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ABSTRACT OF THE THESIS 

 

 
DESIGN AND IMPLEMENTATION OF THE INSTRUCTION SET ARCHITECTURE 

FOR DATA LARS 

 

The ideal memory system assumed by most programmers is one which has high capacity, 
yet allows any word to be accessed instantaneously. To make the hardware approximate 
this performance, an increasingly complex memory hierarchy, using caches and 
techniques like automatic prefetch, has evolved. However, as the gap between processor 
and memory speeds continues to widen, these programmer-visible mechanisms are 
becoming inadequate.  

Part of the recent increase in processor performance has been due to the introduction of 
programmer/compiler-visible SWAR (SIMD Within A Register) parallel processing on 
increasingly wide DATA LARs (Line Associative Registers) as a way to both improve 
data access speed and increase efficiency of SWAR processing. Although the base 
concept of DATA LARs predates this thesis, this thesis presents the first instruction set 
architecture specification complete enough to allow construction of a detailed prototype 
hardware design. This design was implemented and tested using a hardware simulator. 

 

KEYWORDS: Line Associative Registers, DATA LARs, SIMD Within a Register 
(SWAR), Cache Registers (CRegs), Associativity. 
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CHAPTER 1 

1. INTRODUCTION 

The volume of data processed by the processors these days is increasing exponentially 

whereas the methods to suppress the high memory latency through programmer invisible 

mechanisms like caches or multithreading are falling short to keep up with these huge 

complexities. Even the speed of the conventional Von Neumann organization is highly 

dependent on the technology. This chapter provides a background the problem of the 

inefficiency of present memory hierarchies in bridging the gap between the high 

performance processors and the main memory and the motivation to opt for the Line 

Associative Registers (LARs) design.  

1.1 MOTIVATION 

The usual memory hierarchy goes from Registers (smaller) to RAMs (bigger). The reason 

for using different levels of memory from the cost issues of fabricating these memory 

units; registers being expensive because of the fabrication technology they use and the 

number of flip-flops they employ for storing a single bit of data. Layers of Cache are 

introduced to compensate for this gap in a less expensive way at the cost of relatively low 

bandwidth and high memory latency. The increase of the processor speeds these days has 

left a larger memory footprint on the whole processor-memory performance system. 

 As one of the solutions to this problem, parallel processing is considered where similar 

processing elements work simultaneously on a single big problem. SWAR (Single 

Instruction Multiple Data (SIMD) Within A Register) introduces a good programming 

model for data level parallelism by adding the ability to perform SIMD-like operations on 

fields within a register or datapath. SWAR operations replace a series of memory 

accesses and field extraction/insertion operations with a single access for a word’s worth 

of fields. CRegs (Cache Registers) provide a hybrid hardware structure for registers with 

both the properties of caches and registers and have the advantages of both. The idea of 

extending the concepts of CRegs to support data level parallelism leads to the motivation 

of this thesis. Line Associative Registers (LARs) are evolved with the properties of 
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CRegs and SWAR. These registers along with type tagging lead to a whole lot of 

advantages. The next section gives the background of LARs. 

1.2 BACKGROUNG 

1.2.1 SWAR 

SIMD parallel processing over multiple data fields within each processor registers was 

intended to speed-up multimedia algorithms by supporting high-level parallel 

programming models. SWAR is such a hardware model which was implemented using 

only minor modifications to existing datapaths and function units. The PA-RISC [16][17] 

and the IA32 MMX [18][19] extensions both operate on the SWAR concept of having 

wide registers with the ability to operate on short integer operands on fields within 64-

bits datapaths, although these mechanisms are add-ons to the existing architecture 

designs.  

AltiVec and SSE have 128-bit data paths. One problem with AltiVec is that data cannot 

be moved directly between the vector and general-purpose integer registers. Thus, array 

indices generated in the vector registers must be moved via memory to the integer 

registers for use in a load or store instruction.  3DNow! [20] is a good first step toward 

adding floating-point SWAR capabilities to MMX and improving its coverage. There is 

still room for improvement which is addressed by the Athlon extensions to 3DNow!  

The most salient aspect of these architectures is their vector SIMD nature. This has 

several implications for the design of a programming model including the expression of 

data parallelism and the execution of multiple control paths. In order to ease adoption of 

SWAR, many of the implementations provide both parallel and scalar instructions. The 

oxymoronic scalar SWAR instructions simply act on a single field, generally the one in 

the lowest bit field [21]. 

1.2.2 CREGS 

The CRegs (C-Reg, Cache Registers) [9][10] are designed to reduce the number of 

memory accesses required by spotting and updating the ambiguous aliasing automatically 

and thereby letting these values stay in registers much longer. This idea would be really 
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important for SWAR-like processing where a single fetch cycle would mean fetching a 

whole line of data.  

A CReg is a memory module which replaces the registers in a computer architecture 

design. It combines the structures of cache and registers as shown in the figure below. 

These special registers allow the variable values to stay in registers a while longer by 

controlling the way ambiguously aliased values are detected as well as updated.  

Datum  Object Address  status  

Figure 1: The hardware structure of CRegs 

Ambiguous aliasing is a concept that occurs when the processor is dealing with arrays or 

pointers. Considering an array “a” with “n” elements,  

function (a[i], a[j]) 

  { 

a[i] = a[j] + a[i]; 

a[j] = a[j] ^ a[i]; 

  } 

Listing 1: compile-time Unresolvable Aliasing problem 

In the above C program, the compiler does not know if “i” and “j’ have the same values 

till runtime, so the compiler takes these values to be ambiguously aliased and assigns two 

separate registers to a[i] and a a[j]. The compiler can't tell if a change of the value in 

the register holding a[i] should also change the value in the register holding a[j]. 

Thus, the compiler is forced to generate code that flushes the new value of a[i] to 

memory and then re-loads the value of a[j] from memory. The compiler is forced not 

only to allocate a separate register for each, but also to flush and reload all potentially 

aliased registers each time the value in any one of those registers is modified. This 

problem is common in code working on arrays and/or pointers.   

CRegs handle this problem efficiently with less memory access traffic. Before writing 

any values to these registers the processor checks for any register with same address 

field. In case it finds one, the hardware associatively updates both, the current register 

Name 
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which is going to be written with this new value and the register with same address field. 

By doing so the hardware maintains coherence of these entries in a way similar to the 

implementing the Associativity of a cache. The difference between the CReg hardware 

and the Cache is that, unlike a cache, CRegs avoid making memory references on an 

aliased Load operation by using duplicating entries in the CReg array.  

The important point to note here is that a cache can handle the ambiguously aliased 

values since it has the address field of the variables on it, but the problem with it is that it 

cannot be controlled by a compiler.   

Despite the idea being twenty years old, the strangeness of requiring a new instruction set 

design has prevented CRegs from being widely applied. The only commercial 

implementation to date is the IA64 Advanced Load mechanism [11], which does not 

achieve the full benefit because it uses its CReg-like mechanism as a filter for memory 

references rather than as a replacement for conventional registers and cache. The idea of 

STM (Short Term Memory cell) [12] and Rack [13] is similar to CRegs but without the 

Associativity of CRegs. Trace cache and loop recognition systems employed by Intel in 

their P4 and i7 [14] [15] also use the CReg mechanisms but they just use it as a storage 

buffer rather than replacing the register and cache with these cache-registers in which 

case they could have improved the efficiency of the system by the help of the compiler. 

1.2.3 CACHE 

The several levels of Cache that were mentioned before are introduced to bridge the 

semantic gap between the processor and main memory speeds and act like a buffer which 

maintain quickly accessible copies of the data and instructions which are most likely to 

be needed by the processor. As long as the cache holds right data the processor 

effectively sees the cache access time with the large memory address. The Hardware cell 

of a cache is given below: 

Data Tag ( Line Address) Status 

Figure 2: The hardware structure of cache 

Index (Line Address) 
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Since 1969 when the first cache based computer was developed by IBM as IBM 360/85 

[1], having a cache in the processor-memory system design is proving to be inefficient. 

The following points would make this clear. 

 Having a cache only helps when there is a cache hit. It’s the only case where the 

processor sees the actual intended speed called the cache access time rather that the 

memory access time. Misses are more costly here when compared to a cache-less 

memory hierarchy. 

 A majority of data elements which are reference in a program are referenced so 

infrequently that other cache traffic is certain to evict these elements from cache 

before they are referenced again. In such cases, there is no benefit in placing the item 

in cache, but there is the excess overhead involved in evicting some other item out of 

cache to make room for this useless cache entry. This would prove more 

inappropriate in cases where a cache line is larger than a processor word in which 

case it has an additional penalty of loading an entire line from memory into cache. [2] 

[25] 

 Since processors these days use SIMD registers, it is not wise to have same data in 

both cache and the long register lines. [Intel’s MMX, SSE, Itanium, GPUs etc]. 

 Caches nowadays take up a lot of space on chip which could be used for better 

purposes [3]. 

 Re-evaluation of many computer design concepts like compiler methods for optimization 

and parallelization [4][5], architecture concepts of RISC and CISC [6][7][8], should be 

opted and inspired since the traditional memory hierarchy which includes the cache 

designs is falling short of the required expectations of bridging the semantic gap between 

the processor and main memory. 

