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ABSTRACT OF DISSERTATION

QUALITY ANALYSIS IN FLEXIBLE MANUFACTURING SYSTEMS WITH
BATCH PRODUCTIONS

To improve product quality and reduce cost, batch production is often implemented
in many flexible manufacturing systems. However, the current literature does not
provide any method to analyze the quality performance in a flexible manufacturing
system with batch production.

In this research, we present an analytical method with closed-form formula to
evaluate the quality performance in such systems. Based on the model, we discover
and investigate monotonic and non-monotonic properties in quality to provide prac-
tical guidance for operation management. To improve product quality, we introduce
the notions of quality improvability with respect to product sequencing. In addition,
we develop the indicators for quality improvability based on the data available on the
factory floor rather than complicated calculations. We define the bottleneck sequence
and bottleneck transition as the ones that impede quality in the strongest manner,
investigate the sensitivity of quality performance with respect to sequences and tran-
sitions, and propose quality bottleneck sequence and transition indicators based on
the measured data. Finally, we provide a case study at an automotive paint shop to
show how this method is applied to improve paint quality.

Moreover, we explore a potential application to reduce energy consumption and
atmospheric emissions at automotive paint shops. By selecting appropriate batch
and sequence policies, the paint quality can be improved and repaints can be reduced
so that less material and energy will be consumed, and less atmospheric emissions
will be generated. It is shown that such scheduling and control method can lead
to significant energy savings and emission reduction with no extra investment nor
changes to existing painting processes.

The successful development of such method would open up a new area in man-
ufacturing systems research and contribute to establish a solid foundation for an
integrated study on productivity, quality and flexibility. In addition, it will provide
production engineers and operation managers a quantitative tool for continuous im-
provement on product quality in flexible manufacturing environment.
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CHAPTER 1

INTRODUCTION

Considering the growing importance of flexibility in manufacturing, the number of

flexible manufacturing systems is increasing. Many of them use batch production to

improve productivity and product quality. This chapter illustrates the motivation

of this research by overviewing the current work on quality, flexibility and batch

production, and outlines the analytical framework to investigate product quality in

flexible manufacturing systems with batch productions.

1.1 Motivation

Many manufacturing enterprises have confronted increasing competition on global

market over recent years. In order to be more competitive, many companies have

increased manufacturing flexibility to improve production efficiency, reduce cost, and

respond quickly to changing customer preferences. For example, multiple models

of vehicles with more options can be built on the same production line in many

automotive assembly plants.

Flexible manufacturing systems have been studied intensively during the last

twenty years (see, monographs [1]-[4], reviews [5]-[13]), and continue to attract re-

search efforts in modern manufacturing. The issues of investment cost, flexibility

measurement, inventory, scheduling, and the tradeoffs between productivity and flex-

ibility, etc., are addressed in most of the flexibility studies. However, the question
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of product quality is usually neglected. It is typically assumed that quality related

issues have minimal impact ([14]). On the other hand, extensive research has been

carried out in quality management as well, but independently. The majority of the

publications on quality research seek to maintain and improve product quality while

ignoring the productivity or flexibility concerns ([15]). Statistical process control, to-

tal quality management, quality function deployment, etc., are the main tools in such

studies (e.g., see recent reviews [16]-[20]). Little research attention has been paid to

investigate the coupling between flexible system design and product quality.

Empirical evidences and analytical studies have shown that production system

design and product quality are tightly coupled ([15], [21]-[22]); in particular, flexi-

bility has a significant impact on product quality. Tradeoffs not only exist between

flexibility and productivity, but also between flexibility and quality. For example, at

an automotive paint shop which is capable of painting different colors, the product

(paint) quality is strongly correlated to the number of available paint colors ([23]).

Paint quality may temporarily decline after the color change due to incomplete clean-

ing during purging of the previous colors ([24]). The next vehicles’s quality is affected

by the previous vehicle’s color, in addition to other factors (such as dirty air, vehicle

cleaning, equipment maintenance, paint mixing, etc.).

Similar examples can be found in flexible machining lines, welding and assembly

systems as well. In flexible machining systems, a flexible fixture restricts and is the

core enabler of flexibility of the whole system ([14]). With the flexible fixture, system

flexibility can be achieved to support multiple distinct parts being manufactured

(assembled or machined) on the same line with little or no loss of production. In
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the automotive industry, a flexible fixture might be clamps/locators held by robots

or other “smart” mobile apparatus. Whenever there is a product change, the fixture

needs to adapt itself to the desired corresponding location. The accuracy of the

locator variance from its “ideal” location, in many cases, dominates the quality of the

products. Reducing the number of adjustment of its location could help to improve

product quality ([21]). These examples suggest that flexibility and quality are tightly

coupled and that fewer product changes may lead to a better quality.

Therefore, in order to improve product quality as well as shorten changeover time

and reduce cost, many flexible manufacturing systems implement batch productions

to reduce product changes. In such systems, different types of products are grouped

into batches where all parts in each batch have the same type. The change of product

type only occurs after the last job in a batch is processed. For example, in automotive

paint shops, vehicles with the same color are often grouped into batches to reduce

color changes to improve paint quality. In stamping plants, batch processing is im-

plemented with repeated patterns to reduce changeover cost and associated quality

losses. In addition, in many welding operations, the welding quality is strongly cou-

pled with part positioning. Similar examples can be found in flexible machining lines

where the locating precision of the flexible fixture is a dominant factor in quality.

Again batch production is observed in such systems to reduce the quality defects

introduced by location errors. Moreover, in some engine assembly lines, different

types of engines are typically assembled in batch and changeovers occur on hourly

basis. These examples suggest that frequent product changes may impact quality

and introducing batch production to reduce losses due to quality degradation during

3



changeovers is of importance. Thus, there is a critical need to fully understand the

coupling between flexibility and quality in batch productions.

However, the issues of quality in a batch production environment have not been

studied. The current literature does not provide a quantitative method to investigate

how flexibility in terms of the sequence/batch policies impacts product quality. In

spite of substantial research devoted to product sequencing, most of them focus on

optimizing setup cost, minimizing makespan and color changes, etc., while the prob-

lem of quality is not explicitly discussed. For example, car sequencing and related

problems are discovered in some publications ([25]-[30]) to minimize color changes,

however, without discussing quality (although it may be implied that minimizing

color changes could lead to better paint quality).

To our best knowledge, no research has been discovered to directly study the qual-

ity and sequencing issues in flexible manufacturing systems with batch productions

in the current literature. As discussed above, different product sequencing and batch

policies may result in different quality. In the example of automotive paint shops, it

is observed that the darker color has more impact on paint quality than the lighter

one because a small amount of darker pigment can adversely affect the lighter color

during the cleanup and reconfiguration of the painting guns. To accommodate this,

darker vehicles are often sequenced after lighter ones in batch productions. Then,

how to determine an appropriate sequence or batch policy? What will be the opti-

mal sequence with respect to quality? Will the quality characteristics change under

different policies? Answering such questions can provide insight and guidance for

system design and operation to achieve better quality. Therefore, an in-depth study

4



to investigate the coupling between flexibility and quality in terms of sequence and

batch production policies is needed.

In addition, how to improve quality in flexible manufacturing systems with batch

productions has not been addressed. In practice, improving performance is usu-

ally accomplished by identifying the bottleneck and improving its operation. Bottle-

neck identification and mitigation are essential enablers for continuous improvement

in manufacturing operations. Most of the studies related to bottlenecks focus on

throughput bottlenecks. A system-theoretic method to identify bottleneck by mea-

suring and comparing blockages and starvations has been developed and successfully

applied on the factory floor (see monograph [31] and papers [32]-[38]). For the is-

sue of quality, it has been shown in some publications ([21]) that product quality is

correlated to both the sequencing policies and the transition probabilities that char-

acterize the changes among good and defective states (where good quality or defective

parts are produced during a cycle, respectively). Hence, high product quality can be

achieved by avoiding the sequences leading to the worst quality and improving the

transitions. Specifically, such improvement can be carried out through identification

and mitigation of sequence bottlenecks (BN-s) and transition bottlenecks (BN-t),

which are defined as the sequences and transitions that impede product quality in

the strongest manner, respectively. In other words, improvement on these sequences

or transitions will lead to the largest improvement in product quality compared with

improving other sequences or transitions.

Furthermore, improving product quality through optimal batch and sequence

scheduling is also beneficial to reduce energy consumption and atmospheric emis-

5



sions in manufacturing process. This will provide an alternative approach to achieve

energy efficient and environmental friendly (EEEF) manufacturing. It is reported

that the US transportation equipment manufacturing industry as a whole (includ-

ing manufacturing of automobiles and parts, aeroplanes, boats, ships, locomotives,

motorcycles, etc.) spent $3.6 billion on energy in 1999 ([39]). A huge amount of

energy is spent on vehicle assembly. For 37 vehicle assembly plants across the US, it

is estimated that energy expenditure in automobile assembly plants is at the level of

$700 million per year ([39]). Among which, approximately 60% of total energy in an

assembly plant is used by automotive painting, in particular, in painting booths and

ovens ([40]). Thus, automotive painting is not only an important element in vehicle

production, but also the largest energy consumption unit throughout the automotive

assembly plant. About two-thirds of the energy cost is on electricity, and one-third

is on fuel used to generate hot water and steam (for painting booths), as well as heat

in ovens. Thus, energy reduction in paint shops has significant importance, even a

small percentage. In addition, the painting process results in atmospheric emissions,

where some gases such as Carbon Dioxide (CO2), Methane (CH4), and Nitrous Oxide

(N2O) are released into atmosphere, the cleaning of sticky residues on the walls, win-

dows, robots, fixtures, etc., due to overs pray and purge, will result in evaporation

of volatile organic compound (VOC) emissions. Such emissions will contribute to

the green house effect and adverse impact to environment. Typically, the painting

process in automotive paint shops has two functions: protecting the vehicle’s body

from corrosion and improving the appearance. Vehicle’s paint quality is essential

for customers, which may directly influence their buying decisions. To achieve good

6



paint quality, repeated painting processes may be needed to ensure all defects are

corrected. In addition, in order to satisfy the customer preferences and changing

demands, a paint shop is typically capable of painting multiple colors, which implies

that color changes are often observed in painting process. During the color change,

old solvents will be purged out from the painting guns and new paints will be loaded

and sprayed. All these lead to additional consumptions of a large amount of energy

and painting materials. Beyond these, environmental concerns exist for sprayed and

purged paints as well as CO2 equivalent emissions. Therefore, improvement of paint

quality to reduce repaints and color changes using optimal sequence scheduling could

result in significant reduction in energy consumption and benefits for environment

protection.

In summary, the goal of this research is to develop an analytical method to evaluate

product quality in a flexible manufacturing system with batch productions, investigate

the impacts of sequencing and batch policies with respect to quality, identify the

sequence bottlenecks and transition bottlenecks for continuous improvement, and

apply the obtained results in an automotive paint shop.

1.2 Methodology

In a flexible manufacturing system, the quality performance can be characterized by

the probability of producing a good quality part each cycle in steady states. Each

product coming out of a flexible machine can be in good states or defective states. The

transitions between good states and defective states are determined by the operating

conditions both in current cycle and in previous cycle. In this study, we depict these

7



transitions using a discrete Markov chain and we focus on the impacts of the types

of products, sequence and batch policies, etc., on product quality.

The main contribution of this research is in the development of a Markov chain

model to evaluate the quality performance of a flexible manufacturing system with

batch productions (although paper [21] introduces a Markovian approach for analyz-

ing quality, batch production is not addressed). Closed formulas to describe the qual-

ity measurement are derived and structural properties (monotonic and non-monotonic

properties, asymptotic property, improvabilities, bottlenecks, etc.) to address differ-

ent batch and sequencing policies are investigated.

