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ABSTRACT OF DISSERTATION

ADVANCEMENTS IN TRANSMISSION LINE FAULT LOCATION

In modern power transmission systems, the double-circuit line structure is in-
creasingly adopted. However, due to the mutual coupling between the parallel lines
it is quite challenging to design accurate fault location algorithms. Moreover, the
widely used series compensator and its protective device introduce harmonics and
non-linearities to the transmission lines, which make fault location more difficult. To
tackle these problems, this dissertation is committed to developing advanced fault
location methods for double-circuit and series-compensated transmission lines.

Algorithms utilizing sparse measurements for pinpointing the location of short-
circuit faults on double-circuit lines are proposed. By decomposing the original net-
work into three sequence networks, the bus impedance matrix for each network with
the addition of the fictitious fault bus can be formulated. It is a function of the
unknown fault location. With the augmented bus impedance matrices the sequence
voltage change during the fault at any bus can be expressed in terms of the corre-
sponding sequence fault current and the transfer impedance between the fault bus
and the measured bus. Resorting to VCR the superimposed sequence current at any
branch can be expressed with respect to the pertaining sequence fault current and
transfer impedance terms. Obeying boundary conditions of different fault types, four
different classes of fault location algorithms utilizing either voltage phasors, or phase
voltage magnitudes, or current phasors, or phase current magnitudes are derived. The
distinguishing charactristic of the proposed method is that the data measurements
need not stem from the faulted section itself. Quite satisfactory results have been
obtained using EMTP simulation studies.

A fault location algorithm for series-compensated transmission lines that em-
ploys two-terminal unsynchronized voltage and current measurements has been im-
plemented. For the distinct cases that the fault occurs either on the left or on the
right side of the series compensator, two subroutines are developed. In additon, the
procedure to identify the correct fault location estimate is described in this work.
Simulation studies carried out with Matlab SimPowerSystems show that the fault
location results are very accurate.
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Chapter 1

Introduction

Power transmission lines play an important role in delivering power safely and con-
tinuously. Modern power systems cover a large geographic area and are exposed to
external events and circumstances such as lightening, falling trees, dirt, animals, ice,
etc. These events sometimes would cause faults rendering the lines out of service.
Upon occurrence of the fault it is of vital importance for the utility company to send
out the maintenance crew to repair the faulted component and to restore the service
as soon as possible. The company’s ability to do so relies on fast and accurate fault
location.

There are eleven types of short-circuit faults that can occur on transmission lines:
single line-to-ground faults (a-g, b-g, c-g), line-to-line faults (a-b, b-c, c-a), line-
to-line-to-ground faults (a-b-g, b-c-g, c-a-g), and three-phase faults (a-b-c, a-b-c-g).
Single line-to-ground faults are the most common type of fault usually caused by
lightning stroke. Three-phase faults are the least common type of fault.

Most transmission lines posses a single-circuit line structure. On the other hand,
in modern power systems double-circuit transmission lines have been increasingly
adopted, mainly because they can improve the reliability and capacity of energy trans-
mission. Due to the mutual coupling between the parallel lines it is still challenging
to design an accurate fault location algorithm [1–3], despite the wider application of
double-circuit lines.

The Series Compensator (SC) is a device that is sometimes installed for long trans-
mission lines to improve power transfer capability, enhance power system stability,
damp power system oscillations, etc. The SC device can be either a capacitor bank or
a thyristor-based power-flow controller, which is usually protected by a Metal Oxide
Varistor (MOV). For such series-compensated lines the harmonics and non-linearities
introduced by the SC and its MOV make transmission line protection and fault loca-
tion more difficult [4–7].

1.1 Analysis of Fault Location Algorithms

Many research efforts have been undertaken on fast and accurate fault location al-
gorithms for single-circuit, double-circuit and series-compensated transmission lines.
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They can be classified into the following four categories: phasor based, time-domain
based, traveling-wave based, and others.

Phasor based algorithms take terminal voltage and/or current phasors as input.
The method comprises one-terminal, two-terminal and multi-terminal algorithms [1–
3, 8–23].

In high-speed tripping applications it is desirable for the fault location to be
completed before the current disappears due to relay operations [24]. For phasor-
based algorithms the acquisition of high-accuracy phasor estimates needs to obtain
at least one cycle of data. Therefore the algorithms in this category are not fit for
high-speed applications. Instead, some time-domain algorithms have been developed
for single-circuit networks [24–28]. For example, [26] only requires a data window of
1/4 of a cycle, satisfying the requirement of high-speed fault location.

Represented by references [29, 30] the traveling-wave based algorithms use the
return time of the reflected waves traveling from the fault point to the line terminal
as a measure of distance to the fault. Other algorithms using wavelet techniques
[31, 32], artificial neural networks [33–36], and support vector machines [37] have
been developed as well.

In general these are the major sources of error in any fault location algorithm:

1. Line asymmetry. Algorithms developed under the assumption of the transposed
lines are applied to untransposed lines, and will introduce errors in consequence.

2. Shunt capacitance. Most algorithms utilize the lumped parameter model which
neglects the charging effect of the lines. However, for long transmission lines an
exact representation of the line needs to fully consider shunt capacitance.

3. Fault resistance.

4. Load current.

5. Source impedances. In practical power systems the equivalent source impedance
of every terminal changes continuously.

1.1.1 Review of Existing Double-Circuit Line Fault Location
Algorithms

Diverse fault location algorithms designed for double-circuit lines have been developed
in the past few decades and will be henceforth reviewed.

In the phasor-based fault location category, some methods utilize only one-terminal
[38–46] data to locate a fault. The authors of [38] assume that the angles of a fault
current and the fault current distribution from the load end are equal. They propose
an algorithm that utilizes one-terminal voltage and current data. Because of their
approximation the accuracy of their fault location is affected by the fault resistance
and the asymmetrical arrangement of the transmission lines.

Eriksson et al. [39] employ phase voltages and currents from the near end of the
faulted line, and a zero-sequence current from the near end of the healthy line as

2



input signals. To fully compensate the error introduced by the fault resistance (or
the impact of the remote infeed), source impedance values are required.

Kawady and Stenzel [40] use a modal transformation to decouple the initially
coupled transmission lines. Their method utilizes as input voltage and current phasors
from a locally installed relay. Compared with Eriksson et al. [39], this algorithm does
not need source impedances. It modifies the apparent impedance seen from the relay
location. This is, however, based on the assumption that the line is homogeneous.
Simulations show that the accuracy is still sufficient when the algorithm is applied to
an untransposed structure. Also, the effects of load current, shunt capacitance and
fault resistance are negligible for the purpose of fault location.

The authors of [41] construct a voltage equation from the local end through a
faulty line to the fault point. Then they construct another voltage equation from the
local end, through a sound line and a faulty path, to the fault point. The remote
infeed can then be eliminated by inserting one equation into another. Then, three
such equations for positive-, negative- and zero-sequence circuits are obtained. Next,
based on the boundary conditions for different fault types, these three equations
can be combined differently in order to solve for the fault resistance and the fault
distance. Their algorithm is independent of fault resistance, load currents and source
impedance. However, their model neglects shunt capacitance for long lines.

Non-earth faults on one of the circuits of parallel transmission lines are dealt with
in [42]. Similar to [41], the authors establish three voltage equations from the local
end via a faulty line to the fault point, based on three phase networks. Then these
three equations are added, forming an equation with fault resistance and fault current
as unknowns. Next, by applying the Kirchhoff voltage law (KVL) the fault current
can be expressed as a function of fault distance. Solving for the fault resistance and
the fault distance is then trivial. This algorithm is not influenced by fault resistance,
load currents and source impedance. It, however, does not consider shunt capacitance,
which will introduce errors for the fault location on long transmission lines.

The fault distance equations in [41, 42] all include the current phasors of the
adjacent sound line’s local-end, which are assumed known. However, in some practical
systems such current phasors are not available. Similar to [42], Ahn et al. [43]
also construct the voltage equations that contain the sought-after fault resistance
and fault location. By introducing the concept of current distribution factors the
influence of the load current is eliminated. Since their formula for calculating the fault
distance includes both local and remote source impedances, errors are introduced.
The algorithm, however, is robust enough since it is largely insensitive to the variation
in source impedances.

J. Izykowski et al. [44] utilize all the voltage and current phasors of the local end
from both the sound and the faulted lines as input. The zero-sequence impedance of
a line will adversely influence the fault location accuracy. In their expression for the
fault path voltage drop the weight of the zero-sequence fault current is set to zero
to exclude the zero-sequence component. Since the fault distance formula does not
contain any source impedances, the algorithm is not influenced by the varying source
impedances nor by the fault resistance.

Using a technique similar to [41–44], [45] have developed a fault location algorithm

3



applicable to untransposed lines. It utilizes the lumped line model that ignores shunt
capacitance. Because of that the accuracy of the algorithm is not guaranteed for long
transmission lines. In summary [41–45] are similar in eliminating remote infeed. They
achieve this by formulating appropriate KVL equations around the parallel lines loop.

A. J. Mazon et al. [46] introduce a new concept of distance factor, which is
the ratio of the positive-sequence pre-fault currents of both the sound and faulted
lines at the local end. By comparing this value to the one calculated from system
parameters when fault occurred, the fault location can be evaluated. Their algorithm
is not affected by fault resistance or load current. Also, fault type classification is not
necessary. However, the method is sensitive to variations in source impedances.

Next we will review two-terminal and multi-terminal algorithms [47–51]. They
usually provide more accurate fault location results than one-terminal algorithms,
but require the synchronization of every terminal.

A. T. Johns et al. [47] provide a distributed-parameter based algorithm which fully
considers the effect of shunt capacitance. It requires voltage and current phasors from
both terminals of the faulted line. The algorithm is independent of fault resistance
and source impedances. It does not require fault classification or synchronization
of the two terminals. Although their method was designed for transposed lines, it
also works satisfactorily when used for untransposed lines. The authors in [48] have
proposed an iterative approach to improve the accuracy of fault distance estimation
in [47].

D. J. Lawrence et al. [49] relate the voltage and current phasors of the sending
and receiving ends with ABCD parameters, where the fault distance and fault resis-
tance are included. For different types of fault different equations are derived. The
synchronized phasors of two terminals are needed to feed the algorithm. The method
can also be used for untransposed lines, and is independent of fault resistance and
source impedances.

T. Nagasawa et al. [50] present an algorithm based on the lumped parameter
model, which may introduce errors for long lines. Their procedure needs only the
magnitude of the differential current of each terminal. It is the difference of the
currents in both circuits measured at the same terminal. Since their method was de-
veloped for three-terminal parallel transmission lines, any n-terminal network must be
converted to an equivalent three-terminal network first. Because only the magnitudes
of differential currents are required, synchronization of the terminals is not necessary.
Their algorithm is independent of fault resistance and of any source impedances. Fur-
thermore, it does not demand fault classification. However, their approach is designed
for transposed transmission lines only.

T. Funabashi et al. [51] have presented multi-terminal algorithms based on the
lumped parameter model. Their algorithm 1 is based on an impedance calculation
that makes use of phase current data at each terminal, phase voltage data at the
locator terminal, and all the phase components of the line impedance. Algorithm
2 introduces the current diversion ratio method. It utilizes phase current data at
each terminal and all the phase components of the line impedance. Both algorithms
are applicable to all types of single-circuit or inter-circuit faults. The fault location
is independent of fault resistance and the method does not require knowledge of
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source impedances. Since the phase component of the line impedance is utilized it is
suitable both for balanced and unbalanced lines. Fault classification is irrelevant for
this algorithm, but synchronization of the terminal voltages and currents is needed.

In the realm of time-domain fault location methods, [52] decomposes the trans-
mission lines into a common component net and a differential component net, each of
which is a single-circuit network. For the differential component net the voltages at
both terminals are zero. Based on the distributed parameter time-domain equivalent
model, two voltage distributions along the line can be calculated from the two termi-
nal currents, respectively. The proposed approach exploits the fact that the difference
between these two voltages is smallest at the point of fault. The algorithm has the
following advantages:

• A data window less than one cycle long, satisfying high-speed tripping require-
ments.

• No requirement to synchronize the two terminal currents.

• No need for voltage data.

• No source impedance exists in the differential component net.

• Independence from fault resistance.

• Full account of the influence of shunt capacitance.

• Suitable both for the transposed and untransposed lines.

All the existent algorithms for double-circuit transmission lines have different ad-
vantages. Unfortunately, these methods share a common drawback, namely that the
measurements have to be taken from one or two terminals of the faulted section, or
even at all the terminals of the entire network. From a practical point of view the
data may not be available at the terminals of the faulted line, let alone from all the
buses.

1.1.2 Review of Existing Fault Location Algorithms for Series-
Compensated Lines

Various one-end and two-end fault location algorithms for series-compensated lines
have been developed using synchronous or asynchronous data [53–56].

A one-end fault location algorithm using phase coordinates has been proposed in
[53]. Based on the distributed time-domain model, two voltages are calculated from
synchronized voltages and synchronized currents at two terminals. The fault distance
is the point where these two voltages are equal [54]. A two-end unsynchronized fault
location technique based on the distributed parameter line model is presented in [55].

Reference [56] presents a time-domain two-end algorithm that uses the lumped
parameter model, ingoring the shunt and mutual capacitances. It estimates the in-
stantaneous voltage drop across the compensation device.
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Figure 1.1: Voltage and current waveforms during a-g fault.

Summarizing, in these classical algorithms the calculation of the voltage drop
across the compensation device relies on the equivalent model of the SCs & MOVs.
This will inevitably introduce errors.

1.2 Objectives

In recent years intelligent instruments such as Digital Fault Recorder (DFR) and Pha-
sor Measurement Unit (PMU) have been installed in power systems. These devices
are able to provide highly accurate phasor measurements. The most prominent bene-
fit brought by the PMU is the synchronization of phasors, which greatly simplifies the
fault location problem and improves the fault location accuracy [13]. However, due
to the expensive cost of these units they are only sparsely deployed in the networks.
Having the field conditions in mind this dissertation focuses on a network analysis ap-
proach that is based on the bus impedance matrix technique. The approach leads to
two kinds of accurate phasor-based fault location algorithms for double-circuit lines.
They utilize sparse voltage phasors or current phasors, respectively.

A large number of monitoring devices such as power quality meters have been
deployed in the systems. Some meters can only capture the voltage magnitude (also
called voltage sag) or the current magnitude instead of phasors. The voltage and
current waveforms at one terminal of a double-circuit line that has been affected by
an a-g fault or an a-b-c fault are shown in Figs. 1.1 and 1.2, respectively.

The question how to exploit magnitude data in locating faults is of practical
significance. Algorithms that use voltage or current magnitudes for fault location on
double-circuit lines have been extensively explored in this dissertation.

In an effort to precisely locate the fault on series-compensated single-circuit trans-
mission lines, a novel method employing two-terminal unsynchronized voltage and
current phasors has been devised. In contrast to established methods this ansatz
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Figure 1.2: Voltage and current waveforms during a-b-c fault.

avoids the use of the equivalent voltage-current (V-I) model of SCs & MOVs.

1.3 Proposed New Methods

The fundamental principle of the proposed fault location method for double-circuit
lines is to add to the original network a fictitious bus where the fault occurs. Hence,
the bus impedance matrix is augmented by one order. Then, the driving point
impedance of the fault bus and the transfer impedances between this bus and other
buses are expressed as functions of the unknown fault distance. Based on the defi-
nition of the bus impedance matrix, the change of the sequence voltage at any bus
during the fault is formulated in terms of the corresponding transfer impedance and
sequence fault current. Depending on the boundary conditions for different fault
types, we can obtain the fault location equation using voltage phasors as input.

Two chapters of this dissertation are dedicated to fault location algorithms that
use voltage phasors. Those based on the lumped parameter line model are investigated
in Chapter 2, whereas those adopting the distributed parameter line model instead,
are addressed in Chapter 4.

When the relationships between phase and sequence voltages/currents are estab-
lished through symmetrical component theory, we can use phase voltage magnitudes
to solve the fault location problem. This will be discussed in Chapter 2.

Based on the same augmented bus impedance matrix,Voltage and Current Re-
lation (VCR) are employed. Now the change of the current at any branch can be
expressed as a function of the relevant fault current and the transfer impedance terms
associated with the two ends of the branch. With this result, fault location algorithms
based on either current phasors or phase current magnitudes are developed in this
dissertation. A complete description of this subject is given in Chapter 3.

I have employed the distributed parameter line model for fault location in series-
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Figure 1.3: A sample wide area monitoring system.

compensated single-circuit lines. It takes fully into account the shunt capacitance.
With different boundary conditions for the various fault types, the unknown fault
location can be obtained by properly formulating the fault currents and voltages at
the fault point. Two subroutines assuming that the fault occurs on either side of
the series compensator are developed. A prescription to distinguish the correct fault
location from the erroneous one is provided. The details of this topic are presented
in Chapter 5.

1.4 Summary

In summary, prompt and accurate location of a fault is imperative to reduce power
outage time, customer complaints, and loss of revenue for utility companies.

A major complication to these goals is that most existing fault location methods
for single- and double-circuit transmission lines require measurements from one or
two terminals of the faulted section itself. Some algorithms even necessitate data
from all the terminals in the network. When faced with the real-life scenario that
only sparse measurements are available, these methods are no longer qualified. As a
solution to this discrepancy, this research has implemented fault location with sparse
data for double-circuit transmission lines, with the bus impedance matrix technique
at its heart. This work is an important application of Wide Area Monitoring Systems
(WAMS) as shown in Fig. 1.3.

The fault location method proposed for series-compensated lines is ignorant of the
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non-linearities of the SC and its MOV. This greatly improves the precision of fault
location. Moreover, this approach does not demand synchronization of measurements
of the two terminals, thus largely reducing the burden of network communication.
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Chapter 2

Fault Location Using Sparse
Voltage Measurements Based on
Lumped Parameter Line Model

This chapter is outlined as follow. First of all, the proposed fault location method will
be briefly introduced, followed by the fault location basis in Section 2.2. Next, the
fault location method utilizing sparse voltage measurements based on lumped param-
eter line model is presented in Section 2.3. The proposed algorithms are examined
in the simulation studies based on a 4-bus system in Section 2.4. At last, Section 2.5
completes this chapter with the concluding remarks.

2.1 Introduction

Diverse fault location algorithms on double-circuit lines have been developed in the
past several decades. In general, existing algorithms require voltages and/or currents
from one or two terminals of the faulted section or all the terminals of the network.
For the scenario where only sparse measurements, which may be far away from the
faulted section, are available, these methods are not suitable any more. Reference
[57] has filled this gap by proposing a novel fault location method for single-circuit
lines based on the bus impedance matrix technique. The distinctive characteristic of
this method is that it only demands voltage measurements from one or two buses,
which may be distant from the faulted line. As a supplement to the work in [57], the
scenarios where only voltage magnitudes are available are addressed in [58].

Drawing on the bus impedance matrix technique adopted in [57, 58], this chap-
ter further develops novel fault location algorithms for double-circuit lines based on
the lumped parameter line model. Depending on the input of the method, fault lo-
cation techniques utilizing voltage phasor measurements [59, 60] and phase voltage
magnitudes [61] are implemented, respectively.

The measurements could be from one or more buses and do not need to be taken
from the faulted line. The work is based on the assumption that the network data
are known and the network is transposed. In addition, it is assumed that the faulted
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section can be decided before hand based on relay operations. Fault type classification
result, if necessary, is available. The proposed method is applicable for fundamental
frequency phasors, to which all the voltage and current quantities refer throughout
the dissertation.

2.2 Fault Location Basis

First of all, the common notations applicable to Chapter 2 and 3 are summarized as
follows:

n total number of buses of the pre-fault network;

m unknown per-unit fault distance from bus p;

p, q buses of the faulted section;

r fictitious bus representing the fault point and r = n+ 1;

i symmetrical component index; i = 0, 1, 2 for zero-, positive- and negative-
sequence, respectively, put in parenthesis as a superscript throughout the
work;

z
(i)
j1j2

ith-sequence total self-series impedance of the single-circuit line between
buses j1 and j2;

z
(i)
j1j2 1 ith-sequence total self-series impedance of the first line of the parallel lines

sharing two common terminals j1 and j2;

z
(i)
j1j2 2 ith-sequence total self-series impedance of the second line of the parallel

lines sharing two common terminals j1 and j2;

z
(0)
j1j2 m

zero-sequence total mutual-series impedance between the parallel lines
sharing two common terminals j1 and j2;

Z
(i)
0 bus impedance matrix of the pre-fault ith-sequence network. It has the

size n by n, whose element on the kth1 row and kth2 column is denoted as

Z
(i)
0,k1k2

;

Z(i) bus impedance matrix of the ith-sequence network with the addition of
fictitious fault bus r. It has a size of n+ 1 by n+ 1, whose element on the
kth1 row and kth2 column is denoted by Z

(i)
k1k2

.

The bus impedance matrix of the pre-fault system, Z
(i)
0 , can be built easily from

network parameters [62, 63]. Z(i) is the function of unknown fault distance m and to

be constructed upon Z
(i)
0 and network parameters. Suppose the fault occurs on the

second branch of the parallel lines.

11



Figure 2.1: Pre-fault zero-sequence network.

2.2.1 Construction of Bus Impedance Matrix with Addition
of the Fault Bus

The construction of bus impedance matrix with addition of the fault bus for zero-
sequence network is first considered. The pre-fault zero-sequence network of a sample
power system with the faulted section extracted is shown in Fig. 2.1, whose bus
impedance matrix Z

(0)
0 is assumed to be already developed using well established

techniques [62, 63]. The network with an additional fault bus on the faulted line is
modeled as in Fig. 2.2, whose bus impedance matrix is Z(0).

To formulate Z(0), we first construct the bus impedance matrix Z
(0)
1 of the network

in Fig. 2.3, which removes the branch with impedance z
(0)
pq 2 from Fig. 2.1. Note that

the mutual impedance z
(0)
pq m between these two branches is removed as well. Z

(0)
1 can

be constructed as follows [64]

Z
(0)
1,kl = Z

(0)
0,kl −

L0(k)L0(l)

Zc1
, k, l = 1, 2, . . . , n (2.1)

where [
y

(0)
a y

(0)
m

y
(0)
m y

(0)
b

]
=

[
z

(0)
pq 1 z

(0)
pq m

z
(0)
pq m z

(0)
pq 2

]−1

(2.2)

Zc1 = (Z
(0)
0,pp + Z

(0)
0,qq − 2Z

(0)
0,pq) · [1− z(0)

pq m(y(0)
a + y(0)

m )]2 − y(0)
a (z(0)

pq m)2 − z(0)
pq 2 (2.3)

L0(k) = [1− z(0)
pq m(y(0)

a + y(0)
m )] · (Z(0)

0,kp − Z
(0)
0,kq), k = 1, 2, . . . , n (2.4)
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Figure 2.2: Zero-sequence network with an additional fault bus.

Figure 2.3: Zero-sequence network with a branch removed.
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Figure 2.4: Zero-sequence network with addition of branch pr.

It can be seen that Z
(0)
1 is still a n by n matrix and is not a function of m. Next, we

can add a new bus r to Fig. 2.3 and the self impedance of branch pr is mz
(0)
pq 2. The

mutual impedance between pr and pq 1 is mz
(0)
pq m as shown in Fig. 2.4.

The bus impedance matrix of the network shown in Fig. 2.4 is Z
(0)
2 , which has

the following structure [64]

Z
(0)
2 =

[
Z

(0)
1 L1

LT1 Z
(0)
2,rr

]
(n+1)(n+1)

(2.5)

where

L1(k) = Fk +mGk, k = 1, 2, . . . , n

Z
(0)
2,rr = A3 + A4m+ A5m

2

Fk = Z
(0)
1,kp

Gk =
z

(0)
pq m

z
(0)
pq 1

(Z
(0)
1,kq − Z

(0)
1,kp)

A3 = Z
(0)
1,pp

A4 =
2z

(0)
pq m

z
(0)
pq 1

(Z
(0)
1,pq − Z

(0)
1,pp) + z

(0)
pq 2
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A5 =

(
z

(0)
pq m

z
(0)
pq 1

)2

(Z
(0)
1,pp + Z

(0)
1,qq − 2Z

(0)
1,pq)−

(z
(0)
pq m)2

z
(0)
pq1

Upon Fig. 2.4, a branch qr with self impedance (1−m)z
(0)
pq 2 is added, and it has

mutual impedance (1−m)z
(0)
pq m with the branch pq 1 as shown in Fig. 2.2 . The bus

impedance matrix of the network in Fig. 2.2, which is desired, can be constructed as
follows

Z
(0)
kl = Z

(0)
1,kl −

L2(k)L2(l)

Zc2
, k, l = 1, 2, . . . , n (2.6)

Z
(0)
rk = B

(0)
k + C

(0)
k m, k = 1, 2, . . . , n (2.7)

Z(0)
rr = A

(0)
0 + A

(0)
1 m+ A

(0)
2 m2 (2.8)

where

L2(k) = (Z
(0)
1,kq − Z

(0)
1,kp)

(
z

(0)
pq m

z
(0)
pq 1

− 1

)
, k = 1, 2, . . . , n (2.9)

Zc2 = (
z

(0)
pq m

z
(0)
pq 1

− 1)2(Z
(0)
1,pp + Z

(0)
1,qq − 2Z

(0)
1,pq) + z

(0)
pq 2 −

(
z

(0)
pq m

)2

z
(0)
pq 1

(2.10)

B
(0)
k = Fk −

A6L2(k)

Zc2
(2.11)

C
(0)
k = Gk −

A7L2(k)

Zc2
(2.12)

A
(0)
0 = A3 −

(A6)
2

Zc2
(2.13)

A
(0)
1 = A4 −

2A6A7

Zc2
(2.14)

A
(0)
2 = A5 −

(A7)
2

Zc2
(2.15)

A6 = (Z
(0)
1,pq − Z

(0)
1,pp)

(
z

(0)
pq m

z
(0)
pq 1

− 1

)
(2.16)

A7 =
z

(0)
pq m

z
(0)
pq 1

(
z

(0)
pq m

z
(0)
pq 1

− 1

)
(Z

(0)
1,pp + Z

(0)
1,qq − 2Z

(0)
1,pq) + z

(0)
pq 2 −

(z
(0)
pq m)2

z
(0)
pq 1

(2.17)

Now, let’s consider the construction of bus impedance matrix with addition of a
fictitious fault bus for positive-sequence networks. The positive-sequence network of
a sample power system is shown in Fig. 2.5 and the network with an additional fault
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Figure 2.5: Pre-fault positive-sequence network.

bus is modeled in Fig. 2.6. Similarly, the bus impedance matrix of the network in
Fig. 2.5 is denoted as Z

(1)
0 and can be readily developed. Z(1) is the bus impedance

matrix for the network in Fig. 2.6 and can be constructed following the procedure
for zero-sequence network. In fact, since there is no mutual coupling between the two
parallel lines in the positive-sequence network, Z(1) can be constructed in the exact
same way as that for a single-circuit line network shown in [57, 65]. Z(1) can be
expressed as follows [65]

Z
(1)
kl = Z

(1)
1,kl −

(Z
(1)
1,kp − Z

(1)
1,kq)(Z

(1)
1,lp − Z

(1)
1,lq)

D(1)
, k, l = 1, 2, . . . , n (2.18)

Z
(1)
rk = B

(1)
k + C

(1)
k m, k = 1, 2, . . . , n (2.19)

Z(1)
rr = A

(1)
0 + A

(1)
1 m+ A

(1)
2 m2 (2.20)

where

B
(1)
k = Z

(1)
1,kp −

(Z
(1)
1,kp − Z

(1)
1,kq)(Z

(1)
1,pp − Z

(1)
1,pq)

D(1)
(2.21)

C
(1)
k = −

(Z
(1)
1,kp − Z

(1)
1,kq)z

(1)
pq 2

D(1)
(2.22)

A
(1)
0 = Z

(1)
1,pp −

(Z
(1)
1,pp − Z

(1)
1,pq)

2

D(1)
(2.23)

A
(1)
1 = z

(1)
pq 2

[
1−

2(Z
(1)
1,pp − Z

(1)
1,pq)

D(1)

]
(2.24)
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Figure 2.6: Positive-sequence network with an additional fault bus.

