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ABSTRACT OF DISSERTATION 

 

EFFECTS OF CORTICOSTERONE AND ETHANOL CO-EXPOSURE ON 
HIPPOCAMPAL TOXICITY: POTENTIAL ROLE FOR THE NMDA NR2B 

SUBUNIT 
 
Chronic ethanol (EtOH) exposure produces neuroadaptations within the NMDA receptor 
system and alterations in HPA axis functioning that contribute to neurodegeneration 
during ethanol withdrawal (EWD). Chronic EtOH exposure and EWD, as well as 
corticosteroids, also promote increased synthesis and release of polyamines, which 
allosterically potentiate NMDA receptor open-channel time at the NR2B subunit. The 
current studies investigated effects of 10 day EtOH and corticosterone (CORT) co-
exposure on toxicity during EWD in rat organotypic hippocampal slice cultures, and 
alterations in function and/or density of the NR2B subunit of the NMDA receptor that 
may mediate CORT-potentiation of toxicity during EWD. We hypothesized that toxicity 
during withdrawal following EtOH and CORT co-exposure would be greatest in the CA1 
region due to increased NMDA NR2B receptor abundance and/or function. Cultures were 
exposed to CORT (0.01–1 µM) during 10 day EtOH exposure (50 mM) and 1 day EWD. 
Additional EtOH-naïve cultures were exposed to CORT for 11 days. Propidium iodide 
(PI) was used to measure toxicity in the CA1, CA3, and DG hippocampal regions. In 
EtOH-naïve cultures, 11 day exposure to CORT (0.01 – 1 µM) produced modest toxicity 
and in all regions. Exposure to CORT during EtOH exposure/EWD potentiated CORT-
toxicity at all concentrations in the CA1 region. Ifenprodil, an NR2B polyamine site 
antagonist, significantly reduced toxicity from EtOH and CORT (0.1 µM) co-exposure 
during withdrawal. Immunohistochemistry and Western blot analyses were conducted for 
measurement of NR2B immunoreactivity in organotypic cultures, and autoradiography 
studies were conducted for measurement of polyamine-sensitive NR2B subunits with 
[3H]ifenprodil. Consistent increases in NR2B subunit protein were not detected with use 
of any methodology. Additional studies exposed cultures to a membrane impermeable 
form of CORT (BSA-conjugated CORT; 0.1 µM) with or without EtOH exposure and 
withdrawal. BSA-CORT exposure did not produce toxicity in any hippocampal region, 
suggesting that CORT toxicity was not mediated by membrane bound substrates. These 
data suggest that CORT and EtOH co-exposure result in increased function of polyamine-
sensitive NR2B subunits, but this toxicity does not appear dependent on the number of 
hippocampal NMDA NR2B subunits. 



KEYWORDS: Ethanol Withdrawal, NMDA Receptor, Corticosterone, Hippocampus, 
Alcohol Dependence 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Tracy Renee Butler                
            Student’s Signature 

 
 

April 13, 2011                               
                                    Date 



EFFECTS OF CORTICOSTERONE AND ETHANOL CO-EXPOSURE ON 
HIPPOCAMPAL TOXICITY: POTENTIAL ROLE FOR THE NMDA NR2B 

SUBUNIT 
 

By 

Tracy Renee Butler 

 

 

 

 

 

Mark A. Prendergast, Ph.D.                           
Director of Dissertation  

 
David T. R. Berry, Ph.D      

                                                                                  Director of Graduate Studies 
 

April 13, 2011     



RULES FOR THE USE OF DISSERTATIONS 
Unpublished dissertations submitted for the Doctor's degree and deposited in the 
University of Kentucky Library are as a rule open for inspection, but are to be used only 
with due regard to the rights of the authors. Bibliographical references may be noted, but 
quotations or summaries of parts may be published only with the permission of the 
author, and with the usual scholarly acknowledgments.  
 
Extensive copying or publication of the dissertation in whole or in part also requires the 
consent of the Dean of the Graduate School of the University of Kentucky.  
 
A library that borrows this dissertation for use by its patrons is expected to  
secure the signature of each user.  
 
 
 
 
Name                                                                                                          Date 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

DISSERTATION 

 

 

 

Tracy Renee Butler 

 

 

 

 

The Graduate School 

University of Kentucky 

2011 



EFFECTS OF CORTICOSTERONE AND ETHANOL CO-EXPOSURE ON 
HIPPOCAMPAL TOXICITY: POTENTIAL ROLE FOR THE NMDA NR2B 

SUBUNIT 
 

 
 

 
___________________________________________  

 
DISSERTATION 

___________________________________________  
 

A dissertation submitted in partial fulfillment of the  
requirements for the degree of Doctor of Philosophy in the  

College of Arts and Science  
at the University of Kentucky  

 
 
 

By  
Tracy Renee Butler 

Lexington, Kentucky  

Director: Dr. Mark Prendergast, Professor of Psychology  

Lexington, Kentucky  

2011 

Copyright© Tracy Renee Butler 2011 



ACKNOWLEDGEMENTS 

 I express my gratitude to Dr. Prendergast for his patience and guidance 

throughout the completion of my Dissertation, and for guidance regarding my future 

scientific career. I also thank the members of my committee, Drs.  Mark Fillmore, 

Michael Bardo, and Robin Cooper, for their support and suggestions in preparing this 

thesis, as well as Dr. Jimmi Hatton for her time and input as my outside examiner. I also 

recognize the work and input of my past labmates, including Drs. Self and Smith, as well 

as my current labmates, Jennifer Berry, Lynda Sharrett-Field, and Anna Reynolds. This 

research was supported by Grants R01 AA013388 to M.A.P and F31 AA018588-02 to 

T.R.B. from the National Institute on Alcohol Abuse and Alcoholism. 

 

iii 
 



TABLE OF CONTENTS 

Acknowledgements         iii 

List of Tables          vi 
 
List of Figures              vii-viii 
 
Chapter One:  Introduction  

Binge Drinking in the United States      1 
Chronic Ethanol Expoure and Neurodegeneration in Human Alcoholics  2 
Chronic Ethanol Exposure and Neurodegeneration in Rodent Models 5 
Acute and Chronic Ethanol Exposure: Neuroadaptations in Glutamatergic 
Systems                               6  
Glutamatergic NMDA Receptors and Ethanol     8  
Non-NMDA Ionotropic Glutamate Receptors               10 
Metabotropic Glutamate Receptors                 13 
The Hypothalamic-Pituitary-Adrenal Axis                            15 
Corticosterone Receptors: Glucocorticoid and Mineralocorticoid  
Receptors                                                                                       16 
Corticosterone: Non-Genomic Mechanisms of Action and Injury          18 
HPA Axis Dysregulation                                                              19 
Alcohol and HPA Axis Dysfunction: Human Subjects                          22 
Alcohol, HPA Axis Dysfunction, and Drinking Behavior: Animal 
Models                                23 
Alcohol, HPA Axis Dysfunction, and NMDA Receptors                    26 
Experimental Rationale                                                                  27 
 

  
Chapter Two: Experimental Procedures 

Organotypic Hippocampal Slice Culture Preparation   28 
11 Day Corticosterone Exposure in Ethanol-Naïve Hippocampal 
Cultures          29 
Corticosterone Exposure During Ethanol Exposure and Withdrawal 30 
Immunohistochemistry: NMDA NR2B Subunit                   31 
Fluorescent Microscopy and Statistical Analysis                              33 
[3H]Ifenprodil Autoradiography                                             35 
Western Blotting                                                                                  36 
BSA-Conjugated Corticosterone                                          38 
  

 
Chapter Three:  Results  

11 Day Corticosterone Exposure in Ethanol-Naïve Hippocampal Cultures..40  
Corticosterone Exposure During Ethanol Exposure and Withdrawal 44  
Ifenprodil and Corticosterone Co-Exposure During Ethanol Withdrawal 48  
 

iv 
 



Immunohistochemistry Following 10 Day Ethanol Exposure: NMDA NR2B 
Receptor Subunit                               54 
NMDA NR2B Subunit Immunoreactivity Following 10 Day Ethanol and  
Corticosterone Co-Exposure       58 
[3H]Ifenprodil Autoradiography      62 
Western Blotting: NMDA NR2B Receptor Subunit    65 
BSA-Conjugated Corticosterone in Ethanol-Naïve and Ethanol-Withdrawn 
Cultures         68 

 
 
Chapter Four:  Discussion 
 NMDA NR2B Subunit-Dependent Toxicity During Withdrawal Following 

Ethanol and Corticosterone Co-Exposure                            71 
 Regional Differences in Hippocampal Toxicity Produced by 11 Day 

Corticosterone Exposure in Ethanol-Naïve Cultures                     74 
 10 Day Ethanol Exposure: Increased Vulnerability to Toxicity During 

Ethanol Withdrawal                                                                        80 
 Increased Vulnerability of the CA1 Region to Excitotoxic Insult              82 
 Excitotoxic Insult During Ethanol Withdrawal Following Ethanol and 
 Corticosterone Co-Exposure: Polyamine-Sensitive NR2B Subunit-Mediated 

Toxicity                                                               83 
Glutamatergic Signaling Involved in Ethanol and Corticosterone-Related 
Damage During Ethanol Withdrawal                 85 
The NR2B Subunit, Polyamines, and Ifenprodil               86 
Corticosterone and Ethanol Co-Exposure: Potential Neuroadaptations in  
NR2B Subunit Immunoreactivity                 91 
Effects of Ethanol and Corticosterone on NMDA Receptor Expression/  
Function and Localization                  95 
Corticosterone and Ethanol Co-Exposure: [3H]Ifenprodil Autoradiographic 
Binding                    98 
Long-Term Corticosterone Neurotoxicity is Independent of Effects at 
Membrane-Bound Corticosterone Receptors                100 
Implications and Future Directions                 103 
 

 
 
References          105 
 
Vita           138 
 

v 
 



LIST OF TABLES 
 

Table 3.1, Propidium iodide uptake following 24 hour ifenprodil exposure in ethanol-
naïve and ethanol withdrawn hippocampal cultures                                53 
 

 
 

 
 

vi 
 



LIST OF FIGURES 
 
Figure 2.1, Experimental Protocol Timeline                                   39                         
 
Figure 3.1, Propidium iodide uptake following 11 day exposure to CORT in ethanol- 
 naïve hippocampal cultures                                   42 
 
Figure 3.2, Representative images of PI uptake in organotypic hippocampal cultures  
 exposed to CORT (0.01 – 1 µM) for 11 days                                            43 
 
Figure 3.3, Propidium iodide uptake during 24 hour withdrawal following 10 day  
 Co-exposure to ethanol (50 mM) and CORT (0.01 - 1 µM)                       46 

                                                            
Figure 3.4, Representative images of PI uptake in organotypic hippocampal cultures co- 

exposed to CORT and ethanol (50 mM) for 10 days followed by 24 hour 
ethanol withdrawal (EWD)                                    47                         
 

Figure 3.5, Ifenprodil co-exposure during ethanol withdrawal following 10 day ethanol  
 and CORT co-exposure                       51                         
 
Figure 3.6, Representative images of PI uptake in cultures co-exposed to CORT (0.1 µM)  

and ethanol for 10 days followed by 24 hour ethanol withdrawal (EWD) 
and ifenprodil (IFEN) exposure                     52                         

  
Figure 3.7, NR2B subunit immunoreactivity following 10 day ethanol exposure         56                         
 
Figure 3.8, Representative images of NMDA receptor NR2B subunit immunoreactivity  

in organotypic hippocampal cultures exposed to ethanol (25-100 mM)   57                         
 
Figure 3.9, NR2B subunit immunoreactivity following 10 day ethanol (50 mM) and  

CORT (0.1 µM) co-exposure for 10 days               60 
 
Figure 3.10, Representative images of NR2B immunoreactivity in cultures co-exposed to  

CORT (0.1 µM) and ethanol (50 mM) for 10 days            61 
 
Figure 3.11, [3H]Ifenprodil autoradigraphy following 10 day ethanol (EtOH; 50 mM) and  

CORT (0.1 µM) co-exposure                       63 
 
Figure 3.12, Representative autoradigraphy images of organotypic hippocampal cultures  

exposed to [3H]Ifenprodil following 10 day CORT and ethanol (EtOH) co-
exposure                                64 
 

Figure 3.13, Western blot analysis of NR2B subunit immunoreactivity following 10 day  
drug exposure                                        65 

 
 

vii 
 



viii 
 

Figure 3.14, Representative image of Western blot immunoreactivity for the NMDA  
NR2B subunit                                        67 

 
Figure 3.15, Propidium iodide uptake in hippocampal cultures exposed to BSA-CORT  

(0.1 µM) for 11 days or co-exposed to BSA-CORT and ethanol for 
10 days followed by 24 hour ethanol withdrawal (EWD)              69 

 
Figure 3.16, Representative images of PI uptake following BSA-CORT (0.1 µM)  

exposure in ethanol-naïve and ethanol-withdrawn (EWD) cultures          70     
 
 



Chapter 1 

INTRODUCTION 

 

Binge Drinking in the United States 

  

The 2007 National Survey on Drug Use and Health (NSDUH) reported that 

greater than half of U.S. citizens (aged 12 and older) are characterized as current 

drinkers, with 56.6% of males identified as current drinkers compared to 46.0% of 

females (Substance Abuse and Mental Health Services Administration, 2007). Though 

low levels of daily alcohol consumption have been suggested to have various protective 

health effects (e.g. cardiovascular diseases; Klatsky, 2009), heavy and binge-type 

drinking is associated with deficits in neurological, cognitive, heart, liver, and 

psychosocial functioning (reviewed by Cargiulo, 2007). Alarmingly, 6.9% of NSDUH 

survey respondents met criteria for heavy drinking (defined as “five or more drinks on the 

same occasion on each of 5 or more days in the past 30 days”), and 23.3% of survey 

respondents engaged in binge drinking in the last month. Binge drinking was 

operationally defined as 4+/5+ drinks (for women and men, respectively) by Wechsler et 

al. (1994), and this definition has been widely used. In 2004, the National Institute on 

Alcohol Abuse and Alcoholism (NIAAA) re-defined binge drinking to include a time 

course of drinking and a functional level of impairment: “Binge drinking is a pattern of 

drinking alcohol that brings blood alcohol concentration (BAC) to 0.08 gram percent or 

above. For the typical adult, this pattern corresponds to consuming 5 or more drinks 

(male), or 4 or more drinks (female), in about 2 hours.” Though this newer definition 
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improves upon Wechsler’s criteria, more stringent criteria for defining binge drinking 

have been suggested (White et al., 2006). White et al. (2006) suggested that using binge 

drinking as a dichotomous variable is inappropriate and should be expanded to consider 

grouping individuals based on defining a “binge threshold” of 4/5 drinks (for females and 

males, respectively). Additional groups would then be characterized as exceeding that 

threshold by drinking 2 (8+/10+ drinks) or 3 (12+/15+ drinks) times as much alcohol as 

the standard Wechsler definition, or “binge threshold”. White et al. (2006) suggest that 

neither the definition put forth by Wechsler (1994) nor NIAAA (2004) adequately 

address the levels of binge drinking that occur, as in their sample 27% of men and 10% of 

women drank amounts 2 or 3 times more than the “binge threshold”. Similarly, in a study 

of college students, McMillen et al. (2009) reported estimated peak BACs ranging from 

2-4 times greater than the “binge threshold” adopted by NIAAA, with relatively equal 

distribution among the number of individuals within subgroups divided by BACs at 80 

mg/dl increments. Using the 30-day Timeline Followback (corrected for gender), the 

estimated peak BAC was 233 mg/dl, with less than 10% of the sample reporting peak 

estimated BACs below the legal driving limit (80 mg/dl; McMillen et al., 2009). 

 

Chronic Ethanol Exposure and Neurodegeneration in Human Alcoholics 

 

Given the large population of people who misuse alcohol, neural consequences of 

heavy and/or binge drinking continue to be studied. Though light to moderate drinking 

history (88.2 - 181.2 g/week) has been reported to have no negative influence on brain 

volume compared to alcohol abstainers in MRI comparisons (Kubota et al., 2001), long-
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term, heavy alcohol consumption is related to macrostructural neural changes (e.g., 

reduced structure volume) and microstructural neural changes (e.g., cellular dysfunction). 

Long-term, heavy alcohol intake impairs metabolism of compounds contributing to 

cellular integrity (Schweinsburg et al., 2001); reduces cerebral blood flow (Nicolas et al., 

1993); reduces volume of cerebellar hemispheres and mammillary bodies (Shear et al., 

1996); reduces hippocampal volume in alcohol-dependent males (Beresford et al., 2006); 

contributes to ventricular enlargement; and increases in cerebrospinal fluid (Agartz et al., 

2003; Pfefferbaum et al., 1995); and reduces cortical gray and white matter, most notably 

in prefrontal and parietal cortices (Fein et al., 2002; Pfefferbaum et al., 1998). Reductions 

in hippocampal and cortical white matter volume are also age-dependent, with older 

alcoholics demonstrating more severe loss as compared to younger alcoholics (Kubota et 

al., 2001; Pfefferbaum et al., 1998; Sullivan et al., 1995). These hallmarks of alcoholic 

brain injury likely contribute to persisting executive function, visuospatial, and motor 

deficits that are noted in men who have undergone detoxification in the past month 

(Sullivan et al., 2000). Additionally, reduced cerebral blood flow in alcoholic patients is 

correlated with impaired performance in tasks requiring frontal lobe integrity (Nicolas et 

al., 1993). Specifically in female alcoholics, deficits in motoric function have been noted 

after months of sobriety. Female former-alcoholics demonstrate increased truncal tremor 

and postural sway that is associated with decreased volume of the anterior cerebellar 

vermis, as compared to healthy female control subjects (Sullivan et al., 2010). Comorbid 

diagnoses may also correlate with reduced neural integrity. For example, gray matter loss 

is worsened in chronic alcoholic patients who present with Korsakoff’s syndrome as 

compared to chronic alcoholic patients that do not demonstrate amnesic behaviors 
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(Jernigan et al., 1991). Extreme neurocognitive impairment, termed Wernicke-Korsakoff 

Syndrome, may be noted in alcoholic patients with thiamine deficiency (Martin et al., 

2003).  

 

It must be noted that recovery in white and gray matter integrity, volume, 

ventricle size (and CSF volume) can occur during abstinence following chronic alcohol 

use. Reductions in ventricular system pathology (reduced ventricle size and reduced CSF 

volume) have been observed after 5 weeks of abstinence as compared to baseline MRIs 

taken at initial alcohol cessation (Schroth et al., 1988). Additionally, short term 

abstinence (12-32 days) is correlated with decreased CSF and volumes of lateral 

ventricles and cortical sulci, and a trend toward increased cortical gray matter, whereas 

long-term abstinence is associated with decreased volume of the third ventricles 

compared to control subjects and alcoholic subjects who had relapsed (Pfefferbaum et al., 

1995). After 5 years of sobriety, former alcoholic patients are similar to control subjects 

on measures of ventricular enlargement, presumably due to aging, whereas patients who 

continued to drink demonstrated exaggerated losses in cortical gray matter (Pfefferbaum 

et al., 1998). Fewer white matter lesions have also been detected in brains of 31-175 

week abstinent alcoholics as compared to current, heavily drinking alcoholic patients, 

which is in parallel with recovery in overall frontal white and gray matter in abstinent 

alcoholics (O’Neill et al., 2001).  