The remainder of this dissertation is structured as follows: Chapter 2 reviews

related literature on flexibility, quality and batch production. Chapter 3 presents

an analytical model to evaluate the quality performance of flexible manufacturing

systems with batch operations. By using a Markov chain model, a closed formula

to quantify the probability of producing a good part is derived. In addition, the

monotonic and non-monotonic properties of product quality with respect to quality

failure and repair probabilities and batch sizes are discovered. Chapter 4 investigates

the impact of product sequencing on quality. The optimal and bottleneck sequences

leading to best and worst quality, respectively, under both batch and strict sequencing

policies are obtained, the comparisons between different sequences under different

policies are carried out, and finally improvability of product sequencing is studied.

Considering that quality performance depends on not only product sequence but also

the transition probabilities, Chapter 5 defines the transition bottleneck as the one

having the largest impact on quality. Bottleneck indicators based on the collected
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data on the factory floor are developed to identify the bottleneck transitions. Chapter

6 develops an optimal batch and scheduling procedure of vehicles to achieve the goal

of energy and emission reduction. Chapter 7 applies this method at an automotive

paint shop to evaluate paint quality and investigate potential improvement strategies.

Chapter 8 formulates the conclusions. All proofs can be found in the Appendices.

9



CHAPTER 2

LITERATURE REVIEW

In this chapter, Section 2.1 reviews available literature on flexibility related to quality.

Section 2.2 introduces the articles on the relationship between quality and batch

production in terms of batch size and product sequencing. Section 2.3 introduces

studies on energy and emission reduction, and Section 2.4 is the summary.

2.1 Flexibility and Quality

During the last twenty years, flexibility has attracted significant amount of research

attention. Most of the studies address the tradeoffs between flexibility and productiv-

ity by assuming minimal impact on quality. Recently, it has been shown that product

quality and product system design are tightly coupled ([15]-[22]).

Paper [14] reviews literature on the measurements of flexibility and their impact on

the performance of flexible manufacturing systems. The authors conclude that these

studies usually assume that only parts of acceptable quality are produced in flexible

manufacturing systems and quality related issues have minimal impact. Instead of

investigating inherent relationship between flexibility and quality, the issue of quality

is generally discussed at the system and operation level.

Aimed at the widely assertion that flexible manufacturing system positively im-

pacts productivity and quality, paper [41] investigates the issues of flexibility, pro-

ductivity, and quality from an extensive search and analysis of empirical studies. To
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study possible impact of flexibility on quality, the authors introduce from paper [42]

the concept “cost of quality” which is generally easy to quantify and includes the

measures employed on the factory floor. Based on total ten projects in eighty four

reported quality improvement as claimed, the authors find that there is a relationship

between implemented flexibility and improved quality. It implies that tradeoffs exist

between flexibility and quality.

Paper [43] addresses the existing literature related to mass customization which is

able to provide customized products or services through flexible processes in high vol-

umes. In order to measure the performance of processes or products, many strategies

have been implemented such as statistical control charts ([44]) and poka-yoke devices

([45]). Since this flexible system is characterized by single product lots, those quality

control strategies based on periodical checking would not be easily adapted. Another

problem rising in flexible manufacturing is that a new set of quality characteristics

should be defined whenever a product is customized. Therefore, the authors claim

that quality control issues should be taken into account when considering product

customization and an in-depth study on how to assure quality in mass-customized

products is a future research direction.

Due to difficulty in measuring flexibility and quality in production systems, paper

[46] defines, quantifies and integrates three measurements of productivity, quality

and flexibility using economic impacts. In addition, paper [47] defines flexibility

as the function of fuzzy elements such as quality level, efficiency, versatility and

availability which implies that flexibility could be implemented at the highest quality,

shortest time, lowest cost, and right quantity of output. In particular, quality level is
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described linguistically as low, medium or high. Then the manufacturing flexibility is

aggregated by fuzzy elements with different important weight. However, this method

can not uncover the intrinsic relationship between flexibility and quality.

Paper [15] explores the intersection of two independent research areas: quality and

production system design. In contrast to the conventional wisdom that a product’s

quality is determined by its design much more than its production, the authors argue

that the designed system’s flexibility has a significant impact on quality by providing

evidence from automotive industry. The authors also suggest several research topics of

interest to industry including batch processing and motivate the unexplored research

on how flexibility impacts quality.

In manufacturing and other service industries, quality control is usually imple-

mented by incorporating management into inspection technologies. Total Quality

Management (TQM) is widely used to ensure products or services to meet customer

requirements (see reviews [48]-[51]). Its philosophy on improving quality is that high

product quality demands efforts through all levels of an enterprise, from top man-

agement to factory work forces. High product quality can be achieved by continuous

improvement of processes in manufacturing and services which is chased by the whole

organization. In particular, Quality Function Deployment (QFD) and Statistical Pro-

cess Control (SPC) are two popular techniques to achieve high product quality. QFD

is a methodology to product development and design by taking the customer require-

ments into account (see reviews [18],[52]). An improved version of QFD is proposed to

go in hand well with TQM in paper [53]. SPC is used to reduce process variability to

achieve high quality (see [54]-[57]) by assuming that quality is inversely proportional
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to process variability. In flexible manufacturing systems, how system flexibility (or

variability) impacts quality is still not well understood from the above methods.

Paper [21] studies the impacts of product changes on quality in flexible manufac-

turing systems using a Markov chain model with randomly mixed products flow. The

quantitative model enables us to investigate the correlation between quality and num-

ber of products and to predict the quality performance of a flexible manufacturing

system. Two sequence policies are compared in the paper and the result suggests that

reducing the number of product switch could lead to a better quality performance,

which implies that batch production is a possible approach to improve quality.

2.2 Batch Production and Quality

Although batch production has been widely used in manufacturing industry, batch-

ing in flexible manufacturing systems is typically studied in terms of batch size in

scheduling problems.

Paper [58] studies the planning problem of scheduling batches of parts having

sequence-dependent setup times in a multi-cell flexible flow shop. Mixed linear pro-

gramming method is used to minimize makespan given by the completion time of the

last batch on the last machine. Paper [59] uses heuristic algorithms to consider batch

scheduling problem by minimizing setup costs and the mean flow time. There is an

adjusted lookahead-parameter that enables human planners to effectively manage the

tradeoff between the two objectives. However, quality is not analyzed in either of

them.
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More publications studying product sequencing can be discovered in the literature,

however, quality is not explicitly addressed in these papers.

The car sequencing problem is a well-known scheduling problem which has ap-

plications in automotive assembly lines ([60]-[62]). The assembly line has different

stations which can process a number of cars with different options. Consequently, the

cars must be scheduled in a sequence such that the capacity of each station is never

exceeded. Papers [25]-[30] address car sequencing problem to minimize color changes,

although it may be implied that minimizing color change could lead to better paint

quality. Basically, three approaches are employed. The first method uses integer lin-

ear programming to model and solve the sequencing problem ([30]). The second one

approaches the question as a constraint satisfaction problem ([25],[26]). The third

approach proposes an adaptation of the Ant Colony Optimization for the sequencing

problem ([27],[28]). All the approaches are actually involved in optimization algo-

rithms. Typically, there are two deficiencies inside them. First, some optimization

methods are employed to search the solution. However, there is a risk that a feasi-

ble solution can not be found. Second, optimization methods can not provide any

implication of the sequencing problem. Neither can provide guidance to practical

applications.

Similarly, re-sequencing at a color batching process in an automotive paint shop

is analyzed in paper [63]. The re-sequencing problem with limited flexibility and

sequence-dependent changeover costs is studied in papers [64] and [65]. In these

studies, the goals are to reduce set-up or changeover costs rather than improve qual-

ity. In addition, paper [66] investigates the location of sequencing point for multiple
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products automobile assembly systems. It claims that locating the sequencing point

close to the final assembly provides more flexibility, to respond to defects or sequence

change. However, it does not consider the issue of coupling between sequencing and

quality.

As indicated above, the issue of quality improvement in a flexible manufacturing

systems with batch productions has not been addressed in the current literature. In

practice, improving performance is usually accomplished by identifying the bottle-

neck and improving its operation. Although most publications on bottleneck focus

on improving productivity of a production system, their methods can still provide

intellectual insight to quality bottleneck.

Paper [32] analyzes serial production lines consisting of machines and intermedi-

ate buffers where all machines follow the Bernoulli reliability machine model ([31]).

The authors define the bottleneck machine as the one whose sensitivity (i.e., partial

derivatives) of system’s performance with respect to the machine’s production rate in

isolation is the largest. However, this definition suffers from the sensitivities involved

which can not be either measured on-line or calculated off-line. Instead, a bottleneck

identification rule is extended from two-machine line to identify the location of the

bottleneck by analyzing frequencies of blockages and starvations which could be either

measured or calculated.

Considering production lines with exponential machines, paper [33] defines the

production rate bottleneck (PR-BN) as the machine which has the largest sensitivity

on the system’s throughput. Unfortunately, direct identification of PR-BNs using this

definition is impossible because the derivatives of the production rate involved can

15



not be measured or calculated on the factory floor. Therefore, bottleneck indicators

are developed to seek the PR-BNs based on either practical data available on the

factory floor or the data that can be calculated from the parameters of machines

and buffers. Similar applications can be found in papers [34] and [35]. Furthermore,

paper [36] investigates assembly systems with unreliable machines whose statistics

are non-exponential. The bottleneck machine is defined as the sensitivity of system’s

throughput with respect to the machine’s cycle time because of unknown production

rate. Paper [37] defines bottlenecks for production lines with rework. Indicators as

an indirect tool to identify bottlenecks are always used.

In addition to PR-BNs, paper [38] considers a pull serial production line and

defines the due-time performance bottleneck (DTP-BN) where the due-time perfor-

mance quantifies the level of customer demand satisfaction, i.e. the probability to ship

a customer the required number of parts during a fixed time interval. Again, the direct

definition of DTP-BN which is related to partial derivatives of due-time performance

with respect to machine efficiencies is not applicable in practice. Therefore, bottle-

neck indicators are provided for identification of DTP-BNs in pull serial production

lines by heuristically rather than analytically because of challenging mathematical

complexity on partial derivatives.

2.3 EEEF and Quality

Due to huge energy cost and VOC emissions, research attention has been paid to im-

prove energy efficiency and reduce emissions in automotive painting processes. Most

of the studies focus on renovation in painting processes. For example, paper [39]
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presents a summary of the vehicle assembly process and its energy use. Process-

specific energy efficiency measures for painting systems are provided. Opportunities

such as reducing air flow in painting booths, and heat recovery to reduce waste heat,

are proposed to minimize energy usage. Paper [67] outlines the typical processes for

vehicle painting, and identifies repetitive processes of painting and curing as the huge

energy consumers. Effort has been made to decrease the number of processes in paint-

ing booths to reduce energy consumption. Paper [68] describes a process based cost

model to estimate the economic costs in automotive painting. This model can be used

for both reduction of VOC emissions and study of energy efficiency. The users can

specify particular inputs and pre-assign factors in the model to evaluate the impact of

process changes and alternative technologies on painting cost. Paper [69] investigates

the major energy-consuming units in an assembly painting process. An equation is

proposed to model the energy usage of each unit. In addition to energy consumption,

the model can also evaluate associated environmental impacts and economic costs for

automotive painting operations. Paper [70] studies environmental impact of different

automotive paint materials, including solvent-based and power primers, water-based

basecoat, and solvent-based and powder clearcoats based on life cycle analysis (LCA).