A
(1)
2 = −

(z
(1)
pq 2)

2

D(1)
(2.25)

D(1) = Z
(1)
1,pp + Z

(1)
1,qq − 2Z

(1)
1,pq + z

(1)
pq 2 (2.26)

Z
(1)
1,kl = Z

(1)
0,kl −

(Z
(1)
0,kp − Z

(1)
0,kq)(Z

(1)
0,lp − Z

(1)
0,lq)

D
(1)
0

, k, l = 1, 2, . . . , n (2.27)

D
(1)
0 = Z

(1)
0,pp + Z

(1)
0,qq − 2Z

(1)
0,pq − z

(1)
pq 2 (2.28)

It is assumed that the parameters are the same for positive- and negative-sequence
networks, thus we have Z(2) = Z(1). Here Z(2) represents the bus impedance matrix
with an additional fault bus for the negative-sequence network.

It has been demonstrated that : (1) the first n by n sub-matrix of the bus
impedance matrix Z(i) is determined by network parameters and has nothing to do
with unknown fault location m; (2)the expressions of the transfer impedance Z

(i)
kr

and the driving-point impedance Z
(i)
rr for the zero-sequence network take on similar

form as for the positive-sequence network, with the former being the linear function
of unknown fault location m and the later being the quadratic function of m.

2.2.2 Alternative Way of Construction of Bus Impedance
Matrix with Addition of the Fault Bus

A concept method to build the augmented bus impedance matrix has been proposed
in [57] for single-circuit lines. In this part, similar idea has been adopted to investigate
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Figure 2.7: Zero-sequence network with 1 A injected to bus k.

the alternative way to build the bus impedance matrix with additional fictitious fault
bus for double-circuit lines.

To formulate Z(0), we can injected a single current source into bus l (l = 1, 2, . . . , n),
then the induced voltage at bus k (k = 1, 2, . . . , n) will be the same for the networks
shown in Fig. 2.1 and Fig. 2.2. Based on the definition of bus impedance matrix, it
is obtained that Z

(0)
kl = Z

(0)
0,kl, (k, l = 1, 2, . . . , n). Thus we have

Z(0) =



Z
(0)
0,11 · · · Z

(0)
0,1l · · · Z

(0)
0,1n Z

(0)
1r

...
. . .

...
. . .

...
...

Z
(0)
0,k1 · · · Z

(0)
0,kl · · · Z

(0)
0,kn Z

(0)
kr

...
. . .

...
. . .

...
...

Z
(0)
0,n1 · · · Z

(0)
0,nl · · · Z

(0)
0,nn Z

(0)
nr

Z
(0)
r1 · · · Z

(0)
rl · · · Z

(0)
rn Z

(0)
rr


(2.29)

Therefore, to fully obtain Z(0) , only its last row and column need to be calculated.
In order to derive Z

(0)
kr , inject a current source of 1 Ampere into a single bus k

(k = 1, 2, . . . , n) as shown in Fig. 2.7. i1, i2 denote the current flowing from bus p to
q and r, respectively.

Making use of the bus impedance matrix in (2.29), the voltages at buses p, q and
r in Fig. 2.7 will be

Vp = Z
(0)
0,pk, Vq = Z

(0)
0,qk, Vr = Z

(0)
rk (2.30)
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Figure 2.8: Zero-sequence network with 1 A injected into bus r.

From Fig. 2.7, the following three equations hold

Vp − Vr = mz
(0)
pq 2i2 +mz(0)

pq mi1 (2.31)

Vr − Vq = (1−m)z
(0)
pq 2i2 + (1−m)z(0)

pq mi1 (2.32)

Vp − Vq = z
(0)
pq 1i1 + z(0)

pq mi2 (2.33)

Solving (2.31)-(2.33), the following arrives

Vr = Vp −m(Vp − Vq) (2.34)

Substituting (2.30) into (2.34), it is obtained that

Z
(0)
rk = Z

(0)
0,pk −m(Z

(0)
0,pk − Z

(0)
0,qk), k = 1, 2, . . . , n (2.35)

Define

B
(0)
k = Z

(0)
0,pk (2.36)

C
(0)
k = Z

(0)
0,qk − Z

(0)
0,pk (2.37)

Then we have

Z
(0)
rk = B

(0)
k + C

(0)
k m, k = 1, 2, . . . , n (2.38)

For the derivation of Z
(0)
rr , inject one current source of 1 Ampere into bus r as

shown in Fig. 2.8. Employing the bus impedance matrix in (2.29), the voltages at
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buses p, q and r in Fig. 2.8 will be

Vp = Z(0)
pr , Vq = Z(0)

qr , Vr = Z(0)
rr (2.39)

From Fig. 2.8, the following equations hold

Vp − Vr = mz
(0)
pq 2i2 +mz(0)

pq mi1 (2.40)

Vr − Vq = (1−m)z
(0)
pq 2(i2 + 1) + (1−m)z(0)

pq mi1 (2.41)

Vp − Vq = z
(0)
pq 1i1 +mz(0)

pq mi2 + (1−m)z(0)
pq m(i2 + 1) (2.42)

Solving (2.40)-(2.42) results in

Vr = (1−m)Vp +mVq +m(1−m)z
(0)
pq 2 (2.43)

Substituting (2.39) into (2.43), we have:

Z(0)
rr = (1−m)Z(0)

pr +mZ(0)
qr +m(1−m)z

(0)
pq 2 (2.44)

where Z
(0)
pr and Z

(0)
qr cab be obtained by letting k as p and q in (2.35). Thus we further

have

Z(0)
rr = Z

(0)
0,pp +m(2Z

(0)
0,pq − 2Z

(0)
0,pp + z

(0)
pq 2) +m2(Z

(0)
0,pp + Z

(0)
0,qq − 2Z

(0)
0,pq − z

(0)
pq 2) (2.45)

Define

A
(0)
0 = Z

(0)
0,pp (2.46)

A
(0)
1 = 2Z

(0)
0,pq − 2Z

(0)
0,pp + z

(0)
pq 2 (2.47)

A
(0)
2 = Z

(0)
0,pp + Z

(0)
0,qq − 2Z

(0)
0,pq − z

(0)
pq 2 (2.48)

Thus, we have
Z(0)
rr = A

(0)
0 + A

(0)
1 m+ A

(0)
2 m2 (2.49)

For the positive/negative-sequence network, to formulate Z(1), injecting a single
current source into bus l (l = 1, 2, . . . , n), then the induced voltages at bus k (k =
1, 2, . . . , n) will be the same for the networks shown in Fig. 2.5 and Fig. 2.6. Based

on the definition of bus impedance matrix, it is obtained that Z
(1)
kl = Z

(1)
0,kl, (k, l =

1, 2, . . . , n) .Thus we have

Z(1) =



Z
(1)
0,11 · · · Z

(1)
0,1l · · · Z

(1)
0,1n Z

(1)
1r

...
. . .

...
. . .

...
...

Z
(1)
0,k1 · · · Z

(1)
0,kl · · · Z

(1)
0,kn Z

(1)
kr

...
. . .

...
. . .

...
...

Z
(1)
0,n1 · · · Z

(1)
0,nl · · · Z

(1)
0,nn Z

(1)
nr

Z
(1)
r1 · · · Z

(1)
rl · · · Z

(1)
rn Z

(1)
rr


(2.50)
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Figure 2.9: Positive-sequence network with 1 A injected to a single bus k.

In order to derive Z
(1)
kr , inject a current source of 1 Ampere into a single bus k,

(k = 1, 2, . . . , n) as shown in Fig. 2.9. i1 denotes the current flowing from bus p to r.
Making use of the bus impedance matrix in (2.50), the voltages at buses p, q and

r in Fig. 2.9 will be

Vp = Z
(1)
0,pk, Vq = Z

(1)
0,qk, Vr = Z

(1)
rk (2.51)

From Fig. 2.9, the following two equations hold

Vp − Vr = mz
(1)
pq 2i1 (2.52)

Vp − Vq = z
(1)
pq 2i1 (2.53)

Solving (2.52)-(2.53), the following arrives

Vr = Vp −m(Vp − Vq) (2.54)

Substituting (2.51) into (2.54), it is obtained that

Z
(1)
rk = Z

(1)
0,pk −m(Z

(1)
0,pk − Z

(1)
0,qk), k = 1, 2, . . . , n (2.55)

Define

B
(1)
k = Z

(1)
0,pk (2.56)

C
(1)
k = Z

(1)
0,qk − Z

(1)
0,pk (2.57)
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Figure 2.10: Positive-sequence network with 1 A injected to a single bus r.

Then we have
Z

(1)
rk = B

(1)
k + C

(1)
k m, k = 1, 2, . . . , n (2.58)

For the derivation of Z
(0)
rr , inject one current source of 1 Ampere into bus r as

shown in Fig. 2.10. Employing the bus impedance matrix in (2.50), the voltages at
buses p, q and r in Fig. 2.10 will be:

Vp = Z(1)
pr , Vq = Z(1)

qr , Vr = Z(1)
rr (2.59)

From Fig. 2.10, the following equations hold

Vp − Vr = mz
(1)
pq 2i1 (2.60)

Vr − Vq = (1−m)z
(1)
pq 2(i1 + 1) (2.61)

Solving (2.60)-(2.61) results in

Vr = (1−m)Vp +mVq +m(1−m)z
(1)
pq 2 (2.62)

Substituting (2.59) into (2.62), we have

Z(1)
rr = (1−m)Z(1)

pr +mZ(1)
qr +m(1−m)z

(1)
pq 2 (2.63)

where Z
(1)
pr and Z

(1)
qr cab be obtained by letting k as p and q in (2.55) as

Z(1)
rp = Z

(1)
0,pp −m(Z

(1)
0,pp − Z

(1)
0,qp) (2.64)

Z(1)
rq = Z

(1)
0,pq −m(Z

(1)
0,pq − Z

(1)
0,qq) (2.65)
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Substituting (2.64) and (2.65) into (2.63) further results in

Z(1)
rr = Z

(1)
0,pp +m(2Z

(1)
0,pq − 2Z

(1)
0,pp + z

(1)
pq 2) +m2(Z

(1)
0,pp + Z

(1)
0,qq − 2Z

(1)
0,pq − z

(1)
pq 2) (2.66)

Define

A
(1)
0 = Z

(1)
0,pp

A
(1)
1 = 2Z

(1)
0,pq − 2Z

(1)
0,pp + z

(1)
pq 2

A
(1)
2 = Z

(1)
0,pp + Z

(1)
0,qq − 2Z

(1)
0,pq − z

(1)
pq 2

Thus, we have

Z(1)
rr = A

(1)
0 + A

(1)
1 m+ A

(1)
2 m2 (2.67)

It is found that the expressions of elements of Z(1) are identical to Z(0). In sum-
mary, the bus impedance matrix with addition of a fictitious fault bus for zero-,
positive-, or negative-sequence network can be written in a compact form as follows

Z
(i)
kl = Z

(i)
0,kl, k, l = 1, 2, . . . , n (2.68)

Z
(i)
rk = B

(i)
k + C

(i)
k m, k = 1, 2, . . . , n (2.69)

Z(i)
rr = A

(i)
0 + A

(i)
1 m+ A

(i)
2 m

2 (2.70)

where i = 0, 1, 2 and

B
(i)
k = Z

(i)
0,pk (2.71)

C
(i)
k = Z

(i)
0,qk − Z

(i)
0,pk (2.72)

A
(i)
0 = Z

(i)
0,pp (2.73)

A
(i)
1 = 2Z

(i)
0,pq − 2Z

(i)
0,pp + z

(i)
pq 2 (2.74)

A
(i)
2 = Z

(i)
0,pp + Z

(i)
0,qq − 2Z

(i)
0,pq − z

(i)
pq 2 (2.75)

B
(i)
k , C

(i)
k , A

(i)
0 , A

(i)
1 , and A

(i)
2 are all constants determined by network parameters.

Compared to the method of obtaining the bus impedance matrix with additional
fictitious fault bus in Section 2.2.1 the approach shown in this section is very clear
in concept and efficient in computation. We can deduce that the formulations of the
driving-point impedance of the fault bus Z

(i)
rr and the transfer impedance between

this bus and any other bus Z
(i)
kr as the functions of the fault location take on the same

form for single-circuit and double-circuit lines [60]. This conclusion is based on the
fact that the positive-sequence double-circuit line is the same as positive-, negative- or
zero-sequence single-circuit line in the sense that there is no mutual coupling between
parallel lines. Therefore, it can be concluded that (2.68)-(2.75) are applicable for
both single-circuit and double-circuit structures.
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2.2.3 Relation Between Voltage Change and Augmented Bus
Impedance Matrix

At bus k (k = 1, 2, . . . , n), drawing on the definition of bus impedance matrix, the
following hold [64]

E
(1)
k = E

(1)0
k − Z(1)

kr I
(1)
f (2.76)

E
(2)
k = −Z(2)

kr I
(2)
f (2.77)

E
(0)
k = −Z(0)

kr I
(0)
f (2.78)

where

E
(1)0
k pre-fault positive-sequence voltage at bus k

E
(1)
k , E

(2)
k , E

(0)
k positive-, negative-, zero-sequence voltage at bus k during the fault;

I
(1)
f , I

(2)
f , I

(0)
f positive-, negative-, zero-sequence fault current at the fault point.

A note of value is that all the sequence voltages and currents are for phase A. It
can be seen that the voltage change at any bus during the fault can be formulated
with respect to the corresponding transfer impedance and fault current.

2.3 Proposed Fault Location Method

In Section 2.2, the sequence voltage change of any bus expressed in terms of the corre-
sponding transfer impedance and fault current has been established. The formulations
of the driving point impedance Z

(i)
rr and the transfer impedance Z

(i)
kr (k = 1, 2, . . . , n)

with respect to the unknown fault location m have been found. With this foundation,
we can proceed to derive fault location methods utilizing voltage phasors and phase
voltage magnitudes, respectively. As a matter of fact, since Z

(i)
kr (k = 1, 2, . . . , n) and

Z
(i)
rr take on the exactly same form for both single-circuit and double-circuit lines, it

has been investigated that the overall fault location methods for double-circuit lines
are the same as those for single-circuit lines [57, 58].

By manipulating the boundary conditions of different fault types, the fault loca-
tion formulas utilizing voltage phasors can be obtained.

Further resorting to the relationships between phase voltages and sequence volt-
ages, the fault location formula bridging the phase voltage magnitudes during the
fault at any bus with unknown fault location can be derived [58, 61].

2.3.1 Fault Location Algorithms Utilizing Voltage Phasors

In this section, fault location formulas utilizing voltage phasors from one bus and two
buses will be discussed.
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2.3.1.1 Fault Scenarios with Measurements from Two Buses

First of all, fault location algorithms using both synchronized and unsynchronized
measurements from two buses are dealt with.

1) Fault location with synchronized measurements from two buses

Suppose that synchronized pre-fault and fault voltage measurements at bus k and
l (k, l = 1, 2, . . . , n) are available. For bus l, similar to (2.76)-(2.78), the following
formulas exist

E
(1)
l = E

(1)0
l − Z(1)

lr I
(1)
f (2.79)

E
(2)
l = −Z(1)

lr I
(2)
f (2.80)

E
(0)
l = −Z(0)

lr I
(0)
f (2.81)

Eliminating I
(1)
f from (2.76) and (2.79) and combining (2.69) results in

E
(1)
k − E

(1)0
k

E
(1)
l − E

(1)0
l

=
Z

(1)
kr

Z
(1)
lr

=
B

(1)
k + C

(1)
k m

B
(1)
l + C

(1)
l m

(2.82)

Let

d
(1)
kl =

E
(1)
k − E

(1)0
k

E
(1)
l − E

(1)0
l

(2.83)

The fault location formula using positive-sequence measurements is derived as

m =
B

(1)
k − d

(1)
kl B

(1)
l

d
(1)
kl C

(1)
l − C

(1)
k

(2.84)

Eliminating I
(2)
f from (2.77) and (2.80)and combining (2.69) leads to

E
(2)
k

E
(2)
l

=
Z

(1)
kr

Z
(1)
lr

=
B

(1)
k + C

(1)
k m

B
(1)
l + C

(1)
l m

(2.85)

Let

d
(2)
kl =

E
(2)
k

E
(2)
l

(2.86)

The fault location formula using negative-sequence measurements is derived as

m =
B

(1)
k − d

(2)
kl B

(1)
l

d
(2)
kl C

(1)
l − C

(1)
k

(2.87)

Eliminating I
(0)
f from (2.78) and (2.81)and combining (2.69) leads to

E
(0)
k

E
(0)
l

=
Z

(0)
kr

Z
(0)
lr

=
B

(0)
k + C

(0)
k m

B
(0)
l + C

(0)
l m

(2.88)
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Let

d
(0)
kl =

E
(0)
k

E
(0)
l

(2.89)

The fault location formula using zero-sequence measurements is derived as

m =
B

(0)
k − d

(0)
kl B

(0)
l

d
(0)
kl C

(0)
l − C

(0)
k

(2.90)

On account of the fact only positive-sequence quantities exist for any kind of faults,
positive-sequence quantities are preferred since in this case no fault type classification
is needed.

The above fault location formulas are applicable only if there exists a path, which
passes through the faulted line and does not pass any bus more than once, between
buses k and l [57]. Otherwise, the voltage changes at these two buses will be con-
stant or linearly dependent and independent of the fault location variable. Since
most power network is interconnected, most combinations are able to produce fault
location estimate.

2) Fault location with unsynchronized measurements from two buses

From (2.82) and (2.83), we can establish

∣∣∣d(1)
kl

∣∣∣ =

∣∣∣∣∣B(1)
k + C

(1)
k m

B
(1)
l + C

(1)
l m

∣∣∣∣∣ (2.91)

where || yields the magnitude of its argument. By separating the real and imaginary
parts of (2.91), we can form two real equations with only one unknown variable m.
Eliminating this variable from these two equations can lead to a 2nd order polynomial
of m. Two fault location estimates will be produced, and the one falls between 0 and
1 p.u. is retained as the actual fault location estimation.

2.3.1.2 Fault Scenarios with Measurements from a Single Bus

Suppose the voltage phasor measurements from a single bus k (k, l = 1, 2, . . . , n) are
given, fault location algorithms for different fault types are derived in the following.

1) line to ground (LG) fault

For phase A to ground fault, the following boundary conditions are satisfied

I
(0)
f = I

(1)
f = I

(2)
f (2.92)

I
(1)
f =

E
(1)0
r

Z
(0)
rr + Z

(1)
rr + Z

(2)
rr + 3Rf

(2.93)
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Eliminating I
(2)
f and I

(0)
f from (2.77) and (2.78) and combining (2.69) yields

E
(2)
k

E
(0)
k

=
Z

(1)
kr

Z
(0)
kr

=
B

(1)
k + C

(1)
k m

B
(0)
k + C

(0)
k m

(2.94)

Define

g =
E

(2)
k

E
(0)
k

(2.95)

The fault location for AG fault is thus derived as

m =
B

(1)
k − gB

(0)
k

gC
(0)
k − C

(1)
k

(2.96)

2) line to line to ground (LLG) fault

For phase B to C to ground fault, the following boundary conditions hold

I
(2)
f

I
(0)
f

=
Z

(0)
rr + 3Rf

Z
(2)
rr

(2.97)

I
(1)
f =

E
(1)0
r

Z
(1)
rr +

Z
(2)
rr (Z

(0)
rr + 3Rf )

Z
(0)
rr + Z

(2)
rr + 3Rf

(2.98)

I
(2)
f = −I(1)

f

Z
(0)
rr + 3Rf

Z
(0)
rr + Z

(2)
rr + 3Rf

(2.99)

I
(0)
f = −I(1)

f

Z
(2)
rr

Z
(0)
rr + Z

(2)
rr + 3Rf

(2.100)

Replacing I
(2)
f and I

(0)
f from (2.77) and (2.78) in (2.97), we have

E
(2)
k

E
(0)
k

=
Z

(1)
kr (Z

(0)
rr + 3Rf )

Z
(0)
kr Z

(2)
rr

(2.101)

Substituting (2.69) and (2.70) into (2.101) yields

g =
(B

(1)
k + C

(1)
k m)(A

(0)
0 + A

(0)
1 m+ A

(0)
2 m2 + 3Rf )

(B
(0)
k + C

(0)
k m)(A

(1)
0 + A

(1)
1 m+ A

(1)
2 m2)

(2.102)

Equation (2.102) is a complex formula, which can be separated into real and imag-
inary parts to obtain two real formulations with both unknowns m and Rf . By
eliminating the unknown variable Rf from these two real equations, a 4th order poly-
nomial containing only one unknown variable m can be formed, from which the fault
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location estimation can be solved. After m is obtained, the other unknown Rf can
be calculated.

3) line to line (LL) fault

For phase B to C fault, the boundary conditions are stated as

I
(2)
f = −I(1)

f , I
(0)
f = 0 (2.103)

I
(1)
f =

E
(1)0
r

Rf + Z
(1)
rr + Z

(2)
rr

(2.104)

Substituting (2.103) into (2.104) results in

I
(2)
f = − E

(1)0
r

Rf + 2Z
(1)
rr

(2.105)

Replacing I
(2)
f in (2.105) with (2.77) leads to

E
(2)
k =

Z
(1)
kr E

(1)0
r

Rf + 2Z
(1)
rr

(2.106)

Substituting (2.69) and (2.70) into (2.106)

E
(2)
k =

(B
(1)
k + C

(1)
k m)E

(1)0
r

Rf + 2A
(1)
0 + 2A

(1)
1 m+ 2A

(1)
2 m2

(2.107)

The unknowns in (2.107) include m and Rf and E
(1)0
r , therefore it is unsolvable. How-

ever, if we approximate E
(1)0
r as 1.0 p.u. and separate (2.107) into real and imaginary

parts to form two real equations, then m and Rf can be determined. m can be com-
puted from solving a 2nd order polynomial and the other variable Rf can be solved
afterwards . The assumption of a flat value for the pre-fault voltage at the fault bus
may introduce certain error in fault location estimation.

4) three phase symmetrical (LLL) fault

For three phase symmetrical fault, the boundary conditions are as follows

I
(0)
f = I

(2)
f = 0 (2.108)

I
(1)
f =

E
(1)0
r

Rf + Z
(1)
rr

(2.109)

Replacing I
(1)
f in (2.109) with (2.76) produces

E
(1)
k = E

(1)0
k − Z

(1)
kr E

(1)0
r

Rf + Z
(1)
rr

(2.110)
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Substituting (2.69) and (2.70) into (2.110), we have

E
(1)
k = E

(1)0
k − (B

(1)
k + C

(1)
k m)E

(1)0
r

Rf + A
(1)
0 + A

(1)
1 m+ A

(1)
2 m2

(2.111)

The unknowns m and Rf in (2.111) can be solved following a similar procedure
as for (2.107).

One-bus fault location algorithms for other unsymmetrical faults involving other
phases can be deduced and not shown here.

Note that for LLG, LL and LLL faults, multiple solutions can be obtained. A
solution is defined as a pair of fault location estimate and fault resistance estimate.
A solution could be a valid solution (0 ≤ m ≤ 1 and Rf ≥ 0) or an invalid solution
(m < 0 or m > 1 or Rf < 0). An invalid solution can be easily identified and
removed. In cases where two or more valid solutions arise, one is the true solution
and the others are erroneous solutions.

The fault location estimate for LLG fault is actually obtained by solving a 4th

order polynomial function of m, and the corresponding fault resistance estimate can
be solved afterwards. This way, four pairs of fault location and resistance estimates
are produced. Any invalid solution if existing can be easily filtered out. It is still
possible that two or even more valid solutions remain, where only one solution is true
and the rest is erroneous. The erroneous solution can be identified by the following
method. We can calculate the voltages of the bus with measurements from all the
valid solutions by making use of the bus impedance matrix technique and compare
them with the actual voltage measurements. The bus voltages computed from the
erroneous solution differ from the original bus voltage measurements, and thus the
erroneous solution can be recognized.

For both LL and LLL faults, a quadratic function with respect to m is formulated
to solve for the fault location, which can be used to further calculate the correspond-
ing fault resistance. Two solutions are produced as a result. If one of them is an
invalid solution, a unique solution can be obtained. In case two valid solutions are
yielded, one of them is an erroneous solution. The erroneous solution identification
method proposed for LLG fault fails to distinguish between the two solutions since
the computed bus voltages from both of them are the same as the actual bus volt-
age measurements. In this case, both fault location estimates will be treated as like
estimates.

2.3.2 Fault Location Algorithms Utilizing Phase Voltage Mag-
nitudes

At any bus k (k = 1, 2, . . . , n), suppose only the phase voltage magnitudes during
the fault, |Eka|, |Ekb|, and |Ekc|, are recorded by the recording device. Based on the
symmetrical component theory

Eka = E
(0)
k + E

(1)
k + E

(2)
k (2.112)

Ekb = E
(0)
k + α2E

(1)
k + αE

(2)
k (2.113)
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Ekc = E
(0)
k + αE

(1)
k + α2E

(2)
k (2.114)

where Eka, Ekb, Ekc are the phase A, B, C voltage at bus k, respectively and α = ej120◦ .
Substituting (2.76), (2.77), and (2.78) into (2.112)-(2.114) gives rise to

Eka = −Z(0)
kr I

(0)
f + E

(1)0
k − Z(1)

kr I
(1)
f − Z

(2)
kr I

(2)
f (2.115)

Ekb = −Z(0)
kr I

(0)
f + α2(E

(1)0
k − Z(1)

kr I
(1)
f )− αZ(2)

kr I
(2)
f (2.116)

Ekc = −Z(0)
kr I

(0)
f + α(E

(1)0
k − Z(1)

kr I
(1)
f )− α2Z

(2)
kr I

(2)
f (2.117)

2.3.2.1 Algorithms with Voltage Magnitudes from One Bus

In this section, fault location algorithms using measurements from one bus for differ-
ent types of fault will be presented.

