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ABSTRACT 
 
 
 
 

EFFECT OF LOW AND HIGH- KINETIC ENERGY WETTING ON QUALITY OF 
SEDIMENT PRODUCED BY INTERRILL EROSION 

 
Raindrop kinetic energy and sheet flow can disintegrate aggregates during interrill 

erosion, a process responsible for non point source pollution. Also, the dissolution 
process during aggregate wetting can affect interrill erosion. These factors can be 
responsible for changes in particle size distribution in the sediment, especially when 
different tillage systems are compared. The effect of soil tillage and management on soil 
properties is not uniform, which determine a wide range of runoff and sediment delivery 
rate. Variety in these rates can be associated with pore functions and their interactions 
with aggregate stability. One of the objectives of this study was to analyze the wetting 
behavior of soil aggregates from soils under conventional tillage compared with soils 
under no tillage. It was expected that the wetting rate is a function of pore system and that 
different tillage systems would  affect  the soil wetting behavior based on their impact on 
soil structure and shape. The second objective was to analyze the relationships among 
soil wetting rate, particle movement, organic carbon (OC) and iron release with the 
sediment produced via interrill erosion. A rainfall simulation experiment was performed 
in the field to determine the effect of low and fast soil wetting on total soil loss through 
high and low kinetic rainfall energy, sediment particle size distribution and OC loss. Two 
soils that differed in soil textural composition and that were under conventional and no 
tillage were investigated. Soil loss depended largely on soil characteristics and wetting 
rate. Particle size distribution of sediment was changed by treatment and the proportion 
of particles smaller than 0.053 mm increased over time, at any kinetic energy wetting 
level. Temporal OC and iron release were constant, which required a continuous source 
principally due to aggregate slaking. An empirical model was proposed to improve an 
interrill erosion equation by using a bond-dissolution mechanism that identified soil as a 
regulator of particle release. 
 
Keywords: Iron and OC enrichment ratio; sediment particle size; soil wetting rate; tillage 
systems; interrill erosion. 
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Section 1. INTRODUCTION 

 The movement of pollutants with sediments from unidentifiable origins is 

known as non-point source pollution.  Rainfall provides the driving force for moving 

sediment at the land surface via water erosion processes. One of these processes, interrill 

erosion, is common in areas with low slope. Interrill erosion  is very relevant for 

removing the smallest soil particles.  Interrill erosion is defined as the process of 

detachment and transport of particles at the soil surface, that includes both i) splash-

raindrop  impact causing particle detachment and transport, as well as, ii) wash-shallow 

sheet flow causing also particle detachment and transport (Sharma et al., 1995; Laflen et 

al., 1997). Raindrop kinetic energy as well as fluid shearing during sheet flow are known 

to physically disaggregate soil during interrill erosion (Nearing, 1997). It is also known 

that as a soil aggregate is wetted, dissolution occurs and thus aggregate wetting affects 

interrill erosion. 

  Interrill erosion depends upon soil management and tillage. Specifically, soil 

surface cover and soil stability vary for different tillage systems, which in turn affect soil 

detachment during erosion.  No tillage and moldboard plowing are tillage management 

systems, which strongly differ with regard to soil surface cover and in their influence on 

soil stability.  

No tillage is characterized by only little soil disturbance during planting and 

the maintenance of crop residues at the soil surface. Therefore, under no-tillage the direct 

impact caused by raindrops on the soil is minimized. The protection of the surface 

through residues triggers low kinetic energy wetting. In contrast, the disturbing impact of 

moldboard plowing establishes a bare soil surface that determines a lack of protection 

against the rainfall. In this case, the soil surface is subject to direct impact of raindrops, 

thus the soil is exposed to a high kinetic energy wetting. Consequently, the disintegration 

of soil aggregates and subsequent sediment production occurs at a rate mainly affected by 

the two extremes of high kinetic energy wetting of bare soil, and low kinetic energy 

wetting of covered soil.     

This study was conducted to analyze the consequences of  two different ways 

of soil wetting, causing the disintegration of soil aggregates and the release of clay-silt 

sized particles in the sediment. Because sediment pollution has both physical and 

 1



chemical dimensions, the movement of organic carbon and extractable iron in association 

with clay-silt sized particles, was also studied. The rationale for focusing on clay-silt 

sized particles was based on the observation that these fractions are the most important 

carrier of pollutants in overland flow. Iron and organic carbon are extremely important in 

maintaining soil stability and they are themselves pollutants. In addition, organic carbon 

sequestration by soil is an important strategy for mitigating atmospheric carbon dioxide 

concentration, but it is necessary to quantify the magnitude of organic carbon 

mobilization from the soil surface in order to improve this strategy. 

In Section 2 details on the methods used to analyze the effects of wetting rate 

energy at the soil aggregate scale and at the field scale are provided. This section also 

describes the instruments used and the field plots treatments, as well as how the sediment 

was collected and analyzed with respect to its organic carbon and extractable iron 

enrichment ratios.   

In Section 3, the two soils investigated and the two respective tillage systems 

are characterized. An analysis of soil aggregate properties was also included, in order to 

evaluate the effect of the tillage system on soil properties at different scales. 

Aggregate responses to different wetting rates are shown and explained in the 

Section 3. This section also includes results of the field scale experiment. The hydrologic 

response investigated in the field is quantified based on total soil loss and particle size 

distribution of the sediment. In addition, the effect of different kinetic energies during 

wetting on the sediment enrichment ratios in iron and in organic carbon is evaluated.   

The most important findings of this study are discussed and interpreted in 

Section 4. Finally, in Section 5 summary and conclusions are provided, describing the 

larger implications of this study and suggesting future research needs.        
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 1.2. Literature review 

Pollution of lakes and rivers and organic carbon (OC) losses from croplands are 

nowadays very relevant issues. Some studies have shown that, in the Midwestern USA, 

30 to 50% of the OC  was lost with converting natural into agro-ecosystems (Lal, 2002). 

Because most of this OC was lost through water erosion (Lal, 2002) and colloids were 

recognized as carrier of pollutants (Seta and Karathanasis, 1996a; Laegdsmand et al., 

2004; Schumacher et al., 2005), a strong link emerged between land use and water 

pollution. In spite of the importance of these issues, the interactions and mechanisms 

involved in soil aggregate breakdown and the release of clay-silt sized particles size are 

poorly understood.  

The relationship between the soil wetting process and the aggregate breakdown is 

still insufficient understood. The more the aggregates are disintegrated, the more the 

colloids are released to overland flow (Kjaergaard et al., 2004a). Relatively high and 

uniform soil wettability, defined as the opposite of water repellency, is a desirable quality 

of soils, because water repellent zones prevent rapid and uniform soil wetting and could 

affect  crop growth (Ball et al., 1997; Eynard et al., 2004).  

Wettability can be measured as a wetting rate, which is affected by organic and 

mineral composition of soil surfaces which can be rather hydrophilic and hydrophobic 

(Czarnes et al., 2000; Blanco-Canqui et al., 2007; Wuddivira et al., 2009) and by the 

structural arrangement of soil components (solids  and pores) (Aluko and Koolen, 2001). 

At a molecular level, composition of solid surface-exposed hydrophilic or hydrophobic 

chemical groups and their packing density determine wettability (Leelamanie and 

Karube, 2007; Matthews et al., 2008).  At a soil aggregate level, composition of soil and 

aggregate structure, defined as the spatial distribution of soil particles and pores 

determine wettability (Lado et al., 2004; Dexter et al., 2008). 

 The role of wettability in surface runoff is contradictory, because on one hand, 

the lack of soil wettability enhances water runoff and surface erosion (Hallett, 2001; Abu-

Hamdeh et al., 2006; Leighton-Boyce et al., 2007). On the other hand, water repellency 

may stabilize soil against slaking and aggregate breakdown to some degree (Leighton-

Boyce et al., 2007).   
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Disintegration of soil aggregates by water may result from a variety of physical 

and physicochemical mechanisms. Four main mechanisms have been identified (Fan et 

al., 2008): (i) slaking, i.e., breakdown caused by compression of entrapped air during fast 

wetting (Urbanek et al., 2007; Zaher and Caron, 2008); (ii) breakdown by differential 

swelling during fast wetting (Shainberg et al., 2003; Lado et al., 2004; Seguel and Horn, 

2006); (iii) breakdown by the impact of raindrops (Ramos et al., 2003; Le Bissonnais et 

al., 2005; Issa et al., 2006) and (iv) physicochemical dispersion caused by osmotic stress 

due to wetting with low-electrolyte water (Mamedov et al., 2002; Keren and Ben-Hur, 

2003; Mojid and Cho, 2008).    

The relative role these mechanisms play in aggregate breakdown depends on the 

energy involved.  Some studies tried to explain the relationships between disintegration 

of aggregates and infiltration rate or total soil loss (Lado et al., 2004; Blanco-Canqui and 

Lal, 2007; Ben-Hur and Lado, 2008). Lado et al. (2004) tested soils with three different 

clay contents (230, 410 and 620 g kg-1), pre-wetted them with a low and a fast procedure 

and observed a significant decrease in infiltration rate only in soils with 620 g kg-1 of clay 

content. They attributed this behavior to the different aggregate stability among soils. 

Wetting of soil aggregates weakened the cementing forces between particles 

inside the aggregate and caused aggregate breakdown (Rasiah and Kay, 1995; Ghezzehei 

and Or, 2000). In addition, Lado et al.(2004) observed that exposing air-dry soil 

aggregates to high intensity rain caused more severe aggregate breakdown than soil 

aggregates wetted with a slow rate before exposing them to high intensity rain. Ben-Hur 

and Lado (2008) suggested that these results could be related to the soil clay content. 

Blanco-Canqui et al. (2007b) found, in a long-term management system that the 

aggregate disintegration observed in a water erosion experiment was highly related to the 

wetting rate, and the soil organic carbon explained 48% of the variability in aggregate 

disintegration. The soils used in this study had 153 g kg-1 of clay content (Blanco-Canqui 

et al., 2007). At low soil clay content, the relationship between soil wetting and aggregate 

disintegration caused by water erosion has been controversial and not properly 

understood.  

  Contrasting results observed in several studies of soil structural stability and 

wettability could be due to the different quality of soil organic matter. Different organic 
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components play specific roles in the wettability behavior (Eynard et al., 2006; 

Leelamanie and Karube, 2007; Urbanek et al., 2007). For example, hydrophobic organic 

constituents, like aliphatic molecules, determine soil water repellency (Dinel et al., 1998; 

Horne and McIntosh, 2000), while hydrophilic organic constituents can interact with 

water when the soil is wet and with each other when the soil is dry. Those kinds of 

interactions could be responsible for changes in aggregate water stability, and can modify 

soil function, especially when different tillage systems are compared.  

Several studies have shown that tillage systems modified the organic carbon 

content in aggregates (Cambardella and Elliott, 1992; Cambardella and Elliott, 1993b; 

Blanco-Canqui et al., 2004). Also, tillage systems differ in the way they produce a 

seedbed and how the crop residues are incorporated into the soil surface (Alvaro-Fuentes 

et al., 2008a).  

It is a fact that tillage systems that use moldboard plowing tend to reduce the soil 

aggregate size when compared to reduced tillage or no tillage systems (Perfect et al., 

1997; Blanco-Canqui and Lal, 2007; Pikul et al., 2007). It is also a fact that using 

moldboard plow and subsequent disc produces a bare soil surface. This last condition 

exposes soils to a high kinetic energy-wetting process under rainfall. Thus, the wetting 

process will affect the sediment production in soils under moldboard tillage. Although 

no-tillage systems maintain the soil surface covered with residues, which improves many 

soil functions, the effect on aggregate stability remains controversial.   In a study with 

different soil textures, a large water aggregate stability under NT compared with CT was 

found, but only with finer-textured soils in humid conditions (Buschiazzo et al., 1998).  

Conversely, other studies were not able to find differences in aggregate stability in sandy 

loam and silt loam soils, suggesting that long-term soybean monoculture could be 

responsible for this situation (Micucci and Taboada, 2006).   The reason for this behavior 

could be that  soybean residue compared to corn residue has a low concentrations of 

phenol components and also the return of biomass to the soil is very low (Martens, 2000).  

However, it is a fact that soil surface cover causes a low kinetic energy–wetting process 

under rainfall, and reduces sediment production compared to conventional tillage.  

The response of transport behavior to a soil tillage and management is not unique. 

Untilled compared to tilled soil caused great (Frebairn et al., 1986; Kay and 
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VandenBygaart, 2002; Wairiu and Lal, 2006) similar (Ankeny et al., 1990) or low water 

infiltration rates (Gantzer and Blake, 1978; Gomez et al., 1999; Rasmussen, 1999). The 

way in which differences in total porosity are associated with differences in pore size 

distribution, depended on soil type and tillage. Under identical site conditions, NT 

compared to CT resulted in a lower macro-pore volume (>30 μm) on sandy soil and silt 

loam, whereas the opposite effect was found on sandy loam (Schjonning and Rasmussen, 

2000).  

  The water infiltration rate influences the runoff rate and the total soil loss. 

Interrill erosion depends on the kinetic energy of rainfall and by definition is the 

predominant erosion process in low slope landscapes (Foster et al., 1981; Meyer, 1981; 

Meyer and Harmon, 1989).  Interrill erosion is highly selective with respect to particle 

sizes (Foster et al., 1981; Hairsine and Rose, 1991; Nearing et al., 2005). In addition, 

interrill erosion is a time-dependent process (Wan and El-Swaify, 1998a; Boardman, 

2006; Asadi et al., 2007b; Wang et al., 2007). Temporal variability in the sediment 

concentration suggested a possibility of very low transport capacity of the overland flow 

at field scale erosion in a sandy soil (Issa et al., 2006). They commented that the change 

in soil surface seal was responsible for this variability.  However, it was commented that 

despite all evidences to the contrary, aggregate stability and soil erodibility, i.e. how 

easily the soils are eroded (Renard et al., 1997), are commonly considered constant 

properties (Vermang et al., 2009). Furthermore, some predictive models still do not take  

into account that aggregate stability and soil erodibility are influenced by several time-

dependent parameters, such as antecedent water content, wetting mode and soil organic 

carbon content (Abrahams et al., 2000; Walker et al., 2007). In some studies an increase 

in aggregate stability and reduced soil loss with increasing antecedent water content were 

found (Truman et al., 2007; Vermang et al., 2009), whereas the opposite behavior  was 

also found (Rejman and Usowicz, 2002). Thus, the relationships among soil wetting, 

aggregate stability and soil loss are still not well understood. 

The soil aggregate disintegration process is a key in the release and movement of 

different particle sizes in  overland flow (Proffitt et al., 1993; Wan and El-Swaify, 1998a; 

Zhang et al., 2003). In addition, the range of particles smaller than 0.053 mm in diameter 

has an enormous potential to mobilize different elements, especially when they are linked 
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with OC (Wan and El-Swaify, 1998b; Quinton et al., 2001; Schiettecatte et al., 2008b). 

Hence, OC is mobilized in the overland flow (Starr et al., 2000; Kingery et al., 2002; 

Bertol et al., 2005), but it is not well understood how this mobilization occurs. The 

enrichment ratio in OC was introduced as an index to establish OC contribution in runoff-

sediment to non-point source pollution. This index is the ratio of OC concentration in 

sediment particles and the OC concentration in the same particle size class from the 

original soil prior to runoff  (Wan and El-Swaify, 1998b). The enrichment ratio in OC  

differed due to several factors, such as soil texture, OC content, runoff rate and soil loss 

but still it is not clear why (Wan and El-Swaify, 1998b; Schiettecatte et al., 2008a). The 

quantity  and the way in which OC is transported by overland flow under different tillage 

systems are still not well-understood key relationships (Lal, 1998; Lal and Pimentel, 

2008) relevant for C balance in cropland areas.  

 Another relevant process related to interrill erosion is the mobilization of 

micronutrients, e.g. iron, and its potential risk for both, water pollution and soil stability. 

Several studies have shown that iron can easily be removed in overland flow coupled 

with OC and selenite (Rhoton et al., 2003; Maloney et al., 2005; Coppin et al., 2009) , but 

values of sediment enrichment ratio in iron have not been quantified, yet.  

 

         1.3. Objectives 

In brief, the objectives of this study were:  

a)  To understand if the wetting behavior of aggregates evaluated with different 

procedures differs between conventional tillage and no tillage, 

b)  to determine relationships between aggregate parameters that can explain the 

breakdown behavior of aggregates with respect to the wetting rate,  

c)  to study changes in the particle size distribution in the sediment, when soils are 

exposed to low and high-kinetic energy wetting,  

d) to analyze how OC and iron content in the sediment vary under low- and high-

kinetic energy wetting, and  

e) to understand how the enrichment ratio in OC and iron differ in the finest particles 

in sediment produced by low and high kinetic energy wetting. 
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 The assumption underlying the first objective is that the wetting rate is a function of 

pore stability and under conventional tillage of decrease in organic carbon and 

exchangeable cations contents. The hypothesis is that the water content of an aggregate at 

the time of rupture and the time period until rupture are different depending on the 

wetting mode and the tillage system.  The hypothesis to test in accordance with the 

second objective is that low-energy wetting produces a high release of the smallest 

particles in the sediment, compared to the effect of high-energy wetting.  

The hypothesis that relates to the third and fourth objectives are that the OC in 

different particle size classes depends on the initial content of OC in the particles 

considered and an additional gain in organic carbon in the transport process. During the 

process of rupture and transport of different particles, the organic carbon is released from 

different exposed sites. The amount of exposed sites depends on the interaction between 

the wetting rate and the kinetic energy of the rainfall. The higher the kinetic energy 

involved, the higher the aggregate disintegration which increases the probability that OC 

and iron can be adsorbed by particles released in the overland flow, causing the 

respective enrichment ratios to be larger than 1. 
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Section 2. MATERIALS AND METHODS 

This study was performed in two experimental sites. One site was Plot 66 at the 

Experimental Farm Spindletop of the Agricultural Experiment Station, University of 

Kentucky, Lexington, KY. The soil was classified as a Maury silt loam soil and is grown 

with corn since 15 years. The other site was located in a farmer’s field in Owensboro, 

Davies County, KY. This soil belongs to the Calloway series and was classified as an 

Aquic Fragiudult silt soil. Since 5 years, this soil has been managed in a 

soybean/corn/tobacco rotation. At both sites, two tillage systems, i.e., No tillage (NT), 

and Conventional tillage (CT), using moldboard plow and disc, were investigated. 

 

2.1. Methods to evaluate soil physical, chemical and biological properties 

At each site, soil samples were taken from 0 to 5 cm depth with five replicates. 

The samples were air-dried in the greenhouse. Total organic carbon (TOC) concentration 

was measured by dry combustion. Exchangeable Ca, Mg, Na, and K were determined 

with a Flame atomic absorption spectrophotometer (FAAS). Oxalate-extractable Fe 

(FeOx) (McKeague and Day, 1966) was measured with FAAS as well. Particulate organic 

matter (POM-C) content was determined with a sodium extraction procedure (Mirsky et 

al., 2008). For this purpose, 10 g of air-dried soil were disintegrated with NaOH 

overnight, and washed with distilled water through a 0.053 mm sieve. The remaining 

material in the sieve consisting of sand particles and POM-C was dried in an oven at 60 

ºC, weighed, crushed and burned in a muffle oven at 560 °C and the POM-C was 

determined by weight difference.   

Electrical conductivity (EC) and pH in the soil samples were measured using a 

potentiometer. Cation exchange capacity was measured by displacement with NH4 

Acetate. Soil texture was determined by the pipette method (Gee and Bauder, 1986). 

Mean weight diameter (MWD) and geometric mean diameter (GMD) of aggregates 

smaller than 0.053 to 10 mm were determined from the dry aggregate size distribution 

(Kemper and Rosenau, 1986). Dry sieving was performed with a Fritsch vertical 

vibratory sieve shaker for 30 s using oscillation amplitude of 2 mm and a frequency of 

approximately 50 Hz.  
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Water stable aggregates (WSA) in size classes from 2 to 1 mm in diameter were 

measured with a wet sieving apparatus, by following the procedure of Kemper and 

Rosenau (1986).  In addition, water stable aggregates (WSA) in size classes from 10 to 8 

mm, 8 to 4.75 mm and 4.75 to 2.78 mm were also measured with the same wet sieving 

apparatus. Water dispersible colloids (WDC) were measured according to the procedure 

described in (Seta and Karathanasis, 1996b).   

In order to calculate aggregate shape factors, three axes (Figure 2.1) were measured 

with a caliper, before the wetting rate test was performed. These indices were: 

 Shape factor (SF) (McNown and Malaika, 1950) 

 

)1(
)( ab

c
SF 

 Flatness ratio (Fr) 

 

)2(
b

a
Fr 

 Elongation ratio (El) 

 

 

 

)3(
a

c
El 

 Sphericity (S) 

 

 

 

 

)4(
areasurfaceactual

sphereequivalentofareasurface
S 

 Circularity (C) 

 

 

 

)5(
perimeteractual

areasamethewithcircleofncecircumfere
C 

 10



y=b 

x=a z=c 

a

b
c 

Figure 2.1: Axes measured in soil aggregates, with a scheme of the different 
values used to calculate the indexes: a= length; b= height; c= width.  
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Particle density (ρs) was determined with the pycnometer method; aggregate density 

was quantified based on the spheroid formula yielding the volume and the oven dry 

weight. Total porosity of aggregates () was calculated with the following equation: 
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where ρag  is aggregate density.  

Wetting rate, as proposed by Rasiah and Kay (1995), was calculated with the first order 

rate equation proposed by them:   

    )8(10
kt

m et    

where (t) is total water content,  0 is the initial aggregate water content,   ∆m  is the 

change in water content, t is time  and k is the first-order wetting rate constant. 

