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ABSTRACT OF DISSERTATION 
 
 
 
 

LOCAL SYNAPTIC NETWORK INTERACTIONS IN THE DENTATE GYRUS OF A 
CORTICAL CONTUSION MODEL OF POSTTRAUMATIC EPILEPSY  

 
Posttraumatic epilepsy is a common consequence of brain trauma. However, little is 
known about how long-term changes in local excitatory and inhibitory synaptic networks 
contribute to epilepsy after closed-head brain injury. This study adapted a widely used 
model of experimental brain injury as a mouse model of posttraumatic epilepsy. 
Behavioral seizure activity and alterations in synaptic circuitry in the dentate gyrus were 
examined in mice after experimental cortical contusion brain injury. Spontaneous 
behavioral seizures were observed in 20% of mice after moderate injury and 36-40% of 
mice weeks after severe injury. In the dentate gyrus, most mice displayed regionally 
localized mossy fiber reorganization ipsilateral to the injury that was absent in control 
mice or sections contralateral to the injury. Extracellular field and whole-cell patch clamp 
recordings were performed in acute brain slice preparations of the dentate gyrus. Dentate 
granule cells displayed spontaneous and evoked activity that was consistent with network 
synchronization and the formation of recurrent excitatory network only in slices that had 
posttraumatic mossy fiber sprouting. The excitability of surviving hilar GABAergic 
interneurons, which provide important feedback inhibition to granule cells, was examined 
at similar time points. Cell-attached and whole-cell voltage-clamp recordings revealed 
increased spontaneous and glutamate photostimulation-evoked excitatory input to hilar 
GABA neurons ipsilateral to the injury, versus control and contralateral slices. Despite 
increased excitatory synaptic input to interneurons, whole-cell voltage-clamp recordings 
revealed a reduction in inhibitory synaptic input to granule cells. These findings suggest 
that there are alterations in excitatory and inhibitory circuits in mice with posttraumatic 
mossy fiber sprouting and seizures after cortical contusion head injury.  
 
 
 
KEYWORDS: Traumatic brain injury, mossy fiber sprouting, seizure, synaptic  

  excitation, synaptic inhibition.   
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Chapter 1 

Introduction to posttraumatic epilepsy 

 

Posttraumatic epilepsy (PTE) is a common long-term consequence of traumatic 

brain injury (TBI) for which there is currently no effective treatment. The underlying 

pathogenesis by which the brain becomes epileptic after TBI is not well understood. This 

is partially due to a relative lack of experimental models; i.e., animal models of head 

injury that develop spontaneous seizures (Pitkanen and McIntosh, 2006). This 

introduction provides a brief review of the functional anatomy associated with the 

development of acquired epilepsy. That is, the neurophysiological and structural 

abnormalities that are believed to underly a propensity of the injured brain to generate 

spontaneous seizures. Emphasis is placed on modifications of synaptic networks in the 

injured dentate gyrus. The hippocampus has long been recognized as an important 

structure in epilepsy (Lothman et al., 1991). The dentate gyrus is particularly susceptible 

to injury, often undergoes time-dependant structural reorganization, and is a widely used 

model system for altered synaptic circuitry of cortical structures in epilepsy (Dudek and 

Spitz, 1997; Dudek and Sutula, 2007; Sutula and Dudek, 2007; Nadler, 2003).  

 

1.1 History of epilepsy  

 

Epilepsy is an ancient brain disorder. The earliest written record of seizures is 

found in the Sakikku, an ancient Babylonian medical text, whereby epilepsy was referred 

to as “the falling disease” (Eadie and Baldin, 2001). The term “epilepsy” is derived from 

the Greek word epilavainem, meaning “to be seized,” which describes what was 

generally believed to be the supernatural act of a god upon an individual. This belief was 

later refuted by Hippocrates when he wrote “On the Sacred Disease” in 400 B.C., 

regarding seizures as a disorder of the brain. Some speculate that a boy described in the 

Gospel of Mark 9:14-29, from whom Jesus expelled an unclean spirit, suffered from 

epileptic seizures. The boy periodically experienced violent convulsions since childhood 

that included falling to the ground, loss of speech, gnashing teeth, foaming at the mouth, 

and becoming rigid. However, the modern medical understanding of epilepsy did not 



2 
 

come until the late-1800’s when John Hughlings Jackson and colleagues described a 

seizure as “an occasional, an excessive, and a disorderly discharge of nerve tissue on 

muscles.” Jackson offered detailed descriptions for a number of different epilepsies, 

especially those with acquired etiologies. Later, in 1929, Hans Berger developed the 

electroencephalogram (EEG), which allowed electrical field potentials to be recorded 

from the surface of the brain (Eadie and Baldin, 2001). This invention has proven to be a 

powerful tool for studying and diagnosing epilepsy.  

Henry Gustav Molaison (HM) is perhaps the most famous modern example of 

PTE (Scoville and Milner, 1957). HM suffered from intractable generalized seizures, 

presumably from a bicycle accident as a child, and underwent bilateral medial temporal 

lobe resection. While seizures became less incapacitating after surgery, HM could no 

longer commit new events to long-term memory. This case emphasized the importance of 

the hippocampal formation and surrounding limbic areas in seizure generation and 

normal memory function. 

 

1.2  Definitions 

 

PTE refers to a recurrent, unprovoked, spontaneous seizure disorder (i.e., 

epilepsy) after TBI (Fisher et al., 2005; Agrawal et al., 2006). TBI is to be distinguished 

from other types of brain insults (e.g., brain tumor) which also carry an increased risk for 

epilepsy (Herman, 2002). TBI refers to a brain insult produced by a sudden, mechanical 

force that damages the brain (NINDS, 2010). A seizure is a transient clinical 

manifestation of abnormal, excessive, and synchronous neuronal activity (Lothman et al., 

1991; Fisher et al., 2005). Seizures often involve a change in behavior (McNamara JO, 

1994, 2006; Fisher et al., 2005). Epileptogenesis refers to the transformation process by 

which the normal brain is altered to generate epileptic activity. Structural alterations in 

neural circuitry – due to progressive neuronal damage and “self-repair” mechanisms – 

develop through a latent period of variable time and culminate with the emergence of 

spontaneous, recurrent, seizures (Dudek and Spitz, 1997). Chronic seizures that arise 

from one or several regions of the temporal lobe are referred to as temporal lobe epilepsy 

(TLE), which is the most common form of epilepsy (Engel et al., 1997).  
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1.3  Epidemiology  

 

 Greater than one million people are presented for medical care each year in the 

United States after sustaining a head injury (Faul et al., 2010). The highest rate of TBI 

occurs in young adults aged 15-24, but children under age 5 and persons older than 75 are 

also at an increased risk. Additionally, most studies suggest that males are about three 

times more likely to sustain TBI than females. The leading causes of TBI include falls 

(28%), motor vehicle accidents (20%), and being struck by objects (19%). While the 

incidence of epilepsy in the general population is about 1 - 2% (Hauser and Hesdorffer, 

1990), the overall incidence of epilepsy is 7-39% after severe closed head injury and as 

high as 57% after penetrating injury (Caveness et al., 1979; Salazar et al., 1985; Annegers 

et al., 1998; Asikainen et al., 1999; Herman et al., 2002; Englander et al., 2003). 

Approximately 20% of all symptomatic (acquired) epilepsies are the result of TBI 

(Hauser et al., 1991). The latency from insult to seizure onset is variable, but a large 

majority of patients have onset of spontaneous seizures within one year after injury 

(Caveness et al., 1979; Salazar et al., 1985; DaSilva et al., 1990; Englander et al., 2003). 

However, seizure latency may depend on the age at which trauma occurs; children often 

have a shorter time to seizure onset than adults (Asikainen et al., 1999). PTE occurs as 

TLE in 35-62% of trauma patients (Diaz-Arrastia et al., 2000; Hudak et al., 2004).  

 

1.4  Risk factors 

 

Injury severity is considered the major determining factor for developing a seizure 

disorder after brain trauma (Annegers et al., 1998; Herman, 2002; Englander et al., 2003). 

The severity of TBI is most commonly categorized based on a Glasgow Coma Scale 

(GCS) scoring procedure (Teasdale and Jennett, 1974). This scale relies on information 

regarding visual, motor, and verbal responses in the acute phase to provide scores that 

range from 3 (coma state) to 15 (normal function). Head injury severity is often classified 

based on this system as mild (GCS 13-15), moderate (GCS 9-12), or severe (GCS ≤8). 

Annegers et al (1998) reported that the 30 year cumulative incidence for convulsive 

seizures was 2.1% for mild, 4.2% for moderate, and 16.7% for severe closed-head TBI. 
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Englander et al. (2003) found that the cumulative probability for developing spontaneous 

posttraumatic seizures by 2 years post-injury was 16.8% for mild, 24.3% for moderate, 

and 8.0% for severe TBI.  

Focal brain damage and cortical contusions to the frontal, temporal, or parietal 

lobes are the next most important risk factor for PTE (D’Alessandro et al., 1982; 

Englander et al., 2003). Several other risk factors for PTE have been identified, many of 

which are associated with focal lesions: dural penetration, depressed skull fracture, 

intraparenchymal hemorrhage, epidural and/or subdural hematomas, reduced brain 

volume, prolonged impaired consciousness, and injury-induced seizures (Salazar et al., 

1985; Annegers et al., 1998; Asikainen et al., 1999; Englander et al., 2003; Frey et al., 

2003). It is also likely that genetic background, agent of injury, and acute medical 

treatments influence the risk of developing PTE; however, the contribution of personal 

traits and injury dynamics in epilepsy has not been well established (Pitkanen and 

McIntosh, 2006).  

 

1.5  Classification of neurotrauma 

 

Several classification schemes have been derived for TBI (Saatman et al., 2008). 

One method is to categorize injuries based on the biomechanical force exerted on the 

brain (i.e., the physical mechanism of injury) (Goldsmith, 1966; McLean and Anderson, 

1997; Saatman et al., 2008). There are two primary types of mechanical loading that 

produce brain trauma: static and dynamic. Static loading occurs when gradual forces are 

applied to the brain, e.g., compression of the head by a large object. Dynamic loading is 

further divided into impact and impulsive loading. Impact loading occurs when contact 

forces are applied to the brain; e.g., the head strikes or is struck by an object. Impulsive 

loading is thought to be due to tissue distortion by noncontact (inertial) forces; e.g., a 

sudden head motion without significant physical contact. Contact forces often produce 

more focal tissue damage (e.g., cortical contusions, vascular injuries such as epidural or 

subdural hematomas, and tearing of brain parenchyma), whereas noncontact forces 

typically produce more diffuse brain damage (e.g., diffuse axonal injury, diffuse brain 
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swelling, and edema) (Bullock, 1997). Brain injury often involves both focal and diffuse 

pathologies (McLean and Anderson, 1997; Saatman et al., 2008).   

 

1.6  Classification of posttraumatic seizures  

 

Like TBI, epilepsy is a heterogeneous disorder with many different types and 

classification schemes (Lothman et al., 1991). Epileptic seizures can be broadly divided 

into two groups: partial or generalized. Partial (i.e., focal) seizures originate from a 

localized brain region (the “epileptic focus”), whereas generalized seizures appear 

throughout the neocortex. Seizures that disrupt normal cognition or consciousness are 

referred to as complex, and those that do not are referred to as simple. Seizures that 

originate in the hippocampal formation often spread to other areas of the brain and are 

thus classified as complex partial with secondary generalization.  

Posttraumatic seizures can be additionally classified according to the time of their 

presentation after injury: immediate or impact (< 24h after injury), early (< 1 week after 

injury), and late (> 1 week after injury) (Haltiner et al., 1997; Frey, 2003; Agrawal et al., 

2006). This classification scheme is thought to represent different pathophysiological 

processes (Semah et al., 1998; Agrawal et al., 2006). Immediate and early seizures are 

considered injury-induced seizures (i.e., provoked) and are not epileptic; because they 

occur as a direct result of neurologic and systemic abnormalities of the acute trauma. 

Late, spontaneous, seizures are considered to be PTE, because they reflect permanent 

changes in neuronal function. Spontaneous seizures are often associated with structural 

reorganization and remodeling of cortical regions susceptible to injury, such as the 

dentate gyrus (Dudek and Spitz, 1997).  

 

1.7  The hippocampus and dentate gyrus 

 

The hippocampal formation is a neural structure located in the medial temporal 

lobe of the cerebral cortex (Amaral and Lavenex, 2007). It was originally named by 

Italian Julius Caesar Arantius in 1587, who analogized its distinct shape as a curved tube 

that follows the lateral ventricles to that of a seahorse of Greek mythology (ιππος, hippos 
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= horse, καμπος, kampos = sea monster) (Olry and Haines, 1998; Amaral and Lavenex, 

2007). Later, the surgeon René Jacques Croissant de Garengeot named the hippocampus 

“Ammon’s Horn”, a reference to the ram’s horns of the Egyptian god of Amun (Lewis, 

1922; Amaral and Lavenex, 2007). The general anatomy of the hippocampal formation 

remains similar across mammalian species (Amaral and Lavenex, 2007). However, in the 

rodent it is more of a C-shaped structure. An increasingly more complex understanding of 

the functional organization and plasticity of the hippocampal and parahippocampal 

regions has emerged in the more than 100 years since first being described in detail by 

Ramón y Cajal (1995). Its important functional role in learning and memory (Zola-

Morgan and Squire, 1993), spatial navigation, and neurological disorders such as epilepsy 

(Lothman et al., 1991) has long been recognized.  

 

1.7.1 

 

Anatomy of the hippocampal formation 

The hippocampal formation contains two distinct subregions: the dentate gyrus 

and the hippocampus proper, which is further subdivided into Cornu Ammonis (CA) 

areas one through three (Lorente de No, 1934; Rosene and van Hoesen, 1987; Lothman et 

al., 1991; Amaral and Lavenex, 2007; Figure 1.1). The subiculum and entorhinal cortex 

are sometimes also included in the term “hippocampal formation” (Amaral and Lavenex, 

2007). The cortex of the hippocampal formation is comprised of three layers. The first is 

a deep polymorph layer that contains fiber tracts and interneurons (i.e., local circuit 

neurons). In the dentate gyrus, this region is referred to as the hilus. In the hippocampus 

proper, this region is the stratum oriens. Superficial to the polymorph layer is the 

principal cell layer. This is the granule cell layer (stratum granulare) of the dentate gyrus, 

which is a tightly packed layer of 4-8 granule cell somata in thickness. Principal cells of 

the hippocampus proper are the pyramidal cells of stratum pyramidale. The most 

superficial layer is referred to as the molecular layer (stratum moleculare). In the dentate 

gyrus, this region can be subdivided into inner, middle, and outer molecular layers. In 

CA3, the molecular layer is subdivided into the stratum lucidum; stratum radiatum; and 

most superficially, the stratum lacunosum-moleculare. The lamination of CA1 and CA2 

does not include the stratum lucidum.  
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Figure 1.1. Anatomy of hippocampal and parahippocampal regions in the rat brain. A. 

Anatomical organization of the hippocampus and surrounding regions. B. Diagram shows major 

directional flow of excitatory information through the hippocampus (black boxes). Numbers 

correspond to pathways in the trisynaptic circuit: 1, perforant pathway; 2, mossy fiber pathway; 3, 

Schaffer collateral pathway. Abbreviations: EC, entorhinal cortex; DG, dentate gyrus; m, 

molecular layer; g, granule cell layer; h, hilus (polymorph layer); so, stratum orien; p, pyramidal 

cell layer; sl, stratum lucidum; sr, stratum radiatum; sl-m, stratum lacunosum-moleculare; al, 

alveus; Sub, subiculum; Pre, presubiculum; Para, parasubiculum.  

 

1.7.2 

  

Input from entorhinal cortex to the hippocampal formation 

The entorhinal cortex contains six cortical layers and forms the main 

parahippocampal connection to the hippocampus (Lothman et al., 1991; Freund and 

Busaki, 1996; Amaral and Lavenex, 2007). It is reciprocally connected with the 

hippocampus as well as other parahippocampal regions, including itself. Superficial 

layers (I-III) of the entorhinal cortex provide the most prominent input while the deep 

layers (IV-VI) mainly receive projections from the hippocampus. Entorhinal layer II 

projections are collectively referred to as the perforant pathway and form synaptic 

connections with apical dendrites of granule cells and local circuit interneurons 

throughout the entire extent of the molecular layer of the dentate gyrus. In traditional 

models, this is the first step of the excitatory polysynaptic entorhinal-hippocampal 

pathway (Lothman et al., 1991; Freund and Busaki, 1996; Amaral and Lavenex, 2007). 

Perforant pathway fibers also project to hilar interneurons and to CA3 pyramidal cells, 

forming connections with pyramidal cell dendrites in the stratum lacunosum-moleculare. 
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Area CA1 and the subiculum also receive input from the entorhinal cortex, but these 

inputs arise mainly from layer III.  

 

1.7.3 

 

Connectivity within the hippocampal formation 

Transmission of excitatory information between principal neurons of the 

hippocampal formation is primarily mediated by glutamate binding to ionotropic 

glutamate receptors. Activation of these receptors increases membrane permeability to 

positive ions (e.g., Na+) and leads to a depolarizing response of the postsynaptic 

membrane, i.e., the excitatory postsynaptic potential. The direction of information 

through the hippocampus is generally considered to be unidirectional (Amaral and 

Lavenex, 2007). Granule cells in the dentate gyrus project axons, collectively referred to 

as the mossy fiber pathway, to pyramidal cells and inhibitory interneurons in area CA3. 

The Schaffer collaterals arise from CA3 pyramidal neurons and project to area CA1 

(Andersen et al., 1971). The final step in the polysynaptic pathway is the projection from 

CA1 pyramidal cells to the subiculum via the alvear pathway. Collectively, the normal 

flow of excitatory information from entorhinal cortex to dentate gyrus to CA3 to CA1 is 

commonly referred to as the “trisynaptic pathway” (Andersen et al., 1971; Lothman et al., 

1991; Freund and Busaki, 1996). The main hippocampal outputs arise from area CA1 and 

the subiculum and project to superficial layers of the entorhinal cortex, mainly layers V 

and VI.  

In contrast to the traditional unidirectional model, there are several excitatory 

backprojections and interconnections within the hippocampus. While granule cells in the 

dentate gyrus are not normally interconnected, they do form synaptic connections with 

proximal dendrites of mossy cells in the hilus. Mossy cells, which give rise to 

associational-commisural fibers, normally project across lamellae to innervate distant 

granule cells and inhibitory neurons (Amaral, 1978; Ribak et al., 1985; Buckmaster et al., 

1996). For this reason, mossy cells have been suggested to be important in regulating 

lateral inhibition (Buckmaster and Schwartzkroin, 1994). Collaterals of pyramidal cells 

form an intrinsic recurrent excitatory network in CA3 and, to a lesser extent, CA1. Some 

reports suggest that CA3 neurons sometimes project back to the hilus and can reach the 



9 
 

inner molecular layer of the dentate gyrus, but these connections are relatively sparse and 

occur mainly at the most temporal levels of the hippocampus (Scharfman, 2007). 

Backprojections from CA1 to CA3 have also been described. Additionally, extensive 

recurrent excitatory connections are also present in the subiculum. Principal cells in all 

regions of the hippocampal formation form extensive synaptic connections with various 

types of inhibitory neurons.  

 

1.7.4 

 

GABAA receptor-mediated inhibition 

GABAergic interneurons – i.e., local circuit inhibitory neurons – form robust 

local synaptic connections with principal cells of the hippocampus and dentate gyrus 

(Freund and Busaki, 1996). Transmission at these synapses is mediated by γ-

aminobutyric acid (GABA), the main inhibitory neurotransmitter of the CNS.  GABA 

primarily acts through ionotropic GABAA (GABA type A) receptors to increase 

permeability of chloride and bicarbonate ions (Kaila, 1994). This action leads to a 

hyperpolarizing response of the postsynaptic membrane, i.e., the inhibitory postsynaptic 

potential.  

Two primary modes of GABAA receptor-mediated inhibition have been 

identified: phasic (synaptic) and tonic (extrasynaptic) inhibition (Farrant and Nusser, 

2005; Glykys and Mody, 2007; Figure 1.2). Phasic inhibition refers to the transient 

activation of postsynaptic GABAA receptors at the synaptic junction following exposure 

to high concentrations of GABA released from presynaptic vesicles. This form of 

synaptic communication allows for rapid transmission of information from the 

presynaptic terminal to the postsynaptic membrane in a spatially and temporally 

restricted manner. In whole-cell voltage-clamp recordings, synaptic events can be easily 

identified as inhibitory postsynaptic currents (IPSCs). Small amounts of GABA escape 

the synaptic cleft and activate high-affinity extrasynaptic GABAA receptors on the same 

or adjacent neurons, an event termed “spillover”. Tonic inhibition refers to the persistent 

activation of these extrasynaptic GABAA receptors by low concentrations of ambient 

GABA. Phasic and tonic currents can be blocked by high concentrations of GABAA 
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receptor antagonists. In whole-cell voltage-clamp recordings the tonic current is reflected 

by a shift in “holding” current (Figure 1.2 C).   

 

Figure 1.2. Phasic and tonic GABAA receptor activation. A. Synaptic receptors (orange) are 

located on the postsynaptic membrane just beneath the presynaptic release site, whereas 

extrasynaptic receptors (purple) are located away from the synaptic junction. B. Phasic (synaptic) 

IPSCs are rapid events in a whole-cell voltage-clamp recording of a dentate granule cell. C. The 

tonic (extrasynaptic) current in this cell is revealed as a baseline shift after application of the 

GABAA receptor antagonist bicuculline methiodide (BMI; 100µM).  

  

1.7.5 

 

Hilar GABAergic interneurons 

Inhibitory neurons in the dentate gyrus are diverse and can be identified based on 

their immunoreactivity for glutamic acid decarboxylase (GAD) – the enzyme that 

catalyzes the decarboxylation of glutamate to GABA – which is expressed in neurons 

where GABA is used as a neurotransmitter (Freund and Busaki, 1996; McBain and 

Fisahn, 2001). Ramon y Cajal (1995) referred to these neurons as “cells with the short 

axon” and noted that they did not all have the same appearance. Inhibitory neurons can be 

categorized morphologically, based on their dendritic and axonal arborizations or 

afferent-efferent connectivity; neurochemically, based on the neuropeptide produced; or 

physiologically, based on their electrophysiological characteristics (Freund and Busaki, 
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1996; McBain and Fishan, 2001). Here, interneurons of the dentate gyrus are briefly 

described based on their morphological characteristics.  

 

Perisomatically-projecting and axo-axonic neurons (Basket and chandelier cells)  

 

Dentate basket cells have somata located in or near the granule cell layer and form 

divergent perisomatic connections onto cell bodies or proximal dendrites of granule cells 

(Amaral, 1978; Ribak and Seress, 1983; Han et al., 1993; Kneisler and Dingledine, 1995; 

Zhang and Buckmaster, 2009). Basket cells are heterogeneous in morphology, afferent 

input, and neurochemical markers (Freund and Busaki, 1996). A subpopulation of basket 

cells express the calcium binding protein parvalbumin (Ribak et al., 1990). Studies that 

combine anterograde tract-tracing with single-cell labeling have suggested these cells 

receive synaptic contacts from perforant pathway and mossy fiber collaterals (Frostcher 

and Zimmer, 1983; Ribak and Seress, 1983; Seress and Ribak, 1984; Zipp et al., 1989), 

and these contacts appear to represent functional connections (Scharfman and 

Schwartzkroin, 1990; Scharfman et al., 1990). Therefore, basket cells likely participate in 

both feedforward and feedback inhibition of granule cells. CA3 pyramidal cells have also 

been shown to occasionally project back to dentate basket cells (Kneisler and Dingledine, 

1995).  

 

Chandelier cells (i.e., axo-axonic cells) also have somata located within or near 

the granule cell layer, and they are distinguished by their preferential projections to axon 

initial segments of principal neurons (Soriano and Frotscher, 1989; Han et al., 1993; Buhl 

et al., 1994). Dendrites of chandelier cells concentrate in the outer one-third of the 

molecular layer (Soriano and Frotscher, 1989; Han et al., 1993; Buhl et al., 1994), which 

suggests that these neurons mainly receive excitatory input from the perforant pawthway 

or associational-commisural fibers. Therefore, these neurons likely provide important 

feedforward inhibition of granule cells.  
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Dendritically-projecting neurons (HIPP, HICAP, MOPP cells) 

 

Hilar interneurons associated with the perforant pathway (HIPP) have cell bodies 

located in the hilus subjacent to the granule cell layer (Han et al., 1993; Freund and 

Busaki, 1996). Their dendrites are mainly restricted to the hilus and their axons localize 

in the outer-two thirds of the molecular layer where they synapse with distal dendrites of 

granule cells (Halasy and Somogyi, 1993; Han et al., 1993; Buckmaster and 

Schwartzkroin, 1995; Freund and Busaki, 1996; Zhang and Buckmaster, 2009). HIPP 

cells have large axonal arborizations, and it has been estimated that a single neuron may 

innervate up to one-eighth of the entire dentate gyrus (Han et al., 1993). These neurons 

can also project across the hippocampal fissure and make contacts with CA1 pyramidal 

neurons (Han et al., 1993; Buckmaster and Schwartzkroin, 1995). Interneurons that 

contain the peptide somatostatin have similar afferent-efferent connectivity to HIPP cells 

(Han et al., 1993), and the terms “somtatostatin-positive interneuron” and “HIPP cell” 

have been considered synonymous (Freund and Busaki, 1996). However, neuropeptide Y 

is also sometimes colocalized with somatostatin in these neurons (Acsády et al., 1997; Sík 

et al., 1997).  

 

Hi

 

lar commissural-associational pathway (HICAP) related neurons have somata 

in the hilus or at the border of the hilus and the granule cell layer (Halasy and Somogyi, 

1993; Han et al., 1993; Soriano and Frotscher, 1993; Buckmaster and Schwartzkroin, 

1995; Sík et al., 1997). These neurons have dendrites in the hilus and molecular layer 

(Han et al., 1993; Buckmaster and Schwartzkroin, 1995), suggesting that they participate 

in feedback and feedforward inhibition of granule cells. Axons of HICAP cells project to 

the inner molecular layer where they presumably make contacts with granule cell 

dendrites (Han et al., 1993; Halasy and Somogyi, 1993; Freund and Busaki, 1996; Zhang 

and Buckmaster, 2009).  

Molecular layer interneurons associated with the perforant pathway (MOPP) have 

cell bodies and dendrites in the molecular layer (Han et al., 1993; Halasy and Somogyi, 

1993). Like HIPP cells, these neurons innervate the outer one-third of the molecular layer 
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where they form synaptic contacts with distal dendrites of granule cells (Han et al., 1993; 

Halasy and Somogyi, 1993). Thus, MOPP cells are likely to participate in feedforward 

inhibition of granule cells.  

The spatial segregation of GABAergic interneurons innervating granule cells 

suggests that each cell subtype plays a different functional role in regulating granule cell 

excitability. Perisomatic inhibition provided by basket and chandelier cells is considered 

important for controlling and synchronizing principal cell output (Lytton et al., 1991; 

Cobb et al., 1995; Freund and Buszaki, 1996; Miles et al., 1996; Tamás et al., 2000). 

Conversely, dendritically projecting GABA neurons (e.g., HIPP cells) are proposed to 

primarily modulate synaptic efficacy of afferent input to principal cells (Freund and 

Buszaki, 1996; Miles et al., 1996). However, these cells may also play a role in principal 

cell synchrony by timing principal cell discharges (Szabadics et al., 2001) Figure 1.3 

shows the relative location of somata and the target zone for each of the main 

GABAergic interneuronal subtypes in the dentate gyrus. 

 

 
Figure 1.3. Domain specific innervation of granule cells by GABAergic interneurons in the 

dentate gyrus. The relative location for somata of each inhibitory interneuron subtype (blue) is 

shown. Each of the interneuronal subtypes has a spatially segregated terminal zone (red box) 

where they make domain specific synaptic contacts onto dentate granule cells (orange). 

Abreviations: ML, molecular layer; GCL, granule cell layer; H, hilus. Adapted from Freund and 

Buszaki (1996).  
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1.7.6 

 

The dentate “gate” 

The dentate gyrus has long been hypothesized to function as a tightly regulated 

“filter” or “gate” that limits the propagation of excessive excitatory activity between the 

entorhinal cortex and the hippocampus (Hsu, 2007). This concept is due to the seemingly 

strategic anatomical location of the dentate gyrus for controlling the flow of information 

into the hippocampus; i.e., it contains the first cell layer in the “trisynaptic loop.” In acute 

brain slices, dentate granule cells are normally resistant to the spontaneous generation of 

repetitive synchronous discharges, even in the presence of GABAA-receptor antagonists 

(Schwartzkroin and Prince, 1978; Cronin et al., 1992; Wuarin and Dudek, 1996; Patrylo 

and Dudek, 1998). Moreover, previous studies have used electrical stimulation of the 

entorhinal cortex or perforant pathway to demonstrate that evoked activity can penetrate 

the normal hippocampus only after high frequency stimulation (Alger and Teyler, 1976; 

Teyler and Alger, 1976; Lothman et al., 1992; Heinemann et al., 1992; Stringer and 

Lothman, 1992) or in the presence of GABAA-receptor antagonists (Iijima et al., 1996; 

Coulter and Carlson, 2007).  