1) LG fault

For phase A to ground fault, from the boundary condition stated in (2.92), (2.115)-
(2.117) can be simplified as follows

Eka = E
(1)0
k − (Z

(0)
kr + 2Z

(1)
kr )I

(1)
f (2.118)

Ekb = α2E
(1)0
k − (Z

(0)
kr − Z

(1)
kr )I

(1)
f (2.119)

Ekc = αE
(1)0
k − (Z

(0)
kr − Z

(1)
kr )I

(1)
f (2.120)

Substituting (2.69), (2.70) and (2.93) into (2.118)-(2.120) yields

|Eka| =
∣∣∣E(1)0

k −
[
(B

(0)
k + 2B

(1)
k ) + (C

(0)
k + 2C

(1)
k )m

]
I

(1)
f

∣∣∣ (2.121)

|Ekb| =
∣∣∣α2E

(1)0
k −

[
(B

(0)
k −B

(1)
k ) + (C

(0)
k − C

(1)
k )m

]
I

(1)
f

∣∣∣ (2.122)

|Ekc| =
∣∣∣αE(1)0

k −
[
(B

(0)
k −B

(1)
k ) + (C

(0)
k − C

(1)
k )m

]
I

(1)
f

∣∣∣ (2.123)

where

I
(1)
f =

E
(1)0
r

(A
(0)
0 + 2A

(1)
0 ) + (A

(0)
1 + 2A

(1)
1 )m+ (A

(0)
2 + 2A

(1)
2 )m2 + 3Rf

(2.124)

Given |Eka|, |Ekb|, and |Ekc|, it is needed to assume a certain value for E
(1)0
k and E

(1)0
r

in order to estimate the fault location. A possible solution is: E
(1)0
k = E

(1)0
r = 1.0

p.u.. Then we will have three equations and two unknown variables m and Rf . The
least squares approach can be utilized to obtain the solution, which is provided in
Section 2.3.2.3. A initial value of 0.5 p.u. can be chosen for m and 0.1 p.u. for Rf .
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2) LLG fault

For phase B to C to ground fault, from the boundary conditions in (2.98)-(2.100)
and (2.115)-(2.117), the fault location formulations are obtained as

|Eka| =

∣∣∣∣∣E(1)0
k +

Z
(2)
rr

ZLLG
(Z

(0)
kr − Z

(1)
kr )I

(1)
f

∣∣∣∣∣ (2.125)

|Ekb| =

∣∣∣∣∣α2E
(1)0
k +

Z
(0)
kr Z

(2)
rr

ZLLG
I

(1)
f − Z

(1)
kr (α2 − α + α

Z
(2)
rr

ZLLG
)I

(1)
f

∣∣∣∣∣ (2.126)

|Ekc| =

∣∣∣∣∣αE(1)0
k +

Z
(0)
kr Z

(2)
rr

ZLLG
I

(1)
f − Z

(1)
kr (α− α2 + α2 Z

(2)
rr

ZLLG
)I

(1)
f

∣∣∣∣∣ (2.127)

where
ZLLG = Z(0)

rr + Z(2)
rr + 3Rf (2.128)

and I
(1)
f can be obtained from (2.98). Substituting (2.69), (2.70) into (2.98), (2.128),

(2.125), (2.126) and (2.127) can lead to the fault location formulations. Provided

|Eka|, |Ekb|, and |Ekc|, we can assume E
(1)0
k = E

(1)0
r = 1.0 p.u.. Then we will have

three equations and two unknowns m and Rf , which can be solved similar to AG fault.

3) LL fault

For phase B to C fault, upon the boundary condition in (2.103), (2.115)-(2.117)
can be reformatted as

Eka = E
(1)0
k (2.129)

Ekb = α2E
(1)0
k + (α− α2)Z

(1)
kr I

(1)
f (2.130)

Ekc = αE
(1)0
k − (α− α2)Z

(1)
kr I

(1)
f (2.131)

Substituting (2.69), (2.70) and (2.104) into (2.130)-(2.131) yields

|Ekb| =
∣∣∣α2E

(1)0
k + (α− α2)(B

(1)
k + C

(1)
k m)I

(1)
f

∣∣∣ (2.132)

|Ekc| =
∣∣∣αE(1)0

k − (α− α2)(B
(1)
k + C

(1)
k m)I

(1)
f

∣∣∣ (2.133)

where

I
(1)
f =

E
(1)0
r

2A
(1)
0 + 2A

(1)
1 m+ 2A

(1)
2 m2 +Rf

(2.134)

With |Ekb| and |Ekc| being available, we can assume E
(1)0
k = E

(1)0
r = 1.0, p.u.. Then

we will have two equations and two unknowns m and Rf , which can be solved by
Newton-Raphson technique. The description of this technique is given in Section
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2.3.2.3. Note that (2.129) does not contain unknown fault location or fault resistance
and is not utilized in fault location estimation.

4) LLL fault

For three phase balanced fault, based on the boundary condition in (2.108), (2.115)-
(2.117) can be reformatted as

Eka = E
(1)0
k − Z(1)

kr I
(1)
f (2.135)

Ekb = α2(E
(1)0
k − Z(1)

kr I
(1)
f ) (2.136)

Ekc = α(E
(1)0
k − Z(1)

kr I
(1)
f ) (2.137)

where I
(1)
f is from (2.109). Equations (2.135)-(2.137) contain the same information

when absolute values are taken. Therefore, making use of (2.135) together with (2.69)
and (2.70) will lead to the fault location formulation as

|Eka| =

∣∣∣∣∣E(1)0
k − (B

(1)
k + C

(1)
k m)E

(1)0
r

A
(1)
0 + A

(1)
1 m+ A

(1)
2 m2 +Rf

∣∣∣∣∣ (2.138)

Given |Eka|, other than assuming E
(1)0
k = E

(1)0
r = 1.0 p.u., Rf also needs to be known

to solve for m. The fault resistance is normally very small for three phase faults, so
a value close to zero can be assumed without causing significant errors. Then we will
have one equation and one unknown m, the solution of which is similar to BC fault.

Formulas involving other phases for different kinds of fault can be deduced simi-
larly.

2.3.2.2 Algorithms with Voltage Magnitudes from Multiple Buses

When the voltage measurements from any two buses bus k and l (k, l = 1, 2, . . . , n)
are available, in addition to (2.115)-(2.117), we also have

Ela = −Z(0)
lr I

(0)
f + E

(1)0
l − Z(1)

lr I
(1)
f − Z

(2)
lr I

(2)
f (2.139)

Elb = −Z(0)
lr I

(0)
f + α2(E

(1)0
l − Z(1)

lr I
(1)
f )− αZ(2)

lr I
(2)
f (2.140)

Elc = −Z(0)
lr I

(0)
f + α(E

(1)0
l − Z(1)

lr I
(1)
f )− α2Z

(2)
lr I

(2)
f (2.141)

Dependent on the fault type, we will have six equations at most, with |Eka|, |Ekb|,
|Ekc|, |Ela|, |Elb|, and |Elc| being known quantities and E

(1)0
k , E

(1)0
l , and E

(1)0
r being

unknowns. For LG and LLG faults, we have six equations; for LL fault, there will
be four equations; for LLL fault, there will be two equations. Still, assuming a flat
value of 1.0 p.u. for all the pre-fault voltages, m and Rf can be solved. Note that for
three phase balanced faults, different from the single-bus algorithm, there is no need
to assume any value for the fault resistance since we have one more equation now. In

32



general, the least squares based approach can be applied when multiple measurements
are utilized.

In summary, for LG and LLG faults, a unique fault location estimate can be
yielded. As for LL and LLL faults, in certain cases, multiple valid solutions might
arise.

When multiple valid solutions are yielded, our studies indicate that it is not possi-
ble to tell which solution is the true solution and which one is the erroneous solution.
This is because if the network is subject to the fault conditions as given by the valid
solutions, by performing short-circuit analysis we will obtain the same voltage sags
as the measured voltage sags. Hence, unless more information is available, there may
be more than one likely fault location estimates.

2.3.2.3 Newton-Raphson Method and Least Squares Method

The well established Newton-Raphson approach [66] is as follows

Xv+1 = Xv + ∆Xv (2.142)

∆Xv = −H−1
v F (Xv) (2.143)

Hv =
∂F (X)

∂X
|X=Xv (2.144)

where

Xv the variable vector at vth iteration;

Xv+1 the variable vector after vth iteration;

∆Xv the variable update at vth iteration.

F (Xv) the function vector when X = Xv;

Hv the Jacobian matrix when X = Xv;

v the iteration number starting from 0.

When the variable update reaches within the specified tolerance, the iterative process
can be terminated. Educated initial values for variable vector should be provided.

For least squares based method, the only difference lies in that the update variable
∆Xv is obtained as

∆Xv = −(HT
v Hv)

−1[HT
v F (Xv)] (2.145)

When implementing the Newton-Raphson or least squares method, the Jacobian ma-
trix needs to be calculated. There are two possible ways of doing this. One is to
derive the analytical form of the Jacobian matrix. Let us take equation (2.121) as an
example. The absolute sign on the right side of (2.121) can be eliminated by utilizing
the following identity

|a+ jb|2 = a2 + b2 (2.146)
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Then, the Jacobian matrix can be readily obtained. The other method is based on
numerical method, where the derivative of function f(x1, . . .) with respect to variable
xk is approximated by

f(x1, . . .)

xk
=
f(x1, . . . , xk + δ, . . .)− f(x1, . . . , xk, . . .)

δ
(2.147)

where δ is a small step used to calculate the derivative.
In this work, the second method is utilized because it obviates the need to de-

rive the complicated analytical form of the derivatives of Jacobian matrix and still
maintains high accuracy of fault location estimate.

2.4 Simulation Studies

This section presents the simulation results to evaluate the developed fault location
algorithms. Electromagnetic Transients Program (EMTP) has been utilized to simu-
late the studied power system and generate transient waveforms for faults of different
types, locations and fault resistances [67]. Discrete Fourier Transform is utilized to
extract phasors from the waveforms of about 5th cycle after the fault inception to feed
into the developed algorithms.

The studied power system is a 230 kV, 100 MVA, 50 Hz transmission line system.
The system diagram is shown in Fig. 2.11. The system data are presented in Table
2.1 and 2.2. The system is modeled in EMTP based on lumped parameter line model.
In this study, shunt capacitance of the line and load are not considered.

Table 2.1: Transmission line data
Line Line Positive-sequence Zero-sequence

number length (km) impedance (p.u.) impedance (p.u.)
1 178.5 0.015455 + j0.116066 0.098871 + j0.365188
2 110.2 0.096188 + j0.279293 0.243156 + j0.822918
3 193.0 0.022172 + j0.128174 0.099245 + j0.409333
4 193.0 0.022172 + j0.128174 0.099245 + j0.409333

Table 2.2: Generator data
Generator Positive-sequence Zero-sequence
number impedance (p.u.) impedance (p.u.)

1 0.000600 + j0.037343 0.000540 + j0.016062
2 0.000900 + j0.054236 0.001300 + j0.045230
3 0.002200 + j0.096514 0.001300 + j0.045230

The zero-sequence mutual impedance between line 3 and 4 is: 0.079 + j0.2464
p.u..
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Figure 2.11: The studied 4-bus power system.

From Fig. 2.11, it can be observed that the section between bus 1 and 4 has the
double-circuit line structure and the fault occurs on one of the parallel lines, with the
cross denoting the fault point. For this particular system, we have n = 4, p = 1 and
q = 4. The length of the faulted line is 193 km.

The estimation accuracy is evaluated by the percentage error calculated as

%Error =
|Actual Location− Estimated Location|

Total Length of Faulted Line
× 100 (2.148)

where the location of the fault is defined as the distance between the fault point and
bus p, which is 1 in our case.

Next, fault location algorithms utilizing voltage phasors and phase voltage mag-
nitudes are studied, respectively.

2.4.1 Case Studies for Fault Location Using Voltage phasors

The developed fault location algorithms are tested under various fault conditions. Ta-
ble 2.3 shows the fault location results produced by two-bus method. The first three
columns represent the actual fault type, fault location and fault resistance, respec-
tively. Columns 4-9 indicate the percentage errors of fault location estimate utilizing
both synchronized and unsynchronized voltage measurements from two buses. In Ta-
ble 2.3, positive-sequence voltage measurements are used to carry out two-bus fault
location. It can be observed that quite close fault location estimates are produced
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by using synchronized and unsynchronized data. The fault location results are quite
satisfactory. In fact, when synchronized measurements are utilized, the fault location
estimate contains an imaginary part, which represents the numerical round off error
and is neglected directly. Notice that it is impossible to produce fault location esti-
mate by employing voltage measurements from other bus combinations including 2
and 3, 2 and 4, and 3 and 4 on account of the reason explained in Section 2.3.1.1.

Table 2.3: Fault location results using voltage phasors at two buses

Fault Fault Fault Estimated error using voltages at two buses (%)
type location resistance 1&2 1&3 1&4

(km) (Ω) Syn. Unsyn. Syn. Unsyn. Syn. Unsyn.
AG 30 1 0.040 0.074 0.15 0.20 0.0034 0.0017

10 0.15 0.19 0.31 0.36 0.0025 0.0050
90 1 0.051 0.077 0.22 0.26 0.024 0.031

50 0.48 0.50 0.86 0.89 0.12 0.13
150 10 0.066 0.078 0.26 0.28 0.094 0.11

50 0.25 0.26 0.60 0.61 0.28 0.29
BC 30 1 0.0021 0.018 0.046 0.074 0.011 0.010

90 1 0.0067 0.019 0.066 0.084 0.018 0.021
150 1 0.0057 0.011 0.053 0.062 0.024 0.030

BCG 30 1 0.0013 0.018 0.038 0.060 0.012 0.011
50 0.0088 0.029 0.055 0.082 0.014 0.012

90 10 0.012 0.023 0.064 0.079 0.020 0.023
50 0.016 0.028 0.074 0.091 0.023 0.025

150 1 0.0052 0.0095 0.044 0.051 0.025 0.029
10 0.0077 0.012 0.049 0.056 0.028 0.032

ABC 30 1 0.0015 0.011 0.028 0.041 0.0043 0.0041
90 1 0.0052 0.011 0.037 0.046 0.0079 0.0098
150 1 0.0037 0.0062 0.030 0.034 0.011 0.014

Table 2.4 presents the one-bus fault location results for AG and BCG faults.
Columns 4-7 display the percentage errors of fault location estimate employing the
voltage measurements from a single bus. It can be seen that the fault location esti-
mates in Table 2.4 are quite accurate.

Table 2.5 exhibits the one-bus fault location results for BC and ABC faults.
Columns 3-10 list the estimated fault location, fault resistance utilizing voltage mea-
surements from a single bus. m is the estimated fault location (p.u.) and Rf is the
estimated fault resistance (p.u.).The actual fault resistance is 1 Ω and the base value
of the impedance is 529 Ω. The obtained fault location results are quite satisfactory.

In case two valid solutions are yielded, one of them is an erroneous solution des-
ignated as * in Table 2.5. As stated in Section 2.3.1.2, the erroneous solution can
not be identified and both estimates will be treated as likely solutions. For example,
for a BC fault with actual fault location of 30 km, based on voltages at bus 2, the
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Table 2.4: Fault location results using voltage phasors at a single bus for AG and
BCG faults

Fault Fault Fault Estimated error using
type location resistance voltage at a single bus (%)

(km) (Ω) 1 2 3 4
AG 30 1 0.016 0.0027 0.0033 0.00034

10 0.017 0.0026 0.0038 0.0012
90 1 0.021 0.013 0.014 0.0035

50 0.022 0.013 0.013 0.0049
150 10 0.017 0.024 0.027 0.0081

50 0.018 0.024 0.024 0.0086
BCG 30 1 0.014 0.018 0.017 0.019

50 0.0028 0.047 0.11 0.031
90 10 0.027 0.034 0.035 0.016

50 0.017 0.014 0.048 0.00089
150 1 0.026 0.14 0.055 0.024

10 0.025 0.12 0.060 0.014

algorithm yields two valid solutions: (0.1554, 0.0019) p.u. and (0.3878, 0.0028) p.u..
The first element in the bracket represents the fault location estimate and the second
one represents the fault resistance estimate. In this case, we have two possible fault
location estimates: 0.1554 p.u. and 0.3878 p.u..

2.4.2 Case Studies for Fault Location Using Phase Voltage
Magnitudes

Table 2.6 presents the fault location results under various faults. The first three
columns list the actual fault type, fault location and fault resistance applied in EMTP.
The fault location estimation errors utilizing phase voltage magnitudes from buses of
different combinations are reported in the rest columns.

In Table 2.6, we assumed Rf = 0.75 Ω for single-bus ABC fault location algorithm.
As can be seen, the fault location estimates are satisfactory.

It is shown, for three phase faults and phase to phase faults, that in certain cases,
multiple valid solutions might arise, as indicated by *. For example, for a BC fault
with actual fault location being 100 km and actual fault resistance being 1 Ω, using
the phase voltage magnitudes at bus 2, we obtain the following two valid solutions:
[0.5180, 0.0019] p.u. and [0.0671, 0.0011] p.u.

As reasoned in Section 2.3.2.2, when multiple valid solutions are yielded, our
studies indicate that it is not possible to identify the erroneous solutions.Therefore,
in this case, there are two possible fault location estimates: 0.5180 p.u. and 0.0671
p.u..
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Table 2.5: Fault location results using voltage phasors at a single bus for BC and
ABC faults
Fault Fault Result using voltages at a single bus
type loca. 1 2 3 4

(km) m Rf m Rf m Rf m Rf

BC 30 0.1556 0.0019 0.1554 0.0019 0.1550 0.0019 0.1557 0.0019
0.3878* 0.0028 0.3883* 0.0028 0.3875* 0.0028

90 0.4665 0.0020 0.0994* 0.0011 0.0992* 0.0011 0.0994* 0.0011
0.4663 0.0020 0.4667 0.0020 0.4663 0.0020

150 0.7778 0.0020 0.7771 0.0020 0.7773 0.0020 0.7772 0.0020
0.8785* 0.0017

ABC 30 0.1556 0.0019 0.1570 0.0018 0.1584 0.0018 0.1559 0.0019
0.3874* 0.0025 0.3856* 0.0025 0.3890* 0.0026

90 0.4667 0.0019 0.1011* 0.0011 0.1018* 0.0011 0.1005* 0.0012
0.4649 0.0018 0.4638 0.0017 0.4661 0.0019

150 0.7801 0.0018 0.7767 0.0018 0.7763 0.0018 0.7771 0.0019
0.8761* 0.0017

2.5 Summary

In this chapter, fault location algorithms utilizing voltage phasors and phase volt-
age magnitudes based on the lumped parameter line model have been implemented.
Thanks to the bus impedance matrix technique, the measurements can be taken from
one or more buses, which are not restricted to the faulted line terminals. Simula-
tion studies have shown that the fault location algorithms can yield quite accurate
estimates under different fault conditions.

For the phasor-based method, we can summarize:

• Fault type classification is prerequisite for one-bus fault location algorithms and
not required for two-bus algorithms using positive-sequence measurements;

• For one-bus algorithms, accurate fault location estimates can be provided for
LG and LLG fault, while only approximate estimates for LL and LLL faults;

• One-bus algorithms for LL and LLL faults may yield two possible fault location
estimates. Unless more information is available, the erroneous estimate can not
be identified;

• Two-bus fault location algorithm is able to produce accurate fault location esti-
mate without approximation but its application scope is subject to the network
topology.

For the magnitude-based method, we have the following remarks:

• Fault type classification is required before performing fault location for both
one-bus and multi-bus algorithms;
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Table 2.6: Fault location results using voltage sag data

Fault Fault loca. Fault res. Fault location estimation error using
type (km) (Ω) voltage sags from different buses (%)

1 2 1&4 2&3 1&2&3
AG 40 10 0.0006 0.0211 0.0007 0.0198 0.0002

50 0.0017 0.0095 0.0016 0.0069 0.0026
100 1 0.0027 0.0704 0.0017 0.0361 0.0008

50 0.0175 0.0439 0.0047 0.0564 0.0004
140 1 0.0056 0.0803 0.0001 0.0078 0.0015

10 0.0134 0.1248 0.0024 0.0504 0.0012
100 0.6584 0.0542 0.0070 0.0747 0.0031

BC 40 1 0.0139 0.0075* 0.0144 0.0259* 0.0138
100 1 0.0214 0.0135* 0.0077 0.0017* 0.0170
140 1 0.0513* 0.0110 0.0012 0.0028 0.0024

BCG 40 1 0.0121 0.0051 0.0108 0.0024 0.0121
10 0.0141 0.0020 0.0101 0.0039 0.0145

100 10 0.0237 0.0187 0.0049 0.0071 0.0153
50 0.0294 0.0182 0.0173 0.0004 0.0160
100 0.0281 0.0186 0.0155 0.0033 0.0191

140 1 0.0512 0.0152 0.0023 0.0077 0.0014
50 0.0739 0.0145 0.0107 0.0023 0.0049

ABC 40 1 0.1751 1.8821* 0.0022 0.0772* 0.0046
100 1 0.3182 0.3689* 0.0022 0.0262* 0.0032
140 1 0.9498* 0.2203 0.0025 0.0163 0.0025

• All the algorithms using voltage sag data are iterative and only produce ap-
proximate estimation of fault location;

• For LG and LLG faults, a unique fault location estimate can be yielded;

• For LL and LLL faults, multiple valid solutions may be produced under certain
fault conditions. Under this circumstance, we will have multiple fault location
estimates.
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Chapter 3

Fault Location Using Sparse
Current Measurements Based on
Lumped Parameter Line Model

In this chapter, fault location method utilizing sparse current measurements for
double-circuit lines is presented. It is organized as follows. A brief introduction
on the feature of the proposed method is given firstly in Section 3.1. Then, the fault
location basis is derived in Section 3.2, upon which the fault location algorithms are
provided in detail in Section 3.3. Next, the simulation studies in Section 3.4 report
the fault location results, followed by the summary in Section 3.5.

3.1 Introduction

In Chapter 2, fault location method using sparse voltage measurements has been in-
troduced. By taking advantage of the same bus impedance matrix technique, fault
location algorithms for double-circuit lines using sparse current phasors [68] and cur-
rent magnitudes [69] will be developed in this chapter. This work is extended from
the fault location algorithms using sparse current measurements for single-circuit
transmission lines [70].

Current measurements from one or more branches are taken as input, which can
be far away from the faulted section. The faulted double-circuit line is modeled by
the lumped parameter line model which ignores the shunt capacitance of the long
lines. The following assumptions are utilized: (1) the network data are available; (2)
the network is transposed; (3) the faulted section has been determined in advance;
(4) fault type classification result is known.
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3.2 Fault Location Basis

From Chapter 2, Z(i), the bus impedance matrix of the network with an additional
fictitious fault bus, has been established and summarized as follows

Z
(i)
kl = Z

(i)
0,kl, k, l = 1, 2, . . . , n (3.1)

Z
(i)
rk = B

(i)
k + C

(i)
k m, k = 1, 2, . . . , n (3.2)

Z(i)
rr = A

(i)
0 + A

(i)
1 m+ A

(i)
2 m

2 (3.3)

where i = 0, 1, 2 and

B
(i)
k = Z

(i)
0,pk (3.4)

C
(i)
k = Z

(i)
0,qk − Z

(i)
0,pk (3.5)

A
(i)
0 = Z

(i)
0,pp (3.6)

A
(i)
1 = 2Z

(i)
0,pq − 2Z

(i)
0,pp + z

(i)
pq 2 (3.7)

A
(i)
2 = Z

(i)
0,pp + Z

(i)
0,qq − 2Z

(i)
0,pq − z

(i)
pq 2 (3.8)

and Z
(i)
0 can be readily built from network parameters.

At any bus k (k = 1, 2, . . . , n), the following formulas hold

E
(1)
k = E

(1)0
k − Z(1)

kr I
(1)
f (3.9)

E
(2)
k = −Z(2)

kr I
(2)
f (3.10)

E
(0)
k = −Z(0)

kr I
(0)
f (3.11)

In [70], (3.9)-(3.11) are utilized to formulate the sequence branch current with
respect to the corresponding sequence fault current, based on which the fault location
algorithms using branch current phasors are derived for single-circuit transmission
lines. For double-circuit lines, with the same idea, we will derive the formulations of
sequence branch current pertaining to the relevant sequence fault current [68].

The positive-, negative-, and zero-sequence currents between any bus k and l dur-
ing the fault, I

(1)
kl , I

(2)
kl , I

(0)
kl are calculated based on the following five categories.

Case 1 : The currents of non-faulted single-circuit branch whose two terminals are j1
and j2

Making use of VCR and (3.9)-(3.11), the following relationships drawn from Fig.
3.1 hold

I
(1)
j1j2
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E

(1)
j1
− E(1)

j2

z
(1)
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E

(1)0
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Z
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I
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=
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(2)
j2r
I

(2)
f

z
(2)
j1j2

= −
Z

(2)
j1r
− Z(2)
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z
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I
(2)
f (3.13)
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Figure 3.1: The ith-sequence network of a single-circuit unfaulted line.

Figure 3.2: The positive/negative-sequence network of a double-circuit faulted line.

I
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=
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(0)
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where I
(1)0
j1j2

represents the positive-sequence pre-fault branch current.

Case 2 : The currents of the healthy circuit of the faulted double-circuit line whose
two terminals are p and q

Since there is no mutual coupling between the parallel branches for positive- and
negative-sequence networks as shown in Fig. 3.2, the positive- and negative-sequence
currents of the healthy circuit of the faulted double-circuit line can be obtained sim-
ilarly as in case 1.

I
(1)
pq 1 = I

(1)0
pq 1 −

Z
(1)
pr − Z(1)

qr

z
(1)
pq 1

I
(1)
f (3.15)

I
(2)
pq 1 = −Z

(2)
pr − Z(2)

qr

z
(2)
pq 1

I
(2)
f (3.16)
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Figure 3.3: The zero-sequence network of a double-circuit faulted line.

For the derivation of I
(0)
pq 1, the following equations can be established from Fig. 3.3

I
(0)
pq 1z

(0)
pq 1 + I(0)

pr mz
(0)
pq m −

(
I(0)
qr

)
(1−m)z(0)

pq m = E(0)
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q (3.17)
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(0)
f (3.18)

I
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pq 1mz
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pr mz
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r (3.19)

I(0)
qr (1−m)z

(0)
pq 2 − (I

(0)
pq 1)(1−m)z(0)

pq m = E(0)
q − E(0)

r (3.20)

Substituting I
(0)
pr from (3.18) into (3.17) gives rise to

I
(0)
pq 1z

(0)
pq 1 + I(0)

pr mz
(0)
pq m −

(
I

(0)
f − I

(0)
pr

)
(1−m)z(0)

pq m = E(0)
p − E(0)

q (3.21)

Replacing the voltage terms by (3.11), (3.21) can be further organized into

I
(0)
pq 1z

(0)
pq 1 + I(0)

pr z
(0)
pq m =

[
−Z(0)

pr + Z(0)
qr + (1−m)z(0)

pq m

]
I

(0)
f (3.22)

Substituting I
(0)
pr from (3.18) into (3.20) yields(
I

(0)
f − I

(0)
pr

)
(1−m)z

(0)
pq 2 − I

(0)
pq 1(1−m)z(0)

pq m = E(0)
q − E(0)

r (3.23)

Subtracting (3.23) from (3.19), it is obtained

I
(0)
pq 1z

(0)
pq m + I(0)

pr z
(0)
pq 2 − (1−m)z

(0)
pq 2I

(0)
f = E(0)

p − E(0)
q (3.24)

Replacing the voltage terms by (3.11), (3.24) can be further organized into

I
(0)
pq 1z

(0)
pq m + I(0)

pr z
(0)
pq 2 =

[
Z(0)
qr − Z(0)

pr + (1−m)z
(0)
pq 2

]
I

(0)
f (3.25)
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Then I
(0)
pq 1 and I

(0)
pr can be solved from (3.22) and (3.25).

