
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

University of Kentucky Master's Theses Graduate School 

2010 

STATISTICAL MODELS FOR CONSTANT FALSE-ALARM RATE STATISTICAL MODELS FOR CONSTANT FALSE-ALARM RATE 

THRESHOLD ESTIMATION IN SOUND SOURCE DETECTION THRESHOLD ESTIMATION IN SOUND SOURCE DETECTION 

SYSTEMS SYSTEMS 

Sayed Mahdi Saghaian Nejad Esfahani 
University of Kentucky, smsa222@uky.edu 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Saghaian Nejad Esfahani, Sayed Mahdi, "STATISTICAL MODELS FOR CONSTANT FALSE-ALARM RATE 
THRESHOLD ESTIMATION IN SOUND SOURCE DETECTION SYSTEMS" (2010). University of Kentucky 
Master's Theses. 46. 
https://uknowledge.uky.edu/gradschool_theses/46 

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted 
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more 
information, please contact UKnowledge@lsv.uky.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Kentucky

https://core.ac.uk/display/232558495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


ABSTRACT OF THESIS 

STATISTICAL MODELS FOR CONSTANT FALSE-ALARM RATE THRESHOLD ESTIMATION IN 
SOUND SOURCE DETECTION SYSTEMS 

 

Constant False Alarm Rate (CFAR) Processors are important for applications where 
thousands of detection tests are made per second, such as in radar. This thesis 
introduces a new method for CFAR threshold estimation that is particularly applicable to 
sound source detection with distributed microphone systems. The novel CFAR Processor 
exploits the near symmetry about 0 for the acoustic pixel values created by steered-
response coherent power in conjunction with a partial whitening preprocessor to 
estimate thresholds for positive values, which represent potential targets. 

To remove the low frequency components responsible for degrading CFAR 
performance, fixed and adaptive high-pass filters are applied. A relation is proposed and 
it tested the minimum high-pass cut-off frequency and the microphone geometry. 

Experimental results for linear, perimeter and planar arrays illustrate that for desired 
false alarm (FA) probabilities ranging from 10-1 and 10-6, a good CFAR performance can 
be achieved by modeling the coherent power with Chi-square and Weibull distributions 
and the ratio of desired over experimental FA probabilities can be limited within an 
order of magnitude. 

 
KEYWORDS: Sound Source Localization, CFAR Processor, High-pass Filter, Chi-square 
Distribution, Weibull Distribution 
 

           Sayed Mahdi Saghaian Nejad Esfahani          _ 
 

                                      April 19th, 2010                          _      



 

STATISTICAL MODELS FOR CONSTANT FALSE-ALARM RATE THRESHOLD 
ESTIMATION IN SOUND SOURCE DETECTION SYSTEMS 

By 

Sayed Mahdi Saghaian Nejad Esfahani 

          Kevin D. Donohue     _   
Director of Thesis 

       
 

          Stephen D. Gedney     _   
Director of Graduate Studies 

 
 

             April 19th, 2010      _   

 
 

  



 

RULES FOR THE USE OF THESES 
 

Unpublished theses submitted for the Master’s degree and deposited in the University of 
Kentucky Library are as a rule open for inspection, but are to be used only with due 
regard to the rights of the authors. Bibliographical references may be noted, but 
quotations or summaries of parts may be published only with the permission of the 
author, and with the usual scholarly acknowledgments. 
 
Extensive copying or publication of the thesis in whole or in part also requires the 
consent of the Dean of the Graduate School of the University of Kentucky. 
 
A library that borrows this thesis for use by its patrons is expected to secure the signature 
of each user. 
 
Name            Date 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

THESIS 
 
 
 
 
 

Sayed Mahdi Saghaian Nejad Esfahani 
 
 

 
 
 

The Graduate School 
 

University of Kentucky 
 

2010 



 

STATISTICAL MODELS FOR CONSTANT FALSE-ALARM RATE THRESHOLD 
ESTIMATION IN SOUND SOURCE DETECTION SYSTEMS 

________________________________________ 

 THESIS  
________________________________________ 

A thesis submitted in partial fulfillment of the 
 requirements for the degree of Master of Science in Electrical Engineering in the  

College of Engineering at the University of Kentucky 
 

By 
Sayed Mahdi Saghaian Nejad Esfahani 

Lexington, Kentucky 
 

Director:  Dr. Kevin D. Donohue, Professor of Electrical and Computer Engineering 
Lexington, Kentucky 2010 

Copyright © Sayed Mahdi Saghaian Nejad Esfahani 2010 



 

To my loving Parents, Wife, Sister and Brothers  
 
 



iii 
 

ACKNOWLEDGMENTS 
 
I am deeply thankful to my supervisor, Dr. Kevin Donohue, whose encouragement, 
guidance and support from the initial to the concluding level of the research, enabled me 
to develop an understanding of the subject. His knowledge and character provided a 
flourishing environment. 
 
I’d like to cordially thank my parents, my wife and my siblings for their love, inspiration, 
motivation and support during all aspects of my life, including my college career. 

I would like to thank the committee member Dr. Jens Hannemann, Dr. Sen-ching Cheung 
and Dr. Laurence G. Hassebrook for their valuable time and suggestions for improving 
this thesis. 
 
Finally, I offer my regards to all of those who supported me in any respect during the 
completion of the project. In particular, I would like to show my gratitude to my colleges 
at Center for Visualization and Virtual Environments. 
  



iv 
 

TABLE OF CONTENTS 

LIST OF TABLES ...............................................................................................................v 

LIST OF FIGURES ........................................................................................................... vi 

Chapter 1   Sound Source Localization Algorithms ............................................................1 

1.1 Introduction .............................................................................................................1 

1.2 TDOA-based sound source localization approaches ..............................................4 

1.3 SRP-based sound source localization strategies .....................................................8 

Chapter 2   Statistics of Noise-Only SRCP Image Values.................................................13 

2.1 Introduction ...........................................................................................................13 

2.2 Noise-only SRCP image values statistics .............................................................15 

Chapter 3   Constant False Alarm Rate (CFAR) Processor ...............................................23 

3.1 Introduction ...........................................................................................................23 

3.2 Cell Averaging (CA) CFAR processor .................................................................26 

3.3 Greatest Of (GO) CFAR processor .......................................................................27 

3.4 Smallest Of (SO) CFAR processor .......................................................................28 

3.5 Order Statistics (OS) CFAR processor .................................................................29 

3.6 CFAR processor in SSL applications ...................................................................30 

3.6.1 Chi-squared distribution..................................................................................31 

3.6.2 Weibull distribution .........................................................................................34 

Chapter 4   Experimental Results.......................................................................................40 

4.1 Introduction ...........................................................................................................40 

4.2 Mic-distribution factor ..........................................................................................43 

4.3 CFAR performance, considering only mic-distribution factor .............................45 

4.3.1 Chi-square distribution....................................................................................46 

4.3.2 Developing scaling methods for the Chi-square distribution application ......52 

4.3.3 Weibull distribution .........................................................................................67 

4.4 Low frequency limit .............................................................................................78 

4.5 Adaptive high-pass filters .....................................................................................79 

4.6 Combining mic-distribution and noise-path factors .............................................82 

Chapter 5   Conclusion .......................................................................................................99 

5.1 Conclusion ............................................................................................................99 

Bibliography ....................................................................................................................101 

Vita ...................................................................................................................................104 

 
  



v 
 

LIST OF TABLES 
Table 4.1: Low frequency limit resulted by noise-path factor .......................................... 85 
 

  



vi 
 

LIST OF FIGURES 
Figure 1.1 A filter-and-sum beamformer structure. ............................................................ 8 
Figure 3.1 CA-CFAR processor ....................................................................................... 25 
Figure 3.2 Degradation in CFAR performance caused by error in estimating noise power 

for different number of samples used in estimation of noise power. σ is set to 1. .... 34 
Figure 4.1 Microphone distributions and FOV (shaded plane) for simulation and 

experimental recordings with axes in meters. Small filled circles outside the FOV 
denote a microphone position and the square and star markers in the FOV denote the 
smallest and largest (respectively) microphone inter-distance standard deviation 
overall pairs (a) linear (b) perimeter and (c) planar. .................................................. 41 

Figure 4.2 Normalized histograms for microphone pair differential path lengths at FOV 
points that generate the minimum and maximum standard deviations for (a) linear 
geometry (b) perimeter geometry, and (c) planar geometry. ..................................... 44 

Figure 4.3 Ratios of specified to empirical (experimental) FA probabilities for linear 
array for high-pass filtered signals with cut-off frequency of 300 Hz. The normalized 
test pixel by the 2nd moments is modeled by Chi-square distribution (a) variations of 
PHAT-β parameters using degree of freedom of 1 for Chi-square distribution (b) 
variations in Chi-square distribution degree of freedom using beta equal to 0.75. ... 47 

Figure 4.4 Ratios of specified to empirical (experimental) FA probabilities for linear 
array. The normalized test pixel by the 2nd moments is modeled by Chi-square 
distribution. The beta value is set to 0.75 and different  Chi-square distribution 
degree of freedoms are applied  using  high-pass filter cut-off frequency of  (a) 800 
Hz (b) 1500 Hz. ......................................................................................................... 49 

Figure 4.5 Ratios of specified to empirical (experimental) FA probabilities for perimeter 
array for high-pass filtered signals with cut-off frequency of 300 Hz. The normalized 
test pixel by the 2nd moments is modeled by Chi-square distribution (a) variations of 
PHAT-β parameters using degree of freedom of 1 for Chi-square distribution (b) 
variations of PHAT-β parameters using degree of freedom of 6 for Chi-square 
distribution (c) variations in Chi-square distribution degree of freedom using beta 
equal to 0.75. ............................................................................................................. 50 

Figure 4.6 Ratios of specified to empirical (experimental) FA probabilities for planar 
array for high-pass filtered signals with cut-off frequency of 300 Hz. The normalized 
test pixel by the 2nd moments is modeled by Chi-square distribution (a) variations of 
PHAT-β parameters using degree of freedom of 1 for Chi-square distribution (b) 
variations of PHAT-β parameters using degree of freedom of 6 for Chi-square 
distribution (c) variations in Chi-square distribution degree of freedom using beta 
equal to 0.75. ............................................................................................................. 51 

Figure 4.7: Ratios of specified to empirical (experimental) FA probabilities for linear 
array for high-pass filtered signals with cut-off frequency of 300 Hz. The PHAT-β 
parameter is set to 0.85. The performances of modeling three linear combinations of 



vii 
 

the coherent power by Chi-square distribution are compared together (a) for degree 
of freedom of 1 (b) for degree of freedom of 6. ........................................................ 55 

Figure 4.8: Ratios of specified to empirical (experimental) FA probabilities for linear 
array for high-pass filtered signals with cut-off frequency of 800 Hz. The PHAT-β 
parameter is set to 0.85. The performances of modeling three linear combinations of 
the coherent power by Chi-square distribution are compared together (a) for degree 
of freedom of 1 (b) for degree of freedom of 2. ........................................................ 56 

Figure 4.9: Ratios of specified to empirical (experimental) FA probabilities for linear 
array for high-pass filtered signals with cut-off frequency of 1500 Hz. The PHAT-β 
parameter is set to 0.85. The performance of modeling three linear combinations of 
the  coherent power by Chi-square distribution are compared together for degree of 
freedom of(a) 4 (b) 48 (c) 240 (d) 1600. ................................................................... 58 

Figure 4.10 Ratios of specified to empirical (experimental) FA probabilities for perimeter 
array for high-pass filtered signals with cut-off frequency of 300 Hz. The PHAT-β 
parameter is set to 0.85. The performance of modeling three linear combinations of 
the coherent power by Chi-square distribution are compared together for degree of 
freedom of(a) 4 (b) 48 (c) 240 (d) 1600. ................................................................... 60 

Figure 4.11 Ratios of specified to empirical (experimental) FA probabilities for planar 
array for high-pass filtered signals with cut-off frequency of 300 Hz. The PHAT-β 
parameter is set to 0.85. The performance of modeling three linear combinations of 
the coherent power by Chi-square distribution are compared together for degree of 
freedom of(a) 3 (b) 4 (c) 10 (d) 32. ........................................................................... 62 

Figure 4.12 Ratios of specified to empirical (experimental) FA probabilities for linear 
array for high-pass filtered signals with cut-off frequency of 1500 Hz. The beta is 
equal to 0.85. Variations of the neighborhood size using (a) mean-cx2 approach and 
degree of freedom of 4 for Chi-square distribution (b) mean-var-cx2 method and 
degree of freedom of 240. .......................................................................................... 64 

Figure 4.13 Ratios of specified to empirical (experimental) FA probabilities for perimeter 
array for high-pass filtered signals with cut-off frequency of 300 Hz. The beta is 
equal to 0.85. The mean-cx2 approach is applied (a) variations of the neighborhood 
size using Chi-square distribution  degree of freedom of 4 (b) for neighborhood size 
of 7x7 pixels the degree of freedom should be set to 2 while for neighborhood size of 
21x21 pixel it can be either 4 or 5 to achieve a reasonable CFAR performance. ..... 65 

Figure 4.14 Ratios of specified to empirical (experimental) FA probabilities for planar 
array for high-pass filtered signals with cut-off frequency of 300 Hz. The beta is 
equal to 0.85. The mean-cx2 approach is applied (a) variations of the neighborhood 
size using Chi-square distribution degree of freedom of 3 (b) for neighborhood size 
of 7x7 pixels a reasonable CFAR performance is not achievable while for 
neighborhood size of 21x21 pixel the degree of freedom can be either 3 or 4 to 
achieve a reasonable CFAR performance. ................................................................ 66 



viii 
 

Figure 4.15 Ratios of specified to empirical (experimental) FA probabilities for linear 
array for high-pass filtered signals with cut off frequency of 300 Hz when the 
coherent power is modeled by Weibull distribution. (a) Variations of PHAT-β 
parameters using shape parameter of 1.26 (b) variations of shape parameters using 
beta equal to 0.85. ...................................................................................................... 69 

Figure 4.16 Ratios of specified to empirical (experimental) FA probabilities for linear 
array for high-pass filtered signals with cut off frequency of 1500 Hz when the 
coherent power is modeled by Weibull distribution. (a) Variations of PHAT-β 
parameters using shape parameter of 1.26 (b) variations in shape parameters using 
beta equal to 0.85. ...................................................................................................... 70 

Figure 4.17 Ratios of specified to empirical (experimental) FA probabilities for perimeter 
array for high-pass filtered signals with cut off frequency of 300 Hz when the 
coherent power is modeled by Weibull distribution. (a) Variations in PHAT-β 
parameters using shape parameter of 1.26 (b) variations in shape parameters using 
beta equal to 0.85. ...................................................................................................... 72 

Figure 4.18 Ratios of specified to empirical (experimental) FA probabilities for planar 
array for high-pass filtered signals with cut off frequency of 300 Hz when the 
coherent power is modeled by Weibull distribution. (a) Variations in PHAT-β 
parameters using shape parameter of 1.26 (b) variations in PHAT-β parameters, 
using shape parameter of 1.12. .................................................................................. 73 

Figure 4.19 CFAR Performance for 3 different neighborhood sizes using Weibull 
distribution, using partial whitening value of 0.85 for (a) linear array with 1500 Hz 
cut of frequency and using shape parameter of 1.26 (b) perimeter array with 300 Hz 
cut of frequency and using shape parameter of 1.26 (c) planar array with 300 Hz cut-
off frequency and using shape parameter of 1.12. ..................................................... 75 

Figure 4.20 CFAR Performance using Weibull distribution for neighborhood size of 7x7, 
using partial whitening value of 0.85 for 3 different shape parameters. (a) linear 
array with 1500 Hz cut-off frequency (b) perimeter array with 300 Hz cut-off 
frequency (c) planar array with 300 Hz cut-off frequency. ....................................... 77 

Figure 4.21 CFAR performances using adaptive high-pass filters for each FOV point for 
linear array with beta value equal to 0.85 (a) using mean-cx2 method and variations 
in degree of freedom (b) using Weibull distribution and variations in shape 
parameter. .................................................................................................................. 80 

Figure 4.22 CFAR performance using adaptive high-pass filters for each FOV point for 
beta value equal to 0.85. (a) and (b) for perimeter array. (c) and (d) for planar array. 
(a) and (c) using mean-cx2 method and variations in degree of freedom (b) and 
(d)using Weibull distribution and variations in shape parameter. ............................. 81 

Figure 4.23 SRCP images. (a) and (c) locating noise source by finding mean value of 
position of all potential noise source positions. (b) and (d)locating noise source by 



ix 
 

finding the position which have maximum value of SRCP among all potential pixels. 
(a) and (b) for broad side noise. (c) and (d) for endfire noise. .................................. 84 

Figure 4.24 CFAR performance using 3rd null for both mic-distribution and noise-path 
factors to design adaptive high-pass filters for each FOV point for linear array with 
beta value equal to 0.85 (a) using mean-cx2 method with degree of freedom equal  to 
2 (b) using Weibull distribution and variations in shape parameter. ......................... 86 

Figure 4.25 Mic-distribution factor is dominant for no whitening case. CFAR 
performance for linear array: (a) and (b) using mean-cx2 approach with degree of 
freedom equal to 2. (c) and (d) exploiting Weibull distribution with shape parameter 
of 0.95. (a) and (c) applying partial whiting with beta value equal to 0.85. (b) and (d) 
no whitening situation. .............................................................................................. 88 

Figure 4.26 Noise-path factor is dominant for partial whitening case.  CFAR performance 
for linear array: (a) and (b) using mean-cx2 approach with degree of freedom equal 
to 2. (c) and (d) exploiting Weibull distribution with shape parameter of 0.95. (a) and 
(c) applying partial whiting with beta value equal to 0.85. (b) and (d) no whitening 
situation. .................................................................................................................... 89 

Figure 4.27 CFAR performance using 1st null for both mic-distribution and noise-path 
factors to design adaptive high-pass filters for each FOV point for perimeter array 
with beta value equal to 0.85 (a) using mean-cx2 method with degree of freedom 
equal  to 2 (b) using Weibull distribution and variations in shape parameter. .......... 90 

Figure 4.28 CFAR performance using the 1st null for mic-distribution factor and the 2nd 

null for noise-path factor to design adaptive high-pass filters for each FOV point for 
perimeter array for no-whitening case (a) using mean-cx2 method  variations in  
degree of freedom. (b) using Weibull distribution and variations in shape parameter.
 ................................................................................................................................... 91 

Figure 4.29 CFAR performance for perimeter array when the 3rd null of the related sinc 
functions are selected for both low frequency limits resulted by mic-distribution and 
noise-path factors: (a) and (b) using mean-cx2 approach, variation in degree of 
freedom. (c) and (d) exploiting Weibull distribution, variation in shape parameter. (a) 
and (c) applying partial whiting with beta value equal to 0.85. (b) and (d) no 
whitening situation. ................................................................................................... 93 

Figure 4.30 CFAR performance by using the 1st null for both mic-distribution and noise-
path factors to design adaptive high-pass filters for each FOV point for planar array 
with beta value equal to 0.85 (a) using mean-cx2 method using degree of freedom of 
2. (b) using Weibull distribution and variations in shape parameter. ........................ 94 

Figure 4.31 CFAR performance using the 1st null for mic-distribution factor and the 2nd 

null for noise-path factor (139 Hz) to design adaptive high-pass filters for each FOV 
point for planar array for no-whitening case (a) using mean-cx2 method variations in 
degree of freedom. (b) using Weibull distribution and variations in shape parameter.
 ................................................................................................................................... 95 



x 
 

Figure 4.32 CFAR performance for planar array when the 2nd null of the related sinc 
functions are selected for both low frequency limits resulted by mic-distribution and 
noise-path factors: (a) and (b) using mean-cx2 approach, variation in degree of 
freedom. (c) and (d) using Weibull distribution, variation in shape parameter. (a) and 
(c) applying partial whiting with beta value equal to 0.85. (b) and (d) no whitening 
situation. .................................................................................................................... 98 



1 
 

 
 

Chapter 1 

 Sound Source Localization Algorithms 
 

 

1.1 Introduction 

 

Many applications require or can be enhanced by automatic sound source detection 

and location, in particular in applications that use microphone arrays such as 

teleconferencing [1-5], speech recognition [6-12], talker tracking [13], and beamforming 

for SNR enhancement [14].  

    Two main approaches for solving the source localization problem are those 

approaches that use time-difference of arrival (TDOA) information, and those based on 

maximizing the steered response power (SRP) of a beamformer [15].  

    In TDOA based approaches, the goal is to derive the location of the sound source 

by employing an estimate of TDOA. The most common method to estimate TDOA is 

exploiting the generalized cross-correlation (GCC) function [16]. The GCC function is the 

cross-correlation of two filtered versions of received signals by two microphone pairs. 

The GCC function has a peak at the time corresponding to the TDOA. Once an estimate 

of TDOA is derived, one can find the source location by various techniques [17, 18]. This 

method suffers from reverberation, especially in those applications that need a short 

data segment such as adaptive beamforming and tracking of multiple talkers. There 

exists a couple of weighting function such as Maximum Likelihood (ML) and Phase 

Transform (PHAT) weighting function. ML weightings are optimal under free-

reverberation conditions but reverberation significantly degrades their performance. 
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While PHAT weightings are suboptimal in the absence of reverberation, they are more 

robust against reverberation than ML weightings. 

