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ABSTRACT OF THESIS 

 

 

 
CHROMIUM, COPPER, AND ARSENIC CONCENTRATION AND SPECIATION IN 

SOIL ADJACENT TO CHROMATED COPPER ARSENATE (CCA) TREATED 
LUMBER ALONG A TOPOHYDROSEQUENCE  

 

Arsenic (As), Chromium (Cr), and Copper (Cu) are ubiquitous in soils as a result of anthropogenic and 

geogenic processes.  The fate of As, Cr, and Cu in the environment is largely governed by their speciation, 

which is influenced by soil physiochemical properties.  This study investigated the influence of soil 

physiochemical properties and landscape position on As, Cr, and Cu concentration and speciation in soils 

adjacent to Chromated Copper Arsenate (CCA) treated lumber fence posts. Concentration gradients showed 

elevated total As and Cu adjacent to the three fence posts, which decreased with increasing distance from 

the posts. In addition, As and Cu had higher concentrations in the surface soil samples than the subsoil 

samples possibly due to enhanced weathering of the CCA treated posts at the surface. Concentrations of 

As, Cr, and Cu were similar among the Maury and Donerail silt loam, however, they were closer to the 

background concentration in the Newark silt loam, a partially hydric soil, indicating mobility of the metals. 

Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy indicates As(V) is the predominate 

species which is principally coordinated with Fe and Al whereas, Cu(II) is coordinated with soil organic 

matter. Overall, the use of CCA treated lumber as a metal source can help determine how soil properties 

influence mobility and speciation of As, Cr, and Cu across the soil landscape. 

KEYWORDS:  Arsenic, Chromium, Copper, Extended X-Ray Absorption Fine Structure 

(EXAFS), Chromated Copper Arsenic (CCA) lumber 
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Chapter 1: Introduction and Literature Review 

1.0 Introduction 

One unique aspect of the Central Bluegrass Region of Kentucky is its distinction 

as the “horse capital of the world”.  With horses, come fences and the type of fence post 

commonly used in the region is Chromated Copper Arsenate (CCA) treated lumber. From 

an environmental perspective the release of these three metal(loid)s (chromium, copper, 

and arsenic) can have a detrimental impact on ecosystem and human health even at very 

low concentrations.  The extent of release of these metal(loid)s from CCA posts must be 

determined in Kentucky soils. Fence posts, however, are not the only sources of these 

metal(liod)s, other sources include land application of manure and biosolids and metal 

release during coal mining. The novelty of this project is to use CCA treated lumber 

fence posts as a source of these metal(loid)s and evaluate how soil physiochemical 

properties influence the mobility and speciation of Cr, Cu, and As in the soil. 

The following sections of this chapter will provide an overview of i.) general soil 

chemistry properties influencing metal mobility, ii.) sources of metal(liod)s in the 

environment, iii.) specific chemistry regarding As, Cr, and Cu in the soil, iiii.) chemistry 

of CCA treated wood, and v.) the objectives of this study. Chapter 2 will cover how soil 

physicochemical properties influence the mobility and speciation of Arsenic in the soil 

and Chapter 3 will address how soil physicochemical properties influence the mobility 

and speciation of Copper and Chromium. Finally, Chapter 4 will be an overall summary 

and conclusion of the findings. 
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1.1 Review of Literature 

1.1.1 Metal Sequestration in Soils 

1.1.1.1 pH and Eh: Master Variables 

The pH of the soil is dictated by a confluence of physical, chemical, and 

biological components. The main sources of hydrogen ions (protons) in the soil are from 

carbonic acid, as well as other acids, dissolved in rain water, dissociation of H+ from 

mineral and organic material functional groups, the oxidation of compounds (e.g. 

oxidation of ammonium ions), and the plant uptake of ions (Sparks, 2003). The principal 

properties dictated by the pH of the soil are the speciation of the metal present and the 

charge on the soil constituents. Overall, as the pH of the soil increases the charge on the 

metal species present as well as on the soil constituents become increasingly negative.  

The inherent chemical properties of each chemical species will dictate its 

protonation/deprotonation properties at various pH conditions, thus influencing the 

charge. The coupling of the protonation constants between the metal species and soil 

constituents will dictate the adsorption properties of the soil.  

Like pH, Eh dictates the speciation present due to alteration of metal and mineral 

oxidation states. However, unlike pH, the transfer of electrons in a system requires close 

chemical contact. The redox conditions of the soil dictate whether it is 

thermodynamically favorable for a reduced or oxidized species of metal to be present. In 

most cases, soil is well aerated and thus in an oxidized state; however, in landscape 

positions where drainage pathways converge or ponding conditions occur reducing 

conditions develop through the depletion of oxygen in the water. The occurrence of 
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reducing conditions alters the electronic state of metals in the soil and thus will alter 

mobility and speciation in the environment. 

1.1.1.2 Soil Surface Charge 

The soil surface charge is a function of the chemical constituents of the soil, as 

well as the pH and Eh conditions of the soil. The physical and chemical weathering of the 

soil and the organic matter accumulation over time leads to the development of a specific 

surface charge. This surface charge can be further broken down to the surface charge of 

mineral phases and organic matter phases in the soil.  

1.1.1.2.1 Mineral-Metal Interaction 

The surface charge of minerals can be attributed to two phenomena the first being 

a permanent charge due to isomorphic substitution of cations of lower charge and site 

vacancies in mineral structures. This charge is independent of pH and is characteristic of 

the mineral type present. Secondly, there exists a surface charge dependent on pH due to 

the protonation or deprotenation of surface functional groups on soil minerals. This 

surface charge is dependent on the number and type of functional groups present on the 

mineral surface. The most abundant surface functional groups are hydroxyl groups 

associated with the edge of mineral structures. The hydroxyl groups possess protonation/ 

deprotonation characteristics that are a function of the mineral and coordination 

environment of oxygen. 

The balance of the charge created on mineral surfaces with the ions in solution 

determines the type and extent of metal sorption. Sorption mechanisms in the soil are 

generally inner-sphere and outer-sphere sorption complexes. With inner-sphere sorption 
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complexes there exists direct coordination of the metal with the mineral functional group. 

However, with outer- sphere sorption complexes there exists a water molecule between 

the metal and the mineral functional group, and are generally considered electrostatic 

interactions therefore, less stable than inner sphere complexes (Sposito, 2008). The 

properties of the metal, mineral, and ions in solution determine the type and extent of 

sorption at different pH/Eh conditions.  

1.1.1.2.2 Organic Matter-Metal Interaction 

The composition of organic matter in the soil is highly complex consisting of 

organic residues, soil biomass, humus, humic acids, and humin (Sparks, 2003). Perhaps 

the most important of these with respect to metal interaction are the humic substances 

(humic and fulvic acids and humin) because of their stability in soil and relative 

abundance (up to 80% soil organic matter) (Sposito, 2008). The surface charge of soil 

organic material is generated through the pH dependence of a wide variety of functional 

groups and is principally negatively charged at pH values greater than 3. As the pH 

increases more deprotonation of functional groups occurs, thus an increasingly negative 

charge develops (Sparks, 2003). Although, nearly every possible organic functional 

group may exist in soil organic matter, the predominant functional groups of interest are 

carboxylic and phenolic OH groups because there deprotonation constants are within the 

range of most soil pH values (Sparks, 2003).  Similar to mineral surfaces, humic 

substances can bind metals as both inner and outer-sphere adsorption complexes. 

1.1.1.3 Biotic Controls on Metal Mobility 

Biological organisms control metal mobility through the alteration of their 

immediate environment. The biological alteration of the environment develops through 
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changes in pH, alterations in soil solution, release of chelating molecules, and utilization 

of metals as nutrients, terminal electron acceptors, and/or energy sources. The change of 

pH and alteration of soil solution properties can influence the charge properties of the 

metal, mineral, and organic matter present.  Also, chelating molecules can solubilize 

metals, increasing mobility and the use of the metal as a biological agent (nutrient, 

electron acceptor, and energy source) can work to further increase metal mobility. Many 

times microorganisms speed the rate thermodynamically favorable chemical reactions 

will occur, especially in fluctuating reducing and oxidizing conditions. 

1.1.2 Sources of Arsenic, Chromium, and Copper in the Environment  

Heavy metals copper (Cu) and chromium (Cr) and metalloid arsenic (As) in the 

unperturbed soil are considered trace elements, elements with concentrations of <0.1%. 

The sources of these elements, natural or anthropogenic, can provide information on 

concentrations and mobility in the environment.  Naturally, the main source of trace 

elements in the soil is due to the weathering of soil parent material. In natural systems, 

the levels of As, Cr, and Cu are generally low and in most cases are necessary for the 

proper function of the ecosystem, because the background concentrations provide 

essential nutrients (Cu,Cr) for the resident flora and fauna. However, due to 

anthropogenic activities, and under some natural circumstances, the trace metals 

concentrations in soils can become highly elevated with respect to background 

concentrations. Under these circumstances trace nutrients can be damaging to the local 

environment, as well as, causing a potential threat to humans through the intake of food 

and water containing elevated metal concentrations. The following sections will address 



 

6 
 

Cr, Cu and As sources in the environment, evaluate their distribution on a local, national, 

and global scale and describe the chemical and physical interactions that control their 

mobility and bioavailability in the environment.   

1.1.3 Arsenic 

1.1.3.1 Natural Sources  

Arsenic (As) is a highly toxic element that is ubiquitous in the pedosphere, 

hydrosphere, and biosphere at trace amounts. Arsenic is present in greater than 200 

mineral forms on earth (Mandal and Suzuki, 2002). Some common As minerals are 

orpiment(As2S3), realgar (As4S4), arsenolite (As2O3), olivenite (Cu2OHAsO4), and the 

arsenide’s, with the most common being arsenopyrite (FeAsS) (Zhang and Selim, 2008). 

As these minerals weather, the dissolution of As bearing minerals can release As into the 

soil solution where it can then be sorbed, precipitated or lost from the system.  

 

The mean concentration of arsenic in the earth crust is 1.5 – 1.7 mg kg-1 with a 

mean concentration in the soil 5.2- 7.2 mg kg-1 (Sparks, 2003; Sposito, 2008). Arsenic is 

therefore  slightly enriched in the soil and commonly occurs coprecipitated with the 

secondary soil minerals of Fe, Al, and Mn oxides (Sposito, 2008). Arsenic can be 

precipitated with iron hydroxides and sulfide and is also associated with iron deposits and 

manganese nodules (Mandal and Suzuki, 2002). The concentrations of As in soils of the 

state of Kentucky range from 0.1 – 10 mg kg-1(Baldwin, 1998). In general As 

concentrations in the soils of the United States reside in the 3 – 11 mg kg-1 range (Figure 

1.1). 
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Figure 1.1: Arsenic distribution in soils of the United States (Gustavsson, 2001) 

 

1.1.3.2 Anthropogenic Sources 

Though there is a wide array of natural sources of arsenic in the soil environment, 

concentration of As can be significantly increased in the soil as a result of anthropogenic 

processes. The anthropogenic mobilization factor (AMF), defined as the mass of As 

anthropogenically extracted annually verses the mass released by crustal weathering and 

volcanic activity annually, is ~ 27, indicating that humans are significantly perturbing the 

As cycle (Sposito, 2008). Common anthropogenic practices that have increased 

concentrations of As in the soil are applications of As containing pesticides and animal 

manure (e.g. Roxarsone (3-nitro-4-hydroxyphenylarsonic acid) in poultry litter), as part 

of waste material in mine tailings, and as the wood preservative Chromated Copper 

Arsenate (CCA). Arsenic was widely used as a pesticide in the form of lead arsenate, 
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Ca3AsO4, Paris-Green (copper acetoarsenite), H3AsO4, MSMA (monosodium 

methanearsonate), DSMA (disodium methanearsonate), sodium arsenite, organic 

arsenical herbicides, and cacodylic acid (Mandal and Suzuki, 2002). These products were 

used to exterminate insect and plant pests in the soil and its extended use has led to 

localized soil As concentrations of 10 - 892 mg kg-1 (Kabata-Pendias, 2001).  The use of 

arsenic in the form of Roxarsone in poultry feed to control parasites and stimulate the 

production of eggs in poultry has increased total As concentration by 14 - 76 mg kg-1 in 

poultry litter (Arai et al., 2003). The application of this litter onto soil can thus elevate the 

As concentrations in the soil. Because As is often associated with mineral deposits, the 

mining of Pb, Cu, Zn, Co, Ni, and Au often can produce tailings with elevated As 

concentrations (Paktunc et al., 2003; Paktunc et al., 2004). In some cases, arsenic 

concentrations have reached ~ 30,000 mg kg-1 in soils close to tailing dump sites (O'Neill, 

1995). Perhaps the most common yet over looked source of As in the soil is from the 

extensive use of CCA treated lumber, which can significantly increase As concentrations 

in soils adjacent to where it is used, where the treatment process took place, or where 

improperly disposed.   

1.1.3.3 General Arsenic Chemistry 

Arsenic is a metalloid with atomic number 33 and atomic mass 74.922. It is in the 

15th group of the periodic table along with nitrogen, phosphorus, antimony, and bismuth. 

Arsenic chemically reacts much like phosphorus and antimony in many ways. The 

electronic structure of ground state As ([Ar]3d104s24p3) results in the primary oxidation 

states of 5 ([Ar]3d10), 3 ([Ar]3d104s2), and -3 ([Ar]3d104s24p6), all resulting from the 

filling of an electron orbital. These oxidative states are referred to as arsenate (As5+), 
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arsenite (As3+), and arsine (As3-). Arsine is produced in highly reducing conditions 

resulting in the formation of AsH3, the most toxic form of As; however, this form of 

arsenic rarely exists in soils. The most common oxidation states in the soil environment 

are As5+ (oxic conditions) and As3+ (anoxic conditions). The ionic radii of these states are 

0.034 nm and 0.058 nm, respectively. Thus, in the As5+ valence state, As  coordinates 

with 4 counter ions in tetrahedral configuration, and in the As3+ valence state As is 

capable of coordinating with 6 counter ions in octahedral configuration (Sposito, 2008).  

Arsenic exists in many chemical states and forms in the environment each of 

which ultimately dictates its toxicity, mobility, and bioavailability.  The processes that 

govern the chemical form and/or bioavailability of As in soils include 

adsorption/desorption, dissolution/precipitation, reduction/oxidation, and biological 

interactions each of which are affected by pH, pE,  mineralogy, organic matter content, 

temperature, and time (Zhang and Selim, 2008). These processes will be discussed in 

more detail in the following sections. 

1.1.3.4 Arsenic Sequestration in Soils 

Arsenic adsorption/desorption is a dynamic process that is affected by a variety of 

factors including, but not limited to, As concentration, As speciation, ionic strength, soil 

solution composition, pH, and, perhaps most importantly, the  inorganic and organic soil 

constituents.   Arsenic adsorption is largely controlled by the metal oxide content 

(particularly Fe-oxides) of the soil (Elkhatib et al., 1984; Livesey and Huang, 1981; 

Manning and Goldberg, 1997a; Masscheleyn et al., 1991; Smith et al., 1999; Smith et al., 

2002)  and to a lesser extent,  the clay content (specifically short range order 

aluminosilicates) (Frost and Griffin, 1977; Goldberg and Glaubig, 1988; Hopp et al., 
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2008; Manning and Goldberg, 1996; Wauchope, 1975) as well as, calcite(Goldberg and 

Glaubig, 1988) and soil organic matter (Elkhatib et al., 1984; Grafe et al., 2001).   

The extent of arsenic adsorption to these soil constituents is strongly affected by 

the pH of the soil solution. The pH governs the surface charge on the soil particles as well 

as the speciation of As present. At low pH conditions in an oxic soil, the principle As 

species will be H2AsO4
- while as the pH increases deprotenation will occur (pK2=6.97 ) 

and HAsO4
2- will become the principal As component. In an anoxic soil, the principle As 

species will be H3AsO3
0. The surface charge of soil minerals are vastly different, 

however, the point of zero charge (PZC) are generally low for clays (2-5) while higher 

for metal oxides (5-9.1) (Sparks, 2003). At a pH below the PZC the mineral has a 

positive surface charge and at a pH above the PZC the mineral has a negative surface 

charge. This is a principal reason why metal oxides have such an influence on As 

adsorption, because at most soil pH conditions the metal oxides will have positive 

charges while the As species are negatively charged or neutral, causing a net attraction. 

The sorption of As can also be influenced by the presence of competing components in 

the soil solution. These competing components can effectively reduce the adsorption 

potential of As on soil sorption sites by taking up sites where arsenic could be held, as 

well as, desorbing arsenic species. Also, competing ligands can aid in the desorption of 

arsenic from mineral surfaces. The next sections will cover the general sorption sites of 

As in the soil, kinetics and extent of adsorption, pH effects on adsorption, soil solution 

effects on adsorption, and desorption.  
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1.1.3.5 Sorption Sites in Soil 

Metal oxides play a major role in adsorption of arsenic. The most common forms 

of As adsorption onto metal oxides involve the formation of inner- sphere complexes 

(Sun and Doner, 1996) and in some cases outer - sphere complexes (Goldberg and 

Johnston, 2001). There are several types of inner sphere complexes including 

monodentate, mononuclear bidentate, and binuclear bidentate. Work by Fendorf et. al., 

(1997) on arsenate sorption to goethite showed that at low As surface coverage the 

monodentate complex occurs most frequently, whereas, at higher As surface coverage the 

binuclear bidentate complex occurs (Fendorf et al., 1997). This has become the main 

model for defining As adsorption on goethite, however, recent work conducted by Loring 

et al, 2009 has shown that the trait used to evaluate the sorption type ( Fe-As distances) is 

not always indicative of the coordination environment of As and that As may be 

principally coordinated to goethite in a monodentate complex, the results also suggest 

that there is no change in coordination environment as effected by pH  (Loring et al., 

2009).  Arsenate was found to form inner sphere complexes on both Fe and Al oxides, 

while arsenite formed inner sphere complexes on Fe but outer sphere complexes on Al 

oxides (Goldberg and Johnston, 2001).     

Clays are negatively charged, thus, sorption of arsenic is much smaller than with 

metal oxides however it can still be significant in some soils (Goldberg and Glaubig, 

1988). Arsenic is proposed to be sorbed by clays through AlOH2
+ functional groups 

exposed at clay edges (Manning and Goldberg, 1996). Also, the possibility for Al(OH)x 

in interlayers of clays as well as isomorphic substitution of Fe in the crystal structure of 

clays may provide additional sorption sites (Frost and Griffin, 1977). It is generally 
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regarded that clay’s with higher surface area will exhibit more sorption sites for As (Frost 

and Griffin, 1977; Lin, 2000). In certain clays the formation of a hydroxyl-arsenate 

interlayer may also be possible (Lin, 2000). Goldberg, 1988 showed that at pH<9 clay 

minerals controlled As sorption, however, at pH>9 calcite controlled sorption (Goldberg 

and Glaubig, 1988).  

1.1.3.6 Kinetics and Extent of Adsorption 

In soils, a bulk of the As adsorption occurs very quickly (Raven et al., 1998; 

Smith et al., 1999; Zhang and Selim, 2008). However, there can be an additional phase in 

which arsenic is adsorbed more slowly related to the difference in sorption sites on 

mineral surfaces (Zhang and Selim, 2008). For example, on ferrihydrite Raven et al.  

(1998) found that the adsorption process best fit the condition of a parabolic diffusion 

equation indicating that arsenic may be diffusion controlled, having an initial high 

adsorption rate and then a slow rate dictated by diffusion into the mineral structure 

(Raven et al., 1998). The authors also noted that the adsorption of arsenite was kinetically 

quicker than the adsorption of arsenate on ferrihydrite (Raven et al., 1998). 

