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ABSTRACT OF DISSERTATION

Single View Reconstruction for Human Face and Motion with Priors

Single view reconstruction is fundamentally an under-constrained problem. We aim
to develop new approaches to model human face and motion with model priors that
restrict the space of possible solutions. First, we develop a novel approach to recover
the 3D shape from a single view image under challenging conditions, such as large
variations in illumination and pose. The problem is addressed by employing the
techniques of non-linear manifold embedding and alignment. Specifically, the local
image models for each patch of facial images and the local surface models for each
patch of 3D shape are learned using a non-linear dimensionality reduction technique,
and the correspondences between these local models are then learned by a manifold
alignment method. Local models successfully remove the dependency of large training
databases for human face modeling. By combining the local shapes, the global shape
of a face can be reconstructed directly from a single linear system of equations via
least square.

Unfortunately, this learning-based approach cannot be successfully applied to the
problem of human motion modeling due to the internal and external variations in
single view video-based marker-less motion capture. Therefore, we introduce a new
model-based approach for capturing human motion using a stream of depth images
from a single depth sensor. While a depth sensor provides metric 3D information,
using a single sensor, instead of a camera array, results in a view-dependent and
incomplete measurement of object motion. We develop a novel two-stage template
fitting algorithm that is invariant to subject size and view-point variations, and robust
to occlusions. Starting from a known pose, our algorithm first estimates a body
configuration through temporal registration, which is used to search the template
motion database for a best match. The best match body configuration as well as its
corresponding surface mesh model are deformed to fit the input depth map, filling
in the part that is occluded from the input and compensating for differences in pose
and body-size between the input image and the template. Our approach does not
require any makers, user-interaction, or appearance-based tracking.

Experiments show that our approaches can achieve good modeling results for
human face and motion, and are capable of dealing with variety of challenges in
single view reconstruction, e.g., occlusion.
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Chapter 1 Introduction

Human face and motion modeling has numerous applications in a variety of fields

such as animation, surveillance, and human-computer interactions. Face modeling

provides the application domain in Biometrics, such as authentication and security.

Compared to other biometrics, i.e., finger, hand, and eye, faces have advantages in

non-invasiveness and ease of use in [5]. The biggest application fields are entertain-

ment and animation. Many animated films adopt face modeling to animate facial ex-

pressions, and a variety of characters in cinema and video games are realized through

the transfer of captured motions to a particular shape. Motion modeling is also used

for medical applications and athletic coaching. Specifically, one such application for

athletes is the measurement of their range of motion and evaluation of their perfor-

mance by comparison with standard motions. Such analysis helps prevent athletes

from injuries and improves their performance.

Most current commercial systems address the 3-D face reconstruction problem

by adding constraints in the form of adopting multiple views, projecting lasers or

using structured light with patterns or special textures. These constraints and the

requirement of special hardware reduce the operational flexibility of any such system.

Similarly, most marker or marker-less motion capture systems require a surround-

ing camera array to provide a complete observation of the motion [6] due to the

complex nature of human motion. But marker-less motion capture from a single view

has been and continues to be the ultimate grand challenge for motion modeling. The
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ease of operation and the reduced equipment cost of a single-camera system could

eventually make motion capture a household routine, enabling many new applications

that are currently blocked by the prohibitive cost and the cumbersome user interfaces

of existing motion capture solutions.

Therefore, while the techniques of face modeling and motion capture using markers

or special equipment are mature enough to be widely adopted in many practical

applications, single view reconstruction (SVR) for human face and motion remains

an active topic in both computer vision and computer graphics. Over the years, the

research of SVR has been focused on using one regular video camera due to the cost-

effectiveness and non-invasiveness. Unfortunately, human face and motion modeling

from single-view video images is a hard problem due to the following challenges: (1)

It is fundamentally an under-constrained problem, because the human face and body

parts are rarely completely observable in any single given image. (2) The image-to-

shape mapping is highly multi-modal, and a single function cannot model this inverse

mapping, thus modeling the mapping requires a large amount of training data which

is not often available. (3) The problem is further complicated by the complexity

of the scene, such as lighting conditions, pose variation, cluttered background, and

occlusion.

The objective of this thesis is therefore to develop approaches to overcoming the

inherent ambiguities and challenges with model priors in our SVR problems. That

is, for the problem of human face modeling, we aim to recover the 3D shape from

a single image by using the local image or shape models learned from the training

database, while for the problem of human motion modeling, we estimate the body

2



configurations from a depth sequence from a known template model database.

1.1 Local Model-based Human Face Modeling

We incorporate learning techniques into 3D face reconstruction. To globally and com-

pletely capture the details and the underlying dynamics of both the images and the

3D shapes respectively, previous statistical learning techniques require a vast amount

of training data to achieve accurate reconstruction. To overcome this limitation, we

take advantage of the facts: 1) the local homogeneous surface follows the same de-

formation rule; 2) it is much easier to compensate illumination locally, and the local

images and shapes have considerably smaller variance. 3) the local model can be

captured from fewer examples due to more constraints in the local surface deforma-

tion. Therefore, we first divide the image and 3D shapes into overlapping patches and

learn the local non-linear prior models by applying non-linear dimensionality reduc-

tion (DR) to each patch. A global shape can be recovered by encouraging its patches

to conform to the local models. The non-linear approach of statistical learning We

have developed overcomes the weakness of non-linear global models by learning local

deformation models from manageable amounts of training examples. Therefore, We

have developed an applicable and fully automated approach to recover 3D shapes

from single face images with large variations in both pose and illumination, which is

beyond previous state-of-the-art techniques.

More specifically, the technical contributions of our method include:

• We introduce a new parametrization of the face model. Rather than recording

3



the absolute position of vertices, we record the per-triangle affine transformation

between an individual model and a reference model. This parametrization is

invariant to pose changes of 3D shapes and implicitly encodes the fact that the

vertices cannot move independently off one another.

• We divide the image and 3D shapes into overlapping patches and apply the non-

linear DR method to each patch. Working on the patch level has two advantages

over the whole face: it is easier to compensate illumination locally, and the

images and shapes within a patch have considerably smaller variance [7]. Non-

linear DR methods have been shown to be more effective for deformation [8].

• A novel approach is developed to estimate the pose from a single input image

by combining the unsupervised metric learning technique with the supervised

metric learning techniques. Unlike previous DR-based pose estimation methods

that treat illumination as a part of the pre-processing step, We have developed

a unified framework that does not require any pre-processing for illumination

normalization or correction.

• Instead of relying on explicit 2D-3D correspondences in the training database,

we apply manifold alignment techniques to find the appropriate mapping be-

tween a 2D image and its corresponding 3D shape. This eliminates the need

for tedious and manual labeling in the training database.

Using these novel components, our approach is able to deal with face images

with both varying illumination and very large pose variation–up to 90◦ profile view

4



Figure 1.1: Sample input images for human face modeling. Notice the large variation
in pose and illumination.

as shown in Figure 1.1, which we believe has not been demonstrated before. Note

that the results are based on a training database without 2D-3D labeling or any

illumination variations, making our method more accessible. Furthermore, the global

reconstruction is achieved by solving a linear system in closed form. No iterative step

is needed.

1.2 Template-based Human Motion Modeling

Compared to face modeling, human motion modeling has more challenges. To re-

move the challenges caused by the variations in lighting conditions and cluttered

backgrounds, we present a single-view marker-less motion capture solution that uses

a different cue, the scene depth. Depth is a fundamentally more stable cue than a

2D photograph. It not only provides metric 3D measurement, but also it is invariant
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Figure 1.2: Sample input images for single person modeling. Notice the large variation
in motion and occlusion.

of appearance, and the irrelevant information (such as the background) can be easily

segmented. Our desire to use depth is also motivated by the recent availability of

full-frame depth sensors, which provide more stable depth maps than typical passive

stereo. Nevertheless, using depth for motion capture is not as simple as it appears

at first glance. First, a depth sensor only generates a point cloud with noise and

outliers; semantic information about which part corresponds to which joint must be

extracted. Secondly, there exists large occlusion: at least 50% of the body is not

observable in any single view.

We formulate motion capture from a single depth image sequence as a model fitting

problem with a known template model database, from which we extract semantics
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and fill the missing surface regions so that the occluded body parts can be estimated.

Our approach recovers the skeleton motion and the temporal deformation of the

surface in an interleaved manner. We first estimate the body configuration (also

called skeleton motion) of the current frame by registering the input (the current

depth points) with the previous frame. The estimated body configuration is used to

search for the skeleton motion in the template database most similar to the current

input. We then reconstruct a complete 3D surface model by deforming the template

surface model to fit the current depth points. The reconstructed 3D model ensures

one-to-one vertex correspondence of reconstructed deformations through the entire

motion sequence, which is very useful for numerous applications such as texturing and

deformation transfer. The recovered full surface model in turn refines the accuracy

of the body configuration, and reduces the problem of temporal tracking drift.

Experiments have showed that our method is accurate with positional error usually

within 20mm of the ground truth. Figure 1.2 illustrates some examples of single-

person motion recovery. The results in the accompanying video demonstrate that our

method can correctly estimate motion configurations from a wide spectrum of scenes,

including walking (Figure 1.3a), over-stretching (Figure 1.3b), kicking (Figure 1.3c),

and swinging (Figure 1.3d). In addition to these basic motions, our approach can

recover complex activities and details of motion models. For example, our approach

can deal with challenging scenes, such as: dancing (Figure 1.3e), the partial occlusion,

and total occlusion in body parts(Figure 1.3e, Figure 1.4a). Furthermore, our method

is capable of handling extreme deformations as the subject moves into different poses

and shapes. This is achieved automatically without any user interaction and careful
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(a) (b) (c)

(d) (e) (f)

Figure 1.3: Some examples of input images to our approach. (a) walking; (b) stretch-
ing; (c) kicking; (d) swinging; (e)dancing; and (f) occlusion.

(a) (b)

Figure 1.4: Occlusion examples. (a) partial occlusion and total occlusion; (b) extreme
deformations and occlusions

placement of makers. In Figure 1.4b, the nature of the profile view occludes one side

of the body, resulting in one leg (arm) of the subject hidden by the other leg (arm).

This is significant as the template database has no similar pose, or any pose even

close to the displayed pose. To demonstrate our method’s robustness to occlusions,

we even extended it to multiple-persons motion capture. As shown in Figure 1.5,
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Figure 1.5: Multiple-person motion capture using a single depth video. The insets
show the input depth maps, which has been segmented from the background and
each other. The recovered body configurations are used to drive the two models.

not only is more than half of each subject occluded, the subject’s silhouette is also

destroyed. Correct object silhouette is a prerequisite for many video-based motion

modeling approaches. Because we use the depth cue and the incorporation of a motion

database, our approach can successfully handle such situations. To the best of our

knowledge, this has never been demonstrated in multi-person cases.

In short, we present a novel approach to address these issues in current single-view

3D reconstruction of motion modeling. More specifically, the technical contribu-

tions of our method include:

• We present a robust framework of single view marker-less motion capture by

adopting the depth cue and the template database. The framework is able to

handle large or severe occlusion and deformation from depth images with large
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internal and external variations in a given scene, and achieves an average motion

tracking accuracy of 20mm, which is much better than that of state-of-the-art

approaches.

• Our algorithm is invariant of viewpoint and body-size through our two-step

registration process. This eliminates the need of building a motion database

covering all of the motions, viewpoints, and body sizes, which generally repre-

sents a very significant amount of data.

• We introduce a surface fitting technique to refine the accuracy of the body

configuration, which significantly corrects the temporal tracking drift in single

view motion capture. Furthermore, Temporal filtering is adopted to remove the

jittering artifacts.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 reviews the related work on

single view reconstruction in the literature. In chapter 3, we present our local models

to recover 3D shape from a single input image with large variations in pose, illumi-

nation and identity. Chapter 4 introduces our template-based modeling algorithm,

which combines non-rigid registration and surface fitting techniques. The conclusion

is made and the future directions of our research is discussed in Chapter 5.

10



Chapter 2 Related Work

Single view reconstruction from individual images is known to be highly ambiguous,

because surfaces with very different shapes can generate very similar images under

perspective projection. It is acknowledged to be an ill-posed problem unless the space

of possible configuration is constrained [9]. Traditional shape-from-shading [10] and

shape-from-texture [11] techniques only recover the Lambertian surfaces with known

albedo, or surfaces with homogeneous texture patterns. Even given a calibrated

perspective camera and a well-textured surface, the depth ambiguities cannot be re-

solved in individual images. The standard approach to overcoming these challenges

is to introduce a deformable model and to recover the shape by optimizing an objec-

tive function that measures the fit of the model to the data. However, in practice

this objective function is usually non-convex. Thus, to avoid being trapped in local

minima, these methods require initial estimates that must be relatively close to the

true shape. Geometric clues, such as silhouettes and normal maps are usually used

to resolve the inherent ambiguities, but far from enough to obtain an unambiguous

solution. Additional geometrical or topological priors, i.e., a specific class of objects,

have been proposed in previous research to further constrain the problem. However,

these methods make a strong assumption over the input scenes, e.g., planar outdoor

architecture scenes and ground-vertical scenes. Such limitation prevents these meth-

ods from reconstructing surfaces with more complex and curved geometry like human

faces and body motions.
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To relax these constraints, approaches over the years endeavored to make this

problem tractable by introducing prior models [12, 9, 13, 14] which are in the form

of physics-based models, models reconstructed from non-rigid structure-from-motion

algorithms [15, 16, 17], or models learned from statistical learning techniques [18, 19,

20,12,9,13,14]. Most methods still make restrictive assumptions about the object of

interest that are sometimes hard to satisfy.

Physics-based models attempt to recover the shapes by introducing global models,

which approximate intrinsic physical behaviors of a dynamical system in terms of the

variables. Many variations of these models have been successfully applied to 2-D sur-

face registration and 3-D surface modeling, e.g., under the form of superquadrics [21],

triangulated surfaces [22], or thin-plate splines [23]. Physics-based models have shown

their strong potential to solve SVR problems, due to excellence at fitting noisy im-

age data and handling highly deformable 3D objects. However, these models reduce

the number of degrees of freedom in surface deformation with linearity assumption

through regularization terms or modal analysis [24, 22, 25] due to the high dimen-

sionality of the problems. The simplification in the complexity of modeling prevents

them from cases where there are large deformations present. Although more accurate

and complex non-linear models [26, 27] have been proposed to deal with the non-

linearity of deformation, the minimization of an image-based objective function with

high complexity may have many local minima. Furthermore, the knowledge of phys-

ical properties of the surface is typically unknown, which introduces the challenges

in the design of the object function.