 

1.3 THESIS ORGANIZATION 

The thesis documentation is divided into 6 chapters. The first chapter presented the 

introduction along with motivation and background of LARs. The second chapter 

describes the idea of LARs along with its hardware structure. The third chapter describes 

the instruction set architecture of DATA LARs. The fourth chapter gives a detailed 

description of the DATA LARs hardware simulator of the straw-man model along with 
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the discussions about its tradeoffs. The fifth chapter gives the results where comparison 

of DATA LARs design with other architectures is explained along with some simple 

program examples run on the simulator. The sixth chapter concludes and gives the future 

work for this topic.  
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CHAPTER 2 

2. LARS 

Line Associative Registers (LARs) concept is derived mainly from Associativity of 

CREGs and SWAR operations on wide lines of data. Compared to a normal CPU 

register, LAR can also hold the address of the starting object similar to a CREG and are 

wide SIMD registers similar to SWAR. LARs are assigned to both instructions and data 

when the processor’s architecture design is considered. An Instruction LAR has the 

address of the starting object and is wide as discussed above whereas the DATA LARs 

are type tagged in addition to having the address field and the width. The address field 

could be used as a typed pointer to point to any object within the given LAR line. This 

makes it much easier for scalar operations on objects within a LAR to have great 

flexibility to access any field, not just the one in the lowest bits. Registers like MMX and 

SSE extensions [18][19] which utilize the SWAR concepts, are just wide registers which 

are not that convenient to be used for scalar operations as LARs could be used as 

discussed above.  

Since the CPU registers are compiler friendly, LARs could be handled efficiently when 

compared to a Cache (because compiler doesn’t know the address of the cache line). 

Moreover, the ambiguous aliasing flush/reload problem is handled by updating aliased 

objects in registers as in CREGs with the difference that this updating is extended to 

work with wider lines rather than single objects in registers.  

This helps improve the memory bandwidth. Type tagging Line Associative Register 

Lines also bring a lot of advantages to the design. Since data LARs are type tagged at the 

load time this would decrease the instruction set considerably by removing the type 

conversion instructions thereby increasing the code density and increasing architectural 

regularity and simplifying the instruction set. Type conversions occur automatically in 

this design in the hardware itself according the conditions depending on the data types 

and signs that would be discussed later. The stores are lazy in this design. This would 

reduce the memory cycles at hand and above that this makes store instructions to be used 

for different purpose which in our case would be to do changes to the type information of 
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the LAR under use.   Intel’s iAPx432 [22] had type-tagged main memory when compared 

to LARs which has type-tagged registers. Type-tagging objects in memory worsened the 

dependence on memory performance.  

Research on the concept of LARs began with the thesis of Krishna Melarkode [23] 

However, the initial ideas have proven to have many more complex implications than 

were originally realized. The prototype designed for this thesis is a straw man 

implementation with the parameters such as line width of the LAR scaled down to fit the 

standard FPGA. The main aim of the design is to present sufficient details so as to allow 

the reader to fully appreciate the complexity and logic involved in the LARs concept 

compared to a conventional processor.   

The design implemented here is a 32-bit microprocessor with 6-stage pipeline to achieve 

higher throughput and shorter clock. There are 8 data LARs 64-bits wide (CPU registers 

which handle data), although this number could be varied anytime and the number of 

instruction LARs (CPU registers which handle code) is not fixed either. The actual design 

was intended to contain 32-data LARs 256-bits. 

2.1 DATA TYPES 

This chapter introduces data types defined for Line Associative Registers (LARs) 

architecture.  

2.1.1 FUNDAMENTAL DATA TYPES 

The fundamental data types are bytes, half-words, words and double-words. A byte is of 

8-bits, a half-word is of 2 bytes (16-bits), a word is of 4 bytes (32-bits), and a double-

word is of 8 bytes (64-bits) as shown in figure 3. Byte order of each of these data types 

when referenced as operands in memory is shown in the figure 4. The low byte (bits 0 

through 7) of each data type occupies the lowest address in memory and that address is 

also the address of the operand. This is a “little endian” machine which means that bytes 

of a word are numbered starting from the least significant byte. 
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Figure 3: Fundamental Data Types 

 

Figure 4: Bytes, Half words, Words and Double Words in memory 

2.1.2 PACKED SIMD DATA TYPES 

The designed LARs architecture operates on 64-bits of packed SIMD data. The 

fundamental packed SIMD data types are defined as packed bytes, packed half-words, 

packed words and packed double-words. At the time of processing, the numeric SIMD 

operations on the CPU registers interpret these packed data types to contain packed or 

scalar byte, half-word, word, or double-word integer values.  
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Figure 5: Packed SIMD data types 

2.2 SIGNED AND UNSIGNED INTEGERS 

Unsigned integers are ordinary binary values ranging from 0 to the maximum positive 

number that can be encoded in the selected operand size. Signed integers are two’s 

complement binary values that can be used to represent both positive and negative integer 

values.  

Unsigned integers are unsigned binary numbers contained in a byte, half-word, word, and 

double-word. Their values range from 0 to 255 for an unsigned byte integer, from 0 to 

65,535 for an unsigned half-word integer, from 0 to 232 -1 for an unsigned word integer 

and from 0 to 264-1 for an unsigned double word integer. 

Signed integers are represented in two’s complement form throughout this design. The 

sign bit is located in bit 7 in a byte integer, bit 15 in a half-word integer, bit 31 in a word 

integer, and bit 63 in a double word integer. Saturation arithmetic uses the following 

representations to fix the overflow or underflow values to some boundary. For an 

unsigned, 8-bit byte, the largest and the smallest represent-able values are FFh and 0x00; 

for a signed byte the largest and the smallest represent-able values are 7Fh and 0x80. This 

is important for pixel calculations where this would prevent a wrap-around add from 
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causing a black pixel to suddenly turn white while, for example, doing a 3D graphics 

Gouraud shading loop. 

2.3 MEMORY ALIGNMENT 

Data structures are always aligned in this design. So words, double words, and quad 

words are all aligned in memory on natural boundaries. The natural boundaries for words, 

double words, and quad words are even-numbered addresses, addresses evenly divisible 

by four, and addresses evenly divisible by eight, respectively. The main advantage with 

this limitation is that it will improve the performance of programs. This is because the 

processor would require only one memory cycle to fetch an aligned data compared to two 

memory cycles required for an unaligned data.  

2.4 DATA LARS REGISTER SET 

Data LARs are the CPU registers which handle data part of the processor. All the data 

LARs are assigned the address field, the type field and the dirty field as shown in the 

figure 6. 

 

Data 

LAR 

 

Data 

64-bit 

Address 

64-bits 

 

WDSZ 

2-bits 

 

TYP 

1-bit 

 

Dirty 

1-bit Tag 

61-bits 

Word 

offset 

3-bits 

d0 7 6 5 4 3 2 1 0  Bytes 2’b00 1’b0 1’b0 

d1 3 2 1 0 Half Word 2’b01 1’b0 1’b0 

d2              

d3 1 0  Word 2’b10 1’b0 1’b0 

d4              

d5 0 Double Word 2’b11 1’b0 1’b0 

d6              

d7              

Figure 6: The hardware structure of DATA LARs 

There are 8 data LARs represented as “d” followed by “0 – 7” (0,1,2..7) 64-bits wide 

each which can hold one of the packed SIMD data types (8 packed bytes or 4 packed 
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half-words or 2 packed words or 1 packed double word). Each of these data LARs from 

d0 to d7 has an Address field, WDSZ field, TYP field and a Dirty field. The address field 

(64-bits in our case) is further classified into a TAG (61-bits) and a Word-Offset (3-bits). 

The whole address field acts as a typed pointer where TAG field points to the starting 

location of the LAR line and Word-Offset field is used to pick one of the objects within 

this line of data. So address operations can be scaled by object size much as the C 

programming language does for pointer arithmetic and moreover, scalar operations on 

objects within a LAR have full flexibility to access any field, not just the one in the 

lowest bits.  

The WDSZ and TYP field are used to represent the type tagging information of the data 

that gets loaded from the main memory. When compared architectures with type tagging 

or object in main memory, LARs type tags the objects or say lines after they get loaded 

from the main memory. Type tagging the memory makes it expensive since it increases 

the memory bandwidth and space requirement. Overriding these tags would also be 

difficult.  

WDSZ field is 2-bits wide this specifies if the data loaded into the data LARs is one of 

the packed data types. The table 1 below shows the different bit field settings for different 

data types.  

TYP field is 1-bit wide and this specifies if the data loaded is Signed or Unsigned. The 

table 2 below shows the bit field variations for signed and unsigned data.  