 

The specific consequences of alcohol exposure versus the consequences induced 

by withdrawal from long-term alcohol exposure are impossible to fully tease apart in 
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human studies. However, repeated alcohol detoxifications are correlated with greater 

long-term neurologic and cognitive deficits in humans, even if benzodiazepines were 

administered during withdrawal to reduce signs and symptoms of withdrawal (Duka et 

al., 2003; Duka et al., 2004). These data suggest that neuroadaptations that occur as a 

result of chronic alcohol exposure confer greater susceptibility to neurological insult after 

repeated intake and cessation, in keeping with characterization of pathological neuronal 

hyperexcitability during ethanol withdrawal that leads to functional and/or structural 

brain-related deficits. In summary, alcohol exposure likely produces brain injury as well 

as neuroadaptations that make the brain more susceptible to injury during exposure and 

withdrawal. 

 

Chronic Ethanol Exposure and Neurodegeneration in Rodent Models 

 

As compared to studies of the human brain, rodent models are well-suited for 

characterization of brain damage that occurs following prolonged ethanol exposure with 

or without withdrawal. Various models and ethanol exposure paradigms have been 

employed and have produced various results in terms of alcohol related neuropathology. 

In a four-day binge model of prolonged ethanol intoxication, necrotic cell death is 

observable by day two, but becomes exceedingly worse by day four, with necrosis 

evident in various brain regions, including the agranular insular cortex, anterior piriform 

cortex, perirhinal cortex, lateral entorhinal cortex, and the hippocampal formation. Signs 

of necrosis in these regions are no longer apparent 36-72 hours after the last ethanol 

administration, suggesting that long-term ethanol exposure contributes to 
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neurodegeneration with and without a period of ethanol withdrawal in this short-term 

binge model (Obernier et al., 2002a; 2002b; Collins et al., 1996). 

 

Mechanisms of alcohol related neurodegeneration include dysregualtion of 

excitatory amino acid systems and oxidative stress (Bondy, 1992). Alcohol metabolism in 

the brain by catalase, alcohol dehydrogenase, or cytochrome P450 causes production of 

free radicals (e.g. superoxide free radicals, hydrogen peroxide, and hydroxyl radicals) 

(Zakhari, 2006), leading to initiation of apoptotic cascades and cell death (reviewed by 

Hampton & Orrenius, 1998). Ethanol also contributes to oxidative stress and cellular 

injury by inducing mitochondrial damage (e.g., permeability pores). Increased activity of 

free radicals is accompanied by parallel decreases in endogenous antioxidant 

concentrations (superoxide dismutase and catalase; Eysseric et al., 2000; Heaton et al., 

2003). This is important for cellular integrity, as antioxidants significantly reduce ethanol 

toxicity in cell culture models with cerebellar granule cells (Heaton et al., 2004), and 

hippocampal neurons (Marino et al., 2004; Sheth, Tajuddin, & Druse, 2009). For 

instance, co-exposure to ethanol concentrations ranging from 400-2000 mg/dl for 16 

hours and the anti-oxidants Vitamin E or beta-carotene significantly and dose-

dependently increase the viability of cultured hippocampal neurons (Mitchell et al., 1999)  

 

Acute and Chronic Ethanol Exposure: Neuroadaptations in Glutamatergic Systems 

 

In addition to damage that may occur during alcohol exposure, withdrawal from 

long-term alcohol consumption/exposure has been characterized as a state of neuronal 
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hyperexcitability during which time the brain is susceptible to excitotoxic insult, in part 

because of adaptive changes induced by chronic ethanol exposure (Hoffman et al., 1990; 

Hunt, 1983; Littleton, 1998; Prendergast et al., 2004). In rodents, ethanol withdrawal has 

been shown to exacerbate hippocampal injury and cognitive deficits in comparison with 

rodents that did not experience ethanol withdrawal (Lukoyanov et al., 1999; Paula-

Barbosa et al., 1993). Susceptibility to neuronal injury during ethanol withdrawal after 

long-term ethanol exposure is associated with a variety of cellular adaptations in 

membrane proteins and ion channels. Adaptations include up-regulation and increased 

sensitivity of N-methyl-D-aspartate (NMDA) type glutamate receptors (Hu & Ticku, 

1995; Kalluri et al., 1998; Prendergast et al., 2000) and L-type voltage-sensitive Ca2+ 

channels (Little, 1991; Watson & Little, 1999); down-regulation of γ-aminobutyric acid 

type-A (GABAA) receptors (Devaud et al., 1997; Mahtre & Ticku, 1994); potentiation of 

serotonin type-3 (5-HT3) receptors (Lovinger & Zhou, 1998; McBride et al., 2004); 

inhibition or stimulation of 5’-triphosphate-gated purinergic (P2X) receptors (Davies et 

al., 2006); and upregulation or increased sensitivity of adenosine A1 receptors (Butler et 

al., 2008; Butler et al., 2009; Concas et al., 1996; Daly et al., 1994; Jarvis & Becker, 

1998). In particular, primarily by pharmacological manipulation in rodents, the 

glutamatergic system has been shown to be related to alcohol drinking (Besheer et al., 

2008), relapse behavior (Spanagel et al., 1996), hyperexcitability during ethanol 

withdrawal (Veatch & Becker, 2005), excitotoxicity, and long-term treatment for alcohol 

dependence (acamprosate; Paille et al., 1995; Whitworth et al., 1996). Glutamatergic 

receptors include both ionotropic receptors (NMDA, AMPA, and Kainate receptors) and 

metabotropic receptors (mGluR1-8) that are all affected by ethanol. 
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Glutamatergic NMDA Receptors and Ethanol 

 

Acute and chronic ethanol exposure can have markedly different effects on 

glutamatergic receptors. NMDA receptors have been thoroughly studied in models of 

ethanol exposure and withdrawal, as they are highly permeable to Ca2+ and excessive 

activation of NMDA receptors is related to increased cell death (Choi, 1987). NMDA 

receptors are heteromeric ion channels that are composed of an obligatory NR1 receptor 

subunit and some combination of NR2 and/or NR3 subunits (reviewed by Yamakura & 

Shimoji, 1999). In the hippocampus, NR2A and NR2B subunits are most commonly 

expressed with the NR1 subunit. The NR2 subunit is important for regulating channel 

kinetics, with NR2B-containing receptors allowing for greater open channel time and 

calcium (Ca2+) influx (Chen et al., 1999). Acutely, ethanol inhibits NMDA receptor-

mediated synaptic transmission in several neuronal populations, including cerebellar, 

hippocampal, cortical, and spinal cord neurons (Lovinger, White, & Weight, 1990). 

Ethanol’s acute inhibitory effects are greatest at NR2A and/or NR2B subunit containing 

NMDA receptors, in comparison with NMDA receptors containing NR2C or NR2D 

subunits, in both native and recombinant tissues (Allgaier, 2002). Chronic ethanol 

exposure results in upregulation and increased sensitivity of NMDA receptors and/or 

NMDA receptor subunits in multiple brain regions of mice and rats as a result of various 

ethanol exposure regimens. Upregulation of MK-801 binding sites has been noted in vitro 

and in vivo, though it should be noted that MK-801 is a noncompetitive NMDA receptor 

antagonist that binds inside the NMDA receptor channel at the phencyclidine site, but is 

not entirely specific for the NMDA receptor channel (e.g., MK-801 competitively inhibits 
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monoamine transporters; Nishimura et al., 1998). Prolonged exposure to ethanol 

concentrations ranging from 50-100 mM increase both [3H]MK-801 binding sites and 

NMDA receptor-mediated Ca2+ influx in cortical mouse neurons (Hu & Ticku, 1995) and 

cerebellar rat neurons (Hoffman et al., 1995; Iorio et al., 1992), as well as NR2B subunit 

gene expression in cortical neurons (Hu, Follessa, & Ticku, 1996). In vivo self-

administration models that produce ethanol dependence have also noted increased 

[3H]MK-801 binding sites in the frontal cortex and hippocampus of male rats and mice 

(Gulya et al., 1991; Rudolph et al., 1997; Snell et al., 1993), and in the parietal cortex, 

entorhinal cortex, striatum, thalamus, and medulla (Gulya et al., 1991). MK-801 is non-

specific for the NMDA receptor channel, however, significant upregulation in number 

and/or function has been noted for individual NMDA NR subunits. In vivo, significant 

increases in NR1, NR2A, and NR2B subunits in adult male rat cerebral cortex and 

hippocampus have been noted (three administrations daily for 6 days; Kalluri et al., 

1998). In vitro, ten day continuous ethanol exposure (100 mM) in organotypic 

hippocampal slices also results in significant increases in the NR1 and NR2B subunit 

polypeptide levels and NMDA receptor function, as inferred by potentiated cell death 

produced by NMDA receptor agonism in ethanol pre-exposed slices. Additionally, 

ethanol withdrawal toxicity and potentiated Ca2+ influx is ameliorated by co-exposure 

with MK-801 (Harris et al., 2003; Prendergast et al., 2000; Prendergast et al., 2004). 

Upregulation of these sites appears transient, however, as increased [3H]MK-801 binding 

and NR subunit density is no longer noted 48 hours following ethanol exposure in vitro 

(Hu & Ticku, 1995; Kalluri et al., 1998), and by 24 hours following ethanol exposure in 

vivo (Gulya et al., 1991).  
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Increased number and/or function of NMDA receptors contributes to behavioral 

excitability after chronic ethanol exposure, and NMDA receptor antagonism has been 

shown to reduce ethanol withdrawal signs in rodents. Valverius et al. (1990) 

demonstrated that withdrawal seizure prone (WSP) male mice had significantly higher 

basal MK-801 binding sites than withdrawal seizure resistant (WSR) male mice, and that 

chronic ethanol exposure increased hippocampal [3H]MK-801 binding sites in both lines, 

though to a greater extent in WSP versus WSR mice after chronic ethanol exposure. 

Moreover, acute administration of the competitive NMDA receptor antagonist CGP 

39551 before peak ethanol withdrawal reduces ethanol withdrawal tremor and seizure 

activity in mice (Liljequist, 1991), as does MK-801 administration in rats and mice 

(Morrisett et al., 1990; Veatch & Becker, 2005). Blockade of the NMDA receptor 

channel with MK-801 administration in mice also reduces ethanol withdrawal behaviors 

in a chronic ethanol exposure model that upregulates the number of hippocampal 

[3H]MK-801 binding sites, whereas NMDA administration potentiates withdrawal 

behaviors (Grant et al., 1990). However, repeated MK-801 administration to alleviate 

ethanol withdrawal handling-induced convulsions in mice has been shown to increase 

susceptibility to seizures when left untreated during ethanol withdrawal (Veatch & 

Becker, 2005). 

 

Non-NMDA Ionotropic Glutamate Receptors 

 

 The ionotropic family of glutamatergic receptors also includes AMPA and kainate 

receptors. Though AMPA and kainate receptors are preferentially activated by their 
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respective agonists, these families of receptors were initially very hard to distinguish 

pharmacologically (Lees, 2000). Thus, initial experimental pharmacologic manipulation 

of these glutamatergic ion channels was often non-specific, and such effects were 

referred to as mediated by AMPA/Kainate receptors. Development of selective 

pharmacological inhibitors of AMPA receptors in the mid-1990s, however, provided a 

mechanism for studying individual AMPA and kainate receptor-mediated components of 

non-NMDA glutamatergic receptor activity (Pelletier et al., 1996). AMPA and kainate 

receptors are ion channels that allow Na+ influx upon activation (Peruche & Krieglstein, 

1993), with some subunit combinations allowing Ca2+ influx (Hollmann et al., 1991). 

AMPA receptors may be homo- or heteromeric, and are comprised of subunits GluR1-4 

(reviewed in Hollmann & Heinemann, 1994). Kainate receptors were originally grouped 

into two subfamilies, distinguished as GluR5-7 or KA1-2 (reviewed in Hollmann & 

Heinemann, 1994), but have recently been re-classified as GluK1-3 (previously GluR5-7) 

and GluK4-5 (previously KA1 and KA2; Collingridge et al., 2009). AMPA receptors 

mediate fast excitatory synaptic transmission, thus contributing to neuroplasticity 

characterized by increased synaptic strength and insertion of AMPA receptors in the post-

synaptic membrane (i.e., long-term potentiation; Nayak et al., 1998).  Studies have shown 

the greatest abundance of AMPA receptors are located in the cytoplasm of dendrites in 

immature hippocampal neurons, though they are continually inserted rapidly and 

removed from the plasma membrane (Shi, 2001). Similarly, kainate receptors facilitate 

long-term potentiation (LTP) at hippocampal mossy fiber terminals independent of 

NMDA receptor activity (Bortolotto et al., 1999), though they have also been shown to 
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act as autoreceptors to either facilitate (Lauri et al., 2001) or inhibit (Kidd et al., 2002) 

synaptic signaling. 

 

Like NMDA receptors, AMPA and/or kainate receptors are also acutely inhibited 

by ethanol in a non-competitive manner (reviewed in Narahashi et al., 2001). 

AMPA/kainate receptors expressed in Xenopus oocytes are just as sensitive at NMDA 

receptors to the acute inhibitory effects of ethanol (Dildy-Mayfield & Harris, 1995). 

Acute inhibition of AMPA/kainate receptor currents in HEK293 cells and rat cortical 

neurons by ethanol (10-400 mM) occurs irrespective of subunit composition, though 

inhibition of transfected receptors was greater than inhibition of receptors in cultured 

neurons (Lovinger, 1993). Kainate receptors are densely populated in the pyramidal cells 

of the CA3 region of the hippocampus, where acute ethanol ( ≥ 20mM) has been noted to 

inhibit kainate receptor post-synaptic currents in the presence of a specific AMPA 

receptor antagonist (Weiner et al., 1999). Conversely, chronic intermittent ethanol 

exposure increases postsynaptic neurotransmission via kainate receptors, and blunts 

kainate receptor-mediated synaptic plasticity (Lack et al., 2009). Prolonged ethanol 

exposure and twenty-four hour withdrawal have also been shown to increase kainate 

receptor mediated currents and protein abundance of GluR6/7 subunits in cultured rat 

hippocampal neurons (Carta et al., 2002). 

 

Acute ethanol has also been reported to inhibit AMPA currents in rodent 

hippocampal and cortical neurons (10-500 mM; Costa et al., 2000; Moykkynen et al., 

2003). Recent work has shown that ethanol stabilizes (Moykkynen et al., 2003) and 
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enhances the rate of desensitization of AMPA receptors expressed in HEK293 cells, with 

co-expression of AMPA receptor regulatory proteins (TARPs) further prolonging 

receptor desensitization (Moykkynen et al., 2009). Chronic intermittent ethanol exposure 

increases the amplitude of AMPA-mediated excitatory postsynaptic currents (Lack et al., 

2007). Further, prolonged ethanol exposure in rat primary cortical cultures has been noted 

to increase NMDA and AMPA receptor expression, but not kainate receptor expression 

(Chandler et al., 1999), suggesting differential effects of ethanol on ionotropic 

glutamatergic receptors. 

 

Metabotropic Glutamate Receptors 

 

There are eight subtypes of metabotropic glutamate receptors, which are 

organized into three families based on their signaling pathways, similarities in protein 

sequence, and activation by agonists (Groups I-III; Pin & Duvoisin, 1995). Acute and 

chronic ethanol exposure affects mGluR signaling, though differences may be noted 

dependent on brain region, mGluR subtype, and developmental timepoint. Non-specific 

activation of metabotropic glutamate receptors (mGluRs) with the agonist (1S,3R)-1-

aminocyclopentane-1,3-dicarboxylic acid (ACPD) has been shown to blunt Ca2+ influx 

after chronic ethanol exposure in rat cerebellar purkinje neurons, though ACPD 

potentiated Ca2+ influx after withdrawal from chronic ethanol exposure (Netzeband et al., 

2002). Group I mGluRs (mGluR1 and mGluR5) have been most extensively studied for 

their role in ethanol-related behavior and neuronal signaling. Group I mGluRs are Gq-

coupled, leading to activation of phospholipase C (PLC), increased intracellular Ca2+ 
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release, and phosphorylation of proteins via activation of protein kinase C (PKC). These 

receptors are located primarily post-synaptically (Cartmell & Schoepp, 2000). In 

Xenopus oocytes, acute ethanol (20-200mM) inhibits glutamate currents via mGluR5, but 

not mGluR1, which can be prevented by a PKC inhibitor (in Narahashi et al., 2001). 

Pharmacological antagonism of mGluR5 has also been shown to affect ethanol-seeking 

behaviors by decreasing ethanol self-administration in male alcohol-preferring rodents 

(Schroeder, Overstreet, & Hodge, 2005), and decreasing binge-like drinking in male mice 

infused with an mGluR5 antagonist into the shell of the nucleus accumbens (Cozzoli et 

al., 2009). Group II mGluRs (mGluR2 and mGluR3) are Gi-coupled receptors and are 

located both pre- and perisynaptically (Cartmell & Schoepp, 2000). This subfamily of 

mGluRs has been characterized for their importance in mediating stress- and cue-related 

increases in ethanol-seeking behavior after extinction (relapse), with activation of 

mGlu2/3 receptors attenuating the increase in ethanol-seeking behavior observed after 

stressful stimuli (Zhao et al., 2006). Group III mGluRs (mGluR4, mGluR6-8) are also Gi-

coupled receptors. To date, investigation into the role of Group III mGluRs in regard to 

ethanol-related behaviors is sparse, though data have shown a lack of the stimulatory 

effect of acute ethanol on locomotor activity in male mice lacking the mGluR4 subtype, 

with no effects noted between knockout mice and wild-type mice in ethanol preference or 

withdrawal behaviors (Blednov et al., 2004). These data suggest a role for Group III 

mGluRs in the acute, motor-activating effects of ethanol.  
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The Hypothalamic-Pituitary-Adrenal Axis  

 

 Ethanol effects on the CNS are vast beyond the glutamatergic system, and an 

extensive amount of literature has investigated ethanol interactions with the 

hypothalamic-pituitary-adrenal (HPA) axis. The principal components of the HPA axis 

include hypothalamic nuclei, the pituitary gland, and the adrenal gland, and the hormones 

which are synthesized and secreted to regulate the daily circadian cycle and in response 

to stressors. Circadian fluctuations in steroid secretion include approximately hourly 

pulses of glucocorticoid secretion in rodents (reviewed in Lightman et al., 2008). The role 

of the HPA axis in regulation of the physiologic stress response is aimed at restoration of 

physiologic homeostasis. In the CNS, the paraventricular nucleus (PVN) of the 

hypothalamus contains neurons that release corticotrophin releasing hormone (CRH) and 

arginine vasopressin (AVP). These hormones travel from the hypothalamus to the 

pituitary gland where they synergistically stimulate the release of adrenocorticotropin 

hormone (ACTH). From the pituitary gland, ACTH travels in the bloodstream to the 

cortex of the adrenal gland, which is the site of synthesis and release of glucocorticoids 

(GCs). GCs complete a negative feedback loop by traveling back to the PVN and the 

pituitary gland to suppress further hormone secretion (reviewed in Nader, Chrousos, & 

Kino, 2010). Acutely, elevation of GCs helps mobilize resources for energy consumption, 

and promotes return to physiologic homeostasis (Munck, Guyre, & Holbrook, 1984).  

Chronically, however, GCs can exert profound negative effects on various peripheral 

organs and the CNS, resulting in dampened HPA axis responsiveness to stressors 

(Jacobsen, 2005).  
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Detrimental effects of HPA axis dysregulation were first studied in the context of 

aging and led to the Glucocorticoid Cascade Hypothesis (Sapolsky, Krey, & McEwen, 

1986). This hypothesis suggests that prolonged high levels of CORT result in 

downregulation of GRs. GR activation is required for cessation of the HPA response by 

downregulation of mRNA for CRH, AVP, and ACTH. Thus, downregulation of GRs 

impairs cessation of the HPA response by leading to CORT accumulation and 

neurodegeneration (Cullinan et al., 2008). This hypothesis also highlighted CORT glial 

hypertrophy as a consequence of CORT-related damage (Sapolsky, Krey, & McEwen, 

1986). Long-term alcohol exposure negatively impacts HPA axis function and 

contributes to neurodegeneration in humans and rodents.  