Non-rigid structure from motion methods rely on tracking of feature points to si-
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multaneously recover 3-D surface points and the deformation models [28,15,29,30,17]

through image sequences. The advantage over other SVR approaches is that they re-

quire few priors. However, these methods suffer from two major drawbacks: 1) A

sufficient number of feature points are required to be tracked throughout the whole

sequence to learn both shape and motion, which limits their applicability. 2) Similar

to physics-based model techniques, non-rigid structure from motion techniques are

effective only when dealing with relatively small deformations, or smooth deforma-

tions, because they oversimplify the motion of surface by modeling deformations as

either a linear combination of online learned basis vectors [16], constant basis vec-

tors [15], or several piecewise rigid objects independently moving with respect to one

another [17].

Both physics-based models and models reconstructed from non-rigid structure

from motion techniques have difficultly in accurately capturing the non-linear physics

of large deformations, due to the complexity of modeling the true physical properties

of surfaces. Because of these limitations there has been an increase in statistical

learning techniques over the years to model deformations. These techniques take

advantage of training data in conjunction with dimensionality reduction techniques to

learn low-dimensional models. Most of these models currently in use trace their roots

to the early Active Appearance Models [31] in the 2-D case, followed by Morphable

Models [18] and Active Shape Models [19]. These linear models can capture more

of the true variability than modal analysis because they are learned from training

examples. However, they have the same restriction of smooth constraints as before.

Non-linear global models have also been demonstrated for surface deformations [32,
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13,12,9]. Due to the many degrees of freedom of highly deformable surfaces, learning

of these non-linear global models is tractable only when sufficient training data is

available. Thus, the difficulty of building a database with enough examples has

limited the spread of global non-linear model-based approaches. Furthermore, non-

linear learning generally involves dealing with challenges of optimization of complex

object functions that may be difficult to resolve because of non-convexity. Therefore,

these models are typically designed to one specific kind of surface, such as that of a

human face.

More sources of information may be used to overcome the ambiguities of single

view reconstruction. Zhao and Chellappa [33] combine texture and shading cues to

constrain the reconstruction problem. However, they make very restrictive assump-

tions on lighting conditions, which results in a method that lacks generality.

In the remainder of this chapter, we first present the related work of head pose

estimation, which is one of the important components in human face modeling. Fol-

lowing that, we discuss the related work of our SVR problems in human face and

motion modeling in more details.

2.1 Pose Estimation

In this section we review the research work in distance metric learning and head pose

estimation approaches based on dimensionality reduction. Many methods have been

developed. We discuss each one of them in the following sections.
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Distance Metric Learning

Approaches in this category attempt to learn metrics that keep all the data points

within the same classes close, while separating all the data points from different classes

far apart. Xing et al. [34] formulate distance metric learning as a constrained convex

programming problem and learn a global distance metric that minimizes the distance

between the data pairs in the equivalence constraints subject to the constraint that

the data pairs in the inequivalent constraints are well separated.

Local linear discriminative analysis [35] estimates a local distance metric using

the local linear discriminant analysis. Relevant Components Analysis (RCA) [36]

learns a full ranked Mahalanobis distance metric using equivalence constraints. The

learned linear transformation can be used directly to compute distance between any

two examples. Components Analysis (NCA) [37] maximizes the leave-one-out cross

validation to learn a distance metric for KNN classifier. Large Margin Nearest Neigh-

bor(LMNN) [38] extends NCA through a maximum frame work. Discriminative Com-

ponent Analysis (DCA) and Kernel DCA [39] improve RCA by exploring negative

constraints and capturing nonlinear relationships using contextual information. Es-

sentially, RCA [36] and DCA [39] can be viewed as extensions of Linear Discriminant

Analysis (LDA) [40] by exploiting the must-link constraints and cannot-link con-

straints. Local Fisher Discriminant Analysis (LFDA) [41] can be viewed as localized

variant or an extension of LDA. It assigns greater weights to those connecting exam-

ples that are nearby. Kim et al. [42] provide an efficient incremental learning method

for LDA by applying the concept of the sufficient spanning set approximation in each
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update step, i.e., for the between-class scatter matrix and the projected data matrix,

as well as the total scatter matrix.

Globerson and Roweis [43] learn a Mahalanobis distance by constructing a convex

optimization problem whose solution generates such a metric by trying to collapse all

examples in the same class to a single point and push examples in other classes in-

finitely far away. Liu et al. [44] present an efficient algorithm to learn a Local Distance

Metric (LDM) by employing eigenvector analysis and bound optimization from train-

ing data in a probabilistic framework that aims to optimize local compactness and

local separability. The work [45] presents a Bayesian framework for distance metric

learning that estimates a posterior distribution for the distance metric from labeled

pairwise constraints. Schultz and Joachims [46] extend the support vector machine

to distance metric learning by encoding the pairwise constraints into a set of linear

inequalities. Unlike previous methods of the semi-supervised clustering approach,

Locally Linear Metric Adaptation (LLMA) [47] performs nonlinear transformation

globally but linear transformation locally.

Manifold Learning

The goal for approaches in this category is to learn a low-dimensional manifold in

which most “intrinsic information” (e.g., distance) are preserved. Popular approaches

include ISOMAP [48], Locally Linear Embedding (LLE) [49], and Laplacian Eigen-

maps (LE) [50]. ISOMAP preserves the geodesic inter-point distances, LLE preserves

the distance based on locally linear combination of neighborhood, and LE preserves

the distance described by a weighted connected graph constructed from neighbor-
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hoods.

Hu et al. [51] first used ISOMAP to map video or image sequences of each in-

dividual into 2D embedded space. All the manifolds were further normalized into a

unified embedding space, after each manifold was represented by an ellipse by em-

ploying an ellipse fitting method. The head pose angle was obtained by applying

Radial Basis Function interpolation. This method only works on face images with

temporal continuity and local linearity (e.g, video sequences), although good results

have been shown in their experiment.

Raytchev et al. [52] apply the ISOMAP-based manifold learning technique for

user-independent pose estimation and evaluate their method in comparison with the

Linear Subspace and Locality Preserving Projections(LPP) [53].

Chen et al. [54] uses the face images of two specific head poses and estimates the

head poses between them through classification-based nonlinear interpolation. This

approach is based on the assumption that face images from multiple views lie on a

manifold in the original image feature space.

Fu and Huang [55] present an appearance-based strategy for head pose estimation

using supervised Graph Embedding(GE) analysis. The neighborhood weighted graph

is first constructed in the sense of supervised LLE. The out-of-sample data points

may be treated using the projection transformation solved in closed-form based on

GE linearization. The K-nearest neighbor classification is then employed to estimate

the head pose. Their method is successful with low pose estimation error. They

consider face images with only pose variation, but not illumination, change in their

experiment.

17



Table 2.1: performance comparison of different methods for head pose estimation

Method Interval Increment Best result:
error

Illumination
(Yes/No)

ISOMAP [52] [−90◦ + 90◦] 15◦ 11◦ No
Fisher manifold learn-
ing [54]

[−10◦ + 10◦] 3◦ No

BME with ISOMAP,
LLE [56]

[−90◦ + 90◦] 2◦ 3◦ Yes♦

BME with LE [56] [−90◦ + 90◦] 2◦ 2◦ Yes♦

LEA [55] [−90◦ + 90◦] 1◦ 2◦ No
♦LoG filter is used.

Balasubramanian et al. [56] propose Biased Manifold Embedding (BME) frame-

work for head pose estimation. The pose information of given face image data is

used to compute a biased neighborhood of each point in the feature space, before

determining the low-dimensional embedding. The distances are defined as 0 between

face images of the same pose angle. For data points from different pose angles, BME

defines the distances by: D̃(i, j) = λ1 ·D(i, j) + λ2 · f(P (i, j)) · g(D(i, j)), where λ1

and λ2 are constants, D(i, j) is the Euclidean distance between two data points xi

and xj, P (i, j) is the pose distance between data points xi and xj, f is any func-

tion of the pose distance, g is any function of the Euclidean distance between the

data points, and D̃(i, j) is the modified biased Euclidean distance. Many approaches

[57, 58, 59, 60, 61] similar to BME try to modify the distance matrix between all the

data points to improve the performance of the manifold learning techniques. They

are all special cases of the BME framework as shown in Table 2.2. Balasubramanian

et al. [62] present the unified view of all these approaches. BME uses a Generalized

Regression Neural Network (GRNN) to learn the non-linear mapping for dealing with

out-of-sample data points, and applies linear multivariate regression to estimate the
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pose. Essentially BME proposes a more general model to modify the distance matrix,

which unifies the other supervised manifold learning approaches [57, 58]. The inter-

ested reader can refer to the discussion in [62] for details. Their experiment shows

this method works well with person-independent face images with pose variation.

BME uses Laplacian of Gaussian (LoG) to remove the illumination effects, but LoG

representation is not sufficient for pose estimation under a wide variety of lighting

conditions, in particular harsh lighting with shadows, as in our experiments.

The performance of representative DR-based approaches for head pose estimation

are summarized in Table 2.1. It shows that LEA and BME are the current state-of-art

techniques in pose estimation. However, none of them treats illumination variations

in a principled way, most techniques simply do not discuss the effect of illumination.

2.2 Face Modeling

A classic method to recover 3D shape from a single image is Shape-from-Shading

(SFS) [10, 63]. Direct application of SFS to face modeling has limited success since

a face has large albedo variation and both concave and convex regions. Some SFS-

based methods have been developed to improve shape recovery using specific domain

constraints. The symmetric SFS method [33,64] reconstructs the faces by exploiting

the bilateral symmetry of faces. However, it is difficult to establish the point-wise

correspondence between the symmetric parts. Prados et al. [65, 66] use a unique

critical point over the face image to enforce convexity for shape recovery but all the

parameters of the light source, the surface reflectance, and the camera have to be

known.
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Table 2.2: The unified view of supervised manifold learning techniques

Method Setting

Balasubramanian et al. [62]

λ1 = 0,
λ2 = 1,

f(P (i, j)) = β∗|P (i,j)|
maxm,n P (m,n)−P (i,j)

,

g(P (i, j)) =

{
D(i, j), P (i) 6= P (j);
0, P (i) = P (j).

Ridder et al. [57]

λ1 = 1,
λ2 = α×max(∆),
f(P (i, j)) = Λ,
g(P (i, j)) = 1.

Li and Guo [58]

λ1 = 0,
λ2 = 1,
f(P (i, j)) = 1,

g(P (i, j)) =

{
D(i, j), P (i) 6= P (j);
ρi ×D(i, j), P (i) = P (j).

Vlachos et al. [59]

λ1 = 0,
λ2 = 1,
f(P (i, j)) = 1,

g(P (i, j)) =

{
D(i, j), P (i) 6= P (j);
α×D(i, j), P (i) = P (j).

Geng et al. [60]

λ1 = 0,
λ2 = 1,
f(P (i, j)) = 1,

g(P (i, j)) =


√

eD
2(i,j)

β
, P (i) 6= P (j);√

1− e−D2(i,j)

β
, P (i) = P (j).

Zhao et al. [61]

λ1 = 0,
λ2 = 1,
f(P (i, j)) = 1,

g(P (i, j)) =

{
∞, P (i) 6= P (j);
D(i, j), P (i) = P (j).
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Kemelmacher and Basri [67] present an example-based SFS method for 3D shape

recovery of a face from a single image using a single 3D reference model of a different

person’s face. To achieve a desired reconstruction, the method seeks the shape, albedo

and lighting that best fit the input image while preserving the rough shape and albedo

of the reference model. This method provides accurate reconstruction of new faces.

However, it makes the assumption of Lambertian reflectance and rough alignment of

the input image and the reference model. Similar methods include [68], where results

from only frontal face images are demonstrated.

Statistical SFS methods [69,70,71] represent face shapes in the parametric eigenspace

by applying PCA to a training set of 3D faces. [69] seeks the shape-coefficients by

fitting the PCA model to satisfy the image irradiance constraints, while [70] recovers

the shape by fitting the PCA model to image brightness data using constraints on

the surface normal direction provided by Lambert’s Law. Dovgard and Basri [71]

reconstruct the shape by combining the geometric constraint [33] and the statistical

constraints [69]. These methods are computationally expensive in the fitting proce-

dure for minimizing the error between the rendered facial surface and the intensity

of the input face. Thus, the optimization may not converge.

3D Morphable Model (3DMM) [72] developed by Blanz and Vetter is a well-known

face reconstruction method. It applies to the images and shapes separately to derive

the linear models. The 3D shape reconstruction is an optimization process which

aims to minimize the difference between the rendered model image and the input

image. However, 3DMM suffers from the same problem as Statistical SFS methods,

i.e., long runtime and multiple local minima. An approach is presented to accelerate
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fitting procedure of 3DMM in [73].

Some learning-based methods have been developed for the shape reconstruction.

Reiter et al. [1] recover the 3D shape from a NIR facial image by learning the canonical

correlation analysis (CCA) mapping from near infrared (NIR) facial images to 3D

shape, which are both transformed to vectors. Lei et al. [3] present an approach

(Tensor+CCA) similar to [1], while the mapping is learned from the NIR tensor

space to the 3D shapes. Castelan and Hancock [2] apply coupled statistical models

(CSM) to recover surfaces from brightness images of faces. However, these statistical

learning approaches can handle the shape recovery only from a frontal face image.

Georghiades et al. [74] develop a generative method to handle pose and illumination

variations for face recognition. The change of pose is limited to be less than +/- 30

degrees, while we can deal +/− 90◦.

2.3 Motion Modeling

It is beyond the scope of this thesis to discuss all the related work in motion capture.

We refer the reader to [75,76] for extensive surveys of this broad subject.

There are two main approaches to solve motion modeling problems, categorized

as learning-based approaches and model-based approaches. Here, we only provide a

brief review of these approaches in motion capture.

The learning-based approaches can be further classified into two categories: dis-

criminative and generative. Discriminative learning approaches attempt to learn a di-

rect mapping from image observations to motion model. The learned approaches vary

in the form of linear or nonlinear regression [77], mixture of Bayesian expert [78,79],
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linear or nonlinear embedding [80,81], and nearest neighbor search [82,83,84]. These

methods have the advantage of fast computational speed and full automation. How-

ever, it is difficult to learn the inverse, multi-modal mappings between the image

space and the space of body configurations. Typically a vast amount of high quality

training data is needed to achieve good reconstruction.