 

2.2. Methods to evaluate the wetting rate at the aggregate scale 

In order to determine the aggregate wetting rate, three sizes of aggregates were 

used: 8 mm (0.787), 4.75 (0.493) mm and 2.78 (0.35) mm in size, from both soils and 

tillage systems selected for this study. To select these sizes, aggregate samples were 

sieved in a battery of sieves. For example, aggregates of 8 mm were selected by hand 

from the range from 10 to 8 mm, when they were visually representative of the lowest 

size in this range. For convenience, aggregate sizes used in this experiment were labeled 

as: 8 mm, 4.75 mm and 2.78 mm, respectively. Two procedures causing different wetting 

rates were performed to evaluate the wetting behavior of these aggregates:  

a) In the first procedure, aggregates were placed on a porous plate and wetted slowly 

by capillary rise (Eynard et al., 2004; Eynard et al., 2006). In this experiment, the 

water uptake of an aggregate was read at each minute through the movement of 

the meniscus in a horizontal capillary of known diameter. 
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These readings were converted to a wetting rate. The porous plate was covered 

with a cup to minimize evaporative water loses. 

b) In the second procedure, aggregates were wetted under kinetic impact with a 

single drop former. The drop former was fixed at 1 meter height above the 

aggregate and produced a drop of 1.5 mm in diameter with a weight of 

approximately 0.02 g. Drops fell on the aggregates at one-second intervals.  A 

mesh was placed under the aggregate to maintain it in position and to allow free 

drainage of excess water subsequent to the impact. The total aggregate mass was 

recorded on a balance in fixed intervals of 1 to 5 impacts. Based on preceding 

observations, the last mass value was recorded at five impacts being the limit 

before the aggregate’s rupture.  Thirty aggregates of each size were used to 

measure water content and time to rupture in both tillage systems at each site. A 

detail of these devices use is shown in Figure 2.2. 

 

2.3. Methods to evaluate particle release from aggregates with and without shaking in 

water 

To explore the effect of different energy levels on the wetting rate, a modified wet 

sieving procedure was performed with a wet sieving apparatus.  Aggregates from both 

soils and tillage systems that were in the range from 10 to 8 mm, 8 to 4.75 mm and 4.75 

to 2.78 mm size were studied. In brief, 40 g of aggregates of each range were placed in 

containers with a bottom mesh of 0.250 mm width and located in a wet sieving apparatus. 

To simulate low kinetic energy wetting, aggregates were simply submerged in water for 1 

h without shaking (Nsh). The containers with water and particles released were removed 

every 5 minutes, and were replaced for others containers with clean water. To simulate 

high kinetic energy wetting, aggregates were shaken (Sh) as described by Kemper and 

Rosenau (1986) for water stable aggregates. However, this procedure was modified by 

using only water and the aggregates were shaken for 1 h. As for the low kinetic energy 

wetting, containers with water and particles released were removed every 5 minutes, and 

replaced with new containers with water. Particles released were poured through a battery 

of sieves (0.105 mm, 0.053 mm and a bowl to capture particles smaller than 0.053 mm), 

oven-dried at 105°C and weighed. 
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Figure 2.2: Different devices to measure wetting rate. a) Tension table; b) Drop 
former; c) Splash-guard cup with a mesh to provide free drainage.
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2.4. Methods to evaluate hydrologic response and sediment production under high and 

low kinetic energy wetting at the field scale 

To test the hydrologic response and sediment production under high and low- 

energy wetting in the field, the experimental sites were exposed to a simulated rainfall. A 

nozzle-type rain simulator was used to produce a rainfall of 87.5 mm/h for the duration of 

one hour. Prior to the 1-hour-long rainfall simulation, the soils were irrigated for ten 

minutes with high and low kinetic energy, respectively, to simulate the situation of low 

and high initial kinetic energy- wetting of the soil surface. A resting interval of five 

minutes was established before the main rainfall simulation. The duration and intensity of 

rainfall were selected by experience gained in order to produce enough overland flow and 

sediment to perform the subsequent laboratory analysis of the sediment.    

For high kinetic energy wetting, the rainfall reached the bare soil surface. For low 

kinetic energy wetting the soil surface was covered with four layers of plastic mesh in 

order to avoid the effect of drop impact (Figure 2.3).  

During rainfall simulation, water and sediment were collected at the beginning 

after a 2-minute interval, followed by a 3-minute interval to identify the initial effect of 

the respective wetting method and then, at every five minutes until the end of the 

experiment at one hour after the beginning of the rainfall simulation.  

 Sediment collected was poured through a battery of sieves of 0.500 mm, 0.250 

mm, 0.100 mm, 0.053 mm and a bowl to capture all fractions smaller than 0.053 mm. All 

particles collected were oven dried at 60 ºC and weighed.    

The battery of sieves was selected according the ARS-USDA standard procedures 

(Miller and Baharuddin, 1987; Elliot et al., 1989) to allow for comparison with data 

published in the literature (Wan and El-Swaify, 1998a; Marquez et al., 2004; Polyakov 

and Lal, 2008).   

 Runoff volume was determined for each sample gravimetrically using the 

difference between the weight of the total sample and the weight of the dried bottle and 

sediment. Runoff and sedimentation rates were determined for each sample interval by 

dividing respective weights by the sampling duration. 
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Figure 2.3: Rainfall  simulator and field plots. a) Nozzle-type rain simulator. b) 
High kinetic energy wetting plot. c) Low kinetic energy wetting plot, with plastic 
mesh. 
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Total organic carbon (TOC) was measured by combustion of all particle size in 

the sediment. Enrichment ratio of organic carbon  (EROC) was determined by the 

following equation (Wan and El-Swaify, 1998b): 

)9(
0x

xi
OC M

m
ER      

where m is the concentration of total organic carbon (g kg-1) in the particle from the 

sediment (xi) and M is the concentration of total organic carbon (g kg-1) in the same 

particle size class from the soil surface  before the rainfall (x0). In the same way, 

enrichment ratio in iron (ERFe) (eq. 10) was calculated by using the Fe(ox) concentration 

in the particles from the sediment (mg kg-1) and in the particles of the same size at the 

soil surface before the rainfall.  
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The sediment delivery rate (Di) (g m-2 min-1)  in interrill erosion was calculated 

according to the Zhang formula (Zhang et al., 1998):  

 113/2SIqKD c
ii 

 

where  Ki (g min-1 m-4) is the erodibility parameter, I is rainfall (m min-1),  q (m3 min-1) is 

the unit discharge, S (m m-1) is the slope and c is the exponential coefficient used to fit 

experimental data. 

The organic carbon delivery rate (OCDR), which represents the OC effectively 

delivered from the soil was calculated through the following formula: 

)12(053.0053.0  sedisedDR DxTOCOC
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where OCDR is in g C m-2 min-1, TOC sed < 0.053 is total organic carbon content in particles 

smaller than 0.053 mm in the sediment in g g -1 and Di sed < 0.053 is sediment delivery rate 

of particles smaller than 0.053 mm, in g m-2 min-1. 

 

2.5. Statistical analysis 

Data of soil parameters exposed to different tillage systems were statistically 

analyzed by using one way analysis of variance and mean comparison according to least 

mean differences. Relationships among selected soil parameters were explored with 

Pearsons correlation procedure, single regression and multiple stepwise regression 

analysis. 

At aggregate scale, soil parameters were studied in a multifactor model 2 x 2 with 

interactions and n = 30.  Soil, as main factor, represented soil characteristics of each soil 

considered in this study.  Tillage, considered also a main source of variation, represented 

conventional and no tillage treatments.  

Wetting rate and water content before the rupture with and without drop impact as 

well as data of particles released with and without shaking in water were analyzed in a 

multifactor model 3 x 2 x 2 with interactions. Soil, Tillage and Energy were considered 

main sources of variation.  In this case, Energy represented with and without drop impact 

in the wetting rate experiment or with and without shaking in water to analyze particles 

released from different aggregate sizes. 

Multiple range tests were used to compare means and Pearsons correlation 

procedure to explore the relationships among selected soil parameters, wetting rate and 

water content before the rupture.  

At field scale, data collected in the rainfall simulation experiment were 

statistically analyzed in a multifactor model 2 x 2 x 2 with three replicates in the Maury 

silt loam soil and two replicates in the Calloway silt soil.  Main sources of variation in 

this experiment were Soil, Tillage and Energy. In this case, Energy represented high and 

low kinetic energy wetting. One way analysis of variance and mean comparison 

according to least mean differences were used to study data produced at the same time 

period.   
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Repeated measures modeling as according to the Mixed procedure of SAS was 

used to perform statistical analysis when data of runoff and sediment release were related 

with time. In these cases, time was also considered as a source of variation.   
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Section 3. RESULTS 

 

3.1. Effect of different tillage systems on selected physical, chemical and biological soil 

properties    

 

3.1.1. Effect of tillage on selected soil physical and biological parameters 

Selected properties of soils used in this study are shown in Table 3.1. The 

Maury silt loam soil has more clay and sand and less silt than the Calloway silt soil, 

according to soil texture analysis. The water stable aggregate index (WSA) is used to 

characterize the soil stability based on the resistance of aggregates against being 

destroyed by shaking in water (Kemper and Rosenau, 1986; Daraghmeh et al., 2009). 

This index shows that soils at both locations under NT do not significantly differ with 

respect to soil stability in spite of the soil textural differences (Table 3.1).  In addition, 

soils under CT have lower stability than under NT, but the Maury silt loam soil under CT 

was the most unstable because its WSA value was the lowest (Table 3.1). This result 

could be a consequence of the longest period under aggressive tillage in the Maury soil.   

The water dispersible colloid index (WDC) reflects how easily the soil can 

liberate colloids when exposed to water (Seta and Karathanasis, 1996b; Watts and 

Dexter, 1998). Table 3.1 shows that under CT the Maury soil was not different in WDC 

compared to  NT (p<0.05).  However, in the Calloway silt soil, WDC under CT was 

higher than WDC under NT (p<0.05).  

Dry aggregate size distribution (DASD) was used to characterize the tillage 

system (Kemper and Rosenau, 1986) (Figures 3.1 and 3.2). DASD is useful in 

combination with the geometric mean diameter (GMD) and mean weight diameter 

(MWD) to analyze the effect of tillage systems on soil structure because it gives 

information about how the GMD or MWD are composed (Braunack and Dexter, 1989). 

 DASD measured in the Maury silt loam soil under CT and NT showed that 50% 

was dominated by aggregates smaller than 3 mm in diameter. Half of this percentage was  
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completed with aggregates smaller than 1 mm (Figure 3.1).  According to Figure 3.1, 

DASD is similar in both tillage systems in the Maury silt loam soil, which means that the 

contrasting tillage did not cause differences in the aggregate size distribution. 

On the other hand, in the Calloway soil, CT reduced the aggregate size 

distribution compared with NT. Under CT (Figure 3.2), 50 % of dry aggregates was 

dominated by the fraction smaller than 1 mm and half of this percentage were aggregates 

smaller than 0.25 mm. Nevertheless, the cumulative particle size distribution curve for 

NT (Figure 3.2) showed that 50% of DASD were aggregates smaller than 3 mm.  Half of 

this percentage was filled with aggregates smaller than 1 mm.  

Values of MWD (Table 3.1) showed that the Calloway soil under CT yielded the 

smallest value of MWD (p<0.05), which was significantly different with the value found  

under NT on the same site. The Maury soil under NT had the highest MWD value. The 

MWD index has a bias toward the large aggregates (Van Bavel, 1949). For this reason, 

any aggregate size distribution with larger aggregates than others has high values of 

MWD, as occurs with the Maury soil under NT.  Geometric mean diameter (GMD) has 

the opposite bias, and unlike MWD this index emphasizes the amount of small soil 

aggregates.  Notice the low values in the Maury soil under NT comparing GMD with 

MWD, and the high values measured in the Calloway soil under CT (Table 3.1). The 

higher the difference between MWD and GMD, the higher the proportion of large 

aggregates in the soil.  

As expected from the aggregate size distribution (Figures 3.1 and 3.2), the 

Calloway soil under CT had the lowest GMD value (p<0.05) and the Maury soil under 

NT had the highest (Table 3.1). At the same time, no difference was observed between 

the Calloway soil under NT and the Maury soil under CT. Values of MWD (Table 3.1) 

showed that under CT the Calloway soil yielded the smallest value of MWD (p<0.05), 

which had significant differences to the value of the Calloway soil under NT. The Maury 

soil under NT had the highest MWD value. 

This lack of difference under contrasting tillage systems could be related with the 

high percentage in silt content in the Calloway soil (Table 3.1), which determines a 

natural structural weakness of the aggregates (Towner, 1988). This structural weakness 
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could have prevented the persistence of large aggregates in silt soils under tillage (Dexter, 

1988; Unger et al., 1991).  Another reason could be the short period under NT in the 

Calloway soil compared with the long period under NT in the Maury soil, i.e., a long 

period of time with no tillage could allows further development of organic components 

that contribute to increase the aggregation process (Angers et al., 1995; Abiven et al., 

2007) 

Total soil organic carbon (TOC) was higher under NT than under CT in both soils 

(Table 3.1), but the difference between NT and CT was larger in the Maury soil than in 

the Calloway soil. Despite the large differences in silt and clay content in our soils (Table 

3.1), the amount of TOC was higher under NT than under CT. In addition, under CT both 

soils have similar low values of TOC, but the reason for this behavior is not clear. 

Probably, the different periods of tillage in both soils and the crop rotations could be 

responsible for this finding.  

Data of particulate organic matter (POM-C) in the Maury and Calloway soil under 

different tillage systems are included in Table 3.1. Under NT, the soils had more POM-C 

than under CT. However, the Maury silt loam soil had more POM-C than the Calloway 

silt soil, which means that soil texture was an important variable to consider. One reason 

could be the nature of silt particles, which have no or very low capacity to build bonds 

with OC.  

Relationships among those selected soil parameters from Table 3.1 were explored 

through Pearson correlation analysis (Table 3.2).  Close relationships observed among 

our TOC, GMD and MWD data suggest that TOC could be an important soil aggregation 

factor. However, we found no relationship between TOC and WSA, which is a 

measurement of aggregate stability in water. No relationship observed among TOC, 

WDC (the amount of free colloids) and clay content (Table 3.2) could suggest that only a 

specific form of OC could be associated with clay particles to build aggregates. 

A multiple stepwise regression analysis was used to explore the importance of 

TOC and POM-C as aggregation factors in these soils. Values of WSA and WDC were 

the dependent variables and several parameters including TOC, POM-C and clay content 

were the independent variables.  Only significant results were included in Tables 3.3 and  
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Table 3.2:  Pearson correlations among selected soil parameters measured in the Maury 

silt loam and the Calloway silt soil. 

 TOC Sand Silt Clay WSA GMD MWD WDC 

Sand 0.60 
(NS) 

1       

Silt -0.50 
(NS) 

-0.99 
(***) 

1      

Clay 0.44 
(NS) 

0.98 
(***) 

-0.99 
(***) 

1     

WSA 0.60 
(NS) 

0.27 
(NS) 

0.38 
(NS) 

0.41 
(NS) 

1    

GMD 0.69 
(*) 

0.84 
(***) 

-0.84 
(***) 

-0.84 
(***) 

-0.03 
(NS) 

1   

MWD 0.71 
(*) 

0.79 
(**) 

-0.79 
(**) 

0.78 
(**) 

0.04 
(NS) 

0.99 
(***) 

1  

WDC 0.095 
(NS) 

0.64 
(*) 

-0.62 
(*) 

0.61 
(NS) 

-0.49 
(NS) 

0.13 
(NS) 

0.03 
(NS) 

1 

Abbreviations: TOC = Total organic carbon; WSA = Water stable aggregates; GMD = 
Geometric mean diameter; MWD= Mean weight diameter; WDC= Water dispersible 
colloids. (*) significant at <0.05; (**) significant at < 0.01: (***) significant at <0.001. 
NS = not significant (α> 0.05);  n=12. 
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Table 3.3: Stepwise regression analysis predicting among water stable aggregates (WSA), 

from total organic carbon (TOC) and clay content (Clay). 

Parameter Estimate Standard Error T statistic p-value 

Constant 0.70 0.0250 27.489 *** 

TOC 0.02 0.0019 12.090 *** 

Clay   -0.0004 0.0116 -6.936 ** 

Abbreviations:   (**) significant at < 0.01: (***) significant at <0.001.  
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Table 3.4: Analysis of variance of the multiple regression models among water stable 

aggregates (WSA), total organic carbon (TOC) and clay content.  

Source Sums of 
squares 

df Mean 
Square 

F-ratio p-Value 

Model 0.033 2 0.0160 31.19 ** 

Residual 0.002 5 0.0005   

Total (correg) 0.036 7    

R2 = 92.6 percent; R2 (adjusted for d.f.) = 89.6 percent; Standard Error of Estimate= 0.023; 
Mean absolute error = 0.016; Durbin-Watson statistic = 1.24 (P=0.0102). (**) significant at 
<0.001.    
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By combining TOC concentration in aggregates from 2 to 1 mm and clay content 

it is possible to explain the variability in WSA, according to the equation: 

     120004.002.070.0 ClayTOCWSA   

where TOC = total organic carbon in g kg-1 and Clay is  in g kg-1. 

Equation (12) explains 89 % of the variability in WSA. When particulate organic 

matter (POM-C) replaced TOC values, the new equation (Equation 13) explained 99% of 

the variability in WSA. POM-C is a proportion of the TOC content, and explained most 

of the variability in WSA. This finding suggests that POM-C was the principal factor 

influencing water aggregate stability in these soils.   

     13019.0007.083.0 CPOMClayWSA   

where Clay and POM-C are expressed in g kg-1. 

A multiple regression analysis performed for WDC instead of WSA showed that 

neither TOC nor POM-C were associated with the amount of free colloids in these soils. 

The best model found to explain the variation in WDC was a polynomial regression 

(Equation 14) that included only the silt plus clay content (Table 3.5), which explained 

about 82% of the variation in WDC (p<0.05) (Table 3.6). This suggests an important 

control of soil texture on the release of free clay in these soils.  An analysis to explore the 

relationship among WDC, clay, silt content, TOC and Fe (ox) content, showed the 

influence of iron  on WDC, because by using Fe (ox) content alone, it was possible to 

explain more than 60% of the variation in this soil parameter (Equation 15). However, 

Equation 13 could not improve the prediction by including Fe (ox), which suggests that the 

parameters tested had overlapping actions. 

    14693.35.6895.32181 2ClayplusSiltClayplusSiltWDC    

  )15(7681.0897.6 FeWDC   

One possible reason for this finding is that Fe oxides were themselves a 

component of the Silt + Clay fraction, thus Equation 14 already includes the effect of Fe. 
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Table 3.5: Analysis of variance for the single regression model for water dispersible 

colloids versus silt plus clay content.  

Source Sum of Squares d.f. Mean square F ratio p value 

Model 37.39 2 18.69 16.51 *** 

Residual 5.66 5 1.13   

Total (corr.) 43.06 7    

R2 = 86.9 percent; R2 (adjusted for d.f.) = 81.6 percent; Standard Error of Estimate = 
1.064; Mean absolute error = 0.755; Durbin-Watson statistic = 1.36 (P=0.01). (***) 
significant at <0.001.    
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Table 3.6: Polynomial regression analysis between water dispersible colloids (WDC) 

and the silt plus clay as an independent variable. 

Parameter Estimate Standard error T statistic p Value 
Constant    32181.500     7687.070  4.18 *** 
Silt + Clay -689.500 164.950 -4.18 *** 
(Silt + Clay)2       3.693     0.884  4.17 *** 
Abbreviations:  (***) significant at < 0.001.  
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3.1.2.  The effect of tillage system on selected soil chemical parameters 

Values of soil chemical parameters in the Calloway silt and the Maury silt loam 

soils are shown in Table 3.7. Because both soils were well drained, very low 

exchangeable Na content (Exch. Na) was expected. The highest value corresponded to 

the Maury soil under CT and the lowest value in the Calloway soil, which shows no 

differences between CT and NT. However, these differences should not have 

consequences on soil stability because the absolute values and the proportion of Exch. Na 

on the cation exchange capacity (CEC) in both soils are negligible (Table 3.7). 

 

3.1.2.1. Exchangeable K  

The Maury silt loam soil with continuous corn had the highest Exch. K content in 

NT in 0 to 5 cm soil depth, significant at p<0.05 (Table 3.7).   The Exch. K value under 

CT was lower than NT. However, the Calloway silt soil with the corn-soybean rotation 

showed no differences in Exch. K content between CT and NT, but these values were 

lower than Exch. K values in the Maury soil (p<0.05). 

 3.1.2.2. Exchangeable Ca and Mg  

The Maury soil under CT had the highest exchangeable Ca (Exch. Ca) content, 

and the Calloway soil under CT had the lowest value (Table 3.7). Therefore, Exch. Ca 

under NT showed no differences between the Maury soil and the Calloway soil (p<0.05). 

In addition, exchangeable Mg (Exch. Mg) content differed neither with tillage nor with 

soils (Table 3.7).   

3.1.2.3. Cation exchange capacity (CEC) and pH  

The Maury soil showed no differences between the two tillage systems, but in the 

Calloway soil, CEC was higher under NT than under CT (p<0.05) (Table 3.7). This could 

be a consequence of the different TOC content (Table 3.1). 
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Table 3.7: Average values of selected soil chemical parameters (0-5 cm soil depth) from 

the Calloway silt soil and the Maury silt loam soil under No tillage (NT) and 

Conventional (intensive) tillage (CT).                                                                                      

Na K Ca Mg CEC pH EC Tillage 

Soil        --                                             cmol kg-1                                                                - -                         - dS m-1- 

NT 
Maury 

0.05b 0.96c 7.45b 0.29a 10.97c 6.60b 0.09a 

CT 
Maury 

0.08c 0.35b 8.26c 0.28a 10.56c 6.20a 0.10a 

NT 
Calloway 

0.03a 0.23a 7.45b 0.30a 9.46b 6.90c 0.11a 

CT 
Calloway 

0.03a 0.24a 4.19a 0.23a 6.79a 7.10c 0.12a 

Abbreviations: Na =exch. Sodium; K = exch. Potassium; Ca= exch. Calcium; Mg= exch. 
magnesium;  CEC= Cation exchange capacity; EC= electrical conductivity. Different 
letters in the same column means significant with p<0.05 according to the LSD test. n=4 
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In the Maury soil, pH was lower under CT than under NT (Table 3.1). However, 

the opposite situation was observed in the Calloway soil. Probably, soil management 

(type and amount of fertilizer) and crop rotation could be more responsible than tillage to 

cause significant changes in pH. This is because crop rotation could imply different root 

systems and different kinds of crop residue that are important inputs to modify soil 

micro-environments (Angers et al., 1995; Ball et al., 2005; D'Haene et al., 2008). 