The extent of adsorption is governed by the mineralogy present in the system. In 

general the amorphous Fe and Al oxides have the highest sorption potentials, followed by 

the Fe oxides and Al oxides (Dixit and Hering, 2003; Goldberg, 1986). Goldberg (2002) 

determined that sorption curves on kaolinite and montmorillonite are similar to oxides 

however sorption capacities are much lower (Goldberg, 2002). In natural soils systems 

the adsorption of AsV was determined to be higher than the adsorption of AsIII (Manning 

and Goldberg, 1997a; Smith et al., 1999).  Frost and Griffin (1977) determined higher 

adsorption of AsV than AsIII occurred on montmorillonite and kaolinite (Frost and Griffin, 



 

13 
 

1977). Similarly, goethite and amorphous Fe-oxide showed higher sorption of arsenate 

than arsenite (Bauer and Blodau, 2006; Dixit and Hering, 2003).  Ferrihydrite shows the 

reverse, however, with arsenite sorption occurring to a higher degree than arsenate 

(Raven et al., 1998).  

1.1.3.7 Effects of pH on Adsorption 

The adsorption of arsenic in soils has been found to increase with pH (Elkhatib et 

al., 1984; Goldberg and Glaubig, 1988) however, more recent studies indicate that at low 

Fe content pH had little effect on As sorption while at high Fe content As sorption was 

decreased with increasing pH (Smith et al., 1999). The differences in these observations 

are likely related to the differences in mineralogy between the soils. In pure mineral 

systems of goethite and amorphous Fe- oxide the sorption of AsV is more favorable at 

low pH (5-6) and the sorption of AsIII is more favorable at higher pH (7-8) meaning the 

reduction of AsV to AsIII at higher pH values may decrease mobility of As (Dixit and 

Hering, 2003). The crossover pH, pH in which AsV and AsIII were adsorbed equally, on 

both goethite and amorphous Fe-oxide decreased with increasing total arsenic in solution 

(Dixit and Hering, 2003). This may indicate different preferential sorption sites for AsV 

and AsIII because if sites that preferentially adsorb AsV filled this may begin to shift the 

crossover point towards lower pH values. Overall, the crossover pH was between 6-8.5 

depending on solution concentration of arsenate, and arsenate adsorbed on goethite and 

amorphous Fe-oxides. Through competition with arsenate, phosphate lowered the 

crossover pH by about 1 at lower concentrations (10 µM - 25 µM) of total arsenic, 

meaning AsIII was sorbed preferentially at a wider range of pH’s (Dixit and Hering, 

2003). Ferrihydrite showed a higher sorption of arsenite than arsenate, except at pH 4.6 
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with As concentrations < 1 mol kg-1 ferrihydrite; both arsenite and arsenate were 

expected to be present as inner sphere species (Raven et al., 1998). The sorption of 

arsenate on ferrihydrite decreased with pH, however, the adsorption of arsenite only 

slightly increased with pH (Raven et al., 1998). This arsenate adsorption process can be 

attributed to net positive charge on ferrihydrite and negative charge on H2AsO4
-1 at lower 

pH causing higher adsorption rates, however as the pH is increased the ferrihydrite 

becomes more negatively charge and the principal arsenate species shifts to HAsO4
-2 

possibly resulting in a higher net repulsion thus decreasing the sorption of arsenate on 

ferrihydrite (Raven et al., 1998). Arsenite, which is expected to be in a neutral state, 

H3AsO3
0 doesn’t exhibit this behavior, instead resulting in a slight increase in arsenite 

adsorption with pH (Raven et al., 1998). Additionally, when arsenate and arsenite are 

added simultaneously to the system the crossover pH was 7.5 (Raven et al., 1998). 

Amorphous aluminum oxides, kaolinite, illite and montmorillonite behave very similar to 

Fe oxides, in which arsenate adsorption decreases with pH and arsenite sorption increases 

with pH (Goldberg, 1986; Goldberg, 2002). Manning and Goldberg (1997) found that the 

max adsorption of arsenite on kaolinite, illite, montmorillonite, and amorphous aluminum 

hydroxide occurred at pH of 7.5-9.5(Manning and Goldberg, 1997b). Frost and 

Griffin(1977) determined that on montmorillonite and kaolinite AsV sorption with respect 

to pH looked very similar to the pH curve for H2AsO4
- in solution using acid protonation 

constants and that adsorption of AsIII was increased with pH (Frost and Griffin, 1977). 
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1.1.3.8 Soil Solution Constituents Effect on Arsenic Adsorption 

The most recognized competing anion with arsenic is the phosphate anion. 

Phosphate greatly decreases As sorption in low Fe soils (< 100 mmol kg-1) but had little 

effect on soils with high Fe content (> 800 mmol kg-1) (Smith et al., 2002). This occurs 

because at high iron content there are enough sorption sites to hold both arsenic and 

phosphate. Also, it may indicate that soils have sites that preferentially adsorb P and As 

(Smith et al., 2002). With the addition of phosphate to goethite and amorphous iron 

oxides considerably less AsV and AsIII was adsorbed and the cross over pH was lowered, 

indicating AsIII was adsorbed preferentially at a wider range of pH’s (Dixit and Hering, 

2003). Manning and Goldberg(1996) found that AsV adsorption was decreased through 

the competition of phosphate and molybdenate  (Manning and Goldberg, 1996). The 

presence of Ca2+ increased arsenate sorption, however had little effect on arsenite 

adsorption, this process possibly resulted through altering the surface charge, although 

the presence of Na+ had no effect on As sorption (Smith et al., 2002). Appelo et al. 

(2002) also found that dissolved Ca enhanced sorption of As, whereas phosphate and 

carbonate reduced adsorption by competition (Appelo et al., 2002).  The presence of Cl-, 

NO3
-, and SO4

2- has little effect on AsV sorption in soil (Livesey and Huang, 1981).  

Soil organic matter can compete with As for sorption sites on hematite, this can 

cause limited sorption to the Fe surfaces or desorption of adsorbed arsenic (Redman et 

al., 2002). Natural organic matter also has the capability of changing the redox status of 

As, generally causing oxidation in the case of AsIII and also little reduction of AsV to AsIII 

(Redman et al., 2002) which has implications for changing adsorption properties and thus 

effects mobility. Interestingly, natural organic matter, despite its anionic characteristics, 
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can form complexes with As in solution. It was observed that natural organic matter with 

higher metal content exhibited greater As sorption, the proposed mechanism of 

adsorption is through ternary complexation with cationic metals in the natural organic 

matter structure (Redman et al., 2002). After addition of natural organic matter to the 

solution a substantial portion of As was desorbed, however, depending on the metal 

content of the organic matter the desorbed As could exist principally as a free ion or 

complexed with the organic matter (Redman et al., 2002). Additionally, Bauer and 

Blodau (2005) determined that dissolved organic matter was able to desorb As from iron 

oxides, soils, and sediments (Bauer and Blodau, 2006). This process targeted weakly 

adsorbed As and acted through competition for sorption sites, as well as, complexed with 

As causing increased mobilization (Bauer and Blodau, 2006). Bauer and Blodau (2009) 

also found that dissolved organic matter inhibits the formation and growth of Fe oxides 

and when dissolved organic matter was added to the system dissolved As concentration 

increased as well as the percentage of As bound to colloids, both causing considerable 

mobility of arsenic from the system (Bauer and Blodau, 2009).   

The presence of humic and fulvic acid decreased AsV adsorption on goethite (α-

FeOOH) while citric acid had no effect. However, AsIII adsorption was inhibited by all 

three (humic<fulvic <citric acid) (Grafe et al., 2001).  The presence of AsV reduced 

sorption of all three acids on goethite. Because of this it is likely that type, density and 

functional group behavior on dissolved organic carbon species greatly influence AsIII and 

AsV sorption on goethite (Grafe et al., 2001). Phenolic OH and COOH groups on acids 

compete with As species.  In a similar study conducted by Grafe et al. (2002) AsV 

adsorption on ferrihydrite was decreased in the presence of citric acid but not humic or 
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fulvic acid, opposite that of goethite indicating sorption processes depended on 

mineralogy. Fulvic and citric acid decreased sorption of AsIII on ferrihydrite, however, 

humic acids had little influence (Grafe et al., 2002).  The presence of  AsV and AsIII 

decreased fulvic and citric acid adsorption, while having little effect on humic acid 

suggesting  the adsorption of As species and humic acid are independent of each other 

(Grafe et al., 2002).  The reduction in AsV sorption by citric acid as explained by 

Geelhoed et al. (1998) is due to the bidentate surface complexes of 2 COO- and hydrogen 

bonding of 1 COO- competing  with arsenate(Geelhoed et al., 1998).  

1.1.3.9 Desorption 

After arsenic is adsorbed onto mineral surfaces it is not easily desorbed (Zhang 

and Selim, 2008). Through sequential extractions only a small fraction of the arsenic on 

the soil mineral is exchangeable, even in highly contaminated soils (Keon et al., 2001; La 

Force et al., 2000; Zhang and Selim, 2008). It is also documented that desorption from Fe 

oxides (Pigna et al., 2006), Al oxides (Arai et al., 2001; Pigna et al., 2006), and clays 

(Lin, 2000) decreases over time. In the case of clays this process was speculated to occur 

as a result of diffusion into the internal pores of clay aggregates (Lin, 2000). AsV was 

found to be mobilized at high pH in oxic conditions (Smedley and Kinniburgh, 2002) 

which  likely occurs because of the pH dependent properties inherent on the mineral 

surfaces and arsenic species. Also, As desorption occurs through the reductive dissolution 

of Fe – oxyhydroxides through the decomposition of organic matter (Nath et al., 2009). 

Furthermore, as stated above, changes in pH may possibly make the sorption of some 

species less favorable because competing species such as phosphate and soil organic 



 

18 
 

matter can desorb arsenic. Perhaps the most pronounced desorption events are caused as a 

result of reduction/oxidation reactions. 

 

1.1.3.10 Reduction/ Oxidation  

Reduction and oxidation reactions of arsenic occur as a result of both abiotic and 

biotic processes in the soil. These properties have pronounced effects on the solubility 

and thus the mobility of arsenic in soils. The species present is generally dictated by the 

Eh condition of the soil. The acid dissociation constants for arsenic acid are pK1=2.20 for 

H2AsO4
-, pK2=6.97 for HAsO4

2-, and pK3=11.53 for AsO4
3- and for arsenous acid the 

dissociation constants are pK1=9.22 for H2AsO3
-, pK2=12.13 for HAsO3

2-, and pK3=13.4 

for AsO3
3- (Zhang and Selim, 2008).  As such, for an oxic (oxidizing conditions) soil with 

pH from 5-9 the arsenic will be present as H2AsO4
- and HAsO4

2- while, in an anoxic 

(reducing conditions) soil arsenic will be in the form of H3AsO3
0 (Figure 1.2). 

 

Figure 1.2: Eh vs. pH diagram for arsenic (Smedley and Kinniburgh, 2002). 
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Soil constituents also play an important role in oxidation processes in the soil. The most 

recognized soil oxidants are manganese (Mn) oxides. Mn oxides effectively oxidize 

arsenite to arsenate under many soil conditions (Oscarson et al., 1981). Birnessite, a Mn 

oxide, can oxidize arsenite in solution as well as arsenite adsorbed to Fe- oxides (Sun and 

Doner, 1998; Tournassat et al., 2002). FeII can act as a catalyst in the oxidation of arsenite 

(Bisceglia et al., 2005). The oxidation of arsenite has been reported on kaolinite and illite, 

however this may be due to Mn oxide contamination of the clays (Manning and 

Goldberg, 1997b). Lin( 2000) observed the oxidation of arsenite on many clay surfaces, 

however, found no arsenic reduction occurred  (Lin, 2000). In addition, as discussed 

above organic matter has the capability of oxidizing arsenite and in some cases reducing 

arsenate. However, perhaps more important than the abiotic redox process are biotic 

redox process in which microbes take an active role in altering arsenic speciation.  

1.1.3.11 Microbial Transformations of Arsenic 

Generally, microbial transformations of arsenic occur as redox conversions of 

inorganic forms or conversions between inorganic to organic form through methylation 

and demethylation. Microbes can obtain energy through the oxidation of arsenic (Paez-

Espino et al., 2009). Also, the reduction of arsenic can occur through dissimilatory 

reduction where microorganisms utilize arsenic as a terminal electron acceptor for 

anaerobic respiration (Oremland and Stolz, 2005). In addition, microorganisms possess 

reduction mechanisms that are thought to be linked to detoxification processes. For 

instance, arsenic reduction occurs through a reductase enzyme (arsC) to facilitate the 

removal of arsenic from the cell by another enzyme (arsB) (Paez-Espino et al., 2009). 

The organic forms of arsenic are methylarsine [CH3AsH2], dimethylarsine [(CH3)2AsH], 
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trimethylarsine [[(CH3)3As], methylarsonic acid [CH3AsO(OH)2], dimethylarsinic 

[(CH3)2AsO(OH)], trimethylarsine oxide [(CH36)3AsO], and the tetramethylarsonium ion 

[(CH3)4As+], (Paez-Espino et al., 2009; Smith et al., 1998).  The methylated arsenic 

species are created primarily through microbial processes (Paez-Espino et al., 2009) and 

are considered to be in low concentrations, and are often disregarded in the soil system 

(Zhang and Selim, 2008). However, the alteration of the oxidation of arsenic is not the 

only process effecting arsenic mobility in the environment, in respect to reduction/ 

oxidation conditions. The reduction of the soil constituents holding arsenic may also 

provide mobilization of arsenic in the soil (Oremland and Stolz, 2005). In column 

experiments using Fe and As reducing bacteria with ferrihydrite coated sand the 

reduction of AsV to AsIII was found to be the predominant method of mobilization and 

that the reduction of FeIII to FeII actually suppressed the initial mobilization with respect 

to abiotic controls through the precipitation of secondary Fe minerals (Kocar et al., 2006). 

A similar study shows initial reduction in As mobilization due to the transformation of Fe 

phases, however, after the Fe transformation is in equilibrium prolonged release of AsIII 

to solution occurs  (Tufano and Fendorf, 2008).  

1.1.4 Chromium 

1.1.4.1 Natural Sources 

As for Arsenic, Chromium (Cr) exists in soils as a result of weathering of Cr 

containing parent materials. The concentrations of Cr in the parent rock varies, with 

higher Cr content found in mafic (170-200ppm) and ultramafic (1600-3400 ppm) rock  

and lower concentrations in igneous and sedimentary rocks( 5-120 ppm) (Kabata-
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Pendias, 2001).  The most common Cr mineral is Chromite (FeCr2O4) which is resistant 

to chemical weathering and therefore is the main source of Cr in residual material. Also, 

the substitution of Cr3+ for Fe3+ or Al3+ in spinel structures may occur extensively 

because of their similar ionic radius and chemical properties (Kabata-Pendias, 2001).   

The mean concentration of Cr in the earth’s crust is 100- 126 mg kg-1 with a mean 

average soil concentration of 54 – 70 mg kg-1 (Sparks, 2003; Sposito, 2008).   Therefore, 

Cr is not enriched in the soil in relation to the earth’s crust.  The average concentration of 

chromium in limestone is 5-16 mg kg-1 (Kabata-Pendias, 2001).  The soil concentrations 

of Cr in the U.S. are generally between 20 mg kg-1 and 120 mg kg-1 with the mean being 

50 mg kg-1  (Figure 1.3) (Gustavsson, 2001).  The concentrations of Cr in silt or loam 

soils are 10-100 mg kg-1 in the U.S. (Shacklette and Boerngen, 1984). An investigation of 

six Northern Kentucky soils found  Cr concentrations in surface soils to be 14.5 mg kg-1 

and subsoil concentrations 21.2 mg kg-1 (Pils et al., 2004). 

 

Figure 1.3: Chromium distribution in soils of the United States(Gustavsson, 2001) 



 

22 
 

1.1.4.2 Anthropogenic Sources 

The anthropogenic sources of Cr in the environment stem from the use of Cr in 

the metallurgy, refractory and chemical industries.  In the metallurgy industry Cr is used 

to create alloys or to plate metals, making them more corrosion resistant. The refractory 

industry uses chromite to cast metals and the chemical industry uses Cr as a paint 

pigments (e.g. yellow road markings) or as basic chromium sulfate (Cr2(SO4)3) in leather 

tanneries.  During the conversion of chromite ore to the ferrochromium and metallic 

chromium used in the aforementioned industries, significant amounts of Cr can be 

introduced into the surrounding environment. Byproducts from the smelting process (e.g. 

Cr laden ash) along with atmospheric deposition and simple chemical leaching from raw 

and processed ore piles represent the most prevalent direct sources of Cr enrichment in 

soils.  For example, Uminska, (1988) found metal concentrations in excess of 10,000 mg 

kg-1 in the proximity of Cr smelter heaps (Uminska, 1988). In addition, because of the 

ubiquity of Cr containing products produced, a significant amount of Cr is introduced 

into agricultural soils via the application of municipal sewage sludge, with reported 

concentrations exceeding 700 mg kg-1 (Kabata-Pendias, 2001).  As a result the 

anthropogenic mobilization factor of Cr is 273 , indicating substantial human influence 

on the Cr cycle (Sposito, 2008). 

1.1.4.3 Chromium in the environment 

Chromium (Cr) principally exists in the environment in two oxidation states, CrIII 

and CrVI, which differ widely in chemical properties resulting in differences in speciation 

and toxicity. While hexavalent chromium is highly toxic to many organisms, trivalent 

chromium is required as a trace nutrient, and in mammals controls glucose and lipid 
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metabolism (Anderson, 1989). At the pH and Eh of most soils chromium exists in the 

trivalent forms of CrIII cation and CrO2
- anion, and in the hexavalent forms of Cr2O7

2- and 

CrO4
2-. The solubility of CrIII decreases with pH and complete precipitation occurs at pH 

5.5. In soils high in pH and phosphorus a  significant proportion of Cr forms hydroxides 

and phosphates rather that organic complexes (Bartlett and Kimble, 1976b). Hexavalent 

Cr forms occur to a much lesser extent compared to trivalent forms and the addition of 

CrVI to soil usually results in complete reduction to CrIII by soil organic matter (Bartlett 

and Kimble, 1976a). However, if CrVI does occur to some extent its solubility is low in 

most soil pH conditions (6-8), thus limiting mobility (Bartlett and Kimble, 1976a). The 

mobilization of chromium from CCA treated wood to soil is minimal, the reason for 

which will be discussed in a later section.   

1.1.5 Copper 

1.1.5.1 Natural Sources  

The highest copper concentrations occur in mafic rocks (60-120 mg kg-1) and in 

the lowest concentration in limestone rocks (2-10 mg kg-1`) (Kabata-Pendias, 2001). On 

average the concentration of Cu in the earth’s crust is 25-50 mg kg-1 and is 17 – 30 mg 

kg-1 in the soil (Sparks, 2003; Sposito, 2008).   In the U.S. the concentration of Cu in the 

soil range from 7 – 100 mg kg-1 in silty or loamy soil types (Shacklette and Boerngen, 

1984). In Northern Kentucky the average soil concentration of Cu is 10.7 mg kg-1 in the 

surface soil and 23.1 mg kg-1 in the subsurface soil (Pils et al., 2004).  Copper is a 

component in many primary minerals, the most common being sulfides such as 

chalcocite (Cu2S), covellite (CuS), and villamaninite (CuS2). The sulfide minerals are 
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quite soluble and provide a continuous release of Cu ions to solution where they can then 

interact with a variety of soil constituents.  The solubilized copper strongly interacts with 

sulfide, carbonate and hydroxide anions  in soil solution resulting in the formation of 

precipitates and surface complexes which greatly reduces Cu  mobility in the soil 

(Kabata-Pendias, 2001).   