The resistance of the dentate gyrus to synchronous activity and propagated 

discharges from the entorhinal cortex is due, in part, to the intrinsic synaptic circuitry of 

the dentate gyrus and passive properties of granule cells. Granule cells normally have a 

relatively negative resting membrane potential in the range of -65 to -85mV (Fricke and 

Prince, 1984; Staley et al., 1992). This hyperpolarized state creates a relatively high 

threshold for granule cell activation. Moreover, these cells are resistant to repetitive 

action potential firing (i.e., they have high spike accommodation during maintained 

depolarization) (Staley et al., 1992). Granule cells are not normally interconnected, 

preventing synchronized granule cell discharges, and inhibitory interneurons in the 

molecular layer and hilus provide robust GABA-mediated inhibition (Freund and Busaki, 

1996; Coulter and Carlson, 2007). In contrast, CA3 pyramidal cells have resting 

membrane potentials of -55mV to -65mV, normally form an interconnected excitatory 

network (Miles et al., 1984; Miles and Wong, 1986, 1987), and are prone to synchronous 

activity after blocking GABA-mediated inhibition (Schwartzkroin and Prince, 1978; 

Miles et al., 1984; Miles and Wong, 1986, 1987). Therefore, these cells are widely 
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hypothesized to act as an “amplifier” of activity transmitted through the “dentate gate” 

(Hsu, 2007). Whether the dentate gyrus acts as a “gate,” where electrical activity is 

blocked in an all-or-none manner (Stringer et al., 1989; Lothman et al., 1992; Stringer 

and Lothman et al., 1992), or as a “filter,” where electrical activity is blocked only under 

certain conditions (Hsu, 2007), remains controversial and not fully understood.  

 

1.8  Pathophysiology of acquired epilepsy 

 

For decades, the central dogma in epilepsy research has been that seizures occur 

due to some type of imbalance between excitatory and inhibitory neurotransmission 

(Dudek and Spitz, 1997; McCormick and Contreras, 2001; Nadler, 2003). Within this 

framework, models typically rely on mechanisms whereby excitatory influences are 

increased and inhibitory influences are decreased, usually in the presence of recurrent 

excitatory circuits.  

 

1.8.1 

 

Epileptiform activity 

Epileptiform activity broadly describes the abnormal electrical activity associated 

with a seizure. Abnormal fluctuations in cortical field potentials can be recorded from the 

scalp or dura by EEG in patients and animal models with focal epilepsy (Engel, 1987). 

These electrical potentials represent synchronized discharges of a population of cortical 

neurons. Abnormal synchronous discharges that occur as a single event; i.e., a brief (< 

250 ms), large amplitude potential observed in the presence of otherwise normal 

background activity; are referred to as interictal (between seizure) spikes (Matsumoto and 

Ajmone-Marsan, 1964a; Ayala et al., 1973). In extracellular recordings, synchronous 

cortical discharges appear as population activity (i.e., a group of neurons that discharge 

simultaneously). At the level of a single neuron, this activity consists of sustained 

depolarization and a burst of action potentials (Ayala et al., 1973; Dichter and Ayala, 

1987; Lothman et al., 1991; McCormick and Contreras, 2001), often referred to as a 

paroxysmal depolarizing shift (PDS) in membrane potential. Interictal spikes are used 

clinically to diagnose epilepsy and identify active regions of epileptic foci (Engel, 1987; 



16 
 

Staley and Dudek, 2006). However, they may not always represent the primary focus 

from which seizures originate, because EEG can only detect synchronous activity of 

cortical neurons that are tightly packed together. 

Ictal (i.e., seizure) actvity consists of repetitive and rhythmic deflections in the 

EEG and reverberating depolarizations and action potential firing in single-cell 

recordings at the “epileptic focus” (Matsumoto and Ajmone-Marsan, 1964b; Ayala et al., 

1973; McCormick and Contreras, 2001). Factors underlying the transition from interictal 

to ictal activity are unclear. However, interictal activity is proposed to drive synaptic 

networks toward a synchronous state (McCormick and Contreras, 2001; Staley and 

Dudek, 2006). Recurrent excitatory circuits – which form when principal cells are 

sufficiently interconnected – have long been proposed as the cellular basis for 

pathologically synchronous activity (i.e., seizures) (Traub and Wong, 1982; McCormick 

and Contreras, 2001; Dudek and Spitz, 1997). 

   

1.8.2 

 

Network synchronization 

Cellular mechanisms of network synchronization are derived from a basic 

operation of recurrent excitatory circuits. Glutamate receptor activation leads to a 

depolarization of cortical neurons. This triggers action potentials and increases in 

intracellular calcium (i.e., the PDS). The PDS drives repetitive action potentials down the 

axon which leads to sustained glutamate release and activation of postsynaptic neurons 

via recurrent collaterals that connect the neurons in a network. The network transition 

into a synchronized state depends on the probability that excitatory activity will trigger an 

action potential in postsynaptic cells and whether activity in these neurons is sufficiently 

strong to propagate excitatory synaptic activity throughout the network.  

The functional relationship between recurrent excitatory circuits and network 

synchronization was first demonstrated in the hippocampus. CA3 pyramidal cells have 

robust axonal arborizations that connect neighboring pyramidal cells in a recurrent 

excitatory network (Ramon y Cajal, 1995; Lorente de No, 1934; Nowlin and Babb, 1983; 

MacVicar and Dudek, 1980; MacVicar and Dudek, 1982; Miles et al., 1984; Miles and 

Wong, 1986). In normal medium, CA3 neurons are capable of intrinsic bursting, (i.e., 
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firing a series of action potentials when sufficiently depolarized), but they normally do 

not generate this activity spontaneously or in synchrony (Wong et al., 1977; Wong and 

Prince, 1978; Miles and Wong, 1983). When inhibition is suppressed, the balance 

between excitation and inhibition is shifted towards excitation. Under these conditions 

and after surgical isolation from afferent input, pyramidal cells spontaneously generate 

bursts of action potentials with synchronized onset and offset (Miles et al., 1984; Miles 

and Wong, 1986, 1987). Dual intracellular recordings from pyramidal cells have 

demonstrated that a burst of presynaptic action potentials can elicit a burst of action 

potentials in a postsynaptic neuron (Miles and Wong, 1986, 1987). Connections between 

two cells which appear to be unconnected in normal medium can be revealed when 

inhibition is suppressed (Miles and Wong, 1987). Moreover, population activity can be 

initiated by activation of just a single neuron (Miles and Wong, 1983). This suggests that 

polysynaptic activity can spread throughout the network by activating recurrent 

excitatory synapses from just one cell. Therefore, groups of highly interconnected 

principal cells have the ability to synchronize their output, but synchrony is regulated (or 

masked) by intrinsic mechanisms and synaptic inhibition.  

These types of experiments demonstrated basic characteristics of functional 

recurrent excitatory circuits. 1) Spontaneous burst activity can be generated after surgical 

isolation from afferent input. 2) Evoked activity in one group of cells can elicit activity in 

distant cells of the same interconnected network. Modeling suggests that these events are 

only observed when there are sufficient excitatory interconnections between cells (Traub 

and Wong, 1982). Moreover, recurrent excitatory circuits are only revealed when 

recurrent inhibition is overcome.  

A consequence of the interconnectivity of excitatory neurons is the possibility for 

“runaway” excitation if recurrent excitatory networks are left unchecked by inhibitory 

networks. If recurrent excitatory circuits are exposed, they can synchronize, and a seizure 

can occur.  

Network changes in epilepsy have been best described in the context of injury by 

electrical stimulation or repeated seizures. For example, status epilepticus induced by 

systemic administration of kainic acid or pilocarpine in rodents is followed by the 

emergence of spontaneous seizures after a short latency of several weeks (Hellier et al., 
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1999; Shibley and Smith, 2002). In these models and human TLE, the generation of 

epileptic activity is associated with specific patterns of neuron loss and the formation of 

new recurrent excitatory circuits in the dentate gyrus (Dudek and Spitz, 1997; Dudek et 

al., 2002; Nadler, 2003; Dudek and Sutula, 2007). These changes in neural circuitry are 

thought to render the brain more susceptible to abnormal network synchronization and 

seizures after injury.  

 

1.9  Synaptic reorganization of the epileptic dentate gyrus  

 

1.9.1 

 

Mossy fiber sprouting 

Excitatory axon sprouting is a defining feature of the injured dentate gyrus in 

experimental and human TLE. Dentate granule cells, which are not normally 

interconnected, sprout axon collaterals into the inner molecular layer (i.e., mossy fiber 

sprouting), which is normally devoid of mossy fiber terminals (Figure 1.4). These 

dramatic changes in local mossy fiber circuits are relatively easy to detect by Timm’s 

histochemistry and are consistently reproduced in human tissue (de Lanerolle et al., 1989; 

Sutula et al., 1989; Houser et al., 1990; Babb et al., 1991; Zhang and Houser, 1999) and 

experimental models of TLE (Nadler et al., 1980; Ben-Ari et al, 1985; Tauk and Nadler, 

1985; Cronin and Dudek, 1988; Buckmaster et al., 2002; Buckmaster and Dudek 1997b; 

Shibley and Smith, 2002). Quantitative anatomical analyses have provided much 

evidence that sprouted mossy fibers in the inner molecular layer predominantly form new 

synaptic connections with dendrites of nearby granule cells, versus inhibitory 

interneurons (Frotscher and Zimmer, 1983; Okazaki et al., 1995; Zhang and Houser, 

1999; Wenzel et al., 2000; Buckmaster et al., 2002). These new axon collaterals that 

sprout into the inner molecular layer typically remain within the normal septotemporal 

span of granule cell axon collaterals in the hilus, ~600 µm (Buckmaster and Dudek, 

1999).  
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Figure 1.4. Granule cell axons (i.e., mossy fibers) sprout collaterals to dendrites of nearby 

granule cells after epileptogenic insult. A. Photomicrograph of Timm and Nissl staining in a 

horizontal section from a control mouse. B. Photomicrograph of Timm and Nissl staining in a 

horizontal section from a mouse that sustained pilocarpine-induced status epilepticus and 

developed spontaneous seizures. Note the presence of a dense band of Timm staining in the inner 

molecular layer (arrows), which represents mossy fiber axons and terminals. Abreviations: m, 

molecular layer; g, granule cell layer; h, hilus. 

 

Several laboratories have independently demonstrated that functional effects of 

mossy fiber sprouting include the emergence of new recurrent excitatory circuits that are 

not present in the normal dentate gyrus (Cronin et al., 1992; Wuarin and Dudek, 1996; 

2001; Patrylo and Dudek, 1998; Lynch and Sutula, 2000; Winokur et al., 2004). These 

new circuits have been proposed to form the basis from which synchronous network 

activity can periodically arise in the dentate gyrus. Recurrent excitatory circuits are 

normally masked by recurrent inhibitory circuits and can be experimentally revealed by 

altering the extracellular environment to increase excitation (e.g., elevated [K+]o) and/or 

reduce inhibition by blocking GABAA receptors (Wuarin and Dudek, 1996, 2001; Patrylo 

and Dudek, 1998; Lynch and Sutula, 2000; Winokur et al., 2004). When surgically 

isolated from afferent input (i.e., entorhinal cortex) under these conditions, spontaneous 

and evoked reverberating burst discharges, indicative of synchronous network activation, 

are repeatedly observed by single-cell and extracellular field potential recordings from 

granule cells in slices of epileptic rodents with mossy fiber sprouting (Cronin et al., 1992; 

Patrylo and Dudek, 1998; Winokur et al., 2004; Winokur et al., 2003). Studies using dual 

whole-cell patch-clamp recordings and localized glutamate stimulation have suggested 
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monosynaptic granule cell – granule cell connections in slices with mossy fiber sprouting 

that are absent in the normal dentate gyrus (Molner and Nadler, 1999; Wuarin and 

Dudek, 1996; 2001; Lynch and Sutula, 2001; Scharfman et al., 2003). Therefore, mossy 

fiber sprouting may provide a means for granule cell network synchronization that may 

be “unmasked” if inhibitory control is impaired.   

 

1.9.2 

 

Hilar cell loss 

Specific patterns of hilar neuron loss are present in clinical and experimental 

epilepsy. The loss of certain populations of hilar interneurons is also a histopathological 

feature in experimental TBI (Lowenstein et al., 1992; Hall et al., 2005; Santhakumar et 

al., 2000; Grady et al., 2003) and in human posttraumatic epilepsy (Kharatashivilli et al., 

2006; Swartz et al., 2006). However, whether neuron loss is a necessary component of 

acquired epilepsy is controversial (Maglóczky, 2010). Nevertheless, excitatory mossy 

cells and inhibitory interneurons are both vulnerable to cell death (Cavazos et al., 1994; 

Buckmaster and Jongen-Rêlo, 1999; Houser, 1999; Kobayashi and Buckmaster, 2003). 

Status epilepticus and repeated seizures induce mossy cell loss, degeneration of these 

inputs, and the formation of mossy fiber sprouting. Therefore, mossy cell loss has been 

hypothesized to play a major role in triggering abnormal mossy fiber synapse formation 

onto granule cells (Nadler et al., 1980; Cavazos and Sutula 1990; Babb et al., 1991; 

Okazaki et al. 1995; Buckmaster et al., 1996; Nadler, 2003). However, Maglóczky (2010) 

speculated that cell loss is not necessary for excitatory axon sprouting in epilepsy, 

because robust axon sprouting was observed in sclerotic and non-sclerotic resected tissue 

from TLE patients. Additionally, mossy cells can make contacts onto distant GABAergic 

interneurons and have been proposed to drive lateral inhibition (Buckmaster and 

Schwartzkroin, 1994). Their loss may be associated with reduced excitatory input to 

inhibitory interneurons (Sloviter, 1987, 1991, 1994). However, lateral inhibition appears 

to remain intact in the dentate gyrus of rats after pilocarpine-induced TLE (Buckmaster 

and Jongen-Rêlo, 1999).  

While the majority of GAD-positive hilar interneurons are preserved in TLE 

(Babb et al., 1989; Buckmaster and Jongen-Rêlo, 1999), a selective loss of certain 
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populations of GABAergic interneurons is observed in human (Babb et al., 1989; de 

Lanerolle et al., 1989; Cavazos et al., 1994; Mathern et al., 1995; Zhu et al., 1997; 

Houser, 1999; Maglóczky et al., 2000; Andrioli et al., 2007) and experimental (Obenaus 

et al., 1993; Buckmaster and Dudek, 1997; Buckmaster and Jongen-Rêlo, 1999; 

Kobayashi and Buckmaster, 2003; Sun et al., 2007) epilepsy. The pattern and extent of 

hilar GABAergic neuron loss is variable, but fewer somatostatin- and neuropeptide Y-

positive hilar interneurons are the most consistent finding, suggesting a preferential loss 

of HIPP cells.  

 

1.9.3 

 

Alterations in synaptic inhibition associated with epilepsy 

Two main hypotheses have emerged concerning the possible relationship between 

hilar neuron loss and dysfunction of synaptic inhibition in epilepsy. The first hypothesis 

proposes that reduced synaptic inhibition of granule cells is due to excitatory denervation 

of intact inhibitory interneurons, possibly due to the loss of excitatory mossy cells (e.g., 

the “dormant basket cell” hypothesis; Sloviter 1987, 1991, 1994). This hypothesis was 

later revised to propose that excitatory drive to basket cells is restored by mossy fiber 

sprouting weeks later (i.e., at the time of spontaneous seizures) (Sloviter, 2003). 

Therefore, this hypothesis proposes that mossy fiber sprouting has mainly an 

antiepileptogenic effect and predicts that mossy fibers sprout mainly to dentate 

GABAergic interneurons. The main electrophysiological evidence relies on two 

phenomena in an electrical stimulation model. In this model, mossy cells are lost but 

inhibitory basket cells remain intact. Perforant pathway stimulation evokes an increase in 

extracellular excitability of granule cells days after injury, which is interpreted as a 

decrease in synaptic inhibition. Weeks later, enhanced extracellular paired-pulse 

inhibition is observed in the granule cell layer after stimuli applied to the perforant 

pathway, which is interpreted as enhanced synaptic inhibition.  

The “dormant basket cell” hypothesis is controversial, because causal 

relationships between extracellular paired-pulse responses and synaptic inhibition have 

not been established (Bernard et al., 1998). Moreover, sprouted mossy fibers in the 

molecular layer predominantly form new synaptic connections with dendrites of granule 
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cells, not inhibitory interneurons (Frotscher and Zimmer, 1983; Okazaki et al., 1995; 

Zhang and Houser, 1999; Wenzel et al., 2000; Buckmaster et al., 2002). Whole-cell 

patch-clamp recordings from putative GABAergic interneurons also suggest that 

excitatory drive to GABA neurons is reduced in experimental TLE. Doherty and 

Dingledine (2001) showed reduced excitatory drive onto hilar border interneurons after 

pilocarpine-induced status epilepticus. Zhang and Buckmaster (2009) demonstrated that 

basket cells receive less excitatory input 3-7d after pilocarpine-induced status epilepticus, 

and excitatory drive to basket cells remains low for several weeks, after the onset of 

spontaneous seizures. These findings suggest that excitatory denervation of basket cells 

may contribute to reduced inhibitory synaptic drive to granule cells after injury, but it is 

unlikely that mossy fiber sprouting restores excitatory input to these cells.  

The second hypothesis proposes that a reduction in the total number of inhibitory 

interneurons in the dentate gyrus after injury is associated with a net reduction in synaptic 

inhibition of granule cells. This hypothesis is more widely accepted and has yielded more 

consistent results. Loss of hilar GABA neurons is associated with a permanent loss of 

inhibitory synaptic input to granule cells (Kobayashi and Buckmaster, 2003; Shao and 

Dudek, 2005b; Sun et al., 2007; Williamson et al., 1995; 1999). This is consistent with 

fewer synaptic contacts, and it is associated with a reduction in the number of inhibitory 

interneurons (Kobayashi and Buckmaster, 2003). It is important to note that a reduction 

in synaptic inhibition by itself may not be sufficient for network synchronization in the 

dentate gyrus. For example, burst discharges are not observed in control tissue, even in 

the presence of GABAA-receptor antagonists. Moreover, interneuron loss and the 

subsequent reduction in synaptic inhibition occur within the first few days after brain 

insult by pilocarpine treatment (Kobayashi and Buckmaster, 2003; Sun et al., 2007), and 

this finding cannot explain why seizure generation emerges after a latent period of 

several days to weeks.  

 There are “compensatory” mechanisms for GABA cell loss that have emerged, 

providing a more complex understanding of how GABAergic inhibition is altered in 

epilepsy. Surviving hippocampal GABA interneurons have been reported to spout new 

axon collaterals in human and experimental TLE (Babb et al., 1989; Mathern et al., 1995; 

Cossart et al., 2001; Thind et al., 2009; Zhang et al., 2009). Axon sprouting of inhibitory 
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neurons may partially restore inhibitory synaptic input to principal cells, but this may be 

complicated by alterations in synaptic efficacy at GABAergic synapses (Hirsch et al., 

1999; Kobayashi and Buckmaster, 2003; Zhang and Buckmaster, 2009). Increased mossy 

fiber collaterals onto hilar interneurons has been proposed to occur during 

epileptogenesis (Chang and Lowenstein, 2003; Sloviter, 2003), but functional evidence 

for this hypothesis has not been established.  

 

1.10   Animal models of posttraumatic seizures and hyperexcitability 

            

The experimental limitations of human studies make appropriate animal models 

an invaluable tool for identifying basic mechanisms of epileptogenesis after TBI. 

Moreover, experimental models are necessary for developing and testing new treatments 

for PTE. The ideal model is one whereby the behavioral, anatomical, and physiological 

aspects of human PTE are easily and efficiently reproduced. Unfortunately, there are 

relatively few clinically relevant experimental models of PTE (Pitkanen and McIntosh, 

2006).  

 

1.10.1 

 

Fluid percussion injury (FPI) 

The fluid percussion injury (FPI) model has been the best characterized in terms 

of epilepsy after closed-head TBI (Pitkanen and McIntosh, 2006). Injury is delivered 

through a craniotomy by rapid fluid injection which first strikes the intact dura and then 

moves into the epidural space (Lifshitz, 2009). The height at which a pendulum hammer 

is dropped determines the pressure of the fluid pulse transmitted through a fluid-filled 

cylinder. This pressure can be used to estimate injury severity. Injury severities that have 

been investigated with regard to long-term changes in excitability can be categorized into 

two groups: severe injuries, with fluid pressure typically >3 atm; and moderate injuries, 

with impact forces of 2 - 2.2atm. Craniotomies can be applied centrally to the midline to 

produce more diffuse injuries or laterally to produce mixed focal and diffuse injury 

(Lifshitz, 2009; Pitkanen and McIntosh, 2006).  
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Several studies have reported electrographic seizures in rats after severe FPI 

(D’Ambrosio et al., 2004, 2005, 2009; Kharatashivilli et al., 2006). Depth-electrode 

recordings have inferred that seizures are sometimes initiated in hippocampal structures 

(D’Ambrosio et al., 2005; Kharatashivilli et al., 2006). Spontaneous seizures are present 

in 50% of rats by 12 months after severe lateral FPI (Kharatashivilli et al., 2006). In this 

study, rats with posttraumatic seizures after severe injury were accompanied by bilateral 

mossy fiber sprouting and hilar neuron loss. Mossy fiber sprouting and hilar neuron loss 

after FPI is apparently associated with the frequency and extent of electrographic 

abnormalities (Kharatashivilli et al., 2006, 2007). Little to no mossy fiber sprouting is 

detectable at time points less than 6 months post-injury (Kharatashivilli et al., 2006, 

2007). Unfortunately, the functional effects of mild to moderate posttraumatic mossy 

fiber sprouting on network synchrony have not been directly examined. D’Ambrosio and 

colleagues (2004, 2005) reported that 100% of rats develop seizure-like epileptiform 

activity by 9 weeks after severe rostral perisagittal FPI, but tonic-clonic convulsive 

seizures are typically not observed. These electrographic abnormalities were 

accompanied by subtle changes in behavior (e.g., behavioral arrest). However, similar 

electrographic events were observed in nearly 40% of sham-control rats by 21 weeks 

post-injury (D’Ambrosio et al., 2005). It is unclear why control rats had epileptiform 

activity, but this may be due to how a seizure is defined (D’Ambrosio et al., 2009). 

D’Ambrosio et al. (2009) proposed that electrographic abnormalities with ≥ 2 second 

duration are ictal events. This is different from Kharatashivilli et al. (2006) who defined a 

seizure as electrographic events ≥ 5s duration with obvious behavioral abnormalities  

defined by a widely used behavioral scale for rodent seizures (Racine, 1979). 

Spontaneous seizures have not been detected after moderate FPI (Kharatashivilli, 

2007; Echegoyen et al., 2009). However, seizure susceptibility is increased after 

moderate FPI after injection of pentylenetetrazol (PTZ) (Kharatashivilli et al., 2007), 

kainic acid (Echegoyen et al., 2009), and pilocarpine (Gurkoff et al., 2009). Few Timm 

granules are detected in the inner molecular layer months after moderate FPI (Shumate et 

al., 1995; Santhakumar et al., 2001). In the hilus, there are fewer mossy cells (Toth et al., 

1997; Santhakumar et al., 2000) and GABAergic interneurons (Lowenstein et al., 1992; 

Toth et al., 1997; Santhakumar et al., 2000) one-week after moderate FPI. Hilar cell loss 
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is accompanied by reduced mIPSCs in granule cells (Toth et al., 1997; Witgen et al., 

2005). Lowenstein et al. (1992) reported an injury severity-specific increase in the 

number of population spikes evoked in the granule cell layer by high frequency perforant 

path stimulation one-week post-FPI in vivo. Abnormal electrophysiological responses 

were associated with the degree of hilar neuron loss and were interpreted as evidence for 

an early reduction in synaptic inhibition after FPI. The reduction in hilar interneurons 

persists for at least 5 months (Toth et al., 1997), but long term changes in inhibitory 

synaptic input to granule cells after TBI have not been established.  

 There are several benefits and limitations to using FPI to model PTE. The injury 

produced by this model reflects both focal and diffuse pathologies, which is common to 

human TBI (Graham et al., 2006; Pitkanen and McIntosh, 2006). However, FPI has a 

large diffuse injury component, especially at more moderate injury severities. Seizures 

and mossy fiber sprouting presumably only develop in 50% of rats after lateral FPI of 

sufficient severity to produce 30-40% mortality (>3atm). Mortality after severe FPI has 

been attributed to disproportionate injury to the brainstem (Shima and Marmarou, 1991). 

Moreover, seizures do not develop in significant numbers of rats until 7-12 months after 

severe injury. This makes long-term studies unrealistic. Brain injury produced by FPI can 

be variable due to fluid dispersion through the epidural space. A relatively long latency to 

seizure onset and epileptic pathology combined with high injury mortality and variability 

makes studies of PTE in this model labor-intensive.  

 

1.10.2 

 

Weight drop 

The weight drop model, also referred to as the impact-acceleration model, has 

been examined as a model of posttraumatic hyperexcitability (Golarai et al., 2001). 

Trauma is delivered to the neocortex by dropping a large blunt weight through a tube to 

impact the skull. Injury severity is managed by adjusting the height at which the weight is 

dropped (Marmarou et al., 2009). This injury produces large and extensive damage to 

cortical and subcortical structures, including the dentate gyrus and hippocampus (Golarai 

et al., 2001). Seizures have not been reported in this model. However, increased seizure 

susceptibility to PTZ is observed 15 weeks after injury (Golarai et al., 2001). Bilateral 
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mossy fiber sprouting develops by 16 weeks post-injury (Golarai et al., 2001). While the 

presence of mossy fiber sprouting is associated with lowered seizure threshold, whether 

the increase in seizure susceptibility is associated with sprouting is unclear. The lack of 

demonstrated spontaneous seizures after weight drop is an obvious limiting factor in 

using this injury to model PTE. There are several other limitations and complications. 

Impact is delivered to the intact skull, not directly to the brain via craniotomy as in FPI. 

Therefore, there is an increased risk for skull fracture, and injury dynamics can depend 

somewhat on skull thickness (Marmarou et al., 2009). By using gravitational forces to 

produce head injury, there can also be a risk for secondary “rebound” injury. Weight drop 

injury can also be difficult to perform on mice, limiting the use of transgenic animals and 

genetic manipulation with this model (Marmarou et al., 2009).  

 

1.10.3 

 

Controlled cortical impact (CCI) injury  

Controlled cortical impact (CCI) injury is a widely used experimental model of 

closed-head injury that has not yet been identified as a model of injury-induced epilepsy. 

First developed by Lighthall (1988), this model often utilizes an electronically controlled 

pneumatic impactor to apply a focal contusion injury to the brain surface through a 

craniotomy (Dixon et al., 1991; Scheff et al., 1997; Hall et al., 2005, 2008; Saatman et 

al., 2006; Dixon and Kline, 2009; Figure 1.5). Injury severity is managed by adjusting the 

depth of tissue compression. This model is unique, because it allows for good control 

over biomechanical parameters such as force, velocity, duration, and depth of 

deformation. This allows for a consistent and reproducible focal injury with minimized 

risk for inaccuracy or secondary “rebound” injury. Moreover, several risk factors for PTE 

are modeled by CCI injury including intraparenchymal hemorrhage accompanied by 

epidural and subdural hematomas (Lighthall, 1988; Dixon, 1991); cell loss in the 

neocortex, hippocampus, and dentate gyrus (Goodman et al., 1994; Smith et al., 1995; 

Fox et al., 1998; Anderson et al., 2005; Hall et al., 2005, 2008); neurogenesis in the 

dentate gyrus (Rola et al., 2006); and increases in morphologically identified synapses in 

the hippocampus (Scheff et al., 2005). Interestingly, early seizures within 24h have 

sometimes been reported in this model (Nilsson et al., 2004; Kochanek et al., 2006). 
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However, no data currently exists regarding chronic changes in excitability within the 

dentate gyrus after CCI.  

 

Figure 1.5. CCI injury produces a unilateral cortical contusion over the left somatosensory 

cortex. A. Illustration of CCI injury device. Insets show relative impact location (red circle and 

arrows). B. Shown are brains of two mice 9 weeks post-TBI that received severe cortical 

contusion injuries. 

 

1.11  Study aims and significance  

 

The overall objectives of the present work were: 1) adapt an experimental model 

of TBI as an experimental model of PTE, and 2) investigate chronic alterations in 

synaptic circuitry in the dentate gyrus that may contribute to the generation of epileptic 

activity after closed-head TBI. The CCI injury model was selected for use, because it has 

not yet been adapted as an experimental model of PTE (Pitkänen and McIntosh, 2006), it 

reproduces many risk factors for epilepsy after closed-head injury, and it is a commonly 

used experimental model of cortical contusion TBI (Dixon and Kline, 2009). 

Synaptic network changes leading to PTE likely involve modifications to 

excitatory and inhibitory circuitries. Mossy fiber sprouting and dysfunction of synaptic 

inhibition are defining characteristics of the injured dentate gyurs in TLE. Previous 

reports in clinical (Swartz et al., 2006) and experimental (Kharatashivilli et al., 2006) 

PTE suggest that these features are also likely relevant markers of TBI-induced epilepsy. 
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Extracellular field and whole-cell patch-clamp electrophysiology in acute brain slices 

provide a simple but relatively direct approach to investigating neuronal activity and 

network synchronization after TBI. These techniques also allow for comparisons to be 

made with the abundant literature describing altereations in excitatory and inhibitory 

circuits in the dentate gyrus of models of pharmacologically- or electrically-induced TLE. 

