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ABSTRACT OF THESIS 

 

 

HYDRAULIC GEOMETRY RELATIONSHIPS AND REGIONAL CURVES FOR 
THE INNER AND OUTER BLUEGRASS REGIONS OF KENTUCKY 

 

 

Hydraulic geometry relationships and regional curves are used in natural channel design to 
assist engineers, biologists, and fluvial geomorphologists in the efforts undertaken to 
ameliorate previous activities that have diminished, impaired or destroyed the structure and 
function of stream systems.  Bankfull channel characteristics were assessed for 14 United 
States Geological Survey (USGS) gaged sites in the Inner Bluegrass and 15 USGS gaged sites 
in the Outer Bluegrass Regions of Kentucky.  Hydraulic geometry relationships and regional 
curves were developed for the aforementioned regions.   
 
Analysis of the regression relationships showed that bankfull discharge is a good explanatory 
variable for bankfull parameters such as area, width and depth.  The hydraulic geometry 
relationships developed produced high R2 values up to 0.95.  The relationships were also 
compared to other studies and show strong relationships to both theoretical and empirical 
data.  Regional curves, relating drainage area to bankfull parameters, were developed and 
show that drainage area is a good explanatory variable for bankfull parameters.  R2 values for 
the regional curves were as high as 0.98. 

 

Keywords: Bankfull, Fluvial Geomorphology, Channel Form, Flood Frequency Analysis, 
Stream Restoration 
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Chapter 1: Introduction 

1.1 Introduction 

Stream restoration refers to efforts undertaken to ameliorate previous activities that have 

diminished, impaired or destroyed the structure and function of stream systems.  Restoration 

generally involves the conversion of an unstable, altered or degraded channel to its natural or 

pre-disturbance state while considering present and future watershed conditions (NRC, 

1992).  This process consists of restoring the stream’s geomorphic dimension, pattern, and 

profile to achieve dynamic equilibrium, and hence biological and chemical integrity.  

Enhancement refers to activities designed to improve an aspect of an impaired stream 

system, but where recovery to that of the natural or pre-disturbance condition is not feasible 

or practical.   

 

In highly degraded, incised stream systems, restoration programs and projects within the 

U.S. are primarily focused on reconstructing bankfull cross-sectional shape (e.g. area, width, 

depth), hydraulic gradients, in-stream habitat features (e.g. pools, riffles), and vegetation 

(Rosgen, 1996; McCandless and Everett, 2002; Doll et al., 2003).  The primary goal is to 

restore flow and sediment transport regimes (Hey, 2006) with the assumption that the 

biological components of these systems will recover soon after (Lakly and McArthur, 2000).  

A similar strategic emphasis is placed on restoring and protecting riparian areas (Wenger, 

1999).  Recognizing the need to work in conjunction with nature, designers are turning 

towards the use of classification systems and geomorphologic indices (i.e. dimensionless 

ratios) developed from natural stable streams (reference analogues) to assist in departure 

analyses and design of restoration plans (Harrelson et al., 1994; Rosgen, 1994; Hey, 2006).  
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However, successful classification and indices development hinges on correctly identifying 

bankfull elevation; a task that can be rather challenging, especially when evaluating incised 

channels where bankfull indicators are infrequent to non-existent.  Misidentification of 

bankfull can result in a designed channel with improper dimensions for maintaining dynamic 

equilibrium, resulting in an instable channel.  

 

Bankfull regional curves which relate bankfull channel dimensions (e.g. area, width, depth, 

discharge) to drainage area as well as hydraulic geometry curves that use bankfull discharge 

as the independent variable are useful tools for assisting in the correct identification of 

bankfull.  Regional curves are particularly helpful when assessing incised systems where lack 

of good bankfull indicators is a common and problematic occurrence.  To obtain the 

necessary information to develop regional and hydraulic geometry curves, data must be 

acquired from several reference regional streams representing a wide range of drainage areas, 

a task that is often viewed as cost prohibitive for most project budgets.  Designers not 

equipped with regional curves face increased risks in misidentifying bankfull, or using an 

incorrect return interval (e.g. 1.5-year event may be too large or too small for a specific 

region), and hence designing a channel with inappropriate dimensions.  With increased 

interest in stream and riparian restoration within the Inner and Outer Bluegrass Regions of 

Kentucky, such as in the Cane Run watershed, the demand for regional and hydraulic 

geometry curves applicable to karst, hydro-physiographic regions is high.   

 

Recent work by Parola et al. (2007) offers regional curves (area, width, depth and discharge) 

for the Bluegrass Region of Kentucky, which the authors define to include the Inner 

Bluegrass, Eden Shale Belt, Outer Bluegrass, and Knobs.  These regions in Kentucky 
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possess different geologic characteristics.  The Inner Bluegrass and Outer Bluegrass have 

gently sloping topography and contain large amounts of limestone, a very erodible soil 

(Perfect et al., 1998).  The Inner Bluegrass Region is underlain by carbonate bedrock that 

creates a karst prone environment; the Outer Bluegrass also contains karst topography, 

although not as much (McDowell, 1986).  The Knobs consist of non-erodible rock types 

over the more erodible shale that creates steep sloping hills shaped as cones (McDowell, 

1986).  The Eden Shale Belt is contained within the Inner and Outer Bluegrass and has 

similar topography to the Bluegrass Region (McDowell, 1986).  

 

The regression equation developed by Parola et al. (2007) for bankfull area is particularly 

interesting for this study; it found the exponent of the power function to be 0.99.  

Bidelspach (2008) found this value to be 0.711 for an average curve using 22 other curves in 

the Southeastern U.S.  Values for the exponent range from 0.57 to 0.82 for various curves 

developed across the eastern U.S., excluding only the value found in coastal Alabama which 

was 0.99 (Smith and Turrini-Smith, 1999; Westergard et al., 2004; Metcalf and Shaneyfelt, 

2005).  The value found by Parola et al. (2007) is the same as the value found by Metcalf and 

Shaneyflet (2005) for coastal curves developed in Alabama, and is not similar to any other 

curves developed for the southeastern U.S. including other coastal streams.  A value lower 

than the 0.99 found may be more appropriate based on prior curves developed in other parts 

of the U.S.  Johnson and Fecko (2008) tested for similarities between physiographic regions 

and found that the physical and statistical similarities between the Valley and Ridge, the 

Appalachian Plateau and New England could produce one equation for bankfull width.  This 

indicates that there should be similarity in regression equations between regions.  While 

Johnson and Fecko (2008) found statistical differences in the regional curve for width 
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developed by Cinotto (2003), the only regional curves developed in the Piedmont region to 

include karst watersheds, their values still fall within the range found throughout the eastern 

U.S.  Their exponent value for bankfull area is 0.81. 

 

Another exponent from Parola et al. (2007) is high; the exponent of the power function 

relating drainage area to bankfull depth is 0.51.  Other values range from 0.21 to 0.36 for 

curves developed across the eastern U.S. (Harman et al., 1999; McCandless, 2003a; Arcadis 

and SCDOT, 2004; Chaplin, 2005).  Parola et al. (2007) is again closer to the regional curves 

developed for the coastal plain in Alabama; they found a value of 0.47 (Metcalf and 

Shaneyfelt, 2005).   

 

Keaton et al. (2005) compared their regional curves with bankfull characteristics from other 

hydro-physiographic provinces to evaluate consistency and repeatability of methodology as 

well as similarity of bankfull hydraulic geometry relationships between regions.  The 

researchers noted a large degree of similarity between the compared curves and concluded 

that a single set of regional curves may be appropriate for the studied areas.  Such may be 

the case with streams located in central Kentucky in that a single regional curve is applicable 

for the entire area (i.e. Inner Bluegrass, Eden Shale Belt, Outer Bluegrass, and Knobs); 

however, until separate curves are developed for these regions, this remains unknown. 

 

1.2 Cane Run Watershed Project Background 

The Cane Run watershed serves as the major recharge for the city of Georgetown (pop.: 

25,000), as it feeds the Royal Spring Aquifer, which is the major source of water for the city.  

Segments of the watershed have been identified as having high levels of 
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sedimentation/siltation, pathogens, and nutrient/organic enrichment, which has resulted in 

the stream being placed on the state 303(d) list.  While not confirmed, it is anticipated that a 

major source of sediment is from the banks Cane Run.  For streams with accelerated bank 

erosion, as seen with portions of Cane Run, sediment contributions from banks can be 

significant.  Van Eps et al. (2004) estimated that over 21,000 metric tons of sediment was 

supplied to a northwestern Arkansas stream from 64 km of reach length within a one-year 

period.  DeWolfe et al. (2004) also noted the importance of streambanks in nutrient 

contribution.  In some instances, streambank erosion was determined to be the largest 

phosphorus contributor to the watershed.  Streambank erosion can also affect pathogen 

levels in the water.  Research into the role of stream sedimentation and fecal coliforms 

indicates that bottom sediments act as reservoirs for the organisms.  Stephenson and 

Rychert (1982) indicated a definite relationship between the concentrations of E. coli in 

bottom sediments as compared to the overlying waters.  Greater concentrations were found 

in the bottom sediments as compared to the overlying waters.  Van Donsel and Gelreich 

(1971) noted similar results, with concentrations of sediment fecal coli forms 100 to 1,000 

times greater than that of overlying waters.   

 

Disturbance of bottom sediments causes resuspension of the organisms, thereby raising 

concentration levels in overlying waters (Stephenson and Rychert, 1982).  To ameliorate in-

stream contributions of sediment, and hence bacteria and nutrients, it will be necessary to 

enhance or restore a number of segments along Cane Run.  Improvements in the quality of 

water within the watershed will benefit not only the effected stream miles, but the 

downstream water users as well.  While regional curves are often used in the assessment 

phase to assist in the identification of bankfull elevation, these curves along with hydraulic 
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geometry curves can be used in the design process, particularly in the efforts to restore 

stream segments along Cane Run, its tributaries, and other streams located in the Inner and 

Outer Bluegrass regions.  Regression equations can provide a starting point for design 

dimensions of the new channel; bankfull area, width and depth can be calculated from 

regional curves for reaches.  Regional curves and hydraulic geometry relationships can also 

be helpful in estimating a bankfull discharge and checking velocities along the channel.         

 

1.3 Objectives 

The goal of this project is to provide design tools for use in developing stream restoration 

plans for the Cane Run watershed as well as other watersheds within the Inner and Outer 

Bluegrass regions of Kentucky.  The specific objectives of the project are to:  

o Determine bankfull recurrence intervals and develop bankfull regional curves and 

hydraulic geometry relationships for the Inner and Outer Bluegrass regions of 

Kentucky. 

o Examine the Inner and Outer Bluegrass curves for regional differences.  

o Compare the Inner and Outer Bluegrass curves to theoretical values and results from 

other regional curves developed in the eastern U.S. 

 

1.4 Organization of Thesis 

Chapter One is the introduction to the thesis.  It details background information of the 

research and outlines the objectives of the project.  Chapter Two provides an overview of 

relevant literature including topics such as hydraulic geometry relationships, regional curves, 

and urban, vegetative and karst influences on channel geomorphology.  Chapter Three 

depicts the methods used to complete the research.  Chapter Four presents the results and a 
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discussion of the research.  Chapter Five states conclusions drawn from the project and 

identifies areas of future research.  Appendix A presents the dimension, pattern and profile 

related data for all streams surveyed in this project.  Appendix B summarizes the bed 

material for each of the surveyed streams. 
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Chapter 2: Literature Review 

2.1 Introduction 

Understanding how a stream functions is an important part of stream restoration.  One 

principle fluvial geomorphologists and engineers use is hydraulic geometry theory.  

Hydraulic geometry theory, both theoretical and empirical, allows scientists to better 

understand morphologic linkages in the stream networks where they are working.  Leopold 

and Maddock (1953) were one of the first to develop hydraulic geometry theory.  Their 

empirically developed equations have since been scrutinized theoretically; others have also 

contributed to the idea of hydraulic geometry.  These equations are used to describe 

characteristics of streams, such as the bankfull area, bankfull width, and bankfull depth, 

throughout the U.S. and the world.  Bankfull is an important parameter in hydraulic 

geometry because the stream parameters are developed at the bankfull stage of flow in a 

stream.  Bankfull is described, for non-incised streams, as the stage of the stream where the 

water flow just begins to overflow its banks (Leopold et al., 1964).  Bankfull hydraulic 

geometry, also known as regional curves, is a type of empirical hydraulic geometry theory 

that relates bankfull parameters, such as area and discharge, to the corresponding drainage 

area of a stream.  They are used by engineers to assist in the identification of bankfull in the 

field for complex situations, such as those found in an incised stream, and they are used 

often in the stream restoration design process.   

 

2.2 Hydraulic Geometry Curves 

Hydraulic geometry theory is a quantitative way to understand characteristics of a stream 

such as the relationship between depth and velocity (Leopold et al., 1964).   Understanding 

how a stream works is important in the field of stream restoration because this influences 
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the decisions of channel dimensions in the redesign of a stream.  Hydraulic geometry is a 

method of describing what happens to river’s characteristics such as width and velocity, in 

quantitative terms, both at-a-station (e.g. changes in cross sectional area with changes in 

discharge) and downstream (e.g. with increasing drainage area) along a stream network 

(Leopold and Maddock, 1953; Singh, 2003).  Hydraulic geometry includes parameters from 

the stream’s form such as width, depth, cross sectional area, and meander length, and other 

hydraulic variables such as mean slope, friction, and mean velocity (Singh, 2003).  There are 

many studies pertaining to hydraulic geometry; some use empirical data to develop hydraulic 

relationships (Leopold and Maddock, 1953; Emmett, 1975; Dunne and Leopold, 1978; Doll 

et al., 2003; Keaton et al., 2005) while others attempt to define these empirical studies with 

theoretical explanations (Leopold et al., 1964). 

 

2.2.1 Channel Forming Discharge 

The U.S. Army Corps of Engineers (USACE) defines channel forming discharge as “a 

theoretical discharge that if maintained indefinitely would produce the same channel 

geometry as the natural long-term hydrograph” (Copeland et al., 2000).  Channel forming 

discharge is presented in three forms: discharge at a specific recurrence interval, effective 

discharge, and bankfull discharge (Copeland et al., 2000; Crowder and Knapp, 2005).  A 

recurrence interval, also referred to as a return period, is the frequency of time between past 

events (Baer, 2008).  Discharge at a specific recurrence interval refers to the discharge that 

occurs at the same recurrence interval; for channel forming discharge, this value is 

considered to be the discharge with a recurrence interval that falls between the mean annual 

and five-year peak value (Copeland et al., 2000).  Effective discharge refers to the discharge 

that transports the maximum annual bed load (Wolman and Miller, 1960; Wolman, 1967; 
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Copeland et al., 2000; Emmett and Wolman, 2001).  Bankfull discharge for a non-incised 

channel is commonly known as the discharge at which a channel flows at the top of its banks 

just before it spills onto its floodplain (Williams, 1978; Andrews, 1980; Copeland et al., 2000; 

Radecki-Pawlik, 2002).  Channels that are incised may contain other bankfull characteristics, 

but they are not able to flow out of their banks at the bankfull discharge; rather a larger 

event is required.  Each of these methods of determining channel forming discharge has its 

own limitations Copeland et al. (2000) suggest using more than one method to accurately 

determine the channel forming discharge.  A general review of the literature concludes that 

effective and bankfull discharges do not necessarily occur at specific recurrence intervals, but 

can occur at a range of intervals.  Thus, the best way to describe channel forming discharge 

is viewed to be through effective discharge and/or bankfull discharge (Andrews, 1980; 

Emmett and Wolman, 2001).   

 

Each of the methods of determining channel forming discharge (e.g. discharge at a specific 

recurrence interval, effective discharge, or bankfull discharge) are interconnected.  Each has 

a different way to determine its value from stream data, and all three ideally yield similar 

results; many studies use values from all three methods to accurately determine the channel 

forming discharge.  The USACE suggests checking the calculations of effective discharge by 

means of determining the effective discharge’s return interval (Biedenharn and Copeland, 

2000).  Biedenharm and Copeland (2000) suggest the return interval for an accurately 

calculated effective discharge is typically between 1.01 and 3 years with most values between 

the 1.01 and 2 year interval.  This is closely related to the suggested return periods of 

bankfull discharge (Leopold et al., 1964; Harman et al., 1999).   Andrews (1980) conducted a 

study that involved several gaging stations in the Yampa River Basin in Colorado and 
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Wyoming, and found that effective and bankfull discharges were nearly equal.  This 

demonstrates the strong similarities between these forms of channel forming discharges.  

Andrews and Nankervis (1995) also found in the Rocky Mountains effective and bankfull 

discharges were closely related. 

 

While many studies have found these methods of estimating channel forming discharge to 

be related, other have noted large differences (Crowder and Knapp, 2005).  Benson and 

Thomas (1966) found that the dominant or effective discharge was significantly lower than 

the bankfull stage discharge for nine rivers across the U.S.  This study used histograms to 

relate maximum sediment loads to discharge.  These researchers were skeptical that a 

dominant discharge was even a meaningful way to describe channel morphology because 

they noted that the same amount of sediment was transported over a range of discharges.  

Pickup and Warner (1976) also found that bankfull discharge was significantly higher  than 

effective discharge for streams in the Cumberland River Basin in New South Wales, 

Australia.  The authors examined bankfull discharge calculated with the Strickler equation 

and determined the discharge at the 1.58 year return interval (as guided by previous research 

in their geographic location); this was not a field verification of bankfull.  While the authors 

admit that the bankfull discharges could be incorrectly calculated using the Strickler 

equation, they still conclude that the most effective discharge in moving sediment is different 

than the bankfull discharge, whether it is calculated morphologically or statistically. 

 

2.2.1.1 Recurrence Interval 

To determine the return period of a specific event for a stream, peak flow data are typically 

used.  Peak flow data are also used to determine the amount of flow at a given frequency, for 
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instance the Q1.5 or Q2.  The 1.5-year return interval is of interest in many studies because it 

has been found to be the average return period for bankfull discharge (Dunne and Leopold, 

1978; Williams, 1978; Harman et al., 1999; Harman et al., 2000).  However, this return 

interval does not always predict channel forming discharge.  Some researchers conclude that 

using the 1.5- year return period will not yield acceptable results (Andrews, 1980; Copeland et 

al., 2000; Emmett and Wolman, 2001).  Factors such as morphology, watershed area, and 

hydrologic regime may cause differences in the return period calculated for a stream, and 

researchers argue that a single recurrence interval is not representative (Castro and Jackson, 

2001; Crowder and Knapp, 2005).  For instance, Adams and Spotila (2005) found that the 

stream banks potential to be eroded influenced channel forming discharge in the Blue Ridge 

Basin in the southern Appalachian Mountains.  The Blue Ridge basin’s watershed is 

characterized by deep soils that are able to store moisture which can later be contributed to a 

stream as base flow (Adams and Spotila, 2005).  The author noted that the two-year 

discharge was less than bankfull for this site (Andrews, 1980; Copeland et al., 2000).  

Variance in bankfull discharge return interval calculations from other studies ranges from 

sub-annual to 4.4 years (Harman et al., 1999; Harman et al., 2000; Doll et al., 2002; Lawlor, 

2004; Keaton et al., 2005; Metcalf et al., 2009).  These studies exemplify the need to verify 

geomorphic indicators in the field rather than solely relying on an average return period (e.g. 

1.5 years) for a large geographic area (Copeland et al., 2000).    

 

2.2.1.2 Effective Discharge 

Effective discharge was introduced by Wolman and Miller (1960); they were trying to find a 

balance between the magnitude and frequency of geomorphic events and channel forming 

flow (Doyle and Shields, 2008).  Since their study, many studies have scrutinized better 
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methods of determination, such as using sediment load hydrographs, and its applicability in 

the field (Benson and Thomas, 1966; Andrews, 1980; Emmett and Wolman, 2001).  A multi-

step process is required to calculate the effective discharge as both suspended sediment 

measurements and discharge measurements are required for the site of interest.  Data must 

also be available from multiple years (Benson and Thomas, 1966; Andrews, 1980; Copeland 

et al., 2000; Emmett and Wolman, 2001; Crowder and Knapp, 2005).  This information is 

often difficult to attain because suspended sediment and discharge measurements are not 

always collected together.  For example, the United States Geological Survey (USGS) has 

346 stream sites measuring peak flow and 919 sites measuring water quality properties such 

as sediment in Kentucky.  Only 206 of these sites measure both suspended sediment and 

discharge, and the data are not always measured for the same amount of time, or on the 

same dates.  Other factors make calculating effective discharge difficult; climatic, geologic, 

and physiographic characteristics are different from stream to stream making it difficult to 

compare effective discharge results among streams of the same size (Andrews, 1980).  

Studies have shown that it is “rarely possible to compute the effective discharge of a given 

reach of stream channel accurately” (Emmett and Wolman, 2001).   

 

2.2.1.3 Bankfull Discharge 

The level of difficulty in identifying bankfull elevation varies among streams.  Those streams 

which are non-incised and have expansive floodplains such as the Rosgen stream types C 

and E generally have multiple bankfull indicators.  Plus, the indicators that are present such 

as bankfull coinciding with the tops of banks or point bars are readily identifiable.  However, 

the number and presence of such indicators decreases as streams become more entrenched 

as with B stream types or even degraded as is typical of F and G stream types.  In such 
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systems only small interspersed depositional flats may be evident.  Because of the potential 

scarcity of bankfull indicators and the potential to misidentify inner berm features as 

bankfull features, which if present are often at half the bankfull elevation, field identification 

of bankfull is best performed by a trained practitioner (Williams, 1978).  It has also become 

one of the most scrutinized forms because of its role in hydraulic geometry development, as 

seen in Leopold and Maddock (1953), as well as playing an integral role in the Rosgen 

classification system and natural channel design (Rosgen, 1996; Simon et al., 2004).  Bankfull 

discharge is determined from cross-sectional data used with gaged data from the bankfull 

stage identified in field surveys (Williams, 1978; Copeland et al., 2000).  Dunne and Leopold 

(1978) define the bankfull stage as the stage that: "corresponds to the discharge at which 

channel maintenance is the most effective, that is, the discharge at which moving sediment, 

forming or removing bars, forming or changing bends and meanders, and generally doing 

work results in the average morphologic characteristics of channels."  This definition 

incorporates many of the components of channel forming discharge because bankfull 

identification is a practical method of determining it.  Bankfull is generally determined by 

analyzing features in field surveys, as opposed to calculations used to determine effective 

discharge.  While many field identification techniques have been proposed, some considered 

better than others, identifying a number of these techniques together is generally considered 

the best way to identify bankfull  (Williams, 1978).   

 

One of the earliest definitions of bankfull comes from Wolman (1955).  In this study, the 

identification of bankfull is where the W/D (width-to-depth ratio) is at a minimum.  Pickup 

and Warner (1976) also use this definition.  This application of bankfull relies on accurate 

field surveys (Copeland et al., 2000; Simon et al., 2004).  Williams (1978) used a change in the 
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relationship between the cross-sectional area and the top width of the channel to define the 

bankfull stage (Radecki-Pawlik, 2002); this method also relies on accurate field surveys. 

 

Channel characteristics, such as the height of  flat depositional surfaces (especially the tops 

of point bars), breaks in slope along the banks, a change in particle size in bed material, and 

undercuts in banks are used in some studies’ identification of bankfull; the highest elevation 

of channel bars was used as a bankfull indicator by Wolman (1957).  The middle bench of a 

channel with three or more overflow surfaces is used as a bankfull indicator (1968).  The low 

bench is also used as an indicator in Schumm (1960), but care needs to be used when using 

the low bench as an indicator of bankfull because it can be an inner berm. 

 

Various characteristics of channel vegetation have also been used as bankfull indicators, but 

this indicator is mostly used in the western U.S. as opposed to the eastern U.S. because 

vegetation often grows below the bankfull stage in the eastern U.S. (Wolman, 1955; 

Schumm, 1960; Williams, 1978; Leopold, 1994).  These vegetative characteristics include the 

height of the lower limit of perennial vegetation (Schumm, 1960), and a change in vegetation 

such as from grasses and shrubs (Leopold, 1994).  Wolman (1955) used a combination of 

changes in vegetation (or sedimentation on banks) with the minimum W/D ratio to 

determine the bankfull stage.  Leopold and Skibitzke (1967) also used sedimentation 

techniques to identify bankfull; they used the location of the upper limit of sand sized 

particles in the boundary sediment (Leopold and Skibitzke, 1967). 

 

The most widely accepted definition of bankfull is from Leopold et al. (1964) and describes 

bankfull as the highest flow a channel can handle before it starts to spill onto its banks; this 
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definition is accepted for non-incised streams.  The location Leopold et al. (1964) describe 

has many descriptions in literature: elevation of the active floodplain (Wolman, 1957; Nixon, 

1959), the tops of banks (Williams, 1978), and the height of the valley floor (Nixon, 1959; 

Woodyer, 1968; Williams, 1978; Radecki-Pawlik, 2002).  This description of bankfull is often 

used in combination with other bankfull indicators, such as the highest elevation of point 

bars, and a prominent break in slope (Harman et al., 1999; Harman et al., 2000; Doll et al., 

2003).  It is common to use a variety of indicators in the field because the correct 

identification of bankfull is so critical in channel classification (Rosgen technique) and 

natural channel design.  By using a combination of bankfull indicators many stream types in 

many varying environments can be analyzed. 

 

While it may seem easy to some to correctly identify bankfull, it can be considerably difficult 

particularly for entrenched (e.g. Rosgen stream type B) or degraded (e.g. Rosgen stream type 

F or G) stream systems.  In such instances, experience is often necessary to correctly 

determine bankfull (Copeland et al., 2000).  Given the vast differences and the level of 

professional judgment required in the correct identification of bankfull, it becomes easier to 

understand why high variability in the identification of bankfull exists (Copeland et al., 2000).  

 

2.2.2 Hydraulic Geometry Curve Summary 

Leopold and Maddock (1953) applied a quantitative approach to geomorphology, a branch 

of geology that was classically described as qualitative (Singh, 2003).  They noted that the 

physical characteristics of natural streams are all interconnected (Stall and Yang, 1970).  

Their quantitative equations were developed using empirical data which were collected over 

a period of 70 years (Leopold and Maddock, 1953).  The hydraulic geometry equations 
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developed by Leopold and Maddock (1953), which are centered on the concept of discharge 

or Q are as follows:  

𝑤 = 𝑎𝑄𝑏 (Equation 1) 

𝑑 = 𝑐𝑄𝑓 (Equation 2) 

𝑣 = 𝑘𝑄𝑚 (Equation 3) 

The variables w, d, and v are the bankfull parameters width, depth, and velocity, respectively.  

The coefficients or intercepts are a, c, and k; the exponents or slopes are b, f, and m.  Based 

on the continuity equation (Q=wdv), the product of the respective coefficients (a x c x k) 

equals one; the summation of the exponents (b + f + m) also equals one (Leopold et al 

1964).   

 

The equations developed by Leopold and Maddock (1953) assume steady, uniform flow in 

streams.  Steady flow implies no change in velocity with time.  Uniform flow implies no 

change in velocity with distance along the channel.  Hence, the water surface slope follows 

the energy grade line (Leopold et al., 1964).  Because of this phenomenon, the mean values 

of the variables used in the general hydraulic geometry relationships must correspond to the 

equilibrium state of the channel (Singh 2003).  Equilibrium in a stream channel involves the 

interaction of sediment discharge, sediment particle size, stream flow, and stream slope, and 

is achieved when all four independent variables are in balance (Lane, 1955).  Lane (1955) 

showed the relationship between these independent variables:  

𝑄𝑠 ∙ 𝐷50 ∝ 𝑄𝑤 ∙ 𝑆 (Equation 4) 

The variable Qs refers to the sediment discharge, D50 refers to the sediment particle size, Qw 

refers to the stream flow, and S refers to the slope.  “The graded stream is a system in 

equilibrium”; a graded stream is one in which the slope adjusts to provide the velocity 
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required to transport the sediment load provided by the watershed, using available discharge 

and channel characteristics (Leopold et al., 1964).  If one variable changes, the other variables 

will either increase or decrease to maintain equilibrium.  For example, if flow increases, 

either the sediment load or particle size (or both) must also increase to maintain equilibrium 

in the channel.  Leopold and Maddock (1953), and Wolman (1955) found that a stream 

adjusts its hydraulic geometry to carry sediment, or reach quasi-equilibrium.  Since each 

stream has different boundary conditions, for example the soil that makes up the stream bed 

and the vegetation surrounding the stream, the equilibrium state for each stream differs 

(Knighton, 1998; Singh, 2003).  Knighton (1977) found that channels can have changes in 

their form over a short period of time, in the absence of high flows, and suggested that the 

approach to equilibrium is relatively rapid.   

 

 Equations developed to describe hydraulic geometry of channels use data collected from 

streams in a state of equilibrium. Many areas become urbanized, deforested, or have 

increases in agriculture; these are all things that can alter the equilibrium state. While a 

stream may be in equilibrium at the time of a study, many changes can happen to the 

environment that contributes to the stream.  The effects of urbanization and vegetation are 

discussed in Section 2.4. 

 

Since the study by Leopold and Maddock (1953), the power function has been used in 

developing and evaluating hydraulic geometry relationships (Emmett, 1975; Dunne and 

Leopold, 1978; Singh, 2003; Lee and Julien, 2006).  Dury (1976) combined an abundance of 

data, from more than 105 points, to validate the use of the power function in streams.  Dury 

(1976) used the 1.58 year flood to represent the channel forming discharge, or bankfull 
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discharge; this combined with data from other studies was used to validate how well power 

functions were able to predict actual channel properties.   

 

The many equations developed empirically have been scrutinized theoretically.  Empirical 

studies of at-a-station relationships, where channel characteristics are taken at a given cross 

section and plotted against discharge (Leopold et al., 1964), and the theoretical attempts to 

explain them were reviewed by Ferguson (1986).  He rejected the theoretical approaches 

taken to explain the channel shape, frictional characteristics, and law relating velocity to 

friction and depth because none could fully explain the interactions among all variables 

(Lawrence, 1987).  Singh (2003) identifies a large number of hypotheses used in the 

development of theoretical hydraulic geometry relationships such as regime theory, similarity 

theory, and minimum stream power theory, but there is no study that uses one set of data to 

evaluate all theories.    Through all of the studies using these theories, none were able to fully 

explain the hydraulic geometry relationships found empirically.   This was found to be the 

case because of the assumptions made in the individual theories, such as a constant 

longitudinal profile (Leopold et al., 1964).  Leopold et al. (1964) noted that theory would be 

the behavior expected of rivers if they displayed all “tendencies postulated”.  The solution 

would be the most probable distribution, or what would be the most likely to be observed in 

a river that satisfies the hydraulic conditions (Leopold et al., 1964).     

 

Since the evaluation of Singh (2003), other studies continued to develop hydraulic geometry.  

Lee and Julien (2006) developed regression equations using data from a wide range of 

conditions from sand-bed, gravel-bed, and cobble-bed streams with meandering and braided 

forms, all from previous works.  The curves compared their equations to the semi-



 

20 

 

theoretical equations developed by Julien and Wargadalam (1995) hoping to improve the 

relationships by using a larger data set.  The data set used by Lee and Julien (2006) included a 

total of 1,485 data points of which 1,125 were field measurements of bankfull (for 

calibration) and 360 were from field and laboratory measurements for validation (Lee and 

Julien, 2006).  Julien and Wargadalam (1995) were able to combine four fundamental 

relationships: flow rate, resistance to flow, particle mobility and secondary flow to define the 

hydraulic geometry of alluvial channels.  Their relationships using discharge and particle size 

as independent variables were able to predict channel dimensions, such as width and 

velocity, with R2 values ranging from 0.77 to 0.93.  The exponents of Q from the hydraulic 

geometry relationships developed by Leopold and Maddock (1953) can be explained and 

predicted by these relationships (Julien and Wargadalam, 1995).  Lee and Julien (2006) were 

able to improve these equations; the proposed equations better predicted field and 

laboratory measurements.     

 

Table 2.1 depicts some of the theoretically developed values for hydraulic geometry theory.  

These values show the variations in the expected exponents for different river types. 