I
(0)
pq 1 = −

(
Z

(0)
pr − Z(0)

qr

)(
z

(0)
pq 2 − z

(0)
pq m

)
z

(0)
pq 1z

(0)
pq 2 −

(
z

(0)
pq m

)2 I
(0)
f (3.26)

I(0)
pr = −


(
Z

(0)
pr − Z(0)

qr

)(
z

(0)
pq m − z(0)

pq 1

)
(
z

(0)
pq m

)2

− z(0)
pq 1z

(0)
pq 2

− 1 +m

 I(0)
f (3.27)

From (3.17)-(3.20), we can derive another two equations

I
(0)
pq 1z

(0)
pq 1 − I(0)

qr z
(0)
pq m =

(
−Z(0)

pr + Z(0)
qr −mz(0)

pq m

)
I

(0)
f (3.28)

I
(0)
pq 1z

(0)
pq m − I(0)

qr z
(0)
pq 2 =

(
−Z(0)

pr + Z(0)
qr −mz

(0)
pq 2

)
I

(0)
f (3.29)

Eliminating I
(0)
pq 1 from (3.28) and (3.29) can derive the expression of I

(0)
qr

I(0)
qr = −


(
Z

(0)
qr − Z(0)

pr

)(
z

(0)
pq m − z(0)

pq 1

)
(
z

(0)
pq m

)2

− z(0)
pq 1z

(0)
pq 2

−m

 I(0)
f (3.30)

Case 3 : The currents of the faulted branch of the double-circuit line whose two ter-
minals are p and r

From Fig. 3.2, we can build the following four equations for the positive- and negative-
sequence networks

I(1)
pr =

E
(1)
p − E(1)

r

mz
(1)
pq 2

(3.31)

I(2)
pr =

E
(2)
p − E(2)

r

mz
(2)
pq 2

(3.32)

I
(1)
f − I

(1)
pr =

E
(1)
q − E(1)

r

(1−m)z
(1)
pq 2

(3.33)

I
(2)
f − I

(2)
pr =

E
(2)
q − E(2)

r

(1−m)z
(2es.)
pq 2

(3.34)

Eliminating E
(1)
r from (3.31) and (3.33) leads to

E(1)
p − E(1)

q = I(1)
pr mz

(1)
pq 2 − (I

(1)
f − I

(1)
pr )(1−m)z

(1)
pq 2 (3.35)
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Replacing the voltage terms by (3.9), we can obtain the expression of I
(1)
pr as

I(1)
pr = I(1)0

pr −

(
Z

(1)
pr − Z(1)

qr

z
(1)
pq 2

− 1 +m

)
I

(1)
f (3.36)

I
(2)
pr can be similarly obtained from (3.32), (3.34) and (3.10) as

I(2)
pr = −

(
Z

(2)
pr − Z(2)

qr

z
(2)
pq 2

− 1 +m

)
I

(2)
f (3.37)

I
(0)
pr can be found from case 2.

Case 4 : The currents of the faulted branch of the double-circuit line whose two
terminals are q and r

I
(1)
qr and I

(2)
qr can be derived similar to I

(1)
pr and I

(2)
pr as shown in case 3 by using

VCR for branch qr in Fig. 3.2.

I(1)
qr = I(1)0

qr −

(
Z

(1)
qr − Z(1)

pr

z
(1)
pq 2

−m

)
I

(1)
f (3.38)

I(2)
qr = −

(
Z

(2)
qr − Z(2)

pr

z
(2)
pq 2

−m

)
I

(2)
f (3.39)

I
(0)
qr can be found in case 2.

Case 5 : The currents of unfaulted double-circuit branches whose two terminals are
k1 and k2

From Fig. 3.4, the currents of the branches k1k2 1 and k1k2 2 are calculated in
the following

I
(1)0
k1k2 1 = I

(1)0
k1k2 1 −

Z
(1)
k1r
− Z(1)

k2r

z
(1)
k1k2 1

I
(1)
f (3.40)

I
(2)
k1k2 1 = −

Z
(2)
k1r
− Z(2)

k2r

z
(2)
k1k2 1

I
(2)
f (3.41)

I
(1)0
k1k2 2 = I

(1)0
k1k2 2 −

Z
(1)
k1r
− Z(1)

k2r

z
(1)
k1k2 2

I
(1)
f (3.42)

I
(2)
k1k2 2 = −

Z
(2)
k1r
− Z(2)

k2r

z
(2)
k1k2 2

I
(2)
f (3.43)
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Figure 3.4: The positive/negative-sequence network of an unfaulted double-circuit
line.

Figure 3.5: The zero-sequence network of an unfaulted double-circuit line.

46



Observing Fig. 3.5, we can write

I
(0)
k1k2 1z

(0)
k1k2 1 + I

(0)
k1k2 2z

(0)
k1k2 m

= E
(0)
k1
− E(0)

k2
= (−Z(0)

k1r
+ Z

(0)
k2r

)I
(0)
f (3.44)

I
(0)
k1k2 1z

(0)
k1k2 m

+ I
(0)
k1k2 2z

(0)
k1k2 2 = E

(0)
k1
− E(0)

k2
= (−Z(0)

k1r
+ Z

(0)
k2r

)I
(0)
f (3.45)

Solving (3.44) and (3.45) can lead to

I
(0)
k1k2 1 = −

z
(0)
k1k2 2 − z

(0)
k1k2 m

z
(0)
k1k2 1z

(0)
k1k2 2 −

(
z

(0)
k1k2 m

)2

(
Z

(0)
k1r
− Z(0)

k2r

)
I

(0)
f (3.46)

I
(0)
k1k2 2 = −

z
(0)
k1k2 1 − z

(0)
k1k2 m

z
(0)
k1k2 1z

(0)
k1k2 2 −

(
z

(0)
k1k2 m

)2

(
Z

(0)
k1r
− Z(0)

k2r

)
I

(0)
f (3.47)

Let us observe (3.12)-(3.14), (3.15)-(3.16) and (3.26), (3.36)-(3.37) and (3.27),
(3.38)-(3.39) and (3.30), (3.40)-(3.43), (3.46)-(3.47), and define

β
(i)
j1j2

=
Z

(i)
j1r
− Z(i)

j2r

z
(i)
j1j2

=
B

(i)
j1
−B(i)

j2

z
(i)
j1j2

+
C

(i)
j1
− C(i)

j2

z
(i)
j1j2

m = B
(i)
j1j2

+ C
(i)
j1j2

m, i = 0, 1, 2

(3.48)

β
(i)
pq 1 =

Z
(i)
pr − Z(i)

qr

z
(i)
pq 1

=
B

(i)
p −B(i)

q

z
(i)
pq 1

+
C

(i)
p − C(i)

q

z
(i)
pq 1

m = B
(i)
pq 1 + C

(i)
pq 1m, i = 1, 2

(3.49)

β
(0)
pq 1 =

(
Z

(0)
pr − Z(0)

qr

)(
z

(0)
pq 2 − z

(0)
pq m

)
z

(0)
pq 1z

(0)
pq 2 −

(
z

(0)
pq m

)2 =

(
B

(0)
p −B(0)

q

)(
z

(0)
pq 2 − z

(0)
pq m

)
z

(0)
pq 1z

(0)
pq 2 −

(
z

(0)
pq m

)2

+

(
C

(0)
p − C(0)

q

)(
z

(0)
pq 2 − z

(0)
pq m

)
z

(0)
pq 1z

(0)
pq 2 −

(
z

(0)
pq m

)2 m = B
(0)
pq 1 + C

(0)
pq 1m (3.50)

β(i)
pr =

Z
(i)
pr − Z(i)

qr

z
(i)
pq 2

− 1 +m =
B

(i)
p −B(i)

q − z(i)
pq 2

z
(i)
pq 2

+
C

(i)
p − C(i)

q + z
(i)
pq 2

z
(i)
pq 2

m

= B(i)
pr + C(i)

prm, i = 1, 2 (3.51)

β(0)
pr =

(
Z

(0)
pr − Z(0)

qr

)(
z

(0)
pq m − z(0)

pq 1

)
(
z

(0)
pq m

)2

− z(0)
pq 1z

(0)
pq 2

− 1 +m

=

(
B

(0)
p −B(0)

q

)(
z

(0)
pq m − z(0)

pq 1

)
−
(
z

(0)
pq m

)2

+ z
(0)
pq 1z

(0)
pq 2(

z
(0)
pq m

)2

− z(0)
pq 1z

(0)
pq 2
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+

(
C

(0)
p − C(0)

q

)(
z

(0)
pq m − z(0)

pq 1

)
+
(
z

(0)
pq m

)2

− z(0)
pq 1z

(0)
pq 2(

z
(0)
pq m

)2

− z(0)
pq 1z

(0)
pq 2

m = B(0)
pr + C(0)

pr m

(3.52)

β(i)
qr =

Z
(i)
qr − Z(i)

pr

z
(i)
pq 2

−m =
B

(i)
q −B(i)

p

z
(i)
pq 2

+
C

(i)
q − C(i)

p − z(i)
pq 2

z
(i)
pq 2

m

= B(i)
qr + C(i)

qrm, i = 1, 2 (3.53)

β(0)
qr =

(
Z

(0)
qr − Z(0)

pr

)(
z

(0)
pq m − z(0)

pq 1

)
(
z

(0)
pq m

)2

− z(0)
pq 1z

(0)
pq 2

−m =

(
B

(0)
q −B(0)

p

)(
z

(0)
pq m − z(0)

pq 1

)
(
z

(0)
pq m

)2

− z(0)
pq 1z

(0)
pq 2

+

(
C

(0)
q − C(0)

p

)(
z

(0)
pq m − z(0)

pq 1

)
−
(
z

(0)
pq m

)2

+ z
(0)
pq 1z

(0)
pq 2(

z
(0)
pq m

)2

− z(0)
pq 1z

(0)
pq 2

m = B(0)
qr + C(0)

qr m

(3.54)

β
(i)
k1k2 1 =

Z
(i)
k1r
− Z(i)

k2r

z
(i)
k1k2 1

=
B

(i)
k1
−B(i)

k2

z
(i)
k1k2 1

+
C

(i)
k1
− C(i)

k2

z
(i)
k1k2 1

m = B
(i)
k1k2 1 + C

(i)
k1k2 1m, i = 1, 2

(3.55)

β
(0)
k1k2 1 =

z
(0)
k1k2 2 − z

(0)
k1k2 m

z
(0)
k1k2 1z

(0)
k1k2 2 −

(
z

(0)
k1k2 m

)2

(
Z

(0)
k1r
− Z(0)

k2r

)

=
z

(0)
k1k2 2 − z

(0)
k1k2 m

z
(0)
k1k2 1z

(0)
k1k2 2 −

(
z

(0)
k1k2 m

)2

(
B

(0)
k1
−B(0)

k2

)

+
z

(0)
k1k2 2 − z

(0)
k1k2 m

z
(0)
k1k2 1z

(0)
k1k2 2 −

(
z

(0)
k1k2 m

)2

(
C

(0)
k1
− C(0)

k2

)
m = B

(0)
k1k2 1 + C

(0)
k1k2 1m (3.56)

β
(i)
k1k2 2 =

Z
(i)
k1r
− Z(i)

k2r

z
(i)
k1k2 2

=
B

(i)
k1
−B(i)

k2

z
(i)
k1k2 2

+
C

(i)
k1
− C(i)

k2

z
(i)
k1k2 2

m = B
(i)
k1k2 2 + C

(i)
k1k2 2m, i = 1, 2

(3.57)

β
(0)
k1k2 2 =

z
(0)
k1k1 1 − z

(0)
k1k2 m

z
(0)
k1k2 1z

(0)
k1k2 2 −

(
z

(0)
k1k2 m

)2

(
Z

(0)
k1r
− Z(0)

k2r

)
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=
z

(0)
k1k2 1 − z

(0)
k1k2 m

z
(0)
k1k2 1z

(0)
k1k2 2 −

(
z

(0)
k1k2 m

)2

(
B

(0)
k1
−B(0)

k2

)

+
z

(0)
k1k2 1 − z

(0)
k1k2 m

z
(0)
k1k2 1z

(0)
k1k2 2 −

(
z

(0)
k1k2 m

)2

(
C

(0)
k1
− C(0)

k2

)
m = B

(0)
k1k2 2 + C

(0)
k1k2 2m (3.58)

Then (3.12)-(3.14), (3.15)-(3.16) and (3.26), (3.36)-(3.37) and (3.27), (3.38)-(3.39)
and (3.30), (3.40)-(3.43), (3.46)-(3.47) can be simplified into

I
(1)
kl = I

(1)0
kl − β

(1)
kl I

(1)
f (3.59)

I
(2)
kl = −β(2)

kl I
(2)
f (3.60)

I
(0)
kl = −β(0)

kl I
(0)
f (3.61)

where
β

(i)
kl = B

(i)
kl + C

(i)
kl m, i = 0, 1, 2 (3.62)

Equations (3.59)-(3.61) hold for all the branches in the network during fault. Care

should be taken that values of constants B
(i)
kl and C

(i)
kl depend on the specific branch

and sequence network involved.

3.3 Proposed Fault Location Method

In Section 3.2, the sequence current change through any branch during the fault can
be formulated with respect to the corresponding term β

(i)
kl and fault current. β

(i)
kl is

related to the transfer impedance terms Z
(i)
kr and Z

(i)
lr , which are associated to the

two ends of the branch. Thus β
(i)
kl can also be expressed in terms of m, the unknown

fault location. In fact, (3.59)-(3.61) are applicable to both single-circuit lines and
double-circuit lines [68]. Therefore, the fault location formulas proposed in [70] for
single-circuit lines are directly applied for double-circuit lines.

Taking advantage of boundary conditions of different fault types and eliminating
the sequence fault currents, the branch current measurements can be formulated as
an analytical function of the unknown fault location. Then, the fault location can be
obtained from the measured branch current phasors [68].

In addition, when the relationships between phase currents and sequence currents
are employed, phase currents can be bridged with the unknown fault location variable,
wherein the fault location algorithms using phase current magnitudes can be obtained
[70].

3.3.1 Fault Location Algorithms Using Current Phasors

In this part, fault location algorithms employing current phasors from one branch
and two branches are developed.
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3.3.1.1 Fault Scenarios with Measurements from Two Branches

Suppose that synchronized current phasors through branches between bus k1 and l1,
and k2 and l2 are known. From (3.59), we have

I
(1)
k1l1

= I
(1)0
k1l1
− β(1)

k1l1
I

(1)
f (3.63)

I
(1)
k2l2

= I
(1)0
k2l2
− β(1)

k2l2
I

(1)
f (3.64)

Eliminating I
(1)
f from (3.63) and (3.64), and applying (3.62) leads to

I
(1)
k1l1
− I(1)0

k1l1

I
(1)
k2l2
− I(1)0

k2l2

=
β

(1)
k1l1

β
(1)
k2l2

=
B

(1)
k1l1

+ C
(1)
k1l1

m

B
(1)
k2l2

+ C
(1)
k2l2

m
(3.65)

Define

d
(1)
k1l1k2l2

=
I

(1)
k1l1
− I(1)0

k1l1

I
(1)
k2l2
− I(1)0

k2l2

(3.66)

The fault location is derived as

m =
B

(1)
k1l1
− d(1)

k1l1k2l2
B

(1)
k2l2

d
(1)
k1l1k2l2

C
(1)
k2l2
− C(1)

k1l1

(3.67)

Note that no fault type classification is required for this algorithm. Negative-sequence
or zero-sequence current phasors, where applicable, can also be exploited for fault
location. However, positive-sequence currents are preferred, since they exist for any
type of faults.

When the current changes due to the fault through two branches are linearly
dependent to each other, it is impossible to carry out the fault location using the
method above due to the reason explained in Section 2.3.1.1.

3.3.1.2 Fault Scenarios with Measurements from One Branch

In the following, fault location formulations using measurements form one branch
have been derived for various types of fault.

(1) LG fault

For phase A to ground fault, based on the boundary condition in (2.97), we can

eliminate I
(2)
f and I

(0)
f from (3.60) and (3.61) and combine (3.62) to reach

I
(2)
kl

I
(0)
kl

=
β

(2)
kl

β
(0)
kl

=
B

(2)
kl + C

(2)
kl m

B
(0)
kl + C

(0)
kl m

(3.68)

Define

g =
I

(2)
kl

I
(0)
kl
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The fault location for AG fault is then derived as

m =
B

(2)
kl − gB

(0)
kl

gC
(0)
kl − C

(2)
kl

(3.69)

(2) LLG fault

For phase B to C to ground fault, from (2.98) and (2.99), we obtain

I
(1)
f

I
(2)
f

= −Z
(0)
rr + Z

(2)
rr + 3Rf

Z
(0)
rr + 3Rf

(3.70)

By substituting (3.59) and (3.60) into (3.70) and using β
(1)
kl = β

(2)
kl , we have

I
(1)
kl − I

(1)0
kl

I
(2)
kl

= −β
(1)
kl

β
(2)
kl

Z
(0)
rr + Z

(2)
rr + 3Rf

Z
(0)
rr + 3Rf

= −Z
(0)
rr + Z

(2)
rr + 3Rf

Z
(0)
rr + 3Rf

(3.71)

Expanding (3.71) with (3.3) will lead to the fault location formula for BCG fault as
follows

I
(1)
kl − I

(1)0
kl

I
(2)
kl

= −

(
A

(0)
0 + A

(2)
0

)
+
(
A

(0)
1 + A

(2)
1

)
m+

(
A

(0)
2 + A

(2)
2

)
m2 + 3Rf

A
(0)
0 + A

(0)
1 m+ A

(0)
2 m2 + 3Rf

(3.72)

The solution to (3.72) can be obtained by separating the complex equation into real
and imaginary part, and solving the resulted real equations. Eliminating Rf from
both equations will lead to a quadratic polynomial of m. The corresponding Rf can
be calculated with any one of the real equations thereafter.

(3) LL fault

For phase B to C fault, from the boundary condition in (2.103), the expression of
positive-sequence fault current in (2.104) and (3.60), we will derive

I
(2)
kl = β

(2)
kl

E
(1)0
r

Z
(1)
rr + Z

(2)
rr +Rf

(3.73)

Substituting (3.3) and (3.62) into (3.73) will lead to the fault location formula for BC
fault

I
(2)
kl =

(B
(2)
kl + C

(2)
kl m)E

(1)0
r

A
(1)
0 + A

(2)
0 + (A

(1)
1 + A

(2)
1 )m+ (A

(1)
2 + A

(2)
2 )m2 +Rf

(3.74)

Assuming E
(1)0
r = 1.0, p.u., (3.74) can be separated into two real equations. m can

be calculated from a quadratic function first and then Rf can be solved from any
of the two real equations. The assumption may bring about errors in fault location
estimation.
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(4) LLL fault

For three phase balanced fault, applying (3.59) into (2.109) can arrive at

I
(1)
kl = I

(1)0
kl −

β
(1)
kl E

(1)0
r

Z
(1)
rr +Rf

(3.75)

Substituting (3.3) and (3.62) into (3.75) will reach the following ABC fault location
formula

I
(1)
kl = I

(1)0
kl −

(B
(1)
kl + C

(1)
kl m)E

(1)0
r

A
(1)
0 + A

(1)
1 m+ A

(1)
2 m2 +Rf

(3.76)

Let E
(1)0
r = 1.0, p.u., (3.76) can be similarly solved as BC fault. Assumption of one

per unit for pre-fault voltage at the fault point may lead to errors in fault location
estimate, which is related to the pre-fault load conditions in the network.

It should be noted that for LLG, LL and LLL one-bus fault location algorithms,
two solutions are obtained, which may consist of either one valid solution (0 ≤ m ≤ 1
and Rf ≥ 0) and one invalid solution (m < 0 or m > 1 or Rf < 0), or two valid
solutions as defined in Section 2.3.1.2. In case there are one valid solution and one
invalid solution, the invalid solution can be easily identified and removed and a unique
solution arrives. In case there are two valid solutions, one is the true solution and the
other is the erroneous solution.

For LLG fault, when two valid solutions are encountered, we can compute the
currents of the branch with measurements from all the valid solutions by making use
of the bus impedance matrix technique and compare them with the actual branch
current measurements. The branch currents calculated from the erroneous solution
differ from the branch current measurements and can therefore be identified.

For both LL and LLL faults, although it is natural to apply the same erroneous
solution identification method proposed for LLG fault, it turns out that the calculated
branch currents from both valid solutions are the same as the actual branch current
measurements. Hence, the erroneous fault location estimate can not be distinguished
this way and we will end up with two possible solutions.

3.3.2 Fault Location Algorithms Using Phase Current Mag-
nitudes

In some cases, the recording devices only record the phase current magnitude during
the fault. How to use these information to locate fault will be addressed in this
sub-section.

At any branch kl, suppose only the phase current magnitudes during the fault,
|Ikla|, |Iklb|, and |Iklc|, are recorded by the recording device. Based on the symmetrical
component theory

Ikla = I
(0)
kl + I

(1)
kl + I

(2)
kl (3.77)
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Iklb = I
(0)
kl + α2I

(1)
kl + αI

(2)
kl (3.78)

Iklc = I
(0)
kl + αI

(1)
kl + α2I

(2)
kl (3.79)

where Ikla, Iklb, Iklc are the phase A, B, C current at branch kl, respectively. Substi-
tuting (3.59)-(3.61) into (3.77)-(3.79) leads to

Ikla = −β(0)
kl I

(0)
f + I

(1)0
kl − β

(1)
kl I

(1)
f − β

(2)
kl I

(2)
f (3.80)

Iklb = −β(0)
kl I

(0)
f + α2(I

(1)0
kl − β

(1)
kl I

(1)
f )− αβ(2)

kl I
(2)
f (3.81)

Iklc = −β(0)
kl I

(0)
f + α(I

(1)0
kl − β

(1)
kl I

(1)
f )− α2β

(2)
kl I

(2)
f (3.82)

3.3.2.1 Algorithms with Current Magnitudes from One Branch

Designed for the scenario where the measurements are only taken from one branch,
we have the following one-branch algorithms.

1) LG fault

For phase A to ground fault, from the boundary condition stated in (2.92), (3.80)-
(3.82) can be simplified as follows

Ikla = I
(1)0
kl − (β

(0)
kl + β

(1)
kl + β

(2)
kl )I

(1)
f (3.83)

Iklb = α2I
(1)0
kl − (β

(0)
kl + α2β

(1)
kl + αβ

(2)
kl )I

(1)
f (3.84)

Iklc = αI
(1)0
kl − (β

(0)
kl + αβ

(1)
kl + α2β

(2)
kl )I

(1)
f (3.85)

Applying β
(1)
kl = β

(2)
kl , (3.83)-(3.85) can be simplified as

Ikla = I
(1)0
kl − (β

(0)
kl + 2β

(1)
kl )I

(1)
f (3.86)

Iklb = α2I
(1)0
kl − (β

(0)
kl − β

(1)
kl )I

(1)
f (3.87)

Iklc = αI
(1)0
kl − (β

(0)
kl − β

(1)
kl )I

(1)
f (3.88)

Substituting (3.62), (3.3), and (2.93) into (3.86)-(3.88) can lead to the following fault
location formulas

|Ikla| =
∣∣∣I(1)0
kl −

[(
B

(0)
kl + 2B

(1)
kl

)
+
(
C

(0)
kl + 2C

(1)
kl

)
m
]
I

(1)
f

∣∣∣ (3.89)

|Iklb| =
∣∣∣α2I

(1)0
kl −

[(
B

(0)
kl −B

(1)
kl

)
+
(
C

(0)
kl − C

(1)
kl

)
m
]
I

(1)
f

∣∣∣ (3.90)

|Iklc| =
∣∣∣αI(1)0

kl −
[(
B

(0)
kl −B

(1)
kl

)
+
(
C

(0)
kl − C

(1)
kl

)
m
]
I

(1)
f

∣∣∣ (3.91)

where

I
(1)
f =

E
(1)0
r(

A
(0)
0 + 2A

(1)
0

)
+
(
A

(0)
1 + 2A

(1)
1

)
m+

(
A

(0)
2 + 2A

(1)
2

)
m2 + 3Rf

(3.92)

53



Given |Ikla| , |Iklb| and |Iklc| we can assume I
(1)0
kl = 0 and E

(1)0
r = 1.0 p.u. to solve two

unknown variables m and Rf . With this assumption, it is realized that (3.90) and
(3.91) contain the same information and can be treated as one function. Therefore,
we have two equations and two unknowns, wherein Newton-Raphson approach can
be utilized.

2) LLG fault

For phase B to C to ground fault, from the boundary condition in (2.98)-(2.100)
and (3.80)-(3.82) the fault location formulations are obtained as

|Ikla| =

∣∣∣∣∣I(1)0
kl +

Z
(2)
rr

ZLLG
(β

(0)
kl − β

(1)
kr )I

(1)
f

∣∣∣∣∣ (3.93)

|Iklb| =

∣∣∣∣∣α2I
(1)0
kl +

β
(0)
kl Z

(2)
rr

ZLLG
I

(1)
f − β

(1)
kl (α2 − α + α

Z
(2)
rr

ZLLG
)I

(1)
f

∣∣∣∣∣ (3.94)

|Iklc| =

∣∣∣∣∣αI(1)0
kl +

β
(0)
kl Z

(2)
rr

ZLLG
I

(1)
f − β

(1)
kl (α− α2 + α2 Z

(2)
rr

ZLLG
)I

(1)
f

∣∣∣∣∣ (3.95)

where
ZLLG = Z(0)

rr + Z(2)
rr + 3Rf (3.96)

and I
(1)
f can be obtained from (2.98) and listed below

I
(1)
f =

E
(1)0
r

Z
(1)
rr +

Z
(2)
rr (Z

(0)
rr + 3Rf )

Z
(0)
rr + Z

(2)
rr + 3Rf

(3.97)

Substituting (3.62), (3.3) into (3.93)-(3.97) can lead to the fault location formula-

tions. Provided |Ikla|, |Iklb|, and |Iklc|, we can assume E
(1)0
r = 1.0, p.u. and I

(1)0
kl = 0.

Then we will have three equations and two unknowns m and Rf , which can be solved
using least squares based approach.

3) LL fault

For phase B to C fault, upon the boundary condition in (2.103), (3.80)-(3.82) can be
reformatted as

Ikla = I
(1)0
kl (3.98)

Iklb = α2I
(1)0
kl + (α− α2)β

(1)
kl I

(1)
f (3.99)

Iklc = αI
(1)0
kl − (α− α2)β

(1)
kl I

(1)
f (3.100)

Applying (3.62), (3.3) and (2.104), (3.99)-(3.100) can be expanded as

|Iklb| =
∣∣∣α2I

(1)0
kl +

(
α− α2

) (
B

(1)
kl + C

(1)
kl m

)
I

(1)
f

∣∣∣ (3.101)
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|Iklc| =
∣∣∣αI(1)0

kl −
(
α− α2

) (
B

(1)
kl + C

(1)
kl m

)
I

(1)
f

∣∣∣ (3.102)

where

I
(1)
f =

E
(1)0
r

2A
(1)
0 + 2A

(1)
1 m+ 2A

(1)
2 m2 +Rf

(3.103)

With the assumption I
(1)0
kl = 0 and E

(1)0
r = 1.0 p.u., (3.101) and (3.102) are the same

in essence. Therefore, we only have one equation. Further, we can presume a certain
value for Rf to estimate the fault location m. Since the fault resistance is normally
very small for double-phase fault, we can assign Rf = 0.5 Ω without causing signifi-
cant errors. Newton-Raphson technique can be utilized to solve (3.101).

