that, except for

a location term, empirical likelihood draws contours which are second-order correct

for those of a pseudo-likelihood. DiCiccio, Hall, and Romano (1991) [6] showed that

in a very general setting, the empirical likelihood method for constructing confidence

intervals is Bartlett-correctable. That result makes empirical likelihood competitive

with methods such as the bootstrap which are not Bartlett-correctable, and most

importantly, demonstrates a strong link between empirical likelihood and parametric

likelihood, since the Bartlett correction had previously only been available for para-

metric likelihood.

Qin and Lawless (1994) [30] studied empirical likelihood and general estimating

equations for uncensored data. They showed that the empirical-likelihood method

could be naturally brought to bear on problems with over-determined estimating

equations, where the number of estimating equations r is greater than the number

of parameters p. They demonstrated how the maximum-empirical-likelihood esti-

mators of parameters θ ∈ <p may be obtained and they determined the asymp-

totic multivariate-normal distribution for the estimators. They also proved that the

empirical-likelihood-ratio test statistic for the parameters has an asymptotic χ2
(p) dis-

tribution, hence confidence regions and hypothesis tests can be constructed. They

6



also showed that the maximum-empirical-likelihood estimator is “efficient”.

2.2 Empirical Likelihood Ratio Test for Censored Data

In this section, we consider the application of the ELRT to censored data. We

begin by describing the three types of censored data, which are right-censored data,

left-censored data, and interval-censored data. To this end we cite the description in

Chen (2005) [4]:

Among these censoring mechanisms, right-censoring is the most common.

An observation on a variable T is right censored if all you know about T

is that it is greater than some value c. In survival analysis, T is typically

the time of occurrence for some event, and cases are right censored be-

cause observation of events is terminated at c before the event occurs. For

example, in a five-year study of mortality from lung cancer, survival time

will be right censored for patients who are still alive at the end of the five

year period.

Left censoring occurs when the only information you know about an obser-

vation on a variable T is that it is less than some value. In the context of

survival data, left censoring is the most likely to occur when you begin ob-

serving a sample at a time when some of the individuals may have already

experienced the event. For example, in a study of times of occurrence of

developmental milestones in children, some children already have achieved

the milestones prior to enter into the study.

Interval censoring combines both right and left censoring. An observa-
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tion on a variable T is interval censored if all you know about T is that

a < T < b, for some values of a and b. Interval censoring occurs when

the patient in a clinical trial or longitudinal study has periodic follow-up

and the patient’s event time is only known to fall in an interval. For

instance, a sample of people is tested annually for HIV infection. If a

person who was not infected at the end of year two is then found to be

infected at the end of year three, the time of infection is interval censored

between two and three. This type of censoring may also occur in indus-

trial experiment where there is periodic inspection for proper functioning

of equipment items.

For censored data it is mathematically convenient to write the likelihood in terms

of hazard functions. Murphy (1995) [20] discussed two extensions to the empirical

likelihood, the Poisson extension and the Binomial extension, for estimation of sur-

vival probability. She showed that the likelihood-ratio statistics of both extensions

have limiting χ2
(1) distributions, for the constraint Λ(t0) = θ0, where Λ(t0) is the cu-

mulative hazard function at t0. Murphy and Van der Vaart (1997) [21] also considered

empirical-likelihood-ratio tests and related confidence intervals. Their paper includes

an empirical likelihood result for θ =
∫

g(t)dF (t) with doubly-censored data. But

their regularity conditions are too strong.

Pan and Zhou (1999) [28], desiring to enlarge the possible parameters that empir-

ical likelihood can deal with, showed that the empirical likelihood in terms of hazard

function for right-censored data has a limiting χ2
(1) distribution under the constraint∫

g(t)dΛ(t) = θ,

8



where g(t) is a given function that satisfies some moment conditions and θ is a given

constant. This can be generalized to k constraints as∫
gk(t)dΛk(t) = θk, k = 1, ..., p

and in this case the empirical-likelihood-ratio statistic has an asymptotic χ2
(p) distri-

bution.

Building on the preceding proposition of Pan and Zhou, Fang (2000) [8] studied

the binomial extension of the empirical likelihood under the constraint

n−1∑
i=1

g(xi) log(1−∆Λ(xi)) = θ

for one-sample and two-sample right-censored data, where g(·) is a given left-continuous

weight function and θ is a given constant. Fang demonstrated that the binomial ex-

tension of the empirical-likelihood-ratio statistic for censored data has a limiting χ2
(1)

distribution. Similarly, she generalized the result to p constraints

n−1∑
i=1

gk(xi) log(1−∆Λ(xi)) = θk, k = 1, ..., p

and showed that in this case the empirical-likelihood-ratio statistic has an asymptotic

χ2
(p) distribution.

Zhou (2000) [34] proposed the empirical-envelope-likelihood method for estima-

tion problems. He noted that in some cases, the nonparametric maximum-likelihood

estimator does not exist or there is more than one maximizer of the empirical likeli-

hood. One example is the problem of defining the empirical likelihood for the sym-

metric distribution of location-shift distribution. Zhou proposed to first enlarge the

parameter space to make the maximum-empirical-likelihood estimator well-defined

and then to gradually shrink the enlarged parameter space by placing more and

more restrictions on it. He discussed several problems where this method can be

9



applied effectively. He also obtained the asymptotic distribution of the empirical-

envelope maximum-likelihood-estimator. Later, Kim and Zhou (2004) [15] applied

the empirical-envelope-likelihood method to the symmetric-location problem. They

showed that the usual asymptotic theory of empirical likelihood still holds and that

the asymptotic efficiency of the empirical maximum-likelihood estimator of location

is obtained.

As we mentioned above, when there are censored data, it is difficult to get the es-

timate of the distribution function that maximizes the empirical likelihood under the

constraints. Hence, we propose to study censored empirical likelihood with hazard-

type constraints, since we can easily get the estimate of the hazard function when

we use hazard-type empirical likelihood with hazard-type constraints. We will show

that hypothesis tests and confidence intervals can also be developed.

Suppose that x1, x2, . . . , xn are i.i.d. nonnegative observations denoting the life-

times from a continuous distribution function F0. Independent of the lifetimes there

are censoring times c1, c2, . . . , cn which are i.i.d. from a distribution G0. In practice

F0 and G0 will be unknown. Only the censored observations, (ti, δi), are available to

us:

ti = min(xi, ci) and δi = I[xi ≤ ci] for i = 1, 2, . . . , n (2.8)

The censored empirical likelihood we will study in this dissertation is the one in

Pan and Zhou (2002) [29], which was called a Poisson extension of the likelihood by

10



Murphy (1995) [20]:

AL(Λ) =
n∏

i=1

[∆Λ(ti)]
δi exp{−Λ(ti)}

=
n∏

i=1

[∆Λ(ti)]
δi exp{−

∑
j:tj≤ti

∆Λ(tj)}

where Λ(·) is the cumulative hazard function and ∆Λ(t) is the jump of Λ at t.

The hazard-type constraint we will investigate is similar to that described in Pan

and Zhou (2002): ∫
g(t)dΛ(t) = θ,

where g(t) is a given function that satisfies some moment conditions and θ is a given

constant.

Copyright c© Yanling Hu, 2011.
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Chapter 3 Censored Empirical Likelihood with Over-determined

Hazard-type Constraints

3.1 Background

Qin and Lawless (1994) [30] studied empirical likelihood and general estimating

equations for uncensored data. They linked estimating functions or equations and

empirical likelihood, and also developed methods of combining information about

parameters. They did this by assuming that information about distribution function

F and parameter vector θ is available in the form of unbiased estimating/constraint

equations.

Let X1, X2, . . . , Xn be i.i.d. random variables with an unknown distribution func-

tion F , and a p-dimensional parameter θ associated with F . We assume that infor-

mation about θ and F is available in the form of r ≥ p functionally independent

unbiased estimating functions, that is functions gj(X, θ), j = 1, 2, . . . , r, such that

EF gj(X, θ) = 0. This can be represented in vector form as

g(X, θ) = (g1(X, θ), . . . , gr(X, θ))>,

where

EF{g(X,θ)} = 0.

Let x1, x2, . . . , xn be i.i.d. observations from F . Then the empirical likelihood

function using (2.3) is:

L(F ) =
n∏

i=1

dF (xi) =
n∏

i=1

pi, (3.1)

where

pi = dF (xi) = Pr(X = xi).

12



Only distributions with a positive probability on each xi have non-zero likelihood, and

(3.1) is maximized by the empirical distribution function Fn(x) = 1
n

∑n
i=1 I(xi ≤ x).

Then from (2.6) the empirical-likelihood ratio is

R(F ) = L(F )/L(Fn) =
n∏

i=1

npi.

Suppose the parameter θ is such that
∫

g(x, θ)dF = 0. To obtain an inference

about θ, we define the profile empirical-likelihood-ratio function

RE(θ) = sup
{ n∏

i=1

npi | pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pig(xi, θ) = 0
}

. (3.2)

As noted by Qin and Lawless (1994), the maximum of
∏n

i=1 npi subject to the con-

straints

pi ≥ 0,
∑

i

pi = 1,
∑

i

pig(xi, θ) = 0

can be found via Lagrange multipliers.

Notice here the number of constraint equations r is greater than or equal to the

number of parameters p. When r = p (just-determined case), Qin and Lawless’s

results are the same as those of Owen (1988, 1990) [22] [23]. However, their main

contribution is the case where r > p, which we refer to as the case of over-determined

constraints.

Qin and Lawless derived the maximum empirical likelihood estimator (MELE)

θ̃, where θ̃ is the θ value that achieves the maximum of the empirical likelihood

function under those over-determined constraint equations. They also proved that

under the null hypothesis: H0 : θ = θ0, the empirical-likelihood-ratio statistic

WE(θ0) = −2(LE(θ0) − LE(θ̃)) converges to a χ2
(p) distribution as n → ∞, where

LE(θ) = max{pi:pi≥0,
∑

i pi=1,
∑

i pig(xi,θ)=0}
∑n

i=1 log pi(θ).
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However, Qin and Lawless’s results are limited to uncensored data. For right-

censored data, no results are available. Hence, we propose a parallel construct to

that of Qin and Lawless, which uses a hazard-type empirical likelihood with over-

determined hazard-type estimating equations/constraints. This approach naturally

incorporates censoring and the empirical likelihood estimator and test statistic also

have nice asymptotic properties.

The over-determined constraint problems often appear in econometrics, where

people now use the generalized method of moments (GMM) to solve such problems.

The GMM is very popular in econometrics when the number of constraint equations

is larger than the number of coefficient parameters in a regression model. To use this

method, people first need to choose a variance-covariance matrix as the weight matrix

to minimize the corresponding combination of the constraints. However, the variance-

covariance matrix is usually not efficient and people need to do iterations to update

the matrix and make it efficient finally. While using empirical likelihood method to

solve these problems, Qin and Lawless proved that their variance-covariance matrix

is efficient and no iteration is needed. And the GMM is hardly used at all outside of

econometrics.

3.2 Empirical Likelihood, Over-determined Constraints in Terms of Haz-

ard

Suppose that x1, x2, . . . , xn are i.i.d. non-negative observations of lifetimes with a

continuous distribution function F0. Independent of the lifetimes there are censoring

times c1, c2, . . . , cn which are i.i.d. with a distribution G0. In practice F0 and G0 will

be unknown. Only the censored observations, (ti, δi), are available to us:

ti = min(xi, ci) and δi = I[xi ≤ ci] for i = 1, 2, . . . , n (3.3)

14



The empirical likelihood based on censored observations (ti, δi) pertaining to the

distribution function F is defined by (Pan and Zhou (2002) [29]):

EL(F ) =
n∏

i=1

[∆F (ti)]
δi [1− F (ti)]

1−δi .

The cumulative hazard function Λ(t) related to CDF F (t) is defined by

Λ(t) =

∫
[0,t)

dF (s)

1− F (s−)
.

We will restrict our analysis of the empirical likelihood to the purely discrete func-

tions dominated by their NPMLE’s. See Owen(1988) for discussion on this restriction.

In that case the above relation between Λ(·) and F (·) gives

1− F (t) =
∏
s≤t

(1−∆Λ(s)) and ∆Λ(t) =
∆F (t)

1− F (t−)
.

This in turn allows us to write the empirical likelihood above for discrete F (·) in

terms of Λ as:

EL(Λ) =
n∏

i=1

[∆Λ(ti)]
δi [
∏

j:tj<ti

(1−∆Λ(tj))]
δi [
∏

j:tj≤ti

(1−∆Λ(tj))]
1−δi ,

where ∆Λ(t) = Λ(t+) − Λ(t−) is the jump of Λ at t. The reason we use EL(Λ)

instead of EL(F ) is that the hazard function naturally incorporates censoring and

the estimates are easier to deal with.

The above is called a binomial version of the empirical likelihood. In this disserta-

tion, we will use a simpler version of the EL(Λ), which was called a Poisson extension

of the likelihood by Murphy (1995) [20] and which was also used by Pan and Zhou

(2002):

AL(Λ) =
n∏

i=1

[∆Λ(ti)]
δi exp{−Λ(ti)}

=
n∏

i=1

[∆Λ(ti)]
δi exp{−

∑
j:tj≤ti

∆Λ(tj)}
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Notice we have assumed a discrete Λ(t) in the above. The difference between

AL(Λ) and EL(Λ) is small and negligible for large n. See Pan and Zhou (2002)

for the comparison. We also want to mention here that we study the large sample

properties of the empirical likelihood statistic and estimators, so n � r, and r is a

fixed positive integer. When r →∞, similar results might also hold, but need further

investigation.

Let wi = ∆Λ(ti) for i = 1, 2, . . . , n. Here, without loss of generality, we assume

the tis are already sorted in an increasing order. The likelihood of this Λ can be

written in terms of the jumps

AL =
n∏

i=1

[wi]
δi exp{−

n∑
j=1

wjI[tj ≤ ti]}

and the log likelihood is

log AL =
n∑

i=1

{
δi log wi −

n∑
j=1

wjI[tj ≤ ti]

}

=
n∑

i=1

δi log wi −
n∑

i=1

wiRi , (3.4)

where Ri =
∑

j I[tj ≥ ti].

If we maximize the log AL over all possible hazard functions it is well-known that

this yields ŵi = δi

Ri
. This is the well-known Nelson-Aalen estimator: ∆Λ̂NA(ti) = δi

Ri
.

Next, we want to maximize the log AL with wi satisfying some estimating equa-

tions. To that end let us first discuss the estimating equations in terms of hazard.

Denote the parameter vector as

θ = (θ1, ..., θp)
>.
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We assume information about θ and Λ is given either implicitly in equations{∫
g1(t,θ)dΛ(t), · · · ,

∫
gr(t,θ)dΛ(t)

}>
= (k1, · · · , kr)

> , (3.5)

or, explicitly in equations{∫
g1(t)dΛ(t), · · · ,

∫
gr(t)dΛ(t)

}>
= (f1(θ), · · · , fr(θ))> , (3.6)

where gi(t, ·), i = 1, . . . , r are functionally independent estimating functions defined

similarly as in Qin and Lawless, and also satisfy some conditions discussed later in

the lemmas and theorems; and fi(·) are some finite functions of θ. Here the number

of equations r can be larger than p. In this dissertation, we focus on results for

estimators θ̂ of parameters θ defined as in (3.5) above. The other type of θ defined

by equation (3.6) can be similarly studied and parallel results are seen to also hold.

Denote

g(t,θ) = (g1(t,θ), ..., gr(t,θ))>,

k = (k1, · · · , kr)
>.

Example: The parameter θ of median can be defined as
∫

I[t≤θ]dΛ(t) = log 2,

where g(t, θ) = I[t≤θ], and k = log 2. Other quantiles can be similarly defined.

Notice that wn = δn, because the last jump of a discrete cumulative hazard

function must be one. The estimating equations in terms of hazard for the above

parameters θ defined in (3.5) are, by discreteness,

n−1∑
i=1

δig(ti, θ)ŵi + g(tn, θ)δn = k ,

where ŵi = ∆Λ̂(ti).

17



3.3 Asymptotic Results for Empirical-Likelihood-Ratio Statistic and Maximum-

Empirical-Likelihood Estimator

The next step in our empirical likelihood analysis is to find a (discrete) cumulative

hazard function wi that maximizes log AL under the constraints

n−1∑
i=1

δig(ti, θ)wi + g(tn, θ)δn = k . (3.7)

If r = p, the maximum empirical likelihood estimator θ̂ may be obtained as roots of

the corresponding hazard-type estimating equations defined above with ŵi = δi/Ri.

However, the constrained maximizer wi in general does not equal the Nelson-Aalen

jump when r > p.