 

Corticosterone Receptors: Glucocorticoid and Mineralocorticoid Receptors  

 

Glucocorticoids are highly lipophilic, thereby easily penetrating the cell 

membrane to bind to intracellular Type I (mineralocorticoid; MRs) and Type II 

(glucocorticoid; GRs) receptors. Upon glucocorticoid binding, the complex moves to the 

nucleus and acts as a transcription factor by binding to hormone responsive elements and 

altering protein synthesis (reviewed in Nishi, 2010). Corticosterone (CORT) is the 

primary glucocorticoid in rodents (equivalent to cortisol in humans) and it has nearly a 

ten-fold greater affinity for MRs than GRs: 0.5 nM and ~2.5-5 nM, respectively (Reul & 

de Kloet, 1985). MRs are occupied by low levels of circulating CORT, or during troughs 

of hormonal cycling throughout the circadian rhythm. GR occupation requires increased 

levels of circulating CORT, as observed during peak HPA axis activity (late evening 
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hours) and during exposure to a stressor (Reul and de Kloet, 1985). Autoradiographic 

localization following [3H]CORT injection shows dense labeling in the pyramidal and 

granule cell layers of the hippocampus of male rats, with modest labeling in other 

hippocampal cell layers, the entorhinal cortex, lateral septum, and amygdala (Sapolsky, 

McEwen, & Rainbow, 1983). Using a GR-specific antibody within the subfields of the 

hippocampus, dense labeling is observed in granule cells of the dentate gyrus (DG) and 

pyramidal cells of the cornu ammonis (CA)1 region, though GR immunoreactivity is 

sparse among CA3 pyramidal neurons (van Eekelen et al., 1987; Sarabdjitsingh et al., 

2009). MR distribution is predominantly restricted to the hippocampus and the septum, 

whereas GRs are ubiquitous throughout the brain, and are found in both neurons and glial 

cells (reviewed in de Kloet et al., 2005; Reul and de Kloet, 1985). As MRs are activated 

under basal conditions, they have been considered for their role in maintenance of 

hippocampal excitability, whereas GR activation that occurs with increased CORT 

concentrations generally suppresses excitatory hippocampal output (de Kloet et al., 

1998). Long-term increases in CORT levels, and therefore GR activation, however, 

results in neurotoxicity and pruning of hippocampal dendrites (Gould et al., 1990; 

Woolley et al., 1990). Developmentally, GR abundance increases in the rat brain at 

approximately one week of age, in parallel with increases in CORT levels. In adulthood, 

the GR system appears to “autoregulate” itself; that is, high circulating levels of CORT 

lead to reductions in GR density, whereas adrenalectomy (i.e., decreased CORT levels) 

leads to upregulation of GR density (Meaney, Sapolsky, & McEwen, 1985a; Reul et al., 

1987). Specifically in the hippocampus, significant increases in GR density occur around 
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postnatal day 9 and continue to increase to adult levels (Meaney, Sapolsky, & McEwen, 

1985b).  

 

Corticosterone: Non-Genomic Mechanisms of Action and Injury 

 

 Intracellular receptor binding is the classic model of steroid/glucocorticoid 

actions, but evidence also exists for plasma membrane-bound receptors that bind steroids, 

and in particular, CORT (reviewed by Moore & Evans, 1999). This mechanism of steroid 

action was proposed because a genomic mechanism of action could not account for some 

CORT effects, including: 1. effects that were very rapid; 2. effects that existed even when 

CORT was made impermeable to the cell membrane by conjugation with bovine serum 

albumin (BSA); 3. effects that existed when protein synthesis inhibitors were applied; 

and, 4. specifically for CORT, effects that were not attenuated with GR antagonists 

(reviewed in Moore & Evans, 1999). Plasma membrane bound receptors that selectively 

bind CORT and progesterone derivatives have been identified in calf adrenal cortex (Kd = 

77 nM, Bmax = 14nM; Andres et al., 1997). Plasma membrane bound receptors were also 

identified by [3H]CORT binding in amphibian (Kd=0.51 nM; Orchinik, Murray, & 

Moore, 1991) and mammalian brain (Orchinik et al., 1997). Functionally, CORT binding 

to putative plasma membrane bound receptors results in a rapid (less than one minute) 

increase in excitatory output from rat neurons taken from the reticular formation or locus 

coereleus (Avanzino et al., 1987a; Avanzino et al., 1987b). Behaviorally, it has also been 

reported that neither a protein synthesis inhibitor nor GR antagonists attenuated CORT’s 

effect on increasing locomotor activity in rats (Sandi, Venero, & Guaza 1996). 
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 CORT has been shown to interact with the glutamatergic receptor system in 

mediating rapid membrane receptor effects. In hippocampal neurons, CORT rapidly 

increases the frequency of AMPA-mediated mEPSCs (Karst et al., 2005). In regard to 

attenuating neurodegeneration, blockade of excitatory amino acid release by the anti-

epileptic drug phenytoin prevents both CORT and stress-induced increases in CA3 

pyramidal neuron atrophy (Watanabe et al., 1992a). Stress has also been shown to 

increase hippocampal glutamate release, which can be reversed by adrenalectomy, and 

either blockade of steroid formation or NMDA receptor blockade has been shown to 

protect against atrophy of CA3 pyramidal neurons (reviewed in McEwen & Magarinos, 

1997). More recent work has attempted to delineate NMDA receptor subunit-specific 

signaling pathways that may play a role in CORT-mediated neurodegeneration. Xiao et 

al. (2010) showed that CORT attenuates neuroprotective signaling by attenuating the 

neuroprotective NMDA NR2A-ERK1/2 pathway, but CORT does not affect the NMDA 

NR2B-p38 death pathway in hippocampal neurons. To further demonstrate the CORT 

effect at the plasma membrane, BSA-conjugated GCs significantly potentiated NMDA 

receptor-stimulated Ca2+ influx that was blocked by a specific NR2A antagonist (Xiao et 

al., 2010). 

 

HPA Axis Dysregulation 

 

As the HPA axis is essential in physiological homeostasis, chronic HPA axis 

dysregulation has been associated with many deleterious effects. Allostasis may be 

defined as the body’s adaptation to stressful events, whereas allostatic load refers to 
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pathophysiology and overuse that result from adaptation to prolonged stressors 

(McEwen, 1998). HPA axis dysregulation is apparent in several disease states, including 

major depression (reviewed by Shelton, 2007); post-traumatic stress disorder (reviewed 

by Yehuda, 2001); anxiety disorders (reviewed by Abelson et al., 2007); schizophrenia 

(reviewed by Altamura, Boin, & Maes, 1999); and obesity (reviewed by Bose, Olivan, & 

Laferrere, 2009). Additionally, genetic polymorphisms in GRs and MRs contribute to 

increased incidence of depression (Derijk & de Kloet, 2008). Major depressive disorder 

has been associated with increased CORT levels and reduced hippocampal volume in 

MRI scans (Shah et al., 1998), with reduced hippocampal volume positively correlating 

with duration of depressive symptoms (Sheline et al., 1996). It has also been shown that 

inhibitors of CORT synthesis effectively treat psychosis-related depression (Belanoff et 

al., 2001). This correlation has also been noted in clinical subpopulations with enhanced 

depressive symptoms, such that multiple sclerosis patients with depressive symptoms 

have higher CORT levels and reduced volume of the hippocampal CA3 region and DG 

(Gold et al., 2010). Additionally, MRI studies of patients who have undergone long-term 

treatment with corticosteroids show decreased hippocampal volume, poorer performance 

on declarative memory tasks, and more severe depressive symptoms in comparison to 

control individuals (Brown et al., 2004).  

 

In rodent studies, acute and chronic experimenter-induced stress has been used to 

investigate structural and hormonal changes at all levels of HPA axis functioning. 

Blunted HPA axis responsiveness to novel stressors after chronic variable stress exposure 

has been reported, such that adult male rats had increased CRH mRNA content in the 
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PVN at 16 hours post-cessation of stressor, though lower ACTH and CORT plasma 

levels days after stressor cessation (Ostrander et al., 2006). Chronic stress and/or repeated 

exogenous administration of CORT in adrenalectimized rats reduces the number of 

receptors present in the cytosol of neurons in the hippocampus and amygdala, without 

changing the affinity of [3H]dexamethasone, a synthetic glucocorticoid (Sapolsky, Krey, 

& McEwen, 1984a). This receptor protein adaptation, or reductions in receptor number 

after chronic stress and/or CORT administration, can be reversed upon treatment 

cessation (Sapolsky, Krey, & McEwen, 1984a). This downregulation of GRs is of 

functional importance, as GRs are important for maintaining the negative feedback loop 

of the HPA axis, and reduced hippocampal GRs impairs termination of the stress 

response, thus resulting in hypercortisolemia (Sapolsky, Krey, & McEwen, 1984b; 

Sapolsky, Meaney, & McEwen, 1985). Interestingly, downregulation of GRs appears to 

reach a trough after long-term stress exposure that fails to decline further when stressors 

are applied continuously (Sapolsky et al., 1984a). 

 

It is important to note that adrenalectomy or knockout of MR protein can also be 

detrimental to neuronal integrity. For instance, adrenalectomy in adult male rats 

significantly decreases the cell body area and dendritic branch points in granule cells of 

the DG while increasing the number of cells showing chromatin condensation (i.e. 

pyknosis; and decreasing granule cell number), though deficits are not observed in 

adrenalectomized rats supplemented with CORT (Gould et al., 1990; Sloviter et al., 

1989). These deficits are present as early as 3 days after surgery and worsen over the 

period of a week, and were likely neurons and not glial cells due to their morphological 
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appearance. The CA1 and CA3 regions were resistant to significant changes in cell body 

size and dendritic branching after adrenalectomy, though there was a trend for a decrease 

in cell body size and dendritic branching in CA3 pyramidal cells (Gould et al., 1990). 

Although it is unclear why DG granule cells are most sensitive to damage caused by 

removal of CORT, CORT has been observed to alter the cell cycle and decrease DG 

hippocampal region neurogenesis (Brummelte & Galea, 2010). 

 

Alcohol and HPA Axis Dysfunction: Human Subjects 

 

In humans, prolonged elevation of glucocorticoids causes damage in the periphery 

(e.g., muscles, bones), alterations in CNS structures and metabolism (in particular, the 

hippocampus), and neuronal loss (reviewed by Sapolsky, 2000). Acutely, alcohol 

activates the HPA axis, as measured by increased release of ACTH, in drinkers that do 

not meet criteria for dependence (Aguirre et al., 1995). Long-term alcohol consumption 

also affects HPA axis functioning, both during intoxication/exposure and withdrawal. 

Excessive alcohol consumption coupled with pathological levels of CORT has the 

potential to potentiate cellular damage. Secretion of CORT, the primary stress hormone 

in humans, is increased in male alcoholics that are currently intoxicated and withdrawing. 

However, CORT levels were greater in male subjects undergoing acute withdrawal (≤ 2 

days of abstinence), as compared to subjects that were still highly intoxicated (≥ 100 

mg/dl BAC). It should also be noted that salivary CORT levels were similar in male 

subjects undergoing acute withdrawal (≤ 2 day of abstinence) and subjects that were still 

intoxicated but with marginal BACs (≤ 100 mg/dl), suggesting that CORT levels rise as 
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ethanol withdrawal begins  (Adinoff et al., 2003). Indeed, it has been reported in a small 

sample of men that peak ethanol withdrawal correlates with peak CORT levels, which 

return to control-level after 7 days of abstinence (Adinoff et al., 1991). After periods of 

prolonged abstinence, however, male alcoholics demonstrate blunted responses to 

stressors (Adinoff et al., 1998), with reduced responsiveness to pharmacological 

challenge of HPA axis functioning at each level of the HPA axis (Adinoff et al., 2005; 

Costa et al., 1996). Importantly for clinical application, male alcoholics that showed a 

severely dampened CORT response to a psychosocial stressor after 2 weeks of abstinence 

were much more likely to relapse when interviewed at 6 weeks of abstinence (Junghanns 

et al., 2003), and attenuation of the blunted response with anti-relapse medication 

decreased vulnerability to relapse (Kiefer et al., 2006). Though a paucity of data exist 

examining HPA axis responsiveness in abstinent female alcoholics, conflicting results 

have been reported in samples of abstinent alcohol-dependent women as to whether they 

differ from healthy age-matched controls on measures of ACTH reactivity (Adinoff et al., 

2010; Brady et al., 2006). And, unlike men, abstinent female alcoholics do not display 

blunted CORT secretion patterns (Adinoff et al., 2010).  

 

Alcohol, HPA Axis Dysfunction, and Drinking Behavior: Animal Models 

 

Paralleling data gathered from human subjects, alterations in HPA axis 

functioning have been reported in animal models of acute alcohol exposure and alcohol 

dependence. Ethanol has been noted to affect CORT plasma levels in male and female 

adult and peri-adolescent inbred rat strains, as well as in alcohol preferring and alcohol 
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non-preferring rats. Following an acute injection of ethanol, both alcohol-preferring and 

alcohol non-preferring rats have increased plasma CORT levels relative to control rats, 

whether housed in isolation or in groups (Apter & Erikkson, 2006).  

 

Effects of ethanol on plasma CORT varies whether ethanol is given acutely or 

chronically. In adult male rats, acute alcohol induces increases in CORT and ACTH 

release, whereas alcohol dependent rodents show blunted CORT release upon alcohol 

challenge (Richardson et al., 2008). Peri-adolescent (post-natal day (PND) 37-44) male 

and female rats show similar increases in plasma CORT with acute or binge ethanol 

exposure. However, plasma CORT levels were significantly greater in rats given an acute 

dose of ethanol compared to peri-adolescent rats exposed to a binge-ethanol paradigm, 

suggesting habituation of the CORT response with prolonged, repeated ethanol exposure. 

Further, it should be noted that the pattern of increased CORT was the same for male and 

female rats, such that CORT levels were greater under acute ethanol than after binge 

ethanol. However, the magnitude of the CORT increase was markedly greater in female 

rats, approximating plasma concentrations of 500 ng/ml compared to values observed in 

male rats (~100 ng/ml) (Przbycien-Szymanska, Rao, & Pak, 2010). CORT levels are 

increased in response to acute ethanol administration, but return to baseline in alcohol 

dependent rats. However, CORT levels are increased again during withdrawal from long-

term ethanol adminstration/exposure (Borlikova, Le Merrer, & Stephens, 2006; Janis et 

al., 1998). Many studies of alterations in CORT levels with acute or prolonged ethanol 

exposure have depended on measurements of plasma CORT levels. Importantly, plasma 

CORT levels have been shown to correlate with brain CORT levels during ethanol 
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consumption, though differences appear during ethanol withdrawal. Plasma CORT levels 

are initially increased during acute withdrawal but then return to baseline within 24 

hours, whereas brain CORT levels have been shown to remain elevated up to 2 months 

after drinking cessation in mice and rats (Little et al., 2008). Behaviorally, exogenous 

administration of CORT during withdrawal from an acute dose of ethanol is also able to 

potentiate withdrawal in withdrawal seizure-prone mice (Roberts et al., 1994). 

 

Exogenous administration of CORT, blockade of CORT synthesis, and/or 

adrenalectomy has also been shown to affect alcohol drinking behaviors. Male alcohol 

preferring rats show reduced alcohol drinking after adrenalectomy compared to baseline 

drinking and sham operated rats, though this decrease in drinking is reversible with 

chronic CORT administration (Fahlke & Erikkson, 2000). Wistar rats that prefer ethanol 

to water also demonstrate decreased alcohol drinking when given the CORT synthesis 

inhibitor metyrapone; an effect that is reversed by concurrent administration of 

metyrapone and CORT (Fahlke et al., 1994). In additional studies conducted by Fahlke 

and colleagues (1995), it was shown that male Wistar rats had decreased alcohol intake 

immediately following adrenalectomy, though alcohol intake returned to baseline levels 

with or without CORT supplementation. However, if adrenalectomized rats were given 

prolonged CORT supplementation, alcohol drinking was greater as compared to sham-

operated rats. Interestingly, the behavioral effects on drinking in adrenalectomized rats or 

adrenalectomized rats supplemented with CORT were not altered by subcutaneous 

injection of a type I or type II GR antagonist, suggesting that CORT-related increases in 
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drinking behavior were not mediated by activation of intracellular GR receptors (Fahlke 

et al., 1995). 

 

Alcohol, HPA Axis Dysfunction, and NMDA Receptors 

 

These findings are important, as stress and/or prolonged exposure to CORT 

results in increased abundance of NMDA receptors, and in particular, NMDA NR2A and 

NR2B mRNA and subunit protein (Meyer et al., 2004; Weiland et al., 1997) and 

increased Ca2+ influx in hippocampal neurons (Takahashi et al., 2002). CORT has also 

been shown to potentiate glutamate-induced excitotoxicity in hippocampal neurons in 

vitro (Goodman et al., 1996), and to increase extracellular glutamate levels in vivo (Stein-

Behrens, Lin, & Sapolsky, 1994). As both long-term ethanol exposure and CORT 

exposure have been shown to increase glutamatergic neurotransmission and NMDA 

receptor function and abundance, vulnerability to excitotoxicity during ethanol 

withdrawal coupled with increased CORT exposure likely promote potentiated 

neurodegeneration. In fact, it has been shown that CORT administered during ethanol 

exposure and withdrawal in vitro potentiates Ca2+ influx and hippocampal cell death, 

though these effects are reversed by co-exposure to the NMDA receptor channel blocker 

MK-801 and the GR antagonist RU486 (Mulholland et al., 2005). Additionally, in a 

model of long-term ethanol exposure that was associated with increases in plasma CORT, 

decreased neuronal density was noted in the CA3 region of the hippocampus (Hu et al., 

2010). 
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Experimental Rationale 

 

 Chronic ethanol exposure leads to numerous structural, behavioral, and functional 

adaptations that have been studied in both human and animal models. Neuroadaptations 

that occur in multiple neurotransmitter systems after long term exposure to ethanol likely 

mediate neurodegeneration and behavioral signs of ethanol withdrawal. Similarly, it has 

been well-established that chronic ethanol intake alters HPA axis functioning, leading to 

concentrations of glucocorticoids that promote neurodegeneration. The current studies 

were designed to investigate effects of CORT exposure during long-term ethanol 

exposure on toxicity during ethanol withdrawal, and mechanisms that may mediate 

CORT potentiation of toxicity during ethanol withdrawal in the rodent brain. Effects of 

CORT and ethanol exposure have been studied extensively in the hippocampus, as the 

hippocampus is particularly vulnerable to neurodegeneration by both types of insult 

(Packan & Sapolsky, 1990).  

 

 

 

 

 

 

 

 



Chapter 2 

EXPERIMENTAL PROCEDURES 

 

Organotypic Hippocampal Slice Culture Preparation 

 

Eight-day old male and female Sprague-Dawley rat pups (Harlan Laboratories; 

Indianapolis, IN, USA) were humanely euthanatized for aseptic whole brain removal. 