Table 1: Bit field variations of WDSZ 

WDSZ 

2-bits 

PACKED 

SIMD 

DATA TYPE 

2’b00 Packed Bytes 

2’b01 Packed Half Words 

2’b10 Packed Words 

2’b11 Packed Double Words 
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Table 2: Bit Field variation of TYP 

TYP 

1-bit 

SIGN 

1’b0 Unsigned Data 

1’b1 Signed Data 

LARs architecture tries to reduce memory cycles as far as possible. It uses Lazy Store 

mechanism to store back the data from CPU registers to main memory. It has a Write-

Buffer, whose size could be varied as necessary, which stores the dirty information 

spilled to the main memory. Dirty field (1-bit field) is used to know if the data in a 

certain data LAR has been changed due to some operation. If the processor tries to load 

some data into a dirty location, the dirty data is spilled to the Write-Buffer. For the 

current design, this data is sent to the main memory is a case where the buffer itself is 

full. In that situation, the whole pipeline is stalled and the buffer spills the excess data to 

main memory.  

There would not be any need for store instructions in this case. So the store instructions 

are used for type castings, or say, to change the address, WDSZ and TYP fields of the 

current data LAR so that it could be used for a different purpose without actually loading 

the data again since the processor already knows if the required address is present in one 

of the data LARs or not. This would be further explained with an example in the third 

chapter. 
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CHAPTER 3 

3. INSTRUCTION SET ARCHITECTURE 

3.1 DATA TRANSFER INSTRUCTIONS 

There are eight different LOAD instructions in this architecture whose opcodes are used for 

type tagging the DATA LARs. These instructions transfer data from the main memory to 

the LARs and type tag the registers by filling in the required information about the type 

and size of the data that is loaded. The difference between these instructions and the other 

architectures instructions like MIPS is the way they get executed; there would be an 

associative search of DATA LARs internally to check if the data at the calculated 

effective address has been already loaded by previous load instructions. This would save 

the cost of fetching the data (line of data) all the way from the main memory in case of a 

hit at the data LARs. 

 Opcode 

[31:27]  

DST 

[26:22]  

SRC1 

[21:17]  

SRC2 

[16:12]  

IMMEDIATE 

[11:0]  

Figure 7: Format of LOAD instruction 

The DEST LAR (destination DATA LAR), SRC1 (Source DATA LAR 1), and SRC2 

(Source DATA LAR 2) are all five bit fields since these fields are aimed to address 32 

DATA LARs instead of 8. Hence the architecture utilizes only 3 bits out of 5 to encode 

the register set and the two most significant bits are left in place and ignored in this 

prototype. And there is a 12-bit immediate field as shown. 

The calculation of the effective address and the whole procedure of a load instruction 

could be better understood by an example. Let the instruction be 

LOADUB d1 d2 d3 5 

The instruction says that the data to be loaded from memory is an unsigned byte. The 

opcode for LOADUB is 5'b00001, this opcode is sent to the DATA LARs along with the 
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data from main memory so that the TYP and WDSZ fields of the destination LAR can be 

filled simultaneously to 1’b0 for unsigned and 2’b0 for byte data respectively.  

The TAG and WORDOFFSET fields together constitute the effective address calculated 

by ALU. The way the effective address is calculated is: 

Effective addr  = SRC1.Addr + SRC2.Data + immediate 

(Destination LAR)  

Let us assume that the data stored at DATA LARs d2 and d3 are as shown below: 

Data 

LAR 

Data 

64-bit 

Address 

64-bits 

WDSZ 

2-bits 

TYP 

1-bit 

Dirty 

1-bit 

Tag 

61-bits 

Word 

offset 

3-bits 

d1 7 6 5 4 3 2 1 0  Bytes 2’b00 1’b0 1’b0 

d2   61’b0 3’b000 2’b10 1’b0 1’b0 

d3 16’b0 16’b0 16’b0 {10’b0,6’b1} {61’b0, 

1’b1} 

3’b111 2’b01 1’b0 1’b0 

Figure 8: DATA LARs before the LOAD instruction 

Destination DATA LAR   = d2.address + d3.data + 5; 

           d1's effective address 

                    = 0 + {58'b0, 6'b1} + 5; 

                = 000000 + 111111 + 000101; 

          Effective Address = 1000100; 

                       =>Tag = 61'b {57'b0, 4'b1000} = (8)10;  

                    =>Word Offset = 3'b100 = (4)10; 

The 64 bit address (TAG+WORDOFFSET) of d2 (source 1) added with 64 bit data of d3 

(source 2) and 5 (the 12 bit immediate field) would be the effective address. The obtained 

64 bit data from the main memory using this effective address, along with the opcode, 

will be sent to the DATA LAR in the last stage. Even the effective address would be 
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utilized here in the form of TAG and WORDOFFSET for the destination DATA LAR. 

The word offset is 3 bits wide since the DATA LAR is 64 bits wide and is byte accessible 

(eight bytes accessed by three offset bits).  

After the Load the data LARs will look like this 
Data 

LAR 

Data 

64-bit 

Address 

64-bits 

WDSZ 

2-bits 

TYP 

1-bit 

Dirty 

1-bit 

Tag 

61-bits 

Word 

offset 

3-bits 

d1 Data from data memory from the 

calculated effective address location 

61’b1000 3’b100 2’b00 1’b0 1’b0 

d2   61’b0 3’b000 2’b10 1’b0 1’b0 

d3 16’b0 16’b0 16’b0 {10’b0,6’b1} {61’b0, 

1’b1} 

3’b111 2’b01 1’b0 1’b0 

Figure 9: DATA LARs after the LOAD instruction 

As explained before, the LARs architecture would not go to the main memory blindly. It 

would stall the whole pipeline for one clock cycle and perform an associative search for 

every LOAD instruction to check if the calculated effective address is already present in 

one of the DATA LARs. In the above case, if 64’b1000100 address is already present 

in one of the LARs then the fetch cycle is canceled and a copy of the already present data 

would be placed at the DATA LAR d1. 

d1  Data from some other Data LAR with same 

address shown in the address column  
61’b1000  3’b100  2’b00  1’b0  1’b0  

Figure 10: DATA LARs d1 in the case of cancel LOAD 

Therefore, in order to save the cost of fetching the data all the way from the data memory 

this architecture uses one clock cycle to associatively search for the calculated address in 

the DATA LARs. This cost would be more visible when we are dealing with SIMD data 

(multiple data elements in one line). This approach is advantageous because caches are 

not employed to store vector data elements [2] [3] [25] as it would be a waste of space to 

have long lines of data in both the registers and the cache. 
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Table 3: Variations of LOAD instruction 

Opcode  Instruction  Description  

Binary Hex  

5’b00001  01  LOADUB  Check for the required effective address in the data LARs and then Load unsigned byte from memory in 

case you can’t find that address.  

5’b00010  02  LOADUHW  Check for the required effective address in the data LARs and then Load unsigned half-word from 

memory in case you can’t find that address.  

5’b00011  03  LOADUW  Check for the required effective address in the data LARs and then Load unsigned word from memory 

in case you can’t find that address.  

5’b00100  04  LOADUDW  Check for the required effective address in the data LARs and then Load unsigned double from memory 

in case you can’t find that address.  

5’b00101  05  LOADSB  Check for the required effective address in the data LARs and then Load signed byte from memory in 

case you can’t find that address.  

5’b00110  06  LOADSHW  Check for the required effective address in the data LARs and then Load signed half-word from 

memory in case you can’t find that address.  

5’b00111  07  LOADSW  Check for the required effective address in the data LARs and then Load signed word from memory in 

case you can’t find that address.  

5’b01000  08  LOADSDW  Check for the required effective address in the data LARs and then Load signed double from memory in 

case you can’t find that address.  

3.2 TYPE CASTING INSTRUCTIONS 

Stores are unnecessary for this architecture as it supports lazy store mechanism through 

which it updates the memory with the changes made to the DATA LARs. Hence STORE 

instructions are used for type casting in this architecture. As explained above, DATA 

LARs are all type tagged and therefore the type tags are updated on the new destination 

LAR. Whenever there is overwrite of data into one of the DATA LARs, the current data 

is sent into the write buffer from where it will be sent to data memory when the processor 

finds a free bus cycle. The format of the store instruction is: 

 Opcode 

[31:27]  

DST 

[26:22]  

SRC1 

[21:17]  

SRC2 

[16:12]  

IMMEDIATE 

[11:0]  

Figure 11: Format of STORE instruction 
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All the fields remain the same for store instructions as they were for load instructions. 

The way the type castings happen when a store instruction is encountered is better 

explained with an example. Consider that these two instructions occur in the order 

shown. 