Paper [71] proposes an energy, environmental and economic improvement assessment

for automotive paint process. Papers [72] and [73] report that reducing over spray

and smoothing cleaning process could lead to reduction of Carbon Dioxide emissions,

and provides suggestions of using new type of paints and better booth design and

booth management practice to achieve this goal.

In spite of such efforts, there is still a need to investigate how to achieve energy
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efficient painting through improved production operations. In other words, research

effort is valuable to study how productivity and quality improvement can lead to

reduction of energy consumption and atmospheric emissions. Since paint shop is

typically the bottleneck of vehicle assembly plant, and the paint envelop largely de-

termines the capacity of the whole assembly plant, and moreover, paint quality is one

of the most significant measure in vehicle quality matrix, substantial effort has been

devoted to improve productivity and quality in automotive paint shops. For example,

papers [74] and [75] have introduced analytical models to evaluate the throughput in

paint shops and procedures for continuous improvement. Case studies in paint shops

are introduced to demonstrate the applicability of these methods. Designing repair

and rework system to improve quality buy rate and its robustness in paint shops is

presented by papers [76] and [22]. It is shown that selecting appropriate repair ca-

pacity can lead to improvement in quality and reduction of repaints. In addition, a

case study to address the coupling between operation speed and quality in paint shop

is introduced by paper [77].

It is also discovered by paper [78] that there is significant correlation between

paint defects and emission levels. Superior environmental performance is associated

with better quality. The plants with higher emissions levels typically have poorer

associated quality. Similar observation is found by paper [79] that enhancing quality

and efficiency also impacts environmental performance levels positively. Quality and

environmental problems have many of the same causal factors.
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2.4 Summary

How to evaluate and improve quality in a flexible manufacturing system with batch

productions has not been discussed in the current literature. Due to significant impact

of flexibility on product quality, developing a method to predict or estimate quality

is necessary and important. Quality improvement can be achieved by identifying

bottleneck sequences and transitions (or product changes). Most publications on

bottleneck focus on system throughput. In these studies, direct definitions based on

partial derivatives are first provided and then bottleneck indicators are developed

and applied using the data available on the factory floor. Such indicators could lead

to identification of bottlenecks without complicated calculations. Similar to these

studies, quality bottleneck with respect to product sequencing and transitions could

also be defined and corresponding bottleneck indicators could be developed based on

collected data. The identified bottleneck sequence or transition can be avoided or

improved so that the product quality is improved.

In automotive paint shops, appropriate sequencing and batch policies can result in

substantial quality improvement. Such quality improvement can also lead to fewer re-

paints, shorter flow time, less material usage, and therefore, less energy consumption

and smaller impact to environment. Hence, developing optimal scheduling and con-

trol policies is necessary and important for energy efficient and environment friendly

manufacturing in automotive paint shops.

Therefore, in spite of the above efforts, the impact of flexibility in terms of se-

quencing and batch policies on quality in a flexible manufacturing system with batch
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production has not been addressed. Analytical methods to evaluate quality perfor-

mance in such systems, investigate the coupling between quality and flexibility, and

identify the quality bottlenecks are of importance. Understanding the correspond-

ing structural properties provides a foundation and guidance for managing quality

improvement procedures.
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CHAPTER 3

ANALYSIS OF QUALITY IN FLEXIBLE

SYSTEMS

In this chapter, an analytical model based on discrete Markov chain is presented.

The quality evaluation formula in a simple case of two product types with batch size

two is first derived and its monotonicity with respect to quality failure and repair

probabilities is verified. In general case of multiple products multiple batch sizes,

monotonic and non-monotonic properties on quality are analyzed, and asymptotic

and oscillating properties are investigated to provide the necessary conditions when

monotonicity still holds.

3.1 Modeling based on Markov Chain

Consider a flexible manufacturing system capable of producing different types of

products. The following assumptions address the flexible production system, product

types, sequence, and quality characteristics.

(1) The flexible system can process n different types of products, denoted as 1, 2,

. . ., n. Each product type i is processed in a batch with batch size ki, ki ≥ 1.

(2) For a system with n different part types, there are (n − 1)! permutations of

sequence, denoted as sl, l = 1, . . . , (n − 1)!. The products flow into the system

with sequence sl = {sl1, sl2, ⋅ ⋅ ⋅ , sln}, where slm denotes the m-th product type in

sequence sl, and m ∈ {1, 2, ⋅ ⋅ ⋅ , n}, slm ∈ {1, 2, ⋅ ⋅ ⋅ , n}.
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(3) For each sequence sl, the flexible system will work on product type slm for kslm

parts before switching to product type slm+1. It is assumed that product type sl1

is processed again after processing type sln.

(4) The state of the flexible system is in good state gsli,j, or defective state dsli,j,

i = 1, . . . , n, j = 1, . . . , ksli , if it is processing the j-th part in the batch of the

product type sli with good quality, or with defects, respectively. Thus, there are

2K, K =
∑n
i=1 ki, states in the system for a given sequence, defined by the quality

status, product type processed and its position within a batch.

(5) When the system is in good state gsli,j, s
l
i = 1, . . . , n, j = 1, . . . , ksli − 1, it has

probabilities �sli,sli to transit to defective state dsli,j+1, and 1− �sli,sli to good state

gsli,j+1. Analogously, when the system is in defective state dsli,j, s
l
i = 1, . . . , n,

j = 1, . . . , ksli − 1, it can transit to good state gsli,j+1 with probability �sli,sli , and

to defective state dsli,j+1 with 1− �sli,sli .

(6) When the system is processing the last part within a batch and in good state

gsli,ksl
i

, i = 1, . . . , n − 1, it has probabilities �sli+1,s
l
i

and 1 − �sli+1,s
l
i

to transit to

states dsli+1,1
and gsli+1,1

, respectively. Analogously, when the system is in defective

state dsli,ksl
i

, it has probabilities �sli+1,s
l
i

and 1− �sli+1,s
l
i

to transit to states gsli+1,1

and dsli+1,1
, respectively.

(7) When the system is in state gsln,ksln
, it has probabilities �sl1,sln and 1 − �sl1,sln to

transit to states dsl1,1 and gsl1,1, respectively. Analogously, when the system is

in state dsln,ksln
, it has probabilities �sl1,sln and 1 − �sl1,sln to transit to states gsl1,1
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and dsl1,1, respectively. Without loss of generality, we assume all 0 < �ij < 1,

0 < �ij < 1, ∀i, j.

Remark 3.1 Probabilities �sli,sli , i = 1, . . . , n, and �slj+1,s
l
j
, j = 1, . . . , n − 1

and �sl1,sln are referred to as the quality failure probabilities. Similarly, �sli,sli ,

i = 1, . . . , n, and �slj+1,s
l
j
, j = 1, . . . , n − 1 and �sl1,sln are the quality repair prob-

abilities. In addition, we denote �sli,sli and �sli,sli , as the quality failure and repair

probabilities without product switch, and �sli,slj and �sli,slj , i ∕= j, with product

switch, respectively. Moreover, we define quality efficiencies with and without

product switch as esli,slj and esli,sli , respectively, where

esli,slj =
�sli,slj

�sli,slj + �sli,slj
, i ∕= j (3.1)

esli,sli =
�sli,sli

�sli,sli + �sli,sli
. (3.2)

Remark 3.2 Clearly, product change is not the only factor, and there exist many

other issues, affecting quality in flexible manufacturing systems. For example,

in automotive paint shops, in addition to color changes, dirts, paint mixture,

humidity, etc., are also critical to paint quality. In this model, we focus on the

impact of product change on quality, by assuming that the other factors may

have equal influence on different products and have been embedded within the

transition probabilities.

Denote P (gsli,j) and P (dsli,j), i = 1, . . . , n, j = 1, . . . , ksli , as the probabilities

that the system is in state gsli,j or dsli,j (i.e., producing a good or a defective job

for the j-th part in the batch of product type sli), respectively. Then, the overall
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quality performance of the flexible system for a given sequence sl, i.e., the probability

to produce a good (or, a defective) part in batch production, is defined as P (glbt)

(respectively, P (dlbt)), and is calculated from

P (glbt) =
n∑

sli=1

k
sl
i∑

j=1

P (gsli,j), (3.3)

P (dlbt) =
n∑

sli=1

k
sl
i∑

j=1

P (dsli,j). (3.4)

In the subsequent sections, we begin the study with the case of two product types

with batch size two. Then we will extend to more general cases. Note that the quality

evaluation below is focused on the sequence sl = {1, 2, ⋅ ⋅ ⋅ , n}, and the sequence index

l is ignored for simplicity.

3.2 Two Product Types with Batch Size Two

A quality evaluation formula in this simple case is derived, and then its properties

are discussed.

3.2.1 Analytical expressions

Consider that there are two types of products, 1 and 2, and each has batch size two.

A state transition diagram is illustrated in Figure 3.1.

Based on the state transition diagram, we have

P (g11, t+ 1) = P (g11, t+ 1∣d22, t)P (d22, t) + P (g11, t+ 1∣g22, t)P (g22, t)

= �12P (d22, t) + (1− �12)P (g22, t).

In terms of the steady state, let

lim
t→∞

P (g11, t) =: P (g11),

24



g11 d11

g21 g22 d21 d22

g12 d12

121−µ

211−µ

111−λ µ11

λ 11

111−µ

λ 12 λ21 µ21µ

121−λ
µ12µ21

221−λ µ 22

λ 22

221−µ

211−λ

12

Figure 3.1: State transition diagram of two-product type case with batch size two

we obtain

P (g11) = �12P (d22) + (1− �12)P (g22). (3.5)

Similarly, we derive

P (g12) = �11P (d11) + (1− �11)P (g11), (3.6)

P (g21) = �21P (d12) + (1− �21)P (g12), (3.7)

P (g22) = �22P (d21) + (1− �22)P (g21), (3.8)

P (d11) = (1− �12)P (d22) + �12P (g22), (3.9)

P (d12) = (1− �11)P (d11) + �11P (g11), (3.10)

P (d21) = (1− �21)P (d12) + �21P (g12), (3.11)

P (d22) = (1− �22)P (d21) + �22P (g21). (3.12)

In addition, the total probability is equal to 1,

P (g11) + P (g12) + P (g21) + P (g22) + P (d11) + P (d12) + P (d21) + P (d22) = 1.(3.13)

Then, using these equations, we can derive the probability of good parts as follows:
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Theorem 3.1 Under assumptions (1)-(7) with n = 2 and k1 = k2 = 2, the

probability of producing a good part can be calculated by

P (g) =
A + ℬ + C + D

4(1− ℱ)
, (3.14)

where

A = [�21 + �11(1− �21 − �21)][1 + (1− �22 − �22)(1− �12 − �12)], (3.15)

ℬ = [�11 + �12(1− �11 − �11)][1 + (1− �22 − �22)(1− �21 − �21)], (3.16)

C = [�22 + �21(1− �22 − �22)][1 + (1− �12 − �12)(1− �11 − �11)], (3.17)

D = [�12 + �22(1− �12 − �12)][1 + (1− �11 − �11)(1− �12 − �12)], (3.18)

ℱ = (1− �21 − �21)(1− �22 − �22)(1− �11 − �11)(1− �12 − �12). (3.19)

Proof: See Appendix A.

Next, we consider the case where the transition probabilities are identical for both

products, denoted as the equal products case, i.e.,

�12 = �21, �12 = �21, �11 = �22, �11 = �22.

Then, equation (3.14) can be simplified as follows:

Corollary 3.1 Under assumptions (1)-(7) with n = 2, k1 = k2 = 2 in the equal

products case, the probability of producing a good part can be calculated as

P (g) =
�11(2− �21 − �21) + �21(2− �11 − �11)

2[1− (1− �11 − �11)(1− �21 − �21)]
. (3.20)

Proof: See Appendix A.