Theorem 1 If the constraints (3.7) are feasible (which means there is at least a

genuine hazard wi that solves (3.7)), then the maximum of AL under the constraints

is obtained when

wi = wi(λ(θ), θ)

=
δi

Ri + nλ(θ)>g(ti, θ)δi

=
δi

Ri

× 1

1 + λ(θ)>(δig(ti, θ)/(Ri/n))

= ∆Λ̂NA(ti)
1

1 + λ(θ)>Z(ti, θ)
, (3.8)

where

Z(ti, θ) =
δig(ti, θ)

Ri/n
= (Z1(ti, θ), ..., Zr(ti, θ))> for i = 1, 2, . . . , n− 1, (3.9)
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and λ = (λ1, · · · , λr)
> are the solutions of the following constraint equations:

h(λ(θ), θ) =
n−1∑
i=1

δig(ti, θ)wi(λ(θ), θ) + δng(tn, θ)− k (3.10)

=
n−1∑
i=1

δig(ti, θ)

Ri

× 1

1 + λ(θ)>Z(ti, θ)
+ δng(tn, θ)− k

=
1

n

n−1∑
i=1

Z(ti, θ)

1 + λ(θ)>Z(ti, θ)
+ δng(tn, θ)− k

= 0.

Proof : To use Lagrange multipliers λ, we form the target function

G =
n∑

i=1

δi log wi −
n∑

i=1

wiRi − nλ>

{
n−1∑
i=1

g(ti, θ)δiwi + g(tn, θ)δn − k

}
(3.11)

Taking derivative with respect to wi and setting to 0 gives

∂G

∂wi

=
δi

wi

−Ri − nλ>g(ti, θ)δi = 0

So,

wi(λ, θ) =
δi

Ri + nλ>g(ti, θ)δi

=
δi

Ri

× 1

1 + λ>(δig(ti, θ)/(Ri/n))

= ∆Λ̂NA(ti)
1

1 + λ>Z(ti, θ)

where

Z(ti, θ) =
δig(ti, θ)

Ri/n
= (Z1(ti, θ), ..., Zr(ti, θ))> for i = 1, 2, . . . , n− 1,
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and λ = λ(θ) = (λ1, ..., λr)
> can be obtained by solving the constraint equations

h(λ(θ), θ) =
n−1∑
i=1

δig(ti, θ)wi(λ(θ), θ) + δng(tn, θ)− k

=
n−1∑
i=1

δig(ti, θ)

Ri

× 1

1 + λ(θ)>Z(ti, θ)
+ δng(tn, θ)− k

=
1

n

n−1∑
i=1

Z(ti, θ)

1 + λ(θ)>Z(ti, θ)
+ δng(tn, θ)− k

= 0. �

Continuing with the setup of section 3.2, we consider the hypothesis:

H0 : θ = θ0 vs. H1 : θ 6= θ0.

We propose the empirical-likelihood-ratio test statistic as follows:

T = −2

{
max

θ=θ0,wi

log AL− max
θ∈Rp,wi

log AL

}
. (3.12)

The first maximum in the test statistic above can be obtained through Theorem

1, with the wi given there and θ = θ0. The second maximization above is taken over

all possible θ and wi. This maximization is more challenging, and we will discuss its

computation later.

We state the main theoretical results for the test statistic in Theorems 2 and

3 and some related lemmas below. They are proved mainly through application

of Martingale theory and Taylor-expansion. The results in Theorems 2 and 3 are

similar to those of Qin and Lawless, but they employ hazard empirical likelihood

and they handle right-censored data. Hypothesis tests and confidence intervals can

be obtained by using the results. The detailed proofs are deferred to the next section.
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Definition: The θ value that achieves the maximum in the second term of the

test statistic T in (3.12) above will be called the maximum-empirical-likelihood esti-

mator, θ̂.

Define the r × r matrix

h′(0, θ0) =
∂h(λ, θ0)

∂λ
|λ=0= − 1

n

n−1∑
i=1

Z(ti, θ0)Z
>(ti, θ0) .

It is easy to verify h′ is symmetric and at least non-positive definite.

Lemma 1 Let (T1, δ1), . . . , (Tn, δn) be n pairs of random variables as defined in

(3.3). Suppose gu(x, θ), u = 1, ..., r, are left-continuous functions and suppose

0 <

∫
|gu(x, θ)||gv(x, θ)|

(1− F0(x−))(1−G0(x−))
dΛ0(x) < ∞, ∀u, v, 1 ≤ u, v ≤ r.

Then for Z as defined in (3.9),

1

n

n∑
i=1

Zu(ti, θ)Zv(ti, θ) =

∫
gu(t,θ)gv(t,θ)

R(t)/n
dΛ̂NA(t)

P−→
∫

gu(x, θ)gv(x, θ)

(1− F0(x−))(1−G0(x−))
dΛ0(x)

where

R(t) =
n∑

i=1

I[Ti≥t].

Lemma 2 Under the assumptions of Lemma 1 and under the null hypothesis

H0 : θ = θ0, we have, for Z defined in (3.9),

√
n

(
1

n

n∑
i=1

Z(ti, θ0)− k0

)
=
√

n

(
n∑

i=1

g(ti, θ0)∆Λ̂NA(ti)− k0

)
D−→ MV N(0, ΣZ),

as n →∞, where we assume ΣZ to be positive definite and

k0 =

{∫
g1(t,θ0)dΛ0(t), ...,

∫
gr(t,θ0)dΛ0(t)

}>
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ΣZuv =

∫
gu(x, θ0)gv(x, θ0)

(1− F0(x−))(1−G0(x−))
dΛ0(x), ∀u, v, 1 ≤ u, v ≤ r.

Lemma 3 The solution λ of the constraint equations in (3.10) under the null

hypothesis H0 : θ = θ0, has the following asymptotic representations:

(i) Let θ0 be the true parameters, and assume that

h′(0, θ0) =
∂h(λ, θ0)

∂λ
|λ=0

is an invertible k × k matrix. Then

√
nλ(θ0)

D−→ MV N(0, Σλ) as n →∞,

where Σλ = Σ−1
Z = limn→∞[h′(0, θ0)]

−1.

(ii) In addition, assume that g(·) are smooth and |θ − θ0| = O(1/
√

n). Then

λ(θ) = λ(θ0)− {h′(0, θ0)}−1A(θ − θ0) + op(1/
√

n)

where A is an r × p matrix defined as

A =
∂h(λ, θ)

∂θ
|λ=0,θ=θ0=

1

n

n∑
i=1

∂Z(ti, θ0)

∂θ
=

1

n

n∑
i=1

δi

Ri/n

∂g(ti, θ0)

∂θ

Theorem 2 Under the assumptions of Lemma 1, 2 and 3, the empirical-likelihood-

ratio statistic T defined in (3.12) has asymptotically a chi-square distribution with p

degrees of freedom under H0:

T
D−→ χ2

(p) , as n →∞.
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Theorem 3 Let θ̂ be the maximum empirical likelihood estimator defined above,

and θ0 be the true parameter vector. Suppose ∂g(t,θ)
∂θ

|θ=θ0 exists, the rank of

limn→∞
1
n

∑n
i=1

δi

Ri/n
∂g(ti,θ0)

∂θ
is p, and

∫
|∂gi(x,θ0j)

∂θj
|dΛ0(x) < ∞, ∀i = 1, . . . , r, and j =

1, . . . , p. Under the assumptions of Theorem 2, the asymptotic distribution of θ̂ is

given by, as n →∞,
√

n(θ̂ − θ0)
D−→ MV N(0, Σθ) ,

where

Σθ = lim
n→∞

{A>[−h′(0, θ0)]
−1A}−1,

A =
∂h(λ, θ)

∂θ
|λ=0,θ=θ0=

1

n

n∑
i=1

∂Z(ti, θ0)

∂θ
=

1

n

n∑
i=1

δi

Ri/n

∂g(ti, θ0)

∂θ

We now take a closer look at the asymptotic variance of the maximum-empirical-

likelihood estimator obtained in Theorem 3 above. Since the structure of Σθ is similar

to the structure of the variance-covariance matrix in Qin and Lawless’s theorem, we

can make the same corollary as they do:

Corollary When r > p, the asymptotic variance Σθ of
√

n(θ̂ − θ0) cannot de-

crease if a constraint equation is dropped.
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Proof: Define

D>
r (θ) = A>

=
(
(
1

n

n∑
i=1

δi

Ri/n

∂g1(ti, θ)

∂θ
)>, . . . , (

1

n

n∑
i=1

δi

Ri/n

∂gr−1(ti, θ)

∂θ
)>, (

1

n

n∑
i=1

δi

Ri/n

∂gr(ti, θ)

∂θ
)>
)

=
(
D>

r−1(θ), (
1

n

n∑
i=1

δi

Ri/n

∂gr(ti, θ)

∂θ
)>
)
,

Cr(θ) = −h′(0, θ)

=
1

n

n−1∑
i=1

Z(ti, θ)Z>(ti, θ)

=
1

n

n−1∑
i=1

δi

Ri/n
g(ti, θ)

( δi

Ri/n
g(ti, θ)

)>

=

 C11(θ) C12(θ)

C21(θ) C22(θ)

 ,

where C11(θ) is an (r−1)× (r−1) matrix. For square matrices A and B of the same

order, let A ≥ B denote that A−B is positive semi-definite. Then

Σ−1
r = A>[−h′(0, θ)]−1A

= D>
r (θ)C−1

r (θ)Dr(θ)

≥
(
D>

r−1(θ), (
1

n

n∑
i=1

δi

Ri/n

∂gr(ti, θ)

∂θ
)>
) C−1

11 (θ) 0

0 0


 Dr−1(θ)

( 1
n

∑n
i=1

δi

Ri/n
∂gr(ti,θ)

∂θ
)


= Σ−1

r−1. �
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This corollary shows that the maximum empirical likelihood estimator θ̂ obtained

in Theorem 3 is more efficient (smaller variance-covariance matrix) for the over-

determined case than for the just-determined case. The variance-covariance matrix

will not decrease when we include fewer constraint equations. In other words, it is

recommended that we always use as much information as possible, in the form of

estimating equations, at least for large sample sizes.

3.4 Lemmas and Proofs

Lemma 1 Let (T1, δ1), . . . , (Tn, δn) be n pairs of random variables as defined in (3.3).

Suppose gu(x, θ), u = 1, ..., r, are left-continuous functions and suppose

0 <

∫
|gu(x, θ)||gv(x, θ)|

(1− F0(x−))(1−G0(x−))
dΛ0(x) < ∞, ∀u, v, 1 ≤ u, v ≤ r.

Then for Z as defined in (3.9),

1

n

n∑
i=1

Zu(ti, θ)Zv(ti, θ) =

∫
gu(t,θ)gv(t,θ)

R(t)/n
dΛ̂NA(t)

P−→
∫

gu(x, θ)gv(x, θ)

(1− F0(x−))(1−G0(x−))
dΛ0(x)

where

R(t) =
n∑

i=1

I[Ti≥t].

Proof: From (3.9),

Zu(ti, θ) =
δigu(ti, θ)

Ri/n
.
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Therefore,

1

n

n∑
i=1

Zu(ti, θ)Zv(ti, θ) =
1

n

n∑
i=1

δigu(ti, θ)

Ri/n
× δigv(ti, θ)

Ri/n

=
n∑

i=1

gu(ti, θ)gv(ti, θ)

Ri/n

δi

Ri

=
n∑

i=1

gu(ti, θ)gv(ti, θ)

Ri/n
∆Λ̂NA(ti)

=

∫
gu(t,θ)gv(t,θ)

R(t)/n
dΛ̂NA(t).

And from Lemma 3.7 in Pan (1997) [27],

n∑
i=1

gu(ti, θ)gv(ti, θ)

Ri/n
∆Λ̂NA(ti)

P−→
∫

gu(x, θ)gv(x, θ)

(1− F0(x−))(1−G0(x−))
dΛ0(x),

which completes the proof. �

Lemma 2 Under the assumptions of Lemma 1 and under the null hypothesis

H0 : θ = θ0, we have, for Z defined in (3.9),

√
n

(
1

n

n∑
i=1

Z(ti, θ0)− k0

)
=
√

n

(
n∑

i=1

g(ti, θ0)∆Λ̂NA(ti)− k0

)
D−→ MV N(0, ΣZ),

as n →∞, where

k0 =

{∫
g1(t,θ0)dΛ0(t), ...,

∫
gr(t,θ0)dΛ0(t)

}>
ΣZuv =

∫
gu(x, θ0)gv(x, θ0)

(1− F0(x−))(1−G0(x−))
dΛ0(x), ∀u, v, 1 ≤ u, v ≤ r.

Proof: We know from (3.9), for 1 ≤ u ≤ r,

√
n

(
1

n

n∑
i=1

Zu(ti, θ0)− k0u

)
=
√

n

(
n∑

i=1

gu(ti, θ0)∆Λ̂NA(ti)− k0u

)

=
√

n

(∫
gu(t,θ0)dΛ̂NA(t)−

∫
gu(t,θ0)dΛ0(t)

)
.
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By Lemma 3.3 in Pan (1997), the Lindeberg’s condition holds for each Zu, u =

1, . . . , r, and

√
n

(∫
gu(t,θ0)dΛ̂NA(t)−

∫
gu(t,θ0)dΛ0(t)

)
D−→ N(0, σ2

u)

as n →∞, where

σ2
u =

∫
g2

u(x, θ0)

(1− F0(x−))(1−G0(x−))
dΛ0(x).

By (4.14) in Anderson et. al. (1993) [2] p.178,

Λ̂NA(t)− Λ0(t) =

∫ t

0

J(s)

R(s)
dM(s),

where J(s) = I[R(s)>0] and M(s) is a local square integrable martingale endowed with

a filter Ft.

Therefore,

√
n

(
1

n

n∑
i=1

Zu(ti, θ0)− k0u

)
=
√

n

∫
gu(t,θ0)d

(
Λ̂NA(t)− Λ0(t)

)
=
√

n

∫
gu(t,θ0)

J(t)

R(t)
dM(t),

and the predictable covariance process of
√

n
(

1
n

∑n
i=1 Zu(ti, θ0)− k0u

)
and

√
n
(

1
n

∑n
i=1 Zv(ti, θ0)− k0v

)
∀u 6= v is∫

gu(t,θ0)gv(t,θ0)d <
√

n

∫ ∞

0

J(t)

R(t)
dM(t) > .

Observe that〈√
n

∫ ∞

0

J(t)

R(t)
dM(t)

〉
=

∫ ∞

0

J2(t)

R(t)/n
dΛ0

P−→
∫ ∞

0

dΛ0(x)

(1− F0(x))(1−G0(x))
,
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hence, 〈
√

n

(
1

n

n∑
i=1

Zu(ti, θ0)− k0u

)
,
√

n

(
1

n

n∑
i=1

Zv(ti, θ0)− k0v

)〉

=

∫
gu(x, θ0)gv(x, θ0)J

2(t)

R(t)/n
dΛ0

→
∫

gu(x, θ0)gv(x, θ0)

(1− F0(x−))(1−G0(x−))
dΛ0(x).

Therefore, by Multivariate Counting Process Martingale Central Limit Theorem,

√
n

(
1

n

n∑
i=1

Z(ti, θ0)− k0

)
D−→ MV N(0, ΣZ)

where

k0 =

{∫
g1(t,θ0)dΛ0(t), ...,

∫
gr(t,θ0)dΛ0(t)

}>
ΣZuv =

∫
gu(x, θ0)gv(x, θ0)

(1− F0(x−))(1−G0(x−))
dΛ0(x) ∀u, v 1 ≤ u, v ≤ r. �

Lemma 3 The solution λ of the constraint equations in (3.10) under the null

hypothesis H0 : θ = θ0, has the following asymptotic representations:

(i) Let θ0 be the true parameters, and assume that

h′(0, θ0) =
∂h(λ, θ0)

∂λ
|λ=0

is an invertible k × k matrix. Then

√
nλ(θ0)

D−→ MV N(0, Σλ) as n →∞,

where Σλ = Σ−1
Z = limn→∞[h′(0, θ0)]

−1.

(ii) In addition, assume that g(·) are smooth and |θ − θ0| = O(1/
√

n). Then

λ(θ) = λ(θ0)− {h′(0, θ0)}−1A(θ − θ0) + op(1/
√

n)
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where A is an r × p matrix defined as

A =
∂h(λ, θ)

∂θ
|λ=0,θ=θ0=

1

n

n∑
i=1

∂Z(ti, θ0)

∂θ
=

1

n

n∑
i=1

δi

Ri/n

∂g(ti, θ0)

∂θ

Proof: Define

h(λ(s), s) =
n−1∑
i=1

δig(ti, s)wi(λ(s), s) + δng(tn, s)− k.