LOADUB d1, d2, d3, 5 

… 

STORESHW d1, d4, d5, 10 

DATA LAR Data 

64 bit 

Address WDSZ 

2 bit 

TYP 

1 bit 

D 

1 bit 
TAG 

61 bit 

OFFSET 

3bit 

d1 0 5 0 1 0 3 0 4 8 4 2'b00 1'b0 1'b0 

d2 32'b0 {28'b0,4'b1} 61'b0 3'b000 2'b10 1'b0 1'b0 

d3 16'b0 16'b0 16'b0 {10'b0,6'b1} 1 7 2'b01 1'b0 1'b0 

d4 0 0 0 0 0 0 0 4 0 2 2'b00 0 0 

d5 0 16 3 4 2'b10 0 0 

Figure 12: DATA LARs before the STORE instruction 

The effective address of the STORE instruction will be calculated in the same way as for 

the LOAD instructions. So the calculated value will be: 

Effective address = 2'b10 + 5'b10000 + 10; 

      = 6'b101100; 

 =>TAG = 3'b101 = 5;  

                  =>Offset = 3'b100 = 4; 

The content of the DATA LAR d1 will not be changed after the store instruction. Their 

type fields will be changed. So the data values will look as if they are words now instead 

of bytes as they were before the store. 
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DATA LAR Data 

64 bit 

Address WDSZ 

2 bit 

TYP 

1 bit 

D 

1 bit 
TAG 

61 bit 

OFFSET 

3bit 

d1 5 1 3 4 5 4 2'b01 1'b1 1'b0 

d2 32'b0 {28'b0,4'b1} 61'b0 3'b000 2'b10 1'b0 1'b0 

d3 16'b0 16'b0 16'b0 {10'b0,6'b1} 1 7 2'b01 1'b0 1'b0 

d4 0 0 0 0 0 0 0 4 0 2 2'b00 0 0 

d5 0 16 3 4 2'b10 0 0 

Figure 13: DATA LARs after the STORE instruction 

The first LOAD instruction loads d1 with some TAG and WORDOFFSET fields by 

calculating the effective address as shown above and fills the WDSZ and TYP fields with 

2’b00 (byte) and 1’b0 (unsigned) bits. When the STORE instruction gets executed, it will 

replace all the fields of d1 leaving the 64-bit data associated with it unchanged. WDSZ 

field will change to 2’b10 (word) and TYP field will change to 1’b1 (signed). So, we can 

see that STORE instruction does not store the data from d1 to the effective address 

calculated as we might expect from conventional architectures. It simply changes the 

address, type and word size fields of d1.  

Table 4: Variations of the STORE instruction 

Opcode  Instruction  Description  

Binary Hex  

5’b01001  09  STOREUB  Change destination LAR’s data type to unsigned byte. 

5’b01010  0A  STOREUHW  Change destination LAR’s data type to unsigned half-word.  

5’b01011  0B  STOREUW  Change destination LAR’s data type to unsigned word. 

5’b01100  0C  STOREUDW  Change destination LAR’s data type to unsigned double.  

5’b01101  0D  STORESB  Change destination LAR’s data type to signed byte. 

5’b01110  0E  STORESHW  Change destination LAR’s data type to signed half-word.  

5’b01111  0F  STORESW  Change destination LAR’s data type to signed word.  

5’b10000  10  STORESDW  Change destination LAR’s data type to signed double.  
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3.3 ARITHMETIC AND LOGICAL INSTURCTIONS 

The arithmetic and logical instructions are designed to support the different packed and 

unpacked SIMD data types. The DATA LARs architecture supports ADD, SUB, AND, 

OR, and EXOR operations. Unlike MMX [18][19] or SSE designs, where the architecture 

has 57 or more opcodes to actually distinguish the type conversion operations, LARs 

design has only five different opcodes for these five instructions and the rest of the bits of 

the 32-bit instruction are used as control bits to help resolve the boundaries of the type 

conversions.  

Therefore, all these type conversions take place during the flow of data from one pipeline 

stage to another and not as separate instructions in which case we would have to wait for 

this converted data to be placed back in the registers. Hence this design would reduce the 

instruction fetch bandwidth and would be faster compared to the present architectures 

which employ separate registers for SIMD operations. 

The basic arithmetic instruction format would be 

Opcode 

[31:27]  

Dest  

[26:22]  

SRC1 

[21:17]  

SRC2 

[16:12]  

SV 

[11]  

Offset1 

[10:8]  

Offset2 

[7:5]  

Dest offset 

[4:2]  

NO 

USE 

[1:0] 

Figure 14: Format of Arithmetic instructions 

The ADD and SUB instructions have 4 variations in them. The 11th bit of the 32-bit 

instruction is used to specify if it is a vector or a scalar instruction. The offsets from bit 1 

to bit 10 are all used for the type conversions for packing and unpacking the data to 

required ALU boundaries. Vector operations are made on the whole array of data inside a 

DATA LAR, and scalar operations are made on the data pointed to by the 

WORDOFFSET of that particular data LAR. All calculations are made by taking WDSZ 

and TYP bits into consideration which are filled by the instructions executed earlier in 

that pipeline process. In case of data hazards, forwarding of these required bits (WDSZ 

and TYP) would be done and for cases where this is not possible, pipeline bubbles would 

be introduced to stall until the required data is ready to be forwarded.  
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Table 5: Arithmetic instructions and their variations 

Opcode  Instruction  Description  

Binary Hex  

5’b10010  12  ADD  This is classified into ADDV and ADDS namely vector or scalar addition depending on the 12th bit of 

the instruction. And at the end of this instruction, associatively update the data LARs with same address 

field.  

5’b10011  13  SUB  This is classified into SUBV and SUBS, vector or scalar subtraction respectively depending on the 12th 

bit of the instruction. And at the end of this instruction, associatively update the data LARs with same 

address field.  

5’b10100  14  MUL  (Reserved) for multiplication.  

5’b10101  15  AND  Perform AND operation on the two source LAR lines. And at the end of this instruction, associatively 

update the data LARs with same address field. Classified into ANDS and ANDV. 

5’b10110  16  OR  Perform OR operation on the two source LAR lines. And at the end of this instruction, associatively 

update the data LARs with same address field. Classified into ORS and ORV. 

5’b10111  17  EXOR  Perform EXOR operation on the two source LAR lines. And at the end of this instruction, associatively 

update the data LARs with same address field.  Classified into EXORS and EXORV. 

All the ALU operations follow modular arithmetic, also known as wrap-around 

arithmetic. It is the normal computer arithmetic in which the stored result is the low n bits 

of the actual result, where n is the size of the space in which the result is to be stored. 

This is equivalent to taking the actual result modulo the maximum value storable in the 

available space. Most existing instruction sets include some form of modular addition 

except for MVI, which does not, and the extensions to MMX, which use the MMX 

instructions for this purpose. When the source operand's word size is bigger than the 

destination operand's word size, the bits that are in excess when compared to the 

destination operand's bits will be discarded. Figure 15 will explain this procedure. 

 FFFFh 

  

 AAAAh 

 

 AAA9h 

Figure 15: modular arithmetic followed by the ALU 

+                                           + 

=                                                 = 
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In this case, the right-most result exceeds the maximum value representable in 16-bits 

thus it wraps around. This is the way regular computer arithmetic behaves. FFFFh + 

AAAAh would be a 17 bit result. The 17th bit is lost because of wrap around, so the 

result is AAA9h. 

3.3.1 TYPE CONVERSIONS 

Since LARs design is type tagged, the data type information is used by the hardware to 

process the SIMD data by keeping track of the data type fields. There will not be any 

explicit data conversions generated by the compiler as in the Intel’s iAPX432 [22], so 

considerable compiler overhead is saved.  

The third pipeline stage is used for these type conversions. The two operands are sent to 

the Sign Extension-Truncation Unit and in a case where the operand is of different word 

size when compared to the destination register's word size field, depending on the sign bit 

of the operand, sign extension or truncation of the operand's data to the destination 

operand's word size takes place. If the operand is unsigned, sign extension would be 

appending zeros and if the operand is signed, sign extension takes place by appending 

ones. In case of truncation, the conversion follows saturation arithmetic rules. It is best 

explained by considering what happens in computing an assignment like: 

C=A+B 

3.3.1.1 SATURATION ARITHMETIC 

Saturation arithmetic is a form of computer conversion in which the result is set to the 

maximum storable value of the same sign when an overflow occurs. This form of 

addition is used primarily for multimedia applications in which the data value represents 

some physical parameter whose value should not wrap with incremental changes. For 

example, adjusting the volume level of a sound signal can result in overflow, and 

saturation causes significantly less distortion to the sound than wrap-around (wrap around 

may result in a sudden drop from high to 0). LARs architecture follows saturation 
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arithmetic rules to truncate the operand’s data in case it does not fit in the destination 

LAR. 

Consider a case where A is byte (8 bits), B is a half word (16-bits) and C is word (32-bits). 

Now the boundaries of the ALU will be set according to the destination register's word 

size which is a word (32-bits). A will be converted from 64-bit data with bytes in it to 64-

bit data with words in it. We take a temporary register D which acts as a pipeline register 

for the later stage and do the following operation.  

 

  
 

   
 

Byte  

 

 

Word Word 

 

 

       Byte  

 

 

Word Word 

Figure 16: Type conversion- Rules for sign extension in the DATA LARs architecture 

The two cases with offset as 3’b000 and 3’b001 are derived from the offset field of the 

32-bit instruction. If the offset of the source register A is given to be 3’b000 then the type 

conversion will be applied on the first two eight bits of the DATA LAR A. If the offset is 

3’b001 then the next two 8-bits of A[23:16] and A[31:24] will be considered and so 

on. There are 3-bits for offset because the maximum possibility of selecting a pair of data 

elements occurs in case if A is a byte and C is a double where there are 8 possibilities.  
 

D[7:0] = A[7:0]; D[31:8] = 24 zero's 

D[39:32] = A[15:8]; D[63:40] = 24 zero's. 