4) LLL fault

For three phase balanced fault, based on the boundary condition in (2.108), (3.80)-
(3.82) can be reformatted as

Ikla = I
(1)0
kl − β

(1)
kl I

(1)
f (3.104)

Iklb = α2(I
(1)0
kl − β

(1)
kl I

(1)
f ) (3.105)

Iklc = α(I
(1)0
kl − β

(1)
kl I

(1)
f ) (3.106)

where I
(1)
f is from (2.109). Equations (3.104)-(3.106) contain the same information

when absolute values are exercised. Therefore, making use of (3.104) together with
(3.62) and (3.3) will lead to the fault location formulation as

|Ikla| =

∣∣∣∣∣I(1)0
kl −

(B
(1)
kl + C

(1)
kl m)E

(1)0
r

A
(1)
0 + A

(1)
1 m+ A

(1)
2 m2 +Rf

∣∣∣∣∣ (3.107)

Given |Ikla|, other than assuming I
(1)0
kl = 0 and E

(1)0
r = 1.0 p.u., Rf also needs to

be known to solve for m. The fault resistance is normally very small for three phase
faults, so a value close to zero can be assumed without causing significant errors.
Then we will have one equation and one unknown m, the solution of which is similar
to LL fault.

Formulas involving other phases for different kinds of fault can be deduced simi-
larly.

3.3.2.2 Algorithms with Current Magnitudes from Multiple Branches

When the current measurements from any two branches kl and k1l1 are available, in
addition to (3.80)-(3.82), we also have

Ik1l1a = −β(0)
k1l1

I
(0)
f + I

(1)0
k1l1
− β(1)

k1l1
I

(1)
f − β

(2)
k1l1

I
(2)
f (3.108)

Ik1l1b = −β(0)
k1l1

I
(0)
f + α2(I

(1)0
k1l1
− β(1)

k1l1
I

(1)
f )− αβ(2)

k1l1
I

(2)
f (3.109)
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Ik1l1c = −β(0)
k1l1

I
(0)
f + α(I

(1)0
k1l1
− β(1)

k1l1
I

(1)
f )− α2β

(2)
k1l1

I
(2)
f (3.110)

Depending on the fault type, we will have six equations at most, with |Ikla|, |Iklb|, |Iklc|,
|Ik1l1a|, |Ik1l1b| and |Ik1l1c| being known quantities and m, Rf , I

(1)0
kl , I

(1)0
k1l1

and E
(1)0
r

being unknowns. Still, assuming a flat value for all pre-fault voltages and currents,
m and Rf can be solved. For LLG fault, there will be six equations. For LG fault,
we will have four equations. For double-phase and three-phase balanced faults, there
is no need to assume any value for the fault resistance since we have two equations
now. In general, when multiple measurements are utilized. The least squares based
technique can be adopted.

A note of value is that for LL and LLL faults, when the following relationship in
(3.111) exists between any two or more branches, it is not possible to obtain any fault
location estimation using these measurements.

B
(1)
kl

C
(1)
kl

=
B

(1)
k1l1

C
(1)
k1l1

(3.111)

This is because when (3.111) holds, the current measurements of these branches are
linearly dependent and independent of m.

It should be pointed out that regardless of one-branch or multi-branch algorithms,
for LG, LL and LLL faults, under certain fault conditions, multiple valid solutions
might arise. When multiple valid solutions are yielded, our studies indicate that it
is not possible to distinguish the true solution. This is because if the network is
subject to the fault conditions as given by the valid solutions, by performing short-
circuit analysis we will obtain the same current magnitudes as the measured current
magnitudes. Hence, unless more information is available, there may be more than
one fault location estimates.

3.4 Simulation Studies

In order to evaluate the developed fault location algorithms, simulation studies have
been conducted and results will be shown in this section. The methodology is to
simulate faults of different types, locations and fault resistances for the studied sys-
tem with EMTP [67]. The current phasors extracted from the generated current
waveforms using Discrete Fourier Transform are fed into the developed algorithms to
calculate the fault location. The waveforms of about 8th cycle after fault inception
are captured to obtain the phasors.

The sample 4-bus power system used in Section 2.4 is shown here again in Fig.
3.6. The possible current measurements and their flow directions for each branch
are specified in Fig. 3.6. The system is modelled in EMTP based on the lumped
parameter line model without considering load and shunt capacitance of the line.
The location of the fault is defined as the distance between the fault point and bus
1. The fault location accuracy is evaluated by percentage error defined in equation
(2.148).
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Figure 3.6: The diagram of studied 4-bus power system with current indicated.

Next, fault location results utilizing current phasors and phase current magnitudes
are reported, respectively.

3.4.1 Case Studies for Fault Location Using Current Phasors

The algorithms have been tested under various fault conditions using current measure-
ments from one or two branches. Table 3.1 shows the fault location results produced
by synchronized current measurements from two branches. The first three columns
represent the actual fault type, location and resistance respectively. Columns 4 and 5
list the errors of fault location estimate utilizing current measurements from branch
(2, 4) and (1, 4, 1), and branch (1, 5) and (4, 5), respectively. Here, branch (2, 4)
represents the circuit between bus 2 and 4. Branch (1, 4, 1) represents the first circuit
of the double-circuit line between bus 1 and 4, where the third number in the bracket
is used to distinguish between the two parallel branches. Other branches are named
similarly.

The results in Table 3.1 are based on positive-sequence current measurements. It
can be observed that the fault location estimate is quite accurate. In fact, the fault
location estimate also contains an imaginary part, which represents the numerical
round off error. Since we know the fault location estimate should be a real number,
its imaginary part is neglected.

Quite accurate results have been obtained utilizing current measurements from
other branch combinations such as (2, 4) & (1, 5), (2, 4) & (4, 5), (3, 4) & (1, 4,
1), (3, 4) & (1, 5), (3, 4) & (4, 5), (1, 4, 1) & (1, 5) and (1, 4, 1) & (4, 5). The
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Table 3.1: Fault location results using current phasors from two branches

Fault Fault Fault Est. err. using cur. from two branches (%)
type loca. (km) res. (Ω) (2,4) and (1,4,1) (1,5) and (4,5)
AG 40 1 0.012 0.0082

50 0.00014 0.00072
100 1 0.011 0.0024

50 0.00092 0.00023
140 1 0.00042 0.000021

50 0.00021 0.00020
BC 40 1 0.0028 0.00056

100 1 0.0017 0.000030
140 1 0.00022 0.00012

BCG 40 1 0.0021 0.0014
50 0.0050 0.00013

100 1 0.00081 0.00029
50 0.0029 0.00016

140 1 0.00024 0.000077
50 0.00016 0.00014

ABC 40 1 0.013 0.0093
100 1 0.010 0.0028
140 1 0.00081 0.00041

above discussion equally applies to those branch combinations. The only exception is
the combination (2, 4) & (3, 4), which does not produce any fault location estimate
because the current changes from these two branches are linearly dependent.

Table 3.2: Fault location results using current phasors from one branch for AG fault

Fault Fault Estimated eror using current
location res. from one branch (%)
(km) (Ω) (2,4) (1,4,1) (1,5)
40 1 0.022 0.011 0.069

10 0.0049 0.0019 0.016
100 1 0.015 0.011 0.015

50 0.0014 0.00090 0.0014
140 10 0.000011 0.00069 0.00038

50 0.000026 0.00061 0.00042

Table 3.2 presents the fault location results for AG fault utilizing the current
measurements from one branch. Columns 3-5 display the percentage errors of fault
location estimate employing current measurements from branch (2, 4), (1, 4, 1) and
(1, 5), respectively. The fault location results in Table 3.2 are very satisfactory.

The fault location results for BCG fault using current measurements from branch
(3, 4) are displayed in Table 3.3. Columns 3-4 exhibit the estimated fault resistance
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and percentage fault location error. The base value of the impedance is 529 Ω.
Experiments shows that when fault resistance approaches a very high value, about 500
Ω in our studies, erroneous solution may arise in some cases, which can be identified
and removed by the proposed method earlier.

Table 3.3: Fault location results using current phasors from one branch for BCG fault

Fault Fault Est. fault Est. fault
location res. res. (p.u.) loca. error
(km) (Ω) (%)
40 1 0.001904 0.0025

10 0.01900 0.0043
100 10 0.01900 0.0027

50 0.09450 0.0061
140 1 0.001901 0.0027

50 0.09450 0.00021

Table 3.4 shows the fault location results utilizing current measurements of branch
(2, 4) for BC and ABC faults. Column 3-5 list the estimated fault location, resistance
and percentage fault location error. The actual fault resistance is 1 Ω. Two valid
solutions may be obtained with one of them being an erroneous one as indicated by
N/A. For example, for a BC fault with fault location of 40 km, the algorithm with
currents of branch (2, 4) as inputs yields two valid solutions, (0.2073, 0.001936) p.u.
and (0.3240, 0.002361) p.u.. Therefore, we have two likely fault location estimates
0.2073 p.u. and 0.3240 p.u..

Table 3.4: Fault location results using current phasors from one branch for BC and
ABC faults

Fault Fault Est. fault Est. fault Est. fault
type location loca. (p.u.) res. (p.u.) loca. err.

(km) (%)
BC 40 0.2073 0.001936 0.0046

0.3240 0.002361 N/A
100 0.06703 0.001153 N/A

0.5183 0.001998 0.017
ABC 40 0.2053 0.001921 0.20

0.3280 0.002297 N/A
140 0.7254 0.001952 0.0011

In general, regardless of the fault type, when one branch current measurements
are utilized, the fault location estimate is highly accurate as shown in Table 3.2, 3.3
and 3.4.
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3.4.2 Case Studies for Fault Location Using Phase Current
Magnitudes

Table 3.5 presents the fault location results using phase current magnitudes. The
first three columns list the actual fault type, fault location and fault resistance uti-
lized in EMTP. The percentage fault location estimation errors using phase current
magnitudes from branches of different combinations are reported in the rest columns.

As can be seen, the accuracy of fault location estimates are quite satisfactory,
with the biggest error being 0.9949% when using the measurements from a single
bus for ABC and BC faults and 0.0292% for the rest. The bigger error of the first
situation is on account of the approximation of the fault resistance. In certain cases,
multiple valid solutions may arise designated by *. So far, our studies indicate that
it is not possible to identify the true solution when only current magnitudes data are
available.

Table 3.5: Fault location results using phase current magnitudes

Fault Fault Fault Fault loca. est. error using phase current
type loca. res. mag. from different branches (%)

(km) (Ω) (2,4) (1,4,1) (3,4) & (1,4,1) (1,5) & (4,25)
AG 40 10 0.0049 0.0001* 0.0001 0.0012
BC 140 1 0.1070 0.0467* 0.0001 0.0001
BCG 100 50 0.0043 0.0009 0.0011 0.0003
ABC 40 1 0.9949* 0.0186* 0.0292 0.0183

3.5 Summary

In this chapter, fault location algorithms using sparse current phasors and phase cur-
rent magnitudes based on the lumped parameter line model have been developed.
Very accurate simulation study results have been obtained.

The phasor-based approach has the following characteristic

• Fault type classification is required before applying the one-branch fault lo-
cation algorithm. While positive-sequence quantities are utilized to perform
two-branch fault location algorithm, there is no need to exercise fault classifi-
cation.

• Both two-branch algorithm and one-branch algorithms for LG and LLG faults
are able to produce precise fault location. Whereas LL and LLL one-branch
algorithms can only produce fault location approximation due to the assumption
of flat value for the pre-fault voltage at the fault bus.

• Two-branch fault location algorithm has limited application determined by the
network topology.
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• For LL and LLL one-branch fault location algorithms, when two valid solutions
are obtained, we will have two possible fault location estimates.

For the magnitude-based approach, we can sum up the following points

• Fault type classification is required before carrying out fault location for both
one-branch and multi-branch algorithms.

• All the algorithms using phase current magnitudes are iterative and can only
procure an approximate value of fault location.

• For LLG faults, regardless of one-branch or multi-branch algorithms, a unique
fault location estimate can be yielded.

• For LL and LLL faults, the feasibility of the multi-branch fault location algo-
rithms depends on the network topology.

• Erroneous fault location estimates may exist for one-branch or multi-branch al-
gorithms for LG, LL and LLL faults. Without other information, such as voltage
measurements, it is not possible to filter out the erroneous solution. Study on
sufficiency of measurements for uniquely determining the true fault location for
double-circuit lines is a complex problem and entails further research.

61



Chapter 4

Fault Location Utilizing Sparse
Voltage Measurements Based on
Distributed Parameter Line Model

In this chapter, the proposed fault location method is briefly given first. The zero-
sequence equivalent π model of the double-circuit line is then derived in Section 4.2.
Section 4.3 and 4.4 present the proposed fault location method. An optimal estimator
able to detect and identify bad measurements is introduced in Section 4.5. Section
4.6 reports the simulation study results. Finally, Section 4.7 summarizes the chapter
with concluding remarks.

4.1 Introduction

The fault location method proposed in Chapter 2 is based on the lumped parameter
line model without considering the shunt capacitance. For long transmission lines, it
may cause significant errors. This chapter has developed accurate fault location algo-
rithms based on the distributed parameter line model, which fully takes the charging
effect of the lines into consideration. Sparse voltage measurements are employed and
no current measurements are required. The network data are assumed to be known
and the network is transposed. The faulted section has been pinpointed in advance
from relay operations. Also, the fault type classification, if needed, has been carried
out before applying fault location algorithms.

4.2 Zero-Sequence Equivalent PI Model of Double-

Circuit Line

The positive-sequence equivalent π model for the double-circuit line is no different
from the single-circuit line since there is no mutual coupling between the parallel
lines, which is well described in classical textbooks [64]. However, the zero-sequence
double-circuit line model based on the distributed parameter line model has not been
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discussed in any textbooks due to its complexity. In reference [71], by decoupling the
zero-sequence parallel lines into two independent modes, the equivalent π model for
double-circuit lines having either identical or different line parameters is established.
In this dissertation, a different approach purely in time-domain is provided. The
constructed equivalent π model is the same as that of [71]. The proposed time-
domain approach is only applicable to the scenario where the line parameters of the
parallel lines are identical.

In this section, all the quantities refer to zero-sequence components unless other-
wise specified. A schematic diagram of a zero-sequence double-circuit line is delin-
eated in Fig. 4.1. The sending and receiving ends of the line are denoted as S and
R.

Vs1, Is1 voltage and current at the sending end of line 1;

Vr1, Ir1 voltage and current at the receiving end of line 1;

Vs2, Is2 voltage and current at the sending end of line 2;

Vr2, Ir2 voltage and current at the receiving end of line 2;

x the distance between the considered point and the receiving end;

V1, I1 voltage and current of line 1 at the considered point;

V2, I2 voltage and current of line 2 at the considered point;

z self-series impedance of the line per unit length;

y self-shunt admittance of the line per unit length;

zm mutual-series impedance between the parallel lines per unit length;

ym mutual-shunt admittance between the parallel lines per unit length;

Given that the parameters of the lines are distributed uniformly throughout the length
of the line, our objective is to derive the equivalent model that accounts for the dis-
tributed parameter effects. Suppose such an equivalent circuit exists as shown in Fig.
4.2, where we have Z and Zm as the total equivalent self- and mutual-series impedance
and Y and Ym as the total equivalent self- and mutual-shunt admittance. The rest
part of this section is devoted to the derivation of these equivalent parameters.

Based on Fig. 4.1, we write

dV1 = I1z dx+ I2zm dx

dI1 = V1y dx+ (V1 − V2)ym dx

From the above equations, we have

dV1

dx
= I1z + I2zm (4.1)
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Figure 4.1: Mutually coupled zero-sequence networks of a parallel line.

Figure 4.2: Equivalent π model of the zero-sequence double-circuit line.
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dI1
dx

= V1(y + ym)− V2ym (4.2)

Taking the derivative of (4.1) and (4.2) with respect to x, respectively, then we have

d2V1

dx2
= z

dI1
dx

+ zm
dI2
dx

(4.3)

d2I1
dx2

= (y + ym)
dV1

dx
− ym

dV2

dx
(4.4)

Referring to Fig. 4.1, for the second line the following equations hold

dV2 = I2 zdx+ I1zm dx

dI2 = V2y dx+ (V2 − V1)ym dx

From the above two equations we can derive

dV2

dx
= I2z + I1zm (4.5)

dI2
dx

= V2(y + ym)− V1ym (4.6)

Then taking the derivative of (4.5) and (4.6) with respect to x, respectively, we have

d2V2

dx2
= z

dI2
dx

+ zm
dI1
dx

(4.7)

d2I2
dx2

= (y + ym)
dV2

dx
− ym

dV1

dx
(4.8)

Substituting (4.2) and (4.6) into (4.3), then

d2V1

dx2
= z[V1(y + ym)− V2ym] + zm[V2(y + ym)− V1ym]

= (zy + zym − zmym)V1 + (zmy + zmym − zym)V2 (4.9)

Substituting (4.1) and (4.5) into (4.4), then

d2I1
dx2

= (y + ym)(I1z + I2zm)− ym(I2z + I1zm)

= (zy + zym − zmym)I1 + (zmy + zmym − zym)I2 (4.10)

Substituting (4.2) and (4.6) into (4.7), then

d2V2

dx2
= z[V2(y + ym)− V1ym] + zm[V1(y + ym)− V2ym]

= (zy + zym − zmym)V2 + (zmy + zmym − zym)V1 (4.11)
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Substituting (4.1) and (4.5) into (4.8), then

d2I2
dx2

= (y + ym)(I2z + I1zm)− ym(I1z + I2zm)

= (zy + zym − zmym)I2 + (zmy + zmym − zym)I1 (4.12)

From (4.10), we can obtain the expression of I2

I2 =
1

zmy + zmym − zym

[
d2I1
dx2
− (zy + zym − zmym)I1

]
(4.13)

dI2
dx

=
1

zmy + zmym − zym

[
d3I1
dx3
− (zy + zym − zmym)

dI1
dx

]
(4.14)

d2I2
dx2

=
1

zmy + zmym − zym

[
d4I1
dx4
− (zy + zym − zmym)

d2I1
dx2

]
(4.15)

Substituting (4.13) and (4.15) into (4.12), we obtain

1

zmy + zmym − zym

[
d4I1
dx4
− (zy + zym − zmym)

d2I1
dx2

]
=

zy + zym − zmym
zmy + zmym − zym

[
d2I1
dx2
− (zy + zym − zmym)I1

]
+ (zmy + zmym − zym)I1

which can be rearranged into the following form

d4I1
dx4
− 2(zy + zym − zmym)

d2I1
dx2

+
[
(zy + zym − zmym)2 − (zmy + zmym − zym)2

]
I1 = 0 (4.16)

The characteristic equation of (4.16) is

λ4 − 2(zy + zym − zmym)λ2 +
[
(zy + zym − zmym)2 − (zmy + zmym − zym)2

]
= 0

The roots of the above equation are

λ2 =
2(zy + zym − zmym)

2

±
√

4(zy + zym − zmym)2 − 4 [(zy + zym − zmym)2 − (zmy + zmym − zym)2]

2

= (zy + zym − zmym)± (zmy + zmym − zym)

=

{
(z + zm)y

(z − zm)(y + 2ym)

Then, the solution of λ is

λ1 =
√
y(z + zm)
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λ2 = −
√
y(z + zm)

λ3 =
√

(z − zm)(y + 2ym)

λ4 = −
√

(z − zm)(y + 2ym)

Therefore the solution of (4.16) is

I1 = A1e
λ1x + A2e

λ2x + A3e
λ3x + A4e

λ4x

which is

I1 = A1e
√
y(z+zm)x + A2e

−
√
y(z+zm)x + A3e

√
(z−zm)(y+2ym)x + A4e

−
√

(z−zm)(y+2ym)x

(4.17)
Define

γm1 =
√

(z − zm)(y + 2ym) (4.18)

γm2 =
√

(z + zm)y (4.19)

Then (4.17) becomes

I1 = A1e
γm2x + A2e

−γm2x + A3e
γm1x + A4e

−γm1x (4.20)

From (4.12), we have

I1 =
1

zmy + zmym − zym

[
d2I2
dx2
− (zy + zym − zmym)I2

]
(4.21)

d2I1
dx2

=
1

zmy + zmym − zym

[
d4I2
dx4
− (zy + zym − zmym)

d2I2
dx2

]
(4.22)

Substituting (4.21) and (4.22) into (4.10) and rearranging leads to

d4I2
dx4
− 2(zy + zym − zmym)

d2I2
dx2

+
[
(zy + zym − zmym)2 − (zmy + zmym − zym)2

]
I2 = 0 (4.23)

The solution of (4.23) can be extracted from that of (4.16), which is shown as follows

I2 = A5e
√
y(z+zm)x + A6e

−
√
y(z+zm)x + A7e

√
(z−zm)(y+2ym)x + A8e

−
√

(z−zm)(y+2ym)x

(4.24)
Using (4.18) and (4.19), (4.24) is formulated as

I2 = A5e
γm2x + A6e

−γm2x + A7e
γm1x + A8e

−γm1x (4.25)

From (4.2) and (4.6), V1 and V2 with respect to I1 and I2 can be found

V1 =
1

y(y + 2ym)

[
dI1
dx

(y + ym) +
dI2
dx

ym

]
(4.26)
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V2 =
1

y(y + 2ym)

[
dI1
dx

ym +
dI2
dx

(y + ym)

]
(4.27)

Substituting the respective derivatives of I1 and I2 over x from (4.20) and (4.25) into
(4.26) and (4.27), we can derive

V1 =
1

y(y + 2ym)

{
[A1(y + ym) + A5ym] γm2e

γm2x − [A2(y + ym) + A6ym] γm2e
−γm2x

+ [A3(y + ym) + A7ym] γm1e
γm1x − [A4(y + ym) + A8ym] γm1e

−γm1x
}

(4.28)

V2 =
1

y(y + 2ym)

{
[A1ym + A5(y + ym)] γm2e

γm2x − [A2ym + A6(y + ym)] γm2e
−γm2x

+ [A3ym + A7(y + ym)] γm1e
γm1x − [A4ym + A8(y + ym)] γm1e

−γm1x
}

(4.29)

The derivative of (4.28) with respect to x is

dV1

dx
=

1

y(y + 2ym)

{
[A1(y + ym) + A5ym] γ2

m2e
γm2x+[A2(y + ym) + A6ym] γ2

m2e
−γm2x

+ [A3(y + ym) + A7ym] γ2
m1e

γm1x + [A4(y + ym) + A8ym] γ2
m1e

−γm1x
}

(4.30)

Based on (4.20) and (4.25), we have

I1z + I2zm = A1ze
γm2x + A2ze

−γm2x + A3ze
γm1x + A4ze

−γm1x

+ A5zme
γm2x + A6zme

−γm2x + A7zme
γm1x + A8zme

−γm1x

= (A1z + A5zm)eγm2x + (A2z + A6zm)e−γm2x

+ (A3z + A7zm)eγm1x + (A4z + A8zm)e−γm1x (4.31)

Since dV1/dx = I1z + I2zm holds from (4.1), by comparing (4.30) and (4.31), the
following exist

γ2
m2

y(y + 2ym)
[A1(y + ym) + A5ym] = A1z + A5zm

γ2
m2

y(y + 2ym)
[A2(y + ym) + A6ym] = A2z + A6zm

γ2
m1

y(y + 2ym)
[A3(y + ym) + A7ym] = A3z + A7zm

γ2
m1

y(y + 2ym)
[A4(y + ym) + A8ym] = A4z + A8zm (4.32)

The derivative of (4.29) with respect to x is

dV2

dx
=

1

y(y + 2ym)

{
[A1ym + A5(y + ym)] γ2

m2e
γm2x+[A2ym + A6(y + ym)] γ2

m2e
−γm2x
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+ [A3ym + A7(y + ym)] γ2
m1e

γm1x + [A4ym + A8(y + ym)] γ2
m1e

−γm1x
}

(4.33)

Based on (4.20) and (4.25), we have

I1zm + I2z = A1zme
γm2x + A2zme

−γm2x + A3zme
γm1x + A4zme

−γm1x

+ A5ze
γm2x + A6ze

−γm2x + A7ze
γm1x + A8ze

−γm1x

= (A1zm + A5z)eγm2x + (A2zm + A6z)e−γm2x

+ (A3zm + A7z)eγm1x + (A4zm + A8z)e−γm1x (4.34)

Since dV2/dx = I2z + I1zm holds from (4.5), by comparing (4.33) and (4.34), the
following exist

γ2
m2

y(y + 2ym)
[A1ym + A5(y + ym)] = A1zm + A5z

γ2
m2

y(y + 2ym)
[A2ym + A6(y + ym)] = A2zm + A6z

γ2
m1

y(y + 2ym)
[A3ym + A7(y + ym)] = A3zm + A7z

γ2
m1

y(y + 2ym)
[A4ym + A8(y + ym)] = A4zm + A8z (4.35)

Solving either (4.34) or (4.35) can reach the following relationships

A5 =
γ2
m2(y + ym)− zy(y + 2ym)

zmy(y + 2ym)− γ2
m2ym

A1

A6 =
γ2
m2(y + ym)− zy(y + 2ym)

zmy(y + 2ym)− γ2
m2ym

A2

A7 =
γ2
m1(y + ym)− zy(y + 2ym)

zmy(y + 2ym)− γ2
m1ym

A3

A8 =
γ2
m1(y + ym)− zy(y + 2ym)

zmy(y + 2ym)− γ2
m1ym

A4 (4.36)

Replacing γm1 and γm2 from (4.18) and (4.19), (4.36) can be simplified into

A5 = A1

A6 = A2

A7 = −A3

A8 = −A4 (4.37)

Let’s define √
z + zm
y

= Zcm2 (4.38)
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√
z − zm
y + 2ym

= Zcm1 (4.39)

Using (4.37), (4.38) and (4.39), the coefficients of V1 and V2 in (4.28) and (4.29) can
be simplified into

A1(y + ym) + A5ym
y(y + 2ym)

γm2 = A1
γm2

y
= A1

√
z + zm
y

= A1Zcm2

−A2(y + ym) + A6ym
y(y + 2ym)

γm2 = −A2
γm2

y
= −A2

√
z + zm
y

= −A2Zcm2

A3(y + ym) + A7ym
y(y + 2ym)

γm1 = A3
γm1

y + 2ym
= A3

√
z − zm
y + 2ym

= A3Zcm1

−A4(y + ym) + A8ym
y(y + 2ym)

γm1 = −A4
γm1

y + 2ym
= −A4

√
z − zm
y + 2ym

= −A4Zcm1

A1ym + A5(y + ym)

y(y + 2ym)
γm2 = A1

γm2

y
= A1

√
z + zm
y

= A1Zcm2

−A2ym + A6(y + ym)

y(y + 2ym)
γm2 = −A2

γm2

y
= −A2

√
z + zm
y

= −A2Zcm2

A3ym + A7(y + ym)

y(y + 2ym)
γm1 = −A3

γm1

y + 2ym
= −A3

√
z − zm
y + 2ym

= −A3Zcm1

−A4ym + A8(y + ym)

y(y + 2ym)
γm1 = A4

γm1

y + 2ym
= A4

√
z − zm
y + 2ym

= A4Zcm1 (4.40)