Generative methods search the space of body configuration that minimizes the

error defined between a projection of the human body and the image observation.

They provide the flexibility in representing large classes of complex human motions,

but their computational cost is very expensive, due to search in the high dimensional

motion space. Moreover, they can be trapped in local minima because of non-linear

optimization. Particle filtering may be helpful in solving this problem [85], but it does

not scale well in the space of body configurations. Linear or nonlinear dimensionality

reduction (DR) techniques have been used to reduce the dimensionality of the space

of body configurations. Methods such as kernel component analysis (kPCA [86]),

Laplacian Eigenmaps (LE [87]), Gaussian Process Latent Variable Models (GPLVM)

and its variants (e.g. [88, 89, 90]), are employed to learn the low-dimensional embed-

ding. Recently, some research work has been done to combine both generative and

discriminative approaches to complement each other(e.g. [91]).

In contrast, model-based approaches rely on an explicitly known parametric hu-

man model to recover the skeletal motion by searching high dimensional configura-

tion spaces. The searching methods are typically formulated deterministically as a

non-linear optimization problem [92], or probabilistically as a maximum likelihood

problem [4]. The model-based approaches require known initialization and an ap-
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proximate dynamical model.

Grest et al. [92] use the combination of depth and silhouette information to es-

tablish correct correspondences in the presence of non-static background and people

wearing normal clothing, and track the motion of a subject from a single view by

non-linear least squares. As opposed to a more global approach, the local nature of

these algorithms leads to suboptimal solutions. In addition, these algorithms have

the susceptibility of losing track for long input sequences.

Pekelny and Gotsman [93] present an algorithm capable of recovering a full 3D

surface geometry and dynamic skeleton of a deforming object from a sequence of depth

images taken by a single depth video camera. The algorithm identifies and tracks

the rigid components between frames, and reconstructs an articulated 3D model in a

single pass over the data. The algorithm can track the skeleton of the subject over

long sequences. However, one limitation of the algorithm is the assumption that a

deforming subject is piecewise-rigid.

Another recent work [4] addresses the same problem as ours. It employs a gen-

erative model with a discriminative model that identifies the body part locations by

data-driven procedure. While their algorithm can achieve real-time performance, the

accuracy, reported as around 100mm, leaves something to be desired. On the other

hand, our approach’s accuracy is around 20mm. In addition, our approach can es-

timate the skeletal motion in cases of severe occlusion by using the complete model

from the template database.
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Chapter 3 Learning 3D Shape from a Single Facial Image via Non-linear

Manifold Embedding and Alignment

Many algorithms have been developed to address the problem of human face model-

ing. Some of them can be thought of as an extended Shape-from-Shading approach,

in which the 3D shape is optimized so that its rendering matches the input image

(e.g., [69, 72, 71, 70, 33, 64, 66, 65, 67, 73]). Domain-specific constraints are typically

added to reduce the solution space so that meaningful results can be obtained. While

some very impressive results have been obtained, one of the biggest challenges of

these methods is that the optimization could be trapped in a local minimum.

Another class of methods use machine learning techniques to reconstruct the 3D

shape (e.g., [2,3,1]). These learning-based methods take advantage of the availability

of prior training data, i.e., face images with corresponding shapes, from which the

relationship of shapes and facial images can be inferred. The reconstruction quality

depends heavily on the training data sets. Given the need for high-quality 3D models

and accurate data labeling, obtaining or reproducing good results is always difficult.

In addition, they suffer from the curse of dimensionality problem, i.e., the requirement

of a vast amount of training data to achieve accurate reconstruction. As a result,

most of these methods focus solely on frontal images taken under ambient (or fixed)

illuminations to reduce the amount of training data needed.

In this work, our objective aims to recover the 3D shape from a single face image

by overcoming the ambiguities. We investigate non-linear statistical learning tech-
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niques to learn the texture and shape models, and impose them as priors for the

3D human face modeling problem. Section 3.1 introduces the preprocessing of the

training data, images of faces and the corresponding shapes. Section 3.2 describes

the fundamentals of the Gaussian Process Latent Variable Model (GP-LVM) and its

application for learning the local image models and the local surface models. The

learning of correspondences between these models using a manifold alignment method

is detailed in section 3.3. We discuss the problem of head pose estimation in Sec-

tion 3.4. Section 3.5 presents the reconstruction procedure of the global shape by

combining the learned local surface shapes. The experimental results and analytic

analysis are shown in section 3.6.

3.1 Training Data Preprocessing

2D Image Preprocessing All the training facial images are first automatically

aligned to the reference images Iri using the method in [94]. The index i denotes

the pose variation, and r means that the image is considered as the reference image.

We use different reference images for different poses. Estimating a 3D shape from

a facial image with M pixels can be viewed as a generic non-linear M-dimensional

regression problem. Even for small images, the number of dimensions is still too large.

To overcome this dimensionality issue, We have developed local, low-dimensional

estimation based on small image patches. For each facial image of a specific pose, we

divide it into Nz overlapping p×q rectangular patches. This patch representation not

only reduces the problem dimension, but also makes illumination correction easier.

Instead of applying global and complex methods (such as [95]), we simply use local
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image normalization to correct non-uniform illumination or shading artifacts for each

patch by:

J(x, y) =
I(x, y)−mI(x, y)

σI(x, y)
(3.1)

where I(x, y) is the original image patch, mI(x, y) and σI(x, y) are, respectively,

the mean and the variance of I(x, y), and J(x, y) is the output image patch. After

that histogram equalization is performed on J(x, y). Figure 3.1 demonstrates the

effectiveness of this approach. The corrected patches show little effect of lighting.

Applying the same approach to an entire image is unlikely to be effective.

Figure 3.1: Local image patches before and after illumination correction.

As shown in Figure 3.2, after image subdivision and normalization, we construct

the data {Yi,j = [yi,j,1, · · · ,yi,j,k, · · · ,yi,j,N ], j = 1 · · ·Nz}, where yi,j,k is the trans-

formed column vector from the facial image region with pose i and patch index j of

the kth person, and N is the number of subjects.

3D Shape Preprocessing In the 3D shape preprocessing, we adopt the coherent

point drift (CPD) algorithm. CPD is a probabilistic method for non-rigid registration
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of point sets; details can be found in [96]. For the sake of completeness we briefly

introduce the CPD algorithm here.

CPD considers the alignment of two point sets as a probability density estimation

problem. The first point set XN×D = (x1, . . . , xN) represents the data points, while

the second point set YM×D = (y1, . . . ,yM) represents the Gaussian Mixture Model

(GMM) centroids. CPD fits Y to X by maximizing the likelihood, or equivalently by

minimizing the negative log-likelihood function as follows,

E(θ, σ2) = −
N∑
n=1

log
M∑
m=1

P (m)p(x|m) (3.2)

where the GMM centroid locations are re-parameterized with a set of parameters θ;

p(x|m) = 1
(2πσ2)D/2

e−
1
2
‖x−ym

σ
‖2 . We make the i.i.d. data assumption, and use equal

isotropic covariances σ2 and equal membership probabilities P (m) = 1
M

for all GMM

components (m = 1, . . . ,M). Furthermore, the correspondence probability between

two points ym and xn is considered as the posterior probability of the GMM centroid

given the data point:P (m|xn) = P (m)p(xn|m)/p(xn).

The Expectation Maximization (EM) algorithm [97] is used to find θ and σ. In

the E-step, the posterior probability distribution P old(xn|m) of mixture components

is computed using the ”old” parameter values via Eq. 3.3,

P old(xn|m) =
e−

1
2
‖xn−Γ(ym,θ

old)

σold
‖2

ΣM
k=1e

− 1
2
‖xn−Γ(ym,θ

old)

σold
‖2

(3.3)

where Γ(y, θ) is the transformation Γ applied to y, and θ is a set of the transformation

parameters.

In the M-step, the “new” parameter values are found by minimizing the expec-

tation of the following complete negative log-likelihood function with respect to the
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”new” parameters, which is an upper bound of Eq. 3.2,

Q(θ, σ2) = 1
2σ2

∑N
n=1

∑M
m=1 P

old(m|xn)‖xn − Γ(ym, θ)‖2

+
NPD

2
log σ2 (3.4)

where NP = ΣN
n=1Σ

M
m=1P

old(m|xn). The transformation Γ may have affine, rigid, and

non-rigid forms.

Affine Registration For Affine point set registration, the transformation of the

GMM centroid locations can be defined as Γ(ym; B, t) = Bym + t, where BD×D is

an affine matrix, and tD×1 is a translation vector. The objective function in Eq. 3.4

can be written as,

Q(B, t, σ2) = 1
2σ2

∑M,N
m,n=1 P

old(m|xn)‖xn − (Bym + t)‖2

+
NPD

2
log σ2 (3.5)

Rigid Registration Rigid transformation is defined as Γ(ym; R, t, s) = sRym + t,

where RD×D is a rotation matrix, tD×1 is a translation vector, and s is a scaling pa-

rameter. Compared to the affine case, the rigid registration case is more complicated

due to the constraints on R. The work [98] discusses the closed form solution for the

rotation matrix R.

Q(R, t, s, σ2) = 1
2σ2

∑M,N
m,n=1 P

old(m|xn)‖xn − (sRym + t)‖2

+
NPD

2
log σ2, s.t.RTR = I, det(R) = 1 (3.6)
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Non-rigid Registration The non-rigid registration is an ill-posed problem, be-

cause there is a broad class of transformations that align the two point sets. To

deal with the problem, CPD defines non-rigid transform as the initial position plus a

displacement function v, Γ(ym; v) = ym + v(ym), and adds a regularization term to

the negative log-likelihood function in Eq. 3.2,

E(v, σ2) = −
N∑
n=1

log
M∑
m=1

e−
1
2
‖xn−Γ(ym;v)

σ
‖2 +

λ

2
φ(v) (3.7)

where φ function represents the prior knowledge about the motion, which should be

smooth. We define the regularization term as φ =
∫
Rd |ṽ(s)|2/G̃(s)ds, where ṽ denotes

the Fourier transform of the velocity and G̃ represents a symmetric low-pass filter.

The displacement function v has the form of the radial basis function in Eq. 3.9, which

can be estimated by minimizing the energy function in Eq. 3.7 using a variational

calculus. Here, G is a Gaussian kernel. Therefore, we can write the upper bound of

the function in Eq. 3.4 for non-rigid registration as,

Q(W) =
∑N
n=1

∑M
m=1 P

old(m|xn)
‖xn−ym−G(m,·)W‖2

σ2

+λ
2
tr(WTGW) (3.8)

where GM×M(i, j) = e
− 1

2β2 ‖yi−yj‖
2

is a square symmetric Gram matrix, and WM×D =

(w1, . . . ,wM)T is an unknown matrix of the Gaussian kernel weights in the displace-

ment function v; G(m, ·) denotes the mth row of G.

v(z) =
M∑
m=1

wmG(z− ym) (3.9)
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Substituting Eq. 3.9 back into Eq. 3.7, we can rewrite the objective function in

the new form as follows,

E(W) = −∑N
n=1 log

∑M
m=1 e

− 1
2
‖
xn−ym−

∑M

k=1
wmG(yk−ym)

σ
‖2

+λ
2
tr(WTGW) (3.10)

where GM×M(i, j) = e
− 1

2β2 ‖yi−yj‖
2

is a square symmetric Gram matrix, and WM×D =

(w1, . . . ,wM)T is an unknown matrix of the Gaussian kernel weights in Eq. 3.9.

We select one 3D facial shape Mr as a reference model, and every other facial

model Mh, h = 1 . . . N , is registered to Mr using CPD. After the registration, each

facial shape has the same number of vertices and triangles (in our experiments, 2500

vertices and 4624 triangles for each facial shape), which provides us convenience for

later processing. Then, we parameterize the 3D shape model with deformation trans-

fer, which describes the shape transformation from the source (Mr) to the target

(Mh) [99]. The source deformation is represented as a collection of affine transfor-

mations tabulated for each triangle of Mr, e.g., Th = [q1, · · · ,qm]T , where m is the

number of triangles, and qi denotes the affine transformation of the ith triangle. How-

ever, the affine transformation cannot fully be determined with the three vertices of

each triangle. A fourth vertex is added in the direction perpendicular to the triangle

to resolve this issue [99]. It is computed as follows,

v4 = v1 + (v2 − v1)× (v3 − v1)/
√
|v2 − v1| × |v3 − v1| (3.11)

ṽ4 = ṽ1 + (ṽ2 − ṽ1)× (ṽ3 − ṽ1)/
√
|ṽ2 − ṽ1| × |ṽ3 − ṽ1|

31



],[ ,,1,,,,1,,1,,, Njikjikjikjijiji yyyyyY 
]~~~~~[

~
,1,,1,1, Ntktktkttt yyyyyY 

90
oi 90

1

~
X

tX
~

pNX






 jiX ,

pNiX ,

1,iX

),( ,,,

opt

ti

opt

tij jj
Pt





),(
11 ,,,1

opt

ti

opt

ti Pt

),( ,,

opt

ti

opt

tiN
pNpNp

Pt

 








Latent space of image patches Latent space of 3D shape patchesManifold alignment

Input images Input representations of 3D shapes

Figure 3.2: Data flow chart of our algorithm. Yi,j is constructed from the image

regions of all training faces with pose i and patch index j, while Ỹj is from the

representations of all 3D shapes with patch index j. Yi,j and Ỹj are projected into

the low dimensional space using GP-LVM and generate Xi,j and X̃j. For each Xi,j,

its correspondence, X̃tj , is found as the one with the minimal alignment error by the
manifold alignment algorithm.

where vi and ṽi, i ∈ 1 . . . 3 are the original and deformed vertices of the triangle.