In order to analyze consequences of soil chemical parameters on the soil structure, 

statistical relationships between different cations and aggregate stability indexes are 

shown in Table 3.8. Alkaline-earth cations (Ca and Mg) were positively related with 

MWD and GMD (p<0.05). However, these cations had no relationships with WSA, 

which suggests that the water stability depended on other agents.  Exchangeable K,  

Exch. Na and Fe (ox) were not significant related to MWD and GMD, which suggests that 

these cations were not relevant for soil aggregation. 

 

3.1.3. The effect of tillage systems on selected characteristics of soil aggregates 

Analysis of main effects and interactions on 8 mm aggregates from Maury and 

Calloway soil under both tillage systems (Table 3.9) were significant for aggregates 

volume. Significant interactions soil by tillage means that differences produced by tillage 

systems were higher in the Maury soil than in Calloway soil (Table 3.9). 

  Aggregate density and porosity differed in both sites, but tillage systems had no 

significance on these parameters (Table 3.9). No significance (p<0.05) was observed in 

the interactions. It would have been expected that tillage systems increased bulk density 

but few studies have analyzed aggregate density. Thus, it is possible that soil parameters 

like organic matter and clay content can play an important role in density and porosity of 

aggregates. 

Like three-dimensional structures, soil aggregates have both, geometrical and 

morphological characteristics that could be affected by tillage systems. These aspects 

were explored by using several aggregate shape factors as defined in Section 2. The 

shape factor (SF) (Eq. 1) represents the relationship among the aggregate’s dimensions 

(Figure 2.2), i.e., when all dimensions are equal, the value of SF should be 1.   
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Table 3.8: Pearson correlations among selected soil chemical parameters, geometric mean 

diameter and mean weight diameter of soil aggregates. 

Source Ca Mg K Na Fe 
GMD 0.93 

(***) 
0.86 
(***) 

0.50 
NS 

0.50 
NS 

0.60 
NS 

MWD 0.94 
(***) 

0.90 
(***) 

0.60 
NS 

0.60 
NS 

0.50 
NS 

Abbreviations: GMD = Geometric mean diameter; MWD= Mean weight diameter; (***) 
significant at <0.001; NS= not significant (α= 0.05). 
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Table 3.9: Average values of selected soil parameters and p-values of two-factor 

analysis for 8 mm aggregate size in the Maury silt loam and the Calloway silt soil under 

conventional tillage (CT) and no tillage (NT). 

Soil 
Treatment 

SF V 
(cm3) 

ρb 
(g cm-3) 

Φ 
(cm3 cm-3)

Flat El Sphe Circ Rug 

Maury CT 0.75 1.40 1.10 0.65 1.35 0.65 0.34 0.58 1.76 
Maury NT 0.62 0.86 1.12 0.69 1.50 0.51 0.37 0.60 1.72 
Calloway CT 0.70 1.03 1.12 0.74 1.23 0.61 0.43 0.64 1.61 
Calloway NT 0.70 0.97 1.10 0.74 1.29 0.62 0.39 0.62 1.64 

Main sources and interaction 
A. Soil  NS * * * * NS NS NS * 
B. Tillage ** *** NS NS * ** NS NS NS 
A x B * * NS NS NS ** NS NS * 
Abbreviations: SF= shape factor; V= volume;  ρb=aggregate density; Φ= porosity; Flat= flatness; 
El= elongation ratio; Sphe= sphericity; Circ= circularity; Rug= rugosity; n=30. NS= not 
significant (α= 0.05); (*) significant at <0.05; (**) significant at < 0.01: (***) significant 
at <0.001. 
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Shape factor was not affected by soil, but depended on tillage. It can be observed 

in Table 3.9 that the highest value of SF was measured in the Maury soil under CT and 

the lowest value also was measured in Maury soil but under NT. The significance in 

interaction showed that tillage systems were responsible for differences in SF values in 

the Maury soil but not in Calloway soil.  

Flatness was affected by both soil and tillage, but the interaction was not 

significant, which means that both sources of variation were independent. Flatness values 

were higher in the Maury soil than in the Calloway soil, and under NT, values tended to 

be higher than under CT (Table 3.9). Tillage systems were responsible for the planar 

shape of these aggregates. No significance was observed for sphericity and circularity. 

Conversely, rugosity was related only to soil characteristics, as was indicated by the 

significance of main effects and interaction. This significance identified soil 

characteristics were largely responsible for aggregates rugosity and despite the 

differences due to tillage systems, values for the Maury soil were higher than for the 

Calloway soil.    

The two-factor analysis performed on aggregates of 4.75 mm from Maury and 

Calloway soil under CT and NT are shown in Table 3.10.  Aggregate volume, density and 

porosity were affected for soil and tillage systems and the interaction was significant for 

volume and bulk density (p<0.05). The aggregate volume was higher under CT than 

under NT in the Maury soil but the opposite occurred in the Calloway soil (Table 3.10). 

In addition, aggregate density was always higher under NT than under CT in both soils, 

especially in the Maury soil.   

The shape factor and the elongation ratio were modified only by tillage systems.  

Interaction resulted not significant. Both, SF and El values were higher under CT than 

under NT.  

Flatness was not the result of the factors evaluated here. No significance in soil, 

tillage or interaction was coherent and supported this conclusion. Flatness index showed 

that soil aggregates tend to be more planar than spherical, because values were higher 

than 1 (Table 3.10). At this aggregate level the common assumption about NT tending to 
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Table 3.10: Average values of soil parameters and p-values of two-factor analysis for 

4.75 mm aggregate size in the Maury silt loam and the Calloway silt soil under 

conventional tillage (CT) and no tillage (NT). 

Soil 
Treatment 

SF V 
(cm3) 

ρb 

(g cm-

3) 

Φ 
(cm3 
cm-3) 

Flat El Sphe Circ Rug 

Maury CT 0.79 0.34 0.99 0.62 1.38 0.68 0.85 0.92 1.10 
Maury NT 0.65 0.17 1.40 0.46 1.35 0.56 1.25 1.10 0.91 
Calloway CT 0.70 0.18 0.97 0.72 1.35 0.65 0.43 0.64 1.60 
Calloway NT 0.64 0.27 1.09 0.74 1.30 0.58 0.35 0.58 1.78 

Main sources and interaction 
A. Soil  NS ** *** *** NS NS *** *** *** 
B. Tillage *** ** * *** NS ** *** * NS 
A x B NS *** *** NS NS NS *** *** ** 
Abbreviations: SF= shape factor; V= volume;  ρb=aggregate density; Φ= porosity; Flat= flatness; 
El= elongation ratio; Sphe= sphericity; Circ= circularity; Rug= rugosity. n=30. NS= not 
significant (α= 0.05); (*) significant at <0.05; (**) significant at < 0.01: (***) significant 
at <0.001.  
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produce planar aggregates was not supported by the data. 

The geometric shape of aggregates, represented by sphericity and circularity, was 

a consequence of the interaction of soil by tillage (Table 3.10). In the Maury soil values 

of both parameters were higher than in the Calloway soil and under NT were higher than 

under CT.  The opposite tillage trend was observed in the Calloway soil.   

Interaction soil by tillage was significant for rugosity. In the Calloway soil 

rugosity was higher under NT than under CT and in the Maury soil was the opposite. 

In aggregates of 2.78 mm (Table 3.11), soil was more significant than tillage 

systems on these soil parameters. Soil significantly influenced all the parameters except 

flatness and elongation ratio, but tillage systems only affected rugosity.  Aggregate 

volume was lower in the Maury soil than in the Calloway soil and the opposite was 

observed with aggregate density. As occurred with aggregates of 4.75 mm, flatness was 

not affected for the factors considered in this study.  Elongation ratio, sphericity and 

circularity were higher in the Maury soil than in the Calloway soil. 

Rugosity was the only parameter affected by the interaction soil and tillage 

(p<0.05).  In the Calloway soil, rugosity values were higher than in the Maury soil and 

were higher under CT than under NT. No difference due to tillage was observed in the 

Maury soil.  

 

3.1.4. Effect of tillage systems on selected soil chemical and biological parameters in 

different aggregate size 

Two-factor analysis performed on aggregates of 8 mm for Maury and Calloway 

soils under CT and NT are shown in Table 3.12.  All main and interactions effects were 

significant, which highlighted the importance of considering both soil and tillage when 

evaluating soil chemical and biological parameters.  Exchangeable Na is not important in 

well drained soils like the Maury or the Calloway.  However, notice that the highest value 

was measured under CT in the Maury soil and the lowest under CT in the Calloway soil. 

No differences in Exch. Na were found under NT (p<0.05).   
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Table 3.11: Average values of soil parameters and p-values of a two-factor analysis for 

2.78 mm aggregate size in the Maury silt loam and the Calloway silt soil under 

conventional tillage (CT) and no tillage (NT). 

Soil 
Treatment 

SF V 
(cm3) 

ρb 

(g cm-

3) 

Φ 
(cm3 
cm-3) 

Flat El Sphe Circ Rug 

Maury CT 0.76 0.06 1.32 0.49 1.22 0.69 4.64 2.13 0.48 
Maury NT 0.71 0.06 1.30 0.51 1.24 0.65 5.20 2.22 0.47 
Calloway CT 0.64 0.09 1.10 0.75 1.38 0.61 0.21 0.46 2.23 
Calloway NT 0.66 0.08 1.11 0.75 1.34 0.58 0.29 0.53 1.94 

Main sources and interaction 
A. Soil  ** *** *** *** NS NS *** *** *** 
B. Tillage NS NS NS NS NS NS NS NS ** 
A x B NS NS NS NS NS NS NS NS ** 
Abbreviations: SF= shape factor; V= volume; ρb=aggregate density; Φ= porosity; Flat= flatness; 
El= elongation ratio; Sphe= sphericity; Circ= circularity; Rug= rugosity. n=30. NS= not 
significant (α= 0.05); (*) significant at <0.05; (**) significant at < 0.01: (***) significant 
at <0.001. 
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Table 3.12: Average values of different soil chemical and biological parameters in 

aggregates of 8 mm size in the Maury and in the Calloway silt soil under conventional 

tillage (CT) and no tillage (NT) and probability values from two-factor analysis with 

interactions.  

Soil Tillage 
system 

Na 
(cmol 
kg-1) 

K 
(cmol 
kg-1) 

Ca 
(cmol 
kg-1) 

Mg  
(cmol 
kg-1) 

 Fe(ox) 
(mg  
Kg-1) 

TOC 
(g kg-1) 

 POM   
-C 
(g kg-1) 

NT 0.03 0.30 5.59 0.10 40.10 19.60 15.15 Maury 
CT 0.05 0.30 6.23 0.21 39.90 10.00 5.37 
NT 0.03 0.33 4.11 0.63 19.06 11.45 2.75 Calloway 
CT 0.02 0.20 7.21 0.10 13.13 10.11 2.72 

Main effects and interaction 

A. Soil *** *** *** *** *** *** *** 

B. Tillage * *** *** *** ** ** *** 

A x B *** ** *** *** ** *** ** 

Abbreviations: Na= sodium; K = potassium; Ca= calcium; Mg= magnesium; Fe(ox)= oxalate extractable 
iron; TOC= total organic carbon; POM-C= Particulate organic matter.  NS= no significant(α= 0.05); (*) 
significant at <0.05; (**) significant at < 0.01: (***) significant at <0.001. 
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Exchangeable K was higher under NT than under CT in the Calloway soil. No 

difference was observed in the Maury soil between both tillage systems. Exchangeable 

Ca resulted higher under CT than under NT in both soils. Although both are alkaline-

earths elements, Exch. Mg showed a different trend than Exch. Ca.  Exch. Mg was higher 

under NT than under CT in the Calloway soil and the opposite trend was observed in the 

Maury soil.  

Oxalate extractable Fe (Fe ox) content showed no differences between the two 

tillage treatments in the Maury soil and was higher in this soil than in the Calloway soil. 

Under NT, it was higher than under CT in the Calloway soil. Total organic carbon (TOC) 

in both soils was higher under NT than under CT. No differences were observed in both 

soils under CT (p<0.05). In the case of particulate organic matter (POM-C) the highest 

value was observed under NT in the Maury soil, and in the Calloway soil, tillage systems 

showed no differences. 

In aggregates of 4.75 mm (Table 3.13), soil  was not significant for Exch. Na, but 

tillage and interaction resulted in significant effects (p<0.05). As was mentioned 

previously, Exch. Na content was too low to cause any consequences on the behavior of 

these soils. In case of Exch. K content, this cation was affected by soil but not by tillage 

and the interactions resulted significant. The differences in Exch. K content produced by 

tillage in the Calloway soil were higher than in the Maury soil.  

In the same sense, interaction soil by tillage resulted significant for Exch. Ca 

content and the differences produced by tillage were higher in the Calloway soil than in 

the Maury soil.  Exchangeable Mg, Fe (ox) content, TOC and POM-C also were affected 

by the interaction soil and tillage (Table 3.13). Differences in Exchangeable Mg and Fe 

(ox) content produced by tillage were higher in the Maury soil than in the Calloway soil. 

On the contrary, TOC and POM-C differences produced by tillage were higher in the 

Maury than in the Calloway soil. 

Two-factor analysis in the case of aggregates of 2.78 mm is shown in Table 3.14.  

Exch. Na was affected by soil and tillage but the interaction was insignificant (p<0.05), 

which means that they were independent.   
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Table 3.13: Average values of different soil chemical and biological parameters in 

aggregates of 4.75 mm size in the Maury and in the Calloway silt soil under 

conventional tillage (CT) and no tillage (NT) and probability values from two-factor 

analysis with interactions.  

 Soil Tillage 
system 

Na 
(cmol 
kg-1) 

K 
(cmol 
kg-1) 

Ca 
(cmol 
kg-1) 

Mg  
(cmol 
kg-1) 

 Fe(ox) 
(mg  
Kg-1) 

TOC 
(g kg-1) 

 POM   
-C 
(g kg-1) 

NT 0.04 0.30 6.15 1.08 18.02 19.55 7.46  Maury 
CT 0.03 0.27 5.49 0.74 19.05 9.45 2.52 
NT 0.02 0.17 7.48 0.35 7.69 13.10 5.10 Calloway 
CT 0.04 0.23 4.03 0.13 5.30 8.80 1.84 

Main effects and interaction 

A. Soil NS *** NS *** *** * ** 

B. Tillage ** NS *** *** * ** *** 

A x B *** *** *** * ** * ** 

Abbreviations: Na= sodium; K = potassium; Ca= calcium; Mg= magnesium; Fe(ox)= Oxalate extractable 
iron; TOC= total organic carbon; POM-C= Particulate organic matter.  NS= not significant (α= 0.05); (*) 
significant at <0.05; (**) significant at < 0.01: (***) significant at <0.001. 
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Table 3.14: Average values of different soil chemical and biological parameters in 

aggregates of 2.78 mm size in the Maury and in the Calloway silt soil under 

conventional tillage (CT) and no tillage (NT) and probability values from two-factor 

analysis with interactions.  

Aggregate 
size (mm) 

Soil Tillage 
system 

Na 
(cmol 
kg-1) 

K 
(cmol 
kg-1) 

Ca 
(cmol 
kg-1) 

Mg  
(cmol 
kg-1) 

 Fe(ox) 
(mg  
Kg-1) 

TOC 
(g kg-1) 

 POM   
-C 
(g kg-1) 

NT 0.03 0.33 6.42 1.19 16.05 21.20 17.75 Maury 
CT 0.02 0.23 5.29 0.65 14.45 9.50 1.10 
NT 0.02 0.20 8.17 0.28 13.11 14.10 8.67 Calloway 
CT 0.01 0.17 3.84 0.09 10.26 8.95 0.99 

Main effects and interaction 

A. Soil *** *** * *** ** *** *** 

B. Tillage * *** *** * * *** *** 

A x B NS ** *** *** NS ** *** 

Abbreviations: Na= sodium; K = potassium; Ca= calcium; Mg= magnesium; Fe(ox)= Oxalate extractable 
iron; TOC= total organic carbon; POM-C= Particulate organic matter.  NS= not significant (α= 0.05); (*) 
significant at <0.05; (**) significant at < 0.01: (***) significant at <0.001. 
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Exch. K, Ca and Mg were affected by soil, tillage and their interaction. Tillage 

produced higher differences in Exch. K and Exch. Mg in the Maury soil than in the 

Calloway soil. However, the opposite was observed with differences in Exch. Ca 

produced by tillage and were lower in the Maury soil than in the Calloway soil.   

In case of Fe (ox) content, soil and tillage were significant, but not their interaction 

(Table 3.14). TOC and POM-C values were affected by soil and tillage and the 

interaction was significant. In the Maury soil, tillage differences in TOC and POM-C 

observed under NT were higher than in the Calloway soil.   
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3.2  Effect of high and low kinetic energy wetting on particle release at soil aggregates 

and field scale 

 

3.2.1. Effect of high and low kinetic energy wetting on wetting rate, water content 

and particle release in soil aggregates   

Water uptake measured in the lab in aggregates under CT and NT from the Maury 

soil is shown in Figure 3.3. Notice that the final time in this experiment represents the 

moment of aggregate breakdown. In Figure 3.3, time to aggregate rupture decreased 

when the aggregate size decreased. The same situation was observed with the water 

uptake. Values observed under CT were higher than values under NT (p<0.05), but only 

until 8 minutes in aggregates of 8 mm (Figure 3.3 a). In aggregates of 4.75 and 2.78 mm, 

water uptake was higher under CT than under NT only at 2 minutes (Figure 3.3 b and c). 

The same comparisons between tillage realized in the Calloway soil are shown in Figure 

3.4.  As occurred with the Maury soil, similar behavior was observed between time to 

rupture and the magnitude of water uptake. Both parameters decreased when the 

aggregate size decreased. However, under NT, water uptake values in aggregates of 8 

mm were higher than under CT, as opposed to what was observed in the Maury soil, and 

only until 7 minutes. No significant differences were observed in aggregates of 4.75 and 

2.78 mm when both tillage systems were compared. 

Three-factor analysis for wetting rate values calculated according to Rasiah and 

Kay (Rasiah and Kay, 1995) with (kdi) and without drop impact (k) is shown in Table 

3.15.  Aggregates of 2.78 and 4.75 mm exhibited a similar response to the main effects, 

and both showed a soil by tillage by wetting rate interaction.  The kdi values were higher 

than the k values despite soil differences (Table 3.15). Tillage effect on k values was not 

clear, but kdi was higher under CT than under NT in both soils.  

The second order interaction soil by tillage by energy was significant for both, 

aggregates of 2.78 mm and aggregates of 4.75 mm. However, in aggregates of 2.78 mm 

was higher in the Calloway soil than in the Maury soil.  In aggregates of 4.75 mm, these 
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Table 3.15:  Three-factor analysis and wetting rate values (g min-1) measured without 

drop impact (k) and with drop impact (kdi) in different aggregate size classes from Maury 

and Calloway soil under conventional (CT) and no tillage (NT).  

Aggregate size 
2.78 mm 4.75 mm 8 mm 

Soil Tillage 
system 

k kdi k kdi k kdi 
Calloway CT 0.56 7.8  0.49 4.8  0.41  6.0  

 NT 0.60  6.0   0.48   4.8  0.32      10.2 
Maury CT 0.52   7.2  0.47   6.0  0.36  5.4   

 NT 0.52   6.6  0.45   8.4   0.27   9.0  
Main source and interaction 

            A. Soil NS NS * 
B. Tillage *** *** ** 
C. Energy *** *** *** 

AB ** * NS 
AC NS NS * 
BC *** *** *** 

ABC *** * NS 
Abbreviations: NS =  not significant (α= 0.05); (*) significant at p < 0.05; (**) significant 
at p<0.01; (***) significant at p<0.001.    
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differences in wetting rate were higher in the Maury soil than in the Calloway soil. 

Soil characteristics, tillage and energy influenced wetting rate in aggregates of 8 

mm. Significance in the soil by energy interaction was present because the differences in 

wetting rate was higher in the Calloway soil than in the Maury soil. Interaction tillage by 

energy showed that NT caused more differences in wetting rate than CT.  

Gravimetric water content at rupture for aggregates of 2.78 mm with (WCdi) and 

without (WC) drop impact depended only on the soil characteristics (Table 3.16). The 

WC and WCdi  values for the Calloway soil were lower than in the Maury soil (Table 

3.16). 

 However, in aggregates of 4.75 mm, the soil by energy wetting interaction was 

significant, although tillage and energy were not significant as main effects. The 

Calloway soil had lower values of WC and WCdi than the Maury soil (Table 3.16). The 

interaction soil by energy suggested that differences in water content with and without 

impact before the rupture were higher in the Calloway soil than in the Maury soil.   

 Significant soil by tillage and soil by wetting energy interactions of the WC and 

WCdi values for 8 mm aggregate size were observed (Table 3.16). In the Maury soil WC 

values were higher under CT than under NT, but no such difference was observed with 

WCdi.  In the Calloway soil, no difference was observed in WC or WCdi.  

Volumetric water content with (VWCdi) and without drop impact (VWC) were 

also analyzed and results are displayed in Table 3.17. No significance was observed for 

aggregates of 2.78 mm in second order interaction (soil by tillage by energy) but soil by 

tillage interaction was significant. In the Calloway soil under CT, volumetric water 

content was higher than in the Maury soil.  