 

Offset = 3’b000 

Offset = 3’b001 
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If A is signed, then sign extension is performed: 

 
D[7:0] = A[7:0];  

If (A[7] == 1'b1) C[31:8] = 24 1's  

else C[31:8] = 24 0's; 

 

D[39:32] = A[15:8];  

If (A[15] == 1'b1) C[63:40] = 24 1's  

else C[63:40] = 24 0's; 

Now consider a case where we have to truncate the operand A to fit in the destination 

register. Let A be a word (32-bits), B be a half word (16-bits) and C be a byte. The ALU 

boundaries will be set to byte. If A is an unsigned word data type we compare the 

magnitudes of A[31:0] and A[7:0] and if A[31:0] is greater than or equal to A[7:0] 

we place 8 1's in D[7:0] which is greatest possible number for unsigned numbers or else 

we place A[7:0] in D[7:0]. We do the same to the next 32 bits of A and place the 

truncated result in D[15:8]. The rest of D[63:16] is filled with zeros.  

 

Word Word 

 

       Byte  

 

Word Word 

 

       Byte  

Figure 17: Type conversion- saturation arithmetic rules for packing data 

 

Offset = 3’b000 

Offset = 3’b001 
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In case of signed data type we see if the most significant bit of A is 1 or not. If it is a 1 

then we replace the C[7:0] with 8'b10000000 which is the least negative number. If it is 

not we check for the magnitudes again and replace D[7:0] with 8'b01111111 which is 

greatest positive number for signed numbers in the case A[31:0] > A[7:0]. If it is not 

greater then we just copy the value A[7:0] into D[7:0]. The rest is again filled with 

zeros. 

3.3.2 SCALAR ALU OPERATIONS 

Unlike SSE-1 or SSE-2 extensions, LARs can perform flexible scalar operations [24]. 

When the SV bit (11th bit of the instruction) is high the processor considers the 

instruction to be a scalar instruction. In this case we allow only the data pointed to by the 

word offset to pass through to the pipeline register which supplies the operands to the 

ALU. This isolated data is sign extended or truncated according to the destination LAR's 

WDSZ and TYP fields. Finally, after the data is processed at the ALU, we place the data 

at the position pointed to by the destination LAR's word offset field. The following 

example explains the way in by which a scalar ADD instruction is executed: 

ADDS D1, D4, D5; 

DATA 

LAR 

Data 

64 bit 

Address WDSZ 

2 bit 

TYP 

1 bit 

D 

1 bit 
TAG 

61 bit 

OFFSET 

3bit 

d1 0 5h 0 1h 0 3h 0 4h 8 4 2'b00 1'b0 1'b0 

d2 0 FFh 0 0 2'b10 1'b0 1'b0 

d3 0 0 0 3Fh 1 6 2'b01 1'b0 1'b0 

d4 0 0 0 0 0 5h 0 4h 2 2 2'b00 0 0 

d5 FFFFh Fh 3 4 2'b10 0 0 

Figure 18: DATA LARs before the ADDs Instruction 
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The address of d4 points to the third location (byte) from the right. That particular byte is 

taken out and sent to the conversion unit where it will be aligned with the boundaries of 

the ALU as discussed before. Here the boundaries of ALU are set to byte since the 

destination LAR's WDSZ is byte, so there will be no need to convert the contents of d4. 

Since d5 has words in it, its contents will be truncated to bytes as explained before. Only 

the second word which is FFFFh is sent out to get converted since the word offset is 

pointing to it.  

After masking and shifting the data pointed to by the offset is extracted out and truncated. 

Only after these operations does the processor add the two operands. The destination 

LAR d1's contents will be brought along through the pipeline registers, and at the end of 

the ALU operation the result will be shifted to the position pointed to by the destination 

LAR's word offset and placed at the required position in that pipeline register. After the 

whole scalar arithmetic operation, the shifted sum replaces the data pointed to by the 

word offset of the d1 DATA LAR. So, 1h is replaced by 4h. The following figure gives 

us the end result. 

DATA 

LAR 

Data 

64 bit 

Address WDSZ 

2 bit 

TYP 

1 bit 

D 

1 bit 
TAG 

61 bit 

OFFSET 

3bit 

d1 0 5h 0 4h 0 3h 0 4h 8 4 2'b00 1'b0 1'b0 

d2 0 FFh 0 0 2'b10 1'b0 1'b0 

d3 0 0 0 3Fh 1 6 2'b01 1'b0 1'b0 

d4 0 0 0 0 0 5h 0 4h 2 2 2'b00 0 0 

d5 FFFFh Fh 3 4 2'b10 0 0 

Figure 19: DATA LARs after the ADDs instruction. d1's value pointed by the word offset 
is changed from 1h to 4h 
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3.4 NO-OP 

This is used by the hardware internally to introduce pipeline bubbles in case the 

forwarding unit does not meet the data hazards requirements. This is recognized by its 

opcode field which is all zeroes- 5’b00000. When this opcode is seen at the second stage 

(Instruction Decode Stage), the hardware makes all the control signals required by the 

pipeline hardware for particular ID stage to point to do harmless work, thereby acting like 

a pipeline bubble.  

3.5 LOADDUMMY 

This instruction is used before an ALU instruction when the destination DATA LAR’s 

address and type fields are not set by a previous instruction. This is necessary because of 

the way this architecture is designed. The type tags are placed on the DATA LARs along 

with the fetched data from main memory by the LOAD instructions. So for cases where 

the DATA LAR has to used before a LOAD or STORE instruction has filled its contents, 

this instruction is sent through the pipe just before the main instruction. The hardware 

recognizes this instruction and lets it pass through the pipe like a STORE instruction. So 

this instruction has the same format as the STORE or a LOAD with same effective 

address calculation procedure. Its opcode is 5’b11111.  
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3.5 SUMMARY OF INSTRUCTION SET ARCHITECTURE 

Table 6: Summary of Instruction Set Architecture 

Opcode  Instruction  Description  

Binary Hex  

5’b00000 00 NO-OP This is no operation instruction which is used by the hardware to introduce a pipeline 

bubble in case of data hazards.  

5’b00001  01  LOADUB  Check for the required effective address in the data LARs and then Load unsigned byte 

from memory in case you can’t find that address.  

5’b00010  02  LOADUHW  Check for the required effective address in the data LARs and then Load unsigned half-

word from memory in case you can’t find that address.  

5’b00011  03  LOADUW  Check for the required effective address in the data LARs and then Load unsigned word 

from memory in case you can’t find that address.  

5’b00100  04  LOADUDW  Check for the required effective address in the data LARs and then Load unsigned double 

from memory in case you can’t find that address.  

5’b00101  05  LOADSB  Check for the required effective address in the data LARs and then Load signed byte 

from memory in case you can’t find that address.  

5’b00110  06  LOADSHW  Check for the required effective address in the data LARs and then Load signed half-

word from memory in case you can’t find that address.  

5’b00111  07  LOADSW  Check for the required effective address in the data LARs and then Load signed word 

from memory in case you can’t find that address.  

5’b01000  08  LOADSDW  Check for the required effective address in the data LARs and then Load signed double 

from memory in case you can’t find that address.  

5’b01001  09  STOREUB  Change destination LAR’s data type to unsigned byte. 

5’b01010  0A  STOREUHW  Change destination LAR’s data type to unsigned half-word.  

5’b01011  0B  STOREUW  Change destination LAR’s data type to unsigned word. 

5’b01100  0C  STOREUDW  Change destination LAR’s data type to unsigned double.  

5’b01101  0D  STORESB  Change destination LAR’s data type to signed byte. 

5’b01110  0E  STORESHW  Change destination LAR’s data type to signed half-word.  

5’b01111  0F  STORESW  Change destination LAR’s data type to signed word.  

5’b10000  10  STORESDW  Change destination LAR’s data type to signed double.  

5’b10010  12  ADD  This is classified into ADDV and ADDS namely vector or scalar addition depending on 

the 12th bit of the instruction. And at the end of this instruction, associatively update the 

data LARs with same address field.  

5’b10011  13  SUB  This is classified into SUBV and SUBS, vector or scalar subtraction respectively 

depending on the 12th bit of the instruction. And at the end of this instruction, 

associatively update the data LARs with same address field.  
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Table 7: Summary of Instruction Set Architecture (contd...) 

5’b10100  14  MUL  (Reserved) for multiplication.  

5’b10101  15  AND  This is classified into ANDS and ANDV namely scalar or vector And operation 

depending on the 12th bit of the instruction. And at the end of this instruction, 

associatively update the data LARs with same address field.  

5’b10110  16  OR  Perform ORS or ORV operation on the two source LAR lines. And at the end of this 

instruction, associatively update the data LARs with same address field.  

5’b10111  17  EXOR  Perform EXORS or EXORV operation on the two source LAR lines. And at the end of 

this instruction, associatively update the data LARs with same address field.  