The 3× 3 matrix q can be computed by q = ṼV−1 where

V = [v2 − v1v3 − v1v4 − v1] (3.12)

Ṽ = [ṽ2 − ṽ1ṽ3 − ṽ1ṽ4 − ṽ1]

We also decompose Th into Nz overlapping parts. With this, we construct the

representations of 3D shapes Ỹj = [ỹj,1, · · · , ỹj,k, · · · , ỹj,N ], as shown in Figure 3.2,

where ỹj,k is from the jth patch of Tk, corresponding to the facial image patches with

patch index j of the kth person.
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3.2 The Local Image and Surface Models

In the previous sections, we explain how we gathered data as patches of facial im-

ages and 3D shapes. We now show how to learn the local image and surface mod-

els from such data. Generally, it is difficult to work with the data in the origi-

nal high-dimensional space, since the number of training examples needed to fully

cover the space of possible deformations grows exponentially with the number of

dimensions. A large amount of research work on non-linear manifold embedding

has been done to handle the curse of dimensionality. We adopt the Gaussian Pro-

cess Latent Variable Model (GP-LVM) [100], which provides a good generalization

from very small data sets using nonlinear models. An important characteristic of

the GP-LVM is the reconstruction of a new point in the latent space with ease

and accuracy. GP-LVM represents a Gaussian process (GP) mapping from the la-

tent space X (low-dimensional embedding) to the data space Y (high-dimensional

data set), where X = [x1,x2, · · · ,xN ]T ∈ <N×d is the non-linear embedding matrix

whose rows represent the corresponding positions in the latent space, xi ∈ <d, and

Y = [y1,y2, · · · ,yN ]T ∈ <N×D is the data matrix in which each row is a single train-

ing sample, yi ∈ <D. For a detailed discussion on GP and GP-LVM, see [100, 101].

Given a kernel function for the GP, K(xi,xj), the likelihood of the data given the

latent positions is

p(Y|X,Θ) =
1√

(2π)ND|K|D
exp(−1

2
tr(K−1YYT )) (3.13)

where K denotes the kernel matrix whose elements are defined by the kernel function

(K)i,j = K(xi,xj), and Θ is the kernel hyper-parameters. In our experiments we use
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the form of the radial basis function (RBF) kernel, which controls the output variance,

the RBF support width, the bias and the variance of the additive noise. GP-LVM

learning consists of maximizing the posterior p(X,Θ|Y) ∝ p(Y|X,Θ)p(X)p(Θ) with

respect to the latent space X, and the hyper-parameters Θ.

To reduce the computational complexity from an often prohibitive O(N3) to

O(Nk2), where k is the number of points specified by the user, sparse approximation

techniques were proposed [102] and were proven more accurate than simply using a

subset of the data. All approximations involve augmenting the function values at the

training points, F ∈ <N×d, with F = [f1, · · · , fN ]T and the function values at the test

points, F∗ ∈ <∞×d, by an additional set of variables, Xu ∈ <k×d, called inducing

variables. Learning the sparse GP-LVM involves maximizing with respect to X, Xu

and Θ the posterior

p(Y|X,Xu,Θ)) = N (Kf,uK−1
u,uXu,Λ + σ2I) (3.14)

where Λ = diag[Kf,f −Kf,uK−1
u,uKf,fKu,f] and diag(A) is a diagonal matrix whose

elements match the diagonal of A, Kf,u denotes the covariance function computed

between X and Xu, Ku,u is the kernel matrix for the elements of Xu, Kf,f is the

symmetric covariance between X, and σ2 is the noise variance.

Given a new test point x∗, the predictive distribution of its high-dimensional

position y∗ can be obtained [100] by

p(y∗|x∗,Y,Xu,Θ) = N(µ∗, σ
2
∗) (3.15)

where the mean and variance are

µ∗ = YTK−1
u,uK∗ (3.16)

34



σ2
∗ = K∗∗ −KT

∗K
−1
u,uK∗ (3.17)

where K∗ is a vector with elements K(x∗,xi) for latent positions xi ∈ Xu, and

K∗∗ = K(x∗,x∗).

Given a new test point y∗, its latent position can be inferred in the sparse GP-LVM

by minimizing − ln p(y∗,x∗|Y,Xu,Θ), up to an additive constant [8],

`(x∗,y∗) =
‖y∗ − µ(x∗)‖2

2σ2(x∗)
+
D

2
lnσ2(x∗) +

1

2
‖x∗‖2 (3.18)

with the mean and variance given by

µ(x∗) = YTKT
f,uA−1K∗ (3.19)

σ2(x∗) = K∗∗ −KT
∗ (K−1

u,u − σ2A−1)K∗ (3.20)

where A = σ2Ku,u + Ku,fKf,u.

The local image model ΘI
i,j and the low dimensional embedding Xi,j = [xi,j,1, · · · ,xi,j,N ]

are learned by the input image patches Yi,j, where j = 1 · · ·Nz. Similarly, we can get

the local surface model ΘS
t and the low-dimensional embedding X̃t = [x̃t,1, · · · , x̃t,N ]

from the input 3D patches Ỹt.

3.3 Learning the Correspondences

Previous methods of single-image 3D face modeling usually require explicit regis-

tration between the 2D images and the 3D models. Registration between different

modality is a difficult problem. Typically this is done with user interaction. How-

ever, given our intention of dealing with both head pose and illumination variations,

manually labeling all the images in both spaces is too time-consuming. Rather We
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have developed an automatic procedure to estimate the correspondences via manifold

alignment with procrustes analysis [103].

More specifically, we have two collections of low-dimensional embeddings, 2D

image patches {Xi,j} and 3D shape patches {X̃t}. We estimate a transformation (i.e.

procrustes analysis) to best align one data configuration (Xi,j) to another (X̃t). Each

element of Xi,j and X̃t is first translated so that its centroid is at the origin, by

xi,j,k = xi,j,k −
∑N
k=1 xi,j,k/N, j = 1 · · ·Nz

x̃t = x̃t,k −
∑N
k=1 x̃t,k/N, t = 1 · · ·Nz

(3.21)

Then, we try to align Xi,j to all X̃t. The alignment error of matching Xi,j and X̃t

is defined by ‖Xi,j − λi,tX̃tPi,t‖F , where ‖ · ‖F denotes Frobenius norm, λi,t is a

re-scaling factor to either stretch or shrink X̃i,t, and Pi,t is an orthonormal matrix,

defining a rotation and possibly a reflection. We denote the correspondence of Xi,j

as X̃tj with patch index tj, which has the minimal alignment error with Xi,j. That

is, the problem is simplified to find the patch index tj of 3D shape representations,

λopti,tj and the transform Popt
i,tj such that

{tj, λopti,tj ,P
opt
i,tj} = arg min

t∈{1···Nz},λi,t,Pi,t

‖Xi,j − λi,tX̃tPi,t‖F (3.22)

For simplicity, we use X, λ, Y, and Q to represent Xi,j, λi,t, X̃t, and Pi,t respectively.

Continuing on, the problem is formalized as:

{λopt,Qopt} = arg min
λ,Q
‖X− λYQ‖F (3.23)

It can be written as,

‖X− λYQ‖F = trace(XTX) + λ2 · trace(YTY)− 2λ · trace(QTYTX) (3.24)
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Figure 3.3: (Top) An example of low-dimensional embeddings of 2D image patches
and 3D shape patches from different subjects with pose changes; They are in different
coordinate systems. (Bottom) The two embeddings after alignment.

We can have λ = trace(QTYTX)/trace(YTY) by differentiating with respect to

λ. Thus, λopti,tj = trace(Σ)/trace(X̃
T

tj
X̃tj). From 3.23 and 3.24, the minimization

problem reduces to

Qopt = arg max
Q

trace(QTYTX)2 (3.25)

It is shown that Popt
i,tj = UVT in [103], where U, V and Σ are given by the SVD

of X̃
T

tj
X̃tj , that is, UΣVT = SV D(X̃

T

tj
X̃tj).

Our method is based on the assumption that corresponding 2D and 3D embed-

dings have similar shape, yielding the minimum amount of registration error. Fig-

ure 3.3 shows that this assumption is likely to be valid.

Give a new point xi,j,∗ in the embedding space of Xi,j, the point x̃tj ,∗ corresponding
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to xi,j,∗ can be computed by

xi,j,∗ = λopti,tj x̃tj ,∗P
opt
i,tj (3.26)

3.4 Head Pose Estimation

Human face analysis, due to its many applications from biometric authentication

to human-computer interactions, is a very active topic in computer vision research.

Head pose estimation is a central component for many of these applications. For

example, face recognition systems require the capability of handling significant pose

variations. Zhao et al. [104] shows that pose and illumination are the major factors

affecting the performance of face recognition algorithms. The difference between two

individuals’ face images taken under the same lighting conditions is smaller than the

difference between two face images of the same individual taken under varying lighting

conditions. That is, image variation due to lighting changes is more significant than

variation due to different personal identities [105]. While person-independent head

pose estimation has been studied reasonably well in recent years [56, 62, 55], robust

illumination-independent and person-independent head pose estimation remains a

challenging problem. Here, we introduce a new approach to address this problem.

Generally, most human face analysis techniques use one of two main different

approaches to circumvent the problem of illumination variation. The first approach

uses pre-processing techniques, e.g., histogram equalization and Laplacian of Gaus-

sian (LoG) transformed image [56], to modify the input image to a more suitable

representation for pose estimation. However, the pre-processing cannot cope with
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illumination variation completely. As shown in [105], classical image representations

such as edge maps as well as the image filtered with 2D Gabor-like functions are not

sufficient for recognition purposes under a wide variety of lighting conditions. Our

experiment demonstrates LoG representation cannot deal with pose estimation with

varying illumination. On the other hand, the second approach tries to model objects

of interest under all possible lighting conditions in the classification procedure. Our

approach may be categorized as the second approach.

Related Work

There exist many methods for pose estimation from a single image (we exclude pose

estimation from a video sequence in this context). These methods can be clas-

sified into five categories [62, 55]: shape-based geometric analysis methods [106],

appearance-based methods [107,108], model-based methods [31], template-based meth-

ods [109,110], and dimensionality reduction based methods. In shape-based geometric

analysis, the head pose is estimated through the geometric information that is de-

fined by the configuration of facial landmarks or features. The main problem for

this method is how to define geometric parameters for profile views of a face image.

The pose estimation problem in the appearance-based methods may be viewed as a

pattern classification problem. In addition to the weak generalization problem, most

of these methods suffer from the problem of head pose estimation in a limited view

range. In the model-based methods, the input image is fitted with the face model and

a classifier such as a neural network is used to estimate the pose. The template-based

method is based on nearest neighbor classification against texture templates. It is
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beyond the scope of this work to discuss all the related work in pose estimation. In-

stead, we will focus on the fifth category: dimensionality reduction (DR) techniques,

which is the category our method belongs to.

Face images contain redundant information induced by pose, illumination, ex-

pression, occlusion, etc. Dimensionality reduction techniques are widely used to re-

move such data redundancy and find more compact feature representations. They

are divided into two categories: linear dimensionality reduction and non-linear di-

mensionality reduction. The classical linear algorithms include Principle Component

Analysis (PCA) and Multidimensional Scaling (MDS). PCA finds the subspace that

best preserves the variance of the data, while MDS learns an explicit linear projective

mapping that best preserves the inter-point distance. Linear methods cannot always

reveal the intrinsic distribution of a given complex data set. ISOMAP [48], Locally

Linear Embedding (LLE) [49], and Laplacian Eigenmaps (LE) [50] are the non-linear

manifold learning techniques most often used in the last few years. More specifically,

we denote X = (x1, · · · , xN) ∈ <D×N as the data matrix containing N data points in

the original feature space, Y = (y1, · · · , yN) ∈ <d×N as the nonlinear embedding ma-

trix, generally d ≤ D, and W as the weight matrix. LLE preserves the distance based

on locally linear combination of neighborhood. It computes the nonlinear embedding

by minimizing the cost function φ(Y ) =
∑
i ‖yi −

∑K
i=1Wijyij‖ = ‖Y TMY ‖2, where

M = (I −W )T (I −W ), and W = argmin
∑
i ‖xi −

∑
j wijxj‖2. LLE preserves the

distance described by a weighted connected graph constructed from neighborhood.

It constructs a nonlinear mapping by solving the eigen problem Ly = λDy, where

D is a diagonal matrix whose entries are column sums of the weight matrix W , and
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L = D − W is the Laplacian matrix. ISOMAP preserves the geodesic inter-point

distances. It first sets up neighbor relations for each point on the manifold and the

neighbor relations are represented by a weighted graph G over the data points. The

edge weight between xi and xj is assigned with the Euclidean distance dx(i, j). The

pairwise geodesic distances dM(i, j) on the manifold are then estimated with the dis-

tance of the shortest path in the graph using Floyd’s or Dijkstra’s algorithm [111].

The low-dimension embedding is finally constructed by applying classical MDS to the

geodesic distance matrix. These nonlinear dimensionality reduction techniques and

their extensions have been applied to the head pose estimation problem [56]. Every

DR approach is essentially a method to learn a distance metric that removes the data

redundancy and leads to more compact feature representation. However, the problem

of illumination variation is usually conceded or treated lightly as a pre-processing step.

As we show in Figure 3.4, we aim to deal with very harsh illumination conditions.

The lack of a DR-based pose estimation method under these difficult conditions is

probably due to the fact that illumination changes are usually larger than that from

different persons or small pose variations.

We present a novel approach to estimate the pose from a single input image by

combining both unsupervised metric learning techniques and supervised metric learn-

ing techniques. Unlike previous DR-based pose estimation methods that treat illumi-

nation as a part of the pre-processing step, We have developed a unified framework

that does not require any pre-processing for illumination normalization or correction.

This is possible by applying a learned distance transformation after the use of nonlin-

ear DR techniques. This is different from previous approaches in which the original
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Figure 3.4: Sample input images for pose estimation. Notice the large variation in
rotation and the harsh un-even illumination.

images are modified or filtered before applying nonlinear DR techniques. To the best

of our knowledge this is the first time a DR-based method is capable of produc-

ing fairly accurate pose estimation (within a few degrees) under harsh illumination

conditions as shown in Figure 3.4.

Our Approach of Pose Estimation

In this section, we present our approach for pose estimation. We assume that there

is a training face database, and each face image in the database is associated with a

pose label. Our goal is to estimate the unknown pose label from an input face image

that is not in the training database.

A good low-dimensional embedding for pose estimation should have the following

properties: (1) Separation. The embedding from different poses are kept apart, and

there is no overlap among them. Furthermore, the embeddings of different individuals

with different illuminations but with the same pose should be close to each other,

i.e., within a cluster. (2) Smoothness. The low-dimensional manifold should change
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Figure 3.5: The ideal 3-dimensional embedding of 24 subjects’ face images with
only pose variation between [−90◦ + 90◦] at 4◦ increments. The pose changes are
represented by different colors.

smoothly according to the pose. Figure 3.5 shows an ideal 3-dimensional manifold

embedding of 24 subjects with the same illumination while the pose angles vary from

−90◦ to +90◦ with a granularity of 4◦ from our training database. In this figure,

there are 46 clutters in total, each with a unique color corresponding to a specific

pose angle. Within each clutter, there are 24 data points, which are the embeddings

of 24 faces from the same pose.