    In SRP based methods the goal is to find which point in the space will maximize the 

SRP of a beamformer. In conventional beamformers, also known as delay-and-sum 

beamformers, to compensate for the propagation delays in the received signals by 

microphones, time shifts will be applied to the array signals. Once these signals are time 

aligned, they are summed together to generate the steered response of the 

beamformer. In the favorable conditions, the peak of SRP will correspond to the location 

of the sound source. Filters can be applied to the time aligned signals before adding 

them together to have a better performance. Recent work shows that the SRP algorithm 

in conjunction with PHAT (the DFT of the filters are equal to one over the amplitude of 

DFT of the received signal by each microphone), SRP-PHAT, has one of the most robust 

performances. Since the SRP can be derived by summing GCC functions of all possible 

microphone pairs and the autocorrelation terms are independent from the location of 

the sound source, the autocorrelation terms can be subtracted out which leads to a 

coherent power. This method is called steered response coherent power (SRCP). 

The estimation of location of active voices needs to not only be accurate enough but 

also should be updated at a high rate with minimal latency. Commercialization of 

inexpensive and high-speed DSPs made sound source localization feasible by means of 

microphone arrays in conjunction with adaptive array processing algorithms.  

  The primary goal of sound source localization is to derive automatically an accurate 

enough estimation of the location of the sound sources. The first question that comes 

up in mind is how much the estimation is accurate. One way to describe the term 

“accurate enough” is using false alarm probability. The idea of how to select 

automatically threshold for specific desired probability of false alarm is a new idea [19]. 

They have presented a method for automatically designing threshold using local noise 

statistics; however, the analysis of the noise field was limited as well as the 

performance.  It only considered experimental studies using a Weibull distribution for 
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threshold design.  This thesis proposes and compares other statistical models for the 

design of constant false alarm rate thresholds as well using experimental studies.   

The key elements about this thesis are that it describes the statistics of noise field 

using experimental studies, and based on this analysis proposes a statistical model for 

an adaptive threshold design.  

Experiments show that low frequency components are responsible for degradation in 

threshold estimation. High-pass filters, either a fixed high-pass filter for all FOV points or 

an adaptive high-pass filter for each FOV point, are exploited to provide a symmetric 

condition for noise distribution which is a required feature for the novel Constant False 

Alarm Rate (CFAR) processor introduced in this thesis. Based on the experimental result, 

a relationship for low frequency limit will be derived for all microphone geometries. 

As a matter of fact, the accuracy of estimation of sound source position as well as 

CFAR threshold performance is dependent on the array's geometry. In this thesis, the 

three microphone distribution used to investigate the performance of CFAR threshold 

are linear, perimeter and planar distributions. 

Chapter 1 provides a detailed analysis on the main sound source localization 

algorithms. Statistics of noise-only distribution are derived in chapter 2. In chapter 3, 

different CFAR processors commonly used in radar application as well as the novel CFAR 

processor for sound source localization issues are introduced. Finally, the experimental 

results are presented in chapter 4.  
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1.2 TDOA-based sound source localization approaches 

 

In TDOA-based approaches, the sound sources will be located using a 2-step 

procedure. In the first step, TDOA's between all possible microphone pairs are 

estimated. In the second step, these TDOA's along with prior knowledge of microphone 

positions are exploited to generate hyperbolic curves. These hyperbolic curves intersect 

and the collection of intersection points is used to estimate the location of a sound 

source. 

As it can be figured out from the name of this approach, it is vital to estimate TDOA's 

with high accuracy in order to have an accurate estimation of the location of the sound 

source. 

One of the robust methods to compute TDOA'S between microphone pairs is 

generalized cross-correlation (GCC) function. The GCC function is defined as the cross 

correlation of two filtered versions of two microphone signals. 

Let us denote the sound source signal located at ri in the space by ui(t). Then the 

received signal by the pth microphone located at position rp in the space will be: 

 

 𝑣𝑣𝑝𝑝(𝑡𝑡) =  𝑢𝑢𝑖𝑖(𝑡𝑡) ∗  ℎ𝑖𝑖𝑝𝑝 (𝑡𝑡) +  �𝑛𝑛𝑘𝑘(𝑡𝑡) ∗  ℎ𝑘𝑘𝑝𝑝 (𝑡𝑡)
𝐾𝐾

𝑘𝑘=1

 (1.1)  

 

where K denotes the total number of noise sources and 𝑛𝑛𝑘𝑘(𝑡𝑡) is the kth noise source 

that could be even non-target speakers, as well as the ambient room noises. Also, ℎ𝑖𝑖𝑝𝑝 (𝑡𝑡) 

is the effective impulse response of the microphone and propagation path from ri to rp. 

Also, '*' operator represents the convolution operator. 

One of the sources of signal degradation in acoustic conditions such as small rooms is 

reverberation. Therefore, in addition to the direct path, reflected paths should be 

considered in the impulse response: 

 ℎ𝑖𝑖𝑝𝑝 (𝑡𝑡) =  𝑎𝑎𝑖𝑖𝑝𝑝 ,0�𝑡𝑡 − 𝜏𝜏𝑖𝑖𝑝𝑝 ,0� + �𝑎𝑎𝑖𝑖𝑝𝑝 ,𝑛𝑛(𝑡𝑡 − 𝜏𝜏𝑖𝑖𝑝𝑝 ,𝑛𝑛)
∞

𝑛𝑛=1

 (1.2)  
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where 𝑎𝑎𝑖𝑖𝑝𝑝 ,𝑛𝑛(𝑡𝑡) represents the nth path of the effective impulse response between the 

sound source located at ri and pth microphone with corresponding delay 𝜏𝜏𝑖𝑖𝑝𝑝 ,𝑛𝑛  and n 

represents the nth reflected path. As n increases, the amplitude of the reflected path 

decreases. Therefore, only a few reflected paths (effective paths) will be considered in 

estimating the location of the sound source.   

The pth microphone signal can be represented in frequency domain by taking Fourier 

transform of equation (1.1): 

 

𝑉𝑉𝑝𝑝(𝜔𝜔) =  𝑈𝑈𝑖𝑖(𝜔𝜔) �𝐴𝐴𝑖𝑖𝑝𝑝 ,0 (𝜔𝜔)𝑒𝑒−𝑗𝑗𝜔𝜔 𝜏𝜏𝑖𝑖𝑝𝑝 ,0 +  �𝐴𝐴𝑖𝑖𝑝𝑝 ,𝑛𝑛(𝜔𝜔)
𝐸𝐸

𝑛𝑛=1

𝑒𝑒−𝑗𝑗𝜔𝜔 𝜏𝜏𝑖𝑖𝑝𝑝 ,𝑛𝑛  �

+ �𝑁𝑁𝑘𝑘(𝜔𝜔)
𝐾𝐾

𝑘𝑘=1

� �𝐴𝐴𝑘𝑘𝑝𝑝 ,𝑛𝑛(𝜔𝜔)
𝐹𝐹

𝑛𝑛=0

𝑒𝑒−𝑗𝑗𝜔𝜔 𝜏𝜏𝑘𝑘𝑝𝑝 ,𝑛𝑛 � 

(1.3)  

 

where E is the number of effective paths (excluding the direct path) of the sound source 

at ri and F is the number of effective paths (including the direct path) of the noise 

sources which contribute to the signal segment used in the estimation.  

Similar to the received signal by pth microphone, denote the received signal by qth 

microphone by 𝑣𝑣𝑞𝑞(𝑡𝑡). The cross correlation of two signals  𝑣𝑣𝑝𝑝(𝑡𝑡) and 𝑣𝑣𝑞𝑞(𝑡𝑡), 𝑐𝑐𝑝𝑝𝑞𝑞 (𝜏𝜏) is 

defined as: 

 

 𝑐𝑐𝑝𝑝𝑞𝑞 (𝜏𝜏) =  � 𝑣𝑣𝑝𝑝(𝑡𝑡)
∞

−∞
𝑣𝑣𝑞𝑞(𝑡𝑡 + 𝜏𝜏)𝑑𝑑𝑡𝑡 (1.4)  

 

And the Fourier transform of cross correlation is called cross spectrum, 𝐶𝐶𝑝𝑝𝑞𝑞 (𝜔𝜔): 

 

 𝐶𝐶𝑝𝑝𝑞𝑞 (𝜔𝜔) =  ℱ�𝑐𝑐𝑝𝑝𝑞𝑞 (𝜏𝜏)� =  � 𝑐𝑐𝑝𝑝𝑞𝑞 (𝜏𝜏)
∞

−∞
𝑒𝑒−𝑗𝑗𝜔𝜔𝜏𝜏 𝑑𝑑𝜏𝜏 (1.5)  

 

And by taking inverse Fourier transform, cross spectrum can be converted to cross 

correlation: 
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 𝑐𝑐𝑝𝑝𝑞𝑞 (𝜏𝜏) =  ℱ−1�𝐶𝐶𝑝𝑝𝑞𝑞 (𝜔𝜔)� =  
1

2𝜋𝜋
 � 𝐶𝐶𝑝𝑝𝑞𝑞 (𝜔𝜔)𝑒𝑒𝑗𝑗𝜔𝜔𝜏𝜏 𝑑𝑑𝜔𝜔

∞

−∞
 (1.6)  

 

Since microphone p and q are spatially distributed and rp and rq are different, ui(t) will 

be received to each microphone with deferent propagation delays. In the case that no 

reverberation or attenuation exists, 𝑣𝑣𝑝𝑝(𝑡𝑡) and 𝑣𝑣𝑞𝑞(𝑡𝑡) are only two shifted versions of the 

emerged signal, ui(t) located at ri. Consequently, the cross correlation of 𝑣𝑣𝑝𝑝(𝑡𝑡) and 𝑣𝑣𝑞𝑞(𝑡𝑡) 

peaks at the time related to TDOA between received signals by microphone p and q. 

Transforming time domain to frequency domain reduces the required computation 

for estimating TDOA. Applying the Fourier transform to equation (1.4) and exploiting the 

convolution property of Fourier transform results in: 

 

 𝐶𝐶𝑝𝑝𝑞𝑞 (𝜔𝜔) =  𝑉𝑉𝑝𝑝(𝜔𝜔)𝑉𝑉𝑞𝑞∗(𝜔𝜔) (1.7)  
 

where '*' denotes complex conjugate operator. 

As it was defined before, the GCC is the cross correlation of two filtered versions of 

the two microphone signals. Let 𝑦𝑦𝑝𝑝(𝑡𝑡) and 𝑦𝑦𝑞𝑞(𝑡𝑡) represent filtered versions of signals 

𝑣𝑣𝑝𝑝(𝑡𝑡) and 𝑣𝑣𝑞𝑞(𝑡𝑡)  respectively and denote Fourier transform of the filtered signals by 

𝑌𝑌𝑝𝑝(𝜔𝜔) and 𝑌𝑌𝑞𝑞(𝜔𝜔) respectively.  

 

 𝑌𝑌𝑝𝑝(𝜔𝜔) =  𝐻𝐻𝑝𝑝(𝜔𝜔)𝑉𝑉𝑝𝑝(𝜔𝜔)     𝑎𝑎𝑛𝑛𝑑𝑑     𝑌𝑌𝑞𝑞(𝜔𝜔) =  𝐻𝐻𝑞𝑞(𝜔𝜔)𝑉𝑉𝑞𝑞(𝜔𝜔) (1.8)  
 

where 𝐻𝐻𝑝𝑝(𝜔𝜔) and 𝐻𝐻𝑞𝑞(𝜔𝜔) are Fourier transform of impulse responses of those filters. 

Therefore, the GCC of received signals by pth and qth microphones is denoted by 

𝑅𝑅𝑝𝑝𝑞𝑞 (𝜏𝜏) and can be computed by: 

 

 𝑅𝑅𝑝𝑝𝑞𝑞 (𝜏𝜏) =  
1

2𝜋𝜋
 � 𝑌𝑌𝑝𝑝(𝜔𝜔)𝑌𝑌𝑞𝑞∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝜔𝜔𝜏𝜏 𝑑𝑑𝜔𝜔

∞

−∞
 (1.9)  

 

By applying equation (1.8), equation (1.9) can be rewritten as: 
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 𝑅𝑅𝑝𝑝𝑞𝑞 (𝜏𝜏) =  
1

2𝜋𝜋
 � 𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔)𝑉𝑉𝑝𝑝(𝜔𝜔)𝑉𝑉𝑞𝑞∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝜔𝜔𝜏𝜏 𝑑𝑑𝜔𝜔

∞

−∞
 (1.10)  

 

where 𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔) is called weighting function and is defined as: 

 

 𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔) =  𝐻𝐻𝑝𝑝(𝜔𝜔)𝐻𝐻𝑞𝑞∗(𝜔𝜔) (1.11)  
 

The TDOA between microphone p and q can be estimated by finding the maximum 

value of GCC function. In general, the GCC function has more than one maximum. A 

couple of weighting functions are exploited to emphasize the local maximum 

corresponding to the actual value of TDOA and to deemphasize other local maximum 

values. ML (Maximum Likelihood) weighting is one example that is optimal in the no 

reverberation conditions. However, the performance of ML weightings degrades 

dramatically by increasing the amount of reverberation.  

Another weighting function that has received significant attention, not only in TDOA-

based methods, but also in SRP-based approaches, is PHAT (Phase Transform). Although 

PHAT weightings are suboptimal, they are more robust than ML weightings in the 

presence of reverberation. In PHAT, the weighting function is defined as: 

  

 𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔) =  
1

|𝑉𝑉𝑝𝑝(𝜔𝜔)𝑉𝑉𝑞𝑞∗(𝜔𝜔)|
 (1.12)  

 

Later in this chapter more details will be provided about PHAT weighting function. 

Today, many sound source localization systems are exploiting TDOA-based 

techniques to locate the unknown position of sound sources due to the practicality of 

required computation in this approach. However, this method suffers acutely from 

reverberation and the performance degrades severely as reverberation increases. As a 

matter of fact, reverberation, which is a common condition in the small rooms, makes 

TDOA-based approaches unreliable. Another significant limitation of TDOA-based 

approaches is their incapability to locate multiple sound sources simultaneously.  
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∑
 

1.3 SRP-based sound source localization strategies 

 

The idea in SRP-based approaches is to locate sound sources by creating an array of 

signals by beamforming or focusing on a set of points in the field-of-view. A single 

focused signal is generated by time aligning and weighting all the microphone signals 

and summing the results together, instead of pair wise processing the received signals 

by microphones and looking for a single intersection point, which is the key technique in 

the TDOA-based methods. 

Steered response is referred to the output of a beamformer in the situation where 

the beamformer is used to locate the unknown position of sound sources by steering 

over the field of view (FOV) (a region in the space that most likely contains the sound 

source). The steered response power (SRP) will show a peak at the position 

corresponding to the position of the interested sound source. Fig 1.1 illustrates the 

structure of a filter-and-sum beamformer.  

 

𝑉𝑉1(𝜔𝜔)       

 

 

𝑉𝑉2(𝜔𝜔) 

    
    
    .                                  .                                   . 
    .                                  .                                   . 
    .                                  .                                   . 
 
 

𝑉𝑉𝑀𝑀(𝜔𝜔) 

 

Figure 1.1 A filter-and-sum beamformer structure. 

𝑌𝑌(𝜔𝜔) 

𝑒𝑒𝑒𝑒𝑝𝑝(−𝑗𝑗𝜔𝜔∆1) 𝐺𝐺1(𝜔𝜔) 

𝑒𝑒𝑒𝑒𝑝𝑝(−𝑗𝑗𝜔𝜔∆2) 𝐺𝐺2(𝜔𝜔) 

𝑒𝑒𝑒𝑒𝑝𝑝(−𝑗𝑗𝜔𝜔∆𝑀𝑀) 𝐺𝐺𝑀𝑀(𝜔𝜔) 
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In filter-and-sum beamformers, first, the microphone signals are time aligned to 

compensate for propagation delays. This time alignment is performed by time-shifting 

the microphone signals by related time delays denoted by ∆𝑚𝑚 .  The time delays are 

selected such that all time-shifts are causal which is essential for real-time systems. One 

way to make the system be causal is to select time-shifts delays, ∆𝑚𝑚 , equal to the largest 

direct path propagation delay to any of the microphones minus the direct path of 

propagation delay to the related microphone. 

 

 ∆𝑚𝑚=  𝜏𝜏𝑚𝑚𝑎𝑎𝑒𝑒 ,0 −  𝜏𝜏𝑚𝑚 ,0 (1.13)  
 

where 𝜏𝜏𝑚𝑚 .0 is the direct path of propagation delay between the sound source located at 

ri and mth microphone. 

After time aligning the received signals by microphones and before summing them 

together, some filter processing is performed on each time aligned signal in order to 

boost the power of the interested sound source while attenuating power of other 

sources (noise sources as well as non-interested sound sources). 

If 𝑦𝑦(𝑡𝑡) represents the steered response, it can be formulated as: 

 𝑦𝑦(𝑡𝑡) =  � 𝑔𝑔𝑚𝑚(𝑡𝑡) ∗ 𝑣𝑣𝑚𝑚 (𝑡𝑡 − ∆𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

 (1.14)  

 

where M is the total number  of microphones in the array and 𝑔𝑔𝑚𝑚(𝑡𝑡) is the impulse 

response of the applied filter on the received signal by mth microphone. Also, '*' denotes 

the convolution operator. 

Equation (1.14) can be converted to frequency domain by taking Fourier transform of 

both sides: 

 𝑌𝑌(𝜔𝜔) =  � 𝐺𝐺𝑚𝑚 (𝜔𝜔)𝑉𝑉𝑚𝑚(𝜔𝜔)𝑒𝑒−𝑗𝑗𝜔𝜔 ∆𝑚𝑚
𝑀𝑀

𝑚𝑚=1

 (1.15)  

 

where 𝐺𝐺𝑚𝑚 (𝜔𝜔) is the Fourier transform of the impulse response of the applied filter on 

the received signal by mth microphone. 
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SRP can be obtained by exploiting the Parseval theorem: 

 

 

𝑆𝑆 =  � 𝑌𝑌(𝜔𝜔)
∞

−∞
𝑌𝑌∗(𝜔𝜔)𝑑𝑑𝜔𝜔

=  � ��𝐺𝐺𝑝𝑝(𝜔𝜔)𝑉𝑉𝑝𝑝(𝜔𝜔)𝑒𝑒−𝑗𝑗𝜔𝜔 ∆𝑝𝑝

𝑀𝑀

𝑝𝑝=1

���𝐺𝐺𝑞𝑞∗(𝜔𝜔)𝑉𝑉𝑞𝑞∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝜔𝜔 ∆𝑞𝑞

𝑀𝑀

𝑞𝑞=1

�𝑑𝑑𝜔𝜔
∞

−∞
 

(1.16)  

 

where S denotes the steered response power. 

By applying some simple algebra and exploiting equation (1.13), the SRP can be 

computed from: 

 𝑆𝑆 =  ��� 𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔)𝑉𝑉𝑝𝑝(𝜔𝜔)𝑉𝑉𝑞𝑞∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝜔𝜔 (𝜏𝜏𝑝𝑝 ,0−𝜏𝜏𝑞𝑞 ,0)𝑑𝑑𝜔𝜔
∞

−∞

𝑀𝑀

𝑞𝑞=1

𝑀𝑀

𝑝𝑝=1

 (1.17)  

 

 where similar to TDOA-based approach,  𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔) is called weighting function and is 

defined as: 

 

 𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔) =  𝐺𝐺𝑝𝑝(𝜔𝜔)𝐺𝐺𝑞𝑞∗(𝜔𝜔) (1.18)  
 

By comparing equations (1.17) and (1.10) it can be concluded that in fact, the SRP is 

the sum of all possible GCC functions computed at the time corresponding to the TDOA 

of the pair wised microphones. Therefore, SRP and GCC function are related to each 

other by: 

 

 𝑆𝑆 = 2𝜋𝜋 ��𝑅𝑅𝑝𝑝𝑞𝑞 (𝜏𝜏𝑝𝑝 ,0 − 𝜏𝜏𝑞𝑞 ,0)
𝑀𝑀

𝑞𝑞=1

𝑀𝑀

𝑝𝑝=1

 (1.19)  

 

Several different weighting functions have been introduced to enhance and improve 

performance of SRP-based techniques. Recent research showed that SRP-PHAT is robust 

among all other sound source localization methods. In PHAT, the weighting function, 

𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔), is defined as: 
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 𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔) =  
1

|𝑉𝑉𝑝𝑝(𝜔𝜔)||𝑉𝑉𝑞𝑞∗(𝜔𝜔)|
 (1.20)  

 

 By comparing equations (1.18) and (1.20) and applying some simple algebra, it can be 

demonstrated that the Fourier transform of the impulse response of the applied filter 

on the received signal by mth microphone is equal to one over the magnitude of the 

received signal by mth microphone: 

 

 𝐺𝐺𝑚𝑚(𝜔𝜔) =  
1

|𝑉𝑉𝑚𝑚(𝜔𝜔)|
     for 𝑚𝑚 = 1, … ,𝑀𝑀 (1.21)  

 

It should be noted that in PHAT weighting, only the Fourier magnitudes of time aligned 

signals will be affected and the phase will remain unaltered. In fact, PHAT weighting 

preserves only the spectral phase. 