Using this expression, we can compare the quality performance of batch policy

with other scheduling policies in flexible manufacturing systems. For simplicity, we

will limit our discussions to the equal products case.
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3.2.2 Monotonicity

Similar to the results obtained in [21], the product quality will be monotonically

increasing with respect to quality repair probabilities and decreasing to quality failure

probabilities.

Corollary 3.2 Under assumptions (1)-(7) with n = 2, k1 = k2 = 2 in the equal

products case, the probability of producing a good part P (g) is monotonically

∙ decreasing with respect to �11 and �21;

∙ increasing with respect to �11 and �21.

Proof: See Appendix A.

3.2.3 Comparisons with other sequencing policies

In this subsection, we compare the quality performance using batch policy with strict

sequencing and random mixing policies. In strict sequencing policy, product type

changes at every cycle. In other words, two types of products are sequenced as

1,2,1,2,1,. . . . In random mixing policy, product types are coming in a random order

with uniformly distributions.

Comparison with strict sequencing policy

First, introduce e11 and e21 as the quality efficiency without product switch and quality

efficiency with product switch, respectively, where

e11 =
�11

�11 + �11

, e21 =
�21

�21 + �21

.

Then, denote the probability of good parts for batch and strict sequencing policy

as P (gbt) and P (gss), respectively.
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Corollary 3.3 Under assumptions (1)-(7) with n = 2, k1 = k2 = 2 in the equal

products case, the following statements hold:

(1) P (gbt) > P (gss) if e11 > e21, (3.21)

(2) P (gbt) < P (gss) if e11 < e21. (3.22)

Proof: See Appendix A.

This Corollary indicates that when the quality efficiency is higher within same

products, using batch can achieve better quality performance compared to strictly

sequencing the products.

Comparison with random mixing policy

Let P (gr) denote the probability of good parts using random mixing policy. We have

Corollary 3.4 Under assumptions (1)-(7) with n = 2 and k1 = k2 = 2 in the

equal products case, if e11 > e21 and �11 is sufficiently larger than �21 so that �11 >

e11
e21
�21, then

P (gbt) > P (gr).

Proof: See Appendix A.

Therefore, using batch is better than randomly mixing the two product types in

terms of quality performance if e11 > e21 and the repair probability without product

switch is sufficiently higher than the repair probability with product switch. Clearly,

when quality efficiency is good within a batch, and the system can quickly recover

from processing defective jobs, then batch policy is a better choice.
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As it has been shown in [21], random mixing policy is better in quality than strict

sequencing policy when e11 > e21, we can conclude that, in this case, batch production

is the best option to obtain high quality performance, while strict sequencing is the

worst choice, and random mixing falls in the middle.

3.3 General Multiple Products Multiple Batch Sizes Case

A quality evaluation formula in general case is derived, and then its properties are

discussed.

3.3.1 General formulas

For n products, each has ki parts in a batch, i = 1, . . . , n, from assumptions (1)-(7)

and following the similar procedure in Section 3.2, we have

P (gij) = �iiP (di,j−1) + (1− �ii)P (gi,j−1), (3.23)

P (dij) = (1− �ii)P (di,j−1) + �iiP (gi,j−1), i = 1, . . . , n, j = 2, . . . , ki, (3.24)

P (gi1) = �i,i−1P (di−1,ki−1
) + (1− �i,i−1)P (gi−1,ki−1

), (3.25)

P (di1) = (1− �i,i−1)P (di−1,ki−1
) + �i,i−1P (gi−1,ki−1

), i = 2, . . . , n, (3.26)

P (g11) = �1nP (dn,kn) + (1− �1n)P (gn,kn), (3.27)

P (d11) = (1− �1n)P (dn,kn) + �1nP (gn,kn), (3.28)

and

n∑
i=1

ki∑
j=1

[
P (gij) + P (dij)

]
= 1.

In matrix form, we obtain

AX = B, (3.29)
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where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ⋅ ⋅ ⋅ 0 �1n − 1 0 0 ⋅ ⋅ ⋅ 0 0 −�1n
�11 − 1 ⋅ ⋅ ⋅ 0 0 −�11 0 ⋅ ⋅ ⋅ 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 ⋅ ⋅ ⋅ �nn − 1 1 0 0 ⋅ ⋅ ⋅ 0 −�nn 0
0 ⋅ ⋅ ⋅ 0 −�1n 1 0 ⋅ ⋅ ⋅ 0 0 �1n − 1
−�11 ⋅ ⋅ ⋅ 0 0 �11 − 1 1 ⋅ ⋅ ⋅ 0 0 0

0 ⋅ ⋅ ⋅ 0 0 0 �11 − 1 ⋅ ⋅ ⋅ 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ �nn − 1 1 0
1 ⋅ ⋅ ⋅ 1 1 1 1 ⋅ ⋅ ⋅ 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.30)

B = [0, . . . , 0, 1]T , (3.31)

X = [P (g11), . . . , . . . , P (gn,kn), P (d11), . . . , P (dn,kn)]T . (3.32)

Therefore, we can obtain the probability of good parts P (g) as follows:

Theorem 3.2 Under assumptions (1)-(7) with multiple products multiple batch

sizes, the probability of good parts P (g) is calculated by

P (g) =
n∑
i=1

ki∑
j=1

P (gij) =
K∑
i=1

xi, (3.33)

where K =
∑n
i=1 ki, and xij is solved from

X = A−1B, (3.34)

and A, B, X are defined in Equations (3.30)-(3.32).

Remark 3.3 Since a unique solution and the steady state exist for an irreducible

Markov chain with finite number of states, the inverse of transition matrix A exists.

This formula provides a method to evaluate the quality performance of a flexible

manufacturing system with batch productions and enables us to investigate system-

theoretic properties, design principles, scheduling and improvement policies.
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When n = k1 = k2 = 2, we obtain matrix A2 (where subscript ‘2’ denotes n = 2)

in Equation 3.35, and solving Equation (3.34) will lead to the same solution as in

Equation (3.14).

A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 �12 − 1 0 0 0 −�12

�11 − 1 1 0 0 −�11 0 0 0
0 �21 − 1 1 0 0 −�21 0 0
0 0 �22 − 1 1 0 0 −�22 0
0 0 0 −�12 1 0 0 �12 − 1
−�11 0 0 0 �11 − 1 1 0 0

0 −�21 0 0 0 �21 − 1 1 0
1 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.35)

In the case of equal products, the transition probabilities and batch sizes must

satisfy

�ii = �11, �ii = �11, i = 1, . . . , n,

�1n = �i+1,i = �21, �1n = �i+1,i = �21, i = 1, . . . , n− 1,

ki = k1 = k, i = 1, . . . , n.

Corollary 3.5 Under assumptions (1)-(7) with multiple products multiple batch

sizes in the equal products case, the probability of good parts can be calculated as

P (g) =
�11

�11 + �11

+
(�11�21 − �21�11)[1− (1− �11 − �11)k]

k(�11 + �11)2[1− (1− �21 − �21)(1− �11 − �11)k−1]
.

(3.36)

Proof: See Appendix A.

Clearly, when k = 1, P (g) = e21. When k = 2, Equation (3.36) reduces to

Equation (3.20).
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Remark 3.4 Note that Equation (3.36) is independent of the number of product

types, n. The rationale behind this is that since all products are identical, transitions

from product type i to type i + 1 are same for all i, i = 1, . . . , n − 1, and is also

same as transition from product type n to type 1. Therefore, it is equivalent to that

there are only two product types, 1 and 2. Therefore, the quality performance only

depends on the batch size k. However, when �ij and �ij are not same, and ki is not

same, the number of products will play a role.

Remark 3.5 The introduction of equal products case not only simplifies the anal-

ysis, but also has wide practical applications. For example, in body shop, vehicles

with different sizes can be processed on the same line. The transition probabilities

among different sizes of vehicles, �ij’s (or �ij’s), are typically similar, and probabilities

within each style, �ii’s (or �ii’s), are also close to each other. Similar scenario can

be observed in flexible machining lines, where the transition probabilities between

batches are determined by the location errors of the flexible fixtures, independent

of product types, and the transition probabilities within batches are dominated by

tooling errors, which are similar for all products. In these cases, analysis of equal

products case can be applicable.

3.3.2 Bernoulli quality reliability case

Here we consider a special case �11 + �11 = �21 + �21 = 1, i.e., the system quality

reliability follows a Bernoulli distribution. In this case, repair probabilities �i1, i =

1, 2, define the probabilities to produce a good part without or with product switch.

32



Then, we can simplify the analysis to

P (g) = �11 +
�21 − �11

k
. (3.37)

Clearly, when �11 > �21, increasing batch size will lead to better quality perfor-

mance, which agrees with our intuition since quality efficiency without switch is larger

than that with switch. However, when �21 > �11, i.e., switching products has better

quality efficiency, negative effect will appear if larger batch is implemented. There-

fore, smaller batches are preferred in this scenario. An illustration of both scenarios

is presented in Figure 3.2.
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Figure 3.2: Product quality as a function of batch size in Bernoulli case

3.3.3 Monotonic and non-monotonic properties with respect to quality
failure and repair probabilities

Intuitively, monotonic properties are often expected. For example, we may expect

that the quality can be improved if quality failure probability is decreased, or re-

pair probability is increased, or batch size is larger. If such properties do not hold,

continuous improvement effort based on monotonic intuition may not be effective.

Therefore, obtaining the knowledge of these properties could help identify the direc-

tions for continuous improvement to achieve better quality.
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For monotonicity with respect to �21 and �21, we can show that such property

holds in equal products case.

Proposition 3.1 Under assumption (1)-(7) in the equal products case, the prob-

ability of good parts, P (g), is monotonically

∙ decreasing with respect to �21, and

∙ increasing with respect to �21.

Proof: See Appendix A.

Unexpectedly, experiments suggest that monotonic property with respect to �11

and �11 does not hold all the time. Numerical investigation indicates that in most

cases, P (g) will decrease or increase with respect to �11 and �11, respectively, i.e.,

∂P (g)
∂�11

< 0 and ∂P (g)
∂�11

> 0. But in some extreme cases, opposite results may be observed.

Table 3.1 and 3.2 present two examples of these counter-intuitive results.

Table 3.1: Non-monotonicity of P (g) with respect to �11

k �11 �21 �11 �21
∂P (g)
∂�11

P (g)

5 0.9200 0.0100 0.9900 0.4900 -0.0044 0.5781
5 0.9300 0.0100 0.9900 0.4900 0.0217 0.5781
5 0.9400 0.0100 0.9900 0.4900 0.0506 0.5785

Table 3.2: Non-monotonicity of P (g) with respect to �11

k �11 �21 �11 �21
∂P (g)
∂�11

P (g)

7 0.9900 0.6000 0.9600 0.0400 0.0092 0.4455
7 0.9900 0.6000 0.9700 0.0400 -0.0210 0.4457
7 0.9900 0.6000 0.9800 0.0400 -0.0552 0.4456

It can be seen from these tables that these non-monotonic cases only occur when

failure and repair probabilities without switch are typically large (approaching 1),
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which may seldom happen in real systems. In most practical situations, monotonicity

can still be counted on.

3.3.4 Asymptotic properties

With different combinations of �i1 and �i1, i = 1, 2, we consider several scenarios

where �i1 or �i1 approach 0 or 1.

∙ Case 1: �11 → 0, �11 → 1.