 

 

Figure 1.4: Copper distribution in soils of the United States(Gustavsson, 2001) 

1.1.5.2 Anthropogenic Sources 

Due to the widespread use of copper in many anthropogenic activities, the 

element can be highly elevated in surface soils. The anthropogenic mobilization factor of 

copper is 632, meaning human activities are greatly influencing the metal cycling of 

copper (Sposito, 2008). The anthropogenic sources of Cu in the soil environment are 

from mining activities, waste emissions, and the application of sewage sludge, fertilizers, 

and fungicides in agricultural applications (Flemming and Trevors, 1989).   In areas of 
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extensive mining activity,  soil Cu concentrations have been found as high as 2,000 mg 

kg-1, with even higher values (4500 mg kg-1) found in areas adjacent to Cu processing 

facilities (Barcan and Kovnatsky, 1998; Kabata-Pendias, 2001).  As was the case for both 

As and Cr, the application of sewage sludge to agricultural fields has also led to increased 

Cu concentrations, with some field soils exceeding 1600 mg kg-1 (Kabata-Pendias, 2001).  

Another activity that has substantially increased soil Cu concentrations is the use of Cu 

containing fungicides. Perhaps the most recognized Cu containing fungicide is the 

Bordeaux mixture (Ca(OH)2+CuSO4) which has been applied to control downy mildew 

on grapes since the end of the 19th century. This has lead to accumulation of Cu up to 

200-500 mg kg-1 compared to 5-30 mg kg-1 in soils without fungicide addition (Brun et 

al., 2001; Brun et al., 1998).  

1.1.5.3 Copper Chemistry 

Copper is a heavy metal with atomic number 29 and atomic mass 63.546. It is in 

the 11 group of the periodic table along with silver and gold. In its ground state copper’s 

electronic structure is [Ar]3d104s1.  Copper occurs in three oxidation states in the 

environment; as a solid metal with a charge of zero (Cu0), as the cuprous ion with a plus 

one charge CuI ([Ar]3d10), and as the cupric ion with a plus two charge CuII ([Ar]3d9).  

CuII is a transition Lewis acid, which means it is highly reactive with both hard and soft 

Lewis bases, while CuI is a soft Lewis acid which reacts with soft Lewis bases (Sparks, 

2003).  CuII can exhibit an ionic radius of 0.057 nm or 0.073 enabling it to form 

coordination numbers of 4, a tetrahedral configuration and 6, an octahedral configuration, 

respectively (Sposito, 2008).  
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In the environment Cu is partitioned into the aqueous phase, including soluble 

species and free ions, the solid phase, including sorption to soil constituents and 

precipitates, and the biological phase, including sorption and incorporation in organic 

matter (Flemming and Trevors, 1989).  CuII is the most common copper oxidation state in 

the environment and is classically thought to exist as the free cupric cation [Cu(H2O)6
2+] 

in solution, however, recent observation have concluded CuII can also exhibit fivefold 

coordination as a result of the Jahn- Teller effect (Pasquarello et al., 2001).  The 

hydrolysis products of Cu(H2O)6
2+ are  CuOH+ ( pK1=7.93) and Cu(OH)2

0 (pK2=8.37) 

(Paulson and Kester, 1980).  It can also be complexed with carbonates forming CuCO3 

and Cu(CO3)2
2-  (Sylva, 1976).  In the soil, processes that control fixation of Cu include 

adsorption, precipitation, and biological fixation.   

1.1.5.4 Copper Retention Mechanisms    

1.1.5.4.1 Adsorption 

Copper exhibits strong sorption properties to many mineral surfaces as well as 

soil organic matter, this makes Cu one of the least mobile of the heavy metals (Kabata-

Pendias, 2001). Organic matter controls and dominates the adsorption of Cu in the soil 

(McBride et al., 1997). This has been demonstrated by many studies, one of the first 

being a fractionation study in which  the authors found that 30% of the Cu was extracted 

by pyrophosphate, the proportion corresponding to the amount of Cu bound to organic 

sites (McLaren and Crawford, 1973b).  Copper has been shown to adsorb quite strongly 

to humin in the soil (Sanders and Bloomfield, 1980) and the removal of organic matter 

reduces Cu adsorption significantly even in cases of high CEC (Elliott et al., 1986).  

Agbenin and Olojo, (2004) found that the removal of organic matter from the soil 
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decreased the fraction of adsorbed Cu/soluble Cu nearly 40 times (Agbenin and Olojo, 

2004). Organic matter not only controls the adsorption onto the soil solids but also the 

percent of soluble CuII as a free cation (McBride et al., 1997). Nearly all copper in the 

soil solution is complexed with organic substances (McBride and Bouldin, 1984).  In 

general solid organic matter will decrease Cu solubility, whereas, dissolved organic 

carbon will increase the mobility of Cu through complexation (McBride et al., 1997).  

Similarly, Hickey and Kitrick ( 1984) showed that nearly a third of the copper in 

soils was complexed with organic matter, while, almost another third was complexed 

with Fe and Mn oxides (Hickey and Kittrick, 1984).  Vega et al. (2007) showed that 

although organic matter is the main component affecting sorption of Cu, especially at 

neutral pH, oxides control the adsorption at lower pH (Vega et al., 2007).  Fe/Mn oxides 

controlled Cu distribution with soils low in organic matter (Yu et al., 2004). Through 

fractionation it was determined that 15 % of Cu was extracted by oxalate, the portion 

sorbed to free oxides (McLaren and Crawford, 1973b). These studies shows that metal 

oxides are a significant source controlling Cu distribution, so much so that the removal of 

amorphous oxides from a soil decreased the fraction of sorbed Cu/ soluble copper 100 

times (Agbenin and Olojo, 2004).  Although amorphous Fe oxide provide an important 

sink for Cu they may not lower copper solubility in the soil (Martinez and McBride, 

1998).  

While Cu sorption is mainly controlled by organic matter and oxides, in 

calcareous soils Cu sorption has been showed to be enhanced by calcite (Rodriguez-

Rubio et al., 2003). Harter (1979) found that Cu sorption was related to the base 

saturation of the soil and strongly correlated with vermiculite content in the subsurface, 
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while, organic matter content had little influence on adsorption in surface horizons, 

contrarily to many other observations (Harter, 1979). In many cases clays have little 

influence on Cu sorption (Vega et al., 2007).  The 1:1 clays such as kaolinite have little 

affinity for Cu (McBride, 1978a). However, Martinez-Villegas and Martinez (2008) 

showed that copper sorption was found in the order organic matter> montmorillonite > 

ferrihydrite (Martinez-Villegas and Martinez, 2008). It was indicated that sequential 

extraction techniques may be over estimating the % of copper bound to oxides and 

underestimating the affect clay has on Cu adsorption (Martinez-Villegas and Martinez, 

2008). This study was conducted using only leaf compost, montmorillonite, and 

ferrihydrite. It was noted that dissolved organic carbon was adsorbing onto ferrihydrite 

and lowering its copper retention and that Fe oxides may not be good competitors for Cu 

sorption in the presence of dissolved organic matter (Martinez-Villegas and Martinez, 

2008).  However, dissolved organic matter in the form of humic acid adsorbed on 

goethite increases copper retention (Tipping et al., 1983).  Experimental design may be 

the cause of the observed discrepancies in these studies. 

1.1.5.4.2 Sorption Mechanism/Sites 

The specific adsorption of copper were strongest for manganese oxides and 

organic matter followed by Fe oxides and clay minerals (Mn oxides> organic matter> Fe 

oxides> clay minerals) (McLaren and Crawford, 1973a). Sorption and fixation of Cu in 

soils rapidly increases at pH greater than 4 with most adsorption being non exchangeable 

(Cavallaro and McBride, 1984). Because soluble and exchangeable Cu is generally low in 

soils it is expected that the primary sorption mechanism is inner-sphere adsorption. The 

retention of Cu in soils is predicted to be through the specific adsorption of Cu2+ and 
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CuOH+ on most functional groups (Agbenin and Olojo, 2004). Cu is sorbed through Al-

OH on aluminum oxides (McBride, 1982) and is specifically adsorbed, possibly through 

bidentate structures, on allophone and imogolite (Clark and McBride, 1984). The 

formation of bonds with the direct coordination of Cu and the functional oxygen’s of 

organic substances often occurs, which is often dependent on soil pH (Kabata-Pendias, 

2001). Similarly, Cu+2 coordinates directly with functional oxygen’s of peat, this involves 

the bonding to 1-2 carboxyl functional groups (Bloom and McBride, 1979). Sorption 

curves for clays are similar to oxides, however oxides control the fixation of Cu in 

inorganic soils (Cavallaro and McBride, 1984). For kaolinite, Cu2+ showed a higher 

affinity than Ni2+, Co2+, and Mn2+ for binding to silanol and aluminol surface functional 

groups with sorption conforming to the Langmuir adsorption equation (Yavuz et al., 

2003). The adsorption of Cu on illite was due to electrostatic and surface complexation of 

Cu2+as well as surface complexation of CuOH+. Copper sorption on soils often follows 

Langmuir or Freundlich isotherms based on Cu concentration, indicating at low 

concentrations surface complexation was occurring and as concentrations were increased 

surface precipitation was forming (Vega et al., 2007). Fit of the Freundlich equations was 

found to depend on pH and CEC, accounting for approximately 80% of the variance 

(Arias et al., 2005). Through extended x-ray adsorption fine structure (EXAFS) analysis 

Cu was found to be adsorbed to soil organic matter in a bidentate inner-sphere fashion 

with carboxyl or amine ligands (Strawn and Baker, 2008). At low ionic strength Cu sorbs 

in the interlayer’s of smectites while preserving its hydration sphere, however, at high 

ionic strength Cu sorbs to silanol and aluminol functional groups as Cu-Cu dimers 

(Strawn et al., 2004).  At low ionic strength Cu was held weakly and thus exchangeable 
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as an outer sphere complexed hydrated ion on vermiculite, at high ionic strength Cu took 

the form of an interlayer dimer (Furnare et al., 2005b).   Copper forms inner or outer 

sphere complexes with clays, inner sphere adsorption  can occur as corner sharing with 

functional groups or as Cu- dimer adsorbed to interlayers and edges (Furnare et al., 

2005a) . Cu bound to ferrihydrite through edge sharing inner-sphere sorption 

complexes(Scheinost et al., 2001) .  For a goethite- humate complex, Cu2+ is in a 

distorted octahedral configuration containing four equatorial oxygen at bond distance of 

1.94- 1.97 Å and two axial oxygen at 2.24- 2.32 Å  (Alcacio et al., 2001).   

1.1.5.4.3 Precipitation 

At higher pH surface precipitation, usually of Cu(OH)2
0 or CuCO3, is likely to 

occur on many soil constituents. On illite increasing pH led to more retention by CuOH+ 

eventually causing surface precipitation of Cu(OH)2  (Alvarez-Puebla et al., 2005). 

CuOH+ retention on humic substances rises as pH is increased. At pH 4 Cu begins to 

precipitate, forming amorphous precipitates, which are the main mode of retention at pH 

8 (Alvarez-Puebla et al., 2004a).  In a similar study with humin, the same process 

happened however a botalachite precipitate formed. (Alvarez-Puebla et al., 2004c). In the 

presence of CO3 and organic matter, copper possibly precipitated as malachite (Cavallaro 

and McBride, 1980). Malachite was also found to occur on the surface of dolomitic 

limestone, while, carbonates promoted Cu hydroxide and carbonate formation in soils 

(McBride and Bouldin, 1984). Similarly, in calcareous soils precipitation of Cu occurred 

through retention of Cu by calcium carbonate, forming Cu hydroxide and carbonate 

precipitates (Ponizovsky et al., 2007; Rodriguez-Rubio et al., 2003). 
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1.1.5.4.4 pH Effects 

In general, the specific sorption of Cu onto soil constituent increases as the pH 

rises (McLaren and Crawford, 1973b).   Sorption and fixation of Cu rapidly increases at a 

pH greater than 4 with most adsorption being non exchangeable on clays (Cavallaro and 

McBride, 1984). On allophane and imogolite Cu sorption increases with pH (Clark and 

McBride, 1984) and the same is true for illite (Alvarez-Puebla et al., 2005). McLaren, 

1973 found that the maximum adsorption of Cu occurs at a pH greater than 5 on Fe 

oxides, Mn oxides, organic matter and clay minerals (McLaren and Crawford, 1973a). 

Similarly, in soils the maximum Cu sorption has been found at a pH greater than 5.5-6.5 

(Agbenin and Olojo, 2004; Elliott et al., 1986).  Increasing pH also causes an increase in 

the complexation of Cu onto humic substances (Sanders and Bloomfield, 1980).  

Alvarez- Puebla showed that CuOH+  retention on humic substances rises as pH is 

increased and at pH 4 Cu begins to precipitate (Alvarez-Puebla et al., 2004a).  Increasing 

pH led to higher retention of CuOH+ on illite, eventually causing surface precipitation of 

Cu(OH)2 , much of the sorption was precipitation at pH greater than 6 (Alvarez-Puebla et 

al., 2005).  As adsorption is increased with pH the solubility of Cu in soil solution is 

decreased, probably due to hydrolysis (Cavallaro and McBride, 1980). McBride and 

Bouldin (1984) showed that nearly all Cu in solution is complexed to organic matter, 

however, lowering the pH increased the free Cu in the soil solution (McBride and 

Bouldin, 1984).  Also, the desorption of Cu from humic acid is decreased with increasing 

pH, however, this is only a small portion of the total Cu adsorbed (Arias et al., 2005).  
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1.1.5.4.5 Competing species 

Cu is strongly retained in soils and competes very well for adsorption sites with 

other divalent cations/metals and organic matter. Competitive adsorption experiments 

show that copper is preferentially adsorbed compared to Ni, Zn, and Cd in soils 

(Echeverria et al., 1998; Elliott et al., 1986).  Likewise, copper is the most preferred 

divalent cation for sorption onto amorphous alumina (McBride, 1978b).  Elliot et. al. , 

(1986) found that the order of adsorption of divalent metals can be determined through 

the order of increasing pK for the first hydrolysis (Elliott et al., 1986). Lead is the only 

divalent cation that out competes copper for adsorption sites in soils (Echeverria et al., 

1998; Elliott et al., 1986). However, unlike mineral studies, Cu adsorption to humic acid 

is higher than Pb, Cd, and Zn (Elliott et al., 1986).  Similarly, ion adsorption onto brown 

peat was in the following order Cu>Co>Ni, copper retention was most likely the highest 

due to Jahn Teller distortion (Alvarez-Puebla et al., 2004b). Copper adsorption onto 

humified organic matter increases with decreasing ionic strength (Sanders and 

Bloomfield, 1980).  

Desorption of Cu in soil has been shown to occur from competition with humic 

acid, with the desorption decreasing with increasing pH (Arias et al., 2005). However, 

overall less than 6% of adsorbed copper was able to be desorbed in 80% of the 27 soils 

studied (Arias et al., 2005). In general, dissolved organic carbon controls Cu solubility 

through the formation of dissolved organic carbon-Cu complexes, and by lowering 

copper retention by competition (Martinez-Villegas and Martinez, 2008).  It has been 

found that dissolved organic carbon sorption can block Cu sorption sites (Ponizovskii et 
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al., 1999). Also, dissolved organic carbon can increase the solubility of Cu in the soil, 

increasing mobility (Martinez-Villegas and Martinez, 2008).  

1.1.6 Toxicity and Regulation of Arsenic, Chromium, and Copper 

1.1.6.1 Toxicity  

Arsenic is very toxic to humans and the consumption of food and water with 

elevated levels of arsenic and contact with the skin are the main modes of entry into the 

body. The toxicity of arsenic depends on its chemical form with toxic effects decreasing 

as follows :arsines>AsIII anion> organic AsIII > AsV anion (Mandal and Suzuki, 2002).  

Acute AsIII toxicity acts through binding to sulfhydryl groups and disrupting enzymatic 

processes while, AsV acts as a phosphate analog and blocks oxidative phosphorylation 

(Valko et al., 2005).  Chronic toxicity from arsenic exposure is more prevalent than acute 

toxicity, and is documented to effect many of the major systems of the body (respiratory, 

pulmonary, cardiovascular, dermal, reproductive, immune, etc.) with possible 

carcinogenic and mutagenic effects (Mandal and Suzuki, 2002).  There are many 

documented cases of arsenic poisoning throughout the world resulting from the 

consumption of naturally elevated As in ground water or contaminated foods and 

beverages, or via direct exposure from industrial sources (Mandal and Suzuki, 2002).  

Perhaps the most know case of arsenic poisoning is in the Indian subcontinent, including 

the areas of West Bengal and Bangladesh, in which elevated arsenic concentrations are 

found in groundwater due to aquifer material enriched in As (Chakraborti et al., 2002; 

Nickson et al., 1998).  
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Unlike arsenic, copper and chromium are micronutrients essential for proper 

human nutrition. Copper serves as a cofactor for many proteins involved in respiration, 

iron metabolism, and free radical eradication (Valko et al., 2005) . Chromium in the CrVI 

oxidation state is toxic, however, as CrIII it is required for the proper functioning of 

glucose metabolism (Valko et al., 2005). The main mode of toxicity for excess Cu and Cr 

is through the formation of free radicals which can then modify DNA and calcium and 

sulfhydryl homeostasis, while also causing oxidative degradation of lipids.  Lipid 

peroxides, formed through the oxidation of lipids, can react with copper and chromium to 

form carcinogenic malondialdehyde, 4-hydroxynonenal, and DNA adducts (Valko et al., 

2005).   

Heavy metals in the soil have been shown to decrease the microbial biomass 

(Giller et al., 1998). High concentrations of heavy metals have also effected the 

utilization of C substrates, decreasing the rate of mineralization and in some cases 

increasing the leaf litter on the forest surface (Giller et al., 1998). Soil enriched in heavy 

metals through application of sewage sludge has also led to a decrease in microbial 

symbiotic N2 – fixation (Giller et al., 1998). 

1.1.6.2 Governmental Regulation 

The United States Environmental Protection Agency (USEPA) maximum 

contaminant level goal (MCLG) for arsenic in drinking water is currently set to zero, 

however, this is unenforced and reflects the overall concern for arsenic in the water 

system. The maximum contaminant level (MCL) for arsenic in drinking water is .01 mg 

L-1 and 0.1 mg L-1 for chromium. There is no MCL established for copper because it is 

required to control the corrosiveness of the water and is regulated by the treatment 
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technique. The action level set by the treatment technique is 1.3 mg L-1 for copper (EPA, 

2009). According to the CERCLA, arsenic is the #1 contaminant of concern at superfund 

sites, while Cr is #77, with hexavalent chromium at #18, and copper is #128. The ranking 

is based on the amount of sites contaminated, the proximity to the population, and the 

toxicity of the contaminant (USDHHS, 2007).   