Table 2.1 Theoretical Values for Hydraulic Geometry Exponents Developed by 
Langbein in 1963.  Table derived from Leopold (1964). 

 
Type of Environment 

Width 
b 

Velocity 
m 

Depth 
f 

Roughness 
y 

Slope 
z 

River, down-stream direction 0.53 0.10 0.37 -0.22 -0.73 
Tidal esturary, downstream 0.72 0.05 0.23 0.01 -0.11 
Meltwater stream on clacier 0.50 0.22 0.28 -0.04 - 
River, at a station cohesive 0.25 0.32 0.43 -0.035 0 
River, at a station non-cohesive 0.50 0.23 0.27 -0.04 - 
Canal system 0.47 0.17 0.36 0.01 -0.12 

 



 

21 

 

Although many studies have tried to use mathematical theory to describe environmental 

phenomena, no theory has been found that can completely explain the empirically developed 

equations.  The interactions among the many variables of a channels form, discharge, and 

atmospheric conditions cannot be defined consistently for each stream as independent or 

dependent.  

 

2.3  Regional Curves  

To accommodate the possible physiographic differences in hydraulic geometry relationships, 

Dunne and Leopold (1978) were the first to develop them on a regional level.   Although 

original works in hydraulic geometry developed primarily using data from the western U.S. 

were considered to be universal in nature (Leopold and Maddock, 1953), studies since have 

shown that they are only useful when they are used on streams that share physiographic 

characteristics such as hydrology, soils and extent of development (Rosgen, 1996; Keaton et 

al., 2005).  Stall and Fok  (1968) and Stall and Yang (1970) found that physiographic 

characteristics of a watershed influenced the coefficients of the power functions (Singh, 

2003).  This can be seen when comparing urban and rural curves; higher coefficients are seen 

in urban curves (Harman et al., 1999; Doll et al., 2003).  Lane and Foster (1980) studied the 

effects of changing land use on stream morphology.  They found that channel width 

increased as discharge increased, and a larger critical stress caused a narrower stream.  They 

concluded that changes in land use were the cause of the stream channel characteristics 

(Lane and Foster, 1980; Singh, 2003).  The influence of land use is discussed in a Section 2.4.   

 

The curves developed on the regional level are known as regional curves or bankfull 

hydraulic geometry relationships and use drainage area as the independent variable to predict 
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channel dimensions such as bankfull width, depth and area.  Original works in hydraulic 

geometry theory used discharge as the independent variable (Leopold and Maddock, 1953).  

Using drainage area is a more practical way to utilize the regional curves in the field to help 

identify bankfull because drainage area is an easier variable to obtain than a stream’s 

discharge (Johnson and Fecko, 2008).  These equations follow the general form:  

𝑃𝑏𝑘𝑓 = 𝑔𝐷𝐴ℎ (Equation 5) 

Where Pbkf is the bankfull parameter (area, width, depth or discharge), DA is the watershed 

drainage area, and g and h are the fitting parameters of an exponential equation (Johnson 

and Fecko, 2008). 

 

2.3.1 Regional Curve Summary 

Regional curves have been developed across the United States in many physiographic 

regions; of particular interest to this study are the curves developed in the humid region in 

the eastern portion of the U.S.  The states of Alabama, North Carolina, South Carolina, 

Georgia, Virginia, West Virginia, Kentucky and Florida are of particular interest, and the 

southern parts of Ohio, Maryland, Delaware, Pennsylvania and New Jersey also fall into this 

category.  The regional curves developed in these areas can be found in Table 2.2.  



 

 

 

Table 2.2 Regional Curves Developed Across the Humid Eastern U.S. 

Location DA 
(mi2) Regional Curves2 

Return 
Interval 

(yrs) 
Source 

Appalachian Plateau 

PA, MD < 220 Abkf=12.04DA0.797  R2=0.92                                  

Qbkf=43.21DA0.867  R2=0.92 
Wbkf=14.65DA0.449  R2=0.81                                                        

Dbkf=0.875DA0.330  R2=0.72     1.0-1.8 Chaplin (2005)                 

MD 0.2-
102.0 

Abkf=13.17DA0.75  R2=0.93                                                                                       

Qbkf=34.02DA0.94  R2=0.99 
Wbkf=13.87DA0.44  R2=0.92                             

Dbkf=0.95DA0.31  R2=0.91                              1.05-1.8 McCandless 
(2003a)                            

NY            
(Catskill 
Mts) 

3.7-332 Abkf=12.67DA0.81  R2=0.90                                                                                 

Qbkf=62.96DA0.87  R2=0.81 
Wbkf=12.51DA0.51  R2=0.88                             

Dbkf=1.01DA0.31  R2=0.85                              
1.2-2.7                                    

(avg 1.5) 
Miller and 
Davis (2003) 

NY                       
(Region 5) 

0.7 - 
332 

Abkf=10.8DA0.823  R2=0.98                                       
Qbkf=45.3DA0.856  R2=0.96                                          

Wbkf=13.5DA0.449  R2=0.92                                              
Dbkf=0.801DA0.373  R2=0.91                                                                            1.11-3.40                    Westergard et 

al. (2004) 

Valley and Ridge and Blue Ridge 

PA, MD < 220 Abkf=12.04DA0.797  R2=0.92                                                         

Qbkf=43.21DA0.867  R2=0.92 
Wbkf=14.65DA0.449  R2=0.81                             

Dbkf=0.875DA0.330  R2=0.72                              1.0-1.8 Chaplin (2005)                           

MD 0.1 - 24 Abkf=12.595DA0.7221  R2=0.9449                                                            

Qbkf=43.249DA0.7938  R2=0.9066 
Wbkf=12.445DA0.4362  R2=0.8939                             

Dbkf=1.001DA0.2881  R2=0.8705                              <1.1-1.9 Keaton et al.  
(2005) 

MD         0.2-
102.0 

Abkf=13.17DA0.75  R2=0.93                                                        

Qbkf=34.02DA0.94  R2=0.99 
Wbkf=13.87DA0.44  R2=0.92                             

Dbkf=0.95DA0.31  R2=0.91                              1.05-1.8 McCandless         
(2003a) 

23 



 

 

 

Table 2.2 (continued) 

Location DA 
(mi2) Regional Curves2 

Return 
Interval 

(yrs) 
Source 

Piedmont 

NC                   
(Rural) 

0.2 - 
128 

Abkf=21.43DA0.68  R2=0.95                                         
Qbkf=66.57DA0.89  R2=0.97                                          

Wbkf=11.89DA0.43  R2=0.81                                              
Dbkf=1.50DA0.32  R2=0.88                                                                             

1.1-1.8                                  
avg (1.4) 

Harman et al. 
(1999) 

NC                      
(Urban) <200 Abkf=60.34DA0.65  R2=0.95                                      

Qbkf=306.80DA0.63  R2=0.94                                          
Wbkf=24.39DA0.33  R2=0.88                                              
Dbkf=2.43DA0.33  R2=0.87                                                                                - Doll et al.               

(2002) 

MD 1.47-
102 

Abkf=17.42DA0.73  R2=0.95                                                     

Qbkf=84.56DA0.76  R2=0.93 
Wbkf=14.78DA0.39  R2=0.83                             

Dbkf=1.18DA0.34  R2=0.86                              
1.26-1.75                                             
(avg 1.5) 

McCandless 
and Everett 
(2002)               

MD, PA 2.57 - 
102 

Abkf=12.4DA0.810  R2=0.94                           

Qbkf=53.1DA0.842  R2=0.93 
Wbkf=13.6DA0.469  R2=0.80              

Dbkf=0.912DA0.339  R2=0.72            1.0-1.5 Cinotto (2003)                  

SC1 < 250 Abkf=14.434DA0.6946  R2=0.9375                                             
Qbkf=47.031DA0.7115  R2=0.8852         

Wbkf=13.191DA0.369  R2=0.8736                                              
Dbkf=1.0664DA0.3114  R2=0.7877                                              - 

Arcadis and 
SCDOT 
(2004)                              

24 



 

 

 

Table 2.2 (continued) 

Location DA 
(mi2) Regional Curves2 

Return 
Interval 

(yrs) 
Source 

Coastal Plain 

NC           
(Rural) 

0.2 - 
161 

Abkf=14.52DA0.66  R2=0.88                                          
Qbkf=16.56DA0.72  R2=0.90                                          

Wbkf=10.97DA0.36  R2=0.87                                              
Dbkf=1.29DA0.30  R2=0.74                                        1.0-1.25 Doll et al. 

(2003)           

MD 0.3-113 
Abkf=10.34DA0.70  R2=0.96                                      

East  Qbkf=14.65DA0.76  R2=0.97   
West  Qbkf=31.35DA0.73  R2=0.98                                       

Wbkf=10.3DA0.38  R2=0.88                                              
Dbkf=1.01DA0.32  R2=0.87                                       

1.04-1.37                        
(avg 1.16) 

McCandless                       
(2003b) 

FL                         
(North) 1-474 Abkf=6.1DA0.71  R2=0.98                                           

Qbkf=7.54DA0.77  R2=0.92                                          
Wbkf=9.2DA0.28  R2=0.85                                              
Dbkf=0.67DA0.43  R2=0.84                                                                           avg 1.1  Metcalf et al. 

(2009)                   

FL                      
(nw) 1-474 Abkf=17.1DA0.64  R2=0.99                                        

Qbkf=27.7DA0.71  R2=0.95                                          
Wbkf=10.4DA0.39  R2=0.96                                              
Dbkf=1.64DA0.25  R2=0.86                                                                              avg 1.1  Metcalf et al. 

(2009)                   

NC 0.6-182 Abkf=9.43DA0.74  R2=0.96                                           
Qbkf=8.79DA0.76  R2=0.92                                          

Wbkf=9.64DA0.38  R2=0.95                                              
Dbkf=0.98DA0.36  R2=0.92                                                                              <1.0 Sweet and 

Geratz (2003) 

AL1 1 - 200 Abkf=4.35DA0.99  R2=0.98                                         
Qbkf=10.94DA0.84  R2=0.93                                          

Wbkf=5.67DA0.52  R2=0.94                                              
Dbkf=0.78DA0.47  R2=0.96                                                                                 avg 1.0 

Metcalf and 
Shaneyfelt                 
(2005) 

25 



 

 

 

Table 2.2 (continued) 

Location DA 
(mi2) Regional Curves2 

Return 
Interval 

(yrs) 
Source 

New England and Adirondack Regions 

NY1          
(Region 6) 1.02-290 Abkf=17.6DA0.662  R2=0.89                                          

Qbkf=48.0DA0.842  R2=0.90                                          
Wbkf=16.9DA0.419  R2=0.79                                              
Dbkf=1.04DA0.244  R2=0.64                                                                                1.01-3.35             Mulvihill et al. 

(2005) 

NY1        
(Region 3) 0.42-329 Abkf=39.8DA0.503  R2=0.92                                          

Qbkf=83.8DA0.679  R2=0.93                                          
Wbkf=24.0DA0.292  R2=0.85                                              
Dbkf=1.66DA0.210  R2=0.77                                                                              1.16-3.35 Mulvihill et al. 

(2005) 

NY1       
(Region 6) 1.02-290 Abkf=17.6DA0.662  R2=0.89                                          

Qbkf=48.0DA0.842  R2=0.90                                          
Wbkf=16.9DA0.419  R2=0.79                                              
Dbkf=1.04DA0.244  R2=0.64                                                                              1.01-3.35             Mulvihill et al. 

(2007a) 

NY1                 
(1 & 2) 0.52-396 Abkf=22.3DA0.694  R2=0.97                                     

Qbkf=49.6DA0.849  R2=0.95                                          
Wbkf=21.5DA0.362  R2=0.89                                              
Dbkf=1.06DA0.329  R2=0.89                                                                    1.01-3.8 Mulvihill et al. 

(2007b) 26 



 

 

 

Table 2.2 (continued) 

Location DA 
(mi2) Regional Curves2 

Return 
Interval 

(yrs) 
Source 

Interior and Central Lowlands 

OH1         
(Region A) 

0.29-
685 

Abkf=27.1DA0.621  R2=0.95                                         
Qbkf=93.3DA0.637  R2=0.82                                          

Wbkf=18.0DA0.356  R2=0.91                                              
Dbkf=1.52DA0.265  R2=0.88                                                                         1.01-9.65 Sherwood and 

Huitger (2005) 

OH1    
(Region B) 

0.55-
387 

Abkf=64.5DA0.621  R2=0.95                                         
Qbkf=230DA0.637  R2=0.82                                          

Wbkf=32.0DA0.356  R2=0.91                                              
Dbkf=2.02DA0.265  R2=0.88                                                                                1.01-9.65 Sherwood and 

Huitger (2005) 

TN1 
(Western) 6-2309 Abkf=16.4DA0.57  R2=0.89         Wbkf=9.6DA0.36  R2=0.90                                              

Dbkf=1.7DA0.22  R2=0.68 - 
Smith and 
Turrini-Smith 
(1999) 

KY1                                                                                              
(Bluegrass) 

0.25-
154 

Abkf=7.71DA0.99  R2=0.99                                           
Qbkf=27.9DA0.98  R2=0.96                                          

Wbkf=10.97DA0.48  R2=0.97                                              
Dbkf=0.70DA0.51  R2=0.93                                                                              1.1-1.16 Parola et al. 

(2007) 

1- Studies not included in Johnson and Fecko (2008) 

2 - Abkf is the bankfull area measured in ft2; Wbkf is the bankfull width measured in ft; Dbkf is the bankfull depth measured 
in ft; Qbkf is the bankfull discharge measured in ft3/s 

27 
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Even in the humid region, there are vast differences within sub-regions.  Differences in rock 

type range from sedimentary rock (in the Appalachian Plateau) (McCandless, 2003a; Chaplin, 

2005; Johnson and Fecko, 2008) with limestone underlying (in the Allegheny Mountain and 

Pittsburg Low Plateau) to sandstone and conglomerate with limestone and shale that 

underlie the valleys (in the Valley and Ridge physiographic region) (USGS, 2003).  Regions 

also contain igneous and metamorphic rocks, and marine sedimentary rocks are found in the 

coastal regions (Doll et al., 2003; Hanley, 2006).  Some regions have karst features, such as 

those found in the Valley and Ridge and throughout Kentucky (Chaplin, 2005) created by 

the dissolution of underlying limestone.  The humid eastern U.S. also contains many 

different physiographic characteristics such as the high slopes and deep valleys found in the 

mountain areas, to more gently sloping Piedmont areas, to the more flat coastal plains (Doll 

et al., 2003; Johnson and Fecko, 2008). 

 

Johnson and Fecko (2008) identified six regions within the humid eastern U.S. and evaluated 

the statistical similarities and differences among the regional curves found for bankfull 

width: Appalachian Plateau, Blue Ridge, Coastal Plain, New England, Piedmont, and Valley 

and Ridge.  Regional curves were not examined for similarities in area, depth or discharge.  

They found that the regional curves developed for the Appalachian Plateau region: 

developed in Pennsylvania, Maryland and New York (Miller and Davis, 2003; McCandless, 

2003a; Westergard et al., 2004; Chaplin, 2005), and those developed in the Valley Ridge 

region: Pennsylvania and Maryland (McCandless and Everett, 2002; McCandless, 2003a; 

Chaplin, 2005; Keaton et al., 2005) were statistically similar.   Keaton et al. (2005) found the 

equations in the Valley Ridge region to be statistically similar as well.  The equation for width 

was found to be statistically different for the Piedmont Region (Johnson and Fecko, 2008).  
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The equations developed by Doll et al. (2002) and Cinotto (2003) were found to be 

statistically different.  Doll et al. (2002) developed equations in urban watersheds, and 

because urbanization can contribute to channels deviating from their natural flow patterns, 

this may explain the differences (Johnson and Fecko, 2008).  It is not known why the data 

from Cinotto (2003) does not fit (Johnson and Fecko, 2008), but the study area by Cinotto 

(2003) is the only one in the Piedmont physiographic region that included sites with karst 

influences.  Johnson and Fecko (2008) found a statistical difference in the bankfull width for 

the North Florida streams in the Coastal region.  Metcalf et al. (2009) recognized the 

difference and separated the equation; they attributed the difference to mean annual runoff 

(Metcalf et al., 2009).  Data from New England were determined to fit with data from the 

Appalachian Plateau and Valley and Ridge; the data from the Blue Ridge were determined to 

be statistically different than the other regions (Johnson and Fecko, 2008). 

  

Other studies have performed statistical analyses on regional curves developed in different 

physiographic regions (McCandless, 2003b; Johnson and Fecko, 2008).  McCandless (2003b) 

compared the curves relating drainage area to bankfull discharge for the Allegheny Plateau, a 

part of the Appalachian Plateau, Ridge and Valley (McCandless, 2003a), Piedmont 

(McCandless and Everett, 2002), and Coastal Plain physiographic regions.  The authors 

found that the curves were not statistically similar.  

 

Johnson and Fecko (2008) also tested for similarities between the physiographic regions and 

found that the physical and statistical similarities between the Valley and Ridge, the 

Appalachian Plateau, and the New England regions could produce one combined equation 

for bankfull width.  This equation is:  
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𝑤 = 2.65𝐴𝑑0.45 (Equation 6) 

where w is the bankfull width in m and Ad is the drainage area in km2, but caution when 

using this equation was advised (Johnson and Fecko, 2008).  This validates the use of sites 

from both regions for the aforementioned studies. 

 

Although many similarities exist among the regional curves developed throughout the humid 

region of the U.S., there still exists enough statistical difference to warrant the development 

of regional curves for each specific region (Johnson and Fecko, 2008). 

 

2.4 Influences on Channel Morphology 

Many factors influence the morphology of a stream; two main influences are the amount of 

development in a watershed (urbanization) and the vegetation along a stream’s banks 

(Hession et al., 2003).  Urbanization of a watershed increases the runoff into a stream, and 

therefore the flow within the stream (Hollis and Luckett, 1976; Schueler, 1995; Hession et al., 

2003; Brath et al., 2006; Villarini et al., 2009).  The reaction a stream has to the development 

may depend on the amount and type of vegetation along its banks.  Hession et al. (2003) 

found that the type of riparian vegetation and the land use in the watershed equally 

influenced the downstream hydraulic geometry of alluvial streams.  While both urbanization 

and vegetation influence a channel’s morphology, Hession et al. (2003) argued that vegetation 

exerts a stronger influence on channel shape than urbanization (Hession et al., 2003).  The 

authors found that when comparing grassy to forested sites, the changes in channel 

morphology, namely the width, exist despite the effects of urbanization in the watershed.  
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2.4.1 Urbanization 

Urbanization of a watershed changes the amount of water and sediment supplied to streams 

(Wolman, 1967).  An increased amount of paved surfaces increases the volume of runoff 

and the magnitude of peak discharges (Hollis and Luckett, 1976; Schueler, 1995; Hession et 

al., 2003; Brath et al., 2006; Villarini et al., 2009).  The increased water volume causes 

additional channel erosion (Hollis and Luckett, 1976; Pizzuto et al., 2000; Hession et al., 

2003) and increases the channel size (Hollis and Luckett, 1976; Hession et al., 2003).  The 

morphology of an urban stream also tends to be different than that of a non-urban stream; 

the depth has been found to be more uniform and urban streams do not have as defined 

pool-riffle sequences (Cianfrani et al., 2006).  There is also evidence to support that an 

increase in urbanization causes a reduced return interval (Huang et al., 2008; Villarini et al., 

2009). 

 

The amount of urbanization in a watershed is often quantified by the amount of 

imperviousness (Schueler, 1995).  Schueler (1995) stated that there are two components that 

make up imperviousness: building rooftops, including residential and business structures, 

and transportation systems, including roads, sidewalks, driveways and parking lots.  Rooftop 

structures are considered to have fewer detrimental effects on natural channels because 

runoff from them often drains into the ground, and does not enter the storm water system. 

While knowing the amount of imperviousness in a watershed is important, it is equally 

important to the threshold at which degradation occurs (Schueler, 1995).  Studies have 

shown this threshold to be as low as 10% impervious cover (Hollis and Luckett, 1976; 

Booth, 1991; Schueler, 1995); however other researchers use 20% or greater (Cinotto, 2003; 

Chaplin, 2005)  
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Studies have shown that some channels become larger in reaction to urbanization (Hollis 

and Luckett, 1976; Hession et al., 2003).  Hollis and Luckett (1976) found that channels with 

erodible material would enlarge with urbanization of a watershed.  They found that 10% 

imperviousness increases downstream channels by 1.7 times, and 20% increases channels by 

2.5 times.  They noted that the rate and severity of a stream’s instability would be a function 

of floods that were less than bankfull, and the frequency of those floods can increase by a 

factor of 10 even when the levels of imperviousness are low (Hollis, 1975; Schueler, 1995).  

Hammer (1972) found that it was also important to note the number of years since 

construction to determine the degree of channel enlargement.   

 

Other studies show that the return period of a large flood event becomes more frequent 

(Brath et al., 2006; Huang et al., 2008; Villarini et al., 2009).  For instance, Villarini et al. (2009) 

found that in the 1950s (before urbanization of the watershed), a 3.2 m3s-1km-2 event was 

exceeded every 1,000 years, and by the present, this same event had a return interval of 

approximately 10 years.  Increased return intervals were more significant for lower return 

period events (Hollis, 1975; Brath et al., 2006). 

 

It is apparent that an increase in urbanization, even at as little as 10% of a watershed, can 

influence streams.  Some channels respond by increasing their size (those with grassy or 

weak rooted vegetation), while others maintain their shape (those with strong rooted 

vegetation), but carry the increased flows more frequently. 
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2.4.2 Vegetation 

Studies have shown that vegetation plays an important role in the morphology of streams 

(Kauffman and Krueger, 1984; Hey and Thorne, 1986; Hession et al., 2003).  Vegetation can 

protect stream banks from erosion by particle entrainment and preventing mass wasting; 

however the effects vegetation has on stream banks can be hard to quantify due to variability 

in the root networks (Simon et al., 2006).  Vegetation can provide the same amount of 

stability for channels as would be provided by reducing the slope of the stream bank (Simon 

et al., 2006).   

 

Seven degrees of freedom have been considered to change for gravel bed rivers: bankfull 

width (or wetted perimeter), mean depth (or hydraulic radius), maximum depth, slope, 

velocity, sinuosity and meander arch length (Hey and Thorne, 1986).  Vegetation provides 

major control on width, wetted perimeter, and the velocity of a stream (Hey and Thorne, 

1986).  Maintaining streambank cover and stability has shown to reduce the erosion potential 

which affects the channel morphology (Kauffman and Krueger, 1984; McInnis and McIver, 

2001; McIver and McInnis, 2007). 

 

Allmendinger et al. (2005) found that the extent of grassy vegetation influenced the 

differences in width between forested and non-forested streams; the study measured erosion 

rates on the outside of meander bends and deposition rates on the inside.  Narrow non-

forested channels migrate and have high flood plain accretion rates while forested, wider 

channels, migrate slowly (Hession et al., 2003). 
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The type of vegetation plays an important role in the stability provided by its cover (Simon et 

al., 2006).  Studies have found that streams running though grasslands are wider than those 

that run through forested areas (Murgatroyd and Ternan, 1983; Rosgen, 1996; Hession et al., 

2003), while others find that streams running through forested watersheds are wider 

(Sweeney, 1992; Hession et al., 2003).  These contradictory results lead researchers to still be 

confused on the effects of vegetation on stream stability.   

 

While some studies split the types of vegetation simply into grassy or forested vegetation, it 

is also important to study the type of grassy and forested vegetation (Simon et al., 2006).  

Simon (2006) studied two types of forested vegetation, the Lemmon’s willow and lodgepole 

pine.  The two types of trees were found to have the same tensile strength in the root 

system, but after studying the bank stability of stream channels, the Lemmon’s willow site 

was found to have more stability than that of the lodgepole pine; the additional stability it 

provides being an order of magnitude larger than that of the lodgepole pine (Simon et al., 

2006).  Simon (2006) attributes this to the Lemmon’s willow’s ability to provide a greater 

number and larger area of roots.   
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Chapter 3: Materials and Methods 

3.1 Study Area  

The area selected for this study is the Bluegrass Region of Kentucky, which is separated into 

the Inner Bluegrass and the Outer Bluegrass.  These regions lie in the north and central parts 

of the state.  The Inner Bluegrass is an almost circular region, centered on Lexington, KY 

(latitude 38.05°N, longitude 85.00°W).  This region is approximately 1,800 square miles and  

includes portions or all of the following counties: Anderson, Bourbon, Boyle, Clark, Fayette, 

Franklin, Garrard, Harrison, Jessamine, Madison, Mercer, Nicholas, Pendleton, Scott and 

Woodford.  The Outer Bluegrass is approximately 6,800 square miles and surrounds the 

entire Inner Bluegrass.  The Outer Bluegrass includes portions or all of the following 

counties: Anderson, Bath, Boone, Boyle, Bracken, Bullitt, Campbell, Carroll, Clark, Fleming, 

Franklin, Gallatin, Garrard, Grant, Henry, Jefferson, Kenton, Lincoln, Madison, Marion, 

Mason, Mercer, Montgomery, Nelson, Nicholas, Oldham, Owen, Pendleton, Robertson, 

Scott, Shelby, Spencer, Trimble, and Washington.   

 

The Inner Bluegrass’s “gently sloping” topography and phosphate rich soils contribute to its 

well-known rich agricultural land (KGS, 2007).  The geology of the area is dominated by 

Lexington Limestone of the Ordovician strata that is rarely exposed by soil (McDowell, 

1986).  Because of the weathering of the limestone underground, the area contains many 

“sink holes, sinking streams, springs and caves” (KGS, 2007).   These are all a part of the 

abundant karst topography found in the Inner Bluegrass (Perfect et al., 1998).   The 

Kentucky River also traverses the region contributing to erosion; the river creates gorges and 

canyons along its path where it cuts through resistant massive limestones (KGS, 2007).   
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The Outer Bluegrass has gentle rolling hills, hill slopes ranging from 20-30% (Perfect et al., 

1998).   The soils are nearly as rich (for agricultural uses) as those of the Inner Bluegrass 

(McDowell, 1986).  The valleys are deeper because the rock type is “interbedded” and erodes 

more easily than the material in the Inner Bluegrass (KGS, 2007).  The geology in the Outer 

Bluegrass consists of “limestones, dolomites and shales of the Late Ordovician and Silurian 

age” (McDowell, 1986).  These geologic features are those that contribute to the karst 

topography in the Inner Bluegrass, and while the Outer Bluegrass does contain karst 

topography, it is not as abundant as it is in the Inner Bluegrass.  The soils found in the Outer 

Bluegrass vary in depth from thick layers covering limestone, to thin layers covering shale.  

Unstable slopes and landslides are common from the contribution of these swelling clays 

(McDowell, 1986). 

 

The entire region is located in the humid subtropical region of the United States; this region 

experiences hot and humid summers with mild winters (Perfect et al., 1998).  The average 

annual precipitation is 46 inches (116.6 cm) for the Commonwealth of Kentucky with the 

maximum rainfall occurring during the months of March and May; the minimum 

precipitation in October (KGS, 2007).  The average temperature in Kentucky is 54.4°F 

(13°C) (Perfect et al., 1998).  The highest temperatures are experienced in July, averaging 

75.5°F (24.2°C), but reaching maximum degrees in the 90s (greater than 32°C), and 

minimum temperatures in December, averaging 35.9°F (2.2°C) according to the Kentucky 

Climate Center. 
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3.2 USGS Gage Selection 

The USGS monitors many streams throughout the U.S.  They measure stream level, 

discharge, water quality, and precipitation.  Thirty-six gaged streams in the Inner Bluegrass 

and 64 gaged streams in the Outer Bluegrass were considered for this study because each 

measured discharge and either real time data were collected at the site or a functioning staff 

gage was present.  These sites were then reduced by field visits; 50 sites were visited to 

determine if they were able to be surveyed; the streams were inspected for a lack of 

tributaries entering near gaging stations, accessibility and location of a possible cross section.  

If tributaries could be identified on aerial photos, or new construction was identified at a 

discontinued gage, it was not visited.  Of these 50 sites, 33 were surveyed; from these 

surveys, other determining factors were considered, such as the stability of the stream, 

measured by the bank height ratio, and the accuracy of the bankfull indicators noted in the 

field.  Based on these criteria, 14 of the surveyed streams in the Inner Bluegrass fit the 

criteria while 15 surveyed streams met the criteria in the Outer Bluegrass.  The selection 

criteria are discussed in greater detail in Sections 3.2.1 through 3.2.9.      

 

3.2.1 Drainage area 

The first narrowing factor for USGS gaged streams was the drainage area.  The study 

focused on wadable streams, which were typically less than 150 square miles (388.5 km2).  

The drainage areas were obtained from the gage information data presented on the USGS 

website.  Two non-wadable streams were included to use in comparison to the study 

conducted by Parola et al. (2007).  They were surveyed using a paddle boat.     
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3.2.2 Presence of bankfull indicators 

Each selected site had the presence of one or more readily identifiable bankfull indicators 

such as (listed in order of consideration): 

o Flat depositional surfaces, at a consistent elevation, immediately adjacent to the 

stream, 

o Tops of point bar, 

o Prominent breaks in slope, and/or 

o Erosion or scour features. 

Because vegetation can grow below bankfull stage in the eastern U.S., it was not used as an 

indicator. 

 

3.2.3 Lack of severe bank erosion 

Stream reaches with severe bank erosion were avoided.  Signs of severe bank erosion include 

overhanging or undercut banks, presence of bank slumps, and absence or scarcity of riparian 

vegetation.   

 

3.2.4 Bank height ratio (BHR) 

Bank height ratio (BHR) is a method of quantifying vertical stability of the banks or the 

degree of channel incision.  The BHR is defined as the height of the lowest bank divided by 

the maximum bankfull depth, both measured at the cross section of interest (Rosgen, 2001).  

The further the BHR deviates from 1.0, the greater the amount of incision and hence vertical 

confinement present.  Guidance from Metcalf et al. (2009) suggest that for gaged streams, a 

BHR of 1.5 or less should be used.  As such, streams with BHR greater than 1.5 were not 

used. 
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3.2.5 Rosgen Classification 

Each stream reach was classified according to the Rosgen (1994; 1996) stream classification 

system.  Only single threaded channels were surveyed.  Stream types B, C and E were 

targeted; stream types F, G, D and DA were avoided.  Due to the topography of the Inner 

and Outer Bluegrass regions, A stream types were not encountered. 

 

3.2.6 Vegetation 

Riparian vegetation exerts a strong influence on channel geometry as noted by (Hey and 

Thorne, 1986; Hession et al., 2003).  As such, the type of riparian vegetation present at each 

site (e.g. forest, grass) was recorded and photographed; riparian vegetation density was 

visually estimated. 

 

3.2.7 Lack of flow regulation 

In-stream structures such as weirs or fords were avoided.  Because of tributary contributions, 

or lack of bankfull indicators downstream, some surveys were conducted in the proximity of 

the bridge that housed the gaging station; care was taken to avoid any stream contributions 

from the bridge such as debris, and channel altering structures such as bridge piers.  

 

3.2.8 Proper Location of Bed Features 

Sites were assessed for the proper location of bed features.  The riffle/pool sequence was 

evaluated noting that all pools were in bends, and riffles were in straight reaches between 

bends.  No reaches were included that contained riffles in bends. 
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3.2.9 Accessibility 

All sites selected were accessible through public property; if this was not possible, landowner 

permission was obtained. 

 

3.3 Data Collection 

3.3.1 Equipment 

The majority of the cross sections taken were done using a CST/berger 24X SAL automatic 

level.  Additional standard equipment such as tripod, level rod, tapes, and pins were also 

used.  Longitudinal surveys were conducted using a Sokkia 530R Total Station (accuracy: 

±1” horizontal angle, ±5” vertical angle, ±2mm + 2ppm distance) equipped with a Carlson 

Explorer II handheld data logger.  Cross-sections at two locations were surveyed using this 

equipment as well; these cross-sections were at the South Fork Elkhorn and Town Branch in 

the Inner Bluegrass Region.  For bed material analysis, standard equipment such as ruler and 

sand cards were used. 