Therefore, emphasis is placed on using these techniques in the dentate gyrus after CCI 

injury in mice.  

 

The following specific aims were addressed:  

1. Determine whether injured mice develop posttraumatic seizures. The presence of 

spontaneous seizures is a fundamental characteristic of any experimental epilepsy model. 

Seizures were detected in mice by periodic behavioral monitoring after CCI.  

 

2. Determine whether mossy fiber sprouting develops after cortical contusion injury. 

Mossy fiber sprouting is a well-described characteristic of the injured dentate gyrus, and 

it is a marker of the reactive plasticity of excitatory circuits in epilepsy. Timm’s staining 

was performed in brain sections of injured and control animals to visualize zinc 

containing mossy fibers.  

 

3. Evaluate whether mossy fiber sprouting is associated with increased neuronal 

activity and the formation of a new recurrent excitatory circuit. Formation of new 

functional recurrent excitatory circuits – which form the basis from which synchronous 

neuronal discharges arise – have not been demonstrated after TBI. Whole-cell patch-

clamp and extracellular field recordings of dentate granule cells were performed to 

investigate whether posttraumatic mossy fiber sprouting is associated with increased and 

synchronous granule cell activity after TBI.  

 

4. Determine whether excitability of surviving GABAergic interneurons is altered. 

Increased excitatory innervation of hilar GABAergic neurons is a proposed compensatory 

mechanism to enhance synaptic inhibition in epilepsy (Chang and Lowenstein, 2003; 

Sloviter, 2003), but evidence for this hypothesis is lacking. Therefore, whole-cell patch-
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clamp recordings of visually identified hilar GABAergic cells were performed to 

determine whether excitatory drive to these neurons was enhanced after TBI.  

 

5. Determine whether a change in synaptic inhibition can be detected in the dentate 

gyrus after TBI. Alterations in synaptic inhibition may have critical implications in the 

regulation of excitatory networks after TBI. Moreover, whether synaptic inhibition is 

reduced or enhanced in PTE remains to be established. Whole-cell patch-clamp 

recordings were performed in granule cells to examine whether synaptic inhibition is 

altered in the injured dentate gyrus after TBI.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Robert F. Hunt, III 2010 
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Chapter 2 

Materials and methods 

 

Animals. Six to ten week old adult male CD-1 (Harlan) or GIN (eGFP-expressing 

Inhibitory Neurons; FVB-Tg(GadGFP)4570Swn/J; The Jackson Laboratory; Oliva et al., 

2000) mice weighing 28-35g were housed under a normal 12h/12h light/dark cycle. 

Water and food were available ad libitum. Mice were housed for a minimum of 7d prior 

to experimentation, and all procedures were first approved by the University of Kentucky 

Animal Care and Use Committee and adhered to NIH guidelines for the care and use of 

laboratory animals. All experiments were performed on mice 6-13 weeks post-injury. 

 

Head injury. Young-adult mice were subjected to a unilateral cortical contusion by CCI 

injury as previously described (Scheff et al., 1997). Mice were anesthetized by 2% 

isoflurane inhalation and placed in a stereotaxic frame. The skull was exposed by a 

midline incision, and a 4-5mm craniotomy was made lateral to the sagittal suture and 

centered between bregma and lambda. The skull cap was removed without damage to the 

exposed underlying dura. The contusion device consisted of an electronically controlled, 

pneumatically driven impactor fitted with a beveled stainless steel tip 3mm in diameter 

(Precision Systems and Instrumentation, Fairfax, VA). Brain injury was delivered using 

this device to compress the cortex to a depth of 0.5mm (mild injury) or 1.0mm (severe 

injury) at a velocity of 3.5m/sec and 400-500ms duration. The hemostatic agent Surgicel 

(Johnson & Johnson, Arlington, TX) was placed over the dura after injury, the incision 

sutured, and the animal was allowed to recover.  

 

Seizure monitoring. Injured animals were monitored for immediate seizures (i.e., injury-

induced) and spontaneous seizures. Observation periods occurred during the light phase 

of the light/dark cycle, and seizures were rated from 1 to 5, with 5 being the most severe, 

according to a modified Racine rating scale (Racine, 1972; Shibley and Smith, 2002; 

Figure 2.1). Posttraumatic seizures were classified based on the time post-injury in which 

they occurred: immediate, first 90 minute monitoring session; early, 1 - 7d post-injury; 

and late, > 7d after injury.   
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Figure 2.1. Modified racine rating scale classification of behavioral seizures (Racine, 1979). 

A. Seizure category scale and definitions for each seizure category. B. Seizure classification 

scheme. C. Representative examples for each seizure category are shown in the same mouse after 

pilocarpine-injection. 

 

Slice preparation. Mice were deeply anesthetized by isoflurane inhalation and 

decapitated. The brain was removed and stored for < 1 min in ice-cold (2-4oC) 

oxygenated artificial cerebrospinal fluid (ACSF) containing in mM: 124 NaCl, 3 KCl, 1.3 

CaCl2, 26 NaHCO3, 1.3 MgCl2, 1.4 NaH2PO4 and equilibrated with 95% O2-5% CO2 (pH 

7.2-7.4). Brains were blocked, glued to a sectioning stage, and 400 μm-thick horizontal or 

coronal slices were cut in cold, oxygenated ACSF using a vibrating microtome 

(Vibratome Series 1000; Technical Products International, St. Louis, MO). The 

hippocampus was isolated from surrounding tissue, making sure to completely remove 

the entorhinal cortex. The order of slices was maintained so that the location along the 

septotemporal axis of each hippocampi was known. 
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Whole-cell patch-clamp electrophysiology. After an equilibration period of at least 1h, 

slices were transferred to a recording chamber on an upright, fixed-stage microscope 

equipped with infrared differential interference contrast (Olympus BX50WI). Recordings 

were performed on granule cells and hilar eGFP neurons identified by fluorescent 

illumination. Patch pipettes were pulled from borosilicate glass (1.65 mm outer diameter 

and 0.45 mm wall thickness, Garner Glass Co., Claremont, CA) with a P-87 puller (Sutter 

Instruments). The intracellular solution contained (in mM): 130–140 K+ or Cs2+ 

gluconate, 1 NaCl, 5 EGTA, 10 HEPES, 1 MgCl2, 1 CaCl2, 3 KOH or CsOH, 2 ATP, and 

0.2% biocytin (pH 7.15 – 7.3). QX-314 bromide (5mM) was added to the intracellular 

solution for electrical stimulation recordings. Open tip resistance was 2-7 M . 

Recordings were obtained with an Axopatch 200B or Multiclamp 700B amplifier (Axon 

Instruments, Foster City, CA), low-pass filtered at 2-5 kHz, and digitized at 88 kHz 

(Neuro-corder; Cygnus Technology, Delaware Water Gap, PA). Cell attached recordings 

of spontaneous action potentials were recorded in voltage-clamp mode at -60mV. For 

whole-cell patch-clamp recordings, cells were first voltage-clamped for ~5 min at -60 or -

70mV (i.e., near resting membrane potential) to allow equilibration of intracellular and 

recording pipette contents. Resting membrane potentials were determined by removing 

the voltage clamp. Spontaneous-, miniature-, and evoked- excitatory postsynaptic 

currents (s-, m-, and eEPSCs) were examined at a holding potential of -60 mV (inhibitory 

interneurons) or -70 mV (granule cells), and inhibitory postsynaptic currents (s-, m-, and 

eIPSCs) were examined at a holding potential of 0 mV. Current-clamp (i.e., voltage) 

recordings were performed at resting membrane potential (I= 0pA). Series resistance was 

monitored throughout the recordings, and data was only used for analysis if the series 

resistance remained less than 25 M  and ≤ 20% change during the recordings. 

 

Glutamate photostimulation. Slices were perfused with γ-(carboxy-2-nitrobenzyl) ester, 

trifluoroacetic acid salt (i.e., CNB-caged glutamate, 250μM; Molecular Probes, Eugene, 

OR) added to recirculating ACSF or Mg2+-free ACSF and 100μM picrotoxin (PTX). 

Brief pulses of fluorescent light (30ms exposure, UV filter, Chroma Technology, 

Rockingham, VT) were directed into the slice through the 40x objective used to obtain 

recordings. The objective was initially positioned to “uncage” glutamate directly over the 
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recorded cell. This resulted in a large inward current in voltage-clamp with superimposed 

sodium spikes or a large depolarization in current clamp with superimposed action 

potentials. The objective was then moved away from the recorded cell by manually 

moving the microscope until a direct inward current after stimulation was no longer 

observed. This effective diameter of stimulation (~100 µm) was set by apertures in the 

light path. Photostimulations were applied along the entire extent of the granule cell layer 

and in the hilus/CA3 region. A series of at least five stimuli were applied per stimulation 

location at 0.1Hz stimulation frequency.  

 

Extracellular field potential recordings. Field potential recordings were obtained from 

the granule cell layer in the dentate gyrus 42-71d post-CCI. For electrophysiological 

recording, slices were placed in recording chambers that allowed positioning of both 

stimulating and recording electrodes, and perfused with oxygenated ACSF. Slices were 

visualized under an upright microscope (Olympus Bx-51W1) for electrode placement. 

Extracellular recording electrodes were filled with 1M NaCl and placed near the apex of 

the granule cell layer for recordings. A concentric bipolar stimulating electrode made of 

platinum-iridium wire (125 μm diameter; FHC, Inc, Bowdoinham, ME) was used to 

apply stimuli to fiber pathways at 0.1Hz. Stimulus intensity was adjusted to produce a 

population spike of ~50% of maximum amplitude. For antidromic stimulation 

experiments, a single stimulus was delivered to the hilus. For orthodromic activation 

experiments, pairs of stimuli were delivered to the perforant path at interpulse intervals 

(IPI) of 20, 40, 80, and 160ms respectively and the ratio of the second population spike to 

the first (PS2/PS1) was calculated. An increase in the paired pulse ratio (PPR) of 

PS2/PS1 in slices from injury versus control groups was interpreted as a reduction in 

synaptic inhibition, and a reduction in the PPR was interpreted as an increase in synaptic 

inhibition (Reeves et al., 1997). Electrical signals were recorded using an Axopatch 200B 

amplifier (Axon Instruments), low-pass filtered at 2-5 kHz, digitized at 88 kHz 

(Neurocorder), stored on videotape, and analyzed on a PC computer using pClamp 

programs (Axon Instruments). In some experiments, slices were perfused with Mg2+-free 

ACSF containing picrotoxin (100µM) to block GABAA-receptor mediated recurrent 

inhibition and unmask NMDA-receptor mediated excitatory synapses at resting 
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membrane potential (Smith and Dudek 2001, 2002; Lynch and Sutula, 2000; Winokur et 

al., 2004).   

 

Electrical stimulation. A concentric bipolar stimulating electrode made of platinum–

iridium wire (125 μm diameter; FHC, Inc., Bowdoinham, ME) was used to apply paired 

stimuli to the hilus. Stimulus intensity was adjusted to produce an eIPSC at 50% of 

maximum amplitude. Pairs of stimuli were delivered to the perforant path at pairing 

intervals of 30, 60, 90, 120 and 200 ms. Eight to 10 consecutive recordings were made at 

0.1Hz for each pairing frequency, averaged, and the ratio of the second eIPSC to the first 

(eIPSC2/eIPSC1) was calculated to establish the PPR.  

 

Pharmacology. The following agents were added to the ACSF for some experiments: 

bicuculline methiodide (BMI; 30-100 µM), picrotoxin (PTX; 100 µM), kynurenic acid (1 

mM), (2R)-amino-5-phosphonovaleric acid (APV; 50 µM), tetrodotoxin (TTX; 2 µM). 

 

Timm’s histochemistry. Hippocampal slices were placed in 0.37% sodium sulfide solution 

in 0.1M NaHPO4 for 20 min, followed by 4% paraformaldehyde in 0.15M phosphate 

buffer overnight to fix the slices. Slices were then rinsed three times with phosphate 

buffered saline (PBS; 0.01 M; pH 7.4) and placed in a 30% sucrose solution in PBS 

overnight or until they sank for cryoprotection. The slices were sectioned at 20μm on a 

cryostat, rinsed, mounted on charged slides (Superfrost Plus; Fisher Scientific), and dried 

overnight. Sections were treated according to previous protocols using Timm’s stain to 

reveal mossy fibers and Nissl counterstained by cresyl violet to visualize cell bodies 

(Tauck and Nadler, 1985; Shibley and Smith, 2002). To quantify the regional distribution 

of mossy fiber sprouting after CCI, sections from the ipsilateral and contralateral 

hemispheres were examined by an investigator who was blind to the electrophysiological 

outcomes. Scores for sprouting were assigned based on the following scale of Tauck and 

Nadler (1985): 0, little to no Timm granules in the granule cell layer; 1, mild staining in 

the granule cell layer with occasional puncta the inner molecular layer; 2, moderate 

continuous staining through the granule cell layer with discontinuous, punctuate staining 

in the inner molecular layer; and 3, continuous band of dense staining throughout the 
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inner molecular layer. At least three sections from each slice were examined and the 

median score reported if variability between sections existed. If Timm’s staining between 

the blades of the granule cell layer was variable, an averaged score was used (e.g., if the 

lower blade had a score of 1 while the upper blade had a score of 2, the slice would be 

given an overall grade of 1.5). Timm scores were assigned based on the region of the 

granule cell layer in which recorded cells were obtained (i.e., inner blade, apex, or outer 

blade) in Chapter 3, because Timm’s staining between the blades of the granule cell layer 

was almost always asymmetric. Timm scores >1 were considered to reflect an abnormal 

degree of mossy fiber sprouting as previously described (Patrylo and Dudek, 1998; 

Shibley and Smith, 2002). The degree of structural damage to the dentate gyrus was 

analyzed at the injury site in the same Timm scored sections by switching the filter from 

bright field to fluorescence. Cresyl violet is a red fluorescent under a TRITC filter as 

previously described (Alvarez-Buylla et al., 1990). 

 

Biocytin labeling. Prior to cryoprotection, slices in which a recording from an eGFP 

neuron was obtained were examined for biocytin labeling and eGFP content. Slices were 

immersed in avidin conjugated to Texas Red (1:400; Vector Laboratories, Burlingame, 

CA) in PBS containing 0.5% Triton X-100 and incubated for 3 to 4h at room temperature 

to identify biocytin-filled neurons and confirm the location of the recorded cell. Slices 

were then rinsed three times with PBS, mounted on slides, covered with Vectashield 

containing DAPI (Vector Laboratories), and cover-slipped. Images were taken with an 

Olympus BX40 microscope and captured with a Spot RT camera (Diagnostic 

Instruments). Slices were then washed in PBS, placed in 30% sucrose solution, and Timm 

and Nissl stained.  

 

Data analysis and statistics. Data analysis was performed using pClamp 10.2 (Clampfit, 

Axon Instruments), MiniAnalysis 6.0 (Synaptosoft, Leonia, NJ), Instat (GraphPad 

software, San Diego, CA), and IBM SPSS Statistics 18 (SPSS Inc., Chicago, Il) 

programs. A two minute sample recording per cell was used for measuring synaptic event 

frequency, amplitude, and kinetics. Events characterized by a typical fast rising phase and 

exponential decay phase were manually detected using MiniAnalysis, and only currents 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Alvarez-Buylla%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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with amplitudes greater than three times the root mean square (RMS) noise level were 

included for analysis. Event frequency, mean amplitude, and kinetics were averaged 

across neurons (i.e., n= neurons) and groups were compared by one-way ANOVA 

followed by a Tukey’s post hoc test or two-tailed t-test. Paired-pulse responses were 

analyzed by two-way (treatment group x pairing interval) repeated measures (pairing 

interval) ANOVA. For photostimulation experiments, EPSC frequency was analyzed 

every 100ms for 500ms prior to and after each stimulation trial and averaged for each 

stimulation site (i.e., n= stimulation sites). A response at a given location was considered 

to be positive (i.e., a local synaptic connection was evoked) if the number of EPSCs in at 

least one of the first three 100ms segments after stimulation was greater than the mean 

number of events per 100ms prior to stimulation + 3SD and a response was observed in 

at least 3 of 5 trials time locked to the stimulus, demonstrating that the response was 

repeatable. Direct photostimulation responses (i.e., due to postsynaptic activation of the 

recorded neuron) could be easily distinguished from synaptic responses based on a lack 

of onset latency and slower rise time, and they were revealed by addition of 2µM TTX 

(see Chapter 5, Figure 5), which blocked evoked synaptic events but not direct currents 

(Callaway and Katz, 1993; Dantzker and Callaway, 2000; Waurin and Dudek, 2001). All 

stimulation sites in which the selection criteria were not met were considered to have a 

negative response. The number of eEPSCs for each stimulation site was calculated by 

subtracting the number of EPSCs in the first 300ms before stimulation from the number 

of EPSCs in the first 300ms after stimulation. This relatively short time window was 

chosen to limit confounding effects of polysynaptic activation, because field potential 

bursts indicative of recurrent excitatory connections between granule cells occur within 

the first 300ms after an initial antidromically evoked population spike (see Chapter 2), 

and because granule cells remain depolarized and fire most of their action potentials 

during this timeframe using identical photostimulation parameters (see Chapter 3). To 

analyze differences in evoked activity after glutamate stimulation, data from control and 

contralateral slices, which acted as an internal control, were combined and compared to 

responses ipsilateral to the injury by two-tailed Fisher’s exact test or Mann-Whitney U. 

Data are expressed as mean ± SD unless otherwise stated, and significance was set at P < 

0.05.  



37 
 

Any variation to these methods is described in an additional methods section for the 

chapter in which they pertain.  
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Chapter 3 

Posttraumatic epilepsy after controlled cortical impact injury in mice 

 

This chapter was published in Exp Neurol. Feb 2009; 215 (2):243-45.  

 

3.1  Introduction 

 

 TBI is often accompanied by the delayed development of PTE (Caveness et al., 

1979; Annegers et al., 1998; Englander et al., 2003), and PTE is manifested as TLE in as 

many as 62% of trauma patients (Diaz-Arrastia et al., 2000; Hudak et al., 2004). 

However, prophylactic treatment for PTE has been largely unsuccessful and patients 

often do not qualify for surgery (Temkin et al., 1998, 2001). Thus, a clinical association 

between TBI and epilepsy is well documented, but the cellular and molecular 

mechanisms by which trauma leads to the development of seizures remain poorly 

understood.  

 The dentate gyrus has long been regarded as a model system for studying 

alterations in synaptic circuitry associated with TLE (Tauck and Nadler, 1985; Sutula et 

al, 1989; Waurin and Dudek, 1996; Buckmaster et al., 2002; Shibley and Smith, 2002). 

Experimental animal models and human TLE are characterized by hippocampal cell loss 

and mossy fiber sprouting in the dentate gyrus (Ben-Ari et al., 1985; Tauck and Nadler, 

1985; Buckmaster et al., 2002; Shibley and Smith, 2002; Winokur et al., 2004; Jiao and 

Nadler, 2007). New recurrent excitatory circuits emerge after mossy fiber sprouting, and 

these changes are accompanied by increased excitability of the dentate gyrus and other 

limbic regions (Cronin and Dudek, 1988; Wuarin and Dudek, 1996, 2001; Smith and 

Dudek, 2001; Winokur et al., 2004). However, responses in TLE models may not reflect 

more subtle changes seen in human PTE. For example, status epilepticus induced by 

systemic administration of kainic acid or pilocarpine in rodents results in bilateral mossy 

fiber sprouting that is often much more robust than in hippocampi from surgical patients. 

Identifying experimental models of TBI that also display the pathophysiology of human 

TLE is necessary for understanding fundamental aspects of injury-induced 

epileptogenesis.  
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 Several rodent models of TBI exist, but most are used to study acute or cognitive 

effects of brain injury and few have been adapted as animal models of TLE. Of these 

models, fluid percussion injury (FPI) and weight drop have been the most widely 

investigated as models of posttraumatic hyperexcitability. Studies performed in rats have 

suggested model-specific changes in seizure susceptibility, mossy fiber organization, and 

excitability after head injury that may also be related to injury severity and location 

(Golarai et al., 2001; Santhakumar et al., 2001; D’Ambrosio et al., 2004, 2005; 

Kharatishvili et al., 2006; Griesemer and Mautes, 2007). Controlled cortical impact (CCI) 

is a widely used experimental model of closed head injury that has not yet been identified 

as a model of injury-induced TLE. Several risk factors for epilepsy after trauma are 

modeled by lateral CCI including intraparenchymal hemorrhage accompanied by epidural 

and subdural hematomas (Lighthall, 1988; Dixon, 1991); cell loss in the neocortex, 

hippocampus, and dentate gyrus (Goodman et al., 1994; Smith et al., 1995; Fox et al., 

1998; Anderson et al., 2005; Hall et al., 2005); neurogenesis in the dentate gyrus (Rola et 

al., 2006); and increases in morphologically identified synapses in the hippocampus 

(Scheff et al., 2005). Interestingly, early seizures within 24h have sometimes been 

reported in this model (Nilsson et al., 2004; Kochanek et al., 2006). However, no data 

currently exists regarding chronic changes in excitability within the dentate gyrus after 

CCI.  

 In this chapter, the hypothesis that CCI can induce TLE and synaptic 

reorganization in the dentate gyrus in mice was tested. Specifically, I focused on three 

main questions: (1) Do mice develop spontaneous seizures; (2) does injury induce mossy 

fiber sprouting; and (3) are there long-term changes in excitability in the dentate gyrus 

after CCI injury? 
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3.2  Methods 

 

Seizure assessment. Control and injured animals were monitored for seizures during 11 

random 1–2h intervals beginning 42 days post injury until the day of experimentation (by 

71d). Five to eight mice were monitored per session for a total of 18h. Each observation 

period included ~50% of mice from both mild and severe injury groups. Observation 

periods occurred during the light phase of the light/dark cycle, and seizures were rated 

from 1 to 5, with 5 being the most severe, according to a modified Racine scale as 

previously described (Racine, 1972; Shibley and Smith, 2002; see Chapter 2). To 

minimize subjectivity in seizure assessment, category one seizures (i.e. facial 

automatisms, increased grooming behaviors) were excluded since abnormalities of these 

behaviors are often difficult to distinguish.  

 

Histology. At least three sections from each slice were examined and the median score 

reported if variability between sections existed. If Timm’s staining between the blades of 

the granule cell layer was variable, an averaged score was used (e.g., if the lower blade 

had a score of 1 while the upper blade had a score of 2, the slice would be given an 

overall grade of 1.5). Timm scores >1 were considered to have an abnormal degree of 

mossy fiber sprouting (Patrylo and Dudek, 1998; Shibley and Smith, 2002).  

 

Data analysis. Numerical data are presented as the mean ± S.E.M. Timm scores are 

represented as relative ranges. The nonparametric Kruskal-Wallis test with Dunn post hoc 

was used to analyze for differences between groups of Timm scores.   
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3.3  Results 

 

Mice were subjected to either mild (0.5mm injury depth; n= 10) or severe (1.0mm 

injury depth; n= 24) CCI injury and compared to age-matched controls (n=5). Cortical 

contusion produced a consistent and reproducible focal lesion in the ipsilateral 

somatosensory cortex (Figure 1A). This cortical site underwent substantial cell loss, as 

described in detail previously (Tang et al., 2002; Hall et al., 2005; Saatman et al., 2006). 

All injured mice survived and remained otherwise healthy until the day of 

experimentation (Table 3.1). 

 

Table 3.1 

 
 

3.3.1 

 

Spontaneous seizures  

Early posttraumatic seizures within 24h after head-injury and acute increase of 

interstitial glutamate have previously been reported after CCI (Nilsson et al., 1994; 

Kochanek et al., 2006). However, delayed spontaneous seizures after CCI have not been 

described. Mice were passively monitored for spontaneous seizures beginning 42d post-

CCI until the day of experimentation (see Methods). Category 2 generalized seizures that 

included tail and neck stiffness, head nodding, and freezing up to 90s or longer were 

observed in 20% (n= 2 of 10) of mice that received mild injury and 36% (n= 4 of 11) of 

mice that received severe injury (Table 3.1). Spontaneous tonic-clonic seizures that 

included single forelimb myoclonus (category 3) were also observed in two of 11 mice 

(18%) that sustained a severe injury.  
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3.3.2 

 

Posttraumatic mossy fiber sprouting 

Unprovoked generalized seizures after experimental brain trauma indicate limbic 

involvement (D’Ambrosio et al. 2005; Kharatishvili et al., 2006) and are associated with 

mossy fiber sprouting in murine models of TLE (Shibley and Smith, 2002). Timm’s 

staining was performed on horizontal sections 7d and 42-71d after CCI to compare mossy 

fiber organization in septal and temporal hippocampal sections contralateral and 

ipsilateral to the lesion (see Methods).  None of the 14 septal or temporal sections from 5 

control animals contained abnormal mossy fiber organization (i.e. all Timm scores were 

< 1; Figure 3.1B, E). A Kruskal-Wallis test did not indicate a significant difference in 

Timm score distributions between groups at 7d after severe injury (n= 6 animals) in either 

septal (H(2, 29) = 5.262, P > 0.05) or temporal (H(2, 29) = 0.954, P > 0.05) dentate gyrus 

(Figure 3.2A, B). However, two of the 6 mice (33%) examined had aberrant mossy fiber 

sprouting (i.e. Timm scores > 1) in septal sections of the dentate gyrus ipsilateral to the 

injury after 7d. Mossy fiber sprouting was not observed in temporal sections or the 

contralateral hemisphere.  

A Kruskal-Wallis test demonstrated a significant difference in Timm score ranges 

between groups 42-71d after severe injury in both the septal (H(2, 52) = 23.453, P < 

0.0001) and temporal (H(2, 52) = 8.675, P < 0.01) dentate gyrus (Figure 3.2 C, D). A 

Dunn’s post hoc test demonstrated that Timm scores for ipsilateral slices were 

statistically different from controls at both septal and temporal locations (p<0.001). Of 18 

mice, 10 (55%) contained mossy fiber sprouting in more septal sections (i.e. Timm score 

>1; Figure 3.1D, G), and in two mice (11%) the sprouting was also observed in the 

temporal dentate gyrus. Only one mouse (6%) had a Timm score >1 in contralateral 

dentate gyrus 42-71d post-injury (Figure 3.1 E, F). A small but significant difference in 

Timm score ranges was also found 42-71d after mild injury in septal (H(2, 36) = 6.415, P < 

0.05) and temporal (H(2, 37) = 7.035, P < 0.05) locations (Figure 3.2 D, E). However, a 

Dunn’s post hoc test failed to find significant differences between groups. One mouse 

(10%) that received mild injury had moderate mossy fiber sprouting in the septal dentate 

gyrus, and one mouse (10%) contained moderate sprouting in the temporal dentate gyurs. 

None of these 10 mice were found to have abnormal mossy fiber organization in the 
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contralateral hemisphere. The two mice that sustained severe injury and were observed to 

have spontaneous convulsive seizures also displayed robust mossy fiber sprouting (i.e. 

Timm scores > 2.0) in the ipsilateral dentate gyrus after CCI. In all cases, the degree of 

sprouting decreased with temporal progression along the hippocampal axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Reorganization of mossy fiber projections after severe injury. A. Representative 

Timm and Nissl counter-stained coronal section (~Bregma -2.0mm) from a mouse after severe 

controlled cortical impact TBI. B. Timm and Nissl stained horizontal section from a control 

mouse. C. Timm and nissl stained section from the contralateral hemisphere of an injured mouse 

42d post CCI. D. Staining in the septal dentate gyrus ipsilateral to the lesion revealed mossy fiber 

sprouting into the inner molecular layer (arrows) at the same septotemporal level and in the same 

mouse as in C. E-G. Higher power images of B-D. Scale bars: 500µm in A, 100µm in B-D, 

25µm E-G.  
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Figure 3.2. Mossy fiber sprouting progresses with time after CCI injury. Sprouting was 

typically confined to the septal dentate gyrus of the ipsilateral hemisphere. Timm score ranges are 

given for three groups (controls, injured ipsilateral hemisphere, and injured contralateral 

hemisphere) from septal (A) and temporal (B) dentate gyrus 7d after severe injury, septal (C) and 

temporal (D) dentate gyrus 42-71d after severe injury, and septal (D) and temporal (E) dentate 

gyrus 42-71d after mild injury.  
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3.3.3 

 

In vitro electrophysiology 

Responses to paired-pulse stimulation  

 

Extracellular field recordings of perforant path input to dentate granule cells were 

used to assess the strength of synaptic inhibition in the dentate gyrus 42-71d after CCI.  