1.1.7 Chromated Copper Arsenate (CCA) Treated Lumber as a Metal Source 

The tight regulations governing the allowable quantity of arsenic, chromium, and 

copper release into the environment only goes to demonstrate the realized potential that 

these elements have to cause human and ecosystem degradation.  In order to make 

informed policy decisions and properly dispose of metal laden wastes, it is essential to 

assess the relative mobility and bioavailability of the metals.  The over arching parameter 

influencing the mobility and bioavailability of the metal is its’ speciation, or chemical 

form in the soil, which is governed by a host of soil properties such as pH, Eh, organic 

matter content, mineralogy, etc. Chromated Copper Arsenate (CCA) treated lumber is 

used quite extensively for the construction of decks, docks and many kilometers of fences 

(especially here in the central bluegrass).  The close contact CCA treated wood has with 

the soil often results in the release of Cr, Cu and As (again, the amount of release being 

dictated by a variety of soil properties) which can be used as a consistent metal source to 

assess which soil properties, or combination of properties, have the greatest influence on 

the metal(loid) speciation and subsequent bioavailability.  
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1.1.7.1 The CCA Treatment Process 

Pressure treated lumber has been used for decades to help preserve the integrity of 

wooden structures. This is done by applying a treatment that will resist the attack of pests 

to the wood. In the case of CCA treated lumber the chemical treatment is CrO3, CuO, and 

As2O5 applied under pressure.  The resistance stems from arsenic acting as an insecticide 

and copper acting as a fungicide (Warner and Solomon, 1990).   There are three types of 

CCA solutions used each differing in the amount of Cr, Cu and As depending on the final 

use intended for the wood.  The three CCA formulations are A- 65.5% CrO3 , 18.1% 

CuO, 16.4% As2O5 , B- 35.3% CrO3 , 19.6% CuO, 45.1% As2O5 , and  C- 47.5% CrO3 , 

18.5% CuO, 35% As2O5, with type C being the most commonly used (Association, 2005; 

AWPA, 2005). Above-ground applications require low retention levels, 4.0 and 6.4 

kg/m3. Wood treated to 9.6 kg/m3 is used for load-bearing structures and retention levels 

of 12.8 and 40.0 kg/m3 are used for saltwater applications (Association, 2005; AWPA, 

2005). On a mass basis this leaves approximately 1000-5000 mg kg-1 of each constituent 

in the wood depending on type and loading rate (Aceto and Fedele, 1994).  

1.1.7.2 Chemistry of Fixation 

The chemistry of CCA treated lumber is still not completely understood, however, 

there is a reduction of hexavalent chromium to trivalent chromium through the oxidation 

of functional groups on lignin and cellulose (Bull, 2001).  The level of unreacted Cr(VI) 

in wood  can give an indication of the extent of fixation and the potential leaching of all 

constituents (Cooper et al., 1995).  There is strong association of Cr with As after 

fixation,  with the main products being CrAsO4 and CrO4
2- complexation with lignin, and 

Cu2+ complexation and precipitation products with lignin (Hingston et al., 2001). The 



 

37 
 

association between Cr and As was confirmed through x-ray absorption spectroscopy 

which has shown that all As and half of Cr is fixed as CrAsO4 .nH2O (Bull et al., 2000) . 

It is currently considered that the dominant fixation products are chromium (III) arsenate, 

chromium (III) hydroxide, and carboxylate- copper(II) complexes (Bull, 2001). Also, Cu 

was found to not be associated with any other metal after the fixation process(Bull et al., 

2000). However, this was in contrast to initial fixation models that report large amounts 

of Cu(II) arsenates(Dahlgren, 1974; Dahlgren and Hartford, 1972).  Another analysis of 

CCA treated wood has show no differences in XANES and EXAFS spectra through an 

aging process of 1-4 years, however the Cr:As ratio has been increased from 1.5:1 in 

fresh wood to 2.2:1 in aged wood (Nico et al., 2004). The ratio of Cr:As dictates As 

leaching because Cr concentrations control As complexation (i.e. insufficient Cr 

enhances As leaching) (Henshaw, 1979).Some of the more recent findings indicate that 

clusters of Cr/As occur through the bridging of a Cr dimer by an As(V) oxyanion  within 

the wood (Nico et al., 2006). 

1.1.7.3 Extent of Use 

The current quantity of CCA treated lumber sold in the U.S. has not been 

assessed. However, as of 1999 approximately 75% of the treated wood market was CCA 

treated lumber (Solo-Gabriele and Townsend, 1999).  Also, it was estimated that 1/3 of 

annual timber production was CCA treated (Townsend and Solo-Gabriele, 2001).  The 

residential use of CCA treated lumber has been phased out as of 2004 (Registar, 2002). 

With CCA treated lumber consuming 95% of the arsenic commodity pre-2004, this phase 

out caused a dramatic decrease in the estimated consumption of arsenic in the U.S. 

(21,600 metric tons in 2003 to 6, 800 metric tons in 2004, the current estimate of arsenic 
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consumption is 7,200 metric tons) (USGS, 2009). Because of the substantial reduction of 

arsenic consumption it is estimated that far less CCA treated wood is being used then 

what studies pre-2004 indicate. However, CCA treated lumber in still used in non-

residential sectors and the proper care and disposal of the existing and new CCA treated 

timber is still a concern. This concern becomes particularly obvious in the case such as 

Hurricane Katrina, in which it is estimated that 1,740 tons of arsenic contained in CCA 

treated lumber were left in the debris (USGS, 2009). Proper disposal of this quantity of 

CCA lumber is essential to limit the leaching of As, Cr, and Cu into the soil or water 

systems. Because of such large quantities of CCA treated lumber in the soil environment 

it is essential to address the mobility; speciation and bioavailability of these trace metals 

in the soil environment both in the surface and often disregarded subsurface soil. 

Substitutes to CCA treatment lumber include ammoniacal copper quaternary, copper 

azole, copper citrate, and copper dimethyldithiocarbamate(USGS, 2009). 

1.1.7.4 Leaching/Retention studies 

It has been determined through various sources that As, Cr, and Cu are leaching 

into the environment from CCA treated lumber (Cooper, 1991; Khan et al., 2004; Kim et 

al., 2007; Lebow et al., 2004b; Robinson et al., 2006; Stilwell et al., 2003; Stilwell and 

Gorny, 1997; Stilwell and Graetz, 2001).  The leachable components of CCA treated 

lumber have been speculated to be individual ions, Cr or Cu arsenates, or organometallic 

complexes (Lebow, 1996).  Khan et al.(2004) detected only inorganic As leachates in 

both new and weathered CCA treated wood, as opposed to chromium arsenates or 

organic arsenic complexes (Khan et al., 2004). In new wood the principal leachate was in 

the form of AsV but in the weathered both AsV and AsIII were leached (Khan et al., 2004). 
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The rate of leaching from the wooden structures is different for the metals and decreases 

in the following order: Cu>As>Cr (Breslin and Adler-Ivanbrook, 1998; Robinson et al., 

2006; Stilwell and Gorny, 1997). Also, the rate of leaching increases with acidity (Aceto 

and Fedele, 1994; Warner and Solomon, 1990).  

As reviewed previously, the amount of Cu, As and Cr retention depends on many 

factors in the soil, most notably, pH, organic matter content and clay content. Chromium 

concentrations in soil adjacent to CCA treated lumber were found to be  related with the 

pH of the soil solution, arsenic concentration was related with the O.M content of the 

soil, and Cu concentration was related with both O.M and clay content (Kim et al., 2007). 

The movement of As extended the farthest vertically, compared to Cr and Cu, indicating 

it was the most mobile of the three (Kim et al., 2007).  Another study showed that Cu and 

Cr sorption in the soil was increased with increasing organic matter content; however, 

kaolinite content had little influence on Cr retention, which was low for mineral soils 

(Balasoiu et al., 2001).  Likewise, Cu retention was not influenced by kaolinite content 

except for soils particularly low in organic matter (Balasoiu et al., 2001).  Arsenic 

behaves differently than both Cu and Cr; it was retained by the soil regardless of the 

amount of organic matter or kaolinite content (Balasoiu et al., 2001).  The adsorption of 

As was high in both mineral and organic soils; at high levels of organic matter there was 

formation of AsIII species (Balasoiu et al., 2001).  Partitioning of Cr and Cu is different 

between mineral and organic soils, in mineral soils Cu and Cr are predominantly in an 

exchangeable form, however in organic soils exchangeable concentrations are much 

lower (Balasoiu et al., 2001). An assessment of sandy Florida soils indicates that leaching 
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had occurred principally within .3 m from posts; however retention by the soil was low 

because of low organic matter and clay content (Chirenje et al., 2003).   

1.2 Research Justification and Objectives 

Many studies indicate that Cr, Cu, and As are leaching from CCA treated fence 

posts. However, limited studies have addressed the resultant speciation of Cr, Cu, and As 

leachates in soils adjacent to CCA treated fence posts. Previous studies have investigated 

CCA enriched soils in CCA treated lumber processing plants. These studies have shown 

that arsenic is principally coordinated as As(V) adsorbed to Fe or proto-imogolite 

allophone (Hopp et al., 2008), also, Cu may play a large role in the sequestration of 

arsenic as poorly ordered precipitates along with Fe and Al oxide complexes (Grafe et al., 

2008b). To my knowledge, no studies have evaluated the coordination environment of Cu 

in soils adjacent to CCA fence posts and CCA leachate behavior and speciation has not 

been assessed in subsurface soil horizons. 

 Because of this lack of knowledge, the widespread use of CCA treated lumber, 

especially in the bluegrass region of central Kentucky, and concern for the toxicity of its 

metal constituents leaching into the soil and water environment, an evaluation of these 

metals in the Kentucky soil environment needs to be addressed.  In addition, CCA treated 

lumber is composed of relatively the same amount and form of its metal constituents and 

CCA treated fences transect the landscape. These metal sources can be used to study the 

soil properties which influence the leaching, concentration, speciation, and bioavailability 

of As, Cr, and Cu in the soil. Ultimately, this will provide information on the fate of these 

trace metals in the soil environment.   
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The specific objectives of the study are (1) to determine the  amount and 

distribution of Cr, Cu and As around CCA treated fence posts along a 

topohydrosequence; (2) determine the speciation of Cr, Cu and As (and therefore, the 

potential mobility, and bioavailability) in these soils and (3) determine which soil 

properties most strongly influenced the observed speciation.   
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Chapter 2:  Speciation and Spatial Distribution of Arsenic from CCA Treated 

Fences Across a Toposequence  

2.0 Introduction 

Arsenic speciation and spatial distribution were assessed adjacent to Chromated 

Copper Arsenate (CCA) treated fence posts along a toposequence. Metal distribution is 

evaluated on both macroscopic (soil profile contour maps) and microscopic scales (XRF 

images), speciation of As was conducted using extended x-ray absorption fine structure 

(EXAFS) and a myriad of basic soil properties probed to determine which soil properties 

most influence As spatial distribution and speciation. This study indicates As speciation 

is controlled through aluminum and iron containing soil minerals and that in acidic soils 

aluminum predominantly controls As speciation, whereas, in neutral soils Fe and 

aluminum oxides are favored equally for the adsorption of As. Additionally, the mobility 

of arsenic tends to increase in the higher pH conditions, in which Fe-As interactions are 

greater. 

Arsenic, and other metal(loid)s, are enriched in environmental systems through 

many processes, for instance, soil and water can be contaminated through coal mining 

(mountain top removal, mine drainage, disposal of fly ash), land application of biosolids 

and manure, and through the installation and disposal of Chromated Copper Arsenate 

(CCA) treated lumber. The acute and chronic exposure of arsenic is well known, having 

profound reproductive, mutagenetic, and carcinogenic effects (Mandal and Suzuki, 

2002), even at low doses (10 to 100 ppb) it is indicative that arsenic significantly 

compromises the immune system, increasing the risk of influenza (Kozul et al., 2009) and 



 

43 
 

other ailments. The toxic effect of exposure to arsenic is attributed not only to the total 

concentration but also it speciation, or chemical form in the environment (Mandal and 

Suzuki, 2002). The central Bluegrass region of Kentucky is known for its horse industry 

and the associated kilometers of fences.   These fences, many of which are treated with 

chromated copper arsenate (CCA) wood preservative transect a wide array of soil series 

and landscape positions, thus it is possible to use this consistent arsenic source to 

evaluate which soil properties influence arsenic mobility and speciation. 

Chromated copper arsenate (CCA) is a pesticide treatment introduced under 

pressure in which As acts as an insecticide and Cu a fungicide  in order to preserve the 

integrity of wooden structures exposed to harsh environmental conditions (Warner and 

Solomon, 1990).   There are three types of CCA treatments each varying in the 

proportion of Cr, Cu and As, the most common being form C  which is comprised of 

47.5% CrO3 , 18.5% CuO, 35% As2O5 applied at rates of  4.0 to 40.0 kg/m3 depending on 

use (Association, 2005; AWPA, 2005). The fixation of arsenic in the wood is 

accomplished through the formation of  CrAsO4 , where Cr forms a complex with lignin 

or cellulose (Hingston et al., 2001) or through the bridging of a Cr dimer by an As(V) 

oxyanion (Nico et al., 2006).  Arsenic from CCA treated lumber used in wood decking, 

play structures, fences, etc. has been shown to leach into the surrounding environment 

(Cooper, 1991; Khan et al., 2004; Kim et al., 2007; Lebow et al., 2004b; Robinson et al., 

2006; Stilwell et al., 2003; Stilwell and Gorny, 1997; Stilwell and Graetz, 2001).  Khan et 

al., (2004) using a variety of leaching procedures detected only inorganic As leachates, 

predominantly in the pentavalent state, in both new and weathered CCA treated wood, 

with the weathered wood leaching more total As and a higher proportion of As(III) 
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compared to the new wood.  This manuscript will address how these leachates interact 

with soils of varying physicochemical properties by determining the speciation of As in 

soils adjacent to CCA treated fence posts along a toposequence.  

The specific objectives of the study are (1) to determine the  amount and 

distribution of As around CCA treated fence posts along a topohydrosequence; (2) 

determine the speciation of  As (and therefore, the potential mobility, and bioavailability) 

in these soils and (3) determine which soil properties most strongly influenced the 

observed speciation.   

2.1 Materials and Methods 

2.1.1 Soil Sample Collection, Description and Preparation  

The field site is located in the Inner Bluegrass region of Kentucky on the 

University of Kentucky Spindletop Research farm. Sampling was conducted along a 

Chromated-Copper-Arsenate (CCA) treated fenceline which had been in place for ~20 

years surrounding a mixed grass pasture. The fence line was chosen because it transects a 

Bluegrass-Maury silt loam (fine, mixed, semiactive, mesic Typic Paleudalfs), a Donerail 

silt loam (fine, mixed, active, mesic Oxyaquic Argiudolls), and a Newark silt loam (fine-

silty, mixed, active, nonacid, mesic Fluventic Endoaquepts), each having different pH, 

drainage class and slope.   Additional information regarding the site location and soil 

series specification can be found in Appendix 1.Soil pits were dug by backhoe to a depth 

of ~1m alongside a fence post at the hill top (HT), a midslope (MS), and a toeslope (TS) 

position corresponding to the Maury, Donerail, and Newark silt loam soils respectively. 

A grid pattern was established on the face of the pit containing the fence post from which 
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about 60 soils samples were collected into Whirl-Pak® ( Nasco, Fort Atkinson, 

Wisconsin) bags and stored on ice (See Appendix 2 for sampling plan schematic ).  Upon 

returning to the lab, soils were sieved past 2 mm, placed in new whirl-pack® bags and 

stored at 4oC until analysis.  Additionally, to assess trends along the toposequence soil 

samples were collect every 8 posts (~20m) from the HT position to the TS position at 

distances 0-5 cm and 10-15 cm away and depths 0-15 cm and 15-30 cm (See Appendix 

10 for additional details). 

To establish the influence that changes in redox status may be having on metal 

mobility, soil samples were collected at the HT, MS, and TS positions after a spring 

rainfall event using a 30 cm soil probe with a 3 cm diameter. At the time of sampling the 

groundwater was within 45 cm of the soil surface in the toe slope position. Samples were 

pulled at a depth of 60-90 cm and again at a depth of 90-120 cm, placed into sterilized 

Whirl-Paks ® (Nasco, Fort Atkinson, Wisconsin), flash froze under liquid nitrogen and 

transferred to a glove box filled with an Ar atmosphere for analysis. 

2.1.2 Soil chemical properties 

In preparation for analysis, sieved soils were dried at 60° C.  Soil pH was 

determined by a glass electrode in a 1:1 soil/water ratio which was stirred manually and 

allowed to set for ≥15 min. Mehlich III -P, K, Ca, Mg, Zn, Cd, Cr, Ni, Pb, Cu, and Mo 

(Meh-P, Meh-K, etc.) were determined by inductively couples plasma mass spectroscopy 

(ICP-MS) after 2 cm3 soil mixed with 20 ml of Mehlich III solution (0.2 N acetic acid, 

0.25 N NH4NO3, 0.015 N NH4F, 0.013 N HNO3, and 0.001 N EDTA), shaken for 5 min. 

and filtered through Whatman #2 filter paper(Mehlich, 1984). Soil carbon and nitrogen 



 

46 
 

determined by dry combustion with 0.5 g soil. Cation exchange capacity (CEC) and base 

saturation determined with 10 g soil by saturation with 1 N ammonium acetate. Soil 

texture was determined by the micropipette method. Analysis, with the exception of pH, 

was performed by the University of Kentucky’s Division of Regulatory Services. 

2.1.3 Redox Characterization through Iron Analysis 

Total Fe and Fe(II) were determined in a water extracts and ammonium oxalate 

extracts, the Fe(II) was assessed by a ferrozine based  method(Phillips and Lovley, 1987; 

Stookey, 1970). For the water extract, one-hundred milliliters of a 100 g anoxic air dried 

soil L-1 deoxygenated water suspension was shaken for 90 minutes and an aliquot was 

passed through a 0.22 µm filter to obtain 2 ml of filtrate. The filtrate was combined with 

1 ml pH 6 MES buffer (0.1M) and 0.3 ml ferrozine (0.01 M).  For the ammonium oxalate 

method a 0.5 ml aliquot of the soil suspension (100 g soil L-1 deoxygenated water) was 

combined with a 1.5 ml of anoxic acid ammonium oxalate (0.2 M at pH 3), shaken in the 

dark for 24 hrs., passed through a 0.22 µm filter and combined with 1 ml pH 6 MES 

buffer (0.1M) and 0.3 ml ferrozine (.01 M). The presence of Fe(II) will cause the 

colorless ferrozine mixture to change to a magenta color which was measure through 

absorbance at 562 nm on a Shimatzu UV-3101PC UV-VIS-NIR Scanning 

Spectrophotometer. The total Fe concentration was determined using a Shimatzu Flame 

Atomic Adsorption Spectroscopy (FAAS). 

 

2.1.4 Total Metal Determination 
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Total metal content of the soil samples was determined using a modification of 

EPA method 3052.  Briefly, 9 ml of nitric acid and 5 ml hydrofluoric acid were added to 

250 mg of dry soil in Teflon pressurized/sealed vessels and rapidly digested in a 1600W 

MARS (CEM, Matthews, North Carolina) microwave digestion unit.  Samples were 

brought  up to 180° C and kept at this temperature for 10 min., after which they were 

allowed to cool, transferred to 50mL falcon tubes, and  brought up to final volume of 50 

mL using ultrapure water.  Samples were then analyzed on an Agilent 7500 series (Santa 

Clara, Ca) Inductively Coupled Plasma- Mass Spectrometer (ICP-MS). All reagents used 

were ultra-pure trace-metal grade. 

2.1.5 Metal Speciation via Synchrotron X-ray Absorption Fine Structure 

Spectroscopy (XAFS) 

2.1.5.1 Sample Preparation and Data Collection 

Data collection was performed at beamline 13-BM-D [Advanced Photon Source 

(APS), Argonne National Laboratory, Argonne, IL] and beamline 10.3.2 [Advanced 

Light Source (ALS), Lawrence Berkeley National Laboratories, Berkeley, CA](Marcus et 

al., 2004).  µ-X-ray Absorption Fine Structure Spectroscopy (µ−XAFS) and µ- 

Synchrotron X-ray Fluorescence (µ−SXRF) mapping data were collected on beam lines 

13-BM-D at APS and 10.3.2 at ALS, while, bulk XAFS data was collected at beamline 

13-BM-D at APS. Soil samples were dried at 60° C for 24 hrs and ground with an agate 

mortar and pedestal. Samples for bulk X-ray analysis were retained in a 20 mm by 5 mm 

by 3mm hole between two pieces of non-adhesive Kapton film in an acrylic sample 

holder. For µSXRF and µXAFS data collection an even layer of soil was adhered to 
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Kapton film using a thin layer of silicone based vacuum grease.  Samples were mounted 

at 45° to the incident beam and data collected in fluorescence mode by a 16- element and 

7- element Ge detector at beamlines 13-BM-D and 10.3.2, respectively.  