Brains were immediately transferred into chilled dissecting medium (4°C) made of 

Minimum Essential Medium (MEM; Invitrogen Corporation, Carlsbad, CA, USA), 25 

mM HEPES (Sigma-Aldrich Co., St. Louis, MO, USA), and 50 µM penicillin/ 

streptomycin (Invitrogen; adapted from Stoppini et al., 1991). Bilateral hippocampi were 

removed, cleaned of extra tissue under a dissecting microscope, and placed into chilled 

culture medium, composed of dissecting medium with the addition of sterile H20, 36 mM 

glucose (Fisher Scientific, Florence KY, USA), 25% (v/v) Hanks’ balanced salt solution 

(Invitrogen) 25% heat-inactivated horse serum (HIHS; Sigma-Aldrich Co.), and 0.05% 

Penicillin/Streptomycin. Hippocampi were sectioned coronally at 200 µm using the 

McIllwain Tissue Chopper (Mickle Laboratory Engineering Co. Ltd., Gomshall, UK) and 

placed into fresh culture medium. Slices with intact morphology were selected under a 

dissecting microscope and placed onto Millicell-CM 0.4 µm biopore membrane inserts 

that were pre-incubated in 1 ml of culture medium at 37°C in 35 mm 6-well culture 

plates. Three slices were placed onto each insert, yielding 18 slices per plate for all 

experiments except for Western blot experiments, for which there were 5-6 slices per 

insert. Excess medium from the top of the membrane insert was aspirated to allow the 
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slices exposure to the incubator atmosphere of 5% CO2/95% air. Slices were allowed five 

days to attach to the insert membrane before conducting any experiments. Care of 

animals was carried out in accordance with the National Institutes of Health Guide for the 

Care and Use of Laboratory Animals (NIH Publications No. 80-23) and the University of 

Kentucky’s Institutional Animal Care and Use Committee. 

 

11 Day Corticosterone Exposure in Ethanol-Naïve Hippocampal Cultures 

 

Cytotoxicity was measured in a portion of cultures after 11 day exposure to a 

range of CORT concentrations in ethanol-naïve cultures (after Mulholland et al., 2005). 

At 5 days in vitro (DIV) and 10 DIV cultures were transferred into fresh culture medium 

containing 0, 0.01, 0.1, or 1 µM CORT (Sigma). CORT was dissolved in dimethyl 

sulfoxide (DMSO) and diluted to the desired concentration with culture media for a final 

DMSO concentration of ≤ 0.01% in culture media. For the initial 10 days of CORT 

exposure, cultures were placed in topless polypropylene containers and surrounded by 50 

ml of double-distilled water, in accord with the ethanol exposure regimen described 

below. At 15 DIV, cultures were placed into fresh culture medium containing their 

respective CORT concentration with the addition of the nucleic acid marker of 

dead/dying cells, propidium iodide (PI; 3.74 μM). PI is a polar compound that is only 

able to enter cells with compromised membranes, after which it binds to DNA and is able 

to fluoresce when excited with the appropriate wavelength of light (Zimmer et al., 2000). 

At 16 DIV, after 11 days of continuous CORT exposure, cytotoxicity was measured by 

fluorescent imaging of PI (described in detail below).  
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Corticosterone Exposure during Ethanol Exposure and Withdrawal 

 

 Additional cultures were continuously exposed to CORT (0.01, 0.1, or 1 µM) 

during ethanol exposure and withdrawal. We hypothesized that exposure to CORT for the 

duration of ethanol exposure (10 days) and withdrawal (24 hours) would produce marked 

toxicity above control values and above any toxicity that may occur as a result of CORT 

exposure in ethanol-naïve cultures. This hypothesis is in accord with previous studies 

showing that both long-term ethanol exposure and long-term exposure to CORT result in 

increased NMDA receptor subunit expression, thereby providing a mechanism for 

enhanced toxicity upon removal of ethanol. Ten day continuous ethanol exposure was 

used to model long-term ethanol exposure in hippocampal slices, in accord with the 

CORT exposure regimen described above. At 5 DIV, slices were randomly transferred to 

new plates containing either 1 ml of standard culture medium (control) or culture medium 

with a CORT and a calculated ethanol concentration of 50 mM, or approximately 240 

mg/dl. In an attempt to reduce ethanol evaporation, all plates containing ethanol in the 

medium were surrounded by 50 ml of double-distilled water containing ethanol (at a 

concentration of 50 mM) in topless polypropylene containers, and plates devoid of 

ethanol in the medium were surrounded by 50 ml of double-distilled water. Containers 

were placed into sealable plastic bags and filled to capacity with 5% CO2/95% air before 

being placed in the incubator. The same treatment was repeated at 10 DIV. Despite these 

preventative measures, previous work in our laboratory has shown approximately a 50% 

decline in ethanol concentration over 5 days when beginning with an ethanol 

concentration calculated at 50 or 100 mM (Butler et al., 2008; Prendergast et al., 2004). 
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For studies of the effects of CORT on cell death during ethanol exposure and withdrawal, 

cultures were removed from media and placed into fresh culture medium without ethanol 

to begin 24 hour CORT exposure during ethanol withdrawal at 15 DIV. An additional 

subset of cultures that was exposed to CORT and ethanol for 10 days was co-exposed to 

CORT and ifenprodil (+)-tartrate salt (ifenprodil; 100 µM) during ethanol withdrawal for 

24 hours. Cytotoxicity was measured by densitometry of PI fluorescence. Ifenprodil is a 

non-competitive polyamine site antagonist. Polyamines act to potentiate NMDA receptor 

function via their binding site on the NR2B subunit, allowing for greater Ca2+ influx. As 

long-term exposure to CORT can promote polyamine synthesis (Cousin et al., 1982), and 

long-term ethanol exposure can result in increased NMDA NR subunit expression (Harris 

et al., 2003), we hypothesized that blockade of NMDA receptor function at the 

polyamine-sensitive NR2B binding site with ifenprodil would significantly reduce 

toxicity produced by ethanol and CORT co-exposure during withdrawal. All experiments 

were replicated 3-5 times. Additional studies were conducted using cultures that were 

formalin-fixed after 10 day ethanol and/or CORT exposure, but without a 24 hour ethanol 

withdrawal period for immunohistochemical studies of neuroadaptations following long-

term ethanol and CORT co-exposure.  

 

Immunohistochemistry: NMDA NR2B Subunit 

 

 Many models of long-term ethanol exposure have shown increases in NMDA 

receptor subunit proteins, which have been suggested to contribute to ethanol withdrawal-

related hyperexcitability. Therefore, we conducted immunohistochemistry with the 
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hypothesis that 10 day exposure to ethanol would produce significant increases in NMDA 

NR2B subunit expression.  Immunohistochemistry was conducted using male and female 

oragnotypic hippocampal cultures for measurement of NR2B immunoreactivity in control 

and ethanol-exposed tissue. At 5 DIV, cultures were exposed to 25, 50, or 100 mM 

ethanol in culture medium for 5 days, at which time culture medium with ethanol was 

refreshed, for a total of 10 days of ethanol exposure. Culture medium was changed for 

control cultures on the same days. The anti-NMDA NR2B subunit antibody used was a 

polyclonal antibody derived from rabbit and directed against the C-terminal of the rat 

NR2B receptor (Millipore; product number AB15362). 

 

After 10 days of ethanol exposure, at 15 DIV, cultures were formalin-fixed for 

immunohistochemistry. For fixation, cultures were placed into plates containing 1 ml of 

10% formalin on the bottom and top of the well for 30 minutes. Cultures were then 

washed twice in 1x phosphate-buffered saline (PBS) and stored with 1 ml of 1x PBS on 

the bottom of the well at 4°C until immunohistochemistry was conducted. On Day 1 of 

immunohistochemistry, cultures were incubated in permabilization buffer (PBS buffer 

with the addition of 0.1% Triton-X and 0.005% bovine serum albumin) for 45 minutes. 

Primary antibody solution was prepared as a 1:200 dilution of rabbit anti-NMDA NR2B 

monocolonal antibody in permeabilization buffer. After the initial 45 minute incubation 

period, cultures were transferred into fresh culture plates and the primary antibody 

solution was slowly added to the top of the slices, with 1 ml of 1x PBS below the well to 

reduce diffusion of antibody through the porous insert membrane. Cultures were stored at 

4°C for 24 hours. On Day 2 of immunohistochemistry, cultures were removed from 
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plates containing the primary antibody and washed twice in 1x PBS. Secondary antibody 

solution contained fluorescein isothiocyanate (FITC)-conjugated secondary antibody 

(sheep anti-rabbit; 1:500 dilution; Sigma-Aldrich Co.) in permeabilization buffer, and 

was slowly added to the top of the slices, with 1 ml of 1x PBS below the well. Cultures 

were stored at 4°C for 24 hours. Fluorescent microscopy following the 24 hour 

incubation with FITC was used to quantify NMDA NR2B receptor subunit 

immunoreactivity in the granule cell layer of the dentate gyrus (DG) and the pyramidal 

cell layers of the cornu ammonis 3 (CA3) region and the CA1 region.  

 

Preliminary studies were conducted to measure NR2B immunoreactivity after 10 

day exposure to 25 mM, 50 mM or 100 mM ethanol. Additional studies were conducted 

to measure NR2B subunit immunoreactivity following 10 day exposure to ethanol (50 

mM) and CORT (0.1 µM). Similar to the experimental procedures described above for PI 

measurement after 24 hour withdrawal following 10 day ethanol and CORT co-exposure, 

cultures were co-exposed to ethanol and CORT for 10 days without ethanol withdrawal. 

At the end of the 10 day co-exposure period, cultures were fixed and 

immunohistochemistry for the NMDA NR2B subunit was conducted following the 

procedure described above.  

 

Fluorescent Microscopy and Statistical Analysis 

 

 For PI and immunohistochemistry studies, fluorescent intensity (arbitrary optical 

units) was measured using densitometry. Images were taken using SPOT Advanced 
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version 4.0.2 software for Windows (W. Nuhsbaum Inc., McHenry, IL, USA) with a 5× 

objective on an inverted Leica DMIRB microscope (W. Nuhsbaum Inc.) fitted for 

fluorescence detection (mercury-arc lamp) and connected to a personal computer via a 

SPOT 7.2 color mosaic camera (W. Nuhsbaum Inc.). Propidium iodide has a maximum 

excitation wavelength of 536 nm and was excited using a band-pass filter that excites the 

wavelengths between 515 and 560 nm. The emission of PI in the visual range is 620 nm. 

The FITC-conjugated secondary antibody was excited using a band-pass filter at 495 nm 

(520 nm emission). Fluorescent intensity was analyzed by densitometry using ImageJ 

software (National Institutes of Health, Bethesda, MD, USA) for the granule cell layer of 

the DG and the pyramidal cell layers of the CA3 and CA1 regions of the hippocampus. 

For each labeled hippocampal slice, background fluorescent intensity was subtracted 

from each region’s measurement, and raw fluorescent values were converted to percent 

control within each region before statistical analysis. Raw values for male and female 

slices were converted to percent control separately within each hippocampal region 

(CA1, CA3, and DG). Outliers were removed using Grubb’s outlier test (GraphPad). A 

two-way analysis of variance (ANOVA; treatment × sex) within each hippocampal 

region was conducted, and when appropriate, Fisher’s LSD post-hoc analyses were 

interpreted. The significance level was set at P < 0.05. All experiments were conducted at 

least 3 times with different rat litters.  
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[3H]Ifenprodil Autoradiography 

 

 Autoradiography was conducted for quantification of ifenprodil binding sites after 

10 day exposure to CORT and ethanol in male and female organotypic hippocampal 

cultures. Ifenprodil is a non-competitive antagonist at the polyamine binding site that is 

located on the extracellular tail of the NR2B subunit. We hypothesized that ethanol and 

CORT co-exposure would result in increased ifenprodil binding above that observed in 

tissue only exposed to ethanol or CORT alone. After 10 days of continuous drug 

exposure, cultures were removed from culture media and flash-frozen in isopentane on 

dry ice for storage at -80°C until [3H]ifenprodil binding studies were conducted. For 

[3H]ifenprodil binding studies, the porous membranes on which the hippocampal slices 

were cultured were cut and secured onto glass slides. Tissue was then preincubated for 15 

minutes in 50 mM Tris-HCl solution (pH 7.4) at room temperature. After 15 minutes, 

tissue was incubated with the [3H]ifenprodil (20 nM) on ice for 120 minutes in Tris-HCl 

solution also containing GBR12909 (3 µM; a sigma receptor antagonist to block non-

specific binding). Following incubation with the radioligand, tissue was washed with 

Tris-HCl wash buffer 3 times for 30 seconds, followed by one wash for 10 seconds. After 

washing, cultures were dried under a fan and placed into a dessicator overnight. Slides 

were arranged in a light-proof cassette and exposed to Kodak film. Films were developed 

after approximately 8 weeks of exposure and [3H]ifenprodil binding was quantified using 

ImageJ software for densitometric analysis of [3H]ifenprodil binding in each hippocampal 

slice.  

 

35 
 



Western Blotting 

 

Immunohistochemistry with organotypic slices has the advantage of preserving 

the cell layers for quantification of immunoreactivity within the CA1, CA3, and DG 

hippocampal regions. However, analysis is conducted using densitometry, which 

quantifies overall fluorescence from relatively thick slices (beginning at 200 µm), 

perhaps rendering this model less sensitive to subtle changes. Therefore, to fully discern 

if changes in protein density are occurring following long-term ethanol exposure in our 

model, parallel studies to measure NMDA NR2B receptor subunit hippocampal 

expression were conducted using Western blots. Western blot analysis of the NMDA 

NR2B receptor protein was conducted after 10 day exposure to CORT and ethanol. After 

10 days of drug exposure, slices were scraped into ddH2O containing 2% sodium dodecyl 

sulfate (SDS) and sonicated for 10 seconds at 20% amplitude. A 10 µL aliquot was taken 

at that time for quantification of protein in each sample using the Pierce BCA Protein 

Assay Kit (Fisher) and stored separately to avoid protein breakdown with repeated 

thawing/freezing cycles. All samples were stored at -80°C until the protein assay and 

immunoblotting procedures were conducted.  

 

Immunoblotting was conducted using protein extracted from male and female 

organotypic hippocampal slice cultures from at least five different rat litters (n = 6-10 per 

treatment group). For each sample, an equal amount of protein (20 µg) was loaded per 

lane. Samples were electrophoresed on 10-lane 7.5% Tris-glycine minigels in 

1×Tris/glycine/sodium dodecyl sulfate buffer (Bio-Rad, Hercules, CA, USA) at room 
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temperature for approximately 45 minutes at 200V using the mini-PROTEAN Tetra 

system (Bio-Rad). The gels were then removed from their carriages and placed into 

transfer buffer for 5 minutes before creation of a transfer sandwich. To transfer protein 

from the gel to nitrocellulose paper, a transfer sandwich was assembled and placed into 

the mini-PROTEAN Tetra box containing an ice pack and placed on a stir plate for 60 

minutes at room temperature (run at 100V). After the transfer step, nitrocellulose papers 

were washed three times and placed in 1×TBS on a rocker for 15 minutes. After washing, 

papers were placed into light-proof black boxes containing 5% non-fat dried milk in 

1×TBS for 60 minutes to help reduce non-specific antibody binding. Papers were washed 

again 3 times in 1×TTBS and placed on a rocker for 15 minutes in 1×TTBS. After 

washing, papers were placed into light-proof boxes containing 1×TTBS with 5% milk 

solution and anti-NMDA NR2B receptor subunit antibody (1:2000; Millipore) for 

overnight incubation at 4°C with agitation. This particular NR2B antibody recognizes 

amino acids 20-271 on the C-terminus. On Day 2, papers were washed 4 times by 

placement in 1×TTBS on a rocker for 5 minutes, for a total of 20 minutes of washing. 

After washing, papers were placed into light-proof boxes containing 1×TTBS with 5% 

milk solution and the fluorescent secondary antibody (IRDye800; Rockland 

Immunochemicals, Gilbertsville, PA, USA). As before, papers were washed 4 times for a 

total of 20 minutes before imaging. Papers were imaged using the Odyssey Infrared 

Imaging System (LI-COR Biosciences, Lincoln, NE, USA). Fluorescent intensity of 

bands was imaged using ImageJ software, and raw fluorescent were converted to percent 

control before comparison across treatment groups. This protocol was modified from the 

laboratories of Dr. James W. Geddes and Dr. Patrick J. Mulholland. 
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BSA-Conjugated Corticosterone   

 

In line with the traditional view of steroid actions, CORT is known to penetrate 

the cell membrane and bind intracellular glucocorticoid and mineralcorticoid receptors; 

travel to the nucleus; and alter gene expression. Some literature, however, has suggested 

that CORT has effects on neurons that are rapid and occur directly at the cell membrane 

independently of MR or GR activation and changes in gene transcription. Therefore, 

additional studies were conducted using BSA-conjugated corticosterone (BSA-CORT), 

which is a membrane-impermeable form of CORT that is useful for studying effects of 

CORT that are independent of MR and/or GR activation. Studies were conducted exactly 

as described in the above methods for measurement of PI uptake and NMDA receptor 

subunit expression after exposure to BSA-conjugated CORT (0.1 µM) during ethanol 

exposure and withdrawal. Briefly, male and female cultures were exposed to BSA-CORT 

(0.1 µM) or co-exposed to BSA-CORT and ethanol (50 mM) for 10 days. After 10 days 

of continuous drug exposure, cultures began a 24 hour ethanol withdrawal period with 

exposure to BSA-CORT with the addition of PI to the media for densitometric 

quantification of dead/dying cells, as described above. A general schematic of the 

treatment protocol is included (Figure 2.1). 
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Figure 2.1. Experimental protocol timeline. All cultures were exposed to CORT and/or 
ethanol for 10 days. Some cultures were allowed a 24 hour ethanol withdrawal (EWD) 
period with or without ifenprodil, after which PI fluorescence was quantified as a 
measure of toxicity. Additional cultures were prepared for either immunohistochemistry, 
autoradiography, or Western blotting after 10 day CORT and/or ethanol exposure without 
EWD. 
 

 

 

 

 

 

 

 

Copyright© Tracy Renee Butler 2011 

39 
 



Chapter 3 

RESULTS 

 

11 Day Corticosterone Exposure in Ethanol-Naïve Hippocampal Cultures 

 

 Male and female cultures treated with CORT with or without co-exposure to 

ethanol withdrawal were compared statistically, but will be discussed separately for 

clarity and ease of interpretation. Male and female ethanol-naïve organotypic 

hippocampal cultures were exposed to CORT (0.01 – 1 µM) for 11 days. In both the CA1 

and CA3 regions, a two-way ANOVA (treatment × sex) indicated a main effect of 

treatment (F(7,565) = 9.674, P < 0.001; F(7,565) = 17.915, P < 0.001), but no main effect 

of sex nor significant interaction. Therefore, male and female data were combined and a 

one-way ANOVA (factor: treatment) was conducted within each region. In the CA1 

region, there was a main effect of treatment (F(7,565) = 10.288, P < 0.001), such that 

only 0.1 µM CORT increased cell injury and/or death (~10% above control values; 

Fisher’s LSD post-hoc, P < 0.001). In the CA3 region, a one-way ANOVA (factor: 

treatment) indicated a main effect of treatment (F(7,565) = 17.646, P < 0.001), such that 

all concentrations of CORT (0.01 – 1 µM) produced significant cell death (~23-33% 

above control values; Fisher’s LSD post-hoc Ps < 0.001). In the DG, a two-way ANOVA 

(treatment × sex) showed no significant interaction, but a significant main effect of 

treatment (F(7, 567) = 16.181, P < 0.001) and a significant main effect of sex (F(1, 567) 

= 4.386, P < 0.05). Therefore, a one-way ANOVA (factor: treatment) was conducted 

separately within the DG for male data and female data, indicating a main effect of 
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treatment within each sex (F(7, 283) = 8.008, P < 0.001 for male data; F(7, 283) = 8.903, 

P < 0.001 for female data). In male cultures, the main effect of treatment was driven by 

increased PI uptake in cultures co-exposed to ethanol and CORT, but CORT exposure in 

ethanol-naïve cultures did not produce toxicity (discussed in further detail below). In 

female cultures, however, CORT (0.01 µM and 0.1 µM) exposure in ethanol-naïve 

cultures resulted in significantly greater PI uptake compared to control cultures (Fisher’s 

LSD post-hoc, Ps < 0.05). (Figure 3.1). Representative images of PI uptake are presented 

in Figure 3.2. 
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Figure 3.1. Propidium iodide uptake following 11 day exposure to CORT in ethanol-
naïve hippocampal cultures. Exposure to some concentrations of CORT (0.01 – 1 µM) 
produced modest, yet significant, cell death in the primary cell layers of the CA1, CA3, 
and DG  hippocampal regions.  #P < 0.05 vs. control.  
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Figure 3.2. Representative images of PI uptake in organotypic hippocampal cultures 
exposed to CORT (0.01 – 1 µM) for 11 days. 
 