Although previous research showed that PHAT weighting considerably improves the 

performance of sound source localization by reducing the impact of reverberation 

effectively, further research demonstrated that superior performance is achieved by 

exploiting partial PHAT weighting instead of applying PHAT weighting (total weighting) 

[20,21]. In partial PHAT weighting, also known as PHAT-β, the Fourier transform of the 

applied filter to the received signal by mth microphone is equal to one over magnitude of 

the mth microphone signal power to partial weighting parameter, β. The partial 

weighting parameter is a real number between 0 and 1: 

 

 𝐺𝐺𝑚𝑚 (𝜔𝜔) =  
1

|𝑉𝑉𝑚𝑚(𝜔𝜔)|𝛽𝛽
     for 𝑚𝑚 = 1, … ,𝑀𝑀 (1.22)  

 

where β equals to zero denotes no-weighting while β equals to one indicates total 

weighting. As a matter of fact, it has been shown that better target detection can be 

achieved with partial PHAT weighting with partial weighting parameter values close to 

one, for instance 0.85 [20, 21].   
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One of the advantages of SRP method is that more than one sound source can be 

detected and located simultaneously. In such a case, the SRP will show multiple peaks 

corresponding to the positions of those sound sources. However, SRP-based approaches 

require a large amount of computation to locate the sound sources. 

It is worth noting that the SRP is computed from summation of all possible paired-

wise filtered versions of time aligned signals receive by the microphone array. On the 

other hand, the autocorrelation terms in this summation only act as a bias to keep the 

power a positive value. These product-pairs consisting of the same channel 

(autocorrelation terms) are independent of spatial position ri. Therefore, the 

autocorrelation terms can be ignored in the computation of power of steered response. 

This subtraction out of autocorrelation terms provides a coherent power given by: 

 

 𝑆𝑆𝑐𝑐 =  ��� 𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔)𝑉𝑉𝑝𝑝(𝜔𝜔)𝑉𝑉𝑞𝑞∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝜔𝜔 (𝜏𝜏𝑝𝑝 ,0−𝜏𝜏𝑞𝑞 ,0)𝑑𝑑𝜔𝜔
∞

−∞

𝑀𝑀

𝑞𝑞≠𝑝𝑝

𝑀𝑀

𝑝𝑝=1

 (1.23)  

 

where Sc represents the steered response coherent power. 

This method to locate sound sources is known as steered-response coherent power 

(SRCP). 

In the next chapter, after computing statistics of SRCP image values, the advantage of 

making power coherent will be illuminated. It will be shown that making power 

coherent gives a researcher the capability to use the ideas currently used in radar 

application. One of these ideas is Constant False Alarm Rate (CFAR) to enhance target 

detection. In this thesis, a novel CFAR threshold technique will be introduced. This novel 

CFAR processor results in a novel approach to enhance detection and location of sound 

sources by microphone arrays. 
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Chapter 2 

Statistics of Noise-Only SRCP Image Values 
 

 

2.1 Introduction 
 

In chapter 1, sound source localization algorithms were introduced. It was stated that 

recent works showed that SRCP-PHAT-β is robust among all other different sound 

source localization approaches in terms of better target detection. Detailed analyses to 

derive the SRCP image values were also provided.  

As it was presented in chapter 1, the SRCP value is computed by: 

 

𝑆𝑆𝑐𝑐 =  ��� 𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔)𝑉𝑉𝑝𝑝(𝜔𝜔)𝑉𝑉𝑞𝑞∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝜔𝜔 (𝜏𝜏𝑝𝑝 ,0−𝜏𝜏𝑞𝑞 ,0)𝑑𝑑𝜔𝜔
∞

−∞

𝑀𝑀

𝑞𝑞≠𝑝𝑝

𝑀𝑀

𝑝𝑝=1

 

 

where 𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔) is weighting function which for PHAT-β weighting function is equal to: 

 

𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔) =  
1

|𝑉𝑉𝑝𝑝(𝜔𝜔)|𝛽𝛽 |𝑉𝑉𝑞𝑞∗(𝜔𝜔)|𝛽𝛽
 

 

where β is partial weighting parameter and is a real number between 0 and 1 whereas 

𝑉𝑉𝑝𝑝(𝜔𝜔) is the received signal by the pth microphone and is given by: 
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𝑉𝑉𝑝𝑝(𝜔𝜔) =  𝑈𝑈𝑖𝑖(𝜔𝜔) �𝐴𝐴𝑖𝑖𝑝𝑝 ,0 (𝜔𝜔)𝑒𝑒−𝑗𝑗𝜔𝜔 𝜏𝜏𝑖𝑖𝑝𝑝 ,0 +  �𝐴𝐴𝑖𝑖𝑝𝑝 ,𝑛𝑛(𝜔𝜔)
𝐸𝐸

𝑛𝑛=1

𝑒𝑒−𝑗𝑗𝜔𝜔 𝜏𝜏𝑖𝑖𝑝𝑝 ,𝑛𝑛  �

+  �𝑁𝑁𝑘𝑘(𝜔𝜔)
𝐾𝐾

𝑘𝑘=1

� �𝐴𝐴𝑘𝑘𝑝𝑝 ,𝑛𝑛(𝜔𝜔)
𝐹𝐹

𝑛𝑛=0

𝑒𝑒−𝑗𝑗𝜔𝜔 𝜏𝜏𝑘𝑘𝑝𝑝 ,𝑛𝑛 � 

 

where 𝑈𝑈𝑖𝑖(𝜔𝜔) and 𝑁𝑁𝑘𝑘(𝜔𝜔) are Fourier transform of sound source located at ri and kth 

noise source respectively. 𝐴𝐴𝑖𝑖𝑝𝑝 ,𝑛𝑛(𝑡𝑡) represents the Fourier transform of the nth path of 

the effective impulse response between the sound source located at ri and pth 

microphone with corresponding delay 𝜏𝜏𝑖𝑖𝑝𝑝 ,𝑛𝑛 . K is the total number of noise sources. Also, 

E is the total reflected paths (excluding the direct path) of the sound source at ri and F is 

the total reflected paths (including the direct path) of the noise sources which will be 

used in the estimation of sound source location. 

The main goal of this thesis is to achieve a good CFAR threshold performance for 

sound source localization applications. In order to achieve a good CFAR threshold 

performance, it is required to estimate accurate adaptive thresholds sufficiently. On the 

other hand, it is essential that good CFAR threshold performances are obtained for noise 

only situations. Therefore, in this thesis all sound sources are set to zero and all the 

results are for noise-only distribution. 

If the sound source located at ri is set to zero, then 𝑉𝑉𝑝𝑝(𝜔𝜔) can be rewritten as: 

 

 𝑉𝑉𝑝𝑝(𝜔𝜔) =  �𝑁𝑁𝑘𝑘(𝜔𝜔)
𝐾𝐾

𝑘𝑘=1

� �𝐴𝐴𝑘𝑘𝑝𝑝 ,𝑛𝑛(𝜔𝜔)
𝐹𝐹

𝑛𝑛=0

𝑒𝑒−𝑗𝑗𝜔𝜔 𝜏𝜏𝑘𝑘𝑝𝑝 ,𝑛𝑛 � (2.1)  

 

In this chapter, statistics of noise-only SRCP image values are derived and it will be 

demonstrated how microphone geometry in conjunction with the position of noise 

sources affect the performance of localization of sound sources as well as the 

performance of CFAR threshold processors. Later in this chapter, it will be demonstrated 

that the primary sources of degradation in CFAR threshold performance are the low 

frequency components (relative to inter-path distances between field of view (FOV) 
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points and microphone pairs as well as inter-path distances between noise sources and 

microphone pairs). Some signal processing will be exploited to alleviate degradation in 

CFAR threshold performance due to these low frequency components. 

 

2.2 Noise-only SRCP image values statistics 

 

By taking the expected value from both sides of equation (1.23) over all microphone 

pairs, the expected value of the SRCP pixels is computed from: 

 

 𝐸𝐸{𝑆𝑆𝑐𝑐} =  � ��𝐸𝐸�𝛹𝛹𝑝𝑝𝑞𝑞(𝜔𝜔)𝑉𝑉
𝑝𝑝

(𝜔𝜔)𝑉𝑉𝑞𝑞∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝜔𝜔(𝜏𝜏𝑝𝑝,0−𝜏𝜏𝑞𝑞,0)� 𝑑𝑑𝜔𝜔
𝑀𝑀

𝑞𝑞≠𝑝𝑝

𝑀𝑀

𝑝𝑝=1

∞

−∞
 (2.2)  

 

And since the expected value is taken over all possible microphone pairs, 

𝐸𝐸�𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔)𝑉𝑉𝑝𝑝(𝜔𝜔)𝑉𝑉𝑞𝑞∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝜔𝜔 (𝜏𝜏𝑝𝑝 ,0−𝜏𝜏𝑞𝑞 ,0)�  is a constant value for all microphone pairs and 

can be brought out of the summations. Therefore: 

 

 
𝐸𝐸{𝑆𝑆𝑐𝑐}

= (𝑀𝑀2 −𝑀𝑀)� 𝐸𝐸�𝛹𝛹𝑝𝑝𝑞𝑞(𝜔𝜔)𝑉𝑉
𝑝𝑝

(𝜔𝜔)𝑉𝑉𝑞𝑞∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝜔𝜔(𝜏𝜏𝑝𝑝,0−𝜏𝜏𝑞𝑞,0)�𝑑𝑑𝜔𝜔
∞

−∞
 

(2.3)  

 

By setting all sound sources to zero as in equation (2.1), the expected value for noise-

only distribution case over all microphone pairs in the integrand of equation (2.3) with 

the assumption that different sources are uncorrelated is computed by: 

 

 

𝐸𝐸�𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔)𝑉𝑉𝑝𝑝(𝜔𝜔)𝑉𝑉𝑞𝑞∗(𝜔𝜔)𝑒𝑒𝑗𝑗𝜔𝜔 (𝜏𝜏𝑝𝑝 ,0−𝜏𝜏𝑞𝑞 ,0)�

= 𝐸𝐸 � 
1

|𝑉𝑉𝑝𝑝(𝜔𝜔)|𝛽𝛽 |𝑉𝑉𝑞𝑞∗(𝜔𝜔)|𝛽𝛽
��𝑁𝑁𝑘𝑘(𝜔𝜔)

𝐾𝐾

𝑘𝑘=1

�𝐴𝐴𝑘𝑘𝑝𝑝 ,𝑛𝑛(𝜔𝜔)
𝐹𝐹

𝑛𝑛=0

𝑒𝑒−𝑗𝑗𝜔𝜔 𝜏𝜏𝑘𝑘𝑝𝑝 ,𝑛𝑛 �

∗ ��𝑁𝑁𝑘𝑘∗(𝜔𝜔)�𝐴𝐴𝑘𝑘𝑞𝑞 ,𝑡𝑡
∗ (𝜔𝜔)

𝐹𝐹

𝑡𝑡=0

𝑒𝑒𝑗𝑗𝜔𝜔 𝜏𝜏𝑘𝑘𝑞𝑞 ,𝑡𝑡

𝐾𝐾

𝑘𝑘=1

� 𝑒𝑒𝑗𝑗𝜔𝜔 (𝜏𝜏𝑝𝑝 ,0−𝜏𝜏𝑞𝑞 ,0)� 

(2.4)  

 

Note that|𝑉𝑉𝑞𝑞(𝜔𝜔)| = |𝑉𝑉𝑞𝑞∗(𝜔𝜔)|. 
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Suppose X and Y be two uncorrelated random variables whereas a and b are two 

scale values. Since expected value is a linear operator, it can be stated that: 

 

 𝐸𝐸{𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑌𝑌} = 𝑎𝑎𝐸𝐸{𝑎𝑎} +  𝑏𝑏𝐸𝐸{𝑌𝑌} (2.5)  
 

And since random variables X and Y are uncorrelated, it can be written: 

 

 𝐸𝐸{𝑎𝑎𝑌𝑌} =  𝐸𝐸{𝑎𝑎}𝐸𝐸{𝑌𝑌} (2.6)  
 

By exploiting equations (2.5) and (2.6) and applying some algebra, equation (2.4) is 

rewritten as: 

 

𝐸𝐸 �𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔)𝑉𝑉𝑝𝑝(𝜔𝜔)𝑉𝑉𝑞𝑞∗(𝜔𝜔)𝑒𝑒𝑒𝑒𝑝𝑝 �𝑗𝑗𝜔𝜔�𝜏𝜏𝑝𝑝 ,0 − 𝜏𝜏𝑞𝑞 ,0���

=  
1

|𝑉𝑉𝑝𝑝(𝜔𝜔)|𝛽𝛽 |𝑉𝑉𝑞𝑞(𝜔𝜔)|𝛽𝛽
𝐸𝐸�𝑒𝑒𝑗𝑗𝜔𝜔 �𝜏𝜏𝑝𝑝 ,0−𝜏𝜏𝑞𝑞 ,0��

∗�𝐸𝐸{|𝑁𝑁𝑘𝑘(𝜔𝜔)|2}���𝐴𝐴𝑘𝑘𝑝𝑝 ,𝑛𝑛(𝜔𝜔)𝐴𝐴𝑘𝑘𝑞𝑞 ,𝑡𝑡
∗ (𝜔𝜔) 𝐸𝐸�𝑒𝑒𝑗𝑗𝜔𝜔 (𝜏𝜏𝑘𝑘𝑞𝑞 ,𝑡𝑡−𝜏𝜏𝑘𝑘𝑝𝑝 ,𝑛𝑛 )��

𝐹𝐹

𝑡𝑡=0

𝐹𝐹

𝑛𝑛=0

𝐾𝐾

𝑘𝑘=1

 

(2.7)  

 

Clearly, one can convert angular frequency, 𝜔𝜔, to frequency, f, by 𝜔𝜔 = 2𝜋𝜋𝜋𝜋. The inter-

path distance and propagation delay are related to each other by: 

 

 𝜏𝜏𝑝𝑝 ,0 =  
𝑑𝑑𝑖𝑖𝑝𝑝
𝑐𝑐

 (2.8)  

 

where c is the speed of sound and 𝑑𝑑𝑖𝑖𝑝𝑝  is the spatial distance between FOV point 

corresponding to spatial position ri and the pth microphone. 

Finally, in order to investigate the statistics of noise-only SRCP image values in terms 

of microphone geometry, the frequency, f, is converted to wavelength, 𝜆𝜆, by: 

 

 𝜋𝜋 =  
𝑐𝑐
𝜆𝜆

 (2.9)  

 

In consequence, equation (2.7) is expressed in terms of microphone geometry by: 



17 
 

 

𝐸𝐸 �𝛹𝛹𝑝𝑝𝑞𝑞 (𝜔𝜔)𝑉𝑉𝑝𝑝(𝜔𝜔)𝑉𝑉𝑞𝑞∗(𝜔𝜔)exp�𝑗𝑗𝜔𝜔�𝜏𝜏𝑝𝑝 ,0 − 𝜏𝜏𝑞𝑞 ,0���

=  
1

|𝑉𝑉𝑝𝑝(𝜔𝜔)|𝛽𝛽 |𝑉𝑉𝑞𝑞(𝜔𝜔)|𝛽𝛽
𝐸𝐸 �exp�𝑗𝑗2𝜋𝜋 �

𝑑𝑑𝑖𝑖𝑝𝑝 − 𝑑𝑑𝑖𝑖𝑞𝑞
𝜆𝜆

���

∗�𝐸𝐸{|𝑁𝑁𝑘𝑘(𝜔𝜔)|2}���𝐴𝐴𝑘𝑘𝑝𝑝 ,𝑛𝑛(𝜔𝜔)𝐴𝐴𝑘𝑘𝑞𝑞 ,𝑡𝑡
∗ (𝜔𝜔) 𝐸𝐸 �𝑒𝑒𝑗𝑗2𝜋𝜋�

𝑑𝑑𝑘𝑘𝑞𝑞 ,𝑡𝑡−𝑑𝑑𝑘𝑘𝑝𝑝 ,𝑛𝑛
𝜆𝜆 ���

𝐹𝐹

𝑡𝑡=0

𝐹𝐹

𝑛𝑛=0

𝐾𝐾

𝑘𝑘=1

 

(2.10)  

 

Equation (2.10) consists of two exponential terms which are sources of incoherency 

or decorrelation; In fact, the expected value of noise-only SRCP image values may take a 

value other than zero because of these exponential functions. Note that in the ideal 

situations, the exponential arguments span uniformly from −𝜋𝜋 to 𝜋𝜋 over all microphone 

pairs and result in a zero expected value for noise-only SRCP image values.  

The exponential term which is factored out of the summation of equation (2.10), 

contains inter-path distance between microphone pairs and FOV point as of its 

argument. This term depends on the microphone geometry and is referred to as the 

mic-distribution factor in this thesis. The other exponential term which is inside the 

summation is due to inter-path distance between noise sources and microphone pairs. 

This term depends on the position of noise sources and will be referred to as the noise-

path factor throughout this thesis. 

Under the assumptions that the inter-path distance random variable has either a 

zero-mean Gaussian distribution or a zero-mean uniform distribution, equation (2.10) 

can be represented as a closed-form equation. Let us denote the inter-path distance 

(between a focal point at ri and array's microphone) random variable by ∆𝑝𝑝𝑞𝑞 . In the case 

that ∆𝑝𝑝𝑞𝑞  is a zero-mean Gaussian random variable with standard deviation of 𝜎𝜎∆, 

moment generating function can be exploited to compute the expected value. By 

definition, the expected value of the random variable 𝑒𝑒𝑡𝑡𝑎𝑎  is called moment generating 

function and is denoted by 𝑀𝑀𝑎𝑎(𝑡𝑡): 

 

 𝑀𝑀𝑎𝑎(𝑡𝑡) = 𝐸𝐸{𝑒𝑒𝑡𝑡𝑎𝑎 }, 𝑡𝑡 ∈ ℝ (2.11)  
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If random variable X has Gaussian distribution with mean and variance of 𝜇𝜇 and 𝜎𝜎2 

respectively then the moment generating function is computed from: 

 

 𝑀𝑀𝑎𝑎(𝑡𝑡) = 𝐸𝐸{𝑒𝑒𝑡𝑡𝑎𝑎 } = exp �𝜇𝜇𝑡𝑡 + 
1
2
𝜎𝜎2𝑡𝑡2� (2.12)  

 

Therefore, for the random variable ∆𝑝𝑝𝑞𝑞  which has a zero-mean Gaussian distribution 

with standard deviation of 𝜎𝜎∆ by substituting t with −𝑗𝑗 2𝜋𝜋
𝜆𝜆

, the expected value is derived 

by: 

 𝐸𝐸 �exp �−𝑗𝑗2𝜋𝜋 �
∆𝑝𝑝𝑞𝑞
𝜆𝜆
��� = exp �−2 �𝜋𝜋

𝜎𝜎∆
𝜆𝜆
�

2
� (2.13)  

 

 A reasonable assumption is to assume ∆𝑝𝑝𝑞𝑞  has a zero-mean uniform distribution with 

standard deviation of 𝜎𝜎∆ which spans from −𝜋𝜋 to 𝜋𝜋. Applying the definition of expected 

value results in: 

 

 𝐸𝐸 �exp �−𝑗𝑗2𝜋𝜋 �
∆𝑝𝑝𝑞𝑞
𝜆𝜆
���  =  � exp �−𝑗𝑗2𝜋𝜋 �

𝛿𝛿
𝜆𝜆
�� 𝜋𝜋∆𝑝𝑝𝑞𝑞 (𝛿𝛿)𝑑𝑑𝛿𝛿

𝜋𝜋

−𝜋𝜋
 (2.14)  

 

where 𝜋𝜋∆𝑝𝑝𝑞𝑞 (𝛿𝛿) is probability density function (pdf) which for uniform distribution is 

equal to one over 2𝜋𝜋. Consequently: 

 

 
𝐸𝐸 �exp �−𝑗𝑗2𝜋𝜋 �

∆𝑝𝑝𝑞𝑞
𝜆𝜆
���

=  
𝜆𝜆

(2𝜋𝜋)2𝑗𝑗
 �exp�𝑗𝑗

2𝜋𝜋2

𝜆𝜆
� − exp�−𝑗𝑗

2𝜋𝜋2

𝜆𝜆
�� 

(2.15)  

 

 A useful equation that relates subtraction of two complex conjugate exponential 

functions to a sinusoidal function is: 

 

 sin𝑒𝑒 =  
exp(𝑗𝑗𝑒𝑒) −  exp(−𝑗𝑗𝑒𝑒)

2𝑗𝑗
 (2.16)  
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 Also, variance of a zero-mean uniform random variable which takes values in the 

interval of [−𝜋𝜋,𝜋𝜋] is computed from: 

 

 𝜎𝜎2
∆ =  

4𝜋𝜋2

√12
 (2.17)  

 

By substituting equations (2.16) and (2.17) into equation (2.15), the expected value is 

computed in terms of wavelength and standard deviation of inter-path distances: 

 

 𝐸𝐸 �exp �−𝑗𝑗2𝜋𝜋 �
∆𝑝𝑝𝑞𝑞
𝜆𝜆
��� =  sinc�𝜋𝜋

√12 𝜎𝜎∆
𝜆𝜆

� (2.18)  

 

where the sinc function is defined as: 

 

 sinc(𝑒𝑒) =  
sin(𝑒𝑒)
𝑒𝑒

 (2.19)  

 

Note that the exponential function will diminish with a much higher rate than the 

sinc function. Therefore, the worst scenario is to assume that the inter-path distances 

have uniform distribution. 

The key feature of the novel CFAR processor that will be introduced in the next 

chapter is to assume the noise-only distribution is symmetric, so one can set the 

statistics (shape parameter, scalar parameter and etc.) of the positive coherent power 

values equal to the statistics of the negative values. However, equations (2.13) and 

(2.18) show that the expected value can never be identically zero over a range of 

frequencies and therefore the symmetric condition is violated. Furthermore, equations 

(2.13) and (2.18) indicate that if the standard deviation of the inter-path distances 

relative to source wavelength is increased sufficiently, the zero-mean condition can be a 

reasonable assumption, despite the fact that the expected value is not identically zero 

over a range of frequencies. In consequence, the microphone distribution which has the 

greatest variance of inter-path distances between microphone pairs and FOV should 



20 
 

perform best among all other microphone arrays in terms of better CFAR performance. 