Αt beamline 13-BM-D, µ−SXRF mapping was conducted over an area of 1 mm2  

at 14 keV using a beam size of 10  µm by 20  µm with 20  µm steps, and a 2 s dwell time 

while, µSXRF mapping conducted at beamline 10.3.2 was over an area of 1 mm2  at 13 

keV using a beam size of  6 µm by 6 µm using a continuously scanning stage with 6 µm 

steps.  Multiple (≥5) extended X -ray absorption fine structure spectra (EXAFS) were 

collected in fluorescence mode from 150 below to 650 above the As K-edge (11.867 

keV), from each area of interest (AOI) found in the µ−SXRF maps. The beam size was 

set to 6 mm by 0.9mm for all bulk EXAFS data collected.  For µ−SXRF mapping and 

µ−EXAFS spectra collection a beam size of 10 µm by 20 µm was used at 13-BM-D 

while, a beam size of 4 µm by 3 µm was used at beam line 10.3.2.  

2.1.5.2 Data Analysis 

All data reduction was performed using WinXAS 2.1 (Ressler, 1997). Individual 

spectra were calibrated for shifts in edge energy using the 2nd derivative of the adsorption 

edge and setting the edge energy equal to 11.874 keV. Then, spectra were background 

corrected using two polynomials ,the pre-edge and post-edge region were estimated 

through first order polynomials, however, under some circumstances a second order 

polynomial provided a better estimate for the post-edge region background correction, the 

spectra were then normalized.  After normalization, multiple scans per AOI were 

averaged and converted from energy (keV) to photo-electron wave unit’s (k (Å-1)) by 
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setting the edge energy origin at 11.874 keV. A single atomic spectra with the absence of 

back scattering was estimated using a cubic-spline function of 7 knots over an average k 

space of 2.0 to 13.5 Å-1 and subtracted from the spectra to obtain raw χ(k) data. The χ(k) 

was weighted by a factor of k3 to amplify oscillations at higher k values. Fourier 

transformation of the χ(k)k3 was performed over the k ranges of 2.5 – 12.75 Å-1
 to obtain 

radial structure functions using a Bessel window with a smoothing parameter of 4. 

Traditional fitting procedures are not well suited for multicomponent systems such as 

soil. Therefore, in order to illicit the species present in the soil a statistical procedure 

using principal component analysis (PCA) was conducted. The PCA analysis was 

conducted over a k range of 2.0 to 10 Å-1 of the χ(k)k3. The PCA analysis works by 

taking the original set of spectra and reducing it to a smaller number of principle 

components. The number of principal components that can statistically account for a 

majority of the data is selected based upon the minimization of the indicator value 

(Malinowski, 1977).  A target transformation of standards is conducted with the set of 

principal components selected that statistically account for a majority of the data. The 

target transformation consists of removing from the standard spectrum that which cannot 

be accounted for by the principal components. The standards used were Adamite 

[Zn2(AsO4)OH], Allactite [Mn7(AsO4)2(OH)8] , Chalcophyllite 

[Cu9Al(AsO4)2(SO4)1.5(OH)12·18H2O], Ojuelaite [ZnFe2
3+ (AsO4)2(OH)2·4H2O] 

 , Olivenite [Cu2(AsO4)OH], Scorodite [FeAsO4·2H2O], Mansfieldite [AlAsO4·2H2O] 

(determined to be an amorphous phase through XRD), As(V) Birnessite, As(V)-Gibbsite, 

As(V)-Goethite, As(V)Zn(II) Birnessite, As(V)Zn(II)-Gibbsite, As(V)Zn(II)-Goethite, 

As(V)Zn(II)-Silica Oxide, and Liquid As(V).  Additional details on the standards used 
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can be found in (Grafe et al., 2008a; Grafe et al., 2008b). The less that needs to be 

removed from the standard; the more likely the standard is a component in the sample. To 

assess the extent of fit a SPOIL value is given to each reference spectra. SPOIL values 

<1.5 are considered excellent fit, 1.5-3 good fit, 3-4.5 fair, 4.5-6 poor, and >6 

unacceptable (Manceau et al., 2002). After the determination of the standard spectra 

present, a linear least squares fitting is used to determine the amount of each standard 

spectra within each sample spectra.  

2.2 Results 

2.2.1 Total Metal Concentration and Spatial Distribution 

Geostatistical constructions of contour maps showing the spatial distribution of 

total arsenic around the fence posts indicate significant leaching of As adjacent to the 

hilltop (HT) and midslope (MS) post, (Figure 2.1). The maximum concentrations of 

arsenic (HT: 755 ppm, MS: 685 ppm, and TS: 133 ppm) are located directly adjacent to 

the post and fan out toward the surface soil, showing elevated concentrations (75 – 100 

ppm)  up to 30 – 35 cm from the post. At depth the increased concentrations of arsenic 

are confined to the 0-10 cm region adjacent to the CCA post, otherwise arsenic 

concentrations approach background. For the hilltop and toeslope positions the highest 

arsenic concentrations are located in the 0-15 cm depth directly adjacent to the post and 

concentrations decrease with depth. This is not the case for the midslope sampling 

position where the highest arsenic concentrations (400-600 ppm) are located at depths of 

15- 80 cm in soil adjacent to the post. Although the maximum concentrations of arsenic 

are similar at hill top and midslope position,(~755 ppm and ~685 ppm,  respectively), the 
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midslope positions shows a higher total mass of arsenic throughout all depths, with the 

60-90 cm depth in the   HT having 0.046 g As/cm depth compared to the MS which has 

0.148 g As/cm depth showing the greatest differences (Figure 2.1/Table 2.1) calculations 

exhibited in Appendix 6.  The total sum of arsenic released and remaining in the 

surrounding soils is estimated to be 21.46 g, 29.27 g, and 4.36 g for the HT, MS, and TS 

landscape positions, respectively (Appendix 6). The toeslope position has, on average, 

arsenic concentrations that are much lower than the HT and MS positions, however, the 

overall spatial distribution is similar. The distribution of copper is similar to that of 

arsenic, where increased concentrations were observed in the topsoil and emanating 

farther from the post, whereas, in the subsoil elevated concentrations generally remain 

close to the post. (A more detailed discussion of the copper and chromium data appears in 

Chapter 3).  

Average As concentration in surface soils along the toposequence exhibits similar 

if not slightly increasing concentrations of As while moving down the topographic 

gradient (Figure 2.2). The TS landscape position concentrations are much lower than any 

of the other soils analyzed. Additionally, the ratio of the directly adjacent to the post (0 – 

5cm) to the 10-15 cm away from the post As concentrations  indicate that As is enriched 

to a higher degree away from the post in samples while moving down the topographic 

gradient (Figure 2.2).  
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Figure 2. 1: Soil profile contour map of Arsenic concentrations (ppm) in soils along the 
toposequence. The blanked section indicates regions where the post enters the soil.  
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Table 2.1: Total mass and normalized enrichment factor (NEF) of arsenic. Detailed 
explanation of the calculations is provided in the Appendix 6. 

       
  

Depth 
Mass per unit depth (g/cm)  

Normalized Enrichment Factor 

(NEF)  

     Hilltop 
    

  
0 to 15 cm 0.662 

 
15 

  
15 to 30 cm 0.268 

 
8 

  
30 to 60 cm 0.200 

 
6 

  
60 to 90cm 0.046 

 
2 

  
90 to 105 cm 0.009 

 
2 

  
Total g (0-105cm) 21.463 

  
       Midslope  

    
  

0 to 15 cm 0.771 
 

16 

  
15 to 30 cm 0.347 

 
10 

  
30 to 60 cm 0.268 

 
10 

  
60 to 90cm 0.148 

 
6 

  
90 to 110 cm 0.003 

 
2 

  
Total g (0-105cm) 29.269 

  
       Toeslope  

    
  

0 to 15 cm 0.100 
 

4 

  
15 to 30 cm 0.049 

 
2 

  
30 to 60 cm 0.030 

 
2 

  
60 to 90cm 0.033 

 
2 

  
90 to 120 cm 0.017 

 
2 

  
Total g (0-105cm) 4.363 
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Figure 2. 2: Concentration and mobilization of arsenic across the topographic gradient. 
A.)Average arsenic concentration of samples collected along the toposequence and B.) 
ratio of 0-5 cm from post: 10-15 cm from post at 0-15 cm depth along the toposequence. 
Hilltop (HT), Midslope (MS), Toeslope (TS). See Appendix 10 for additional details. 

 

2.2.2 Basic Soil Properties 

Basic soil properties are exhibited in Table 2.2, principally; the soil texture class 

observed is a silt loam throughout the three soil series/landscape positions with the 

exception of the HT 30-90 cm and MS 60-90 depths where an accumulation of clay has 

resulted in a silty clay loam textural class.  Cation exchange capacity (CEC) is similar 

between the HT and MS locations and somewhat increased at the TS position with all 

samples being within 14.4 – 21.2 meq/100 g soil.  Higher CEC values are accounted for 

through increased soil organic matter (SOM) content and/or clay content. The soil 
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organic matter (SOM) content is similar between the three landscape positions, reducing 

with increasing depth in the soil profiles, however, at the TS position the SOM content 

increases from 1.0 % at the 30-60 cm depth to 2.1 % at the 60-90 cm depth.  

The three soil series/landscape positions follow a similar trend of increasing pH 

units with depth up to about 60 cm beyond which the pH stays relatively consistent or 

slightly decreases. Although pH vs. depth relationships are similar between landscape 

positions the overall pH increases moving down the landscape (HT pH<MS pH<TS pH), 

with the HT and MS positions having strongly to moderately acidic conditions (HT: 5.2 – 

6.0 pH and MS: 5.7– 6.4 pH), whereas, the TS position is near neutral (6.8- 7. 4 pH). The 

base saturation (BS) of the cation exchange sites shows the same trends as the pH. The 

BS is between 38 – 58.4 %, 52.7 – 70.9 %, and 69.2- 81.1 % at the HT, MS, and TS 

positions, respectively, increasing from the HT to the TS position. Additionally, sharp 

drops in pH and base saturation are realized in soils adjacent to the post compared to 

similar depth background samples.   

The background concentrations of Mehlich III extractable phosphorus (Meh-P) 

are higher in the TS position than in the MS and HT positions. For example, at the 0-15 

cm soil depth HT, MS, and TS positions have 77, 70, 111 mg/dm3 
 of Meh-P respectively, 

at depth this effect is even more pronounced as the HT, MS, and TS positions have 55, 

75, and 134 mg/dm3 
 of Meh-P respectively (Table 2.2). Although, background meh-P 

concentrations are higher at the TS position in soils adjacent to the post Meh-P is 

increased with respect to background in both the HT and MS positions; the alternative 

being true for Meh-Ca adjacent to the post in that Meh-Ca is reduced with respect to 

background. At the TS position the concentrations of Meh-Ca are 39% - 132% higher 
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(2012 - 3056 mg/dm3), compared to the corresponding depths at the HT and MS 

positions. The exception to this is the 30- 60 cm depth were all Meh-Ca concentrations 

are within 15% of each other. The increasing pH, base saturation, and % Ca  while 

moving down the topographic sequence are all consistent with general soil properties as 

influenced by landscape position (Brubaker et al., 1993; Seibert et al., 2007).  All 

landscape positions are rich in Al and Fe total metal concentrations (Appendix 4).   
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2.2.3 Iron Characterization 

There were no statistical differences in the total ammonium oxalate extractable 

iron (AO-Fe) between the landscape positions, however, when taking into account the 

total metal digest iron (T-Fe) the proportion of AO-Fe/T-Fe is higher at the TS position 

than the HT position with the MS position being at an intermediate level. A similar trend 

is observed with the total ammonium oxalate extractable Fe(II) (AO-Fe(II)), in that the 

proportion of AO-Fe(II)/T-Fe is larger in the TS position than in the MS and HT 

positions.  Regardless, the significant amount of AO-Fe indicates the presence of 

amorphous iron oxides. Water extractable Fe (W-Fe) and water extractable Fe(II) (W-

Fe(II)) where significantly higher at the TS position than the MS and HT position at 60 – 

90 cm, and the TS position was statistically higher in W-Fe and W-Fe(II) than the HT at 

90 -120 cm depth. 
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2.2.4 As Speciation via µ-SXRF 

The spatial distribution of elements within soil samples was probed using 

synchrotron x-ray fluorescence mapping (SXRF) which allows for the determination of 

correlations between multiple elements. Multiple X-ray fluorescence maps were collected 

for the surface soil samples (0-15 cm) directly next to (0-5 cm) the HT,MS and TS fence 

posts which were determined to have total As concentrations of 758, 496, and 132 mg kg-

1, respectively.  Multiple maps were also collected from  subsoil samples directly beneath 

the HT, MS and TS posts each containing  268, 204, and 94 mg kg-1 of As, respectively.  

Micro-XAFS spectra were collected at areas of interest (AOI) within the µ-SXRF maps 

to  facilitate the determination of As species present. Figure 2.3, is a map from the hilltop 

surface soil, the separate images showing the fluorescence signals for As, Cr, Cu, Fe, Zn, 

and Mn, the warmer colors, with white being highest and indicating regions of elevated 

counts while the cooler colors(black being lowest), indicating regions of low/no counts. 

As-metal associations were confirmed by the similarities in fluorescence maps, for 

instance, in Figure 2.3 fluorescence map of As and fluorescence map of Fe, look similar.  

The fluorescence signals for Fe and Mn, not only show correlation with As, but also 

indicate the structure of soil particles, often indicating discrete Fe and/or Mn containing 

particles. As can be seen from the map and multiple channel analysis (MCA) in Figure 

2.3, spot 1 contains the highest counts of arsenic and corresponds to an area that is 

concentrated in Fe, Mn and Al, as well as, Cu, Zn, and Cr.  Spot 2 and 3 are different 

showing high As counts colocalized with Fe and Al.  In general, regions of high As 

counts correlate better with Fe than the other metals analyzed, as assessed with Pearson 

correlation coefficients on the maps (data not shown). Unfortunately, As-Al correlations 
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cannot be exhibited with this technique because Al is a component in many soil minerals, 

however, the MCA exhibits that Al is located at these AOI. Arsenic concentrations are 

more diffuse in surface soils SXRF maps whereas, subsurface SXRF maps indicate more 

discreet regions of elevated As (Appendix 5).  

Only qualitative data of As speciation can be address via SXRF mapping techniques. To 

illicit quantitative data on the bonding environment of As a µ-XAFS analysis was 

conducted over many discreet spots on multiple maps in order to probe and characterize 

the As species present. The predominant species present was As(V) based on the edge 

energy of the bulk spectra at ~11.874 keV (Figure A7.1). The arrows with numbers on 

the XRF maps correspond to locations in which µ-XAFS spectra were taken. In total 6 

bulk XAFS (Figure A7.1-2) and 20 µ-XAFS spectra (Figure A7.3-4) were taken from the 

Maury, Newark, and Donerail Silt Loam soils.  Overall, surface and subsurface soils were 

examined in the three soil series.  
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Figure 2.1: Hilltop surface soil µSXRF maps of As, Cu, Fe, Mn, Zn, and Cr localization. 
Warmer colors correspond to regions of elevated metal concentrations. Multiple Channel 
Analysis (MCA) indicating element counts at various areas of interest (AOI). Arrows are 
spots in which MCA and µ -EXAFS spectra were taken. 

 

 

 



 

62 
 

2.2.5 Principal Component Analysis and Linear Least Squares Fitting of µ and bulk 

XAFS  

The principal component analysis (PCA) procedure was performed over the 

combination of all µ-EXAFS and bulk EXAFS spectra, as well as, with sets of these 

spectra with the noisiest spectra successively removed. In all cases the PCA analysis 

shows a minimum in Malinowski Indicator value (IND) at 3-4 components (Figure A8.1), 

indicating the data set is best represented with 3-4 unique components, the removal of the 

noisiest spectra cleans up the principal component set (Figure A8.2).  The species that 

most statistically constitute the unknown spectra as determined through target 

transformation (TT) analysis through the calculation of a SPOIL value consist of 

As(V)Zn(II)-Goethite (SPOIL~0.92), Mansfieldite (AlAsO4·H2O) (SPOIL ~0.73) , 

As(V)-Gibbsite (SPOIL ~.83),  the addition of a 4th component is As(V)-Goethite or 

As(V)Zn(II)-Gibbsite. Overall, the principal component analysis highlights the 

importance of iron and aluminum complexes in controlling arsenic speciation in the soils 

observed. The principal component analysis indicates the spectral set is principally made 

up of As(V) adsorbed and/or As(V) Zn(II) coprecipitated on iron and aluminum minerals.   

With the principal components indicated above linear least squares fitting was 

used to determine the percent of each constituent in all µ− and bulk- EXAFS spectra 

(Table 2.4). Micro-EXAFS spectra were averaged at each soil location, the percent 

gibbsite and percent Mansfieldite species do not exhibit a correlation between the average 

µ− and bulk-EXAFS spectra possibly due to the similarity between these Al-As spectra. 

In some cases the species identified via LLSF of the µ -EXAFS spectra tend to over or 
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underestimate the bulk- EXAFS spectra, likely due to the selection of the spots in which 

µ−EXAFS were taken. The noise in the µ−ΕXAFS spectra tends to lead to higher 

normalized sum square (NSS) values than their bulk counter parts. Although, the bulk 

and µ -EXAFS spectra show some deviations from one another, a correlation  plot with 

µ vs. bulk EXAFS spectra show slopes at ~ 1, although the R2 is low (Figure A9.1). The 

results indicate higher concentrations of As(V) coprecipitated with Zn(II) on Goethite in 

subsoil samples compared to the surface soil counter parts. Also, there are increased 

concentrations of As sorbed to goethite moving from the HT to the TS position. When % 

As sorbed by iron species and % As sorbed by aluminum species is plotted vs. soil pH 

(Figure 2.4), a trend arises which indicates that at low pH and high As concentration Al 

species hold a more predominant role in controlling As speciation whereas as pH 

increases the iron phases become more important in controlling As speciation. 
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Figure 2.2: The percent As bound to Fe and Al vs. pH. It was determined by linear least 
squares fitting of the bulk and µ-XAFS spectra from the HT(Diamonds),MS(X) and 
TS(circles) positions plotted vs. soil pH .  

 

2.3 Discussion and Conclusion 

Moving down the topographic gradient a slight trend of increased mass (Figure 

2.2, Table 2.1) and concentration (Figure 2.1) of arsenic in the surrounding post soil was 

observed at depth possibly indicating higher potential for As leaching from posts moving 

down the toposequence. Lebow et al. (2004) found that As release from CCA wood by 

rain water was largest during longer periods of exposure to water (Lebow et al., 2004a) .  
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Due to the drainage characteristics of the soil in this study, increased periods of time with 

water contact to the fence posts occurs moving to more poorly drained conditions which 

is likely enhancing the leaching of As from the wood surfaces.  In the surface soils a 

decreasing trend in the ratio of As in the 0 – 5 cm sampling distance to that in the 10-15 

cm sample going from the HT position to the poorly drained TS location (Figure 2.1) 

once again alluding to the increased mobility of As in these soils. Potentially accelerating 

the loss of As from the TS locations is the increased pH compared to soils at the MS and 

HT.   Poor drainage provides the anoxic conditions favorable for the release of As into 

solution; the increase in pH lowers the adsorption capacity of various soil constituents. 