5’b11111  1f  LOADDUMMY  This is just a dummy instruction sent before an ALU instruction in a case where the 

destination DATA LAR does not have any of the fields set. 
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CHAPTER 4 

4. DATA LARS ARCHITECTURE 
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Figure 20: Block diagram of DATA LARs architecture design 

The DATA LARs Architecture design is a six-stage pipelined architecture. The stages are 

named as follow: 

Stage 1: Instruction Fetch 

Stage 2: Instruction Decode 

Stage 3: Conversion 

Stage 4: Execution 

Stage 5: Memory 

Stage 6: Write Back 
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The Hardware units designed and used for this architecture are as follow: 

 Instruction Register File with 32 32-bit registers to give instructions every cycle 

to the data path. Since this design being a simulator for testing the DATA LARs 

unit in an ordinary architecture (replacing the normal CPU registers), there is no 

instruction memory that is actually being used to fetch code from. This register 

file just acts as a continuous supplier of instructions to test the actual concept of 

DATA LARs. 

 The DATA MEMORY is designed to supply the 64-bit data required by the 64-bit 

wide DATA LARs. So it’s designed to contain 16 64-bit wide registers. This 

design is this small because of the chip constraints that it is being design on. The 

main aim of this design is to fit as many registers as possible to actually test the 

validity of the concepts that it is based on and in this process add some more ideas 

to make it work and be efficient.  

 The DATA LARs unit which is the replacement of the normal CPU registers 

when compared to a normal architecture. These registers are 132-bits wide each 

as they were described in the section 2. The actual data is of 64-bits wide SIMD 

data and the rest of the bits are used to store the address and type information of 

the same. There are about 8 of these registers employed in the current design. 

 Five pipeline registers named as IF/ID, ID/CONV, CONV/EX, EX/MEM, 

MEM/WB. 

 Write Buffer with two 125-bit registers to lazy-store the evicted data and address 

from the DATA LARs to main memory. 

 There are 3 ALUs in this design. The first ALU is fixed to add only and it is for 

incrementing the program counter to point to the next instruction in the 

Instruction Fetch stage. The second ALU is also fixed to add only in the 

conversion stage where it is used as an initial adder for calculating the main 

effective address for LOAD and STORE instructions. And the third ALU is a 

carry select adder which is used for calculating ADD, SUB, AND, OR and 

EXOR instructions and also for the final effective address calculation in case of 

LOAD and STORE instructions. 
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 The MASK SHIFT SCALAR UNIT is activated only for scalar operations. This 

unit allows only the required data pointed by the WORD OFFSET field of the 

particular DATA LAR in question. It masks the rest of the data and shifts it to the 

least significant bit position.  

 The SIGN EXTEND/TRUNCATE UNIT is the main hardware block where all 

the sign extensions and compressions required by the operand’s data to level 

according to the ALU’s boundaries are made. The ALU’s boundaries are set 

according to the type of the destination DATA LAR.  

 The EFFECTIVE ADDRESS CALULATION UNIT is used to add the initial two 

operands: The 64-bit address and the sign extended 12-bit immediate field.  

 The SCALAR OUTPUT UNIT shifts the ALU output back to its original position 

to which the destination DATA LAR’s WORD OFFSET field was pointing to. 

And this shifted output is placed back in the old destination DATA LAR so that 

only the pointed data is changed.  

 Since the DATA LARs architecture is type tagged and also lets the registers 

contain the address of the data, forwarding information to prevent data hazards 

has to be done for all the three fields of the DATA LAR. Therefore, the 

DATA/ADDRESS/TYPE FORWARDING UNIT does all the three forwards.  

 The ALU at the Execution stage comprises of a 64-bit carry select adder with a 

provision to add byte sized 64-bit packed SIMD data. It could be viewed as a 

collection of eight 8-bit adders. The carries from these adders are monitored and 

managed by the hardware block called the ANDING UNIT.   

 The HAZARD DETECTION UNIT detects the data hazards which cannot be 

cured by the forwarding unit. It sends the main controller signals to stall the 

pipeline process by introducing a no-op instruction.  

 There are three controllers in this design. The first is DATAPATH 

CONTROLLER. This generates signals to hardware in the later stages which 

solely depend on the opcode. The second controller is the CONTROLLER FOR 

LOADs. This is really important as it is responsible to send the interrupt signal to 

main controller to stall the whole pipeline process for one clock cycle in case of a 

LOAD instruction. This controller actually incorporates the main concept of 
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LARs which is to check for a possible match of effective address in the DATA 

LARs itself due to the previous LOAD instructions. In case of a match of the 

calculated effective address in the DATA LARs, the actual fetch cycle for data 

from main memory is cancelled and a copy of the found data at this address 

location inside the DATA LAR is sent to the MEM/WB pipeline register, after 

which this data would be copied into the destination DATA LAR. This is a 

structural hazard and this controller deals with the same issue. 

 The Third controller is the MAIN CONTROLLER whose task is to keep the other 

two controllers in sync and take care of stalls by considering the interrupts due to 

data and structural hazards. 

4.1 INTERRUPTS 

There are 4 interrupts in this current design.  

1. Interrupt from the Hazard Detection Unit. 

2. Interrupt from the CONTROLLER for LOADs. 

3. Interrupt from the WRITE BUFFER. 

4. Interrupt from the DATA MEMORY. 

All these interrupts are handled by the main controller appropriately. 

4.2 TRADE OFFs OF DATA LARs 

The DATA LARs architecture is six stage pipelined design. The conversion stage is the 

difference between the five stage MIPs design and the current DATA LARs design. This    

is introduced here because of the conversions that are needed between the packed data 

types to align the data to a proper boundary. MIPs architecture does not follow the SIMD 

execution pipeline, so it doesn’t need a conversion stage. So the additional stage being a 

necessity for having to deal with the vector registers in the DATA LARs design, there 

isn’t a lot of difference between a MIPs five stage pipelined design and our DATA LARs 

six stage pipelined design. Therefore MIPs is a good architecture for the current design to 

compare and point out the advantages and disadvantages of having DATA LARs in an 

ordinary architecture. The following section describes the main tradeoffs of LARs 
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architecture by comparing it with MIPs architecture. Consider the figure below as a 

reference for a normal pipelined execution where forwarding helps prevent a pipeline 

bubble (stall). This figure would be changed according to the problem in question. Hence 

understanding how this works is essential in order to understand the rest of the chapter. 

The dependencies between the pipeline registers move forward in time, so it is possible to 

supply the inputs to the ALU needed by the AND instruction by forwarding the results     

found in the pipeline registers. ADD instruction is first issued and then comes the AND 

instruction. Register R3’s value is available only at the end of 3rd clock cycle and the 

AND instruction needs this value at the start of the 4th clock cycle. Since the data 

dependency goes forward in time, there are no data hazards as we can just route back the 

value of the ALU from the pipeline register to the input of the ALU.  

 

IM REG DM REG

IM REG DM REG

ADD R3,R1,R2

AND R5,R3,R4

PROGRAM
EXECUTION

ORDER
(IN INSTRUCTIONS)

TIME (IN CLOCK CYCLES)

CC1          CC2                  CC3           CC4                     CC5                    CC6

FORWARDING

 

Figure 21: Forwarding the pipeline saves the cost of a stall cycle 

4.2.1 DATA HAZARDS  
In MIPs, one case where forwarding cannot save the day is when an instruction tries to 

read a register following a load instruction that writes the same register. The figure 22      

below shows this case. The hazard forces the AND instruction to repeat in clock cycle 4 

what it did in clock     cycle 3. This would just delay the fetch of the next instruction and 

therefore like an air bubble in a water pipe, a stall bubble delays everything behind it and 

proceeds down the instruction pipe until it exits at the end. 
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Figure 22: This shows what really happens in the MIPs hardware when the data 

dependency goes backward in time. 

DATA LARs architecture introduces 2 stall cycles, compared to one stall as in the case of 

MIPs, for same kind of problem.  

IM REG DM REG

IM REG DM REG

LOAD D2,D0,D0,10

AND D3,D2,D4

PROGRAM
EXECUTION

ORDER
(IN INSTRUCTIONS)

TIME (IN CLOCK CYCLES)

CC1          CC2                 CC3      CC4                CC5                  CC6                  CC7                 CC8                CC9

REG

BUBBLE

FORWARDING

CONV

CONVREG

 
Figure 23:  For same problem the hazard forces the AND instruction to repeat in the 

clock   cycles 4 and 5 what it did in clock cycle 3. 

This happens because of the conversion stage. Since the architecture deals with packed        

SIMD data, it needs to convert the forwarded before actually sending the aligned data to 

the ALU. Hence the pipeline is stalled until the data dependency is forward in time for 

the conversion stage and this needs two clock cycles stall. Again, there is a data hazard 

involved when an instruction tries to read a register following an arithmetic instruction 

that writes the same register. This is due to the same problem explained above, because 

of the conversion stage.  
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Figure 24: Clock cycle 4 repeats the operations done during clock cycle 3 to introduce a 

pipeline bubble. 

This architecture does not allow ALU’s output to be routed back to one of the inputs of 

the ALU as in the case of MIPs architecture. This is because of the data is needed to be 

aligned properly before it is sent to the ALU and this process is done in the conversion 

stage, hence a stall cycle.  

  

4.2.1.1 ARGUMENT 

Although this looks like an additional stall cycle compared to MIPs, this is just a tradeoff 

for dealing with large amounts of data. Having SWAR like architecture helps in reducing 

the number of instructions needed to actually perform the basic operations such as ADD. 