Paired electrical stimuli were delivered to the perforant path at pairing intervals of 20, 40, 

80, and 160ms. The strength of inhibition was determined by measuring PPR - the 

amplitude of the second population spike as a percentage of the first (PS2/PS1) - of four 

experimental groups (septal and temporal slices of the dentate gyrus, ispilateral and 

contralateral to the lesion) after mild and severe injury compared to similarly located 

slices from controls. Responses in 14 hippocampal slices from 5 control animals revealed 

facilitation of the second population spike at all intervals (Figure 3.3); a t-test confirmed 

no significant difference between septal-most and temporal slices from controls and the 

data were therefore combined for analysis. A one-way ANOVA demonstrated no 

significant change in PPR between the groups at any of the tested IPIs after either mild 

(F(4, 59) = 0.39, P>0.05, 20ms; F(4,57) = 0.89, P>0.05, 40ms; F(4,65) = 1.04, P>0.05, 80ms; 

F(4,56) = 0.64, P>0.05, 160ms) or severe (F(4, 50) = 0.66, P>0.05, 20ms; F(4,48) = 1.00, 

P>0.05, 40ms; F(4,64) = 1.71, P>0.05, 80ms; F(4,47) = 2.36, P>0.05, 160ms) CCI injury.  No 

change in PPR was detected by selecting for injury only. 

However, to determine whether granule cell responses were selectively altered in 

slices with mossy fiber sprouting, I further analyzed the PPR in slices of four different 

groups: (1) ipsilateral dentate gyrus with Timm scores ≥ 1.5 (n=15 slices); (2) ipsilateral 

dentate gyrus with Timm scores ≤1 (n=42 slices); (3) contralateral dentate gyrus (Timm 

scores ≤ 1; n=46 slices); and (4) control dentate gyrus (Timm s cores < 1). A one-way 

ANOVA demonstrated a significant difference in PPR between groups at early IPIs of 

20ms and 40ms (F(3, 95) = 4.13, P<0.01, 20ms; F(3, 93) = 2.74, P<0.05, 40ms) but not at 

80ms or 160ms (F(3. 118) = 1.34, P>0.5, 80ms; F(3, 92)= 0.67, P>0.05, 160ms). Post hoc 

comparisons revealed that PPR was significantly reduced by 47% at the 20ms interval 

and 59% at the 40ms interval in ipsilateral slices that had mossy fiber sprouting (P<0.01), 

suggesting an increase in the strength of inhibition (Figure 3.3A, B). Interestingly, PPR in 
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slices from the ipsilateral hemisphere in injured animals that did not contain mossy fiber 

sprouting was not statistically different from controls at any IPI. Population spike 

amplitude ratios from the contralateral dentate gyrus, which also did not display mossy 

fiber sprouting, were also not different from controls (Figure 3.3A, B).  
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Figure 3.3. Paired-pulse ratios in the dentate gyrus are reduced in slices from injured mice 

with mossy fiber sprouting 42-71d after injury. A. Representative field-potential recordings 

evoked by paired-pulsed stimulation of perforant path input to the dentate gyrus at 20, 40, 80, and 

160ms interpulse intervals in controls, CCI injured mice with no mossy fiber sprouting (MFS), 

and CCI injured mice with MFS. Facilitation of the second population spike was observed at all 

intervals in controls and injured mice without mossy fiber sprouting. Paired-pulse ratios were 

significantly decreased in slices from injured mice with mossy fiber sprouting at early (20ms and 

40ms) but not later (80ms and 160ms) intervals. B. Bar graph showing the mean PPR for all 

slices at 20, 40, 80, and 160 ms (n=15-46). Bars represent means ± S.E.M. Asterisks (*) represent 

a significant reduction in paired-pulse ratios as determined by one-way ANOVA with Tukey’s 

post hoc analysis (P < 0.01). 

 

Hyperexcitability in slices with mossy fiber sprouting 

 

 Hilar-evoked field potentials were examined in the same slices used to obtain 

paired-pulse data. These experiments were first performed in "normal" ACSF and then in 

Mg2+-free ACSF containing 100µM PTX. In "normal" ACSF, electrical stimulation 

consistently elicited a single population spike in nearly all hippocampal slices from 

controls and injured animals (Figure 3.4, 3.5A). Two ispilateral slices (one each from a 

mild and severe injury) had 2-3 population spikes.  In Mg2+-free ACSF containing PTX, a 

single population spike was elicited in all slices (n= 14) from control animals (Figure 

3.4A).  When hilar-evoked responses under these conditions were compared among 

injured animals, 98% (n= 45 of 46) of contralateral slices without mossy fiber sprouting 

and 87.5% (n= 35 of 40) of ipsilateral slices without mossy fiber sprouting had a single 

population spike (Figure 3.4B).  Three of 15 (20%) ipsilateral slices with mossy fiber 

sprouting had a single population spike similar to controls.  Increased excitability or 

epileptiform activity was observed in the remaining slices, which almost exclusively 

included the ipsilateral dentate gyrus. The increase in excitability was observed in the 

form of multiple population spikes in 1 (2%) contralateral slice, 5 (12.5%) ipsilateral 

slices without mossy fiber sprouting, and 12 (80%) ipsilateral slices with mossy fiber 

sprouting (Figure 3.4C).  In three (20%) of the slices from the ipsilateral dentate gyrus, 

hilar stimulation evoked prolonged negative-going field potentials and secondary 
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population spikes with long and variable latency to the stimulus (Figure 3.4D). Slices 

with the latter, most robust response, contained the highest degree of mossy fiber 

sprouting (Timm scores ≥ 2).  Timm score ranges associated with a single population 

spike, multiple population spikes, and prolonged negative field shifts were compared and 

found to be statistically different by Kruskal-Wallis test (H(2, 107) = 27.77, P < 0.00001; 

Figure 3.5B).  A Dunn’s post hoc test confirmed that Timm scores associated with slices 

containing a single hilar-evoked population spike were significantly different from Timm 

scores of slices that had multiple population spikes (P<0.01) and prolonged negative field 

shifts (P<0.001).  In both cases of hyperexcitability the secondary activity could be 

completely and reversibly blocked by 50µM APV.  The relative range of hilar-evoked 

responses observed in Mg2+-free ACSF containing PTX for each experimental group are 

given in Figure 3.5C.  
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Figure 3.4. Electrical stimulation of mossy fibers in the hilus evokes increased population 

responses in the dentate gyrus of mice with mossy fiber reorganization 42-71d after CCI 

injury. A, B. Hilar-evoked responses in controls and injured mice without mossy fiber sprouting 

consisted of a single population spike in normal ACSF and in Mg2+-free ACSF containing PTX. 

C. Evoked responses in a slice from a CCI-injured mouse with moderate mossy fiber sprouting. A 

single population spike was evoked in normal ACSF. Multiple population spikes were evoked in 

Mg2+-free ACSF containing PTX. D. Hilar stimulation evoked a single population spike in 

normal ACSF in a slice with robust mossy fiber sprouting. In Mg2+-free ACSF containing PTX, a 

prolonged negative field-potential shift with secondary population activity was evoked. The 

underlined portion of the trace in D is expanded below to demonstrate the initial population spike 

followed by secondary activity. Insets provide representative Timm’s stains demonstrating the 

level of mossy fiber sprouting typical of slices that produced each response. 
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Figure 3.5. Increased excitability is revealed in the dentate gyrus of CCI-injured mice 

during disinhibition. A. Hilar stimulation in normal ACSF evoked a single population spike in 

nearly all slices from injured and control animals. B. Average Timm scores for slices in which a 

single population spike, multiple population spikes, or prolonged negative field shifts were 

evoked in the presence of Mg2+-free ACSF containing PTX. Bars represent means ± S.E.M. 

Single asterisks (*) represent P < 0.01 and double asterisks (**) represent a P < 0.001 as 

determined by Kruskal-Wallis with Dunn’s post hoc analysis. C. Relative range of hilar-evoked 

population responses in Mg2+-free ACSF containing PTX.  
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Spontaneous epileptiform activity in slices with robust mossy fiber sprouting  

 

 The susceptibility to generation of spontaneous epileptiform activity in the 

presence of Mg2+-free ACSF containing PTX was also examined.  Three ipsilateral slices 

that contained robust mossy fiber reorganization (i.e. Timm scores ≥ 2) exhibited 

spontaneous bursts of population spikes and large amplitude negative-going field 

potential shifts of variable frequency in the granule cell layer (Figure 3.6B).  Small 

amplitude positive-going shifts, but not epileptiform burst discharges, were regularly 

observed in all other slices from injured and control animals (Figure 3.6A).  

 

Figure 3.6. Spontaneous population activity during disinhibition in slices from control and 

injured mice. A. Field-potential recordings in the dentate gyrus of a control mouse demonstrate 

spontaneous positive-going field potential deflections. B. Spontaneous epileptiform activity 

consisting of large amplitude negative going field shifts and spontaneous population spikes 

observed in the dentate gyrus of a mouse with mossy fiber sprouting. Arrows in A and B indicate 

expanded portions of the respective traces.  
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3.4  Discussion 

 

The results of this study suggest that the dentate gyrus of injured mice with mossy 

fiber sprouting became epileptogenic.  Mice developed spontaneous seizures by 42-71d 

after mild or severe CCI injury, an important extension of previous studies that suggested 

this model of TBI induced early seizures (Nilsson et al, 2004; Kochanek et al., 2006). In 

addition, I found evidence for regionally localized structural reorganization of mossy 

fibers in the dentate gyrus ipsilateral to the injury that was accompanied by reduced PPR 

and increased spontaneous and hilar-evoked recurrent excitability.  These long-term 

behavioral, anatomical, and functional changes are consistent with TLE development in 

humans and rodents.  

 

3.4.1 

 

Spontaneous seizures after mild and severe CCI 

Several characteristics of seizures in injured mice resembled seizures observed in 

other rodent models of TLE and PTE (Shibley and Smith, 2002; D’Ambrosio et al., 2004, 

2005; Kharatishvili et al., 2006). In the present study, 20-36% of mice were observed to 

have unprovoked seizures weeks after injury.  This is comparable to clinical studies that 

indicate as many as 39% of patients sustaining severe TBI with intact dura develop PTE 

(Caveness, 1976; Annegers et al., 1998).  While increased seizure susceptibility to 

electrical stimulation and proconvulsant drug exposure has been noted after CCI and 

weight drop (Golarai et al., 2001; Statler et al., 2008), spontaneous seizures have only 

been reported in rats after severe FPI (Kharatishvili et al., 2006; Griesemer and Mautes, 

2007).  Previous studies have suggested that limbic involvement typically does not 

evolve in rats until several months after FPI (D’ambrosio et al., 2004, 2005; Kahratishvili 

et al., 2006), but many mice in this study developed seizures and hippocampal pathology 

by 10 weeks post-injury. A shorter time period from injury to TLE makes studies of 

injury-induced epileptogenesis more feasible. Since animals in the present study were 

observed periodically, I presumably underestimated the number of mice that developed 

spontaneous seizures and the frequency of seizures. However, I was mainly concerned 

with the qualitative assessment of seizure development after CCI.  Continuous video-
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EEG or longer periods of seizure monitoring may increase the yield for seizure detection.  

It also remains to be elucidated whether a gradual shift in seizure type from partial to 

secondarily generalized over time also occurs after CCI as has been reported after FPI 

(D’Ambrosio et al., 2005; Kharatishvili et al., 2006). 

 

3.4.2 

 

Posttraumatic mossy fiber sprouting 

Mossy fiber reorganization is a phenomenon repeatedly observed in TLE patients 

and animal models, is well developed by 2-4 weeks after an epileptogenic insult in 

rodents, and persists throughout life (Dudek and Spitz, 1997).  Mossy fiber sprouting may 

only be one of many anatomical factors such as neuron loss, neurogenesis, gliosis, or 

morphological changes associated with epileptogenesis (Pitkanen and Sutula, 2002).  

However, I examined changes in mossy fiber organization because of its traditional 

consistency and reliability as a marker of the epileptic dentate gyrus.  Mossy fiber 

sprouting after CCI was most prominent in dorsal regions of the ipsilateral dentate gyrus 

and resembled sprouting observed in humans and animal models of TLE (Tauck and 

Nadler, 1985; Shibley and Smith, 2002).  Previous reports in rats have indicated minimal 

sprouting in the dentate gyrus ipsilateral to the injury at 3 months post-FPI (Santhakumar 

et al., 2001) and dense sprouting in the septal dentate gyrus ipsilateral to the injury in rats 

that display spontaneous seizures by 12 months (Kharatishvili et al., 2006).  However, I 

detected minimal axon reorganization near the injury site as early as 7d post-injury, and 

the number of animals with mossy fiber sprouting increased with time post-injury such 

that 55% of mice were found to have locally abnormal mossy fiber organization by 10 

weeks after severe CCI.  Even in animals with spontaneous seizures, mossy fiber 

sprouting was mainly localized to areas ipsilateral and proximal to the lesion.  Thus, 

sprouting may not need to be as widespread as is often observed in status epilepticus-

induced TLE models to contribute to seizures.   

Injury severity likely contributes to the degree of mossy fiber sprouting after TBI. 

Similar to the observation that severe lateral FPI is necessary to induce sprouting in rats 

(Santhakumar et al., 2001), more mice developed mossy fiber sprouting after severe CCI. 

Several previous studies have described in detail the extent, variability, and progression 
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of cortical and hippocampal damage after mild or severe CCI in mice (Hannay et al, 

1999; Tong et al., 2002; Hall et al., 2005; Saatman et al., 2006). Previous reports in rats 

and mice indicate greater cortical lesion volume after severe vs mild injury that is due to 

an increase in injury depth but not rostral-caudal distribution (Goodman et al., 1994; 

Hannay et al., 1999; Saatman et al., 2006). The present electrophysiological experiments 

utilized mainly horizontal slices, which allowed recordings to be made from 

approximately the temporal two-thirds of the hippocampal formation (i.e., from just 

ventral to the lesion to near the temporal pole), so the lesion site itself was not analyzed.  

Since the present methods of CCI were identical to those used in previous studies (Hall et 

al., 2005), the assumption is that the initial lesion was similar in dimension and 

variability to that described previously.  Despite reports that indicate severe injury in the 

CCI model can occasionally produce bilateral damage to structures that are especially 

susceptible to injury, such as the thalamus and hippocampus (Goodman et al., 1994; 

Smith et al., 1995), nearly all slices from the contralateral dentate gyrus appeared devoid 

of mossy fiber sprouting in the inner molecular layer, even in mice with generalized 

seizures. Thus, it is possible to observe a full range of Timm scores - from no sprouting 

to robust sprouting - in slices from a single mouse after CCI.  

The presence of regionally robust mossy fiber sprouting in mice that displayed 

category 3 seizures suggests an association between axon sprouting and seizure severity 

and/or frequency after TBI.  However, it is difficult to establish whether injury-induced 

mossy fiber reorganization precipitates limbic seizures, seizures induce mossy fiber 

sprouting, a combination of the two occur, or even to be confident that sprouting is a 

necessary accompaniment of limbic seizures. Studies aimed at determining causality are 

complicated by the myriad cellular and molecular alterations occurring concurrent with 

axon sprouting, several of which may also contribute to the development of seizures after 

brain injury.  Synaptic reorganization in other damaged structures such as CA1, 

amygdala, and neocortex could additionally contribute to seizure development after 

injury but are more difficult to detect.  For example, increases in synaptic connections 

and excitability of CA1 pyramidal cells have been reported after focal injury (i.e. CCI 

and weight drop), are also seen in TLE models, and could further contribute to seizures 

(Smith and Dudek, 2001; 2002; Scheff et al., 2005; Griesemer et al., 2007).  Moreover, 
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Buckmaster and Dudek (1997b) reported no direct association between seizure frequency 

and the degree of mossy fiber sprouting after kainate-treatment.  In the present study 

sprouting was more prevalent at 42-71d versus 7d after severe CCI injury, suggesting 

progressive development of new excitatory connections in the dentate gyrus.  However, 

mice were not monitored for seizures at the earlier time points, and the relationship 

between structural damage, axon sprouting, and seizure development was beyond the 

scope of this study.  Further investigations using continuous EEG in combination with 

cellular techniques that compare animal models with variable levels of mossy fiber 

sprouting (i.e., TBI, status epilepticus, etc.) may provide insight into any causal 

relationships between axon sprouting, epileptogenesis, and the onset of limbic seizures.  

 

3.4.3 

 

Increased synaptic inhibition after CCI 

Reduced PPR has been repeatedly demonstrated in the dentate gyrus of epileptic 

patients and animal models of TLE (Tuff et al., 1983; Buckmaster and Dudek, 1997a; 

Swanson et al., 1998). One view is that mossy fiber sprouting after an epileptogenic 

insult plays a restorative role by enhancing excitatory synaptic input onto GABAergic 

interneurons in the hilus (Sloviter, 1991, 1992).  However, other studies have 

demonstrated decreased inhibitory input onto granule cells that is possibly related to the 

loss of GABAergic interneurons in epileptic animals (Buckmaster and Dudek, 1997a; 

Kobayashi and Buckmaster, 2003). Previous reports of paired-pulse data in rats after TBI 

have been conflicting. Reeves et al. (1997) reported reduced PPR in the ipsilateral dentate 

gyrus at early IPIs (20ms-100ms) up to 15d post-FPI in vivo. Other studies have 

suggested no change or even increased PPR weeks to months after TBI (Lowenstein et 

al., 1992; Golarai et al., 2001). In the present study, PPR at all IPIs from ipsilateral and 

contralateral slices without mossy fiber sprouting was similar to controls. I found that 

PPR was selectively reduced at earlier (20ms and 40ms) but not later (80ms and 160ms) 

IPIs in slices with mossy fiber sprouting (Timm scores >1) after injury.  This is an 

interesting finding that suggests a long-term increase in synaptic inhibition after TBI 

associated with mossy fiber reorganization. Previous studies of posttraumatic 

hyperexcitability have not differentiated between slices with and without sprouting.  
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Perforant path stimulation did not consistently evoke paired pulse inhibition at low IPIs 

(i.e., 20ms) in control slices as is commonly observed.  However, other reports 

demonstrated paired-pulse inhibition in control slices at low IPIs (Kirby et al., 1995; 

Hirota and Roth, 1997).  Differences in stimulation frequency, intensity, inter-pulse 

interval, time post-injury, ACSF composition, and/or animal model could all contribute to 

discrepancies among studies.  Moreover, variations in stimulus parameters have been 

reported to have inconsistent effects on paired-pulse inhibition, particularly at high 

stimulation frequencies and/or intensities (Waldbaum and Dudek, 2005, 2007).  In the 

present study all experimental conditions remained constant; control data were obtained 

alongside data from injured animals, and different slices from injured animals were 

treated identically within an experiment.  Field-potential experiments are limited in that 

perforant path stimulation is not a direct measure of GABA-mediated inhibition. I found 

that interval-specific changes in PPR were associated with mossy fiber sprouting, 

consistent with the hypothesis that sprouting may increase synaptic inhibition in these 

slices, but it remains possible that other injury-induced changes of dentate gyrus 

networks could produce similar effects.  Alternative interpretations of the present paired-

pulse data could include the possibility of a presynaptic effect such that transmitter 

release probability is altered, inhibitory cells may sustain damage and undergo functional 

changes as a result of TBI, and/or hilar mossy cells may be driving synaptic inhibition in 

the injured mice.  Future experiments that use cellular approaches to assess excitatory and 

inhibitory drive onto both granule cells and GABAergic interneurons may better clarify 

the effect of TBI on recurrent inhibition in the dentate gyrus.  Regardless, these data 

suggest an interval-specific and selective reduction of PPR in slices containing mossy 

fiber sprouting after TBI.  

 

3.4.4 

 

Epileptiform activity after CCI 

Numerous in vitro studies have suggested that mossy fiber reorganization 

contributes to epileptiform activity and seizures by forming a positive-feedback network 

among granule cells (Cronin and Dudek, 1988; Molnar and Nadler, 1999; Lynch and 

Sutula, 2000; Buckmaster et al., 2002; Scharfman et al., 2003; Winokur et al., 2004).  
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The present data are consistent with this view.  An increased susceptibility to 

spontaneous and evoked epileptiform activity in the ipsilateral dentate gyrus of slices 

with mossy fiber sprouting were revealed in the presence of Mg2+-free ACSF containing 

PTX.  These epileptiform discharges were not observed in slices from injured or control 

animals that did not display mossy fiber sprouting.  Spontaneous positive shifts in slices 

from controls and negative field shifts in slices from kainate treated rats and reeler mutant 

mice during disinhibition have previously been described (Cronin et al, 1992; Waurin and 

Dudek, 1996; Buckmaster and Dudek, 1997a; Patrylo et al., 2006).  Hilar stimulation 

evoked prolonged negative-going field-potential shifts and secondary population spikes 

in slices with robust levels of sprouting and multiple population spikes in many but not 

all slices with more moderate levels of mossy fiber sprouting.  These responses are 

qualitatively similar to those observed in animal models of TLE (Tauck and Nadler, 

1985; Cronin et al., 1992; Waurin and Dudek, 1996; Patrylo et al., 1999; Winokur et al., 

2004).  Multiple population spikes were observed in a small percentage of ipsilateral and 

contralateral slices that did not have robust mossy fiber sprouting.  This may indicate that 

mossy fiber reorganization is not solely responsible for the enhanced excitability in some 

slices.  However, one obvious limitation to electrical stimulation is that cell bodies and 

other axons of passage can be activated concurrent with mossy fibers making it an 

indirect measurement of synaptic connectivity.  The possibility that neurons in the hilus 

(e.g., excitatory mossy cells) play a role in the increased excitability observed in this 

preparation cannot be excluded.  Caged glutamate microstimulation (Molnar and Nadler, 

1999; Waurin and Dudek, 2001; Winokur et al., 2004) or dual intracellular recordings 

(Scharfman et al., 2003) could provide a more direct assessment of synaptic connections 

between granule cells after CCI.  Even so, these data indicate that mossy fiber 

reorganization in slices from injured animals is associated with increased susceptibility 

for epileptiform activity.  
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3.4.5 

 

Additional comparisons between CCI and other experimental models of TBI-

induced epilepsy 

Distinct strengths and limitations exist with any experimental model. Currently, 

FPI and weight drop are the most widely used trauma models that have also been adapted 

as models of post-traumatic hyperexcitability.  CCI offers potential advantages over these 

other models. Perhaps the most important advantage is that CCI has been adapted to mice 

(Smith et al., 1995; Sullivan et al., 1999), rats (Dixon et al., 1991; Scheff et al., 1997), 

and even larger animals such as sheep (Anderson et al., 2003).  To date, studies of TBI-

induced epilepsy using FPI and weight drop have been nearly exclusively performed in 

rats.  The ability to perform CCI in mice provides an invaluable experimental tool for 

studying the contribution of genetic background in PTE development.  CCI produces a 

consistent and reproducible focal injury in each animal, and mechanical parameters (i.e., 

injury velocity, depth, and tissue deformation) are easily managed. There is minimized 

risk for inaccuracy or secondary “rebound” injury as can be seen with other focal TBI 

models (i.e., weight drop).  On the other hand, lateral FPI produces a mixed focal and 

diffuse injury making it impossible to determine the contribution of each injury type to 

epileptogenesis.  A more focused and consistent injury produced in CCI may have 

behavioral and/or functional implications.  One commonality among the abovementioned 

TBI models is that all produce a degree of focal injury.  This suggests that focal injury 

may play a more critical role in epileptogenesis than diffuse injury.  Thus, the highly 

focal lesion produced by CCI may reflect a more relevant aspect of PTE.  A potential 

limitation of the CCI model is that increasing injury severity does not achieve increased 

mortality; this contradicts clinical observations.  Severity of lateral FPI must be increased 

such that mortality rate is ~50% in order to induce TLE in rats (Kharatishvili et al., 

2006).  Mortality after severe FPI may be due to disproportionate injury to the brainstem 

and/or the more diffuse nature of the model.  Weight drop is another highly focal model 

of severe TBI after which nearly all animals have been similarly reported to survive 

(Griesemer and Mautes, 2007). Therefore, the injury-induced sequence of events leading 

to mortality may be different from those leading to TLE.  
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In conclusion, CCI reproduced key behavioral, anatomical, and functional 

features common to human PTE and TLE in mice. Development of specific hippocampal 

pathology often associated with TLE development occurred at earlier time points than 

described in some other TBI models.  Therefore, CCI not only provides a useful model of 

TBI but is also effective in inducing PTE in mice. 
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Chapter 4  

Regionally localized recurrent excitation in the dentate gyrus of a cortical contusion 

model of posttraumatic epilepsy 

 

This chapter was published in J Neurophysiol. Mar 2010; 103(3):1490-1500.  

 

4.1  Introduction 

 

In patients and experimental models of temporal lobe epilepsy, the generation of 

epileptic activity is associated with axon sprouting and reorganization of neuronal 

circuitry (Tauk and Nadler, 1985; Sutula et al., 1989; Dudek and Spitz, 1997; Buckmaster 

et al., 2002; Shibley and Smith, 2002; Hunt et al., 2009). The dentate gyrus, which is 

particularly susceptible to injury, often undergoes structural reorganization, and it is a 

widely used model system for studying altered synaptic circuitry in epilepsy. Several 

studies suggest that dentate granule cells, which are not normally interconnected, sprout 

axon collaterals into the inner molecular layer (i.e., mossy fiber sprouting) to form 

functional recurrent excitatory connections with nearby granule cells during 

epileptogenesis and may contribute to network synchronization (Cronin and Dudek, 

1988; Cronin et al., 1992; Waurin and Dudek, 1996, 2001; Lynch and Sutula, 2000; 

Winokur et al., 2004; Hunt et al., 2009). Mossy fiber sprouting has been reported weeks 

to months after experimental TBI in rodents (Santhakumar et al., 2001; Golarai et al., 

2001; Kharatishvili et al., 2006; Hunt et al., 2009) and in temporal lobe epilepsy patients 

with a history of head injury (Swartz et al., 2006), but the functional implications of 

injury-induced regional alterations in neuronal circuitry after TBI have not been well 

described.  

The degree of mossy fiber sprouting after experimental TBI is qualitatively less 

than the robust, bilateral sprouting observed weeks after experimental status epilepticus. 

While less widespread axon reorganization is a more typical representation of the clinical 

setting, computational models have suggested that synchronous network activity may 

only occur if robust recurrent synaptic connections are present (Traub and Wong, 1981; 

1982). Studies using extracellular field recordings to examine network excitability in the 
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dentate gyrus after experimental head injury have not consistently demonstrated 

epileptiform activity after TBI (Reeves et al., 1997; Santhumakar et al., 2001; Golarai et 

al., 2001; Hunt et al., 2009). Moreover, Santhakumar and collegues (2001) reported a 

recovery within a month after fluid percussion injury from an early increase in 

extracellular excitability of the granule cell layer that may be related to mossy fiber 

sprouting. Therefore, mossy fiber sprouting may play a different functional role in the 

dentate gyrus after mechanical injury than in pharmacologically induced temporal lobe 

epilepsy models. The persistence of recurrent excitatory connections between granule 

cells after TBI has not been well established. Understanding how synaptic circuit 

reorganization may contribute to seizures or chronic changes in excitability after TBI 

should help to elucidate the importance of these cellular mechanisms in PTE.   

Here, I tested the hypothesis that mossy fiber sprouting forms an excitatory 

feedback circuit between granule cells after CCI head injury. I specifically focused on 

three main questions: (1) can an increase in excitatory synaptic input onto individual 

granule cells be detected after injury; (2) do granule cells in slices with posttraumatic 

mossy fiber sprouting exhibit spontaneous epileptiform activity; and (3) can excitatory 

synaptic events be elicited by local glutamate photostimulation at distant locations within 

the granule cell layer?  
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4.2  Methods 

 

Seizure monitoring. Injured animals were monitored for immediate seizures (i.e., injury-

induced) during a 90 minute interval that began ~90 minutes after CCI injury. I chose this 

time for practical reasons (i.e., to allow animals to fully recover from anesthesia and 

surgery) and based on a previous report that behavioral manifestations are not observed 

until at least 1h post-CCI (Kochanek et al., 2006). Control and injured mice were 

subsequently observed 4-6 hr/wk for spontaneous seizures during random 1–2h intervals 

until 10 weeks post-injury. Observation periods occurred during the light phase of the 

light/dark cycle, and seizures were rated from 1 to 5, with 5 being the most severe, 

according to a modified Racine scale (Racine, 1972; Shibley and Smith, 2002). To 

minimize subjectivity in seizure assessment, category one seizures (i.e. facial 

automatisms, increased grooming behaviors) were excluded from analysis. Posttraumatic 

seizures were classified based on the time post-injury in which they occurred: immediate, 

first 90 minute monitoring session; early, 1 - 7d post-injury; and late, > 7d after injury.   

 

4.3  Results  

 

4.3.1 

 

Posttraumatic seizures 

Mice were monitored for behavioral seizures from the time of injury until 10 

weeks post-injury. During the first 90 minute monitoring period following injury, 5 of 33 

mice (15%) were observed to have at least one injury-induced seizure. The majority of 

these mice had only one or two seizures; one mouse had three category 3-5 seizures 

during this period. One mouse (3%) that did not have immediate seizures had a category 

3 seizure at 3d post-injury (i.e., early seizure). Spontaneous category 2-4 seizures were 

observed in 12 of 30 mice (40%), and category 3-4 seizures were observed in 4 of 30 

mice (13%) (Figure 4.1). The average latency from injury to first observed spontaneous 

seizure was 6.5 ± 1.3 weeks after injury. This latent period is considered to be an 

estimate, since I did not monitor continuously. Of the 5 mice that had immediate seizures, 

3 (60%) were observed to have spontaneous seizures.  
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Figure 4.1. Mice develop injury-induced and spontaneous seizures after severe CCI injury. 