 

 

 

 

 

 

 

 

 

 

 

43 
 



Corticosterone Exposure During Ethanol Exposure and Withdrawal 

 

 As discussed above, a two-way (treatment × sex) ANOVA conducted within the 

CA1 region and within the CA3 region indicated no significant interaction or main effect 

of sex for either region, and therefore male and female data were combined for statistical 

analysis. In the CA1 region, the one-way ANOVA indicated a main effect of treatment. 

Concurrent exposure to ethanol withdrawal and all concentrations of CORT (0.01 – 1 

µM) resulted in significantly greater toxicity compared to ethanol withdrawal without 

CORT and ethanol-naïve CORT-exposed cultures (Fisher’s LSD post-hoc, Ps < 0.05). In 

the CA3 region, the one-way ANOVA indicated a main effect of treatment. Co-exposure 

to ethanol and each concentration of CORT (0.01 – 1 µM) produced significantly greater 

toxicity compared to ethanol withdrawal alone (Fisher’s LSD post-hoc, Ps < 0.05), 

though toxicity in CORT and ethanol withdrawal co-exposed cultures was not greater 

than toxicity produced by CORT exposure in ethanol-naïve cultures (0.01 – 1 µM). In the 

DG, male and female data were considered separately, as a two-way ANOVA indicated a 

main effect of sex. For male cultures, exposure to all concentrations of CORT (0.01 – 1 

µM) during ethanol withdrawal produced toxicity greater than ethanol withdrawal alone 

(Fisher’s LSD post-hoc, Ps < 0.001). Additionally, exposure to some concentrations of 

CORT (0.01 µM and 1 µM) during ethanol withdrawal produced significantly greater 

than toxicity than that observed in ethanol-naïve CORT-exposed cultures (Fisher’s LSD 

post-hoc, Ps < 0.05). Though exposure to 0.1 µM CORT during ethanol withdrawal 

produced significantly greater toxicity than ethanol withdrawal alone, this toxicity was 

not greater than that observed in ethanol-naïve CORT (0.1 µM) exposed cultures. In 
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female cultures, exposure to all concentrations of CORT during ethanol withdrawal 

produced toxicity significantly greater than ethanol withdrawal (Fisher’s LSD post-hoc 

Ps < 0.001), though the toxicity observed was not different from toxicity produced by 

CORT exposure in ethanol-naïve cultures. Unexpectedly, in the DG of both male and 

female cultures, ethanol withdrawal alone resulted in significantly less PI uptake than 

control cultures (Ps < 0.01). (Figure 3.3). Representative images of PI uptake are 

presented in Figure 3.4. 
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Figure 3.3. Propidium iodide uptake during 24 hour withdrawal following 10 day 
exposure to CORT (0.01 – 1 µM) and ethanol (50 mM). **P < 0.05 vs. ethanol 
withdrawal (EWD) and ethanol-naïve cultures exposed to the same concentration of 
CORT; *P < 0.05 vs. ethanol withdrawal; # P < 0.05 vs. control. Most importantly for the 
hypothesis governing the current studies, exposure to CORT during ethanol exposure and 
withdrawal produced significantly greater toxicity at all concentrations in the CA1 region 
compared to CORT exposure in ethanol-naïve cultures and ethanol withdrawal alone.  
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Figure 3.4. Representative images of PI uptake in organotypic hippocampal cultures co-
exposed to CORT and ethanol (50 mM) for 10 days followed by 24 hour ethanol 
withdrawal (EWD).  
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Ifenprodil and Corticosterone Co-Exposure During Ethanol Withdrawal 

 

A subset of cultures that were exposed to CORT (0.1 µM) for 11 days during 

ethanol exposure and withdrawal were also exposed to ifenprodil (100 µM) during the 24 

hour ethanol withdrawal period (Figure 3.5). As in the previously discussed studies, PI 

uptake was measured as an indicator of cell damage and/or death after 24 hour ethanol 

withdrawal. The 0.1 µM concentration of CORT was chosen for these studies because 

toxicity produced by CORT exposure during ethanol exposure and withdrawal in the 

previous studies was not concentration dependent, and it is within the range of 

physiological or stress-relevant CORT levels. A two-way ANOVA (treatment × sex) in 

the CA1 region indicated a main effect of treatment (F(5,253) = 4.417, P < 0.001), but no 

effect of sex. Therefore, male and female treated cultures were combined for a one-way 

ANOVA analysis (factor: treatment). A one-way ANOVA indicated a main effect of 

treatment (F(5,253) = 4.563, P < 0.001). As in previous studies, exposure to CORT (0.1 

µM) for 11 days during ethanol withdrawal produced significantly greater toxicity than 

ethanol withdrawal alone or control (Fisher’s LSD post-hoc, Ps < 0.05). Most 

importantly, the addition of ifenprodil to CORT and ethanol co-treated cultures during 

withdrawal resulted in significantly decreased toxicity compared to cultures co-exposed 

to CORT during ethanol exposure and withdrawal without ifenprodil (Fisher’s LSD post-

hoc, P < 0.001; Figure 3.5). This supports the hypothesis that the toxicity due to CORT 

and ethanol exposure during withdrawal was due, in part, to activation of polyamine-

sensitive NR2B-containing NMDA receptors. Neither exposure to ifenprodil during 
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ethanol withdrawal nor ifenprodil exposure in ethanol-naïve cultures resulted in 

significant toxicity compared to ethanol withdrawal and control, respectively. (Table 1). 

 

In the CA3 region, a two-way ANOVA indicated a main effect of treatment 

(F(5,256) = 6.446, P < 0.001) and a main effect of sex (F(1,256) = 28.904, P < 0.001). As 

there was a main effect of sex, a one-way ANOVA (factor: treatment) was conducted 

separately for male cultures and female cultures. Among male cultures, there was a 

significant effect of treatment (F(5, 126) = 2.730, P < 0.05). CORT exposure during 

ethanol withdrawal did not produce toxicity compared to control cultures (P = 0.828) or 

ethanol withdrawal alone (P = 0.304). However, PI uptake was significantly reduced in a 

subset of cultures exposed to ifenprodil during withdrawal following CORT and ethanol 

co-exposure compared to CORT withdrawal cultures not exposed to CORT (Fisher’s 

LSD post-hoc, P < 0.05; Figure 3.5). Twenty-four hour exposure to ifenprodil did not 

produce toxicity in ethanol-naïve cultures or ethanol withdrawn cultures (Table 1). 

Among female cultures, there was also a significant effect of treatment (F(5, 129) = 

5.460, P < 0.001). The addition of ifenprodil during withdrawal in CORT and ethanol co-

exposed cultures resulted in significantly less toxicity than cultures co-exposed to CORT 

and ethanol without ifenprodil during withdrawal (Fisher’s LSD post-hoc, P < 0.01). 

However, PI uptake produced by CORT and ethanol co-exposure was not different from 

ethanol withdrawal alone. Neither twenty-four hour exposure to ifenprodil nor ifenprodil 

exposure during withdrawal resulted in significantly greater toxicity than control or 

ethanol withdrawal alone, respectively (Table 1). 
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In the DG, a two-way ANOVA indicated a main effect of treatment (F(5, 254) = 

9.391, P < 0.001), but no effect of sex. Therefore, male and female treated cultures were 

combined for a one-way ANOVA analysis (factor: treatment). A one-way ANOVA 

indicated a main effect of treatment (F(5,254) = 9.656, P < 0.001). Co-exposure to CORT 

and ethanol did not result in significantly increased PI uptake during withdrawal. 

However, the addition of ifenprodil during withdrawal in CORT and ethanol co-exposed 

cultures resulted in significantly less toxicity than cultures co-exposed to CORT and 

ethanol without ifenprodil during withdrawal (Fisher’s LSD post-hoc, P < 0.05). Twenty-

four hour exposure to ifenprodil in ethanol-naïve cultures and ethanol-withdrawn cultures 

resulted in significantly increased PI uptake compared to control cultures and ethanol-

withdrawn cultures, respectively (Fisher’s LSD post-hoc Ps < 0.05; Table 1). It is not 

clear why ifenprodil increased PI uptake only in the DG region. Representative images of 

PI uptake are presented in Figure 3.6. 
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Figure 3.5. Ifenprodil co-exposure during ethanol withdrawal following 10 day ethanol 
and CORT co-exposure. Within the CA1, CA3, and DG the addition of ifenprodil (IFEN) 
during ethanol withdrawal (EWD) significantly reduced toxicity produced by CORT and 
ethanol co-exposure. *P < 0.05 vs. ethanol withdrawal; **P < 0.05 vs. EWD + CORT; #P 
< 0.05 vs. control.  
 
 
 
 
 
 
 

51 
 



                                       Male Cultures                   Female Cultures 
 Control Control     
 
               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6. Representative images of PI uptake in cultures co-exposed to CORT (0.1 µM) 
and ethanol for 10 days followed by 24 hour ethanol withdrawal (EWD) and ifenprodil 
(IFEN) expoure.  
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Table 3.1. Propidium iodide uptake following 24 hour ifenprodil exposure in ethanol-
naïve and ethanol withdrawn hippocampal cultures. Slight toxicity was only observed 
within the DG. Data are represented as percent control ± SEM. *P < 0.05 vs. ethanol 
withdrawal; #P<0.05 vs. control. 
 
 
 

 
24h ifenprodil 24h ifenprodil during 

ethanol withdrawal 

DG 120.4 ± 4.8# 115.00 ± 4.6* 

CA3 (Males) 110.6 ± 6.9 102.9 ± 6.6 

CA3 (Females) 88.7 ± 4.7 77.7 ± 3.5 

CA1 103.9 ± 5.7 121.6 ± 11.9 
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Immunohistochemistry Following 10 Day Ethanol Exposure: NMDA NR2B Receptor 

Subunit 

 

It was hypothesized that chronic (10 day) ethanol exposure (10 days; 25, 50, or 

100 mM) would result in increased abundance of NMDA NR2B receptor subunit protein 

expression, as previous data have shown increased abundance of the NR2B subunit 

protein with 10 day exposure to 100 mM ethanol in organotypic hippocampal cultures, 

though these slices were twice as thick (400 µM) as the slices used in the current studies 

(Harris et al., 2003). We hypothesized that adaptive changes that may occur in the 

NMDA receptor subunit expression over the 10 day ethanol exposure period would make 

the hippocampus more vulnerable to cytotoxic insult upon removal from ethanol and 

exposure to CORT. Immunoreactivity was measured in the CA1, CA3 and DG 

hippocampal regions. A two-way ANOVA (treatment × sex) was conducted within each 

region. As a main effect of sex was not noted in any region, male and female data were 

combined and a one-way ANOVA (factor: treatment) was conducted within each region. 

In the CA1 region, there was no effect of treatment (F(3,222) = 2.258, P = 0.083). In the 

CA3 and DG regions, however, there was a significant main effect of treatment (CA3: 

F(3, 222) = 3.518, P < 0.05; DG: F(3,222) = 5.27, P < 0.01). In the CA3 region, 10 day 

treatment with 25 mM ethanol resulted in a significant increase in NR2B 

immunoreactivity compared to control cultures and cultures exposed to 50 or 100 mM 

ethanol (Fisher’s LSD post-hoc, P < 0.05). In the DG region, 10 day treatment with 100 

mM ethanol resulted in a significant decrease in NR2B immunoreactivity compared to 

control cultures and cultures exposed to 25 mM ethanol (Fisher’s LSD post-hoc, P < 
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0.01). (Figure 3.7). The decrease and increase in NR2B immunoreactivity within the DG 

and CA3 region, respectively, are small effects that are hard to interpret. However, most 

importantly for the hypotheses governing the current studies, no effect of ethanol (25-100 

mM) on NR2B immunoreactivity was observed within the CA1 region. Additionally, the 

concentration of interest in the current studies (50 mM, ~230 mg/dl ethanol) was not 

associated with changed NR2B immunoreactivity in any region. Representative images 

of NR2B immunoreactivity are presented in Figure 3.8. 
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Figure 3.7. NR2B subunit immunoreactivity following 10 day ethanol exposure. *P < 
0.05 vs. control.  
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Figure 3.8. Representative images of NMDA receptor NR2B subunit immunoreactitivy in 
organotypic hippocampal cultures exposed to ethanol (25-100 mM). 
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NMDA NR2B Subunit Immunoreactivity Following 10 Day Ethanol and Corticosterone 

Co-Exposure 

 

 Immunohistochemistry was conducted to determine if 10 day ethanol and CORT 

co-exposure resulted in increased NR2B subunit immunoreactivity in organotypic 

hippocampal cultures. As in the studies described above for measurement of PI uptake, 

cultures were co-exposed to ethanol (50 mM) and CORT (0.1 µM) for 10 consecutive 

days before immunohistochemistry was conducted for the NR2B subunit, and 

immunoreactivity was measured in the primary cell layers of the CA1, CA3, and DG 

regions. A two-way ANOVA (treatment × sex) was conducted within each region. In the 

CA1 region there was a main effect of treatment (F(3,150) = 8.919, P < 0.001) and a 

main effect of sex (F(1, 150) = 2.101, P < 0.01). As there was a main effect of sex, male 

and female data were separated and a one-way ANOVA (factor: treatment) was 

conducted for male data and for female data. A significant treatment effect was observed 

in the CA1 region of male cultures (P < 0.05). Ethanol and CORT co-exposure resulted in 

significantly greater NR2B immunoreactivity as compared to ethanol-treated cultures (P 

< 0.05), though the increase in NR2B immunoreactivity in co-treated cultures was not 

greater than ethanol-naïve cultures exposed to CORT. The increase in NR2B 

immunoreacitivy following CORT exposure in ethanol-naïve cultures and ethanol and 

CORT co-exposure resulted in a significant increase above control values (~118% greater 

than control; Ps < 0.05). A significant treatment effect was also observed in the CA1 

region of female cultures (P < 0.001). Ethanol and CORT co-exposure resulted in 

significantly greater NR2B immunoreactivity as compared to ethanol exposure alone (P < 
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0.05), though this slight increase was not greater than control values, as ethanol exposure 

alone resulted in a slight decrease in NR2B immunoreactivity compared to control values 

(~15%; P < 0.05). CORT exposure alone resulted in a slight but significant increase in 

NR2B immunoreactivity compared to control values (~11%; P < 0.05). A two-way 

ANOVA within the CA3 region indicated a significant main effect of sex (F(1, 150) = 

4.074), such that across treatments, immunoreactivity was higher in male cultures 

compared to female cultures (~7% greater). As there was a sex effect, male and female 

data were separated and a one-way ANOVA (factor: treatment) was conducted for both 

male data and female data; however, a treatment effect was not detected in either male or 

female cultures (F(3, 78) = 1.986 for male data; F(3,71) = 1.295 for female data). Within 

the DG, a two-way ANOVA indicated a significant effect of treatment (F(3, 150) = 

2.736, P < 0.05). As there was no effect of sex, male and female data were combined and 

a one-way ANOVA (factor: treatment) was conducted. Although the two-way ANOVA 

indicated a statistically significant main effect of treatment (but no interaction), the one-

way ANOVA did not indicate a statistically significant main effect of treatment after 

combining male and female data (F(3, 150 = 2.601; P = 0.054). (Figure 3.9). 

Representative images of NR2B immunoreactivity are presented in Figure 3.10. 
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Figure 3.9. NR2B subunit immunoreactivity following 10 day ethanol (50 mM) and 
CORT (0.1 µM) co-exposure for 10 days. Slight but significant increases in NR2B 
immunoreactivity were detected in the CA1 region with 10 day exposure to CORT, 
though this increase was not greater following CORT and ethanol (EtOH) co-exposure. 
#P < 0.05 vs. control; *P < 0.05 vs. ethanol; & P < 0.05 vs. CORT alone. 
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Figure 3.10. Representative images of NR2B immunoreactivity in cultures co-exposed to 
CORT (0.1 µM) and ethanol (50 mM) for 10 days.  
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[3H]Ifenprodil Autoradiography 

 

 The current studies hypothesized that activation of polyamine-sensitive NMDA 

NR2B receptors would mediate hippocampal injury following ethanol withdrawal after 

long-term co-exposure to CORT and ethanol, and this effect would be most marked in the 

CA1 region. NR2B subunit immunoreactivity after cultures were ethanol and CORT co-

exposed for 10 days, however, indicated relatively small effects related to changes in 

NR2B immunoreactivity in CORT-exposed cultures that were not potentiated by ethanol 

co-exposure. Therefore, to further address this hypothesis, another subset of male and 

female hippocampal cultures was exposed to CORT (0.1 µM) and ethanol (50 mM) for 

10 days for autoradiographic binding with [3H]ifenprodil. Hippocampal regions were not 

distinguishable upon film development, and therefore slices were analyzed using 

densitometric measurement of pixel intensity for the entire slice. A two-way (treatment × 

sex) ANOVA indicated a main effect of treatment (F(3, 103) = 27.509, P < 0.001), but no 

significant interaction nor main effect of sex. Therefore, male and female data were 

combined and converted to percent control. A one-way ANOVA (factor: treatment) 

indicated a main effect of treatment (F(3, 103) = 27.1145, P < 0.001). Cultures exposed 

to CORT resulted in significantly less [3H]ifenprodil binding compared to all other 

treatment groups (Fisher’s LSD post-hoc, Ps < 0.001), showing nearly a 50% reduction in 

binding below control values. Figure 3.11. Representative images of [3H]ifenprodil-

labeled slices are presented in Figure 3.12. 
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Figure 3.11. [3H]Ifenprodil autoradigraphy following 10 day ethanol (EtOH; 50 mM) and 
CORT (0.1 µM) co-exposure.  
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Figure 3.12. Representative autoradigraphy images of organotypic hippocampal cultures 
exposed to [3H]Ifenprodil following 10 day CORT and ethanol (EtOH) co-exposure. 
Films were allowed 8 weeks before developing. 
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Western Blotting: NMDA NR2B Receptor Subunit   

 

In addition to immunohistochemistry and autoradiography studies, Western blots 

were conducted for quantification of changes in hippocampal NMDA NR2B subunit 

density following 10 day exposure to ethanol and/or CORT. An additional subset of 

cultures was also exposed to RU-486. Organotypic hippocampal slices were 

homogenized for analysis, thus not allowing for measurement of NR2B immunoreactivity 

in separate hippocampal regions. As a two-way ANOVA (treatment × sex) did not 

indicate a significant interaction nor main effect of sex, male and female data were 

combined and a one-way ANOVA was conducted (factor: treatment). No significant 

main effect of treatment was observed (F(5,45) = 0.894, P = 0.485). Though not 

statistically significant, it is notable that changes in NR2B immunoreactivity were in the 

expected direction in all treatment groups. For instance, we hypothesized that increases in 

NR2B immunoreactivity may occur in ethanol-exposed cultures, but regardless, CORT 

and ethanol co-exposure would further increase NR2B immunoreactivity. The current 

data show 16% greater immunoreactivity in ethanol and CORT co-exposed cultures 

compared to cultures only exposed to ethanol; an increase that was reduced with the 

addition of RU-486. (Figure 3.13). Figure 3.14 contains a representative images of a 

Western blot for NMDA NR2B receptor subunit immunoreactivity. 
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Figure 3.13. Western blot analysis of NR2B subunit immunoreactivity following 10 day 
drug exposure. No statistically significant changes were observed following 10 day drug 
treatment. 
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Figure 3.14. Representative images of Western blot immunoreactivity for the NMDA 
NR2B subunit. 
 