The 3D embedding of ISOMAP and BME with ISOMAP are shown in Figure

3.6 and Figure 3.7. Figure 3.6 shows the ISOMAP embedding, in which 200 nearest

neighbors (NN) are used. It maps face images of 24 subjects into 24 different pose

manifolds. This is because ISOMAP cannot find the nearest neighbors of each point

accurately when there are multiple individuals in the training set. To deal with

identity variations, BME finds the right nearest neighbors for each data point by the

given pose labels. However, when there are illumination variations, especially large

illumination variations, BME cannot generate a good pose manifold either. As shown
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Figure 3.6: The 3-dimensional embedding of 24 subjects’ face images with only pose
variation between [−90◦ + 90◦] at 4◦ increments, using ISOMAP embedding (NN =
200). The pose changes are represented by different colors.
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Figure 3.7: The 3-dimensional embedding of 24 subjects’ face images with only pose
variation between [−90◦ + 90◦] at 4◦ increments, using BME (NN = 200). The pose
changes are represented by different colors.

44



-2
0

2
4

-2

0

2-1
0
1
2
3

Figure 3.8: The 3-dimensional embedding of 10 subjects’ face images with pose varia-
tion between [−90◦+ 90◦] at 4◦ increments and illumination changes from 0◦ to +45◦

at 5◦ increments, using ISOMAP embedding. The pose changes are represented by
different colors.
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Figure 3.9: The 3-dimensional embedding of 10 subjects’ face images with pose vari-
ation between [−90◦ + 90◦] at 4◦ increments and illumination changes from 0◦ to
+45◦ at 5◦ increments, using biased ISOMAP embedding. The pose changes are
represented by different colors.
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in Figure 3.8 and 3.9, we generate two manifolds with ISOMAP and biased ISOMAP

from 10 subjects with pose angles varying from −90◦ to +90◦ with a granularity of 4

and illumination changes from 0◦ to +45◦ at 5◦ increments. It is clear that there are

many overlaps between pose angles in ISOMAP embedding (Figure 3.8), as well as

in BME embedding (Figure 3.9). Hence, it is quite difficult to estimate poses from

the manifolds generated by ISOMAP and BME. This is due to the following facts

• The computation of a nonlinear manifold relies on the distance between data

points. For example, in order to compute a smooth pose manifold, the distance

between face images under large illumination variation and the same pose should

be small.

• BME only uses pose labels to find the right nearest neighbors. The distances

between data points remain unchanged.

• The distortion caused by illumination variation is much larger than the dis-

tortion caused by the identity of individuals, which is apparent by comparing

Figure 3.9 and Figure 3.7. Therefore, the distance between data points should

be modified in order to obtain a smooth manifold. This brings forth the need

to develop pose estimation techniques that can work well with face images from

many different individuals having both large illumination changes and large

pose changes.

To obtain a good low-dimensional embedding, we have developed an approach based

on manifold learning techniques and supervised distance metric learning techniques

for head pose estimation. We first construct the low-dimensional embedding using
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ISOMAP (Figure 3.8). The low-dimensional embedding is then linearly mapped to

the transformed feature space by modifying the distance between data points, using

Local Fisher Discriminant Analysis (LFDA) [41] by pose labels. The combination

of ISOMAP and Fisher Discriminant Analysis (FDA) was first proposed in the work

[112]. In their work, each data point is represented by a feature vector, which is

its geodesic distance from all other points. FDA is then applied to find an optimal

projection direction for classification. The main difference between our approach

and this extended ISOMAP is that we employ LFDA to refine the low-dimensional

manifold and maintain pose class separation.

ISOMAP

The classical linear algorithms such as Principle Component Analysis (PCA) and

Multidimensional Scaling (MDS) cannot always reveal the intrinsic distribution of a

given complex data set. We therefore adopt ISOMAP for nonlinear dimensionality

reduction [48]. The input is data matrix X = (x1, · · · , xN) ∈ <D×N containing N face

images from the training data, where xi ∈ <D(i = 1, 2, . . . , N) are the D-dimensional

samples of face images. In our case, D is equal to 1024, since we vectorized face images

with the resolution 32 × 32. The output is the nonlinear embedding matrix Y =

(y1, · · · , yN) ∈ <d×N of X, where yi ∈ <d(i = 1, 2, . . . , N) are the d-dimensional data

points in the low-dimensional embedding. ISOMAP first determines the neighbor

relationship on the manifold M based on the pairwise Euclidean distance dX(i, j)

between pairs of face images xi,xj. These neighbor relations are represented as a

weighted graph G over the data points, with the edges of weights dX(i, j) between
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neighboring points. The pairwise geodesic distance dM(i, j) on the manifold are then

estimated with the distance of the shortest path dG(i, j) in the graph G using Floyd’s

or Dijkstra’s algorithm. Classical MDS is finally applied to the matrix of graph

distances DG = dG(i, j) to construct d-dimensional embedding Y .

Local Fisher Discriminant Analysis

We use LFDA to learn the matrix PLFDA ∈ <d×d that transforms yi(i = 1, 2, . . . , N)

to zi(i = 1, 2, . . . , N). zi ∈ <d(i = 1, 2, . . . , N) are the d-dimensional data points in

the transformed feature space. zi = P T
LFDAyi in the same pose angle are kept close

together, while zi from different pose angles are well separated. LFDA evaluates

within-class scatter and between-class scatter in a local manner by combining the

idea of FDA and Locality-Preserving Projection (LPP) [53]. Here we briefly review

the definition of FDA and LPP

Fisher Discriminant Analysis FDA considers maximizing the following objec-

tive:

J(W ) =
W TSbW

W TSwW
(3.27)

where Sb is the “between classes scatter matrix” and Sw is the “within classes scatter

matrix”. The definitions of the scatter matrices are:

Sb =
∑
c

(µc − x)(µc − x)T (3.28)

Sw =
∑
c

∑
i∈c

(xi − µc)(xi − µc)T (3.29)
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where µc is the mean of samples in the class c and x is the mean of all samples.

It is known that WTDA consists of the generalized eigenvectors associated to the

generalized eigenvalues (in decreasing order) of the following eigenvalue problem:

Sbϕ = λSwϕ (3.30)

Locality-Preserving Projection (LPP) Let A be the affinity matrix. All the

elements of A are in [0, 1]. They will have smaller values if xi and xj are far apart.

Several different methods [53,113] are proposed to define A. The minimization prob-

lem of finding the transformation matrix WLPP is defined as follows,

arg min
W

−1
2

∑
i,j
Ai,j‖W Txi −W Txj‖2

s.t. W TXDXTW = I
(3.31)

where X = [x1,x2, · · · ,xn], I is the identity matrix and D is a diagonal matrix; its

entries are column sums of W , Di,i =
∑
jWi,j. It is known that WLPP consists of

the generalized eigenvectors associated to the generalized eigenvalues (in decreasing

order) of the following eigenvalue problem:

XLXTϕ = γXDXTϕ (3.32)

where L = D− A is the Laplacian matrix.

The local within-class scatter matrix S̃B and the local between-class scatter matrix

S̃W are defined as follows,

S̃W =
1

2

N∑
i,j=1

W̃
(w)
i,j (yi − yj)(yi − yj)T (3.33)

S̃B =
1

2

N∑
i,j=1

W̃
(b)
i,j (yi − yj)(yi − yj)T (3.34)
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where

W̃
(w)
i,j =

{
Wi,j/Nc, yi ∈ c, yj ∈ c

0, otherwise
(3.35)

W̃
(b)
i,j =

{
Wi,j(1/N − 1/Nc), yi ∈ c, yj ∈ c

1/N, otherwise
(3.36)

,and Wi,j is the affinity between yi and yj that is ranged in [0, 1]. The discussion about

the definition of Wi,j can be found in [53,113]. LFDA considers the maximization of

the following objective to find the transformation matrix PLFDA,

J(P ) =
‖P T S̃BP‖
‖P T S̃WP‖

(3.37)

Noticing that J is invariant with respect to scale, we can formulate the objective

into the constrained optimization problem as follows:

min
P
−1

2
P T S̃BP

s.t. P T S̃WP = I
(3.38)

The lagrangian corresponding to this optimization problem is,

` = −1

2
P T S̃BP +

1

2
(P T S̃WP − I) (3.39)

Using the Karush-Kuhn-Tucker(KKT) conditions, the problem is transformed into

the following generalized eigenvalue problem,

S̃Bϕ = λS̃Wϕ (3.40)

Then, the LFDA transformation matrix is defined by the solution as follows,

PLFDA = [ϕ1, ϕ2, · · · , ϕd] (3.41)

where {ϕi}di=1 are generalized eigenvectors corresponding to the generalized eigen-

values λ1 ≥ λ2 ≥ · · · ≥ λd.
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Figure 3.10: The 3-dimensional embedding of 24 subjects’ face images with only pose
variation from −90◦ to +90◦ at 4◦ increments using our method (NN =200). The
pose changes are represented by different colors.
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Figure 3.11: The 3-dimensional embedding of 10 subjects’ face images with pose
variation from −90◦ to +90◦ at 4◦ and illumination changes from 0◦ to +45◦ at
5◦ increments using our method (NN =200). The pose changes are represented by
different colors.
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We apply our method to the same data that we use in ISOMAP and BME methods

to get the low-dimensional embedding, shown in Figure 3.11. Compared to the results

of ISOMAP and BME in Figure 3.6 and Figure 3.7, our method is much better in

clustering the face images in the same pose angle and separating the face images from

different pose angles better than ISOMAP and BME methods in both the pose-only

variation case and the pose+illumination variation case. For a new input face image,

we can compute its low-dimensional embedding using the nonlinear mapping learned

by Generalized Radial Neural Network (GRNN) [114], and then project it to the

transformed feature space by applying the linear transformation. As the final step,

its pose angle will be estimated by Relevance Vector Machine (RVM) [115]. The

detailed algorithm procedure using ISOMAP and LFDA for pose estimation is shown

in algorithm 1.

Experiment and Results of Head Pose Estimation

Data sets To evaluate the performance of our approach, we employed the 3D face

dataset from [18]. The pose changes horizontally from −90◦ to +90◦ at 2 degree

increments. The illumination varies from 0◦ to +45◦ at 1◦ increments, as shown in

Figure 3.12. Other public face databases such as FERET, the CMU-PIE database,

Yale Face database, and MIT database, are not used in our experiment, because none

of them provide a precise measure for pose and illumination angles; they also do not

contain face images with a wide variety of illumination and pose changes [56]. To

assess the robustness of our approach, we perform the experiment in two cases: pose

estimation for face images without and with illumination variation. We compared
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Algorithm 1 Pose Estimation Pipeline

1: Learning phase
Input: the training face images xi(i = 1, 2, · · · , N) and their corresponding labels

of pose angles `i.
Output: the nonlinear mapping between xi and yi, PLFDA,

the regression model for pose estimation.
(a): Get the low-dimensional embedding yi using ISOMAP.
(b): Learn the nonlinear mapping between xi and yi using GRNN.
(c): Find the transformation matrix PLFDA from low-dimensional embedding yi.
(d): Learn the regression model between yi and its corresponding

pose labels using RVM.

2: Testing phase
Input: the test face images xi(i = N + 1, N + 2, · · · , NN).
Output: the pose labels for xi.
(a): Compute its low-dimensional embedding yi using learned nonlinear mapping.
(b): Map yi to the transformed feature space using zi = P T

LFDAyi.
(c): Estimate the pose angle by applying the learned regression model on zi

our method with the state-of-art pose estimation techniques, BME. The performance

is analyzed with varying choices of the embedding dimensions (marked by “o” in the

figures) and 200 neighbors.

Pose Estimation for Face Images without Illumination Variation

The experiment was performed over 24 subjects with pose angles varying from −90◦

to +90◦ at 2◦ increments and illumination of 22◦ using 8-fold cross-validation. We

use 1911 face images from 21 subjects (91 images per subject) as the training data

in each fold, and then use the 273 images from the other 3 subjects as testing data.

The images were down-sampled to 32× 32 resolution. The results of the experiment

are shown in Figure 3.13. The red line indicates the performance of our method,
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Figure 3.12: Samples of face images with varying pose and illumination from 3D face
scans
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Figure 3.13: Pose estimation results comparison of our method against BME with
ISOMAP for the face images without illumination variation (NN=200) in different
dimensionality. The red line indicates the results of our method.
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Figure 3.14: Distribution of the average error of our method against the BME frame-
work in pose estimation for the face images without illumination variation. Each of
the views is between [−90◦,+90◦] at 2◦ increments. The red line indicates the results
of our method.

while the blue line shows the performance of the BME framework. The result shows

the accuracy of our method is slightly better than that of the BME with ISOMAP.

Figure 3.14 shows the head pose estimation error of our method against BME in each

of the views in the pose angle interval.

Pose Estimation for Face Images with Illumination Variation

Due to memory limitation, this experiment was performed over 10 subjects, with pose

angles varying from −90◦ to +90◦ at 4◦ increments and illumination variation from 0◦

to−45◦ with a granularity of 5◦. We use leave-one-out cross-validation (LOOCV), i.e.,

we sequentially take out the face images of one individual and use all the remaining

images of the other individuals as training data. The images are also down-sampled

to 32× 32 resolution. The experiment results are shown in Figure 3.15. The red line
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Figure 3.15: Pose estimation results comparison of our method against BME with
ISOMAP for the face images with illumination variation. The red line indicates the
results of our method.
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Figure 3.16: Distribution of the average error of our method against the BME frame-
work in pose estimation for the face images illumination variation. each of the views
is between [−90◦,+90◦] at 4◦ increments. The red line indicates the results of our
method.
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indicates the performance of our method, while the blue line shows the performance

of the BME framework. It shows that our method significantly improves the head

pose estimation performance compared to the BME framework. Figure 3.16 shows

the head pose estimation error of our method against BME in each of the views in

this pose angle interval (100-dimensional embedding) .

In both cases, our method performs well for the frontal and intermediate poses,

but not for the profile (almost −90◦ or +90◦) views. This may be caused by the

noisy features in the face images of these profile views, which results in some overlaps

between the data points in the transformed feature space.

Comparing our results with those listed in Table 2.1, we can see that our method

is comparable with the state-of-art methods for face images with only pose variation.

When the illumination also varies, our method maintains high accuracy for most cases

and performs better that BME.