 

3.3.2 Surveying Techniques 

Guidelines for field data collection as described in Harrelson et al. (1994) were used to 

complete the data collection.  The surveyed cross-sections and longitudinal profiles were 

linked to the water surface elevations at the gaging stations during the surveys by using either 

the real-time data if available from the USGS, or by using a staff gage located in the field.   

 

3.3.3 Bankfull Identification 

Identification of bankfull stage was a critical component of the project.  Prior to each survey, 

the stream reach was walked both upstream and downstream of the USGS gage for a 
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minimum distance of 20 bankfull widths.  The visual assessment was performed to ensure 

the reach met the stated criteria and to assist in the identification of consistent bankfull 

indicators.  Refer to Chapter 3.2.2 for additional details on bankfull indicators.    

 

3.3.4 Cross-sections 

Cross-sections were surveyed at stable riffles.  If a riffle was not present within the vicinity 

of the USGS gage or was not accessible due to lack of landowner permission, then a stable 

run was selected.  In no case were pools or glides used.  The elevations surveyed at each 

cross-section included bankfull, water surface, thalweg, slope breaks, top of banks, terraces, 

and flood prone width (if this feature was accessible).  Visual estimates were made in 

instances where the extents of the flood prone widths were not accessible.  Cross-sections 

with anomalies, such as divided flow or debris jams, were avoided.  The surveyed cross-

section data were used to calculate the bankfull parameters (i.e. width, depth, area, and 

discharge) using RIVERMorph software. 

 

3.3.5 Main Channel Slopes 

Local slopes were measured in accordance with methods outlined in Harrelson et al 

(Harrelson et al., 1994); however, property assessment issues (e.g. landowner permission not 

granted) limited the lengths of some of the longitudinal surveys.  As such, main channel 

slopes were also computed and compared to local slopes.  Main channel slopes (feet per 

mile) were computed for each surveyed stream using ArcGIS and the 10M digital elevation 

model from the USGS Seamless Server (http://seamless.usgs.gov).  The elevations of the 

channel were measured at locations 10 percent and 85 percent along the stream (main 

branch only), as measured from the basin divide to the basin outlet.  The distance between 
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these points was calculated and the average slope was calculated as the difference in 

elevation between the 10 percent and 85 percent elevation divided by the distance between 

those points (McCuen, 2004).  

 

3.3.6 Bed Material 

Both representative reach and representative riffle pebble counts were performed for each 

surveyed stream via the modified Wolman procedure (Harrelson et al., 1994).   A minimum 

of 100 samples were collected for each pebble count.  Particle size graphs were developed, 

and the D50 was determined to allow for classification of the reach via the Rosgen stream 

classification system.  

 

3.3.7 Sinuosity 

To compute the sinuosity, a satellite image of each stream was imported into AutoCAD.  

The stream lengths (numerators) and respective valley lengths (denominators) were 

measured and sinuosities were computed. 

 

3.3.8 Impervious Area 

The percent imperviousness of the watershed draining each USGS gage was computed using 

ArcGIS and the 2001 impervious dataset and 2005 KY land cover dataset from the KY 

Geonet FTP site (ftp.kymartian.ky.gov).  Drainage areas of each gage were computed using 

100 grid cell threshold catchments (Terrain Preprocessing functions on ArcHydro 

Extension).  The contributing drainage area for each gage was clipped to each gage and it 

was dissolved on the percent impervious attribute.  The amount (in acres) of each type of 

impervious area was determined and the weighted attribute calculated and summed.   
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3.3.9 Riparian Buffer Assessment 

The type of riparian vegetation at each site was noted as either forest-dominated or grass-

dominated (e.g. non-forested) (Hession et al., 2003).  Forest-dominated riparian buffers were 

those whose streambanks primarily consisted of large trees.  Grass-dominated or non-

forested riparian buffers consisted mostly of grass or other short rooted vegetation (e.g. 

weeds). 

 

3.3.10 Bankfull Discharge 

A USGS gaging station was present at all of the selected sites.  Most of the sites were active 

though a few were inactive.  Each gaging station was equipped with either real-time data 

collection or had a staff gage present at the site.  Using the method outlined in Williams 

(Williams, 1978), the difference between the water surface (at the time of the survey) and 

bankfull elevation was determined.  The water surface elevation was also correlated to the 

USGS stage reading for using in the ratings table.  This correlation was done by both noting 

the time of the survey and downloading the corresponding water surface stage reading from 

the USGS website (real time data only) or reading the water surface on the staff gage while in 

the field.  By knowing the difference between bankfull elevation and water surface elevation 

along with the respective stage for water surface at the gage, then bankfull on the gage was 

computed.  Using the most current ratings tables supplied by the USGS (active sites only) 

(http://ky.water.usgs.gov/hyd_data/rating_depot.htm), the bankfull discharge was 

determined.  For discontinued sites, the USGS does not supply ratings tables.  As such, 

stage-discharge curves were developed for these sites by using annual peak flow data 

(McCuen, 2004). 
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3.3.11 Manning’s n 

Manning’s n values were back-calculated using Manning’s equation (listed below in English 

units) and surveyed bankfull dimensions (e.g. cross-sectional area and hydraulic radius), main 

channel slope, and bankfull discharges. 

𝑄 =
1.49
𝑛

𝐴𝑅2/3𝑆1/2 (Equation 7) 

The variable Q is the bankfull discharge in ft3/s, A is the bankfull area ft2, R is the hydraulic 

radius in ft, S is the main channel slope in ft/ft, and n is Manning’s roughness coefficient.   

 

3.3.12 Return Period 

Return periods were calculated using the Log Pierson III method with procedures outlined 

in the USGS Bulletin 17B Guidelines for Determining Flood Flow Frequency (1982).  Peak flow 

data was downloaded for the sites into RIVERMorph.  RIVERMorph was utilized to 

determine the bankfull discharge recurrence interval as well as the 1.5-year discharge.  A 

generalized skew coefficient of 0.011 and a standard error of prediction of 0.520 were used 

(Hodgkins and Martin, 2003). 

 

3.3.13 Photographic Documentation 

Each stream reach was photographed in the upstream and downstream direction at each 

surveyed cross-section.  These photos were used to verify cross-section characteristics such 

as bankfull and to document the riparian vegetation at each site.   
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3.4        Statistical Analysis 
All cross-section surveys and pebble counts were entered into RIVERMorph.  Bankfull 

dimensions, stream classifications, and return period calculations were performed in this 

program.  Power functions were used for both  hydraulic geometry relationships and 

regional curves (Leopold et al., 1964).  The power function regression relationships were 

developed in Excel.   

 

For the comparison of the data presented in this study to the data presented by Parola et al. 

(2007), an analysis of covariance (ANCOVA) was used with guidance from Johnson and 

Fecko (2008).  This statistical analysis was performed in SAS, statistical analysis software.  
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Chapter 4: Results and Discussion 
4.1 Hydraulic Geometry Curves 

Hydraulic geometry relationships were developed using bankfull parameters: area, width, 

depth, velocity, channel slope, and Manning’s n.  Twenty eight of the 29 sites were included 

in this analysis.  Site number 03288000 North Elkhorn Creek near Georgetown did not have 

a staff gage at site and does not collect real time data as the site is inactive, so it was not 

considered in discharge calculations.  Checking for continuity, the coefficients of width, 

depth and velocity multiply to equal to one, and the exponent values of width, depth and 

velocity sum to one. 

 

4.1.1 Area Hydraulic Geometry Relationships 

Bankfull area was plotted as a function of bankfull discharge.  These hydraulic geometry 

relationships are presented in Table 4.1.  The graphs of the data with regression equation are 

presented in Figure 4.1.  When the equation is separated into the Inner and Outer Bluegrass, 

the R2 value only changes slightly for each region.  The most significant divergence in the 

equations for the two regions occurs at the higher bankfull discharges.  The Inner Bluegrass 

only has one site with a higher drainage area, and this seems to be the cause of the 

divergence in the two curves.  Additional streams with higher drainage areas could possibly 

increase the predictability of the equation for the Inner Bluegrass.   

 

The hydraulic geometry equations developed for the combined regions, the Inner Bluegrass 

and the Outer Bluegrass show similarities to other studies.  McCandless (2003a, 2003b) 

found exponents to be 0.79 and 0.89 in the Allegheny Plateau, Valley and Ridge, and the 

Coastal Plain Maryland.  The values for the exponents in the combined regions are 0.8483,  
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the Inner Bluegrass 0.8853, and the Outer Bluegrass 0.8304; these values are similar to those 

found by McCandless (2003a, 2003b).   

 

Table 4.1 Hydraulic Geometry Relationships for Bankfull Area as a Function of 
Bankfull Discharge where Bankfull Area is measured in Square Feet and Bankfull 
Discharge is Measured in Cubic Feet Per Second. 

Region Regression 
Equation R2 

Combined Region Abkf=0.8226Qbkf0.8483 0.94 
Inner Bluegrass Abkf=0.7080Qbkf0.8853 0.92 
Outer Bluegrass Abkf=0.8891Qbkf0.8304 0.95 

 

 

Figure 4.1 Bankfull Cross-sectional Area versus Bankfull Discharge for the 
Combined, Inner Bluegrass and Outer Bluegrass Regions. 
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4.1.2 Width Hydraulic Geometry Relationships 

Bankfull width was plotted as a function of bankfull discharge.  These hydraulic geometry 

relationships are presented in Table 4.2.  The graphs of the data with regression equations 

are presented in Figure 4.2.  Bankfull width plotted against bankfull discharge provides a 

strong relationship; the R2 value for all regions is 0.94.  While the exponent and coefficient 

of the relationships change when the Inner and Outer Bluegrass are separated, the 

predictability of the equation does not.  The exponents for the hydraulic geometry 

relationships developed for bankfull width fall within those sited in the literature; the values 

for the exponent range from 0.45 – 0.55 (Miller and Davis, 2003).  Hey and Thorne (1986) 

determined an exponent value of 0.52 for bankfull width which is slightly higher than the 

combined value of 0.49 found in this study.  Leopold et al. (1964) found this exponent to be 

0.50. 

Table 4.2 Hydraulic Geometry Relationships for Bankfull Width as a Function of 
Bankfull Discharge where Bankfull Width is measured in Feet and Bankfull 
Discharge is Measured in Cubic Feet Per Second. 

Region Regression 
Equation R2 

Combined Region Wbkf=2.6441Qbkf0.4861 0.94 
Inner Bluegrass Wbkf=2.2376Qbkf0.5172 0.94 
Outer Bluegrass Wbkf=3.522Qbkf0.4406 0.94 
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Figure 4.2 Bankfull Width versus Bankfull Discharge for the Combined, Inner 
Bluegrass and Outer Bluegrass Regions. 

 
4.1.3 Depth Hydraulic Geometry Relationships 

Bankfull depth was plotted as a function of bankfull discharge.  These hydraulic geometry 

relationships are presented in Table 4.3.  The graphs of the data with regression equations 

are presented in Figure 4.3.  

Table 4.3 Hydraulic Geometry Relationships for Bankfull Depth as a Function of 
Bankfull Discharge where Bankfull Depth is measured in Feet and Bankfull 
Discharge is Measured in Cubic Feet Per Second. 

Region Regression 
Equation R2 

Combined Region Dbkf=0.3126Qbkf0.3623 0.84 
Inner Bluegrass Dbkf=0.3164Qbkf0.3681 0.84 
Outer Bluegrass Dbkf=0.2525Qbkf0.3898 0.85 
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Figure 4.3 Bankfull Depth versus Bankfull Discharge for the Combined, Inner 
Bluegrass and Outer Bluegrass Regions. 

 

The bankfull depth plotted as a function of bankfull discharge displays a strong relationship 

between the two variables; however the R2 value of 0.84 is not as high as those seen in the 

hydraulic geometry relationships of bankfull area and bankfull width.  The bankfull depth 

hydraulic geometry relationship is expected to have the lowest R2 value; this is seen in other 

studies such as that done by McCandless (2003a) where the R2 value for the hydraulic 

geometry relationship of bankfull area was 0.95, for width was 0.94 and for depth was 0.91.  

The values for the exponents of the equations developed for bankfull depth fall within those 

found in the literature, between 0.33 – 0.40 (Miller and Davis, 2003).  The values in this 

study match well with those found by Hey and Thorne (1986); the value for the depth 

exponent was 0.39 when plotted versus bankfull discharge, compared to a combined value 

of 0.36 for the combined regions in this study. 
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4.1.4 Velocity Hydraulic Geometry Relationships 

Bankfull velocity was plotted as a function of bankfull discharge.  These hydraulic geometry 

relationships are presented in Table 4.4.  The graphs of the data with regression equations 

are presented Figure 4.4.  The values of the exponents compare well with those found by 

Hey and Thorne (1986); they found the exponent of velocity to be 0.10 when plotted versus 

bankfull discharge.  The plot of bankfull discharge versus bankfull velocity shows a high 

amount of scatter between points.  Because the bankfull area versus bankfull discharge plot 

did not show as much scatter, area may be explaining more of the bankfull discharge than 

velocity.  Channels adapt to the discharge supplied by multiple means, one is through 

dimensional adjustment (e.g. width, depth, and/or slope).  There are many channel 

characteristics that influence velocity, bed material and vegetation are two.     

 

Table 4.4 Hydraulic Geometry Relationships for Bankfull Velocity as a Function of 
Bankfull Discharge where Bankfull Velocity is measured in Feet per Second and 
Bankfull Discharge is Measured in Cubic Feet Per Second. 

Region Regression 
Equation R2 

Combined Region Vbkf=1.2098Qbkf0.1517 0.32 
Inner Bluegrass Vbkf=1.4123Qbkf0.1147 0.17 
Outer Bluegrass Vbkf=1.1247Qbkf0.1696 0.43 
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Figure 4.4 Bankfull Velocity versus Bankfull Discharge for the Combined, Inner 
Bluegrass and Outer Bluegrass Regions. 

 

4.1.5 Slope Hydraulic Geometry Relationships 

Main channel slope (GIS computed) was plotted as a function of bankfull discharge.  These 

hydraulic geometry relationships are presented in Table 4.5. The graphs of the data with 

regression equations are presented in Figure 4.5.   The values for the exponent match well 

with those found by Hey and Thorne (1986); the value they found was -0.43. 

Table 4.5 Hydraulic Geometry Relationships for Channel Slope as a Function of 
Bankfull Discharge where Bankfull Discharge is Measured in Cubic Feet Per 
Second. 

Region Regression 
Equation R2 

Combined Region Sbkf=0.032Qbkf-0.350 0.42 
Inner Bluegrass Sbkf=0.0363Qbkf-0.429 0.71 
Outer Bluegrass Sbkf=0.0991Qbkf-0.484 0.57 
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Figure 4.5 Channel Slope versus Bankfull Discharge for the Combined, Inner 
Bluegrass and Outer Bluegrass Regions. 

 

The coefficients of the hydraulic geometry equations developed for the Inner and Outer 

Bluegrass Regions are different by a factor of three (0.03 versus 0.09).  The result is seen in 

the separation of these equations and is not surprising when the topography of the regions is 

noted.  The Inner Bluegrass has a more flat than the Outer Bluegrass. 
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Figure 4.6 Comparison of Local Slope and Channel Slope Calculated in GIS. 

 

Figure 4.6 is a plot of the hydraulic geometry relationships (combined regions) for the main 

channel slopes developed in GIS and the slopes measured locally.  The slopes of the 

regression lines are similar though the locally measured slope (-0.295) is somewhat steeper 

than then GIS derived main channel slope (-0.350).  This difference is not unexpected as the 

main channel slope was calculated over a larger length, and hence a greater elevation 

difference, than the locally measured slope.  Overall, the difference in the channel slopes 

between the two methods was not significant.  

 

4.1.6 Manning’s n Hydraulic Geometry Relationships 

Manning’s n was plotted as a function of bankfull discharge.  These hydraulic geometry 

relationships are presented in Table 4.7.  The graphs of the data with regression equations 
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are presented in Figure 4.6.  Leopold et al. (1964) determined the theoretical value for the 

exponent of the hydraulic geometry relationship of Manning’s n related to bankfull discharge 

to be -0.22; the values in this study are -0.081, -0.079 and -0.156.  The separated curve for 

the Outer Bluegrass is the only equation with an exponent close to the theoretical value.  

Since Manning’s n is back-calculated by discharge, depth and slope, these influence the value 

determined for this exponent.  The discharge in the Inner Bluegrass is lower than the Outer 

Bluegrass; this could help explain the differences in the exponent developed for the 

Manning’s n hydraulic geometry relationship.  Manning’s n values were checked with stream 

photos and known Manning’s n values determined by the USGS for select gage sites.  

  

Table 4.6 Hydraulic Geometry Relationships for Manning’s n as a Function of 
Bankfull Discharge where Bankfull Discharge is Measured in Cubic Feet Per 
Second. 

Region Regression 
Equation R2 

Combined Region nbkf=0.0953Qbkf-0.081 0.09 
Inner Bluegrass nbkf=0.0863Qbkf-0.079 0.08 
Outer Bluegrass nbkf=0.1655Qbkf-0.156 0.24 
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Figure 4.7 Manning’s n versus Bankfull Discharge for the Combined, Inner 
Bluegrass and Outer Bluegrass Regions. 

 

Figure 4.8 is a plot of the hydraulic geometry relationships (combined regions) for Manning’s 

n values calculated using the main channel slopes developed in GIS and the slopes measured 

locally.  The slopes of the regression lines do differ (-0.081 GIS; -0.240 local).  This 

difference largely results in lower Manning’s n values when using the local slopes; however, 

no changes in velocities were noted when using GIS derived slopes or locally measured 

slopes.  The slightly steeper GIS slopes were accompanied by greater Manning’s n values.   
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Figure 4.8 Manning’s n versus Bankfull Discharge for the Combined, Inner 
Bluegrass and Outer Bluegrass Regions. 

 

4.1.7 Comparison  

4.1.7.1 Other Hydraulic Geometry Relationships 

While there are many other studies that developed regional curves throughout the U.S., few 

examined hydraulic geometry relationships.  There are however studies that developed only 

hydraulic geometry relationships.  Table 4.7 is a sampling of hydraulic geometry relationships 

developed across the U.S.  Figures 4.9, 4.10 and 4.11 show the graphical depictions of these 

relationships.   

 



 

 

 

Table 4.7 Comparison of Hydraulic Geometry Relationships both Empirical and Theoretical where Abkf=gQbkf
h, Wbkf=aQbkf

b, 
Dbkf=cQbkf

f, Vbkf=kQbkf
m , n=x Qbkf

y, S=t Qbkf z, and Qbkf is the Bankfull Discharge measured in cubic feet per second, Abkf is the 
Bankfull Area measured in square feet, Wbkf is the Bankfull Width measured in feet, Dbkf is the Bankfull Depth measured in feet, 
Vbkf is the Bankfull Velocity measured in feet per second, n is Manning’s n, and S is the slope. 

Study 
Bankfull Area Bankfull Width Bankfull Depth Bankfull Velocity Roughness Slope 
g h R2 a b R2 c f R2 k m R2  x y R2 t  z R2 

Combined Region 0.82 0.85 0.94 2.64 0.49 0.94 0.31 0.36 0.84 1.21 0.15 0.32 0.10 -0.08 0.09 0.03 -0.35 0.42 
Inner Bluegrass 0.71 0.89 0.92 2.24 0.52 0.94 0.32 0.37 0.84 1.41 0.11 0.17 0.09 -0.08 0.08 0.04 -0.43 0.71 
Outer Bluegrass 0.89 0.83 0.95 3.52 0.44 0.94 0.25 0.39 0.85 1.12 0.17 0.43 0.17 -0.16 0.24 0.10 -0.48 0.57 
Leopold et al. 
(1964)1 - - - - 0.53 - - 0.37 - - 0.10 - - -0.2 - - -0.7 - 

Leopold et al. 
(1964)3 - - -   0.50 - - 0.40 - - 0.10 - - - -  - - 

Knighton (1998)4 - - - 2.61 0.50 - 0.31 0.360 - - 0.14 - - - - - -0.2 - 

McCandless 
(2003)a5 0.79 0.8 0.95 2.65 0.47 0.94 0.3 0.33 0.91 - - - - - - - - - 
McCandless 
(2003)b6 0.89 0.87 0.91 2.82 0.47 0.80 0.32 0.4 0.86 - - - - - - - - - 

Hey and Thorne 
(1986)2,7 - - - 2.17 0.52 0.96 0.20 0.390 0.86 2.54 0.10 0.79 - - - - - - 

1 - Theoretical Equations 
2 - Equations developed in the Metric system 
3 - River in downstream direction 
4 - Indian and U.S. canals 
5 - Bedrock cobble and gravel in Allegheny Plateau and Valley and Ridge Maryland, humid 
6 - Coastal Plain Maryland 
7 - Gravel bed rivers in the United Kingdom with >50% tree cover 

 

23 

58 



 

59 

 

The plots of bankfull cross-sectional area show that the equations are similar, as seen in 

Figure 4.8.  For the combined regions in this study, an exponent of 0.85 was calculated for 

the relationship of bankfull discharge to bankfull area.  This value compares well with those 

developed by McCandless (2003a, 2003b) which calculated 0.8 and 0.87 for the same 

relationships developed for streams in Maryland.  The separated Inner and Outer Bluegrass’s 

exponents, 0.89 and 0.83 respectively, compare well to the McCandless values as well.  The 

coefficients of the equations compare well with each other too; the values for the combined, 

Inner and Outer Bluegrass are 0.82, 0.71 and 0.89 respectively.  The values calculated for 

McCandless (2003a, 2003b) are 0.79 and 0.89. 

 

Figure 4.9 Comparison of Hydraulic Geometry Relationships of Bankfull Cross-
sectional Area versus Bankfull Discharge. 
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The graph that shows the most significant relationship is the bankfull width, as seen in 

Figure 4.10; the studies seem to compare well in regards to the hydraulic geometry 

relationships of width.  Exponents for the combined, Inner and Outer Bluegrass are 0.49, 

0.52 and 0.44 respectively.  These compare with theoretical values of 0.53 (Leopold et al., 

1964) and 0.50 (Knighton, 1998).  They also compare will with other empirical values: 0.47 

developed from three regions in Maryland (McCandless, 2003a, 2003b), 0.50 for rivers in the 

downstream direction (Knighton, 1998) and 0.52 (Hey and Thorne, 1986).  The coefficients 

for these equations, 2.64 for the combined regions, 2.24 for the Inner Bluegrass and 3.52 for 

the Outer Bluegrass, are also similar to those found theoretically, 2.61 (Knighton 1998) and 

empirically, 2.65 and 2.82 (McCandless 2003a, b). 

 

Figure 4.10  Comparison of Hydraulic Geometry Relationships of Bankfull Width 
versus Bankfull Discharge. 
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The plot of the hydraulic relationships for bankfull depth also shows that the hydraulic 

geometry relationships developed in this study compare well with those developed by others, 

as seen in Figure 4.11.  The exponent’s values of 0.36 for the combined regions, 0.37 for the 

Inner Bluegrass and 0.39 for the Outer Bluegrass are similar to those found theoretically; 

0.37 (Leopold et al., 1964) and 0.36 (Knighton, 1998).  These exponents also compare well 

with other empirical studies: 0.33 and 0.4 in Maryland (McCandless, 2003a, 2003b) and 0.39 

(Hey and Thorne, 1986). 

 

Figure 4.11  Comparison of Hydraulic Geometry Relationships of Bankfull Depth 
versus Bankfull Discharge. 

 

The velocity equations were also compared to other equations both theoretical and 

empirical.  The values of the exponents for the combined regions 0.15, the Inner Bluegrass 

0.11 and the Outer Bluegrass 0.17 compare well with those developed theoretically: 0.10 
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(Leopold et al., 1964) and 0.14 (Knighton, 1998).  They are also similar to Hey and Thorne’s 

(1986) value of 0.10. 

 

The Manning’s n (roughness) and slope equations are similar to theoretical equations, 

however there are not many to use in comparison.  The Manning’s n exponent for the Outer 

Bluegrass, -0.16, is close to the theoretical -0.2 found by Leopold et al. (1964).  The 

exponents calculated in the slope equations, -0.35 for the combined regions, -0.43 for the 

Inner Bluegrass and -0.48 for the Outer Bluegrass, lie between the theoretical values of -0.2 

(Leopold et al., 1964) and -0.2 (Knighton, 1998). 

 

4.2 Regional Curves 

Regional curves were developed using data from 14 USGS gaged stations throughout the 

Inner Bluegrass for drainage areas ranging from 0.96 mi2 to 147 mi2, and using data from 15 

USGS gaged stations throughout the Outer Bluegrass for drainage areas ranging from 3.10 

mi2 to 138 mi2.  A summary of the studied sites is presented in Table 4.8.  Using standard 

convention for regional curves developed across the U.S., all data are presented in U.S 

customary units.  Bank height ratios (BHR) ranged from 1.0 to 1.5 with all but three streams 

having a BHR of 1.3 or less.  Metcalf et al. (2009) note that a BHR of 1.5 is considered stable 

for a gaged stream.  A wide range of impervious areas were used for this study: percent 

impervious ranged from 0.5 to 29.6 percent (averaging 12.6 ± 9.5) for the Inner Bluegrass 

and 0.4 to 33.9 (averaging 8.7 ± 10) for the Outer Bluegrass.  Regional curves developed 

throughout Pennsylvania and Maryland used sites with 20-25 impervious cover in a site’s 

watershed (Cinotto, 2003; Chaplin, 2005).  The reaches surveyed for this study were chosen  



 

 

 

Table 4.8 Site Name, Location, Drainage Area, Bank Height Ratio and Percent Impervious for Inner and Outer Bluegrass Sites. 

Gage 
Number Site Location Region 

Designation1 Latitude2 Longitude DA3 
(mi2) BHR4 % 

Impervious 

03284525 East Hickman Creek Tributary at Chilesburg 
Road near Lexington IB 37°59'18" 84°24'40" 0.96 1.2 3.5 

03284520 East Hickman Creek at Andover Village near 
Cadentown IB 37°59'50" 84°24'20" 1.58 1.0 12.0 

03287580 North Elkhorn Creek at Man O War Blvd near 
Cadentown IB 38°01'42" 84°24'07" 2.20 1.2 3.2 

03288500 Cave Creek near Fort Springs IB 38°01'15" 84°35'38" 2.53 1.5 21.6 

03287590 North Elkhorn Creek on Winchester near 
Lexington IB 38°02'54" 84°24'40" 4.05 1.1 9.8 

03289193 Wolf Run at Old Frankfort Pike, Lexington IB 38°04'00" 84°33'16" 9.57 1.1 29.6 

03284530 East Hickman Creek at Delong Road near East 
Hickman IB 37°56'59" 84°27'19" 15.10 1.0 13.7 

03284555 West Hickman Creek at Ash Grove Pike near 
East Hickman IB 37°56'04" 84°30'08" 20.50 1.0 24.2 

03287600 North Elkhorn at Bryan Station Road near 
Montrose IB 38°04'35" 84°24'48" 21.50 1.5 12.0 

03289000 South Elkhorn Creek at Fort Springs IB 38°02'35" 84°37'35" 24.00 1.0 13.1 
03289200 Town Branch at Yarnallton Rd at Yarnallton IB 38°06'13" 84°35'17" 30.00 1.0 25.7 
03291000 Eagle Creek at Sadieville IB 38°23'22" 84°32'36" 42.90 1.0 0.5 
03288000 North Elkhorn Creek near Georgetown IB 38°12'20" 84°30'49" 119.00 1.3 2.8 
03288100 North Elkhorn at Georgetown IB 38°13'10" 84°33'47" 147.00 1.1 4.1 
03238772 Fourmile Creek at Polar Bridge near Alexandria OB-NKY 38°59'12" 84°21'55" 3.10 1.5 6.5 
03254400 North Fork Grassy Creek near Piner OB-NKY 38°47'31" 84°30'50" 13.60 1.2 1.0 
03254480 Cruises Creek at Highway 17 near Piner OB-NKY 38°50'40" 84°31'56" 18.00 1.3 1.2 
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Table 4.8 (continued) 

Gage 
Number Site Location Region 

Designation1 Latitude2 Longitude DA3 
(mi2) BHR4 % 

Impervious 

03262001 Woolper Creek at Woolper Road near 
Burlington OB-NKY 39°01'48" 84°48'15" 24.20 1.2 4.1 

03254550 Banklick Creek at Highway 1829 near Erlanger OB-NKY 38°58'48" 84°32'32" 30.00 1.1 4.5 

03277075 Gunpowder Creek at Camp Ernst Road near 
Union OB-NKY 38°59'39" 84°42'58" 36.60 1.1 16.7 

03238745 Twelvemile Creek at Highway 1997 near 
Alexandria OB-NKY 38°57'05" 84°20'18" 39.00 1.0 1.7 

03298135 Chenoweth Run at Ruckriegel Parkway OB-LOUIS 38°11'41" 85°33'26" 5.47 1.0 33.9 
03292480 Little Goose near Harrods Creek OB-LOUIS 38°18'45"  85°37'33" 5.80 1.0 18.7 

03292474 Goose Creek at Old Westport Road near St 
Matthews OB-LOUIS 38°16'33" 85°36'22" 6.00 1.2 11.1 

03297800 Cedar Creek at Highway 1442 near 
Shepherdsville OB-LOUIS 37°59'28" 85°38'28" 12.10 1.3 0.4 

03293000 Middle Fork Beargrass Creek at Old Cannons 
Lane at Louisville OB-LOUIS 38°14'14" 85°39'53" 18.90 1.0 24.4 

03277130 Mud Lick at Highway 42 near Beaverlick OB-LOUIS 38°50'42" 84°43'15" 36.40 1.2 3.4 
03292470 Harrods Creek at Highway 329 near Goshen OB-LOUIS 38°21'42" 85°34'30" 70.30 1.2 1.4 
03298000 Floyd's Fork at Fisherville OB-LOUIS 38°11'18"  85°27'37" 138.00 1.1 2.4 
1IB refers to Inner Bluegrass; OB-NKY refers to Outer Bluegrass-Northern Kentucky; and OB-Louis refers to Outer Bluegrass-Louisville. 
2NAD83. 
3DA represents watershed drainage area. 
4BHR represents bank height ratio
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based on their stability; sites with active erosion, in stream structures, and high BHR were 

avoided. 

 

All streams were classified using the Rosgen classification system.  There were 3 E, 8 C, 2 

Cc- and 1 Bc type channels in the Inner Bluegrass and 10 C and 5 Bc type channels in the 

Outer Bluegrass.  The entrenchment ratios (ER), calculated as the width of the flood prone 

area divided by the bankfull width, are a key factor in determining stream type using the 

Rosgen classification system.  The E and C type channels are slightly entrenched and have an 

entrenchment ratio greater than 2.2; B type channels are moderately entrenched and have an 

ER between 1.4 and 2.2.  The next step in determining the Rosgen stream classification is 

the width to depth ratio (W/D) ratio.  The Inner Bluegrass had W/D ratios ranging from 

11.2 to 23.2, and the Outer Bluegrass had W/D ratios ranging from 15.5 to 29.1.  A 

moderate W/D ratio, greater than 12, places a stream into the C or B type; a very low W/D 

ratio, less than 12, places a stream into the E type.  To finalize the Rosgen stream category, 

the sinuosities were determined.  The sinuosities for the Inner Bluegrass ranged from 1.16 to 

3.34, and in the Outer Bluegrass they ranged from 1.03 to 2.01.  When the channels’ stream 

types were determined (e.g. B, C or E), the slope and bed material were used to further 

categorize them in the Rosgen classification system.  Slopes for the Inner Bluegrass ranged 

from 0.006 to 0.0074 ft/ft; slopes ranged from 0.0010 to 0.0184 ft/ft in the Outer Bluegrass.  

Further information on the bed material can be found in Appendix B. 

 



 

 

 

Table 4.9 Bankfull Characteristics and Rosgen Stream Classification for Inner and Outer Bluegrass. 