Interaction soil by tillage was significant in aggregates of 4.75 mm. Differences 

caused by tillage was higher in the Maury soil under NT. Energy and soil as main effects 

were significant, VWCdi was higher than VWC. The Maury soil had more VWCdi than 

the Calloway soil.  
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Table 3.16:  Three-factor analysis and gravimetric water content  values before aggregate 

rupture without drop impact (WC) and with drop impact (WCdi) in different aggregate 

size classes from Maury and Calloway soil under conventional (CT) and no tillage (NT).  

Aggregate size 
2.78 mm 4.75 mm 8 mm 

Soil Tillage system 

WC WCdi WC WCdi WC WCdi 
Calloway CT 0.32 0.34 0.33 0.26 0.31 0.12 

 NT 0.32 0.27 0.32 0.30 0.32 0.10 
Maury CT 0.50 0.45 0.38 0.43 0.33 0.19 

 NT 0.44 0.42 0.45 0.44 0.24 0.18 
Mains source and interaction 

                    A. Soil ** *** NS 
B. Tillage NS NS * 
C. Energy NS NS *** 

AB NS NS * 
AC NS * *** 
BC NS NS NS 

ABC NS NS NS 
Abbreviations: NS = not significant (α= 0.05); (*) significant at p < 0.05; (**) significant 
at p<0.01; (***) significant at p<0.001.  
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Table 3.17:  Three-factor analysis and volumetric water content values before aggregate 

rupture without drop impact (WC) and with drop impact (WCdi) in different aggregate 

size classes from Maury and Calloway soil under conventional (CT) and no tillage (NT).  

Aggregate size 
2.78 mm 4.75 mm 8 mm 

Soil Tillage system 

WC WCdi WC WCdi WC WCdi 
Calloway CT 0.50 0.50 0.38 0.40 0.48 0.22 

 NT 0.42 0.44 0.37 0.51 0.38 0.24 
Maury CT 0.47 0.51 0.39 0.44 0.40 0.20 

 NT 0.46 0.50 0.47 0.50 0.33 0.22 
Main source and interaction 

                    A. Soil NS ** *** 
B. Tillage NS NS NS 
C. Energy NS *** * 

AB ** ** NS 
AC NS NS NS 
BC NS NS NS 

ABC NS NS * 
Abbreviations: NS =  not significant (α= 0.05); (*) significant at p < 0.05; (**) significant 
at p<0.01; (***) significant at p<0.001.  
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Second order interaction (soil by tillage by energy) in aggregates of 8 mm was 

significant. The differences in volumetric water content with and without drop impact 

were higher in the Calloway soil under CT. 

The k and kdi data signal that the wetting rate with drop impact was the highest, 

but could not produce the highest aggregate water content. This result suggested that 

wetting rate was more important than water content in producing aggregate rupture in 

these soils.  The fact that the faster the wetting rate, the lower the water content necessary 

to initiate the rupture implies that a mechanism related with internal aggregate pressure 

was involved, i.e., slaking. Conversely, with slow wetting the highest water content prior 

to aggregate rupture was observed, which suggested that the mechanism involved was a 

physicochemical dispersion due to osmotic stress on wetting with low-electrolyte water. 

Pearson correlations were used to explore the relationship among aggregate 

properties, and both wetting rate and water content (Table 3.18). Aggregate volume 

strongly and negatively influenced k values, and these were not affected by other 

aggregate soil parameters, neither TOC nor clay content. Note that this was a strong 

inverse relationship. Parameters that might normally be related to the wetting rate, k, such 

as aggregate density or porosity, exhibit no such relationship in this study. This could be 

a consequence of high pore heterogeneity or lack of connectivity in the pore system 

within these large aggregates.   

As expected, WC was positively related with k values. In addition, several 

aggregate parameters were related to WC.  Of special importance were the direct 

relationship of k with aggregate density and the inverse relationship with volume and 

total porosity, because these support the hypothesis regarding a lack of connectivity in the 

aggregate pore system.  It is not clear why flatness has an inverse relationship with water 

content, but if the pore system was aligned along one axis, for example parallel to the 

tension table, this could reduce water uptake.  Similarly, pore geometry could be 

responsible for the inverse relationship between WC and rugosity or the positive 

relationship between WC and other parameters.  

 Rugosity represents the aggregate perimeter as compared to the perimeter of a 

circle, which in all cases showed that these aggregates tend to be more like polyhedrons  
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Table 3.18: Pearson correlation of different aggregate soil parameters, soil properties, 

water content and wetting rate measured with different procedures. 

Source k WC kdi WCdi 
TOC NS NS 0.34* NS 
POM-C NS NS NS NS 
TOC rsq NS NS 0.33* NS 
POM-C rsq -0.34* NS NS NS 
WSA NS 0.33*   0.59***  0.45** 
CLAY NS 0.38** 0.38** NS 
SF NS 0.38** NS NS 
VOL -0.81**** -0.57*** -0.52**   - 0.83**** 
Density NS 0.71****     0.68****   0.53*** 
Porosity NS -0.70****    -0.68**** - 0.54*** 
Flatness NS -0.60**** NS NS 
Elongation NS 0.56**** NS NS 
Sphericity NS 0.78****     0.66****     0.62**** 
Circularity NS 0.80****     0.66****     0.62**** 
Rugosity NS -0.72**** -0.51** - 0.52*** 
WC 0.52***    
k  0.52***   
WCdi          0.51***  
kdi            0.51*** 

 

Abbreviations: k= wetting rate; WC= water content; kdi= wetting rate with kinetic energy; 
WCdi= Water content with kinetic energy; TOC= total organic carbon; TOC sqr= square 
root of TOC; POM-C= particulate organic matter; POM-C rsq= square root of POM-C; 
WSA= water stable aggregates; SF= shape factor; VOL= volume;  n=30; NS=  not 
significant (α= 0.05); *= significant at p<0.05; **= significant at p <0.01; ***=significant 
at p<0.001; ****= significant at p<0.0001. 
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than spherical. An intricate pattern of porous geometry could be expected in a complex 

aggregate shape, which determines that some regions within the aggregate became 

saturated at the same time when others did not, creating inner aggregate failure zones. In 

such a scenario, aggregates begin the rupture before becoming fully saturated with water. 

However, this assumption does not explain the direct relationship between elongation and 

WC, because this positive relationship implies that y-axis- and x-axis-related pore 

systems are active at the same time. The ambiguity resulting from these different 

relationships indicates that detailed observations of the inner pore geometry are needed to 

precisely identify the reason behind the observed behavior.  

Further, it was not clear why TOC was not related to WC. One reason could be 

that a different kind of organic carbon was involved in this response. To reduce the 

variability in data, the TOC square root (TOC SqR) was tested, but caused no differences 

on WC or k. However, the POM-C square root (POM-C SqR) showed a negative 

relationship with k. Conversely, clay content was positively related with WC as was 

expected.  

Pearson correlation analysis between kdi and other aggregate parameters (Table 

3.18), found significant relationships with TOC, TOC SqR, WSA and clay content. 

Again, aggregate density, total porosity and volume exhibited similar behavior as 

occurred with k values, thus suggesting a coherent relationship to the connectivity of 

aggregate pore systems.  In addition, the WSA was always related with WC, kdi and 

WCdi.  

When the water content with drop impact (WCdi) was examined, an unexpected 

behavior was observed, i.e., no relationships were observed among WCdi, POM-C, TOC 

and clay content.  One possible explanation could be that the variability was too high to 

define a trend due to the nature of the drop impact procedure, which could force the water 

to enter the aggregate. Other aggregate parameters exhibited similar behavior with WCdi 

as observed with WC, and are explained as was done above. 

A matrix plot among clay content, TOC, TOC SqR, POM-C, POM-C SqR, k, kdi, 

WC and WCdi  in Figure (3.5) shows that in fact, these relationships are strongly non-

linear. Notice that the relationships with wetting rate and water content remained non-  
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linear even with the square roots of TOC and POM-C.    

An examination of these relationships at aggregate scale was performed in Figure  

3.6.  Note that in the Maury soil under CT an overlapping effect of k values appeared 

with aggregates of 2.78 and 4.75 mm at TOC concentration of 9.6 g kg-1. These 

aggregates had a clay content of 26.9 g 100 g-1. In addition, k values decreased at low 

TOC values (Figure 3.6) and increased beyond a TOC value of 10 g kg-1. In the Maury 

soil, these aggregates belong to NT system, with a clay content of 23.6 g 100 g-1. 

In the Calloway soil, a similar behavior was observed in the same aggregate size 

ranges (from 2.78 to 4.75 mm) under CT but with a clay content of 11.2 g 100 g-1 and 

TOC concentration of 9 g kg-1 (Figure 3.6). Again, under NT, k values increased with 

TOC content. The regression model used to fit these data showed a similar slope under 

NT in both, the Calloway and the Maury soil.  

Interestingly, as occurred with TOC in the Maury soil under CT, k decreased with 

POM-C. However, under NT, k values increased with POM-C, except with aggregates of 

4.75 mm (Figure 3.6). The behavior of this aggregate size is not clear, and no linear 

model but a polynomial model was needed to fit the data.  

In the Calloway soil, an overlapping effect occurred between aggregates of 8 mm 

from CT and NT, which clay content of 11.2 and 13.2 g 100 g-1, respectively.  At very 

low POM-C content, k values showed a negative relationship that became positive when 

POM-C was higher than 5 g kg-1, approximately (Figure 3.6).   

To further analyze relationships among wetting rate and these aggregation factors, 

the change in k and kdi (g min-1) value per unit of TOC (g kg-1), POM-C (g kg-1) and clay 

content (g 100 g-1) from each aggregate size were used to build a multiple range test of 

differences at the aggregate scale.  Because these soil parameters could modify the 

relationship between soils and wetting rate, these ratios might indicate the level of 

responsibility associated with different components, especially if different kinds of 

organic carbon were involved in wetting rate response for individual aggregate sizes. In 

the same sense, overlapping effects caused by the interaction clay-organic carbon could 

be identified.   
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Table 3.19: Multiple-range-test for the ratio among wetting rate, total organic carbon, 

particulate organic matter and clay content in the Calloway and the Maury soils under 

conventional and no tillage. 

Aggregate  
Size 

k/TOC k/POM
C 

kdi/TOC kdi/POM
C 

k/Clay kdi/Clay Soil  Tillage 
system 

Mm --                  g min-1/g kg-1                       --  -g min-1/g 100g-1 - 
2.78 0.05e 0.51f 0.92e 8.80f 0.02b 0.33a
4.75 0.04d 0.42e 0.85d 7.32e 0.01a 0.31a

CT 

8 0.03c 0.19d 0.71c 3.78d 0.01a 0.27a
2.78 0.02b 0.20d 0.33a 2.65c 0.02b 0.28a
4.75 0.02b 0.16d 0.40b 2.90c 0.01a 0.33a

Maury 

NT 

8 0.01a 0.05b 0.36a 1.28c 0.01a 0.29a
2.78 0.06f 0.06b 0.70c 0.72b 0.03d 0.57c
4.75 0.05e 0.02a 0.64c 0.32a 0.04c 0.51c

CT 

8 0.04d 0.08c 0.56b 1.07b 0.05c 0.50b
2.78 0.04d 0.08c 0.39a 0.74b 0.02c 0.42b
4.75 0.03c 0.05b 0.49b 0.74b 0.03c 0.50b

Calloway 

NT 

8 0.02b 0.02a 0.50b 0.39a 0.04b 0.45b
Abbreviations: k = wetting rate ; kdi=wetting rate with drop impact; TOC= total organic 
content; POM-C= particulate organic matter. CT= conventional tillage; NT= No tillage. 
LSD test with α=0.05. 
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It can be observed in Table 3.19 that the ratio k/TOC decreased when the aggregate size 

increased, and this decrease was more pronounced under CT than under NT.  This trend 

became clear in both soils, thus suggesting a strong relationship with organic carbon. To 

identify if different organic carbon fractions were responsible for this behavior, the 

existence of coherence between TOC and particulate organic matter (POM-C) response 

should be analyzed. 

The effect of POM-C on k values can be observed in Table 3.19. As observed 

with TOC, k/POM-C ratio under CT tended to decrease when aggregate size increased.  

Notice that because the POM-C is only a fraction of TOC, the ratio k/POM-C was higher 

than the ratio k/TOC. By comparing the ratio responses in Table 3.19, it can be realized 

that different kinds of OC are involved in k behavior, and in the Calloway soil under NT, 

the k/POM-C ratio was closely related with k/TOC behavior.  However, under CT in the 

Calloway soil, ratio k/POM-C tended to increase with aggregate size, as opposed to the 

ratio k/TOC.  In the Maury soil under NT no trend was observed in aggregates of 2.78 

and 4.75 mm but decrease in aggregates of 8 mm, thus suggesting that different kinds of 

OC were involved in both soils. 

 When the kdi/TOC ratio was evaluated (Table 3.19) a similar trend appeared as 

was mentioned before under CT, and the ratio decreased when aggregate size increased. 

However, an opposite behavior appeared under NT, and despite the soil type, the ratio 

tended to increase whith aggregate size increases. This was particularly remarkable in 

aggregates from the Calloway soil under NT.  The ratio kdi/POM-C showed that 

particulate organic matter was important under CT in the Calloway silt soil, but was not 

important under NT, because there, the ratio was not changed with aggregate size (Table 

3.19).  

The clay content effect on k and kdi values behavior was also evaluated in Table 

3.19. Clay content in the Maury soil under both tillage systems had no influence on the k 

and kdi values, but in the Calloway soil under CT and under NT, k/Clay ratio increased 

when the aggregate size increased. The opposite behavior was observed with kdi/Clay 

ratio in the Calloway soil under CT, but no relationships were found between aggregate 

size and kdi/Clay ratio under NT. These results could explain why no relationships were 

found in TOC and k values, because the clay content affected k values in opposite 
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direction than TOC. Also, it is noticeable that the Maury soil had more clay than the 

Calloway soil (Table 3.1) but no relationship was found, thus suggesting that low clay 

content has a role in k value response.   

 

3.2.2. Effect of low and high energy wetting at the aggregate scale  

To determine consequences on particle release at the aggregate scale when two 

different energies were applied, an experiment was performed with aggregates of 8, 4.75 

and 2.78 mm size with and without shaking in water during one hour. Results are shown 

in Table 3.19 in a three-factor analysis with interactions.  

Soil type was extremely important for particle release with and without shaking. 

Soil significantly impacted release of different particle sizes (Groups a, b and c) but also 

the total amount (T) of particle release (Table 3.20). Tillage was also significant in almost 

all cases.  

It is interesting to observe that energy, whose difference was produced with and 

without shaking the aggregates in water, significantly affected particles of all sizes 

released from aggregates of 8 mm. Aggregates of 8 mm generally released more total 

particles without shaking than with shaking. 

 However, this behavior was not observed for all aggregate size classes. When 

aggregates of 4.75 mm were shaken in water, differences were not found either in the 

total amount or in particles of Group a (greater than 0.105 mm). Also, differences were 

not observed in the quantity of particles greater than 0.105 mm released when aggregates 

of 2.78 mm were shaken in water. This behavior suggests differences in aggregate 

stability.  Notice that the total amount of particles released and particles in Group c 

(smaller than 0.0053 mm, or silt-clay sized particles) tended to be higher in the Calloway 

soil than in the Maury soil.  The interaction soil by energy means that the difference in 

silt-clay sized particles released was higher in the Calloway than in the Maury soil, 

caused when exposed to a high energy wetting. 

The interactions soil by tillage was not significant for the release of particles 

higher than 0.105 mm in aggregates of 8 and 2.78 mm and for particles in Group b in 

aggregates of 4.75 mm. When we observe the soil by energy interaction, significance  
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Table 3.20: Three-factor analysis of particle release (g) with (Sh) and without shaking 

(NSh) in water from different aggregate size from Maury and Calloway soil under 

conventional (CT) and no tillage (NT).   

Aggregate size 
2.78 mm 4.75 mm 8 mm 

Soil Tillage 
system/ 
Energy a b c T a b c T a b c T 

Calloway CT Sh 6.7 2.8 10.5 20.0 13.0 2.2 7.2 22.3 8.8 1.7 4.2 14.7 

 NT Sh 3.5 0.5 4.2 8.2 14.0 3.0 9.9 26.9 12.1 3.6 8.9 24.7 

 CT NSh 6.3 1.1 4.6 12.0 11.1 5.4 6.0 22.5 19.4 5.3 3.5 28.2 

 NT NSh 3.4 0.1 1.3 4.8 14.6 3.4 6.8 24.9 9.4 5.3 5.2 19.9 

 CT Sh 3.4 0.4 3.6 7.4 9.3 0.9 4.6 14.9 8.0 0.6 4.4 12.9 

Maury NT Sh 0.1 0.0 0.1 0.3 0.8 1.0 4.6 6.4 1.3 1.1 1.2 3.6 

 CT NSh 3.8 1.3 0.6 5.7 6.9 3.1 2.3 12.3 7.1 3.6 3.5 14.7 

 NT NSh 0.2 0.0 0.1 0.2 4.7 0.6 1.2 6.4 0.8 2.1 1.5 4.4 

Main source and interaction 
A. Soil *** *** *** *** *** *** *** *** *** *** *** *** 

B. Tillage *** *** *** *** * * ** ** *** NS ** ** 

C. Energy NS ** *** *** NS ** *** NS ** *** ** *** 

AB NS *** *** * *** NS *** *** NS ** ** * 

AC NS *** *** ** NS NS NS NS NS NS ** NS 

BC NS NS *** * ** ** *** NS ** *** NS ** 

ABC NS *** NS NS NS NS NS NS *** NS *** *** 

Abbreviations: a= particles > 0.105 mm; b= mean particle size 0.079 mm; c= smaller than 
0.053 mm; T= total;  NS = not significant (p < 0.05); (*) significant at p < 0.05; (**) 
significant at p<0.01; (***) significant at p<0.001.   
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occurred only with the release of particles smaller than 0.053 mm from aggregates of 8 

mm and in the release of particles from aggregates of 2.78 mm (total amount, Groups b 

and c). This implies that energy caused higher differences in these particles released from 

the Calloway than from the Maury soils. The interaction tillage by energy produced more 

differences in particle release from aggregates than the interaction soil by energy (Table 

3.20), which suggests that aggregation factors were affected by tillage.   

The second order interaction (soil by tillage by energy) was only significant in a 

few cases. When it was significant (Table 3.20), the differences produced by tillage-

energy interaction on particle release were higher in the Maury soil than in the Calloway 

soil.  It is interesting to notice that no significance implies that shaking the aggregates in 

water cannot release more particles than without shaking, despite the effect produced in 

aggregates by tillage system.    

 

3.2.3. Effect of low and high kinetic energy wetting on particle release at the field 

scale 

Mean comparison from total soil loss can be observed in Table 3.21. Total soil 

loss was higher in the Calloway than in the Maury soil. With HKE higher total loss 

occurred than with LKE in both soils and tillage systems. Under CT, the total loss was 

the highest, and the lowest value was observed in the Maury soil under NT. However, 

notice that under NT with HKE no difference was observed in both soils and with LKE, 

CT in the Maury soil and NT in the Calloway had the same total soil loss (p< 0.05).  

Three-factor analysis for main effects and interactions for all treatments on total 

soil loss are shown in Table 3.22. The main effects were energy (high and low-wetting 

energy used when wetting the soil surface), soil (Maury silt loam and Calloway silt) and 

tillage system (No Tillage and Conventional Tillage). All main effects were significant 

(p<0.05) and their consequences were discussed previously (Table 3.21).  

According to the statistical analysis, only the interaction energy by tillage was 

significant, which means that the differences caused by energy on total soil loss were 

higher under CT than under NT (Table 3.22). 
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Table 3.21: Average total soil loss produced by interrill erosion in the Calloway soil and 

in the Maury soil under conventional (CT) and no tillage (NT) with high (HKE) and low 

kinetic energy wetting (LKE). 

Soil Energy 
Calloway Maury 

 CT NT CT NT 
 --   kg ha-1-- 
HKE 1820a, 1 290a, 2 1170a, 1 250a, 2

LKE 250b, 1 70b, 2 60b, 2 10b, 3

Abbreviations: letters in same columns and numbers in different rows means significant 
at p <0.05.  
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Table 3.22: Three-factor analysis for total soil loss (kg ha-1) from the Calloway and the 

Maury soils under different tillage and wetting energy treatments. 

Source SS Df Mean Sq F ratio P 
Main effects 
A. Energy 20549.90 1 20549.90 121.23 0.0000 
B. Soil Texture 1015.28 1 1015.28 5.59 0.0307 
C. Tillage 26911.50 1 26911.50 158.76 0.0000 

Interactions 
AB 611.71 1 611.71 361.00 0.0818 
AC 12610.20 1 12610.20 74.39 0.0000 
BC 39.21 1 39.21 0.23 0.6392 
ABC 16.15 1 16.15 0.10 0.7628 
Residuals 2034.06 12 169.50   
Total (corrected) 64225.40 19    
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Average values and the analysis of variance for release of total particles amount  

for different size into the sediment produced with low (LKE) and high kinetic energy 

wetting (HKE) during 1 h of simulated rainfall on the Maury and Calloway soil under CT  

and NT are shown in Table 3.23.  The interaction soil by tillage by energy was significant 

for the release of particles in the range from 0.053 to 0.105 mm, from 0.105 to 0.250 mm 

and from 0.500 to 1.000 mm. The differences in the amount of particles smaller than 

0.250 mm released from these soils were higher in the Calloway than in the Maury. In 

case of particles greater than 0.500, the observed differences were higher in the Maury 

than in the Calloway soil.  Tillage by energy interaction and soil by energy interaction 

confirm that the Calloway soil tended to release more particles smaller than 0.250 mm 

than the Maury soil. 

Repeated measures in time were performed on each of the sediment particles 

fractions produced in both soils, under CT and NT, with high and low kinetic energy 

wetting (Table 3.24). Significant results obtained in interaction soil by tillage by energy 

by time suggested that during the rainfall, the process of particle release were affected.  