In summary, we have developed an approach to illumination- and person-insensitive

head pose estimation. We study the limitation of related approaches in pose estima-

tion for face images with large illumination variation, and address the problem by

combining ISOMAP and LFDA. We conduct several experiments to evaluate our

approach. The experiment results demonstrate that our method is robust to varia-

tion in dimensionality of embedding, illumination and identity of individuals. Our

method is easily extendable to other manifold learning techniques, such as LLE and

LE, and supervised distance metric learning techniques like RCA, NCA, and LMNN.

Furthermore, our method can be used to estimate the illumination direction by using

illumination labels in LFDA.
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3.5 Shape Recovery from a Single Image

From the training data set, local image models, surface models, and their correspon-

dences are learned using manifold embedding and alignment techniques, as outlined

in the learning phase of Algorithm 2. Now we can reconstruct the 3D shape of a new

image. We first estimate the pose i of this image. We use Algorithm 1 in 3.4, which

is robust to large illumination and pose variations. The facial image is then aligned

to the reference facial image Iri with the estimated pose using the method in [94] and

divided into Nz overlapping patches, y∗1, · · · ,y∗Nz . We have to correct the illumination

of these patches before the shape recovery via Eq. 3.1. After illumination correction,

the local shape for each patch can be estimated as outlined in the reconstruction

phase of Algorithm 2.

Global Reconstruction The recovered representative of the local shapes, ỹ∗1, · · · , ỹ∗Nz ,

need to be combined into the representative of a global shape, s∗ = [ỹ∗1 · · · ỹ∗Nz ]. s∗

can be considered as a collection of vectorized affine transformations of the triangles

of the reference models Mr. The problem that we need to solve here is to find the

target shape Mu = {ṽ1, · · · , ṽn} to satisfy the constraints s∗. For each target triangle

of Mu, and the affine transformation can be written as T = ṼV−1 in terms of the

original and deformed vertices. The elements of V−1 are coordinates of the known,

original vertices of Mr, while the elements of Ṽ are coordinates of the unknown de-

formed vertices of Mu. From this definition, we see that the elements of T are linear

combinations of the coordinates of the unknown deformed vertices. Thus we can
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Algorithm 2. Locally Estimating the Shape

I. Learning phase

Input: A set of Nz training examples, (Yi,1, Ỹ1), · · · , (Yi,Nz , ỸNz)
Output: the Nz local models of image patches and shape patches, ΘI

i,1, · · · ,ΘI
i,Nz

and ΘS
1 , · · · ,ΘS

Nz ; the correspondences (patch index) and the optimal mapping
parameters between the models: (t1, λ

opt
i,t1 ,P

opt
i,t1), · · · , (tNz , λ

opt
i,tNz

,Popt
i,tNz

)

1: for j = 1 · · ·Nz

2: Learn the local image and shape models, ΘI
i,j and ΘS

j , and get the low

dimensional embeddings of Yi,j and Ỹj, Xi,j and X̃j by maximizing the
posterior of Eq. 3.14.

3: end for
4: for j = 1 · · ·Nz

5: Learn the correspondence of tj and the optimal mapping parameters: λopti,tj ,

Popt
i,tj , between Xi,j and X̃i,tj via Eq. 3.21 and 3.22.

6: end for
II. Reconstruction phase

Input: the test facial image patches, y∗1, · · · ,y∗Nz
Output: the recovered Nz local shapes, ỹ∗1, · · · , ỹ∗Nz
1: for j = 1 · · ·Nz

2: Compute the low-dimensional embedding, x∗j , of y∗j by minimizing the
negative log likelihood of Eq. 3.18 with the learned local image model, ΘI

i,j.

3: Map x∗j into x̃∗j of low-dimensional space using the learned λopti,tj and Popt
i,tj

via Eq. 3.26.
4: Recover the local shape of x̃∗j , ỹ∗j , by computing the mean of posterior in

Eq. 3.15 with the learned local shape model, ΘS
tj

.

5: end for

formulate the problem as a minimization problem [99]:

min
ṽ1...ṽn

|M |∑
j=1

‖Sj −Tj‖2F (3.42)

where Sj is the known source transformation, |M | is the number of transformations

in the constraint, and Tj is the unknown target transformation. Since the target

transformations are defined in terms of the unknown deformed target vertices, the

problem can be rewritten in the matrix form,

min
ṽ1...ṽn

‖s∗ −Ax̃‖22 (3.43)
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where x̃ is a vector of unknown deformed vertex coordinates, and A is a large, sparse

matrix that relates x̃ to s∗. Thus, all the vertices of the target shape Mu can be

solved in the least-square sense.

3.6 Experimental Results

Data Sets To evaluate the performance of our approach, we employed two data

sets in our experiments. The first one is a 3D face scans database [72], which contains

shapes and textures of 120 real faces obtained with a laser scanner. We generate the

synthetic facial images from them with pose and illumination changes. The pose

changes horizontally from −90◦ to +90◦ at 5 degree increments. The illumination

varies horizontally from −45◦ to +45◦ with a granularity of 5. The resolution of facial

images is 256×256. Notice that the images provided in this database are not identical

to the real albedos of the faces, due to noticeable effects of the lighting conditions.

Our second dataset is the CMU-PIE database [116], which contains 68 individuals

with 9 horizontal and 3 vertical pose variations and 21 illumination variations.

Among these images, we use 2052 synthetic facial images as the training data set.

They correspond to 108 subjects under 19 pose variations. The illumination condition

is fixed at a natural (ambient) setting. To learn the local image and surface models,

we use 60 inducing variables, and the latent dimension d = 8.

Experiments Our first experiment shows the effectiveness of our patch-based method

for illumination variations. Note that our training database contains no sample un-

der changing illumination. Figure 3.17 shows a comparison without and with illu-
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mination normalization. We use mI(x, y) = σI(x, y) = 2 for synthetic images and

mI(x, y) = σI(x, y) = 0.5 for real images in Eq. 3.1 to correct the illumination vari-

ation, and divided all the images into Nz overlapping patches with size 7 × 7. The

value of Nz depends on the pose of images, e.g., 252 patches for the frontal faces in

our experiments.

(a) (b) (c)

(d) (e) (f)

Figure 3.17: Shape recovery from a single frontal image w/o local illumination nor-
malization. (a) the input frontal images with illumination; (b,c) different views of
the reconstruction result without illumination normalization; (d,e,f) different views
of the reconstruction result with illumination normalization.

Synthetic Inputs We use the images and shapes from the remaining 12 subjects

in the first database as the testing data to run a controlled experiment. Our method

is used to recover their shapes from the synthetic images. This experiment allows

us to show comparisons of our reconstructions to the ground truth shapes. The

quantitative accuracy of reconstruction can be defined as [3]:
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ε =
1

n

n∑
i=1

|Dr(i)−Dt(i)| (3.44)

where Dr is the recovered shape and Dt is the ground truth shape, and n is the

number of vertices in the shape. Figure 3.18 shows a few results. For comparison we

show the reconstructed shapes and the ground truth, and plot the alignment of the

reconstructed shapes (in gray) with the ground truth shapes (in blue). It can be seen

that our algorithm can obtain accurate reconstructions in spite of illumination and

pose variations. The reconstructed error in each pose is shown in Figure 3.20, which

shows that our algorithm is fairly insensitive to pose variations and achieves the same

level of accuracy as the methods [3, 2, 1] in all poses. The recovery accuracy for the

frontal facial images in our method is slightly better than that of those methods. In

addition, our method can handle illumination and pose changes.

Real Inputs We apply our method to several real images from the CMU database

using the same training data set. Note that the real input images are not in the

training database, and have the big difference in illumination. The reconstructed

results are shown in Figure 3.19.

3.7 Conclusion

In summary, we have developed an approach to illumination- and person-insensitive

head pose estimation, and a novel approach to the shape recovery from a single side-

view image. For the problem of pose estimation, we studied the limitation of related

approaches in pose estimation for face images with large illumination variation, and
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(a) (b) (c) (d) (e) (f)

Figure 3.18: Results of shape recovery for the synthetic facial images. (a) the input
image rendered from the 3D face scan database; (b,c) different views of the ground
truth shape; (d,e) the frontal view and side view of the recovered 3D shape; (f) the
aligned image of the ground truth shape (in blue) and the recovered shape (in gray),
which is used for measuring the reconstruction accuracy.
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(a) (b) (c) (d)

Figure 3.19: Results of shape recovery for the real images. (a) the input image from
the CMU database; (b) the reconstruction from (a) using our approach; (c) The image
of the same person as (a) in a different pose that was not used for the reconstruction;
(d) the profile view of the reconstruction corresponding to the pose in (c).

addressed the problem by combining ISOMAP and LFDA. We conducted several

experiments to evaluate our approach. The experiment results demonstrate that

our method is robust to variation in dimensionality of embedding, illumination and

identity of individuals. For the problem of shape recovery, we study the limitation

of related approaches in shape recovery for facial images with illumination and pose

variations and address the problem using non-linear embedding and alignment. We

conduct experiments to evaluate our approach by comparing the reconstructed results
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Figure 3.20: 3D reconstruction error vs. pose variation in our method. For com-
parison we also show the best reconstruction errors of CCA [1], CSM [2] and Ten-
sor+CCA [3]. These methods can only deal with frontal images of faces without
illumination variation. Note that these methods measure the reconstruction error
with the specific training data set and testing data set.

to ground truth shapes and by applying the method to various real images. The

experimental results demonstrate that our method of shape recovery is also robust to

variation in pose, illumination and identity of individuals. Looking into the future, we

would like to further evaluate the performance of our approach with more appropriate

real training data. In addition, we plan to extend our approach to reconstruct the

shapes of other objects, such as the human body.
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Chapter 4 Accurate and Robust Skeletal Motion Capture from a Single

Depth Sensor

Single view marker-less motion capture remains an open problem, even after many

years of research. The main challenges come from high variability of the internal

variations in human appearance, differences of movement across individuals, and

external variations of scenes, such as lighting conditions, cluttered background, poor

image resolution, non-rigidity of tissue and clothing, and partial occlusion including

self-occlusion. The previous approaches of face modeling cannot be directly applicable

for single view motion modeling, because the approaches of statistical learning rely on

large training sets to learn the low-dimensional models. It is difficult to build a huge

image database that covers the space with internal variations in human appearance,

differences of movement style, and external variations of scenes. We decrease difficulty

by adopting the depth cue from a depth sensor to remove the variation in appearance,

illumination, and background. In addition, depth information can provide us metric

3D measurement. We therefore formulate motion capture from a single depth image

sequence as a model fitting problem with a known template model database. The

database contains 3D surface models of motion sequences from a single subject, which

is much smaller compared to one used in statistical learning techniques.

A depth sensor provides real-time dynamic scene scanning, in which each pixel

contains intensity and range information for a scene point. We aim to automatically

recover a sequence of body configurations and surfaces to represent the pose and

66



shape of the subject for every frame of the depth images from a single depth sensor.

We first introduce the processing pipeline of our approach in Section 4.1. Section 4.2

describes the estimation of the rough body configuration from the previous frame

by non-rigid point registration techniques. We refine the body configuration with an

estimated full 3D surface model in Section 4.3. Section 4.4 presents the technique

of temporal filtering to remove the jittering artifacts. The experimental results and

analytic analysis are shown in section 4.5, and the conclusion is made in section 4.6.

While the idea of using a motion database to facilitate motion capture or human

modeling has been applied in previous research [117], adapting it to the single-view

setup brings new challenges. In particular, the view-dependency of the input depth

map. For a given body configuration or a surface mesh model, there may be infinitely

many depth maps that the input needs to be compared with. Direct matching of a

depth map with a full-body surface mesh model would fail as the motion database

may have many models in different poses and inputs from a single depth sensor have

at least 50% of the data points missing. We solve this problem through our two-step

registration process. The first temporal registration step generates a view independent

body configuration so that we can find the most similar configuration in the motion

database efficiently. Next we perform model-to-input registration via a rendered

(e.g., view-dependent) depth map that corresponds to the input’s perspective. In

addition, we perform non-rigid surface fitting to deal with body-size and small body

configuration differences between the template and the input. Therefore, instead of

building a motion database covering all of the motions, viewpoints, and body sizes,

we only need samples to cover the motion; this dramatically reduces the size of the
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motion database. Our view- and body-size- independent fitting formulation is our

most important technical contribution to human motion modeling.

4.1 Algorithm Overview

Data Capture and Setup: We have data sets from two different sources: depth

images and a pre-captured database of sample motions. The depth image stream

is the input to our algorithm. To create the sample database, we use a commercial

optical motion capture system to capture human motion. The skeleton of the motion

has Nυ = 19 joints, and the skeleton is used to drive a generic human mesh model

M. More specifically, we align the skeleton model with the human mesh model in the

standard T-pose and use the method in [118] to automatically compute the weight

ρi,k of each vertex i in the mesh model. The mesh surface model can then be animated

by the skeleton using linear blending skinning techniques. For the purpose of data

registration, we also segment the mesh model in to Ns = 13 parts. In summary, the

motion database contains different body poses, each pose has a full 3D surface mesh

model and an underlying skeleton (e.g., body configuration), as shown in Fig. 4.1.

Each pose surface model is denoted as Y(i), its kth segment denoted as Y(i,k). The

corresponding body configuration is denoted as V
(i)
Y , which has a set of joint positions

{υ(i)
Y,1, . . . , υ

(i)
Y,Nυ}.

Problem Definition: We are given a set of body pose models {(Y(1),V
(1)
Y ), . . . ,

(Y(N),V
(N)
Y )} in the motion database. Note that all the full models {Y(i)} have the

same set of points and triangles. We are also given a sequence of depth maps: I(i),

which can be turned into an un-structured set of 3D metric points. I(i) has been
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Figure 4.1: We segment the surface into 13 parts, and a different color shows a
different part. Our articulated skeleton model has 19 joints (left arm has 3, right arm
has 3, head has 1, left leg has 3, right leg has 3, and torso has 6)

segmented from the background and contains only human motions. Given the depth

information, segmentation is much easier than that from color. Note that the human

motion in the input may be different in terms of body size and movement, compared

to ones in the database. We use simple background subtraction for this task. The

goal of our algorithm is to recover the body configuration V
(i)
I .

We assume that each input depth stream begins with a known pose, e.g., the

standard T-pose. An outline of the processing pipeline is given in Figure 4.2. For

each frame, we estimate the rough body configuration from the previous frame by

non-rigid point registration techniques as described in Section 4.2 (Figure 4.2a-b).