USGS Gage Site1 ER2 W/D 
Ratio3 Sinuosity Slope 

(ft/ft) 
D504 

(mm) 

Rosgen 
Stream 
Type6 

East Hickman Creek Tributary at Chilesburg Road near 
Lexington >2.25 11.2 1.16 0.0063 4.6 E4 
East Hickman Creek at Andover Village near Cadentown >2.25 11.4 1.45 0.0058 15.2 E4 
North Elkhorn Creek at Man O War Blvd near Cadentown 17 11.4 1.33 0.0073 30.1 E4/1 
Cave Creek near Fort Springs 3.8 13.3 1.16 0.0074 38.5 C4/1 
North Elkhorn Creek on Winchester near Lexington 10.4 17.2 1.33 0.0046 30.8 C4/1 
Wolf Run at Old Frankfort Pike, Lexington >2.25 14.7 1.22 0.0050 104.1 C3/1 
East Hickman Creek at Delong Road near East Hickman >2.25 13.3 2.41 0.0025 53.4 C4/1 
West Hickman Creek at Ash Grove Pike near East Hickman 6.53 23.0 1.77 0.0034 144.3 C3/1 
North Elkhorn at Bryan Station Road near Montrose >2.25 20.3 1.38 0.0032 62.3 C4 
South Elkhorn Creek at Fort Springs 1.7 23.1 1.79 0.0028 194.0 B3/1c 
Town Branch at Yarnallton Rd at Yarnallton >2.25 22.0 2.14 0.0029 130.7 C3/1 
Eagle Creek at Sadieville >2.25 21.3 3.34 0.0016 6.2 C4 
North Elkhorn Creek near Georgetown 2.4 19.0 3.09 0.0008 79.2 C3/1c- 
North Elkhorn at Georgetown >2.25 14.9 3.09 0.0006 NA Cc-7 

Fourmile Creek at Polar Bridge near Alexandria 1.4< and <2.25 15.5 1.03 0.0184 60.7 B4c 
North Fork Grassy Creek near Piner >2.25 19.8 1.56 0.0056 NA C7 
Cruises Creek at Highway 17 near Piner 1.4<5 16.9 1.76 0.0056 59.5 B4c 
Woolper Creek at Woolper Road near Burlington 1.5 21.3 1.31 0.0071 45.5 B4c 
Banklick Creek at Highway 1829 near Erlanger >2.25 22.5 1.83 0.0051 83.1 C3 
Gunpowder Creek at Camp Ernst Road near Union >2.25 24.7 1.67 0.0035 84.8 C3 
Twelvemile Creek at Highway 1997 near Alexandria >2.25 22.1 1.26 0.0025 131.7 C3/1 
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Table 4.9 (continued) 

USGS Gage Site1 ER2 W/D 
Ratio3 Sinuosity Slope 

(ft/ft) 
D504 

(mm) 

Rosgen 
Stream 
Type6 

Chenoweth Run at Ruckriegel Parkway >2.25 29.1 1.24 0.0053 45.0 C4 
Little Goose near Harrods Creek >2.25 17.2 1.07 0.0061 82.8 C3 
Goose Creek at Old Westport Road near St Matthews >2.25 13.3 1.98 0.0053 56.4 C4 
Cedar Creek at Highway 1442 near Shepherdsville 1.3 18.0 1.35 0.0050 47.7 B4c 
Middle Fork Beargrass Creek at Old Cannons Lane at Louisville >2.25 17.0 1.10 0.0037 39.6 C4 
Mud Lick at Highway 42 near Beaverlick >2.25 19.8 1.52 0.0053 78.7 C3 

Harrods Creek at Highway 329 near Goshen 
1.4< and 

<2.25 16.5 1.51 0.0023 NA Bc7 
Floyd's Fork at Fisherville >2.25 17.6 2.01 0.0010 87.2 C3 
1 - streams divided by region, see Table 4.1 
2 - Entrenchment Ratio (ER) 
3 - width to depth ratio (W/D) 
4 - median particle size (D50) 
5 - estimated flood prone area 

6 - '4' denotes gravel bed material, '4/1' denotes gravel bed material with bedrock influence, '3' denotes cobble bed material, '3/1' denotes cobble bed 
material with bedrock influence 
7 - no pebble count information is available due to high water levels 
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4.2.1 Discharge Regional Curves 

Using the survey data, USGS real time data, or in field staff gages if no real time data were 

available, and USGS ratings depot curves, bankfull discharges were determined at all but one 

of the surveyed sites.  Site number 03288000 North Elkhorn Creek near Georgetown did 

not have a staff gage at site and does not collect real time data as the site is inactive, so it was 

not considered in discharge calculations.  This site was selected in part as it was included in 

Parola et al. (2007).  The discharge regional curve equations are presented in Table 4.10.  

Graphs of the data points with the regression equations are presented in Figure 4.12.  The 

combined regions refers to equations calculated from all data points; the Inner Bluegrass 

refers to equations calculated using only data from streams located in the Inner Bluegrass 

region, and the Outer Bluegrass refers to equations calculated using data from streams 

located in the Outer Bluegrass. 

Table 4.10 Power Function Regression Relationships (Regional Curves) for Bankfull 
Discharge where Qbkf is the Bankfull Discharge in ft3/s and DA is the Watershed 
Drainage Area in mi2. 

Region Regression Equation R2 
Combined Region Qbkf=35.071DA0.9149 0.92 

Inner Bluegrass Qbkf=33.62DA0.8645 0.93 
Outer Bluegrass Qbkf=39.982DA0.9165 0.91 

 

The plots of bankfull discharge versus drainage area show that bankfull discharge is 

significantly related to drainage area with 92% of the variability explained by the drainage 

area for the combined Bluegrass Region.  The exponents of these equations fall within range 

of other regional curves developed across the eastern U.S.  Other studies have found 

exponents to be 0.63 to 0.94, averaging 0.76 (± 0.17), see Table 2.2 for examples.   
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Figure 4.12 Bankfull Discharge as a Function of Drainage Area for the Combined 
Region, Inner Bluegrass and Outer Bluegrass Regions. 

 

Separating the data into the Inner and Outer Bluegrass regions creates a difference in both 

the coefficient and exponent of the equation.  The Inner Bluegrass has both a lower 

coefficient and exponent.  This creates a lower prediction of discharge in the Inner 

Bluegrass.  For instance, if the discharge for a watershed of 10 mi2 was to be determined, the 

discharge for the Inner Bluegrass would be 246 ft3/s and the discharge for the Outer 

Bluegrass would be 330 ft3/s.  There is a 25% difference in the calculated discharges for the 

Inner and Outer Bluegrass.   The Inner Bluegrass has a higher percentage of impervious area 

than the Outer Bluegrass, indicating a higher percentage of urbanization.  Regional curves 

developed in urban watersheds have shown higher coefficients and lower exponents than 

those developed in the same region with using data from rural watersheds (Harman et al., 
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1999; Doll et al., 2002).  The Inner Bluegrass equation does share the lower exponent; 

however the coefficient is not higher than the exponent of the Outer Bluegrass.  This could 

be attributed to the more intense karst watersheds found in the Inner Bluegrass; the 

additional discharge could be carried underground as opposed to in the channel. 

 

There was variability in the bankfull discharges measured in each region; for instance, in the 

Inner Bluegrass region for a drainage area close to 20 mi2, the discharge ranged from 269 

ft3/s to 544 ft3/s.  The Outer Bluegrass measurements had a similar type of variability 

around the 30 mi2 to 40 mi2 watershed drainage area; the discharges for these drainage areas 

ranged from 749 ft3/s to 1,640 ft3/s. 

 

4.2.2 Area Regional Curves 

Bankfull cross-sectional area was determined for all 29 surveyed sites.  The regional curve 

equations for area are presented in Table 4.11.  The graphs of the data points with the 

regression equation are presented in Figure 4.13. 

Table 4.11 Power Function Regression Relationships (Regional Curves) for Bankfull 
Cross-sectional (Abkf) in ft2 and DA is the Watershed Drainage Area in mi2. 

Region Regression Equation R2 
Combined Region Abkf=15.077DA0.8199 0.96 

Inner Bluegrass Abkf=14.002DA0.8239 0.98 
Outer Bluegrass Abkf=17.855DA0.7826 0.91 

 

The power function relationships found for the bankfull area versus watershed drainage area 

produced strong relationships.  Watershed drainage area explained 96% of the variability in 

the bankfull area.  Separating the Inner and Outer Bluegrass Regions resulted in better 
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predictability numbers for the Inner Bluegrass; the R2 value increased from 0.96 to 0.98.  

The predictability numbers for the Outer Bluegrass did the opposite; the R2 value decreased 

from 0.96 to 0.91.  The separated equations for the Inner and Outer Bluegrass show the 

biggest difference on the smaller drainage areas.  The difference in the curves is likely due to 

a lack of data for smaller watersheds in the Outer Bluegrass; there was only one watershed 

included with a drainage area less than five square miles. 

 

Figure 4.13 Bankfull Cross-section Area as a Function of Drainage Area for the 
Combined Region, Inner Bluegrass and Outer Bluegrass Regions. 

 

The exponents found in all three equations fall within range of what is seen in other regions 

throughout the eastern U.S., as seen in Table 2.2.  Bidelspach (2008) averaged 22 regional 

curves across the southeastern U.S. and found that the average exponent was 0.68; Dunne 

and Leopold (1978) also found a similar value for the eastern U.S. of 0.70. 
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4.2.3 Width Regional Curves 

Bankfull widths were determined for all 29 surveyed sites.  The regional curve equations for 

width are presented in Table 4.12.  The graphs of the data points with the regression 

equation are presented in Figure 4.14. 

Table 4.12 Power Function Regression Relationships (Regional Curves) for Bankfull 
Width (Wbkf) in ft and DA is the Watershed Drainage Area in mi2. 

Region Regression Equation R2 
Combined Region Wbkf=14.234DA0.4613 0.94 

Inner Bluegrass Wbkf=13.015DA0.4717 0.98 
Outer Bluegrass Wbkf=17.543DA0.410 0.88 

 

The plots of bankfull width versus drainage area show that bankfull width is significantly 

related to drainage area with 94% of the variability explained by the drainage area for the 

combined Bluegrass Region.  This relationship is very strong for the combined regions, but 

separating the regions shows different results.  The Inner Bluegrass Region’s R2 value 

increases, indicating a better relationship than the combined region, but the Outer Bluegrass 

Region’s R2 value decreases.  

 

The exponents found in all three equations fall within range of other regional curves 

developed throughout the eastern U.S., see Table 2.2.  The exponent of the combined 

equation for bankfull width versus drainage area, 0.4613, is nearly identical to the value of 

0.469 found by Cinotto (2003); their study also included watersheds with karst influence.  It 

is also similar to the value of 0.399 found by Dunne and Leopold (1978) for streams across 

the eastern U.S.  The largest deviation for these curves occurs with the lower drainage areas. 
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Figure 4.14 Bankfull Width as a Function of Drainage Area for the Combined 
Region, Inner Bluegrass and Outer Bluegrass Regions. 

 

4.2.4 Depth Regional Curves 

Bankfull depth determined from field measurements was determined for all 29 surveyed 

sites.  The regional curve equations for depth are presented in Table 4.13.  The graphs of the 

data points with the regression equation are presented in Figure 4.15. 

Table 4.13 Power Function Regression Relationships (Regional Curves) for Bankfull 
Depth (Dbkf) in ft and DA is the Watershed Drainage Area in mi2. 

Region Regression Equation R2 
Combined Region Dbkf=1.0594DA0.3585 0.90 

Inner Bluegrass Dbkf=1.076DA0.3521 0.93 
Outer Bluegrass Dbkf=1.0176DA0.3723 0.84 
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In the combined equation for bankfull depth, 90% of the variability is explained by drainage 

area.  The variability explained by drainage area increases for the Inner Bluegrass and 

decreases for the Outer Bluegrass when the curves are separated.  The width and depth of a 

stream are influenced by the morphology of the stream; since streams in this study 

developed with different characteristics, such as the vegetation along stream banks or if a 

channel has bedrock influence, the width and depth may be different than other streams in 

the same region.    

 

Figure 4.15 Bankfull Depth as a Function of Drainage Area for the Combined 
Region, Inner Bluegrass and Outer Bluegrass Regions. 

 

The equations developed for the combined width and depth bankfull parameter, bankfull 

area, offers the best fit curve, followed by the width and then the depth.  This can be seen in 
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the combined equations for the regional curves developed for the Inner and Outer 

Bluegrass; the R2 value for bankfull area is 0.96, while the value for bankfull width is 0.94 

and bankfull depth is 0.90.  Other studies show this same pattern of R2 values; for example 

the regional curves developed by Miller and Davis in the New York Catskill Mountains 

found that the R2 value for bankfull area was 0.90, for bankfull width was 0.88 and for 

bankfull depth was 0.85.  Other curves that show this pattern include Doll et al . (2002),  

Doll et al. (2003), Cinotto (2003), McCandless (2003b), Sweet and Geratz (2003) and Metcalf 

et al. (2009). 

 

4.2.5 Comparison 

4.2.5.1 Other Regional Curves 

Over 25 sets of regional curves have been developed across the eastern U.S.  Perhaps the 

most interesting to this study are the curves developed by Parola et al. (Parola et al., 2007) 

that included the Inner and Outer Bluegrass Regions and the Knobs Region of Kentucky 

and those developed by Cinotto (2003) that included watersheds that contained karst 

characteristics.  Also interesting to this study are the curves developed by Dunne and 

Leopold (1978) that were developed for the entire eastern U.S. and average bankfull cross-

sectional area curves (rural, urban, combined) developed by Bidelspach (2008) for the 

southeastern U.S.   Table 4.14 is a comparison of these equations and Figures 4.16, 4.17, 

4.18 and 4.19 are graphical representations of these curves. 



 

 

 

Table 4.14 Comparison of Regional Curves in the Eastern United States where Qbkf=aDAb, Abkf=cDAd, Wbkf=gDAh and 
Dbkf=jDAk and DA is the Drainage Area measured in square miles, Qbkf is the Bankfull Discharge measured in cubic feet per 
second, Abkf is the Bankfull Area measured in square feet, Wbkf is the Bankfull Width measured in feet and Dbkf is the Bankfull 
Depth measured in feet. 

Study 
Bankfull Discharge Bankfull Area Bankfull Width Bankfull Depth 
a b R2 c d R2 g h R2 j k R2 

Combined Region 35.071 0.9149 0.92 15.077 0.8199 0.96 14.234 0.4613 0.94 1.0594 0.3585 0.90 
Inner Bluegrass 33.620 0.8645 0.93 14.002 0.8239 0.98 13.015 0.4717 0.98 1.0760 0.3521 0.93 
Outer Bluegrass 39.982 0.9165 0.91 17.855 0.7826 0.91 17.543 0.4100 0.88 1.0176 0.3723 0.84 
Parola et al. (2007) 27.9 0.98 0.96 7.71 0.99 0.99 10.97 0.48 0.97 0.70 0.51 0.93 
Dunne and Leopold 
(Dunne and Leopold, 
1978) 

- - - 21.174 0.70 - 14 0.399 - 1.50 0.294 - 

Bidelspach (2008) - - - 19.549 0.6754 - - - - - - - 
Cinotto (2003) 53.1 0.842 0.93 12.4 0.810 0.94 13.6 0.469 0.8 0.912 0.339 0.72 
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The developed regional curves relating drainage area to bankfull discharge were only 

developed in this study, the study by Parola et al. (2007), and by Cinotto (2003).  The 

equations from this study and those by Cinotto (2003) have lower exponent values than 

those developed by Parola et al. (2007).  This is apparent in the graph of the regression 

equations, found in Figure 4.15.  A statistical comparison of the data developed in this study 

to the data developed by Parola et al. (2007) is in Section 4.2.5.2. 

 

Figure 4.16 Comparison of Bankfull Discharge Regional Curves for the Humid 
Eastern U.S. 

 

The regional curves developed for bankfull area were developed in all studies.  An additional 

study by Bidelspach (2008) compared 22 curves across the southeastern U.S.  The average 

equation for the southeastern U.S. is plotted with the other equations, as seen in Figure 4.16.  

The equations show similarities in the graph.  The exponent from the 22 averaged sites, 

0.6754, is are very close to the exponent developed by Dunne and Leopold (1978), 0.70; the 
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exponents from this study, 0.8199, 0.8239 and 0.7826, are close to the exponent developed 

by Cinotto (2003), 0.81.  The exponent for bankfull area developed by Parola et al. (2007) of 

0.99 is higher than most of the similar studies in the eastern U.S.  This value is unexpected 

and is similar only to that found in the regional curves developed for the coastal plain 

watersheds of Alabama; they also found this exponent to be 0.99 (Metcalf and Shaneyfelt, 

2005).   

 

Figure 4.17 Comparison of Bankfull Cross-section Area Regional Curves for the 
Humid Eastern U.S. 

 

The equations for the bankfull width are very interesting when compared among the 

different regional curves developed.  The curve for this study nearly lies over that developed 

by Cinotto (2003).  Both of these studies contain karst topography in the watersheds of the 

sites included.  The study by Parola et al. (2007) eliminated sites that they could determine to 

be influenced by karst; while there is no way to reliably predict all watersheds that could be 
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affected by karst, they tried to avoid them.  The exponent of 0.48 from their study is closer 

to the exponents of the karst studies, 0.41 to 0.47 than that of Dunne and Leopold (1978).  

This could indicate that the watersheds in their study were influenced by karst, despite their 

efforts to avoid it.  The equation developed by Parola et al. (2007) would predict a lower 

width than the karst studies, but would predict higher than the non-karst study conducted by 

Dunne and Leopold (1978).   

 

Figure 4.18 Comparison of Bankfull Width Regional Curves for the Humid Eastern 
U.S. 

 

The opposite is true for the depth equations.  The two studies that contain karst topography 

would predict a lower bankfull depth than the non-karst.  The sites in the karst topography 

locations have higher widths, and lower depths; this would result in an overall higher W/D 

ratio.  Since the area plots are comparable, this would be expected.  The regional curve 
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developed by Parola et al. (2007) has a different slope than all of the others; this indicates 

that the bankfull elevation could have been misidentified for some sites.   

 

Figure 4.19 Comparison of Bankfull Depth Regional Curves for the Humid Eastern 
U.S. 

 

4.2.5.2 Statistical Comparison to Parola et al. (2007) 

The regional curve equations developed in this study were compared to those developed by 

Parola et al. (2007).  Both studies included sites in the Inner and Outer Bluegrass Regions.  

The statistical analyses results (p-values) for each ANCOVA are presented in Table 4.15.    

 

The bankfull width equations developed by Parola et al. (2007) and the combined regions 

show the strongest statistical similarity between the regression slopes with a p-value of 

0.7989.  Figure 4.20 is a plot of the data and regression equations for bankfull width. 
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Table 4.15 ANCOVA results for the comparison of the Combined Region to the data 
found by Parola (2007). 

Bankfull 
Parameter 

Number of 
Sites P-value 

Width 49 0.7989 
Depth 49 <0.0001 
Area 49 0.0068 
Discharge 43 0.3015 

 

 

Figure 4.20 Comparison of Bankfull Width Regional Curves of the Combined Region 
and Parola et al. (2007). 

 

The plots of the regression equations for the combined region and Parola et al. (2007) for the 

relationship of bankfull depth versus drainage area show the greatest difference.  The 

statistical analysis demonstrates this as well with a p-value <0.0001.  These plots are 

presented in Figure 4.21.  The equation developed by Parola et al. (2007) predicts a lower 

bankfull depth than the combined regions for drainage areas under 20 square miles and a 
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higher bankfull depth for drainage areas greater than 20 square miles.  The difficulties in 

identifying bankfull could play a role in the differences in these data.  Bankfull indicators, 

such as the flat depositional surface immediately adjacent to the stream, could be mistaken 

where there are inner berm features.  Incorrectly identifying the inner berm as a bankfull 

elevation would result in a lower depth.  A channel with uniform banks could produce 

similar bankfull width measurements at different elevations.  Such could be the case with the 

North Elkhorn near Georgetown (03288000).  The bankfull depth for this channel was 

found by Parola et al. (2007) to be 8.36 ft and by this study to be 6.17 ft.  The widths for the 

North Elkhorn near Georgetown were similar.  Parola et al. (2007) found the bankfull width 

to be 123 ft, and this study found the bankfull width to be 118 ft.   

 

Figure 4.21 Comparison of Bankfull Depth Regional Curves of the Combined Region 
and Parola et al. (2007). 
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The plot of the regression equations for the combined region and the data developed by 

Parola et al. (2007) of the bankfull area versus drainage area shows a difference in the two 

equations.  The statistics show a difference as well with a p-value of 0.0068.  The data 

developed by Parola et al. (2007) predicts a smaller area than the combined region for 

drainage areas under approximately 40 square miles, and predicts an area larger for drainage 

areas greater than approximately 40 square miles.  This difference could be attributed to the 

difference found in measuring the bankfull depth.  Figure 4.22 presents these data. 

 

Figure 4.22 Comparison of Bankfull Area Regional Curves of the Combined Region 
and Parola et al. (2007). 

 

Figure 4.23 presents a comparison of the bankfull discharges computed by Parla et al (2007) 

and the combined region.  The plot of bankfull discharge versus drainage area shows a 

relationship between the regression equations developed for the combined region and by 

Parola et al. (2007).  The statistical comparison of the data shows a relationship as well with a 
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p-value of 0.3015.  It is surprising that the regression relationships from the two studies 

show statistical similarities.  The bankfull discharges presented in the study by Parola et al 

(2007) were compiled in a few different ways.  Three were based on a staff gage reading used 

with data from the USGS ratings depot, two were based on bankfull flow events, and the 

other ten were modeled using HEC-RAS.  When the measured and modeled discharges 

from the study by Parola et al. (2007) are separated, there is a difference in regression 

equations that would result.  Figure 4.24 is a graph of the separated data.  The regression 

equation for the modeled data produces an exponent of 1.0753.  This exponent is 

unexpected.  Because the bankfull depths measured (and consequently the bankfull areas) for 

the studies show statistical differences, it is suspicious that the discharges are similar.  

 

 

Figure 4.23 Comparison of Bankfull Discharge Regional Curves of the Combined 
Region and Parola et al. (2007). 
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Table 4.24 Comparison of Modeled and Measured Bankfull Discharges for Parola et 
al. (2007). 

 

 

4.2.5.3 Regional Curves Separated by Stream Type 

One way of refining values developed for regional curves is to separate them by stream type 

(Rosgen, 1994).  The regional curves developed in this study were not improved by 

separating them into stream type (E, C and B).    The majority of streams included in this 

study classified as C type streams in the Rosgen Classification System.  Their data were 

plotted separately.  The data separation did not improve the predictability of the equations.  

This may be because there were only three E type channels to separate from the data, and all 

B type channels were actually Bc type channels.  
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4.3 Return Interval Analysis 

The bankfull return intervals were calculated for all 28 sites which had bankfull discharge 

data; the exception was 03288000 N. Elkhorn near Georgetown (inactive gage without field 

staff gage).  The values for these calculations, as well as the 1.5-year discharge, are presented 

in Table 4.16.  The 1.5-year discharge allows for a comparison of the return periods 

computed in this study with those of the average return period for the U.S. as defined by 

Leopold et al. (1964).  The average return interval for the Combined Bluegrass Regions is 

0.94 years or 11.3 months; the Inner Bluegrass Region has an average of 1.04 years and the 

Outer Bluegrass has an average of 0.86 years or 10.3 months.  These values are lower than 

the average return period of 1.5 years found in other studies (Miller and Davis, 2003).      

 

Table 4.16 Bankfull Return Intervals and 1.5 Year Discharge for Inner and Outer 
Bluegrass Sites. 

UGS Gage 
Number Site 

Bankfull 
Return 
Period 
(years) 

Qbkf                                  
(ft3/s) 

Q1.5               
(ft3/s) 

03284525 East Hickman Creek Tributary at Chilesburg 
Road near Lexington 1.0253 45 142 

03284520 East Hickman Creek at Andover Village near 
Cadentown 0.9381 38 139 

03287580 North Elkhorn Creek at Man O War Blvd near 
Cadentown 1.0581 59 113 

03288500 Cave Creek near Fort Springs 1.2735 63.6 79 
03287590 North Elkhorn Creek on Winchester near 

Lexington 0.9291 74 313 

03289193 Wolf Run at Old Frankfort Pike, Lexington 0.9359 420 1415 
03284530 East Hickman Creek at Delong Road near East 

Hickman 1.0112 265 783 

03284555 West Hickman Creek at Ash Grove Pike near 
East Hickman 0.9001 454 2053 

03287600 North Elkhorn at Bryan Station Road near 
Montrose 0.9462 269 1712 

03289000 South Elkhorn Creek at Fort Springs 1.1668 544 791 
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Table 4.16 (continued) 

UGS Gage 
Number Site 

Bankfull 
Return 
Period 
(years) 

Qbkf                                  
(ft3/s) 

Q1.5               
(ft3/s) 

03289200 Town Branch at Yarnallton Rd at Yarnallton 1.1534 1080 1906 
03291000 Eagle Creek at Sadieville 1.2386 1180.1 2128 
03288000 North Elkhorn Creek near Georgetown -3 - 4635 
03288100 North Elkhorn at Georgetown 0.9963 1910 4637 
032387721 Fourmile Creek at Polar Bridge near Alexandria 0.9083 154 439 
03254400 North Fork Grassy Creek near Piner 0.9042 363.1 1845 
032544801 Cruises Creek at Highway 17 near Piner 0.7722 375 5533 
032620012 Woolper Creek at Woolper Road near 

Burlington 0.6336 540 3741 

03254550 Banklick Creek at Highway 1829 near Erlanger 0.8803 749 4602 
03277075 Gunpowder Creek at Camp Ernst Road near 

Union 0.3509 1640 4299 

032387451 Twelvemile Creek at Highway 1997 near 
Alexandria 0.4336 1350 4616 

03298135 Chenoweth Run at Ruckriegel Parkway 0.9656 167 938 
03292480 Little Goose near Harrods Creek 1.1480 272 439 
03292474 Goose Creek at Old Westport Road near St 

Matthews 1.0901 167 448 

032978002 Cedar Creek at Highway 1442 near 
Shepherdsville 1.0155 343 1851 

03293000 Middle Fork Beargrass Creek at Old Cannons 
Lane at Louisville 1.2310 529 856 

03277130 Mud Lick at Highway 42 near Beaverlick 0.4999 2040 7260 
03292470 Harrods Creek at Highway 329 near Goshen 1.0404 1910 5883 
03298000 Floyd's Fork at Fisherville 0.9693 3270 4243 

1 represents a site with 9 years of USGS data collected 
2 represents a site with 8 years of USGS data collected 
3 represents an inactive site with no staff gage on site 
 

The bankfull discharges are less than half of the calculated 1.5 year discharge; the Inner 

Bluegrass averaging 41% of the 1.5 year discharge, and the Outer Bluegrass averaging 33% 

of the 1.5 year discharge.  Practitioners working in the Inner and Outer Bluegrass Regions 

found similar return periods (personal communication, George Athanasakes of Stantec 

Consulting, Inc., May 5, 2010).  The bankfull discharges and their corresponding return 

periods found for the Inner and Outer Bluegrass play a significant role in the design of a 
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channel.  The recommended design at the 1.5-year return interval would be an over-estimate 

for the Bluegrass Region.  The difference in the bankfull discharge and the 1.5-year discharge 

also implicates that the effective Manning’s n is at a lower flow than the 1.5-year discharge. 

 

4.4 Urbanization and Vegetation Influence Analysis 

The stability of streams was determined in large part by field analysis and then by calculating 

the BHR from cross-section data.  The majority of streams included in this study have a high 

percentage of trees lining the banks; the only two that do not were site number 03284520 

East Hickman Creek at Andover Village near Cadentown, KY and site number 03288500 

Cave Creek near Fort Springs, KY.  Hession et al. (2003) conducted a study in the Piedmont 

region of Pennsylvania, northern Maryland, and Delaware and found that vegetation had an 

equal influence on channel morphology as watershed land use.  Their study included 26 

paired reaches where all factors except riparian vegetation were held constant.  This study 

was able to show that “riparian vegetation is able to exert a strong control on channel size 

regardless of the level of urbanization” (Hession et al., 2003).  

 

While many of the sites, especially in the Inner Bluegrass, had greater than 10% impervious 

cover (determined from 2001 data), this was not seen to influence the stream’s stability at the 

surveyed locations.  Note while the upstream and downstream reaches of the streams were 

walked, in reference to the USGS gage, the entire stream network was not walked.  For six 

of the streams included in the study, the historical rating’s depot curves were examined.  

Only six sites were examined at the request of the USGS as considerable effort was involved 

in compiling historical rating curves.  The steams in the Inner Bluegrass included were: 

03287580 North Elkhorn Creek at Man O War Blvd near Cadentown with 3.2% impervious 
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cover and 03289193 Wolf Run at Old Frankfort Pike, Lexington with 29.6% impervious 

cover.  The streams in the Outer Bluegrass included were: 03254480 Cruises Creek at 

Highway 17 near Piner with 1.2% impervious cover, 03277075 Gunpowder Creek at Camp 

Ernst Road near Union with 16.7% impervious, 03292470 Harrods Creek at Highway 329 

near Goshen with 1.4% impervious cover and 03298135 Chenoweth Run at Ruckriegel 

Parkway with 33.9% impervious cover.  Figures 4.25 through 4.30 present the ratings depot 

data.   

 

 

Figure 4.25 Rating's Depot Curve Comparison for 03287580 North Elkhorn Creek at 
Man O War Blvd near Cadentown. 

 

In the Inner Bluegrass, the graphs for the North Elkhorn on Man O War (Figure 4.24) and 

Wolf Run (Figure 4.25) show no significant changes in the stage-discharge relationships; they 

do show improvements in data however.  The North Elkhorn on Man O War is situated 



 

90 

 

close to the development of Hamburg Pavilion.  This development does not show a 

significant change in the ratings depot curves for this location.  The reach included in the 

study has tree-lined banks; these provide stability for the channel.  The curves for Wolf Run 

also show no significant change.  The watershed for Wolf Run is above the 10% impervious 

threshold, but this does not seem to have an influence on the stage-discharge curves for this 

stream.  Both of these streams have tree-lined banks. 

 

 

Figure 4.26 Rating's Depot Curve Comparison for 03289193 Wolf Run at Old 
Frankfort Pike, Lexington. 

 

In the Outer Bluegrass, two streams with low impervious cover were examined via their 

ratings depot curves: Cruises Creek (Figure 4.26) and Harrods Creek (Figure 4.27) with 1.2% 

and 1.4% impervious cover respectively.  The banks of these streams are lined with trees 

providing strong riparian vegetation.  The rating’s depot curves for Cruises Creek show a 
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shift from 2005 to 2008 which may indicate a shift in the channel.  The bankfull stage, 

however is lower than this shift, as depicted in Figure 4.26; a greater stage is required to 

produce the same discharge, so there was not concern about the impervious effects. 

 

Figure 4.27 Rating's Depot Curve Comparison for 03254480 Cruises Creek at 
Highway 17 near Piner. 

 

The other curves in the Outer Bluegrass, Gunpowder Creek (Figure 4.29) and Chennoweth 

Run (Figure 4.28), have shifts in the rating’s depot curves as well.  The reaches included in 

this study have tree-lined banks and the bankfull stage is lower than the shifts.  This does not 

cause concern for the impervious effects on the channel at bankfull.   
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Figure 4.28 Rating's Depot Curve Comparison for 03292470 Harrods Creek at 
Highway 329 near Goshen. 

 

Figure 4.29 Rating's Depot Curve Comparison for 03298135 Chenoweth Run at 
Ruckriegel Parkway. 
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Figure 4.30 Rating's Depot Curve Comparison for 03277075 Gunpowder Creek at 
Camp Ernst Road. 

 

The historic ratings depot curves plotted with the current ratings depot curve information 

suggests that the streams in the study maintain stability despite the amount of impervious 

cover.   
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Chapter 5: Conclusions 

5.0 Conclusions 
Twenty nine stream reaches were surveyed to determine their bankfull dimensions and 

bankfull discharge.  From these data, regional curves and hydraulic geometry relationships 

were developed for the Inner and Outer Bluegrass regions in Kentucky.  The regional curves 

significant relationships between bankfull parameters, such as cross-sectional area, width, 

depth and drainage area; R2 values were 0.92, 0.94 and 0.90 respectively[ca1].  The hydraulic 

geometry relationships also show a significant relationship between bankfull parameters, 

such as cross-sectional area and width, and bankfull discharge; R2 values for the hydraulic 

geometry relationships were as high as 0.95.   