Cumulative probability plot of the first observed seizure after CCI injury (time 0). Seizure counts 

were reset after 1d and 7d to separate immediate, early, and spontaneous seizures.  

 

4.3.2 

 

Injury-induced mossy fiber reorganization 

 Coronal brain sections of the dorsal hippocampus used for recordings in 21 mice 

were examined for gross anatomical damage in the hippocampus and mossy fiber 

sprouting at the injury site. Damage through the entire depth of the cortex directly below 

the impact site and hippocampal distortion were observed in all injured mice examined 8-

12 weeks post-TBI, as previously described (Tong et al., 2002; Hall et al., 2005; Saatman 

et al., 2006). In 20 of 21 mice (95%), the cortical cavitation at the injury site extended 

into the hippocampus and a separation of the dorsal and ventral blades of the granule cell 

layer was visible. Mossy fiber sprouting was observed in sections ipsilateral to the injury 

in all 20 mice. One mouse had hippocampal and granule cell layer distortion, but 

cavitation was restricted to the cortex. Mossy fiber sprouting was not present in this 

mouse. Figure 4.2 shows the range of lesion to the dentate gyrus and degree of mossy 

fiber sprouting under the injury. No gross structural damage was observed in any section 

contralateral to the injury (n= 21) or in control mice (n= 15 animals), and these sections 

were also devoid of abnormal mossy fiber organization (i.e., all Timm’s scores ≤ 1).  
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Figure 4.2. Cavitation into the hippocampus and posttraumatic mossy fiber sprouting 8-12 

weeks after severe CCI injury. A. Representative Nissl stain of the dentate gyrus contralateral 

to the injury site. B. Timm’s stain of the same section in A shows the absence of mossy fiber 

sprouting in the inner molecular layer. C, E, G. Representative Nissl stain images of the 

ipsilateral dentate gyrus at the injury site. Arrows indicate severe thinning of the granule cell 

layer. D, F, H. Timm’s stain of the same sections in C, E, G. Note the presence of moderate 

mossy fiber sprouting in all sections (arrows). Percentage of mice with each type of lesion/Timm 

stain at the injury site is indicated. Scale bar is 100µm.  
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4.3.3 

 

Excitatory input to dentate granule cells 

To analyze whether excitatory synaptic input to dentate granule cells was 

increased after CCI injury, whole-cell voltage-clamp recordings of sEPSCs were obtained 

from granule cells in four treatment groups based on post hoc identification of mossy 

fiber sprouting: 1) ipsilateral slices with mossy fiber sprouting (n= 23 cells in 20 slices 

from 13 animals), 2) ipsilateral slices without mossy fiber sprouting (n= 22 cells in 18 

slices from 14 animals), contralateral slices (n= 9 cells in 8 slices from 7 animals), and 

uninjured controls (n= 10 cells in 9 slices from 6 animals). Recordings were made from 

cells in the apex or outer blade regions of the granule cell layer where Timm’s staining 

was typically most robust. The average resting membrane potential for these cells was: 

controls, -75 ± 3.8 mV; contralateral, -76 ± 2.9 mV; ipsilateral with no MFS, -75 ± 5.3 

mV; and ipsilateral with MFS, -79 ± 4.4 mV. These values are consistent with previously 

reported ranges of -65mV to -85mV (Fricke and Prince, 1984; Staley et al., 1992; Waurin 

and Dudek, 1996), and one-way ANOVA found no difference between groups 

(F(3,64)=2.03, P >0.05).  

Spontaneous EPSCs were recorded at a holding potential of -70mV. At this 

potential, outward currents were not typically present. Application of 1mM kynurenic 

acid blocked inward events, indicating that these currents were mediated by glutamate 

receptors. Representative recordings for each group are shown in Figure 4.3A-D. As 

shown in table 4.1, EPSC kinetics (i.e., 10-90% rise time and decay time constant) were 

comparable to previous reports (Keller et al., 1991; Staley and Mody, 1992), and 

significant differences were not observed between groups (P>0.05). A significant 

difference in the mean event frequency between treatment groups was detected by one-

way ANOVA (control: 0.64 ± 0.3Hz, contralateral: 0.66 ± 0.4Hz, ipsilateral without 

MFS: 0.65 ± 0.4Hz, ipsilateral with MFS: 2.2 ± 0.9Hz; F(3,64)= 27.1, P<0.001; Figure 

4.3E). Post hoc comparisons revealed that granule cells from ipsilateral slices with mossy 

fiber sprouting had a significantly higher frequency of sEPSCs versus other groups. To 

determine whether EPSC frequency was associated with the density of Timm’s staining, 

a Timm score was obtained for each slice in which a recording was obtained. The average 

sEPSC frequency for each cell in slices ipsilateral to the injury was plotted as a function 
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of Timm score (Figure 4.3F), and a Spearman’s rank correlation analysis indicated a 

significant positive relationship between EPSC frequency and Timm’s score (rs= 0.82, P 

< 0.001). This is consistent with previous reports that suggest a relationship between 

EPSC frequency and degree of mossy fiber sprouting in kainate treated rats (Waurin and 

Dudek, 2001). The mean amplitude of sEPSCs for each treatment group was: control, -

7.4 ± 3.0pA; contralateral, -6.8 ± 1.7pA; ipsilateral without MFS, -7.1 ± 1.7pA; and 

ipsilateral with MFS, -9.4 ± 5.4pA. One-way ANOVA did not indicate significant 

differences between groups (F(3, 64)= 1.9, P > 0.05; Figure 4.3G). 

 

 

 

 

 
 

 

 

 

Values are means ± SD; RMP, resting membrane potential; RT, rise time; MFS, mossy fiber 

sprouting. 
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Figure 4.3. Increased sEPSCs in slices of the ipsilateral dentate gyrus with mossy fiber 

sprouting (MFS). A-D. Representative whole-cell patch-clamp recordings of granule cells in 

slices from A) control, B) contralateral, C) ipsilateral without MFS, and D) ipsilateral with MFS. 

Boxed areas of each trace are enlarged below. E. Average EPSC frequency for cells in each 

treatment group. The number of cells are indicated in parentheses above each bar. F. EPSC 

frequency plotted as a function of Timm score. Solid lines represent mean EPSC values and 

dotted lines respresent ±SD. G. Average amplitude for cells in each of the four treatment groups. 

Error bars indicate mean ± SD. Asterisk (*) indicates P<0.001. 
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4.3.4 

 

Spontaneous epileptiform burst activity in slices with mossy fiber sprouting 

When surgically isolated from afferent input, dentate granule cells normally do 

not fire spontaneous bursts of action potentials at resting membrane potential, even when 

inhibition is depressed (Fricke and Prince, 1984; Cronin et al., 1992, Waurin and Dudek, 

1996). However, in conditions of reduced inhibition and increased excitability, 

spontaneous burst responses can be observed in slices from kainate-treated rats with 

mossy fiber sprouting, but not in controls (Cronin et al., 1992). I tested whether 

spontaneous epileptiform burst activity occurred in granule cells after injury. Slices were 

perfused with Mg2+-free ACSF containing 100μM PTX to unmask NMDA receptor-

mediated excitatory synapses and block GABAA-mediated inhibition. Recordings were 

first obtained from granule cells in voltage-clamp at a holding potential of -70mV. 

Spontaneous bursts of repetitive or compound EPSCs were never observed in 42 granule 

cells in slices from injured and control slices without mossy fiber sprouting (n= 5, 

control; n= 14, contralateral; and n= 23, ipsilateral without mossy fiber sprouting). In 

contrast, 34 of 51 cells (67%) in 34 slices with mossy fiber sprouting from 19 injured 

animals had spontaneous bursts of large amplitude compound EPSCs (Figure 4). This 

difference was found to be significant (P<0.001; Fisher’s exact test). Some of the cells 

examined for EPSCs were also examined for spontaneous epileptiform bursts of action 

potentials by switching to current-clamp mode and recording activity at resting 

membrane potential. Action potentials were not observed in any of 17 cells from slices 

without mossy fiber sprouting from injured and control animals (n=5, control; n= 5, 

contralateral; and n=7, ipsilateral without mossy fiber sprouting). In contrast, 65% of 

cells in slices with mossy fiber sprouting displayed bursts of action potentials (n= 17 of 

26, Figure 4.5). This difference was statistically significant (P<0.001; Fisher’s exact test). 

Action potential bursts were only observed in cells that also had bursts of EPSCs. 

Spontaneous burst activity was therefore only observed in granule cells of slices with 

mossy fiber sprouting from injured animals and was never observed in slices without 

mossy fiber sprouting from control or injured animals.  
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Figure 4.4. Spontaneous bursts of compound EPSCs in cells from slices with mossy fiber 

sprouting ipsilateral to the injury. Representative whole-cell voltage-clamp recordings of 

granule cells in A) a slice from an uninjured control mouse, B) a contralateral slice in an injured 

mouse, C) a slice ipsilateral to the injury without MFS, and D) a slice ipsilateral to the injury with 

MFS. Arrow indicates expanded portion of the trace in D. Slices were incubated with Mg2+-free 

ACSF and 100µM PTX; Vm= -70mV for all recordings. 
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Figure 4.5. Spontaneous epileptiform bursts of action potentials in cells of slices with mossy 

fiber sprouting ipsilateral to the injury. Representative whole-cell current-clamp recordings of 

granule cells in A) a slice from an uninjured control mouse, B) a contralateral slice in an injured 

mouse, C) a slice ipsilateral to the injury without mossy fiber sprouting (MFS), and D) a slice 

ipsilateral to the injury with MFS.  Inset shows expanded sections of the underlined portions of 

the trace in D labeled 1 and 2. Resting membrane potential is indicated for each trace.  

 

4.3.5 

 

Excitatory synaptic connections between granule cells after CCI 

Localized glutamate stimulation has been used to elicit responses that reflect 

synaptic connections between granule cells in slices with mossy fiber sprouting after 

pilocarpine or kainate treatment (Waurin and Dudek 1996, 2001; Lynch and Sutula, 

2000; Winokur et al., 2004). I used glutamate photolysis to test the hypothesis that 

synaptic connections between granule cells can be evoked in slices with mossy fiber 

sprouting ispilateral to the injury and not in the contralateral dentate gyrus where mossy 

fiber sprouting was absent. The presence (or absence) of synaptic connections was 

assessed by examining two postsynaptic responses: 1) photolysis-evoked EPSCs were 

first recorded at a holding potential of -70mV and 2) photolysis-evoked action potentials 

were recorded at resting membrane potential. Stimuli applied directly to the recorded cell 
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evoked a large amplitude inward current with occasional superimposed sodium currents 

(voltage-clamp) or a large depolarization with superimposed action potentials (current-

clamp), confirming that the stimulation parameters were capable of evoking action 

potentials in the recorded cells (Figure 4.6A,B).  

 

 
Figure 4.6. Granule cell - granule cell connections are not detected by glutamate 

photostimulation in cells from slices contralateral to the injury. A. Voltage-clamp recordings 

at -70mV from a granule cell. B. Current clamp recordings at resting membrane potential from 

the same cell as A. Dotted vertical lines indicate the time of stimulation. Numbers to the left of 

each trace indicate corresponding stimulus position shown in C. C. Nissl stain image of the slice 

from which the recorded cell was obtained. Numbers correspond to the approximate locations 

along the granule cell layer that photostimulation was applied to give the numbered responses 

recorded in A and B. Stimulation position 3 (circled) is the approximate location of the recorded 

cell. Note that direct activation of the recorded cell induced an inward current and burst of action 

potentials. D. Timm’s stain image of the same section in C indicating no MFS into the inner 

molecular layer.  

 

An increase in evoked synaptic activity was not observed in cells from slices 

contralateral to the injury (Figure 4.6); i.e., the average number of EPSCs in any given 

100ms segment after stimulation was not greater than the average number of EPSCs 

before stimulation + 3SD at any stimulation site contralateral to the injury (n= 42 

stimulus locations in 5 cells from 3 animals). In current-clamp recordings, 

photostimulation at the same locations did not evoke EPSPs or action potentials at any 
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site, except when applied directly to the recorded neuron. Therefore, glutamate 

photostimulation failed to elicit a synaptically-mediated response at any location along 

the granule cell layer or in the hilus/CA3 region in slices contralateral to the injury.  

In contrast, photostimulation of the granule cell layer evoked a synaptic response 

and an increase in activity in 6 of 8 cells (75%) from 8 ipsilateral slices with mossy fiber 

sprouting (n= 66 stimulus locations, 5 animals; Figure 4.7). A total of 18 stimulation 

locations (1 to 6 locations per cell) were determined to give a positive response to 

photostimulation. Figures 4.8 and 4.9 show the variability of evoked responses in the 

granule cell layer ipsilateral to the injury site. A frequency histogram was constructed to 

show the distribution of the average number of eEPSCs for locations that had a positive 

response to photostimulation (Figure 4.8E). In current-clamp mode, EPSPs were 

consistently evoked and often reached action potential threshold (66%). Photostimulation 

evoked action potentials in nearly all trials (96%) at locations that had ≥ 4 eEPSCs in 

voltage-clamp mode. Only 24% of stimulations evoked action potentials at locations that 

had < 4 eEPSCs. The remaining stimulus locations (n= 48), including all 17 locations in 

the hilus and CA3, had no response to photostimulation. An increase in the number of 

EPSCs after stimulation was not observed and EPSPs were not evoked by 

photostimulation at these locations. 
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Figure 4.7. Granule cell - granule cell connections are detected by glutamate 

photostimulation in cells from slices ipsilateral to the injury with mossy fiber sprouting. A. 

Voltage-clamp recordings at -70mV from a granule cell. B. Current-clamp recordings at resting 

membrane potential from the same cell as A. Dotted vertical lines indicate the time of 

stimulation. C. Nissl stain image of the slice from which the recorded cell was obtained. Numbers 

correspond to the approximate location along the granule cell layer that photostimulation was 

applied to give the responses recorded in A and B. Stimulation site number 2 (circled) is the 

approximate location of the recorded cell. Note that direct photoactivation of the recorded cell 

induced an inward current and burst of action potentials (A2, B2). Activity induced in neurons at 

locations 3 and 4 resulted in synaptic responses (A3, A4) and action potentials (B3, B4) in the 

recorded granule cell. D. Timm’s stain image of the same section in C. Note: mossy fiber 

sprouting surrounds the position of the recorded cell.   
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Figure 4.8. Variation in eEPSC responses in granule cells from slices ipsilateral to the 

lesion. A-C. Representative responses in a single neuron at three different stimulation locations 

of the granule cell layer. Each response shows five consecutive overlapping responses, with three 

consecutive individual traces separately shown below. A. Photostimulation did not evoke a 

response.  B. A mild response of 1-2 EPSCs was consistently evoked in each of 5 trials. C. A 

more robust response that consisted of 5-9 eEPSCs in each of 5 trials after photostimulation at a 

different site in the granule cell layer. D. Number of EPSCs per 100ms before and after 

stimulation for each representative response in A-C. Contralateral responses are averaged across 

all stimulation locations in 5 neurons. Arrows indicate the time of stimulation. E. Frequency 

histogram shows the distribution of the average number of eEPSCs at 18 stimulation sites that 

had a positive response.  
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Figure 4.9. Evoked EPSPs and action potentials in granule cells ipsilateral to CCI injury 

after photostimulation at distant locations in the granule cell layer. A-C. Representative 

responses in a single neuron at three different stimulation locations of the granule cell layer. Each 

response shows five consecutive overlapping responses. A. No response evoked by 

photostimulation. B. A mild response was evoked, with one of five responses reaching action 

potential threshold. Photostimulation at this location evoked an average of 3 EPSCs in voltage-

clamp mode. C. A more robust evoked response that consisted of a small burst of action 

potentials in each of five trials. Photostimulation at this location evoked an average of 10 EPSCs 

in voltage-clamp mode. Insets show expanded portion of one trace. Arrows indicate the time of 

stimulation.   

 

4.4  Discussion 

 

Cellular mechanisms underlying the increased risk of epilepsy after head injury 

are not well understood. Here, I examined local network interactions in dentate granule 

cells from mice with posttraumatic mossy fiber sprouting and seizures. The goal of this 

study was to test the hypothesis that regionally localized mossy fiber sprouting after 

experimental cortical contusion injury was sufficient to produce a recurrent excitatory 

circuit in granule cells. An increase in excitatory input to individual granule cells was 

detected in slices with posttraumatic mossy fiber sprouting. In conditions of increased 

excitation and decreased inhibition, these cells displayed spontaneous epileptiform burst 

activity. Responses that reflect synaptic connections between granule cells were activated 

by glutamate photostimulation at some locations of the granule cell layer but never in the 

hilus or CA3. These data are consistent with the development of a local recurrent 

excitatory circuit (Traub and Wong, 1981; 1982; Miles et al., 1986; Miles and Wong, 

1987; Lynch and Sutula, 2000; Waurin and Dudek, 2001; Winokur et al., 2004).   

An important unresolved question regarding mossy fiber sprouting after TBI is 

whether it is associated with a relevant functional alteration in neuronal circuitry. A 

dominant hypothesis has been that mossy fiber sprouting after epileptogenic insult forms 

a positive feedback circuit between granule cells. Another hypothesis proposes that 

sprouted mossy fibers preferentially form synaptic connections with inhibitory 

interneurons, and may act to bolster recurrent inhibition (Sloviter, 1991, 1992; Kotti et 



78 
 

al., 1997). Studies that have examined chronic changes in excitability after TBI have 

primarily used extracellular field recordings and have not consistently identified 

synchronous network activity indicative of a recurrent excitatory circuit. This may be 

because many of these experiments were not performed in the presence of GABAA-

receptor antagonists (Reeves et al., 1997; Santhakumar et al., 2001), which is necessary 

for revealing recurrent excitatory circuits in the dentate gyrus (Cronin et al., 1992). 

However, Santhakumar et al (2001) reported that evoked population activity in the 

chronically injured dentate gyrus with mossy fiber sprouting after moderate fluid 

percussion injury was similar to controls, even in conditions of disinhibition. Because 

only minimal Timm granules are detected in the inner molecular layer months after 

moderate fluid percussion injury (Shumate et al., 1995; Santhakumar et al, 2001), the 

failure to detect an increase in recurrent excitability by extracellular recordings in granule 

cells may also be due to the paucity of new connections.   A basic property of recurrent 

excitatory circuits is that there must be a sufficient number of excitatory interconnections 

between cells in order for activity to spread through the entire network (Traub and Wong, 

1981, 1982; Miles and Wong, 1983). Other studies report that spontaneous electrographic 

seizures or mossy fiber sprouting do not develop until 7-12 months after severe fluid 

percussion injury in rats (Kharatishvili et al., 2006; 2007). On the other hand, in Chapter 

3 I demonstrated spontaneous population activity indicative of synchronous network 

activation in slices with more robust mossy fiber sprouting after severe CCI (Hunt et al., 

2009), a focal injury model.  

In the present study, I provide relatively direct evidence for increased granule cell 

– granule cell connections after TBI. Several independent studies have indicated that 

recurrent excitatory circuits are normally masked by recurrent inhibitory circuits, even in 

animals with frequent spontaneous seizures, and can be revealed in conditions of reduced 

inhibition and/or increased excitation (Cronin et al., 1992; Waurin and Dudek, 1996, 

2001; Patrylo and Dudek, 1998; Lynch and Sutula, 2000; Smith and Dudek, 2001; 2002; 

Winokur et al., 2004; Hunt et al., 2009). Therefore, reorganized circuits are proposed to 

form the basis from which functional electrical discharges periodically arise in context of 

other abnormalities. I used Mg2+-free ACSF containing 100µM PTX in the present study 

to unmask NMDA-mediated excitatory synapses and block GABAA-mediated inhibition. 
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These conditions were sufficient to reveal new excitatory connections in slices from 

injured animals with mossy fiber sprouting that were absent in control and injured slices 

without mossy fiber sprouting under identical recording conditions. It is unknown 

whether similar results would be obtained in the presence of PTX alone. Glutamate 

photostimulation is useful for identifing local synaptic connections, because it allows for 

focal stimulation of cell bodies and dendrites without activating axons of passage 

(Calloway and Katz, 1993). Evoked responses to photostimulation in some areas of the 

granule cell layer - but not in other areas - suggests an underlying local circuitry. 

Moreover, I observed variation in these responses (i.e., mild to robust responses), 

indicating that not all regions of the granule cell layer contribute equally to the newly 

formed network. Despite reports that indicate mossy cell-granule cell connections can 

sometimes be observed in slice preparations (Buckmaster et al., 1992; Scharfman, 1995), 

I did not find evidence of a photolysis-evoked excitatory synaptic connection between the 

hilus or CA3 region and any of the recorded granule cells. This is not surprising due to 

the relatively low probability of finding connections between the hilus and granule cells 

in vitro (Scharfman, 1995).  

The degree of neuronal circuit reorganization necessary to produce a seizure focus 

remains unresolved. It seems reasonable to suggest that in a network configuration 

consisting of the appropriate principle cells interconnected by regionally localized 

recurrent excitatory connections, activating these particular circuits under appropriate 

conditions (e.g., a transient failure of inhibition) may engage an entire population of 

neurons and contribute to seizure generation (Traub and Wong, 1981; Miles and Wong, 

1983). Activating nearby areas without interconnections may not lead to synchronous 

network activation. The presence of regionally localized mossy fiber sprouting and 

recurrent excitation in mice with spontaneous seizures after CCI injury is consistent with 

this proposed mechanism. More extensive synaptic reorganization may thus increase the 

probability of seizure generation or seizure severity. However, this relationship is likely 

indirect (Buckmaster and Dudek, 1997). Development of seizure foci in other susceptible 

brain regions, such as CA1 (Smith and Dudek 2001, 2002; Scheff et al., 2005) or 

neocortex (Salin et al., 1995), may also undergo synaptic reorganization independent of 

mossy fiber sprouting. Moreover, chronic injury-induced dysfunction of inhibitory 



80 
 

circuitry may compromise the ability of these circuits to mask new excitatory 

connections. The net effect of new localized recurrent excitatory circuits in combination 

with altered synaptic inhibition after head injury may contribute to the generation of 

spontaneous seizures. Interestingly, in Chapter 3 I reported an interval-specific alteration 

in extracellular paired-pulse responses, an indirect measure of synaptic inhibition, 

selective for ipsilateral slices with mossy fiber sprouting (Hunt et al., 2009). Future 

studies aimed at more thoroughly investigating altered inhibition after CCI are necessary 

to resolve this issue. 

The abnormal electrophysiological responses in granule cells after head injury 

were qualitatively less robust and less widespread than reports at similar time-points after 

pharmacologically-induced status epilepticus (Waurin and Dudek 1996, 2001; Lynch and 

Sutula, 2000; Winokur et al., 2004). This may be due to less robust Timm staining in the 

inner molecular layer or less extensive synaptic network remodeling after head injury 

(i.e., only a portion of the dentate gyrus forms a recurrent excitatory circuit). Mechanisms 

other than mossy fiber sprouting and formation of new excitatory connections, such as 

altered glutamate receptor pharmacology (Meldrum et al., 1999) or altered ion channel 

function (Steinlein, 2004), could also contribute to the abnormal responses observed after 

injury and can not be ruled out. However, if these were sufficient features it would then 

be expected that epileptiform activity be present in the injured dentate gyrus independent 

of mossy fiber sprouting. I found a relationship between the degree of Timm granules in 

the inner molecular layer and EPSC frequency as previously reported after kainate-

treatment in rats (Waurin and Dudek, 2001). Slices from injured animals that were devoid 

of mossy fiber sprouting in the inner molecular layer acted as internal controls, and 

responses in these slices were similar to those from uninjured controls, even in ipsilateral 

slices from animals with regionally localized sprouting in adjacent sections of the dentate 

gyrus. This supports the hypothesis that the presence of epileptiform activity is associated 

with mossy fiber spouting, rather than injury. 

Structural damage and mossy fiber sprouting after CCI injury remains relatively 

localized to areas near the injury site, even in mice that have spontaneous seizures. This 

is different from induction paradigms that use status epilepticus and typically result in 

widespread damage that includes bilateral lesion of the hippocampus. Severe fluid 
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percussion injury, which primarily produces a concussive injury, also results in a variable 

degree of bilateral damage and mossy fiber sprouting (Kharatishvili et al., 2006). The 

present results suggest that widespread damage and synaptic reorganization is not an 

obligatory component of recurrent circuit formation or spontaneous seizure generation, 

but at least some degree of synaptic reorganization appears to be requisite for seizure 

generation. I report here a gross anatomical description of cortical damage after CCI 

injury to provide a qualitative representation of the hippocampal damage observed in 

mice used in this study. Other reports have provided more detailed analyses of the degree 

of injury and cell loss produced by severe CCI (Tong et al., 2002; Hall et al., 2005; 

Saatman et al., 2006). In the present study, a lesion to the granule cell layer at the injury 

site and mossy fiber sprouting was observed in nearly all mice. While mossy fiber 

sprouting is more robust after severe versus moderate contusion injury (Hunt et al., 

2009), it is unlikely that a granule cell layer lesion is necessary to elicit mossy fiber 

sprouting after TBI (Kharatishvili et al., 2006).  

Sprouting after CCI was typically most robust in sections just temporal to the 

injury site and became progressively less robust with increased distance away from the 

injury. In contrast, sprouting was generally absent in sections septal to the injury. While 

not always detected, granule cell loss has been reported in some temporal lobe epilepsy 

patients (Houser, 1990), and reductions in hippocampal volume have been reported after 

TBI (Bigler et al., 1997). Likewise, a recent study reported mossy fiber sprouting in at 

least a portion of the dentate gyrus - but not all areas - of resected tissue from all temporal 

lobe epilepsy patients with a history of head injury (Swartz et al., 2006). Therefore, 

localized mossy fiber sprouting is likely a relevant marker of TBI-induced epilepsy 

associated with mesial temporal lobe sclerosis.   

Seizure detection was limited to infrequent behavioral monitoring, and many 

seizures likely went undetected. Moreover, non-convulsive seizures and other 

electrographic abnormalities (i.e., interictal spiking) cannot be accounted for. Statler et al. 

(2009) recently reported abnormal spontaneous electrographic activity and recurrent 

seizures in rats after CCI. Convulsive seizures were accompanied by behavioral 

manifestations similar to those described in the present study. Therefore, convulsive 

seizures associated with abnormal EEG activity are apparent in this model. While the 
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monitoring method employed in the present study is widely used and allows for 

comparison with earlier reports using models of status-epilepticus (Racine et al., 1979; 

Cronin and Dudek, 1988; Sloviter, 1992; Buckmaster and Dudek, 1997; Patrylo and 

Dudek, 1998; Waurin and Dudek, 2001; Shibley and smith, 2002), additional studies that 

use continuous EEG monitoring are necessary to provide more quantitative analyses of 

posttraumatic seizures. Regardless, spontaneous convulsive seizures are apparent in many 

mice after severe CCI injury.   

The development of PTE in humans is highly variable and likely depends on 

injury characteristics such as severity, location, and injury type in addition to genetic 

background and acute and long-term treatment (Pitkanen and McIntosh, 2006). 

Therefore, it is impossible to experimentally reproduce all of the manifestations of human 

PTE. The lack of a reliable animal model in which PTE is easily and consistently 

reproducible has complicated studies aimed at elucidating cellular mechanisms of 

epileptogenesis after closed head TBI. The present study demonstrates that severe CCI 

injury is an advantageous model of PTE as many mice develop chronic seizures and 

localized synaptic circuit reorganization in the dentate gyrus.  
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Chapter 5 

Increased local excitatory input to hilar GABAergic interneurons accompanies 

reduced synaptic inhibition of granule cells after traumatic brain injury 

 

5.1  Introduction 

 

Reorganization of dentate granule cell axons (i.e., mossy fibers) is associated with 

the emergence of a new recurrent excitatory circuit among granule cells after 

experimental TBI (Hunt et al., 2009, 2010) and in temporal lobe epilepsy (Dudek and 

Spitz, 1997). However, the input-output activity of granule cells is tightly regulated by 

hilar neurons, many of which are lost after experimental TBI (Lowenstein et al., 1992; 

Hall et al., 2005; Santhakumar et al., 2000; Grady et al., 2003; Kharatishvili et al., 2006) 

and in human posttraumatic epilepsy (Swartz et al., 2006). Consistent with fewer 

GABAergic synaptic contacts, hilar inhibitory neuron loss is accompanied by reduced 

mIPSCs in granule cells (Toth et al., 1997; Witgen et al., 2005) and increased evoked 

extracellular burst discharges in the granule cell layer in vivo (Lowenstein et al., 1992) 

one week after TBI. GABAergic cell loss presumably remains for several months 

(Santhakumar et al. 2000), but whether dysfunction of inhibitory circuits persists in the 

dentate gyrus after severe TBI is unresolved.  