 

 

 

 

 

 

 

 

 

67 
 



BSA-Conjugated Corticosterone in Ethanol-Naïve and Ethanol-Withdrawn Cultures  

 

An additional series of studies was conducted to examine the effect of 10 day 

exposure to BSA-conjugated CORT on PI uptake in male and female hippocampal 

cultures. Cultures were exposed to BSA-CORT (0.1 µM) for 10 days or co-exposed to 

BSA-CORT and ethanol for 10 days before continued exposure to BSA-CORT during 24 

hour ethanol withdrawal. A two-way ANOVA (treatment × sex) was conducted for each 

hippocampal region. Within the CA1 region, there was a main effect of sex (F(1, 171) = 

9.542, P < 0.01), such that PI uptake was greater in male cultures compared to female 

cultures. Subsequent one-way ANOVAs were conducted for male data and female data 

separately (factor: treatment); however, there was no effect of drug treatment on PI 

uptake for either male or female cultures. A similar pattern was observed in the CA3 

region, such that there was a main effect of sex (F(1, 171) = 6.610, P < 0.05) due to 

greater PI uptake in male cultures compared to female cultures; however, one-way 

ANOVAs indicated that there was no effect of drug treatment on PI uptake in either male 

or female cultures. In the DG, a two-way ANOVA showed that there was no significant 

interaction, nor main effect of either sex or treatment. These data suggest that effects of 

CORT and ethanol co-exposure on PI uptake are not related to putative cell-membrane 

bound CORT receptors (Figure 3.15). Representative images of PI uptake are presented 

in Figure 3.16. 
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Figure 3.15. Propidium iodide uptake in hippocampal cultures exposed to BSA-CORT 
(0.1 µM) for 11 days or co-exposed to BSA-CORT and ethanol for 10 days followed by 
24 hour ethanol withdrawal (EWD). 
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Figure 3.16. Representative images of PI uptake following 11 day BSA-CORT (0.1 µM) 
exposure in ethanol-naïve and ethanol-withdrawn (EWD) cultures.  
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Chapter 4 

DISCUSSION 

   

NMDA NR2B Subunit-Dependent Toxicity During Withdrawal Following Ethanol and 

Corticosterone Co-Exposure 

 

Chronic alcohol exposure and withdrawal are related to numerous deleterious 

consequences. In particular, CNS-related damage is associated with persisting deficits in 

cognitive functioning, with a greater number of withdrawal episodes positively 

correlating with greater long-term neurologic function (Duka et al., 2003). Chronic 

alcohol intake and withdrawal is also related to perturbations in HPA axis functioning in 

humans and rodents. Exogenous administration of CORT and ethanol exposure and 

withdrawal have been independently shown to affect signaling of glutamatergic NMDA 

receptors, in such a way as to make the brain more vulnerable to injury. In particular, 

increased abundance and/or function of the polyamine-sensitive NMDA NR2B subunit 

has been shown to be an important mediator of ethanol withdrawal-related neuronal 

damage and excitability in vitro, and also an important mediator of ethanol-related 

learning deficits in vivo (Butler et al., 2010; Prendergast et al., 2000; Thomas et al., 

2004). CORT exposure has also been shown to increase NMDA NR2B receptor subunit 

expression (Meyer et al., 2004). The NR2B subunit is unique from other NMDA receptor 

subunits in that its inclusion results in greater open channel time and Ca2+ influx (Chen et 

al., 1999). Also, the NR2B subunit contains a number of modulatory binding sites, 

including an N-terminal site for endogenous polyamine binding, that further potentiates 
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open channel time. Ethanol exposure and withdrawal, as well as CORT exposure, also 

result in increased polyamine abundance, thus providing a mechanism for potentiated 

excitotoxic damage during ethanol withdrawal that is mediated by the NMDA NR2B 

subunit following long-term ethanol and CORT co-exposure (Davidson & Wilce, 1998; 

Gibson et al., 2003). The current studies examined the effect of long-term CORT and 

ethanol co-exposure on hippocampal toxicity during ethanol withdrawal using an in vitro 

model of prolonged ethanol exposure and withdrawal. We hypothesized that the CA1 

region would be most vulnerable to damage during ethanol withdrawal following 10 day 

co-exposure. Additionally, we hypothesized that neuroadaptations in polyamine-sensitive 

NMDA NR2B receptor subunits would occur following long-term ethanol and CORT co-

exposure. A final series of studies examined the potential contribution of membrane-

bound CORT receptors on damage during withdrawal resulting from ethanol co-

exposure. 

 

It is important to note that the concentrations of CORT used in the current studies 

parallel stress-relevant concentrations that have been measured in rodent plasma, brain 

tissue, hippocampal extracellular fluid, and human plasma, including CORT 

concentrations observed following ethanol exposure and withdrawal. However, CORT 

levels measured directly from brain tissue show differences compared to plasma CORT 

levels. Basal concentrations of free CORT measured in hippocampal dialysate of 

unstressed adult male rats approximate 0.01-0.1 µM (Penalva et al., 2003), thereby 

activating MRs (Kd ~ 0.005 uM) with little, if any, activation of GRs (Kd ~ 0.05 µM). 

Little et al. (2008) reported that in the hippocampus of male mice, 3 week ethanol diet 
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without withdrawal did not increase CORT compared to control mice. However, when 

the 3 week drinking period (~20-24 g/kg/day alcohol) was followed by 6 week ethanol 

withdrawal, hippocampal CORT levels were doubled in magnitude compared to control 

rats. Plasma CORT levels were also measured, and interestingly, neither free nor total 

plasma CORT levels differed between ethanol drinking and control mice at any timepoint 

(Little et al., 2008). In a paradigm of prolonged exposure to ethanol fluid (20 weeks; ~15-

20 g/kg/day) using female C57/BL10 mice, ethanol drinking mice had a significantly 

greater CORT concentration in hippocampal tissue (up to 50 ng/g), as well as in total and 

free plasma CORT levels  (total: 250 nM; free: 35 nM). Additionally, 6 day ethanol 

withdrawal resulted in greater CORT concentration in hippocampal tissue (~75 ng/g), but 

not plasma (back to baseline and equivalent to control, ~100 nM) (Little et al., 2008). In 

adult male rats, measurement of total plasma CORT after long-term ethanol drinking rats 

(3 weeks; BEC ~140 mg/dl) peaks at approximately 60 ng/ml (~0.2 µM) (Rasmussen et 

al., 2000). CORT administration is also able to significantly potentiate alcohol 

withdrawal seizures in mice (Roberts, Crabbe, & Keith, 1994). These data suggest that 

duration of ethanol exposure and withdrawal(s) may be critical in the degree of HPA axis 

adaptation measured by CORT. One caveat to CORT measurement in plasma is that free 

or total CORT levels may be reported. Total CORT levels include free-CORT and bound-

CORT (CORT bound to CORT binding globulin). Bound-CORT, however, cannot cross 

the blood brain barrier, and MR and GR activation in the CNS is accomplished by free 

CORT. It has been reported that levels of CORT binding globulin are not changed after 

long-term ethanol intake in adult mice following an ethanol exposure regimen that does 

result in increases in CORT concentration during both ethanol exposure and withdrawal, 
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suggesting greater availability of CORT to bind its receptors (Tabakoff, Jafee, & 

Ritzmann, 1978). It is important to note that differences in brain and plasma CORT exist 

in preclinical literature; however, this suggests that difference in peripheral CORT levels 

likely represent robust group differences. This reinforces the potentially great impact of 

exaggerated CORT responses on neuronal function in alcohol dependent humans, as 

several studies have noted marked increases in salivary and plasma CORT levels in 

alcohol-dependent individuals compared to control subjects (Adinoff et al., 1991; Adinoff 

et al., 2003). When comparing adult male human alcoholics to control subjects, plasma 

CORT levels are approximately twice as great in alcoholic subjects during chronic 

ethanol intake and after 24 hours of ethanol withdrawal, though CORT levels decrease 

and match control subject CORT levels following 7 days of abstinence (Kutscher et al., 

2002). 

 

Regional Differences in Hippocampal Toxicity Produced by 11 Day Corticosterone 

Exposure in Ethanol-Naïve Cultures 

 

The current data demonstrate that 11 day exposure to CORT (0.01 – 1 µM) results 

in slight, but significant, toxicity within all three hippocampal regions. Toxicity was most 

prominent in the pyramidal cell layer of the CA3 region, with exposure to all 

concentrations of CORT resulting in increased PI uptake by approximately 20-30% 

above control values. This was in contrast to the slight, but significant, toxicity observed 

in the granule cell layer of the female DG with exposure to CORT and the minimal 

toxicity observed in the CA1 region with exposure to CORT. Regional differences in PI 
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uptake following 11 day CORT exposure is not entirely surprising, as each hippocampal 

region has been noted for particular vulnerability to certain types of insult. For instance, 

CA3 region pyramidal cells are most vulnerable to damage with kainic acid exposure, 

perhaps because this region contains the greatest density of kainate receptors (Holopainen 

et al., 2004; Martens & Wree, 2001); DG granule neurons are most vulnerable to cell 

death following binge ethanol exposure (Obernier et al., 2002); and CA1 pyramidal 

neurons are most vulnerable to cell death in models of excitotoxicity, including ethanol 

withdrawal (Butler et al., 2010; Prendergast et al., 2004).  

 

In regard to the current dataset, increased susceptibility to damage within the CA3 

hippocampal region is in agreement with in vivo studies of long-term CORT exposure 

that have shown extensive damage to dendritic spines and reduced neuron size within the 

CA3 region compared to other hippocampal regions. These data demonstrate that high 

levels of CORT are detrimental to neuronal integrity by decreasing neuron number and 

by altering neuronal morphology (Woolley et al., 1990). Similarly to effects produced by 

long-term exposure to CORT, long-term exposure to repeated stress also results in 

atrophy of CA3 pyramidal neuron dendrites (Watanabe, Gould, & McEwen, 1992a; 

Watanabe et al., 1992b). Greater vulnerability of CA3 region neurons to damage and/or 

cell death with prolonged CORT exposure could be attributable to GR distribution among 

the hippocampal regions. GRs are least abundant in the CA3 region as compared to the 

CA1 and DG regions. It is possible that concentrations of CORT that saturate GRs in the 

CA3 region do not saturate GRs in the CA1 and DG regions (Sarabdjitsingh et al., 2009). 

It is not clear in the model used in the current studies how GR density may be affected in 
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each hippocampal region by long-term CORT exposure, though high doses of CORT in 

vivo (4 day exposure; ~245 ng/ml plasma CORT; ~0.7 µM) have been documented to 

reduce mRNA for GRs in the CA1 region (Herman & Spencer, 1998). No change in 

protein expression of GRs (Herman & Spencer, 1998) or downregulation of GR protein 

and mRNA has been noted in the hippocampus following long-term CORT treatment or 

stress in vivo or in vitro (Sapolsky et al., 1995). MR mRNA and protein expression has 

also been noted to decrease with prolonged CORT exposure (Hugin-Flores et al., 2004; 

Xu et al., 2010). Pyramidal neurons of the CA3 region also lack immunoreactivity for the 

Ca2+ binding proteins Calbindin-D28k and parvalbumin, perhaps increasing vulnerability 

to CORT-related damage by Ca2+ influx (Sloviter et al., 1989).  

 

Minimally increased injury was observed in CA1 region pyramidal neurons with 

11 day CORT exposure compared to control cultures. CA1 region damage has been 

demonstrated after long-term in vivo CORT treatment (40 mg/kg/day for 3 weeks) that is 

similar to the damage observed in CA3 region neurons, such that the CA1 pyramidal 

neurons had disrupted dendritic morphology, reduced spine number, and shorter dendrite 

length (Morales-Medina et al., 2009; Sapolsky et al., 1985). However it should be noted 

that in vivo paradigms have yielded inconsistent results in regard to CA1 neuronal 

damage across studies. This may be due largely to duration and dose of CORT treatment, 

with longer duration and/or higher dose or concentrations of CORT required for overt 

neuronal loss. The slight CA1 damage that was observed in this model could also be 

attributable to sustained stress-relevant CORT levels that directly affected CA3 neuronal 

integrity and synaptic signaling, leading to increased damage in CA1 and DG regions in 
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this model, as has been suggested by previous investigators (Morales-Medina et al., 

2009). The current studies required cultures to remain in vitro for 16 days before 

measurement of cell death, and it is possible that network connectivity let to enhanced 

excitation that was propagated along the trisynaptic circuit without regulation by afferent 

or efferent connections to modulate synaptic transmission between the cell layers. The 

organotypic hippocampal cell culture model has the advantage of maintaining the 

trisynaptic circuitry of the hippocampal layers and synaptic transmission remains largely 

intact relative to the in vivo situation. However, it has been shown that, unlike the in vivo 

environment, CA1 pyramidal axons begin to make extensive connections with granule 

cells of the DG after only one week in vitro (Gutierrez & Heinemann, 1999).  

 

High concentrations of CORT, thereby activating GRs, may also be detrimental 

due to increased NMDA receptor subunit mRNA and NMDA receptor abundance 

(measured by [3H]MK-801 binding). Specifically, 10 day CORT exposure in vivo (pellet 

implants; 30-35ug/dl plasma CORT levels) increases mRNA for NR2A and NR2B 

receptor subunits, but not the NR1 subunit, in adult male rat hippocampus. Additionally, 

CORT administration via drinking water for 10 days results in significant increases in 

binding of [3H]MK-801 in a hippocampal membrane preparation, suggesting an increase 

in the overall number of NMDA receptors (Weiland et al., 1997). Acute restraint stress in 

adult male rats also increases mRNA for NR1 and NR2B, but not NR2A, subunits in the 

CA3 hippocampal region. A similar pattern is noted in the CA1 region mRNA for the 

NR2B subunit (Bartanusz et al., 1995).  GR activation with dexamethasone exposure or 

CORT injection in vivo is also able to upregulate ODC activity in the hippocampus of 
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adult male mice, resulting in increased polyamine biosynthesis and providing for 

increased allosteric potentiation of NMDA receptor activity (Cousin et al., 1982; 

González Deniselle et al., 1997). GR-dependent upregulation of ODC in peripheral tissue 

has been demonstrated in a model of early life stress by food deprivation/isolation in pre-

weaned rat pups, showing that increases in serum CORT concentration precedes 

significant increases in ODC measured in intestinal mucosa. Importantly, administration 

of the GR antagonist RU-486 blocks this increase. Additionally, exogenous 

administration of hydrocortisone upregulates ODC mRNA in intestinal mucosa, and this 

effect is also blocked by co-administration of RU-486 or the ODC inhibitor α-

difluoromethylornithine (DFMO) (Nsi-Emvo et al., 1996). ODC mRNA is significantly 

upregulated in rat pancreatic cells by administration of dexamethasone; an effect that is 

blocked by co-administration of GR-38486 or an inhibitor of protein synthesis 

(cycloheximide) (Rosewicz & Logsdon, 1991). Taken together, previous literature has 

shown a significant effect of CORT on polyamine biosynthesis, thus suggesting that the 

damage observed in the current studies following long-term CORT exposure may be due, 

in part, to increased polyamine content and potentiation of NMDA receptor activity. 

 

Unexpectedly, the current data showed sex-selective damage in the DG, such that 

the female DG was more vulnerable than the male DG to damage by CORT exposure 

(0.01 – 1 µM). As discussed in the above paragraph, CA1 connections back to DG 

granule neurons may make the DG more vulnerable to injury in vitro than in vivo, though 

it is unclear if this differs between male and female cultures. Alternatively, the DG is 

uniquely susceptible to altered neuronal density by CORT-induced suppression of 
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neurogenesis via a reduction in cell proliferation (reviewed by Mirescu & Gould, 2006). 

Sex differences have been noted regarding effects of CORT on neurogenesis in vivo 

(Brummelte & Galea, 2010). After 21 days of daily CORT administration (40 mg/kg), 

adult female rats had significant suppression of cell proliferation (significantly fewer 

Ki67-labeled cells) in the ventral hippocampus compared to female control rats. No effect 

on cell proliferation was noted in male rats, whereas CORT-treated male rats showed 

significant reductions in survival of immature neurons compared to male control rats. 

These data highlight potential sex-dependent mechanisms of plasticity in the rodent 

hippocampus that may contribute to vulnerability to injury. A mouse model of 

organotypic hippocampal cultures has shown that 14 DIV is sufficient for visualization 

and quantification of proliferating cells. Further, though cultures were obtained from 

neonatal pups, sites of cell proliferation were similar to those observed in vivo in adult 

rodents, suggesting that sex-dependent effects on neurogenesis observed in vivo are 

relevant to studies in organotypic cultures (Raineteau et al., 2004).  

 

Recent literature has also found marked sex differences in basal circulating CORT 

levels and GR expression. Ordyan et al. (2008) compared plasma CORT levels and 

expression of GR isoforms in hippocampal homogenates from Sprague Dawley rat pups 

ranging from PND 3-30. Their data showed that early in postnatal development (PND 3-

15), males have a significantly greater level of plasma CORT than females. This pattern 

reverses, however, such that females have significantly higher CORT levels from PND 

18-30, with CORT levels increasing across the period studied in both male and female 

rats. Sex differences were also detected in hippocampal GR expression such that 
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expression of the 94 kDa isoform of the GR receptor was significantly lower (nearly 

absent) in female hippocampi at PND5 compared to male hippocampi. Female 

hippocampi also had significantly lower levels of the 82 kDa GR isoform at PND 5-15 

compared to male hippocampi. In consideration of the current data, it is not clear why the 

sex difference in toxicity was observed only in the DG, though the GR expression studies 

cited above did not compare GR expression among the different hippocampal regions. 

Sex differences in postnatal ontogeny of GR expression suggests that lower expression of 

GRs in the female brain may contribute to greater vulnerability to injury in neurons in 

female cultures. Lower expression of GRs and/or MRs in female cultures relative to male 

cultures would result in greater non-specific actions by CORT, and perhaps increase 

increase vulnerability to toxicity through multiple signaling pathways. It is unclear at this 

time what the functional differences are, if any, of GR isoforms in rat, as other rodent 

studies do not discuss separate isoforms. Studies of human GR isoforms suggest there 

may be as many as 16 different isoforms that are able to homo- and heterodimerize to 

produce tissue-specific actions of CORT, though much work is needed to understand the 

functional importance of isoform combinations and the relevance to preclinical models 

(Lu & Cidlowski, 2006). 