 

Engineers, specifically those involved in stream restoration, can use the relationships in 

practice to assist in the identification of bankfull and to aid in preliminary design efforts of 

determining bankfull channel dimensions.  The regional curves developed in this study do 

not replace the need for field verification of bankfull stream channel dimensions.   

 

Future work is recommended to determine the effects of vegetation in the Inner and Outer 

Bluegrass on karst versus non-karst areas.  The influence vegetation asserts on a channel can 

overcome the effects of urbanization, but the morphology of a channel could possibly 

change, regardless of vegetation type, within karst influenced watersheds.
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Appendix A: Cross Section Summary 

 
Table A.1 Classification Data: 03284525 East Hickman Tributary at Chilesburg Rd near 
Lexington, KY. 

Bankfull Parameter Bankfull Dimension 

Wbkf 13.92 ft 
Dbkf 1.24 ft 
Wfpa 45 ft 
D50 4.5 mm 
Slope 0.0063 ft/ft 
Sinuosity 1.16 

 Qbkf 45 ft3/s 
Vbkf 2.92 ft/s 

Abkf 17.26 ft2 
ER 3.23 

 W/D Ratio 11.23 
 Rosgen Stream Type E1   

 
  
Table A.2 Classification Data: 03284520 East Hickman Creek at Andover Village near 
Cadentown, KY. 

Bankfull Parameter Bankfull Dimension 

Wbkf 13.53 ft 
Dbkf 1.18 ft 
Wfpa 34 ft 
D50 15.2 mm 
Slope 0.0058 ft/ft 
Sinuosity 1.45 

 Qbkf 38 ft3/s 
Vbkf 2.38 ft/s 

Abkf 15.98 ft2 
ER 2.51 

 W/D Ratio 11.47 
 Rosgen Stream Type E1   
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Table A.3 Classification Data: 03287580 North Elkhorn Creek at Man O War Blvd near 
Cadentown, KY. 

Bankfull Parameter Bankfull Dimension 

Wbkf 19.5 ft 
Dbkf 1.7 ft 
Wfpa 50 ft 
D50 30.1 mm 
Slope 0.0073 ft/ft 
Sinuosity 1.33 

 Qbkf 59 ft3/s 
Vbkf 1.78 ft/s 

Abkf 33.09 ft2 
ER 2.56 

 W/D Ratio 11.47 
 Rosgen Stream Type E4/1   

 

Table A.4 Classification Data: 03288500 Cave Creek near Fort Springs, KY. 

Bankfull Parameter Bankfull Dimension 

Wbkf 17.45 ft 
Dbkf 1.27 ft 
Wfpa 67 ft 
D50 38.5 mm 
Slope 0.0074 ft/ft 
Sinuosity 1.16 

 Qbkf 63.3 ft3/s 
Vbkf 2.85 ft/s 

Abkf 22.2 ft2 
ER 3.84 

 W/D Ratio 13.74 
 Rosgen Stream Type C4/1   
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Table A.5 Classification Data: 03287590 North Elkhorn Creek on Winchester Road near 
Lexington, KY. 

Bankfull Parameter Bankfull Dimension 

Wbkf 27.88 ft 
Dbkf 1.62 ft 
Wfpa 77.02 ft 
D50 30.83 mm 
Slope 0.0046 ft/ft 
Sinuosity 1.33 

 Qbkf 74 ft3/s 
Vbkf 1.47 ft/s 

Abkf 45.28 ft2 
ER 2.76 

 W/D Ratio 17.21 
 Rosgen Stream Type C4/1   

 
 
Table A.6 Classification Data: 03289193 Wolf Run at Old Frankfort Pike, Lexington, KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 38.07 ft 
Dbkf 2.59 ft 
Wfpa 100 ft 
D50 104.07 mm 
Slope 0.005 ft/ft 
Sinuosity 1.22 

 Qbkf 420 ft3/s 
Vbkf 4.27 ft/s 

Abkf 98.47 ft2 
ER 2.63 

 W/D Ratio 14.7 
 Rosgen Stream Type C3/1   

 
 
 
 
 
 



 

98 

 

Table A.7 Classification Data: 03284530 East Hickman Creek at Delong Road near East 
Hickman, KY. 

Bankfull Parameter Bankfull Dimension 

Wbkf 37.74 ft 
Dbkf 2.82 ft 
Wfpa 100 ft 
D50 53.4 mm 
Slope 0.0025 ft/ft 
Sinuosity 2.41 

 Qbkf 265 ft3/s 
Vbkf 2.49 ft/s 

Abkf 106.44 ft2 
ER 2.65 

 W/D Ratio 13.38 
 Rosgen Stream Type C1/1   

 
 
 
Table A.8 Classification Data: 03284555 West Hickman Creek at Ash Grove Pike near East 
Hickman, KY. 

Bankfull Parameter Bankfull Dimension 

Wbkf 58.51 ft 
Dbkf 2.54 ft 
Wfpa 350 ft 
D50 144.25 mm 
Slope 0.0034 ft/ft 
Sinuosity 1.77 

 Qbkf 454 ft3/s 
Vbkf 3.05 ft/s 

Abkf 148.64 ft2 
ER 5.98 

 W/D Ratio 23.04 
 Rosgen Stream Type C3/1   
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Table A.9 Classification Data: 03287600 North Elkhorn at Bryan Station Road near 
Montrose, KY. 

Bankfull Parameter Bankfull Dimension 

Wbkf 56.59 ft 
Dbkf 2.78 ft 
Wfpa 150 ft 
D50 62.3 mm 
Slope 0.0032 ft/ft 
Sinuosity 1.38 

 Qbkf 269 ft3/s 
Vbkf 1.71 ft/s 

Abkf 157.57 ft2 
ER 2.65 

 W/D Ratio 20.36 
 Rosgen Stream Type C1   

 
 
Table A.10 Classification Data: 03289000 South Elkhorn Creek at Fort Springs, KY. 

Bankfull Parameter Bankfull Dimension 

Wbkf 54.23 ft 
Dbkf 2.34 ft 
Wfpa 79.78 ft 
D50 194 mm 
Slope 0.0028 ft/ft 
Sinuosity 1.79 

 Qbkf 544 ft3/s 
Vbkf 4.29 ft/s 

Abkf 126.76 ft2 
ER 1.47 

 W/D Ratio 23.18 
 Rosgen Stream Type B3/1c   
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Table A.11 Classification Data: 03289200 Town Branch at Yarnallton Rd at Yarnallton, KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 71.96 ft 
Dbkf 3.27 ft 
Wfpa 200 ft 
D50 130.74 mm 
Slope 0.0029 ft/ft 
Sinuosity 2.14 

 Qbkf 1080 ft3/s 
Vbkf 4.58 ft/s 

Abkf 235.59 ft2 
ER 2.78 

 W/D Ratio 22.01 
 Rosgen Stream Type C3/1   

 
 
Table A.12 Classification Data: 03291000 Eagle Creek at Sadieville, KY. 

Bankfull Parameter Bankfull Dimension 

Wbkf 85.91 ft 
Dbkf 4.03 ft 
Wfpa 200 ft 
D50 6.21 mm 
Slope 0.0016 ft/ft 
Sinuosity 3.34 

 Qbkf 1180 ft3/s 
Vbkf 3.41 ft/s 

Abkf 346 ft2 
ER 2.33 

 W/D Ratio 21.32 
 Rosgen Stream Type C4   
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Table A.13 Classification Data: 03288000 North Elkhorn Creek near Georgetown, KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 117.66 ft 
Dbkf 6.17 ft 
Wfpa 275 ft 
D50 79.17 mm 
Slope 0.0008 ft/ft 
Sinuosity 3.09 

 Qbkf - ft3/s 
Vbkf - ft/s 

Abkf 726.46 ft2 
ER 2.34 

 W/D Ratio 19.07 
 Rosgen Stream Type C3/1c-   

 
 
 
Table A.14 Classification Data: 03288100 North Elkhorn Creek at Georgetown, KY. 

Bankfull Parameter Bankfull Dimension 

Wbkf 125.57 ft 
Dbkf 8.4 ft 
Wfpa 300 ft 
D50 - mm 
Slope 0.0006 ft/ft 
Sinuosity 3.09 

 Qbkf 1910 ft3/s 
Vbkf 1.81 ft/s 

Abkf 1054.81 ft2 
ER 2.39 

 W/D Ratio 14.95 
 Rosgen Stream Type C1c-   
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Table A.15 Classification Data: 03238772 Fourmile Creek at Poplar Ridge near Alexandria, 
KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 26.08 ft 
Dbkf 1.68 ft 
Wfpa 50 ft 
D50 60.65 mm 
Slope 0.0184 ft/ft 
Sinuosity 1.03 

 Qbkf 154 ft3/s 
Vbkf 3.51 ft/s 

Abkf 43.91 ft2 
ER 1.92 

 W/D Ratio 15.52 
 Rosgen Stream Type B4c   

 
 
Table A.16 Classification Data: 03254400 North Fork Grassy Creek near Piner, KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 42.66 ft 
Dbkf 2.16 ft 
Wfpa 150 ft 
D50 - mm 
Slope 0.0056 ft/ft 
Sinuosity 1.56 

 Qbkf 363.1 ft3/s 
Vbkf 3.94 ft/s 

Abkf 92.08 ft2 
ER 3.52 

 W/D Ratio 19.75 
 Rosgen Stream Type C1   
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Table A.17 Classification Data: 03254480 Cruises Creek at Highway 17 near Piner, KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 51.79 ft 
Dbkf 3.07 ft 
Wfpa 100 ft 
D50 59.53 mm 
Slope 0.0056 ft/ft 
Sinuosity 1.76 

 Qbkf 375 ft3/s 
Vbkf 2.36 ft/s 

Abkf 158.91 ft2 
ER 1.93 

 W/D Ratio 16.87 
 Rosgen Stream Type B4c   

 
 
Table A.18 Classification Data: 03262001 Woolper Creek at Woolper Road near Burlington, 
KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 60.2 ft 
Dbkf 2.83 ft 
Wfpa 89.32 ft 
D50 45.5 mm 
Slope 0.0071 ft/ft 
Sinuosity 1.31 

 Qbkf 540 ft3/s 
Vbkf 3.17 ft/s 

Abkf 170.09 ft2 
ER 1.48 

 W/D Ratio 21.27 
 Rosgen Stream Type B4c   

 
 
 
 
 
 
 



 

104 

 

Table A.19 Classification Data: 03254550 Banklick Creek at Highway 1829 near Erlanger, 
KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 72.06 ft 
Dbkf 3.2 ft 
Wfpa 200 ft 
D50 83.07 mm 
Slope 0.0051 ft/ft 
Sinuosity 1.83 

 Qbkf 749 ft3/s 
Vbkf 3.25 ft/s 

Abkf 230.79 ft2 
ER 2.78 

 W/D Ratio 22.52 
 Rosgen Stream Type C3   

 
 
Table A.20 Classification Data: 03277075 Gunpowder Creek at Camp Ernst Road near 
Union, KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 78.7 ft 
Dbkf 3.19 ft 
Wfpa 200 ft 
D50 84.8 mm 
Slope 0.0035 ft/ft 
Sinuosity 1.67 

 Qbkf 1310 ft3/s 
Vbkf 5.22 ft/s 

Abkf 250.94 ft2 
ER 2.54 

 W/D Ratio 24.67 
 Rosgen Stream Type C3   
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Table A.21 Classification Data: 03238745 Twelvemile Creek at Highway 1997 near 
Alexandria, KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 84.05 ft 
Dbkf 3.81 ft 
Wfpa 200 ft 
D50 131.71 mm 
Slope 0.0025 ft/ft 
Sinuosity 1.26 

 Qbkf 1350 ft3/s 
Vbkf 4.22 ft/s 

Abkf 320.06 ft2 
ER 2.38 

 W/D Ratio 22.06 
 Rosgen Stream Type C3/1   

 
 
Table A.22 Classification Data: 03298135 Chenoweth Run at Ruckriegal Parkway, KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 44.44 ft 
Dbkf 1.53 ft 
Wfpa 100 ft 
D50 45 mm 
Slope 0.0053 ft/ft 
Sinuosity 1.24 

 Qbkf 167 ft3/s 
Vbkf 2.5 ft/s 

Abkf 67.98 ft2 
ER 2.25 

 W/D Ratio 29.05 
 Rosgen Stream Type C1   
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Table A.23 Classification Data: 03292480 Little Goose near Harrods Creek, KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 44.77 ft 
Dbkf 2.61 ft 
Wfpa 150 ft 
D50 82.8 mm 
Slope 0.0061 ft/ft 
Sinuosity 1.07 

 Qbkf 272 ft3/s 
Vbkf 2.33 ft/s 

Abkf 116.74 ft2 
ER 3.35 

 W/D Ratio 17.15 
 Rosgen Stream Type C1   

 
 
Table A.24 Classification Data: 03292474 Goose Creek at Old Westport Road near St. 
Matthews, KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 31.2 ft 
Dbkf 2.34 ft 
Wfpa 100 ft 
D50 56.4 mm 
Slope 0.0053 ft/ft 
Sinuosity 1.35 

 Qbkf 167 ft3/s 
Vbkf 2.29 ft/s 

Abkf 73 ft2 
ER 3.21 

 W/D Ratio 13.33 
 Rosgen Stream Type C1   
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Table A.25 Classification Data: 03297800 Cedar Creek at Highway 1442 near Sheperdsville, 
KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 41.46 ft 
Dbkf 2.3 ft 
Wfpa 51.64 ft 
D50 47.71 mm 
Slope 0.005 ft/ft 
Sinuosity 1.35 

 Qbkf 343 ft3/s 
Vbkf 3.6 ft/s 

Abkf 95.26 ft2 
ER 1.25 

 W/D Ratio 18.03 
 Rosgen Stream Type B4c   

 
 
Table A.26 Classification Data: 03293000 Middle Fork Beargrass Creek at Old Cannons 
Lane at Louisville, KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 54.01 ft 
Dbkf 3.18 ft 
Wfpa 150 ft 
D50 39.6 mm 
Slope 0.0037 ft/ft 
Sinuosity 1.1 

 Qbkf 529 ft3/s 
Vbkf 3.08 ft/s 

Abkf 171.72 ft2 
ER 2.78 

 W/D Ratio 16.98 
 Rosgen Stream Type C1   
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Table A.27 Classification Data: 03277130 Mud Lick at Highway 42 near Beaverlick, KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 88.35 ft 
Dbkf 4.47 ft 
Wfpa 200 ft 
D50 78.7 mm 
Slope 0.0053 ft/ft 
Sinuosity 1.52 

 Qbkf 813 ft3/s 
Vbkf 2.06 ft/s 

Abkf 395.31 ft2 
ER 2.26 

 W/D Ratio 19.77 
 Rosgen Stream Type C3   

 
 
Table A.28 Classification Data: 03292470 Harrods Creek at Highway 329 near Goshen, KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 92.25 ft 
Dbkf 5.59 ft 
Wfpa 150 ft 
D50 - mm 
Slope 0.0023 ft/ft 
Sinuosity 1.51 

 Qbkf 1910 ft3/s 
Vbkf 3.7 ft/s 

Abkf 515.87 ft2 
ER 1.63 

 W/D Ratio 16.5 
 Rosgen Stream Type  B1c   
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Table A.29 Classification Data: 03298000 Floyd’s Fork at Fisherville, KY. 
Bankfull Parameter Bankfull Dimension 

Wbkf 124.72 ft 
Dbkf 7.09 ft 
Wfpa 350 ft 
D50 87.2 mm 
Slope 0.001 ft/ft 
Sinuosity 2.01 

 Qbkf 3270 ft3/s 
Vbkf 3.7 ft/s 

Abkf 883.99 ft2 
ER 2.81 

 W/D Ratio 17.59 
 Rosgen Stream Type C1   

 
Table A.30 Survey Data: 03284525 East Hickman Tributary at Chilesburg Rd near 
Lexington, KY (all elevations relative to BS elevation = 100ft). 

STA FS (ft) Elevation (ft) Note 
0 4.125 195.88   
1 4.14 195.86   
2 4.08 195.92   
3 4.025 195.98   
4 4.01 195.99   

5 4.06 195.94   

6 3.96 196.04   

7 4.06 195.94   

8 3.95 196.05   
9 3.95 196.05   
10 3.9 196.1   

11 3.885 196.12   

12 3.86 196.14   

13 3.85 196.15   
14 3.92 196.08   
15 3.94 196.06   
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Table A.30 (continued) 
STA FS (ft) Elevation (ft) Note 
15.5 3.96 196.04   
15.8 4.04 195.96   
16 4.09 195.91   

16.3 4.12 195.88   
16.65 4.29 195.71   
16.8 4.41 195.59   
17 4.46 195.54   

17.3 4.57 195.43   
17.6 4.75 195.25   
18 5.17 194.83   

18.5 5.89 194.11   
18.8 6.26 193.74 LEW 
19 6.22 193.78   

19.5 6.35 193.65   
20 6.355 193.65   

20.5 6.34 193.66   
21 6.33 193.67   

21.5 6.32 193.68   
22 6.32 193.68   

22.5 6.31 193.69   
23 6.3 193.7   

23.5 6.27 193.73   
24 6.26 193.74   

24.5 6.27 193.73   
25 6.27 193.73   

25.5 6.27 193.73   
26 6.28 193.72   

26.5 6.29 193.71   
27 6.31 193.69   

27.5 6.32 193.68   
28 6.36 193.64   

28.5 6.38 193.62   
29 6.38 193.62   

29.5 6.37 193.63   
30 6.38 193.62 TW 

30.45 6.15 193.85 REW 
30.8 5.785 194.22   
31.1 5.265 194.74   
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Table A.30 (continued) 
STA FS (ft) Elevation (ft) Note 
31.4 5.045 194.96   
31.7 4.94 195.06 BKF 
31.9 4.8 195.2   
32.1 4.72 195.28   
32.3 4.64 195.36 FP 
32.6 4.63 195.37   
33 4.61 195.39   

33.5 4.56 195.44   
34 4.585 195.42   
35 4.565 195.44   
36 4.55 195.45   
37 4.5 195.5   
38 4.49 195.51   
39 4.34 195.66   
40 4.245 195.76   
41 4.245 195.76   
42 4.17 195.83   
43 4.06 195.94   
44 4.03 195.97   
45 3.86 196.14   

 
Table A.31 Survey Data: 03284520 East Hickman Creek at Andover Village near 
Cadentown, KY (all elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 6.43 193.57   
1 6.43 193.57   
2 6.48 193.52   
3 6.565 193.44   
4 6.66 193.34   

5 6.83 193.17   

6 6.86 193.14   

7 6.85 193.15 BKF 

8 6.93 193.07   
8.3 6.99 193.01   
8.6 7.02 192.98   

8.9 7.08 192.92   
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Table A.31 (continued) 
STA FS (ft) Elevation (ft) Note 

9.1 7.19 192.81   
9.4 7.44 192.56   
9.8 8.13 191.87   
10.1 8.35 191.65 LEW 
10.5 8.4 191.6   
11 8.52 191.48   

11.5 8.53 191.47   
12 8.56 191.44   

12.6 8.615 191.39   
13.1 8.72 191.28   
13.5 8.7 191.3   
14 8.565 191.44   

14.5 8.715 191.29   
15 8.665 191.34   

15.5 8.55 191.45   
16.2 8.69 191.31   
16.9 8.565 191.44   
17.6 8.67 191.33   
18 8.58 191.42   

18.4 8.13 191.87   
18.6 7.545 192.46   
19.1 6.98 193.02   
19.2 6.845 193.16 BKF 
19.6 6.75 193.25   
20 6.7 193.3   
21 6.55 193.45   
22 6.39 193.61   
23 6.23 193.77   
24 6.08 193.92   
25 5.98 194.02   
26 5.82 194.18   
27 5.69 194.31   
28 5.625 194.38   
29 5.51 194.49   
30 5.38 194.62   
31 5.27 194.73   
32 5.205 194.8   
33 5.075 194.93   
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Table A.31 (continued) 
STA FS (ft) Elevation (ft) Note 
34 4.98 195.02   

 
Table A.32 Survey Data: 03287580 North Elkhorn Creek at Man O War Blvd near 
Cadentown, KY (all elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 4.47 195.53   
3 4.32 195.68   
6 4.35 195.65   
8 4.62 195.38   

9.5 4.73 195.27 FP 

11 5.24 194.76 BKF 

11.6 5.61 194.39   

12.3 5.86 194.14   

13.3 6.41 193.59   
14.3 7.41 192.59 REW 
15.5 7.47 192.53   

16.5 7.48 192.52   

17.5 7.46 192.54   

18.5 7.48 192.52 TW 
19.5 7.4 192.6 WS0.24 
20.5 7.4 192.6   
21.5 7.42 192.58   
22.5 7.34 192.66   
23.5 7.4 192.6   
24.5 7.37 192.63   
25.6 7.28 192.72 LEW 
26.6 6.95 193.05   
27.6 6.59 193.41   
29 6.07 193.93   

29.8 5.55 194.45   
30.5 5.24 194.76 BKF 
30.8 5.01 194.99   
31.6 4 196   
32.3 3.48 196.52   
34 3.47 196.53   
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Table A.33 Survey Data: 03288500 Cave Creek near Fort Springs, KY (all elevations 
relative). 

STA FS (ft) Elevation (ft) Note 
0 0.67 199.33   
2 0.82 199.18   
4 1.02 198.98   

6 1.24 198.76   

8 1.485 198.52   

10 1.95 198.05   

12 2.52 197.48   
14 2.89 197.11   
16 3.27 196.73   

18 3.48 196.52   

20 3.55 196.45   

22 3.67 196.33   
24 4 196   

26.5 4.27 195.73   
27.5 4.23 195.77   
28 4.29 195.71   

29.5 4.64 195.36   
30 4.75 195.25   

30.7 5.1 194.9   
31.6 5.5 194.5   
33 6.91 193.09 REW 

33.8 6.75 193.25   
34.8 6.75 193.25   
36 6.69 193.31   

37.3 6.78 193.22   
38.7 6.95 193.05   
39.7 6.79 193.21   
40.8 6.925 193.08   
42 6.85 193.15   

43.2 6.915 193.09   
44.3 7.03 192.97   
45.4 7.15 192.85 TW 
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Table A.33 (continued) 
STA FS (ft) Elevation (ft) Note 
47 7.11 192.89 LEW 

48.2 6 194   
48.6 5.64 194.36   
49 5.48 194.52 BKF 

49.5 5.45 194.55   
50 5.36 194.64   
51 5.1 194.9   
53 4.84 195.16   
55 4.645 195.36 FP 
57 4.615 195.39   
59 4.7 195.3   
61 4.72 195.28   
63 4.39 195.61   
65 4.51 195.49   
67 4.36 195.64   
69 4.4 195.6   
71 4.41 195.59   
72 4.45 195.55   

 
Table A.34 Survey Data: 03287590 North Elkhorn Creek on Winchester Road near 
Lexington, KY (all elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 1.76 198.24   
1 1.85 198.15   
2 2.18 197.82   
3 2.52 197.48   
4 2.86 197.14   

4.8 3.34 196.66   
5.8 3.87 196.13   
6.8 4.36 195.64   
7.7 4.685 195.32 REW 

8.6 4.81 195.19   
10 4.86 195.14 WS0.22 

11 4.845 195.16   
12 4.75 195.25   
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Table A.34 (continued) 
STA FS (ft) Elevation (ft) Note 
13 4.75 195.25   

14.4 4.77 195.23   
15.4 4.72 195.28   
16.4 4.8 195.2   
17.4 4.77 195.23   
18.4 4.85 195.15   
19.6 4.925 195.08   
20.6 4.94 195.06   
21.6 4.84 195.16   
22.6 4.945 195.06   
23.6 4.97 195.03 TW 
24.6 4.885 195.12   
26 4.72 195.28 LEW 

26.8 4.44 195.56   
27.5 3.54 196.46   
28 3.22 196.78   
29 2.98 197.02   

29.5 2.82 197.18   
30 2.66 197.34   

30.5 2.56 197.44 BKF 
31 2.47 197.53   
32 2.405 197.6 FP 

 
Table A.35 Survey Data: 03289193 Wolf Run at Old Frankfort Pike, Lexington, KY (all 
elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 3.14 196.86   
1 3.06 196.94   
2 3.48 196.52   

2.2 3.58 196.42   
2.8 3.63 196.37   
3.8 4.01 195.99   
5 4.47 195.53 BKF 

5.9 5.31 194.69   
7.2 7.46 192.54 LEW 
8.2 7.37 192.63   
9.7 7.4 192.6 
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Table A.35 (continued) 
STA FS (ft) Elevation (ft) Note 
11 7.46 192.54 

 12.1 7.61 192.39 
 13.1 7.66 192.34 
 14.3 7.66 192.34 TW 

15.9 7.43 192.57   
16.7 7.55 192.45   
18.4 7.43 192.57   
19.8 7.34 192.66   
21 7.25 192.75   
22 7.18 192.82   
23 7.12 192.88   
24 7.13 192.87   
25 7.12 192.88   
26 7.03 192.97   
27 7.01 192.99   
28 6.97 193.03   
29 7.01 192.99   
30 6.97 193.03   
31 6.96 193.04   
32 6.99 193.01   
33 7.02 192.98   
34 7.15 192.85   
35 7.29 192.71   
36 7.33 192.67   
37 7.31 192.69   
38 7.34 192.66   
39 7.43 192.57   
40 7.37 192.63   
41 7.03 192.97 REW 

41.7 6.39 193.61   
42.4 5.49 194.51   
43 4.58 195.42 BKF 

43.4 4.43 195.57   
44 4.38 195.62   
45 4.26 195.74   
46 4.14 195.86 FP 
47 4.13 195.87   
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Table A.36 Survey Data: 03284530 East Hickman Creek at Delong Road near East 
Hickman, KY (all elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 4.905 195.1   
1 4.985 195.02   
2 5.1 194.9   
3 5.23 194.77   
4 5.39 194.61   

5 5.51 194.49   

6 5.56 194.44   

7 5.62 194.38   

8 5.67 194.33   
9 5.64 194.36   
10 5.66 194.34   

11 5.85 194.15   

11.5 8.26 191.74   

12 8.765 191.24   
12.3 9.72 190.28   
13 9.83 190.17   
14 9.9 190.1   
15 9.935 190.07   
16 9.84 190.16   
17 9.94 190.06   
18 10.045 189.96   
19 10.045 189.96   
20 10.1 189.9   
21 10.19 189.81   
22 10.205 189.8   
23 10.04 189.96   
24 10.21 189.79   
25 10.15 189.85   
26 10.245 189.76   
27 10.27 189.73   
28 10.52 189.48   
29 10.575 189.43 TW 
30 10.53 189.47   
31 10.52 189.48   
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Table A.36 (continued) 
STA FS (ft) Elevation (ft) Note 
32 10.43 189.57 

 33 10.36 189.64   
34 10.31 189.69   
35 10.36 189.64   
36 10.27 189.73   
37 10.3 189.7   
38 10.25 189.75   
39 10.25 189.75   
40 10.21 189.79   
41 10.12 189.88   
42 10 190   
43 9.905 190.1   
44 9.77 190.23   
45 9.69 190.31   

45.5 9.43 190.57   
45.8 9.27 190.73 REW 
46.15 8.98 191.02   
46.4 8.86 191.14   
47.1 8.36 191.64   
47.6 8.13 191.87   
48 7.95 192.05   

48.3 7.64 192.36   
48.7 7.45 192.55   
49 7.12 192.88 BKF 

49.4 7.01 192.99   
49.8 6.95 193.05   
50 6.9 193.1   

50.4 6.8 193.2   
50.8 6.65 193.35   
51.2 6.59 193.41   
51.6 6.53 193.47   
52 6.44 193.56   
53 6.36 193.64   
54 6.25 193.75   
55 6.11 193.89   
56 6 194   
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Table A.37 Survey Data: 03284555 West Hickman Creek at Ash Grove Pike near East 
Hickman, KY (all elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 6.71 193.29   
1 6.81 193.19   
2 6.99 193.01   
3 7.1 192.9   
4 7.105 192.9   

5 7.33 192.67   

6 7.36 192.64   

6.5 7.36 192.64 BKF 

7 7.55 192.45   
7.3 7.71 192.29   
7.6 7.79 192.21   

8 7.91 192.09   

8.2 7.98 192.02   

8.5 8.7 191.3 LEW 
9 8.96 191.04   
10 9.7 190.3   
11 9.13 190.87   
12 9.1 190.9   
13 9.35 190.65   
14 9.51 190.49   
15 9.78 190.22   
16 9.75 190.25   
17 9.81 190.19   
18 9.845 190.16   
19 9.87 190.13   
20 10.57 189.43   
21 10.61 189.39   
22 10.54 189.46   
23 10.605 189.4   
24 10.69 189.31   
25 10.69 189.31   
26 10.67 189.33   
27 10.69 189.31   
28 10.73 189.27   
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Table A.37 (continued) 
STA FS (ft) Elevation (ft) Note 
29 10.74 189.26 TW 
30 10.66 189.34   
31 10.73 189.27   
32 10.67 189.33   
33 10.66 189.34   
34 10.625 189.38   
35 10.57 189.43   
36 10.46 189.54   
37 10.28 189.72   
38 10.2 189.8   
39 9.87 190.13   
40 9.81 190.19   

41.3 9.48 190.52   
42 9.38 190.62   
43 9.45 190.55   
44 9.55 190.45   
45 9.66 190.34   
46 9.9 190.1   
47 10.11 189.89   
48 10.19 189.81   
49 10.17 189.83   
50 10.09 189.91   
51 10.16 189.84   
52 10.19 189.81   
53 10.19 189.81   
54 10.27 189.73   
55 10.17 189.83   
56 10 190   
57 9.93 190.07   
58 9.725 190.28   
59 9.665 190.34   

61.6 9.52 190.48   
62 9.3 190.7   
63 9.26 190.74   

63.5 9.13 190.87 REW 
63.85 7.94 192.06   
64.4 7.69 192.31   
64.9 7.425 192.58   
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Table A.37 (continued) 
STA FS (ft) Elevation (ft) Note 
65.4 7.15 192.85 

 65.9 6.98 193.02 
 66.2 6.76 193.24   

66.8 6.65 193.35   
67 6.63 193.37   

67.5 6.51 193.49   
68 6.36 193.64   

68.3 6.34 193.66   
68.9 6.32 193.68   
69 6.29 193.71   

69.5 6.26 193.74   
70 6.17 193.83   
71 6.11 193.89   
72 6.11 193.89   
73 6.03 193.97   
74 5.83 194.17   
75 5.73 194.27   
76 5.53 194.47   
77 5.45 194.55   
78 5.34 194.66   
79 5.18 194.82   
80 4.97 195.03   

 
Table A.38 Survey Data: 03287600 North Elkhorn at Bryan Station Road near Montrose, 
KY (all elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 3.75 196.25   
1 3.63 196.37   
2 3.56 196.44   
3 3.59 196.41   
4 3.59 196.41   

5 3.63 196.37   

6 3.72 196.28   

7 3.78 196.22   

8 3.84 196.16   
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Table A.38 (continued) 

STA FS (ft) Elevation (ft) Note 

9 3.94 196.06 
 10 3.99 196.01 
 11 4.1 195.9 
 12 4.22 195.78 
 13 4.45 195.55   

14 4.86 195.14   
15 5.25 194.75   

15.7 5.5 194.5   
15.8 6.43 193.57   
16.3 6.99 193.01   
16.5 7.14 192.86   
17 7.46 192.54   

17.5 8.27 191.73   
17.7 8.31 191.69 LEW 
18 8.63 191.37   

18.5 8.85 191.15   
19 8.9 191.1   
20 9.37 190.63   

20.6 9.45 190.55   
21 10.01 189.99   
22 10.4 189.6   
24 10.35 189.65   
25 10.24 189.76   
26 10.15 189.85   
27 10.22 189.78   
28 10.05 189.95   
29 10.01 189.99   
30 9.99 190.01   
31 9.83 190.17   
32 9.77 190.23   
33 9.67 190.33   
34 9.56 190.44   
35 9.51 190.49   
36 9.54 190.46   
37 9.43 190.57   
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Table A.38 (continued) 
STA FS (ft) Elevation (ft) Note 
38 9.46 190.54 

 39 9.46 190.54 
 40 9.43 190.57 
 41 9.51 190.49 
 42 9.53 190.47 
 43 9.63 190.37 
 44 9.71 190.29   

45 9.81 190.19   
46 9.82 190.18   
47 9.87 190.13   
48 9.97 190.03   
49 10.1 189.9   
50 10.25 189.75   
51 10.33 189.67   
52 10.43 189.57   
53 10.8 189.2   
54 10.94 189.06   
55 11.17 188.83   
56 11.23 188.77   
57 11.46 188.54   
58 11.46 188.54 TW 
59 11.2 188.8   
60 11.16 188.84   
61 11.165 188.84   
62 11.04 188.96   
63 10.93 189.07   
64 10.83 189.17   
65 10.39 189.61   
66 10.28 189.72   
67 10.09 189.91   
68 9.83 190.17   
69 9.53 190.47   
70 9.28 190.72   
71 9.1 190.9   

72.2 8.95 191.05 REW 
72.3 7.89 192.11   
72.6 7.49 192.51   
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Table A.32 (continued) 
STA FS (ft) Elevation (ft) Note 
72.8 7.35 192.65   
73.2 7.21 192.79 BKF 
74 7.2 192.8   

74.5 7.05 192.95   
75 6.94 193.06   
76 6.87 193.13   
77 6.77 193.23   
78 6.62 193.38   
79 6.47 193.53   
80 6.39 193.61   
81 6.28 193.72   
82 6.14 193.86   
83 5.98 194.02   
84 5.68 194.32   
85 5.52 194.48   
86 5.31 194.69   
87 5.265 194.74   
88 5.09 194.91 FP 
89 4.86 195.14   
90 5.03 194.97   
91 4.97 195.03   
92 4.83 195.17   
93 4.8 195.2   
94 4.75 195.25   
95 4.81 195.19   
96 4.82 195.18   
97 4.82 195.18   
98 4.84 195.16   
99 4.8 195.2   
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Table A.39 Survey Data: 03289000 South Elkhorn Creek at Fort Springs, KY (all elevations 
relative). 