Soil response could be modified for the time that soil was exposed to the water. This 

hypothesis is supported by data of particles released from aggregates without shaking in 

water (Table 3.20).  

In Figure 3.7 it becomes apparent that the release of particles smaller than 0.053 

mm was not a smooth process. Particles were released in a wave-like fashion, rising and 

falling. In other words, particle release was not progressing in time with a constant rate, 

and sorting did not seem to follow a definite order.  Notice that the duration, magnitude 

and frequency of peaks did not appear at the same time. 

For particles in the range from 0.053 to 0.105 mm (Table 3.24) (Figure 3.8), third 

order interaction (soil by tillage by energy by time) was significant, which indicated a 

complex relationship among the factors on particle release of this size during the rainfall.  

Loss of this particle size range with time was controlled by three sources of 

variation. Soil by time or energy by time but tillage by time were not significant in the 

loss of 0.053 to 0.105 mm particles indicating that temporal particle release depended on  
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Table 3.23: Average values and three-factor analysis of total amount of particles in the 

sediment (g m-2) measured in the runoff produced in the Maury and the Calloway soil 

under conventional (CT) and no tillage (NT) during one hour of rainfall simulation.   

                       Range of particle size (mm) Soil Tillage Energy 
<0.053 0.053-

0.105 
0.105-
0.250 

0.250-
0.500 

0.500-
1.000 

LKE 0.17 0.17 0.04 0.07 0.37NT 
HKE 0.10 0.10 0.14 0.18 0.58
LKE 3.72 3.22 3.97 3.98 10.85

Maury 

CT 
HKE 2.53 2.53 4.50 3.06 43.87
LKE 4.03 1.19 0.46 0.93 0.50NT 
HKE 59.47 8.88 1.77 1.89 2.84
LKE 21.92 1.60 0.85 7.39 10.38

Calloway 

CT 
HKE 147.51 17.65 10.09 7.24 12.62

Main sources and interactions 
A. Soil ** *** NS ** **
B. Tillage * *** *** *** ***
C. Energy ** ** ** NS ***

AB NS ** NS * ***
AC ** *** ** NS **
BC NS ** * NS **

ABC NS ** * NS **
Abbreviations: LKE= low kinetic energy wetting; HKE= high kinetic energy wetting;  
NS = not significant; (*) significant at p < 0.05; (**) significant at p<0.01; (***) 
significant at p<0.001.   
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Table 3.24: Probability results from a repeated-measure factor analysis for different 

particle size classes produced by interill erosion in the Calloway and the Maury soil 

under CT and NT with high and low kinetic energy wetting.  

Effect Smaller than 
0.053 mm 

0.053 mm to 
0.105 mm 

0.105 mm to 
0.250 mm 

0.250 mm to 
0.500 mm 

0.500 mm to 
1.000 mm 

A.  Soil *** *** NS *** *** 
B. Tillage *** *** *** *** *** 
C. Energy *** *** NS ** *** 
AxB ** NS NS NS *** 
AxC *** *** NS NS *** 
BxC *** ** NS NS *** 
AxBxC NS *** NS NS *** 
Time *** * NS *** *** 
AxTime *** NS NS *** *** 
BxTime *** ** NS *** *** 
AxBxTime *** NS NS *** *** 
CxTime *** NS NS *** *** 
AxCxTime *** * NS *** *** 
BxCxTime *** ** NS *** *** 
AxBxCxTime *** ** NS *** *** 
Abbreviations: NS = not significant; (*) significant at p < 0.05; (**) significant at p<0.01; 
(***) significant at p<0.001.   
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intrinsic soil conditions caused by tillage. Conventional tillage caused more soil structure 

damage than NT, especially in the Calloway soil.  In Figure 3.8, because of second order 

interactions (soil by tillage by energy), differences in particles released with HKE under 

CT were higher in the Calloway than in the Maury soil. 

Detachment of particle range from 0.105 mm to 0.250 mm depended only on the 

tillage system (Table 3.24). No other statistical significance was observed. The reason 

why tillage affected this range specifically is not clear, but one reason could be the low 

aggregation potential of sand-particle sizes.    

Particles from 0.250 to 0.500 mm (Figure 3.9) and from 0.500 to 1.000 mm 

(Figure 3.10) (Table 3.24) behaved during time as occurred with particles smaller than 

0.053 mm. Particles from 0.500 to 1.000 mm were significant with all main factors and 

interactions. However, particles from 0.250 to 0.500 mm were not significant with soil by 

tillage, soil by energy, tillage by energy and soil by tillage by energy interactions.  As a 

consequence, notice that differences in magnitude of particles released among soil, tillage 

and energy were reduced compared to the behavior of particles greater than 0.500 mm in 

size (Figure 3.10). The higher amount of particles from 0.500 to 1.000 mm occurred with 

HKE under CT in the Maury soil.   

Multiple range analysis of particle size classes released in selected time from the 

Maury soil under both tillage systems, CT and NT is shown in Table 3.25. Under NT 

with HKE, at 5 minutes after the onset of rainfall, not all particle size classes behaved 

different but from 20 to 50 minutes, particles smaller than 0.053 mm were the highest 

(p<0.05). Similarly, with LKE at 5 minutes among the particle size classes appeared no 

differences, but progressively particles smaller than 0.053 mm became higher than the 

other.  

Under CT with HKE at 5 minutes, particles in the range from 0.500 to 1.000 mm 

were higher than the other particle ranges (p<0.05) but at 20 minutes no differences were 

observed for particles smaller than 0.053 mm.  At 30 and 50 minutes, particles smaller 

than 0.053 mm were the highest.   On the contrary, the opposite occurred with LKE, and 

particles in the range from 0.500 to 1.000 mm were the highest at 30 and 50 minutes. 

However, particles smaller than 0.053 mm still remained at the second highest values in 
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the particle size distribution, which represents an enormous amount of clay-silt particle 

size  released from this soil.   

In the Calloway soil (Table 3.26) under NT with HKE the entire selected period of time 

but the measurement at 50 minutes were dominated by particles smaller than 0.053 mm. 

The highest value at 50 minutes was measured in the range of particles from 0.053 to 

0.105 mm, but particles smaller than 0.053 mm remained at second level. With LKE, for 

the entire  period of time,  particles smaller than 0.053 mm were the highest (p<0.05).   

Under CT with HKE, the range of clay-silt particle size was predominant all the 

time. In addition, values measured in this range were the highest measured in both soils.  

With LKE at 5 minutes, particles in the range from 0.500 to 0.1000 mm were higher than 

particles smaller than 0.053 mm. After 5 minutes, particles smaller than 0.053 mm 

remained the highest. These data support the idea that the particle size distribution in the 

sediment gradually became dominated by particles smaller than 0.053 mm, despite the 

soil, tillage or energy involved.  

 

3.2.4. Runoff rate, sediment concentration and sediment delivery rate produced 

with high and low kinetic energy wetting 

In Figure 3.11 (a and b) runoff data measured during the rainfall simulation 

experiment in both, the Calloway and the Maury soil are displayed. Measurement at each 

time between treatments was compared with the LSD procedure.  In the Calloway soil, 

runoff rate with LKE under CT (Figure 3.11 a) was not different of runoff rate produced 

with HKE (p<0.05) after 25 minutes of rainfall simulation. Under NT, no difference was 

observed in runoff rate between HKE and LKE after 30 minutes of rainfall simulation 

(Figure 3.11 a). This result suggested that a strong surface seal was developed with both 

drop impact (HKE) and aggregate water disintegration (LKE).  

In the Maury soil, after 15 minutes under CT and after 10 minutes under NT, 

runoff rate with HKE was higher than with LKE (Figure 3.11 b). Thus, according to the 

runoff rate values, while a strong surface seal was developed under CT with HKE,   
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Table 3.25: Average values of temporal particle size composition (g m-2) measured in the 

Maury soil under conventional (CT) and no tillage (NT) with high (HKE) and low kinetic 

energy wetting (LKE). 

Time (min) Tillage/Energy Particles 
range (mm) 5 20 30 50 
< 0.053 0.02a 0.21a 0.16a 0.27a
0.053-0.105 0.02a -- -- 0.02b
0.105-0.250 0.02a 0.03b 0.02b 0.02b
0.250-0.500 0.02a 0.03b 0.03b 0.02b

 
 

NT HKE 

0.500-1.000 0.02a 0.06b 0.04b 0.10c
Time (min)   

5 20 30 50 
< 0.053        0.07a 0.02a 0.05a 0.07a
0.053-0.105 0.02ab 0.04b 0.02a 0.02b
0.105-0.250 0.02ab -- -- 0.02b
0.250-0.500 0.02ab -- -- 0.02b

 
 

NT LKE 

0.500-1.000         0.06a 0.02a 0.03a 0.03b
Time (min)   

5 20 30 50 
< 0.053 0.85a 7.59a 5.84a 3.48a
0.053-0.105 0.12b 0.04b 0.36b 0.06b
0.105-0.250 0.22b 0.04b 0.04c 0.12b
0.250-0.500 0.02c 0.04b 0.30b 0.38c

 
 

CT HKE 

0.500-1.000 3.17d 8.83a 0.35b 2.18d
Time (min)   

5 20 30 50 
< 0.053 1.90a 0.67a 0.84a 0.58a
0.053-0.105 1.05b 0.36b 0.19b 0.11b
0.105-0.250 0.95b 0.34b 0.21b 0.16b
0.250-0.500 1.11b 0.28b 0.35c 0.19b

 
 

CT LKE 

0.500-1.000 1.39c 0.25b 1.59d 1.20c
Abbreviations: Letters in the same column mean significant at p<0.05.  
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Table 3.26: Average values of temporal particle size composition (g m-2) measured in the 

Calloway soil under conventional (CT) and no tillage (NT) with high (HKE) and low 

kinetic energy wetting (LKE). 

Time (min) Tillage/Energy Particles 
range (mm) 5 20 30 50 
< 0.053 2.27a 5.62a 3.99a 1.48a
0.053-0.105 0.26b 1.80b 0.59b 1.30b
0.105-0.250 0.09c 0.38c 0.05c 0.34c
0.250-0.500 0.05c 0.33c 0.03c 0.41c

 
 

NT HKE 

0.500-1.000 0.03c 0.37c 0.03c 1.02d
Time (min)   

5 20 30 50 
< 0.053 0.39a 0.13a 0.14a 0.20a
0.053-0.105 0.05b 0.04b 0.04b 0.06b
0.105-0.250 0.04b 0.02b 0.06b 0.02b
0.250-0.500 0.02b 0.04b 0.02b 0.02b

 
 

NT LKE 

0.500-1.000 0.02b 0.02b 0.02b 0.02b
Time (min)   

5 20 30 50 
< 0.053 7.23a 3.54a 12.16a 14.92a
0.053-0.105 1.14b 0.63b 1.98b 1.11b
0.105-0.250 1.61b 0.62b 0.65c 0.26c
0.250-0.500 1.39b 0.50b 0.56c 0.50d

 
 

CT HKE 

0.500-1.000 2.85c 0.93c 0.45c 0.23c
Time (min)   

5 20 30 50 
< 0.053 4.42a 1.38a 1.29a 0.48a
0.053-0.105 0.13b 0.16b 0.09b 0.03b
0.105-0.250 0.02c 0.08b 0.02b 0.02b
0.250-0.500 6.25d 0.09b 0.02b 0.02b

 
 

CT LKE 

0.500-1.000 9.81e 0.03b -- 0.02b
Abbreviations: Letters in the same column mean significant at p<0.05.  
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a seal surface did not develop with LKE, which suggested a high aggregate resistance to 

water disintegration. Notice that under NT, runoff rate with HKE was higher than with 

LKE, but runoff rate values were lower than measured under CT with LKE. This 

suggested a strong aggregate resistance under NT, which resulted in a weak surface seal.     

Runoff rate was analyzed with repeated measures in time statistical procedure 

(Table 3.27). Third order interaction was no significant but the second order interaction 

(soil by tillage by energy) was significant. This means that the effect on runoff rates 

caused by factors included in the model were affected by time.  However, soil by time 

and tillage by time but not energy by time interactions did influence runoff rate.  Not 

significant interaction energy by time means that both kinetic energy wetting applied in 

those soils produce an independent result in runoff rate during time. Thus, seal surface 

developed in those soils was not only a result of drop impact alone but also because 

aggregates were disintegrated in water without drop impact.  

Data of sediment concentration in the Calloway and in the Maury soil are shown 

in Figure 3.12 (a and b). At each time, measurement between treatments was compared 

with the LSD procedure. In the Calloway soil under CT with HKE and LKE, sediment 

concentration reaches a maximum value at 5 minutes and then decreases to maintain a 

steady state condition. In both tillage systems a high sediment concentration was obtained 

with HKE at 2 and 5 minutes (p< 0.05). Another significant value was observed at 25 

minutes under CT but at 20 minutes under NT.  

In the Maury soil (Figure 3.12 b), under both tillage systems the highest value was 

observed at the same time (2 minutes), but sediment concentration only was significant 

under NT with LKE (p< 0.05). In addition, with HKE others values were significant at 5, 

15, 20 and 40 minutes. Under CT, HKE were higher than LKE values at 10, 15 and 20 

minutes but at 45 minutes, sediment concentration with LKE was higher than with HKE.  

An interesting behavior observed in these Figures was that the maximum slope in  

runoff rate coincided with a decrease in sediment concentration, which suggested a low 

soil detachment capacity of the overland flow, i.e., despite flow velocity increases, no 
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Table 3.27: Probability results from a repeated-measure-factor analysis for runoff rate, 

sediment concentration and sediment delivery rate  (Di) produced by interill erosion in 

the Calloway and the Maury soil under conventional (CT)  and no tillage (NT) with high 

and low kinetic energy wetting. 

Effect Runoff rate Sediment 
concentration 

Sediment delivery 
rate 

A.  Soil *** *** *** 
B. Tillage NS *** *** 
C. Energy *** NS *** 
AxB *** NS NS 
AxC NS NS *** 
BxC NS NS *** 
AxBxC *** NS NS 
Time *** *** NS 
AxTime ** ** NS 
BxTime * * * 
AxBxTime NS NS NS 
CxTime NS NS NS 
AxCxTime NS NS NS 
BxCxTime NS NS NS 
AxBxCxTime NS NS NS 
Abbreviations: NS = not significant; (*) significant at p < 0.05; (**) significant at p<0.01; 
(***) significant at p<0.001.   
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new particles were detached from the soil surface.  

Comparing Figures 3.11 (a and b) and 3.12 (a and b), the maximum sediment 

concentration values were obtained with at the lowest runoff rates. When runoff rates 

reached a steady state condition, the sediment concentration also reached a steady state 

condition. Thus, this behavior suggested a cause-effect relationship. Sediment 

concentration was significantly affected for soil by time and tillage by time interaction 

(Table 3.27). However, soil by tillage was not significant, while time as main source was 

significant. This means that some factor not considered in this analysis probably affected 

sediment concentration, by modifying the effect of soil and tillage. Due to the fact that 

sediment concentration depended on runoff rate values, ii can be considered as a factor in 

this analysis. As was mentioned formerly, runoff was affected for soil by time and tillage 

by time. 

Sediment delivery rate (Di) measured in the Maury soil under CT and NT  with 

HKE and LKE is shown in Figure 3.13, where at each time data was compared through 

LSD procedure. Di values in the Maury soil under CT with HKE were higher than with 

LKE in all periods except at 5 min (Figure 3.13).  Also, it can be observed that with 

HKE, a particle flush appeared at 2 minutes and another flush appeared at 15 minutes. 

After that, particle flushes were minimum, and Di seemed to reach a steady state.   

In the Maury soil under NT, during the first 5 minutes Di values obtained with 

LKE were higher than Di obtained with HKE (p<0.05). After 5 minutes, Di with HKE 

was the highest, except at 55 minutes. Although Di values in NT were very low compared 

to CT values, a peak at 15 minutes was still noticeable under NT with HKE, as was 

observed under CT, thus suggesting a seasonal pattern probably associated with water 

submergence and drop impact.  

 Sediment delivery rate in the Calloway soil under CT and NT with HKE and 

LKE are shown in Figure 3.14. Under CT with HKE, after a flush at 5 minutes, Di 

decreased until 20 minutes and then increased to reach a steady state condition. With 

LKE, Di showed a peak at 5 minutes and then decreased to a steady state condition. With 

HKE,  Di values were higher than with LKE, except at 5 minutes (p<0.05).  

Sediment delivery rate (Di) evaluated through repeated measures in time was 

displayed in Table 3.27. Soil, tillage and energy as main effects were significant, but time 
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was not. The third order interaction (soil by tillage by energy by time) was not 

significant, but tillage by time interaction was, which represents the effect of intrinsic 

characteristics produced by tillage system. One possible tillage effect could be changes in 

water aggregate stability because this soil property represents a combination among soil 

physical, soil biological and chemical parameters.  

 The interaction soil by energy was significant (Table 3.27), thus suggesting that 

when exposed to different levels of kinetic energy, wetting produced higher differences 

in Di in the Calloway than in the Maury soil. In addition, the interaction tillage by energy 

was significant, and Di values were higher under CT than under NT.  However, no 

significance was observed in the interaction soil by tillage, thus suggesting a complex 

relationships with Di. 
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3.2.5. Total organic carbon content in the sediment 

Total organic carbon content in particles smaller than 0.053 mm in the sediment 

from the Calloway and the Maury soil under both, CT and NT with HLE and LKE can be 

observed in Figure 3.15 (a and b, respectively). Differences between HKE and LKE for 

each pe

NT, bu

ith particles was not 

changin

 than 0.053 mm, 

because

her the TOC 

concen

.053 

mm, i.e

lete set of data corresponding to 

EROC was included in the Appendix (Tables A4 to A8).  

riod were analyzed with a LSD procedure.   

In the Calloway soil (Figure 3.15 a) under CT, LKE produced higher values of 

TOC at 15 minutes and from 25 to 55 minutes (p<0.05).  Under NT, only a few points 

produced with LKE were significant in the beginning of rainfall simulation. In the Maury 

soil under NT, TOC behavior was similar to the one observed in the Calloway soil under 

t under CT, HKE produced a few higher TOC values than LKE (Figure 3.15 b).     

The statistical analysis for the repeated measures in time model for TOC released 

in different particle size classes is shown in Table 3.28. TOC in different particles in the 

sediment produced from both soils was generally not a time process, as it can be observed 

in the third order interaction. In other words, TOC released w

g in time but remained almost constant during the rainfall.  

Energy was a source of variation to the TOC released in particles from 0.053 to 

0.500 mm in size. This is especially important for particles smaller

 these particles can be exported far away from the release site.  

The soil by tillage interaction was significant for all particles sizes but these 

between 0.053 and 0.105 mm, indicating that tillage had an important effect on TOC 

release. Due to the fact that under NT in both soils, TOC was always higher than under 

CT (Table 3.1), this suggested that the higher the TOC concentration, the hig

tration in particles smaller than 0.053 mm released in the sediment .  

The soil by energy interaction was not significant for particles smaller than 0

., in both soils, high or low kinetic energy wetting produced the same results. 

Because particles smaller than 0.053 mm are a potential environmental hazard, an 

analysis of enrichment ratio in organic carbon (EROC) and in organic carbon delivery rate 

(OCDR) was performed only on this particle size. A comp
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Table 3.28: Probability results from a repeated-measure-factor analysis for total organic 

carbon (TOC) in different particle size classes produced by interill erosion in the 

Calloway and the Maury soil under CT and NT with high and low kinetic energy wetting. 

Effect TOC in 
particles 
smaller than 
0.053 mm 

TOC in 
particles 
range from 
0.053 mm to 
0.105 mm 

TOC in 
particles 
range from 
0.105 mm to  
0.250 mm 

TOC in 
particles 
range from 
0.250 mm to 
0.500 mm 

TOC in 
particles 
range from 
0.500 mm to 
1.000 mm 

A.  Soil *** *** NS *** NS 
B. Tillage *** ** *** *** NS 
C. Energy NS NS NS *** NS 
AxB * NS *** *** * 
AxC NS *** ** *** NS 
BxC NS NS NS NS NS 
AxBxC NS NS *** NS NS 
Time NS NS NS NS NS 
AxTime NS NS NS NS NS 
BxTime NS NS NS NS * 
AxBxTime NS NS NS NS NS 
CxTime NS NS NS NS NS 
AxCxTime NS NS NS NS NS 
BxCxTime NS NS NS NS NS 
AxBxCxTime NS NS NS NS NS 
Abbreviations: NS = not significant; (*) significant at p < 0.05; (**) significant at p<0.01; 
(***) significant at p<0.001.   
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Table 3.29: Probability results from a repeated-measure factor analysis for enrichment 

ratio in organic carbon (EROC), organic carbon delivery rate (OCDR) and enrichment ratio 

in iron (ERFe) produced by interill erosion in the Calloway and the Maury soil under 

conventional (CT)  and no tillage (NT) with high and low kinetic energy wetting. 

Effects EROC OCDR ERFe 
A.  Soil *** *** ** 
B. Tillage *** *** *** 
C. Energy * *** *** 
AxB *** *** ** 
AxC * *** * 
BxC NS *** *** 
AxBxC NS *** *** 
Time NS *** NS 
AxTime NS *** ** 
BxTime NS *** NS 
AxBxTime NS *** NS 
CxTime NS *** NS 
AxCxTime NS *** NS 
BxCxTime NS *** NS 
AxBxCxTime NS *** NS 
Abbreviations: NS = not significant; (*) significant at p < 0.05; (**) significant at p<0.01; 
(***) significant at p<0.001.   
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The enrichment ratio in organic carbon, was calculated according to equation 9 

(Section 2) by comparing TOC concentration in particles smaller than 0.053 mm in the 

sediment and in soils before the rainfall simulation. Data for both tillage system and 

kinetic energy wetting in the Calloway and in the Maury soil were included in Figure 

3.16 (a and b). Values were compared at each period with the LSD procedure. It can be 

realized that values of EROC seem to maintain a steady state condition from the 

beginning, and it was evident that in the Calloway soil, with LKE, EROC appeared higher 

than with HKE after 25 minutes (p<0.05) (Figure 3.16 a). In the Maury soil, values were 

not different under both, CT and NT (Figure 3.16 b). Notice that because EROC was 

always higher than 1, this suggested that the particles released were adsorbed to OC 

during the transport.   