Under the null hypothesis, h(λ(θ0), θ0) = 0. Using a Taylor expansion of the first

variable at 0, we can write

0 = h(λ(θ0), θ0)

= h(0, θ0) + h′(0, θ0)(λ(θ0)− 0) + op(1/
√

n),

where h′(0, θ0) is an r × r invertible matrix. Rearranging the above equation, we

obtain
√

nλ(θ0) = −{h′(0, θ0)}−1(
√

nh(0, θ0)) + op(1),

where

h′(0, θ0) =
∂h(λ(θ0), θ0)

∂λ(θ0)
|λ(θ0)=0= − 1

n

n−1∑
i=1

Z(ti, θ)Z>(ti, θ).

The elements of h′(0, θ0) are explicitly computed as

h′uv(0, θ0) = −
n−1∑
i=1

ngu(ti, θ0)gv(ti, θ0)δi

R2
i

= − 1

n

n−1∑
i=1

Zu(ti, θ0)Zv(ti, θ0).

Then by Lemma 1 and Lemma 2, we have as n →∞,

h′(0, θ0)
P−→ −ΣZ
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Since

h(0, θ0) =
n−1∑
i=1

δig(ti, θ0)

Ri

+ δng(tn, θ0)− k

=
1

n

n∑
i=1

Z(ti, θ0)− k,

by Lemma 2, we have

√
nh(0, θ0) =

√
n

(
1

n

n∑
i=1

Z(ti, θ0)− k

)
D−→ MV N(0, ΣZ).

So
√

nλ(θ0) = −{h′(0, θ0)}−1(
√

nh(0, θ0)) + op(1)
D−→ MV N(0, Σλ)

with

Σλ = −[lim h′(0, θ0)]
−1 = Σ−1

Z

Use the same vector function h(λ(s), s). We have h(λ(θ), θ) = 0 due to the con-

straint we have. Using a Taylor expansion at (0, θ0) we can write

0 = h(λ(θ), θ)

= h(0, θ0) + [h′(0, θ0), A](λ(θ)− 0, θ − θ0)
> + op(1/

√
n),

where

A =
∂h(λ, θ)

∂θ
|λ=0,θ=θ0=

1

n

n∑
i=1

∂Z(ti, θ)

∂θ
.

Setting θ = θ0 in the above gives

0 = h(λ(θ0), θ0)

= h(0, θ0) + h′(0, θ0)(λ(θ0)− 0)> + op(1/
√

n).
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Combining the two equations above gives

0 = h(λ(θ), θ)− h(λ(θ0), θ0)

= h′(0, θ0)[λ(θ)− λ(θ0)] + A(θ − θ0) + op(1/
√

n)

and therefore,

λ(θ)− λ(θ0) = −{h′(0, θ0)}−1A(θ − θ0) + op(1/
√

n).

Hence,

λ(θ) = λ(θ0)− {h′(0, θ0)}−1A(θ − θ0) + op(1/
√

n). �

Proof of Theorems 2 and 3

Proof: Let us define

f(λ(θ), θ) =
n∑

i=1

δi log wi(λ(θ), θ)−
n∑

i=1

Riwi(λ(θ), θ).

The log empirical-likelihood-ratio test statistic takes the form

T = −2
{

f(λ(θ0), θ0)−max
θ

f(λ(θ), θ)
}

.
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Using a Taylor expansion we obtain

T = −2{f(0, θ0)

+ (λ(θ0),0)(
∂f(λ(θ0), θ0)

∂λ(θ0)
,
∂f(λ(θ0), θ0)

∂θ0

)> |λ(θ0)=0

+
1

2
(λ(θ0),0)D(λ(θ0),0)> + op(1)

−max
θ
{f(0, θ0)

+ (λ(θ), θ − θ0)(
∂f(λ(θ), θ)

∂λ(θ)
,
∂f(λ(θ), θ)

∂θ
)> |λ(θ)=0,θ=θ0

+
1

2
(λ(θ), θ − θ0)D(λ(θ), θ − θ0)

> + op(1)}}

where D denotes the (r + p)× (r + p) matrix of the second derivatives of f(λ(θ), θ)

with respect to λ(θ) and θ as follows:

D =


∂2

∂λ(θ)2
f(λ(θ), θ) |λ(θ)=0,θ=θ0

∂2

∂λ(θ)∂θ
f(λ(θ), θ) |λ(θ)=0,θ=θ0

∂2

∂λ(θ)∂θ
f(λ(θ), θ) |λ(θ)=0,θ=θ0

∂2

∂θ2 f(λ(θ), θ) |λ(θ)=0,θ=θ0


We will calculate all the derivatives below. Notice that when λ(θ) = 0, wi(λ(θ), θ) =

δi

Ri
. The first derivatives for D are calculated as follows:

∂f(λ(θ), θ)

∂λ(θ)
|λ(θ)=0 =

n∑
i=1

δi

wi(λ(θ), θ)
· ∂wi(λ(θ), θ)

∂λ
−

n∑
i=1

Ri ·
∂wi(λ(θ), θ)

∂λ
|λ(θ)=0

=
n∑

i=1

Ri ·
∂wi(0, θ)

∂λ
−

n∑
i=1

Ri ·
∂wi(0, θ)

∂λ

= 0
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∂f(λ(θ), θ)

∂θ
|λ(θ)=0 =

n∑
i=1

δi

wi(λ(θ), θ)
· ∂wi(λ(θ), θ)

∂θ
−

n∑
i=1

Ri ·
∂wi(λ(θ), θ)

∂θ
|λ(θ)=0

=
n∑

i=1

Ri ·
∂wi(0, θ)

∂θ
−

n∑
i=1

Ri ·
∂wi(0, θ)

∂θ

= 0

The second derivatives for D are calculated as follows:

∂2

∂λ(θ)2f(λ(θ), θ) |λ(θ)=0,θ=θ0

=
n∑

i=1

− δi

wi(λ(θ), θ)2
· (∂wi(λ(θ), θ)

∂λ
)(

∂wi(λ(θ), θ)

∂λ
)> +

n∑
i=1

δi

wi(λ(θ), θ)
· ∂2wi(λ(θ), θ)

∂λ2

−
n∑

i=1

Ri · ∂2wi(λ(θ), θ)

∂λ2 |λ(θ)=0,θ=θ0

= −
n∑

i=1

R2
i

δi

· n2δ2
i g(ti, θ0)g(ti, θ0)

>

R4
i

+
n∑

i=1

Ri · ∂2wi(0, θ0)

∂λ2 −
n∑

i=1

Ri · ∂2wi(0, θ0)

∂λ2

= −
n∑

i=1

R2
i

δi

· n2δ2
i g(ti, θ0)g(ti, θ0)

>

R4
i

= −
n∑

i=1

δig(ti, θ0)

Ri/n
(
δig(ti, θ0)

Ri/n
)>

= −
n∑

i=1

Z(ti, θ0)(Z(ti, θ0))
>

= nh′(0, θ0)
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∂2

∂λ(θ)∂θ
f(λ(θ), θ) |λ(θ)=0,θ=θ0

= −
n∑

i=1

δi

wi(λ(θ), θ)2
· ∂wi(λ(θ), θ)

∂θ
· ∂wi(λ(θ), θ)

∂λ

+
n∑

i=1

δi

wi(λ(θ), θ)
· ∂2wi(λ(θ), θ)

∂λ∂θ
−

n∑
i=1

Ri ·
∂2wi(λ(θ), θ)

∂λ∂θ
|λ(θ)=0,θ=θ0

= 0,

since

∂wi(λ(θ), θ)

∂θ
|λ(θ)=0= −

nλ(θ)> · ∂g(ti,θ)
∂θ

(Ri + nλ(θ)>g(ti, θ)δi)2
|λ(θ)=0= 0.

Similarly,

∂2

∂θ2f(λ(θ), θ) |λ(θ)=0,θ=θ0

=
n∑

i=1

− δi

wi(λ(θ), θ)2
· (∂wi(λ(θ), θ)

∂θ
)(

∂wi(λ(θ), θ)

∂θ
)>

+
n∑

i=1

δi

wi(λ(θ), θ)
· ∂2wi(λ(θ), θ)

∂θ2 −
n∑

i=1

Ri · ∂2wi(λ(θ), θ)

∂θ2 |λ(θ)=0,θ=θ0

= 0

Hence,

D =


nh′(0, θ0) 0

0 0
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And therefore,

T = −{λ(θ0)
>nh′(0, θ0)λ(θ0) + op(1)−max

θ
{λ(θ)>nh′(0, θ0)λ(θ)}+ op(1)}

= max
θ
{λ(θ)>nh′(0, θ0)λ(θ)} − λ(θ0)

>nh′(0, θ0)λ(θ0) + op(1)

Since by Lemma 3,

λ(θ) = λ(θ0)− {h′(0, θ0)}−1A(θ − θ0) + op(1/
√

n) ,

therefore we can write

T = max
θ
{(λ(θ0)− {h′(0, θ0)}−1A(θ − θ0))

>nh′(0, θ0)(λ(θ0)− {h′(0, θ0)}−1A(θ − θ0))}

− λ(θ0)
>nh′(0, θ0)λ(θ0) + op(1).

Maximization over θ can be accomplished via the following lemma. It can easily

be proved by linear algebra.

Lemma 4 Suppose Γ is a negative definite r× r matrix and q is an r× 1 vector.

Also suppose B is an r × p matrix and u is a p× 1 vector.

The quadratic form

max
u

(q −Bu)>Γ(q −Bu)

is maximized when u = u∗ is the solution of the equation B>Γ(q−Bu) = 0, which is

equivalent to u∗ = (B>ΓB)−1B>Γq. And the maximum value achieved is

q>Γq − (Bu∗)>Γ(Bu∗).
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In this case,

q = λ(θ0)

B = {h′(0, θ0)}−1A

u = (θ − θ0)

Γ = nh′(0, θ0),

then T becomes

max
u

(q −Bu)>Γ(q −Bu)− q>Γq + op(1)

Since by Lemma 4 the maximization of the quadratic form occurs when u = u∗ is

the solution of the equation B>Γ(q − Bu) = 0 and u∗ = (B>ΓB)−1B>Γq, and also

notice that h′(0, θ0) is symmetric, so the maximization of T occurs when

θ̂ − θ0 = u∗

= (B>ΓB)−1B>Γq

=
{

A>{h′(0, θ0)}−1nh′(0, θ0){h′(0, θ0)}−1A
}−1

A>{h′(0, θ0)}−1n{h′(0, θ0)λ(θ0)

=
{

A>{h′(0, θ0)}−1A
}−1

A>λ(θ0)
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And the maximum value of T is

T ∗ = q>Γq − (Bu∗)>Γ(Bu∗)− q>Γq + op(1)

= −(Bu∗)>Γ(Bu∗) + op(1)

= −u∗>A>{h′(0, θ0)}−1nh′(0, θ0){h′(0, θ0)}−1Au∗ + op(1)

= −n(λ(θ0))
>A
{

A>{h′(0, θ0)}−1A
}−1

A>{h′(0, θ0)}−1A

{
A>{h′(0, θ0)}−1A

}−1

A>λ(θ0) + op(1)

= (
√

nλ(θ0))
>A
{

A>{−h′(0, θ0)
−1}A

}−1

A>(
√

nλ(θ0)) + op(1),

where

A =
∂h(λ, θ)

∂θ
|λ=0,θ=θ0=

1

n

n∑
i=1

∂Z(ti, θ0)

∂θ
,

and

h′(0, θ0) =
∂h(λ, θ0)

∂λ
|λ=0= − 1

n

n−1∑
i=1

Z(ti, θ0)Z
>(ti, θ0)

is an r × r non-positive matrix.

We can finish the proof using Lemma 3 along with Lemma 5 below.
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Lemma 5 (Graybill 1976 [9]) Suppose Y
D−→ MV N(0, V ) and M is a symmetric

matrix. Then Y MY > D−→ χ2
p if and only if MV is idempotent and rank(MV ) = p.

By Lemma 3, we know

Y =
√

nλ(θ0)
D−→ MV N(0, Σλ) as n →∞

where

V = Σλ = Σ−1
Z = lim

n→∞
{−h′(0, θ0)}−1.

Also let

M = lim
n→∞

A
{

A>{−h′(0, θ0)
−1}A

}−1

A>.

Since

MV MV = lim
n→∞

A
{

A>{−h′(0, θ0)
−1}A

}−1

A> lim
n→∞

{−h′(0, θ0)}−1

lim
n→∞

A
{

A>{−h′(0, θ0)
−1}A

}−1

A> lim
n→∞

{−h′(0, θ0)}−1

= lim
n→∞

A
{

A>{−h′(0, θ0)
−1}A

}−1

A> lim
n→∞

{−h′(0, θ0)}−1

= MV.

so MV is idempotent. Since gi(t, ·), i = 1, . . . , r are functionally independent func-

tions, so the rank of limn→∞{−h′(0, θ0)} is r. Since the rank of limn→∞
1
n

∑n
i=1

δi

Ri/n
∂g(ti,θ0)

∂θ

= limn→∞ A is p, and p < r, so rank(MV ) = p. Hence,

T = Y MY > D−→ χ2
p.

Since

θ̂ − θ0 =
{

A>{h′(0, θ0)}−1A
}−1

A>λ(θ0),

38



and by the asymptotic normality result on λ(θ0) in Lemma 3, a straightforward

calculation shows that

√
n(θ̂ − θ0)

D−→ MV N(0, Σθ) ,

where

Σθ = lim
n→∞

{A>[−h′(0, θ0)]
−1A}−1,

A =
∂h(λ, θ)

∂θ
|λ=0,θ=θ0=

1

n

n∑
i=1

∂Z(ti, θ0)

∂θ
=

1

n

n∑
i=1

δi

Ri/n

∂g(ti, θ0)

∂θ
. �

Finally we give a proof that ‖λ(θ0)‖ = Op(n
−1/2), similar to the proof in Owen

(1990) [23], which will validate the Taylor expansions above. Pan and Zhou (2002)

[29] proved that for each Zk, k = 1, . . . , r, max1≤i≤n Zk(ti, θ0) = op(n
1/2), and since

r is a fixed positive integer and r � n, so

max
1≤i≤n

‖Z(ti, θ0)‖ = op(n
1/2) (3.13)

Lemma 6 With the same notations as above, we have ‖λ(θ0)‖ = Op(n
−1/2).

Proof: Let λ(θ0) = ρφ where ρ ≥ 0 and ‖φ‖ = 1. Then,
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0 = ‖h(λ(θ0), θ0)‖

= ‖ 1

n

n−1∑
i=1

Z(ti, θ0)

1 + λ(θ0)>Z(ti, θ0)
+ δng(tn, θ0)− k‖

= ‖ 1

n

n−1∑
i=1

Z(ti, θ0)

1 + λ(θ0)>Z(ti, θ0)
+

1

n
Z(tn, θ0)− k‖

= ‖ 1

n

n−1∑
i=1

Z(ti, θ0)−
λ>(θ0)

n

n−1∑
i=1

Z(ti, θ0)Z
>(ti, θ0)

1 + λ(θ0)>Z(ti, θ0)
+

1

n
Z(tn, θ0)− k‖

= ‖( 1

n

n∑
i=1

Z(ti, θ0)− k)− λ>(θ0)

n

n−1∑
i=1

Z(ti, θ0)Z
>(ti, θ0)

1 + λ(θ0)>Z(ti, θ0)
‖

≥ 1

n

∣∣∣∣∣φ>

(
(

n∑
i=1

Z(ti, θ0)− k)− ρ
n−1∑
i=1

Z(ti, θ0)φ
>Z(ti, θ0)

1 + ρφ>Z(ti, θ0)

)∣∣∣∣∣

≥ ρ

n
φ>

n−1∑
i=1

Z(ti, θ0)Z
>(ti, θ0)

1 + ρφ>Z(ti, θ0)
φ− 1

n

∣∣∣∣∣
r∑

j=1

e>j (
n∑

i=1

Z(ti, θ0)− k)

∣∣∣∣∣

≥ ρφ>Sφ

1 + ρBn

− 1

n

∣∣∣∣∣
r∑

j=1

e>j (
n∑

i=1

Z(ti, θ0)− k)

∣∣∣∣∣ (3.14)

where ej is the unit vector in the jth coordinate direction and

S =
1

n

n−1∑
i=1

Z(ti, θ0)Z
>(ti, θ0) = −h′(0, θ0)

P−→ ΣZ .

Now φ>Sφ ≥ ξr +op(1) where ξr > 0 is the smallest eigenvalue of ΣZ . The second
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term in (3.14) is Op(n
−1/2) by Lemma 2 and the central limit theorem. It follows that

ρ

1 + ρBn

= Op(n
−1/2).

Notice that 1 + λ(θ)>Z(ti, θ) is always positive, which is implied by (3.8), therefore

by (3.13)

ρ = ‖λ(θ0)‖ = Op(n
−1/2). �

3.5 Computational Considerations

Let us consider the simplest situation first, with only one parameter and two

constraint equations.