In this case, if the first job in a batch is in good quality, it probably will keep

good quality for remaining jobs in the batch since �11 → 0. If the first one is

defective, then it most likely changes to good quality states from the second

one due to �11 → 1. Thus, the second to last jobs in a batch are typically

good. This implies P (gij) → 1, i = 1, . . . , n, j = 2, . . . , k. An illustration of

this observation is shown in Figure 3.3. In addition, we can show that

lim
�11→0,�11→1

P (g) = 1− �21

k
.
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Figure 3.3: Asymptotic behavior: Case 1

When �21 → 1, it implies the product switch makes the first job in a batch is
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more likely to be defective. Therefore, P (g) → 1 − 1/k. If �21 → 0, it follows

that usually all jobs are kept in good quality, i.e., P (g)→ 1.

∙ Case 2: �11 → 1, �11 → 0.

This can be viewed as a dual (or an opposite) case of the first one. If the first

job in a batch is in good quality, it probably will change to poor quality from the

second job in the batch and keep it since �11 → 1. If the first one is defective,

then it most likely keep poor quality due to �11 → 0. Thus, the second to last

jobs in a batch are typically defective. This leads to P (dij) → 1, i = 1, . . . , n,

j = 2, . . . , k. This phenomenon is illustrated in Figure 3.4. we also prove that

lim
�11→1,�11→0

P (g) =
�21

k
.
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Figure 3.4: Asymptotic behavior: Case 2

Similar to the first case, �21 → 1 implies product switch most likely leads to

good quality in the first job in a batch. Hence, P (g) → 1/k. While �21 → 0

implies that quite often all jobs are in defective states even with product switch,

i.e., P (g)→ 0.
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In the above two cases, monotonic properties have been observed. Counter

intuitively, monotonicity may not hold all the time.

∙ Case 3: �11 → 1, �11 → 1.

– Case 3.1: �21 → 0, �21 → 1.

In this case, if the last job in previous batch is good in quality, then due to

�21 → 0, the first job in the current batch will stay in good quality; on the

other hand, if the last job in previous batch is defective, then the first job

in current batch will change to good quality due to �21 → 1. Therefore, in

either cases, first job is in good quality. Since �11 → 1, we have the odd

number ones approach good quality and even ones defective. As a result,

for even batch size, we obtain equal numbers of good and bad quality jobs;

while for odd one, an additional good quality job is obtained compared to

bad quality ones within a batch. In other words,

lim
�11 → 1, �21 → 0
�11 → 1, �21 → 1

P (g) =
1− (−1)k

4k
+

1

2

=

{
1
2k

+ 1
2

k odd,
1
2

k even.

– Case 3.2: �21 → 1, �21 → 0.

Following the similar arguments as in Case 3.1, the odd number jobs are

defective and even numbers are in good quality, which implies equal num-

bers of good and bad quality jobs for even batch size, and for odd batch

37



size, one additional bad quality job is obtained. Thus,

lim
�11 → 1, �21 → 1
�11 → 1, �21 → 0

P (g) = −1− (−1)k

4k
+

1

2

=

{
− 1

2k
+ 1

2
k odd,

1
2

k even.

Illustrations of Cases 3.1 and 3.2 are presented in Figure 3.5. Clearly, decreasing

or increasing oscillated behaviors have been observed in these two cases, respec-

tively. It also indicates that when jobs are more likely to be in good quality

after switch (i.e., �21 → 0, �21 → 1), it will oscillate above 0.5, and it is good

to keep odd number of batch size. Otherwise, it oscillates below 0.5, and even

numbered batch size is preferred.
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Figure 3.5: Asymptotic behavior: Cases 3.1 and 3.2

∙ Case 4: �11 → 0, �11 → 0.

– �21 → 0, �21 → 0. Then P (g) is approaching 0 or 1 depending on the

quality of the 1st part.

– �21 → 1, �21 → 1. The system produces all good or all defective batches

alternatively. Then, P (g) = 1
2
.
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– �21 → 1, �21 → 0. It follows that the state will keep being defective after

product switch, i.e., P (g)→ 0.

– �21 → 0, �21 → 1. Opposite situation occurs, P (g)→ 1.

Intuitively we may assume that increasing batch size will improve quality. How-

ever, the asymptotic results described above (Case 3) suggest that oscillating behavior

exists with respect to batch size k. Thus, we need to understand when oscillation

may occur and under what condition monotonicity still holds, so that we can pro-

vide practical guidance for operation management. The next subsection is devoted

to investigation of this phenomenon.

3.3.5 Oscillating properties with respect to batch size

Let Pk(g) denote the probability of producing a good quality part when batch size is

k. Then, we obtain

Pk(g) =
�11

�11 + �11

+
(�11�21 − �21�11)[1− (1− �11 − �11)k]

k(�11 + �11)2[1− (1− �21 − �21)(1− �11 − �11)k−1]

=
�11

�11 + �11

+
(�21 + �21)(e21 − e11)(1− ak)
k(�11 + �11)(1− bak−1)

=
�11

�11 + �11

+
(�21 + �21)(e21 − e11)

�11 + �11

Dk.

where

a = 1− �11 − �11,

b = 1− �21 − �21,

Dk =
1− ak

k(1− bak−1)
. (3.38)
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Increasing batch size by 1

Consider

Pk+1(g)− Pk(g) =
(�21 + �21)(e21 − e11)

�11 + �11

(Dk+1 −Dk). (3.39)

Proposition 3.2 Under assumption (1)-(7) in the equal products case,

∙ P2j+2(g) < P2j+1(g), j = 0, 1, 2, ..., i.e., monotonically decreasing with respect to

odd batch size, if e11 < e21;

∙ P2j+2(g) > P2j+1(g), j = 0, 1, 2, ..., i.e., monotonically increasing with respect to

odd batch size, if e11 > e21.

Proof: See Appendix A.

Proposition 3.2 suggests that Dk+1 is always smaller than Dk when k is odd so that

increasing batch size by 1 will lead to degradation of product quality when e11 < e21,

which agrees with our intuition since e11 < e21 implies product switch will improve

quality, and therefore smaller batch is preferred. Analogously, increasing batch size by

1 can improve quality when e11 > e21. An illustration of the fact that D2j+2 < D2j+1

is shown in Figure 3.6, where we select all possible values of �i1 and �i1 between 0.01

and 0.99 with a step size 0.01 for different batch size k.

However, such property may not hold when k is even. As it is shown in Figure

3.7 that Dk+1 − Dk can be positive or negative when k is even, which implies that

oscillating behavior may occur when the even batch size is increased. Clearly, there

exists a boundary condition that Dk+1 may be greater than Dk when k is even. From
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Figure 3.6: Dk+1 −Dk vs a and b with respect to different odd batch size k

Figure 3.7: Dk+1 −Dk vs a and b with respect to different odd batch size k

Equation 3.38, it can be shown that D2j+1 = D2j implies that

1− a2j+1

(2j + 1)(1− ba2j)
=

1− a2j

2j(1− ba2j−1)
, j = 0, 1, 2, ....

After some algebraic manipulation, we obtain the boundary condition

b =
1− a2j − 2ja2j(1− a)

a2j(1− a2j)− 2ja2j−1(1− a)
, j = 0, 1, 2, .... (3.40)

However, such formula does not provide a clear indication on what kind of parame-

ters �i1,�i1,i = 1, 2, leading to oscillation. Therefore, we calculate such boundaries

numerically and plot on an a-b plane for different even batch size k (Figure 3.8). As

one can see, when a and b are allocated on the left side of these boundaries, oscillation

will occur. It is shown that when oscillation occurs, parameter a must be less than

the right most value, amax, on the boundary (i.e., at point b = 1). This value can
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be viewed as a necessary condition for oscillation, or bound for failure and repair

probabilities, i.e.,

�11 + �11 > 1− amax. (3.41)
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Figure 3.8: Oscillation boundaries with various batch sizes

An illustration of such a bound for k = 2 is given in Figure 3.8 as the thin broken

line. Table 3.3 presents these bounds for different batch size k.

Table 3.3: Necessary condition for oscillation

k 2 4 6 8
�11 + �11 > 1.268 1.4710 1.5744 1.6399

k 10 20 30 50
�11 + �11 > 1.6859 1.8018 1.8519 1.8920

In addition, Figure 3.8 shows that a is always negative when oscillation occurs.

From Equation 3.40, it is easy to show that in this case b−a > 0, i.e., 1−(�21 +�21) >

1− (�11 +�11). Thus, we obtain another necessary condition or bound for oscillation,

as shown in Figure 3.8 with the thin solid line,

�21 + �21 < �11 + �11. (3.42)

Hence, inequalities 3.41 and 3.42 provide a relative tight bound for oscillation area.

Moreover, we observe that the oscillation area is becoming smaller when even batch
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size k is increasing. This implies large batch size reduces the possibility of oscillation.

Clearly, when parameters a and b (or �i1, �i1, i = 1, 2) are selected that outside of

the oscillation area, we always obtain Dk+1 < Dk, which implies that the monotonicity

properties hold and the product quality will be

∙ monotonically decreasing with respect to even batch size, i.e., P2j+1(g) < P2j(g), j =

1, 2, ...,if e11 < e21, and

∙ monotonically increasing with respect to even batch size, i.e., P2j+1(g) > P2j(g), j =

1, 2, ...,if e11 > e21.

Increasing batch size by 2

The above results suggest that increasing batch size by 1 may not lead to improve-

ment of product quality. However, when batch size is added by two each time, the

monotonic property can always be observed in the equal products case.

Proposition 3.3 Under assumption (1)-(7) in the equal products case, if batch

size is added by two, then the product quality is

∙ monotonically increasing, i.e., Pk+2(g) > Pk(g), if e11 > e21;

∙ monotonically decreasing, i.e., Pk+2(g) < Pk(g), if e11 < e21.

Proof: See Appendix A.

Since

Pk+2(g)− Pk(g) =
(�21 + �21)(e21 − e11)

�11 + �11

(Dk+2 −Dk). (3.43)
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Figure 3.9: Dk+2 −Dk vs a and b with respect to different batch sizes

Proposition 3.3 implies that Dk+2−Dk is always negative. An illustration of this fact

based on numerical investigation is given in Figure 3.9.

Thus, in the equal products case, when quality efficiency without product switch

is higher than that with product switch, adding two parts in the batch can improve

quality, which agrees with our intuition. Otherwise, quality may be downgraded.

Remark 3.6 In practice, the quality failure probabilities are typically low and

the non-monotonic cases are less likely to happen. Effort should be made to avoid

occurring of oscillation scenarios so that quality improvement can be achieved.

3.3.6 Non-monotonic properties in non-equal products case

For the case of non-equal products, i.e., general case, we investigate the non-monotonic

properties using numerical experiments. Specifically, we select quality failure and re-

pair probabilities �ij, �ij, number of products n, and batch size ki, randomly and

equiprobably from the following sets:

n ∈ {2, 3, 4, 5, 6},

�ij ∈ (0, 1), i, j = 1, . . . , 6,

�ij ∈ (0, 1), i, j = 1, . . . , 6,
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ki ∈ {2, 3, 4, 5, 6}.

For a given set of n, �ij, �ij and ki, quality performance P (g) is calculated and

sensitivities to these parameters are investigated. More than 1 million examples

are generated for numerical experiments. The percentages that non-monotonic with

respect to quality failure/repair probabilities, and batch size are summarized in Tables

3.4 and 3.5, respectively.