Hilar somatostatin-immunoreactive interneurons represent one subtype of local-

circuit GABAergic interneuron in the dentate gyrus (Esclapez and Houser, 1995; Freund 

and Buzsáki, 1996). These neurons have dendrites that concentrate mostly in the hilus, 

and they receive inputs from the perforant pathway and mossy fibers (Leranth et al., 

1990; Katona et al., 1999). Their axons synapse on granule cell dendrites opposite 

perforant pathway inputs in the outer molecular layer (Baskt et al., 1986; Leranth et al., 

1990; Katona et al., 1999; Zhang et al., 2009). These neurons are uniquely positioned to 

restrict excitatory inputs to the dentate gyrus, but they are vulnerable to cell death after a 

variety of brain insults including ischemic injury (Johansen et al., 1987), alzheimer’s 

disease (Ramos et al., 2006), repeated seizures (Sloviter et al., 1987; de Lanerolle et al., 

1989; Mathern et al., 1995; Buckmaster and Dudek, 1997; Kobyashi and Buckmaster, 

2003; Sun et al., 2007), and TBI (Lowenstein et al., 1992). Surviving hippocampal 
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GABAergic interneurons, including hilar somatostatin neurons, appear to sprout new 

axon collaterals to principal cells in epilepsy (Babb et al., 1989; Mathern et al., 1995; 

Cossart et al., 2001; Thind et al., 2009; Zhang et al., 2009), and they have increased soma 

size and dendritic branches (Tóth et al., 2007; Zhang et al., 2009). While these changes 

suggest a potentially compensatory increase of inhibitory influence over granule cell 

excitability after brain insult, excitatory drive to dentate basket cells and hilar border 

interneurons is reduced in epilepsy (Doherty and Dingledine, 2001; Zhang and 

Buckmaster, 2009). Therefore, injury-induced regional alterations specific to the hilar 

somatostatin interneuronal circuit may have critical pathological implications in the 

modulation of granule cell excitability.   

Here, I performed whole-cell patch-clamp recordings of hilar GABA neurons and 

granule cells in mice which express enhanced green fluorescent protein (eGFP) in a 

subpopulation of somatostatin interneurons (Oliva et al., 2000). I tested whether 

surviving hilar eGFP neurons received increased excitatory inputs and whether synaptic 

inhibition of dentate granule cells is altered weeks after experimental brain injury.  
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5.2  Results 

 

5.2.1 

 

Mossy fiber sprouting 

 Mossy fiber sprouting into the inner molecular layer is a reliable marker of 

synaptic reorganization associated with posttraumatic epilepsy (Swartz et al., 2006; 

Kharatishvili et al., 2006; Hunt et al., 2009, 2010).  Mossy fiber sprouting was present in 

sections of the dentate gyrus near the injury site (n=23 of 28 animals; Figure 1), but never 

in the contralateral hemisphere (n=0 of 28 animals; Figure 5.1) or in controls (n=0 of 10 

animals). These findings verified the presence of axon sprouting in most animals, 

suggestive of network reorganization common to the injured dentate gyrus.   

 

                                
Figure 5.1. Mossy fiber sprouting in GIN mice after severe traumatic brain injury. A.  

Timm and Nissl-stained section from a slice contralateral to the injury. B. Timm and Nissl-

stained section from a slice ipsilateral to the injury. Arrows indicate mossy fiber sprouting into 

the inner molecular layer. m, molecular layer; g, granule cell layer; h, hilus. 

 

5.2.2 

 

Increased excitatory inputs to hilar eGFP interneurons 

 To determine whether excitability of surviving GABAergic interneurons (Figure 

2) was altered after TBI, eGFP-labeled hilar neurons were first recorded in the cell 

attached configuration to examine spontaneous action potential firing without 

intracellular disruption of the cell (Cossart et al., 2001; Jones and Baraban, 2007). A 
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significant difference in the mean unit firing frequency between treatment groups was 

detected by one-way ANOVA (control: 2.4 ± 1.4 Hz; contralateral: 3.9 ± 1.8 Hz, 

ipsilateral: 9.2 ± 6.1 Hz; F(2,28)= 9.08, P<0.001; Figure 5.3). Post hoc comparisons 

revealed that interneurons from ipsilateral slices had a significantly higher action 

potential frequency versus other groups. 
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Figure 5.2. A hilar eGFP neuron in a slice ipsilateral to the injury. A. DAPI nuclear labeling 

in the dentate gyrus shows a tightly packed granule cell layer and the proximal pyramidal cell 

layer. C. In the same section, a single eGFP neuron is present in the hilus. Arrows indicate the 

dendrites of this neuron that are concentrated in the hilus but do not cross the granule cell layer. 

E. Merged image of (A) and (C). B, D, and F. High-magnification of the area containing the 

eGFP neuron in (A), (C), and (E). Note: the axon of the eGFP neuron projects through the 

granule cell layer into the molecular layer (arrows). Abbreviations: g, granule cell layer; h, hilus; 

CA3, CA3 pyramidal cell layer. Scale bar is 50µm in A, C, and E and 25µm in B, D, and F.  

 

                   
Figure 5.3. Increased spontaneous action potential firing in hilar eGFP interneurons 

ipsilateral to the injury.  A-C. Cell-attached recordings of activity in a hilar eGFP interneuron in 

(A) a control slice, (B) a slice contralateral to the injury, and (C) a slice ipsilateral to the injury. 

D. Average action potential frequency for cells in each treatment group. Significance indicated by 

asterisk (*).  

 

 Excitatory synaptic input to hilar eGFP neurons was evaluated by whole-cell 

voltage-clamp recordings of sEPSCs at a holding potential of -60mV in controls (n= 21 

cells from 13 animals) and in slices contralateral (n= 13 cells in 11 animals) and 

ipsilateral (n= 21 cells in 15 animals) to the injury. Representative recordings for each 

group are shown in Figure 5.4 A-C. A difference in the mean event frequency was 

detected by one-way ANOVA (control: 4.5 ± 1.8 Hz; contralateral: 5.3 ± 1.9 Hz; 

ipsilateral: 20.9 ± 12.9 Hz; F(2,52)=25.5, P<0.001; Figure 5.4D). Post hoc comparisons 

revealed increased sEPSC frequency in hilar interneurons ipsilateral to the injury versus 

other groups. This 4-fold increase in event frequency is comparable to the increase 
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observed in granule cells after TBI (Hunt et al., 2010). The mean amplitude of sEPSCs 

for each treatment group was: control, -19.4 ± 6.7pA; contralateral, -18.8 ± 4.7pA; and 

ipsilateral, -20.9 ± 7.6pA. A significant difference between groups was not detected 

(F(2,52)=0.43; P=0.65; Figure 5.4E). Kinetics of sEPSCs were comparable to reported 

values in cortical eGFP-somatostatin interneurons in these same transgenic mice 

(Halabisky et al., 2006). One-way ANOVA did not detect a difference between groups in 

mean 10-90% rise times (control: 1.6 ± 0.4ms; contralateral: 1.7 ± 0.5ms; ipsilateral: 1.7 

± 0.4ms; F(2,52)= 1.0; P= 0.4) or decay time constant (control: 5.3 ± 2.0ms; contralateral: 

6.6 ± 2.2ms; ipsilateral: 6.8 ± 0.4ms; F(2,52)= 2.4; P= 0.11). 
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Figure 5.4. Increased sEPSC frequency in hilar eGFP interneurons in slices from the 

ipsilateral dentate gyrus. A-C. Example whole-cell patch-clamp recordings from eGFP-GABA 

neurons from (A) a control slice, (B) a slice contralateral to the injury, and (C) a slice ipsilateral 

to the injury. Line above each trace indicates area of the trace expanded below (arrows). D. 

Average sEPSC frequency for cells in each treatment group. Significance indicated by asterisk 

(*). E. Average sEPSC amplitude for cells in each treatment group. Inset shows example 

fluorescent illumination of a biocytin-filled eGFP neuron: a. eGFP-labeled neuron visualized in a 

live brain slice prior to recording; b. posthoc examination shows eGFP labeling; c. biocytin 

labeling of the same neuron (identified with an avidin Texas Red label); and d. merged image 

shows coexpression of eGFP and biocytin labeling.  

 

 Miniature EPSCs were recorded in the presence of 2µM TTX in some of the same 

cells used to examine spontaneous activity (controls, n=9; contralateral, n=8; ipsilateral, 

n=11). Representative recordings for each group are shown in Figure 5 A-C. Similar to 

spontaneous events, mEPSC frequency was significantly increased in hilar interneurons 

ipsilateral to the injury (control: 2.7 ± 1.3 Hz; contralateral: 3.1 ± 0.9 Hz; ipsilateral: 10.1 

± 6.5 Hz; F(2,52)= 9.72, P<0.001; Figure 5.5D). The ratio of the frequency of mEPSCs to 

sEPSCs (mEPSC/sEPSC) was calculated to examine the relative contribution of network-

driven inputs. The mEPSC/sEPSC ratio was significantly reduced in eGFP neurons 

ipsilateral to the injury (control: 0.71 ± 0.14; contralateral: 0.63 ± 0.17; ipsilateral: 0.44 ± 

0.17; F(2,25)= 7.6, P< 0.01; Figure 5.5E). Differences in mEPSC amplitude were not 

detected between groups by one-way ANOVA (control: 14.3 ± 7.0pA; contralateral: 13.4 

± 3.9pA; ipsilateral: 14.8 ± 4.3pA; F(2,25)=0.18; P= 0.83; Figure 5.5F). Similarly, I did not 

detect a difference in mean event 10-90% rise times (control: 1.7 ± 0.5ms; contralateral: 

1.9 ± 0.3ms; ipsilateral: 1.8 ± 0.4ms; F(2,52)= 0.7; P= 0.5) or decay time constants 

(control: 6.0 ± 2.8ms; contralateral: 7.0 ± 1.7ms; ipsilateral: 6.5 ± 1.4ms; F(2,52)= 0.6; P= 

0.6).  
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Figure 5.5. Increased mEPSC frequency in hilar eGFP interneurons of slices from the 

ipsilateral dentate gyrus. A-C. Example whole-cell patch-clamp recordings from eGFP neurons 

in (A) a control slice, (B) a slice contralateral to the injury, and (C) a slice ipsilateral to the injury. 

Line above each trace indicates area expanded below (arrows). D. Average mEPSC frequency for 

cells in each treatment group. E. Average mEPSC/sEPSC ratio for each treatment group. F. 

Average mEPSC amplitude for each treatment group. Significance indicated by asterisk (*).  

 

 

5.2.3 

 

Increased photostimulation-evoked activity in eGFP neurons after TBI 

 Nearly 60% of EPSCs in hilar eGFP neurons were action potential mediated, 

versus nearly 30% in cells from control slices. This suggests that excitatory synaptic 

input to eGFP neurons is enhanced due to greater local network activation of these 

neurons after injury, in addition to increased synaptic contacts. However, granule cells in 

slices ipsilateral to the injury did not fire spontaneous action potentials at rest in “normal” 

ACSF (n= 12), even in the presence of robust mossy fiber sprouting, because entorhinal 

inputs to granule cells were removed and recurrent excitatory circuits are normally 

masked by recurrent inhibition (Hunt et al., 2009, 2010). CA3 pyramidal cells are 

spontaneously active at rest in control animals (Spencer and Kandel, 1961; Wong et al., 
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1979; Wong and Prince, 1981) and may form functional synaptic connections with hilar 

GABAergic interneurons (Kneisler and Dingledine, 1995; Doherty and Dingledine, 2001; 

Mangin et al., 2008).  Therefore, I hypothesized that eGFP neurons receive increased 

excitatory inputs from both granule cells and CA3 pyramidal neurons.   

 Glutamate photostimulation applied to granule cells and CA3 pyramidal cells 

allowed for focal activation of cell bodies and dendrites but not axons of passage 

(Callaway and Katz, 1993; Hunt et al., 2010). After photostimulation of granule cells 

layer, an increase in evoked synaptic activity was observed in 2 of 6 eGFP cells from 

controls (3 of 71 stimulation sites) and 3 of 6 eGFP cells contralateral to the injury (3 of 

50 stimulation sites). After photostimulation of the CA3 pyramidal neurons, an increase 

in synaptic activity was observed in 2 of 5 eGFP cells from controls (4 of 20 stimulation 

sites) and 1 of 6 eGFP cells contralateral to the injury (1 of 20 stimulation sites). 

Representative positive evoked responses observed in eGFP cells from controls and 

contrlateral to the injury are shown in Figure 5.6.   
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Figure 5.6. Responses in hilar eGFP neurons after glutamate photostimulation of the 

granule cell and pyramidal cell layers in control slices. A. Example positive evoked response 

to photostimulation of the granule cell layer in a control slice. B. Example positive evoked 

response to photostimulation of the CA3 pyramidal cell layer in a control slice. C. Example 

positive evoked response to photostimulation of the granule cell layer in a slice contralateral to 

the injury. Note: application of 2µM TTX blocked synaptic responses but not the direct current. 

D. Example positive evoked response to photostimulation of the CA3 pyramidal cell layer in a 

slice contralateral to the injury. For each response, a series of 5 consecutive stimulation trials are 

shown superimposed with 3 trials separated to the right. All example recordings were obtained 

from photostimulations applied to principal cells located relatively near the recorded cell. 
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 Unlike the sparse local innervation detected in control slices, photostimulation of 

granule cells or CA3 pyramidal cells resulted in robust eEPSCs in hilar eGFP-GABA 

neurons ipsilateral to the injury (Figure 5.7). A synaptically-mediated response was 

observed in each of 7 cells after photostimulations applied to the granule cell layer (28 of 

85 stimulation sites, 1-8 sites per cell) and in 5 of 7 cells after stimulations applied to area 

CA3 (12 of 36 stimulation sites, 1-4 sites per cell). Because relatively few positive 

responses were observed in cells from slices of controls and contralateral to the injury, 

data in these cells were combined for analysis against responses from cells ipsilateral to 

the injury. The total number of sites that had a positive versus negative response was 

greater in cells ipsilateral to the injury (p<0.001 for granule cell layer stimulation, p<0.05 

for CA3 stimulation; Fisher’s exact test). A frequency histogram was constructed to show 

the distribution of the average number of eEPSCs for each group (Figure 7 B and C). The 

range of the number of eEPSCs was increased in eGFP neurons ipsilateral to the injury 

after photostimulations applied to granule cells (P<0.05; two-tailed Mann-Whitney U,) 

and to CA3 pyramidal cells (P<0.05; two-tailed Mann-Whitney U). Therefore, both the 

number of stimulation sites with a positive response and the number of EPSCs evoked at 

each site were increased in eGFP neurons ipsilateral to the injury.  
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Figure 5.7. Increased synaptic connections to hilar eGFP interneurons from granule cells 

and CA3 pyramidal cells detected by glutamate photostimulation in a slice ipsilateral to the 

injury. A. Example responses to photostimulation of the granule cell and CA3 pyramidal cell 

layers. Numbers to the left of each trace indicate corresponding numbered stimulus position 

shown in the inset. Arrowheads above each trace indicate time of stimulation. Positive responses 

were observed at stimulation sites 1 and 4-7. Note: addition of 2μM TTX blocked 

photostimulation-evoked synaptic activity but not the current due to direct activation of the 

recorded neuron, indicated by the asterisk (*). B and C. Frequency histograms show the 

distribution of the average number of eEPSCs after photostimulation of (B) the granule cell layer 

and (C) the CA3 pyramidal cell layer.  

 

5.2.4 

 

Reduced synaptic inhibition of dentate granule cells after TBI 

Increased excitatory synaptic inputs to hilar GABAergic interneurons may alter 

recurrent synaptic inhibition of granule cells. To test whether inhibitory synaptic input to 

dentate granule cells was altered after CCI injury, whole-cell voltage-clamp recordings of 

sIPSCs were obtained from granule cells in controls (n= 10 cells from 5 animals) and in 

slices contralateral (n= 12 cells in 11 animals) and ipsilateral (n= 20 cells in 11 animals) 

to the injury. Recordings were made from cells in the apex or outer blade regions of the 

granule cell layer in slices at or adjacent to the injury site. Spontaneous IPSCs were 

recorded at a holding potential of 0mV. At this potential, application of 30µM BMI 

completely blocked sIPSCs (n=5), indicating that these currents were mediated by 

GABAA receptors. Representative recordings for each group are shown in Figure 5.8A-C. 

The mean sIPSC frequency was significantly lower in granule cells ipsilateral to the 

injury versus other groups, as detected by one-way ANOVA with Tukey’s post hoc test 

(control: 3.31 ± 0.5 Hz, contralateral: 3.38 ± 1.07Hz, ipsilateral: 1.55 ± 0.47Hz; 

F(2,39)=34.5, P<0.001; Figure 5.8D).  

To determine whether IPSCs were related to the presence of mossy fiber 

sprouting, event frequency from ipsilateral slices was assessed based on post hoc 

identification of the presence (Timm scores >1, n=13) or absence (Timm scores ≤ 1, n=7) 

of mossy fiber sprouting in the inner molecular layer. A significant difference in sIPSC 

frequency was not found between slices with and without mossy fiber sprouting (P=0.84; 
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t-test; Figure 5.8E). One-way ANOVA did not detect a difference in sIPSC amplitudes 

between groups (control: 17.06 ± 3.8pA; contralateral: 18.04 ± 3.16pA; ipsilateral: 20.3 ± 

6.11pA; F(2,39)=1.7, P= 0.2; Figure 5.8F). However, one-way ANOVA found a significant 

difference in mean sIPSC 10-90% rise time (control: 1.5 ± 0.4ms; contralateral: 1.9 ± 

0.5ms; ipsilateral: 2.5 ± 0.8ms; F(2,39)= 7.4; P<0.01) and decay time constant (control: 

13.2 ± 4.8ms; contralateral: 13.8 ± 4.1ms; ipsilateral: 18.6 ± 5.6ms; F(2,39)= 5.8; P<0.01). 

While event kinetics in controls and contralateral slices were comparable to previously 

reported values for granule cells from controls (Kobyashi and Buckmaster, 2003; Shao 

and Dudek, 2005b), post hoc evaluations revealed slower sIPSC kinetics in granule cells 

ipsilateral to the injury.  
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Figure 5.8. Reduced sIPSC frequency in granule cells in slices from the ipsilateral dentate 

gyrus. A-C. Example whole-cell patch-clamp recording from granule cells in (A) a control slice, 

(B) a slice contralateral to the injury, and (C) a slice ipsilateral to the injury. Line below each 

trace indicates region of the trace expanded below (arrows). D. Average sIPSC frequency for 

cells in each treatment group. Significance indicated by asterisk (*). E. Average sIPSC frequency 

for cells in ipsilateral slices in the presence and absence of mossy fiber sprouting (MFS). F. 

Average sIPSC amplitude for cells in each treatment group.  

 

Miniature IPSCs were measured in the presence of 2µM TTX in some of the same 

granule cells used to measure sIPSCs. Representative recordings for each group are 

shown in Figure 5.9A-C. Similar to spontaneous events, mIPSC frequency was lower in 

granule cells ipsilateral to the injury (control: 2.56 ± 0.85 Hz; contralateral: 2.7 ± 1.08Hz; 

ipsilateral: 1.19 ± 0.42Hz; F(2,31)= 14.3, P<0.001; Figure 5.9D). A significant difference 

in mIPSC frequency was not found between slices with mossy fiber sprouting (n= 9) 

versus those without sprouting (n= 6) (P=0.93; t-test; Figure 5.9E). Additionally, a 

difference in mIPSC amplitude was not detected between groups by one-way ANOVA 

(control: 12.05 ± 2.35pA; contralateral: 14.17 ± 2.2pA; ipsilateral: 14.14 ± 3.19pA; 

F(2,31)= 2.0, P= 0.16; Figure 5.9F). Unlike spontaneous events, a significant difference 

was not detected in mean event 10-90% rise time (control: 1.7 ± 0.4ms; contralateral: 1.6 

± 0.3ms; ipsilateral: 1.9 ± 0.7ms; F(2,39)= 0.85; P<0.85) or decay time constant (control: 

13.2 ± 3.7ms; contralateral: 11.2 ± 2.4ms; ipsilateral: 14.9 ± 5.9ms; F(2,39)= 2.0; P= 0.15). 
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Figure 5.9. Reduced mIPSCs in granule cells of slices from the ipsilateral dentate gyrus. A-

C. Example whole-cell patch-clamp recording from granule cells in A) a control slice, (B) a slice 

contralateral to the injury, and (C) a slice ipsilateral to the injury. Line below each trace indicates 

area of the trace expanded below (arrows). D. Average mIPSC frequency for cells in each 

treatment group. Significance indicated by asterisk (*). E. Average mIPSC frequency for cells in 

ipsilateral slices in the presence and absence of MFS. F. Average mIPSC amplitude for cells in 

each treatment group.  

 

5.2.5 

 

Hilar evoked PPRs are unchanged 

 Reduced mIPSC frequency in granule cells after head injury, despite increased 

activity of hilar eGFP neurons, could be due to dysfunction of GABAergic synaptic 

efficacy to granule cells or altered probability of vesicle release (Hirsch et al., 1999). To 

examine whether a change in presynaptic function of GABAA receptor-mediated 

feedback inhibition could be detected after TBI, paired stimuli were applied to the hilus 

at pairing intervals of 30, 60, 90, 120, and 200ms (50% maximum threshold, 80 µs, 

0.1Hz) in the presence of 1mM kynurenic acid. Paired-pulse depression of eIPSC 

amplitudes was observed at all intervals (Figure 5.10), and application of 2µM TTX 

(n=3) or 30µM BMI (n=3) completely blocked hilar-evoked IPSCs. Two-way repeated 
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measures ANOVA detected a significant effect of pairing interval (F(4, 116)= 3.56, 

P<0.01), but there was no effect of treatment group (F(2, 29)= 0.48, P=0.63) or the pairing 

interval x treatment group interaction (F(8, 116)= 0.71, P=0.68). These findings suggest 

there is no significant change in PPRs after injury.  

 

                       
Figure 5.10. No change in paired-pulse ratios (PPRs) of hilar evoked GABAA receptor-

mediated IPSCs in granule cells after brain injury. A-C. Superimposed pairs of eIPSCs at 

pairing intervals of 30, 60, 90, 120, and 200ms (average of 8-10 responses for each trial) in 

granule cells from (A) a control slice, (B) a slice contralateral to the injury, and (C) a slice 

ipsilateral to the injury. Note that application of 2μM TTX blocked hilar-evoked IPSCs. D. 

Average paired-pulse responses across cells for each treatment group showed no differences 

between groups.   
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5.3  Discussion  

 

  Reactive plasticity of glutamatergic mossy fiber circuits is a defining feature of 

the injured dentate gyrus (Dudek and Spitz, 1997; Hunt et al., 2009, 2010). However, 

excitatory networks are strongly modulated by distinct subtypes of GABAergic 

interneurons (Freund and Buzsáki, 1996), each having specialized functional roles to 

control neuronal excitability, synaptic efficacy, and synchronization. Perturbation of 

these circuitries after trauma may contribute to cognitive dysfunction (Witgen et al., 

2003) or posttraumatic epileptogenesis (Toth et al., 1997; Hunt et al., 2009). Enhanced 

excitatory innervation of dentate GABAergic interneurons is a proposed cellular 

mechanism associated with injury-induced epileptogenesis (Chang and Lowenstein, 

2003; Sloviter et al., 2003), but previous functional evidence suggests excitatory drive 

onto basket cells and hilar border interneurons is reduced in epilepsy (Doherty and 

Dingledine, 2001; Zhang and Buckmaster, 2009). In the present study I used mice in 

which a subset of somatostatin-GABAergic neurons express eGFP (i.e., GIN mice; Oliva 

et al., 2000). Frequencies of spontaneous, miniature, and photostimulation-evoked EPSCs 

were all increased in hilar eGFP neurons ipsilateral to the injury. Therefore, rewiring 

patterns of inhibitory circuits after brain injury may be specific to each GABA cell 

subtype. 

 Modifications of GABAergic networks may reflect a domain specific shift of 

inhibitory control over granule cells to stabilize excitatory networks after TBI. Increased 

excitability of eGFP neurons is consistent with larger soma size and increased axon and 

dendritic length in these neurons after pilocarpine-induced epilepsy (Zhang et al., 2009). 

These changes likely augment inhibitory shunting of excessive excitatory perforant 

pathway input into the dentate gyrus, which would tend to prevent the inadvertent 

activation of new recurrent excitatory circuits formed by mossy fiber sprouting. Whether 

hilar eGFP neurons also sprout axon collaterals to nearby CA3 pyramidal cells after 

injury is unknown, but this could help reestablish inhibitory tone in the hippocampus 

after injury. Alternatively, perisomatic inhibition provided by basket cells is important for 

synchronizing principal cell output (Lytton et al., 1991; Cobb et al., 1995; Miles et al., 

1996). In the injured dentate gyrus, granule cell synchrony is augmented by the 
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emergence of new recurrent mossy fiber circuits (Dudek and Spitz, 1997; Hunt et al., 

2009). This may diminish the role of inhibitory control provided by basket cells. 

Consistent with this hypothesis, dentate basket cells receive fewer excitatory synaptic 

inputs and a higher basket cell – to – granule cell transmission failure rate is observed in 

epilepsy (Zhang and Buckmaster, 2009). Therefore, the global loss, preservation, or 

enhancement of synaptic inhibition after TBI may not be as important to principal cell 

function as GABA cell-type specific modifications of inhibitory circuits.  

 Anatomical evidence indicates that mossy fibers normally make synaptic contacts 

with hilar somatostatin interneurons (Leranth et al., 1990; Katona et al., 1999), but 

functional CA3 pyramidal cell input to these neurons has not been well established 

(Wittner et al., 2006). I found that hilar eGFP interneurons receive input from both cell 

layers, and there is increased excitatory synaptic input from granule cells and CA3 

neurons after head injury. The action potential-driven sEPSCs in eGFP neurons likely 

arise from CA3 pyramidal cells, because granule cells were rarely active in our slice 

preparations. Whether this network-driven activity is due to increased recurrent 

excitatory connections among CA3 neurons or another means of pyramidal cell activation 

is unknown. Hilar mossy cells could also contribute to enhanced excitability of inhibitory 

neurons and cannot be ruled out. However, this may not be a major contribution since 

nearly 50% of these neurons die after even moderate TBI (Tóth et al., 1997; Santhakumar 

et al., 2000). 

 Photostimulation-evoked synaptic connections between local principal cells and 

recorded eGFP neurons were sparse in control slices. To ensure uniformity, all recordings 

were made in slices with similar location (i.e., coronal sections in the transverse plane of 

the dorsal dentate gyrus), geometry, and under identical recording conditions. Individual 

granule cells often make only a single contact onto putative hilar somatostatin 

interneurons (Acsády et al., 1998), possibly making these inputs difficult to detect by the 

methods employed here. Difficulty in obtaining synaptic connections between granule 

cells and CA3 GABA cells in control slices has been acknowledged (Szabadics and 

Soltesz, 2009). Regardless, evoked activity that reflects synaptic connections onto eGFP 

neurons was significantly increased after TBI and could be evoked from relatively distant 

sites (e.g. the opposite blade of the granule cell layer, see Figure 5.7). Polysynaptic 
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activation of eGFP neurons after photostimulation is possible (e.g., granule cell –to– CA3 

–to– eGFP neuron). However, onset latencies of eEPSCs after granule cell layer 

stimulation were often similar to evoked granule cell-to-granule cell synaptic connections 

after TBI (Hunt et al., 2010), and these responses sometimes occurred in the absence of 

positive evoked responses to CA3 stimulation. Therefore, increased synaptic input to 

eGFP neurons after TBI likely arise from both granule cells and CA3 pyramidal cells.  

 

5.3.1 

 

New connectivity patterns after injury could promote neuronal synchronization 

 Whether increased connectivity of hilar somatostatin-GABAergic neurons is 

compensatory or a pathogenic response remains unknown. These neurons have extensive 

axonal arborizations and large terminal fields in the dentate molecular layer (Leranth et 

al., 1990; Freund and Buzsáki, 1996; Katona et al., 1999; Buckmaster et al., 2002). 

Increased input-output relationships of surviving GABA cells allows for a single neuron 

to exert greater control over a larger number of principal cells. Inhibitory axon sprouting 

has long been a proposed mechanism for network synchronization in epilepsy (Babb et 

al., 1989), and modeling suggests that highly interconnected neurons may promote this 

activity (Traub and Wong, 1982; Morgan and Soltesz, 2008). Dendritically-projecting 

GABA neurons have been proposed to time rhythmic cortical cell discharges (Szabadics 

et al., 2001) and to drive ictogenesis (Wendling et al., 2002). With increased activity and 

presumably more divergent outputs (Zhang et al., 2009), there is greater risk that these 

cells will periodically coordinate synchronous activity in the dentate gyrus or 

hippocampus by restricting perforant pathway input simultaneously to larger groups of 

granule cells. Recently, Bonifazi et al. (2009) proposed that a small but morphologically 

heterogeneous subpopulation of GABAergic interneurons act as “superconnected hubs” 

to coordinate synchronous activation of CA3 neurons in the developing hippocampus. 

Perhaps eGFP neurons are converted into analogous “GABAergic hubs” that promote 

granule cell synchrony after injury. Moreover, fewer inhibitory neurons, each with 

greater influence over principal cells, implies that periodic failure of these neurons (e.g., 

transient inactivation during excessive or sustained excitation) may be more detrimental 

to restraining excitatory inputs to granule cells after injury than in controls.  
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5.3.2 Reduced synaptic inhibition after TBI

 

  

 It seems likely that the substantial reduction in synaptic inhibition detected in 

granule cells after TBI is due to inhibitory neuron loss and the subsequent loss of 

synaptic contacts. Whether cell loss is preferential for certain subtypes of hilar neurons 

after TBI, as is often observed in temporal lobe epilepsy, remains unresolved. 