Let X1, X2, . . . , Xn be i.i.d. non-negative random variables with hazard function

Λ0 and parameter θ. Let C1, C2, . . . , Cn be i.i.d. random censoring times. We only

observe (ti, δi), where

ti = min(xi, ci) and δi = I[xi ≤ ci], for i = 1, 2, . . . , n. (3.15)

Let wi = ∆Λ(ti) for i = 1, 2, . . . , n. Again, without loss of generality, we assume

the tis are already sorted in an increasing order, and we assume wn = δn. The log

empirical likelihood we will study is

log AL =
n∑

i=1

δi log wi −
n∑

i=1

wiRi (3.16)

where Ri =
∑

j I[tj ≥ ti].

Suppose information about θ is given in the following two equations:∫
g1(t)dΛ0(t) = θ
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∫
g2(t)dΛ0(t) = θ

where g1(t), g2(t) are some functionally independent estimating functions that satisfy

some moment conditions. Then we have the following two constraint equations:

n−1∑
i=1

δig1(ti)wi + g1(tn)wn = θ (3.17)

n−1∑
i=1

δig2(ti)wi + g2(tn)wn = θ (3.18)

Now the problem is how to maximize (3.16) under the above two constraints (3.17)

and (3.18) and thereby determine an estimator θ̂ for θ.

It is well-known that the Nelson-Aalen estimator ŵi = δi/Ri achieves the global

maximum for log AL in (3.16). If there is only one constraint equation (3.17), then

the empirical-likelihood estimator θ̃ achieves the constrained maximum for log AL in

(3.16), where w̃i maximizes (3.16) while at the same time satisfying (3.17).

If there are two constraint equations (3.17) and (3.18), however, it is more difficult

to find a ŵi which maximizes (3.16) while at the same time satisfies both (3.17) and

(3.18).

Pan and Zhou (2002) discussed the computational issue for the censored empirical

likelihood with only one constraint equation. All they need to solve is the constraint

equation for λ and it is monotone decreasing in λ. An Splus function that computes

the empirical likelihood ratio described in that paper is available from the second

author.

The computation of the over-determined maximum-empirical-likelihood estimator

θ̂ is challenging. Let us consider this specific example as an illustration. In order to
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evaluate log AL for a given θ, we must solve (3.10) for wi(θ), which can often be

accomplished by Newton’s method. Next we propose to get the maximum-empirical-

likelihood estimator θ̃ for the just-determined case first, by solving the constraint

equations (3.17) and (3.18) for θ, where ŵi = δi/Ri. This will give us some informa-

tion about where θ̂ could be. We reason that θ̂ is typically close to θ̃, since both of

them are
√

n consistent to the same true parameter θ0.

This idea works well in our simulation studies in Chapter 6. We obtain the just-

determined maximum-empirical-likelihood-estimators θ̃1 and θ̃2 first, by solving the

two constraint equations with ŵi = δi/Ri, respectively. Then using Theorem 1, we

calculate a series of max log AL for different θ values that are close to θ̃1 and θ̃2.

The θ value that corresponds to the maximization of these max log AL is our over-

determined maximum-empirical-likelihood estimator θ̂.

Computation becomes even more demanding when we have multiple parameters,

say θ1 and θ2, and multiple constraint equations. Any optimization technique can be

tried, and further investigation is needed to see which works best.

Copyright c© Yanling Hu, 2011.
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Chapter 4 Hazard-Type Hypothesis for K-sample U-statistic

4.1 Introduction

A U-statistic is a class of non-parametric statistics that is especially important in

estimation theory, which includes many important statistics such as sample mean and

sample variance. The basic theory of U-statistic was developed by Wassily Hoeffd-

ing (1948) [11] and many others after that. In elementary statistics, U-statistics arise

naturally in producing minimum-variance unbiased estimators. The theory related to

U-statistics allows a single theoretical framework to be used to prove results relating

to the asymptotic normality and to the variance (in finite samples) of a wide range of

test-statistics and estimators. In addition the theory has applications to estimators

which are not themselves U-statistics.

Let X1, X2, . . . , Xn be i.i.d. from an unknown population P in a nonparametric

family P . In a large class of problems, the parameter to be estimated is of the form

θ = E[h(X1, ..., Xm)]

with a positive integer m and a Borel function h that is assumed to be symmetric

and satisfies

E | h(X1, ..., Xm) |< ∞

for any P ∈ P .

It is easy to see that a symmetric unbiased estimator of θ is

Un =

 n

m


−1∑

c

h(Xi1 , ..., Xim),
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where
∑

c denotes the summation over the

n

m

 combinations of m distinct elements

{i1, ..., im} from {1, ..., n}. The statistic Un above is called a U-statistic with kernel

h of order m.

Owen (2001) [26] investigated the two-sample U-statistic of order (1, 1) with

empirical likelihood. Owen’s result made it possible to use empirical likelihood to

construct confidence intervals based on a two-sample U-statistic, rather than using

asymptotic normality to construct the confidence intervals.

Let X1, X2, . . . , Xm be i.i.d. from an unknown population P1 and Y1, Y2, . . . , Yn

be i.i.d. from an unknown population P2. The parameter to be estimated is of the

form

θ = E[h(X1, Y1)].

The two-sample U-statistic Owen studied is

Umn =
m∑

i=1

n∑
j=1

h(xi, yj)
1

m

1

n
, (4.1)

which is an unbiased estimator of θ.

In this chapter we will extend Owen’s result and study the use of empirical like-

lihood with a k-sample U-statistic of order (1, 1, . . . , 1) in terms of hazard function,

where k is a fixed positive integer and greater than 1. We will give a k-sample the-

orem below. Moreover, we will also allow right censoring in the data. The details

of the proof are given only for the two-sample case but the k-sample case can be

similarly proved. The proof for the two-sample case is collaborative effort of Dr. Bill

Barton and myself, under the supervision of our advisor Dr. Mai Zhou. Integral

signs without explicit limits are understood to encompass the entire support of the
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variable, here and elsewhere.

Suppose that x11, x12, . . . , x1n1 are i.i.d. non-negative observations of lifetimes

with a continuous distribution function F1 and cumulative hazard function Λ1. In-

dependent of the lifetimes there are censoring times c11, c12, . . . , c1n1 which are i.i.d.

with a distribution G1. In practice F1, Λ1 and G1 will be unknown. Only the censored

observations, (t1i, d1i), are available to us:

t1i = min(x1i, c1i) and d1i = I[x1i ≤ c1i] for i = 1, 2, . . . , n1 (4.2)

Similarly defined with F2, Λ2, G2, . . . , Fk, Λk, Gk, we have

t2i = min(x2i, c2i) and d2i = I[x2i ≤ c2i] for i = 1, 2, . . . , n2 (4.3)

......

tki = min(xki, cki) and dki = I[xki ≤ cki] for i = 1, 2, . . . , nk (4.4)

Definition: The U-statistic with respect to hazard is defined as

θ̂ =

n1∑
i1=1

...

nk∑
ik=1

H(t1i1 , ..., tkik)ŵ1i1 ...ŵkik

where ŵ1i1 ...ŵkik are the jumps of the Nelson-Aalen estimators based on (t11, d11), . . . ,

(t1n1 , d1n1); (t21, d21), . . . , (t2n2 , d2n2); . . . ; (tk1, dk1), . . . , (tknk
, dknk

). This U-statistic is

defined similarly to (4.1) and is an unbiased estimator of

θ =

∫
...

∫
H(t1, t2, ..., tk) dΛ1(t1) dΛ2(t2)... dΛk(tk).

Theorem: Suppose (t11, d11), . . . , (t1n1 , d1n1); (t21, d21), . . . , (t2n2 , d2n2); . . . ;

(tk1, dk1), . . . , (tknk
, dknk

) are from the above data setting. Suppose further that there

is a hypothesized constraint of the following form:

Ho :

∫
...

∫
H(t1, t2, ..., tk) dΛ1(t1) dΛ2(t2)... dΛk(tk) = θ (4.5)
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where H(t1, t2, ..., tk) is a continuous function and assumed to be bounded.

If
∫

...
∫

H(t1, t2, ..., tk) dΛ1(t1) dΛ2(t2)... dΛk(tk) < ∞, and some further regularity

conditions are satisfied, then under Ho, as min(n1, n2, ..., nk) → ∞, the distribution

of the empirical log-likelihood ratio (ELLR) has the limit

−2ELLR
D−→ χ2

(1) ,

where

ELLR = max
Λ1,...,Λk,H0

log ELk(Λ1, ..., Λk)− log ELk(Λ̂1, ..., Λ̂k),

and log ELk is defined in (4.14); and Λ̂i, i = 1, ..., k are the Nelson-Aalen estimators

of Λi, i = 1, ..., k.

We will give the theorem and proof below for the k = 2 case .

Theorem(Hu and Barton): Suppose (s1, dx1), . . . , (sn, dxn), (t1, dy1), . . . , (tm, dym)

are observations as in (4.2) and (4.3). Suppose further that there is a hypothesized

constraint of the following form:

Ho :

∫∫
H(s, t) dΛX(s) dΛY (t) = θ (4.6)

where ΛX(s) and ΛY (t) are the respective cumulative-hazard functions of X and Y ;

and H(s, t) is a continuous function and assumed to be bounded.

If
∫∫

H(s, t) dΛX(s) dΛY (t) < ∞ and some further regularity conditions are satisfied

as in the proof later, then under Ho, as min(n,m) → ∞, the distribution of the

empirical log-likelihood ratio (ELLR) defined in section 4.3 has the limit

−2ELLR
D−→ χ2

(1) .

Hazard functions are typically monotone-increasing and unbounded. Therefore

the function H(s, t) in (4.6) must approach 0 as s, t →∞. Two examples of such an

47



H(s, t) are e−|s+t|, and e−|st|.

In order to evaluate Ho in the two-sample theorem we will calculate a constraint,

similar in form to (4.6), but based on the data. The expression for this constraint is

as follows:

n∑
i=1

m∑
j=1

Hijŵiν̂j − θ = 0 (4.7)

where ŵi and ν̂j are the estimated jumps in hazard at xi and yj, respectively; and

Hij is an abbreviated notation for H(xi, yj).

If we take the integrals in (4.6) to be Stieltjes integrals then (4.6) and (4.7) are

fundamentally similar, only (4.6) applies to continuous (s, t) whereas (4.7) applies to

discrete (s, t).

We organize the proof of the two-sample Theorem into five sections. In section

4.2 we calculate maximum-likelihood estimates (MLE’s) of the hazard jumps for each

of the two samples. In section 4.3 we calculate the empirical-log-likelihood-ratio

(ELLR) for the two samples. In section 4.4 we show that −2ELLR is asymptotically

distributed as χ2
(1) under Ho. In section 4.5 we demonstrate that the Taylor expansions

used in the calculations are valid. In section 4.6 we prove two lemmas used in the

previous sections.

4.2 MLE’s for the Hazard Jumps

In this section we calculate the maximum-likelihood-estimators (MLE’s) for the

hazard jumps in (4.6) and (4.7).
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The calculation of the MLE’s for the hazard jumps generally follows the derivation

in Owen (2001) [26] pp. 223-227. There are some differences, however, since Owen’s

derivation involves a mean-type hypothesis for uncensored data, whereas our deriva-

tion involves a hazard-type hypothesis for right-censored data. Since the calculations

are based on likelihood, we first discuss the likelihood expression that we will employ.

For the general k-sample case, the empirical likelihoods ELX1 , ELX2 , ..., ELXk

for samples x1, x2, ..., xk can be written as follows:

ELX1 =

n1∏
i=1

w1i
d1i exp

(
−

n1∑
r=1

w1r I[x1r ≤ x1i]
)

(4.8)

ELX2 =

n2∏
i=1

w2i
d2i exp

(
−

n2∑
r=1

w2r I[x2r ≤ x2i]
)

(4.9)

......

ELXk
=

nk∏
i=1

wki
dki exp

(
−

nk∑
r=1

wkr I[xkr ≤ xki]
)

(4.10)

The likelihood expression as in (4.8), (4.9), ..., (4.10) is described in Murphy

(1995) [20]. It is a “Poisson extension” of the usual likelihood. Although it is not a

true likelihood, it does yield a meaningful likelihood-ratio test and it has the advan-

tage that the log-likelihood is easily formed from it. See also Pan and Zhou(2002)

[29] for a brief discussion of this Poisson extension.

The log-empirical-likelihoods (log ELX1 , log ELX2 , ..., log ELXk
for the k samples

can then be expressed as

log ELX1 =

n1∑
i=1

(
d1i log w1i −

n1∑
r=1

w1r I[x1r ≤ x1i]
)

from (4.8) (4.11)
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log ELX2 =

n2∑
i=1

(
d2i log w2i −

n2∑
r=1

w2r I[x2r ≤ x2i]
)

from (4.9) (4.12)

......

log ELXk
=

nk∑
i=1

(
dki log wki −

nk∑
r=1

wkr I[xkr ≤ xki]
)

from (4.10) (4.13)

Since the k samples are independent, therefore the log-empirical-likelihood for the

set of all k samples, denoted as log ELk, can be expressed as the sum of (4.11), (4.12),

and (4.13) as follows:

log ELk = log ELX1 + log ELX2 + ... + log ELXk
. (4.14)

We will give the detailed proof for the two-sample case below. The empirical

likelihoods ELX and ELY for the two samples x and y can be written as follows:

ELX =
n∏

i=1

wi
dxi exp

(
−

n∑
r=1

wr I[xr ≤ xi]
)

(4.15)

ELY =
m∏

j=1

νj
dyj exp

(
−

m∑
s=1

νs I[ys ≤ yj]
)

(4.16)

The log-empirical-likelihoods (log ELX and log ELY ) for the two samples can then

be expressed as

log ELX =
n∑

i=1

(
dxi log wi −

n∑
r=1

wr I[xr ≤ xi]
)

from (4.15) (4.17)
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log ELY =
m∑

j=1

(
dyj log νj −

m∑
s=1

νs I[ys ≤ yj]
)

from (4.16). (4.18)

The log-empirical-likelihood for the set of both samples, denoted as log EL, can

be expressed as the sum of (4.17) and (4.18) as follows:

log EL = log ELX + log ELY . (4.19)

The maximization of the unconstrained likelihood in (4.17) is easily accomplished

by taking a partial derivative with respect to wi and then equating the partial deriva-

tive to zero. The maximization of the unconstrained likelihood in (4.18) is accom-

plished similarly. Expressions for the respective hazard-jump MLE’s w̃ and ν̃j are

as follows:

w̃i =
dxi

Rxi

, i = 1, . . . , n (4.20)

ν̃j =
dyj

Ryj

, j = 1, . . . ,m. (4.21)

where dx = (dx1, . . . , dxn) and dy = (dy1, . . . , dym) are the respective censoring

indicators for x and y. For x we use the convention that dxi = 1 for an uncensored

datum and dxi = 0 for a right-censored datum, and similarly for y. Rxi and Ryj are

the number of survivors at x−i and y−j respectively, defined as,

Rxi =
n∑

r=1

I[xr ≥ xi] and Ryj =
m∑

s=1

I[ys ≥ yj]. (4.22)

51



The estimators in (4.20) and (4.21) are commonly referred to as Nelson-Aalen

estimators (e.g. Kalbfleisch and Prentice [13] p. 18). They are sometimes notated as

dΛ̂X(xi) and dΛ̂Y (yj), respectively, and we will adopt this latter notation in section

4.4.

The calculation of the MLE’s for the constrained hazard jumps, which is consid-

erably more complicated, will comprise the rest of this section 4.2.

We use log EL in (4.19) and the constraint in (4.7) to construct a constrained-

log-likelihood target-function G. The constraint in (4.7) is incorporated into G by

means of a Lagrange multiplier λ. The result is as follows:

G = log EL− λ
( n∑

i=1

m∑
j=1

Hijwiνj − θ
)
. (4.23)

We calculate the constrained MLE’s of wi, νj, and λ by taking partial derivatives

of G with respect to wi, νj, and λ and then equating these partial derivatives to zero.

We denote the resulting three constrained MLE’s as ŵi, ν̂j, and λ̂, respectively.

In the course of calculating the constrained MLE’s of wi, νj and λ we will make

use of the following two quantities:

H̃i. =
m∑

j=1

ν̂jHij and H̃.j =
n∑

i=1

ŵiHij. (4.24)

Note that H̃i. and H̃.j are uniformly bounded since Hij is necessarily uniformly
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bounded per (4.6) above.

We proceed as follows:

∂G

∂wi

∣∣∣
wi=ŵi, νj=ν̂j , λ=λ̂

= 0. (4.25)

Combining (4.25), (4.17)-(4.19) and (4.23) gives

dxi

ŵi

−
n∑

r=1

I[xr ≥ xi]− λ̂
m∑

j=1

Hij ν̂j = 0. (4.26)

Rearranging (4.26) gives

ŵi =
dxi(

Rxi + λ̂H̃i.