Table 3.4: Percentage of non-monotonic cases with respect to quality failure and
repair probabilities (%)

n 2 3 4 5 6
∂P (g)
∂�ii

> 0 0.91 1.38 1.81 2.28 2.71
∂P (g)
∂�ii

< 0 0.91 1.38 1.83 2.28 2.71
∂P (g)
∂�ij

> 0 1.06 1.59 2.11 2.61 3.09
∂P (g)
∂�ij

< 0 1.06 1.59 2.11 2.61 3.09

Table 3.5: Percentage of non-monotonic cases with respect to increasing batch size
(%)

n 2 3 4 5 6
k + 1 11.52 13.04 14.19 15.12 15.89
k + 2 2.12 2.87 3.27 3.63 3.91

From these results, it is clear that the non-monotonic properties are observed in

all scenarios. We observe that

∙ In general, the percentages non-monotonic cases occur are typically small.

∙ The non-monotonic percentage increases with respect to number of products.

∙ Adding batch size by two leads to significantly smaller percentage of non-

monotonicity compared with adding batch size by one.
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∙ In addition, the conditions for non-monotonic scenario with respect to quality

failure and repair probabilities are similar. In other words, the parameters

that results in non-monotonicity to �ii (or �ij) will most likely lead to non-

monotonicity to �ii (respectively, �ij).

∙ Moreover, by analyzing the quality performance with respect to batch size k,

we discover that larger batch size leads to smaller percentages of non-monotonic

cases.

By carefully analyzing the cases that monotonicity does not hold, we conclude

that when these cases are observed, the system parameters typically satisfy at least

one or more of the followings:

∙ Quality efficiency is low, i.e., eij < 0.5, i, j = 1, . . . , 6,

∙ Quality failure probability is high, i.e., �ij > 0.5, i, j = 1, . . . , 6,

∙ Quality repair probability is low, i.e., �ij < 0.5, i, j = 1, . . . , 6.

In practice, cases satisfying above conditions seldom happen. This implies that in

most practical environment, monotonicity can be expected. However, in the cases of

very low quality efficiency, or high failure probability, or low repair probability, more

attention is needed in the continuous improvement procedure to avoid any negative

impact from possible non-monotonicity.

3.4 Summary

In this paper, an analytical method based on Markov chain model is presented to

evaluate the quality performance in a flexible manufacturing system with batch pro-
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ductions. Closed formulas to evaluate quality performance are derived and it is also

shown that when quality failure probability is relatively high, or repair probability

low, or quality efficiency is significantly low, monotonicity may not hold. In addition,

more monotonic cases are discovered when increasing buffer size by one compared

with increasing by two. Thus, extra care is needed when carrying out continuous

improvement project to avoid possible negative effect due to them. In summary,

appropriate design of batch policy in flexible manufacturing system is important to

maintain good product quality.
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CHAPTER 4

PRODUCT SEQUENCING WITH RESPECT TO

QUALITY

In this chapter, the impacts of different product sequencing policies on quality are

explored. Specially, we investigate which sequence will lead to best quality and which

results in worst. In addition, we answer the question whether product quality is im-

provable or not with respect to resequencing, and we compare quality under different

sequencing policies.

4.1 Two Product Types

In this simple case, quality formulas in different sequencing polices are derived, and

then different polices are compared.

4.1.1 Quality performance in different sequencing policies

Consider the simple case of two types of products, 1 and 2, each with batch size two.

Since there is only one sequence available, the sequence index l is ignored in this

section. From the transition equations (3.5)-(3.12), we can find

P (g11) + P (d11) = P (g12) + P (d12) = P (g21) + P (d21) = P (g22) + P (d22) =
1

4
. (4.1)

By replacing defective states with Equation (4.1), the transition equations can be

written as

P (g11) = (1− �12 − �12)P (g22) +
1

4
�12,
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P (g12) = (1− �11 − �11)P (g11) +
1

4
�11,

P (g21) = (1− �21 − �21)P (g12) +
1

4
�21,

P (g22) = (1− �22 − �22)P (g21) +
1

4
�22.

Introduce notation

�ij = 1− �ij − �ij, i = 1, . . . , n, j = 1, . . . , ki. (4.2)

When �ij+�ij = 1, a simplified model is obtained where the quality failure and repair

probabilities can be described by Bernoulli trials, thus, we refer it to as Bernoulli-like

assumption, i.e.,

�ij = 0. (4.3)

Although Bernoulli-like assumption is close to the cases in practice, it is still too

strict. Thus, this assumption can be relaxed to more general cases, referred to as

Bernoulli-relax assumption, i.e.,

0 < ∣�ij∣ < 1, i = 1, . . . , n, j = 1, . . . , ki. (4.4)

Since in most cases �ij is small, we focus on the cases that �ij ≪ 1.

By introducing �ij, the transition equations can be changed as

P (g11) = �12P (g22) +
1

4
�12, (4.5)

P (g12) = �11P (g11) +
1

4
�11, (4.6)

P (g21) = �21P (g12) +
1

4
�21, (4.7)

P (g22) = �22P (g21) +
1

4
�22. (4.8)

Then, we can obtain the overall good part probability as follows:
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Theorem 4.1 Under assumptions (1)-(7) with n = 2 and k1 = k2 = 2, the

probability of producing a good part can be calculated by

P (gbt) =
1

4
⋅ (1 + �21 + �22�21 + �12�22�21)�11

1− �11�12�22�21

+
1

4
⋅ (1 + �11 + �21�11 + �22�21�11)�12

1− �11�12�22�21

+
1

4
⋅ (1 + �22 + �12�22 + �11�12�22)�21

1− �11�12�22�21

+
1

4
⋅ (1 + �12 + �11�12 + �21�11�12)�22

1− �11�12�22�21

. (4.9)

Proof: See Appendix B.

Under the Bernoulli-like assumption, i.e. �ij +�ij = 1 or �ij = 0, the overall good

part probability in batch policy can be simplified as

P (gbt) =
�11 + �12 + �21 + �22

4
. (4.10)

In strictly sequencing policy, i.e., ki = 1, i = 1, 2, the transition equations are

P (g11) = �12P (d21) + (1− �12)P (g21),

P (g21) = �21P (d11) + (1− �21)P (g11),

P (d11) = (1− �12)P (d21) + �12P (g21),

P (d21) = (1− �21)P (d11) + �21P (g11).

and the additional constraint is

P (g11) + P (d11) + P (g21) + P (d21) = 1.

Furthermore, the transition equations related to �ij are written as

P (g11) = �12P (g21) +
1

2
�12,

P (g21) = �21P (g11) +
1

2
�21.
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Then, we can obtain the overall good part probability as follows:

Theorem 4.2 Under assumptions (1)-(7) with n = 2, the probability of producing

a good part can be calculated by

P (gss) =
1

2
⋅ (1 + �12)�21 + (1 + �21)�12

1− �21�12

. (4.11)

Under the Bernoulli-like assumption, the overall good part probability in strictly

sequencing policy can be simplified as

P (gss) =
�12 + �21

2
. (4.12)

4.1.2 Sequencing comparison under Bernoulli-like assumption

Quality performance in batch policy (Equations (4.10)) consists of the sum of all qual-

ity repair probabilities within a batch and between batches; while quality performance

in strictly sequencing policy (Equations (4.12)) depends on quality repair probabili-

ties within a batch and between batches only. Therefore, for two types of product, we

define the total quality repair probability and total quality efficiency without product

switch as

�totalno−switcℎ = �11 + �22,

etotalno−switcℎ = e11 + e22,

and the total quality repair probability and total quality efficiency with product switch

as

�totalswitcℎ = �12 + �21,

etotalswitcℎ = e12 + e21.
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Under the Bernoulli-like assumption, it can be easily obtained

�totalno−switcℎ = etotalno−switcℎ,

�totalswitcℎ = etotalswitcℎ.

Proposition 4.1 Under assumptions (1)-(7) and Bernoulli-like assumption (4.3),

for n = 2, the following statements hold:

(1) P (gbt) > P (gss) if �totalno−switcℎ > �totalswitcℎ, (4.13)

(2) P (gbt) < P (gss) if �totalno−switcℎ < �totalswitcℎ. (4.14)

This corollary indicates that when the total quality efficiency without product switch

is higher, using batch policy can achieve better quality performance compared with

strictly sequencing policy.

4.1.3 Sequencing comparison under Bernoulli-relax assumption

Define �max = maxij ∣�ij∣, i, j = 1, 2. Then, we obtain the following results:

Proposition 4.2 Under assumptions (1)-(7) and Bernoulli-relax assumption (4.4),

for n = 2, the following statements hold:

(1) P (gbt) > P (gss) if �totalno−switcℎ > �totalswitcℎ and (4.15)

0 < �max <
�totalno−switcℎ − �totalswitcℎ

�totalno−switcℎ + 3�totalswitcℎ

, (4.16)

(2) P (gbt) < P (gss) if �totalno−switcℎ < �totalswitcℎ and (4.17)

0 < �max <
�totalswitcℎ − �totalno−switcℎ
�totalno−switcℎ + 3�totalswitcℎ

. (4.18)

Proof: See Appendix B.
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4.2 General Multiple Product Types

In general case, quality formulas in different sequencing polices are derived, and then

different polices are compared.

4.2.1 Quality performance in different sequencing policies

Consider the case of n types of product, denoted as 1, 2, . . . , n. Then, there are (n−1)!

permutations of sequence. For an arbitrary sequence sl = {sl1, sl2, ⋅ ⋅ ⋅ , sln}, we obtain

the transition equations in steady states

P (gsli,j) = �sli,sliP (dsli,j−1) + (1− �sli,sli)P (gsli,j−1), (4.19)

P (dsli,j) = (1− �sli,sli)P (dsli,j−1) + �sli,sliP (gsli,j−1), (4.20)

i = 1, . . . , n, j = 2, . . . , ksli ,

P (gsli,1) = �sli,sli−1
P (dsli−1,ksl

i−1

) + (1− �sli,sli−1
)P (gsli−1,ksl

i−1

), (4.21)

P (dsli,1) = (1− �sli,sli−1
)P (dsli−1,ksl

i−1

) + �sli,sli−1
P (gsli−1,ksl

i−1

), (4.22)

i = 2, . . . , n,

P (gsl1,1) = �sl1,slnP (dsln,ksln
) + (1− �sl1,sln)P (gsln,ksln

), (4.23)

P (dsl1,1) = (1− �sl1,sln)P (dsln,ksln
) + �sl1,slnP (gsln,ksln

). (4.24)

In addition, the total probability is equal to 1,

n∑
sli=1

k
sl
i∑

j=1

[
P (gsli,j) + P (dsli,j)

]
= 1. (4.25)

These expressions can be further reduced by summing up P (gsli,j) and P (dsli,j).

Then we obtain

P (gsli,j) + P (dsli,j) = P (gsli,1) + P (dsli,1) = P (gsl1,1) + P (dsl1,1),
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which leads to

P (gsli,j) + P (dsli,j) =
1

K
, i = 1, . . . , n, j = 1, . . . , ksli . (4.26)

Recall the notation

�sli,slj = 1− �sli,slj − �sli,slj , i, j = 1, . . . , n. (4.27)

Then the transition equations can be rewritten as

P (gsli,j) = �sli,sliP (gsli,j−1) +
�sli,sli
K

, i = 1, . . . , n, j = 2, . . . , ksli , (4.28)

P (gsli,1) = �sli,sli−1
P (gsli−1,ksl

i−1

) +
�sli,sli−1

K
, i = 2, . . . , n, (4.29)

P (gsl1,1) = �sl1,slnP (gsln,ksln
) +

�sl1,sln
K

. (4.30)

Introduce vectors X, Φ and matrix Γ such that

X = [P (gsl1,1), . . . , P (gsl1,ksl
1

), P (gsl2,1), . . . , P (gsl2,ksl
2

), . . . , P (gsln,1), . . . , P (gsln,ksln
)]T ,

(4.31)

Φ = [�sl1,sln , �sl1,sl1 , . . . , �sl1,sl1 , �sl2,sl1 , �sl2,sl2 , . . . , �sln,sln−1
, �sln,sln , . . . , �sln,sln ]T , (4.32)

Γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 �sl1,sln
�sl1,sl1 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0

0
. . . 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ �sl1,sl1 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 �sl2,sl1 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 0 �sl2,sl2 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 0 0
. . . 0 0 ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ �sln,sln−1
0 ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 �sln,sln ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0
. . . 0 0

0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ �sln,sln 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.33)
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Then the transition equations can be written in matrix form

X = ΓX +
1

K
Φ.