STA Elevation (ft) Note 
0 103.08474   

11.87 100.97043 BKF 
13.83 99.05075   
15.71 98.64284   
22.92 98.1502   

27.97 97.85438   

32.62 97.82779   

36.3 97.85809   

39.65 97.81496 TW 
42.26 97.91709   
49.71 98.55233   
53.99 98.76686   
58.51 99.74729   
61.13 100.69582   
66.43 101.04662 BKF 
72.41 102.41592   
75.78 103.381   
81.01 104.45957   
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Table A.40 Survey Data: 03289200 Town Branch at Yarnallton Rd at Yarnallton, KY (all 
elevations relative). 

STA Elevation (ft) Note 
0 91.0 FP 

6.2 86.9   
27.46 86.1   
48.58 86.1 TW 
61.7 86.6   

73.26 90.0 BKF 

97.53 90.9   

125.55 92.0   

 

Table A.41 Survey Data: 03291000 Eagle Creek at Sadieville, KY(all elevations relative). 
STA FS (ft) Elevation (ft) Note 

0 2.82 197.18   
1 2.905 197.1   
2 3.24 196.76   
3 3.79 196.21   
4 4.29 195.71   

5 4.77 195.23   

6 5.48 194.52   

7 6.06 193.94   

8 6.42 193.58   
9 6.9 193.1   
10 7.33 192.67   

11 7.77 192.23   

12 8.06 191.94   

13 8.81 191.19   

14 9.03 190.97   

15 9.87 190.13   

16 10.24 189.76   

17 10.52 189.48   

18 10.91 189.09   

19 11.29 188.71   
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Table A.41 (continued) 

STA FS (ft) Elevation (ft) Note 
20 11.48 188.52   
21 11.47 188.53   
22 11.68 188.32   
23 11.82 188.18   

24.5 12.21 187.79   
26 12.31 187.69   
27 12.39 187.61   
28 12.64 187.36   
29 12.7 187.3   
30 12.73 187.27   

30.8 12.68 187.32   
32 12.62 187.38   
33 12.59 187.41   
34 12.59 187.41   
35 12.55 187.45   
36 12.55 187.45   
37 12.48 187.52   
38 12.36 187.64   
39 12.13 187.87   

40.3 12.14 187.86   
41 12.19 187.81   
42 12.18 187.82   
43 12.22 187.78   
44 12.265 187.74   
45 12.325 187.68   
46 12.39 187.61   
47 12.46 187.54   
48 12.43 187.57   
49 12.4 187.6   
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Table A.41 (continued) 
STA FS (ft) Elevation (ft) Note 
50 12.42 187.58   
51 12.345 187.66   
52 12.305 187.7   
53 12.225 187.78   
54 12.43 187.57   
55 12.405 187.6   
56 12.445 187.56   
57 12.385 187.62   
58 12.315 187.69   
59 12.23 187.77   
60 12.435 187.57   
61 12.355 187.65   
62 12.495 187.51   
63 12.425 187.58   
65 12.62 187.38   
66 12.52 187.48   
67 12.505 187.5   

68.7 12.6 187.4   
70 12.605 187.4   
71 12.805 187.2   
72 12.785 187.22   
73 12.845 187.16   
74 12.905 187.1 TW 
75 12.885 187.12   
76 12.755 187.25   

76.9 12.455 187.55   
78 11.615 188.39   
79 10.975 189.03   
80 10.445 189.56   
81 10.385 189.62   
82 10.335 189.67   
83 10.035 189.97   
84 9.84 190.16   
85 9.635 190.37   
86 9.195 190.81   
87 8.985 191.02   
88 8.825 191.18   
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Table A.41 (continued) 
STA FS (ft) Elevation (ft) Note 
89 8.635 191.37 

 90 8.385 191.62   
91 8.255 191.75   
92 7.98 192.02   
93 7.81 192.19   
94 7.7 192.3   
95 7.48 192.52   
96 7.37 192.63 BKF 

97.3 6.94 193.06   
98 6.75 193.25   
99 6.46 193.54   
100 6.16 193.84   
101 5.81 194.19   
102 5.455 194.55   
103 5.09 194.91   
104 4.86 195.14   
105 4.67 195.33   

106.2 4.425 195.58   
107 4.345 195.66   
108 4.17 195.83   
109 4.08 195.92   
110 3.97 196.03   
111 3.87 196.13   
112 3.85 196.15   
113 3.81 196.19   
114 3.79 196.21   
115 3.65 196.35   
116 3.69 196.31   
117 3.57 196.43   

117.7 3.56 196.44   
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Table A.42 Survey Data: 03288000 North Elkhorn Creek near Georgetown, KY (all 
elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 4.405 195.6 BKF 
3 5.125 194.88   
6 5.785 194.22   
9 6.235 193.77   
12 6.92 193.08   
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Table A.42 (continued) 

STA FS (ft) Elevation (ft) Note 

15 7.79 192.21   

18 8.805 191.2   

20.2 9.93 190.07   

20.6 10.62 189.38 LEW 
21 11.67 188.33 WS 
23 11.925 188.08   

25 11.6 188.4   

27 12.05 187.95   

29 12.02 187.98   
31 11.87 188.13   
33 11.78 188.22   
35 11.78 188.22   
37 11.7 188.3   
39 11.67 188.33   
41 11.78 188.22   
43 11.76 188.24   

45.5 11.88 188.12   
47 11.92 188.08   
49 12.003 188   
51 12 188   
54 11.99 188.01   
56 12.02 187.98   
59 11.92 188.08   
62 11.61 188.39   
65 11.71 188.29   
67 11.8 188.2   

69.2 11.76 188.24   
71.5 11.72 188.28   
74 11.89 188.11   
76 11.82 188.18   
78 11.78 188.22   
80 11.77 188.23   
82 11.97 188.03   
84 11.95 188.05   
86 12.05 187.95   
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Table A.42 (continued) 
STA FS (ft) Elevation (ft) Note 
88.1 11.96 188.04 

 90 11.9 188.1   
92 11.86 188.14   
94 11.6 188.4   
96 11.19 188.81   
98 10.33 189.67   
100 9.82 190.18   
101 9.73 190.27   
103 9.15 190.85   

104.5 8.3 191.7   
106 7.21 192.79   

109.5 5.79 194.21   
112 4.265 195.74   

 
 
Table A.43 Survey Data: 03288100 North Elkhorn Creek at Georgetown, KY (all elevations 
relative). 

STA FS (ft) Elevation (ft) Note 
0 5.07 194.93   
1 5.05 194.95   
3 4.86 195.14   
5 4.76 195.24   
7 4.82 195.18   

9 4.97 195.03   

11 5.11 194.89   

13 4.94 195.06   

15 4.99 195.01   
16 5.11 194.89 FP 
17 5.19 194.81   

18 5.32 194.68   

18.4 5.4 194.6   

19 5.63 194.37   
19.5 5.81 194.19   
20 5.92 194.08   

20.5 6.11 193.89   
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Table A.43 (continued) 
STA FS (ft) Elevation (ft) Note 
21 6.28 193.72 

 21.5 6.45 193.55 
 22 6.54 193.46 
 22.5 6.61 193.39   

23 6.73 193.27   
23.5 6.71 193.29 BKF 
24.1 6.91 193.09   
24.5 7.29 192.71   
25.5 7.61 192.39   
26 8.51 191.49   

26.8 9.2 190.8 LEW 
28 9.85 190.15   
29 10.21 189.79   
30 10.38 189.62   
31 10.59 189.41   
32 10.77 189.23   
33 10.94 189.06   
34 11.16 188.84   
36 11.64 188.36   
38 12.35 187.65   
40 13.07 186.93   

42.2 13.45 186.55   
44.4 14.45 185.55   
46 14.84 185.16   
48 15.39 184.61   

49.9 15.63 184.37   
51 15.95 184.05   

52.5 16.6 183.4   
54.7 17.41 182.59   
57 17.85 182.15   
60 17.83 182.17   

63.8 17.86 182.14 TW 
66.6 17.77 182.23   
69.2 17.72 182.28   
71.6 17.68 182.32   
74 17.59 182.41   

76.8 17.64 182.36   
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Table A.43 (continued) 
STA FS (ft) Elevation (ft) Note 
79.4 17.43 182.57 

 81.75 17.34 182.66 
 85 17.18 182.82 
 87.5 17.17 182.83 
 89.8 17.16 182.84   

92.15 17.15 182.85   
95.9 17.07 182.93   
97.7 16.94 183.06   
100.2 16.86 183.14   
102.8 16.74 183.26   
104.8 16.55 183.45   
107 16.46 183.54   

109.35 16.35 183.65   
111.8 16.37 183.63   
114 16.12 183.88   

117.1 16.1 183.9   
119.9 15.76 184.24   
123 15.62 184.38   

125.2 15.44 184.56   
126.75 15.39 184.61   
129.1 15.25 184.75   
131.4 14.97 185.03   
133.3 14.5 185.5   
135.4 13.89 186.11   
138.1 13.09 186.91   
140 12.26 187.74   
143 10.8 189.2   

143.5 10.57 189.43   
144.8 10.18 189.82   
145.6 9.58 190.42   
146.9 9.44 190.56   
148 7.51 192.49   

148.5 6.69 193.31   
149 5.69 194.31   
150 5.31 194.69   
151 5.31 194.69   
152 5.09 194.91   
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Table A.43 (continued) 
STA FS (ft) Elevation (ft) Note 
153 4.93 195.07 

 154 4.79 195.21 
 155 4.59 195.41 
 156 4.38 195.62 
 157 4.17 195.83 
 158 3.92 196.08   

159 3.69 196.31   
160 3.56 196.44   
161 3.39 196.61   
162 3.345 196.66   
163 3.29 196.71   
164 3.26 196.74   
165 3.24 196.76   
166 3.22 196.78   
167 3.22 196.78   
168 3.19 196.81   
169 3.21 196.79   
170 3.22 196.78   
171 3.19 196.81   
172 3.22 196.78   

 
 
Table A.44 Survey Data: 03238772 Fourmile Creek at Poplar Ridge near Alexandria, KY (all 
elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 5.6 194.4   
1 6.12 193.88 FP 
2 6.77 193.23   
3 7.4 192.6   

3.9 7.82 192.18   

4.5 7.98 192.02   

5 8.12 191.88   

5.5 8.25 191.75   

5.7 8.37 191.63   
6 8.47 191.53   

6.4 8.59 191.41   
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Table A.44 (continued) 
STA FS (ft) Elevation (ft) Note 
7.2 8.94 191.06   
8 9.12 190.88   
9 9.42 190.58 LEW 

10.1 9.69 190.31   
10.5 9.69 190.31   
11 9.71 190.29   

11.5 9.75 190.25 TW 
12 9.67 190.33   

12.5 9.65 190.35   
13 9.68 190.32   

13.5 9.73 190.27   
14 9.73 190.27   

14.5 9.7 190.3   
15 9.72 190.28   

15.5 9.67 190.33   
16 9.66 190.34   

16.5 9.65 190.35   
17 9.6 190.4   

17.5 9.52 190.48   
18 9.54 190.46   

18.5 9.54 190.46   
19 9.59 190.41   

19.5 9.45 190.55   
20 9.57 190.43   

20.5 9.57 190.43   
21 9.57 190.43   

21.5 9.56 190.44   
22 9.54 190.46   

22.5 9.55 190.45   
23 9.36 190.64   

23.4 9.33 190.67 REW 
24 9.18 190.82   

24.4 8.92 191.08   
24.7 8.87 191.13   
24.8 8.44 191.56   
25 8.39 191.61   

25.5 8.25 191.75   
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Table A.44 (continued) 
STA FS (ft) Elevation (ft) Note 
26 8.14 191.86   

26.5 7.97 192.03   
27 7.86 192.14   

27.5 7.72 192.28   
28 7.63 192.37   

28.5 7.48 192.52   
29 7.35 192.65 BKF 
30 6.83 193.17   
31 6.23 193.77   
32 5.75 194.25   
33 5.39 194.61   

 
Table A.45 Survey Data: 03254400 North Fork Grassy Creek near Piner, KY (all elevations 
relative). 

STA FS (ft) Elevation (ft) Note 
0 4.89 195.11   

1.3 4.75 195.25   
2.6 4.77 195.23   
3.4 4.9 195.1   
4.8 4.77 195.23   

5.8 4.93 195.07 FP 

7.4 5.025 194.98   

7.7 5.24 194.76   

8.8 5.15 194.85   
9.8 5.12 194.88   
10.8 5.1 194.9   

12 5.26 194.74   

13 5.4 194.6   

14 5.45 194.55   
15 5.53 194.47   
16 5.5 194.5   

17.5 5.64 194.36   
18.4 5.57 194.43 BKF 
19.3 6.09 193.91   
20 6.22 193.78   
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Table A.45 (continued) 
STA FS (ft) Elevation (ft) Note 
21 6.41 193.59   
22 6.61 193.39   
23 6.52 193.48   

24.3 7.37 192.63 LEW 
25 7.57 192.43   
26 7.92 192.08   
27 8.06 191.94   
28 8.1 191.9   
29 8.28 191.72   
30 8.43 191.57   
31 8.36 191.64   
32 8.4 191.6   
33 8.33 191.67   
34 8.34 191.66   
35 8.33 191.67   

35.8 8.49 191.51   
37 8.63 191.37   
38 8.63 191.37   
39 8.7 191.3   
40 8.72 191.28   
41 8.74 191.26 TW 
42 8.65 191.35   
43 8.44 191.56   
44 8.3 191.7   
45 8.27 191.73   
46 8.26 191.74   
47 8.27 191.73   
48 8.32 191.68   
49 8.13 191.87   
50 8.11 191.89   
51 8.02 191.98   
52 8.02 191.98   
53 8 192   

53.9 7.89 192.11 REW 
54.3 6.89 193.11   
55 7 193   
56 7 193   
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Table A.45 (continued) 
STA FS (ft) Elevation (ft) Note 
57 6.93 193.07   
58 6.39 193.61   

58.5 6.38 193.62   
58.9 5.91 194.09   
59.4 5.61 194.39   
59.8 3.37 196.63   
60.5 3.13 196.87   
61 2.77 197.23   

 
Table A.46 Survey Data: 03254480 Cruises Creek at Highway 17 near Piner, KY(all 
elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 2.51 197.49   
1 4.07 195.93   

1.4 4.29 195.71   
1.7 4.41 195.59   
2 4.5 195.5   

2.4 4.68 195.32   

2.8 4.78 195.22   

3 4.81 195.19   

3.3 4.89 195.11   
3.7 4.97 195.03   
4 5.06 194.94   

4.2 5.2 194.8   

4.5 5.28 194.72   

4.8 5.39 194.61   
5 5.46 194.54   

5.2 5.6 194.4   
5.4 5.67 194.33   
5.8 5.87 194.13   
6 5.95 194.05   

6.6 6.18 193.82   
7.1 6.51 193.49   
7.7 6.81 193.19   
8.1 7.06 192.94 LEW 
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Table A.46 (continued) 
STA FS (ft) Elevation (ft) Note 
8.8 7.56 192.44   
9.3 7.82 192.18   
9.7 8.31 191.69 

 10 8.36 191.64 
 11 8.57 191.43 
 12 8.82 191.18 
 13 8.95 191.05 
 14 8.96 191.04 
 15 8.89 191.11 
 16 9.05 190.95 
 17 9.09 190.91 
 18 9.36 190.64 
 19 9.32 190.68   

20 9.3 190.7   
21 9.28 190.72   
22 9.29 190.71   
23 9.31 190.69   
24 9.17 190.83   
25 9.1 190.9   
26 9.28 190.72   
27 9.33 190.67   
28 9.41 190.59   
29 9.36 190.64   
30 9.18 190.82   
31 9.32 190.68   
32 9.33 190.67   
33 9.32 190.68   
34 9.3 190.7   
35 9.27 190.73   
36 9.19 190.81   
37 9.14 190.86   
38 9.09 190.91   
39 9.17 190.83   
40 9.32 190.68   
41 9.31 190.69   
42 9.25 190.75   
43 9.04 190.96   
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Table A.46 (continued) 
STA FS (ft) Elevation (ft) Note 
44 9.03 190.97   
45 8.94 191.06   
46 8.88 191.12   
47 8.74 191.26   
48 8.78 191.22   
49 8.74 191.26   
50 8.54 191.46   
51 8.42 191.58   
52 8.43 191.57   
53 8.41 191.59   
54 8.07 191.93   
55 8.26 191.74   
56 8.01 191.99   
57 7.85 192.15   
58 7.66 192.34   

59.3 7.16 192.84 REW 
60 6.64 193.36   

60.6 6.28 193.72   
61.2 5.96 194.04   
61.6 5.625 194.38   
62.1 5.45 194.55   
62.5 5.22 194.78   
62.8 5.12 194.88   
63.1 4.86 195.14   
63.6 4.59 195.41   
64 4.48 195.52 BKF 

64.4 4.43 195.57   
64.7 4.39 195.61   
65.1 4.25 195.75   
65.6 4.07 195.93   
65.8 4.01 195.99   
66 3.83 196.17   

66.5 3.64 196.36   
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Table A.47 Survey Data: 03262001 Woolper Creek at Woolper Road near Burlington, KY 
(all elevations relative). 

STA FS (ft) Elevation (ft) Note 
2 4.69 195.31   
3 4.78 195.22   
4 4.78 195.22   
5 4.87 195.13   
6 4.93 195.07   

7 5.02 194.98   

8 5.02 194.98   

9 5.16 194.84   

10 5.09 194.91   
11 5.13 194.87   
12 5 195   

13 4.88 195.12   

14 4.84 195.16   

14.5 4.68 195.32   

15 4.61 195.39   

15.5 4.64 195.36   

16 4.63 195.37   

16.5 4.9 195.1   

17 4.99 195.01   

17.5 5.19 194.81   

18 5.42 194.58   

19 5.965 194.04   

19.5 6.02 193.98   

20 6.18 193.82   

20.5 6.42 193.58   

21 6.49 193.51   

21.5 6.81 193.19   

22 6.89 193.11   
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Table A.47 (continued) 

STA FS (ft) Elevation (ft) Note 
22.5 7.02 192.98   
23 7.16 192.84   

23.5 7.19 192.81   
24 7.25 192.75   

24.5 7.58 192.42   
25 7.62 192.38   

25.5 7.78 192.22   
26 7.81 192.19   

26.5 7.98 192.02   
28.5 8.59 191.41   
29 8.59 191.41   

29.5 8.84 191.16   
30 8.85 191.15   

30.5 9.01 190.99   
31 9.05 190.95   

31.6 9.15 190.85   
31.8 9.17 190.83   
32 9.25 190.75   

32.3 9.33 190.67   
32.6 9.41 190.59   
32.9 9.45 190.55   
33.3 9.56 190.44   
33.6 9.67 190.33   
33.9 9.73 190.27   
34.3 9.95 190.05   
34.6 9.99 190.01   
35 10.28 189.72   

35.5 10.4 189.6 BKF 
35.8 10.99 189.01   
36.2 11.91 188.09   
36.7 12.21 187.79   
37.1 12.76 187.24 LEW 
38 13.19 186.81   
39 13.45 186.55   
40 13.55 186.45   
41 13.72 186.28   
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Table A.47 (continued) 
STA FS (ft) Elevation (ft) Note 
42 13.7 186.3   
43 13.96 186.04   
44 13.85 186.15   
45 13.95 186.05   
46 13.99 186.01   
47 13.97 186.03   
48 13.83 186.17   
49 13.74 186.26   
50 13.86 186.14   
51 13.9 186.1   
52 14 186   
53 13.96 186.04   
54 14.03 185.97   
55 13.94 186.06   
56 13.82 186.18   
57 13.89 186.11   
58 13.85 186.15   
59 14.06 185.94   
60 13.98 186.02   
61 14.01 185.99   
62 14.04 185.96   
63 14.09 185.91   
64 14.1 185.9   
65 14.02 185.98   
66 14.03 185.97   
67 14.04 185.96   
68 14.19 185.81   
69 14.28 185.72 TW 
70 13.98 186.02   
71 14.05 185.95   
72 13.98 186.02   
73 14.06 185.94   
74 13.87 186.13   
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Table A.47 (continued) 
STA FS (ft) Elevation (ft) Note 
75 13.9 186.1   
76 13.82 186.18   
77 13.79 186.21   
78 13.61 186.39   
79 13.55 186.45   
80 13.72 186.28   
81 13.74 186.26   
82 13.63 186.37   
83 13.45 186.55   
84 13.42 186.58   
85 13.21 186.79   
86 12.94 187.06   
87 12.82 187.18 REW 
88 12.5 187.5   

88.5 11.59 188.41   
89 11.64 188.36   
90 11.35 188.65   

90.5 11.2 188.8   
91 11.04 188.96   

91.5 10.91 189.09   
92 10.87 189.13   

92.5 10.86 189.14   
93 10.73 189.27 BKF 

93.5 10.69 189.31   
94 10.76 189.24   
95 10.63 189.37   
96 10.54 189.46   
97 10.39 189.61   
98 10.22 189.78   
99 10.01 189.99 FP 
100 9.98 190.02   
101 9.62 190.38   
102 9.29 190.71   
103 9.11 190.89   
104 8.79 191.21   
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Table A.47 (continued) 
STA FS (ft) Elevation (ft) Note 
105 8.65 191.35   
106 8.4 191.6   
107 8.25 191.75   
108 7.98 192.02   
109 7.75 192.25   
110 7.38 192.62   
111 6.85 193.15   
112 6.01 193.99   
113 5.91 194.09   
114 4.21 195.79   
115 3.47 196.53   

 
Table A.48 Survey Data: 03254550 Banklick Creek at Highway 1829 near Erlanger, KY (all 
elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 5.89 194.11   
1 6.19 193.81   
2 6.66 193.34   
3 6.91 193.09   
4 7.24 192.76   

5 7.45 192.55   

6 7.55 192.45   

7 7.63 192.37   

7.3 7.7 192.3 BKF 
7.7 7.93 192.07   
8 8.06 191.94   

8.4 8.24 191.76   

8.9 8.41 191.59   

9.1 8.53 191.47   
9.3 8.71 191.29   
9.7 9.03 190.97   
10.4 9.23 190.77   
10.8 9.66 190.34   
11 9.88 190.12 LEW 
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Table A.48 (continued) 
STA FS (ft) Elevation (ft) Note 
12 10.41 189.59   
13 10.53 189.47   
14 10.65 189.35   
15 10.66 189.34   
16 10.63 189.37   
17 10.68 189.32   
18 10.67 189.33   
19 10.65 189.35   
20 10.65 189.35   

20.85 10.78 189.22   
21 10.97 189.03   
22 11.09 188.91   
23 11.38 188.62   
24 11.41 188.59   
25 11.41 188.59   
26 11.56 188.44   

27.3 11.63 188.37   
27.5 12.08 187.92   
28 12.44 187.56   
29 12.42 187.58   
30 12.73 187.27   
31 12.9 187.1   
32 12.91 187.09   
33 12.91 187.09   
34 12.89 187.11   
35 12.88 187.12   
36 12.85 187.15   
37 12.85 187.15   
38 12.82 187.18   
39 12.91 187.09 TW 
40 12.72 187.28   
41 12.64 187.36   
42 12.52 187.48   
43 12.35 187.65 

 44 12.24 187.76 
 45 12.07 187.93 
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Table A.48 (continued) 
STA FS (ft) Elevation (ft) Note 
46 11.87 188.13   

46.9 11.86 188.14   
48 11.75 188.25   
49 11.62 188.38   
50 11.41 188.59   
51 11.25 188.75   
52 11.09 188.91   
53 11.17 188.83   
54 11.21 188.79   
55 11.19 188.81   
56 10.86 189.14   
57 10.63 189.37   
58 10.95 189.05   
59 10.98 189.02   
60 11 189   
61 11.01 188.99   
62 11.02 188.98   
63 11 189   
64 10.76 189.24   
65 10.89 189.11   
66 10.87 189.13   
67 10.81 189.19   
68 10.63 189.37   

69.2 9.96 190.04 REW 
70 9.52 190.48   

70.5 9.33 190.67   
71.1 9.08 190.92   
71.5 8.87 191.13   
72.1 8.62 191.38   
72.6 8.58 191.42   
73 8.53 191.47   

73.8 8.25 191.75   
74.3 8.18 191.82   
75 8.14 191.86   

75.5 8.13 191.87   
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Table A.48 (continued) 
STA FS (ft) Elevation (ft) Note 
76 8.11 191.89   
77 8.02 191.98   
78 7.79 192.21 BKF 
79 7.77 192.23   
80 7.7 192.3   
81 7.61 192.39   
82 7.5 192.5   
83 7.41 192.59   
84 7.29 192.71   
85 7.23 192.77   
86 7.2 192.8 FP 
87 7.13 192.87   
88 7.18 192.82   
89 7.28 192.72   
90 7.27 192.73   
91 7.39 192.61   
92 7.28 192.72   
94 6.98 193.02   
95 6.76 193.24   
96 6.49 193.51   
97 6.25 193.75   
98 6.17 193.83   
99 6.04 193.96   
100 5.8 194.2   
101 5.72 194.28   
102 5.63 194.37   
103 5.54 194.46   
104 5.51 194.49   
105 5.55 194.45   
106 5.5 194.5   
107 5.46 194.54   
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Table A.49 Survey Data: 03277075 Gunpowder Creek at Camp Ernst Road near Union, KY 
(all elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 5.12 194.88   
1 5.3 194.7   
2 5.52 194.48   
3 5.75 194.25   
4 5.85 194.15   
5 6.02 193.98   
6 6.14 193.86   
7 6.21 193.79   
8 6.23 193.77   
9 6.32 193.68   
10 6.31 193.69 BKF 
11 6.41 193.59   
12 6.52 193.48   
13 6.66 193.34   

13.5 6.76 193.24   
14 6.92 193.08   

14.4 7 193   
14.6 7.07 192.93   
14.9 7.16 192.84   
15.2 7.33 192.67   
15.5 7.49 192.51   
15.9 7.66 192.34   
16.3 7.78 192.22   
16.5 8.08 191.92   
16.9 8.39 191.61   
17.2 8.64 191.36   
17.6 8.83 191.17   
18.5 9.19 190.81   
19 9.43 190.57   
20 9.8 190.2   

20.2 9.95 190.05 LEW 
21 10.2 189.8   
22 10.23 189.77   
23 10.32 189.68   
24 10.18 189.82   
25 10.09 189.91   
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Table A.49 (continued) 
STA FS (ft) Elevation (ft) Note 
25.5 10.18 189.82   
26 10.53 189.47   
27 10.61 189.39   
28 10.56 189.44   
29 10.25 189.75   
30 10.57 189.43   
31 10.37 189.63   
32 10.46 189.54   
33 10.32 189.68   
34 10.36 189.64   
35 10.61 189.39   
36 10.51 189.49   
37 10.44 189.56   
38 10.56 189.44   
39 10.67 189.33   
40 10.64 189.36   
41 10.7 189.3   
42 10.63 189.37   
43 10.79 189.21   
44 10.79 189.21   
45 10.93 189.07   
46 11.05 188.95   
47 11.18 188.82 TW 
48 11.17 188.83   
49 10.89 189.11   
50 10.69 189.31   
51 10.6 189.4   
52 10.67 189.33   
53 10.78 189.22   
54 10.59 189.41   
55 10.47 189.53   
56 10.6 189.4   
57 10.62 189.38   
58 10.34 189.66   
59 10.25 189.75   
60 10.52 189.48   
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Table A.49 (continued) 
STA FS (ft) Elevation (ft) Note 
61 10.63 189.37   
62 10.46 189.54   
63 10.46 189.54   
64 10.52 189.48   
65 10.39 189.61   
66 10.31 189.69   
67 10.25 189.75   
68 10.2 189.8   

69.2 10.6 189.4   
70 10.6 189.4   
71 10.66 189.34   
72 10.62 189.38   
73 10.61 189.39   
74 10.58 189.42   
75 10.54 189.46   
76 10.44 189.56   

77.3 10.05 189.95 REW 
77.6 9.61 190.39   
78 9.55 190.45   
79 9.26 190.74   

79.5 9.19 190.81   
80 9.18 190.82   

80.5 8.95 191.05   
81 8.9 191.1   

81.9 8.66 191.34   
82.3 8.49 191.51   
83.1 8.31 191.69   
83.6 8.18 191.82   
84 7.91 192.09   
85 7.68 192.32   
86 7.49 192.51   
87 7.31 192.69   
88 7.22 192.78   
89 7.03 192.97   
90 6.91 193.09   
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Table A.49 (continued) 
STA FS (ft) Elevation (ft) Note 
90.4 6.92 193.08   
90.5 6.67 193.33   
91 6.73 193.27   
92 6.65 193.35   
93 6.61 193.39   
94 6.5 193.5   
95 6.46 193.54   
96 6.34 193.66   
97 6.33 193.67   
98 6.15 193.85   
99 6.08 193.92   
100 5.98 194.02   

101.4 5.84 194.16   
103.3 5.5 194.5   
105.9 5.08 194.92   
109 4.39 195.61   

111.1 3.69 196.31   
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Table A.50 Survey Data: 03238745 Twelvemile Creek at Highway 1997 near Alexandria, KY 
(all elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 3.6 196.4   
1 3.79 196.21   
2 3.89 196.11   
3 3.94 196.06   
4 4.08 195.92   