The estimated body configuration, which may be incomplete due to occlusions, is

used to find in the motion database a full 3D surface model with its corresponding
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(h)

(f) (d)(e)

(g)

(a) (b) (c)

Figure 4.2: The pipeline of skeletal motion capture from a single depth sensor. (a)
computation of one-to-one point correspondences between the current frame I(t) and
the previous frame I(t−1) by non-rigid registration; (b) estimation of the mth joint

position υ
(t)
I,m (red) in I(t), based on the assumption that the corresponding nearest

neighbor points (green),{rmi } and {qmj }, have the linear transformation in neighboring

frames; (c) search of the template surface model (Y(i)) and body configuration (V
(i)
Y )

most similar to the estimated body configuration V
(t)
I in the database; (d) compu-

tation of one-to-one point correspondences between the current frame I(t) and the
synthetic depth map I

(i)
Y generated by Y(i); (e) estimation of the full surface model

X̂
(t)

with computation of piece-wise transformations and local occlusion handling; (f)
computation of the refined surface model X(t) by the Laplacian deformation frame-
work; (g) estimation of the refined body configuration by a set of predefined control
points. (h) filtering of jittering artifacts with an extended H-P filter.

70



template body configuration that is most similar to the input (Figure 4.2c). Follow-

ing this, a full 3D surface model is generated with estimation of the local transforms

and local occlusion handling by taking advantage of the template body configura-

tion and the template full surface model (Figure 4.2d-e, Section 4.3). Because this

step only captures piece-wise deformations, the non-rigid surface is refined at a later

step(Figure 4.2f, Section 4.3). The estimated refined body configuration (Figure 4.2g)

serves as input for the next frame. Minor registration error and temporal inconsis-

tency may cause the sequence of recovered surface shapes and body configurations

to exhibit jittering artifacts. We therefore apply an extended Hodrick-Prescott filter

to reduce the jittering artifact as described in Section 4.4 (Figure 4.2h). Because we

estimate the body configuration in the coordinate of the input depth map, any global

motion can be easily recovered.

4.2 Pose Estimation from Temporal Registration (PETR)

We process each input frame sequentially. Generally, there are only small changes of

body configuration between two consecutive frames. Therefore, the skeleton of frame

t can be estimated from the results of the previous frame t−1. We choose to use non-

rigid point registration techniques to align the partial models (e.g., the depth maps)

I(t−1) and I(t) together to find point correspondences, which is used to estimate the

skeleton movement. In our system, similar to the face modeling algorithm, we adopt

the coherent point drift (CPD) algorithm, which is a robust probabilistic method for

both rigid and non-rigid registration of point sets [119].

We apply CPD in both directions: first registering I(t) to I(t−1) and then vice
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versa, as shown in Figure 4.2a. If the matching from both ways is consistent, a one-

to-one point correspondence is declared. Hence, after this registration procedure, we

have obtained a set of one-to-one correspondences, denoted as C = {(ri, qj)} where

r ∈ I(t−1) and q ∈ I(t), from which we will estimate the skeleton motion as the second

step. Note that since we assume that the skeleton motion in frame t − 1 is known,

we only need to estimate the relative motion between them. For each joint υ
(t−1)
I,m in

frame t−1, K nearest points in {ri} are selected, denoted as {rmi }. With these points’

correspondences {qmj } in frame t, we can estimate a linear transformation using the

Procrustes analysis (PA) [120]:

{sm,Rm, tm} = procrustes({rmi , qmj }) (4.1)

where Rm is a 3× 3 rotation matrix, tm is a 3× 1 translation vector, and sm is the

scaling parameter. Therefore, the mth joint position υ
(t)
I,m in I(t) can be estimated as

follows (Figure 4.2b):

υ
(t)
I,m = sm ·Rm · υ(t−1)

I,m + tm (4.2)

A finale note here is that we also assume that I(t−1) has been segmented into different

parts, {rmi } must belong to the segmentation group m. Due to occlusions, there could

be some joint positions that are lost in frame t. This will be handled in the second

stage of the algorithm described in the next section.

4.3 Data-driven Body Configuration Refinement

The error will inevitably accumulate in the above incremental body configuration

update scheme. It will get worse when there exists occlusion, which is very common
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in a single-view setup where at least 50% of the human body is occluded in every

frame. In this section we will describe our approach to use the pre-captured motion

database to complete and refine the body configuration.

For a given initial body configuration V
(t)
I (note that this configuration can be

incomplete), we search in the motion database to find the most similar body configu-

ration. To do this, we again apply PA to estimate the linear transformation between

V
(t)
I and every template body configuration in the database (Figure 4.2c), the one

with the minimum residue distance after the transformation is the winner, denoted

as V
(i)
Y . It has a corresponding complete mesh model Y(i). We render this full model

from the perspective of the input depth camera to generate a synthetic depth map

I
(i)
Y . The perspective of the input camera can be easily estimated by using the input

3D points as a calibration object. We also perform intrinsic calibration beforehand

to make the camera pose estimation problem easier. Since Y(i) is already segmented,

the rendered I
(i)
Y is also segmented with color-coding of different body parts. Then we

apply the same technique in the previous section to align I
(i)
Y with I(t) (Figure 4.2d).

After this alignment, I(t) is segmented into different parts.

Once the correspondence between the input and the full model (I
(i)
Y ) is established

we can compute the (s,R, t) between each body part and their matching points

(Figure 4.2e). Furthermore, at this time we can use the complete surface model to

make a best-effort guess about the occluded part in the input image. More specifically,

for a segment Y(i,k) that has no corresponding points in the input, we will use its

most immediate visible ancestor node’s (s,R, t) to transform segment Y(i,k) into the

coordinate of the input frame. We denote the piece-wise transformed model as X̂
(t)

,
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e.g., the complete surface model that corresponds to I(t).

Laplacian Surface Refinement: X̂
(t)

is reconstructed based on articulated

motion without deformation, e.g., each segment is independently estimated via rigid

transformation. While it is commonly used in motion capture, the positions of all

surface vertices need to be refined to fit the dense point cloud I(t) as illustrated

in Figure 4.2f. More specifically, we compute Laplacian coordinates ∆ of Y(i) as

∆ = LY(i), where L is the cotangent Laplacian matrix. We refine the surface from

the Laplacian coordinates and vertices position constraints by solving the following

linear least squares system:

X(t) = arg minX{wL‖LX−∆‖22 + wC
∑
k ‖X

(k)
i − q

(k)
j ‖22

+wT‖X− X̂
(t)
‖22} (4.3)

where X
(k)
i is the ith vertex in X, q

(k)
j is the jth vertex from I(t), and k is the index of

match vertices between X̂
(t)

and I(t). The first item uses the weight wL to determine

the smoothness of the resulting surface. wL = 0 is the smoothest, while wL = 1

preserves the full details of the original surface. The second term ensures that a

set of position constraints are satisfied with the weight wC . The third term is a

regularization term for solving the ill-posed problem, because over 50% of the vertices

are missing in our input. The weight wT determines how close the resulting surface

X(t) is to the previous estimated surface X̂
(t)

.

This refinement step, which is based on the original Laplacian deformation frame-

work [121], has been similarly used in several recent papers that aim to capture both

motion and appearance [122, 6, 123]. Compared with these works, the difference is
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that we only use a single camera (depth only without any color information). There-

fore we have to add the last regularization term based on the template surface model.

Figure 4.3 shows the effectiveness of this term. The reconstructed model is similar to

the template model. Our goal is to focus only on the body configuration, therefore

we trade off the need for an array of cameras for the lack of appearance modeling.

(a) (b)

Figure 4.3: The example demonstrates the effectiveness of the regularization term.
(a) The reconstructed surface using our method without the regularization term,
which has obvious distortions; (b) The reconstructed surface of our method with the
regularization term, which looks much better than (a).

Body Configuration Refinement: At this point, we have a full surface model

X(t) that has the same topology as the template model Y(i) and whose visible part

closely conforms to the input depth image I(t). Given X(t), Y(i), and V
(i)
Y , we can

refine the body configuration V
(t)
I using Procrustes Analysis (PA) as in Eq. 4.1 and 4.2

accordingly (Figure 4.2g). But instead of using the nearest points in X(t), we use a

set of predefined control points in X(t)’s each segment to update υ
(t)
I,m. In this way we
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can select surface points that are less likely to have non-rigid deformation between

the skin and the bone, for example, the front side of the knees and the out-side of

the elbows. The updated body configuration, as well as the segmented input depth

map, are used as input for the next frame.

From the above discussion we can see that the first temporal registration step

only provides a rough body configuration estimation to facilitate the nearest neighbor

search in the motion database. So as long as the first frame in the input sequence is

from a known pose, our algorithm can be bootstrapped.

In summary this refinement step improves the motion capture results in two ways.

First, it avoids the pose drift problem since the pose is updated from a template body

configuration V
(i)
Y , rather than the previous frame. Secondly, it provides a means to

fill in severely or even completely occluded parts. In addition, since we adopted

non-rigid point registration techniques followed by a surface optimization step, our

method is robust to personal size and height variations. Various captured motion

from a single subject is sufficient to create the motion database.

4.4 Temporal Filtering

Since we choose to independently update the body configuration for each frame there

is some visible jitter in the recovered motion. We apply Hodrick-Prescott (H-P)

trend filtering [124] to remove these artifacts (Figure 4.2h). The traditional H-P

filter only deals with scalar data. We extend it to the vector case. A vertex x
(t)
i

in X(t) is considered as a time series from different t. Its movement consists of a

slowly varying trend component a
(t)
i and a more rapidly varying random component
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b
(t)
i . That is, x

(t)
i = a

(t)
i + b

(t)
i , t = 1, 2, . . . T . The goal of trend filtering is to isolate

a
(t)
i , or equivalently, b

(t)
i from x

(t)
i . H-P filtering estimates a

(t)
i by minimizing the

following weighted sum objective function with two competing objectives: a
(t)
i needs

to be smooth, and b
(t)
i should be small,

T∑
t=1

‖a(t)
i − x

(t)
i ‖2 + λ

T−1∑
t=2

‖x(t−1)
i − 2x

(t)
i + x

(t+1)
i ‖2 (4.4)

where λ ≥ 0 is the penalty parameter that controls the trade-off between the smooth-

ness of x
(t)
i and the size of the residual a

(t)
i − x

(t)
i . The loss function of Eq. 4.4 can be

written in the following matrix form,

‖a(t) − x(t)‖2F + λ‖Da(t)‖2F (4.5)

where x(t) = (x
(t)
1 , . . . , x

(t)
T )T ∈ RT×3, ‖u‖F is the Frobenius norm, y(t) = (a

(t)
1 , . . . , a

(t)
T )T ∈

RT×3, and D ∈ R(T−2)×T is the second-order difference matrix,

D =



1 −2 1
1 −2 1

. . . . . . . . .

1 −2 1
1 −2 1


By taking derivatives of the objective function in Eq. 4.5 with respect to y(t) (see

Appendix A), we can get the solution,

a(t) = (I + λDTD)−1x(t) (4.6)

As we will demonstrate in our results, the visual quality of the captured motion is

greatly improved after H-P trend filtering compared to the typical low-pass filtering

that uses a sliding window.
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4.5 Experiments and Results

We implement our algorithms in MATLAB (www.mathworks.com) and built a mo-

tion database that contains several thousand different 3D poses, covering motion

activities of walking, bending, picking, stretching, turning etc, all captured from a

single subject. We test our method on 11 depth image sequences with five subjects.

The results show that our approach can capture skeletal motions from sequences of

varying complexity, ranging from simple stretching, walking, to full-body rotations.

The results can be seen in the accompanying video.

Qualitative Evaluation

The results in the accompanying video (www.vis.uky.edu/ ∼ xwang/resultsthesis.mov).

demonstrates that our method can correctly estimate motion configurations from a

wide spectrum of scenes. Here, we show some examples of motion sequences from syn-

thetic data, ranging from simple motions, including walking (Figure 4.4a), stretching

(Figure 4.4b) and kicking (Figure 4.4c), to more complex motions, such as swinging

(Figure 4.5a) and body rotation (Figure 4.5b). In addition to these basic motions,

the video also indicates that our approach can recover some challenging activities and

details of motion models. For example, our approach can deal with body occlusion

(Figure 4.5c) and dancing (Figure 4.6a). Figure 4.6b shows our approach is invariant

to body size. Note that, we use real data from a TOF sensor for Figure 4.6b.

Our approach not only estimates body configurations from the depth images with

the partial occlusion and total occlusion in body parts (Figure 4.5c), but also is
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capable of handling severe deformations to different poses and even shape, as shown

in the red box in Figure 4.7, in which only a profile view of the subject is captured.

Quantitative Evaluation

We evaluate the performance of our approach by comparing it to commercial motion

capture systems. We also discuss how our approach effectively corrects the drifting

problem in reconstruction of skeletal motions, and deals with the jittering artifacts

in the reconstruction results. Furthermore, the robustness of the reconstruction al-

gorithm is also tested in terms of different levels of noise.

Comparison with optical motion capture systems. Our results are com-

pared with the ground truth obtained from an 8-camera VICON motion capture

system. It should be noted that the markers using in the VICON system contami-

nate the depth maps, therefore, we have to use synthetically generated depth maps

for this evaluation. We report the mean absolute errors (MAE) [4] over all joint

locations of all actions between the ground truth and estimated results,

εavg =
1

m

m∑
i=1

‖mi − m̂i‖2

The MAE over all the joint positions in our experiments is about 2 centimeters.

Table 4.1 shows the MAE position error for different sequences. To facilitate the

comparison with other approaches, we show the mean and standard deviation of the

relative MAE error norms in various sequences. It should be noted that the average

error from the most recent method [4] that also uses a single depth sensor is much
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higher than ours, 100mm vs. 20mm.

Table 4.1: Average MAE, mean, variance, minimum, and maximum error in centime-
ters (cm) over all the joint positions for different sequences.

Case Mean Minimum Maximum Variance

kicking 1.26 0.60 2.00 0.1061
rotation 1.57 0.98 2.23 8.61e-2

stretching 1.36 0.85 2.17 7.16e-2
walking 1.52 1.00 2.22 9.21e-2
swinging 1.43 0.81 2.15 7.39e-2

Figure 4.8 shows a quantitative error analysis of the stretching sequence (frames

0 to 269) for the left elbow and right elbow. The black star shows the joint positions

of the ground truth from motion capture. Red circles represent the results of our

approach. It can be seen that the relative error between the black curve and the red

curve is very small in both figures.