The repeated measures analysis for EROC is found in Table 3.29. Only the soil by 

tillage and soil by energy interactions were significant, which means that no temporal 

trend existed in EROC, the differences were provoked by soil and tillage when exposed to 

different wetting energy. Because the increase in EROC was observed even when low 

kinetic energy was applied, an important release of OC could be expected during every 

single rain. 

Organic carbon delivery rate (OCDR), which was calculated using data of TOC in 

particles smaller than 0.053 mm and sediment delivery rates measured in the same 

particle size are shown in Figure 3.17 (a and b). The LSD comparison of data at each 

period showed that in the Calloway soil and in the Maury soil under both tillage systems, 

OCDR was higher with HKE than with LKE. Notice the change in scale in different 

treatments.  

The results of the repeated measurement in time (Table 3.29) showed that OCDR 

in soil was a temporal process and depended on soil characteristics, tillage system and 

kinetic energy wetting. Third order interaction was significant, which means that OC 

release had a temporal component, i.e., not only main sources affected OCDR, but also 

time on water submergence played a role in this process. 
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Total carbon delivery (TCD), in g C m-2, was calculated by integrating values  

over time and it was displayed in Figure 3.18. In the Calloway soil, TCD was not 

influenced but tillage, but only by wetting energy. However, in the Maury soil, both 

tillage and wetting energy influenced TCD. The highest value of TCD occurred under CT 

Total carbon delivery (TCD), in g C m-2, was calculated by integrating values with HKE.  

In other words, in the Calloway soil, high kinetic energy wetting produced no differences 

in TCD, even with NT, but in the Maury soil, HKE produced much more C delivery 

under CT than under NT. This implied that under NT, the Maury soil developed 

aggregate resistance to protect OC, despite being exposed to high levels of destructive 

kinetic energy.  

 

3.2.6. Enrichment ratio in iron (ERFe) and total iron delivery (TID) with particles 

smaller than 0.053 mm 

In Figure 3.19 (a and b) ERFe data from the Calloway and the Maury soil under 

both tillage and kinetic energy wetting were displayed.  The LSD procedure was used to 

compare data at the same time. In the Calloway soil under CT with HKE during the first 

10 minutes, ERFe was higher than other treatments (p<0.05) (Figure 3.19 a).  In the other 

treatments, ERFe seemed to reach equilibrium very soon, at values between 1 to 1.5.  At 

20 minutes,  ERFe measured under CT with HKE decreased to reach a value similar to the 

other treatments, but at 30 and 50 minutes again some peaks appeared (p<0.05).  

In the Maury soil, ERFe measured under CT with HKE showing several peaks and 

the highest one (p<0.05) occurred at the end of rainfall simulation (Figure 3.19 b). Notice 

that also under NT with HKE an important peak appeared at 35 minutes, not different 

from the value observed under CT with HKE. ERFe values were higher than 1, which 

means that an important iron release occurred in both soils. The process seemed to be 

conditioned for aggregate rupture, according to the patterns observed by comparing HKE 

with LKE.  In addition in both soils at 25 minutes, ERFe values became similar, as if the 

process reached an equilibrium.   

Enrichment ratio in iron (ERFe) statistical analysis is found in Table 3.29. 

Repeated measures analysis found that ERFe was affected for the soil by time interaction, 

which means that the principal factor for temporal response of the ERFe was soil  
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characteristics. It was interesting that the second order interaction (soil by tillage by 

energy) was significant, but the third order interaction (soil by tillage by energy by time), 

resulted not significant. The differences produced by HKE in ERFe were higher under CT 

in the Calloway soil. When time was involved, probably because the period of 

submergence increased, the differences mentioned in the second order interaction were 

diminished (Table 3.29).    

Data for Fe(ox) measured in particles smaller than 0.053 mm were combined with 

Di for the same particle size by integrating values on time in order to obtain total iron 

delivery (TID) in mg Fe(ox) m-2. This is the total iron mass lost in a single rainfall event, 

according to the conditions established in this study, and is displayed in Figure 3.20. Both 

soils under CT with HKE exhibit the highest iron loss (p<0.05). Under CT, in the Maury 

soil, TID was higher than in the Calloway soil (0.46 mg Fe m-2 vs. 0.28 mg Fe m-2).  

Notice that in both soils, TID values were not different under CT with LKE and under 

NT with HKE, but under NT with LKE, TID was the lowest. This suggested that drop 

impact was an important factor to release iron in these soils.  
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Section 4. DISCUSSION 
 

4.1 Tillage effects on soil properties 

Soils in this study differed in their properties. These differences were not only due 

to intrinsic soil characteristics but also to the effects of different tillage systems. The 

Calloway soil had higher silt content and lower clay content than the Maury soil, which 

could have contributed to aggregate instability.  

GMD and MWD indices combined with dry aggregate size distribution confirmed 

that the Calloway soil also had smaller aggregates than the Maury soil under CT. This 

means that the ability of the Calloway soil to produce large aggregates, which are known 

to be stabilized by hyphae and root network (Alvaro-Fuentes et al., 2008b), was reduced 

under CT as opposed to NT.  

Reduction in binding agents should provoke an easy breakdown of soil aggregates 

in the Calloway soil when exposed to different wetting rates. However, water stable 

aggregates (WSA) showed that the Maury soil under CT was more unstable than the 

Calloway soil under CT.   

Correspondence between different dry soil aggregate distribution indices and 

WSA was also not mentioned in other studies (Watts et al., 1996; Alvaro-Fuentes et al., 

2008b). One reason could be the lack of relationship between aggregate’s range from 1 to 

2 mm size in WSA procedure of Kemper and Rosenau (1986) and different aggregate 

size classes in the bulk soil.   

In the WSA procedure it is  assumed that aggregates in the range from 1 to 2 mm 

are representative of tillage effects on soil. However, it is known that aggregates have 

heterogeneity in soil properties (Jasinska et al., 2006; Adesodun et al., 2007), which can 

affect the way they react in water.   

Total soil organic carbon (TOC) was higher under NT than under CT in both soils 

(Table 3.1), but the difference between NT and CT was more pronounced in the Maury 

soil than in the Calloway soil. Several researchers found that TOC tends to increase in the 

soil surface under NT (Lal et al., 1990; Unger et al., 1991; Franzluebbers and Arshad, 

1996; Limousin and Tesier, 2007). Our results support this finding and TOC content was 

larger under NT than  under CT (Table 3.1).  
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In addition, in spite of different length of time under their particular tillage 

system, under CT both soils have similarly low values in TOC, but the reason for this 

behavior is not clear. Probably, different crop rotations could be responsible for this 

finding. Crop residues and root distributions were different in quantity and quality, as 

well as OC chemical compounds, especially when corn is compared with soybeans (Dinel 

et al., 1998; Martens, 2000; Trinder et al., 2009).     

TOC is a generic measurement, which includes all kinds of OC present in soil 

(Jenkinson and Rainier, 1977; Cambardella and Elliott, 1992; Degens et al., 1996; 

VanderBygaard and Kay, 2004). Several studies (N’Dayegamine and Angers, 1993; 

Martens, 2000; Abiven et al., 2007) mentioned that fine roots, hyphae, fungal exudates or 

humic compounds could play a role in soil aggregation. For example, it was mentioned 

that particulate soil organic matter (POM-C), which is a labile intermediate form between 

fresh organic materials and humified soil organic matter (SOM), was more sensitive to 

changes in soil management than SOM (Paul et al., 2004). In addition, it was found that 

POM-C also was useful to detect soil structural changes in crop rotations (Pikul et al., 

2007).  Positive relationships observed among TOC, GMD and MWD data suggested that 

TOC could be an important aggregation factor in these soils. However, no relationship 

was found between TOC and WSA.  

This result supports the idea that only specific groups of OC, being part of TOC, 

stabilize aggregates.  In some studies, Six et al. (2004, 2006) and Abiven et al. (2007) 

mentioned that some OC compounds increased the water aggregate stability by 

increasing the aggregate’s hydrophobicity (Six et al., 2006; Abiven et al., 2007), whereas 

other studies found that polysaccharides are hydrophilic and could have the opposite 

effect (Chenu, 1989).  

Hydrophobic organic residues coat soil particles and reduce direct contact 

between water and soil minerals. Wetting properties sometimes depend on adsorbed 

organic films only one molecule thick. When these films are removed, the mineral 

surface can be easily wetted and mobilized (Ellies et al., 2005). 

 The random nature of this combination of hydrophobic and hydrophilic factors in 

soils may determine a complex relationship between WSA and TOC.  For example, it 

was  mentioned that in a clay loam soil, TOC explained 70 to 90% of variability in soil 
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aggregate stability caused by tillage (Mbagwu and Bazzoffi, 1998).  Conversely, Pikul et 

al. (2007) found a very low relationship (r2 = 0.49) between WSA and TOC.    

No relationship observed among TOC, WDC (the amount of free colloids) and 

clay content (Table 3.1) also suggested that only a specific form of OC could be 

associated with clay particles to built aggregates. It is known that the basic units of soil 

aggregates are clay particles, soil organic matter and polyvalent cations (Edwards and 

Bremner, 1967). This basic concept was used to elaborate the hierarchy model of micro 

and macro-aggregation (Tisdall and Oades, 1982). A hierarchical model, with different 

modifications, became the actual referential model to analyze the relationship between 

soil aggregation and TOC (Cambardella and Elliott, 1992; Gale et al., 2000a; Six et al., 

2004; Abiven et al., 2007).   

In brief, the hierarchical model (Tisdall and Oades, 1982) consists of three main 

orders: clay micro-structures (<2 um diameter); microaggregates (2–250 um diameter); 

and macroaggregates (>250 um diameter). In clay microstructures, clay–organic matter 

complexes are stabilized by humic acids and inorganic ions (e.g., Ca).  The mechanisms 

involved in the Ca-organic interactions are assumed to be 'cation bridging' mechanisms 

(Edwards and Bremner, 1967; Tisdall and Oades, 1982; Muneer and Oades, 1989). 

Tisdall and Oades (1982) proposed a model suggesting a mechanism which could form 

bridges of polyvalent cations between clay particles surface or hydroxy polymers and the 

ligand groups of organic polymers, e.g., carboxyl groups, which exist in particles <250 

um diameter.  

Microaggregates are stabilized directly by microbial materials such as 

polysaccharides, hyphal fragments, and bacterial cells or colonies (Cambardella and 

Elliott, 1993a; Carter et al., 2003). The formation of macroaggregates and their temporary 

stabilization could be the result of a combination of mechanisms related to plant roots and 

activity of soil fungi and fauna.  

The DASD showed that the Maury soil has aggregates larger than the Calloway. 

In the Maury soil, 50 percent of size distribution was dominated by aggregates smaller 

than 3 mm.  In the Calloway soil, under NT a similar distribution as in the Maury soil 

was observed, but under CT, 50 percent of DASD was built with aggregates smaller than 

1 mm. This suggested that the Maury soil developed a more complex hierarchy model 
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than the Calloway soil, because more aggregate size ranges implies a wide spectra of 

mechanisms and groups to maintain particles together.   

Soil chemical parameters showed that both soils were different. The Maury soil 

under CT had the highest Exch. Ca content, low Exch. K content compared to NT and no 

difference in Exch. Mg was observed with other treatments.  The Calloway soil had the 

lowest value of Exch. Ca under CT (Table 3.7) and Exch. K was lower than in the Maury 

soil.  However, it was observed that these differences had low impact on soil physical 

parameters. 

 Correlation analysis showed that only the major cations, like Ca and Mg, were 

related with aggregation indices (MWD and GMD) (Table 3.8). However, these cations 

were not related with WSA, which suggested the influence of other factors, like TOC or 

clay content. A model including TOC and clay content explained a large portion of WSA, 

and by replacing TOC with POM-C the model response increased. The fact that POM-C 

is a proportion of TOC, suggested that not all kinds of soil organic matter stabilized the 

aggregates.  This could be the reason why no relationship between WDC and TOC  was 

observed in these soils.  

Water dispersible colloids (WDC) are another way to determine evidences of soil 

weakness. A high amount of WDC always represents soil physical problems, associated 

with water erosion, low water infiltration rate, crust formation and crop emergence delays 

(Bajracharya et al., 1992; Rhoton et al., 2002; Shaw et al., 2003).  

The Calloway soil under CT tended to disperse more colloids than the Maury soil 

under CT. Notice that in the Maury soil, the most stable treatment was NT, which has a 

similar WDC value as CT, the most unstable treatment (Table 3.1). However, the 

Calloway soil under CT has a similar WDC value, but with less total clay content.  

In other words, a large percentage of clay content in the Calloway soil under CT 

was easy-released clay. Notice that silt + clay content and Fe(ox) were related to WDC. A 

direct relationship between WDC and Fe(ox) suggested an important aggregating effect of 

Fe oxides in these soils. The Maury soil seemed to have aggregate stability more 

associated with TOC than the Calloway soil. This condition can explain why the clay 

fraction was more labile in the Calloway soil than in the Maury soil. WDC seems to 

depend on clay content (Kjaergaard et al., 2004b), cations (specifically Exch. Ca  and Fe 
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hydroxides) (Seta and Karathanasis, 1996b) and specific bonds with OC (Chenu and 

Plante, 2006; Deng et al., 2009). 

  

4.2. Tillage effect on soil aggregate properties and their consequences on wetting rate    

Individual aggregates were characterized in terms of different soil parameters and 

tested for both, response to rupture and water content at the time of rupture when low and 

high kinetic energy wetting was applied. To characterize soil aggregates is important to 

avoid a source of variability produced by different scale domain, when the objective is to 

make inferences about the relationship between soil parameters. Aggregate size domains 

are known to possess an intrinsic heterogeneity from their origin (Kristiansen et al., 2006; 

Sey et al., 2008).  

Recently, in several studies different aggregate soil chemical, biological and 

physical parameters were evaluated, by recognizing that several uncertainties still exist at 

the aggregate scale (Kirchhof and Daniel, 2003; Adesodun et al., 2007).  

Our data showed that aggregates in the Maury soil  maintained lower or the same 

values of Exch. Ca and Mg as the bulk soil, but in the Calloway soil under CT, Exch. Ca 

and Mg tended to diminish when aggregate size decreased and the opposite occurred 

under NT.  

Adesodun et al. (2007) observed that Exch. Ca and Mg increased when the 

aggregate sizes increased in grassland, whereas Exch. Na and K remained practically 

without differences. Moreover, in cultivated soils they found that exchangeable cation 

values showed no differences among aggregate sizes, but the values measured were the 

lowest. 

 Our data showed also that in both soils under CT, TOC values in different 

aggregate size classes were maintained at similar levels as those observed in the bulk soil, 

but tended to increase when aggregate size decreased under NT.  POM-C also increased 

under NT when aggregate size decreased, whereas the opposite occurred under CT.  

It is known that TOC largely depends on tillage treatments, which can explain 

why several studies found a decrease (Cambardella and Elliott, 1993b), an increase 

(Baldock and Kay, 1987) or no differences in TOC content (Beare et al., 1994) when 

different aggregate sizes were compared. However, it is a fact that NT determines an 
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increase in TOC in different aggregate sizes (Chenu et al., 2000; Abid and Lal, 2008), as 

it was found in this study. 

In spite of differences found in cation content, a low or a null effect among TOC 

and POM-C on wetting rate and water uptake was observed when different aggregate 

sizes were compared with the bulk soil data. In fact, wetting rate seemed to be more 

affected by soil physical than by soil chemical parameters, and probably organic matter 

and clay contents are indirectly associated with wetting rate and water content through 

their effect on porosity, aggregate volume or WSA.  

Thus, tillage systems could modify wetting rate in two ways, a direct one, by 

fracturing aggregates and increasing internal porosity, or indirectly, through the decrease 

in TOC and consequently by reducing aggregate bindings. However, is not well 

understood how to isolate these two ways to demonstrate which is the predominant. 

 Comparison in water uptake caused by tillage with low kinetic energy wetting 

showed that, in the Maury soil, time of water uptake before rupture decreased when 

aggregate size decreased. Water content was higher under CT than under NT (Figure 

3.3).  

In  the Calloway soil no differences in water uptake were observed in  aggregates 

of 4.75 and 2.78 mm under CT compared to under NT, but aggregates of 8 mm size 

showed the same behavior as observed in the Maury soil. Under CT water content was 

higher than under NT.  

By recalling that the wetting rate (k) according to the procedure of Rasiah and 

Kay (1995) is the slope of cumulative curve of water uptake, the k value for aggregates of 

8 mm  was not affected by soil but by tillage and energy. Consequently, k values were 

higher in  CT than in NT (Table 4.1).  

In aggregates of 4.75 mm both tillage systems produced similar k values in both 

soils. Also, in the Maury soil no differences were observed in aggregates of 2.78 mm, but 

in the Calloway, k tended to be higher under NT than under CT.   

Eynard et al. (2006) studied this wetting phenomena in soils, and with fast wetting 

rate, they observed that aggregates retained a high water content. They mentioned that 

incipient failures formed in the aggregates under tillage were the mechanisms involved. 
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The underlying assumption was that inside of aggregates some clay cores in contact with 

water became dispersed and destroyed the aggregate structure. 

Microcracks resulted in a high wettability that easily caused collapse in 

aggregates with an open network of clay domains, as opposed to large and interconnected 

stable pores observed in natural aggregates from grassland (Eynard et al., 2004). Natural 

aggregates also have complex bonds, which allow them to resist the slaking forces. Thus, 

presence of microcracks and a decrease in binding agents are acting together to debilitate 

aggregate structure under CT. The more intensive the tillage, the more weak the structure 

becomes, thus a low aggregate stability and a fast wetting rate would favor an aggregate 

failure and slaking  (Eynard et al. 2006).     

However, the effect of TOC on wetting phenomena remains unclear.  Aggregates 

of different size presented different relationships between TOC and POM-C. Under NT, 

values of TOC tended to increase with decreasing aggregate size and to maintain similar 

low value under CT.   

On the contrary, POM-C depended on both, soil and tillage systems. The Maury 

soil had more POM-C than the Calloway soil, and under NT in the Maury soil, POM-C  

increased with aggregates of  8 and 2.78 mm, whereas in the Calloway soil, it increased 

when aggregate size decreased (Tables 3.12 to 3.14).  

It is known that OC has complex structures: soluble, partially soluble and non-

soluble components (Cambardella and Elliott, 1992; Ellerbrock et al., 2005). In a study 

about the relationship between chemical composition and wettability, Ellerbrock et al. 

(2005) found an increase in wettability until 10 g kg-1 TOC content and then wettability 

decreased. They attributed this effect to different OC chemical compositions and the 

spatial orientation toward mineral surfaces. In particular, this spatial orientation depended 

on the number of functional OC groups, and exchangeable cations like Ca and Fe.  

Our data showed that k/TOC ratio changed with aggregate size. Our TOC values 

under CT were in the range mentioned by Ellerbrock et al. (2005), i.e., around 10 g kg-1 

in aggregates of 8 mm and less than 10 g kg-1 in aggregates from 4.75 to 2.78 mm. In 

these cases, wetting rate increased when aggregate size increased. Conversely, under NT, 

with more than 10 g kg-1 TOC, wetting rate tended to decrease when aggregate size 

decreased.     
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Ellerbrock et al. (2005) demonstrated a new perspective to analyze wetting rate. It 

is necessary to improve sampling and chemical analysis procedures, to explore how 

particular combinations of OC compounds and exchangeable cations could be combined 

to modify aggregate wettability. This should be the key to control aggregate breakdown 

and pore stability in saturated or submerged conditions, thus allowing high infiltration 

rates and low particle release.  

Data showed that aggregates exposed to raindrops caused different responses in 

wetting rates with impact (kdi) depending on the aggregate size (Table 3.15). Aggregates 

of 2.78 mm in both soils under NT had similar kdi values, and under CT were higher than 

under NT. Aggregates of 4.75 mm in the Maury soil showed higher values than the 

Calloway soil, and in aggregates of 8 mm in both soils the highest values were observed 

under NT. 

  It is interesting that in aggregates of 8 mm, all main sources were significant but 

the interactions soil by energy and tillage by energy were significant for kdi. In other 

words, when exposed to raindrops, NT soil tended to absorb water faster than under CT 

and the Calloway soil was more affected than the Maury soil. However, all aggregates of 

8 mm broke down at the same time. Notice that the Maury soil tended to hold more water 

than the Calloway soil (Table 3.16), thus suggesting that these aggregates had bonds 

stable enough to resist the combined mechanisms of kinetic energy and slaking.  

When exposed to raindrops, aggregate rupture should be led by forces that resist 

external stress forces, a process known as friability, which is not the same as occurred 

with slaking. Also, notice that it is not possible to ignore slaking either, because at the 

same moment the aggregates are impacted and wetted.   

Friability is the tendency of a mass of soil to crumble into a certain size range of 

smaller fragments (or particles)  under the action of applied stress (Dexter, 2004).  This 

theory is based on the concept that the tensile strength and the crumbling of soil are 

controlled by the distributions of flaws or weakest links within the soil. These flaws may 

be identified with structural pores or microcracks. Under mechanical stress (especially 

tensile stress), these flaws can elongate and join up to cause large cracks, which form the 

boundaries of the fragments produced when the aggregate is broken (Watts and Dexter, 

1998).  
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In general, it is supposed that resistance to external stress increases when the 

aggregate size decreases, as was measured in a mechanical compression trial (Dexter, 

1988). Our data showed that small aggregates retained more water than the large 

aggregates, but the time to rupture was the same. Large aggregates seemed to be more 

affected by kinetic energy than by water content, i.e., resistance to external stress was 

lower than in small aggregates.  