 

10 Day Ethanol Exposure: Increased Vulnerability to Toxicity During Ethanol 

Withdrawal 

 

Toxicity observed with CORT exposure in ethanol-naïve cultures was not 

completely unexpected given past literature on CORT-related hippocampal damage in 
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vivo. However, one of the primary hypotheses governing the current studies suggests that 

neuroadaptations occurring during the 10 day ethanol exposure period would render the 

hippocampus more vulnerable to injury during withdrawal following ethanol and CORT 

co-exposure. Previous data using this ethanol exposure model (10 days; 50 mM ethanol, 

~230 mg/dl; Butler et al., 2008) has shown that this ethanol exposure regimen sensitizes 

the hippocampus to injury during ethanol withdrawal without producing overt toxicity 

(Butler et al., 2008; Butler et al., 2009; Self et al., 2004; Self et al., 2005). Using this 

model, various drugs or receptor ligands have produced significant toxicity during 

ethanol withdrawal, including the polyamine spermidine; a specific adenosine A1 

receptor antagonist (DPCPX); the HIV-1 protein Tat; and beta-amyloid protein (Barron et 

al., 2008; Butler et al., 2008; Self et al., 2004; Self et al., 2005), thus modeling 

vulnerability to excitotoxicity that occurs during withdrawal from long-term ethanol 

exposure. Vulnerability to insult using this model has been shown to be largely dependent 

on alterations in NMDA receptor function, as toxicity from all of the drugs or ligands 

noted above was reduced by NMDA receptor antagonism. This model is distinct from 

that used in previous studies of long-term ethanol exposure in our laboratory with a 

higher concentration of ethanol (10 days; 100 mM, ~460 mg/dl; Prendergast et al., 2004) 

that resulted in overt toxicity during withdrawal. Injury during withdrawal from 10 day 

exposure to 100 mM ethanol was also shown to be NMDA-receptor dependent, and could 

be reduced by NMDA receptor antagonism, including antagonism of polyamine 

activation of the NMDA NR2B subunit (i.e. inhibition of polyamine synthesis with 

DFMO; polyamine-site antagonism with ifenprodil). Additionally, 10 day exposure to 

100 mM ethanol significantly increased NR1 and NR2B subunit expression measured by 
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Western blot analysis (Harris et al., 2003). Therefore, it is clear that 50 mM ethanol 

exposure for 10 days increases functionality of the NMDA receptor system, resulting in 

increased vulnerability to insult during ethanol withdrawal, but alterations in NMDA 

receptor subunit expression that may also contribute to increased vulnerability to toxicity 

during ethanol withdrawal have yet to be investigated until now in this model of 10 day 

exposure to 50 mM ethanol followed by withdrawal. 

 

Increased Vulnerability of the CA1 Region to Excitotoxic Insult 

 

Our laboratory demonstrated in a series of studies using this organotypic 

hippocampal cell culture model that increased vulnerability of CA1 neurons to 

excitotoxic insult is due, at least in part, to greater density of NMDA NR2B-containing 

neurons (Butler et al., 2010). This is true in cultures aged to 5 DIV or in cultures exposed 

to ethanol for 10 days followed by 24 hour ethanol withdrawal (aged to 16 DIV). To 

demonstrate the importance of polyamine-sensitive NR2B subunits in NMDA toxicity, 

these studies showed that ifenprodil significantly reduced toxicity from NMDA exposure, 

and co-exposure to the polyamine spermidine and a sub-toxic concentration of NMDA 

resulted in markedly enhanced toxicity in cultures (Butler et al., 2010). These data are 

highly relevant to the current studies, as they reinforce the vulnerability of the CA1 

region to NMDA-receptor mediated excitotoxic damage that is modulated by the 

polyamine binding site located on the NR2B subunit.  
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Excitotoxic Insult During Ethanol Withdrawal Following Ethanol and Corticosterone 

Co-Exposure: Polyamine-Sensitive NR2B Subunit-Mediated Toxicity 

 

We hypothesized that toxicity measured after 24 hour ethanol withdrawal would 

be greatest in the CA1 region following ethanol and CORT co-exposure, and markedly 

enhanced as compared to ethanol-naïve cultures. Indeed, in the CA1 region, CORT (0.01 

– 1 µM) and ethanol co-exposure resulted in significantly greater injury during ethanol 

withdrawal than injury observed with ethanol withdrawal alone or CORT (0.01 – 1 µM) 

exposure in ethanol-naïve cultures. We further hypothesized that, as in the excitotoxicity 

studies cited above, NR2B subunit antagonism at the polyamine binding site would 

attenuate excitotoxic insult during ethanol withdrawal from ethanol and CORT co-

exposure.  In addition to increases in function and/or number of NMDA receptors after 

long-term ethanol exposure that make the hippocampus more vulnerable to injury during 

withdrawal, increased polyamine abundance (spermidine) and glutamate content has been 

observed in multiple models of excitotoxicity, including during ethanol withdrawal 

(Gibson et al., 2003). This may be critical in NMDA-mediated hyperexcitiability and 

toxicity during ethanol withdrawal via allosteric potentiation of NMDA receptor channel 

function at the polyamine site located on the N-terminus of the NR2B subunit (Williams 

et al., 1994). And in accord with this hypothesis, the current data support a role for 

polyamine-sensitive NR2B subunits in hippocampal injury during withdrawal after 10 

day co-exposure to ethanol and CORT, as the addition of ifenprodil during the 

withdrawal period significantly reduced toxicity produced by ethanol and CORT (0.1 

μM) co-exposure. The enhanced damage from ethanol and CORT co-exposure during 
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ethanol withdrawal in the CA1 region and the preferential expression of polyamine-

sensitive NMDA NR2B receptor subunit in this region (Butler et al., 2010) supports the 

hypothesized importance of the NR2B subunit in mediating damage during ethanol 

withdrawal after CORT and ethanol co-exposure. 

 

CORT and ethanol co-exposure produced the greatest toxicity in the CA1 region 

following withdrawal, although significantly greater injury during ethanol withdrawal 

was noted in DG granule neurons in male cultures (0.01 and 1 µM) that was greater than 

injury observed following ethanol withdrawal alone and CORT exposure in ethanol-naïve 

cultures. CA3 region injury produced by CORT exposure was not made worse by co-

exposure to ethanol and withdrawal, perhaps due to the significant toxicity observed 

following CORT exposure in the CA3 region of ethanol-naïve cultures. Damage to DG 

granule cells in female cultures was also not made worse by co-exposure to ethanol and 

withdrawal. It is likely that subtle alterations reported after CORT exposure (i.e. changes 

in dendritic integrity) have major implications for neuronal signaling that contribute to 

profound neurodegeneration over long-term treatment. Taken together, these results 

support a hypothesis in which CORT enhances disruptions in glutamatergic signaling 

produced by long-term ethanol exposure that results in CORT-related neuronal atrophy 

during ethanol withdrawal. It is unclear why injury was not concentration-dependent in 

any hippocampal region, though biphasic effects of CORT on neuronal integrity have 

been noted. For instance, both adrenalectomy and administration of high concentrations 

of CORT (~.310-.650 µM) potentiate toxicity produced by NMDA exposure in 

cholinergic neurons (Abraham et al., 2000). 
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Glutamatergic Signaling Involved in Ethanol and Corticosterone-Related Damage 

During Ethanol Withdrawal 

 

Previous literature has noted in models of hypoxia/ischemia that even slightly 

increased CORT levels that do not injure neurons independently increase vulnerability of 

neurons to NMDA-receptor mediated excitotoxic cell death (Sapolsky & Pulsinelli, 

1985). Thus, though high levels of long-term CORT exposure can result in damage on 

their own, sub-threshold concentrations of CORT can also increase susceptibility to 

neuronal damage, just as long-term ethanol exposure can increase susceptibility to 

neuronal damage during ethanol withdrawal; together, ethanol and CORT likely have 

profound effects on glutamatergic signaling.  Converging lines of evidence suggest the 

importance of glutamatergic signaling in CORT related damage and GR-dependent 

changes in NMDA receptor function and/or number. Competitive NMDA receptor 

antagonism ameliorates stress-induced hippocampal dendritic atrophy to a similar degree 

as inhibition of steroid biosynthesis in adult male Sprague-Dawley rats (Magarinos & 

McEwen, 1995). Suppression of glutamate release by the Na+ channel inhibitor phenytoin 

reverses the reductions in the number of apical dendritic branching points and the total 

dendritic length produced by chronic restraint stress or chronic CORT administration in 

the CA3 region of adult male rats (Watanabe et al., 1992b). Of particular relevance to the 

current studies, previous data using the same co-exposure paradigm in organotypic 

hippocampal cultures have shown that ethanol and CORT co-exposure results in 

significant increases in cytosolic Ca2+ during ethanol withdrawal that is significantly 

reduced by GR antagonism with RU-486. These same studies also demonstrated that both 
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MK-801 and RU-486 significantly reduced toxicity associated with ethanol and CORT 

co-exposure during withdrawal (Mulholland et al., 2005). Little et al. (2008) noted that 

though GR membrane expression was reduced after long-term ethanol exposure in vivo, 

nuclear localization of GRs was increased; thus suggesting that long-term ethanol 

exposure increases GR-related gene transcription. This is highly relevant to the current 

hypothesis, as these data suggest that damage from ethanol and CORT co-exposure is 

related to both NMDA receptor activation and GR-dependent effects. 

 

The NR2B Subunit, Polyamines, and Ifenprodil  

 

NMDA receptors are heteromeric ion channels composed of an obligatory NR1 

subunit and some combination or NR2 and/or NR3 subunits. NR2A and NR2B subunits 

are the most abundant NR2 subtypes found in the hippocampus, with the presence of the 

NR2B subunit allowing greater open-channel time and Ca2+ influx (Chen et al., 1999). 

Polyamines have been noted to have stimulatory and inhibitory actions on NMDA 

receptor currents, with stimulation resulting in potentiation of open channel time and 

increased binding of the NMDA receptor channel blocker MK-801 (Ransom & Stec, 

1988). Stimulatory effects of polyamines at NMDA receptors expressed in oocytes are 

mediated by NR1A/NR2B heteromers, but not by NR1 homomers or NR1A/NR2A or 

NR1/NR2C heteromers (Williams et al., 1991; Williams et al., 1994). Seemingly 

contradictory actions of polyamines on channel function may be attributable to the model 

being studied; however it seems clear that polyamine concentrations increase during 

period of excitotoxicity as an adaptive protective response and likely become cytotoxic 
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given the right conditions (i.e. increased NR2B abundance from ethanol co-exposure) 

(Davidson & Wilce, 1998). Models of excitotoxicity (e.g. ischemia) have shown changes 

in extracellular pH such that the environment becomes more acidic and results in greater 

extracellular proton concentration (Giffard et al., 1990). It has been shown that protons in 

the extracellular environment tonically inhibit NMDA receptor channels at a site located 

on the NR1 subunit (Traynelis & Cull-Candy, 1990; Traynelis et al., 1995), with 

NR1a/NR2B-containing NMDA receptors displaying the highest pH sensitivity relative 

to receptors containing other NR2 subunits (IC50 ~ pH 7.4; Traynelis et al., 1995). 

Polyamines are believed to have stimulatory actions at the NR2B subunit by relief of 

inhibition by extracellular protons (Traynelis, Hartley, & Heinemann, 1995).  

 

It is pertinent to note that polyamines do not act selectively at NR2B subunits, but 

they also modulate activity of inward-rectifying K+ channels (Yan et al., 2005); L-type 

Ca2+ channels (Herman et al., 1993); perhaps bind to a distinct site on the NMDA NR1 

subunit (Stoll et al., 2007); and activate α1-adrenergic receptors (Chenard et al., 1991). 

Ifenprodil is also non-specific for the NMDA receptor, as it is able to inhibit 5-HT3 

receptors (IC50 value ~ 1.3 µM; McCool & Lovinger, 1995); inhibit sigma receptors 

(Karbon et al., 1990); inhibit G-protein activated inwardly rectifying potassium channels 

(GIRKs; Kobayashi et al., 2006); and inhibit of high voltage-activated Ca2+ channels 

(IC50 value ~ 17 µM; Church et al., 1994). However, in regard to NMDA receptor 

antagonism by polyamines, ifenprodil antagonizes spermidine enhancement of NMDA 

receptor channel blocker binding (Carter, Rivy, & Scatton, 1989) and only inhibits 

NR2B-containing NMDA receptors (Williams et al., 1991; Williams et al., 1994). 
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Ifenprodil is a non-competitive inhibitor of polyamine binding, and has been suggested to 

confer inhibition by stabilizing an inactive receptor formation (Reynolds & Miller, 1989). 

Reynolds and Miller (1989) reported that an ifenprodil concentration of 300 nM (0.3 µM) 

was necessary to produce consistent inhibition of Ca2+ influx resulting from NMDA and 

glycine exposure in rat cortical neurons, suggesting that although polyamines and 

ifenprodil have mechanisms of action that are not specific to NMDA receptors, the 

concentration of ifenprodil used in the current studies (100 µM) was appropriate given 

the desired effect of reducing NMDA receptor-mediated excitotoxic cell death during 

ethanol withdrawal. 

 

NMDA NR receptor subunits have distinct developmental profiles. NR2B subunit 

mRNA is present in the embryonic rat brain and expression levels are high after the first 

week of birth. At approximately PND 7-10, NR2B subunit expression declines whereas 

NR2A subunit expression rises, such that NR2A subunits are more abundant relative to 

NR2B subunits (Laurie et al., 1997; Monyer et al., 1994). However, in vitro ethanol 

exposure during this developmental period disrupts this change in expression of NR2A 

and NR2B such that NR2B subunit abundance does not decrease and NR2A subunit 

abundance does not increase, thus resulting in expression of NR2B subunits that remains 

greater than that of NR2A subunits (Snell et al., 2001). This is important because NR2B 

subunits relative to NR2A subunits result in greater Ca2+ influx, and therefore the 

presence of NR2B subunit increases vulnerability to excitotoxic insult. The 

developmental shift in NR subunit expression presumably occurred in our slices before 

ethanol exposure was initiated, as NMDA receptor subunit aging in vitro is similar to in 
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vivo NMDA receptor subunit expression in adult rats (Martens & Wree, 2001). 

Polyamine potentiation of MK-801 binding also changes throughout development; 

however, adult-like polyamine potentiation is observed by PND 10 (Williams et al., 

1991). Using the same organotypic hippocampal culture model as in the current studies, 

Barron et al. (2008) demonstrated that cultures taken from PND 2 rats were much more 

sensitive to cell death following 10 day ethanol exposure and withdrawal than cultures 

taken from PND 8 rat pups. This effect was likely due, at least in part, to greater 

polyamine-sensitive NR2B subunit expression at PND 2 compared to PND 8. Toxicity 

observed in PND 2 cultures after ethanol withdrawal was significantly potentiated by the 

polyamine spermidine, with ifenprodil co-exposure reversing the effect of spermidine. 

These data further support the importance of polyamine-sensitive NR2B receptors in 

excitotoxic hippocampal damage.  

 

In addition to reducing toxicity in vitro via antagonism of the NR2B subunit, in 

vivo antagonism of the NR2B subunit reduces ethanol withdrawal beahviors in rodents. 

Malinowska et al. 1999 showed that administration of ifenprodil during withdrawal from 

chronic ethanol exposure (13 days) significantly reduces the severity of handling induced 

withdrawal seizures in mice without affecting ethanol levels measured in plasma or brain 

tissue. Similarly, Narita et al. (2000) showed that ifenprodil administration during 

withdrawal from 5 days ethanol drinking (5% ethanol solution) significantly reduced 

seizure activity 6-12 hours following the removal of ethanol. Western blot analysis also 

revealed a significant upregulation of NR2B protein expression immediately after 

cessation of ethanol intake and following 9 hours of ethanol withdrawal. Administration 
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of another NR2B-polyamine site antagonist similar in structure to ifenprodil (eliprodil) 

during ethanol withdrawal also reduces seizures (Kotlinska & Liljequist, 1996) and 

reverses the impairing effects of ethanol on spatial learning (Thomas et al., 2004). 

 

Polyamines are essential in cell growth and differentiation (Slotkin & Bartolome, 

1986), and polyamine concentrations increase during excitotoxic events (Adibhatla et al., 

2002). The increase in polyamine content during excitotoxicity is likely an adaptive 

response to alleviate cell damage (Davidson & Wilce, 1998). However, in a model of 

chronic ethanol exposure in which NR2B subunits are upregulated, polyamine 

potentiation at the NR2B subunit may result in the opposite of an adaptive response by 

allowing for pathological levels of Ca2+ influx and neurotoxicity via allosteric 

potentiation of NMDA receptor function. The rate-limiting enzyme in polyamine 

synthesis is ornithine decarboxylase (ODC). CORT exposure has been documented to 

increase the expression of ODC in the brain (Cousin et al., 1982). ODC expression is also 

increased progressively over 15 day ethanol exposure regimen that results in dependence 

in male rats, thus resulting in a two-fold increase in polyamine content within the 

hippocampus. Blockade of ODC activity also significantly reduces ethanol withdrawal 

seizures (Davidson & Wilce, 1998). Given these previous studies, the current data 

showing that ifenprodil reduces toxicity during ethanol withdrawal produced by CORT 

and ethanol co-exposure suggests that toxicity is specifically mediated by a polyamine-

sensitive NR2B receptor, whether by increased NR2B expression or increased polyamine 

content, or both. 
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Corticosterone and Ethanol Co-Exposure: Potential Neuroadaptations in NR2B Subunit 

Immunoreactivity  

 

Sapolsky et al. (1985) noted that 2 week CORT administration in adult male rats 

(5 mg/day) was enough for HPA axis adaptation (i.e., downregulation in the number of 

CORT receptors). However, 3 month CORT exposure was necessary for concomitant 

decreases in CORT receptor-containing hippocampal neuron number; suggesting that 

important neuroadaptations may be occurring that precede neuronal loss. The initial 

studies established the main finding in regard to the hypothesis that increased neuronal 

damage during ethanol withdrawal would result from ethanol and CORT co-exposure, 

particularly in the CA1 region. Following studies supported the importance of the 

polyamine-sensitive NR2B subunit in toxicity with the finding that ifenprodil 

significantly reduced toxicity, and most markedly in the CA1 region. Amelioration of 

CA1 region toxicity during ethanol withdrawal by NMDA receptor antagonists suggests 

that toxicity is attributable to either changes in NMDA receptor function or expression. 

However, it has not been shown in this model of 10 day exposure to 50 mM ethanol 

(~230 mg/dl) whether this is mediated by increases in NMDA receptor expression, and in 

particular, the NR2B subunit. Previous data using this model but 10 day exposure to 100 

mM ethanol (~430 mg/dl) have shown increased abundance of NR1 and NR2B subunit 

protein with western blot analysis (Harris et al., 2003). Taken together, previous findings 

of potentiated injury during ethanol withdrawal that are NMDA-receptor dependent 

suggest that an increase in NR2B subunit expression is possible following 50 mM ethanol 

exposure for 10 days.   
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Initial immunohistochemical studies tested whether chronic ethanol exposure (10 

days; 25, 50, or 100 mM) would result in increased immunoreactivity of NR2B receptor 

subunit protein (method after Butler et al., 2010). The data showed, however, that 10 day 

exposure to ethanol alone (25, 50, or 100 mM) resulted in a few slight changes in 

immunoreactivity that were statistically significant, though the functional significance of 

those changes are difficult to interpret. The statistically significant effects that were noted 

were very small in magnitude; smaller than expected if the ethanol exposure had 

produced neuroadaptations that were postulated to account for the significant toxicity 

observed with exposure to ligands during ethanol withdrawal. Further, no changes were 

observed with the concentration of relevance for all other studies (50 mM), nor were 

changes observed in the CA1 region where toxicity was most prominent following 

ethanol and CORT co-exposure. Details of the method may have contributed to these 

results, including the primary antibody used or the age-related thickness of the tissue. The 

primary NR2B subunit antibody used in these studies binds to the C-terminus of the 

subunit. Therefore, these data allow inferences to be made regarding changes in NR2B 

subunit number, but the use of a C-terminus antibody does not address changes that may 

occur in localization or functional state of NMDA receptor proteins. For instance, this 

antibody cannot distinguish between receptors that are inserted in the plasma membrane 

or those that are in the intracellular compartment; nor can this antibody distinguish 

whether the NR2B subunits labeled are primarily synaptic or extrasynaptic. This may be 

of critical importance in synaptic functioning, as NR2 subunits in the synaptic 

compartment stimulate signaling pathways for neuronal survival, whereas NR2 subunits 

in the extrasynaptic compartment stimulate signaling pathways leading to neuronal 
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demise (Hardingham & Bading, 2010). Regarding the age-related thickness of the tissue, 

this immunohistochemistry method has been used to reliably detect changes in 

immunofluorescence in tissue aged for less than one week (5-10 DIV). However, original 

studies of this model by Stoppini et al. (1991) demonstrated that significant spreading of 

the cell layers occurs over time, with significant spreading occurring after the first week. 