Drifting correction. Figure 4.9 shows the position error curves of using our

method (red) and only its first step (Section 4.2), estimating pose with temporal

registration only (PETR) (blue) respectively, from a fighting sequence of Actor II.

The errors are computed against the ground truth. We only show four joints in

Figure 4.9. It can be seen that the reconstruction error quickly becomes so large that

the results from PETR are useless. In contrast, our full approach can successfully

recover the body configurations of an entire sequence and considerably improve the

reconstruction results, which is revealed from the small differences between our results

(red) and the ground truth. The example demonstrates how our method corrects the

drifting problem by applying refinement with the full surface model, which resolves

ambiguities with additional template model priors.
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Smoothness to skeletal motions. The reconstruction results of body configu-

ration often have temporal jittering artifacts. The experimental results of the joint in

the left leg without the temporal filtering technique are illustrated in Figure 4.10. The

ground truth is represented by the black line. The cyan line indicates the performance

of our method with temporal filtering, whereas, the blue line shows the performance

of our approach without temporal filtering. This demonstrates the importance of the

temporal filtering techniques, which significantly improves the smoothness of motion

changes, and successfully removes the outliers. Here, we set λ = 10 to control the

smoothness. Moreover, we compare our method with the low-pass filter (red). The

red curve is smoother than the blue curve, but it still has rapid changes at some

points as in the blue curve. This shows that the low-pass filter can reduce the tem-

poral jittering artifacts a little bit, but it cannot remove the artifact completely. The

accompanying video further indicates the effectiveness of temporal filtering. This re-

sult demonstrates that the estimation is stable, and the overall quality of the skeleton

motion is consistently high.

Dependency to databases. We investigate how the performance of our al-

gorithm is in terms of various sizes of the database. In this experiment, we use the

synthetic database with 7980 frames, including walking, swinging, and occlusion. The

data is sampled in the different rates to simulate different sizes of the database. In

Figure 4.11, the reconstruction errors are reported with different levels of sampling,

such as 1, 2, 4, 8, 12, 16, 20, 24, and 28, corresponding to the original sampling

rate of 120fps, 60fps, 30fps, 15fps, 10fps, 5fps, and 4.3fps. It demonstrates that as

the sampling rate decreases (the size of database is decreasing), our algorithms get
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progressively less accurate, but it still has high accuracy under reasonable sampling

rates of the database. On the other hand, for the complicated movements as the oc-

clusion sequence, denser samples are required to obtain good reconstruction. Overall

our approach is quite insensitive to sampling rate.

Testing in a public database. We also evaluate our approach using the public

database [4], which consists of 28 real-world motion sequences with varying com-

plexity ranging from simple hand lifting to challenging motions, like a tennis swing.

Half of the motion sequences have 100 frames, and the others contain 400 frames.

All of them are recorded at 25fps with the resolution 177× 144 from a TOF sensor.

Furthermore, the data contains the ground truth of 3D markers, which are captured

by a commercial active marker motion capture. Table 4.2 shows a quantitative error

analysis of our algorithm in this database. It can be seen that our approach has a

high and stable performance in different sequences. The reconstruction errors of our

algorithm are obviously smaller than the errors of the state-of-the-art techniques [4],

while it is worse than ones from synthetic data as in Table 4.1. This is due to the

significant noise in depth images, although we use an extended Locally Optimal Pro-

jection (LOP) algorithm [125] to reduce the noise level. The example of noisy depths

and discussion of this algorithm are presented in [125].

Table 4.2: The reconstruction errors [mm] of our approach using a public database [4]

Sequences 0 1 3 5 6 7 8 9 14 16 27

Errors 36.9 37.2 37.7 39.1 39.2 36.6 37.4 37.3 35.9 39.2 40.1

Robustness to noisy constraints. The test is performed to investigate the

performance of our algorithm in terms of various levels of input noise. In this exper-
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iment, we select 100 frames of depths from a sequence of body rotation. Zero-mean

Gaussian noise of different standard deviations are added to the depths to simulate

the noise presented in depths. The reconstruction errors are reported in Figure 4.12

with different levels of noise. It can be seen that as the noise increases, our algorithm

gets progressively less accurate, but still works well under a reasonable level of noise.

Speed. The average timings for each individual step of our algorithm, which

is implemented in MATLAB, are shown in Table 4.3. These timings are measured

on an Intel Core 2 CPU Desktop with 2.66 GHz. We believe a C or GPU-based

implementation can significantly improve the performance.

Table 4.3: Average running times of individual steps per frame

Step Time

Skeleton estimation (Sec. 4.2) ∼ 75s
Database search (Sec. 4.3) ∼ 3s

Piece-wise model estimation (Sec. 4.3) ∼ 46s
Surface refinement (Sec. 4.3) ∼ 4s

We briefly exemplify the usability of our algorithm for one application in the

following.

Multi-person Motion Capture. Finally we demonstrate our method’s occlu-

sion handling capability by extending it to capture multiple persons. This is demon-

strated with a fighting sequence of 927 frames. Note that none of the template models

have multiple persons in it. For the majority of frames (95%), we apply simple seg-

mentation to cut out each person using connected component analysis with the depth

information. The other frames, in which the two persons touch each other, can be

segmented manually or automatically with the color images. The segmented subject
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has more occlusions than the single-person case. As demonstrated in the accom-

panying video, our approach generates satisfactory results under these challenging

frames. Some examples are shown in Figure 4.13. To our best knowledge, this is the

first time multi-person motion capture is reported with a single sensor. The overlaps

between the two persons, even after correct segmentation, can cause erroneous silhou-

ette description, which will lead to failure in many silhouette-based motion capture

approaches.

4.6 Conclusion

In this work, we have developed a novel approach to estimate body configurations

and surface deformations from a TOF depth sensor. We study the limitations of

related work in motion recovery and address the problem using registration, and

surface fitting techniques. Our approach also generates surface deformations with full

correspondences and correct topology. The key insight is to use nonrigid registration

to globally estimate the skeleton, followed by locally handling the occlusion and

generate the full surface model by taking advantage of template priors. Moreover, our

approach refines the full surface model by fitting it to the input depth with Laplacian

coordinates setting. The refined surface model in turn corrects the occasional skeletal

motion mistakes. We conduct experiments to evaluate our approach by comparing

the reconstructed results to the ground truth. The experimental results demonstrated

that our method is robust to a wide variety of activities, and generalizes well with

more complex scenes in which there exist partial or extreme occlusion, appearance

and clothing variations, or multiple persons present.
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The main limitation of our approach is that it cannot reproduce the surface ac-

curately and reconstruct small details of the subject, although the skeleton motion

is globally captured. This is due to noise suppression operations in depth and the

inherited smoothness from Laplacian operator. In addition, the low resolution of a

TOF sensor can lead to the sparse correspondences between the template and the

input. Therefore, the appearance of the output surface deformations are similar to

the appearance of the template. Looking into the future, we will improve the surface

accuracy and details with higher resolution of depth sensors and benefit from a large

volume data as the work in [117].

A Solution to H-P Filter in Vector Case

From the definition of Frobenius norm, ‖A‖2F = tr(ATA), and tr(A + B) = tr(A) +

tr(B), we can get,

‖a(t) − x(t)‖2F = tr((a(t))Ta(t))− tr((a(t))Tx(t))

− tr((x(t))Ta(t))− tr((x(t))Tx(t))

‖Da(t)‖2F = tr((a(t))TDTDa(t))

We take derivatives with respect to a(t) with the facts, ∂
∂X
tr(XTA) = A, ∂

∂X
tr(AXT ) =

A, and ∂
∂X
tr(XTBX) = BX +BTX, and we find,

∂

∂a(t)
‖a(t) − x(t)‖2F = −x(t) − x(t) + 2a(t)

∂

∂a(t)
‖Da(t)‖2F = 2DTDa(t)
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and

∂

∂a(t)
{‖a(t) − x(t)‖2F + λ‖Da(t)‖2F} =

− 2x(t) + 2a(t) + 2λDTDa(t)

we ignore the constant tr((x(t))Tx(t)), and by setting it to zero, it follows,

(I + λDTD)a(t) = x(t)

therefore,

a(t) = (I + λDTD)−1x(t)
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(a)

(b)

(c)

Figure 4.4: Some examples of walking(a), stretching (b), and kicking (c) sequences
with our approach. The insets show the synthetic input depth maps; The recovered
body configurations are used to drive the model.
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(a)

(b)

(c)

Figure 4.5: Some examples of swinging (a), rotation (b), and occlusion (c) sequences
with our approach. The insets show the synthetic input depth maps; The recovered
body configurations are used to drive the model.
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(a)

(b)

Figure 4.6: Some examples of a kicking sequence (a) with our approach. The insets
show the synthetic input depth maps; Some examples of a child sequences with our
approach. The insets show the real input depth maps. The recovered body configu-
rations are used to drive the model.
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Figure 4.7: Some examples of extreme occlusion to our approach. The insets show the
input depth maps; The recovered body configurations are used to drive the model.
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Figure 4.8: Quantitative error analysis in joint positions of the left elbow (a) and
right elbow (b) for a stretching sequences (frames 0 to 269). Black(*): Ground
truth as obtained by a 8-camera motion capture system. Red(o): the recovered body
configuration sequence.
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Figure 4.9: Error curves for PETR-only (blue) and the complete method (red), refer-
ring to the position absolute differences of the left forearm (a), right thigh (b), right
leg (c), and left thigh (d). The Y axis is in meters, note that the Y scale of each
subgraph is different.

Figure 4.10: Smoothness results in depth values with H-P filter (red), with low-pass
filter (green), and without smoothness. Ground-truth depth values are presented in
solid black lines.
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Figure 4.11: The reconstruction errors vs. the sampling rate in the database of the
walking sequence.
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Figure 4.12: Motion reconstruction errors vs. the input noise with different levels.
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Figure 4.13: Some examples of fighting sequences reconstructed with our approach.
The insets show the input depth maps; The recovered body configurations are used
to drive the model.

93



Chapter 5 Conclusion and Future Work

In this thesis, we have developed new solutions to the single-view-reconstruction

problem, concerning the modeling of both human face and motion. It has been

demonstrated that prior models can be used to solve the under-constrained problem in

SVR under very challenging conditions. This is because the prior knowledge restricts

the space of possible solutions.

Based on this observation, we study the approaches in formulating the prior knowl-

edge required to solve the ambiguities. We have developed an approach to learn the

local models with non-linear dimensionality reduction in the problem of human face

modeling, instead of directly relying on knowledge about the precise material prop-

erties of the target surfaces. The learned local model captures the underlying image

and shape dynamics of both the image and that of the 3D shape. Specifically, the

local image models for each patch of facial images and the local surface models for

each patch of the 3D shape are learned using a non-linear dimensionality reduction

technique. The correspondences between these local models are then learned by a

manifold alignment method. By combining the local shapes, the global shape of a face

can be reconstructed directly using a single least-square system of equations. Exper-

imental results of real and synthetic data show that our approach can yield accurate

shape recovery from out-of-training samples with a variety of pose and illumination

variations.

Following the discussion of our method to reconstruct face models , we intro-
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duce a new model-based approach to deal with the ambiguities in the problem of

human motion modeling. Previous learning-based approaches are not applicable to

this SVR problem due to many challenges from the internal and external variations

in single view video-based marker-less motion capture. We use the depth cue from

a single depth sensor to reduce some challenges, i.e., appearance, illumination, and

background; depth cues also provide us metric 3D information. However, using a

single sensor, instead of a camera array, results in view-dependent and incomplete

measurement of object motion. We have developed a novel two-stage template fitting

algorithm that is invariant to subject size and view-point variations, and robust to

occlusions. Starting from a known pose, our algorithm first estimates a body config-

uration through temporal registration, which is used to search the template motion

database for a best match. The best match body configuration as well as the cor-

responding surface mesh model are deformed to fit the input depth map, filling in

occluded parts from the input and compensating differences in pose, body-size, and

height between the input image and the template. Our approach does not require any

markers, user-interaction, or appearance-based tracking. Experiments demonstrate

that our approach achieves an average motion tracking accuracy of 20mm, and is

capable of dealing with severe occlusions even with depth images containing more

than one person.

Future Work Even though the approaches, we have developed have advantages

over the state-of-the-art in SVR, many further improvements are possible. One of

the major limitations of our approach to human face modeling is a lack of details
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in the results of reconstruction due to the smoothness constraints in GP-LVM, as

well as the unavailability of enough 3-D facial shapes. One solution requiring further

investigation is the combination of our pipeline with a depth sensor. The sensor

provides 3-D metric information, which may be enforced in our least-square recovery

system.

In the work of human motion modeling we restrict ourselves to model the motions

that are similar to those in the training database. The simplest approach is to use

Inverse Kinematics as an online step. We can generate complete and partial surface

models similar to the input, based on the estimated skeleton. Thus, we can remove

the dependence on the training database and model the entire range of human motion.

In our current method, we treat each joint separately and assume that it is in-

dependent of the other joints. The recovery results may be improved by enforcing

length constraints. Moreover, one problem with non-rigid registration concerns com-

putation, which grows quickly with the number of 3-D points. We plan to investigate

efficient methods so that dense point clouds can be used.

A main weakness of our approach is that pose estimation from temporal registra-

tion is very time consuming. A possible solution is to use sparse coding techniques,

from which we can reconstruct the skeleton from a single depth image. Thus, we

eliminate or reduce the dependency of temporal registration and do not have the

drifting problem.

In recent years sparse coding has drawn considerable interest in signal processing.

The assumption is that signals, such as images, can be decomposed into sparse linear

combinations of atoms; these atoms being contained in a dictionary that consists of
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over-complete sets of vectors. Generally, the sparse representation (SR) of a signal

is computed by optimizing an objective function with two items. One item measures

the sparsity of the signal and the other measures the reconstruction error. Sparse

representation is relatively robust against distortions and missing data in the depth

images, and provides us a mechanism to deal with significant occlusions. We can

formulate motion modeling from a single depth image as a machine-learning problem.

There could be two stages: learning and estimation. In the learning stage, we can

first capture a database of depth images containing a human subject in motion. From

the training database, we can learn the dictionaries for depth images and motion

models, respectively. These dictionaries capture the general frequent patterns and

local structures in all training images and motions. Using the dictionary, a sparse

representation of each depth image or motion model can be then computed via `1-

regularized least squares techniques. In the estimation stage, for a given depth image,

we can estimate its SR using the learned depth dictionary. The resulting SR is then

approximated as a linear combination of its neighbors in the SR space. The weight

coefficients can then be transferred to the motion model’s SR space to recover the

full motion.
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