Parvalbumin-, cholecystokinin-, and somatostatin-immunoreactive cells are all reported 

to be reduced 1 week after moderate TBI (Lowenstein et al., 1992; Toth et al., 1997; 

Santhakumar et al., 2000), and numbers of parvalbumin and GAD-67 immunoreactive 

hilar interneurons remain reduced 5 months post-injury (Santhakumar et al., 2000). A 

recent study suggested reduced mIPSC frequency in granule cells contralateral to CCI in 

rats, but the ipsilateral dentate gyrus was unsuitable for patch-clamp recordings due to 

extensive damage after severe CCI (Mtchedlishvili et al., 2010). Our findings are not 

consistent with this result. Cortical cavitation as a result of the contusion injury produced 

by this model can occasionally extend into the hippocampus and dentate gyrus (Hall et 

al., 2005; Saatman et al., 2006; Hunt et al., 2010), but it does not normally ablate the 

ipsilateral hippocampus. 

 Slower sIPSC kinetics recorded at the granule cell soma is consistent with loss of 

perisomatically synapsing GABA neurons and increased activity or axon sprouting of 

dendritically projecting somatostatin-positive neurons (Pearce, 1993; Kobayashi and 

Buckmaster, 2003; Zhang et al., 2009). That no change in mIPSC kinetics was found may 

not be surprising as mIPSCs are reported to originate mostly from proximal synapses in 

granule cells (Soltesz et al., 1995). Altered IPSC kinetics have also been observed in 

epileptic animals (Kobayashi and Buckmaster, 2003; Shao and Dudek, 2005b; Sun et al., 

2007). These changes could also be due to altered GABAA receptor subunits (Brooks-

Kayal et al., 1998), altered ratio of dendritic versus perisomatic synapses (Cossart et al., 

2001), or passive properties of granule cells. Surprisingly, I did not detect presynaptic 

changes in GABA release as reported in the pilocarpine model (Kobyashi and 

Buckmaster, 2003). This may be due to model specific differences, stimulator position 

(molecular layer versus hilus), stimulus intensity, or other technical differences. 
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Moreover, GABAergic cell subtype-specific changes in presynaptic function cannot be 

estimated by this method.  

 Increases in excitatory input to a subset of hilar GABA neurons arise from the 

granule cell layer and area CA3 after brain injury. These rewiring changes may be a key 

factor in restoring inhibitory control to granule cells in the injured dentate gyrus, or they 

may promote periodic granule cell synchrony in the presence of other excitatory and 

inhibitory circuit changes.  
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Chapter 6  

General Discussion 

 

6.1  Summary of findings 

 

The principal findings of this dissertation research are: 1) mice develop 

posttraumatic seizures after moderate and severe CCI injury, 2) a recurrent excitatory 

circuit forms among granule cells in the dentate gyrus only when posttraumatic mossy 

fiber sprouting is present, 3) putative somatostatin GABAergic interneurons in the hilus 

receive increased excitatory synaptic input from granule cells and CA3 pyramidal cells 

after TBI, and 4) overall inhibitory synaptic input to dentate granule cells is reduced 

ipsilateral to the injury. These long-term structural and functional changes in neuronal 

circuitry are consistent with and expand upon findings in human and experimental 

epilepsy. Moreover, these results suggest that CCI injury may be an advantageous model 

of PTE in mice.  

 

6.2  Models of posttraumatic epilepsy 

 

Most of the information about cellular mechanisms of epileptogenesis has been 

derived from animal models. There is an ongoing debate over which experimental 

paradigms make for appropriate models of PTE, versus other forms of acquired epilepsy 

(Dichter, 2009). Pitkänen and McIntosh (2006) proposed the presence of spontaneous 

seizures in whole animals, versus slice or cell culture preparations, as necessary criteria 

for an epilepsy model. Relatively high numbers of animals in which the behavioral, 

anatomical, and physiological characteristics of epileptic pathology in humans is 

reproduced are essential to any epilepsy model. Additionally, models with low mortality 

and short but distinct latencies between initial injury and spontaneous seizure onset are 

also advantageous. The term “posttraumatic epilepsy” infers that a model also be 

considered a relevant model of experimental neurotrauma (i.e., spontaneous seizures are 

induced by mechanical injury). An ideal model will effectively reproduce the range of 

tissue deformation and damage observed in mild, moderate, and severe TBI so that the 
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dual pathology of cellular and molecular factors associated with injury severity and 

epileptogenesis can be dissociated. The ideal model should also invoke known risk 

factors for PTE.  

Using these selection criteria, many traditional experimental epilepsy models, 

such as pharmacologically-induced status epilepticus, do not qualify as models of PTE, 

because they do not induce spontaneous seizures by a mechanical insult. This is not to 

negate these models, because they have provided valuable information about cellular 

mechanisms of epileptogenesis. Rather, these criteria provide a more restrictive and 

specific basis for differentiating between epileptogenesis mediated by a mechanically-

induced lesion versus brain insults by other causes (e.g., pharmacological agents or 

electrical stimulation). It is important to make this distinction, because there is currently 

no effective treatement for PTE (Temkin, 2009; discussed below). Therefore, it is 

important to understand how the epileptogenic processes in experimental neurotrauma are 

similar, or different, in comparison with human PTE and other experimental epilepsy 

models (e.g., TLE induced by status epilepticus).  

The presence of spontaneous behavioral seizures in mice after CCI is an important 

finding of the present study. Previously, posttraumatic electrographic activity, behavioral 

seizures, or hyperexcitability have only been examined in rats. The present finding that 

mice develop seizures after CCI injury is supported by a recent study which found that 

electrographic seizures accompany behavioral seizures after CCI in rats (Statler et al., 

2009). That CCI is a widely used model of TBI suggests that it should also be considered 

as a model of PTE. Seizures after CCI are similar to spontaneous behavioral and 

electrographic seizures that have been described in rats after lateral FPI (Kharatashivilli 

et al., 2006) and in models of TLE (Racine et al., 1979; Cronin and Dudek, 1988; 

Sloviter, 1992; Buckmaster and Dudek, 1997; Patrylo and Dudek, 1998; Hellier and 

Dudek, 1999; Waurin and Dudek, 2001; Shibley and Smith, 2002). Spontaneous seizures 

after CCI occur with similar onset latency as pharmacologically-induced TLE (Hellier 

and Dudek, 1999; Shibley and Smith, 2002), which appears to be considerably shorter 

than the seizure onset latency after severe lateral FPI in rats (Kharatashivilli et al., 2006). 

The CCI model is currently the only mouse model of epilepsy after closed-head TBI.  
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It is difficult to compare PTE after CCI or lateral FPI injury with the rostral 

parasagittal FPI model used by D’Ambrosio and colleagues (2004, 2005, 2009). Rats 

injured by rostral parasagittal FPI do not generally develop tonic-clonic convulsive 

seizures (D’Ambrosio et al., 2004; 2005; 2009). The first study (D’Ambrosio et al., 2004) 

examined behavioral seizures based on the traditionally used modified Racine rating 

scale, but later studies (D’Ambrosio et al. 2005, 2009) developed a new seizure 

classification scale to describe the subtle behavioral abnormalities associated with 

electrographic activity in this model. The authors reasoned that posttraumatic seizures 

after rostral parasagittal FPI did not fit well with the Racine scale. The majority of 

electrographic abnormalities of injured rats in these studies was associated with 

behavioral inactivity or crouching and may not have been considered “seizure” activity in 

other studies (Kharatashivilli et al., 2006, 2007; Hunt et al., 2009, 2010; Statler et al., 

2009). There are numerous benign variants of normal electrographic patterns that can 

morphologically reflect epileptiform activity but are not epileptic (Santoshkumar et al., 

2009). Future studies that combine EEG monitoring with electromyogram (EMG) and 

electro-oculogram (EOG) may better distinguish ictal activity from interictal events or 

benign electrographic patterns.  

 

6.3  Posttraumatic epileptogenesis 

 

The term “epileptogenesis” refers to a transformation process by which the 

normal brain develops an increased propensity for generating spontaneous seizures 

(Lothman et al., 1991). That this process includes a latent period of variable time 

suggests a progressive series of cellular changes may be involved. Understanding the 

epileptogenic process after TBI should help to elucidate the importance of these cellular 

mechanisms in PTE and promote new therapeutic targets. Trauma sets into motion a 

multidimensional cascade of cellular and molecular events that involve three temporally 

overlapping responses in the brain: primary and secondary injuries and “self-repair” 

mechanisms (Mendelow and Crawford, 1997; Laurer et al., 2000; Graham et al., 2006; 

Figure 6.1). A key factor in future studies which investigate posttraumatic 
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epileptogenesis is to dissociate injury-induced cellular alterations that promote seizure 

generation from compensatory and “self-repair” responses. 

Primary injury refers to the immediate tissue deformation and compression that 

occurs within seconds to minutes after mechanical brain insult (Mendelow and Crawford, 

1997; Laurer et al., 2000; Graham et al., 2006). There is an immediate release of 

neurotransmitters, glutamate in particular, which is followed by ion channel activation 

and calcium influx. This can lead to excitotoxic injury, reflected by mitochondrial 

damage and energy depletion; neuronal and glial swelling; and cell death. Vascular 

damage and blood-brain barrier disruption can also occur in primary injury. Cortical 

structures such as the hippocampus are especially vulnerable to neuronal damage after 

moderate and severe TBI. Moreover, the presence of immediate seizures can further 

exacerbate initial damage and complicate injury management (Temkin, 2009). Strategies 

to protect against primary injury focus on preventive rather than therapeutic measures 

(e.g., wear a helmet when riding a bicycle).  

Secondary injury involves a myriad of cellular and physiological factors 

associated with progressive tissue damage (Mendelow and Crawford, 1997; Teasdale and 

Bannan, 1997; Laurer et al., 2000; Graham et al., 2006). Over time, brain injury triggers 

inflammatory cascades, growth factor responses, edema, mitochondrial dysfunction, 

oxidative stress due to the build-up of free radicals and reactive oxygen species, delayed 

cell death, perturbation of cellular calcium homeostasis, and hypoxia and ischemia. The 

brain initiates “self-repair” mechanisms over the course of days to months concurrent 

with the development of secondary tissue damage. This period is characterized by 

synaptic circuit remodeling, axon sprouting, synaptic plasticity, gliosis, neurogenesis, and 

angiogenesis. As shown in the present study, time-dependant reorganization of synaptic 

circuitry can promote increased synchronous neuronal activity that may contribute to 

spontaneous seizure generation. Therefore, repair mechanisms may not always be 

beneficial. The primary goal of neuroprotective measures is to prevent or reduce 

secondary brain damage and to enhance beneficial “self-repair” mechanisms (Mendelow 

and Crawford, 1997; Teasdale and Bannan, 1997; Graham et al., 2006).  

Genetic background, gender, age, acute medical treatments, and agent of injury all 

likely influence the epileptogenic processes, but the contribution of these personal traits 
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and injury dynamics in epilepsy have not been well established (Pitkanen and McIntosh, 

2006). A better understanding of the importance of these factors in posttraumatic 

epileptogenesis will likely elucidate why some individuals develop PTE after TBI while 

others do not.  

 

Figure 6.1. Cellular progression of neurotrauma.  
 
 
 
6.4  Modified circuits may compromise dentate gyrus filtering 

 

As shown in the present study, excitatory and inhibitory circuitries in the dentate 

gyrus undergo dramatic reorganization after TBI (Figure 6.2). A new interconnected 

network among granule cells, reorganization of inhibitory circuits, and a variety of other 

cellular changes may all promote seizure generation by compromising dentate gyrus 

filtering capability. Mossy fiber sprouting creates a means for granule cell synchrony that 

is not present in the normal dentate gyrus. Inhibitory control over granule cells may be 

unable to restrain excessive excitatory inputs from the the entorhinal cortex. This may be 

due to fewer GABAergic synaptic contacts, but it could also be due to a shift in domain 

specific inhibitory control over principle cells.  
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Figure 6.2. Reorganization of dentate gyrus circuitry after brain injury. 1. Within days after 

injury there are fewer mossy cells and GABA neurons in the hilus (Lowenstein et al., 1992; Toth 

et al., 1997; Santhakumar et al., 2000). 2. Within weeks after TBI, mossy fibers sprout axon 

collaterals into the inner molecular layer and form a new recurrent excitatory circuit among 

granule cells (Chapters 3 and 4). 3. Somatostatin-positive GABA neurons in the hilus receive 

increased excitatory inputs from granule cells and CA3 pyramidal cells (Chapter 5). 4. These 

neurons also have increased axon length in the molecular layer in epilepsy (Zhang et al., 2009). 5. 

In contrast, excitatory drive to basket cells is reduced after pilocarpine-induced status epilepticus 

(Zhang and Buckmaster, 2009). Abbreviations: ML, molecular layer; GCL, granule cell layer; 

CA3, CA3 pyramidal cell layer; BC, basket cell; MC, mossy cell; SOM, somatostatin-positive 

GABA neuron; and PC, pyramidal cell.  
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Spontaneous reverberating burst discharges in the injured dentate gyrus with 

mossy fiber sprouting after GABAA-receptor blockade supports the hypothesis that a 

failure of inhibitory influences to regulate granule cell excitability may allow the 

inadvertent activation of recurrent mossy fiber circuits and permit synchronous activity in 

the dentate gyrus. Therefore, it is reasonable to suggest a transient failure of already 

fragile GABAergic circuitry may periodically promote granule cell synchrony. In the 

posttraumatic or epileptic dentate gyrus, a subopulation of surviving hilar GABA neurons 

receive an excessive amount of excitatory inputs (i.e., somatostatin-positive interneurons) 

while other GABA neurons may have a significant loss of inputs (i.e., basket cells). The 

effectiveness of inhibitory circuits to mask recurrent mossy fiber circuits likely depends 

on the ability of dendritic inhibition to properly shunt excitatory inputs and perisomatic 

inhibition to properly gate granule cells and prevent inappropriate synchrony in granule 

cells.  

 

6.5   Is mossy fiber sprouting an epiphenomenon? 

 

While mossy fiber sprouting is a consistent and reliable marker of the epileptic 

dentate gyrus, some propose that its functional contribution to epileptogenesis may be 

insignificant (Longo and Mello, 1997, 1998, 1999; Nissinen et al., 2001). The degree of 

mossy fiber sprouting in the inner molecular layer does not correlate well with seizure 

frequency or severity in epileptic rats (Buckmaster and Dudek, 1997). However, another 

study suggests that the degree of mossy fiber sprouting ipsilateral to lateral FPI is 

correlated with posttraumatic EEG spike activity (Kharatashivilli et al., 2007). Moreover, 

abnormal excitatory responses in epileptic tissue from humans and rodents are generally 

only observed when physiological conditions are perturbed (i.e., in the presence of 

GABAA-receptor antagonists). This has led some to propose that mossy fiber sprouting 

does not contribute to seizure generation, because it is normally masked by inhibitory 

influences.  

Treatment with the immunosuppressant, rapamycin, reduces the density of 

Timm’s staining in the inner molecular layer of rats after pilocarpine-induced status 

epilepticus (Buckmaster et al., 2009) and in Tsc1flox/flox-GFAP-Cre knock-out 
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(Tsc1GFAPCKO) mice, a model of Tuberous sclerosis (Zheng et al., 2009). Zheng et al. 

(2009) reported a reduction in seizure frequency and duration that was associated with 

less robust mossy fiber sprouting. However, the Buckmaster laboratory reported that 

intraperitoneal administration of rapamycin did not reduce spontaneous seizures after 

pilocarpine-induced status epilepticus, despite less robust mossy fiber sprouting 

(Galanopoulou et al., 2010). These studies highlight the controversy over whether mossy 

fiber sprouting has functional significance in TLE.  

There are several possible explanations for why spontaneous seizures may persist 

despite reduced mossy fiber sprouting after rapamycin treatment. Rapamycin treatment 

did not ablate mossy fiber sprouting in previous studies (Buckmaster et al., 2009; Zheng 

et al., 2009; Galanopoulou et al., 2010). There may be a plateau effect to any causal 

relationship between mossy fiber sprouting and seizure generation. Moreover, the 

findings in the present study suggest that robust, bilateral mossy fiber sprouting is not 

necessary for seizure generation. Perhaps rapamycin treatment also prevents GABA cell 

axon sprouting, in addition to blocking mossy fiber sprouting. This would be expected to 

reduce recurrent excitability but further compromise inhibitory control in the dentate 

gyrus. Another possibility is that rapamycin drug treatment has indirect actions or side 

effects that provoke seizures concurrent with preventing mossy fiber sprouting. If this 

were to occur, these non-epileptic seizures would be difficult, if not impossible, to 

dissociate from spontaneous seizures. For example, rapamycin inhibits the mammalian 

target of rapamycin (mTOR) which regulates insulin signaling pathways, and chronic 

rapamycin treatment promotes insulin resistance and a hyperglycemic state in humans 

(Di Paolo et al., 2006; Um et al., 2006) and in a Psammomys obesus model of type 2 

diabetes (Fraenkel et al., 2008). Hyperglycemia can provoke seizures, and these non-

epileptic seizures stop when hyperglycemia is corrected (Hennis et al., 1992). It is also 

possible that rapamycin treatment has different effects in different brain regions (e.g., 

there is a reduction in mossy fiber sprouting but an increase in CA1 pyrdamidal cell axon 

sprouting). Regardless, the relationship between mossy fiber sprouting and seizure 

generation is likely indirect, because synaptic network reorganization elsewhere in the 

brain may promote seizure generation independent of mossy fiber reorganization.  
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It is important to note that clinical seizures are infrequent episodic events that 

have identifiable beginning and ending points. Because synaptic reorganization likely 

occurs in other brain regions after injury (e.g., area CA1, Smith and Dudek, 2001, 2002; 

Scheff et al., 2005), it is unrealistic to expect mossy fiber sprouting to have a direct 

causal relationship with spontaneous seizure generation. It is also unrealistic to expect 

continuously detectable network synchronization or other electrophysiological 

abnormalities despite such a dramatic and permanent reorganization of excitatory and 

inhibitory circuitry. This is especially important when examining network function in 

acute brain slices - where many synaptic inputs have been surgically removed. Rather, 

reorganized circuits form the basis from which functional electrical discharges can 

periodically surface. Mossy fiber sprouting into the inner molecular layer is associated 

with an increase in sEPSC frequency in granule cells in normal ACSF (Wuarin and 

Dudek, 2001, Chapter 4) and new recurrent excitatory synaptic input to granule cells 

when inhibition is suppressed (Cronin et al., 1992; Wuarin and Dudek, 1996; 2001; 

Patrylo and Dudek, 1998; Lynch and Sutula, 2000; Winokur et al., 2004; Chapter 3 and 

4). Increases in neuronal activity and network synchronization are widely hypothesized to 

be underlying factors in seizure generation. Therefore, the dentate gyrus acts as a model 

system for reactive plasticity in epilepsy. 

 

6.6  Additional Future Directions 

  
6.6.1 
 

Synaptic reorganization of other cortical regions after TBI 

 
There is an abundant literature describing the structural and functional 

reorganization of synaptic circuitry in the dentate gyrus in epilepsy (Lothman et al., 1991; 

McNamara, 1994; Dudek and Spitz, 1997; Nadler, 2003; Sutula and Dudek, 2007, Dudek 

and Sutula, 2007). This can lead inappropriately to a “dentate-centric” view of TLE. 

Focus was placed on the dentate gyrus in the present study, because of the abundant 

literature on this brain region, it is relatively easy to identify changes in mossy fiber 

circuitry, and it allowed for comparisons to easily be made versus traditional models of 

TLE (e.g., models of TLE after status epilepticus). Time-dependant reorganization of 
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excitatory and inhibitory circuits in other brain regions that are susceptible to neuronal 

injury after TBI is likely. For example, increased recurrent excitatory pyramidal cell 

connections have been reported in CA1 (Smith and Dudek, 2001, 2002; Calcagnotto and 

Baraban, 2005; Shao and Dudek, 2005a), neocortex (Salin et al., 1995), and thalamus 

(McCormick and Contreras, 2001) in a variety of experimental models. All of these brain 

regions are injured after experimental TBI (Hall et al., 2008), but whether an increase in 

recurrent excitation can be detected in these areas after TBI is unknown. The findings 

presented in Chapter 5 that eGFP neurons receive increased network-driven excitatory 

input after TBI may infer an injury-induced increase in recurrent CA3 pyramidal cell 

activity. Application of techniques similar to those performed in the present study will be 

useful in examining alterations in synaptic circuitry in other brain regions after TBI. 

 

6.6.2 

 

Synaptic circuit reorganization in area CA1 after TBI 

Investigation of injury-induced synaptic reorganization in area CA1 after TBI is a 

particularly interesting future direction. Scheff et al. (2005) reported an initial loss of 

morphologically identified synapses in stratum radiatum two days post-CCI injury. This 

was followed by a progressive increase in the number of synapses out to 60 days post-

injury, but the number of synapses was not restored to sham-control levels. These 

findings suggest that pyramidal cells undergo time-dependent synaptic plasticity changes, 

but whether these new synaptic contacts reflect excitatory or inhibitory synapses remains 

unknown. An injury-induced increase in recurrent excitatory connections among CA1 

pyramidal cells is possible and may also contribute to seizure generation after CCI.  

GABA cell subtype-specific reorganization of inhibitory circuitries may be 

different in area CA1 than in the dentate gyrus. There are fewer GABA neurons and 

inhibitory synaptic inputs to pyramidal cells in area CA1 after status epilepticus (Cossart 

et al., 2001; Smith and Dudek, 2001), in mutant mice with spontaneous seizures (Cobos 

et al., 2005), and in focal cortical dysplasia (Calcagnotto and Baraban, 2005). Cossart et 

al. (2001) suggested there is a reduction in dendritic inhibition but an increase in somatic 

inhibition of CA1 pyramidal cells after pilocarpine- and kainic acid-induced status 

epilepticus. These changes were accompanied by a preferential loss of dendritically 
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projecting stratum oriens interneurons and a global increase in excitatory drive to GABA 

neurons (i.e., perisomatic and dendritic projecting GABA neurons both had increased 

excitatory synaptic inputs). These findings are different from previous studies, including 

the present study, that have reported reduced synaptic inhibition of dentate granule cells 

(as measured from the soma) and GABA cell subtype-specific changes in excitability. 

Therefore, enhanced recurrent excitatory connections is widely believed to promote 

synchronous network activity and seizure generation, but domain specific reorganization 

of inhibitory circuits may vary in different brain regions. At least a subpopulation of 

hippocampal eGFP neurons survives severe CCI injury (Figure 6.3). Whether excitatory 

drive to these neurons is increased after TBI, as observed in hilar eGFP neurons, is 

unknown.  
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Figure 6.3. Surviving hippocampal eGFP neurons in a slice at the injury site. Merged image 

of DAPI nuclear labeling (blue) and eGFP fluorescent illumination. Abbreviations: so, stratum 

oriens; p, CA1 pyramidal cell layer; sr, stratum radiatum; sl-m, stratum lacunosum-moleculare; 

m, molecular layer; g, granule cell layer; h, hilus. Dotted line indicates hippocampal fissure. 

Asterisk (*) indicates cortical cavity produced by contusion injury. Note the dense plexus of 

eGFP in the molecular layers of CA1 and the dentate gyrus. Scale bar is 50µm. 

 

6.6.3 
 
Reorganization of dentate inhibitory circuits after TBI 

There are a number of future experiments that can expand upon the present 

finding that excitatory drive to hilar GABA neurons is increased after TBI. The findings 

presented in Chapter 5 suggest an increase in excitatory input to hilar eGFP neurons but a 

decrease in overall synaptic inhibition of granule cells. Simultaneous dual somatic and 

dendritic recordings in granule cells will better reveal how domain specific synaptic 

inhibition of granule cells is altered after TBI. A shift in the normal balance between 

excitation and inhibition in principal cell dendrites has been speculated as an underlying 

factor driving ictogenesis (Szabadics et al., 2001; Wendling et al., 2002; El-Hassar et al., 

2007). Moreover, dual recordings between synaptically connected eGFP neurons and 

granule cells may reveal the effectiveness of eGFP neurons to shunt electrically 

stimulated excitatory perforant pathway input after TBI. Preliminary evidence suggests 

that synapses of eGFP neurons with granule cells may be dysfunctional in epilepsy 

(Zhang et al., 2009). 

An increased propensity of hilar GABA neurons to periodically inactivate after 

TBI was proposed in this study as a hypothetical mechanism for episodic failure of 

synaptic inhibition in the dentate gyrus. Future studies should examine whether this can 

be demonstrated in slice preparations. This could be tested by high frequency 

stimulations applied to the perforant pathway and/or by altering the ionic composition of 

ACSF (e.g., increase [K+]o or remove Mg2+). Excessive depolarization of hilar eGFP 

neurons – due to large numbers of excitatory inputs – may periodically lead to a transient 

inactivation of these neurons (e.g., after sodium channel inactivation in these cells). 

Inactivation of eGFP neurons would be expected to temporarily lessen dendritic synaptic 

inhibition of target neurons (i.e., granule cells). This may permit a “run” of synchronous 
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activity among granule cells and rhythmic discharges that propagate throughout the 

hippocampus, because hilar somatostatin interneurons innervate large portions of the 

dentate gyrus (Han et al., 1993; Buckmaster et al., 2002). Moreover, putative hilar 

somatostatin interneurons discharge only a single action potential in response to perforant 

pathway stimulation, versus a burst of action potentials evoked in basket cells 

(Buckmaster et al., 2002). This may reflect a higher threshold for activation or increased 

spike accommodation. Whether this threshold changes after TBI is unknown.  

Excitability of other hilar GABA neuron subtypes should also be investigated to 

examine GABA cell subtype-specific reorganization of inhibitory circuitry after injury. 

Perisomatic inhibition provided by dentate basket cells is critical for controlling gating 

properties of principal cells (Cobb et al., 1995; Miles et al., 1996). These neurons have 

fewer excitatory inputs and a greater basket cell – to – granule cell transmission failure 

rate after pilocarpine-induced TLE (Zhang et al., 2009), but the function of these neurons 

after brain injury is unknown. The findings presented in Chapter 5 showing reduced 

spontaneous and miniature IPSCs suggests that basket cells and axo-axonic neurons may 

be differentially affected by TBI, versus hilar eGFP neurons. Changes in basket cell and 

axo-axonic neuronal circuits have been proposed to be especially important in preventing 

the spread of excitability throughout the hippocampus (Toth et al., 1997). Moreover, 

previous studies have suggested dysfunction in feed-forward inhibition of granule cells at 

one-week and several months after TBI (Lowenstein et al., 1992; Toth et al., 1997; 

Santhakumar 2000, 2001). It is unknown whether somatic or axonal projecting inhibitory 

neurons can effectively terminate synchronous granule cell discharges when they arise 

after TBI.  

How specific subunits of postsynaptic and extrasynaptic GABAA receptors are 

chronically altered in granule cells after TBI remains to be established. The subunit 

composition of GABAA receptors – which consist of a family of heteropentimeric 

ionotropic membrane receptors with at least 16 different known subunits (α1-6, β1-3, γ1-

3, ε, δ, π, and θ) (Sieghart, 2000) – can determine its kinetic properties. Moreover, there 

are alterations in GABAA receptor subunits in experimental and human TLE (Rice et al., 

1996; Schwarzer et al., 1997; Brooks-Kayal et al., 1998; Fritschy et al., 1999; Loup et al., 

2000; Houser and Esclapez, 2003; Peng et al., 2004; Zhang et al., 2007). In Chapter 5, I 
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found that sIPSCs in granule cells had slower decay time constants. This could reflect a 

change in the subunit composition of GABAA receptors that mediate synaptic (phasic) 

inhibition. For example, if postsynaptic GABAA receptors in granule cells have a α1 to 

α2 subunit switch after TBI, slower decay times of sIPSCs may be expected (Okada et al., 

2000). An increased propensity for GABAA receptor reopening after desensitization may 

also prolong decay time after TBI (Jones and Westbrook, 1996). Moreover, little is 

known how extrasynaptic GABAA receptors, which mediate tonic inhibition, are altered 

in PTE (see Appendix 1).  

 
6.7  Restorative & repair strategies for PTE 
 

Posttraumatic epilepsy is difficult to treat, and therapeutic options for preventing 

or suppressing chronic seizures after trauma are limited and have been largely 

unsuccessful (Temkin et al., 1998; Temkin, 2001; Temkin, 2009). Prophylactic 

medication is generally prescribed only for patients with severe injuries or who have 

early seizures. Several drugs have been tested for antiepileptogenic effects; however, 

none have been consistently effective. Many of the current anitepileptic drugs act to 

increase GABAergic inhibition in the brain (e.g., benzodiazepines, barbiturates), but 

other drugs have mechanisms of action that include sodium channel blockade (e.g., 

lamotrigine, valproate, phenytoin, carbamazepine), calcium channel blockade (e.g., 

valproate), and hormones (e.g., progesterone). In most reports, antiepileptic drug 

treatments have little to no effect or even increase the rate of late seizures after trauma 

(Temkin, 2009). For example, Phenytoin and Carbamazepine have both been shown to 

suppress early seizures within a week of injury, but not epileptic seizures (Temkin et al., 

1990; Glötzner et al., 1993). Little information is available with regard to the potential 

effect of other drugs on posttraumatic seizures (Temkin, 2009).  