Finally, (4.28) and (4.29) can be simplified into

V1 = A1Zcm2e
γm2x − A2Zcm2e

−γm2x + A3Zcm1e
γm1x − A4Zcm1e

−γm1x (4.41)

V2 = A1Zcm2e
γm2x − A2Zcm2e

−γm2x − A3Zcm1e
γm1x + A4Zcm1e

−γm1x (4.42)

Thus far, we have established the formulations of I1, I2, V1, and V2 as shown in
(4.20), (4.25), (4.41) and (4.42). The unknown coefficients A1, A2, A3 and A4 are to
be determined by boundary conditions. At x = 0, we have the boundary condition

V1 = Vr1

V2 = Vr2

I1 = Ir1

I2 = Ir2 (4.43)

Thus, at x = 0, (4.20), (4.25), (4.41) and (4.42) become

Ir1 = A1 + A2 + A3 + A4 (4.44)

Ir2 = A1 + A2 − A3 − A4 (4.45)
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Vr1 = A1Zcm2 − A2Zcm2 + A3Zcm1 − A4Zcm1 (4.46)

Vr2 = A1Zcm2 − A2Zcm2 − A3Zcm1 + A4Zcm1 (4.47)

From (4.44)-(4.47), we can obtain the coefficients as follows

A1 =
1

4
(Ir1 + Ir2) +

1

4Zcm2

(Vr1 + Vr2) (4.48)

A2 =
1

4
(Ir1 + Ir2)−

1

4Zcm2

(Vr1 + Vr2) (4.49)

A3 =
1

4
(Ir1 − Ir2) +

1

4Zcm1

(Vr1 − Vr2) (4.50)

A4 =
1

4
(Ir1 − Ir2)−

1

4Zcm1

(Vr1 − Vr2) (4.51)

Substituting (4.48)-(4.51) into (4.20) leads to

I1 = A1 [cosh(γm2x) + sinh(γm2x)] + A2 [cosh(γm2x)− sinh(γm2x)]

+ A3 [cosh(γm1x) + sinh(γm1x)] + A4 [cosh(γm1x)− sinh(γm1x)]

= (A1 + A2) cosh(γm2x) + (A1 − A2) sinh(γm2x)

+ (A3 + A4) cosh(γm1x) + (A3 − A4) sinh(γm1x)

=
Ir1 + Ir2

2
cosh(γm2x) +

Vr1 + Vr2
2Zcm2

sinh(γm2x)

+
Ir1 − Ir2

2
cosh(γm1x) +

Vr1 − Vr2
2Zcm1

sinh(γm1x) (4.52)

Similarly, (4.25), (4.41) and (4.42) are formulated as

I2 =
Ir1 + Ir2

2
cosh(γm2x) +

Vr1 + Vr2
2Zcm2

sinh(γm2x)

− Ir1 − Ir2
2

cosh(γm1x)− Vr1 − Vr2
2Zcm1

sinh(γm1x) (4.53)

V1 =
Vr1 + Vr2

2
cosh(γm2x) +

Ir1 + Ir2
2

Zcm2 sinh(γm2x)

+
Vr1 − Vr2

2
cosh(γm1x) +

Ir1 − Ir2
2

Zcm1 sinh(γm1x) (4.54)

V2 =
Vr1 + Vr2

2
cosh(γm2x) +

Ir1 + Ir2
2

Zcm2 sinh(γm2x)

− Vr1 − Vr2
2

cosh(γm1x)− Ir1 − Ir2
2

Zcm1 sinh(γm1x) (4.55)

Let x = l, we have the boundary condition

V1 = Vs1
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V2 = Vs2

I1 = Is1

I2 = Is2 (4.56)

Applying (4.56), (4.52)-(4.55) can be formulated as

Is1 =
Vr1
2

[
sinh(γm2l)

Zcm2

+
sinh(γm1l)

Zcm1

]
+
Vr2
2

[
sinh(γm2l)

Zcm2

− sinh(γm1l)

Zcm1

]
+
Ir1
2

[cosh(γm2l) + cosh(γm1l)] +
Ir2
2

[cosh(γm2l)− cosh(γm1l)] (4.57)

Is2 =
Vr1
2

[
sinh(γm2l)

Zcm2

− sinh(γm1l)

Zcm1

]
+
Vr2
2

[
sinh(γm2l)

Zcm2

+
sinh(γm1l)

Zcm1

]

+
Ir1
2

[cosh(γm2l)− cosh(γm1l)] +
Ir2
2

[cosh(γm2l) + cosh(γm1l)] (4.58)

Vs1 =
Vr1
2

[cosh(γm2l) + cosh(γm1l)] +
Vr2
2

[cosh(γm2l)− cosh(γm1l)]

+
Ir1
2

[Zcm2 sinh(γm2l) + Zcm1 sinh(γm1l)]

+
Ir2
2

[Zcm2 sinh(γm2l)− Zcm1 sinh(γm1l)] (4.59)

Vs2 =
Vr1
2

[cosh(γm2l)− cosh(γm1l)] +
Vr2
2

[cosh(γm2l) + cosh(γm1l)]

+
Ir1
2

[Zcm2 sinh(γm2l)− Zcm1 sinh(γm1l)]

+
Ir2
2

[Zcm2 sinh(γm2l) + Zcm1 sinh(γm1l)] (4.60)

On the other hand, from Fig. 4.2, we can derive

Vs1 = Vr1 +

[
Vr1

Y

2
+ (Vr1 − Vr2)

Ym
2

+ Ir1

]
Z

+

[
Vr2

Y

2
+ (Vr2 − Vr1)

Ym
2

+ Ir2

]
Zm

= Vr1

(
1 +

Y Z

2
+
YmZ

2
− YmZm

2

)
+ Vr2

(
Y Zm

2
+
YmZm

2
− YmZ

2

)
+ Ir1Z + Ir2Zm (4.61)

Comparing and equating the coefficients of Vr1, Vr2, Ir1 and Ir2 from (4.59) and (4.61),
respectively, we can write

Z =
1

2
[Zcm2 sinh(γm2l) + Zcm1 sinh(γm1l)] (4.62)
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Zm =
1

2
[Zcm2 sinh(γm2l)− Zcm1 sinh(γm1l)] (4.63)

Y =

2 tanh

(
γm2l

2

)
Zcm2

(4.64)

Ym =

tanh

(
γm1l

2

)
Zcm1

−
tanh

(
γm2l

2

)
Zcm2

(4.65)

Referring to Fig. 4.2, we can also write the formulations of Vs2, Is1 and Is2. It
has been verified that (4.62)-(4.65) also hold for these expressions. Thus far, the
equivalent π model for zero-sequence double-circuit lines sharing identical parameters
is established, based on which we can proceed to the fault location basis.

4.3 Fault Location Basis

The basic methodology of the proposed fault location method is to add a fictitious bus
where the fault occurs to the original network, and then the driving point impedance
of the fault bus and the transfer impedances between this bus and other buses are
revealed as functions of unknown fault distance. According to the definition of bus
impedance matrix, the sequence voltage change during the fault at any bus can be
formulated with respect to the corresponding transfer impedance and sequence fault
current. In association with the boundary conditions of different fault types, fault
current terms can be canceled out and the fault location can be obtained.

In this section, our objective is to decouple the original network into three inde-
pendent sequence component networks and construct the bus impedance matrix with
additional buses for each sequence network, separately.

First of all, the notations used in this chapter are summarized as follows

n total number of buses of the pre-fault network;

p, q buses of the faulted section;

r fictitious bus representing the fault point and r = n+ 2;

s fictitious bus and s = n+ 1;

m unknown per unit fault distance from bus p;

l length of the line between buses p and q;

i symmetrical component index; i = 0, 1, 2 for zero-, positive- and negative-
sequence, respectively, put in parenthesis as a superscript throughout the
chapter;

73



z
(i)
j1j2

ith-sequence total equivalent self-series impedance of the branch between
buses j1 and j2; in case of a double-circuit line sharing both terminals
j1 and j2, an extra subscript is used to distinguish the first and second
parallel lines, i.e. z

(i)
j1j2 1, z

(i)
j1j2 2;

z
(0)
j1j2 m

zero-sequence total equivalent mutual-series impedance of the branches of
the double-circuit line sharing both terminals j1 and j2;

y
(i)
j1j2

ith-sequence total equivalent self-shunt admittance of the branch between
buses j1 and j2; in case of a double-circuit line sharing both terminals
j1 and j2, an extra subscript is used to distinguish the first and second
parallel lines, i.e. y

(i)
j1j2 1, y

(i)
j1j2 2;

z
(0)
1m, y

(0)
1m zero-sequence total equivalent mutual-series impedance and mutual-shunt

admittance between branches ps and pr, respectively;

z
(0)
2m, y

(0)
2m zero-sequence total equivalent mutual-series impedance and mutual-shunt

admittance between branches qs and qr, respectively;

Z
(i)
0 bus impedance matrix of the pre-fault ith-sequence network. It has a size

n by n, whose element on the kth1 row and kth2 column is denoted as Z
(i)
0,k1k2

;

Z(i) bus impedance matrix of the ith-sequence network with the addition of
fictitious buses s and r. It has a size of n+ 2 by n+ 2, whose element on
the kth1 row and kth2 column is denoted by Z

(i)
k1k2

.

4.3.1 Construction of Zero-Sequence Augmented Bus
Impedance Matrix

The construction of bus impedance matrix with addition of the fault bus for the
zero-sequence network is first considered. The pre-fault zero-sequence network of a
sample power system is shown in Fig. 4.3, whose bus impedance matrix Z

(0)
0 can be

developed using well established techniques [64]. Note that the studied parallel lines

in our work share identical parameters, i.e. z
(0)
pq 1 = z

(0)
pq 2, y

(0)
pq 1 = y

(0)
pq 2. The parameters

in Fig. 4.3 are as follows as obtained in Section 4.2

z
(0)
pq 1 =

1

2

[
Z

(0)
cm2 sinh

(
γ

(0)
m2l
)

+ Z
(0)
cm1 sinh

(
γ

(0)
m1l
)]

(4.66)

y
(0)
pq 1 =

2 tanh
(

1
2
γ

(0)
m2l
)

Z
(0)
cm2

(4.67)

z(0)
pq m =

1

2

[
Z

(0)
cm2 sinh

(
γ

(0)
m2l
)
− Z(0)

cm1 sinh
(
γ

(0)
m1l
)]

(4.68)

y(0)
pq m =

tanh
(

1
2
γ

(0)
m1l
)

Z
(0)
cm1

−
tanh

(
1
2
γ

(0)
m2l
)

Z
(0)
cm2

(4.69)
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Figure 4.3: Pre-fault zero-sequence network.

A note of worth is that y
(0)
pq m is not shown in Fig. 4.3, which is the total equivalent

mutual-shunt admittance between the parallel lines sharing two common terminals
p and q. Because of the common terminals of the double-circuit line, the mutual
shunt admittance disappears. Supposing the fault occurs on the second branch of
the parallel lines, Fig. 4.4 depicts the zero-sequence network with addition of two
fictitious buses s and r. From Fig. 4.4, we have z

(0)
ps = z

(0)
pr , z

(0)
qs = z

(0)
qr , y

(0)
ps = y

(0)
pr and

y
(0)
qs = y

(0)
qr . The parameters in terms of m are as follows

z(0)
pr =

1

2

[
Z

(0)
cm2 sinh

(
γ

(0)
m2ml

)
+ Z

(0)
cm1 sinh

(
γ

(0)
m1ml

)]
(4.70)

z(0)
qr =

1

2

{
Z

(0)
cm2 sinh

[
γ

(0)
m2(1−m)l

]
+ Z

(0)
cm1 sinh

[
γ

(0)
m1(1−m)l

]}
(4.71)

y(0)
pr =

2 tanh
(

1
2
γ

(0)
m2ml

)
Z

(0)
cm2

(4.72)

y(0)
qr =

2 tanh
[

1
2
γ

(0)
m2(1−m)l

]
Z

(0)
cm2

(4.73)

z
(0)
1m =

1

2

[
Z

(0)
cm2 sinh

(
γ

(0)
m2ml

)
− Z(0)

cm1 sinh
(
γ

(0)
m1ml

)]
(4.74)

z
(0)
2m =

1

2

{
Z

(0)
cm2 sinh

[
γ

(0)
m2(1−m)l

]
− Z(0)

cm1 sinh
[
γ

(0)
m1(1−m)l

]}
(4.75)

y
(0)
1m =

tanh
(

1
2
γ

(0)
m1ml

)
Z

(0)
cm1

−
tanh

(
1
2
γ

(0)
m2ml

)
Z

(0)
cm2

(4.76)
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Figure 4.4: Zero-sequence network with two additional fictitious buses.

y
(0)
2m =

tanh
[

1
2
γ

(0)
m1(1−m)l

]
Z

(0)
cm1

−
tanh

[
1
2
γ

(0)
m2(1−m)l

]
Z

(0)
cm2

(4.77)

where

Z
(0)
cm1 =

√
z(0) − z(0)

m

y(0) + 2y
(0)
m

Z
(0)
cm2 =

√
z(0) + z

(0)
m

y(0)

γ
(0)
m1 =

√(
z(0) − z(0)

m

)(
y(0) + 2y

(0)
m

)
γ

(0)
m2 =

√(
z(0) + z

(0)
m

)
y(0)

and

z(0) zero-sequence per-unit length self-series impedance (Ω/mile) of the line
between buses p and q,

y(0) zero-sequence per-unit length self-shunt admittance (S/mile) of the line
between buses p and q,

z
(0)
m zero-sequence per-unit length mutual-series impedance (Ω/mile) between

the two lines of buses p and q,
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Figure 4.5: Zero-sequence network with 1 A injected to a single bus k.

y
(0)
m zero-sequence per-unit length mutual-shunt admittance (S/mile) between

the two lines of buses p and q.

To formulate Z(0), suppose there is only one current source injected into a single bus
j (j = 1, 2, . . . , n), then the resulted voltages at bus k (k = 1, 2, . . . , n) will be the
same for the networks shown in Fig. 4.3 and Fig. 4.4. According to the definition of
bus impedance matrix, it is obtained that Z

(0)
jk = Z

(0)
0,jk, j, k = 1, 2, . . . , n. We have

Z(0) =



Z
(0)
0,11 · · · Z

(0)
0,1p Z

(0)
0,1q · · · Z

(0)
0,1n Z

(0)
1s Z

(0)
1r

...
. . .

...
...

. . .
...

...
...

Z
(0)
0,p1 · · · Z

(0)
0,pp Z

(0)
0,pq · · · Z

(0)
0,pn Z

(0)
ps Z

(0)
pr

Z
(0)
0,q1 · · · Z

(0)
0,qp Z

(0)
0,qq · · · Z

(0)
0,qn Z

(0)
qs Z

(0)
qr

...
. . .

...
...

. . .
...

...
...

Z
(0)
0,n1 · · · Z

(0)
0,np Z

(0)
0,nq · · · Z

(0)
0,nn Z

(0)
ns Z

(0)
nr

Z
(0)
s1 · · · Z

(0)
sp Z

(0)
sq · · · Z

(0)
sn Z

(0)
ss Z

(0)
sr

Z
(0)
r1 · · · Z

(0)
rp Z

(0)
rq · · · Z

(0)
rn Z

(0)
rs Z

(0)
rr



(4.78)

Let’s inject a current source of 1 Ampere to a single bus k (k = 1, 2, . . . , n) as shown
in Fig. 4.5. i1, i2 denote the currents flowing from bus p to r and s respectively; i3,
i4 denote the currents flowing from bus q to r and s respectively. Making use of the
bus impedance matrix in (4.78), we obtain

Vp = Z
(0)
0,pk, Vq = Z

(0)
0,qk, Vr = Z

(0)
rk (4.79)
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It follows from Fig. 4.5 that

Vp − Vr = i1z
(0)
pr + i2z

(0)
1m (4.80)

Vq − Vr = i3z
(0)
qr + i4z

(0)
2m (4.81)

i1 + i3 = Vr

(
y

(0)
pr

2
+
y

(0)
qr

2

)
+ (Vr − Vs)

(
y

(0)
1m

2
+
y

(0)
2m

2

)
(4.82)

Vp − Vs = i1z
(0)
1m + i2z

(0)
pr (4.83)

Vq − Vs = i3z
(0)
2m + i4z

(0)
qr (4.84)

i2 + i4 = Vs

(
y

(0)
pr

2
+
y

(0)
qr

2

)
+ (Vs − Vr)

(
y

(0)
1m

2
+
y

(0)
2m

2

)
(4.85)

Based on (4.80)-(4.85), there are six unknowns i1, i2, i3, i4, Vr, Vs and six equations,
from which Vr can be solved as follows

Vr =
aVp + bVq

d
(4.86)

where

a =
1(

z
(0)
1m

)2

−
(
z

(0)
pr

)2 +
1

z
(0)
1m + z

(0)
pr

(
1

z
(0)
2m − z

(0)
qr

− y(0)
1m − y

(0)
2m −

y
(0)
pr

2
− y

(0)
qr

2

)
(4.87)

b =
1(

z
(0)
2m

)2

−
(
z

(0)
qr

)2 +
1

z
(0)
2m + z

(0)
qr

(
1

z
(0)
1m − z

(0)
pr

− y(0)
1m − y

(0)
2m −

y
(0)
pr

2
− y

(0)
qr

2

)
(4.88)

d =

(
1

z
(0)
1m + z

(0)
pr

+
1

z
(0)
2m + z

(0)
qr

+
y

(0)
pr

2
+
y

(0)
qr

2

)

×

(
1

z
(0)
1m − z

(0)
pr

+
1

z
(0)
2m − z

(0)
qr

− y(0)
1m − y

(0)
2m −

y
(0)
pr

2
− y

(0)
qr

2

)
(4.89)

Substituting (4.79) into (4.86) will result in

Z
(0)
rk =

aZ
(0)
0,pk + bZ

(0)
0,qk

d
(4.90)

To derive Z
(0)
rr , let us inject one current source of 1 Ampere into bus r as shown in

Fig. 4.6. Based on the bus impedance matrix in (4.78), the voltages at buses p, q
and r in Fig. 4.6 are

Vp = Z(0)
pr , Vq = Z(0)

qr , Vr = Z(0)
rr (4.91)
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Figure 4.6: Zero-sequence network with 1 A injected to bus r.

From Fig. 4.6, the following equations hold

Vp − Vr = i1z
(0)
pr + i2z

(0)
1m (4.92)

Vq − Vr = i3z
(0)
qr + i4z

(0)
2m (4.93)

i1 + i3 + 1 = Vr

(
y

(0)
pr

2
+
y

(0)
qr

2

)
+ (Vr − Vs)

(
y

(0)
1m

2
+
y

(0)
2m

2

)
(4.94)

Vp − Vs = i1z
(0)
1m + i2z

(0)
pr (4.95)

Vq − Vs = i3z
(0)
2m + i4z

(0)
qr (4.96)

i2 + i4 = Vs

(
y

(0)
pr

2
+
y

(0)
qr

2

)
+ (Vs − Vr)

(
y

(0)
1m

2
+
y

(0)
2m

2

)
(4.97)

With six unknown variables i1, i2, i3, i4, Vr, Vs, solving (4.92)-(4.97) reaches the
expression of Vr as follows

Vr =
aVp + bVq + c

d
(4.98)

where

c =
z

(0)
pr(

z
(0)
1m

)2

−
(
z

(0)
pr

)2 +
z

(0)
qr(

z
(0)
2m

)2

−
(
z

(0)
qr

)2 −
y

(0)
pr

2
− y

(0)
qr

2
− y

(0)
1m

2
− y

(0)
2m

2
(4.99)

Substituting (4.91) into (4.98) yields

Z(0)
rr =

aZ
(0)
rp + bZ

(0)
rq + c

d
(4.100)
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Figure 4.7: Pre-fault positive-sequence network.

where Z
(0)
rp and Z

(0)
rq in (4.100) can be obtained by letting k = p and k = q in (4.90)

as follows

Z(0)
rp =

aZ
(0)
0,pp + bZ

(0)
0,qp

d
(4.101)

Z(0)
rq =

aZ
(0)
0,pq + bZ

(0)
0,qq

d
(4.102)

Note a, b, c and d are formulated with z
(0)
pr , z

(0)
qr , y

(0)
pr , y

(0)
qr , z

(0)
1m, z

(0)
2m, y

(0)
1m, and y

(0)
2m.

4.3.2 Construction of Positive-Sequence Augmented Bus
Impedance Matrix

In this sub-section, we consider the construction of bus impedance matrix with ad-
dition of the fault bus for the positive-sequence network. The pre-fault positive-
sequence network of a sample power system is shown in Fig. 4.7, whose bus impedance
matrix Z

(1)
0 can be established. Fig. 4.8 delineates the positive-sequence network with

two fictitious buses s and r. The parameters in Fig. 4.8 in terms of m are as follows

z(1)
pr = Z(1)

c sinh
(
mγ(1)l

)
(4.103)

z(1)
qr = Z(1)

c sinh
[
(1−m)γ(1)l

]
(4.104)

y(1)
pr =

2

Z
(1)
c

tanh

(
1

2
mγ(1)l

)
(4.105)

y(1)
qr =

2

Z
(1)
c

tanh

[
1

2
(1−m)γ(1)l

]
(4.106)
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Figure 4.8: Positive-sequence network with additional fictitious buses.

where

Z(1)
c =

√
z(1)

y(1)

γ(1) =
√
z(1)y(1)

and

z(1) positive-sequence per-unit length self-series impedance (Ω/mile) of the line
between buses p and q,

y(1) positive-sequence per-unit length self-shunt admittance (S/mile) of the
line between buses p and q.

To formulate Z(1), suppose there is only one current source injected into a single bus
j (j = 1, 2, . . . , n), then the resulted voltages at bus k (k = 1, 2, . . . , n) will be the
same for the networks shown in Fig. 4.7 and Fig. 4.8. According to the definition of
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bus impedance matrix, it is obtained that Z
(1)
jk = Z

(1)
0,jk, j, k = 1, 2, . . . , n. We have

Z(1) =



Z
(1)
0,11 · · · Z

(1)
0,1p Z

(1)
0,1q · · · Z

(1)
0,1n Z

(1)
1s Z

(1)
1r

...
. . .

...
...

. . .
...

...
...

Z
(1)
0,p1 · · · Z

(1)
0,pp Z

(1)
0,pq · · · Z

(1)
0,pn Z

(1)
ps Z

(1)
pr

Z
(1)
0,q1 · · · Z

(1)
0,qp Z

(1)
0,qq · · · Z

(1)
0,qn Z

(1)
qs Z

(1)
qr

...
. . .

...
...

. . .
...

...
...

Z
(1)
0,n1 · · · Z

(1)
0,np Z

(1)
0,nq · · · Z

(1)
0,nn Z

(1)
ns Z

(1)
nr

Z
(1)
s1 · · · Z

(1)
sp Z

(1)
sq · · · Z

(1)
sn Z

(1)
ss Z

(1)
sr

Z
(1)
r1 · · · Z

(1)
rp Z

(1)
rq · · · Z

(1)
rn Z

(1)
rs Z

(1)
rr



(4.107)

Injecting a single current source of 1 Ampere into any bus k (k = 1, 2, . . . , n), from
(4.107) we have

Vp = Z
(1)
0,pk, Vq = Z

(1)
0,qk, Vr = Z

(1)
rk (4.108)

Then the following equation can be derived from Fig. 4.8,

Vp − Vr
z

(1)
pr

+
Vq − Vr
z

(1)
qr

= Vr
y

(1)
pr

2
+ Vr

y
(1)
qr

2
(4.109)

Further rearranging (4.109), we obtain

Vr =
2z

(1)
qr Vp + 2z

(1)
pr Vq

(y
(1)
pr + y

(1)
qr )z

(1)
pr z

(1)
qr + 2(z

(1)
pr + z

(1)
qr )

(4.110)

Substituting (4.108) into (4.110), we have

Z
(1)
rk =

2(Z
(1)
0,pkz

(1)
qr + Z

(1)
0,qkz

(1)
pr )

(y
(1)
pr + y

(1)
qr )z

(1)
pr z

(1)
qr + 2(z

(1)
pr + z

(1)
qr )

(4.111)

Further substituting the expressions of (4.103)-(4.106) into (4.111), we have

Z
(1)
rk =

Z
(1)
0,pk

sinh(mγ(1)l)
+

Z
(1)
0,qk

sinh[(1−m)γ(1)l]

1

sinh(mγ(1)l)
+

1

sinh[(1−m)γ(1)l]
+ tanh

(
mγ(1)l

2

)
+ tanh

[
γ(1)l(1−m)

2

]
(4.112)

For the derivation of Z
(1)
rr , we can inject a current source of 1 Ampere into bus r as

shown in Fig. 4.9. Again, resorting to (4.107) yields

Vp = Z(1)
pr , Vq = Z(1)

qr , Vr = Z(1)
rr . (4.113)
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Figure 4.9: Positive-sequence network with 1 A injected to bus r.

Drawing on Fig. 4.9, the following equation is satisfied

Vp − Vr
z

(1)
pr

+
Vq − Vr
z

(1)
qr

+ 1 = Vr
y

(1)
pr

2
+ Vr

y
(1)
qr

2
(4.114)

Further organizing (4.114) leads to

Vr =
2z

(1)
qr Vp + 2z

(1)
pr Vq + 2z

(1)
pr z

(1)
qr

(y
(1)
pr + y

(1)
qr )z

(1)
pr z

(1)
qr + 2(z

(1)
pr + z

(1)
qr )

(4.115)

Substituting (4.113) into (4.115) results in

Z(1)
rr =

2z
(1)
qr Z

(1)
pr + 2z

(1)
pr Z

(1)
qr + 2z

(1)
pr z

(1)
qr

(y
(1)
pr + y

(1)
qr )z

(1)
pr z

(1)
qr + 2(z

(1)
pr + z

(1)
qr )

(4.116)

where Z
(1)
rp and Z

(1)
rq can be obtained from (4.111) by letting k as p and q as follows

Z(1)
pr =

2(Z
(1)
0,ppz

(1)
qr + Z

(1)
0,qpz

(1)
pr )

(y
(1)
pr + y

(1)
qr )z

(1)
pr z

(1)
qr + 2(z

(1)
pr + z

(1)
qr )

(4.117)

Z(1)
qr =

2(Z
(1)
0,pqz

(1)
qr + Z

(1)
0,qqz

(1)
pr )

(y
(1)
pr + y

(1)
qr )z

(1)
pr z

(1)
qr + 2(z

(1)
pr + z

(1)
qr )

(4.118)

Substituting (4.117) and (4.118) into (4.116) gives

Z(1)
rr =

4z
(1)
qr (Z

(1)
0,ppz

(1)
qr + Z

(1)
0,qpz

(1)
pr ) + 4z

(1)
pr (Z

(1)
0,pqz

(1)
qr + Z

(1)
0,qqz

(1)
pr )

[(y
(1)
pr + y

(1)
qr )z

(1)
pr z

(1)
qr + 2(z

(1)
pr + z

(1)
qr )]2
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+
2z

(1)
pr z

(1)
qr

(y
(1)
pr + y

(1)
qr )z

(1)
pr z

(1)
qr + 2(z

(1)
pr + z

(1)
qr )

(4.119)

Finally, by making use of (4.103)-(4.106), we will reach

Z(1)
rr =

Z
(1)
0,pp

sinh2(mγ(1)l)
+

2Z
(1)
0,pq

sinh(mγ(1)l) sinh[(1−m)γ(1)l]
+

Z
(1)
0,qq

sinh2[(1−m)γ(1)l]{
1

sinh[(1−m)γ(1)l]
+

1

sinh(mγ(1)l)
+ tanh

(
mγ(1)l

2

)
+ tanh

[
(1−m)γ(1)l

2

]}2

+
Z

(1)
c

1

sinh[(1−m)γ(1)l]
+

1

sinh(mγ(1)l)
+ tanh

(
mγ(1)l

2

)
+ tanh

[
(1−m)γ(1)l

2

]
(4.120)

It is assumed that the parameters are the same for positive- and negative-sequence
networks, thus we have Z(2) = Z(1).