Consider the case of MMX of instructions. This architecture helps the Intel’s x86 designs 

to deal with SIMD data. Now for a normal arithmetic operation like an ADD, it needs to 

issue type conversion instructions before actually issuing the main instruction. That is the 

reason why the designs with MMX-like register sets need to have large instruction set 

(Intel’s MMX has 57 different instructions to deal with these wide registers). The cost of 

having these additional stall cycles is negligible when compared to the advantages that 

the architecture has due to the wide type-tagged registers.  

4.2.2 STRUCTURAL HAZARD  

The LARs architecture does an associative search of the DATA LARs before every 

LOAD instruction to check for the presence of the calculated effective address in the 

DATA LARs. Since this is a pipelined architecture, each hardware unit could be used 
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only once in a clock cycle. Now this associative search needs the DATA LARs registers 

during the 5th stage (Memory stage). At the same time another instruction might need the 

DATA LARs to write back the executed data during the 6th stage. Since the design lets 

DATA LARs to be read at any point of time, there would be a collision of usage of these 

registers at the 5th and 6th stages when the hardware encounters a LOAD instruction at the 

5th stage. This is a Structural Hazard.  

IM REG DM REG

ADD 

DATA LARS FOR ASSOCIATIVE 
SEARCH FOR EFFECTIVE 

ADDRESS

CONV

LOAD

REG

DATA LARS FOR WRITE BACK 
OF THE EXECUTED DATA 

PROGRAM
EXECUTION

ORDER
(IN INSTRUCTIONS)

A CLOCK CYCLE  
INSTANCE WHERE 
THERE IS AN ADD 

FOLLWED BY A 
LOAD

 

Figure 25: The structural hazard problem with DATA LARs design for LOADs. 

At an instance where there is a LOAD after an ADD instruction, the load wants to search 

the DATA LARs at the same time the ADD instruction is writing the executed data into 

the DATA LARs. The figure 26 below explains the problem in detail. DATA LARs deals 

with this problem in this way; the CONTROLLER FOR LOADs sends an interrupt signal 

to the MAIN CONTROLLER and the main controller stalls all the 6 pipeline registers for 

one clock cycle CC1. During this stall, the associative search for the effective address in 

the DATA LARs takes place and this is shown in the figure by highlighting only the REG 

block. At the end of the stall cycle CC1 another interrupt is sent to the MAIN 

CONTROLLER telling it if there was a hit or a miss. In case of a hit, the controller 

cancels the fetch cycle for the LOAD instruction and in case of a miss the controller 

continues its usual process of fetching the packed SIMD data from the main memory. 

This is shown in the CC2 where all the hardware blocks are active and this time the 

DATA LARs are used by the Write Back stage to write back the executed ADD 

instruction’s data. 
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Figure 26: The flow of instructions through the pipeline when there is a load instruction. 

And during the CC3 the fetched data from either the Main Memory (in case of a miss) or 

the DATA LARs (in case of a Hit) is sent to DATA LARs to be written onto the 

destination LAR pointed by the write address of the LOAD instruction. 

4.2.2.1 ARGUMENT 

The cost of a stall cycle before every LOAD instruction is negligible when compared to 

the cost going all the way back to the Main Memory for fetching data. This is also 

strongly supported as the width of the registers is not just one object wide in this design. 
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Having a cache does not help a lot either. In traditional cache-based computers, all the 

memory references are made through cache and most of the items that are referenced in a 

program are referenced infrequently which leads to bumping the fetched data from the 

cache even before they are referenced again. In such cases, there is no benefit in placing 

the item in the cache. Moreover, there is an additional overhead of bumping some other 

items out of the cache to make room for these useless entries into cache [2] [25]. And it is 

wastage of space in our case to have the same item in both cache and the DATA LARs as 

they are wide data elements.   

4.2.3 ASSOCIATIVE SEARCH OF LOAD INSTRUCTIONS 

4.2.3.1 ARGUMENT 

People might be concerned that the LARs (and CRegs before them) would be stretching 

the cycle time or making the register access take multiple cycles; however, the Verilog 

module of the LARs system design does NOT evidence this (nor did the earlier CRegs 

circuits designs). The reason that LARs do not take longer to access than conventional 

registers is that, for reads and writes, they truly ARE wide, but conventional, registers. 

The associativity affects only the associative processing of Loads, which is still faster 

than L1 cache’s associativity because the LARs are on the processor side of any TLBs. 
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CHAPTER 5 

5. RESULTS 

Like a conventional register, DATA LARs can hold the values of the resulting 

operations. Like a cache line, LARs can contain a number of spatially local scalar values. 

As in SWAR, a LAR can hold a vector of values to be operated on in parallel. Like their 

progenitor CRegs, LARs can transparently resolve ambiguous aliases in hardware. The 

following examples explain the operations of DATA LARs with the help of snapshots 

taken from the simulations run on the DATA LARs simulator designed using Verilog 

Hardware Descriptive Language (HDL). 

 

5.1 TRIVIAL EXAMPLE 

To demonstrate some of these properties, a trivial example, compiled to both LARs- and 

MIPS-like assembly. 

nasty(int* i, int* j, int* k) 

{ 

*i=*j+*k; 

*k=*i&*k; 

} 

Listing 2: Example with pointers for alias analysis 

The same C code would be compiled into the following instructions and get executed 

likewise. As we can see in the table below the RISC processor needs around five more 

instructions to execute the same program and uses 9 memory cycles over all, whereas the 

DATA LARs processor takes only a maximum of 5 memory cycles. The table below 

describes the execution of the above C code in terms of MIPs and DATA LARs 

processor designs. 
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Table 8: Assembly language code of the C program "nasty" for DATA LARs and MIPs 

 

 

Table 9: Static Comparison of DATA LARs and MIPs 

 LARs MIPs 
Memory Accesses 0-5 9 

Reads 0-5 7 
Writes 0 2 

Total Instruction Count 8 11 
 

The reason there are ranges on the LARs memory access counts is because if the used 

locations are aliased to any "live" value, the memory access is replaced with a simple 

associative update. Even if we allow that the MIPS version may have passed its 

parameters in registers, it would only reduce the number of instructions to parity at eight, 

and there would still be eight assured memory accesses for the MIPS version. While it is 

true that some or all of these memory accesses may be satisfied from cache, this would 

still require traffic across the memory interface. An associative update in the LARs 

version is entirely internal to the processor, and does not incur any bus traffic. It is also 

Conventional RISC  DATA LARs  

LW $t1, j(0)  LOADUDW d1, d0, d0, i  

LW $t2, 0($t1)  LOADUDW d2, d0, d0, j 

LW $t3, k(0)  LOADUDW d3, d0, d0, k  

LW $t4, 0($t3)  LOADDUMMY d6, d0, d1, 0  

LW $t5, i(0)  LOADSW d4,d0,d2, 0  

ADD $t6, $t2, $t4  LOADSW d5,d0,d3, 0 

SW $t6, 0($t5)  ADDS d6, d4,d5  

LW $t7, 0($t5)  AND d5, d6, d5  

LW $t8, 0($t3)   

AND $t9, $t7, $t8   

SW $t9, 0($t3)   
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worth noting that the LARs version could operate on entire vectors, each the length of the 

data field, by only changing the ADD and AND operations to their vector forms. There 

would be no additional memory references or additional cycles in processing the 

operations. 

5.1.1 EXECUTION OF ALIAS ANALISIS EXAMPLE ON DATA LARs 

SIMULATOR 

The program in listing 2 is modified at the assembly language level a bit so that it could 

be fed to the DATA LARs simulator and shown in the table 9 below. This section 

explains the execution of alias analysis program by sending it through the simulator and 

the results obtained. It assumes the initial values of the memory as shown throughout the 

section and explains the obtained results according to these values. 

Table 10: the assembly language instructions modified for DATA LARs to test the alias 

analysis program of listing 2. 

DATA LARs 

INSTRUCTION 

OPERATION 

LOADUDW d1, d0, d0, 0 Loads data = 28 from memory location 0; 28 is the address location of i  => addr(i) 

LOADUDW d2, d0, d0, 8 Loads data = 18 from memory location 1; 18 is the address location of j => addr(j) 

LOADUDW d3, d0, d0, 10 Loads data =20 from memory location 2; 20 is the address location of k =>  addr(k) 

LOADDUMMY d6, d0, 

d1, 0 

Not an actual load. This will just calculate the effective address of variable i and place this 

at the data LAR d6 with type information so that the added value would be placed with 

proper attributes. No fetch cycles required here when compared to MIPs or other RISC 

architectures.  =>val(i) 

LOADSW d4,d0,d2, 0 Loads the data of variable j using the address fetched by the instruction into d2.   =>val(j) 

LOADSW d5,d0,d3, 0 Loads the data of variable k using the address fetched by the instruction into d3.   =>val(k) 

ADDV d6, d4,d5 Adds the fetched integer values of j and k and places the result in d6, which has the address 

of integer i 

ANDV d5, d6, d5 Performs ANDV operation on the result of previous addition and k and places result in k- d5 
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The integer values of j and k are  

J = 32’h dddd dddd; 

K = 32’h bbbb bbbb; 

Since the simulator loads 64-bit data into the DATA LARs, it fetches the data beside the j 

and k also. The DATA LARs d4 and d5 are filled in this way: 

d4 = 64’h dddd dddd dddd dddd; 

d5 = 64’h bbbb bbbb bbbb bbbb; 

Now consider the following cases: 

Table 11: Register assignment in case of ambiguous alias of j and k in above example 

ALIAS ANALYSIS REGISTER ASSIGNMENT 
Compiler knows j == k Share one register 
Compiler knows j != k Two separate registers 

Compiler doesn’t 
know?? 