On the other hand, if the low frequency components of microphone signals are filtered 

out, the zero-mean condition will be bolstered as well. Therefore, high-pass filters can 

be exploited to alleviate the inability of specific microphone distribution to decorrelate 

low frequency components. 

It should be noted that in addition to the zero-mean condition, the distribution 

should not have either positive or negative skewness to be a symmetric distribution. The 

skewness, 𝛾𝛾, is defined as the ratio of the third central moment, 𝜇𝜇3, and the third power 

of standard deviation: 

 

 𝛾𝛾 =  
𝜇𝜇3

𝜎𝜎3 (2.20)  

 

Due to the complexity in the computation of the third moment, only the zero-mean 

condition is examined in this thesis while the skewness will be examined directly from 

the histograms of negative and positive coherent power values. 

In this thesis, two approaches are used to filter out the low frequency components; 

the simplest approach is to design only one high-pass filter for all FOV points. The mic-

distribution factor scales all noise components. In addition, it only depends on the 

microphone geometry as well as FOV. These features provide a convenient point for the 

purpose of designing a high-pass filter.  In this method, only one high-pass filter with the 

cut-off frequency corresponding to the mic-distribution factor is applied to all FOV 

points in order to make the noise-only distribution near-symmetric. 

A more sophisticated approach to make the noise-only distribution near-symmetric 

by filtering out the low frequencies is to apply high-pass filters to each point of FOV 

adaptively. The cut-off frequencies of these adaptive high-pass filters are designed 

based on the combinations of mic-distribution and noise-path factors for each specific 

point of FOV. 

Since the exponential function will diminish with a much higher rate than the sinc 

function, the worst scenario is to assume that the inter-path distances have uniform 
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distribution and therefore, equation (2.18) is exploited to derive a proper relationship 

for the high-pass filter cut-off frequency (or also, called as the low frequency limit 

throughout this thesis). Based on experimental results a proper cut-off frequency for the 

high-pass filter will be designed. 

Experimental results, which will be represented later, showed that if only the mic-

distribution is considered to determine the low frequency limit, the frequencies larger 

than the third null of the sinc function of equation (2.18), which are limited by a -20 dB 

or less from the maximum, will lead to a good CFAR performance for all microphone 

distributions examined in this thesis. Therefore, based on the third null of the sinc 

function related to mic-distribution factor, the high-pass filter cut-off frequency is 

computed from: 

 

 𝜋𝜋𝐿𝐿 =  
3𝑐𝑐

𝜎𝜎∆√12
 (2.21)  

 

where 𝜎𝜎∆ is the smallest standard deviation of inter-path distance over the FOV . Note that the 

standard deviation of inter-path distance changes as the point of interest in the FOV changes. 

It is worth noting that if the mic-distribution and noise-path factors are combined 

with each other to determine the low frequency limit, even a smaller value of the sinc 

function null can be selected as the high-pass filters cut-off frequency. In the situation 

where the mic-distribution and noise-path factors are combined together, the adaptive 

high-pass filter cut-off frequencies are set to the maximums of the low frequency limits 

resulted by mic-distribution and noise-path factors. The low frequency limit resulted by 

noise-path factor can be computed by equation (2.21) where in this case, 𝜎𝜎∆ is the 

standard deviation of inter-path distances between the position of noise source and 

microphone pairs. Furthermore, the low frequency limits resulting from the mic-

distribution factor can be computed adaptively, based on the position of each FOV 

point. In this case, for all microphone geometries, the adaptive high-pass filter cut-off 

frequencies can be computed from: 
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 𝜋𝜋𝐿𝐿(𝑒𝑒,𝑦𝑦) =  
3𝑐𝑐

√12𝜎𝜎∆(𝑒𝑒,𝑦𝑦)
 (2.22)  

 

where 𝜎𝜎∆(𝑒𝑒,𝑦𝑦) denotes the standard deviation of inter-path distances between the 

point inside the FOV plane, located at position of (x,y) and the microphone pairs. Later, 

detailed results will be presented in the experimental results chapter. 

  CFAR processor is a technique widely used in radar applications. In fact, this 

technique provides a facilitating tool for target detection. Analogous to radar 

applications, the primary goal of sound source localization applications is to detect and 

locate sound sources with a reasonable accuracy. This fact brings up the idea of 

exploiting CFAR processors in sound source localization applications as well. This 

chapter as well as the first chapter supplies the required analysis and materials for 

applying CFAR processor into sound source localization applications as well as enhancing 

the CFAR performance. The next chapter introduces different CFAR processors. After 

delineating CFAR processors used in radar applications, a novel CFAR method feasible in 

sound source localization applications will be introduced. 
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Chapter 3 

 Constant False Alarm Rate (CFAR) Processor 
 

 

3.1 Introduction 

 

The main goal of many applications such as radio detection and ranging (radar) or 

Sound Source Localization (SSL) is to detect targets or sound sources. It is not practical 

to perform target detection processing by human beings due to the large amount of 

information being presented from the data. Therefore, algorithms are developed to 

reject automatically data with a low likelihood of being related to a target of interest 

and only present to an observer (or other intelligent process) information with a low 

likelihood of being noise. This procedure is known as "automatic" target detection. The 

detection process involves comparing the amplitudes or coherent power of received 

signals with a threshold. A simple assumption is to assume the noise is stationary. In 

such a case, the received signal can be compared with a fixed threshold over all 

time/space. If the signal exceeds this threshold, it will be counted as a target in radar 

applications or sound source in SSL applications. However, in practice, clutter and noise 

signals are non stationary, and adaptive thresholds are more appropriate for target 

detection process. Therefore adaptive signal processing should be exploited such that 

for each local neighborhood a threshold is selected adaptively. 

Constant False Alarm Rate (CFAR) processing techniques are widely used to facilitate 

target detection, especially in the non-stationary environments. The existing CFAR 

approached are based on sliding window technique. The test cell or pixel is associated 

with data within a reference window, which is assumed to contain noise samples similar 
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to that of the test pixel. Based on the statistics of the noise in the reference window, a 

threshold is calculated. CFAR detectors are common in radar processing whereas it is a 

novel approach in SSL applications. 

In order to limit error in the adaptive threshold due to the leakage of the target’s 

energy to the neighborhood cells, the two cells directly adjacent to the cell under 

testing will not be used in the estimation of the clutter power. These adjacent cells are 

called guard cells. 

In this chapter, different CFAR methods are introduced. In general, there are two 

main CFAR approaches, Cell Averaged CFAR (CA-CFAR) and Order Statistic CFAR (OS-

CFAR). Fig 3.1 shows a schematic for CA-CFAR processors. 
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Figure 3.1 CA-CFAR processor 
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3.2 Cell Averaging (CA) CFAR processor 

 

In the Cell Averaging CFAR (CA-CFAR) detectors [22], the adaptive threshold is 

computed in two steps. In the first step, which makes different CA-CFAR methods 

distinguished, the clutter power level is estimated by taking the average of all cells in 

the reference window, denoted by µ�. In the second step, the estimated clutter power 

from CA-CFAR approach, µ�𝑐𝑐𝐴𝐴 , is multiplied by a scaling factor (α) to obtain the adaptive 

threshold. The scaling factor is mainly dependent on the CFAR method and also, the 

required false alarm probability. So, the scaling factor in CA-CFAR method is denoted by 

𝛼𝛼𝐶𝐶𝐴𝐴 . Mathematically speaking, to examine if the test cell is target or not the following 

procedure needs to be done. Let H0 denote the condition or hypothesis that no target is 

present and H1 denote the hypothesis that the target plus noise is present. The 

threshold decision is simply:  

 

 � Decide 𝐇𝐇𝟏𝟏,    if 𝑎𝑎0 ≥ 𝑇𝑇
Decide 𝐇𝐇𝟎𝟎,   if 𝑎𝑎0 < 𝑇𝑇

� (3.1)  

 

where X0 is the cell under test and T is the adaptive threshold. 

The threshold is obtained by finding an estimate for average clutter power:         

                                                                                          

 µ�𝑐𝑐𝐴𝐴 =  
1
𝑀𝑀

� 𝑎𝑎𝑖𝑖2
𝑀𝑀/2

𝑖𝑖=−𝑀𝑀/2

 (3.2)  

 

where M is the total number of cells in the reference window and 𝑎𝑎𝑖𝑖  are the samples 

(amplitude) of the received data. The estimated power is then scaled to achieve the 

threshold for a specific false alarm rate: 

                                                                                                                

 𝑇𝑇 =  𝛼𝛼𝐶𝐶𝐴𝐴µ�𝑐𝑐𝐴𝐴  (3.3)  
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The CA-CFAR detectors works well in situations where the statistics of the cell under 

test is the same as the statistics of each reference cells. In other words, CA-CFAR 

processors performs well in situations where only a single target presents in the 

reference windows and also the clutter is homogeneous in the local neighborhoods. 

The basic CA-CFAR detectors suffer from situations where the clutter is not uniformly 

distributed in the reference cells. A common situation where this phenomenon happens 

is where the reference window crosses the clutter edge. If the test cell is immersed in 

the clutter but some of the reference cells are in the clear region, then the threshold is 

decreased and consequently the probability of false alarm is increased intolerably [22]. 

On the other hand, existence of another target in the reference window of the target in 

question (primary target) causes the threshold to be increased and hence, detection 

probability will be decreased. These problems with conventional CA-CFAR processors 

call for modified versions of CA-CFAR processors. 

 

3.3 Greatest Of (GO) CFAR processor 

 

The basic technique in modified CA-CFAR detectors is to estimate clutter power 

independently from the leading and lagging reference cells and use either the estimate 

from leading or lagging windows as an estimate for power of clutter (see Fig 3.1). 

In the Greatest Of CFAR (GO-CFAR) approach, in order to alleviate the excessive false 

alarm rate caused by clutter edges (non-uniformity of clutter power within the 

reference window), two estimations for power of clutter are derived from leading and 

lagging reference cells independently and the greatest of these clutter power 

estimations is selected to compute the threshold adaptively. 

 

 µ�𝐺𝐺𝐺𝐺 =  
2
𝑀𝑀

 max� � (𝑎𝑎𝑖𝑖2)
−1

𝑖𝑖=−𝑀𝑀/2

,�(𝑎𝑎𝑖𝑖2)
𝑀𝑀/2

𝑖𝑖=1

� (3.4)  
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Although exploiting GO-CFAR processors reduces the problems caused by the 

existence of edge in the clutter, it is obvious that the suppression in target detection 

introduced by the presence of an interfering target is more severe in the GO-CFAR 

detectors rather than in the conventional CA-CFAR processors.  

 

3.4 Smallest Of (SO) CFAR processor 

 

Another situation where the uniformity of clutter in the reference cells is violated is 

where an interfering target lies within the reference cells of the primary target. As a 

matter of fact, the presence of another target in the reference cells of the primary 

target will cause the threshold to be increased intolerably. Therefore, detection 

probability along with false alarm probability will decrease. Clearly, this degradation in 

target detection is more acute in the GO-CFAR detectors. 

One way to prevent suppression in target detection due to the presence of an 

interfering target is to use Smallest Of CFAR (SO-CFAR) detectors. In SO-CFAR 

processors, the smallest of the mean of either leading or lagging reference cells is 

selected to be used in the threshold computation (Fig 3.1). 

 

 µ�𝑆𝑆𝐺𝐺 =  
2
𝑀𝑀

 min� � (𝑎𝑎𝑖𝑖2)
−1

𝑖𝑖=−𝑀𝑀/2

,�(𝑎𝑎𝑖𝑖2)
𝑀𝑀/2

𝑖𝑖=1

� (3.5)  

 

 

Although SO-CFAR detectors alleviate the degradation in target detection caused by 

the presence of an interfering target, they suffer from an excessive number of false 

alarms due to the decrease of the adaptive threshold. 

To prevent the degradation in sensitivity in SO-CFAR detectors caused by an excessive 

number of false alarms, the number of cells in the reference window should be 

sufficiently large. However, increasing the length of the reference window endangers 

the assumption that the noise is stationary in the local neighborhoods. 
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3.5 Order Statistics (OS) CFAR processor 

 

The suppression in target detection in the CA-CFAR processors and their 

modifications caused by the presence of interfering target, calls for another approach 

that can resist the abovementioned suppression in target detection.  

Order Statistics CFAR (OS-CFAR) detectors [23] are introduced to overcome the 

problem caused by an interfering target. The idea is to use order statistics of the 

reference cells to compute the adaptive threshold. The procedure of selecting threshold 

adaptively by exploiting OS-CFAR processors is as follows. First of all, the M samples are 

ranked in an increasing order: 

 

 𝑎𝑎1  ≤  𝑎𝑎2 ≤ ⋯  ≤  𝑎𝑎𝑀𝑀  (3.6)  
 

Then two ranked samples, Xi and Xj are selected from the reference window such 

that: 

 

 𝑎𝑎1  ≤ 𝑎𝑎𝑖𝑖  ≤  𝑎𝑎𝑗𝑗  ≤  𝑎𝑎𝑀𝑀 (3.7)  
 

The adaptive threshold, denoted by T, depends on the CFAR processor method and 

the specific false alarm rate. For OS-CFAR detectors the adaptive threshold, TOS, can be 

derived by 

 

 𝑇𝑇𝐺𝐺𝑆𝑆 =  𝑎𝑎𝑖𝑖
1−𝛽𝛽𝑎𝑎𝑗𝑗

𝛽𝛽  (3.8)  
where 

 𝛽𝛽 =  
ln𝛼𝛼𝑖𝑖

ln�−ln(1− 𝑝𝑝𝑗𝑗 )� −  ln[−ln(1 − 𝑝𝑝𝑖𝑖)]
 (3.9)  

where 
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 𝑝𝑝𝑘𝑘 =  
𝑘𝑘

𝑀𝑀 + 1
 (3.10)  

 

and αi is related to the specific probability of false alarm by 

 

 𝑃𝑃𝐹𝐹𝐴𝐴 =  
𝑀𝑀! (𝛼𝛼𝑖𝑖 + 𝑀𝑀− 𝑖𝑖)!

(𝑀𝑀 − 𝑖𝑖)! (𝛼𝛼𝑖𝑖 + 𝑀𝑀)!
 (3.11)  

 

It has been demonstrated [24, 25] that the optimum choice of i and j are given by 

 

                                                                                             𝑝𝑝𝑖𝑖 = 0.1673     and     𝑝𝑝𝑗𝑗 = 0.9737 (3.12)  
 

 

3.6 CFAR processor in SSL applications 

 

The idea of exploiting CFAR processors in Sound Source Localization (SSL) is a novel 

idea [19]. In this approach, the SRP-PHAT algorithm is used to locate a sound source. 

Subtracting out the auto correlation terms from the power of the beamformer in the 

filter-and-sum process, results in creating a coherent power value. The negative pixels in 

the SRCP image are results from only noise whereas the positive pixels are a result of 

either an existing noise source or a sound source. Therefore, each positive pixel which 

has the maximum value in the neighborhood surrounding it, has the potential to be a 

sound source. The size of the neighborhood should be selected such that it can be 

assumed that the pixels in the neighborhood have the same statistics. In other words, it 

can be assumed that noise is stationary in the local neighborhoods. A significant 

assumption in this novel CFAR processor is to assume a symmetric distribution for noise-

only regions. This assumption requires a zero mean distribution for noise-only 

distribution which can be appeased by applying the high-pass filters introduced in 

chapter 2. In fact, only the statistics of negative coherent power values (pure noise 

region) are exploited to model the noise-only distribution and it will be assumed that 

positive coherent power values have the same statistics as have the negative coherent 
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power values. In other words, the negative coherent power values mirror the positive 

coherent power values. 

In this thesis, two different distributions are examined to model the coherent power 

distribution for H0 (the no-target hypothesis). The first distribution is the Chi-square 

distribution, which is the theoretical model for the sum of squared Gaussian values. 

Weibull distribution is the other distribution, which is considered for its ability to model 

potential skewness in the coherent power distribution. 

 

 

3.6.1 Chi-squared distribution 

 

Under the conditions in which the original noise is locally stationary and has Gaussian 

distribution, it will be a good assumption to model the coherent power by the Chi-

square distribution. Therefore, one of the distributions which can be exploited to model 

the coherent power is the Chi-square distribution. Chi-squared distribution can be 

derived by Normal (also known as Gaussian) distribution. If Xi are k independent and 

identically distributed (iid) random variables which have Normal distributions with mean 

𝜇𝜇𝑖𝑖  and standard deviation 𝜎𝜎𝑖𝑖 , then Q will have Chi-square distribution with k degrees of 

freedom where 

 

 𝑎𝑎𝑖𝑖  ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑎𝑎𝑁𝑁 (𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖)     for 𝑖𝑖 = 1, … ,𝑘𝑘 (3.13)  
 

 𝑄𝑄 =  ��
𝑎𝑎𝑖𝑖 − 𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

�
2𝑘𝑘

𝑖𝑖=1

 (3.14)  

 

or 

 𝑄𝑄 ~ 𝜒𝜒𝑘𝑘2 (3.15)  
 

To investigate the CFAR degradation resulting from an error in estimating power of 

noise, a simulation was run using the Monte Carlo simulation technique. The adaptive 
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thresholds, T, are computed for 6 specific false alarm probabilities ranged from 10-1 to 

10-6. Since the probability of false alarm compliments (1 − 𝑃𝑃𝐹𝐹𝐴𝐴) is equal to cumulative 

distribution function (cdf) calculated at threshold value, the adaptive thresholds are 

computed by finding inverse of cdf at probability of false alarm compliments: 

 

 𝑇𝑇 =  𝑐𝑐𝑑𝑑𝜋𝜋−1(1 − 𝑃𝑃𝐹𝐹𝐴𝐴) (3.16)  
 

In this simulation, N independent Normal random variables with mean 0 and 

standard deviation 𝜎𝜎 are created.  

 

 𝑎𝑎𝑖𝑖  ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑎𝑎𝑁𝑁 (0,𝜎𝜎2)    for 𝑖𝑖 = 1, … ,𝑁𝑁 (3.17)  
 

An unbiased estimation for variance of N samples,  𝑒𝑒𝑖𝑖  for 𝑖𝑖 = 1, … ,𝑁𝑁, can be 

computed by 

 

 𝜎𝜎�2 =  
1

𝑁𝑁 − 1
 �(𝑒𝑒𝑖𝑖 −  �̅�𝑒)2
𝑁𝑁

𝑖𝑖=1

 (3.18)  

where �̅�𝑒 is the sample mean. 

Since these N Normal random variables have a mean of 0, the variance can be 

estimated by squaring them and taking the average of the squared values: 

 

 𝜎𝜎�2 =  
1

𝑁𝑁 − 1
 �(𝑎𝑎𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 (3.19)  

 

In the next step, another zero mean Normal random variable, denoted by D, is 

created. This Normal random variable has a variance equal to the estimated variance 

from the former N random variables. Therefore, 

 

 𝐷𝐷 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑎𝑎𝑁𝑁 (0,𝜎𝜎�2) (3.20)  
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Applying equation 3.14 to the Normal random variable D leads to the creation of a 

Chi-squared random variable with degree of freedom 1: 

 

 
𝐷𝐷2

𝜎𝜎�2  ~ 𝜒𝜒1
2  (3.21)  

 

Finally, this Chi-squared random variable is compared with the threshold and if it 

exceeds the threshold, then it will be counted as a target. 

This simulation is run 3x107 times. On can calculate the experimental probability of 

false alarm by dividing the number of times the created Chi-square random variable 

exceeds the threshold, by the total number of runs (3x107). Fig 3.2 illustrates the ratio of 

experimental to desired FA probability versus desired probability of FA for six specific 

desired FA probabilities, ranged from 10-1 and 10-6. In addition to CFAR performance for 

the specific desired false alarm probabilities, the effect of different number of samples 

which are used for estimating the power of noise on CFAR performance is investigated 

in this figure as well. The broken line represents ratios of one and implies perfect 

agreement between experimental and desired FA probabilities. A ratio less than one 

implies the experimental threshold was too low whereas ratios greater than one mean 

the experimental thresholds were too high. 
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Figure 3.2 Degradation in CFAR performance caused by error in estimating noise power 
for different number of samples used in estimation of noise power. σ is set to 1. 

 

As Fig 3.2 shows, CFAR performance can be degraded by an error in estimating the 

power of noise and the degradation in CFAR performance is increased as desired false 

alarm rate is decreased. The error in estimation of noise power is caused by insufficient 

number of samples exploited in the estimation. Exploiting higher number of samples 

which noise power is estimated from improves the estimation of noise power. 

Consequently, improvement in estimation of noise power will lead to a good CFAR 

performance. 

 

3.6.2 Weibull distribution 

 

The tail of the distribution has an important role in automatically estimating the 

probability of false alarm. In particular, good CFAR performance for low false alarm 

10-6 10-5 10-4 10-3 10-2 10-1
10-4

10-3

10-2

10-1

100

101

102

D
es

ire
d 

to
 E

xp
er

im
en

ta
l F

A
 R

at
io

Desired  FA Probability

 

 

N = 32
N = 64
N = 128
N = 256
N = 512



35 
 

probabilities requires very accurate modeling of the noise at the tail of the distribution. 