4.4 Proposed Fault Location Method

In this section, fault location algorithms employing voltage measurements from one
bus or two buses are derived. Based on the definition of bus impedance matrix, at
bus k (k = 1, 2, . . . , n), the following formulas hold

E
(1)
k = E

(1)0
k − Z(1)

kr I
(1)
f (4.121)

E
(2)
k = −Z(2)

kr I
(2)
f (4.122)

E
(0)
k = −Z(0)

kr I
(0)
f (4.123)

Note that all the sequence voltages and currents are for phase A.

4.4.1 Two-Bus Fault Location Algorithms

1) Fault location with synchronized measurements from two buses

Suppose the voltage measurements at buses k and j (k, j = 1, 2, . . . , n) are available.
For bus j, similar to (4.121)-(4.123), the following formulas exist

E
(1)
j = E

(1)0
j − Z(1)

jr I
(1)
f (4.124)

E
(2)
j = −Z(2)

jr I
(2)
f (4.125)

E
(0)
j = −Z(0)

jr I
(0)
f (4.126)
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Eliminating I
(1)
f from (4.121) and (4.124) results in

E
(1)
k − E

(1)0
k

E
(1)
j − E

(1)0
j

=
Z

(1)
kr

Z
(1)
jr

(4.127)

Defining

dkj =
E

(1)
k − E

(1)0
k

E
(1)
j − E

(1)0
j

(4.128)

and substituting (4.112) into (4.127) gives

dkj =
Z

(1)
0,pk sinh

[
(1−m)γ(1)l

]
+ Z

(1)
0,qk sinh

(
mγ(1)l

)
Z

(1)
0,pj sinh [(1−m)γ(1)l] + Z

(1)
0,qj sinh (mγ(1)l)

(4.129)

Fault location is obtained by simplifying (4.129) based on the identity sinh θ = (eθ −
e−θ)/2 as shown in [57]

m =
1

2γ(1)l
ln


(
dkjZ

(1)
0,qj − Z

(1)
0,qk

)
−
(
dkjZ

(1)
0,pj − Z

(1)
0,pk

)
eγ

(1)l(
dkjZ

(1)
0,qj − Z

(1)
0,qk

)
−
(
dkjZ

(1)
0,pj − Z

(1)
0,pk

)
e−γ(1)l

 (4.130)

The above fault location formula is applicable only if there exists a path, which
passes through the faulted line and does not pass any bus more than once, between
buses k and j . Otherwise, the ratio of voltage changes at these two buses will be
constant and independent of the fault location variable. Since most power network is
interconnected, most combinations are able to produce fault location estimate.

Negative-sequence or zero-sequence voltage measurements, where applicable, can
also be employed for fault location. However, positive-sequence voltages are preferred
due to the fact that no fault type classification is needed.

Credits should be given to the work in [57]. Since only positive-sequence quanti-
ties are involved in (4.130), the fault location formulation for single-circuit line has
been directly utilized for double-circuit line.

2) Fault location with unsynchronized measurements from two buses

Taking the absolute value of (4.129) leads to

|dkj| =

∣∣∣∣∣Z
(1)
0,pk sinh

[
(1−m)γ(1)l

]
+ Z

(1)
0,qk sinh

(
mγ(1)l

)
Z

(1)
0,pj sinh [(1−m)γ(1)l] + Z

(1)
0,qj sinh (mγ(1)l)

∣∣∣∣∣ (4.131)

The Newton-Raphson approach can be utilized here to iteratively solve for the un-
known fault location m.
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4.4.2 One-Bus Fault Location Algorithms

This section shows the one-bus fault location algorithms for different types of fault
based on voltage measurements from a single bus k (k = 1, 2, . . . , n).

1) LG fault

For phase A to ground fault, the boundary condition, I
(0)
f = I

(1)
f = I

(2)
f , exists.

Eliminating I
(0)
f and I

(2)
f from (4.122) and (4.123) yields

E
(2)
k

E
(0)
k

=
Z

(1)
kr

Z
(0)
kr

(4.132)

Replacing the transfer impedance terms in (4.132) by (4.112) and (4.90), a nonlin-
ear equation involving one unknown variable m can be formulated, which can be
separated into real and imaginary part to formulate two real equations. To solve it,
least squares method can be utilized. An initial value of 0.5 p.u. for m can be adopted.

2) LLG fault

For phase B to C to ground fault, the following condition is satisfied

I
(2)
f

I
(0)
f

=
Z

(0)
rr + 3Rf

Z
(1)
rr

(4.133)

Using (4.122) and (4.123), (4.133) becomes

E
(2)
k

E
(0)
k

=
Z

(1)
kr

(
Z

(0)
rr + 3Rf

)
Z

(0)
kr Z

(1)
rr

(4.134)

By employing (4.90), (4.100), (4.112) and (4.120), we can formulate a nonlinear equa-
tion with two unknowns m and Rf from (4.134), which can be separated into two
real equations. Newton-Raphson approach similar to (4.131) can be adopted to solve
for the two unknown variables.

3) LL fault

For phase B to C fault, the following boundary conditions hold,

I
(1)
f = −I(2)

f (4.135)

I
(1)
f =

E
(1)0
r

Rf + 2Z
(1)
rr

(4.136)
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Substituting (4.122) and (4.136) into (4.135) results in

E
(2)
k

Z
(1)
kr

=
E

(1)0
r

Rf + 2Z
(1)
rr

(4.137)

where E
(1)0
r denotes the pre-fault positive-sequence voltage at the fault point and can

be calculated as

E(1)0
r =

2
(
E

(1)0
p z

(1)
qr + E

(1)0
q z

(1)
pr

)
(
y

(1)
pr + y

(1)
qr

)
z

(1)
pr z

(1)
qr + 2

(
z

(1)
pr + z

(1)
qr

) (4.138)

where E
(1)0
p and E

(1)0
q are the pre-fault positive-sequence voltages at the two terminals

of the faulted line and are assumed to be known. Combining (4.103)-(4.106), (4.112),
(4.120) and (4.137) will produce a non-linear equation with m and Rf as unknowns,
the solution of which is similar to (4.134).

4) LLL fault

For three phase fault, we have

I
(1)
f =

E
(1)0
r

Rf + Z
(1)
rr

(4.139)

Replacing I
(1)
f in (4.139) with (4.121) gives rise to

E
(1)
k = E

(1)0
k − Z(1)

kr

E
(1)0
r

Rf + Z
(1)
rr

(4.140)

A non-linear formulation with two unknowns m and Rf can be derived by sub-
stituting (4.112), (4.120) and (4.138) into (4.140), which can be solved similar to
(4.134). Fault location formulas involving other phases can be deduced similarly.

It should be pointed out that the proposed one-bus method requires the fault
type to be known while the two-bus method utilizing positive-sequence voltages does
not. In addition, it is assumed that the faulted section can be decided based on relay
operations; otherwise, a list of possible faulted sections can be attempted, leading to
a list of possible fault locations.

For LLG fault, multiple valid solutions may be obtained. The erroneous solutions
can be filtered out utilizing the method proposed in Section 2.3.1.2.

For LL and LLL faults, two valid solutions may arise. Based on short-circuit
analysis, both fault conditions corresponding to the two solutions will yield the same
voltage phasors as the measured ones. Hence, unless more information is available,
there may be more than one likely fault location estimates.
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4.5 Optimal Fault Location Estimation Consider-

ing Measurement Errors

When synchronized voltage measurements at multiple buses are available, the follow-
ing optimal fault location estimator with the ability to detect bad measurements is
developed.

4.5.1 Proposed Optimal Estimator

Suppose the positive-sequence superimposed voltages caused by the fault at buses
k1, k2, . . . , kN , are available, which form the following vector

S = [∆Vk1 ,∆Vk2 , . . . ,∆VkN
]T (4.141)

where T is the vector transpose operator; N is the total number of measurement set.
For any two sets of measurements from buses ki and kj (i, j = 1, . . . , N), the following
equation is yielded based on (4.129)

∆Vki

∆Vkj

=
Z

(1)
0,pki

sinh
[
(1−m)γ(1)l

]
+ Z

(1)
0,qki

sinh
(
mγ(1)l

)
Z

(1)
0,pkj

sinh [(1−m)γ(1)l] + Z
(1)
0,qkj

sinh (mγ(1)l)
(4.142)

Define the unknown variables as

X = [x1, x2, . . . , x2N , x2N+1] (4.143)

where

x2i−1, x2i i = 1, . . . , N variables to represent the positive-sequence superimposed
voltage caused by the fault, i.e. ∆Vki

= x2i−1e
jx2i ;

x2N+1 fault location variable.

The combinations of any two sets of measurements out of N sets
include [k1k2, . . . , k1kN , k2k3, . . . , kN−1kN ], the total number of which is M = C2

N . For
any possible combination, say kikj, by employing the defined variables, (4.142) can
be written as

fkikj
(X) =

Z
(1)
0,pki

sinh
[
(1− x2N+1)γ

(1)l
]

+ Z
(1)
0,qki

sinh
(
x2N+1γ

(1)l
)

Z
(1)
0,pkj

sinh [(1− x2N+1)γ(1)l] + Z
(1)
0,qkj

sinh (x2N+1γ(1)l)

× x2j−1e
jx2j − x2i−1e

jx2i = 0 (4.144)

In total, we can have M equations in the form of (4.144). Let’s introduce Y and
F (X) as measurement vector and function vector, respectively. Y is formed as [72]

Yi = 0, i = 1, . . . , 2M (4.145)

Y2M+2i−1 = |Si| , i = 1, . . . , N (4.146)
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Y2M+2i = ∠Si, i = 1, . . . , N (4.147)

where ∠ yields the angle in radiance of the input argument. F (X) is formulated as
follows

F (X) = [Re(fk1k2), Im(fk1k2), . . . ,Re(fk1kN
), Im(fk1kN

),Re(fk2k3), Im(fk2k3),

. . . ,Re(fkN−1kN
), Im(fkN−1kN

), x1, x2, . . . , x2N ]T (4.148)

where Re() and Im() yield the real and imaginary part of the input argument, respec-
tively. The measurement vector and function vector are related by

Y = F (X) + µ (4.149)

where µ is a vector representing measurement error and dependent on the meter
characteristic. The optimal estimate of X is obtained by minimizing the cost function
defined as

J = [Y − F (X)]TR−1[Y − F (x)] (4.150)

where

R = E(µµT ) = diag[σ2
1, . . . , σ

2
2M+2N ] (4.151)

And σ2
i signifies the variance of measurement i; E() indicates the expected value;

diag() means a diagonal matrix consisting of the values contained in the square
bracket. 2M + 2N is the total number of measurements. A smaller value of σ2

i

indicates a more accurate measurement. Equation (4.150) can be solved iteratively
[73]. During kth iteration, the unknown vector is updated as

H =
∂F (X)

∂X

∣∣∣
X=Xk

(4.152)

∆Xk = (HTR−1H)−1{HTR−1[Y − F (Xk)]} (4.153)

Xk+1 = Xk + ∆Xk (4.154)

where

k iteration number starting from 0,

Xk, Xk+1 variable vector before and after kth iteration,

∆Xk variable update during kth iteration.

To initiate the iteration process, we can choose 0.1 p.u. and π/4 for the magnitude
and angle of positive-sequence superimposed voltage, respectively. In addition, we
have used an initial value of 0.5 p.u. for the fault location estimate. When the
variable update is smaller than the specified tolerance, the iteration process can be
terminated. After X is obtained, we can use (4.148) to compute the estimated values
of measurements.
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4.5.2 Detection and Identification of Bad Measurements

Drawing on the classical method [73], we can detect the existence of bad measurements
as follows

1. Compute the expected value of cost function as

E(J) = (2M + 2N)− (2N + 1) = 2M − 1 (4.155)

2. Compute the actual value of cost function as

J =
2M+2N∑
i=1

(
Yi − Ȳi

)2
σ2
i

(4.156)

where Ȳi is the estimated measurement value calculated from (4.148).

3. If J ≥ AE(J), then it is suspected that bad measurement is present; otherwise,
it can be judged that there is no bad data. A is a constant and chosen as 3.0
in our study.

4. In case the bad measurement is present, the largest error based approach can
be utilized to identify the bad data. The normalized error is calculated as

SEi =
Yi − Ȳi√

Ωii

, i = 1, . . . , 2M + 2N (4.157)

where Ωii is the diagonal element of the matrix

Ω = R−H(HTR−1H)−1HT (4.158)

The largest value of normalized error indicates the bad measurement. After the bad
measurement is identified and removed, the rest measurements can be utilized to
obtain a new set of estimates, steps 1-4 can be repeated to further detect and identify
the rest bad data.

4.6 Simulation Studies

This section presents the simulation results to evaluate the developed fault location
algorithms. EMTP has been utilized to simulate the studied power system and gen-
erate transient waveforms for faults of different types, locations and fault resistances
[67]. We have applied a 4th order Butterworth low-pass filter with a cut-off frequency
of 90 Hz to the generated waveforms to filter out the harmonic components. Discrete
Fourier Transform is utilized to extract phasors from the generated waveforms to
feed into the developed algorithms to obtain the fault distance. The 3rd cycle of the
waveform after the fault inception is captured to extract phasors during fault.

The studied power system is a 27-bus, 345 kV, 60 Hz transmission line system,
as shown in Fig. 4.10. The line length is labeled in mile. The section between bus 9
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and 10 possesses the double-circuit line structure and the fault occurs on one of the
parallel lines, with the cross denoting the fault point. The length of the faulted line
is 168.2 miles. The double-circuit line is modeled in EMTP based on the distributed
parameter line model.

The estimation accuracy is evaluated by the percentage error as in (2.148). The
location of the fault is defined as the distance between the fault point and bus 9.

A. Cases without bad measurements

The developed fault location algorithms are tested under various fault conditions.
Table 4.1 shows the fault location results produced by two-bus algorithms. The first
three columns represent the actual fault type, fault location and fault resistance,
respectively. The rest indicate the errors of fault location estimates utilizing both
synchronized and unsynchronized voltage measurements from two buses.

In Table 4.1, positive-sequence voltage measurements are used to carry out two-bus
fault location. The fault location results are quite satisfactory. It can be observed
that quite close fault location estimates are produced by using synchronized and
unsynchronized data. Notice that it is impossible to produce fault location estimate
by employing voltage measurements from bus combinations such as 4 and 5, 10 and
11, 11 and 22 etc. on account of the reason explained in Section 4.4.1.

Table 4.2 presents the one-bus fault location results for AG and BCG faults.
Columns 4-14 display the percentage errors of fault location estimate employing the
voltage measurements from a single bus. It can be seen that the fault location esti-
mates in Table 4.2 are quite accurate.

Table 4.3 conveys the one-bus fault location results for BC and ABC faults. Col-
umn 3 to the end list the estimated fault location, fault resistance utilizing voltage
measurements from a single bus. m is the estimated fault location (p.u.) and Rf is
the estimated fault resistance (p.u.). The actual fault resistance is 1 Ω (0.00084 p.u.)
and the base value of the impedance is 1190.25 Ω.

As observed from Table 4.3, the one-bus algorithms for BC and ABC faults are
able to yield quite accurate fault location estimate, however, under certain fault
conditions, two valid solutions can be produced. Only one of them is the correct
solution and the erroneous one is indicated by * next to the fault location estimate.
For example, when the actual fault location of a BC fault is 0.5 p.u., using the voltages
from bus 6, two valid solutions (0.5004, 0.00088) p.u. and (0.8324, 0.00295) p.u. are
yielded with the first element representing the fault location estimate and the second
one representing the fault resistance estimate. Here, the second solution is erroneous,
whose estimated fault location is followed by *.

When two valid solutions are yielded, our studies indicate that it is not possible
to tell which solution is true by utilizing only the voltage measurements at one bus.

B. Cases with bad measurements

Large errors in voltage measurements can lead to significant inaccuracy in fault
location estimate. This case study illustrates how to detect and identify bad mea-
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Figure 4.10: Schematic diagram of the studied 27-bus system.
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surements by optimal estimator. A value of 1.0 × 10−6 is chosen as variance for the
first 2M measurements and 1.0× 10−4 for the variance of the voltage measurements.
In our studied cases, the voltage measurements at buses 4, 6, 8 and 19 are utilized to
perform fault location.

Case 1: BCG fault with the actual fault location being 0.3 p.u. and fault resistance
being 50 Ω. Suppose that there is an error of 50% in the magnitude of superimposed
positive-sequence voltage at bus 4.

The optimal estimation result is shown in Table 4.4. There are 20 equations and
9 state variables; therefore the expected value of the cost function is calculated as
11. The actual value of the cost function J = 34.58 ≥ 3 × 11, thus the presence
of bad measurements is suspected. Following the method outlined in Section 4.5.2,
the biggest value of the normalized error vector SE corresponds to the magnitude
of superimposed positive-sequence voltage at bus 4. Therefore the data at bus 4 is
identified as a bad measurement.

After the bad measurement is removed, a new set of optimal estimates is calculated
as shown in Table 4.5. In this scenario, the expected value of the cost function E(J)
equals 5 and the actual value of cost function J is 6.0×10−4. Since E(J) is much less
than J , all of the data are considered fairly accurate and the estimates are regarded
as satisfactory. Comparison with Table 4.4 indicates that the fault location accuracy
is considerably improved.

Case 2: ABC fault with the actual fault location being 0.8 p.u. and fault resistance
being 1 Ω. Suppose that there is a distortion of 20◦ in the angle of superimposed
positive-sequence voltage at bus 6.

The optimal estimation result is shown in Table 4.6. E(J) is equal to 11 and J
is obtained as 867.41, which obviously signifies the existence of bad measurement.
The biggest value of the normalized error vector SE corresponds to the angle of
superimposed positive-sequence voltage at bus 6. Therefore, the data at bus 6 is
identified as bad measurement.

The new optimal estimates with the measurement at bus 6 being removed are
shown in Table 4.7. In this case, J is equal to 9.0 × 10−4 and E(J) is 5. Since J
is much less than E(J), all the measurements are considered fairly accurate and the
estimates are regarded as acceptable. It can be seen that the accuracy of estimate of
fault location after the bad date being removed is considerably enhanced. Therefore,
the optimal estimator is able to detect and identify the bad data and improve the
accuracy of fault location estimate.

4.7 Summary

In this chapter, novel one-bus and two-bus fault location algorithms applicable to
double-circuit transmission lines are devised. The distinctive feature of the proposed
method is that only voltage measurements from one or two buses are needed which
may be distant away from the faulted section by making use of the bus impedance
matrix technique. The distributed parameter line model is utilized which fully takes
the shunt capacitance of long lines into account.
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For two-bus fault location algorithms, a unique fault location estimate is produced
using both synchronized and unsynchronized voltage measurements and fault type
classification is not required. The application range of this type of algorithm is
subject to network topology.

As to one-bus fault location algorithms, fault type is a pre-requisite. For LG and
LLG faults, a unique fault location estimate can be obtained. As far as LL and LLL
faults are concerned, pre-fault measurements at the two terminals of the faulted line
are demanded, which can be obtained from state estimation. In certain cases two
possible fault location estimates may be produced, both of which will be treated as
likely fault location.

An optimal state estimator has also been developed employing synchronized data
from multiple buses. It has the ability to detect and identify bad measurements and
improve the accuracy of fault location estimation.

Simulation studies have shown the fault location algorithms can yield quite accu-
rate estimates under various fault conditions.
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Table 4.4: Optimal estimates with bad magnitude measurement

Quantity Unit Actual value Optimal estimate
|∆V4| p.u. 0.1924 0.1386
]∆V4 rad. 1.1336 1.1376
|∆V6| p.u. 0.2296 0.2350
]∆V6 rad. 1.1215 1.1171
|∆V8| p.u. 0.2375 0.2426
]∆V8 rad. 1.1260 1.1212
|∆V19| p.u. 0.2233 0.2436
]∆V19 rad. 1.1314 1.1367
m p.u. 0.3 0.3934

Table 4.5: Optimal estimates with bad magnitude measurement removed

Quantity Unit Actual value Optimal estimate
|∆V6| p.u. 0.2296 0.2297
]∆V6 rad. 1.1215 1.1214
|∆V8| p.u. 0.2375 0.2376
]∆V8 rad. 1.1260 1.1259
|∆V19| p.u. 0.2233 0.2232
]∆V19 rad. 1.1314 1.1315
m p.u. 0.3 0.2991

Table 4.6: Optimal estimates with bad angle measurement

Quantity Unit Actual value Optimal estimate
|∆V4| p.u. 0.2672 0.2527
]∆V4 rad. 1.0817 1.1584
|∆V6| p.u. 0.3534 0.3752
]∆V6 rad. 1.3742 1.1259
|∆V8| p.u. 0.3604 0.3849
]∆V8 rad. 1.0264 1.1215
|∆V19| p.u. 0.4902 0.4555
]∆V19 rad. 1.0857 1.1621
m p.u. 0.8 0.6184
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Table 4.7: Optimal estimates with bad angle measurement removed

Quantity Unit Actual value Optimal estimate
|∆V4| p.u. 0.2672 0.2672
]∆V4 rad. 1.0817 1.0819
|∆V8| p.u. 0.3604 0.3604
]∆V8 rad. 1.0264 1.0263
|∆V19 p.u. 0.4902 0.4901
]∆V19| rad. 1.0857 1.0855
m p.u. 0.8 0.8000
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Chapter 5

Fault Location for
Series-Compensated Lines

The layout of this chapter is as follows. First of all, the basic features of the proposed
fault location method for series-compensated single-circuit are introduced, followed
by the nomenclature in Section 5.2. Section 5.3 derives the fault location algorithm
by applying two subroutines and introduces the principle to identify the correct fault
location estimate. The system configuration, fault location result and application of
the fault location identification are presented in Section 5.4. At last, a summary of
this chapter is provided in Section 5.5.

5.1 Introduction

Several intelligent fault location algorithms being able to avoid the equivalent V-I
model of SC&MOV bank have been developed in the past few years. Reference [74]
proposes a synchronous two-end algorithm that includes two steps: the first step ig-
nores the existence of SC&MOV bank and calculates a pre-location of the fault; the
second step iteratively computes the voltage on the right side of the compensation
device and corrects the location of the fault. Reference [75] derives an analytical for-
mula of the general fault loop, from which both fault location and fault resistance can
be solved using iterative method. The synchronization angle is computed in advance
using pre-fault measurements or sometimes fault quantities. Both [74] and [75] are
independent of the model of series compensator and utilize distributed parameter line
model, whereas [75] considers the double-circuit compensated line and a more general
unsynchronized case.

Aiming at the series-compensated single-circuit line, a novel fault location method
based on the distributed parameter line model is presented in this chapter. It utilizes
unsynchronized two-terminal voltage and current phasors as inputs. As in [75], the
currents flowing out of the fault point are formulated in terms of unknown fault
location. Then boundary conditions of different fault types are exploited to derive
the fault location formula [19]. The synchronization angle can be calculated using
pre-fault quantities or fault quantities [75]. The fault impedance is assumed to be
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pure resistive, the fault type is assumed to be known in advance from relay operations
and the system is transposed.

5.2 Nomenclature

P,Q Two terminals of the series-compensated transmission line;

R The point where the series compensation device is installed;

F The fault point;

i The symmetrical component index, i = 0, 1, 2 for zero-, positive- and
negative-sequence, respectively;

m The unknown fault location in p.u.;

l1 The distance between buses P and R in km;

l2 The distance between buses Q and R in km;

l The total length of the transmission line between buses P and Q in km
and l = l1 + l2;

δ The synchronization angle between buses P and Q with P as the reference;

V
(i)
p , V

(i)
q ith-sequence voltage phasors at buses P and Q during the fault, respec-

tively;

I
(i)
p , I

(i)
q ith-sequence current phasors at buses P and Q during the fault, respec-

tively;

I
(i)
sc ith-sequence current flowing through the SC&MOV bank during the fault;

V
(i)
f ith-sequence voltage at the fault point;

I
(i)
f ith-sequence fault current;

I
(i)
pf The contribution of fault current from terminal P under ith-sequence net-

work;

I
(i)
qf The contribution of fault current from terminal Q under ith-sequence net-

work;

Z
(i)
c ith-sequence characteristic impedance of the transmission line;

γ(i) ith-sequence propagation constant of the transmission line;

V
(i)
sc l i

th-sequence voltage at the left side of the series compensation device dur-
ing the fault;

V
(i)
sc r ith-sequence voltage at the right side of the series compensation device

during the fault.
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Figure 5.1: A schematic diagram of a series-compensated transmission line.

5.3 Proposed Fault Location Algorithms

A schematic diagram of a series-compensated transmission line is shown in Fig. 5.1.
The series capacitor is installed at a fixed place along the transmission line. The
MOV, equipped in parallel with SC, will conduct when an overvoltage across the
series capacitor is detected. The voltage and current phasors from both ends are
available. The series compensation device divides the transmission line into two
sections. Since on which side the fault occurs is unknown to us, it is necessary to
develop two subroutines addressing possible fault on either side. The subroutine 1
and 2, which assume the fault on the left and right side of the series compensation
device are derived in detail. Later, the principle to decide the true fault location
estimation is illustrated.

5.3.1 Subroutine 1: Location for Fault on the Left Side of
Series Compensator

The schematic diagram of the transmission line with a fault on the left of SC&MOV
bank is shown in Fig. 5.2. In the figure, Z

(i)
pf , Z

(i)
fr , Z

(i)
qr , Y

(i)
pf , Y

(i)
fr and Y

(i)
qr are the

impedances and admittances of the equivalent π circuits of sections PF , FR and QR.
Based on Fig. 5.2, the following three equations can be established from sections PF ,
QR and FR:

V
(i)
f = V (i)

p cosh
(
γ(i)ml

)
− I(i)

p Z(i)
c sinh

(
γ(i)ml

)
(5.1)

I
(i)
pf = I(i)

p cosh
(
γ(i)ml

)
− V

(i)
p

Z
(i)
c

sinh
(
γ(i)ml

)
(5.2)

I(i)
sc = I(i)

q ejδ cosh
(
γ(i)l2

)
− V

(i)
q ejδ

Z
(i)
c

sinh
(
γ(i)l2

)
(5.3)

−I(i)
sc =

(
I

(i)
pf − I

(i)
f

)
cosh

[
γ(i)(l1 −ml)

]
−
V

(i)
f

Z
(i)
c

sinh
[
γ(i)(l1 −ml)

]
(5.4)
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Figure 5.2: The ith-sequence transmission line with fault on the left side of series
compensator.

i = 0, 1, 2.