) (4.27)

using (4.22) and (4.24).

Similarly we set

∂G

∂νj

∣∣∣
wi=ŵi,νj=ν̂j ,λ=λ̂

= 0. (4.28)

Combining (4.28), (4.17)-(4.19) and (4.23) gives

dyj

ν̂j

−
m∑

s=1

I[ys ≥ yj]− λ̂
n∑

i=1

Hijŵi = 0 (4.29)

Rearranging (4.29) gives

ν̂j =
dyj(

Ryj + λ̂H̃.j

) . (4.30)
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using (4.22) and (4.24).

The second derivatives ∂2G
∂w2

i
and ∂2G

∂ν2
j

are easily shown to be negative, confirming

that ŵi and ν̂j are indeed maxima.

Lastly we set

∂G

∂λ

∣∣∣
wi=ŵi,νj=ν̂j ,λ=λ̂

= 0. (4.31)

Combining (4.31), (4.17)-(4.19) and (4.23) gives

n∑
i=1

m∑
j=1

Hijŵiν̂j = θ (4.32)

which is just the constraint as in (4.7).

Equations (4.27), (4.30), and (4.32) must be solved simultaneously to find explicit

expressions for ŵi, ν̂j, and λ̂. A precise solution would require numerical methods.

We instead calculate an approximate solution using Taylor expansions. We begin by

finding an approximate value of λ̂.

First we expand ŵi and ν̂j in (4.27) and (4.30) in order to bring λ̂ into the

numerator. This results in the following two expressions:

ŵi =
dxi

Rxi

[
1−

( λ̂

Rxi

H̃i.

)
+
( λ̂

Rxi

H̃i.

)2

− . . .
]

(4.33)

ν̂j =
dyj

Ryj

[
1−

( λ̂

Ryj

H̃.j

)
+
( λ̂

Ryj

H̃.j

)2

− . . .
]

(4.34)
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where we have used the Taylor expansion

1

1 + ε
= 1− ε + ε2 − . . . , valid for |ε| < 1. (4.35)

Later in section 4.5 we will show that

λ̂

Rxi

H̃i.
p−→ 0 as min(n, m) →∞ (4.36)

λ̂

Ryj

H̃.j
p−→ 0 as min(n, m) →∞ (4.37)

so that the restriction in (4.35) will hold when min(n, m) is sufficiently large. Also,

(4.36) and (4.37) will allow us to drop the higher-order terms in (4.33) and (4.34) as

asymptotically negligible.

To simplify the notation in (4.33) and (4.34) let

ηi =
λ̂

Rxi

H̃i. (4.38)

κj =
λ̂

Ryj

H̃.j . (4.39)

Then (4.33) and (4.34) can be written as

ŵi =
dxi

Rxi

(
1− ηi + η2

i − . . .
)

(4.40)

ν̂j =
dyj

Ryj

(
1− κj + κ2

j − . . .
)

(4.41)
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where

ηi
p−→ 0 as min(n,m) →∞, from (4.36) and (4.38) (4.42)

κj
p−→ 0 as min(n,m) →∞, from (4.37) and (4.39). (4.43)

Substituting (4.40) and (4.41) into (4.32) gives the following:

θ =
n∑

i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

(
1− ηi + η2

i − . . .
)(

1− κj + κ2
j − . . .

)
(4.44)

= H .. −
n∑

i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

(
ηi + κj

)
+

n∑
i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

(
η2

i + κ2
j + ηiκj

)
− . . . (4.45)

where H .. =
n∑

i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

(4.46)

.
= H .. −

n∑
i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

(
ηi + κj

)
, (4.47)

dropping higher order terms per (4.42) and (4.43).

Now ηi and κj in the right-hand side (RHS) of (4.47) are themselves functions of λ̂,

per (4.38) and (4.39) above. In order to facilitate the objective of finding an explicit

approximation for λ̂ we introduce the terms H i. and H .j, which are not functions of

λ̂, as follows:

H i. =
m∑

j=1

Hij
dyj

Ryj

and H .j =
n∑

i=1

Hij
dxi

Rxi

. (4.48)

We obtain (4.48) by substituting
dyj

Ryj
for ν̂j and dxi

Rxi
for µ̂i in (4.24). Note that H i.
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and H .j are uniformly bounded since Hij is assumed to be uniformly bounded per

(4.6) above.

Now consider the following:

H̃i. = H i. + (H̃i. −H i.) (4.49)

= H i. +
m∑

j=1

Hij

(
ν̂j −

dyj

Ryj

)
from (4.24) and (4.48) (4.50)

= H i. +
m∑

j=1

Hij

[ dyj

Ryj

(
1− κj + κ2

j − . . .
)
− dyj

Ryj

]
from (4.41) (4.51)

= H i. −
m∑

j=1

Hij
dyj

Ryj

(
κj − κ2

j + . . .
)

(4.52)

= H i. −
m∑

j=1

Hij
dyj

Ryj

op(1) from (4.43), assuming max
1≤j≤m

(κj) = op(1) (4.53)

=
(

1− op(1)
)

H i. from (4.48). (4.54)

Similarly we can calculate

H̃.j =
(

1− op(1)
)

H .j assuming max
1≤i≤n

(ηi) = op(1). (4.55)

Then we can estimate λ̂ as follows:

θ
.
= H .. −

n∑
i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

(
ηi + κj

)
from (4.47) (4.56)

= H .. −
n∑

i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

( λ̂

Rxi

H̃i. +
λ̂

Ryj

H̃.j

)
from (4.38), (4.39) (4.57)
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= H .. −
n∑

i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

[ λ̂

Rxi

H i.

(
1− op(1)

)
+

λ̂

Ryj

H .j

(
1− op(1)

)]
(4.58)

from (4.54), (4.55)

= H .. − λ̂
(
1− op(1)

) n∑
i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

(H i.

Rxi

+
H .j

Ryj

)
(4.59)

.
= H .. − λ̂

n∑
i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

(H i.

Rxi

+
H .j

Ryj

)
. (4.60)

Then from (4.60) the desired approximation of λ is,

λ̂
.
= (H .. − θ)/D (4.61)

where D =
n∑

i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

(H i.

Rxi

+
H .j

Ryj

)
(4.62)

The RHS of (4.61) does not involve ŵi, ν̂j, or λ̂, rather it only involves the data.

Therefore the RHS of (4.61) is an explicit approximation of λ̂.

By a similar argument we can substitute (4.54) and (4.55) into (4.33) and (4.34),

respectively. This gives an approximation w̆i for ŵi and an approximation ν̆j for ν̂j,

as follows:

w̆i =
dxi

Rxi

(
1− λ̂

Rxi

H i.

)
.
= ŵi (4.63)

ν̆j =
dyj

Ryj

(
1− λ̂

Ryj

H .j

)
.
= ν̂j. (4.64)
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4.3 ELLR for the Two Samples

In this section we calculate an expression for the empirical-log-likelihood-ratio

(ELLR) for the two samples under the constraint in (4.6).

Let us define the following:

η̆i =
λ̂

Rxi

H i., i = 1, . . . , n similar to (4.38) (4.65)

η̆ = (η̆1, η̆2, . . . , η̆n) (4.66)

Q(η̆) =
n∑

i=1

(
dxi log

( dxi

Rxi

(1− η̆i)
)
−

n∑
r=1

dxr

Rxr

(1− η̆r)I[xr ≤ xi]

)
(4.67)

Qo = Q(0) =
n∑

i=1

(
dxi log(

dxi

Rxi

)−
n∑

r=1

dxr

Rxr

I[xr ≤ xi]
)
. (4.68)

From (4.17), (4.63), and (4.65) we see that Q(η̆) in (4.67) is an estimator for

the constrained log-likelihood for the sample x and we see that Qo in (4.68) is an

estimator for the unconstrained log-likelihood for the sample x.

Similarly let us define the following:

κ̆j =
λ̂

Ryj

H .j, j = 1, . . . ,m similar to (4.39) (4.69)

κ̆ = (κ̆1, κ̆2, . . . , κ̆m) (4.70)

P (κ̆) =
m∑

j=1

(
dyj log

( dyj

Ryj

(1− κ̆j)
)
−

m∑
s=1

dys

Rys

(1− κ̆rs)I[ys ≤ yj]

)
(4.71)

Po = P (0) =
m∑

j=1

(
dyj log(

dyj

Ryj

)−
m∑

s=1

dys

Rys

I[ys ≤ yj]
)
. (4.72)

From (4.18), (4.64), and (4.69) we see that P (κ̆) is an estimator for the constrained

log-likelihood for the sample y and we see that Po is an estimator for the uncon-
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strained log-likelihood for the sample y.

It is convenient to rewrite Q(η̆) in (4.67) as follows:

Q(η̆) =
n∑

i=1

(
dxi log

( dxi

Rxi

(1− η̆i)
))

−
n∑

i=1

n∑
r=1

(
dxr

Rxr

(1− η̆r)I[xr ≤ xi]

)
(4.73)

=
n∑

i=1

(
dxi log

( dxi

Rxi

(1− η̆i)
))

−
n∑

r=1

(
dxr

Rxr

(1− η̆r)
n∑

i=1

I[xr ≤ xi]

)
(4.74)

=
n∑

i=1

(
dxi log

( dxi

Rxi

(1− η̆i)
))

−
n∑

r=1

(
dxr(1− η̆r)

)
using (4.22) (4.75)

=
n∑

i=1

(
dxi log

( dxi

Rxi

(1− η̆i)
)
− dxi(1− η̆i)

)
changing index r to i (4.76)

=
n∑

i=1

Qi(η̆i) (4.77)

where Qi(η̆i) =

(
dxi log

( dxi

Rxi

(1− η̆i)
)
− dxi(1− η̆i)

)
. (4.78)

By a similar calculation we can rewrite P (κ̆) in (4.71) as follows:

P (κ̆) =
m∑

j=1

Pj(κ̆j) (4.79)

where Pi(κ̆j) =

(
dyj log

( dyj

Ryj

(1− κ̆j)
)
− dyj(1− κ̆j)

)
. (4.80)
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We will require the quantities
∑n

i=1 η̆iQ
′
i(0),

∑m
j=1 κ̆jP

′
j(0),

∑n
i=1

η̆i
2

2
Q′′

i (0),

and
∑m

j=1
κ̆j

2

2
P ′′

j (0) which we calculate as follows:

n∑
i=1

η̆iQ
′
i(0) =

n∑
i=1

η̆i

(
−dxi

dxi

Rxi

dxi

Rxi
(1− η̆i

) + dxi

)∣∣∣
η̆i=0

using (4.78) (4.81)

= 0 (4.82)

A similar calculation shows

m∑
j=1

κ̆jP
′
j(0) = 0 using (4.80) (4.83)

And,

n∑
i=1

η̆i
2

2
Q′′

i (0) =
n∑

i=1

η̆i
2

2

( −dxi

(1− ηi)2

)∣∣∣
η̆i=0

using (4.81) (4.84)

= −
n∑

i=1

η̆i
2

2
dxi (4.85)

A similar calculation shows

m∑
j=1

κ̆j
2

2
P ′′

j (0) = −
m∑

j=1

κ̆j
2

2
dyj (4.86)

Then we can calculate −2ELLR as follows:
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−2ELLR
.
= −2

(
Q(η̆)−Qo

)
− 2
(
P (κ̆)− Po

)
(4.87)

from (4.17)− (4.19), (4.65)− (4.72)

= −2Q(η̆) + 2Qo − 2P (κ̆) + 2Po (4.88)

= −2

(
Qo +

n∑
i=1

(
η̆iQ

′
i(0) +

η̆i
2

2
Q′′

i (0)
))

+ 2Qo + Rn(η̆)

− 2

(
Po +

m∑
j=1

(
κ̆jP

′
j(0) +

κ̆j
2

2
P ′′

j (0)
))

+ 2Po + Rm(κ̆) (4.89)

by Taylor expansion of Q(η̆) and P (κ̆) about 0,

where Rn(η̆) and Rm(κ̆) are the remainder terms

.
= −

n∑
i=1

η̆i
2Q′′

i (0)−
m∑

j=1

κ̆j
2P ′′

j (0) (4.90)

using (4.82), (4.83), dropping remainder terms

=
n∑

i=1

η̆i
2dxi +

m∑
j=1

κ̆j
2dyj using (4.85), (4.86) (4.91)

= λ̂2

n∑
i=1

(
Hi.

Rxi

)2

dxi + λ̂2

m∑
j=1

(
H.j

Ryj

)2

dyj using (4.65), (4.69) (4.92)

= λ̂2

n∑
i=1

m∑
j=1

Hij
dyj

Ryj

dxi

Rxi

Hi.

Rxi

+ λ̂2

n∑
i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

H.j

dyj

(4.93)

using (4.48)
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= λ̂2D from (4.62) (4.94)

.
=

(H .. − θ)2

D
from (4.61) (4.95)

4.4 Distribution of -2ELLR

In this section we show that the distribution of -2ELLR goes asymptotically to

χ2
1 as min(n, m) →∞., when the null hypothesis Ho is true.

Let us establish the following notation:

Summations are represented as Stieltjes integrals (4.96)

xi is represented as t (4.97)

yj is represented as s (4.98)

Hij is represented as g(t, s) (4.99)

dxi

Rxi

is represented as dΛ̂1(t), a Nelson-Aalen jump as in (4.20) (4.100)

dyj

Ryj

is represented as dΛ̂2(s), a Nelson-Aalen jump as in (4.21) (4.101)

Ho in (4.6) can then be denoted as

∫∫
g(t, s)dΛ1(t)dΛ2(s) = θ. (4.102)

The derivation below uses Martingale theory and the reader will need to be famil-

iar with this theory in order to follow the derivation. A good reference for Martingale

theory is Kalbfleisch and Prentice (2002) [13], chapter 5.
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Now consider,√
nm

n + m
(H .. − θ) =

√
nm

n + m

( n∑
i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

− θ
)

(4.103)

from (4.46)

=

√
nm

n + m

(∫∫
g(t, s)dΛ̂1(t)dΛ̂2(s)−

∫∫
g(t, s)dΛ1(t)dΛ2(s)

)
(4.104)

using (4.96) to (4.102)

=

√
nm

n + m

(∫∫
g(t, s)dΛ̂1(t)dΛ̂2(s)−

∫∫
g(t, s)dΛ1(t)dΛ2(s)

+

∫∫
g(t, s)dΛ1(t)dΛ̂2(s)−

∫∫
g(t, s)dΛ1(t)dΛ̂2(s)

)
(4.105)

add, subtract term

=

√
m

n + m

∫∫
g(t, s)dΛ̂2(s) d

√
n
(
Λ̂1(t)− Λ1(t)

)

+

√
n

n + m

∫∫
g(t, s)dΛ1(t) d

√
m
(
Λ̂2(s)− Λ2(s)

)
+ op(1) (4.106)

see explanation in (4.120) to (4.122) below

d−→
√

m

n + m

∫
f1(t)dB1

(
C1(t)

)
+

√
n

n + m

∫
f2(s)dB2

(
C2(s)

)
as min(n, m) →∞ (see proof in Lemma 1), where

(4.107)
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∫
g(t, s)dΛ̂2(s)

p−→
∫

g(t, s)dΛ2(s) = f1(t) (4.108)∫
g(t, s)dΛ1(t) = f2(s) (4.109)

C1(t) =

∫ t

γ=0

dΛ1(γ)(
1− F1(γ−)

)(
1−G1(γ−)

) (4.110)

C2(s) =

∫ s

γ=0

dΛ2(γ)(
1− F2(γ−)

)(
1−G2(γ−)

) (4.111)

B1 is a Brownian motion (4.112)

B2 is a Brownian motion (4.113)

√
n
(
Λ̂1(t)− Λ1(t)

)
d−→ B1

(
C1(t)

)
as in Kalbfleisch [13] (4.114)

√
m
(
Λ̂2(s)− Λ2(s)

)
d−→ B2

(
C2(s)

)
as in Kalbfleisch [13]. (4.115)

Therefore,√
nm

n + m
(H .. − θ)

d−→ N(0, σ2) as min(n, m) →∞, from (4.107) (4.116)

where σ2 = α

∫
f 2

1 (t)
dΛ1(t)

(1− F1(t−))(1−G1(t−))

+ (1− α)

∫
f 2

2 (s)
dΛ2(t)

(1− F2(s−))(1−G2(s−))
(4.117)

and α is defined as in (4.127) below.

Therefore,

(H .. − θ)√
D

d−→ N

(
0,

σ2

ξ

)
as min(n,m) →∞, using (4.116) (4.118)
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where ξ is a constant such that

nm

n + m
D

p−→ ξ, as min(n, m) →∞. (4.119)

We demonstrate that (4.119) is true in (4.124) to (4.141) below.