It follows that

X =
1

K
(I − Γ)−1Φ. (4.34)

Note that the inverse always exists due to the fact that an irreducible Markov

chain with finite number of states has a unique solution. Moreover, we can further

rewrite X into the following (See Appendix B for detailed derivation):

X =
1

K
⋅
∑K
i=1 Γi−1

det(I − Γ)
Φ. (4.35)

Therefore, the probability of good parts P (glbt) is evaluated as follows:

Theorem 4.3 Under assumptions (1)-(7), the probability of good parts P (glbt) in

batch policy is calculated by

P (glbt) =
K∑
i=1

xi, (4.36)

where K =
∑n
i=1 ksli, and xi is element of X and can be solved from (4.34).

Remark 4.1 Consider the strictly sequencing policy, i.e., product type changes

every cycle. In other words, batch size ki = 1, ∀i. Then,

X = [P (gsl1,1), P (gsl2,1), . . . , P (gsln,1)]T , (4.37)

Φ = [�sl1,sln , �sl2,sl1 , . . . , �sln,sln−1
]T , (4.38)

Γ =

⎛⎜⎜⎜⎜⎜⎝
0 ⋅ ⋅ ⋅ 0 �sl1,sln

�sl2,sl1 ⋅ ⋅ ⋅ 0 0

0
. . . 0 0

0 ⋅ ⋅ ⋅ �sln,sln−1
0

⎞⎟⎟⎟⎟⎟⎠ . (4.39)
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The product quality, denoted as P (glss), under this policy can also be calculated as

P (glss) =
n∑
i=1

xi, (4.40)

where again xi is calculated from (4.34).

Remark 4.2 In many manufacturing plants, 100% inspection is carried out af-

ter critical operations. For example, “finess” (inspection) typically is designed after

painting booths and ovens, where every vehicle will be inspected for paint quality. In

such systems, we can view the vehicle having “good” quality if it passes inspection,

and “defective” if paint defect is discovered. With a relative long time period, based

on the data log of each shift collected on the factory floor, the transitions among

vehicles with different colors can be obtained, and probabilities �ij and �ij can be

calculated. For systems without 100% inspection, a larger amount of inspection data

is needed in order to obtain all transition probabilities. Then, using these probabili-

ties, Theorem 4.3 can be used to evaluate the product quality (in terms of good part

ratio).

Assume �sli,slj = 0, ∀i, j, i.e.,

�sli,slj + �sli,slj = 1, i, j = 1, . . . , n. (4.41)

We obtain a simplified model where the quality failure and repair probabilities can be

described by Bernoulli trials, thus, we refer it to as Bernoulli-like assumption. Then,

the probability to produce a good part for a given sequence sl in batch production

can be simplified as:
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Corollary 4.1 Under assumptions (1)-(7) and Bernoulli assumption (4.41), the

probability of good parts P (glbt) in batch policy is calculated by

P (glbt) =

∑n
i=1(ksli − 1)�sli,sli +

∑n
i=2 �sli,sli−1

+ �sl1,sln∑n
i=1 ksli

. (4.42)

Proof: Immediately follows by Γ = 0 in equation (4.34).

Remark 4.3 In case of strictly sequencing policy, P (glss) is easy to obtain as:

P (glss) =

∑n
i=2 �sli,sli−1

+ �sl1,sln
n

. (4.43)

Remark 4.4 In practice, the quality failure probability �ij is typically small, and

quality repair probability �ij is usually large, close to 1. Thus, the sum of �ij and �ij

is close to 1. Therefore, the Bernoulli-like assumption is close to the scenario in real

world.

4.2.2 A paint shop example

As indicated in Chapter 1, appropriate sequencing of different types of products could

improve the overall quality. In this subsection, a paint shop example is studied under

the Bernoulli-like assumption to obtain some intuition. Consider an automotive paint

shop and assume that there are three color options for vehicles, white, grey and black.

Clearly, there are two possible sequence options available,

s1 = {wℎite, black, grey},

s2 = {wℎite, grey, black}.

The product quality will be dependent on the transition probabilities:

�wℎite,black, �wℎite,grey, �black,wℎite, �black,grey, �grey,wℎite, �grey,black,

�wℎite,black, �wℎite,grey, �black,wℎite, �black,grey, �grey,wℎite, �grey,black.
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When these probabilities are known, using Theorem 4.3, the product quality can be

calculated for both sequences.

Although the product sequence can be selected by searching the whole space of

possible combinations, in order to understand the nature of the system, we would

like to investigate the relationship between product quality and sequence options.

For example, which policy, strictly sequencing or batch, will result in better qual-

ity? Within each policy, which sequence will lead to better quality? Answers to

such questions could provide more guidance for designing product sequence to ensure

desired quality in both design and operation phases. In addition, it is natural to

question whether both policies can adopt the same sequences to improve quality. In

other words, if sequence s1 has better quality in one policy comparing with sequence

s2, will this property hold in another policy? Moreover, some transitions have lower

quality efficiencies than other transitions, will the sequence with the worst transition

with respect to quality efficiency be necessarily the worst sequence in terms of qual-

ity? Or will the sequence with the best transition be necessarily the best sequence?

Providing answers to these questions is of importance in practice.

From equations (4.42) and (4.43), we obtain

P (g1
ss) =

�wℎite,grey + �grey,black + �black,wℎite
3

,

P (g2
ss) =

�wℎite,black + �black,grey + �grey,wℎite
3

,

P (g1
bt) =

�wℎite,grey + �grey,black + �black,wℎite
kwℎite + kblack + kgrey

+
(kwℎite − 1)�wℎite,wℎite + (kblack − 1)�black,black + (kgrey − 1)�grey,grey

kwℎite + kblack + kgrey
,

P (g2
bt) =

�wℎite,black + �black,grey + �grey,wℎite
kwℎite + kblack + kgrey
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+
(kwℎite − 1)�wℎite,wℎite + (kblack − 1)�black,black + (kgrey − 1)�grey,grey

kwℎite + kblack + kgrey
.

From the above, the following properties are observed:

∙ An individual best or worst transition could not quantify whether a sequence

results in better quality or not. The summation of all transition probabilities

with product changes in a sequence determines the quality of the sequence.

∙ Since the second fraction terms in batch policy are same for both sequences,

identical comparison results will be obtained in both strictly sequencing and

batch policies. In other words, if one sequence is better under strictly sequencing

policy, it again has better quality under batch policy, and vice versa.

∙ Due to the same rationale, only the transitions between different product types

play an role in comparing different sequences.

∙ Again, due to the same inference, these results are independent of batch size ki.

Intuitively we understand that it is much easier to maintain good paint quality

to paint a black vehicle after a white one, comparing with reversed sequence. This is

typical in many paint shops that the transition quality from white to black is much

better than that from black to white, and the difference between white to grey and

grey to white is smaller, and also smaller is the difference between grey to black

and black to grey. Therefore, sequence s1 typically results in better quality than s2.

This explains why black vehicle is usually arranged after white and not vice versa in

practical operations.
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Such results provide some hints for more general cases with n product types and

non-identical batch sizes. Below, analysis will be carried out to extend them.

4.2.3 Product sequencing under Bernoulli-like assumption

Optimal sequences under strictly sequencing and batch policies

Recall the definition of quality efficiency

esli,slj =
�sli,slj

�sli,slj + �sli,slj
, i, j = 1, . . . , n. (4.44)

As one can see, under Bernoulli-like assumption, we have esli,slj = �sli,slj , ∀i, j. Thus,

from (4.43) we obtain

Proposition 4.3 Under assumptions (1)-(7) and Bernoulli-like assumption (4.41),

the optimal sequence in strictly sequencing policy is the one that satisfies

max
sl

{
n∑
i=2

esli,sli−1
+ esl1,sln

}
. (4.45)

It is easy to see from (4.42) that the transition probabilities within batches do not

play a role in searching for optimal ones. Hence, such sequence will keep optimality

under batch policy, independent of the batch size ki, ∀i. Therefore,

Proposition 4.4 Under assumptions (1)-(7) and Bernoulli-like assumption (4.41),

the optimal sequence in batch policy is the one that satisfies

max
sl

{
n∑
i=2

esli,sli−1
+ esl1,sln

}
. (4.46)

Remark 4.5 It is clear that the worst sequence for both policies would be

min
sl

{
n∑
i=2

esli,sli−1
+ esl1,sln

}
. (4.47)

Such a sequence is referred to as a Bottleneck Sequence (BN-s), which should be

avoided in operations.

60



Sequence comparison under strictly sequencing and batch policies

Propositions 4.3 and 4.4 indicate that the optimal sequence is only dependent on the

transitions between different product types. Thus, an optimal sequence in one policy

will still be optimal in another one. It is natural to question that if comparing to

another sequence, one sequence leads to better quality in one policy, such property

will still hold or not in another policy. The answer is given below:

Proposition 4.5 Under assumptions (1)-(7) and Bernoulli-like assumption (4.41),

the following statement holds for any sequences sl and sm, l,m ∈ {1, 2, . . . , (n− 1)!}:

P (glbt) > P (gmbt ) if and only if P (glss) > P (gmss), l,m ∈ {1, 2, . . . , (n− 1)!}.

(4.48)

Proof: See Appendix B.

Therefore, we only need to compare different sequences under one policy, and the

results will be applicable under the other policy.

Comparison between strictly sequencing and batch policies

First assume all ki = k, ∀i. For a given sequence sl, equation (4.42) can be simplified

as

P (glbt) =
(k − 1)

∑n
i=1 �sli,sli +

∑n
i=2 �sli,sli−1

+ �sl1,sln
nk

.

Then, comparing with the same sequence under strictly sequencing policy, we have

P (glbt)− P (glss) =
(k − 1)

∑n
i=1 �sli,sli +

∑n
i=2 �sli,sli−1

+ �sl1,sln
nk

−
∑n
i=2 �sli,sli−1

+ �sl1,sln
n

=
k − 1

nk
⋅
[

n∑
i=1

�sli,sli −
( n∑
i=2

�sli,sli−1
+ �sl1,sln

)]
.
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Clearly, the first term in the bracket is the sum of all quality repair probabilities

within a batch, while the second term is the sum of all quality repair probabilities

between batches. Therefore, we define the total quality repair probability and total

quality efficiency without product switch as

�totalno−switcℎ =
n∑
i=1

�sli,sli = etotalno−switcℎ =
n∑
i=1

esli,sli ,

and the total quality repair probability and total quality efficiency with product switch

as

�totalswitcℎ =
n∑
i=2

�sli,sli−1
+ �sl1,sln = etotalswitcℎ =

n∑
i=2

esli,sli−1
+ esl1,sln .

The difference between batch and strictly sequencing policies in product quality is

determined by

�totalno−switcℎ − �totalswitcℎ = etotalno−switcℎ − etotalswitcℎ.