Since the skewness affecting the tail of the Weibull distribution can be parametrically 

adjusted, the Weibull is chosen to model the coherent power distribution. Also, it 

should be noted that the Rayleigh and Exponential distributions, two powerful and 

widely used distributions are two special cases of the Weibull distribution (if b is equal 

to 1 the Weibull distribution reduces to Exponential distribution, and for b equal to 2, 

Rayleigh distribution is produced). The tail can be adjusted through the shape 

parameter and a closed form expression exists to compute the threshold from the 

desired false alarm rate, shape parameter, and estimate of the power or scale 

parameter. 

Assume X has a Weibull distribution with scale parameter of a and shape parameter 

of b: 

 

 𝑎𝑎 ~ 𝑊𝑊𝑒𝑒𝑖𝑖 (𝑎𝑎, 𝑏𝑏) (3.22)  
 

Since the cumulative distribution function (cdf) of Weibull distribution is continuous 

function, Weibull distribution is categorized in the continuous probability distribution 

category. Therefore, if X is a Weibull random variable then, 

 

 Pr[𝑎𝑎 = 𝑒𝑒] = 0          for  ∀𝑒𝑒 ∈ ℛ (3.23)  
 

The probability density function (pdf) for a Weibull random variable X is derived by 

 

 𝜋𝜋𝑎𝑎  (𝑒𝑒;𝑎𝑎, 𝑏𝑏)  =  

⎩
⎨

⎧�
𝑏𝑏
𝑎𝑎
� �
𝑒𝑒
𝑎𝑎
�
𝑏𝑏−1

𝑒𝑒−�
𝑒𝑒
𝑎𝑎�

𝑏𝑏

          𝑒𝑒 ≥ 0

0                           𝑒𝑒 < 0

� (3.24)  

 

where 𝑎𝑎 > 0 is the scale parameter and 𝑏𝑏 > 0 is the shape parameter of the 

distribution. Also, the cdf of Weibull random variable X is computed by 
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 𝐹𝐹𝑎𝑎  (𝑒𝑒;𝑎𝑎, 𝑏𝑏)  =  �
1 −  𝑒𝑒−�

𝑒𝑒
𝑎𝑎�

𝑏𝑏

      𝑒𝑒 ≥ 0

     0                   𝑒𝑒 < 0

� (3.25)  

 

The probability of false alarm is equal to 1 minus cdf computed at the threshold 

value. Therefore, when the distribution is Weibull it can be expressed as: 

 

 𝑃𝑃𝐹𝐹𝐴𝐴 = exp�−�
𝑇𝑇
𝑎𝑎
�
𝑏𝑏

� (3.26)  

 

In addition to have a specific false alarm rate, it is required to have the scale and 

shape parameters of Weibull distribution in order to find the threshold. Once the 

parameters of Weibull distribution are derived, the threshold can be easily computed 

for specific probability of false alarms by finding inverse value of equation (3.26). 

The parameters of Weibull distribution can be estimated from samples data (for this 

thesis, coherent power created by SRCP algorithm) by any parametric estimation 

techniques such as Maximum Likelihood Estimation (MLE) or Minimum Mean Squared 

Error (MMSE). However, it is more practical to fix the shape parameter value and 

estimate scale parameter by Maximum Likelihood Estimation (MLE) approach. 

Assume random variable X has Weibull distribution and N independent samples of 

this random variable are available, 𝑎𝑎1, … ,𝑎𝑎𝑁𝑁. So, these samples are independent and 

identically distributed (iid). Let us fix the shape parameter of the Weibull distribution. 

Hence, pdfs of these N samples are not functions of shape parameter and only depend 

on possible measured values (𝑒𝑒𝑖𝑖 ) for 𝑖𝑖𝑡𝑡ℎ  random variable (𝑎𝑎𝑖𝑖) and scale parameter (𝑎𝑎), 

𝜋𝜋𝑎𝑎𝑖𝑖(𝑒𝑒𝑖𝑖 ;𝑎𝑎). Since these measurements are independent, the joint probability distribution 

function, 𝜋𝜋𝑎𝑎(𝑒𝑒,𝑎𝑎), is computed from multiplication of the pdfs of the N sample random 

variables. 

 

 𝜋𝜋𝑎𝑎(𝑒𝑒, 𝑎𝑎) =  𝜋𝜋𝑎𝑎(𝑒𝑒1, … , 𝑒𝑒𝑁𝑁 ;𝑎𝑎) = �𝜋𝜋𝑎𝑎𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (𝑒𝑒𝑖𝑖 ;𝑎𝑎) (3.27)  
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 If the values of random variables 𝑎𝑎1, … ,𝑎𝑎𝑁𝑁  are considered to be fixed values and 𝑎𝑎 is 

an unknown parameter, then 𝜋𝜋𝑎𝑎(𝑒𝑒1, … , 𝑒𝑒𝑁𝑁) is called likelihood function. The likelihood 

function is denoted by 

 𝐿𝐿(𝑎𝑎) =  𝜋𝜋𝑎𝑎(𝑒𝑒1, … , 𝑒𝑒𝑁𝑁 ;𝑎𝑎) = �𝜋𝜋𝑎𝑎𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (𝑒𝑒𝑖𝑖 ;𝑎𝑎) (3.28)  

 

 

By definition, the maximum likelihood estimator (𝑎𝑎�) of 𝑎𝑎 is the value that maximizes 

the likelihood function. 

 

 𝐿𝐿 (𝑎𝑎�)  ≥ 𝐿𝐿 (𝑎𝑎), for ∀𝑎𝑎 (3.29)  
 

Many of the probability density functions are in the form of exponential terms. 

Therefore, instead of using likelihood function, natural logarithm of the likelihood 

function is used in order to simplify required computation of maximum likelihood 

estimation. The natural logarithm of the likelihood function is called log-likelihood 

function. It is obvious that since the natural logarithm is a strictly increasing function, 

the log-likelihood function and the likelihood function have the same extremum values. 

Returning to our problem, we have N iid samples which have Weibull distribution 

𝑎𝑎1, … ,𝑎𝑎𝑁𝑁. Also, the shape parameter is fixed and the goal is to estimate scale parameter 

from N samples by MLE method. Let us denote the scale parameter by 𝑎𝑎�. The likelihood 

function is 

 

 𝐿𝐿 (𝑎𝑎) =  �𝜋𝜋𝑎𝑎(𝑒𝑒𝑖𝑖 ;𝑎𝑎) =  ��
𝑏𝑏
𝑎𝑎
� �
𝑒𝑒𝑖𝑖
𝑎𝑎
�
𝑏𝑏−1

𝑒𝑒−�
𝑒𝑒𝑖𝑖
𝑎𝑎 �

𝑏𝑏𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

 (3.30)  

 

And the log-likelihood function is 
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ln�𝐿𝐿 (𝑎𝑎)� =  �[ln(𝑏𝑏) + (𝑏𝑏 − 1) ln(𝑒𝑒𝑖𝑖)]
𝑁𝑁

𝑖𝑖=1

−  𝑁𝑁𝑏𝑏ln(𝑎𝑎)

−  
1
𝑎𝑎𝑏𝑏
�(𝑒𝑒𝑖𝑖)𝑏𝑏
𝑁𝑁

𝑖𝑖=1

 

(3.31)  

 

One can find the maximum likelihood estimation of 𝑎𝑎, the scale parameter, by setting 

the derivative of equation (3.31) to 0: 

 𝑎𝑎� =  �
1
𝑁𝑁

 �(𝑒𝑒𝑖𝑖)𝑏𝑏
𝑁𝑁

𝑖𝑖=1

�

1
𝑏𝑏

 (3.32)  

 

An alternative approach to estimate the scale parameter for a known shape 

parameter is to exploit the expected value of the Weibull distribution. The expected 

value of Weibull distribution is computed from: 

 𝐸𝐸{𝑎𝑎} = 𝑎𝑎Γ �1 +  
1
𝑏𝑏
� (3.33)  

 

where Γ(. ) denotes gamma function. 

The expected value can be estimated by taking the average of all samples: 

 

 𝐸𝐸{𝑎𝑎} =  
1
𝑁𝑁
�𝑒𝑒𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (3.34)  

 

Once the expected value is estimated, the scale parameter can be computed from: 

 

 𝑎𝑎� =  
𝐸𝐸{𝑎𝑎}

Γ �1 + 1
𝑏𝑏�

 (3.35)  

 

It should be note that for the sound source localization issue, because the negative 

pixels are representing pure noise and the goal is to model noise by Weibull distribution, 

only negative values in the local neighborhoods are used to estimate the scale 

parameter. 
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Now that the scale parameter is estimated, the threshold value can be obtained for 

specific false alarm rates by finding the inverse value of the equation (3.26): 

 

 𝑇𝑇 =  𝑎𝑎� ln �
1
𝑃𝑃𝐹𝐹𝐴𝐴

�
1
𝑏𝑏

 (3.36)  

 

Each pixel in the SRCP image has the potential to represent position of a sound 

source. If the test pixel exceeds the threshold, then it will be counted as a target (false 

alarm), whereas if it does not exceed the threshold, it will be implied as noise (correct 

rejection). 

The next chapter presents the experimental results. Over 46.4 million pixels are used 

to estimate empirical probability of false alarms corresponding to 6 desired constant 

false alarm probabilities ranged from 10-1 and 10-6. 
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Chapter 4 

 Experimental Results 
 

 

4.1 Introduction 

 

Chapter 1 provided the required theoretical details and analyzes for computation of 

SRCP-PHAT, the robust approach among all SLL algorithms. Partial whitening with the 

PHAT-β is applied in order to achieve a better target detection [20, 21]. Therefore, the 

parameter β should be selected such that its value is close to 1. Consequently, the beta 

value is set mainly equal to 0.75 or 0.85 in this thesis. However, other beta values will be 

examined to investigate the effect of beta value on the performance of the CFAR 

processor. 

The statistics of noise only distribution were presented in chapter 2. It was shown 

that under the condition that the variance of inter-path distances is sufficiently large 

relative to source wavelength, the noise distribution is effectively symmetrical, and this 

symmetrical condition is the key feature on which the novel CFAR processor operates. 

Therefore, filtering or changes in array geometry that increase inter-path distance 

variance should improve the performance of the CFAR processor. To illustrate this 

hypothesis, 3 different microphone geometries are examined. Furthermore, different 

high-pass filter cut-off frequencies are exploited. Extensive research is performed to 

determine a relationship for low frequency limit relevant to standard deviation of inter-

path distances for each geometry array. 
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The data is collected in a 6x6.7x2.2 meters typical room with a carpet floor, acoustic 

ceiling tiles, plasterboard walls, and windows on one side. The natural noise sources 

included vents, florescent lights, computer and traffic noise through the windows. 

The three microphone arrays used in this thesis were linear, perimeter and planar 

arrays. Fig 4.1 shows the three geometries. The filled circles represent the microphone 

positions while the square and the star markers denote the positions inside the FOV 

where the standard deviation of the inter-path distance between microphones and focal 

point are the smallest and largest one respectively.  

Each array contains 16 Behringer ECM 8000 omnidirectional microphones and an 

aluminum struts cage is used to hold the microphones in place. The FOV is selected to 

be a 3x3 meters plane inside the cage and 1.57 m above the floor. The schematic of the 

linear array is shown in Fig 4.1a. The microphones were symmetrically placed along the 

y-axis relative to the FOV, 1.52  

 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 
 

Figure 4.1 Microphone distributions and FOV (shaded plane) for simulation and 
experimental recordings with axes in meters. Small filled circles outside the FOV denote 
a microphone position and the square and star markers in the FOV denote the smallest 
and largest (respectively) microphone inter-distance standard deviation overall pairs (a) 
linear (b) perimeter and (c) planar. 
 
meters above the floor, and 0.5 m away from the FOV edge. The space between 

microphones was selected to be a constant value equal to 0.23 m such that the entire 

array was placed inside the cage. Fig 4.1b presents the perimeter geometry in which 
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microphones were placed 1.52 meters above the floor, 0.5 m away from the FOV plane, 

and the microphone spacing was 0.85 m along the perimeter.  The planar distribution is 

exhibited in Fig 4.1c. The microphones were placed in a plane 1.98 m above the floor 

and in a rectangular grid starting in a corner directly above the FOV, and the 

microphone spacing was 1 m in the X and Y directions. 

The FOV plane was spatially sampled at 4 cm in X and Y directions and the SRCP 

images were created for the pixels inside the FOV plane, which results in images sized 

76 by 76 pixels. Before processing the microphone signals, they are first amplified by M-

Audio Buddy preamplifiers. The amplified signals are then digitized through two 8 

channels of an M-Audio Delta 1010 Digitizers at 44.1 KHz sampling rate. Finally, the 

digitized signals are downsampled to 16 KHz for processing. The speed of sound needs 

to be measured on the day of each recording, which for linear array was 347 m/s and 

346 m/s for both perimeter and planar geometries.  

Two Yamaha NS-E60 speakers were placed outside the FOV and approximately 1.5 m 

away from the FOV to create two white noise sources. The noise sources were placed 

beyond the negative X and negative Y axes relative to the coordinates shown in Fig 4.1. 

Later in this chapter, two approaches will be applied to locate the accurate position of 

noise sources and by the knowledge of the noise source positions, the noise-path factor 

in conjunction with mic-distribution factor will be exploited to determine a low 

frequency limit which results in a good CFAR performance. 

The noise is non-stationary over the FOV; the closer the pixel to the noise source, the 

higher power the noise has at that pixel. For each microphone geometry, the white 

noise was played through the speakers and five separate recordings of 25 seconds were 

captured while the white noise was varied for each separate recording. To create the 

SRCP image based on equation (1.23), first signals were partitioned into 20 ms segments 

and incremented every 10 ms because of the non-stationary nature of the data. Then, a 

specific high-pass filter was applied to the partitioned signals to remove the 

components that the specific microphone array cannot decorrelate effectively. The high-

pass filter can be either a simple high-pass filter for all pixels inside the FOV plane, or, 
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based on the inter-path distance variance of the specific pixel inside the FOV, adaptive 

high-pass filters can be exploited. In the former approach, the worst scenario should be 

considered and the high-pass filter cut-off frequency should be designed based on the 

minimum standard deviation of the inter-path distances between focal points and 

microphone pairs. In the next step, partial whiting PHAT-β was performed on the high-

pass filtered signals. Once the SRCP images are created, the CFAR processor will be 

applied. It will be shown later in this chapter that for all microphone geometries, the 

optimal neighborhood size around the pixel under test is 15x15 pixels, which 

consequently results in about 46.5 million detection tests for estimating the probability 

of false alarms. 

 

4.2 Mic-distribution factor 

 

In chapter 2 mic-distribution and noise-path factors were introduced based on 

equation (2.10). As can be seen from equation (2.10), mic-distribution includes the 

inter-path distances between all microphone pairs to the focal point. This factor 

depends only on the microphone geometry and scales all noise components as well. As 

a result, it provides a convenient point for designing the high-pass filters mentioned 

earlier. 

Histograms can be exploited to illustrate the nature of the microphone differential 

path length distribution. Since 16 microphones were used, the total number of 

differential path lengths is equal to the number of permutation for 16 taken 2 at a time, 

or 240. The histograms of all 240 differential lengths are plotted for two points inside 

the FOV plane; one point corresponds to the maximum standard deviation of inter-path 

distances while the other focal point corresponds to the minimum inter-path distances 

standard deviation. The maximum standard deviation is 1.42, 1.88 and 1.48 for linear, 

perimeter and planar geometries respectively, whereas the minimum standard 

deviation is 0.21, 0.38 and 0.67 for linear, perimeter and planar arrays respectively. Fig 

4.2 shows the normalized histograms for the three microphone arrays. 
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Fig 4.2 suggests that the distribution of inter-path distances between focal point and 

microphone pairs is more similar to Gaussian distribution for the least noise distribution 

symmetry situation (minimum standard deviation). On the other hand, the distribution 

of inter-path distances becomes more similar to Uniform distribution for the limited 

support case (maximum standard deviation). By comparing equations (2.13) and (2.18) it 

can be concluded that the mean offset diminishes faster with increasing the standard 

deviation, if Gaussian distribution is used to model the distribution of inter-path 

distances rather than modeling them by Uniform distribution. Therefore, Uniform 

distribution is selected to model the distribution of inter-path distances as the worst-

case limitation. Consequently, based on equation (2.18) as well as experimental results, 

an empirical relationship will be founded to determine the frequency range for all 

microphone geometries that lead to a good CFAR performance. 

In this thesis, two general methods are applied to reduce the impact of low frequency 

components, which the microphone geometry cannot decorrelate effectively; one 

method is high-pass filtering and the other is whitening using PHAT- β. 

 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 
 

Figure 4.2 Normalized histograms for microphone pair differential path lengths at FOV 
points that generate the minimum and maximum standard deviations for (a) linear 
geometry (b) perimeter geometry, and (c) planar geometry. 
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4.3 CFAR performance, considering only mic-distribution factor 

 

In this section, only the mic-distribution factor is exploited to achieve a good CFAR 

performance.  As it was mentioned in chapter 3, Chi-square and Weibull distributions 

are used to model the steered-response coherent power distribution in this thesis.  

The idea of modeling coherent power by Chi-square distribution came up from the 

assumption that the noise distribution was truly Gaussian; if the noise distribution is 

modeled by Gaussian distribution, then the coherent power should have ideally Chi-

square distribution with the degree of freedom of 1. On the other hand, Weibull 

distribution is used because of its ability to adjust the skewness via its shape parameter. 

In addition, some important distributions such as Rayleigh and Exponential distributions 

are special cases of Weibull distribution. 

After creating SRCP images, adaptive thresholds were computed based on the 

distribution of the coherent power, statistics of the pixels in the neighborhood, and the 

specific desired false alarm probabilities. The test pixels are those pixels that have the 

potential to represent the position of a target. The potential pixels which are capable of 

representing positions of the sound source (target) have a positive SRCP value as well as 

being the local maximum value in a neighborhood surrounding them. The pixel under 

test is compared with the threshold and if it is greater than the threshold, it is counted 

as the position of the target. Note that there were no sound sources in the experimental 

recording. Thus, this target detection was a false detection (false alarm). Finally, the 

total number of pixels which were counted as the positions of sound sources is divided 

by the total number of pixels to compute the experimental false alarm probability. 
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4.3.1 Chi-square distribution 

 

For the no-target case, the steered response coherent power (test pixel) was 

modeled by Chi-square distribution: 

 𝑆𝑆0 ~ 𝜒𝜒2(𝑑𝑑) (4.1)  
 

where S0 is the coherent power (test pixel) and 𝜒𝜒2(𝑑𝑑) represents a Chi-square 

distribution with d degree of freedoms. 

 Modeling the test pixel by Chi-square distribution resulted in a very poor CFAR 

performance. In fact, the experimental FA probabilities were always zero (threshold 

estimates were always too high).  

In the next attempt to apply the Chi-square model, the coherent power (test pixel) 

was squared and then normalized by an estimate of the second moment of the negative 

pixels. The second moment is estimated by computing the mean value of the squared 

negative coherent power pixels in the local neighborhood: 

 

 𝑒𝑒𝑠𝑠 =  
1
𝑁𝑁

 � 𝑆𝑆𝑖𝑖2

𝑆𝑆𝑖𝑖∈𝑁𝑁0
−

 (4.2)  

 

where es is the estimated second moment, N is the total number of negative pixels in 

the neighborhood and 𝑁𝑁0
− denotes the set of negative pixels in the local neighborhood.  

In this approach, the test pixel is first squared and then normalized by second 

moment of the negative pixels. The resulting random variable is modeled by Chi-square 

distribution with d degree of freedoms.  

 

 
𝑆𝑆0

2

𝑒𝑒𝑠𝑠
 ~ 𝜒𝜒2(𝑑𝑑) (4.3)  

 

Similar to the first method, the CFAR performance was very poor and the 

experimental FA probabilities were zero as in the previous case. 
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With the third attempt, better CFAR performance was achieved by normalizing the 

pixel under test with the estimated second moment of the negative pixels, and then 

applying Chi-square distribution with d degree of freedoms to model the resulting 

random variable. 

 

 
𝑆𝑆0

𝑒𝑒𝑠𝑠
 ~ 𝜒𝜒2(𝑑𝑑) (4.4)  

 

The second moment is used as the normalizing factor. As it was mentioned in chapter 

3, the negative coherent power values are a result of pure noise while the positive 

values are due to both sound source and noise. The second moment of the test pixel is 

estimated by using only negative coherent power values in the neighborhood 

surrounding the test pixel. 

The threshold is computed by finding the inverse value of cdf of Chi-square 

distribution with d degree of freedoms computed at the compliment of desired false 

alarm probability (1-PFA). It is worth noting that the compliment of desired false alarm 

probability is equal to the cdf computed at the threshold value.  

 

(a) 

 

(b) 

Figure 4.3 Ratios of specified to empirical (experimental) FA probabilities for linear 
array for high-pass filtered signals with cut-off frequency of 300 Hz. The normalized 
test pixel by the 2nd moments is modeled by Chi-square distribution (a) variations of 
PHAT-β parameters using degree of freedom of 1 for Chi-square distribution (b) 
variations in Chi-square distribution degree of freedom using beta equal to 0.75. 
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The high-pass filter cut-off frequency was set to 300 Hz. Figure 4.3 illustrates the ratio 

of desired to experimental FA (false alarm) probability versus desired probability of FA 

for six specified desired FA probabilities, ranged from 10-1 and 10-6 for linear array when 

the coherent power is modeled by Chi-square distribution with different degree of 

freedom and the test pixel is normalized by its variance for the no-target situation. The 

broken line represents ratios of one and implies perfect agreement between 

experimental and desired FA probabilities. Also, the area between dotted lines is where 

the ratio of desired over experimental FA probability is at least within 1 order of 

magnitude. A ratio less than one implies that the experimental threshold was too low, 

whereas ratios greater than one mean the experimental threshold were too high. 