In (4.106) above we have assumed the following to be true:

√
nm

n + m

∫∫
g(t, s) d[Λ̂1(t)− Λ1(t)] d[Λ̂2(s)− Λ2(s)] (4.120)

=

√
1

n + m

∫∫
g(t, s) d

√
n[Λ̂1(t)− Λ1(t)] d

√
m[Λ̂2(s)− Λ2(s)] (4.121)

d−→
√

1

n + m

∫∫
g(t, s) dB1(C1(t)) dB2(C2(s)) (4.122)

as min(n,m) →∞

= op(1) (4.123)

With reference to (4.119) above, we demonstrate that nm
n+m

D
p−→ ξ

as min(n,m) →∞ as follows:

D =
n∑

i=1

m∑
j=1

Hij
dxi

(Rxi)2

dyj

Ryj

H i. +
n∑

i=1

m∑
j=1

Hij
dxi

Rxi

dyj

(Ryj)2
H .j (4.124)

from (4.60)
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nm

n + m
D =

m

n + m

n∑
i=1

m∑
j=1

Hij
dxi

Rxi

n

Rxi

dyj

Ryj

H i. (4.125)

+
n

n + m

n∑
i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

m

Ryj

H .j

p−→ α

∫∫
g(t, s)f1(t)

1

(1− F1(t−))(1−G1(t−))
dΛ1(t)dΛ2(s) (4.126)

+ (1−α)

∫∫
g(t, s)f2(s)

1

(1− F2(s−))(1−G2(s−))
dΛ1(t)dΛ2(s)

as min(n, m) →∞, by law of large numbers for Nelson-Aalen

estimators, where

We assume that
m

n + m

p−→ α as min(n, m) →∞, 1 ≥ α > 0 (4.127)

Therefore
n

n + m

p−→ 1− α as min(n, m) →∞ (4.128)

Hij is represented as g(t, s) as in (4.99) (4.129)

H i.
p−→ f1(t), where f1(t) is as in (4.108), per Lemma 1 in section 6.5 (4.130)

H .j
p−→ f2(s), where f2(s) is as in (4.109), per Lemma 1 in section 6.5 (4.131)

n

Rxi

p−→ 1

(1− F1(xi))(1−G1(xi))
per Lemma 2 in section 6.5 (4.132)

m

Ryj

p−→ 1

(1− F2(yj))(1−G2(yj))
per Lemma 2 in section 6.5 (4.133)

G1(t) is the censoring distribution of sample 1 (4.134)

G2(s) is the censoring distribution of sample 2 (4.135)

dxi

Rxi

is represented as dΛ̂1 as in (4.100) (4.136)

dyj

Ryj

is represented as dΛ̂2 as in (4.101) (4.137)
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= α

∫
f 2

1 (t)
dΛ1(t)

(1− F1(t))(1−G1(t))
(4.138)

+ (1− α)

∫
f 2

2 (s)
dΛ2(s)

(1− F2(s))(1−G2(s))
from (4.108) and (4.109)

= σ2 from (4.117) (4.139)

Hence,

nm

n + m
D → σ2 as min(n, m) →∞, from (4.123) to (4.138) (4.140)

Combining (4.118) and (4.139) gives,

(H .. − θ)√
D

d−→ N(0, 1) as min(n, m) →∞ (4.141)

Squaring both sides of (4.140) gives,

(H .. − θ)2

D

d−→ χ2
(1) as min(n,m) →∞ (4.142)

Finally, combining (4.95) and (4.141) gives

−2ELLR
d−→ χ2

(1) as min(n, m) →∞ (4.143)

This concludes the main portion of the proof. We can use (4.143) to calculate an

approximate p-value to test Ho based on −2ELLR.
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4.5 Validation of Taylor Expansions

In this section we justify the Taylor expansions used in section 4.2 by showing that

λ̂
Rxi

H̃i.
p−→ 0 as min(n, m) →∞, as in (4.36); and λ̂

Ryj
H̃.j

p−→ 0 as min(n,m) →∞,

as in (4.37).

We will assume that H̃i., H̃.j, H i., and H .j are all uniformly bounded. We will also

assume that ξ ≥ n
m
≥ 1

ξ
for some positive number ξ. To simplify the calculations be-

low we will additionally assume, without loss of generality, that ξ = 1, so that n = m.

First we show that λ̂∗/n becomes small as n → ∞, where λ̂∗/n is the root of

H .. − θ − λD = 0.

From (4.118) we know that (H..−θ)√
D

→ N
(
0, σ2

nm
n+m

D

)
and from (4.139) we know

that nm
n+m

D → σ2 as min(n, m) →∞. Without loss of generatlity let us assume that

n = m so that nm
n+m

= n
2
. Then nm

n+m
D = n

2
D so that

n

2
D

p−→ σ2 from (4.139) (4.144)

We will show that λ̂∗/n ∈ (−ε, ε) as n →∞ for any small ε > 0.

Now,
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H .. − θ − λD =
√

D
(H .. − θ√

D
− λ

√
D
)

(4.145)

.
=
√

D
(
Z − λ

√
D
)

where Z ∼ N(0, 1) from (4.140) (4.146)

=
√

D
(
Z − λ

√
2/n

√
n

2
D
)

(4.147)

.
=
√

D
(
Z − λ√

n

√
2 σ
)

from (4.143) (4.148)

Now we must choose a sequence in n that goes slowly to ∞. Without loss of

generality let us choose the function log(n). Then let λ√
n

= ± log n and substitute

into (4.147) above. When λ√
n

= log n then the RHS of (4.147) is less than 0 for large

n, since Z is bounded in probability. And similarly when λ√
n

= − log n then the RHS

of (4.147) is greater than 0 for large n. This implies that λ̂∗

n
∈
(
− log n√

n
, log n√

n

)
for large

n with probability approaching 1, since H .. − θ− λD is monotone in λ. This in turn

implies that

λ̂∗

n
= Op

( log n√
n

)
(4.149)

Now,

lim
n→∞

(Rxi

n

)
= (1− F1(xi))(1−G1(xi)) per Lemma 2, section 6.5 (4.150)

which implies that

Rxi = Op(n) (4.151)
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Combining (4.148) and (4.152) gives

λ̂∗

Rxi

= Op

( log n√
n

)
(4.152)

Then since H̃i. and H̃.j are bounded, (4.152) implies

λ̂∗

Rxi

H̃i. = Op

( log n√
n

)
and

λ̂∗

Ryj

H̃.j = Op

( log n√
n

)
(4.153)

Then with reference to (4.44) (up to order λ̂) consider the following:

λ̂

n∑
i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

( H̃i.

Rxi

+
H̃.j

Ryj

)
=

n∑
i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

( λ̂

Rxi

H̃i. +
λ̂

Ryj

H̃.j

)
(4.154)

= Op

( log n√
n

) n∑
i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

from (4.152) (4.155)

= Op

( log n√
n

)
using (4.45), since H .. is uniformly bounded (4.156)

Also with reference to (4.44) (up to order λ̂2) consider the following:

λ̂2

n∑
i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

[( H̃i.

Rxi

)2

+
H̃i.H̃.j

RxiRyj

+
( H̃.j

Ryj

)2]

=
n∑

i=1

m∑
j=1

Hij
dxi

Rxi

dyj

Ryj

[( λ̂ H̃i.

Rxi

)2

+
λ̂

Rxi

H̃i.
λ̂

Ryj

H̃.j +
( λ̂ H̃.j

Ryj

)2]
(4.157)

= Op

( log n√
n

)2

from (4.152) (4.158)
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Finally consider the following:

H̃i. = H i. + (H̃i. −H i.) (4.159)

= H i. +
m∑

j=1

Hij

(
ν̂j −

dyj

Ryj

)
substituting (4.24) and (4.47) (4.160)

.
= H i. +

m∑
j=1

Hij

[ dyj

Ryj

(
1− λ̂

Ryj

H̃.j

)
− dyj

Ryj

]
from (4.34) to order λ̂ (4.161)

= H i. −
m∑

j=1

Hij
dyj

Ryj

( λ̂

Ryj

H̃.j

)
rearranging (4.160) (4.162)

= H i. −
m∑

j=1

Hij
dyj

Ryj

Op

( log n√
n

)
using (4.152) (4.163)

= H i. −Op

( log n√
n

) m∑
j=1

Hij
dyj

Ryj

rearranging (4.162) (4.164)

= H i. −Op

( log n√
n

)
H i. from (4.47) (4.165)

.
= H i. (4.166)

Therefore we conclude that the Taylor expansion in (4.47) is valid.

4.6 Lemmas

Lemma 1 : For fixed t,

∫
g(t, s)dΛ̂2(s)

p−→
∫

g(t, s)dΛ2(s) . (4.167)

We will assume that
∫

g(t, s)dΛ2(s) < ∞. We first apply the law of large numbers

(LLN) to the case where the integral in (4.167) runs from 0 up to any large (but

finite) positive number τ .
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∫ τ

0

g(t, s)dΛ̂2(s) =
m∑

j=1

I[yj < τ ] g(t, yj)
dyj

Ryj

(4.168)

=
1

m

m∑
j=1

I[yj < τ ] dyj

(g(t, yj)

Ryj/m
− g(t, yj)(

1− F2(y
−
j )
)(

1−G2(y
−
j )
))

+
1

m

m∑
j=1

I[yj < τ ]
g(t, yj) dyj(

1− F2(y
−
j )
)(

1−G2(y
−
j )
) (4.169)

The first term in (4.169) is bounded by

1

m

m∑
j=1

I[yj < τ ] dyj

∣∣∣g(t, yj)

Ryj/m
− g(t, yj)(

1− F2(y
−
j )
)(

1−G2(y
−
j )
)∣∣∣ (4.170)

≤ sup
y<τ

∣∣∣g(t, yj)

Ryj/m
− g(t, yj)(

1− F2(y
−
j )
)(

1−G2(y
−
j )
)∣∣∣ (4.171)

= sup
y<τ

∣∣∣g(t, yj)
∣∣∣ ∣∣∣ 1

Ryj/m
− 1(

1− F2(y
−
j )
)(

1−G2(y
−
j )
)∣∣∣ (4.172)

Now supy<τ

∣∣∣g(t, yj)
∣∣∣ is bounded by assumption. And in Lemma 2 below we show

that Ryj/m
p−→
(
1− F2(y

−
j )
)(

1−G2(y
−
j )
)
, hence its reciprocal is at least uniformly

convergent on the set {y ≤ τ}. Hence the entire term in (4.172) is uniformly conver-

gent to 0.

The last term in (4.169) is the average of an independent and identically dis-

tributed (iid) sum, so it converges to its expectation by the LLN. Now,

E
(
I[yj < τ ]

g(t, yj) dyj(
1− F2(y

−
j )
)(

1−G2(y
−
j )
)) =

∫ τ

0

g(t, s)dΛ2(s) (4.173)
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Therefore, for any finite τ ,

∫ τ

0

g(t, s)dΛ̂2(s)
p−→
∫ τ

0

g(t, s)dΛ2(s) (4.174)

Now we address the tail [τ,∞) in (4.167).

Consider the ratio,

sup
yj∈[0,∞)

∣∣∣(1− F2(y
−
j )
)(

1−G2(y
−
j )
)

Ryj/m

∣∣∣ (4.175)

This ratio in (4.175) is bounded in probability (per Zhou(1991)[33]). Therefore, ex-

cept on a set of probability η, for any 1 > η > 0, we have,

∣∣∣(1− F2(y
−
j )
)(

1−G2(y
−
j )

Ryj/m

)∣∣∣ < C, for some positive constant C (4.176)

Therefore,

m∑
j=1

I[yj < τ ]|g(t, yj)|
dyj

Ryj

≤ C
1

m

m∑
j=1

I[yj < τ ]
|g(t, yj)| dyj(

1− F2(y
−
j )
)(

1−G2(y
−
j )
) (4.177)

The RHS of (4.177) is an iid sum. Therefore by the strong law of large numbers it

converges to its mean, which is,

C

∫ ∞

τ

|g(t, s)|dΛ2(s) (4.178)
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Since
∫
|g(t, s)|dΛ2(s) < ∞ by assumption, therefore

∫∞
τ
|g(t, s)|dΛ2(s) in (4.178) can

be made arbitrarily small by selecting a large value of τ , such that
∫

g(t, s)dΛ2(s) < ε
C
,

where ε is an arbitrarily small positive number. Therefore,

C

∫ ∞

τ

g(t, x)dΛ2(s) < ε (4.179)

Thus

∫ ∞

τ

g(t, s)dΛ̂2(s)
p−→ 0 (4.180)

and

∫ ∞

0

g(t, s)dΛ̂2(s)
p−→
∫ ∞

0

g(t, s)dΛ2(s) (4.181)

Lemma 2 : m
Ryj

p−→ 1
(1−F2(yj))(1−G2(yj))

lim
m→∞

(Ryj

m

)
= lim

m→∞

(∑m
r=1 I[yr ≥ yj]

m

)
(4.182)

= E
(
I[yr ≥ yj]

)
Glivenko-Cantelli, law of large numbers (4.183)

= P (yr ≥ yj) (4.184)

= (1− F1(yj))(1−G1(yj)) (4.185)

Equation (4.169) involves the variable Y as well as the right-censoring variable

(which we may call R) associated with Y . We only observe the variable T =

min(Y, R). In order for T to exceed a value yj it is necessary that both Y and

R exceed yj. Hence the probability that T exceeds j is the product of the probability

that Y exceeds yj and the probability that R exceeds yj, where a product applies

since Y and R are assumed to be independent.
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Then,

lim
m→∞

( m

Rxi

)
= lim

m→∞

( 1

Ryj/m

)
(4.186)

=
1

limm→∞
(
Ryj/m

) since s(t) = 1/t is continuous for t 6= 0 (4.187)

=
1

(1− F2(yj))(1−G2(yj))
(4.188)

Similarly, regarding (4.132) in Part 3 above,

lim
n→∞

( n

Rxi

)
=

1

(1− F1(xi))(1−G1(xi))
(4.189)

Copyright c© Yanling Hu, 2011.
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Chapter 5 Relationship between Constrained Kaplan-Meier Estimators

and the Corresponding Nelson-Aalen Estimators

5.1 Background

In this chapter we study the relationship between the constrained Kaplan-Meier es-

timator and the corresponding constrained Nelson-Aalen estimator, for right-censored

data.

Akritas (2000) [1] explores the relationship between the Kaplan-Meier estimator

and the corresponding Nelson-Aalen estimator, for right-censored data. We shall

extend the work of Akritas by exploring the relationship between the constrained

Kaplan-Meier estimator and the corresponding constrained Nelson-Aalen estimator,

for right-censored data. We shall argue that once this relationship is established

in a certain format, many distribution-type estimation problems can be converted

to hazard-type estimation problems, which are more easily solved when the data is

right-censored.

First let us discuss how we may establish the equivalency of an estimating equa-

tion in terms of hazard and an estimating equation in terms of distribution, for

right-censored data. (See Zhou’s private notes (2005) [35].)

Consider an estimating equation that utilizes a function g,

0 =
1

n

n∑
i=1

g(Xi, θ).

We may rewrite this as

0 =

∫
g(x, θ)dF̂n(x), (5.1)
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where F̂n(·) is the empirical distribution based on Xi’s. Such an estimating equation

is typically based on the premise that the estimator is unbiased, so that

0 =

∫
g(x, θ0)dF (x),

where F (x) is the true CDF of Xi, and θ0 is the true parameter value. Then by the

Central Limit Theorem (CLT) we know that

√
n
[ ∫

g(x, θ)dF̂n(x)−
∫

g(x, θ0)dF (x)
]

converges to a normal distribution with zero mean.

The estimating equation in (5.1) above suggests a similar equation for right-

censored data:

0 =

∫
g(x, θ)dF̂KM(x),

where F̂KM(·) is the Kaplan-Meier estimator based on the censored sample (Ti, δi).

The assumption that the estimator is unbiased,∫
g(x, θ0)dF (x) = 0,

then leads to

0 =

∫
g(x, θ)d[F̂KM(x)− F (x)].

Now suppose we could find a non-random function g∗(t, θ) such that

0 =

∫
g(x, θ)d[F̂KM(x)− F (x)] ⇔ 0 =

∫
g∗(t, θ)d[Λ̂NA(t)− Λ(t)], (5.2)

where ΛNA(·) is the cumulative hazard function based on F̂KM ,

Λ̂NA(t) =

∫
[0,t)

dF̂KM(s)

1− F̂KM(s−)
,

and Λ is similarly based on F ,

Λ̂(t) =

∫
[0,t)

dF (s)

1− F (s−)
.
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Then it is well-known that Λ̂NA(t) is just the Nelson-Aalen estimator, and the esti-

mating equation in the LHS of (5.2) can be replaced by the estimating equation in

terms of hazard in the RHS of (5.2).