Several researchers have shown that increases in pH result in a decrease of arsenate 

adsorption potential to amorphous aluminum oxide, aluminum oxides, clays, and iron 

oxides (Dixit and Hering, 2003; Goldberg, 1986; Goldberg, 2002). As shown in Figure 

2.2, the radial extent of As mobilization is occurring to the greatest degree in surface soils 

which likely has to do with increased As leaching from the post, biological activity, 

bioturbation, and lower bulk density in surface soil horizons as opposed to subsurface 

horizons. The organic matter profile in these soils follow the same trends as the total 

mass of As, and the radial extent of leaching is highest at the surface soils; indicating that 

biological activity or organic matter competition for As sorption sites (Bauer and Blodau, 

2006; Bauer and Blodau, 2009; Redman et al., 2002)  is likely influencing the 

mobilization of As. 

Although, the SXRF map correlations and colocalization are stronger for As and 

Fe compared with other elements, the results from the PCA analysis and subsequent 

target transformation indicates that Al-species are playing a predominant role in the 
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sequestration of As, especially in acidic soils. Unfortunately, Al species are not easily 

mapped through SXRF mapping, because Al is a major constituent in most soil minerals, 

thus the predominant Al-As relationship is not decipherable through SXFR mapping. 

Multiple channel analysis (MCA) scans at select AOI indicate Al is colocalized along 

with As. The goethite species, gibbsite species and the amorphous Al-As complex, 

originally believed to be Mansfieldite, fit the PC's best. The aluminum species play the 

main role in As speciation at the HT surface soil location, the most acid location 

evaluated at a pH of 4.4, and previous mineralogical analysis conducted by Karathanasis 

et al. (2002, 2006a) indicate significant quantities of Al oxides and amorphous Al oxides 

in the Bluegrass Maury silt loam soil. The LLSF of the select standards indicates the Al-

As complexes (Mansfieldite, As(V)-Gibbsite) predominate in the HT surface soil, 

indicating the probable mode of adsorption is with aluminum bearing minerals in which 

Fe, Zn, Cu, etc. are all colocalized together. This mechanism of sorption is likely true 

throughout all landscape positions; however, the surface charge on Al and Fe functional 

groups shifts with the pH, thus causing Fe to play more of a role in As sorption when 

soils become more basic. This trend is clearly shown in Figure 2.4 and the apparent 

crossover point at which Fe begins to play a more predominant roll is near the pH in 

which Al function groups gain net negative charges (Sadiq, 1997). This could explain the 

increase in meh- P in soils adjacent to the post is attributed to As out competing with 

phosphorus on Al surfaces (a predominant sorption mechanism for phosphorus) and thus 

causing P to be mobilized to less strongly sorbed sites. The meh- P increase is most 

apparent in the acidic soils with the highest concentrations of As, the same locations in 
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which As-Al species predominate; as the concentration of arsenic decreases and soils 

shift towards more basic pH, the meh-P is drastically reduced. 

The lower retention of As at the TS soil location can be explained by a confluence 

of factors, first the affinity for soil particles is less due to the pH being at near neutral 

conditions, the lower affinity is accompanied by a higher concentration of meh- P at the 

TS than at the HT and MS position, which can strongly compete with As for sorption 

sites. This, accompanied with an increase in water allowing these interactions to take 

place more frequently, allows arsenic to be mobilized more readily. The landscape 

position of the TS also experiences extended periods of time during the year in reduced 

conditions due to its location near an intermittent stream. It is shown that Fe plays a 

greater role in the speciation of arsenic at this landscape position in comparison to the HT 

and MS landscape positions, since iron is a redox sensitive element, the reduction of Fe 

may release As. The results of the Fe analysis indicate both higher concentration of W-

Fe(II) and W-Fe, the increase in W-Fe(II) is an indication of redox conditions favorable 

for reductive dissolution of Fe- minerals and the subsequent mobilization of As bound to 

this fraction. The higher degree of W- Fe in solution may indicate a possible mobile 

pathway through colloidal iron. The same TS soils exhibit increased  SOM at depth 

which is attributed to a higher water table causing reducing conditions in which less 

energy efficient microbial anaerobic respiration processes predominate thus limiting 

SOM decomposition rates and resulting in a net increase in SOM (Sylvia, 2005).  

Additionally, at conditions conducive to Fe reduction, As reduction is also 

thermodynamically favorable ( As(V) to more mobile As(III)) (Kocar and Fendorf, 

2009), another mode of mobilization in this TS position.  
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Overall, Fe and Al bearing minerals are the principal sorption mechanisms for As 

in the soil studied with Al controlling As sorption at low pH conditions and Fe playing an 

increased role at higher pH conditions.  The pH of the soil, which is increasing while 

moving down the topographic gradient, is resulting in a higher degree of As mobilization 

while moving down the toposequence. Although a measurement of remaining As in the 

posts was not taken, all geochemical indices may be a sign of the low concentrations of 

As remaining in soils at the TS position is likely a result of mobilization through 

competition (meh-P, SOM), increased pH conditions, and redox conditions favorable for 

As mobilization (higher Fe(II) and total-Fe concentrations in water extracts).  
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Chapter 3:  Speciation and Spatial Distribution of Copper and Chromium from 

CCA Treated Fences Across a Toposequence  

3.0 Introduction 

Copper and chromium speciation and spatial distribution were assessed adjacent 

to Chromated Copper Arsenate (CCA) fence posts along a toposequence. Metal 

distribution was evaluated on both macroscopic (soil profile contour maps) and 

microscopic scales (XRF images), speciation of Cu was conducted using extended x-ray 

absorption fine structure (EXAFS) and a myriad of basic soil properties probed to 

determine which soil properties (pH, soil texture, CEC, etc) most influence Cu spatial 

distribution and speciation. This study indicates Cu speciation is controlled through 

organic matter complexes in surface soils and Cu-Mn complexes in subsoil horizons. 

Also, Pearson correlation coefficients on SXRF maps indicate Cr-Mn/Fe are highly 

correlated with each other, especially in subsoil’s.  Finally, the study highlights the 

influence of somewhat poorly drained condition causing a large loss of Cu over the 20 

yrs. of use. 

Copper and chromium are essential micronutrients; copper serves as a cofactor for 

many proteins, while, chromium is required for a properly functioning glucose 

metabolism (Valko et al., 2005). In excessive quantities heavy metals in soils have been 

shown to decrease microbial biomass, alter utilization of C substrates, decreasing the 

mineralization rate, and decrease microbial symbiotic N2-fixation (Giller et al., 1998). 

Due to the widespread use of copper it can be highly elevated in surface soils as a result 

of mining and related activities, waste emissions, biosolids, fertilizer and fungicide 
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applications (Flemming and Trevors, 1989). Likewise, Cr concentration in soils have 

been increased through the application of biosolids (Kabata-Pendias, 2001), as well as, in 

areas surrounding mining and smelter heaps (Uminska, 1988). To gain further 

understanding of Cu and Cr chemistry in soil an analysis was conducted using soil 

adjacent to chromated copper arsenate (CCA) treated lumber fence posts. Fences transect 

a wide array of soil series and landscape positions, thus it is possible to use this consistent 

metal source to evaluate which soil properties influence Cr and Cu mobility and 

speciation. 

Chromated copper arsenate (CCA) is a pesticide treatment introduced under 

pressure to timbers in order to preserve the integrity of wooden structures. CCA works 

through arsenic acting as an insecticide and copper acting as a fungicide (Warner and 

Solomon, 1990).   Chromium acts to aid in the fixation of the other elements within the 

wooden matrix, particularly As (Chirenje et al., 2003). The most common CCA treatment 

is form C consisting of 47.5% CrO3 , 18.5% CuO, 35% As2O5 applied at rates of  4.0 to 

40.0 kg/m3 depending on use (Association, 2005; AWPA, 2005). Copper is fixed in the 

wood by  the formation of carboxylate-copper(II) complexes (Bull, 2001), while Cr is 

complexed with lignin or cellulose (Hingston et al., 2001).  Copper has been shown to 

leach into the environment from CCA treated lumber however, the extent of Cr leaching 

is not as substantial because of the strong Cr- lignin/cellulose complexes (Cooper, 1991; 

Khan et al., 2004; Kim et al., 2007; Lebow et al., 2004b; Robinson et al., 2006; Stilwell 

et al., 2003; Stilwell and Gorny, 1997; Stilwell and Graetz, 2001).  It is speculated that 

Cu and Cr are principally being leached as individual ions or organometallic complexes 

(Lebow, 1996). This manuscript will address how a variety of soil physicochemical 
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properties influence Cu and Cr speciation from fence posts along a toposequence by 

employing a variety of macroscopic and spectroscopic tools to assess their speciation and 

mobility. The specific objectives of the study are (1) to determine the amount and 

distribution of Cu and Cr around CCA treated fence posts along a toposequence; (2) 

determine the speciation of Cu and Cr (and therefore, the potential mobility, and 

bioavailability) in these soils and (3) determine which soil properties most strongly 

influenced the observed speciation.  Because of the widespread use of CCA treated 

lumber and concern for the adverse effects these metal constituents may have in the soil 

and water environment, an evaluation of these metals in the Kentucky soil environment 

needs to be addressed.   

3.1 Materials and Methods 

3.1.1 Soil Sample Collection, Description and Preparation 

The field site is located in the Inner Bluegrass region of Kentucky on the University of 

Kentucky Spindletop Research farm. Sampling was conducted along a Chromated-

Copper-Arsenate (CCA) treated fence line which had been in place for ~20 years 

surrounding a mixed grass pasture. The fence line was chosen because it transects a 

Bluegrass-Maury silt loam (fine, mixed, semiactive, mesic Typic Paleudalfs), a Donerail 

silt loam (fine, mixed, active, mesic Oxyaquic Argiudolls), and a Newark silt loam (fine-

silty, mixed, active, nonacid, mesic Fluventic Endoaquepts), each having different pH, 

drainage class and slope.  Additional information regarding the site location and soil 

series specification can be found in Appendix 1.Soil pits were dug by backhoe to a depth 

of ~1m alongside a fence post at  the hill top (HT), a midslope (MS), and a toeslope (TS) 
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position corresponding to the Maury, Donerail, and Newark silt loam soils respectively. 

A grid pattern was established on the face of the pit containing the fence post from which 

about 60 soils samples were collected into Whirl-Pak® ( Nasco, Fort Atkinson, 

Wisconsin) bags and stored on ice (See Appendix 2 for sampling plan schematic ).  Upon 

returning to the lab, soils were sieved past 2 mm, placed in new whirl-pack® bags and 

stored at 4oC until analysis.  Additionally, soil samples were collect every 8 posts (~20m) 

along the toposequence from the HT position to the TS position at distances 0-5 cm and 

10-15 cm away and depths 0-15 cm and 15-30 cm (See Appendix 10 for additional 

details). 

3.1.2 Soil chemical properties 

In preparation for analysis, sieved soils were dried at 60° C.  Soil pH was 

determined by a glass electrode in a 1:1 soil/water ratio which was stirred manually and 

allowed to set for ≥15 min. Mehlich III -P, K, Ca, Mg, Zn, Cd, Cr, Ni, Pb, Cu, and Mo 

(Meh-P, Meh-K, etc.) were determined by inductively couples plasma mass spectroscopy 

(ICP-MS) after 2 cm3 soil mixed with 20 ml of Mehlich III solution (0.2 N acetic acid, 

0.25 N NH4NO3, 0.015 N NH4F, 0.013 N HNO3, and 0.001 N EDTA), shaken for 5 min. 

and filtered through Whatman #2 filter paper (Mehlich, 1984). Soil carbon and nitrogen 

determined by dry combustion with 0.5 g soil. Cation exchange capacity (CEC) and base 

saturation determined with 10 g soil by saturation with 1 N ammonium acetate. Soil 

texture was determined by the micropipette method. Analysis, with the exception of pH, 

was performed by the University of Kentucky’s Division of Regulatory Services. 

3.1.3 Total Metal Determination 
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Total metal content of the soil samples was determined using a modification of 

EPA method 3052.  Briefly, 9 ml of nitric acid and 5 ml hydrofluoric acid were added to 

250 mg of dry soil in Teflon pressurized/sealed vessels and rapidly digested in a 1600W 

MARS (CEM, Matthews, North Carolina) microwave digestion unit.  Samples were 

brought  up to 180° C and kept at this temperature for 10 min., after which they were 

allowed to cool, transferred to 50mL falcon tubes, and  brought up to final volume of 50 

mL using ultrapure water.  Samples were then analyzed on an Agilent 7500 series (Santa 

Clara, Ca) Inductively Coupled Plasma- Mass Spectrometer (ICP-MS). All reagents used 

were ultra-pure trace-metal grade. 

3.1.4 Metal Speciation via Synchrotron X-ray Absorption Fine Structure 

Spectroscopy (XAFS) 

3.1.4.1 Sample Preparation and Data Collection  

Data collection was performed at beamline 13-BM-D [Advanced Photon Source 

(APS), Argonne National Laboratory, Argonne, IL] and beamline 10.3.2 [Advanced 

Light Source (ALS), Lawrence Berkeley National Laboratories, Berkeley, CA](Marcus et 

al., 2004).  µ-X-ray Absorption Fine Structure Spectroscopy (µXAFS) and µ- 

Synchrotron X-ray Fluorescence (µSXRF) mapping data were collected on beam lines 

13-BM-D at APS and 10.3.2 at ALS, while, bulk XAFS data was collected at beamline 

13-BM-D at APS. Soil samples were dried at 60° C for 24 hrs and ground with an agate 

mortar and pedestal. Samples for bulk X-ray analysis were retained in a 20 mm by 5 mm 

by 3mm hole between two pieces of non-adhesive Kapton film in an acrylic sample 

holder. For µSXRF and µXAFS data collection an even layer of soil was adhered to 
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Kapton film using a thin layer of silicone based vacuum grease. Samples were mounted 

at 45° to the incident beam and data collected in fluorescence mode by a 16- element and 

7- element Ge detector at beamlines 13-BM-D and 10.3.2, respectively. 

Αt beamline 13-BM-D, µ−SXRF mapping was conducted over an area of 1 mm2 

at 14 keV using a beam size of 10  µm by 20  µm with 20  µm steps, and a 2 s dwell time 

while, µSXRF mapping conducted at beamline 10.3.2 was over an area of 1 mm2 to 4 

mm2 at 13 keV using a beam size of 6 µm by 6 µm using a continuously scanning stage 

with 6 µm steps.  At 13-BM-D multiple (≥5) extended X -ray absorption fine structure 

spectra (EXAFS) were collected in fluorescence mode from 150 below to 650 above the 

Cu K-edge (8.979 keV), from each area of interest (AOI) found in the µSXRF maps. At 

beamline 10.3.2 (ALS), a quick scanning x-ray adsorption spectroscopy (Q-XAS) 

technique was used to probe the speciation of Cu in order to account for any changes that 

may occur as a result of beam induced damage. This technique continually scans the 

monochromator from low to high energy, over the energy envelope of interest. In this 

study consecutive scans of ~45 s each where conducted and could then be visualized in 

order to determine any apparent beam induced damage.  To limit radiation damage 

samples were cooled to – 30 C with a Peltier cooler .The beam size was set to 6 mm by 

0.9mm for all bulk EXAFS data collected.  For µSXRF mapping and µEXAFS spectra 

collection a beam size of 10 µm by 20 µm was used at 13-BM-D while, a beam size of 

4 µm by 3 µm was used at beam line 10.3.2.  
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3.1.4.2 Data Analysis 

All data reduction was performed using WinXAS 2.1 (Ressler, 1997). Individual 

spectra were calibrated for shifts in edge energy using the 2nd derivative of the adsorption 

edge and setting the edge energy equal to 8.988 keV. Q-XAS data collected at 10.3.2 

(ALS) were calibrated based on the monochromatic glitches and spectra showing no 

signs of beam induced radiation damage were averaged. Then, spectra were background 

corrected using 1st order polynomials for the pre-edge and post-edge region and then 

normalized.  After normalization, multiple scans per AOI were averaged and converted 

from energy (keV) to photo-electron wave units k (Å-1) by setting the edge energy origin 

at ~8.988 keV. A single atomic spectra with the absence of back scattering was estimated 

using a cubic-spline function of 7 knots over an average k space of 2.0 to 12.5 Å-1 and 

subtracted from the spectra to obtain raw χ(k) data. The χ(k) was weighted by a factor of 

k3 to amplify oscillations at higher k values. Fourier transformation of the χ(k)k3 was 

performed over the k ranges of 3.4 – 10.8 Å-1
 to obtain radial structure functions using a 

Bessel window with a smoothing parameter of 4. 

3.2 Results  

3.2.1 Total Metal Concentration and Spatial Distribution 

Geostatistical constructions of the total copper concentrations into contour maps 

show significant enrichment of Cu adjacent to the HT and MS posts (Figure 3.1). The 

maximum concentrations of copper (HT: 309 ppm, MS: 580 ppm, and TS: 41 ppm) are 

located directly adjacent to the post and fan out toward the surface soil which exhibit 

elevated concentrations (50 – 100 ppm)  up to 30 – 35 cm from the post. At depth 



 

76 
 

increased concentrations of copper are confined to the 0-10 cm region adjacent to the 

CCA post, otherwise copper concentrations approach background. For the hilltop and 

midslope positions the highest copper concentrations are located at the 15-30 cm depth 

sampling point directly adjacent to the post. The midslope position shows a higher mass 

of copper throughout all depths (Table 3.1, Figure 3.1).  The sum of copper in the soils 

surrounding posts at the HT, MS and TS is 15.8 g, 24.2 g, and 1.93 g, respectively. The 

toeslope position has copper concentrations on average that are much lower than the HT 

and MS positions  with elevated Cu concentrations only occurring in surface soil samples 

and directly beneath the post. The Cu distribution is  similar  to that of As which showed 

enrichment in the topsoil where it emanated further from the post, compared to the 

subsoil where it generally remain within 0-10 cm from the post (see Figure 2.1 Chapter 

2).  As one moves down the topographic gradient a slight trend of increased mass and 

concentration of copper is occurring in the surrounding post soil, this trend can be 

observed in Figure 3.2 and also in Figure 3.1 /Table 3.1. In the surface soils a decreasing 

trend in the ratio of the adjacent to the post (0 – 5cm) soil Cu concentration: away from 

post (10-15 cm) soil Cu concentration is exhibited while moving to more poorly drained 

conditions Figure 3.1.   
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Figure 3. 1: Soil profile contour map of copper concentrations (ppm) in soils along the 
toposequence. The blanked section indicates regions where post enters the soil.  
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Table 3.1:Total mass and normalized enrichment factor (NEF) of arsenic at specific 
depths in the soil profile. Detailed explanation of the calculations is provided in the 
Appendix 6. 