DATA LARs OTHER RISCs 
Doesn’t happen. Since compiler has the 

address of j and k, only the above 2 
cases occur in DATA LARs 

Which of the 
above? 

 

Therefore for the first case we just have a two fetch cycles for both j and k; one for 

fetching the address of the integer j and the next for fetching the data of j since we are 

dealing with pointers here. When the hardware sees the same effective address for j and k 

it will cancel the k’s fetch cycle and feed the data fetched for j to k. The snapshots 

obtained by executing the instructions in table 9 are given below in figures 27 and 28 for 

the above two cases for vector add instruction.  

For case II:  

j + k = 64’h dddd dddd dddd dddd  (packed word--- integer j) 
    +     64’h bbbb bbbb bbbb bbbb       (packed word--- integer k) 
---------------------------------------------- 

   =      64’h 9999 9998 9999 9998   =  d6 = i (packed word—integer) 
----------------------------------------------- 
i & k = 64’h 9999 9998 9999 9998   (packed word--- integer i) 
     &    64’h bbbb bbbb bbbb bbbb   (packed word--- integer k) 
-----------------------------------------------    
     =     64’h 9999 9998 9999 9998 = d5 = k (packed word integer) 
------------------------------------------------ 
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Figure 27: the snapshot of alias analysis program run on the DATA LARs simulator with 

j != k 

The waveform in the snapshot of figure 27 is a Modelsim wave output which shows the 

execution output of the instructions during each clock cycle. All the internal signals could 

be viewed at a certain moment during the execution of the program. ALU_OUT gives the 

output of the ALU during the 4th stage. MEM_OUT gives the memory output in case of a 

fetch cycle. As we can see in the snapshot, there are only 5 fetch cycles involved in the 

whole execution. WB_DATA gives the data to be written back into the DATA LARs 

after the whole execution process of an instruction.  

The figure 28 explains the case where j is equal to k, i.e., they point to the same memory 

location. Here this case arises if the address of variable k is the same as variable j which 

is 18. This is obtained by changing the data at memory location 2 to 18 instead of 20 

which could be seen in the table 10. From the snapshot it can be seen that 

cancelload_LAR is the signal that tells the controller for loads that it found the address it 

was searching for and there is no need to go to data memory to fetch this data. And the 

signal LOADCANCEL gives the data from the DATA LAR which has the effective 

address that the load instruction was going to use to fetch data. To support the LARs 
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concept here, it could be seen that there are only 4 memory cycles in this case which get 

the job done correctly.  

 
Figure 28: the snapshot of alias analysis program run on the DATA LARs simulator with 

j == k 

 

By adding the ability to perform SIMD-like operations on fields within a register or 

datapath, DATA LARs operations replace a series of memory accesses and field 

extraction/insertion operations with a single access for a word's worth of fields. Compiler 

optimization methods like loop unrolling could be rewarding for architecture like DATA 

LARs which employs the SWAR like registers. A single instruction implies a lot of work 

here and each result is independent of previous result because compiler ensures that there 

are no dependencies. And there is high interleaved memory. The DATA LARs 

instruction set provides structured register accesses when compared to a single-issue 

scalar design where arbitrary register accesses adds to area and power.  
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5.1.2 EXECUTION OF LAZY STORE EXAMPLE ON DATA LARs SIMULATOR 

The DATA LARs simulator designed using Verilog on the Xilinx platform gives the 

following results for the simple program shown in the table 11 below. The program loads 

the operands into d2, d3, d4 and d5 and performs ADDv operation on them. And then it 

loads other data from a different memory location into the same destination so that the 

previous data which is marked dirty would be evicted to the write buffer. It performs the 

ADDv operation again with different operands and stores the result into the same 

destination which makes the DATA LAR d6 dirty again. Then another load into d6 

would evict the data again to the write buffer.  

Table 12: program to show lazy store mechanism of DATA LARs 

INSTRUCTION DISCRIPTION 

LOADUB d2,d0,d0,10h Data at memory location 2 which is 64’hdddddddddddddddd would be 

fetched into DATA LAR d2 and its contents would be type tagged to 

unsigned bytes 

LOADUB d3,d0,d0,20h Data at memory location 4 which is 64’hbbbbbbbbbbbbbbbb would be 

fetched into DATA LAR d3 and type tagged to unsigned bytes 

LOADUB d4,d0,d0,40h Data at memory location 8 which is 64’h3333333333333333 would be 

fetched into DATA LAR d4 and type tagged to unsigned bytes 

LOADUB d5,d0,d0,18h Data at memory location 3 which is 64’hcccccccccccccccc would be 

fetched into DATA LAR d5 and type tagged to unsigned bytes 

LOADDUMMY d6,d0,d0,78h This is just a dummy load instruction to fill in the contents of address and 

type information to bytes  

ADDv d6,d3,d2 This add vector instruction makes the 64-bit contents of d3 and d2 to pass 

through the conversion stage into the ALU where the packed bytes would 

be added to give a result of 64’h9898989898989898 and the dirty bit of d6 

would be made high  

LOADUB d6,d0,d0,28h Data at memory location 5 which is 64’haaaaaaaaaaaaaaaa would be 

fetched into DATA LAR d6. But before writing this back at the write back 

stage of the processor the previous data which is marked dirty by the ADD 

instruction would be evicted to write buffer. 
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Table 13: program to show lazy store mechanism of DATA LARs (Contd...) 

ADDv d6,d4,d3 The data at DATA LARs d4 and d3 would be added to give 

64’heeeeeeeeeeeeeeee which would replace 64’haaaaaaaaaaaaaaaa and in 

the process make dirty bit of d6 high 

LOADUB d6,d0,d0,30h This would load 64’h1111111111111111 into d6 and tag it to unsigned 

bytes thereby evicting the previous contents again. 

 

The MEM_OUTPUT and WB_DATA are the main outputs in the screenshot which show 

that correct values are been used in and out of the system. The MEM_OUTPUT gives the 

output from the main memory and the WB_DATA shows the executed data in the Write 

Back stage of the pipeline architecture before it is actually written back to the DATA 

LAR.  

 

 

Figure 29: screen shot of DATA LARs simulator output for the program given above 
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5.2 DEVICE UTILIZATION SUMMARY 

Table 14: Summary of the device utilization of the straw man's model of DATA LARs 

architecture 

Number of BUFGMUXs 1 
Number of External IOBs 215 
Number of LOCed IOBs 0 
Number of RAMB16s 1 
Number of SLICEs 4251 
Number of 4 input LUTs 6772 
 

The current reduced-size synthesizable test core, which uses 8 64bit DATA LARs, 

synthesizes to an FPGA in approximately 7000 4-input LUTs, with a maximum clock 

frequency of 25.732MHz, prior to optimization.  
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CHAPTER 6 

6. CONCLUSION AND FUTURE WORK 

In order to find a perfect hardware structure which does not have the deficiencies of the 

present day memory hierarchies but all of their advantages Line Associative Registers 

(LARs) are derived from the concepts of SWAR, CRegs and type tagged designs. It is 

known that the present day cache technologies and levels are not sufficient to bridge the 

gap between the processors and the main memory speeds. It is found that the 

performance of the whole system can be improved by a certain amount by employing the 

concepts of SWAR and having wide lines of registers. The CRegs reduce the number of 

memory accesses required by spotting and updating the ambiguous aliasing automatically 

and thereby letting these values stay in registers much longer. This idea would be much 

more effective when added to SWAR-like processing where a single fetch cycle would 

mean fetching a whole line of data.  

This thesis is about using the concepts of LARs and applying them to the CPU registers. 

These special registers are called DATA LARs since they target the data part of the 

processer, although they could be used on the instruction side of the processor also. An 

instruction set architecture suitable for the prototype was developed. A 6-stage pipelined 

architecture was designed using these DATA LARs using the hardware descriptive 

language Verilog. A qualitative evaluation of the designed architecture for different 

scenarios where it could reduce the number of fetch cycles has also been done. The 

results section of this thesis compares and elaborates the uses of DATA LARs design. 

The simulator accepts assemble language instructions from the instruction set of the 

DATA LARs and executes them. The outputs could be viewed comfortably with proper 

timing information.   

The design lets the programmer operate on 64-bit data. So a floating point unit should be 

designed and patched to the existing design so that the simulator could target floating 

point operations. The instruction set should be tweaked accordingly. The performance 

evaluation results obtained by targeting the floating point data could be used to actually 



 

50 
 

compare this hardware simulator to the existing architectures out there with SWAR 

concepts integrated in them. 
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