When drop impact was involved, splashing effect and drop size/aggregate size 

ratio played a role in the amount of water that an aggregate can hold before the rupture 

(Legout et al., 2005). The ratio drop diameter size/aggregate diameter size was 0.65 for 

small aggregates and 0.22 for large aggregates, thus more aggregate surface was covered 

in small aggregates than in large aggregates in each impact. This could be the reason why 

the highest water content was measured in small aggregates. 

Notice also that, according to friability theory, a high variability should be 

expected in aggregate size distribution (ASD) when aggregates are broken, because ASD 

depends on a random association of cracks into the aggregates. The random nature of this 

mechanism could explain why a low correlation was observed with soil parameters, like 

TOC or clay content. 

 

4.3. Effect of wetting rate on sediment produced in rainfall simulation 

 In the field study, rainfall simulation performed on these soils showed that total 

soil loss was a function of the kinetic energy wetting applied, as well as of soil type but 

not a function of the tillage system. Total loss of particles smaller than 0.053 mm were 

not different in the Maury soil under CT with HKE and LKE compared to the Calloway 

soil under NT with LKE, thus suggesting that significant interaction of soil by energy 

overcame the effect of tillage.   

Maintaining a low-energy wetting process seems to reduce total soil loss with an 

increase in selectivity of finest particles. During the rainfall, the finest particles in the 

sediment are dominating the particle size distribution at 50 minutes, as was observed in 

Table 3.25 and 3.26. 

This behavior was mentioned in several studies (Legout et al., 2005; Issa et al., 

2006). Wan and El Swaify (1998b) were working with a Wahiawa Rhodic Eutrustox silty 
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clay soil in an area of 10.2 m2 and a slope of 4.2%. They found a sediment concentration 

between 1.7 to 3.5 g L-1, with 70 to 90% of finest particles (<0.063 mm) in the sediment, 

suggesting that this occurred because of high soil clay content (Wan and El-Swaify, 

1998b). In our experiment it was observed that sediment concentration was equilibrated 

around 0.3 to 2 g L -1, however the release of particles smaller than 0.053 was a 

consequence of a complex interaction among soil, tillage, energy and time, not because 

the clay content was different in both soils.  

Both Maury and Calloway soils have different clay, silt and sand content (Table 

3.1), but total amount of particles smaller than 0.053 mm released was higher in the 

Calloway with HKE than in the Maury soil. However, the Maury soil had higher clay 

content than the Calloway (23 to 26 g 100 g-1 vis a vis 11 to 13 g 100 g-1). Thus, soil clay 

content was not the reason for this increase in particles smaller than 0.053 mm in the 

sediment. 

Data revealed that particle release occurred in pulses or flushes, not only with 

particles smaller than 0.053 mm but with all particles measured in the sediment. When 

both total soil loss and temporal soil loss were analyzed together, a temporal unknown 

factor emerged, which was not considered before. Notice that during rainfall simulation, 

the soil did not only become saturated but also remained submerged. This condition 

exposed the soil to a long water-solvent action.  

Soil submergence increases with time under rainfall, which affects soil stability 

and particle release in a different way, in accordance to soil aggregation factors. When 

submerged, internal soil aggregate strength would be exceeded before particle release 

begins. This particle release will depend on an intrinsic particle’s bond that pre-exists in 

each soil and tillage system before the rainfall. For example, if more particles are linked 

with hydrophobic rather than with hydrophilic organic components, due to the fact that 

hydrophobic organic components are not easy to solve in water,  less particle release 

should be expected than in the opposite case.  

An idealized and simple scheme was drawn to illustrate this point (Figure 4.1). In 

this scheme, an aggregate is shown like an arrangement of particles bonded with different 

hydrophobic and hydrophilic organic components. As an example, in one aggregate side 

particles are linking with hydrophobic component, represented by several lines.  These 
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simple lines represent hydrophobic organic components that are coating particles fully or 

partially, while in the other aggregate side particles are linking with hydrophilic 

components. For convenience, in this aggregate side particles were colored (Figure 4.1 a). 

Sequence of aggregate disintegration starts when the hydrophilic components were 

solved, and some particles were released (Figure 4.1 b to d).   Notice that the idealized 

scheme of particle release displayed in Figure 4.1 also can explain why sometimes during 

the rainfall, some particle size classes suddenly appear and disappear in the sediment 

particle-size class distribution.  Sediment detachment for the submerged soil is the result 

of two mechanisms including fluvial shearing (i.e., turbulent scour) and water 

disintegration of aggregates. The scour mechanism  occurs when a detached particle 

reaches the point when the flow forces overcome the resisting forces represented by 

submerged particle weight (Chang, 2002) (Figure 4.2).  Another reason could be this 

bond-dissolution mechanism, especially when particles are not detached yet. This 

mechanism could not only produce particle detachment in the submergence stage, but 

could also disintegrate a detached particle and produce several small ones.  Consequently, 

a flush of particles of any size can appear at any time during the rainfall.  

Runoff rate and sediment concentration showed another view of the same 

mechanism. Data showed that while runoff rate increased sediment concentration 

decreased. One reason for this behavior could be that at the initial stage of rainfall 

simulation, HKE drop impact produced a maximum detachment from soil surface and 

removes loose particles that were already located at the soil surface before the rainfall 

started.  

On the contrary, with LKE, only loose particles and those produced by water-

aggregate disintegration are mobilized for shallow overland flow. After all loose particles 

were removed only the new particles produced by water-aggregate disintegration could 

maintain sediment concentration.  

After the initial stage with HKE, the process reached a situation where direct 

raindrop impact on soil was prevented by overland flow, which absorbed kinetic energy 

of drop impact (Asadi et al., 2007a).  This reduces the amount of energy remaining to 

produce soil detachment, to the action of turbulence and aggregate disintegration by 

water.  This process could be considered as a mixed mechanism of turbulence plus 
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aggregate disintegration. As a consequence, sediment concentration should be reduced 

during time, as was observed in Figure 3.12.  For example in the Maury soil under CT 

with HKE sediment concentration drops from 14 to 2 g L-1.  

In addition, the mixed mechanism proposed to explain particle release with HKE, 

indicates that the sediment concentration should be higher with HKE than with LKE. In 

Figure 3.12, sediment concentration with HKE was always higher than with LKE.   
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4.4. A model to explain sediment delivery rate behavior in soils  

Sediment delivery rate (Di) showed a different behavior in the Calloway soil as 

compared to the Maury soil. The Zhang equation (Zhang et al., 1998), which was 

proposed to describe Di,  failed for both soils (Figure 4.3).  Di data in the Calloway soil 

(Figure 4.3 a) and  in the Maury soil (Figure 4.3 b) were not properly predicted by this 

equation for the first 30 minutes of the experiment.  

To analyze the variability of sediment delivery rate, an empirical model was fitted 

to the data in Figure 4.4 in order to show the non-equilibrium sediment peaks in the 

dataset and illustrate the deviation from Zhang’s model. The  behavior of the empirical 

model is shown in Figure 4.4. Notice that the Zhang model assumes equilibrium 

transport. However, Di data showed that in both soils, a non-equilibrium stage occurred 

before an equilibrium was reached (Figure 4.3 a and b). To properly describe this non-

equilibrium transport should be an important improvement for this prediction equation. 

In the Calloway soil, only one particle flush appeared at the beginning of 

sediment delivery process, which seems to be associated with the effect between kinetic 

energy and dissolution. At this stage, loose particles, kinetic energy-detached particles, 

and particles released from the aggregates as a result of bond-dissolved mechanisms were 

transported by a shallow overland flow. Gradually, particles from different areas reached 

the plot’s outlet and delivery rate reached a maximum. Thus, non-equilibrium initial stage 

depended on physical aggregate disintegration and physicochemical dissolution. The 

Calloway soil showed a weak behavior in water, as was observed in Table 3.20. With and 

without shaking in water, more than 50 percent of total particles released were smaller 

than 0.053 mm.  

When sediment delivery rate reached equilibrium, this process could be described 

by the Zhang equation. This equation established that Di is led by runoff. The Zhang 

equation should be improved by including a time-related term as follows: 
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where Di is the sediment delivery rate,  the polynomial term to the left accounts for the 

first flush during time, where dF1 is flush extent,  C1 and C2  are statistical coefficients 
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and t is time. The last term is the original Zhang equation (Figure 4.4 a). In this way, after 

the first flush, Di should be reduced until the runoff rate increases enough to reach the 

equilibrium. Table 4.1 shows how the prediction increased by comparing the increment in 

r2 (0.21 to 0.70) and the reduction in mean absolute error (0.7 to 0.4) obtained with the 

Zhang equation and with the modified Zhang equation, respectively.  

On the contrary, in the Maury soil after the first particle flush aggregates were 

protected or stable enough to resist the drop impact. A new threshold should be reached 

before a new flush of particles appeared. This second flush could be caused for detached 

particles and dissolution of aggregates probably from soil layers not exposed to the direct 

impact of rainfall. Notice that duration of both fluxes is approximately 10 minutes, which 

is similar to the time to rupture observed in the aggregate wetting test. This suggests that 

wetting rate could be involved in producing these flushes.  

 To predict this behavior with the Zhang equation, two polynomial terms were 

used to describe both flushes, as follow: 
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Equation 14 differs from equation 13 because it includes two parabolic terms, 

which take into account both, first and second flush before to reach the equilibrium. Term 

t0 is time when runoff begins, te is time until runoff equals equilibrium, DedF1 is delivery 

rate value at the end of the first flush, dF1 is the first flush extent and dF2 is the second 

flush extent (approximately 10 minutes for both), C3, C4, C5 and C6 are statistical 

coefficients (Figure 4.4 b).  The last term is the original Zhang equation.  

The proposed terms accounted for the first flush, followed by an increase 

commanded by the parabolic term until the runoff rate increased enough to lead to the 

equilibrium stage. This model improvement reduced mean absolute error from 0.9 to 0.2 

and increased  r2 from 0.035 to 0.886 (Table 4.1).  
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Table 4.1: Statistical parameters from models when compared sediment delivery rate 

measured in the Calloway and in the Maury soil under conventional tillage (CT) with 

high kinetic energy wetting (HKE), predicted with the original and a modified Zhang 

equation.   

Calloway soil Maury soil Parameters 
Zhang equation Zhang modified Zhang equation Zhang modified

CC 0.3 0.8 -0.2 0.9
r square 21.0 70.5 3.5 88.6
r square (adj) 15.0 65.2 5.1 87.0
MAE 0.7 0.4 0.9 0.2
Abbreviations: CC= correlation coefficient; MAE = mean absolute error 
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Asadi et al. (2007b) mentioned that in some situations an overland flow with low 

energy (low power stream) could not remove all particle sizes. According to this study in 

some cases, particle size distribution became bimodal and no satisfactory explanation 

existed for this finding. They suggested that particles of 0.1 mm and 0.5 mm size 

apparently could resist the transport caused by a low runoff rate. Thus, they supposed that 

the mechanisms of particle transport in an overland flow, i.e., suspension, saltation and 

rolling, could interact to dominate the movement of different sediment size and change 

particle size distribution. Implicit in this assumption is that soil is a passive participant in 

this process. 

 The modified Zhang equation (equations 13 and 14) is based on the assumption 

that the proposed mixed mechanisms, water disintegration and turbulence in shallow 

overland flow, could be responsible for particle size distribution behavior in a consolidate 

soil, i.e., in cropland. The model was improved by introducing a way to account for the 

non-equilibrium stage, which assumes that soil has factors that can regulate particle size 

distribution. 

This empirical model described two different soil behaviors when exposed to 

high kinetic energy wetting. One of these behaviors corresponds to a soil with natural 

weakness, low aggregation factors that determine a low water aggregate stability. This 

natural weakness could be due to high silt content. Soils of this kind tend to disintegrate 

completely in elementary particles, and easily develop a thick soil surface sealing.  The 

Calloway could be included in these kinds of soils, which after an initial particle flush, 

reach a steady state at high level of soil loss. 

The second behavior corresponds to a soil with several aggregation factors 

which in spite of a low water aggregate stability, do not disintegrate aggregates 

completely into elementary particles but also in macro and micro aggregates. 

Aggregation factors could be clay content, iron hydroxides and organic carbon. The 

Maury could be included in these kinds of soils, which show at least two particle flushes 

at different times before they reach a steady state condition.   
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4.5. Effect of wetting rate in total organic carbon, organic carbon delivery rate, 

enrichment ratio in organic carbon (EROC) and total carbon delivery in the sediment  

Total organic carbon content in sediment produced via interrill erosion did not 

change in time. Data showed that TOC loss depended on interaction soil by tillage, and 

that wetting rate was not responsible for these losses. This finding is very important 

because it emphasizes that despite temporal changes in particle release, TOC 

concentration showed no changes. In other words, OC mobilization is a constant process 

during rainfall.   

One reason for that finding could be the convection-dispersion process (Biggar 

and Nielsen, 1967) which implies that when organic carbon is released a gradient is 

developed  that contributes to mobilizing OC from the inside to the outside of aggregates. 

The OC movement that occurs through the porous systems is contributing to maintain 

TOC loss constant during time.  

It was recognized recently that a new input of OC or nutrients into the soil tends 

to coat the aggregates externally (Kirchhof and Daniel, 2003). This behavior should be 

potentially risky for the environment in soils under NT because the OC input in this 

system is large and continuous.  However, low OC input in soils under CT surely has risk 

for soil sustainability, because it determines continuous soil deterioration, even though 

CT supports a low level of OC mobilization.      

Organic carbon delivery rate (OCDi) showed that OC fluxes under NT were 

reduced with LKE compared with HKE and it was equilibrated at values lower than 0.01 

g C m2 min-1, approximately. Under CT in both soils, OC reached equilibrium at values 

of 0.02 g C m2 min-1. Our data of TCD showed that these delivery rates represented a C 

loss from 0.35 to 0.42 g  C m -2 with HKE and from 0.02 to 0.04 g  C m -2 with LKE in a 

single rainfall event.   

Organic carbon exported in croplands is supposed to vary from 15.5 g C m-2 yr-1   

to 3.4 g C m-2 yr-1 (Van Oost et al., 2007).  Notice that according to our data, 10 events 

per year reached a minimum value with HKE  (0.35 x 10  =  3.5 g C m-2 yr-1), but with 

LKE, C losses were lower than estimated (0.02 x 10 = 0.2 g C m-2 yr-1).   

Because very low kinetic energy is involved in LKE treatment, only 10 events per 

year should be a very conservative analysis and total C loss could be underestimated. 
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Thus, organic carbon losses in cropland estimated by Van Oost et al. (2007) seem 

reasonable. However, Van Oost et al. (2007) included all kinds of water erosion 

processes in their analysis, while our data considered only soil erosion at a very small 

slope (< 1.5 %). This illustrates the importance of interrill erosion as a powerful process 

of OC loss, but still it is necessary to consider other large sources of OC loss like rill or 

gully erosion.   

TCD values under NT with LKE in the Maury soil could represent a baseline to 

use in C budget analyses, which represented an important issue for future research. 

However, it is necessary to reiterate here that in this study, LKE represented almost 100 

% of soil cover, very different from the 60% of soil cover recommended as a good 

conservation tillage practice. This should be taken into account to establish the real value 

of TCD under NT with different surface cover conditions.   

Enrichment ratio in organic carbon in particles smaller than 0.053 mm showed 

that, despite temporal changes, particles take OC depending on the interaction between 

soil type and kinetic energy wetting. Notice that enrichment ratio remained independent 

on temporal variations during rainfall. Thus, it is also a constant process.  

EROC values found in rainfall simulation were similar to those observed in 

literature, which ranged from 1.03 to 1.89 (Polyakov and Lal, 2008; Schiettecatte et al., 

2008b). However, the question about how particles are enriched remains without a proper 

answer. Is it a simple effect of OC release in the overland flow?  

If this is a simple effect, a particle takes OC during transport and simply becomes 

enriched. Evidence of this process can be observed in Table A in the Appendix. All 

particle size classes became enriched during all periods of time, but some of them had 

values equal or lower than one. This means that they were sources of OC. Principally, 

this situation appeared in particles in all the range from 0.105 to 0.500 mm.  This means 

that sand size particles, microaggregates and macroaggregates were contributed with the 

pool of OC in the overland flow.  Possibly, they also contributed to the OC enrichment 

process in the entire range of particles smaller than 0.105 mm. However, notice also that 

sometimes this situation was not observed from the beginning, thus suggesting that other 

sources were activated in the beginning of rainfall. 
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In this scenario, labile POM-C and dissolved organic carbon (DOC) should be 

involved because theoretically, this portion of TOC is more physically mobilized in 

water. DOC is the difference between TOC and POM-C and these values differ from one 

soil to another (Kjaergaard et al., 2004a; Haile-Mariam et al., 2008). 

 Labile POM-C or the light fraction is commonly referred to as a less stable 

fraction with high OC concentration (Golchin et al., 1995; Baldock et al., 1997) and it is 

considered the physically most mobile OC fraction in soils (Polyakov and Lal, 2008). 

Because of its low density, it could be one of the major causes of OC enrichment during 

erosion (Ghadiri and Rose, 1991). 

Evidence that macro aggregate stability in grasslands soils decreases the POM-C 

release for slaking was mentioned in the literature (Gale et al., 2000b) because clay 

particles can easily protect OC by building aggregates (Bossuyt et al., 2002).  A 

conceptual model was published that assumes the presence of unstable macro aggregates 

(0.5 mm in size) in soils, which when disrupted by slaking results in the release of POM-

C into a free POM-C pool (Golchin et al., 1998). In addition, these macro aggregates 

have new and unstable micro aggregates (0.250 mm in size) inside of them, which also 

can easily release new free POM-C. Differences in stability could explain why not all 

macroaggregates became sources of OC in overland flow in our data (Table A4 to A8).  

 Thus, because our surface cover was a plastic mesh, no other source of free 

POM-C existed in our experiment that could explain this increase in OC. Our findings 

support the assumption of Ghadiri and Rose (1991), and suggested that particles smaller 

than 0.053 mm were absorbing OC during the transport process from the pool of free 

POM-C to maintain an EROC higher than 1. 

On the other hand, there was no evidence that the kinetic energy was important to 

increase EROC. This suggested that the principal process to release OC should be the 

slaking produced by low wetting or submergence.  Shiettecatte et al. (2008b) mentioned 

that raindrop impact is not important as an OC enrichment mechanism, which was 

supported in our experiments by comparing the effect of low and high kinetic energy that 

produced no differences in EROC. 
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4.6. Effect of wetting rate on enrichment ratio in iron (ERFe) and total iron delivery in the 

sediment 

Enrichment ratio in iron (ERFe) measured in both soils in this study confirmed that 

iron loss is a continuous process, as was observed with OC loss. ERFe was maintained at 

1 or higher, which means that these soils continuously released iron. Patterns observed in 

both soils seem to confirm that aggregate rupture was involved in this process, because 

several peaks appeared in different periods of time. 

Although iron (hydr-) oxides have been observed to stimulate aggregation, their 

role in soil structure is still poorly understood (Rhoton et al., 2002; Duiker et al., 2003). 

Crystalline Fe (hydr)oxides were mentioned as a reason for lack of correlation between 

soil aggregation and iron content. Poor crystalline iron hydroxides seem to be more 

effective than crystalline iron hydroxides in soil aggregation because they have the most 

reactive surface area. Particularly, it was interesting that some studies found that Fe 

(hydr)oxides crystalline explained differences in erodibility of loess-derived soils 

(Rhoton et al., 2003). 

In a sandy loam soil, a relatively high concentration of Fe was found in the finest 

fraction of sediment, suggesting that a significant proportion of iron was presented as Fe 

(hydr)oxide surface coatings (Benedetti et al., 2003).  Soil organic compounds can 

increase the ability of iron to improve soil aggregation. However, formation of organic- 

inner- sphere complexes on Fe (hydr) oxides surfaces and bridges with silt-clay particles 

also can mobilize iron with the sediment into  overland flow.  

Humic substances and Fe interact to form complexes, that allow Fe to remain in 

solution under conditions under which it would otherwise, precipitate (Maloney et al., 

2005). In these complexes, Fe could be transported for long distances in runoff water.  In 

our study, it was found that iron release seemed to be independent of wetting rate. With 

exception of treatments under CT with HKE, all the other combinations showed ERFe 

values close to or higher than 1, which means that these soils were very susceptible to 

loosing iron.  

Total iron delivery (TID), measured in particles smaller than 0.053 mm  in the 

Calloway soil under CT with HKE ranged from 0.2 to 0.25 mg Fe m-2. This represented a 

loss from 20 to 25 g Fe ha-1 by considering a single event. Under NT with LKE this loss 
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ranged from 0.03 to 0.07 mg Fe m-2, which means 0.3 g Fe ha-1.  In the Maury soil under 

CT with HKE, TID values were higher than in the Calloway soil (0.48 mg Fe m-2). Under 

NT with LKE values were similar to the values observed in the Calloway soil. In other 

words, shallow overland flow with very low energy can mobilize a large amount of iron 

from these soils.  

 Rhoton et al. (2003) analyzed different watersheds with sandy and sandy loam 

soils, and found values of ERFe from 3.5 to 1.89. Notice that extreme values of ERFe were 

also observed in Figure 3.19 in the Calloway soil under CT with HKE. However, no clear  

explanation exists for this behavior. If aggregate rupture was involved, these extreme 

values would occur when particle flush appeared, but these extreme values were not 

related with particles smaller than 0.053. The extreme values were related with particles 

in the range from 0.250 to 0.500 and from 0.500 to 1.000 mm.  Possibly, iron was 

involved by bonding these particles together, i.e., when these bonds were broken the iron 

released was immediately sequestered by silt-clay particles size, thus producing the 

extreme values of ERFe.  
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Section 5. CONCLUSIONS 
 

This study analyzed the wetting behavior of soil aggregates from conventional 

tillage compared with no tillage, under the assumption that the wetting rate is a function 

of the porous system and that different tillage systems could modify the soil parameters 

and pore stability, thus affecting soil wetting. The second objective was to analyze 

relationships among soil wetting, particle movement, organic carbon and iron release 

with the sediment produced via interrill erosion. 