 As can be seen from Fig 4.3, whitening tends to improve the CFAR performance but a 

reasonable CFAR performance cannot be achieved either by applying whitening or by 

exploiting different degree of freedoms for Chi-square distribution in the linear array 

when the high-pass filter cut-off frequency is equal to 300 Hz. In fact, the FA probability 

was under-estimated for high FA probabilities while it was over-estimated for low FA 

probabilities. Note that the estimated threshold increases by increasing the Chi-square 

distribution degree of freedom. Consequently, the experimental FA probability 

decreases by increasing the Chi-square distribution degree of freedom. 

Experimental results show that a reasonable CFAR performance cannot be achieved 

in the linear geometry by modeling the coherent power with Chi-square distribution and 

normalizing the test pixels by their estimated variance from only negative pixels in the 

neighborhood even if 1500 Hz is used as the high-pass filter cut-off frequency. Fig 4.4 

presents the CFAR performance in the linear array with high-passed filtered signals by 

cut-off frequencies of 800 Hz and 1500 Hz when the coherent power is modeled by Chi-

square distribution and test pixels are normalized by their estimated variance. The 

PHAT-β parameter is set to 0.75 and different degrees of freedom are examined for the 

Chi-square distribution. However, none of them led to a reasonable CFAR performance. 
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Perimeter array is the next geometry which performance of CFAR processor is 

examined in the situation where the coherent power is modeled by Chi-square 

distribution and the test pixels are normalized by estimated 2nd moment of the negative 

pixels in the neighborhood. Fig 4.5 shows the performance of the CFAR processor in 

perimeter array for high-pass filtered signals with a cut-off frequency of 300 Hz. 

Modeling coherent power by Chi-square distribution with a degree of freedom of 1 did 

not lead to a reasonable CFAR performance even by examining different values for 

PHAT-β parameter (Fig 4.5.a). Although a reasonable CFAR performance was achieved 

for the total whitening case when the degree of freedom was increased to 6 (Fig 4.5.b), 

for partial whitening cases a reasonable CFAR performance could not be achieved (Fig 

4.5.c). It should be noted that the main goal is to achieve a good CFAR performance for 

partial whitening case with PHAT-β parameter close to 1 as the previous work showed 

that better correct detection can be achieved by exploiting partial whitening. 

  

 

(a) 

 

(b) 

Figure 4.4 Ratios of specified to empirical (experimental) FA probabilities for linear 
array. The normalized test pixel by the 2nd moments is modeled by Chi-square 
distribution. The beta value is set to 0.75 and different  Chi-square distribution degree 
of freedoms are applied  using  high-pass filter cut-off frequency of  (a) 800 Hz (b) 1500 
Hz. 
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Finally, the CFAR performance is investigated for the planar geometry when the 

coherent power is modeled by Chi-square distribution and the test pixels are normalized 

by their estimated variance. Although whitening tends to improve the CFAR 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

 

Figure 4.5 Ratios of specified to empirical (experimental) FA probabilities for 
perimeter array for high-pass filtered signals with cut-off frequency of 300 Hz. The 
normalized test pixel by the 2nd moments is modeled by Chi-square distribution (a) 
variations of PHAT-β parameters using degree of freedom of 1 for Chi-square 
distribution (b) variations of PHAT-β parameters using degree of freedom of 6 for Chi-
square distribution (c) variations in Chi-square distribution degree of freedom using 
beta equal to 0.75. 
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performance in the planar array, a reasonable CFAR performance was not achieved 

either by exploiting whitening or by applying different degree of freedoms for the Chi-

square distribution. Fig 4.6 presents the CFAR performance in the planar array. 

 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

 

Figure 4.6 Ratios of specified to empirical (experimental) FA probabilities for planar 
array for high-pass filtered signals with cut-off frequency of 300 Hz. The normalized 
test pixel by the 2nd moments is modeled by Chi-square distribution (a) variations of 
PHAT-β parameters using degree of freedom of 1 for Chi-square distribution (b) 
variations of PHAT-β parameters using degree of freedom of 6 for Chi-square 
distribution (c) variations in Chi-square distribution degree of freedom using beta 
equal to 0.75. 
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4.3.2 Developing scaling methods for the Chi-square distribution 

application 

 

The very poor results of normalizing the test pixels by their estimated variance and 

modeling the normalized steered response coherent power by Chi-square distribution 

called for a technique to develop the idea of exploiting Chi-square distribution. The 

technique that results in a good CFAR performance is to model a linear combination of 

the steered response coherent power by Chi-square distribution. This approach was 

motivated by observing the near linear patterns of the FA rates over the probability axis. 

Therefore, three different linear combinations are applied to the coherent power. 

The first approach in developing the idea of exploiting Chi-square distribution is to 

consider Chi-square distribution as the distribution of the coherent power over a 

constant value named a1 and take the expected value from the resultant random 

variable. It should be noted that the expected value of a Chi-square distribution with 

degree of freedom d is equal to d. 

 

 
𝑆𝑆0

𝑎𝑎1
 ~ 𝜒𝜒2(𝑑𝑑) (4.5)  

 

where S0 is the coherent power and 𝜒𝜒2(𝑑𝑑) represents a Chi-square distribution with d 

degree of freedoms. 

Taking expected value from equation (4.5) results in: 

 

 𝐸𝐸 �
𝑆𝑆0

𝑎𝑎1
� = 𝐸𝐸{𝜒𝜒2(𝑑𝑑)} (4.6)  

 

 
1
𝑎𝑎1

 𝐸𝐸{𝑆𝑆0} = 𝑑𝑑 (4.7)  

 

 𝑎𝑎1 =  
𝐸𝐸{𝑆𝑆0}
𝑑𝑑

 (4.8)  
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The expected value of the coherent power (test pixel) is estimated from only negative 

pixels in the neighborhood. The absolute value of the negative pixels average is used as 

the estimated mean value of the pixel under test. 

Once a1 is computed, the test pixel is divided by a1 and the result is compared with 

the threshold. The threshold is computed by taking inverse value of the cdf of Chi-

square distribution at the compliment of the desired FA probability. This approach will 

be referred to as mean-cx2 approach throughout this thesis. 

The next approach is called var-cx2. Var-cx2 is similar to the mean-cx2 method with 

the difference that instead of exploiting the expected value of Chi-square distribution, 

the variance of Chi-square distribution is being used in the var-cx2 approach. It should 

be noted that the variance of a Chi-square distribution with degree of freedom d is 

equal to 2d. In the var-cx2 approach, the constant value which the coherent power is 

divided by is denoted by a2. The random variable of the coherent power over a2 is 

modeled by Chi-square distribution. 

 

 
𝑆𝑆0

𝑎𝑎2
 ~ 𝜒𝜒2(𝑑𝑑) (4.9)  

 

By taking variance from both sides of the equation (4.9), the constant value a2 is 

calculated. 

 

 𝑉𝑉𝑎𝑎𝑁𝑁 �
𝑆𝑆0

𝑎𝑎2
� = 𝑉𝑉𝑎𝑎𝑁𝑁{𝜒𝜒2(𝑑𝑑)} (4.10)  

 

 
1
𝑎𝑎2

2 𝑉𝑉𝑎𝑎𝑁𝑁{𝑆𝑆0} = 2𝑑𝑑 (4.11)  

 

 𝑎𝑎2 =  �
𝑉𝑉𝑎𝑎𝑁𝑁{𝑆𝑆0}

2𝑑𝑑
 (4.12)  
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The variance of the coherent power (pixel under test) is estimated from only negative 

pixels in the neighborhood. The negative pixels are squared and then averaged to 

estimate the variance of the test pixel. Once a2 is computed the test pixel is divided by 

a2 and the resultant random variable is compared with the threshold. Similar to the 

mean-cx2 approach, the thresholds are computed by taking the inverse value of the cdf 

of Chi-square distribution at the compliment of the desired FA probability. 

In the last approach for developing the idea of exploiting Chi-square distribution, the 

coherent power (test pixel) is divided by a constant value called a and the result is 

added with another constant value denoted by b. The resultant random variable is then 

modeled by Chi-square distribution. 

 �
𝑆𝑆0

𝑎𝑎
+  𝑏𝑏�  ~ 𝜒𝜒2(𝑑𝑑) (4.13)  

This approach is named mean-var-cx2 in this thesis. In the mean-var-cx2 method, 

both expected value and variance are used. If the expected value is taken from equation 

(4.13), then: 

 

 𝐸𝐸 �
𝑆𝑆0

𝑎𝑎
+ 𝑏𝑏� = 𝑑𝑑 (4.14)  

or 

 
1
𝑎𝑎

 𝐸𝐸{𝑆𝑆0} +  𝑏𝑏 = 𝑑𝑑 (4.15)  

 

And taking the variance from equation (4.13) will result in: 

 

 𝑉𝑉𝑎𝑎𝑁𝑁 �
𝑆𝑆0

𝑎𝑎
+ 𝑏𝑏� = 2𝑑𝑑 (4.16)  

or 

 
1
𝑎𝑎2  𝑉𝑉𝑎𝑎𝑁𝑁{𝑆𝑆0} = 2𝑑𝑑 (4.17)  

 

Therefore, the constant value of a is computed from: 
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 𝑎𝑎 =  �
𝑉𝑉𝑎𝑎𝑁𝑁{𝑆𝑆0}

2𝑑𝑑
 (4.18)  

 

By projecting the a value into equation (4.15) the constant value b is calculated: 

 

 𝑏𝑏 = 𝑑𝑑 −  
𝐸𝐸{𝑆𝑆0}
𝑎𝑎

 (4.19)  

 

The expected value of the coherent power (test pixel) is computed similarly as it was 

computed in the mean-cx2 approach. Also, the variance of the pixel under test is 

estimated by using the same technique in the var-cx2 approach. 

Now that constant values a and b are computed, the coherent power is divided by a 

and b is added to the result. Finally, the created linear combination of the coherent 

power is compared with the threshold. 

To investigate the performance of the CFAR processor by using the developed Chi-

square distribution approaches, the PHAT-β parameter is set to 0.85 and the high-pass 

 

 

(a) 

 

 

(b) 

Figure 4.7: Ratios of specified to empirical (experimental) FA probabilities for linear 
array for high-pass filtered signals with cut-off frequency of 300 Hz. The PHAT-β 
parameter is set to 0.85. The performances of modeling three linear combinations of 
the coherent power by Chi-square distribution are compared together (a) for degree 
of freedom of 1 (b) for degree of freedom of 6. 
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cut-off frequency is set to 300 Hz. Fig 4.7 shows the performance of the developed Chi-

square distribution approaches in the linear array. 

For the high FA probabilities, the experimental FA probabilities were too low while 

for the low FA probabilities the empirical FA probabilities were too high in all three 

approaches. Note that even by increasing the degree of freedom of Chi-square 

distribution, a reasonable CFAR performance was not achieved. In fact, increasing the 

Chi-square distribution degree of freedom increases the empirical FA probabilities and 

hence the CFAR performance even degrades for low FA probabilities. Consequently, the 

high-pass filter cut-off frequency needs to be increased. 

  

 

 

(a) 

 

 

(b) 

Figure 4.8: Ratios of specified to empirical (experimental) FA probabilities for linear 
array for high-pass filtered signals with cut-off frequency of 800 Hz. The PHAT-β 
parameter is set to 0.85. The performances of modeling three linear combinations of 
the coherent power by Chi-square distribution are compared together (a) for degree 
of freedom of 1 (b) for degree of freedom of 2. 
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The results of increasing the cut-off frequency to 800 Hz are presented in Fig 4.8.  It is 

interesting to note that the CFAR performance for all three approaches are close 

together when the Chi-square distribution degree of freedom is equal to 1 and by 

increasing the degree of freedom, the experimental FA probability increases. The mean-

cx2 method is the most sensitive approach to the Chi-square degree of freedom 

relevant to other approaches. As can be seen from Fig 4.8 the FA probabilities are 

under-estimated for all approaches. However, if the degree of freedom is increased 

from 1 to 2, then the FA probabilities are over-estimated for low desired FA 

probabilities. The CFAR performance is improved by increasing the cut-off frequency 

from 300Hz to 800Hz, especially when the degree of freedom is set to 2. However, the 

cut-off frequency still needs to be increased more in order to achieve a good CFAR 

performance in linear geometry. Fig 4.9 shows the CFAR performance for linear array 

using a cut-off frequency of 1500 Hz. The PHAT-β parameter is set to 0.85 and three 

different combinations of the coherent power are modeled by Chi-square distribution. 
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As Fig 4.9a demonstrates, a very good CFAR performance for linear array is achieved 

in the situation where the mean-cx2 approach is exploited and the degree of freedom is 

set to 4 using 0.85 as the PHAT-β parameter and high-pass filtering signals with cut-off 

frequency of 1500 Hz. The experimental FA probability is increased, if the degree of 

freedom of Chi-square distribution is increased, and in consequence, the ratios of 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 4.9: Ratios of specified to empirical (experimental) FA probabilities for linear 
array for high-pass filtered signals with cut-off frequency of 1500 Hz. The PHAT-β 
parameter is set to 0.85. The performance of modeling three linear combinations of 
the  coherent power by Chi-square distribution are compared together for degree of 
freedom of(a) 4 (b) 48 (c) 240 (d) 1600. 
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desired over empirical FA probabilities are decreased. The ratio was less than 10-4 for 

desired FA probability equal to 10-6 in Figs 4.9b-d and therefore was not shown in these 

figures. 

An interesting phenomenon is the very wide range for Chi-square distribution degree 

of freedom in which the ratios of desired over empirical FA probabilities are within 1 

order of magnitude (a reasonable CFAR performance) when the mean-var-cx2 approach 

is exploited. The range for degree of freedom of Chi-square distribution which resulted 

in a reasonable CFAR performance using the mean-var-cx2 method is 48 to 1600. On the 

other hand, a reasonable CFAR performance is not achieved for linear array in the 

situation where the var-cx2 approach is used. In this situation, the FA probability is 

always under-estimated. The ratios of experimental to desired FA probabilities were 

beyond 102 and therefore were not shown in the figures. 

The performance of modeling the linear combinations of the coherent power by Chi-

square distribution in the perimeter array with high-passed filtered signals with a cut-off 

frequency of 300 Hz is identical to the performance of linear geometry with high-passed 

filtered signals with a cut-off frequency of 1500 Hz. Identical to linear array using cut-off 

frequency of 1500 Hz, a good CFAR performance is achieved by exploiting the mean-cx2 

approach in the perimeter array with 300 Hz as the high-pass filter cut-off frequency 

while the Chi-square distribution degree of freedom is set to 4. Also, a reasonable CFAR 

performance is achieved by exploiting the mean-var-cx2 method for Chi-square 

distribution degree of freedom ranging from 48 to 1600. Furthermore, similar to linear 

geometry, a reasonable CFAR performance is not achieved by using the var-cx2 

approach in perimeter array. Fig 4.10 demonstrates the ratios of experimental to 

desired FA probabilities in perimeter array with high-passed filtered signals with a cut-

off frequency of 300 Hz and using PHAT-β parameter of 0.85 when a linear combination 

of the coherent power is modeled by Chi-square distribution.  
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If the planar array is used and a linear combination of the coherent power is modeled 

by Chi-square distribution, a good CFAR performance can be achieved by high-pass 

filtering signals with a cut-off frequency of 300 Hz. In this situation, the performance of 

planar geometry is similar to the linear array using 1500 Hz as the cut-off frequency and 

the perimeter array using cut-off frequency of 300 Hz; however, they have some 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 4.10 Ratios of specified to empirical (experimental) FA probabilities for 
perimeter array for high-pass filtered signals with cut-off frequency of 300 Hz. The 
PHAT-β parameter is set to 0.85. The performance of modeling three linear 
combinations of the coherent power by Chi-square distribution are compared 
together for degree of freedom of(a) 4 (b) 48 (c) 240 (d) 1600. 
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differences. As it was presented above, by exploiting the mean-cx2 approach and setting 

the Chi-square distribution degree of freedom to 4, a good CFAR performance can be 

achieved in the linear array as well as in the perimeter array. However, if the planar 

geometry is used, the degree of freedom should be set to 3 in order to result in a good 

CFAR performance using the mean-cx2 method. 

On the other hand, the range for Chi-square distribution degree of freedom which 

resulted in a reasonable CFAR performance in linear and perimeter geometries using the 

mean-var-cx2 approach is much wider than the range in the planar array. In the planar 

array, a reasonable CFAR performance is achieved by exploiting the mean-var-cx2 

method for a Chi-square distribution degree of freedom ranging from 10 to 32. 

Furthermore, similar to linear and perimeter geometries, a reasonable CFAR 

performance was not achieved for the var-cx2 method in the planar array. The FA 

probabilities are under-estimated for all degrees of freedom, if the var-cx2 method is 

used. Fig 4.11 presents the CFAR performance for the planar geometry using a cut-off 

frequency of 300 Hz. The PHAT-β parameter is set to 0.85 and the performance of the 

mean-cx2, var-cx2 and mean-var-cx2 approaches are presented and compared together. 

By comparing the CFAR performance in all of the three microphone geometries when 

using the mean-cx2, var-cx2 and mean-var-cx2 approaches to model the steered 

response coherent power, it can be concluded that the mean-cx2 method outperforms 

in terms of higher agreement between experimental and desired FA probabilities while 

a reasonable CFAR performance cannot be achieved by using the var-cx2 method. 

Furthermore, in the situation where the mean-cx2 approach is exploited to achieve a 

perfect CFAR performance, the Chi-square distribution degree of freedom needs to be 

set to 4 in the linear and perimeter arrays, whereas a good CFAR performance is 

achieved in the planar array if the degree of freedom is equal to 3. 
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All of the above performances were resulted by exploiting the neighborhood size of 

15x15 pixels (a radius of 7 around the test pixel). The neighborhood size has an 

important impact on the performance of the CFAR processor. In the Chi-square 

approaches, the mean-value and the second moment of the test pixel are estimated 

from the negative pixels in the neighborhood. The accuracy of the estimates depends on 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 4.11 Ratios of specified to empirical (experimental) FA probabilities for planar 
array for high-pass filtered signals with cut-off frequency of 300 Hz. The PHAT-β 
parameter is set to 0.85. The performance of modeling three linear combinations of 
the coherent power by Chi-square distribution are compared together for degree of 
freedom of(a) 3 (b) 4 (c) 10 (d) 32. 
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the total number of samples used for the estimations. The estimated values are more 

accurate if more samples are used or a larger neighborhood size is exploited. 

On the other hand, because of the non-stationary nature of the data, in order to 

consider the same distribution for the pixels in the neighborhood, it is required to keep 

the neighborhood size small enough. 

In this study, three different neighborhood sizes are examined in order to investigate 

the effect of the neighborhood size on the performance of the CFAR processor. These 

three neighborhood sizes are 7x7, 15x15 and 21x21 pixels. Experimental results 

demonstrate that the neighborhood size of 15x15 pixels outperforms in terms of better 

CFAR performance for all microphone geometries. Fig 4.12 compares the performance 

of different neighborhood sizes using the mean-cx2 and mean-var-cx2 approaches for 

linear array with high-passed filtered signals with a cut-off frequency of 1500 Hz and 

exploiting 0.85 for the PHAT-β parameter. The Chi-square distribution is set to the value 

which resulted in a good CFAR performance for the neighborhood size of 15x15 pixels. 

By increasing the neighborhood size, the ratio of experimental over desired FA 

probability increases. Equivalently, the experimental FA probability decreases if the 

neighborhood size increases for both the mean-cx2 and mean-var-cx2 methods. A 

reasonable CFAR performance cannot be achieved for the linear geometry if the 

neighborhood size is set to 7x7 pixels. On the other hand, with the neighborhood size 

equal to 21x21 pixels, a reasonable CFAR performance is achievable but the Chi-square 

distribution degree of freedom needs to be increased (e.g. the degree of freedom 

should be increased from 4 to 5 for the mean-cx2 approach in the linear array). 

Furthermore, if the neighborhood size is equal to 21x21 pixels and the mean-var-cx2 

method is used the range for degree of freedom which results in a reasonable CFAR 

performance will be increased such that even a high degree of freedom, such as 5600 

for the linear geometry, leads to a reasonable CFAR performance. 

  



64 
 

 

Similar to the linear array, increasing the Chi-square distribution degree of freedom 

decreases the experimental FA probability for the perimeter geometry for both the 

mean-cx2 and mean-var-cx2 methods. The degree of freedom equal to 2 will lead to a 

reasonable CFAR performance for the perimeter array if the neighborhood size is equal 

to 7x7 pixels using the mean-cx2 method. Although a reasonable CFAR performance is 

achieved for the perimeter array for all three neighborhood sizes, the CFAR 

performance is the best if the neighborhood size is equal to 15x15 pixels. The higher the 

neighborhood size, the higher the degree of freedom needs to be set to achieve a 

reasonable CFAR performance. Furthermore, the range for the degree of freedom is 

increased by increasing the neighborhood size if the mean-var-cx2 approach is used. Fig 

4.13 presents the CFAR performance in the perimeter array using different 

neighborhood sizes for high-passed filtered signals with a cut-off frequency of 300 Hz 

and exploiting 0.85 for the PHAT-β parameter. 