5 4.25 195.75   

6 4.47 195.53   

6.8 4.74 195.26   

7.3 4.88 195.12   
9 5.15 194.85   

9.5 5.22 194.78   

10 5.25 194.75   

10.5 5.34 194.66   

11 5.37 194.63   
11.5 5.4 194.6   
12 5.56 194.44   

12.5 5.67 194.33   
13 5.76 194.24   
14 6 194   

14.6 6.26 193.74   
15.15 6.62 193.38   
15.8 7.29 192.71 LEW 
17 7.77 192.23   
18 8 192   
19 8.03 191.97   
20 8.07 191.93   
21 8 192   
22 8.21 191.79   
23 8.35 191.65   
24 8.42 191.58   
25 8.46 191.54   
26 8.55 191.45   
27 8.57 191.43   
28 8.67 191.33   
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Table A.50 (continued) 
STA FS (ft) Elevation (ft) Note 
29 8.79 191.21   
30 8.83 191.17   
31 8.83 191.17   
32 8.78 191.22   
33 8.63 191.37   
34 8.83 191.17   
35 8.91 191.09   
36 9.14 190.86   
37 9.31 190.69   
38 9.35 190.65   
39 9.62 190.38   
40 9.79 190.21   
41 9.8 190.2   
42 9.89 190.11   
43 9.92 190.08   
44 9.89 190.11   
45 9.98 190.02   
46 9.84 190.16   
47 9.95 190.05   
48 9.96 190.04   
49 10.05 189.95   
50 10 190   
51 9.88 190.12   
52 9.97 190.03   
53 9.8 190.2   
54 9.88 190.12   
55 9.86 190.14   
56 10.04 189.96   
57 9.7 190.3   
58 9.66 190.34   
59 9.81 190.19   
60 9.79 190.21   
61 9.8 190.2   
62 9.28 190.72   
63 9.31 190.69   
64 9.33 190.67   
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Table A.50 (continued) 
STA FS (ft) Elevation (ft) Note 
65 9.34 190.66   
66 9.27 190.73   
67 9.24 190.76   
68 9.23 190.77   
69 9.18 190.82   
70 9.12 190.88   
71 8.82 191.18   
72 8.79 191.21   
73 8.88 191.12   
74 8.81 191.19   
75 8.79 191.21   
76 8.64 191.36   
77 8.65 191.35   
78 8.55 191.45   
79 8.26 191.74   

80.4 7.36 192.64 REW 
81 6.98 193.02   

81.5 6.46 193.54   
82 6.12 193.88   

82.5 5.88 194.12   
83 5.75 194.25   

83.5 5.65 194.35   
84 5.53 194.47   

84.5 5.44 194.56   
85 5.28 194.72   
86 5.1 194.9   
87 4.91 195.09   
88 4.74 195.26   
89 4.61 195.39   
90 4.46 195.54 BKF 
91 4.43 195.57   
92 4.4 195.6   
93 4.35 195.65   
94 4.36 195.64   
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Table A.50 (continued) 
STA FS (ft) Elevation (ft) Note 
95 4.36 195.64   
96 4.39 195.61   
97 4.41 195.59   
98 4.4 195.6   
99 4.33 195.67   
100 4.39 195.61   
101 4.32 195.68   
102 4.4 195.6   
103 4.35 195.65   
104 4.36 195.64   
105 4.35 195.65   
106 4.36 195.64   

 
Table A.51 Survey Data: 03298135 Chenoweth Run at Ruckriegal Parkway, KY (all 
elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 4.12 195.88   
1 4.22 195.78   
2 4.53 195.47   
3 4.68 195.32   
4 4.61 195.39   

5 4.54 195.46   

5.5 4.465 195.54   

6 4.46 195.54   

6.5 4.47 195.53   
7 4.54 195.46   

7.5 4.61 195.39   

7.8 4.705 195.3   

8 4.79 195.21   

8.3 4.93 195.07   
8.5 5.14 194.86   
8.8 5.42 194.58   
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Table A.51 (continued) 
STA FS (ft) Elevation (ft) Note 
8.9 6.07 193.93 LEW 
9.9 6.13 193.87   
11 6.39 193.61   
12 6.39 193.61   
13 6.6 193.4   
14 6.465 193.54   
15 6.625 193.38   
16 6.71 193.29   
17 6.45 193.55   
18 6.48 193.52   
19 6.49 193.51   
20 6.37 193.63   
21 6.39 193.61   
22 6.36 193.64   
23 6.37 193.63   
24 6.36 193.64   
25 6.41 193.59   
26 6.4 193.6   
27 6.47 193.53   
28 6.39 193.61   

28.35 6.31 193.69   
28.55 6.11 193.89   

29 6.1 193.9   
30 6.08 193.92   
31 6.11 193.89   
32 6.11 193.89   
33 6.15 193.85   
34 6.22 193.78   
35 6.18 193.82   
36 6.17 193.83   

36.7 6.15 193.85 REW 
36.95 5.67 194.33   

38 5.66 194.34   
39 5.34 194.66   

39.4 5.29 194.71   
39.9 4.83 195.17   
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Table A.51 (continued) 
STA FS (ft) Elevation (ft) Note 
40 4.59 195.41 

 40.15 4.56 195.44   
40.5 4.535 195.47   
41 4.62 195.38   

41.4 4.49 195.51   
41.8 4.38 195.62   
42.1 4.3 195.7   
42.7 4.2 195.8 BKF 
43.4 4.19 195.81   
44 4.15 195.85   

44.5 4.33 195.67   
45 4.42 195.58   
46 4.43 195.57   
47 4.09 195.91   
48 3.945 196.06   
49 3.795 196.21   

 
Table A.52 Survey Data: 03292480 Little Goose near Harrods Creek, KY (all elevations 
relative). 

STA FS (ft) Elevation (ft) Note 
0 4.54 195.46   
1 4.5 195.5   
2 4.52 195.48   
3 4.56 195.44   
4 4.55 195.45   

5 4.68 195.32   

6 4.57 195.43   

7 4.42 195.58   

8 4.3 195.7   
9 4.26 195.74   
10 4.19 195.81   

11 4.27 195.73   

12 4.42 195.58   

13 4.38 195.62   
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Table A.52 (continued) 
STA FS (ft) Elevation (ft) Note 
14 4.38 195.62 

 15 4.36 195.64 
 16 4.37 195.63 
 17 4.36 195.64   

18 4.41 195.59   
19 4.55 195.45   
20 4.73 195.27   
21 4.67 195.33   
22 4.59 195.41   
23 4.62 195.38   
24 4.59 195.41   
25 4.77 195.23   
26 4.78 195.22   
27 4.87 195.13   
28 4.92 195.08   
29 4.89 195.11 FP 
30 4.95 195.05   

30.5 5.01 194.99 BKF 
30.9 5.1 194.9   
31.1 5.21 194.79   
31.2 5.24 194.76   
31.5 5.47 194.53   
31.8 5.61 194.39   
32 5.74 194.26   

32.3 5.89 194.11   
32.7 6.1 193.9   
33 6.24 193.76   

33.5 7.24 192.76 LEW 
34 7.68 192.32   
35 8.02 191.98   
36 8.2 191.8   
37 8.18 191.82   

37.5 8.13 191.87   
38 8.08 191.92   
39 7.96 192.04   
40 7.92 192.08   



 

162 

 

Table A.52 (continued) 
STA FS (ft) Elevation (ft) Note 
41 7.84 192.16 

 42 7.77 192.23 
 43 7.79 192.21 
 44 7.88 192.12 
 45 7.85 192.15 
 46 7.91 192.09   

47 7.91 192.09   
48 8.07 191.93   
49 7.93 192.07   
50 7.8 192.2   
51 7.67 192.33   
52 8.03 191.97   
53 8.1 191.9   
54 8.17 191.83   
55 8.13 191.87   
56 8.27 191.73   
57 8.13 191.87   
58 8.16 191.84   
59 8.15 191.85   
60 8.28 191.72 TW 
61 8.2 191.8   
62 8.25 191.75   

62.5 8.17 191.83   
63 8.2 191.8   
64 8.16 191.84   
65 8.21 191.79   
66 7.8 192.2   
67 8.14 191.86   
68 8.15 191.85   
69 8.09 191.91   
70 7.22 192.78 REW 

70.3 6.79 193.21   
70.7 6.42 193.58   
71.1 6.19 193.81   
71.7 6.11 193.89   
72.2 5.98 194.02   
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Table A.52 (continued) 
STA FS (ft) Elevation (ft) Note 
72.6 5.97 194.03   
73 5.91 194.09   

73.6 5.73 194.27   
74 5.56 194.44   
74 5.56 194.44   

74.2 5.37 194.63   
74.5 5.3 194.7   
74.8 5.15 194.85   
75 5.07 194.93   
76 4.85 195.15   
77 4.56 195.44   
78 4.29 195.71   
79 3.96 196.04   
80 3.65 196.35   

80.4 3.49 196.51   
 
 
Table A.53 Survey Data: 03292474 Goose Creek at Old Westport Road near St. Matthews, 
KY (all elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 4.94 195.06   
1 4.85 195.15   
2 4.94 195.06   
3 5 195   
4 4.97 195.03   

5 4.99 195.01   

6 4.99 195.01   

7 5.2 194.8   

8 5.35 194.65   
9 5.53 194.47   
10 5.75 194.25   

11 6.04 193.96   

12 6.35 193.65   

13 6.66 193.34   
13.2 6.99 193.01   
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Table A.53 (continued) 
STA FS (ft) Elevation (ft) Note 
14 7.28 192.72   

14.4 7.65 192.35   
15 7.64 192.36   

15.3 8.11 191.89   
15.9 8.18 191.82   
16.1 8.61 191.39 LEW 
17 8.86 191.14   
18 8.78 191.22   
19 9.07 190.93   
20 9.05 190.95   
21 9.22 190.78   
22 9.41 190.59   
23 9.51 190.49   
24 9.3 190.7   
25 9.8 190.2   
26 9.93 190.07   
27 10.03 189.97   
28 10.12 189.88   
29 10.22 189.78   
30 10.33 189.67   
31 10.34 189.66 TW 
32 10.28 189.72   
33 10.17 189.83   
34 10.21 189.79   
35 10.24 189.76   
36 10.25 189.75   
37 10.15 189.85   
38 10.05 189.95   
39 9.97 190.03   
40 9.85 190.15   

40.7 9.79 190.21   
40.9 9.1 190.9   
42 8.98 191.02   
43 8.75 191.25   

43.2 8.44 191.56   
43.7 7.96 192.04   
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Table A.53 (continued) 
STA FS (ft) Elevation (ft) Note 
44.2 7.24 192.76   
44.7 7.1 192.9 BKF 
45 7.06 192.94   

45.5 7.03 192.97   
46 7.01 192.99   

46.5 7.05 192.95   
47 7.03 192.97   
48 6.86 193.14   
49 6.73 193.27   
50 6.41 193.59 FP 
51 6.32 193.68   

52.7 6.06 193.94   
54 5.88 194.12   
55 5.77 194.23   
56 5.69 194.31   
57 5.52 194.48   
58 5.45 194.55   
59 5.46 194.54   
60 5.31 194.69   
61 5.27 194.73   

 
Table A.54 Survey Data: 03297800 Cedar Creek at Highway 1442 near Sheperdsville, KY (all 
elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 3.4 196.6   
1 4.47 195.53   

1.9 5.03 194.97   
2.3 5.8 194.2   
3 6.4 193.6   

3.4 6.66 193.34   

3.8 6.9 193.1   

4.1 7.34 192.66   

4.9 7.85 192.15   
5.5 8.26 191.74   
6 8.5 191.5   
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Table A.54 (continued) 
STA FS (ft) Elevation (ft) Note 

7 8.95 191.05   
8 9.21 190.79   
9 9.3 190.7   
10 9.39 190.61   
11 9.53 190.47   
12 9.6 190.4   
13 9.65 190.35   

13.8 9.75 190.25   
14.4 10.1 189.9   
14.6 10.54 189.46 LEW 
15 10.73 189.27   
16 10.78 189.22   
17 10.78 189.22   
18 10.85 189.15 TW 
19 10.73 189.27   
20 10.82 189.18   
21 10.78 189.22   
22 10.79 189.21   
23 10.75 189.25   
24 10.75 189.25   
25 10.76 189.24   

26.1 10.77 189.23   
27 10.78 189.22   

28.1 10.68 189.32   
29.1 10.46 189.54   
30 10.35 189.65   

31.2 10.33 189.67   
32 10.19 189.81   

33.6 10.34 189.66   
34 10.34 189.66   
35 10.25 189.75   
36 10.33 189.67   
37 10.44 189.56   
38 10.45 189.55   

39.1 10.56 189.44   
40 10.55 189.45   
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Table A.54 (continued) 
STA FS (ft) Elevation (ft) Note 
41.2 10.32 189.68 REW 
41.8 9.95 190.05   
42.1 9.84 190.16   
42.5 9.69 190.31   
42.8 9.51 190.49   
43.2 9.48 190.52   
44.3 9.42 190.58   
44.8 9.02 190.98   
45.4 8.59 191.41   
45.6 8.46 191.54   
46 7.91 192.09   

46.3 7.81 192.19 BKF 
46.9 7.64 192.36   
47.5 7.55 192.45   
48 7.45 192.55   

48.5 7.38 192.62   
49 7.26 192.74   

49.5 7.15 192.85   
50 7.01 192.99   

50.5 6.87 193.13 FP 
51 6.51 193.49   

51.5 6.23 193.77   
52 5.86 194.14   
53 4.87 195.13   
54 4.07 195.93   
55 3.83 196.17   
56 3.46 196.54   
57 3.23 196.77   
58 3.1 196.9   
59 3.04 196.96   
60 3.13 196.87   
61 3.22 196.78   
62 3.3 196.7   
63 3.33 196.67   
64 3.43 196.57   
65 3.45 196.55   
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Table A.54 (continued) 
STA FS (ft) Elevation (ft) Note 
66 3.48 196.52   

 
Table A.55 Survey Data: 03293000 Middle Fork Beargrass Creek at Old Cannons Lane at 
Louisville, KY (all elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 5.03 194.97   
1 5.02 194.98   
2 4.99 195.01   
3 4.93 195.07   
4 4.95 195.05   
5 4.97 195.03   

6 5 195   

7 5.07 194.93   

7.4 5.23 194.77   

7.7 5.37 194.63   

8 5.46 194.54   

8.5 5.74 194.26   

8.8 5.95 194.05   

9 6.12 193.88   

9.5 6.48 193.52   

10 6.95 193.05   

10.5 7.42 192.58   

10.8 7.57 192.43   

11 7.79 192.21   

11.5 8.3 191.7   

12 8.53 191.47   

12.5 9.19 190.81   

13 9.39 190.61   

14 9.65 190.35   

15 9.72 190.28   

16 9.78 190.22   
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Table A.55 (continued) 

STA FS (ft) Elevation (ft) Note 
17 9.77 190.23   

17.7 9.83 190.17 LEW 
18 9.88 190.12   
19 10.02 189.98   
20 10.12 189.88   
21 10.22 189.78   
22 10.29 189.71   
23 10.07 189.93   
24 10.38 189.62   
25 10.35 189.65   
26 10.38 189.62   
27 10.49 189.51   
28 10.4 189.6   
29 10.48 189.52   
30 10.56 189.44   
31 10.52 189.48   
32 10.52 189.48   
33 10.53 189.47   
34 10.5 189.5   
35 10.66 189.34   
36 10.72 189.28   
37 10.81 189.19   
38 10.77 189.23   
39 10.84 189.16   
40 10.83 189.17   
41 10.88 189.12   
42 10.91 189.09   
43 10.91 189.09   
44 10.91 189.09   
45 10.83 189.17   
46 10.4 189.6   
47 10.41 189.59   
48 10.12 189.88   
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Table A.55 (continued) 
STA FS (ft) Elevation (ft) Note 
49 10.17 189.83   
50 9.96 190.04   
51 10 190   

51.5 9.84 190.16 REW 
52 9.48 190.52   

52.5 8.85 191.15   
53 8.81 191.19   

53.2 8.12 191.88   
53.4 7.95 192.05   
53.8 7.88 192.12   
53.9 7.87 192.13   
54.4 7.6 192.4   
54.6 7.53 192.47   
55 7.47 192.53   

55.5 7.43 192.57   
55.9 7.29 192.71   
56.5 7.19 192.81   
57 7.11 192.89   

57.5 7.05 192.95   
58 6.94 193.06   

58.5 6.85 193.15   
59 6.75 193.25   
60 6.66 193.34   
61 6.49 193.51   
62 6.35 193.65 BKF 
63 6.36 193.64   
64 6.33 193.67   
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Table A.56 Survey Data: 03277130 Mud Lick at Highway 42 near Beaverlick, KY (all 
elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 3.4 196.6   
2 3.24 196.76   
4 3.135 196.87   
6 3.11 196.89   
8 3.18 196.82   

9 3.3 196.7   

10 3.45 196.55   

11 3.64 196.36   

12 3.8 196.2   
13 4.09 195.91   
14 4.33 195.67   

15 4.51 195.49   

16 4.63 195.37   

17 4.85 195.15   
18 4.99 195.01   
19 5.21 194.79   
20 5.41 194.59   
21 5.54 194.46   
22 5.87 194.13   
23 6.14 193.86   
24 6.56 193.44   

24.4 6.68 193.32   
25.3 8.96 191.04 LEW 
26 9.74 190.26   
27 9.9 190.1   
28 10.19 189.81   
29 10.16 189.84   
30 10.46 189.54   
32 10.72 189.28   
34 10.76 189.24   
36 10.79 189.21   
38 10.9 189.1   
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Table A.56 (continued) 
STA FS (ft) Elevation (ft) Note 
40 10.73 189.27   
42 10.37 189.63   
44 10.55 189.45   
46 10.78 189.22   
48 10.98 189.02   
50 10.93 189.07   
52 11.12 188.88   
54 11.13 188.87   
56 11.05 188.95   
58 11.01 188.99   
60 10.93 189.07   
62 11.42 188.58   
64 11.37 188.63   
66 11.45 188.55   
68 11.53 188.47   
70 11.27 188.73   
72 11.55 188.45   
74 11.79 188.21   
76 11.98 188.02   
78 12.11 187.89   
80 11.94 188.06   
82 11.9 188.1   
84 12.19 187.81 TW 
86 11.95 188.05   
88 12.01 187.99   
90 12.13 187.87   
92 12.08 187.92   
94 11.97 188.03   
96 12.04 187.96   
98 11.99 188.01   
100 11.96 188.04   
102 12 188   
104 11.15 188.85   
106 10.73 189.27   
108 10.44 189.56   
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Table A.56 (continued) 
STA FS (ft) Elevation (ft) Note 
110 9.86 190.14   
111 8.98 191.02 REW 
112 8.79 191.21   

112.4 6.93 193.07   
113 6.5 193.5   
114 6.25 193.75   
115 6.09 193.91   
117 5.64 194.36   
119 5.31 194.69 BKF 
121 5.51 194.49   
123 5.62 194.38   
125 5.2 194.8   
127 5.29 194.71   
129 4.92 195.08   
130 4.89 195.11   

 
Table A.57 Survey Data: 03292470 Harrods Creek at Highway 329 near Goshen, KY (all 
elevations relative). 

STA FS (ft) Elevation (ft) Note 
0 4.14 195.86   
1 4.1 195.9   
2 4.19 195.81   
3 4.34 195.66   
4 4.74 195.26   

5 5.09 194.91   

6 5.31 194.69   

7 5.64 194.36   

8 6.12 193.88   
9 6.44 193.56   
10 7.06 192.94   

11 7.57 192.43   

12 8.09 191.91   

12.6 8.28 191.72   
13.2 8.33 191.67 BKF 
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Table A.57 (continued) 
STA FS (ft) Elevation (ft) Note 
13.7 8.87 191.13   
14.3 9.12 190.88   
14.8 9.52 190.48   
15.1 9.58 190.42   
15.3 9.84 190.16   
15.6 10.16 189.84   
16.3 10.53 189.47   
17.4 11.34 188.66   
18 11.71 188.29   

18.7 11.54 188.46   
19.6 12.26 187.74   
20 12.36 187.64   
21 13.16 186.84   
22 13.69 186.31   
23 13.87 186.13   
24 14.33 185.67   
25 14.54 185.46   
26 14.36 185.64   
27 14.68 185.32   
28 14.65 185.35   
29 14.72 185.28   
30 14.79 185.21   
31 14.82 185.18   
32 14.86 185.14   
33 14.24 185.76   

34.5 14.48 185.52   
36.5 14.58 185.42   
39 15 185   
40 14.96 185.04   
41 15.1 184.9   
42 15.11 184.89   

43.5 14.94 185.06   
45 14.72 185.28   
46 14.62 185.38   
47 14.77 185.23   
48 14.58 185.42   
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Table A.57 (continued) 
STA FS (ft) Elevation (ft) Note 
49 15.02 184.98   
50 14.98 185.02   
51 15.04 184.96   
52 15.08 184.92   
53 14.92 185.08   
54 15.33 184.67 TW 
55 15.12 184.88   
56 14.95 185.05   
57 14.92 185.08   
58 14.89 185.11   
59 14.68 185.32   
60 14.84 185.16   
61 14.9 185.1   
62 14.86 185.14   
63 14.55 185.45   
64 14.83 185.17   
65 14.47 185.53   
66 15.11 184.89   
67 14.92 185.08   
68 14.64 185.36   
69 14.32 185.68   
70 14.37 185.63   
71 14.86 185.14   
72 14.77 185.23   
73 14.54 185.46   
74 14.85 185.15   
75 14.8 185.2   
76 14.79 185.21   
77 14.42 185.58   
78 14.6 185.4   
79 14.53 185.47   
80 14.36 185.64   
82 14.2 185.8   
83 14.06 185.94   

84.2 14.19 185.81   
85 14.22 185.78   
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Table A.57 (continued) 
STA FS (ft) Elevation (ft) Note 
86 14.22 185.78   
87 14.04 185.96   
88 14 186   
89 14.03 185.97   
90 14.02 185.98   
91 13.86 186.14   
92 14 186   
93 13.91 186.09   
94 13.8 186.2   
95 13.61 186.39   

95.8 13.41 186.59   
97.6 13.03 186.97   
98.6 12.86 187.14 REW 
99.8 12.47 187.53   
100.7 11.92 188.08   
101 11.31 188.69   

101.6 10.83 189.17   
102 10.77 189.23   

102.7 10.41 189.59   
103.2 9.67 190.33   
103.9 9.21 190.79   
104.5 8.81 191.19   
105.2 8.43 191.57   
105.6 8.27 191.73   
106 7.89 192.11   

106.5 7.73 192.27   
107 7.49 192.51   

107.6 7.26 192.74 FP 
108 7.26 192.74   
109 7.36 192.64   

111.7 6.54 193.46   
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Table A.58 Survey Data: 03298000 Floyd’s Fork at Fisherville, KY (all elevations relative). 
STA FS (ft) Elevation (ft) Note 

0 6.05 193.95   
1 6.41 193.59   
2 6.45 193.55   
3 6.4 193.6   
4 6.37 193.63   

5 6.4 193.6 FP 

6 6.55 193.45   

7 6.65 193.35   

8 6.7 193.3   

9 6.97 193.03   

10 7.08 192.92   

11 7.16 192.84   

12 7.16 192.84 BKF 

13 7.29 192.71   

14 7.46 192.54   

15 7.65 192.35   

15.7 7.93 192.07   

16 8.16 191.84   

16.3 9.81 190.19   

16.7 9.94 190.06   

17.3 10.93 189.07   

18 11.01 188.99   

19 12 188   

20 12.55 187.45   

21 12.91 187.09   

22 13.04 186.96   

23 13.13 186.87   

23.3 13.4 186.6 LEW 
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Table A.58 (continued) 

STA FS (ft) Elevation (ft) Note 
24 14.33 185.67   
25 14.59 185.41   

25.8 15.01 184.99   
26 15.13 184.87   
27 15.25 184.75   
28 15.33 184.67   
29 15.44 184.56   
30 15.45 184.55   
31 15.58 184.42   
32 15.62 184.38   
33 15.64 184.36   
34 15.73 184.27   
35 15.89 184.11   
36 15.95 184.05   
37 15.97 184.03   
38 15.99 184.01   
39 16 184 TW 
40 15.95 184.05   
41 15.95 184.05   
43 15.94 184.06   
45 15.89 184.11   
47 15.84 184.16   
49 15.84 184.16   
51 15.82 184.18   
53 15.73 184.27   
55 15.73 184.27   
57 15.71 184.29   
59 15.59 184.41   
61 15.58 184.42   
63 15.59 184.41   
65 15.58 184.42   
67 15.46 184.54   
69 15.23 184.77   
70 15.23 184.77   
71 15.2 184.8   
72 15.19 184.81   
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Table A.58 (continued) 
STA FS (ft) Elevation (ft) Note 
73 15.16 184.84   
75 15.18 184.82   
77 15.16 184.84   
79 15.18 184.82   

    81 15.17 184.83   
83 15.19 184.81   
84 15.15 184.85   
85 15.11 184.89   
86 15.1 184.9   
87 15.13 184.87   
88 15.12 184.88   
89 15.1 184.9   
90 15.02 184.98   
91 15.03 184.97   
92 14.92 185.08   
93 14.98 185.02   
94 14.97 185.03   
95 15.02 184.98   
96 15.05 184.95   
97 15.06 184.94   
98 15.05 184.95   
99 15 185   
100 15.03 184.97   
102 14.99 185.01   
103 14.86 185.14   
104 14.75 185.25   
106 14.69 185.31   
107 14.55 185.45   
108 14.45 185.55   
109 14.31 185.69   
110 14.23 185.77   
111 14.22 185.78   
112 14.27 185.73   
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Table A.58 (continued) 
STA FS (ft) Elevation (ft) Note 
113 14.2 185.8   
114 14.05 185.95   
115 13.8 186.2   
116 13.39 186.61   

116.9 13.24 186.76 REW 
118 12.99 187.01   
119 12.88 187.12   
120 12.85 187.15   
121 12.8 187.2   
122 12.76 187.24   
123 12.66 187.34   
124 12.65 187.35   
125 12.6 187.4   
126 12.56 187.44   
127 12.46 187.54   
128 12.32 187.68   
129 12.02 187.98   
130 11.7 188.3   
131 11.29 188.71   
132 11 189   
134 10.36 189.64   
135 9.8 190.2   

135.7 8.66 191.34   
136.8 7.05 192.95   
137.1 6.08 193.92   
137.7 5.75 194.25   
138 5.6 194.4   

138.6 5.31 194.69   
139 5.1 194.9   

139.5 4.92 195.08   
140 4.81 195.19   
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Figure A.1 Graph of Cross-section at: East Hickman trib at Chilesburg. 

 

 

 
Figure A.2  Graph of Cross-section at: 03284520 East Hickman Creek at Andover Village 

near Cadentown, KY. 
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Figure A.3  Graph of Cross-section at: 03287580 North Elkhorn Creek at Man O War Blvd 

near Cadentown, KY. 

 
Figure A.4  Graph of Cross-section at: 03288500 Cave Creek near Fort Springs, KY. 
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Figure A.5  Graph of Cross-section at: 03287590 North Elkhorn Creek on Winchester Road 

near Lexington, KY. 

 
Figure A.6  Graph of Cross-section at: 03289193 Wolf Run at Old Frankfort Pike, 

Lexington, KY. 
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Figure A.7  Graph of Cross-section at: 03284530 East Hickman Creek at Delong Road near 

East Hickman, KY. 

 
Figure A.8  Graph of Cross-section at: 03284555 West Hickman Creek at Ash Grove Pike 

near East Hickman, KY. 
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Figure A.9  Graph of Cross-section at: 03287600 North Elkhorn at Bryan Station Road near 

Montrose, KY. 

 
 

Figure A.10  Graph of Cross-section at: 03289000 South Elkhorn Creek at Fort Springs, KY. 
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Figure A.11  Graph of Cross-section at: 03289200 Town Branch at Yarnallton Rd at 

Yarnallton, KY. 

 
Figure A.12  Graph of Cross-section at: 03291000 Eagle Creek at Sadieville, KY. 
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Figure A.13  Graph of Cross-section at: 03288000 North Elkhorn Creek near Georgetown, 

KY. 

 
Figure A.14  Graph of Cross-section at: 03288100 North Elkhorn Creek at Georgetown, 

KY. 
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Figure A.15  Graph of Cross-section at: 03238772 Fourmile Creek at Poplar Ridge near 

Alexandria, KY. 
 

 
Figure A.16  Graph of Cross-section at: 03254400 North Fork Grassy Creek near Piner, KY. 
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Figure A.17  Graph of Cross-section at: 03254480 Cruises Creek at Highway 17 near Piner, 

KY. 
 

 
Figure A.18  Graph of Cross-section at: 03262001 Woolper Creek at Woolper Road near 

Burlington, KY. 
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Figure A.19  Graph of Cross-section at: 03254550 Banklick Creek at Highway 1829 near 

Erlanger, KY. 

 
Figure A.20  Graph of Cross-section at: 03277075 Gunpowder Creek at Camp Ernst Road 

near Union, KY. 



 

191 

 

 
Figure A.21  Graph of Cross-section at: 03238745 Twelvemile Creek at Highway 1997 near 

Alexandria, KY. 

 
Figure A.22  Graph of Cross-section at: 03298135 Chenoweth Run at Ruckriegal Parkway, 

KY. 
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Figure A.23  Graph of Cross-section at: 03292480 Little Goose near Harrods Creek, KY. 

 

 
Figure A.24  Graph of Cross-section at: 03292474 Goose Creek at Old Westport Road near 

St. Matthews, KY. 

 



 

193 

 

 
Figure A.25  Graph of Cross-section at: 03297800 Cedar Creek at Highway 1442 near 

Sheperdsville, KY. 

 
Figure A.26  Graph of Cross-section at: 03293000 Middle Fork Beargrass Creek at Old 

Cannons Lane at Louisville, KY. 
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Figure A.27  Graph of Cross-section at: 03277130 Mud Lick at Highway 42 near Beaverlick, 

KY. 

 
Figure A.28  Graph of Cross-section at: 03292470 Harrods Creek at Highway 329 near 

Goshen, KY. 
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Figure A.29  Graph of Cross-section at: 03298000 Floyd’s Fork at Fisherville, KY. 
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Figure A.30 Upstream View of 03284525 East Hickman Tributary at Chilesburg Rd near 

Lexington, KY. 

 

 

 
Figure A.31 Downstream View of 03284525 East Hickman Tributary at Chilesburg Rd near 

Lexington, KY. 
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Figure A.32 Upstream View of 03284520 East Hickman Creek at Andover Village near 

Cadentown, KY. 

 

 

 
Figure A.33 Downstream View of 03284520 East Hickman Creek at Andover Village near 

Cadentown, KY. 
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Figure A.34 Upstream View of 03287580 North Elkhorn Creek at Man O War Blvd near 

Cadentown, KY. 

 

 

 
Figure A.35 Downstream View of 03287580 North Elkhorn Creek at Man O War Blvd near 

Cadentown, KY. 
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Figure A.36 Upstream View of 03288500 Cave Creek near Fort Springs, KY. 

 

 
 

 
Figure A.37 Downstream View of 03288500 Cave Creek near Fort Springs, KY. 
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Figure A.38 Upstream View of 03287590 North Elkhorn Creek on Winchester Road near 

Lexington, KY. 

 

 

 
Figure A.39 Downstream View of 03287590 North Elkhorn Creek on Winchester Road near 

Lexington, KY. 
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Figure A.40 Upstream View of 03289193 Wolf Run at Old Frankfort Pike, Lexington, KY. 

 

 

 
Figure A.41 Downstream View of 03289193 Wolf Run at Old Frankfort Pike, Lexington, 

KY. 
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Figure A.42 Upstream View of 03284530 East Hickman Creek at Delong Road near East 

Hickman, KY. 

 

 

 
Figure A.43 Downstream View of 03284530 East Hickman Creek at Delong Road near East 

Hickman, KY. 
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Figure A.44 Downstream View of 03284555 West Hickman Creek at Ash Grove Pike near 

East Hickman, KY. 
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Figure A.45 Upstream View of 03287600 North Elkhorn at Bryan Station Road near 

Montrose, KY. 
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Figure A.46 Upstream View of 03289000 South Elkhorn Creek at Fort Springs, KY. 

 
 

 
Figure A.47 Downstream View of 03289000 South Elkhorn Creek at Fort Springs, KY. 
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Figure A.48 Upstream View of 03289200 Town Branch at Yarnallton Rd at Yarnallton, KY. 