Unfortunately, the g∗ that satisfies the “if and only if” requirement part above is

hard to find. However, we do not have to find an exact “if and only if” substitute,

rather an asymptotic equivalency can be established if the two are within an op(1/
√

n)

of each other. Alternatively, an approximate equivalency can be established if we can

find a θ which makes the two both close to zero.

Along these lines, Akritas (2000) established the following equivalency in his

Proposition 3 under some regularity conditions:∫
g(s, θ)d[F̂KM(s)− F (s)] =

∫
g̃(s, θ)d[Λ̂NA(s)− Λs] + op(n

−1/2) (5.3)

where g̃ is non-random and given in his equation (9).

To use this type of equivalency in the empirical likelihood analysis we need to

establish this relationship not only for the Kaplan-Meier estimator and Nelson-Aalen

estimator, but also for other estimators as well. The reason is that the likelihood ratio

involves two likelihoods: one involves Kaplan-Meier/Nelson-Aalen in the denomina-

tor, the other has to do with maximization under constraints and are not achieved

by the Kaplan-Meier/Nelson-Aalen estimator.

We will lay a basis for the following relationship under certain conditions in the

next section:

For any discrete CDF F ∗ that is dominated by the Kaplan-Meier estimator and
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is close to the Kaplan-Meier estimator, that is,

F ∗ � F̂KM and ‖ F ∗ − F̂KM ‖= O(1/
√

n) (5.4)

the above equivalency relationship (5.3) still holds when F̂KM is replaced by F ∗ and

the Nelson-Aalen estimator Λ̂NA is replaced by Λ∗(t), where

Λ∗(t) =

∫
[0,t)

dF ∗(s)

1− F ∗(s−)
.

5.2 Relationship Between the Constrained Kaplan-Meier Estimator and

the Corresponding Nelson-Aalen Estimator

The data setting as described below is the same as Akritas (2000).

Let Ti, i = 1, . . . , n, be i.i.d. random variables on the real line and let F denote

their common distribution function. Let the survival function of the Ti be denoted

by S, and the cumulative hazard function by Λ. Thus S = 1 − F and Λ(t) =∫ t

−∞[S(x−)]−1dF (x). The observed data consist of

Xi = min(Ti, Ci) and ∆i = I(Xi = Ti), i = i, . . . , n, (5.5)

where C1, . . . , Cn are i.i.d. random censoring variables which are independent of the

Ti. The common distribution function of the Ci is denoted by G. The distribution

function of the Xi is denoted by H. Thus, 1 − H = (1 − F )(1 − G). I(E) denotes

the indicator of the event E.

Let Ni(t) = I(Xi ≤ t, ∆i = 1), N.(t) =
∑n

i=1 Ni(t), Yi(t) = I(Xi ≥ t), Y.(t) =∑n
i=1 Yi(t). We will assume that all random variables are defined on the probability

space (Ω, F , P) and we will consider the filtration

Ft = N
∨

σ{(Xi, ∆i)I(Xi ≤ s), I(Xi > s) : −∞ < s ≤ t, i = 1, . . . , n}, (5.6)
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where N consists of all P -null sets of F . Then, Mi(t) = Ni(t) −
∫ t

−∞ Yi(s)dΛ(s) is

a martingale with respect to the filtration in (5.6). Similarly, we denote M.(t) =∑n
i=1 Mi(t). The Kaplan-Meier estimator of S based on the observations (5.5) will

be denoted by Ŝ, while F̂ = 1 − Ŝ and Λ̂ will denote the corresponding estimators

of F and Λ. The constrained Kaplan-Meier estimator of S will be denoted by S∗,

while F ∗ = 1− S∗ and Λ∗ will denote the corresponding constrained estimators of F

and Λ. A−(s) or A(s−) will denote the left-continuous version of a right-continuous

function A, and we define ∆A(s) = A(s) − A(s−). Unless otherwise explicitly in-

dicated, the domain of integration includes the upper and lower integration limits.

Finally, define τn = max(X1, . . . , Xn), τ = τH = inf{x : H(x) = 1} ≤ ∞, and let

τF = sup{x : F (x) < 1}, for any distribution function F . We also assume φ : < → <

is any measurable function such that
∫

φ2dF < ∞.

Assumption 1. (Akritas (2000)) Let τ = τH . Then∫ τ

−∞

φ2(s)

1−G(s−)
dF (s) < ∞.

Assumption 1 implies the following inequality, which we will use later on:∫ τ

−∞
φ2(s)dF (s) < ∞.

Assumption 2. Let F ∗ be defined as above. Then

F ∗ � F̂KM and ‖ F ∗ − F̂KM ‖= O(1/
√

n).

Proposition 1. Under Assumption 1 and 2 there exists a sequence of constants

Kn → ∞ such that the function φ truncated at Kn, φn(s) = φ(s)I(|φ(s)| ≤ Kn),

satisfies∫
(−∞,τ ]

φ(s)d(F ∗(s)− F (s)) =

∫
(−∞,τ ]

φn(s)d(F ∗(s)− F (s)) + op(n
−1/2).
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Proof. First, it will be shown that for any sequence Kn such that Knn
−1/2 →∞,∫ τ

−∞
φ(s)I(|φ(s)| > Kn)dF (s) = op(n

−1/2). (5.7)

This is the same as Akritas (2000). Set φ(s) = 0 for s > τ , and write∫ τ

−∞
φ(s)I(|φ(s)| > Kn)dF (s) =

∫ ∞

−∞
xI(|x| > Kn)dFφ(x)

= Kn(1− Fφ(Kn)) +

∫ ∞

Kn

(1− Fφ(x))dx−KnFφ(−Kn)

−
∫ −Kn

−∞
Fφ(x)dx, (5.8)

where Fφ(x) =
∫

I(φ(s) ≤ x)dF (s).

We will show that the first and second terms on the right-hand side of (5.8) are

op(n
−1/2); similar arguments apply for the other two terms. For the first term, write

(for large n)

√
nKn(1− Fφ(Kn)) ≤ K2

n(1− Fφ(Kn)) ≤
∫ ∞

Kn

x2dFφ(x) → 0

as n →∞, where we use Knn
−1/2 →∞ for the first inequality and Assumption 1 for

the convergence to zero. Replacing Kn by x in the middle inequality, we obtain

x2(1− Fφ(x)) → 0,

as x →∞, implying that, for large x,

1− Fφ(x) ≤ x−2.

From this it follows that

√
n

∫ ∞

Kn

(1− Fφ(x))dx ≤
√

n

∫ ∞

Kn

x−2dx =
√

nK−1
n → 0.
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Thus (5.8) is proven, and so, consequently, is (5.7). Next, it will be shown that there

is a sequence Kn →∞ such that∫ τ

−∞
φ(s)I(|φ(s)| > Kn)dF ∗(s) = op(n

−1/2). (5.9)

Let X(n2) denote the largest uncensored observation. Then we can write

|
√

n

∫ τ

−∞
φ(s)I(φ(s) > Kn)dF ∗(s)|

≤ max
1≤i≤n

{|φ(Xi)∆i|}
√

n

∫ τ

−∞
I(|φ(s)| > Kn)dF ∗(s)

≤ max
1≤i≤n

{|φ(Xi)∆i|}
√

n
n∑

i=1

I(|φ(Xi)∆i| > Kn)(∆F̂ (X(n2)) +
C√
n

)

= max
1≤i≤n

{|φ(Xi)∆i|}
√

n
n∑

i=1

I(|φ(Xi)∆i| > Kn)(1− F̂ (X(n2)))
∆N.(X(n2))

Y.(X(n2))

+ C max
1≤i≤n

{|φ(Xi)∆i|}
n∑

i=1

I(|φ(Xi)∆i| > Kn)

≤ B max
1≤i≤n

{|φ(Xi)∆i|}
√

n
n∑

i=1

I(|φ(Xi)∆i| > Kn)
1− F (X(n2)−)

1−H(X(n2)−)

∆N.(X(n2))

n
(5.10)

+ C max
1≤i≤n

{|φ(Xi)∆i|}
n∑

i=1

I(|φ(Xi)∆i| > Kn)

The second inequality holds because ‖ F ∗ − F̂KM ‖= O(1/
√

n), where C is a

constant. The positive constant B in the first term of the last inequality can be

chosen large enough by Lemmas 2.6 and 2.7 of Gill (1983) for the last inequality in

(5.10) to hold with probability as high as desired. Using Markov’s inequality and
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Assumption 1, it can be seen that, for any sequence Kn →∞,

R1,n =
K2

n

n

n∑
i=1

I(|φ(Xi)∆i| > Kn) = op(1) (5.11)

R2,n = n−1/2 max
1≤i≤n

{|φ(Xi)∆i|} = op(1) (5.12)

Combining (5.10), (5.11) and (5.12) we can write

√
n

∫ τ

−∞
φ(s)I(|φ(s)| > Kn)dF ∗(s) ≤ BR1,nR2,n

n2

K2
n

1− F (X(n2)−)

1−H(X(n2)−)

∆N.(X(n2))

n

(5.13)

+ CR1,nR2,n
n2

K2
n

1√
n

with the inequality holding for n large enough and with probability as high as desired

by choosing B large enough. Akritas gives a detailed proof that the first term in

the right-hand side of (5.13) is op(1). And it is evident that the second term is also

op(1) by choosing Knn
−1 →∞. Therefore the left-hand side in (5.13) is op(1), which

implies that relation (5.9) holds, and hence Proposition 1 is proven. �

Proposition 2. Let φn(s) be as defined in Proposition 1. Then, under Assump-

tion 1,∫
(−∞,τ ]

φn(s)d(F ∗(s)− F (s)) =

∫
(−∞,τn]

φn(s)d(F ∗(s)− F (s)) + op(n
−1/2).

Proof. See Akritas (2000).

The following lemma will be used to prove the theorem below.

Lemma. (Gill 1980) Let A and B be right continuous nondecreasing functions on

[0,∞), zero at time zero; suppose ∆A ≤ 1 and ∆B < 1 on [0,∞). Then the unique

locally bounded solution Z of

Z(t) =

∫
s∈[0,t]

1− Z(s−)

1−∆B(s)
(dA(s)− dB(s))
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is given by

Z(t) = 1−
∏

s≤t(1−∆A(s)) exp(−Ac(t))

(1−∆B(s)) exp(−Bc(t))

where it should be recalled that Ac is the continuous parts of A, defined by

Ac(t) = A(t)−
∑
s≤t

∆A(s).

Theorem. (by Li Liu) Let G =
∫

(1− F )−1dF for some sub-distribution F with

F (0 = 0), and define τ = sup{t : F (t) < 1}.

1. F (t) =
∫

s∈[0,t]
(1 − F (s−))dG(s) uniquely determines F if G is given; and F can

be written as

F (t) = 1−
∏
s≤t

(1−∆G(s)) exp(−Gc(t)) for all t.

2. F and G are constant on [τ,∞), G is finite and ∆G < 1 on [0, τ). If F (τ−) < 1,

then G(τ) < ∞ and ∆G(τ) = 1 iff F (τ) = 1. If on the other hand F (τ−) = 1, then

G(t) ↑ G(τ) = ∞ as t ↑ τ .

3. If F has a density f , then defining the hazard rate or failure rate λ by λ =

f/(1− F ),

G(t) =

∫
s∈[0,t]

λ(s)ds for all t.

More generally, if F is continuous, we have

G = − log(1− F ).

4. For all t such that F (t) < 1,

1− F̂ (t)

1− F (t)
= 1−

∫ t

0

1− F̂ (s−)

1− F (s)
(dĜ(s)− dG(s))

where F̂ (and Ĝ) is just another function satisfying the same conditions as F .
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Proposition 3. Suppose that either τn < τF a.s., or that φ(τF ) = 0. Define

φ̃n(s) ≡ φ̃n(s; τ) = S(s−)
[
φn(s)− 1

S(s)

∫
(s,τ ]

φn(t)dF (t)
]
.

Then, under Assumption 1 and 2,∫ τn

−∞
φn(s)d(F ∗(s)− F (s)) =

∫ τn

−∞
φ̃n(s)d(Λ∗(s)− Λ(s)) + op(n

−1/2).

Proof. First, using the identity

1− F ∗(t)

1− F (t)
= 1−

∫ t

0

1− F ∗(s−)

1− F (s)
d(Λ∗(x)− Λ(x))

(Li Liu (2008) [19]), or equivalently,

F ∗(t)− F (t) = S(t)

∫ t

−∞
S∗(x−)[S(x)]−1d(Λ∗(x)− Λ(x))

and a straightforward calculation, it follows that∫ τn

−∞
φn(s)d(F ∗(s)− F (s)) =

∫ τn

−∞
φ̂∗n(s; τn)d(Λ∗(s)− Λ(s)) (5.14)

where φ̂∗n(s; t) = S∗(s−)[φn(s)− [S(s)]−1
∫

(s,t]
φn(x)dF (x)], for all t.

The rest of the proof needs further investigation.

Copyright c© Yanling Hu, 2011.
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Chapter 6 Simulations and Examples

6.1 Simulations

6.1.1 Simulation 1.

In this simulation, we show that the test statistic T has an asymptotic χ2
(1) distri-

bution under the null hypothesis. We generate the censored survival data from the

following setting:

Survival Time Distribution: F0(t) = 1− e−0.02t

Censoring Distribution: G0(t) = 1− e−0.005t

Cumulative Hazard Function: Λ0(t) = 0.02t

Sample Size: n=50

Constraint Equation 1: g1(t) = I(t ≤ 20)

Constraint Equation 2: g2(t) = I(20 < t ≤ 40)

Parameter θ0: θ0 =
∫∞

0
g1(t)dΛ0(t) = 0.4

θ0 =
∫∞

0
g2(t)dΛ0(t) = 0.4

Number of Simulations: 1000

The result is shown in Figure 6.1 . The horizontal axis are χ2
(1) quantiles, and the

vertical axis are sorted T test statistic. We can see that under the null hypothesis:

H0 : θ = 0.4, the test statistic T has an asymptotic χ2
(1) distribution.

If we increase the sample size to 100, we can see, from Figure 6.2, the test statistic

T fits the asymptotic χ2
(1) distribution better.
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Figure 6.1: Simulation-sample size 50 with true parameter
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Figure 6.2: Simulation-sample size 100 with true parameter
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Now we change the censoring distribution to be: 20+Exponential (λ1 = 0.02), and

the test statistic T still has an asymptotic χ2
(1) distribution under the null hypothesis.
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Figure 6.3: Simulation-with censoring distribution: 20+Exponential (λ1 = 0.02)
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Figure 6.4 simply shows that, under the alternative hypothesis, the distribution

definitely is not χ2
(1).
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Figure 6.4: Simulation-sample size 50 with false parameter

Remark: Indicator function is a simple function. Although it does not have a

derivative or not smooth, the mean-type integral we deal with is still valid and we

still have the chi-square result.
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6.1.2 Simulation 2.

We will show the efficiency of the maximum empirical likelihood estimator θ̂ ob-

tained in Theorem 3 in this simulation. The censored survival data in the first 6 plots

were generated from the same setting as in Simulation 1. The censoring distribution

used in the rest 6 plots is: 20+Exponential (λ1 = 0.02).

In the following figures, we calculate the empirical likelihood ratio statistic T

with different constraints. The first plot was generated with only the first constraint

equation, g1(t) = I(t ≤ 20), for different θs (just-determined case); the second plot

used only the second constraint, g2(t) = I(20 < t ≤ 40), to calculate the empirical

likelihood ratio statistic T for different θs (just-determined case); the last plot gives

the empirical likelihood ratio statistic T with both constraints for different θs (over-

determined case).

It is obvious that the last plot has the sharpest empirical likelihood ratio curve.