Substituting (5.1)-(5.3) into (5.4) and utilizing the following identities

sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y)

cosh(x+ y) = sinh(x) sinh(y) + cosh(x) cosh(y) (5.5)

can lead to

I
(i)
f =

I
(i)
p cosh

(
γ(i)l1

)
+ I

(i)
q ejδ cosh

(
γ(i)l2

)
− V

(i)
p

Z
(i)
c

sinh
(
γ(i)l1

)
− V

(i)
q ejδ

Z
(i)
c

sinh
(
γ(i)l2

)
cosh [γ(i)(l1 −ml)]

(5.6)
Fault location formulas for different fault types can be derived based on (5.1) and

(5.6).

(1) AG fault

For AG fault, the following boundary conditions are satisfied

I
(1)
f = I

(2)
f (5.7)

I
(0)
f = I

(1)
f (5.8)

Let i = 1, 2 in (5.6) and we will obtain the expressions of I
(1)
f and I

(2)
f . Substituting

them into (5.7) and taking advantage of the fact that positive-sequence parameters
are the same as negative-sequence ones, it is observed that the unknown fault location
is eliminated and we can compute the synchronization angle as follows similar to [75]

ejδ = −

(
I

(1)
p − I(2)

p

)
cosh

(
γ(1)l1

)
− V

(1)
p − V (2)

p

Z
(1)
c

sinh
(
γ(1)l1

)
(
I

(1)
q − I(2)

q

)
cosh (γ(1)l2)−

V
(1)
q − V (2)

q

Z
(1)
c

sinh (γ(1)l2)

(5.9)
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With the synchronization angle determined, by making use of (5.8), the formula
with only m as the unknown variable can be derived. The iterative approach, such as
Newton-Raphson is harnessed to pinpoint the fault location. An alternative approach
is also to be discussed. It is known for AG fault, we have

V
(0)
f + V

(1)
f + V

(2)
f = 3RfI

(1)
f (5.10)

Since Rf is a real number, it indicates that V
(0)
f + V

(1)
f + V

(2)
f and I

(1)
f are in phase,

which implies an alternative fault location formula as

Im

{
V

(0)
f + V

(1)
f + V

(2)
f

I
(1)
f

}
= 0 (5.11)

where V
(0)
f , V

(1)
f and V

(2)
f can be obtained from (5.1) and I

(1)
f can be obtained from

(5.6).
The alternative method is favored because of the following two reasons. First, it

is a real equation and will provide a real fault location value; while the first method is
a complex equation and will produce a complex solution, wherein the real part repre-
sents the fault location. Second, a unique solution is obtained from (5.11) regardless
of the choice of initial value while the erroneous solution may arise from solving (5.8).

(2) BC fault

For BC fault, the following two equations exist

I
(1)
f = −I(2)

f (5.12)

V
(1)
f − V (2)

f = RfI
(1)
f (5.13)

Similar to AG fault, from (5.12), we can eliminate the unknown fault location variable
and obtain the synchronization angle as follows [75]

ejδ = −

(
I

(1)
p + I

(2)
p

)
cosh

(
γ(1)l1

)
− V

(1)
p + V

(2)
p

Z
(1)
c

sinh
(
γ(1)l1

)
(
I

(1)
q + I

(2)
q

)
cosh (γ(1)l2)−

V
(1)
q + V

(2)
q

Z
(1)
c

sinh (γ(1)l2)

(5.14)

Upon (5.13), the fault location can be calculated from the following equation

Im

{
V

(1)
f − V (2)

f

I
(1)
f

}
= 0 (5.15)

After m is solved from (5.15), V
(1)
f and V

(2)
f and I

(1)
f can be calculated and therefore

Rf can be obtained from (5.13).
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Figure 5.3: Pre-fault positive-sequence series-compensated transmission line.

(3) BCG fault

For BCG fault, the following relationships are satisfied at the fault point

V
(1)
f = V

(2)
f (5.16)

V
(0)
f − V (1)

f = 3RfI
(0)
f (5.17)

Equation (5.16) has a simple form and is adopted to perform the calculation of the
fault distance together with (5.1), which can be expanded as

V (1)
p cosh

(
γ(1)ml

)
− I(1)

p Z(1)
c sinh

(
γ(1)ml

)
= V (2)

p cosh
(
γ(1)ml

)
− I(2)

p Z(1)
c sinh

(
γ(1)ml

)
(5.18)

Also one can see that only voltage and current measurements from terminal P are
required, therefore synchronization angle does not need to be known.

(4) ABC fault

For ABC fault, the synchronized angle can only be acquired from pre-fault measure-
ments. From Fig. 5.3 we can build two equations

−I(1)0
sc = I(1)0

p cosh
(
γ(1)l1

)
− V

(1)0
p

Z
(1)
c

sinh
(
γ(1)l1

)
(5.19)

I(1)0
sc =

[
I(1)0
q cosh

(
γ(1)l2

)
− V

(1)0
q

Z
(1)
c

sinh
(
γ(1)l2

)]
ejδ (5.20)

Canceling out I
(1)0
sc from (5.19) and (5.20) results in the synchronization angle of ABC
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Figure 5.4: The ith-sequence transmission line with fault on the right side of series
compensator.

fault similar to [75]

ejδ = −
I

(1)0
p cosh

(
γ(1)l1

)
− V

(1)0
p

Z
(1)
c

sinh
(
γ(1)l1

)
I

(1)0
q cosh (γ(1)l2)−

V
(1)0
q

Z
(1)
c

sinh (γ(1)l2)

(5.21)

V
(1)0
p and I

(1)0
p represent the pre-fault voltage and current phasors at P . V

(1)0
q and

I
(1)0
q denote the pre-fault voltage and current phasors at Q . Note the acquisition of

synchronization angle using (5.21) is also applicable to any other kinds of fault. The
condition at the fault point is expressed by the following equation

V
(1)
f = RfI

(1)
f (5.22)

From (5.22), the fault location formula is reached as

Im

{
V

(1)
f

I
(1)
f

}
= 0 (5.23)

Fault location formulas for fault types involving other phases can be similarly deduced.

5.3.2 Subroutine 2: Location for Fault on the Right Side of
Series Compensator

The schematic diagram of the transmission line with a fault on the right of SC&MOV
bank is shown in Fig. 5.4. In the figure, Z

(i)
pr , Z

(i)
rf , Z

(i)
qf , Y

(i)
pr , Y

(i)
rf and Y

(i)
qf are the

impedances and admittances of the equivalent π circuits of sections PR, FR and QF .
Based on Fig. 5.4, the following three equations can be set up from sections PR, QF
and RF :

V
(i)
f = V (i)

q ejδ cosh
[
γ(i)(1−m)l

]
− I(i)

q ejδZ(i)
c sinh

[
γ(i)(1−m)l)

]
(5.24)
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I
(i)
qf = I(i)

q ejδ cosh
[
γ(i)(1−m)l

]
− V

(i)
q ejδ

Z
(i)
c

sinh
[
γ(i)(1−m)l

]
(5.25)

I(i)
sc = I(i)

p cosh
(
γ(i)l1

)
− V

(i)
p

Z
(i)
c

sinh
(
γ(i)l1

)
(5.26)

−I(i)
sc =

(
I

(i)
qf − I

(i)
f

)
cosh

[
γ(i)(ml − l1)

]
−
V

(i)
f

Z
(i)
c

sinh
[
γ(i)(ml − l1)

]
(5.27)

Substituting (5.24)-(5.26) into (5.27) and utilizing the identities in (5.5) can lead to

I
(i)
f =

I
(i)
p cosh

(
γ(i)l1

)
+ I

(i)
q ejδ cosh

(
γ(i)l2

)
− V

(i)
p

Z
(i)
c

sinh
(
γ(i)l1

)
− V

(i)
q ejδ

Z
(i)
c

sinh
(
γ(i)l2

)
cosh [γ(i)(ml − l1]

(5.28)
One can easily deduce that for subroutine 2, (5.9), (5.14) and (5.21) are still suit-

able to compute the synchronization angles for AG, BC and ABC faults, respectively.
Fault location formulations (5.11), (5.15), and (5.23) for different types of fault are

still applicable for subroutine 2 only the expressions for V
(i)
f and I

(i)
f are replaced with

(5.24) and (5.28). For BCG fault, by substituting (5.24) into (5.16), we have

V (1)
q ejδ cosh

[
γ(1)(1−m)l

]
− I(1)

q ejδZ(1)
c sinh

[
γ(1)(1−m)l)

]
= V (2)

q ejδ cosh
[
γ(1)(1−m)l

]
− I(2)

q ejδZ(1)
c sinh

[
γ(1)(1−m)l)

]
(5.29)

Canceling out the term ejδ from both sides of (5.29), we can obtain the fault location
formulation for BCG fault as follows

V (1)
q cosh

[
γ(1)(1−m)l

]
− I(1)

q Z(1)
c sinh

[
γ(1)(1−m)l)

]
= V (2)

q cosh
[
γ(1)(1−m)l

]
− I(2)

q Z(1)
c sinh

[
γ(1)(1−m)l)

]
(5.30)

From (5.30), we can deduce that For BCG fault, the knowledge about synchronization
angle is still not required for BCG fault because only voltage and current phasors from
terminal Q are employed and the synchronization angle term has been canceled out
in the fault location formula.

Another way is to make use of the symmetry of the transmission line and utilize
subroutine 1 to consider subroutine 2. We can calculate delta, the synchronization
angle, the same way as subroutine 1, and then perform V

(i)
q ejδ ↔ V

(i)
p , I

(i)
q ejδ ↔ I

(i)
p ,

l1 ↔ l2, and follow subroutine 1 exactly to find the solution. Then the fault location
estimate is denoted as m′ and the actual fault location can be obtained by carrying
out m = 1−m′.

Again, for BCG fault, we do not have to know δ, because the factor ejδ will be
eliminated. So this means we can perform V

(i)
q ↔ V

(i)
p , I

(i)
q ↔ I

(i)
p without caring

about the factor ejδ. Then follow the formula of (5.18) and find m′ and further
m = 1−m′.
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5.3.3 Fault Location Identification Method

Various methods to select the valid subroutine have been proposed [53, 55, 74, 75], and
they all work properly. Based on these approaches, the fault location identification
method suitable to this work is proposed. Suppose the two solutions from both
subroutines are denoted as m1 and m2. The fault location estimate can be judged as
true only when it satisfies the following three principles:

1. The fault location estimate is within the assumed range.

2. The fault resistance takes on a non-negative value.

3. The equivalent impedances of the series compensation device for all three phases
have non-negative real part and negative imaginary part, i.e. Re{Zeq x} ≥ 0
and Im{Zeq x} < 0, x = a, b, c.

As to principle 1, the assumed range for m1 is [0, l1/l] and that for is m2 is [l1/l, 1].
After the fault location is obtained, (5.10), (5.13), (5.17) and (5.22) can be used to
calculate the fault resistances for the AG, BC, BCG and ABC faults, respectively.
The phase equivalent impedances for subroutine 1 can be formulated as

Zeq a =
(V

(0)
sc r − V (0)

sc l) + (V
(1)
sc r − V (1)

sc l) + (V
(2)
sc r − V (2)

sc l)

I
(0)
sc + I

(1)
sc + I

(2)
sc

(5.31)

Zeq b =
(V

(0)
sc r − V (0)

sc l) + α2(V
(1)
sc r − V (1)

sc l) + α(V
(2)
sc r − V (2)

sc l)

I
(0)
sc + α2I

(1)
sc + αI

(2)
sc

(5.32)

Zeq c =
(V

(0)
sc r − V (0)

sc l) + α(V
(1)
sc r − V (1)

sc l) + α2(V
(2)
sc r − V (2)

sc l)

I
(0)
sc + αI

(1)
sc + α2I

(2)
sc

(5.33)

where α = ej120◦and

V (i)
sc r = V (i)

q ejδ cosh
(
γ(i)l2

)
− I(i)

q ejδZ(i)
c sinh

(
γ(i)l2

)
(5.34)

V
(i)
sc l = V

(i)
f cosh

[
γ(i)(l1 −ml)

]
−
(
I

(i)
pf − I

(i)
f

)
Z(i)
c sinh

[
γ(i)(l1 −ml)

]
(5.35)

and V
(i)
f , I

(i)
pf , I

(i)
sc and I

(i)
f can be calculated from (5.1), (5.2), (5.3), and (5.6). Also

note that although synchronization angle is not a necessity to calculate the fault
distance for BCG fault, it is needed for fault location identification wherein (5.21)
can be employed.

The computations of three phase equivalent impedances of the series device for
subroutine 2 are

Zeq a =
(V

(0)
sc l − V

(0)
sc r) + (V

(1)
sc l − V

(1)
sc r) + (V

(2)
sc l − V

(2)
sc r)

I
(0)
sc + I

(1)
sc + I

(2)
sc

(5.36)

Zeq b =
(V

(0)
sc l − V

(0)
sc r) + α2(V

(1)
sc l − V

(1)
sc r) + α(V

(2)
sc l − V

(2)
sc r)

I
(0)
sc + α2I

(1)
sc + αI

(2)
sc

(5.37)
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Zeq c =
(V

(0)
sc l − V

(0)
sc r) + α(V

(1)
sc l − V

(1)
sc r) + α2(V

(2)
sc l − V

(2)
sc r)

I
(0)
sc + αI

(1)
sc + α2I

(2)
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(5.38)

where

V
(i)
sc l = V (i)

p cosh
(
γ(i)l1

)
− I(i)

p Z(i)
c sinh

(
γ(i)l1

)
(5.39)

V (i)
sc r = V

(i)
f cosh

[
γ(i)(ml − l1)

]
−
(
I

(i)
qf − I

(i)
f

)
Z(i)
c sinh

[
γ(i)(ml − l1)

]
(5.40)

and V
(i)
f , I

(i)
qf , I

(i)
sc and I

(i)
f can be calculated from (5.24), (5.25), (5.26), and (5.28),

respectively.
The whole process can be illustrated as follows. First of all, two fault location

estimates are calculated, if any one of them falls outside the supposed range, it can
be filtered out. We can obtain a fault location estimate. If both satisfy principle 1,
fault resistances corresponding to each fault location estimate can be calculated, the
one assuming a negative value indicates the invalidity of the fault location estimate.
If principle 2 is satisfied for both solutions, the corresponding equivalent impedances
of the series compensator can be calculated to identify the correct solution.

When applying (5.8) as the fault location formula for AG fault, under different
initial values, two different fault location estimates arise for each subroutine and one
of them is erroneous. If only one subroutine satisfies both principles 1 and 2, it is
still not guaranteed that this solution is correct. Only when the third principle is also
satisfied, can it be selected as the correct fault location. Otherwise, we can adjust the
initial value to find another estimate. Our observations manifest that there will always
be one and only one fault location estimate that satisfies all the three principles.

5.4 Evaluation Study

This section presents the simulation results to evaluate the developed fault location
algorithm. Matlab SimPowerSystems [76] is used to simulate the series-compensated
single-circuit line and generate voltage and current phasors for faults of different
types, locations and resistances. These phasors are fed into the algorithm to produce
the fault location estimate. The initial value for the fault location is chosen as 0.5
p.u.. The accuracy of fault location estimate is evaluated by percentage error defined
as in equation (2.148).

5.4.1 System Configuration

The sample power system studied is a 500 KV, 1000 MVA, 60 Hz single-circuit trans-
mission line compensated at the degree of 45%. The total length of the line is 350 km,
with the series compensation device installed at 200 km (0.5714 p.u.) from terminal
P . The synchronization angle is set as 22.5◦. Other data are listed in Table 5.1 and
5.2.

The MOV consists of 30 columns of metal-oxide discs connected in parallel inside
the same porcelain housing. The characteristic of each column is represented by a
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Table 5.1: Voltage source data

Item Source P Source Q
Emf (p.u.) 1.0∠20◦ 1.0∠0◦

Positive-sequence impedance(Ω) 17.177+j45.5285 2.5904+j14.7328
Zero-sequence impedance(Ω) 15.31+j45.9245 0.7229+j15.1288

Table 5.2: Transmission line data
Parameter Positive-sequence Zero-sequence
R (Ω/km) 0.249168 0.60241
L (mH/km) 1.56277 4.8303
C (nF/km) 19.469 12.06678

combination of three exponential functions [76]

V

Vref
= ki

(
I

Iref

)1/αi

(5.41)

where Vref = 165 kV, Iref = 1 kA, i = 1, 2, 3. The parameters of the three segments
of (5.41) are

k1 = 0.955, α1 = 50,

k2 = 1.0, α2 = 25,

k3 = 0.9915, α1 = 16.5.

The V-I characteristic of MOV is illustrated in Fig. 5.5 [76].
The positive-sequence inductance of the transmission line is 1.56277 mH/km, the

total reactance of the line is calculated as

Xl = ω × L = 2πf × L = 1.56277× 10−3 × 350× 2π60 = 206.2026 Ω (5.42)

Since the compensation level is 45%, the capacitive reactance of the single-phase series
compensator is

Xc = 206.2026× 45% = 92.7912 Ω =
92.7912

250
= 0.3712 p.u. (5.43)

where the base impedance is obtained by

Zbase =
5002

1000
= 250 Ω (5.44)

Moreover, the capacitance of single phase series compensator is calculated as

C =
1

ωXc

=
1

2πf × 92.7912
= 2.86× 10−5 F (5.45)
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Figure 5.5: V-I characteristic of MOV.

All the three phases of the SC have the same capacitance calculated in (5.45) and there
is no mutual coupling among the three phases. As a byproduct of above derivation,
the following condition exists

|Im {Zeq x}| ≤ Xc, x = a, b, c (5.46)

It is proved as follows. The single phase equivalent impedance of SC&MOV is

Zeq x =
1

1

R
+ jωC

=

1

R
− jωC(

1

R

)2

+ (ωC)2

=

1

R(
1

R

)2

+ (ωC)2

− jωC(
1

R

)2

+ (ωC)2

(5.47)

where R represents the resistance of MOV. Thus it is proved that

|Im {Zeq x}| ≤
1

ωC
= Xc

Equation (5.46) can also be utilized to filter out the invalid subroutine.

5.4.2 Fault Location Results

The fault location results are summarized in Table 5.3. The first two columns display
the actual fault type and fault resistance simulated. The rest columns present the
percentage fault location error under various actual fault locations. The results for
AG fault are obtained using (5.11), which only yields one solution for each subroutine.
From Table 5.3 , we can see that the fault location result is highly accurate, with the
largest error being 0.023%. Next, we will discuss some cases that further illustrate
the fault location identification method.
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Table 5.3: Fault location results
Fault Fault Fault location error (%)
type res. (Ω) 100 km 150 km 300 km
AG 1 0.0046 0.016 0.00067

10 0.0053 0.017 0.00055
50 0.013 0.023 0.00078

BC 1 0.0040 0.012 0.0012
BCG 1 0.0042 0.014 0.00071

10 0.0036 0.014 0.00054
50 0.0052 0.014 0.00055

ABC 1 0.0036 0.010 0.00023

Case 1: AG fault, actual fault location is 300 km (0.8571 p.u.), and actual fault
resistance is 10 Ω (0.040 p.u.)

The two fault location estimates from two subroutines are: m1 = 0.6217 p.u.,
m2 = 0.8571 p.u.

Since m1 falls outside [0, 0.5714], it is filtered out. We can therefore conclude
m = m2 = 0.8571.

Case 2: BC fault, actual fault location is 150 km (0.4286 p.u.) and actual fault
resistance is 1 Ω (0.0040 p.u.).

The two fault location estimates from two subroutines are: m1 = 0.4287 p.u.,
m2 = 0.7191 p.u..

Since they both satisfy principle 1, we will further calculate the two corresponding
fault resistances: Rf1 = 0.0034 p.u., Rf2 = 0.2245 p.u.. They are both positive
numbers which means we need to compute the three phase equivalent impedances
corresponding to both fault location estimates. We have

Zeq a1 = 0− j0.3625, Zeq b1 = 0.1130− j0.2651, Zeq c1 = 0.1226− j0.2151,

Zeq a2 = 0− j0.3626, Zeq b2 = −0.2878− j0.2216, Zeq c2 = −0.3779− j0.2502.

Hence, only the solution from subroutine 1 satisfies all three principles, and we can
conclude that the true fault location is 0.4287 p.u.

Case 3: BCG fault, actual fault location is 300 km (0.8571 p.u.), and actual fault
resistance is 1 Ω (0.0040 p.u.)

The two fault location estimates from two subroutines are: m1 = 0.5935 p.u.,
m2 = 0.8571 p.u.

Since m1 falls outside [0, 0.5714], it is recognized as the invalid solution. We can
therefore conclude m = m2 = 0.8571.

Case 4: ABC fault, actual fault location is 100 km (0.2857 p.u.) and actual fault
resistance is 1 Ω (0.0040 p.u.).
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The two fault location estimates from two subroutines are: m1 = 0.2858 p.u.,
m2 = 0.5974 p.u..

Since both solutions satisfy principle 1, fault resistances corresponding to each
fault location need to be calculated: Rf1 = 0.0039 p.u., Rf2 = 0.0979 p.u.. They are
both positive numbers which means we need to compute the three phase equivalent
impedances corresponding to both fault location estimates. We have

Zeq a1 = 0.1180− j0.2476, Zeq b1 = 0.1180− j0.2476,

Zeq c1 = 0.1180− j0.2476,

Zeq a2 = −0.2701− j0.2542, Zeq b2 = −0.2701− j0.2542,

Zeq c2 = −0.2701− j0.2542.

Only the solution of subroutine 1 meets all the principles and thus m = m1 = 0.2858
p.u..

5.5 Summary

A new method to pinpoint fault location on series-compensated single-circuit line is
presented in this chapter. Unsynchronized voltage and current phasors from both ends
of the line are utilized. A capacitor bank equipped with a MOV is considered in this
work, but the fault location algorithm is still suited when thyristor-controlled series
compensator is installed. The algorithms are independent of the source impedance
and not influenced by the series capacitor and its MOV.

Two subroutines are developed to pinpoint the possible locations of the fault on
both sides of the series compensation device. A fault location identification method
can then be applied to reach the true fault distance. The synchronization angle can
be acquired independently using either pre-fault measurements for all types of faults
or fault measurements for LG and LLL faults, and be treated as known in the fault
location derivation. Distributed parameter line model is utilized that fully considers
the effect of shunt capacitance. The fault type is assumed to be known.

Evaluation studies using Matlab SimPowerSystems have demonstrated that the
proposed fault location algorithm is highly accurate and the fault identification method
is valid.
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Chapter 6

Conclusions

Short-circuit faults are the most common and severe threat to power transmission
lines. With today’s power networks often stretching hundreds of miles over complex
geographic terrain, precise location of the fault in a timely fashion can speed up
restoration and reduce loss of revenues for the utilities. For several decades transmis-
sion line fault location has been an important subject of research and many algorithms
have been developed.

In this dissertation advanced fault location methods for double-circuit lines and
series-compensated single-circuit lines have been proposed, taking advantage of in-
telligent devices such as DFR, PMU and power quality meter. For double-circuit
transmission lines I have developed different fault location algorithms based on the
lumped parameter line model. They utilize either sparse voltage phasors, or phase
voltage magnitudes, or current phasors, or phase current magnitudes.

Accurate fault location algorithms that employ voltage phasors have also been
implemented, taking into account the charging effect of transmission lines in the dis-
tributed parameter line model. Simulation studies with EMTP have shown that the
proposed algorithms are able to yield quite precise fault location estimates.

The distinctive features of the algorithms for double-circuit lines include:

• Existing algorithms still require measurements from one or two terminals of
the faulted section. However, this information may not be available due to the
sparse placement of meters. In contrast to these established algorithms this dis-
sertation has proposed and implemented novel fault location algorithms. They
utilize sparse measurements which are not necessarily taken at the terminals of
the faulty line. We build the bus impedance matrix with an additional fictitious
fault bus, and make use of the boundary conditions of different fault types. This
allows us to bridge the voltage measurements at any bus during the fault with
the sought-after fault location variable.

• Because of the mutual coupling between parallel lines in a zero-sequence net-
work, the addition of a fault bus on a double-circuit line makes the modification
of the bus impedance matrix difficult. It is probably therefore never mentioned
in textbooks, neither for lumped nor for distributed parameter line models. In
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this work the augmented bus impedance matrix is constructed in a novel and
efficient way by drawing on fundamental network analysis. The first n by n sub-
matrix is identical to the pre-fault bus impedance matrix. Furthermore, both
the fault bus driving-point impedance and the transfer impedances associated
with the fault bus are analytical functions of the unknown fault location.

• In the lumped parameter line model the elements of the augmented bus impedance
matrix take on the same form for both the zero-sequence and positive-sequence
networks. This phenomenon implies that the fault location algorithms based
on the lumped parameter line model can be universally applied to single-circuit
and double-circuit lines.

• Due to the lack of the equivalent π model, in all existing literature the nominal
π model has been adopted instead to take into account the charging effect of
transmission lines. It is a good approximation for short- and medium-length
lines, but loses accuracy with increasing line length. In this dissertation, the
classical time-domain telegraph equations [64] are put to use in deriving the
equivalent π model for a zero-sequence double-circuit line. Two traveling modes
rather than one in a single-circuit line, as well as two pairs of characteristic
impedance and propagation constant each have been found. With the help of
this model accurate fault location algorithms for double-circuit lines have been
developed in this dissertation.

• The fault location estimation techniques that employ phase voltage sags or
phase current magnitudes require only measurements from relatively simple
monitoring devices. In a typical real-life power network a large amount of such
power quality meters have been already deployed. Thus, the excessive costs of
installing expensive devices such as PMUs can be mitigated.

• Two-bus algorithms utilizing positive-sequence voltage phasors or current pha-
sors as input are suited for all types of faults. They are therefore immune from
any errors caused by a potentially wrong fault type classification.

• By means of the state estimation theory, the implemented optimal estimator
can detect bad data if redundant measurements are available. With the bad
data removed it is able to yield highly accurate fault location estimates.

Sometimes the fault location algorithms for double-circuit lines yield more than
one unique fault location estimate, with no means of further constraining the true
location. In general, however, if there are enough measurement data, then a unique
fault location estimate can be reached. Fault location observability analysis as well as
meter placement within the network may help determine the optimal measurements
required to uniquely pinpoint the true fault location for a given network. Research
for single-circuit lines was already reported in [77]. Studies for double-circuit lines
must be performed in the future.
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Following this dissertation the fault location algorithms that are based on the dis-
tributed parameter line model and that use current measurements, will be developed
next.

Furthermore, for series-compensated transmission lines a novel fault location tech-
nique using two-terminal unsynchronized voltage and current measurements as input
has been presented in this dissertation. The distributed parameter line model was
applied to fully consider the shunt capacitance of the lines. Simulation studies car-
ried out with Matlab SimPowerSystems have satisfactorily validated the proposed
method.

Most existent algorithms rely on the approximation of the V-I characteristic of
the capacitor bank and its MOV. This approximation introduces an error. The fault
location method proposed for series-compensated single-circuit lines has avoided the
calculation of voltages and currents across the SCs & MOVs. This method is therefore
independent of the model accuracy. Another salient feature is that no synchroniza-
tion of two terminal measurements is required, which greatly relieves the network
communication burden.

In the future research on accurate fault location for series-compensated double-
circuit lines should be undertaken.
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