  

 

 

(a) 

 

 

(b) 

Figure 4.12 Ratios of specified to empirical (experimental) FA probabilities for linear 
array for high-pass filtered signals with cut-off frequency of 1500 Hz. The beta is equal 
to 0.85. Variations of the neighborhood size using (a) mean-cx2 approach and degree 
of freedom of 4 for Chi-square distribution (b) mean-var-cx2 method and degree of 
freedom of 240. 
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By increasing the degree of freedom, the ratio of experimental to desired FA 

probability decreases for the planar geometry like the linear and perimeter arrays. 

Furthermore, similar to the linear geometry, a reasonable CFAR performance cannot be 

achieved using the neighborhood size of 7x7 pixels for the planar array. Also, if the 

neighborhood size is equal to 21x21 pixels, the degree of freedom needs to be increased 

to achieve a reasonable CFAR performance. (Although the degree of freedom equal to 

three leads to a reasonable CFAR performance using neighborhood size of 21x21 pixels, 

the best performance for the neighborhood size of 21x21 is achieved when the degree 

of freedom is set to 4 using the mean-cx2 method). Fig 4.14 shows the CFAR 

performance for different neighborhood sizes for the planar array. The signals are high-

pass filtered with the cut-off frequency of 300 Hz and also they have been whitened 

with a PHAT-β parameter of 0.85. 

 

  

 

 

(a) 

 

 

(b) 

Figure 4.13 Ratios of specified to empirical (experimental) FA probabilities for 
perimeter array for high-pass filtered signals with cut-off frequency of 300 Hz. The 
beta is equal to 0.85. The mean-cx2 approach is applied (a) variations of the 
neighborhood size using Chi-square distribution  degree of freedom of 4 (b) for 
neighborhood size of 7x7 pixels the degree of freedom should be set to 2 while for 
neighborhood size of 21x21 pixel it can be either 4 or 5 to achieve a reasonable CFAR 
performance. 
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In summary, the neighborhood size of 15x15 pixels has the best CFAR performance 

for all microphone geometries. In addition, the linear array is the most sensitive 

geometry in respect to the neighborhood size, whereas the planar array is the least 

sensitive geometry. Furthermore, the mean-cx2 approach outperforms among other 

scaling approaches. In the situation where the mean-cx2 method is used to model the 

coherent power and the local neighborhood size is set to 15x15, the optimal Chi-square 

distribution degree of freedom is equal to 4 for the linear and perimeter geometries, 

while to achieve a good CFAR performance for the planar array, the degree of freedom 

should be equal to 3. 

  

 

 

(a) 

 

 

(b) 

Figure 4.14 Ratios of specified to empirical (experimental) FA probabilities for planar 
array for high-pass filtered signals with cut-off frequency of 300 Hz. The beta is equal 
to 0.85. The mean-cx2 approach is applied (a) variations of the neighborhood size 
using Chi-square distribution degree of freedom of 3 (b) for neighborhood size of 7x7 
pixels a reasonable CFAR performance is not achievable while for neighborhood size 
of 21x21 pixel the degree of freedom can be either 3 or 4 to achieve a reasonable 
CFAR performance. 
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4.3.3 Weibull distribution 

 

This section presents CFAR threshold performance where the coherent power is 

modeled with Weibull distribution. The same distribution with the same parameters is 

considered for both negative and positive coherent power values. Variations in the 

shape parameter, the influence of beta value (PHAT-β parameter), and the high pass 

filter cut-off frequency on the performance for three microphone distributions will be 

investigated. For the high-pass filter designing purpose, only the mic-distribution factor 

will be considered. 

As it was mentioned in chapter 3, the Weibull distribution is used because of its 

ability to model the skewness in the tail of the distribution by adjusting the shape 

parameter. In addition, some powerful distributions, such as Rayleigh and Exponential, 

are special cases of Weibull distribution. In this approach, the coherent power (test 

pixel) is modeled by Weibull distribution with the parameters of a as the scale 

parameter and b as the shape parameter: 

 

 𝑆𝑆0 ~ 𝑊𝑊𝑒𝑒𝑖𝑖(𝑎𝑎, 𝑏𝑏) (4.20)  
 

If the original noise distribution is assumed to be Gaussian distribution and be locally 

stationary, then the coherent power can be modeled by Chi-square distribution. 

Experiments show that Weibull distribution with shape parameter of about 1.26 

corresponds to Chi-square distribution. Therefore, the shape parameter of Weibull 

distribution is initially set to 1.26. 

Using the maximum likelihood estimation, the scale parameter is computed for a 

known shape parameter, b, from only negative pixels in the local neighborhood. 

 

 𝑎𝑎� =  �
1
𝑁𝑁

 � |𝑆𝑆𝑖𝑖|𝑏𝑏
𝑆𝑆𝑖𝑖∈𝑁𝑁0

−

�

1
𝑏𝑏

 (4.21)  
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where N is the total number of the negative pixels in the neighborhood and 𝑁𝑁0
− denotes 

the set of negative pixels in the local neighborhood. Note that since the Weibull 

distribution is not defined for the negative values, the absolute values of the negative 

pixels are taken before being raised by the shape parameter. 

The scale parameter can be estimated by exploiting the expected value of Weibull 

distribution alternatively. Using expected value of Weibull distribution, the scale 

parameter is estimated for a known shape parameter, b, from only the negative pixels in 

the local neighborhood. 

 

 𝑎𝑎� =  
𝐸𝐸{𝑆𝑆0}

Γ �1 + 1
𝑏𝑏�

 (4.22)  

 

where Γ(. ) denotes gamma function. The expected value of the Weibull distribution is 

estimated by finding the absolute value of the average of the negative pixels in the local 

neighborhoods. 

By finding the inverse value of Weibull distribution cdf at the compliment of the 

desired FA probability, the adaptive threshold is computed: 

 

 𝑇𝑇 =  𝑎𝑎� ln �
1
𝑃𝑃𝐹𝐹𝐴𝐴

�
1
𝑏𝑏

 (4.23)  

 

where PFA represents the desired FA probability. 

Experimental results show no differences between the CFAR performances when the 

scale parameter is computed by the maximum likelihood approach and exploiting the 

expected value of Weibull distributions for all possible scenarios. However, note that 

the computational cost is less if the expected value method is applied to estimate the 

scale parameter for real time applications, rather than exploiting the maximum 

likelihood approach as the gamma function needs to be computed once in the expected 

value method. On the other hand, in the maximum likelihood approach, the negative 

values need to be raised by a fractional power. 
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Figure 4.15 illustrates the ratio of experimental to desired FA probability versus 

desired probability of FA for the linear array with high-passed filtered signals using 300 

Hz as the cut-off frequency when the coherent power is modeled by Weibull 

distribution. The CFAR threshold performance for the linear array with low cut-off 

frequencies such as 300 Hz is not accurate. For low desired probability of FAs, the 

experimental FA probabilities tend to be overestimated relevant to the desired one. This 

over estimating FA probability means the experimental threshold is less than the desired 

one. 

  

On the other hand, for high desired probability of FA, the experimental FA probabilities 

tend to be underestimated which means the experimental threshold is higher than the 

desired one. As can be seen from Fig 4.15.a, whitening improves the performance. 

However, the previous works showed that partial whitening resulted in significantly 

better detection rates, rather than total whitening. Therefore, beta-- partial spectral 

whitening is set to 0.85 and the shape parameter is adjusted to make the experimental 

FA probability as close to the desired one as possible (Fig 4.15.b). However, it is too 

 

 

(a) 

 

 

(b) 

Figure 4.15 Ratios of specified to empirical (experimental) FA probabilities for linear 
array for high-pass filtered signals with cut off frequency of 300 Hz when the coherent 
power is modeled by Weibull distribution. (a) Variations of PHAT-β parameters using 
shape parameter of 1.26 (b) variations of shape parameters using beta equal to 0.85. 
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complicated to find a shape parameter that makes the ratio of the desired to the 

experimental FA probability close to one. In other words, fitting Weibull distribution to 

the data is too complicated. In the linear array, lower shape parameter performs better 

at low FA probabilities, while higher shape parameter performs better at the high 

probability of false alarms. The best performance that can be achieved for the linear 

array with a cut-off frequency of 300 Hz is for 0.6 as the shape parameter. Even a low 

shape parameter such as 0.6 which cause a high skewness, could not keep the ratio at 

least in order of 1 magnitude at the high FA probabilities.  In fact, Weibull distribution is 

not a good distribution to model both the positive and negative values of the coherent 

power (as seen from the figures), and the reason is the inability of the specific 

microphone distribution to decorrelate the lower frequency components. Among all 

microphone distributions, the linear array has the least inter-path distance variance 

relative to the source wavelength. Therefore, greater deviations from symmetry are 

expected for the linear array. As a consequence, near-symmetry for the linear array is 

only possible at higher source frequencies. 

  

 

 

(a) 

 

 

(b) 

Figure 4.16 Ratios of specified to empirical (experimental) FA probabilities for linear 
array for high-pass filtered signals with cut off frequency of 1500 Hz when the 
coherent power is modeled by Weibull distribution. (a) Variations of PHAT-β 
parameters using shape parameter of 1.26 (b) variations in shape parameters using 
beta equal to 0.85. 
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Improved CFAR performance can be achieved in the linear array by removing the 

lower frequency content of the source signals using an increased cut-off frequency for 

the high-pass filter (Fig 4.16). The higher the cut-off frequency results in a higher inter-

path distance variance relative to the source wavelength and consequently, the noise 

distribution will be more symmetric. By increasing the cut-off frequency, the 

improvement of CFAR performance via whitening becomes more observable. It should 

be noted that increasing the cut off frequency results in a loss of lower source 

frequencies, which skew the distribution. Figure 4.16.a shows the effect of whitening 

when 1500 Hz is used as the high-pass filter cut-off frequency. As Fig 4.16.b shows 

partial whitening performs better. The purpose of Fig 4.16.b is to demonstrate the 

effect of shape parameter on the CFAR performance for a fixed beta value equal to 0.85 

when using 1500 Hz as the cut-off frequency. 

Among all microphone distributions, the perimeter array has the highest inter-path 

distance variance relative to the source wavelength. Therefore, noise distribution has a 

mean value closer to 0 and is more symmetric (see equation 2.18). Consequently, the 

perimeter array should have the best performance relative to the two other geometries.  

Figure 4.17 illustrates the CFAR performance for the perimeter array using a cut-off 

frequency of 300 Hz when the coherent power is modeled by Weibull distribution. As Fig 

4.17.a shows, whitening improves the performance of CFAR threshold in the perimeter 

array (the shape parameter is set to 1.26). Also, it can be seen that partial whitening has 

better performance relative to non-whitening, or total whitening cases.  
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For a better detection rate, beta is set to 0.85 [20,21]. In fact, Weibull can be fitted to 

data reasonably by adjusting the shape parameter. And the experimental probability of 

false alarm is very accurate (Fig 4.17.b). 

 

 

In the planar array, whitening does not have an observable effect on the CFAR 

threshold performance. In fact, the shape parameter of Weibull distribution has the 

main influence on the performance in the planar geometry. Decreasing the shape 

parameter, or in other words increasing skewness, will cause the experimental FA 

probability to decrease relevant to using a higher shape parameter; especially, for the 

low FA probabilities. In consequence, the ratio of desired to experimental FA probability 

will increase. 

Figure 4.18 exhibits the CFAR performance for the planar distribution using a cut-off 

frequency of 300 Hz and exploiting Weibull distribution to model the coherent power. In 

Fig 4.18.a the shape parameter is set to 1.26. Since the probability of false alarm is 

 

 

(a) 

 

 

(b) 

Figure 4.17 Ratios of specified to empirical (experimental) FA probabilities for 
perimeter array for high-pass filtered signals with cut off frequency of 300 Hz when 
the coherent power is modeled by Weibull distribution. (a) Variations in PHAT-β 
parameters using shape parameter of 1.26 (b) variations in shape parameters using 
beta equal to 0.85. 
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overestimated at the low FA probabilities, the shape parameter should be decreased 

(Fig 4.18.b) 

 

There are two issues which need to be discussed in the situation where Weibull 

distribution is used. One issue is to examine the CFAR performance when the coherent 

power is squared and the squared coherent power is modeled by Weibull distribution. 

The other issue is to select an appropriate neighborhood size.  

If modeling the squared of the coherent power by Weibull distribution is desired, the 

scale parameter is estimated from only the negative pixels in the local neighborhood. 

 

 𝑆𝑆0
2 ~ 𝑊𝑊𝑒𝑒𝑖𝑖(𝜃𝜃,𝜑𝜑) (4.24)  

 

The negative pixels are first squared and then projected into equation (4.21) to 

estimate the scale parameter, 𝜃𝜃 for a known shape parameter, 𝜑𝜑. Experimental results 

show that by modeling the squared of the coherent power via Weibull distribution, the 

exact same CFAR performances are achieved as the CFAR performances when the 

 

 

(a) 

 

 

(b) 

Figure 4.18 Ratios of specified to empirical (experimental) FA probabilities for planar 
array for high-pass filtered signals with cut off frequency of 300 Hz when the coherent 
power is modeled by Weibull distribution. (a) Variations in PHAT-β parameters using 
shape parameter of 1.26 (b) variations in PHAT-β parameters, using shape parameter 
of 1.12.  
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coherent power is modeled by Weibull distribution, with the difference that the shape 

parameter 𝜑𝜑 becomes half of the shape parameter b. 

 𝜑𝜑 =  
𝑏𝑏
2

 (4.25)  

 

Similar to the Chi-square approach, there is a similar discussion about the local 

neighborhood size for Weibull distribution. The CFAR performances shown above were 

a result of selecting 15x15 pixels for the local neighborhood size.  

The scale parameter of the Weibull distribution is computed from the negative pixel 

values in the local neighborhood. The size of the local neighborhood should be selected 

such that the data in the local neighborhood is stationery. On the other hand, reducing 

the size of the local neighborhood causes inaccuracy in the estimation of the scale 

parameter due to lack of enough samples from which the scale parameter is estimated. 

As a result, the CFAR performance will be degraded by reducing the size of the local 

neighborhood. Reducing the size of the local neighborhood will cause a reduction in the 

experimental threshold. In consequence, the experimental FA probability will be higher 

than the desired one. Therefore, the shape parameter needs to be reduced in order to 

make the ratio of desired to experimental probability of FA closer to one. Figure 4.19 

shows the performance of CFAR processor for different neighborhood sizes for the three 

microphone distributions. The partial whitening value is set to 0.85. The shape 

parameter of Weibull distribution is selected such that the best performance can be 

achieved using 15x15 as the size of the local neighborhoods. 
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Fig 4.20 illustrates the performance of the CFAR processor, using a local neighborhood 

size of 7x7 for three microphone geometries. As can be seen from Fig 4.20, the linear 

array is most sensitive whereas the planar array is less sensitive relative to the size of 

the local neighborhood. In the linear geometry, reducing the size of the local 

neighborhood to 7x7 degrades severely the performance of the CFAR processor. Even 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

Figure 4.19 CFAR Performance for 3 different neighborhood sizes using Weibull 
distribution, using partial whitening value of 0.85 for (a) linear array with 1500 Hz cut 
of frequency and using shape parameter of 1.26 (b) perimeter array with 300 Hz cut 
of frequency and using shape parameter of 1.26 (c) planar array with 300 Hz cut-off 
frequency and using shape parameter of 1.12.  
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using a high value cut-off frequency such as 1500 Hz cannot cause the ratio of desired to 

experimental FA probability to be within at least one order of magnitude. Although 

reducing size of the local neighborhood to 7x7 degrades the CFAR performance in the 

perimeter and planar arrays, the performances of the CFAR processor in the perimeter 

and planar geometries are still reasonable and the ratios of desired to experimental FA 

probability are still within one order of magnitude by exploiting a lower shape 

parameter value. 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

 

Figure 4.20 CFAR Performance using Weibull distribution for neighborhood size of 
7x7, using partial whitening value of 0.85 for 3 different shape parameters. (a) linear 
array with 1500 Hz cut-off frequency (b) perimeter array with 300 Hz cut-off 
frequency (c) planar array with 300 Hz cut-off frequency. 
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4.4 Low frequency limit 

 

According to the equation (2.18), it was demonstrated that in order to provide a 

symmetric condition for the noise-only distribution, it is required to increase sufficiently 

the standard deviation of the inter-path distances relative to the source wavelength. 

Earlier in this chapter it was shown that the minimum inter-path distances standard 

deviation is equal to 0.21, 0.38 and 0.67 for the linear, perimeter and planar arrays 

respectively. Applying a high-pass filter to the microphone signals is an effective 

approach to eliminate the low frequency components which the specific microphone 

geometry cannot decorrelate. The above experimental results show that the high-pass 

filter cut-off frequency for the linear, perimeter and planar arrays should be equal to 

1500 Hz, 300 Hz and 300 Hz respectively to achieve a good CFAR performance. Based on 

equation (2.18) and the experimental CFAR performances, the third null of the sinc 

function in equation (2.18) can be used to determine the low frequency limit for all 

microphone geometries, if only the mic-distribution factor is considered: 

 

 𝜋𝜋𝐿𝐿 =  
3𝑐𝑐

𝜎𝜎∆√12
 (4.26)  

 

where 𝜎𝜎∆ is the smallest standard deviation of inter-path distance over the FOV and c is 

the speed of sound. 
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4.5 Adaptive high-pass filters 

 

In our conventional CFAR processor, based on the minimum inter-path distance 

standard deviation, the microphone signals are first high-pass filtered using equation 

(4.26). The high-passed filtered signals are then whitened. After whitening signals, the 

whitened signals are time aligned. The time alignment of signals is based on the 

propagation delays which depend on the inter-path distance of each point in the FOV to 

microphone pairs. Instead of applying a fixed high-pass filter to the microphone signals 

based on the minimum inter-path distance standard deviation, a more sophisticated 

approach is to first whiten the microphone signals and then time align them. Right after 

time aligning the signals and before creating the coherent powers, adaptive high-pass 

filters are applied to the time aligned signals based on the inter-path distance of each 

point in the FOV to the microphone pairs. In fact, for each point in the FOV an adaptive 

high-pass filter is designed based on the inter-path distance of that point to the 

microphone pairs. 

In the situation where for each point in the FOV an adaptive high-pass filter is 

exploited, the equation (4.26) is modified in order to demonstrate that the cut-off 

frequencies of adaptive high-pass filters are a function of the position of the focal point. 

 

 𝜋𝜋𝐿𝐿(𝑒𝑒,𝑦𝑦) =  
3𝑐𝑐

√12𝜎𝜎∆(𝑒𝑒,𝑦𝑦)
 (4.27)  

 

where 𝜎𝜎∆(𝑒𝑒,𝑦𝑦) denotes the standard deviation of inter-path distances of the point 

inside the FOV plane, located at position (x,y) to the microphone pairs. 

Fig 4.21 shows the CFAR performance using adaptive high-pass filters with cut-off 

frequencies computed by equation (4.27) for the linear geometry in the situation where 

the mean-cx2 approach and Weibull distribution are exploited to model the coherent 

power. The PHAT-β parameter is set to 0.85. 
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As can be seen by Fig 4.21, a reasonable CFAR performance cannot be achieved for 

the linear array using either the mean-cx2 approach or Weibull distribution if an 

adaptive high-pass filter is applied to each point of FOV. 

 

On the other hand, a reasonable CFAR performance can be achieved in the perimeter 

and planar geometries using adaptive high-pass filters. In the case of using the mean-cx2 

approach, the CFAR performance is degraded in both the perimeter and planar arrays 

using adaptive high-pass filters relative to using only one high-pass filter for all FOV 

points. Furthermore, if Weibull distribution is used to model the coherent power, the 

shape parameter needs to be decreased to achieve a good CFAR performance for both 

the perimeter and planar geometries in the situation where adaptive high-pass filters 

are exploited relative to the situation where microphone signals were high-passed 

filtered by the same filter for all FOV points. 

Fig 4.22 demonstrates the CFAR performance for the perimeter and planar 

geometries using adaptive high-pass filters in the cases that the mean-cx2 approach and 

Weibull distribution are exploited to model the coherent power. The PHAT-β parameter 

is set to 0.85.  

 

 

(a) 

 

 

(b) 

Figure 4.21 CFAR performances using adaptive high-pass filters for each FOV point for 
linear array with beta value equal to 0.85 (a) using mean-cx2 method and variations in 
degree of freedom (b) using Weibull distribution and variations in shape parameter. 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 4.22 CFAR performance using adaptive high-pass filters for each FOV point for 
beta value equal to 0.85. (a) and (b) for perimeter array. (c) and (d) for planar array. 
(a) and (c) using mean-cx2 method and variations in degree of freedom (b) and 
(d)using Weibull distribution and variations in shape parameter. 
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4.6 Combining mic-distribution and noise-path factors 

 

In chapter 2, based on equation (2.10), it was declared that mic-distribution and 

noise-path factors are two sources of incoherency or decorrelation. The mic-distribution 

factor depends on the microphone geometry and since it scales all noise components, it 

provides a convenient point to design the high-pass filters. Consequently, based on only 

the mic-distribution factor, high-pass filters were designed, including a simple one high-

pass filter for all FOV points as well as adaptive high-pass filters for each FOV point, and 

the resultant CFAR performances were investigated in the previous sections. 

In this section, in addition to the mic-distribution factor, noise-path factor will be 

exploited to determine the low frequency limit. The noise-path factor depends on the 

inter-path distances between the position of noise sources and microphone pairs. 

Therefore, the positions of noise sources need to be located. As it was mentioned 

earlier, there were two noise sources outside the FOV plane. One noise source is located 

in the left side (endfire) of the linear array (left relative to a person facing the linear 

array from the front), and the other is located directly in front of the linear array (broad 

side). 