So we should expect a shorter 95% confidence interval from the over-determined

case than from the just-determined case, or equivalently, the maximum empirical

likelihood estimator θ̂ is more efficient for the over-determined case than for the just-

determined case.
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Figure 6.5: Empirical likelihood ratio statistic with different constraints, n=100
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Figure 6.6: Empirical likelihood ratio statistic with different constraints, n=100
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Figure 6.7: Empirical likelihood ratio statistic with different constraints, n=50

●

●

●

●

●

●
●

● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
5

1
0

1
5

2
0

2
5

Constraint (1)

theta

−
2

 lo
g

 li
ke

lih
o

o
d

 r
a

tio

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
5

1
0

1
5

2
0

2
5

Constraint (2)

theta

−
2

 lo
g

 li
ke

lih
o

o
d

 r
a

tio

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
5

1
0

1
5

2
0

2
5

Constraints (1)&(2) 

theta

−
2

 lo
g

 li
ke

lih
o

o
d

 r
a

tio

Figure 6.8: Empirical likelihood ratio statistic with different constraints, n=50
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Figure 6.9: Empirical likelihood ratio statistic with different constraints, n=20
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Figure 6.10: Empirical likelihood ratio statistic with different constraints, n=20
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Figure 6.11: Empirical likelihood ratio statistic with different constraints and censor-
ing distribution: 20+Exponential (λ1 = 0.02), n=100
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Figure 6.12: Empirical likelihood ratio statistic with different constraints and censor-
ing distribution: 20+Exponential (λ1 = 0.02), n=100
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Figure 6.13: Empirical likelihood ratio statistic with different constraints and censor-
ing distribution: 20+Exponential (λ1 = 0.02), n=50
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Figure 6.14: Empirical likelihood ratio statistic with different constraints and censor-
ing distribution: 20+Exponential (λ1 = 0.02), n=50

96



●

●

●

●

●

●

●
●

● ● ● ●
●

●
●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
5

1
0

1
5

2
0

2
5

Constraint (1)

theta

−
2

 lo
g

 li
ke

lih
o

o
d

 r
a

tio

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ●
●

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
5

1
0

1
5

2
0

2
5

Constraint (2)

theta

−
2

 lo
g

 li
ke

lih
o

o
d

 r
a

tio

●

●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
5

1
0

1
5

2
0

2
5

Constraints (1)&(2) 

theta

−
2

 lo
g

 li
ke

lih
o

o
d

 r
a

tio

Figure 6.15: Empirical likelihood ratio statistic with different constraints and censor-
ing distribution: 20+Exponential (λ1 = 0.02), n=20
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Figure 6.16: Empirical likelihood ratio statistic with different constraints and censor-
ing distribution: 20+Exponential (λ1 = 0.02), n=20
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6.2 Examples

6.2.1 Example 1.

Consider the AFT model. For i = 1, ..., n, let Ti be the failure time for the ith

subject and let X i be the associated p-vector of covariates. The accelerated failure

time model specifies that

log Ti = β>0 X i + εi, i = 1, ..., n.

where β0 is a p-vector of unknown regression parameters and εi(i = 1, ..., n) are in-

dependent error terms with a common, but completely unspecified, distribution.

Due to censoring, we only observe

T̃i = min(Ti, Ci), ∆i = I{Ti≤Ci},

where Ci are the censoring times for Ti.

We may use rank based procedures to estimate β and there are several available.

See Chapter 7 of Kalbfleisch and Prentice (2002) [13] and Jin et al. (2003) [12]. De-

fine ei(b) = log T̃i−b>X i and Yi(b; t) = I{ei(b)≥t}. Write S(0)(b; t) = n−1
∑n

i=1 Yi(b; t)

and S(1)(b; t) = n−1
∑n

i=1 Yi(b; t)Xi.

A rank based estimator of β can be defined as the solution to the following equa-

tions

0 =
n∑

i=1

∆iφi[X i − X̄{b; ei(b)}],

where X̄(β; t) = S(1)(β; t)/S(0)(β; t), and φi > 0 is some weights.

We get different roots/estimators when we have different φ. The two choices of φ

that Jin et al. (2003) used are φi ≡ 1 and φi ≡ S(0)(ei), corresponding to the log-rank
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and Gehan statistics, respectively. We shall also use these two as examples.

As suggested in Zhou (2005) [35], the above estimating equations will become

constraint equations when maximizing the empirical likelihood function. So, we shall

have the following two constraint equations corresponding to φi ≡ 1 and φi ≡ S(0)(ei),

respectively.

0 =
n∑

i=1

∆i[X i − X̄{b; ei(b)}]wi

ŵi

(6.1)

0 =
n∑

i=1

∆iS
(0)(ei)[X i − X̄{b; ei(b)}]wi

ŵi

(6.2)

where the wi are the jumps of hazard function that also appear in the definition of

the log AL:

log AL(w, b) =
n∑

i=1

δi log wi −
n∑

i=1

wiRi .

and ŵi are the jump sizes of the Nelson-Aalen estimator computed from δi, ri(b). Ap-

parently (6.1) and (6.2) are functionally independent.

If we only use constraint equations (6.1) or (6.2), it is called the just determined

case, because the number of estimating/constraint equations equals the number of

unknown parameters. In many cases, however, it is desirable to use the two sys-

tem of estimating equations (6.1) and (6.2) simultaneously so this becomes an over-

determined system of equations: p parameters (= dim of β), 2p equations.

The data we are going to use is the Myeloma data, which was used by Jin et al.

(2003) and Zhou (2005). The data set includes 65 subjects, with 17 of them having

right censored survival times. The data is available inside the latest version of the

package emplik in R.
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We work with the log of the survival times, and fitting the model

log(time) = β log(BUN) + ε

with both constraint equations (6.1) and (6.2) together as over-determined constraint

equations.

The maximum empirical likelihood estimator β̂ = −1.524; with a 95% confidence

interval [−2.49,−0.65]. If we use just one constraint equations of Gehan (the just-

determined case), we get an estimator of −1.685 , and a 95% confidence interval is

[−2.67,−0.58]. If we use just one constraint equations of log-rank, we get an estima-

tor of −1.678, and a 95% confidence interval is [−2.84,−0.22].

We see that the maximum empirical likelihood estimators are close to each other,

but confidence interval is the shortest if we use both equations in the over-determined

case, which is also proved by our Corollary.

Jin et al. (2003) also compared the Gehan estimator and the log-rank estimator

in different scenarios, and obviously the two estimators have their own advantages

(smaller bias or smaller standard deviation) in different situations. The performance

of the estimator depends on the distribution of ε which is unknown in practice, so

they suggested to adopt the approach of Lai & Ying by constructing data-dependent

weight function φ.

Using our over-determined result, we do not have to choose between the estima-

tors, we can obtain an estimator by using both (or even more) of those constraint

equations, as long as they are functionally independent. We can get an estimator by

using our theory, which says this estimator is better than either one asymptotically

(having smaller variance asymptotically) and a χ2 based likelihood ratio test is avail-

100



able.

6.2.2 Example 2.

This is the same example as the one in Kim (2003) [14] dissertation.

An AML study by Embury et al. at Stanford University reports the results of a

clinical trial to evaluate the efficacy of maintenance chemotherapy for acute myeloge-

nous leukemia (AML). There are two groups: one with maintenance chemotherapy

and the other without.

Based on the Kaplan-Meier survival curves drawn from the data, we are convinced

that a hybrid model is appropriate to fit the data:

1−G(t) = [1− F (t− θ)]η, for any t ∈ <1.

where G(t) and F (t) are two unknown CDF for survival times from the two different

groups.

This is a special case of our research. There are only two parameters θ and η, but

r > 2 constraints since we assume the data fit the hybrid model.

∑
j

δyjgk(yj) log(1− vj) =
∑

i

δxiηgk(xi − θ) log(1− wi), k = 1, ..., r.

where gk, k = 1, ..., r are functionally independent functions satisfy some conditions,

(yj, δyj) and (xi, δxi)are censored observations from two samples, and vj and wi are

hazard jumps from the corresponding two samples.

Copyright c© Yanling Hu, 2011.
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Chapter 7 Discussions and Future Research Questions

Empirical likelihood in terms of distribution function with uncensored-data has

been widely studied by many people. Owen’s 2001 book contains many important

results. However, for censored data, there are still many problems to investigate.

In Chapter 3, we extend Qin and Lawless’s results to right-censored data for the

case where the number of estimating equations is larger than the number of param-

eters. In Chapter 4, we present a mathematical derivation of empirical likelihood for

two-sample mixed hypothesis similar to Owen, but for right-censored data and using

hazard function. Hazard-type empirical likelihood and constraints are much easier to

handle for censored-data than distribution-type constraints, so we try to establish a

general relationship between the constrained Kaplan-Meier estimator and the corre-

sponding constrained Nelson-Aalen estimator in Chapter 5.

The results presented in this dissertation are primarily theoretical. Computations

associated with some of there results are challenging and need further investigations.

We focus on right-censored data. A general result for left-censored data, interval-

censored data and truncation data might be further studied.

As Qin and Lawless remarked, a good deal of work is needed to apply and access

the above methods in practical situations. Experience is needed to determine how

easily estimates can be obtained in small- to moderate-size samples and what the

properties of the estimators and the empirical-likelihood-ratio statistics are in these

situations. These topics can be future investigated.

Copyright c© Yanling Hu, 2011.
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Appendix: Program Code

Annotated code for over-determined log-likelihood

newdataclean<-function (x, d, y = -Inf, fun, itertrace = FALSE) {

#Store data x as a vector.

x <- as.vector(x)

#Store length of x.

n<-length(x)

#Check that there are at least 3 data in x.

if (n <= 2)

stop("Need more observations in x")

#Check that status and observations have same length in x.

if (length(d) != n)

stop("length of x and d must agree")

#Check that status are only 0, 1.

if (any((d != 0) & (d != 1)))

stop("d must be 0/1’s for censor/not-censor")

#Check that x are numeric (for example, no NA values).

if (!is.numeric(x))

stop("x must be numeric -- observed times")

#"Clean" data using function Wdataclean2.

newdata <- Wdataclean2(z=x, d = d)

#Further "clean" data using function DnR.

temp <- DnR(newdata$value, newdata$dd, newdata$weight,y = y)

#Calculate the Nelson-Aalen jumps.
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jump <- (temp$n.event)/temp$n.risk

#Calculate the constraint functions by plugging in the observations.

funtime <- as.matrix(fun (temp$times))

#Check the dimension of the output of the constraint functions.

if (ncol(funtime) !=2)

stop("check the output dim of fun ")

#Calculate $\hat\theta$ by using Nelson-Aalen jumps.

esttheta <- t(jump) %*% funtime

if (itertrace)

print(c("thetahat=", esttheta))

ltheta<-min(esttheta[1], esttheta[2])

rtheta<-max(esttheta[1], esttheta[2])

#Store the jumps that are less than 1.

index<- (jump < 1)

K12<-rep(0,2)

#Store the observations that have jumps equal to 1.

tm1<- temp$times[!index]

#Check the length of tm1, which should not be greater than 1.

if (length(tm1) > 1)

stop("more than 1 place jump>=1 in x?")

#If the last jump is 1, recalculate K12.

if (length(tm1) > 0) {

K12 <- K12 + as.vector(fun (tm1))}

#Restore the following variables with jumps less than 1.

eve <-temp$n.event[index]

tm <- temp$times[index]

rsk<- temp$n.risk[index]
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jmp <- jump [index]

funt <- as.matrix(fun (tm))

list(funt=funt, eve=eve, rsk=rsk, ltheta=ltheta, rtheta=rtheta,

K12=K12,n=n, jump=jump, tm=tm)

}

#This function is to calculate the constraints.

newgradf<-function(lam, funt, eve, rsk, K, n) {

arg<- as.vector(rsk + funt%*% lam)

VV <- (eve * llogp(arg, 1/n)) %*% funt - K

return(as.vector(VV))

}

newloglik<-function(funt, eve, rsk, n, maxit = 25, K12, theta, tola

= 1e-07, itertrace = FALSE){

TINY <- sqrt(.Machine$double.xmin)

if (tola < TINY)

tola <- TINY

lam <- rep(0,2)

#Newton-Raphson process.

nwts <- c(3^-c(0:3), rep(0, 12))

gwts <- 2^(-c(0:(length(nwts) - 1)))

gwts <- (gwts^2 - nwts^2)^0.5

gwts[12:16] <- gwts[12:16] * 10^-c(1:5)

nits <- 0

gsize <- tola + 1
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while (nits < maxit && gsize > tola) {

grad <- newgradf(lam, funt, eve, rsk, K = theta - K12, n = n)

gsize <- mean(abs(grad))

arg <- as.vector(rsk + funt %*% lam)

ww <- as.vector(-llogpp(arg, 1/n))^0.5

tt <- sqrt(eve) * ww

HESS <- - (t(funt * tt) %*% (funt * tt) )

nstep <- as.vector(-solve(HESS, grad))

gstep <- grad

if (sum(nstep^2) < sum(gstep^2))

gstep <- gstep * (sum(nstep^2)^0.5/sum(gstep^2)^0.5)

ninner <- 0

for (i in 1:length(nwts)) {

lamtemp <- lam + nwts[i] * nstep + gwts[i] * gstep

ngrad <- newgradf(lamtemp, funt, eve, rsk, K = theta - K12, n = n)

ngsize <- mean(abs(ngrad))

if (ngsize < gsize) {

lam <- lamtemp

ninner <- i

break

}

}

nits <- nits + 1

if (ninner == 0)

nits <- maxit

if (itertrace)

print(c(lam, gsize, ninner))
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}

#Calculate the log-likelihood.

lamfun<-as.vector(funt%*%lam)

onePlamf<-(rsk+lamfun)/rsk

nloglik<- sum(eve*llog(onePlamf*rsk,1/n))+sum(eve*llogp(onePlamf, 1/n))

list(nloglik =nloglik, lambda =lam) }

Code for Simulation 1

estfun<-function(x){

cbind(as.numeric(x<=20),as.numeric(20<=x&x<=40)) }

llikratio<-rep(NA,1000)

dloglik<-rep(NA,1000)

nuloglik<-rep(NA,1000)

for (j in 1:1000){

t<-rexp(50,0.02)

d<-rexp(50,0.005)

x<-pmin(t,d)

cen<-as.numeric(t<=d)

newtemp<-newdataclean(x=x,d=cen, fun=estfun)

nuloglik[j]<-newloglik(newtemp$funt, newtemp$eve, newtemp$rsk,

newtemp$n, maxit = 25, newtemp$K12,0.4)$nloglik

testthetas<-matrix(NA, ncol=101, nrow=1000)

testloglik<-matrix(NA,ncol=101, nrow=1000)

for (i in 1:101){

testthetas[j,i]<-newtemp$ltheta+(i-1)/100*(newtemp$rtheta-newtemp$ltheta)

testloglik[j,i]<- newloglik(newtemp$funt, newtemp$eve, newtemp$rsk,
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newtemp$n, maxit = 25, newtemp$K12, testthetas[j,i])$nloglik }

dloglik[j]<- max(-testloglik[j,])

llikratio[j]<- 2*(dloglik[j]+nuloglik[j]) }

plot(qchisq(1:1000/1000,1), sort(llikratio), xlab= "chisq(1)

quantiles ", ylab= "-2 log likelihood ratio ") abline(a=0,b=1)

Code for Simulation 2

t<-rexp(100,0.02)

d<-rexp(100,0.005)

x<-pmin(t,d)

cen<-as.numeric(t<=d)

thetas1<-rep(NA,100)

result1<-rep(NA,100)

est1<- function(x){ as.numeric(x<=20)}

result2<-rep(NA,100)

est2<- function(x){as.numeric(20<=x & x<=40)} for (i in 1:100){

thetas1[i]<- 0.1+(i-1)*0.7/100

result1[i]<-emplikH1.test(x=x,d=cen,y=-Inf,theta=thetas1[i],fun=est1,

tola=.Machine$double.eps^.25)$‘-2LLR‘

result2[i]<-emplikH1.test(x=x,d=cen,y=-Inf,theta=thetas1[i],fun=est2,

tola=.Machine$double.eps^.25)$‘-2LLR‘}

thetas2<-rep(NA,100)

result<-rep(NA,100)

thetas2<-rep(NA,100)
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nuloglik<-rep(NA,100) dloglik<-rep(NA,100)

testthetas<-matrix(NA,ncol=101,nrow=100)

testloglik<-matrix(NA,ncol=101,nrow=100)

newtemp<-newdataclean(x=x,d=cen, fun=estfun)

for (i in 1:100){

thetas2[i]<- 0.1+(i-1)*0.7/100

nuloglik[i]<- newloglik(newtemp$funt,newtemp$eve, newtemp$rsk,

newtemp$n, maxit = 25, newtemp$K12,thetas2[i])$nloglik

for (j in 1:101){

testthetas[i,j]<-newtemp$ltheta+(j-1)/100*(newtemp$rtheta-newtemp$ltheta)

testloglik[i,j]<- newloglik(newtemp$funt, newtemp$eve, newtemp$rsk,

newtemp$n, maxit = 25, newtemp$K12, testthetas[i,j])$nloglik }

dloglik[i]<- max(-testloglik[i,])

result[i]<- 2*(dloglik[i]+nuloglik[i])}

par( mfrow = c(1,3))

plot(thetas1,result1,ylim=c(0,25),xlab="theta",ylab="-2 log

likelihood ratio",main="Constraint (1)")

plot(thetas1,result2,ylim=c(0,25),xlab="theta",ylab="-2 log

likelihood ratio",main="Constraint (2)")

plot(thetas2,result,ylim=c(0,25),xlab="theta",ylab="-2 log

likelihood ratio", main="Constraints (1)&(2) ")
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