       
  

Depth 
 

Mass per unit depth 

(g/cm)  
Normalized Enrichment Factor 

(NEF)  

     Hilltop 
    

  
0 to 15 cm 0.376 

 
13 

  
15 to 30 cm 0.268 

 
9 

  
30 to 60 cm 0.186 

 
8 

  
60 to 90cm 0.016 

 
1 

  
90 to 105 cm 0.007 

 
1 

  
Total g (0-105cm) 15.827 

  
       Midslope  

    
  

0 to 15 cm 0.366 
 

14 

  
15 to 30 cm 0.266 

 
15 

  
30 to 60 cm 0.243 

 
15 

  
60 to 90cm 0.191 

 
11 

  
90 to 110 cm 0.109 

 
5 

  
Total g (0-105cm) 24.162 

  
       Toeslope  

    
  

0 to 15 cm 0.046 
 

2 

  
15 to 30 cm 0.009 

 
1 

  
30 to 60 cm 0.004 

 
1 

  
60 to 90cm 0.020 

 
1 

  
90 to 120 cm 0.026 

 
2 

  
Total g (0-105cm) 1.932 
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Figure 3. 2 Concentration and mobilization of copper across the topographic gradient. A) 
Average copper concentration of samples collected along the toposequence and B.)ratio 
of 0-5 cm from post: 10-15 cm from post at 0-15 cm depth along the toposequence. 
Hilltop (HT),  Midslope (MS), Toeslope (TS) 

 

3.2.2  Basic Soil Properties 

Basic soil properties are exhibited in Table 3.2, principally, the soil texture class 

observed is a silt loam throughout the three soil series/landscape positions with the 

exception of the HT 30-90 cm and MS 60-90 depths where an accumulation of clay has 

resulted a silty clay loam textural class.  Cation exchange capacity (CEC) is similar 

between the HT and MS sampling locations and somewhat increased at the TS position, 

all samples being within 14.4 – 21.2 meq/100 g soil.  The soil organic matter (SOM) 
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content is similar between the three landscape positions, reducing with increasing depth 

in the soil profiles, however, at the TS position the SOM content increases from 1.0 % at 

the 30-60 cm depth to 2.1 % at the 60-90 cm depth.  

The three soil series/landscape positions follow a similar trend of increasing pH 

units with depth up to about 60 cm beyond which the pH stays relatively consistent or 

slightly decreases. Although pH vs. depth relationships are similar between landscape 

positions the overall pH increases moving down the landscape (HT pH<MS pH<TS pH), 

with the HT and MS positions having strongly to moderately acidic conditions (HT: 5.2 – 

6.0 pH and MS: 5.7– 6.4 pH), whereas, the TS position is near neutral (6.8- 7. 4 pH). The 

base saturation (BS) of the cation exchange sites shows the same trends as the pH. The 

BS is between 38 – 58.4 %, 52.7 – 70.9 %, and 69.2- 81.1 % at the HT, MS, and TS 

positions, respectively, increasing from the HT to the TS position. Additionally, sharp 

drops in pH and base saturation are realized in soils adjacent to the post compared to 

similar depth background samples.  Although total metal acid digest chromium 

concentrations were similar at all landscape positions and chromium was not suspected to 

be leaching to a high degree from CCA treated posts, there were detectable Meh-Cr 

concentrations at the TS position. The soil adjacent to the CCA treat post showed highly 

elevated levels( 105 – 355 mg/dm3) of meh-Cu while the TS position showed just slightly 

elevated levels( 7.8-20.3 mg/dm3) of meh-Cu.  
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3.2.3 Copper and Chromium Speciation via µ-SXRF Mapping 

Select x-ray fluorescence maps of surface and subsurface soils are shown in 

Figure 3.3. In general, µ-SXRF mapping does not indicate a strong correlation between 

Cu and the other metals analyzed, however, the maps reveal the greatest correlations, 

though still low (ρ ~0.4 to ~0.65), with Mn followed by As. An exception to this is the 

hilltop subsurface soil (Figure 3.3) which exhibits a strong Cu-Mn correlation (ρ = 

0.879). In contrast, Cr is strongly correlated with Fe and Mn in subsurface soils (ρ >0.8) 

at the HT and MS position as well as in HT, MS, and TS surface and TS subsurface soils 

(~0.6 to ~ 0.8). 

 

Figure 3. 1: Images of contrasting surface and subsurface SXRF maps of Copper (green), 
Chromium (blue), and Mn (red). Pearson correlation coefficients were .562 and .822 for 
Cu/Mn and Cr/Mn respectively in the hilltop surface soil. In the subsoil horizon Pearson 
correlation coefficients were .879 and .951 for Cu/Mn and Cr/Mn, respectively. Numbers 
correspond to points in which m-XAFS spectra were collected. 
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3.2.4 Copper Speciation via Synchrotron X-ray Spectroscopy 

The Q-EXAFS scans show signs of rapid change in copper coordination as a 

result of beam induced reduction (Figure 3.4).  When graphing the χ(k)xk3-spectra and 

radial structure function (RSF) of the average of the initial scans (0 – 5) against the 

average of scans 5-10, 10-20, 20-60 and 60 – 120 the changes are drastic and obvious.   

New peaks evolve in the raw data at ~9.03 keV, 9.08 keV, and 9.14 keV, and in the 

χ(k)xk3-spectra at 4.9, 6.3, 7.8, and 9 Å-1 . The damage resulted in a shift from copper 

coordinated with oxygen at RCu-O= ~1.5 Å in what was similar to that of Cu bound to 

humic acid  to copper coordinated with another Cu atom at RCu-Cu = ~2.2 Å, (uncorrected 

for phase shift) resembling copper metal (Figure 3.4). The transition from Cu-O to Cu-Cu 

coordination was quick and observable within the first 10 quick scans (~3-8 min.) with 

the copper metal bond dominating the spectral signal. Because, this damage occurred so 

quickly it highlights the importance of the Q-EXAFS technique in evaluating radiation 

damage unobservable using traditional scanning techniques.   
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Figure 3. 2: Radiation damage to Cu-Soil Organic Matter complex. A. Q-XAFS scan 
image, arrows indicating development of radiation induced peaks over time. B. Standard 
-χ(k)xk3 and Radial Structure Function (RSF). C. Normalized Raw spectra D.  χ(k)xk3 

and E. RSF showing beam induced damage to a presumable Cu-SOM complex. 

 

3.2.5 EXAFS Analysis 

Unfortunately, due to poor signal to noise ratio and/or radiation induced damage 

the amount of spectra capable of being analyzed was severely limited.  Spectra showing 

no signs of radiation induced damage (HTSS-1, HTSS-3, and HTSS-5 in Figure 3.5) were 

located in subsoil samples at locations in which strong Cu-Mn colocalization was 

apparent in the µ-SXRF maps.  Scans MSS-2, MSS-3, MSS-4, HTS-3, and HTS-4 in 

Figure 3.5 were the result of radiation induced damage. Initial scans at these locations 

exhibited a first RSF peak corresponding to RCu-O at ~1.5 Å (uncorrected for phase shift), 

however, as time/scans progressed the development of Cu(I)-S (HTS-3, HTS-4) and 
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Cu(0)-Cu(0) (MSS-2, MSS-3, MSS-4) bonds developed at ~1.85 Å and ~2.2 Å, 

respectively. Due to the radiation damage at the surface horizons the exact bonding 

environment of Cu complexes in these samples is unattainable however, it is quite clear 

that Cu(II) is in a complex with organic matter as is indicated by the first scans in the 

series of Q-EXAFS spectra.  

 

Figure 3. 3: Raw, χ(k)xk3, and Radial Structure Function Copper in surface and 
subsurface soils. 

3.3 Discussion and Conclusion 

Although significant radiation damage had occurred in the study of Cu through 

the synchrotron based techniques, it is likely this is a cause of Cu strongly being absorbed 

by organic matter constituents, which is widely observed in Cu studies (Korshin et al., 
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1998; Strawn and Baker, 2008). This is especially true in the surface soil samples 

analyzed(all surface soil spectra exhibited radiation damage) in the study which indicate 

radiation damage resulting in Cu(I)-S or Cu(0)-Cu(0) bond formation at 1.85 Å and 2.2 

Å. Similar radiation induced damage on Cu- natural organic matter complexes is 

exhibited by (Manceau, 2010) showing radiation induced damage resulting in Cu(I)-S 

and Cu(0)-Cu(0) bond formation. Likely, depending on the total Cu concentration and 

organic matter substrate various differences and degrees of radiation damage occur. The 

radiation damage is not exhibited, or exhibited to a lesser extent, in subsoil samples in 

which Cu-Mn correlations are substantial and organic matter contents are low. Fe/Mn 

oxide have been found to control Cu distribution in soils low in organic matter (Yu et al., 

2004).  Likely, copper is strongly bound to organic matter in surface horizons, however, 

having a higher percentage of inorganic bonds (Cu-Mn) in subsurface soil horizons. The 

radiation induced damage results in surface soil horizons revealing the importance of Q-

EXAFS techniques in assessing damage to redox sensitive organic bound  metals. The 

fact that the damage occurred so quickly shows that traditional scanning techniques 

where it may take 30-40 min to collect one spectra may result in  misinterpretation of the 

actual binding environment of Cu . For example, Manceau et. al, (2006) showed what 

they believed to be the formation of Cu-metal nanoparticles in rhizosphere soils using 

EXAFS methods at the same X-ray beamline used in this study (ALS 10.3.2) except in 

conventional scanning mode.  Our findings call into question the results obtained by 

Manceau et. al. (2006), indicating that the thermodynamically unfavorable formation of 

Cu metal nanoparticles was probably the result of photo reduction of organic bound 

copper by the X-ray beam. 
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Chromium exhibited no clear patterns of soil enrichment directly correlated to the 

presence of the post; instead, the Cr distribution increased uniformly with depth (See 

Appendix 4 Figures A4.7-9), which is similar to Fe distribution (See Appendix 4 Figures 

A 13-15). The µ-SXRF maps (Appendix 5, Figure A5.1) show a clear correlation of Cr 

with Fe and Mn and taken together with the aforementioned observation, indicates that 

most of what was detected was geogenic in origin (e.g. chromite (FeCr2O4), 

isomorphically substituted for Fe(III) in spinel minerals or as sorption complexes on Mn 

and Fe containing minerals). The absence of Cr in the soils around the posts is not 

surprising in light of its intended role in the pressure treating process to form strong 

complexes with lignin and cellulous (Bull, 2001; Hingston et al., 2001).   Additionally, in 

the TS position, with higher pH conditions, meh-Cr concentrations are observed although 

low.  This may indicate a slight difference in Cr speciation at the TS position. A possible 

species under these pH conditions that is thermodynamically favorable is the formation of 

Cr(OH)3 precipitates (Kotas and Stasicka, 2000), which may be solubilized under a 

Mehlich III extraction.  Also, the fact that these concentrations are higher in the adjacent 

to post soil sample, although still low (<0.64 mg/dm3), may indicate a small quantity of 

Cr enrichment adjacent to the post. Unfortunately, the bonding environment of Cr was 

not investigated due to the low concentrations.   

The similar distribution of Cu at all locations is a good indication that the source 

is indeed the post (and not geogenic) and since it mimics the distribution of organic 

matter may possibly be due to the influence of SOM concentrations in these positions. 

The elevated concentrations of meh-Cu (100-350 mg dm-1) in soil samples adjacent to the 

posts indicate a large fraction of Cu is phytoavailable. Increased concentrations of Cu are 
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occurring in the surrounding post soil while moving down the topographic gradient. 

Likely, a result of the drainage characteristics of the soil, increased periods of time with 

water contact to the wood surfaces occurs while moving down the toposequence and 

enhancing the leaching of Cu from the wood surface.  Surface soils exhibit a decreasing 

trend in the ratio of the adjacent to the post (0 – 5cm) soil Cu concentration: away from 

post (10-15 cm) soil Cu concentration   while moving to more poorly drained conditions. 

This trend is likely related to the mobility of Cu in these soils, indicating that the mobility 

of these constituents increases while moving down the topographic gradient. The 

drainage characteristics may provide the medium for movement, while the increase in 

meh-Ca induces increased competition for Cu. Although, competition of Cu and Ca on 

SOM has generally been attributed to be low, decreases in Cu complexation have been 

found as a result of Ca competition on humic and fulvic acid, especially at high Cu 

loading rates (Cao et al., 1995; Iglesias et al., 2003). Interestingly, Cu adsorption and 

solubility is expected to increase with pH on many soil constituents (Cavallaro and 

McBride, 1980; McBride and Bouldin, 1984; McLaren and Crawford, 1973a; Sanders 

and Bloomfield, 1980); in contrast to the lower mobility of Cu observed in the low pH 

conditions in this study. However, since copper  is largely bound to organic matter in 

solution (McBride and Bouldin, 1984) and increased dissolved organic matter (DOM) 

concentrations occur with increasing pH (Kalbitz et al., 2000), the possible mechanism of 

Cu mobilization is through Cu bound to DOM. Similarly, the radial extent of Cu 

mobilization is occurring to the greatest degree in surface soils compared to subsurface 

soils and the organic matter profile in these soils follow the similar trends to the total 
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mass of Cu likely indicating that biological activity and SOM is likely influencing the 

mobilization of Cu in surface soil horizons.  
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Chapter 4: Overall Conclusion and Future Directions 

In general, As and Cu concentrations are enriched to a high degree in soils 

adjacent to CCA treated fence posts while Cr is not, which is attributed to the complexes 

these metals form in the CCA treated fence posts. Mobilization of Cu and As are 

occurring to a higher degree in surface soils and in more poorly drained/higher pH 

conditions. Overall, Fe and Al bearing minerals are the principal sorption mechanisms for 

As in the soil, with Al controlling As sorption at low pH conditions and Fe playing an 

increased role at higher pH conditions.  Copper is strongly complexed with SOM in 

surface horizons with a higher degree of inorganic (Cu-Mn) bonds occurring in 

subsurface horizons. Chromium is likely complexed as chromite (FeCr2O4), 

isomorphically substituted for Fe(III) in spinel minerals or as sorption complexes on Mn / 

Fe containing minerals due to the strong Fe/Mn correlations in the soils exhibited through 

SXRF mapping. The pH of the soil, which is increasing while moving down the 

topographic gradient, is resulting in a higher degree of As mobilization likely a result of 

increases in negative charges on both As and soil minerals.  Additionally, pH is 

influencing Cu mobility possibly through the formation of Cu-DOC complexes. The 

results indicate metal mobilization occurs to a much greater degree in surface soil 

horizons as found in contour maps, indicating biologically - mediated processes are likely 

influencing mobility of Cu and As. Additionally, the low concentrations of Cu and As at 

the TS position, although fence post concentrations weren’t measured, may indicate that 

poor drainage conditions and the resultant soil physicochemical properties (increased pH, 

meh-P, meh-Ca, reducing conditions etc.) results in conditions that favor Cu and As 

mobilization .  
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To aid in the study of the speciation and mobility of these constituents future 

investigations should include a detailed soil mineralogical investigation to determine 

trends occurring along the toposequence. Specifically, an in depth assessment of iron and 

aluminum containing minerals occurring in these soils should be addressed. Additionally, 

the detection of Chromite (FeCr2O4) could support the case that Cr is of geogenic origin. 

Other toposequences may be sampled in order to assess if field conditions at other sites 

conform to the findings in this study, whether sites with differing land uses (e.g. forests) 

show the same trends, and if other poorly drained soils exhibit low As and Cu 

concentrations. Additionally, investigating the SOM makeup of these soils including 

DOC and metal concentrations in SOM fractions would be beneficial in understand Cu 

speciation and mobility. The proportion of Cu complexed to DOC can be tested to 

confirm or weaken the hypothesis that Cu mobilization is occurring in higher pH 

conditions as a result of increased concentrations of Cu-DOC complexes. Biologic soil 

parameters (e.g. As and Fe reducing microorganisms, soil mineralization rate, microbial 

community profiling) can be assessed to determine which biological indicators may aid in 

controlling the speciation and mobility of As and Cu, and an assessment of rhizosphere 

soils and plant biomass can be conducted to assess what role plants are playing in the 

speciation and mobility of As and Cu. 
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Appendix 1: Site Location/ Soil Series Specification 

 

Figure A1. 1: Soil profile sample location adjacent to Iron Works Pike (1973) on the 
north side of the University of Kentucky Spindletop Farm 

The study is located in Fayette County, Kentucky in the Inner Bluegrass region of 

Kentucky as can be seen in Figure A-1. The average rainfall in this area is ~117 cm (46 

inches) with an annual average temperature of ~13 °C (55 °F) (University of Kentucky 

Agricultural Weather Center). This region is known for its Karst Landscape which causes 

the gentle rolling topography. A karst landscape occurs where soluble bedrock such as 

limestone is near the earth’s surface.  As water weathers the underlying rock it dissolves 

and creates fractures, thus forming sinkholes and underground streams. The underlying 

geologic material of the inner bluegrass consists of Lexington limestone, limestone 

particularly rich in phosphate of the Late Ordovician age.  This area is of low relief 

resulting in the development of deep, phosphate rich soils which have aided the 

development of this region as the “Horse Capitol of the World”.    
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The sampling site is located adjacent to Iron Works pike (1973) between Newtown Pike 

(922) and the north entrance to the University of Kentucky’s Spindletop Farm.  Samples 

were taken from the fence line adjacent to Iron Works Pike (1973) on Spindletop farm.  

The topography can be seen in Figure A1-2, from east to west (left to right on paper) the 

slope consists of a slightly sloping (2-6 percent) area near the left arrow. This area stays 

slightly sloping for a bit and then slopes at approximately 6-12 percent. The topography 

levels off near the right arrow where the last sample is taken near an intermittent stream.  

The total drop in elevation in the sample area is ~10 m over ~140 m (length between 

arrows) approximate a 4 percent slope through the complete drop. The CCA treated fence 

had been in place for ~20 years under tall fescue pasture conditions. 

 

Figure A1. 2: Aerial image of sample site along with the site topographic 
characteristics. The arrows represent the same areas on both maps and exhibit the 
extent of sample collection. 
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Although the accuracy of the web soil survey can be questioned the information provided 

gave valuable information on the changes of the soil along the fence line. This data, 

which can be seen in Figure A1-3, along with the topographic data was used to select 

specific soil sample sites along the fence line. The fence line transects three soil series the 

Maury silt loam, Donerail silt loam, and Newark silt loam. These soil series have 

differing pH, drainage class and slope characteristics therefore samples were acquired for 

each soil series along the fence line. This allows for an analysis of metal mobility and 

speciation along the toposequence. The Maury silt loam is a Fine, mixed, semiactive, 

mesic Typic Paleudalfs, the Donerail silt loam a Fine, mixed, active, mesic Oxyaquic 

Argiudolls, and the Newark silt loam a Fine-silty, mixed, active, nonacid, mesic 

Fluventic Endoaquepts.   

 “The Maury series consists of deep, well drained, moderately permeable soils formed in 

silty material and weathered limestone, or old alluvium. These soils are on uplands. The 

Donerail series consists of deep, moderately well drained soils formed in residuum or 

slope alluvium from limestone. These soils are in slight depressions on uplands or along 

small drainage ways.  The Newark series consists of very deep, somewhat poorly drained 

soils formed in mixed alluvium from limestone, shale, siltstone, sandstone, and loess. The 

soil is on nearly level flood plains and in depressions.” as stated by the Official Soil 

Series descriptions.  
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Figure A1. 3: NRCS/USDA Web Soil Survey Images of a) general soil series map, b) 
soil pH, and c) soil drainage classification. 
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Appendix 2: Soil Sampling Layout 

Soil profile samples were pulled from the hilltop(HT), midslope(MS), and toeslope(TS) 
position as indicated in Figure A2.1. The sampling along these profiles can be seen in 
Figures A2.2 to A2.4. 

 

 

Figure A2. 1: Soil profile sampling locations along Iron Works Pike on the 
University of Kentucky Spindletop Farm. Hilltop (HT), midslope (MS), toeslope 
(TS). 

 

Figure A2. 2: Sampling Scheme for the Hilltop (HT) soil. 
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Figure A2. 3: Sampling scheme for the Midslope (MS) soil. 

 

Figure A2. 4: Sampling scheme for the Toeslope (TS) soil. 
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Appendix 3: Soil Physicochemical Properties 
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Statistical Differences in Background Soil Properties 

      
 

pH CEC meh-Ca meh-P SOM* 
Hilltop 5.34a 16.5a 1548a 55a 0.69a 

Midslope 6.30b 17.3a 1841a 63a 0.87a 

Toeslope 6.85c 20.2b 2902b 107b 1.62b 

*at 30-105 cm depth         
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Appendix 4: Geostatistical Profile Metal Concentration Mapping 

 

Figure A4. 1: Hilltop soil profile contour map of Arsenic concentration (ppm). The 
blanked section indicates region where post enters the soil.  