Because PTE is often intractable, the usual strategy is to evaluate the patient for 

resective surgery (Willmore, 2006). However, head injury sufficient to cause PTE can be 

accompanied by complications that influence the success of surgical resection. TBI often 

results in bilateral, multifocal tissue damage, making surgery ineffective. Challenges to 

the evaluation process include the unpredictable nature of lesion formation, the ability to 
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identify seizure foci in relation to lesion locations, and the ability to completely remove 

the epileptic tissue (Willmore, 2006).  

The CCI injury model of PTE will be useful for testing a number of promising 

treatment options. The relatively short latency from injury to seizure onset is a clear 

advantage of CCI over other trauma models. Lateral FPI has a relatively long latency to 

seizure onset, which makes treatment studies laborious, and other models have not been 

shown to develop spontaneous seizures (e.g., weight drop, moderate FPI). The use of 

mice allows for examining the role of genetic manipulation in response to TBI and 

therapy. There is little to no mortality after CCI, and biomarkers of the epileptic dentate 

gyrus (i.e., hilar cell loss and mossy fiber sprouting) are reproduced in nearly all mice. 

The present findings demonstrate that the CCI injury model is a useful preclinical model 

for testing the effectiveness of treatment strategies on posttraumatic seizure generation, 

recurrent excitatory circuit formation, and alterations in synaptic inhibition in addition to 

cell loss and cognitive and motor function impairment.  

Treatments for PTE will ultimately focus on preventing the epileptogenic process, 

restoring the normal balance of excitatory and inhibititory neurotransmission in the brain, 

or even reversing pathogenic synaptic network responses to a pre-injury state. To this 

end, there are three main hypothesized types of cell restoration or repair strategies for 

epilepsy: 1) ways to prevent mossy fiber sprouting and abnormal axon sprouting, 2) ways 

to promote cell survival, and 3) ways to replace dead or dysfunctional cells. Therapeutic 

studies will likely require the use of long-term EEG monitoring to examine whether 

electrographic and behavioral seizure activity is suppressed after treamtment. 

 
6.7.1 
 

Preventing mossy fiber sprouting  

 
 Prevention of mossy fiber sprouting has been proposed as a means to reduce 

abnormal recurrent excitatory circuit formation in the dentate gyrus and subsequently 

suppress seizure frequency or duration. Treatment with the protein synthesis inhibitor, 

cycloheximide, was reported to block pilocarpine- and kainic acid-induced mossy fiber 

sprouting but not spontaneous seizures in rats (Longo and Mello, 1997). However, these 

findings could not be replicated in rats after pilocarpine-induced status epilepticus 
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(Williams et al., 2002; Toyoda and Buckmaster, 2005). As discussed above, manipulation 

of the mTOR signaling pathway (e.g., by rapamycin treatment) may be a promising new 

approach to prevent mossy fiber sprouting, but the therapeutic potential of this pathway 

has not been well established.  

Calcium is important for normal growth cone function (Henley and Poo, 2004), 

and the Ca2+-calmodulin dependent phosphatase, calcineurin, stimulates neurite 

outgrowth when activated by increased calcium influx through voltage-gated calcium 

channels (Klee et al., 1979; Lautermilch and Spitzer, 2000). Therefore, Ca2+ homeostasis 

and Ca2+-activated phosphatases have been examined as possible targets to prevent 

abnormal mossy fiber sprouting after injury. L-type calcium channel blockade with 

nicardipine was reported to suppress aberrant mossy fiber sprouting in hippocampal slice 

cultures (Ikegaya, 1999) and after pilocarpine-induced status epilepticus in mice (Ikegaya 

et al., 2000). Additionally, the immunosuppressant FK506, a calcineurin inhibitor, was 

reported to block mossy fiber sprouting in rats after amygdala kindling (Moriwaki et al., 

1996). However, Ingram et al. (2009) reported that prolonged infusion of FK506, 

cyclosporin A, or nicardipine did not prevent mossy fiber sprouting after pilocarpine-

induced status epilepticus in rats. Discrepancies between these studies could be due to 

model specific differences or different treatment protocols. Ikegaya et al. (2000) used 

very young mice, versus adult rats in the study by Ingram et al. (2009), and the extent of 

mossy fiber sprouting in positive controls was much less robust than that reported in adult 

mice after pilocarpine-induced TLE (Shibley and Smith, 2002). Additionally, it is unclear 

whether FK506 treatment in the study by Moriwaki et al. (1996) blocked mossy fiber 

sprouting by calcineurin inhibition or by indirect effects that reduced the kindling 

process, because FK506 was administered during kindling and treated rats reached less 

robust behavioral kindling stages. Moia et al., (1994) also found that treatment with 

FK506 or cyclosporin A inhibits kindling. In contrast, Ingram et al. (2009) began drug 

administration after induction of status epilepticus to ensure injuries were similar 

between treated and untreated animals.  
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6.7.2 
 

Preventing cell death  

 
Many studies are designed based on the hypothesis that preventing injury-induced 

cell death will improve cognitive and motor function, and cell survival strategies are a 

major focus of neurotrauma research (Teasdale and Bannan, 1997; Graham et al., 2006). 

There are two main mechanisms of cell death: necrosis and apoptosis. Necrosis occurs in 

response to acute traumatic injury and often involves excitotoxicity, metabolic failure, 

and ischemic/hypoxic tissue damage (Graham et al., 2006). Apoptosis refers to a process 

of programmed cell death (Raghupathi et al., 2000; Graham et al., 2006). Because of the 

complex neurobiology of TBI, there are numerous cellular and molecular targets for 

neuroprotection (Teasdale and Bannan, 1997; Graham et al., 2006). Neuroprotective 

strategies may also be useful to experimentally dissociate posttraumatic axon sprouting 

from cell death and to examine the role of each in seizure generation. However, whether 

cell survival strategies are beneficial in PTE is controversial. For example, the Soltesz 

laboratory has proposed that the survival – not the loss – of hilar mossy cells in TLE 

promotes abnormal discharge patterns in granule cells after TBI (i.e., “the irritable mossy 

cell hypothesis;” Santhakumar et al., 2000). Therefore, whether cell survival strategies 

will prevent posttraumatic seizure generation or promote pathogenic responses is 

unknown. The following is a brief description of cellular and molecular responses after 

TBI that may be important in regulating cell death or synaptic plasticity in PTE: calpain 

and caspase activation, mitochondrial dysfunction, and altered neurotrophin expression. 

 

Calpain and caspase activation 
  
 

TBI induces a massive release of glutamate from axon terminals of injured 

neurons and a subsequent increase of calcium ion influx into neurons via glutamate 

receptors and voltage-gated calcium channels (Graham et al., 2006). Persistent elevation 

of intracellular free calcium can activate calcium-dependent signaling pathways that 

promote necrotic cell death. Calcium-dependent proteases with papain-like activity, or 

calpains, are the primary mediators of necrosis (Graham et al., 2006). These are a family 

of ubiquitous cysteine proteases that are activated by calcium. Physiological calpain 



122 
 

activation by localized calcium influx allows for controlled proteolysis of target proteins 

and is essential for cell signaling and remodeling processes involved in normal neuronal 

function. However, persistent alterations in calcium ion homeostasis can lead to the 

pathological activation of calpain and induce proteolysis of the cytoskeleton, ion 

channels, and cell surface receptors (Kampfl et al., 1997; Graham et al., 2006). Therefore, 

pathological calpain activation has been proposed as a key mediator of necrotic cell death 

after TBI (Kampfl et al., 1997; Graham et al., 2006). Regulation of calpain activity – or 

its primary endogenous inhibitor, calpastatin – may be an important therapeutic target for 

neuroprotective strategies and for modulating synaptic circuit remodeling in PTE.    

Apoptosis is a fundamental biological process that allows for programmed cell 

death in the normal brain (e.g., regulating cell numbers during development) or in the 

disease state (Raghupathi et al., 2000). While there are many proposed mechanisms for 

apoptosis after brain injury, the activation of a family of proteases called caspases, 

particularly caspase-3, is a major molecular pathway of programmed cell death 

(Raghupathi et al., 2000; Graham et al., 2006). Caspases are synthesized as proenzymes 

that undergo proteolytic processing to become activated. Once activated, caspases cleave 

other protein substrates within the cell and trigger apoptotic processes. These pro-apototic 

mechanisms include degradation of anti-apoptotic regulators, degradation of cytoskeletal 

proteins, chromatin condensation, and DNA fragmentation (Porter et al., 1999; 

Raghupathi et al., 2000). Growth factor deprivation, mitochondrial dysfunction, 

generation of free radicals, and hypoxia/ischemia can all activate caspase cascades 

(Raghupathi et al., 2000). Furthermore, release of cytochrome c from mitochondria can 

induce apoptosis via interaction with apoptosis protease activating factor-1 (Apaf-1), an 

upstream activator of caspase-3 (Porter et al., 1999; Kroemer and Reed, 2000; 

Raghupathi et al., 2000; Garrido et al., 2006). In contrast, activation of the Bcl-2 family 

of proteins promotes cell survival by inhibiting Apaf-1 activity or by preventing 

cytochrome c release from mitochondria (Kroemer and Reed, 2000). Therefore, 

molecular cascades of apoptosis provide numerous potential targets for neuroprotection.  
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Mitochondrial dysfunction 

 

Mitochondria are the primary centers of energy production and aerobic 

metabolism in cells, but they can become dysfunctional after TBI (Kroemer and Reed, 

2000; Sullivan et al., 2004; Graham et al., 2006). Additionally, mitochondria are 

important regulators of calcium ion homeostasis in cells, acting to sequester excessive 

intracellular calcium. After TBI, there is a massive increase of intracellular calcium in 

neurons. This triggers a cascade of events in mitochondria: the injury-induced increased 

intracellular calcium is presumably sequestered by mitochondria, the membrane potential 

generated by the electron transport chain across the inner mitochondrial membrane 

depolarizes, mitochondrial permeability transition pores open, and mitochondrial 

membrane permeability is increased (Sullivan et al., 2004).  These actions disrupt ATP 

synthesis, increase free radical production, and promote cell death. Therefore, 

mitochondrial dysfunction after TBI may contribute to cell death by several mechanisms: 

reduced mitochondrial respiration, altered ATP production, oxidative stress, generation of 

reactive oxygen species which can damage DNA, increased permeability of the inner 

mitochondrial membrane, perturbation of calcium ion homeostasis, and release of 

cytochrome c (Kroemer and Reed, 2000; Sullivan et al., 2004). Additionally, 

mitochondrial dysfunction has recently been implicated as both a contributor and a 

consequence of seizures (Patel et al., 2004). Therefore, mitochondria are an intriguing 

therapeutic target for posttraumatic seizure management, especially in the acute phase.  

Cyclosporin A is an immunosuppressant drug that inhibits the opening of the 

mitochondrial permeability transition pore (Scheff et al., 1999; Sullivan et al., 1999, 

Sullivan et al., 2004). While administration of cyclosporin A does not prevent mossy 

fiber sprouting into the inner molecular layer of epileptic animals (Ingram et al., 2009), a 

number of studies have suggested cylcosporin A treatment improved mitochondrial 

function and reduced tissue damage after experimental TBI (Scheff et al., 1999; Sullivan 

et al., 1999). Whether this treatment or similar drugs can be used as a cell survival 

strategy in PTE – regardless of its effects on mossy fiber sprouting – is unknown.  

 

 

http://en.wikipedia.org/wiki/Electron_transport_chain�


124 
 

Neurotrophins 
 
 

Neurotrophic factors are secreted peptides produced by neurons and glia that are 

important for the normal growth, survival, and differentiation of neurons (Lewin and 

Barde, 1996). They consist of a family of small proteins that include nerve growth factor 

(NGF), brain-derived neurotrophic factor (BDNF), and neurotrophins 3 and 4/5 (NT-3 

and NT-4/5). Neurotrophins activate two types of cell surface receptors: the tropomyosin-

related kinase (Trk) family of receptor tyrosine kinases, Trk A, B, and C, and the p75 low 

affinity neurotrophin receptor (Lewin and Barde, 1996; Amaral et al., 2007). Agonist 

binding to Trk receptors induces receptor dimerization and kinase activation; 

autophosphorylation of multiple intracellular tyrosine residues creates binding sites for 

target proteins; and G-proteins and other signaling cascades are activated. In the 

hippocampus, activation of Trk receptors promotes neuronal survival, axon growth, 

increased dendritic complexity, and induction of long-term potentiation; but the 

activation of p75 promotes neural apoptosis, axonal degeneration, reduced dendritic 

complexity, and induction of long-term depression (Amaral et al., 2007). Moreover, 

neurotrophic factor deprivation can trigger caspase activation and apoptotic cell death 

(Raghupathi et al., 2000; Graham et al., 2006).  

Levels of NGF and BDNF mRNA and protein are elevated in the dentate gyrus of 

experimental epilepsy models (Lowenstein et al., 1993; Sato et al., 1996; Marcinkiewicz 

et al., 1997; Rudge et al., 1998), after CCI injury (Yang et al., 1996; DeKosky et al., 

2004), and in resected brain tissue from human epileptic patients (Murray et al., 1994; 

Mathern et al., 1997; Takahashi et al., 1999). Interestingly, Yang et al. (1996) found that 

alterations in neurotrophin expression only occur in brain regions ipsilateral to CCI 

injury. Likewise, granule cell expression of trkB mRNA and protein, the high affinity 

receptor for BDNF, is upregulated after seizures (Rudge et al., 1998). In contrast, levels 

of NT-3 appear to be downregulated in epilepsy (Mathern et al., 1997) and after TBI 

(Yang et al., 1996). Protein and mRNA for the low affinity neurotrophin receptor, p75, is 

also upregulated in apoptotic neurons after pilocarpine-induced status epilepticus (Roux 

et al., 1999). Therefore, neurotrophin signaling via Trk and p75 receptors have been 
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proposed as key regulators of the structural reorganization and cell survival in the dentate 

gyrus during epileptogenesis (Jankowsky and Patterson, 2001; McNamara et al., 2006).  

 

6.7.3 
 

Exogenous cell transplantations  

 
The regenerative capacity of the injured brain is limited. Exogenous cell 

transplants into the injured brain have been used as an attempt to replace neurons and glia 

lost to trauma, restore functional recovery, and improve cognitive and motor function 

(Schouten et al., 2004; Longhi et al., 2005). These strategies have had varying levels of 

success, but whether cellular transplantations can be developed as a therapeutic 

intervention to prevent or suppress posttraumatic seizures remains unknown. One 

approach that may work well is transplantation of embryonic median ganglionic 

eminence (MGE) precursor cells into the pericontusional area.  

The MGE is a transitory protruding elevation of the ventricular cavity in the 

ventral telencephalon during embryonic and fetal stages of brain development (Figure 

6.4). During development, these cells migrate throughout the cortex and differentiate into 

cortical GABAergic interneurons (Lavadas et al., 1999; Anderson et al., 2001). 

Transplanted early postnatal embryonic MGE precursor cells migrate widely throughout 

the host brain, differentiate into functional GABAergic interneurons, and increase 

synaptic inhibition of principle cells in the normal mouse brain (Wichterle et al., 1999; 

Alvarez-Dolado et al., 2006). Moreover, the duration and frequency of spontaneous 

seizures in Kv1.1 knock-out mice, a genetic model of epilepsy, are reduced after MGE 

transplants into the cortex (Baraban et al., 2009). Therefore, MGE cell grafts appear to be 

a promising cellular based approach to augment synaptic inhibition, mask abnormal 

recurrent excitatory circuits, and suppress seizures after TBI.  
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Figure 6.4. Illustration of a coronal section of a mouse forebrain at ~E12. Cells in the median 

ganglionic eminence (MGE) migrate to the cortex (red line) where they differentiate into GABA 

neurons. In contrast, glutamatergic cortical neurons are generated in the cortical ventricular zone 

(blue) and migrate radially (blue arrows) into the cortex. 

 

Future studies should use MGE transplants into the contused area to examine 

whether replacement of GABA neurons after TBI can suppress posttraumatic seizures 

and restore synaptic inhibition to dentate granule cells. The relatively focal injury 

produced by CCI makes it an advantageous model for this type of procedure, because the 

injured area is known and is relatively localized to dorsal brain regions ipsilateral to the 

injury. This is in contrast to FPI, which has a large diffuse injury component. The 

relatively short but distinct latency to spontaneous seizure onset after CCI creates an 

amenable window for restorative strategies aimed at replacing GABA neurons in PTE. 

Transplants performed within days after injury may prevent PTE whereas transplants 

performed weeks later – after the onset of spontaneous seizures – may suppress PTE.  

If MGE cell grafts are capable of preventing posttraumatic seizures, an interesting 

proof-of-principle study would be to then “silence” the transplanted neurons after they 

are integrated into synaptic circuits within the host brain to examine whether seizures 

subsequently emerge (or reemerge). Recent work has demonstrated how this might be 

feasible (Lechner et al., 1999; Wehr et al., 2009). The Calloway laboratory has created a 

line of transgenic mice which allows for the inducible expression of the Drosophila 
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allotostatin neuropeptide receptor (AlstR) when crossed with commercially available tet-

transactivator lines (Wehr et al., 2009). Activation of AlstR in mammalian neurons 

activates G-protein-coupled inward rectifier K+ (GIRK) channels which hyperpolarize 

the neuron, thus inhibiting action potential firing in these neurons. Conceptually, 

transplantation of MGE cells from these animals into host brains from injured animals 

would allow for the inducible expression of this ligand-gated “silencer” transgene only in 

transplanted GABA neurons, because mammalian neurons do not have allotostatin or 

AlstR. Therefore, administration of allotostatin to brains of mice should allow only the 

transplanted GABA neurons which express AlstR to be “turned off.” Unfortunately, 

receptor-associated AlstR mRNA is preferentially expressed in principal neurons, and it 

is rarely present in hippocampal interneurons (Wehr et al., 2009). However, if the AlstR 

was to be placed under the control of the Gad1 gene, like eGFP in GIN mice, then it 

would be possible to “silence” eGFP neurons to examine their relative importance in 

posttraumatic seizure generation and regulating network excitability after TBI.  

There are a number of important caveats to the use of embryonic precursor cells 

in treating epilepsy. Previous studies have performed MGE transplants only on very 

young animals (i.e., younger than postnatal day 7), and it is unknown whether grafted 

cells will survive in the adult brain, especially after injury-induced perturbation of the 

normal environment. Moreover, the migratory capacity of MGE precursor neurons in the 

injured brain is unknown. Precursor cells differentiate into somatostatin-, parvalbumin-, 

neuropeptide Y-, and calretinin-immunoreactive GABA neurons in the normal cortex and 

hippocampus (Alvarez-Dolado et al., 2006). This suggests grafted MGE cells are capable 

of differentiating into a wide variety of GABA neuron subtypes. This could have a 

restorative role to enhance synaptic inhibition of principle cells in the injured brain, or it 

could have a pathogenic role if neurons predominantly differentiate into “inappropriate” 

GABA cell subtypes.  
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6.8  Final conclusions 

 

The findings in this dissertation suggest that CCI injury may be an advantageous 

mouse model of PTE.  In the dentate gyrus, there is an increase in recurrent excitatory 

neurotransmission and dysfunction of synaptic inhibition. Future studies will examine 

time-dependant cellular and molecular mechanisms of epileptogenesis after CCI. There 

are also a number of cellular and molecular targets that may be useful for modulating 

synaptic circuitry, promoting cell survival, and suppressing seizures in PTE. Future 

studies are warrented to examine their role in posttraumatic epileptogenesis. 
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Appendix 1 

Tonic GABAA-receptor mediated inhibition is not altered after brain injury 

 

A1.1  Introduction 

 

GABAA receptors consist of a family of heteropentimeric ionotropic membrane 

receptors with at least 16 different known subunits (α1-6, β1-β3, γ1-γ3, ε, δ, π, and θ) 

(Sieghart, 2000; Mohler, 2006). The receptor subunit composition determines specific 

kinetic properties, affinity of the receptor for GABA and other pharmacological agents, 

and whether the receptor is concentrated at the synapse (synaptic) or away from the 

synapse (extrasynaptic or perisynaptic). Receptors that contain δ and α4 subunits are 

located mainly at perisynaptic and extrasynaptic locations where they are thought to 

mediate tonic inhibition (Nusser et al., 1998; Nuesser and Mody, 2002). In contrast, 

receptors that contain the γ2 subunit are typically found in postsynaptic GABAA 

receptors, where they mediate fast inhibitory neurotransmission (i.e., phasic inhibition) 

(Nusser et al., 1998; Nusser and Mody, 2002).  

Alterations in GABAA receptor subunits occur in experimental and human TLE 

(Rice et al., 1996; Schwarzer et al., 1997; Brooks-Kayal et al., 1998; Fritschy et al., 1999; 

Loup et al., 2000; Houser and Esclapez, 2003; Peng et al., 2004; Zhang et al., 2007). In 

experimental TLE, there is a decrease in the δ subunit and an increase in γ2 and α4 

subunits in granule cells (Zhang et al., 2007). Despite these receptor changes, previous 

studies have indicated that tonic inhibition of granule cells is maintained weeks after 

status epilepticus (Zhang et al., 2007; Zhan and Nadler, 2009). However, neurosteroid 

modulation of tonic currents may be enhanced after injury (Zhang et al., 2007). Whether 

tonic inhibition of granule cells is altered after TBI is not well established.  

I tested whether a change in resting tonic inhibition could be detected in granule 

cells after CCI injury. An increase in tonic inhibition of granule cells may be an intrinsic 

response in granules cells to compensate for the reduction in synaptic inhibition after 

TBI. Alternatively, a reduction in tonic inhibition of granule cells may be a pathogenic 

response that further exacerbates the loss of inhibitory synaptic input to granule cells 

after injury.  
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A1.2  Methods 

 

Tonic current. Resting tonic current (Itonic) was calculated for each neuron as the 

amplitude difference between the holding current before and after application of 100µM 

BMI and was normalized to cell capacitance (i.e., pA/pF). The holding current was 

measured as the mean baseline amplitude of 30 epochs (100 ms/epoch; 1 epoch/s) 

(Nusser and Mody, 2002; Mtchedlishvili and Kapur, 2006; Zhang et al., 2007; Gao and 

Smith, 2009). Baseline measurements were taken 30 s before and 2-3 min after 

application of BMI (i.e., at the peak of the baseline shift in holding current). Tonic 

current was measured in granule cells from control animals and in injured animals 

contralateral and ipsilateral to the injury. Data were analyzed by one-way ANOVA. 

Significance was set at P<0.05. 

 

A1.3  Results and Discussion 

 

Whole-cell voltage-clamp recordings of sIPSCs were obtained from granule cells 

at a holding potential of 0 mV in ACSF containing 1mM kynurenic acid. Application of 

100µM BMI resulted in a net inward current (Figure A1.1), revealing the tonic current 

(Itonic) as a shift in holding current. Resting Itonic was calculated for each neuron as the 

amplitude difference between the holding current before and after application of BMI and 

was normalized to cell capacitance (i.e., pA/pF). One-way ANOVA did not detect a 

difference in Itonic (F(2,25)= 0.2; P= 0.82) or cell capacitance (F(2,25)= 1.43; P= 0.3). 

Therefore, these preliminary findings suggest there is no change in resting Itonic in granule 

cells after CCI.  
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Figure A1.1. Resting tonic current in granule cells after TBI is similar to controls. 

Application of 100µM BMI revealed the tonic current (Itonic) as a shift in baseline holding current 

in (A) a granule cell in a control slice, (B) a granule cell in a slice contralateral to the injury, and 

(C) a granule cell in a slice ipsilateral to the injury. D. Mean Itonic normalized to cell capacitance 

(pA/pF) in granule cells for each treatment group. E. Mean whole-cell capacitance of granule 

cells in each treatment group.  

 

The present result is consistent with previous findings from normotopic granule 

cells in epileptic rodents (Zhang et al., 2007; Zhan and Nadler, 2009) and preliminary 

findings from granule cells weeks to months after lateral FPI (Pavlov et al., 2009). 

However, preliminary studies from the Mtchedlishvili laboratory have suggested that 

tonic inhibition of granule cells may be increased after CCI in rats in the presence of 

4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), a competitive agonist of GABAA 

receptors which contain δ-subunits; but δ-subunit immunoreactivity and neurosteroid 

modulation of Itonic may be reduced in granule cells 90d after CCI (Mtchedlishvili et al., 

2008a and b; Kharlamov et al., 2008; Mtchedlishvili et al., 2010). Therefore, a more 
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detailed examination of how tonic inhibition of granule cells and the subunit composition 

of extrasynaptic GABAA receptors may be altered after TBI is warranted. The functional 

consequences of GABAA receptor subunit changes after TBI will likely depend on the 

resulting subunit composition, the cell types involved, location of the receptor relative to 

the synapse (i.e., synaptic, perisynaptic, or extrasynaptic), and the cellular domain (i.e., 

somatic versus dendritic).  
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Appendix 2 

Electrophysiology equipment for data acquisition  

 

A2.1  List of Equipment 

 

Vibration isolation table  

Microscope (Olympus BX50WI) 

Patch-clamp amplifier (Axopatch 200B or 700B) 

Digitizer (Digidata 1320A or 1440A) 

DR-484 Neuro-corder  

Oscilloscope (Hitachi VC-6525) 

Shutter (Uniblitz VMM-D1) 

Signal timer (Master-8) 

Micromanipulator (Sutter MP-225 or MPC-200)  

Computer (Dell Precision T3400) 

Pipette puller (Sutter P-87) 

 

A2.2  Electrophysiology equipment setup 

 

Cells were visualized and targeted for recording using an Olympus BX50WI 

upright fixed-stage water-immersion microscope. The current and voltage measured in 

patch or field recording electrodes were amplified with an Axopatch 200B (Figure A2.1 

and A2.2) or 700B amplifier. Digital acquisition of bioelectric signals was made using 

the Digidata 1320A (Figure A2.3 and A2.4) or 1440A digitizer. These digitizers are 16 

bit data acquisition systems that convert analog signals from the amplifier (i.e., Axopatch 

200B or 700B) into a digital format that is recognized by the computer. Axon Instruments 

pClamp 8 data acquisition software was used to record data online. The DR-484 Neuro-

corder (Figure A2.5) allowed for analog output from the Axopatch 200B amplifier to be 

simultaneously digitized at 88kHz and recorded on videotape. In addition to viewing 

signals online using pClamp software, the Hitachi VC-6525 oscilloscope allowed 

digitized electrical signals from Digidata 1320A and DR-484 Neuro-corder to be viewed. 
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The Master-8 (Figure A2.6) is a signal timer that was used to time electrical- or 

photostimulation-evoked responses. Data were later analyzed offline using pClamp 10.2 

and Minianalysis 6 software. 

Figure A2.7 shows how connections were made between the headstage, Axopatch 

200B, Digidata 1320A, DR-484 Neuro-corder, and Master-8, and computer.  
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Figure A2.1. The Axopatch 200B Amplifier (front).  

Figure A2.2. The Axopatch 200B Amplifier (back).  

 

 

Figure A2.3. The Digidata 1320A digitizer (front).  

Figure A2.4. The Digidata 1320A digitizer (back).  
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Figure A2.5. The DR-484 Neuro-corder.  

 

 

Figure A2.6. The Master -8 stimulator.  

 

 

 

 

 

 

 

 

 



137 
 

          
Figure A2.7. Electrophysiology Equipment Setup & Connections 
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Appendix 3 

List of abbreviations 

 

ACSF  Artificial cerebral spinal fluid 

al  Alveus 

APV  (2R)-amino-5-phosphonovaleric acid 

BMI  Bicuculline methiodide 

CA  Cornu Ammonis 

DAPI  4',6-diamidino-2-phenylindole 

DG  Dentate gyrus 

EC  Entorhinal cortex 

EEG  Electroencephalogram 

eGFP  Enhanced green fluorescent protein 

EPSC(P) Excitatory postsynaptic current (potential) 

  e- evoked 

m- miniature 

  s- spontaneous 

FPI  Fluid percussion injury 

GABA  γ-aminobuteric acid 

GAD  glutamic acid decarboxylase 

GCL or g Granule cell layer 

GCS  Glasgow Coma Scale 

GFP  Green flourescent protein 

GIN  eGFP-expressing Inhibitory Neurons 

H or h  Hilus 

HICAP Hilar commissural-associational pathway 

HIPP  Hilar interneurons associated with the perforant pathway 

HM  Henry Gustav Molaison 

I  Current 
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IPSC(P) Inhibitory postsynaptic current (potential) 

e- evoked 

m- miniature 

  s- spontaneous 

MFS  Mossy fiber sprouting  

ML or m Molecular layer 

MOPP  Molecular layer interneurons associated with the perforant pathway 

NINDS National Institute of Neurological Disorders and Stroke 

p  Pyramidal cell layer 

Para  Parasubiculum 

PBS  phosphate buffered saline 

PDS  Paroxysmal depolarizing shift 

PPR  Paired-pulse ratio 

Pre  Presubiculum  

PTE  Posttraumatic epilepsy 

PTX  picrotoxin 

PTZ  Pentylenetetrazol 

sl  Stratum lucidum 

sl-m  Stratum lacunosum-moleculare 

so  Stratum oriens 

sr  Stratum radiatum 

Sub  Subiculum  

TBI  Traumatic brain injury 

TLE  Temporal lobe epilepsy 

TRITC  Tetramethylrhodamine-5- (and 6)-isothiocyanate 

TTX  Tetrodotoxin 

Vm  Membrane potential 
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