The perimeter array is exploited to locate noise source positions. The position of a 

noise source is located by two approaches.  First of all, the steered response coherent 

power images are created for the pixels of the FOV plane which most likely contains the 

noise source position. A local neighborhood may contain only positive SRCP value or 

may consist of both positive and negative values. If a local neighborhood contains both 

positive and negative coherent power values, then the position of the test pixel is 

recorded in the situation where it is the local maximum value and where it exceeds the 

threshold computed by the inverse value of the Weibull distribution cdf. In addition, the 

positions of the test pixels which have a maximum value in the neighborhoods that 

contain all positive coherent power values are recorded. In fact, the location of the 

noise source is among these recorded positions. These recorded positions have the 

potential to represent the position of a noise source. In the first approach, the noise 
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source position is computed by finding the mean value of the recorded positions during 

all times and frames. In the second approach, the related position to the maximum 

value of the coherent power values corresponding to the recorded positions is reported 

as the position of the noise source. 

The position of the broad side noise source is [-2.94, 1.3, 1.07]’ meters using the first 

approach and by using  the second approach, [-2.98, 1.34, 1.07]’ meters is the broad 

side noise source position. Also, the position of the endfire noise source is [0.54 -2.72 

1.45]' meters using the first approach to determine the position of the noise source (the 

average approach) and if the second approach (maximum approach) is exploited, the 

position of the endfire noise source will be [0.46 -2.64 1.45]' meters. Fig 4.23 shows the 

SRCP images at the time and frame number corresponding to the above approaches to 

locate the position of noise sources. 

After determining the noise source positions, the inter-path distances between noise 

source position and microphone pairs are computed. The standard deviation of the 

noise source inter-path distances is being used in order to determine the low frequency 

limit resulting from the noise-path factor. Table 4.1 lists the low frequency limit 

resulting from the broad side and endfire noise sources for the three microphone 

geometries in the situation where the nth null of the sinc function of equation (2.18) is 

considered as the low frequency limit due to the noise-path factor for the two 

approaches to locate the position of noise sources. The maximum of low frequency limit 

resulting from the two approaches as well as the two noise sources, broad side and 

endfire, should be selected as the low frequency limit due to the noise-path factor. 

Clearly, the standard deviation of inter-path distances between the broad side noise 

source and microphone pairs is much smaller than inter-path distance standard 

deviation between the endfire noise source and microphone pairs for the linear 

geometry. Therefore, the low frequency limit resulting from the broad side noise source 

is greater than the low frequency limit resulting from the endfire noise source in the 

linear geometry. In consequence, the low frequency limit resulting from the broad side 

noise source is considered as the noise-path factor for the linear array.  
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On the other hand, for the perimeter and planar geometries the low frequency limit 

resulting from the broad side and endfire noise sources are close together. Therefore, it 

is required to compare the low frequency limits resulting from the broad side and 

endfire noise sources and then select the largest one as the noise-path factor.  

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 4.23 SRCP images. (a) and (c) locating noise source by finding mean value of 
position of all potential noise source positions. (b) and (d)locating noise source by 
finding the position which have maximum value of SRCP among all potential pixels. (a) 
and (b) for broad side noise. (c) and (d) for endfire noise. 
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Table 4.1: Low frequency limit resulted by noise-path factor 

 noise source 
position 

    
Frequency (Hz) 

     Geometry   nth null Avg. approach   Max approach   

    
1 241 

 
236 

 
  

Linear 
 

2 481 
 

473 
 

  
    3 722   709   

    
1 52 

 
51 

 broad side 
 

Perimeter 
 

2 102 
 

102 
 

  
    3 154   153   

    
1 69 

 
68 

 
  

Planar 
 

2 136 
 

136 
         3 204   204   

    
1 73 

 
74 

 
  

Linear 
 

2 146 
 

149 
 

  
    3 219   223   

    
1 53 

 
53 

 endfire  
 Perimeter 

 
2 106 

 
107 

 

  
    3 159   160   

    
1 69 

 
69 

 
  

Planar 
 

2 138 
 

139 
         3 206   208   

 

Both mic-distribution and noise-path factors can be analyzed to determine the best 

cut-off frequencies for the adaptive high-pass filters. For each point in the FOV, an 

adaptive high-pass filter is applied with the cut-off frequency equal to the maximum of 

lower frequency limits resulting from the mic-distribution and noise-path factors. 

The goal is to achieve a good CFAR performance with the lowest possible frequency 

limit. Therefore, in this section, different combinations of the nth nulls of the sinc 

functions related to the mic-distribution and noise-path factors are examined to achieve 

reasonable CFAR threshold performances with the lowest possible frequency limit and 

the effect of different null combinations are investigated. 

In the previous sections, it was illustrated that applying adaptive high-pass filters to 

each FOV point resulted in a poor CFAR performance for the linear array using either the 
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mean-cx2 or Weibull distribution approaches in the situation where only the mic-

distribution factor was considered and the 3rd nulls of the sinc function related to this 

factor was selected as the high-pass filter cut-off frequencies. Therefore, the 

combination of the 3rd nulls for the mic-distribution factor and zero as the low 

frequency limit resulting from the noise-path factor will lead to a poor CFAR 

performance for the linear array. On the other hand, it was also shown that applying a 

fixed high-pass filter with a cut-off frequency of 800 Hz (approximately equal to the 3rd 

null of the sinc function related to the noise-path factor) for all FOV points did not result 

in a good CFAR performance for the linear array; especially if Weibull distribution was 

used to model the coherent power. Therefore, the combination of zero as the low 

frequency limit resulting from the mic-distribution factor and the 3rd null for the noise-

path factor results in a poor CFAR performance for the linear geometry. 

Experimental results show that for the partial whitening case, a reasonable CFAR 

performance is achieved for the linear array if the 3rd nulls of the related sinc functions 

are selected as low frequency limit resulting from the mic-distribution and noise-path 

factors. In this situation, the signals are high-pass filtered with a cut-off frequency of at 

 

 

(a) 

 

 

(b) 

Figure 4.24 CFAR performance using 3rd null for both mic-distribution and noise-path 
factors to design adaptive high-pass filters for each FOV point for linear array with 
beta value equal to 0.85 (a) using mean-cx2 method with degree of freedom equal  to 
2 (b) using Weibull distribution and variations in shape parameter. 
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least 722 Hz. Figure 4.24 illustrates the CFAR performance for the combination of the 3rd 

null for both mic-distribution and noise-path factors. 

It is worth noting that a better result is achieved by modeling the coherent power 

with Weibull distribution because of its powerful capability in adjusting the tail of the 

distribution by exploiting different shape parameters. Furthermore, by exploiting 

adaptive high-pass filters such that the cut-off frequencies are determined by finding 

the maximum value of the 3rd null of sinc functions related to the mic-distribution and 

noise-path factors, the required frequency limit to achieve a good CFAR performance is 

decreased from 1500 Hz to at least 722 Hz in comparison with the situation where only 

a fixed high-pass filter with a cut-off frequency of 1500 Hz is applied to all FOV points for 

the linear array. 

By comparing CFAR performances resulting from selecting different null 

combinations for the mic-distribution and noise-path factors frequency limits, it can be 

concluded that in the situation where partial whitening is exploited, the noise-path 

factor is dominant over the mic-distribution factor in terms of the impact amount of 

these factors on the performance of the CFAR processor, whereas the mic-distribution 

factor is dominant over the noise-path factor in the case that no whitening is applied. 

Figures 4.25 and 4.26 compare the CFAR performances for the linear array for different 

null combinations for the low frequency limits resulting from the mic-distribution and 

noise-path factors using the mean-cx2 and Weibull approaches to model the coherent 

power. 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 4.25 Mic-distribution factor is dominant for no whitening case. CFAR 
performance for linear array: (a) and (b) using mean-cx2 approach with degree of 
freedom equal to 2. (c) and (d) exploiting Weibull distribution with shape parameter of 
0.95. (a) and (c) applying partial whiting with beta value equal to 0.85. (b) and (d) no 
whitening situation. 
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For the perimeter array which has the largest minimum standard deviation of inter-

path distances between the focal points and microphone pairs, the smallest possible 

combinations is selected for the low frequency limits resulting from the mic-distribution 

and noise-path factors. Therefore, for both mic-distribution and noise-path factors, the 

1st nulls of their related sinc function are selected to design the adaptive high-pass filters 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 4.26 Noise-path factor is dominant for partial whitening case.  CFAR 
performance for linear array: (a) and (b) using mean-cx2 approach with degree of 
freedom equal to 2. (c) and (d) exploiting Weibull distribution with shape parameter of 
0.95. (a) and (c) applying partial whiting with beta value equal to 0.85. (b) and (d) no 
whitening situation. 
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cut-off frequencies. From Table 4.1, 53 Hz is the low frequency limit resulting from the 

noise-path factor for the perimeter geometry if the 1st null of the related sinc function is 

considered to determine the low frequency limit by the noise-path factor. 

 Experimental results show that for the partial whitening situation, using either the 

mean-cx2 approach or Weibull distribution to model the coherent power results in a 

good CFAR performance for the perimeter array in the case that even very low 

frequencies, such as the maximum of the 1st null of the sinc function related to the mic-

distribution and 53 Hz, are applied to design the adaptive high-pass filter cut-off 

frequencies to each FOV points. Consequently, for the partial whitening situation, 

adaptive high-pass filters for the perimeter array results in a good CFAR performance if 

the signals for each FOV point are filtered with at least 53 Hz, whereas by applying a 

fixed high-pass filter for all FOV points the cut-off frequency was required to be set to 

300 Hz to achieve a good CFAR performance. Fig 4.27 illustrates the CFAR performance 

for the perimeter array in the situation where the 1st nulls for both mic-distribution and 

noise-path factors are selected to design the adaptive high-pass filters and partial 

whitening is exploited. 

  

 

(a) 

 

(b) 

Figure 4.27 CFAR performance using 1st null for both mic-distribution and noise-path 
factors to design adaptive high-pass filters for each FOV point for perimeter array with 
beta value equal to 0.85 (a) using mean-cx2 method with degree of freedom equal  to 
2 (b) using Weibull distribution and variations in shape parameter. 
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In the situation where no whitening is performed, likewise in the linear array which is 

required to apply a high value for the cut-off frequency to achieve a reasonable CFAR 

performance (even the combination of the 6th null for the mic-distribution factor and 

the 3rd null for the noise-path factor did not result in a reasonable CFAR performance), a 

reasonable CFAR performance is achieved for the perimeter array for the no whitening 

case if only the 1st null of the sinc function related to the mic-distribution factor is 

combined with the 2nd null of the sinc function related to the noise-path factor (107 Hz) 

and exploiting Weibull distribution to model the coherent power. Although the CFAR 

performance is within 1 order of magnitude using the mean-cx2 method with the 

degree of freedom equal to 1, the results are not as good as the performances achieved 

by Weibull distribution. Fig 4.28 shows the results of combining the 1st and the 2nd nulls 

of the related sinc functions for the mic-distribution and noise-path factors low 

frequency limits respectively for the perimeter geometry in the situation where no 

whitening is applied. 

 

   

 

(a) 

 

(b) 

Figure 4.28 CFAR performance using the 1st null for mic-distribution factor and the 2nd 

null for noise-path factor to design adaptive high-pass filters for each FOV point for 
perimeter array for no-whitening case (a) using mean-cx2 method  variations in  
degree of freedom. (b) using Weibull distribution and variations in shape parameter. 
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If better CFAR performances are required, a higher combination for the null of the 

sinc functions related to the mic-distribution and noise-path factors can be selected to 

design the cut-off frequencies of adaptive high pass filters, e.g. the 3rd null of the sinc 

functions for both mic-distribution and noise-path factors. It should be noted that for 

the perimeter geometry, the minimum and maximum of the standard deviation of inter-

path distance of FOV points to microphone pairs are 0.38 and 1.88 respectively. 

Therefore, if the 3rd null of the sinc function is chosen for the mic-distribution factor, 

then the low frequency limit resulting from the mic-distribution factor is between 160 

Hz and 789 Hz. On the other hand, if the 3rd null of the sinc function is chosen for the 

noise-path factor, the low frequency limit resulting from the noise-path factor is 160 Hz 

(see Table 4.1). Consequently, the combination of the 3rd null for both mic-distribution 

and noise-path factors is equivalent to ignore the noise-path factor and apply adaptive 

high-pass filters to each point of the FOV with cut-off frequencies corresponding to only 

the mic-distribution factor. Fig 4.29 shows the CFAR performance when for both low 

frequency limits resulting from the mic-distribution and noise-path factors, the 3rd null 

of the related sinc functions are selected for the perimeter array. 

Unlike the linear array, it cannot be concluded whether the mic-distribution is 

dominant over noise-path factor or vice versa for the perimeter and planar geometries 

under the condition that either partial whitening or no whitening is exploited. 

The same analysis is performed for the planar geometry. In order to determine the 

smallest possible null combination of the sinc functions related to the mic-distribution 

and noise-path factors to achieve a reasonable CFAR performance, the 1st null of related 

sinc functions are selected for both mic-distribution and noise path factors as the low 

frequency limits caused by these factors. The adaptive high-pass filter cut-off 

frequencies are the maximum of the low frequency limits. If the 1st null of the sinc 

function related to the noise-path factor is considered as the low frequency limit 

resulting from the noise-path factor, then from Table 4.1, 69 Hz is the low frequency 

limit resulting from the noise-path factor. 



93 
 

Experimental results show that in the case where the 1st null of related sinc functions 

are considered as the low frequency limits resulting from the mic-distribution and noise-

path factors, a reasonable CFAR performance for the planar array can be achieved by 

applying the adaptive high-pass filters to each FOV point, only if whitening is exploited.  

 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 4.29 CFAR performance for perimeter array when the 3rd null of the related 
sinc functions are selected for both low frequency limits resulted by mic-distribution 
and noise-path factors: (a) and (b) using mean-cx2 approach, variation in degree of 
freedom. (c) and (d) exploiting Weibull distribution, variation in shape parameter. (a) 
and (c) applying partial whiting with beta value equal to 0.85. (b) and (d) no whitening 
situation. 
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For the no whitening case, similar to the perimeter array, for the planar geometry, 

applying adaptive high-pass filters to each FOV point with cut-off frequencies of the 

maximum of the 1st nulls of the sinc functions related to the mic-distribution and noise-

path factors could not compensate for the degradation in the CFAR performance caused 

by the low frequency components and as a result, the ratio of desired to experimental 

false alarm probability cannot be limited within 1 order of magnitude. Therefore, larger 

cut off frequencies should be selected for the no whitening situation. Fig 4.30 

represents the CFAR performance for the planar geometry when considering the 1st 

nulls of related sinc functions as the low frequency limits for both mic-distribution and 

noise-path factors using the mean-cx2 approach and Weibull distribution to model the 

coherent power. The PHAT-β parameter is set to 0.85. 

 

 

In the next step, the low frequency limit resulting from the noise-path factor is 

increased to the 2nd null of the related sinc function which results in 139 Hz (see Table 

4.1) for the noise-path factor low frequency limit, while the low frequency limit resulting 

 

 

(a) 

 

 

(b) 

Figure 4.30 CFAR performance by using the 1st null for both mic-distribution and 
noise-path factors to design adaptive high-pass filters for each FOV point for planar 
array with beta value equal to 0.85 (a) using mean-cx2 method using degree of 
freedom of 2. (b) using Weibull distribution and variations in shape parameter. 
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from the mic-distribution factor is kept unchanged (the 1st null of the related sinc 

function). Since a reasonable CFAR performance is already achieved for the partial 

whitening case, the main goal of this experience is to focus on the CFAR performance 

when no whitening is performed on the received signals by the microphones. The CFAR 

performances of this null combination (the 1st and the 2nd nulls for the mic-distribution 

and noise-path factors respectively) to design adaptive high-pass filters for the no 

whitening situation are shown in Fig 4.31. 

 

Increasing high-pass filters cut-off frequency resulted in not only better CFAR 

performance but also less skewness in the data. As can be seen from Fig 4.31, if the 

mean-cx2 method is applied, a reasonable CFAR performance cannot be achieved for 

the planar array in the situation where for each FOV point, the maximum of the 1st null 

of the sinc function related to the mic-distribution factor and the 2nd null of the sinc 

function related to the noise-path factor (139 Hz) is selected as the cut-off frequency of 

the adaptive high-pass filter. Although for this null combination, modeling the coherent 

power by Weibull distribution and adjusting the shape parameter between 0.84 and 

 

 

(a) 

 

 

(b) 

Figure 4.31 CFAR performance using the 1st null for mic-distribution factor and the 2nd 

null for noise-path factor (139 Hz) to design adaptive high-pass filters for each FOV 
point for planar array for no-whitening case (a) using mean-cx2 method variations in 
degree of freedom. (b) using Weibull distribution and variations in shape parameter. 
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0.93 results in a reasonable CFAR performance (within 1 order of magnitude) for the no 

whitening case, the results of this null combination are not sufficiently satisfying for the 

no whitening situation. Hence, a higher null combination is required to achieve a good 

CFAR performance for the no whitening case. 

In order to achieve a really good CFAR performance for the planar geometry, 

particularly for the no whitening case as for the partial whitening even a lower null 

combination results in a good CFAR performance, the 2nd null of the related sinc 

functions for both mic-distribution and noise-path factors are selected to design the 

adaptive high-pass filters cut-off frequencies. It should be noted that the minimum and 

maximum of standard deviation of inter-path distances of FOV points to microphone 

pairs are respectively 0.38 and 1.88 for the planar geometry. Therefore, if the 2nd null of 

the related sinc function is desired as the low frequency limit resulting from the mic-

distribution factor, then the low frequency limit resulting from the mic-distribution 

factor is between 135 Hz and 298 Hz. On the other hand, 139 Hz is the low frequency 

limit resulting from the noise-path factor if the 2nd null of the related sinc function is 

considered as the low frequency limit resulting from the noise-path factor. In 

consequence, the CFAR performance when the 2nd null of the related sinc functions for 

both mic-distribution and noise-path factors are selected is almost identical to the CFAR 

performance when the noise-path factor is ignored and only the 2nd null of the sinc 

function related to the mic-distribution is considered in order to design the adaptive 

high-pass filters cut-off frequencies. Fig 4.32 illustrates the CFAR performance when the 

2nd null of the related sinc functions for both mic-distribution and noise-path factors are 

selected to design the adaptive high-pass filters for the partial and no whitening 

situations when the mean-cx2 approach and Weibull distribution are used to model the 

coherent power. 

It is interesting to note that for the planar array a better CFAR performance is 

achieved for the no whitening case when the mean-cx2 method is exploited relevant to 

the CFAR performance for the partial whitening if the 2nd null of the related sinc 

functions for both mic-distribution and noise-path factors are selected to design the 
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adaptive high-pass filters. Furthermore, for the planar geometry, if a sufficient high 

value is chosen for the null combination, the CFAR performances as well as the shape 

parameter in the no whitening case and partial whitening case are similar. In other 

words, if a high null combination is selected to design the adaptive high-pass filter cut-

off frequencies, whitening does not have a significant effect on the CFAR performance 

for the planar array. Therefore, if no whitening is desired, one can use the planar 

geometry to achieve a reasonable CFAR performance. 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 4.32 CFAR performance for planar array when the 2nd null of the related sinc 
functions are selected for both low frequency limits resulted by mic-distribution and 
noise-path factors: (a) and (b) using mean-cx2 approach, variation in degree of 
freedom. (c) and (d) using Weibull distribution, variation in shape parameter. (a) and 
(c) applying partial whiting with beta value equal to 0.85. (b) and (d) no whitening 
situation. 
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Chapter 5 

Conclusion 
 

 

5.1 Conclusion 

 

This thesis introduced a new CFAR processor which uses only negative coherent 

power values to estimate the statistics of positive coherent power pixels. In this 

approach, it is critical that the noise-only distribution is symmetrical in order to achieve 

a good CFAR performance. It was demonstrated that it is required to remove the low 

frequency components of the source relative to inter-path distances. Therefore, the 

perimeter array, which had the largest differential path lengths, outperformed the other 

geometries. To remove the low frequency components two different high-pass filtering 

approaches were applied. In the first approach, a fixed high-pass filter was applied to 

the microphone signals for all FOV points. In this method, only the mic-distribution 

factor was considered and the smallest standard deviation of inter-path distances 

between focal points and microphone pairs was exploited to determine the high-pass 

filter cut-off frequency. In the second approach, adaptive high-pass filters were applied 

to each FOV point based on the standard deviation of inter-path distances between that 

point and microphone pairs. Using the second approach to remove the low frequency 

components, experimental results showed that it is required to combine the mic-

distribution and noise-path factors to achieve a good CFAR performance for all 

microphone geometries. Therefore, the position of noise sources should be located to 

design the cut-off frequencies of the adaptive high-pass filters. Experimental results 

showed that the low frequency limit to achieve a reasonable CFAR performance is 

reduced by combining the mic-distribution and noise-path factors. 
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To model the coherent power, the Chi-square and Weibull distributions were tested. 

Experimental results showed that using the mean-cx2 approach as well as the Weibull 

distribution results in good CFAR performances. If only a fixed high-pass filter for all FOV 

points is used to remove the low frequency components there were no significant 

differences between the mean-cx2 and Weibull distribution CFAR results despite the 

fact that the computational cost in the mean-cx2 approach is less than Weibull 

distribution. On the other hand, Weibull distribution outperforms because of its 

powerful ability in adjusting the tail of the distribution if adaptive high-pass filters for 

each point of FOV were applied. 
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