 

 

 
Figure A.49 Downstream View of 03289200 Town Branch at Yarnallton Rd at Yarnallton, 

KY. 
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Figure A.50 Upstream View of 03291000 Eagle Creek at Sadieville, KY. 

 
 

 
Figure A.51 Downstream View of 03291000 Eagle Creek at Sadieville, KY. 
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Figure A.52 Upstream View of 03288000 North Elkhorn Creek near Georgetown, KY. 

 

 

 
Figure A.53 Downstream View of 03288000 North Elkhorn Creek near Georgetown, KY. 
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Figure A.54 Upstream View of 03288100 North Elkhorn Creek at Georgetown, KY. 
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Figure A.55 Upstream View of 03238772 Fourmile Creek at Poplar Ridge near Alexandria, 

KY. 

 

 

 
Figure A.56 Downstream View of 03238772 Fourmile Creek at Poplar Ridge near 

Alexandria, KY. 
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Figure A.57 Upstream View of 03254400 North Fork Grassy Creek near Piner, KY. 

 

 

 
Figure A.58 Downstream View of 03254400 North Fork Grassy Creek near Piner, KY. 
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Figure A.59 Upstream View of 03254480 Cruises Creek at Highway 17 near Piner, KY. 

 

 

 
Figure A.60 Downstream View of 03254480 Cruises Creek at Highway 17 near Piner, KY. 
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Figure A.61 Upstream View of 03262001 Woolper Creek at Woolper Road near Burlington, 

KY. 
 
 
 
 

 
Figure A.62 Downstream View of 03262001 Woolper Creek at Woolper Road near 

Burlington, KY. 
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Figure A.63 Upstream View of 03254550 Banklick Creek at Highway 1829 near Erlanger, 

KY. 

 

 

 
Figure A.64 Downstream View of 03254550 Banklick Creek at Highway 1829 near Erlanger, 

KY. 
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Figure A.65 Upstream View of 03277075 Gunpowder Creek at Camp Ernst Road near 

Union, KY. 

 

 

 
Figure A.66 Downstream View of 03277075 Gunpowder Creek at Camp Ernst Road near 

Union, KY. 
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Figure A.67 Upstream View of 03238745 Twelvemile Creek at Highway 1997 near 

Alexandria, KY. 

 

 

 
Figure A.68 Downstream View of 03238745 Twelvemile Creek at Highway 1997 near 

Alexandria, KY. 
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Figure A.69 Upstream View of 03298135 Chenoweth Run at Ruckriegal Parkway, KY. 

 
 

 
Figure A.70 Downstream View of 03298135 Chenoweth Run at Ruckriegal Parkway, KY. 
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Figure A.71 Upstream View of 03292480 Little Goose near Harrods Creek, KY. 

 

 

 
Figure A.72 Downstream View of 03292480 Little Goose near Harrods Creek, KY. 
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Figure A.73  Upstream View of 03292474 Goose Creek at Old Westport Road near St. 

Matthews, KY. 
 
 

 
Figure A.74 Downstream View of 03292474 Goose Creek at Old Westport Road near St. 

Matthews, KY. 
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Figure A.75 Upstream View of 03297800 Cedar Creek at Highway 1442 near Sheperdsville, 

KY. 

 

 

 
Figure A.76 Downstream View of 03297800 Cedar Creek at Highway 1442 near 

Sheperdsville, KY. 
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Figure A.77 Upstream View of 03293000 Middle Fork Beargrass Creek at Old Cannons 

Lane at Louisville, KY. 

 

 

 
Figure A.78 Downstream View of 03293000 Middle Fork Beargrass Creek at Old Cannons 

Lane at Louisville, KY. 
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Figure A.79 Upstream View of 03277130 Mud Lick at Highway 42 near Beaverlick, KY. 

 

 

 
Figure A.80 Downstream View of 03277130 Mud Lick at Highway 42 near Beaverlick, KY. 
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Figure A.81 Upstream View of 03292470 Harrods Creek at Highway 329 near Goshen, KY. 
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Figure A.82 Upstream View of 03298000 Floyd’s Fork at Fisherville, KY. 

 

 
Figure A.83 Downstream View of 03298000 Floyd’s Fork at Fisherville, KY. 
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Appendix B: Bed Material Summary 

 
Table B.1 Representative Reach Particle Size Data: 03284525 East Hickman Tributary at 
Chilesburg Rd near Lexington, KY. 

Particle 
Size (mm) 

Number of 
Particles 

1.0-2.0 1 
2.0-4.0 45 
4.0-5.7 12 
5.7-8.0 13 
8.0-11.3 8 
11.3-16.0 13 
16.0-22.6 5 
22.6-32 2 
32-45 1 
45-64 0 
64-90 0 
90-128 0 
128-180 0 
180-256 0 
256-362 0 
362-512 0 
512-1024 0 

1024-2048 0 
Bedrock 0 

 
 
Table B.2 Representative Reach Particle Size Analysis: 03284525 East Hickman Tributary at 
Chilesburg Rd near Lexington, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 2.6 
D35 3.5 
D50 4.5 
D84 13.1 
D95 19.9 
D100 45 
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Table B.3 Representative Reach Particle Size Data: 03284520 East Hickman Creek at 
Andover Village near Cadentown, KY. 

Particle 
Size 

(mm) 

Number of 
Particles 

1.0-2.0 3 
2.0-4.0 15 
4.0-5.7 5 
5.7-8.0 10 
8.0-11.3 8 
11.3-16.0 11 
16.0-22.6 13 
22.6-32 16 
32-45 8 
45-64 3 
64-90 4 
90-128 2 
128-180 2 
180-256 0 
256-362 0 
362-512 0 
512-1024 0 

1024-2048 0 
Bedrock 0 

 
 
Table B.4 Representative Reach Particle Size Analysis: 03284520 East Hickman Creek at 
Andover Village near Cadentown, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 3.7 
D35 8.8 
D50 15.2 
D84 36.9 
D95 83.5 
D100 180 
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Table B.5 Representative Reach Particle Size Data: 03287580 North Elkhorn Creek at Man 
O War Blvd near Cadentown, KY. 

Particle 
Size (mm) 

Number 
of 

Particles 

1.0-2.0 10 
2.0-4.0 14 
4.0-5.7 37 
5.7-8.0 12 
8.0-11.3 38 
11.3-16.0 19 
16.0-22.6 12 
22.6-32 10 
32-45 12 
45-64 18 
64-90 41 
90-128 34 
128-180 23 
180-256 13 
256-362 4 
362-512 0 
512-1024 0 

1024-2048 0 
Bedrock 3 

 
 
Table B.6 Representative Reach Particle Size Analysis: 03287580 North Elkhorn Creek at 
Man O War Blvd near Cadentown, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 5.1 
D35 10.8 
D50 30.1 
D84 122.4 
D95 209.2 
D100 Bedrock 
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Table B.7 Representative Reach Particle Size Data: 03288500 Cave Creek near Fort Springs, 
KY. 

Particle 
Size 

(mm) 

Number of 
Particles 

1.0-2.0 9 
2.0-4.0 29 
4.0-5.7 30 
5.7-8.0 12 
8.0-11.3 24 
11.3-16.0 34 
16.0-22.6 29 
22.6-32 35 
32-45 24 
45-64 20 
64-90 19 
90-128 17 
128-180 5 
180-256 7 
256-362 3 
362-512 0 
512-1024 1 

1024-2048 0 
Bedrock 2 

 
 
Table B.8 Representative Reach Particle Size Analysis: 03288500 Cave Creek near Fort 
Springs, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 4.6 
D35 11.4 
D50 18.7 
D84 72.2 
D95 159.1 
D100 Bedrock 
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Table B.9 Representative Reach Particle Size Data: 03287590 North Elkhorn Creek on 
Winchester Road near Lexington, KY. 

Particle 
Size 

(mm) 

Number 
of 

Particles 

1.0-2.0 4 
2.0-4.0 20 
4.0-5.7 27 
5.7-8.0 8 
8.0-11.3 22 
11.3-16.0 17 
16.0-22.6 21 
22.6-32 27 
32-45 25 
45-64 28 
64-90 38 
90-128 29 
128-180 11 
180-256 5 
256-362 6 
362-512 0 
512-1024 0 

1024-
2048 0 

Bedrock 12 
 
 
Table B.10 Representative Reach Particle Size Analysis: 03287590 North Elkhorn Creek on 
Winchester Road near Lexington, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 5.5 
D35 18.2 
D50 34.1 
D84 109.7 
D95 309 
D100 Bedrock 
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Table B.11 Representative Reach Particle Size Data: 03289193 Wolf Run at Old Frankfort 
Pike, Lexington, KY. 

Particle 
Size 

(mm) 

Number 
of 

Particles 

1.0-2.0 6 
2.0-4.0 9 
4.0-5.7 12 
5.7-8.0 11 
8.0-11.3 14 
11.3-16.0 24 
16.0-22.6 20 
22.6-32 22 
32-45 15 
45-64 23 
64-90 44 
90-128 52 
128-180 25 
180-256 15 
256-362 5 
362-512 1 
512-1024 0 

1024-2048 0 
Bedrock 2 

 
 
Table B.12 Representative Reach Particle Size Analysis: 03289193 Wolf Run at Old 
Frankfort Pike, Lexington, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 10.4 
D35 26.5 
D50 59.1 
D84 128 
D95 220.6 
D100 Bedrock 
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Table B.13 Representative Reach Particle Size Data: 03284530 East Hickman Creek at 
Delong Road near East Hickman, KY. 

Particle 
Size 

(mm) 

Number 
of 

Particles 

1.0-2.0 2 
2.0-4.0 1 
4.0-5.7 4 
5.7-8.0 1 
8.0-11.3 2 
11.3-16.0 7 
16.0-22.6 7 
22.6-32 13 
32-45 9 
45-64 9 
64-90 10 
90-128 11 
128-180 12 
180-256 5 
256-362 3 
362-512 0 
512-1024 0 

1024-2048 0 
Bedrock 4 

 
 
Table B.14 Representative Reach Particle Size Analysis: 03284530 East Hickman Creek at 
Delong Road near East Hickman, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 15.3 
D35 30.6 
D50 53.4 
D84 162.7 
D95 326.7 
D100 Bedrock 
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Table B.15 Representative Reach Particle Size Data: 03284555 West Hickman Creek at Ash 
Grove Pike near East Hickman, KY. 

Particle 
Size 

(mm) 

Number 
of 

Particles 

1.0-2.0 8 
2.0-4.0 11 
4.0-5.7 22 
5.7-8.0 6 
8.0-11.3 12 
11.3-16.0 10 
16.0-22.6 7 
22.6-32 15 
32-45 12 
45-64 22 
64-90 37 
90-128 53 
128-180 38 
180-256 13 
256-362 3 
362-512 1 
512-1024 0 

1024-2048 0 
Bedrock 30 

 
 
Table B.26 Representative Reach Particle Size Analysis: 03284555 West Hickman Creek at 
Ash Grove Pike near East Hickman, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 8.3 
D35 46.7 
D50 81.6 
D84 178.6 
D95 Bedrock 
D100 Bedrock 
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Table B.37 Representative Reach Particle Size Data: 03287600 North Elkhorn at Bryan 
Station Road near Montrose, KY. 

Particle 
Size 

(mm) 

Number 
of 

Particles 

1.0-2.0 0 
2.0-4.0 1 
4.0-5.7 0 
5.7-8.0 0 
8.0-11.3 0 
11.3-16.0 0 
16.0-22.6 0 
22.6-32 6 
32-45 23 
45-64 22 
64-90 23 
90-128 16 
128-180 5 
180-256 4 
256-362 0 
362-512 0 
512-1024 0 

1024-2048 0 
Bedrock 0 

 
 
Table B.18 Representative Reach Particle Size Analysis: 03287600 North Elkhorn at Bryan 
Station Road near Montrose, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 37.1 
D35 49.3 
D50 62.3 
D84 111.4 
D95 169.6 
D100 256 
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Table B.49 Representative Reach Particle Size Data: 03289000 South Elkhorn Creek at Fort 
Springs, KY. 

Particle 
Size 

(mm) 

Number of 
Particles 

1.0-2.0 12 
2.0-4.0 0 
4.0-5.7 0 
5.7-8.0 0 
8.0-11.3 1 
11.3-16.0 2 
16.0-22.6 0 
22.6-32 1 
32-45 21 
45-64 26 
64-90 65 
90-128 75 
128-180 28 
180-256 48 
256-362 8 
362-512 2 
512-1024 0 

1024-2048 0 
Bedrock 11 

 
 
Table B.20 Representative Reach Particle Size Analysis: 03289000 South Elkhorn Creek at 
Fort Springs, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 47.5 
D35 78.5 
D50 98.9 
D84 211 
D95 329.7 
D100 Bedrock 
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Table B.21 Representative Reach Particle Size Data: 03289200 Town Branch at Yarnallton 
Rd at Yarnallton, KY. 

Particle 
Size 

(mm) 

Number of 
Particles 

1.0-2.0 0 
2.0-4.0 0 
4.0-5.7 0 
5.7-8.0 0 
8.0-11.3 6 
11.3-16.0 8 
16.0-22.6 7 
22.6-32 17 
32-45 45 
45-64 38 
64-90 51 
90-128 44 
128-180 34 
180-256 10 
256-362 5 
362-512 0 
512-1024 0 

1024-2048 0 
Bedrock 35 

 
 
Table B.22 Representative Reach Particle Size Analysis: 03289200 Town Branch at 
Yarnallton Rd at Yarnallton, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 34.9 
D35 56 
D50 78.8 
D84 195.3 
D95 Bedrock 
D100 Bedrock 
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Table B.23 Representative Reach Particle Size Data: 03291000 Eagle Creek at Sadieville, KY. 
Particle 

Size 
(mm) 

Number 
of 

Particles 

1.0-2.0 2 
2.0-4.0 23 
4.0-5.7 19 
5.7-8.0 27 
8.0-11.3 11 
11.3-16.0 13 
16.0-22.6 1 
22.6-32 2 
32-45 2 
45-64 0 
64-90 0 
90-128 0 
128-180 0 
180-256 0 
256-362 0 
362-512 0 
512-1024 0 

1024-2048 0 
Bedrock 0 

 
 
Table B.24 Representative Reach Particle Size Analysis: 03291000 Eagle Creek at Sadieville, 
KY. 

Classification 
(mm) 

Size 
(mm) 

D16 3.2 
D35 4.9 
D50 6.2 
D84 12.0 
D95 16 
D100 45 
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Table B.55 Representative Reach Particle Size Data: 03288000 North Elkhorn Creek near 
Georgetown, KY. 

Particle 
Size 

(mm) 

Number of 
Particles 

1.0-2.0 9 
2.0-4.0 2 
4.0-5.7 3 
5.7-8.0 2 
8.0-11.3 6 
11.3-16.0 8 
16.0-22.6 9 
22.6-32 24 
32-45 40 
45-64 51 
64-90 57 
90-128 48 
128-180 23 
180-256 7 
256-362 4 
362-512 0 
512-1024 0 

1024-2048 0 
Bedrock 7 

 
 
Table B.66 Representative Reach Particle Size Analysis: 03288000 North Elkhorn Creek near 
Georgetown, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 26.4 
D35 46.3 
D50 63.3 
D84 125.1 
D95 253.7 
D100 Bedrock 
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Table B.77 Representative Reach Particle Size Data: 03238772 Fourmile Creek at Poplar 
Ridge near Alexandria, KY. 

Particle 
Size 

(mm) 

Number of 
Particles 

1.0-2.0 0 
2.0-4.0 0 
4.0-5.7 1 
5.7-8.0 4 
8.0-11.3 2 
11.3-16.0 4 
16.0-22.6 8 
22.6-32 2 
32-45 15 
45-64 17 
64-90 20 
90-128 21 
128-180 4 
180-256 2 
256-362 0 
362-512 0 
512-1024 0 

1024-2048 0 
Bedrock 0 

 
 
Table B.88 Representative Reach Particle Size Analysis: 03238772 Fourmile Creek at Poplar 
Ridge near Alexandria, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 20.1 
D35 44.1 
D50 60.7 
D84 109.9 
D95 141 
D100 256 
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Table B.29 Representative Reach Particle Size Data: 03254480 Cruises Creek at Highway 17 
near Piner, KY. 

Particle 
Size 

(mm) 

Number 
of 

Particles 

1.0-2.0 0 
2.0-4.0 1 
4.0-5.7 1 
5.7-8.0 1 
8.0-11.3 4 
11.3-16.0 5 
16.0-22.6 7 
22.6-32 7 
32-45 11 
45-64 17 
64-90 20 
90-128 7 
128-180 14 
180-256 3 
256-362 1 
362-512 1 
512-1024 0 

1024-2048 0 
Bedrock 0 

 
 
Table B.30 Representative Reach Particle Size Analysis: 03254480 Cruises Creek at Highway 
17 near Piner, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 19.8 
D35 42.6 
D50 59.5 
D84 139.1 
D95 180 
D100 512 
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Table B.31 Representative Reach Particle Size Data: 03262001 Woolper Creek at Woolper 
Road near Burlington, KY. 

Particle 
Size 

(mm) 

Number 
of 

Particles 

1.0-2.0 0 
2.0-4.0 3 
4.0-5.7 2 
5.7-8.0 1 
8.0-11.3 3 
11.3-16.0 0 
16.0-22.6 1 
22.6-32 5 
32-45 8 
45-64 13 
64-90 19 
90-128 18 
128-180 17 
180-256 7 
256-362 1 
362-512 2 
512-1024 0 

1024-2048 0 
Bedrock 0 

 
 
Table B.32 Representative Reach Particle Size Analysis: 03262001 Woolper Creek at 
Woolper Road near Burlington, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 1.7 
D35 25.5 
D50 45.5 
D84 104.9 
D95 155.1 
D100 362 
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Table B.33 Representative Reach Particle Size Data: 03254550 Banklick Creek at Highway 
1829 near Erlanger, KY. 

Particle 
Size 

(mm) 

Number 
of 

Particles 

1.0-2.0 0 
2.0-4.0 0 
4.0-5.7 0 
5.7-8.0 0 
8.0-11.3 0 
11.3-16.0 0 
16.0-22.6 2 
22.6-32 2 
32-45 13 
45-64 22 
64-90 15 
90-128 27 
128-180 15 
180-256 3 
256-362 1 
362-512 0 
512-1024 0 

1024-2048 0 
Bedrock 0 

 
 
Table B.34 Representative Reach Particle Size Analysis: 03254550 Banklick Creek at 
Highway 1829 near Erlanger, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 44 
D35 60.6 
D50 83.1 
D84 138.4 
D95 176.5 
D100 362 

 

 



 

242 

 

Table B.35 Representative Reach Particle Size Data: 03277075 Gunpowder Creek at Camp 
Ernst Road near Union, KY. 

Particle 
Size 

(mm) 

Number 
of 

Particles 

1.0-2.0 0 
2.0-4.0 3 
4.0-5.7 1 
5.7-8.0 0 
8.0-11.3 1 
11.3-16.0 1 
16.0-22.6 0 
22.6-32 5 
32-45 8 
45-64 15 
64-90 20 
90-128 20 
128-180 11 
180-256 8 
256-362 4 
362-512 1 
512-1024 1 

1024-2048 0 
Bedrock 1 

 
 
Table B.36 Representative Reach Particle Size Analysis:  03277075 Gunpowder Creek at 
Camp Ernst Road near Union, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 40.1 
D35 65.3 
D50 84.8 
D84 175.3 
D95 309 
D100 Bedrock 
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Table B.37 Representative Reach Particle Size Data: 03238745 Twelvemile Creek at Highway 
1997 near Alexandria, KY. 

Particle 
Size 

(mm) 

Number 
of 

Particles 

1.0-2.0 8 
2.0-4.0 0 
4.0-5.7 2 
5.7-8.0 4 
8.0-11.3 3 
11.3-16.0 0 
16.0-22.6 3 
22.6-32 1 
32-45 1 
45-64 7 
64-90 7 
90-128 12 
128-180 28 
180-256 15 
256-362 4 
362-512 3 
512-1024 0 

1024-2048 0 
Bedrock 2 

 
 
Table B.38 Representative Reach Particle Size Analysis: 03238745 Twelvemile Creek at 
Highway 1997 near Alexandria, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 10.2 
D35 86.3 
D50 131.7 
D84 220.5 
D95 362 
D100 Bedrock 
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Table B.39 Representative Reach Particle Size Data: 03298135 Chenoweth Run at Ruckriegal 
Parkway, KY. 

Particle 
Size 

(mm) 

Number of 
Particles 

1.0-2.0 3 
2.0-4.0 2 
4.0-5.7 2 
5.7-8.0 2 
8.0-11.3 6 
11.3-16.0 6 
16.0-22.6 4 
22.6-32 12 
32-45 13 
45-64 18 
64-90 12 
90-128 8 
128-180 5 
180-256 3 
256-362 0 
362-512 0 
512-1024 0 

1024-2048 0 
Bedrock 4 

 
 
Table B.40 Representative Reach Particle Size Analysis: 03298135 Chenoweth Run at 
Ruckriegal Parkway, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 12.1 
D35 30.4 
D50 45 
D84 109 
D95 230.7 
D100 Bedrock 
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Table B.41 Representative Reach Particle Size Data: 03292480 Little Goose near Harrods 
Creek, KY. 

Particle 
Size 

(mm) 

Number of 
Particles 

1.0-2.0 4 
2.0-4.0 0 
4.0-5.7 0 
5.7-8.0 1 
8.0-11.3 1 
11.3-16.0 3 
16.0-22.6 2 
22.6-32 2 
32-45 6 
45-64 18 
64-90 18 
90-128 19 
128-180 14 
180-256 8 
256-362 0 
362-512 2 
512-1024 2 

1024-2048 0 
Bedrock 0 

 
 
Table B.42 Representative Reach Particle Size Analysis: 03292480 Little Goose near Harrods 
Creek, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 38.5 
D35 61.9 
D50 82.8 
D84 165.1 
D95 246.5 
D100 1024 
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Table B.43 Representative Reach Particle Size Data: 03292474 Goose Creek at Old Westport 
Road near St. Matthews, KY. 

Particle 
Size 

(mm) 

Number of 
Particles 

1.0-2.0 0 

2.0-4.0 0 

4.0-5.7 1 

5.7-8.0 0 

8.0-11.3 4 

11.3-16.0 6 
16.0-22.6 6 
22.6-32 7 
32-45 14 
45-64 20 
64-90 18 
90-128 11 
128-180 10 
180-256 1 
256-362 1 
362-512 1 
512-1024 0 

1024-2048 0 
Bedrock 0 

 
 
Table B.44 Representative Reach Particle Size Analysis: 03292474 Goose Creek at Old 
Westport Road near St. Matthews, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 21.5 
D35 42.2 
D50 56.4 
D84 117.6 
D95 169.6 
D100 512 
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Table B.45 Representative Reach Particle Size Data: 03297800 Cedar Creek at Highway 1442 
near Sheperdsville, KY. 

Particle 
Size 

(mm) 

Number of 
Particles 

1.0-2.0 0 

2.0-4.0 2 

4.0-5.7 1 

5.7-8.0 0 

8.0-11.3 3 

11.3-16.0 2 
16.0-22.6 3 
22.6-32 13 
32-45 23 
45-64 21 
64-90 15 
90-128 6 
128-180 4 
180-256 1 
256-362 1 
362-512 2 
512-1024 0 

1024-2048 0 
Bedrock 3 

 
 
Table B.46 Representative Reach Particle Size Analysis: 03297800 Cedar Creek at Highway 
1442 near Sheperdsville, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 26.2 
D35 38.2 
D50 47.7 
D84 96.3 
D95 362 
D100 Bedrock 
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Table B.47 Representative Reach Particle Size Data: 03293000 Middle Fork Beargrass Creek 
at Old Cannons Lane at Louisville, KY. 

Particle 
Size (mm) 

Number 
of 

Particles 

1.0-2.0 5 

2.0-4.0 3 

4.0-5.7 1 

5.7-8.0 7 

8.0-11.3 5 

11.3-16.0 1 
16.0-22.6 8 
22.6-32 13 
32-45 12 
45-64 10 
64-90 17 
90-128 10 
128-180 3 
180-256 1 
256-362 0 
362-512 1 
512-1024 0 

1024-2048 0 
Bedrock 3 

 
 
Table B.48 Representative Reach Particle Size Analysis: 03293000 Middle Fork Beargrass 
Creek at Old Cannons Lane at Louisville, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 8 
D35 26.2 
D50 39.6 
D84 97.6 
D95 180 
D100 Bedrock 
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Table B.49 Representative Reach Particle Size Data: 03277130 Mud Lick at Highway 42 near 
Beaverlick, KY. 

Particle 
Size 

(mm) 

Number 
of 

Particles 

1.0-2.0 10 
2.0-4.0 4 
4.0-5.7 3 
5.7-8.0 0 
8.0-11.3 0 
11.3-16.0 3 
16.0-22.6 0 
22.6-32 4 
32-45 4 
45-64 9 
64-90 23 
90-128 15 
128-180 13 
180-256 4 
256-362 3 
362-512 3 
512-1024 2 

1024-2048 0 
Bedrock  0 

 
 
Table B.50 Representative Reach Particle Size Analysis: 03277130 Mud Lick at Highway 42 
near Beaverlick, KY. 

Classification 
(mm) 

Size 
(mm) 

D16 5.13 
D35 59.8 
D50 78.7 
D84 164 
D95 362 
D100  1024 
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Table B.51 Representative Reach Particle Size Data: 03298000 Floyd’s Fork at Fisherville, 
KY. 

Particle 
Size 

(mm) 

Number 
of 

Particles 

1.0-2.0 1 

2.0-4.0 0 

4.0-5.7 0 

5.7-8.0 0 

8.0-11.3 0 

11.3-16.0 0 
16.0-22.6 0 
22.6-32 2 
32-45 2 
45-64 20 
64-90 28 
90-128 17 
128-180 19 
180-256 7 
256-362 3 
362-512 0 
512-1024 1 

1024-2048 0 
Bedrock 0 

 

Table B.52 Representative Reach Particle Size Analysis: 03298000 Floyd’s Fork at Fisherville, 
KY. 

Classification 
(mm) 

Size 
(mm) 

D16 55.5 
D35 73.3 
D50 87.2 
D84 166.3 
D95 245.1 
D100 1024 
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Figure B.1 Particle Distribution Bar Chart: 03284525 East Hickman Tributary at Chilesburg 

Rd near Lexington, KY. 

 
Figure B.2 Particle Distribution Percent Finer: 03284525 East Hickman Tributary at 

Chilesburg Rd near Lexington, KY. 
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Figure B.3 Particle Distribution Bar Chart: 03284520 East Hickman Creek at Andover 

Village near Cadentown, KY. 

 
Figure B.4 Particle Distribution Percent Finer: 03284520 East Hickman Creek at Andover 

Village near Cadentown, KY. 
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Figure B.5 Particle Distribution Bar Chart: 03287580 North Elkhorn Creek at Man O War 

Blvd near Cadentown, KY. 

 
Figure B.6 Particle Distribution Percent Finer: 03287580 North Elkhorn Creek at Man O 

War Blvd near Cadentown, KY. 
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Figure B.7 Particle Distribution Bar Chart: 03288500 Cave Creek near Fort Springs, KY. 

 
Figure B.8 Particle Distribution Percent Finer: 03288500 Cave Creek near Fort Springs, KY. 
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Figure B.9 Particle Distribution Bar Chart: 03287590 North Elkhorn Creek on Winchester 

Road near Lexington, KY. 

 
Figure B.10 Particle Distribution Percent Finer: 03287590 North Elkhorn Creek on 

Winchester Road near Lexington, KY. 
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Figure B.11 Particle Distribution Bar Chart: 03289193 Wolf Run at Old Frankfort Pike, 

Lexington, KY. 
 

  
Figure B.12 Particle Distribution Percent Finer: 03289193 Wolf Run at Old Frankfort Pike, 

Lexington, KY. 
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Figure B.13 Particle Distribution Bar Chart: 03284530 East Hickman Creek at Delong Road 

near East Hickman, KY. 
 

 
Figure B.14 Particle Distribution Percent Finer: 03284530 East Hickman Creek at Delong 

Road near East Hickman, KY. 
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Figure B.15 Particle Distribution Bar Chart: 03284555 West Hickman Creek at Ash Grove 

Pike near East Hickman, KY. 
 

 
Figure B.16 Particle Distribution Percent Finer: 03284555 West Hickman Creek at Ash 

Grove Pike near East Hickman, KY.
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Figure B.17 Particle Distribution Bar Chart: 03287600 North Elkhorn at Bryan Station Road 

near Montrose, KY. 

 
Figure B.18 Particle Distribution Percent Finer: 03287600 North Elkhorn at Bryan Station 

Road near Montrose, KY.
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Figure B.19 Particle Distribution Bar Chart: 03289000 South Elkhorn Creek at Fort Springs, 

KY. 

  
Figure B.20 Particle Distribution Percent Finer: 03289000 South Elkhorn Creek at Fort 

Springs, KY.
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Figure B.21 Particle Distribution Bar Chart: 03289200 Town Branch at Yarnallton Rd at 

Yarnallton, KY. 

  
Figure B.22 Particle Distribution Percent Finer: 03289200 Town Branch at Yarnallton Rd at 

Yarnallton, KY.
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Figure B.23 Particle Distribution Bar Chart: 03291000 Eagle Creek at Sadieville, KY. 

  
Figure B.24 Particle Distribution Percent Finer: 03291000 Eagle Creek at Sadieville, KY.
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Figure B.25 Particle Distribution Bar Chart: 03288000 North Elkhorn Creek near 

Georgetown, KY. 

  
Figure B.26 Particle Distribution Percent Finer: 03288000 North Elkhorn Creek near 

Georgetown, KY.
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Figure B.27 Particle Distribution Bar Chart: 03238772 Fourmile Creek at Poplar Ridge near 

Alexandria, KY. 

  
Figure B.28 Particle Distribution Percent Finer: 03238772 Fourmile Creek at Poplar Ridge 

near Alexandria, KY. 
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Figure B.29 Particle Distribution Bar Chart: 03254480 Cruises Creek at Highway 17 near 

Piner, KY. 

  
Figure B.30 Particle Distribution Percent Finer: 03254480 Cruises Creek at Highway 17 near 

Piner, KY. 
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Figure B.31 Particle Distribution Bar Chart: 03262001 Woolper Creek at Woolper Road near 

Burlington, KY. 

 
Figure B.32 Particle Distribution Percent Finer: 03262001 Woolper Creek at Woolper Road 

near Burlington, KY.
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Figure B.33 Particle Distribution Bar Chart: 03254550 Banklick Creek at Highway 1829 near 

Erlanger, KY. 

  
Figure B.34 Particle Distribution Percent Finer: 03254550 Banklick Creek at Highway 1829 

near Erlanger, KY. 
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Figure B.35 Particle Distribution Bar Chart: 03277075 Gunpowder Creek at Camp Ernst 

Road near Union, KY. 

  
Figure B.36 Particle Distribution Percent Finer: 03277075 Gunpowder Creek at Camp Ernst 

Road near Union, KY. 
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Figure B.37 Particle Distribution Bar Chart: 03238745 Twelvemile Creek at Highway 1997 

near Alexandria, KY. 

  
Figure B.38 Particle Distribution Percent Finer: 03292474 Goose Creek at Old Westport 

Road near St. Matthews, KY.
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Figure B.39 Particle Distribution Bar Chart: 03297800 Cedar Creek at Highway 1442 near 

Sheperdsville, KY. 

  
Figure B.40 Particle Distribution Percent Finer: 03297800 Cedar Creek at Highway 1442 

near Sheperdsville, KY.
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Figure B.41 Particle Distribution Bar Chart: 03293000 Middle Fork Beargrass Creek at Old 

Cannons Lane at Louisville, KY. 

  
Figure B.42 Particle Distribution Percent Finer: 03293000 Middle Fork Beargrass Creek at 

Old Cannons Lane at Louisville, KY.
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Figure B.43 Particle Distribution Bar Chart: 03298000 Floyd’s Fork at Fisherville, KY. 

 
Figure B.44 Particle Distribution Percent Finer: 03298000 Floyd’s Fork at Fisherville, KY.
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