This may result in more diffuse labeling in older cultures (16 DIV in the current studies) 

than is observed in immunoreactivity in cultures kept for fewer days in vitro.  

 

Despite the lack of significant changes in NR2B subunit immunoreactivity after 

10 day ethanol exposure (25-100 mM), we wanted to determine whether changes in 

NR2B immunoreactivity were present after 10 day ethanol and CORT co-exposure, 

which was hypothesized to result in more robust increases in immunoreactivity as 

compared to changes after ethanol exposure only for 10 days. Changes in NR2B 

immunoreactivity were not detected in either the DG or CA3 hippocampal regions 

following 10 day CORT and ethanol co-exposure. In the CA1 region, however, disparate 

effects were noted in male and female cultures. In male cultures, 10 day ethanol and 

CORT co-exposure significantly increased NR2B immunoreactivity, but to the same 

level as cultures only exposed to CORT for 10 days. These results suggest that this effect 

was driven only by the presence of CORT and do not rule out the possibility that CORT 

activation of GRs alone may account for increased transcription and/or expression of 

NMDA NR2B receptor protein following 10 day exposure. Co-exposure to the GR 

antagonist mifepristone and an MR antagonist would be necessary to confirm this 

suggestion.  
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Previous literature has shown changes in NR subunit immunoreactivity following 

CORT exposure. For instance, in adult male lizards (Anolis carolinensis) that show a 

similar neuroendocrine response to mammals, increased immunoreactivity of NR2A and 

NR2B subunits is observed in response to social stress (24 hours) or CORT 

administration, with a much greater increase in NR2B subunits than NR2A subunits 

compared to control. Increased immunoreactivity of NR2A and NR2B subunits was 

greater following stress than CORT injections (Meyer et al., 2004). Though not 

statistically significant, Western blot analysis in the current studies indicated a slight 

increase in NR2B subunit expression following 10 day ethanol and CORT co-exposure 

that was greater than ethanol or CORT-exposed cultures alone and reduced by RU-486. It 

is possible that this slight increase could contribute to the potentiated toxicity observed 

with ethanol and CORT co-exposure, though firm conclusions cannot be made. However, 

Western blot analysis did not permit for analysis of NR2B expression in each 

hippocampal region, so it is possible that greater NR2B subunit upregulation occurred in 

the CA1 region as hypothesized, but pooling of hippocampal regions did not allow for a 

significant increase to be detected. 

 

In the CA1 region of female cultures, however, while 10 day CORT increased 

NR2B immuoreactivity similarly to male cultures, 10 day ethanol reduced NR2B 

immunoreactivity compared to control, and ethanol and CORT co-exposure did not alter 

NR2B immunoreactivity from control levels. These data are contrary to the hypothesis in 

that marked increases were expected in NR2B immunoreactivity after ethanol and CORT 

co-exposure. The only increase in NR2B subunit immunoreactivity observed was driven 

94 
 



by CORT. This pattern of data suggests sex-specific hippocampal adaptations after 

concurrent 10 day ethanol and CORT exposure, or as noted above, methodological 

difficulties may preclude definitive conclusions within the current dataset. It should be 

noted, however, that in vivo data following ethanol exposure have shown differential 

effects on NMDAr subunit expression in male and female rats, such that prolonged 

ethanol liquid diet results in a slightly greater increases in hippocampal NR1, NR2A, and 

NR2B receptor subunit expression in male rats as compared to female rats (Devaud & 

Alele, 2004; Devaud & Morrow, 1999). Previous literature has not addressed sex 

differences that may exist in neuroadaptations following prolonged co-exposure to 

ethanol and CORT.  

 

Effects of Ethanol and Corticosterone Exposure on NMDA Receptor Expression/Function 

and Localization 

 

Ethanol and CORT co-exposure potentiated neuronal injury in the CA1 region 

during ethanol withdrawal, but co-exposure did not increase NR2B immunoreactivity as 

hypothesized. This data is not without precedent, because although various in vivo and in 

vitro models have noted increases in NR2B protein after ethanol exposure, this is not a 

consistent finding across laboratories and may vary by the method of ethanol 

administration/exposure (Carpenter-Hyland et al., 2004; Cebere et al., 1999; Rudolph et 

al., 1997). Importantly, withdrawal is still apparent in some in vivo models that do not 

report changes in NMDA receptor expression (Rudolph et al. 1997), suggesting that 

changes in NMDA receptor function occurred without discrete changes in receptor 
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number. Long-term ethanol exposure has been shown to alter function and/or trafficking 

of NMDA receptor subunits after long-term ethanol exposure, thus allowing for greater 

injury during ethanol withdrawal following ethanol and CORT co-exposure without 

discrete changes in the amount of NR2B subunit expressed. Phosphorylation of NMDA 

receptor subunits is another important mechanism in mediating NMDA receptor channel 

kinetics, with phosphorylation generally conferring greater channel activity. Specific to 

the NR2B subunit, the tyrosine kinase Fyn phosphorylates tyrosine residues on the C-

terminal of the subunit, resulting in enhanced channel activity (Nakazawa et al., 2001; 

reviewed by Ron, 2004; Suzuki & Okumura-Noji, 1995). Increased phosphorylation of 

the NR2B subunit by Fyn has been correlated with induction of LTP in hippocampal CA1 

synapses (Nakazawa et al., 1996), thus correlating NR2B phosphorylation with increased 

synaptic strength. Tyrosine phosphorylation of the NR2B subunit follows the same 

developmental trajectory as NR2B subunit expression in the brain, with high levels of 

expression until approximately PND 10, at which time NR2A expression increases and is 

the predominantly expressed NR2 subunit in the hippocampus. Ethanol exposure (25-100 

mM) has been noted to result in a population of NMDA receptors that primarily contain 

the NR2B subunit because of internalization of NR2A subunits in hippocampal neurons 

(but not NR1 or NR2B) that is mediated by relief of Src phosphorylation (Suvarna et al., 

2005). The resulting NR2B subunits that may be phosphorylated by Fyn result in greater 

channel activity that is thought to contribute to ethanol tolerance. Interestingly, this 

mechanism is unique to dendrites in CA1 pyramidal neurons. In CA1 hippocampal 

neurons, application of 100 mM ethanol decreases channel activity, but Fyn-mediated 

phosphorylation of the NR2B subunit that also occurs during exposure results in a 
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rebound in excitability upon ethanol washout (Yaka et al., 2003), suggesting that the 

ethanol exposure predisposes neurons for injury via excess excitation during withdrawal. 

Of relevance for the current studies, acute stress also results in dampened CA1 region 

excitability (Yamada et al., 2003). Though these data are only related to acute treatment, 

it is possible that this mechanism drives altered CA1 neuron excitability during 

withdrawal from long-term exposure (Yaka et al., 2003).  

 

Long-term ethanol exposure also alters NMDA receptor-mediated synaptic 

transmission by lateral movement of NR2B subunits from extrasynaptic locations to 

synaptic localization and subsequent co-localization with PSD proteins, thus making 

NR2B subunits more integral to synaptic transmission after long-term ethanol exposure. 

NMDA receptor signaling pathways have been suggested to differ based on whether the 

activated receptors are synaptic or extrasynaptic, such that pathways related to cell 

survival are initiated by synaptic NMDA receptor activation and pathways related to cell 

death are initiated by extrasynaptic NMDA receptor activation (Hardingham, 2009; 

Hardingham & Bading, 2010). In cultured hippocampal neurons taken from PND 1 pups, 

seven day exposure to approximately 80 mM ethanol increased the co-localization of the 

NR1 subunit with synaptophysin and co-localization of the NR2B subunit with PSD-95. 

This effect on NR1 co-localization was mimicked by long-term exposure to the NMDA 

receptor antagonist AP-5, though alterations in co-localization were rapidly reversed back 

to control levels after 30 minutes of ethanol withdrawal. Long-term ethanol exposure also 

increased surface expression of NR2B subunits without changing total immunoreactivity 

that was not reversed after 4 hour ethanol withdrawal. However, the increased co-
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localization of NR2B with PSD-95 was reversed after 4 hour ethanol withdrawal, 

suggesting that NR2B subunits moved back from the synaptic to the extrasynaptic 

compartment. Surface immunoreactivity was reduced back to control level by 24 hours of 

ethanol withdrawal (Clapp et al., 2010). Similar changes in localization of the NR2B 

subunit in hippocampal neurons are observed after 4 day exposure to the same ethanol 

concentration used in the current studies (50 mM), such that there is an increase in the 

size and density of NR2B clusters on dendrites, as well as increased co-localization with 

the synaptic protein synapsin. These changes were positively correlated with enhanced 

NMDA-dependent synaptic transmission in electrophysiology studies (Carpenter-Hyland 

et al., 2004). The current studies hypothesized that potentiated insult during withdrawal 

from ethanol and CORT co-exposure was due to increased protein expression for the 

NR2B subunit, though in accord with the studies cited above, changes in phosphorylation 

state, localization, or increased NR2B expression relative to NR2A expression resulting 

from internalization can all occur during prolonged ethanol exposure to contribute to 

vulnerability to excitotoxicity during withdrawal. 

 

Corticosterone and Ethanol Co-Exposure: [3H]Ifenprodil Autoradiographic Binding  

 

 Following studies of NR2B immunoreactivity, autoradiography studies were 

designed to measure changes in density of polyamine-sensitive NMDA receptor subunits 

by measuring [3H]ifenprodil binding. Immunohistochemical studies have the advantage 

of allowing densitometric quantification of fluorescence among separate hippocampal 

regions. However, the signal acquired after [3H]ifenprodil exposure did not allow for 
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clear differentiation between the hippocampal regions, though we allowed for eight 

weeks of exposure of radiolabeled cultures to film. Thus, CA1, CA3, and DG regions 

were combined into one measurement of [3H]ifenprodil binding per slice. Previous 

studies in our lab have used autoradiography with organotypic slices in which 

visualization of all of the hippocampal regions was possible. However, those studies used 

[125I]-labeled ligands. This difference in the radiolabeled isotope likely accounts for the 

ability to visualize cell layers using [125I]-labeled ligands versus [3H]-labeled ligands. 

[125I] is a higher energy isotope compared to the [3H] isotope. The cultures used in the 

current studies are relatively thick (200 microns at the start). A lower energy-emitting 

isotope will result in greater diffraction as it passes through the tissue to contribute to the 

image on the film, thus not allowing for visualization of cell layers. [125I]ifenprodil was 

not commercially available for these studies. The current data show that 10 day CORT 

treatment (0.1 µM) resulted in significantly lower [3H]ifenprodil binding in hippocampal 

slices. These data are contrary to the hypothesis that suggested an upregulation of 

ifenprodil-sensitive binding sites in CORT and ethanol co-exposed slices above what was 

hypothesized to occur in CORT treated slices. However, past data have shown using 

whole hippocampal membrane preparation from adult male rats given CORT via drinking 

water for 10 days that while the CORT treatment resulted in an increase in Bmax of 

[3H]MK-801 binding, the addition of ifenprodil did not alter [3H]MK-801 binding. Had 

ifenprodil increased [3H]MK-801 binding, this would have suggested a significant 

proportion of NMDA receptor subunits measured were polyamine sensitive NR2B 

subunits. However, the lack of an ifenprodil-effect suggests that this was not the case 

using whole membrane hippocampal tissue. As in the current autoradiography studies, 
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these data did not address possible region-specific effects of CORT on [3H]MK-801 

binding (Weiland et al., 1997). Taken into consideration with the PI data after 10 day 

CORT treatment in the current studies, it is possible that the treatment protocol resulted 

in significant losses in dendritic processes similar to what has been observed in 

hippocampus from in vivo studies, and therefore loss of a significant proportion of 

polyamine-sensitive NMDA receptors after CORT treatment alone. NMDA NR2B 

subunits are located predominantly on dendrites and dendritic spines in the postsynaptic 

density, as compared to the soma (Kohr, 2006). In summary, immunohistochemistry, 

autoradiography, and Western blot data suggest that the increased toxicity observed with 

PI measurements did not result from discrete changes in NR2B subunit number or 

expression of polyamine-sensitive NR2B receptors.  

 

Long-Term Corticosterone Neurotoxicity is Independent of Effects at Membrane-Bound 

Corticosterone Receptors 

 

We hypothesized that increased NMDA NR2B receptor subunit expression would 

contribute to the increased neuronal injury observed during ethanol withdrawal following 

CORT and ethanol co-exposure, and many previous studies have shown GR-dependent 

increases in NMDA receptor mRNA or subunit protein. However, CORT is also known 

to have multiple effects at the cell membrane that are independent of GR binding. 

Concurrent NMDA and CORT exposure significantly increases Ca2+ transients above 

NMDA alone in cultured rat hippocampal neurons, and this potentiation of CORT was 

suggested to occur at the cell membrane and not the GR (Takahashi et al., 2002). In 
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accord with the suggestion that CORT potentiates NMDA receptor function 

independently of the GR, previous data using the organotypic hippocampal cell culture 

model has shown that toxicity produced by co-exposure to NMDA and CORT (the same 

concentrations of CORT used in the current studies, 0.01 – 1 µM) is not ameliorated by 

co-exposure to a GR antagonist (RU-486), an MR antagonist (spironolactone), nor an 

inhibitor of protein synthesis (cycloheximide). However, toxicity produced by NMDA 

and CORT co-exposure was reduced by the NMDA receptor antagonist MK-801 

(Mulholland et al., 2006). The findings cited above in regard to increased Ca2+ transients 

and toxicity with NMDA and CORT co-exposure could be due, in part, to increased 

glutamate levels measured by microdialysis, which have been observed upon acute 

CORT administration (Venero & Borrell, 1999), thus increasing GR-independent 

glutamatergic signaling with acute CORT exposure. In this model of long-term ethanol 

and CORT co-exposure it is not clear to what extent changes in gene expression versus 

changes in cell signaling at the level of the cell membrane would have on neuronal 

integrity given that GR activation, nuclear translocation, and changes in gene expression 

can occur in vitro as quickly as within 30 minutes. We hypothesized that increased 

NMDA NR2B receptor subunit expression, perhaps due to GR-mediated transcription, 

would contribute largely to neuroadaptations during ethanol and CORT co-exposure that 

would lead to greater toxicity during ethanol withdrawal. However, a separate series of 

studies was designed to consider whether toxicity during ethanol withdrawal that was 

observed following ethanol and CORT co-exposure could be due to effects at the cell 

membrane. Therefore, effects observed following ethanol and CORT co-exposure would 

be paralleleded by 11 day exposure to a membrane impermeable form of CORT (BSA-
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CORT) with and without ethanol co-exposure (Figures 15 and 16). To date, no studies 

have considered long-term effects of BSA-CORT to address whether toxicity occurs 

independently of MR and GR activation following prolonged CORT exposure, though 

effects on neuronal signaling have been noted following acute exposure to BSA-CORT. 

For example, it has been suggested that termination of HPA axis activation (or increased 

levels of CORT) is mediated by rapid inhibition via a membrane-bound receptor for 

CORT (Evanson et al., 2010). Using the same experimental design, hippocampal cultures 

were exposed to BSA-CORT for 11 days with or without ethanol and ethanol withdrawal, 

but did not result in alterations in PI uptake compared to control cultures. Therefore, the 

current data suggest that neurotoxic effects of long-term CORT are not attributable to 

actions at the membrane, but must also include actions of CORT binding to intracellular 

MRs and GRs. Additionally, from the data that is available that has probed the role of 

acute CORT on the membrane using BSA-CORT, it has become clear that actions of 

CORT at the cell membrane are dependent on the cell type being studied. For example, 

acutely (as quickly as within 5 minutes), CORT and BSA-CORT (.01  – 1 µM) similarly 

inhibit Ca2+ influx in a manner dependent upon pertussis-toxin sensitive G protein 

activation and subsequent PKC activation in PC12 cells (Qiu et al., 1998), though BSA-

CORT exposure in hippocampal neurons has been shown to result in increased 

intracellular Ca2+ content. As no studies have considered exposure to BSA-CORT for a 

prolonged time period as used in the current studies (11 days), it is unclear what 

neuroadaptive changes could be occurring in number and/or affinity of membrane-bound 

CORT receptors and how that may influence the resistance of hippocampal neurons in 

this model to damage from BSA-CORT exposure. 
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Implications and Future Directions 

 

 Neuroadaptations that occur during ethanol exposure predispose the brain for 

excitotoxic insult during ethanol withdrawal. Increased neuronal and behavioral 

excitability that is observed during ethanol withdrawal is mediated, at least in part, by 

NMDA receptor signaling. The current studies investigated the role of polyamine-

sensitive NR2B subunits in mediating neuronal damage during ethanol withdrawal 

following prolonged ethanol and CORT co-exposure that was hypothesized to be related 

to adaptive upregulation of NR2B subunits. While it is unclear whether neuronal death 

correlates with disrupted long-term cognitive function in humans, repeated withdrawal 

episodes are correlated with worse long-term cognitive outcome (Duka et al., 2003), thus 

highlighting the importance of targeting the reduction of ethanol withdrawal expression 

for pharmacological intervention in alcohol dependent individuals. To date, 

benzodiazepines are administered to prevent or reduce ethanol withdrawal seizures, 

though they do not prevent the long-term cognitive deficits (Duka et al., 2003; Duka et 

al., 2004). The NR2B subunit has previously been identified as a target for treatment of 

alcohol dependence because modulation of the NR2B subunit has been implicated in 

mediating multiple aspects of ethanol intoxication and withdrawal behaviors (Nagy, 

2004). Importantly for clinical utility, NR2B receptor subunit ligands have been shown to 

be efficacious in the treatment of other neurological disorders (Chizh et al., 2005). 

Acamprosate is one of three drugs indicated for the treatment of alcohol dependence and 

has been shown to significantly reduce relapse in alcohol dependent individuals (Paille et 

al., 1995). Acamprosate has multiple mechanisms of actions, including reversal of 
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polyamine potentiation of NMDA receptor currents (Popp & Lovinger, 2000), thus 

further supporting a role for NR2B antagonism in ethanol withdrawal.  

  

The current data show that toxicity in response to long-term ethanol and CORT 

co-exposure was inhibited by antagonism of polyamine-sensitive NR2B receptor 

subunits; however, the measures used in the current studies failed to show significant 

changes in NR2B subunit immunoreactivity measured with Western blots and 

immunohistochemistry, as well as a changes in the number of ifenprodil binding sites 

with autoradiography. Multiple interpretations are possible that do not preclude changes 

occurring at the NR2B subunit, including increased phosphorylation of NR2B subunits 

and therefore greater NR2B subunit function or NR2B subunit trafficking (Chazot et al., 

2004). Future studies will be necessary to determine if these are viable alternate 

mechanisms of action mediating ethanol withdrawal toxicity following ethanol and 

CORT co-exposure.  
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