Conventional tillage systems as defined in this study are aggressive and increased 

problems associated with non point source pollution due to the amount of particles 

released. This tillage system determined a reduction in TOC, GMD and MWD in both 

soils in this study, especially in the Calloway silt soil. The importance of this reduction 

should be interpreted as an example of soil degradation that conventional tillage practices 

caused in these soils proving that this tillage system was not sustainable. On the contrary, 

evidence observed in our data showed that NT could conserve these soil parameters, 

which maintained the soil functions principally associated to water movement and 

erodibility.    

Analysis at the aggregate scale reflected heterogeneity in soil parameters and how 

these parameters vary from one situation to another when soil was exposed to tillage 

systems. The most modified soil parameters were TOC and POM-C. At this scale, this 

study showed how aggregate properties were conserved under NT and also how 

aggregates of different sizes have independent behavior when exposed to water. Thus, 

particle release is different depending on specific aggregate size. This was strong 

evidence that stability should be improved at all aggregate levels to control particle 

release. 

One of the most important findings in this study was observed by comparing 

various chemical and biological soil parameters with wetting rate and water uptake. In 

spite of what was expected, no direct relationships were found for soil chemical and 

biological parameters neither with wetting rate nor with water content.  

New evidence found in literature about the effect of OC and iron deposition on 

particle surface and how this deposition could affect soil wetting indicate a need to 

improve our methodology to determine underlying processes. This could be 
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accomplished by creating micro methods and sampling methodology appropriate for the 

aggregate scale. Understanding the relationship between OC deposits and interaction with 

cations to built new aggregates should be very useful. In this aspect, scanning electron 

microscope images should be illustrative and represent opportunities to improve our 

knowledge about aggregation. This information should be integrated with experiments of 

amendments (OC and poorly crystalline Fe) to explore the effect on wetting rate and to 

test aggregate breakdown.  

A need exists to know how to control aggregate ruptures and how to stabilize 

porous systems. Amendments with OC and poorly crystalline iron could be useful to 

increase soil stability. Also, it would be necessary to determine if a limited water 

aggregate resistance exists and if there is a boundary imposed by soil texture or by OC 

balance.  

As was found in this study, the resistance to slaking and friability developed in 

the Maury soil under NT compared with behavior under CT, showed a potential way to 

control soil stability.  

Soil characteristics and different kinetic energy wetting were more important than 

tillage in releasing particles when exposed to rainfall. A trend to lose silt-clay size 

particles during rainfall was observed in soil even in a low kinetic energy wetting stage, 

which should be controlled. It is an important finding that release of particles smaller 

than 0.053 mm was not a function of clay content but a result of combined effects among 

soil, tillage, energy and time because this means that particle release could be controlled 

with soil management.  

Data showed that observed particles flush during rainfall depending of the 

aggregation factors, and this study showed that this occurred with any particle size. The 

idea that temporal water submergence is responsible for particles flush when a threshold 

is overcome is relevant to improve current physical erosion models. A significant finding 

was to show that particle release could be controlled through both surface cover and 

aggregate stability, because friability and slaking processes act together during interrill 

erosion. 

The modification proposed for the prediction equation is reliable because it 

assumes that soil is not a passive subject in the erosive process. On the contrary, it is a 
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determinant. According with this idea, the soils under study represented two different 

behaviors when exposed to rainfall, which could be related with soil properties and 

submergence time. Soil parameters can be improved to reduce soil erosion until values 

still unknown, especially in terms of sediment quality.  

Another important finding of this study was that OC release from soil is a 

constant process. This means that different and very active sources exist during an entire 

rainfall, which represents an enormous risk for soil degradation. The principal vehicle 

identified were particles smaller than 0.053 mm, which are continuously released from 

soil surfaces and should be controlled. It is necessary to know the limits of this release, 

especially because under surface cover, particles still remain in movement. Colloid 

control should be a priority to improve non point source of pollution that depends on 

erosive processes.      

Iron release observed in these soils emphasizes an aspect not often analyzed in 

soil erosion literature, but that is more addressed to explore OC issues. However, iron 

release could represent a new and very important field of study. There is an enormous 

uncertainty about the role of OC in the release of iron, what kind of iron species are more 

easily released with OC or why particles smaller of 0.053 mm are the vehicle. If this is a 

simple effect of OC-Fe relationships, are particles involved iron hydroxides themselves 

or both? On the contrary, the possibility to use iron to improve aggregate stability in 

combination with OC sources should be explored. This seems to be a promising 

management practice to investigate in order to accelerate recovery of soil stability under 

no tillage. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 124



APPENDIX 
 
 

 

Table A1:  Total organic carbon (g kg-1) in the particles released by interril erosion 
in the Calloway soil under no tillage (NT). 
 Range of particles (mm) 

< 0.053 0.053 
-0.105 

 

0.105 
-0.250 

0.250 
-0.500 

0.500 
-1.000 

TIME 

HKE LKE HKE LKE HKE LKE HKE LKE HKE LKE 
2 18.7a 26.5b 19.8a 15.7b 29.8a 31.0a 30.3a 20.4b 25.9a 25.7a
5 15.0a 22.6b 16.1a 15.9a 26.5a 29.3a 32.0a 18.5b 25.2a 24.3a
10 22.3a 20.6b 15.3a 17.2a 27.2a 32.0b 32.1a 20.3b 23.9a 25.5b
15 15.5a 23.7b 14.9a 15.4a 23.3a 29.6b 28.0a 19.9b 20.0a 27.4b
20 15.5a 24.2b 21.6a 17.2b 20.4a 29.2b 30.3a 20.2b 24.0a 24.2a
25 20.9a 23.1b 21.8a 16.1b 15.6a 21.4b 26.3a 20.4b 27.3a 23.9b
30 23.5a 25.2b 19.0a 15.5b 17.1a 20.6b 23.6a 21.6b 28.8a 26.4b
35 21.2a 23.9b 18.4a 15.2b 19.6a 18.8a 28.7a 21.7b 27.9a 26.0b
40 18.7a 22.4b 21.0a 15.2b 18.7a 26.0b 26.5a 20.2b 27.6a 20.8b
45 18.7a 23.4b 13.2a 13.0a 17.2a 21.2b 26.6a 17.2b 28.1a 21.7b
50 27.0a 23.3b 16.2a 14.5b 16.3a 18.7b 26.0a 13.9b 28.0a 26.8b
55 29.8a 21.5b 22.8a 13.7b 19.9a 24.0b 27.3a 18.7b 25.1a 23.3b
60 21.3a 23.9b 22.5a 15.8b 22.4a 26.6b 27.3a 17.2b 27.3a 26.0b
Abbreviatons: HKE= high kinetic energy wetting; LKE= low kinetic energy wetting.   
Letter in the same row for each range of particles means significant at p <0.05. 
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Table A2: Total organic carbon (g kg-1) in the particles released by interril erosion  in 
the Calloway soil under CT 

 Range of particles (mm) 
< 0.053 0.053 

-0.105 
 

0.105 
-0.250 

0.250 
-0.500 

0.500 
-1.000 

TIME 

HKE LKE HKE LKE HKE LKE HKE LKE HKE LKE 
2 9.6a 9.6a 19.2a 17.5b 26.1a 16.5b 19.7a 14.3b 33.4a 26.4b
5 8.5a 9.2a 21.2a 19.1a 23.3a 14.6b 18.0a 13.9b 28.4a 22.5b
10 7.9a 9.3b 20.0a 18.0b 23.9a 12.1b 19.6a 13.6b 29.4a 25.3b
15 8.1a 11.8b 18.2a 17.4a 22.0a 14.1b 18.5a 13.6b 27.5a 24.5b
20 8.8a 11.2b 17.6a 18.7a 21.4a 16.6b 22.9a 13.2b 29.2a 31.7a
25 8.8a 13.1b 18.6a 16.5b 24.2a 18.2b 26.7a 13.0b 28.3a 27.7a
30 8.5a 16.1b 25.9a 17.4b 31.9a 16.7b 25.9a 13.6b 28.1a 27.7a
35 8.3a 13.6b 16.3a 18.7b 23.2a 13.5b 26.1a 13.4b 27.5a 32.0b
40 8.0a 14.1b 20.5a 19.6a 22.3a 14.8b 25.3a 13.4b 21.2a 26.4b
45 8.2a 13.8b 18.7a 18.7a 22.9a 17.0b 22.9a 13.4b 21.6a 25.2b
50 7.9a 11.8b 17.5a 19.9b 25.2a 17.7b 18.0a 13.6b 20.7a 25.0b
55 7.5a 12.5b 19.1a 18.2a 23.2a 16.2b 12.5a 13.0a 20.8a 24.0b
60 7.5a 9.5b 20.1a 18.5b 22.4a 15.8b 18.8a 15.4b 19.0a 16.7b
Abbreviatons: HKE= high kinetic energy wetting; LKE= low kinetic energy wetting.   
Letter in the same row for each range of particles means significant at p <0.05. 
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Table A3: Total organic carbon (g kg-1) in the particles released by interril 
erosion  in the Maury soil under NT 
 Range of particles (mm) 

< 0.053 0.053 
-0.105 

 

0.105 
-0.250 

0.250 
-0.500 

0.500 
-1.000 

TIME 

HKE LKE HKE LKE HKE LKE HKE LKE HKE LKE 
2 26.2a 32.3b 23.3a 22.5a 28.4a 23.4b 30.6a 30.6a 29.8a 23.4b 
5 27.4a 32.6b 22.7a 26.9b 24.9a 27.1b 28.4a 29.8a 26.0a 23.6b 
10 25.2a 30.7b 20.9a 23.0b 26.4a 30.3b 26.5a 29.9b 24.8a 25.9a 
15 23.2a 22.1a 16.5a 24.5b 28.7a 20.9b 24.6a 31.8b 19.1a 25.7b 
20 21.8a 28.6b 20.1a 31.7b 27.1a 22.8b 25.1a 32.5b 24.4a 24.3a 
25 28.5a 32.6b 21.2a 27.7b 25.0a 25.1a 27.5a 32.0b 28.6a 23.1b 
30 29.8a 28.1a 20.3a 27.7b 29.7a 24.9b 32.5a 30.6b 25.9a 27.4b 
35 22.4a 22.4a 23.2a 32.0b 26.4a 23.6b 34.0a 26.8b 29.4a 23.6b 
40 24.7a 25.8a 16.8a 26.4b 31.3a 25.5b 29.6a 29.2a 30.7a 22.6b 
45 28.6a 29.3a 22.2a 25.2b 33.2a 25.4b 32.8a 28.7b 29.9a 24.7b 
50 27.4a 26.2a 22.2a 28.1b 27.1a 25.3b 29.2a 28.2a 29.2a 26.6b 
55 26.6a 27.4a 24.6a 23.7a 21.9a 25.5b 28.4a 28.7a 28.4a 28.1a 
60 24.9a 27.1b 22.9a 21.4a 25.0a 26.6a 32.6a 26.5b 27.4a 27.8a 
Abbreviatons: HKE= high kinetic energy wetting; LKE= low kinetic energy 
wetting.   Letter in the same row for each range of particles means significant 
at p <0.05. 
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Table A4: Total organic carbon (g kg-1) in the particles released by interril erosion  
in the Maury soil under CT 

 Range of particles (mm) 

< 0.053 0.053 
-0.105 
 

0.105 
-0.250 

0.250 
-0.500 

0.500 
-1.000 

TIME 

HKE LKE HKE LKE HKE LKE HKE LKE HKE LKE 
2 19.7a 20.0a 25.5a 26.4a 13.4a 18.2b 17.8a 13.6b 29.8a 24.5b
5 20.8a 15.8b 25.9a 26.5a 12.5a 16.5b 17.3a 18.4a 25.6a 26.5a
10 22.1a 18.2b 27.5a 21.1b 13.6a 17.5b 14.2a 15.0a 23.4a 23.6a
15 23.0a 18.6b 25.7a 20.9b 13.4a 17.5b 13.2a 14.4a 21.1a 27.2b
20 19.9a 20.4a 27.3a 24.4b 12.7a 19.0b 14.4a 16.0b 21.0a 21.5a
25 18.0a 19.2a 30.0a 25.0b 12.7a 18.1b 12.0a 15.5b 23.7a 27.9b
30 20.7a 18.0b 26.1a 27.5a 13.6a 18.3b 12.8a 15.5b 23.8a 24.5a
35 21.1a 18.7b 17.0a 23.2b 14.0a 24.6b 13.0a 16.2b 23.5a 26.4b
40 20.7a 16.7b 23.0a 21.0a 13.8a 23.3b 13.8a 16.6b 20.2a 25.9b
45 21.4a 18.5b 33.8a 24.2b 12.7a 22.3b 13.2a 15.8b 17.5a 28.6b
50 20.3a 14.8b 21.2a 25.7b 12.9a 22.1b 13.3a 15.9b 17.1a 19.3b
55 20.4a 17.9b 22.3a 27.3b 16.5a 21.0b 11.9a 14.5b 14.5a 28.2b
60 19.3a 16.5b 24.7a 23.2b 16.1a 20.6b 12.7a 15.9b 17.5a 18.6a
Abbreviatons: HKE= high kinetic energy wetting; LKE= low kinetic energy 
wetting.   Letter in the same row for each range of particles means significant at  p 
<0.05. 
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Table A5: Enrichment ratio in organic carbon (EROC) measured in the sediment 
produced by interrill erosion in the Calloway soil under NT 

 Range of particles (mm) 

< 0.053 0.053 
-0.105 
 

0.105 
-0.250 

0.250 
-0.500 

0.500 
-1.000 

TIME 

HKE LKE HKE LKE HKE LKE HKE LKE HKE LKE 
2 2.7a 3.9b 1.5a 1.2a 1.4a 1.4a 1.5a 1.0b 1.5a 1.5a
5 2.2a 3.3b 1.2a 1.2a 1.2a 1.4a 1.6a 0.9b 1.4a 1.4a
10 3.3a 3.0a 1.1a 1.3a 1.3a 1.5a 1.6a 1.0b 1.4a 1.5a
15 2.3a 3.5b 1.1a 1.2a 1.1a 1.4b 1.4a 1.0b 1.1a 1.6b
20 2.3a 3.6b 1.6a 1.3b 0.9a 1.3b 1.5a 1.0b 1.4a 1.4a
25 3.1a 3.4a 1.6a 1.2b 0.7a 1.0b 1.3a 1.0b 1.5a 1.4a
30 3.5a 3.7a 1.4a 1.2a 0.8a 0.9a 1.2a 1.1b 1.6a 1.5a
35 3.1a 3.5a 1.4a 1.1a 0.9a 0.9a 1.4a 1.1b 1.6a 1.5a
40 2.8a 3.3a 1.6a 1.1b 0.9a 1.2b 1.3a 1.0b 1.6a 1.2b
45 2.7a 3.4b 1.0a 1.0a 0.8a 1.0a 1.3a 0.8b 1.6a 1.2b
50 4.0a 3.4a 1.2a 1.1a 0.8a 0.9a 1.3a 0.7b 1.6a 1.5a
55 4.4a 3.2a 1.7a 1.0b 0.9a 1.1a 1.3a 0.9b 1.4a 1.3a
60 3.1a 3.5b 1.7a 1.2b 1.0a 1.2a 1.3a 0.8b 1.6a 1.5a
Abbreviatons: HKE= high kinetic energy wetting; LKE= low kinetic energy wetting.   
Letter in the same row for each range of particles means significant at p <0.05. 
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Table A6: Enrichment ratio in organic carbon (EROC) measured in the sediment 

produced by interrill erosion in the Calloway soil under CT 

 Range of particles (mm) 

< 0.053 0.053 
-0.105 

 

0.105 
-0.250 

0.250 
-0.500 

0.500 
-1.000 

TIME 

HKE LKE HKE LKE HKE LKE HKE LKE HKE LKE 
2 1.8a 1.8a 2.0a 1.8a 2.0a 1.2b 1.7a 1.2b 2.3a 1.8b
5 1.6a 1.7a 2.2a 1.9b 1.8a 1.1b 1.6a 1.2b 2.0a 1.6b
10 1.5a 1.7a 2.0a 1.8a 1.8a 0.9b 1.7a 1.2b 2.1a 1.8b
15 1.5a 2.2b 1.9a 1.8a 1.7a 1.1b 1.6a 1.2b 1.9a 1.7a
20 1.7a 2.1b 1.8a 1.9a 1.6a 1.2b 2.0a 1.1b 2.0a 2.2a
25 1.7a 2.5b 1.9a 1.7a 1.8a 1.4b 2.3a 1.1b 2.0a 1.9a
30 1.6a 3.0b 2.6a 1.8b 2.4a 1.3b 2.2a 1.2b 2.0a 1.9a
35 1.6a 2.6b 1.7a 1.9a 1.7a 1.0b 2.2a 1.2b 1.9a 2.2b
40 1.5a 2.7b 2.1a 2.0a 1.7a 1.1b 2.2a 1.2b 1.5a 1.8b
45 1.5a 2.6b 1.9a 1.9a 1.7a 1.3b 2.0a 1.2b 1.5a 1.8b
50 1.5a 2.2b 1.8a 2.0a 1.9a 1.3b 1.6a 1.2b 1.4a 1.7b
55 1.4a 2.4b 1.9a 1.9a 1.7a 1.2b 1.1a 1.1a 1.5a 1.7b
60 1.4a 1.8b 2.1a 1.9a 1.7a 1.2b 1.6a 1.3b 1.3a 1.2a
Abbreviatons: HKE= high kinetic energy wetting; LKE= low kinetic energy wetting.   
Letter in the same row for each range of particles means significant at p <0.05. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 130



 

Table A7: Enrichment ratio in organic carbon (EROC) measured in the sediment 

produced by interrill erosion in the Maury soil under NT 

 Range of particles (mm) 

< 0.053 0.053 
-0.105 

 

0.105 
-0.250 

0.250 
-0.500 

0.500 
-1.000 

TIME 

HKE LKE HKE LKE HKE LKE HKE LKE HKE LKE 
2 1.6a 1.9b 0.7a 0.6a 0.9a 0.7a 1.0a 1.0a 1.1a 0.9a
5 1.6a 1.9b 0.6a 0.8a 0.8a 0.8a 0.9a 1.0a 1.0a 0.9a
10 1.5a 1.8b 0.6a 0.7a 0.8a 0.9a 0.9a 1.0a 0.9a 1.0a
15 1.4a 1.3a 0.5a 0.7a 0.9a 0.6b 0.8a 1.1b 0.7a 0.9a
20 1.3a 1.7b 0.6a 0.9b 0.8a 0.7a 0.8a 1.1b 0.9a 0.9a
25 1.7a 1.9b 0.6a 0.8a 0.8a 0.8a 0.9a 1.1a 1.1a 0.9a
30 1.8a 1.7a 0.6a 0.8a 0.9a 0.8a 1.1a 1.0a 1.0a 1.0a
35 1.3a 1.3a 0.7a 0.9a 0.8a 0.7a 1.1a 0.9a 1.1a 0.9a
40 1.5a 1.5a 0.5a 0.8b 1.0a 0.8a 1.0a 1.0a 1.1a 0.8a
45 1.7a 1.7a 0.6a 0.7a 1.0a 0.8a 1.1a 0.9a 1.1a 0.9a
50 1.6a 1.6a 0.6a 0.8a 0.8a 0.8a 1.0a 0.9a 1.1a 1.0a
55 1.6a 1.6a 0.7a 0.7a 0.7a 0.8a 0.9a 0.9a 1.0a 1.0a
60 1.5a 1.6a 0.7a 0.6a 0.8a 0.8a 1.1a 0.9a 1.0a 1.0a
Abbreviatons: HKE= high kinetic energy wetting; LKE= low kinetic energy wetting.   
Letter in the same row for each range of particles means significant at p <0.05. 
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Table A8: Enrichment ratio in organic carbon (EROC) measured in the sediment 

produced by interrill erosion in the Maury soil under CT 

 Range of particles (mm) 

< 0.053 0.053 
-0.105 

 

0.105 
-0.250 

0.250 
-0.500 

0.500 
-1.000 

TIME 

HKE LKE HKE LKE HKE LKE HKE LKE HKE LKE 
2 1.7a 1.8a 1.3a 1.3a 0.8a 1.1b 1.0a 0.8b 2.1a 1.7b
5 1.8a 1.4b 1.3a 1.3a 0.7a 1.0b 1.0a 1.1a 1.8a 1.9a
10 1.9a 1.6b 1.4a 1.0b 0.8a 1.0a 0.8a 0.9a 1.6a 1.6a
15 2.0a 1.6b 1.3a 1.0b 0.8a 1.0a 0.8a 0.8a 1.5a 1.9b
20 1.7a 1.8a 1.4a 1.2a 0.7a 1.1b 0.8a 0.9a 1.5a 1.5a
25 1.6a 1.7a 1.5a 1.2b 0.7a 1.1b 0.7a 0.9a 1.7a 2.0b
30 1.8a 1.6a 1.3a 1.4a 0.8a 1.1b 0.7a 0.9a 1.7a 1.7a
35 1.9a 1.6b 0.8a 1.2b 0.8a 1.4b 0.8a 0.9a 1.6a 1.8a
40 1.8a 1.5b 1.1a 1.0a 0.8a 1.4b 0.8a 1.0b 1.4a 1.8b
45 1.9a 1.6b 1.7a 1.2b 0.7a 1.3b 0.8a 0.9a 1.2a 2.0b
50 1.8a 1.3b 1.1a 1.3a 0.8a 1.3b 0.8a 0.9a 1.2a 1.3a
55 1.8a 1.6a 1.1a 1.4b 1.0a 1.2a 0.7a 0.8a 1.0a 2.0b
60 1.7a 1.4b 1.2a 1.2a 0.9a 1.2a 0.7a 0.9a 1.2a 1.3a
Abbreviatons: HKE= high kinetic energy wetting; LKE= low kinetic energy wetting.   
Letter in the same row for each range of particles means significant at p <0.05. 
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