 

Figure A4. 2: Midslope soil profile contour map of Arsenic concentration (ppm). 
The blanked section indicates region where post enters the soil.  



 

103 
 

 

Figure A4. 3: Toeslope soil profile contour map of Arsenic concentration (ppm). The 
blanked section indicates region where post enters the soil.  

 

Figure A4. 4: Hilltop soil profile contour map of Copper concentration (ppm). The 
blanked section indicates region where post enters the soil.  
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Figure A4. 5: Midslope soil profile contour map of Copper concentration (ppm). 
The blanked section indicates region where post enters the soil.  

 

Figure A4. 6: Toeslope soil profile contour map of Copper concentration (ppm). The 
blanked section indicates region where post enters the soil.  
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Figure A4. 7: Hilltop soil profile contour map of Chromium concentration (ppm). 
The blanked section indicates region where post enters the soil.  

 

Figure A4. 8: Midslope soil profile contour map of Chromium concentration (ppm). 
The blanked section indicates region where post enters the soil.  
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Figure A4. 9: Toeslope soil profile contour map of Chromium concentration (ppm). 
The blanked section indicates region where post enters the soil.  

 

Figure A4. 10: Hilltop soil profile contour map of pH. The blanked section indicates 
region where post enters the soil. The pH range in the soil was from 4.2 to 6.2. 
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Figure A4. 11: Midslope soil profile contour map of pH. The blanked section 
indicates region where post enters the soil. The pH range in the soil was from 4.9 to 
6.9. 

 

 

Figure A4. 12: Toeslope soil profile contour map of pH. The blanked section 
indicates region where post enters the soil. The pH range in the soil was from 6.2 to 
7.2. 
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Figure A4. 13: Hilltop soil profile contour map of Iron %. The blanked section 
indicates region where post enters the soil.  

 

 

Figure A4. 14: Midslope soil profile contour map of Iron %. The blanked section 
indicates region where post enters the soil.  
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Figure A4. 15: Toeslope soil profile contour map of Iron %. The blanked section 
indicates region where post enters the soil.  

 

 

Figure A4. 16: Hilltop soil profile contour map of Aluminum %. The blanked 
section indicates region where post enters the soil.  
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Figure A4. 17:  Midslope soil profile contour map of Aluminum %. The blanked 
section indicates region where post enters the soil.  

 

Figure A4. 18: Toeslope soil profile contour map of Aluminum %. The blanked 
section indicates region where post enters the soil.  
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Appendix 5: µ-SXRF Images and Elemental Correlations 

 

Figure A5. 1: Hilltop surface soil (0-5 cm from post, 0-15 cm depth, file AE1 Map1) 
XRF elemental mapping. Minimum values correspond to black and maximum to 
white.  

 Arsenic 479 – 2098 counts, copper 136 – 1137 counts, chromium 42-223 counts, iron 
3338 – 19244 counts, zinc 43 – 203 counts, manganese 171 – 3113 counts.  Spots 
indicate regions where µXAFS data taken. Arsenic map spot 1, (40.708, 39.920)  counts 
As-1895, Cu- 396, Cr- 178, Fe- 15314, Zn- 144, Mn- 2280. Arsenic map spot 2, 
(40.758,40.070), counts As- 1759, Cu- 251 , Cr- 95, Fe- 8510 , Zn- 95 , Mn- 463. Arsenic 
map spot 3,(40.458, 40.250),  counts As- 1093, Cu- 251 , Cr-  107, Fe-  7787 , Zn-  116 , 
Mn-  475. Copper map spot 1, (40.733, 39.920), counts As- 1292, Cu-  504 , Cr-  78, Fe- 
8391 , Zn-  125 , Mn- 731. Copper map spot 2,  (40.782, 40.120), counts As-  1086, Cu-  
688 , Cr- 94, Fe-  6165 , Zn-  128 , Mn- 1055. Copper map spot 3, (40.133, 40.490), 
counts As-  872, Cu- 1137 , Cr-  96, Fe-  6267 , Zn-  149 , Mn-  353. Maps generated at 
the Advanced Photon source beamline 13-BM-D Argonne National Laboratory, IL. 
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Figure A5. 2: Hilltop subsurface soil (beneath post, file AF4 map1) XRF elemental 
mapping. Minimum values correspond to black and maximum to white.   

Arsenic 112 – 1666 counts, copper 47 – 1476 counts,  chromium 35-284 counts, iron 
2647 – 36155 counts, zinc 48 – 1375 counts, manganese 98 – 2761 counts.  Spots 
indicate regions where µXAFS data was taken. Arsenic map spot 1, (40.808, 40.045),  
counts As- 1666, Cu- 182 , Cr- 182 , Fe-  16749, Zn- 226 , Mn- 530. Arsenic map spot 2, 
(41.083, 39.870), counts As- 809, Cu- 257 , Cr- 257, Fe- 10918 , Zn- 105 , Mn-  2021. 
Maps generated at the Advanced Photon source beamline 13-BM-D Argonne National 
Laboratory, IL. 
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Figure A5. 3: Hilltop subsurface soil (beneath post, file AF4 map 2) XRF elemental 
mapping. Minimum values correspond to black and maximum to white.  

 Arsenic 117 – 3590 counts, copper 42 – 1542 counts, chromium 38-450 counts, iron 
2451 – 31238 counts, zinc 46 – 461 counts, manganese 105 – 5569 counts. Spots indicate 
regions where µXAFS data was taken.  Arsenic map spot 1, (41.283, 38.745), As-  2771, 
Cu- 408  , Cr- 267  , Fe- 27140 , Zn-  301, Mn- 828. Arsenic map spot 2, (41.458, 
39.270), As- 1582, Cu- 291, Cr- 87, Fe- 6478, Zn- 103, Mn- 285. Arsenic map spot 3, 
(41.953, 38.600), As- 3590, Cu- 190, Cr- 111, Fe- 7572, Zn- 74, Mn- 423. Copper map 
spot 1, (41.528, 38.920), As- 741 , Cu- 728  , Cr- 190  , Fe-  14432, Zn- 240, Mn-  2983. 
Copper map spot 2, (41.083, 38.890), location not on this map incorrect data entry?  
Maps generated at the Advanced Photon source beamline 13-BM-D Argonne National 
Laboratory, IL. 
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Figure A5. 4: Toeslope surface soil (0-5 cm from post, 0-15 cm depth, and file BE1 
map 1) XRF elemental mapping. Minimum values correspond to black and 
maximum to white.   

Arsenic 159 – 1660 counts, copper 67 – 271 counts,  chromium 37-291 counts, iron 1671 
– 34791 counts, zinc 66 – 302 counts, manganese 89 – 1733 counts.  Spots indicate 
regions where µXAFS data was taken. Arsenic map spot 1, (36.653, 40.745),  As- 1660, 
Cu- 134, Cr- 270, Fe- 34791, Zn- 215, Mn-  939. Arsenic map spot 2, (35.608, 40.170 ), 
As-  1191, Cu- 235, Cr- 113, Fe- 12194, Zn- 302, Mn- 453. Arsenic map spot 3, (35.958, 
40.420), As- 973, Cu-  148, Cr-  94, Fe-  5150, Zn-  128, Mn- 231. Copper map spot 1, 
(35.608, 40.155), As- 1191, Cu- 235, Cr- 113, Fe- 12194, Zn- 302, Mn- 453.  Maps 
generated at the Advanced Photon source beamline 13-BM-D Argonne National 
Laboratory, IL. 
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Figure A5. 5: Toeslope subsurface soil (beneath post, file BF5 map 2) XRF elemental 
mapping. Minimum values correspond to black and maximum to white.   

Arsenic 88 – 6172 counts, copper 38 – 596 counts,  chromium 28-203 counts, iron 1217 – 
22248 counts, zinc 41 – 426 counts, manganese 51 – 782 counts.  Spots indicate regions 
where µXAFS data was taken. Arsenic map spot 1, (36.390,39.670),  As- 5878 , Cu- 596 
, Cr- 113 , Fe- 10710 , Zn-  178, Mn- 296. Arsenic map spot 2,  (36.785, 39.480 ),  As-  
1878, Cu- 379 , Cr- 127 , Fe-  11243 , Zn- 120 , Mn- 178. Maps generated at the 
Advanced Photon source beamline 13-BM-D Argonne National Laboratory, IL. 
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Figure A5. 6: Midslope surface soil (0-5 cm adjacent, 0-15 cm depth, file CE1 map 3) 
XRF elemental mapping. Minimum values correspond to black and maximum to 
bright.   

Arsenic 0 – 88756 counts, copper 0 – 33536 counts,  chromium 0-12170 counts, iron 0 – 
103684 counts, zinc 0 – 34001 counts, manganese 0 – 84295 counts.  Spots indicate 
regions where µXAFS data was taken. Maps generated at the Advanced light source 
beamline 10.3.2 Berkeley National Laboratory, Ca. 
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Figure A5. 7: Midslope surface soil (0-5 cm adjacent, 0-15 cm depth, file CE1 map 5) 
XRF elemental mapping. Minimum values correspond to black and maximum to 
white.   

Arsenic 0 – 3308 counts, copper 0 – 1903 counts,  chromium 0-2988 counts, iron 0 – 
73956 counts, zinc 0 – 649 counts, manganese 0 – 6123 counts.  Spots indicate regions 
where µXAFS data was taken. Maps generated at the Advanced light source beamline 
10.3.2 Berkeley National Laboratory, Ca. 
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Appendix 6: Mass and Normalized Enrichment Factor of Arsenic and Copper 

 

To check for overall enrichment of the metal(loid)s in the soil at different depths a 

calculation was conducted to establish the total mass of metal per depth increment.  The 

method consists of revolving the boundaries of the sample around the post and 

calculating the subsequent volume of soil enriched ( eq. A6.1). The expected mass of the 

metal could be determined by multiplying this volume of enrichment by the estimated 

soil bulk density (1.25 g cm-3) and the concentration of the sample (eq. A6.2). The mass 

per depth increment was then estimated through the summation of samples with the same 

depth profiles (eq. A6.3). This estimation allows one to compare overall leaching at 

different depth increments in order to postulate on how profile depth/soil properties are 

influencing total leaching and leaching patterns. Because samples were pulled from both 

sides of posts the summation of the total enrichment was averaged between both sides. 

Volume of enrichment 

𝑉𝑉 = 𝜋𝜋 ∙ (𝑥𝑥2
2 − 𝑥𝑥1

2) ∙ (∆𝑦𝑦)                                  eq. A6.1 

V=volume of enrichment (cm3) 

x2=sample’s farthest vertical position from center of post (cm) 

x1=sample’s closest vertical position from center of post (cm) 

Δy= range in sample depth (cm) 

Mass of Metal per sample 

𝑀𝑀 = 𝑉𝑉 ∙ 𝐷𝐷𝑏𝑏 ∙ (𝐶𝐶𝑠𝑠 − 𝐶𝐶𝑏𝑏) ∙ 10−6                 eq. A6.2 

 M=mass of metal (g) 

 V=volume of enrichment (cm3) 

 Db=Bulk density (1.25 g cm-3) 
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 Cs= Sample Concentration (mg/kg) 

 Cb= Background concentration (mg/kg)  

 

Mass per Unit Depth Increment 

𝑚𝑚 = 𝑀𝑀
Δ𝑦𝑦

                                                                                                                     eq. A6.3 

 m= mass per unit depth (g/cm) 

 

Total Mass of Metal  

∑𝑀𝑀𝑖𝑖                     eq. A6.4 

 M=mass of metal (g) depth 

 

Additionally, to account for sample heterogeneity because of changes in soil properties 

throughout the profile a technique of normalization of the enrichment factor is conducted.  

The normalization approach uses aluminum as the normalizer, which has been shown to 

be appropriate for normalizing the enrichment factor in sediments (Loring and Rantala, 

1992). A recent paper that uses this approach is (Liu et al., 2010). 

Normalized Enrichment Factor 

𝐸𝐸𝐸𝐸 = �
𝑀𝑀
𝑋𝑋
�
𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠

/ �
𝑀𝑀
𝑋𝑋
�
𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 

 M=metal concentration 

 X= normalize concentration (Aluminum) 
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Appendix 7:  Arsenic Bulk and µ XAFS spectra 

 

Figure A7. 1: XANES, CHI*k3, and radial structure function (RSF) data of bulk 
XAFS data. 
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Figure A7. 2: Radial structure function (RSF) with imaginary data of the bulk 
XAFS spectra. 
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Figure A7. 3:  µ XANES arsenic spectra. Hilltop (HT), Midslope (MS), Toeslope 
(TS), Surface Soil (S), and Subsurface Soil (SS) 

 

 



 

124 
 

 

 

Figure A7. 4:  Chi*k3 arsenic spectra. Hilltop (HT), Midslope (MS), Toeslope (TS), 
Surface Soil (S), and Subsurface Soil (SS) 
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Appendix 8: Arsenic Principle Component Analysis 

Traditional single shell fitting of EXAFS data in heterogeneous systems, such as soil, is 

often difficult to ascertain because of the complexity and quantity of overlapping atomic 

shells. Therefore, a principle component analysis (PCA) is conducted with LabviewTM 

based software developed at beamline 10.3.2 at the ALS 

(http://xraysweb.lbl.gov/uxas/Index.htm) using all bulk and µ EXAFS spectra.  The PCA 

analysis accompanied with target transformation (TT) analysis can be used to identified 

the standard spectra that are the most probably components of the spectral data set. In 

PCA analysis the number of dominant species present must be equal to or less than the 

total number sample spectra taken.  

The methodology of PCA analysis is reviewed in (Ressler et al., 2000) or (Manceau et 

al., 2002). Provided here is a brief reiteration of the theory provided by Manceau et al. 

(2002), PCA takes a set of X spectra (the sample set) and represents the X spectra 

through a linear combination of Y spectra in which Y ≤ X components. Using linear 

algebra a rectangular matrix A can be treated as follows 

𝐴𝐴𝑖𝑖𝑠𝑠 = 𝐸𝐸𝑖𝑖𝑏𝑏𝜆𝜆𝑏𝑏𝑊𝑊𝑏𝑏𝑠𝑠                                                                                                        eq. A8.1 

where A is an N ×M  matrix, E is a column- orthogonal N×M matrix, and W is a square, 

M ×M orthonormal matrix. Roughly, E is the set of decomposed components, λb are scale 

factors and W is a table of weights. The λb 
2  are the eigenvalues of A*A and indicate the 

contributions of various components, generally λb is only of any significant magnitude 

for only some components. Therefore the data set can be represented as 
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𝜒𝜒𝑖𝑖𝑏𝑏 ≈  𝐸𝐸𝑖𝑖𝑖𝑖𝜆𝜆𝑖𝑖𝑊𝑊𝑏𝑏𝑖𝑖                               eq. A8.2 

in which α goes from 1… Y, Y being the number of components used, and b goes from 

1…X. The resultant spectra the E components do not correspond to any single species 

and may not even look like EXAFS spectra when plotted and are thus referred to as 

abstract components.  

To address the quality of the fit given by the principal components to the standard spectra 

during TT a SPOIL value is calculated which estimates the fit error, lower SPOIL values 

correspond to better fits. In general, SPOIL values < 1.5 are excellent, 1.5 – 3 good, 3-4.5 

fair, 4.5 -6 poor, and >6 unacceptable (Malinowski, 1978). When fitting EXAFS data 

through linear least squares the fit can be improved simply by adding more components. 

Therefore, to determine the approximate number of components to use an indicator (IND) 

function must be constructed (Malinowski, 1977). The minimization of the IND value 

gives an indication of the # of principal components that accounts for a majority of the 

data set. The PCA analysis was performed using the χ(k) × k3 (Å-3) over a k range of 2 – 

10 Å-1.  The results exhibited in Figure A8.1 show a minimization of the IND value at 3 

or 4 which suggests there are 3 -4 significant components in our system.  These 3-4 

components are exhibited in Figure A8.2. Target transformation results are exhibited in 

Table A8.2 and Table A8.3 indicating that these 3-4 principal components are best 

represented by an amorphous aluminum oxide and arsenic complex originally believed to 

be mansfieldite, As sorbed to gibbsite, and As and Zn coprecipitated on Goethite. 
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Figure A8. 1: Indicator values vs. component #, a.) refers to PCA conduction with all 
spectra, b.) refers to the PCA conducted on all data except the 4 noisiest spectra, and c.) 

refers to the PCA conducted on all data except 5 noisiest spectra. 

 

 

Figure A8. 2:  Component 1, 2, 3 ,4 in which a.) refers to PCA conduction with all 
spectra, b.) refers to the PCA conducted on all data except the 4 noisiest spectra, and c.) 

refers to the PCA conducted on all data except 5 noisiest spectra. 
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Appendix 9: Arsenic Linear Least Squares Fitting (LLSF) 
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Figure A9. 1: Correlation among the bulk and average µ EXAFS LLSF results. 

 

 

Figure A9. 2: Percent Iron and Aluminum Arsenic Complexes vs. pH for bulk EXAFS 
data 
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Figure A9. 3: Percent Iron and Aluminum Arsenic Complexes vs. pH for bulk and µ 
EXAFS data 
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Appendix 10: Spatial Distribution along the Toposequence 

Samples were collected every 8 posts (~ 20 m) from the HT position to the TS position at 

two distances 0-5 cm (G) and 10-15 cm (I)away from the post and at two depths 0-15 cm 

(1)and 15-30 cm (2), corresponding to G1, G2, I1, and I2 in Figure A2 2-4.  Samples 

were average to assess concentration differences and ratios were constructed to evaluate 

the extent of mobilization. 

            

Figure A10. 1: Positions of Profile pits dug and approximate distance from Hilltop 
position. 

 

Figure A10. 2: Arsenic concentration vs. post distance from hilltop sampling location. 
Hilltop location corresponds to 0 m, midslope position corresponds to 97 m, and toeslope 
position corresponds to 138 m. 
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Figure A10. 3: Arsenic average concentration (Sample G1, G2, I1, I2) vs. post distance 
from hilltop sampling location. Hilltop location corresponds to 0 m, midslope position 
corresponds to 97 m, and toeslope position corresponds to 138 m. 

 

 

Figure A10. 4: Ratio of G1:I1 Arsenic Concentration vs. post distance from hilltop 
sampling location. Hilltop location corresponds to 0 m, midslope position corresponds to 
97 m, and toeslope position corresponds to 138 m. 

 

 

 

y = 0.4252x + 345.42
R² = 0.269

0.00

100.00

200.00

300.00

400.00

500.00

0 25 50 75 100 125 150A
s 

co
nc

en
tr

at
io

n 
(p

pm
)

Distance from hilltop position (m)

Arsenic Average Concentration vs. Distance

y = -0.0327x + 4.4833
R² = 0.988

0

1

2

3

4

5

0 25 50 75 100 125 150

Ra
tio

Distance from Hilltop Position (m)

Ratio of G1:I1 Arsenic Concentration



 

135 
 

 

Figure A10. 5: Copper concentration vs. post distance from hilltop sampling location. 
Hilltop location corresponds to 0 m, midslope position corresponds to 97 m, and toeslope 
position corresponds to 138 m. 

 

 

Figure A10. 6: Copper average concentration (Sample G1, G2, I1, I2) vs. post distance 
from hilltop sampling location. Hilltop location corresponds to 0 m, midslope position 
corresponds to 97 m, and toeslope position corresponds to 138 m. 
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Figure A10. 7: Ratio of G1:I1 Copper Concentration vs. post distance from hilltop 
sampling location. Hilltop location corresponds to 0 m, midslope position corresponds to 
97 m, and toeslope position corresponds to 138 m. 
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