Proposition 4.6 Under assumptions (1)-(7) and Bernoulli-like assumption (4.41)

for all ki = k, ∀i, the following statement holds:

P (glbt) > P (glss) if and only if etotalno−switcℎ > etotalswitcℎ. (4.49)

When batch size ki is not same for all products under batch policy, the product

composition will not be the same as that under strictly sequencing policy (which is

1/n for all products). Thus, direct comparison between two policies is not reasonable.

Therefore, the weight information of different products should be included in the

comparison. To compensate this, we propose a modified comparison based on the

weight of different products. Define

P (i) =
ki∑n
i=1 ki

(4.50)
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as the percentage of product type i among all products. Then modify etotalno−switcℎ and

etotalswitcℎ to

ẽtotalno−switcℎ =
n∑
i=1

[
P (sli)−

1∑n
i=1 ksli

]
esli,sli ,

ẽtotalswitcℎ =
(

1

n
− 1∑n

i=1 ksli

)(
esl1,sln +

n∑
i=2

esli,sli−1

)
. (4.51)

It is clear that the relationship between ẽtotalno−switcℎ and ẽtotalswitcℎ will be the same as

that between etotalno−switcℎ and etotalswitcℎ if all kis are identical. It can be shown that, after

this modification, the previous property still holds even in the case of ki ∕= kj, i ∕= j,

i, j = 1, . . . , n.

Proposition 4.7 Under assumptions (1)-(7) and Bernoulli assumption (4.41)

with any batch size ki, ∀i, the following statement holds:

P (glbt) > P (glss) if and only if ẽtotalno−switcℎ > ẽtotalswitcℎ. (4.52)

Proof: See Appendix B.

Therefore, as long as the total quality efficiency within the batch is better than

that between batches, implementing batch policy is always superior in quality than

using strictly sequencing policy.

Remark 4.6 In our experiences, when the defects are introduced due to change

of products, such as location errors in machining operations, incomplete purging

in painting operations, mis-matching parts in assembly operations, etc., the quality

efficiencies are typically better without product switch. In this case, batch operation

is preferred. However, if the defects are caused by machines or loaded materials, such
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as bad mixer of paints, wrongly labeled carts of parts, etc., batch production may

be detrimental since defective parts are produced continuously. In this case, quality

efficiency within the batch is typically small. Therefore, condition (4.52) provides a

quantitative measure for policy selection.

4.2.4 Product sequencing under Bernoulli-relax assumption

Although Bernoulli-like assumption is close to the cases in practice, it is still too

strict. Thus, we relax this assumption to more general cases, referred to as the

Bernoulli-relax assumption, i.e.,

0 < ∣�sli,slj ∣ < 1, i, j = 1, . . . , n. (4.53)

Since in most cases �sli,slj is small, we focus on the cases that �sli,slj ≪ 1.

Optimal sequences under strictly sequencing and batch policies

Recall that under Bernoulli-like assumption we conclude that the optimal sequence to

deliver best quality is the sequence with the largest
∑n
i=2 �sli,sli−1

+�sl1,sln or
∑n
i=2 esli,sli−1

+

esl1,sln . Such result may not be true when Bernoulli-like assumption is relaxed, since

now �ij is not equal to eij. However, the following relationship exists:

Proposition 4.8 Under assumptions (1)-(7) and Bernoulli-relax assumption (4.53),

for a given sequence sl, the following statement on product quality P (gl) is true:

1

1 + �max
�̃l ≤ P (gl) ≤ 1

1− �max
�̃l, (4.54)

where �max = maxij ∣�sli,slj ∣, ∀i, j, and

�̃l =

∑n
i=2 �sli,sli−1

+ �sl1,sln
n

:= �̃lss (4.55)
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for strictly sequencing policy and

�̃l =

∑n
i=1(ksli − 1)�sli,sli +

∑n
i=2 �sli,sli−1

+ �sl1,sln∑n
i=1 ksli

:= �̃lbt (4.56)

for batch policy.

Proof: See Appendix B.

It is easy to see that �̃l represents the product quality in Bernoulli-like case with

the same �lij. From (4.54), it can be further deduced that

�max
1 + �max

≤
∣∣∣∣∣P (gl)− �̃l

P (gl)

∣∣∣∣∣ ≤ �max
1− �max

.

When �max ≪ 1, we obtain that the difference between P (gl) and �̃l will be close

to �max, which is small. Therefore, under this condition, we may apply the criterion

in Bernoulli-like case to determine the optimal sequence.

To investigate the effectiveness of this condition, i.e.,

max
sl

{
n∑
i=2

esli,sli−1
+ esl1,sln

}
, (4.57)

to test optimality under Bernoulli-relax assumption, we carry out numerical exper-

iments by randomly chosen �ij. Specifically, for a given �max, we randomly and

equiprobably select �ij and �ij such that

�ij ∈ (0, �max],

�ij ∈ [1− �max, 1),

which implies that

1− �max < �ij + �ij < 1 + �max.
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The experiment is repeated 10,000 times for n = 3 to 6 with different �max, respec-

tively. The optimal sequences selected by complete search of the possible combina-

tions are compared with the sequences chosen using condition (4.57). When both the

chosen sequences are identical, condition (4.57) results in an effective selection. The

percentages of correct selections under different scenarios are summarized in Table

4.1 for �max = 0.1 and 0.2. It is clear that when �max is small, which is the scenario of

majority cases, condition (4.57) results in a high percentage of correctness, typically

more than 90%.

Table 4.1: Correctness of condition (4.57) (%)

n 3 4 5 6
�max = 0.1 98.22 96.25 94.71 93.20
�max = 0.2 96.51 92.70 89.65 87.53

Even if condition (4.57) does not select the optimal sequence, a sub-optimal one is

typically chosen. In Table 4.2, the cases of incorrect selections are analyzed. First, the

percentage that condition (4.57) selects the sequence with the second largest quality

is presented. It can be seen that among all the incorrectly chosen cases, roughly 90%

and 80% of them result in selecting the sequence with the second large quality based

on condition (4.57), for �max = 0.1 and 0.2, respectively. Moreover, we investigate

the differences in quality between the optimal sequence and the one selected using

condition (4.57). As one can see that such differences are extremely small.

Remark 4.7 The above numerical experiments are carried out when �max is

small, which is the majority of cases in practice. For completeness of the study,

we also investigate the cases when �max is large. As we expect, the percentage of
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Table 4.2: Errors when condition (4.57) has incorrect selections

n 3 4 5 6
Selecting 2nd largest quality (%) 100 97.87 88.66 88.09

Average difference 0.0012 9.785E-004 7.457E-004 6.047E-004
Maximal difference 0.0043 0.0044 0.0031 0.0027

Average relative difference (%) 0.12 0.1 0.077 0.062
Maximal relative difference (%) 0.45 0.47 0.32 0.28

(a) �max = 0.1

n 3 4 5 6
Selecting 2nd largest quality (%) 100 89.86 78.26 78.27

Average difference 0.0045 0.0035 0.0029 0.0022
Maximal difference 0.0163 0.0133 0.0112 0.0110

Average relative difference (%) 0.50 0.38 0.31 0.24
Maximal relative difference (%) 1.78 1.44 1.21 1.19

(b) �max = 0.2

correctness of the proposition in Bernoulli-like case to be applicable drops. However,

even when �max = 0.5, still the majority of cases condition (4.57) is applicable to select

optimal sequence (roughly more than 80% and 70% for n = 3 and 6, respectively).

Similar results are obtained in subsequent analysis as well.

Based on the above, we conclude that condition (4.57) can be used as a criterion

for selecting the sequence to maximize product quality.

Sequence comparison under strictly sequencing and batch policies

Under certain conditions, similar results to Proposition 4.5 under Bernoulli-relax as-

sumption can be obtained.
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Proposition 4.9 Under assumptions (1)-(7) and Bernoulli-relax assumption (4.53),

the following relationship holds for any sequence sl and sm, l,m ∈ {1, 2, . . . , (n− 1)!}

P (glbt) > P (gmbt ) if and only if P (glss) > P (gmss), (4.58)

if

0 < �max <
�̃lbt − �̃mbt
�̃lbt + �̃mbt

=
�̃lss − �̃mss
�̃lss + �̃mss

, (4.59)

where �̃lss and �̃lbt are defined in (4.55) and (4.56), respectively.

Proof: See Appendix B.

However, condition (4.59) does not have a clear physical meaning and is difficult

to apply. Therefore, we investigate the correctness of Proposition 4.5 under Bernoulli-

relax assumption numerically. For �max = 0.1 and 0.2, we consider number of products

n = 3, 4, 5, and 6, and randomly and equiprobably select batch size ki from 2 to 6 for

batch policy. Then we search the complete space of sequence options. For any given

sequences sl and sm, we compare the results of their relationships under both strictly

sequencing and batch policies. If the comparison results are identical, it implies

Proposition 4.5 is still correct under Bernoulli-relax assumption. The correctness of

all the comparisons is summarized in Table 4.3. As one can see, for �max = 0.1,

within more than 98% of the cases, Proposition 4.5 still holds. When �max = 0.2,

such correctness is more than 96%.

Table 4.3: Correctness of Proposition 4.5 under Bernoulli-relax assumption

n 3 4 5 6
�max = 0.1 98.42 98.23 98.16 98.08
�max = 0.2 96.90 96.46 96.21 96.14

Therefore, we formulate the following hypothesis:

68



Hypothesis 4.1 Under assumptions (1)-(7) and when �max ≪ 1, the following

statement holds for any sequences sl and sm, l,m ∈ {1, 2, . . . , (n− 1)!}:

P (glbt) > P (gmbt ) if and only if P (glss) > P (gmss). (4.60)

Comparison between strictly sequencing and batch policies

For the general case, we have

Proposition 4.10 Under assumptions (1)-(7) and Bernoulli-relax assumption

(4.53), for equal batch size k, the following statements hold

(1) P (glbt) > P (lss) if �totalno−switcℎ > �totalswitcℎ and

0 < �max <
�totalno−switcℎ − �totalswitcℎ

�totalno−switcℎ + k+1
k−1

�totalswitcℎ

. (4.61)

(2) P (glbt) < P (glss) if �totalswitcℎ > �totalno−switcℎ and

0 < �max <
�totalswitcℎ − �totalno−switcℎ

�totalno−switcℎ + k+1
k−1

�totalswitcℎ

. (4.62)

Proof: See Appendix B.

Note that Proposition 4.10 can be reduced to Propositions 4.2 when k = 2. As

one can see, conditions in both propositions are similar to that in Propositions 4.6

and 4.7 in Bernoulli-like case. However, the exact conditions are difficult to apply in

practice. Therefore, we carry out analysis numerically to verify whether Propositions

4.6 and 4.7 can be applied under Bernoulli-relax assumption or not. For the same

sequence sl, we consider number of product types n = 3 to 6, and randomly select

batch size k from 2 to 6. Note that in this case, in order to keep the same percentage
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Table 4.4: Correctness of Proposition 4.6 under Bernoulli-relax assumption with iden-
tical ki

n 3 4 5 6
�max = 0.1 98.14 98.24 98.10 98.01
�max = 0.2 96.53 96.38 96.24 96.08

of product composition under both policies, all ki = k. The results are summarized

in Table 4.4.

Clearly, more than 98% and 96% of cases for �max = 0.1 and 0.2 obtain positive

results, respectively. It implies that Proposition 4.6 can be applied under Bernoulli-

relax assumptions if �max is small.

When kis are not the same, we check the correctness of Proposition 4.7 under

Bernoulli-relax assumption using the modified ẽtotalno−switcℎ and ẽtotalswitcℎ, the results are

shown in Table 4.5.

Table 4.5: Correctness of Proposition 4.7 under Bernoulli-relax assumption with ran-
dom ki

n 3 4 5 6
�max = 0.1 98.40 98.50 98.36 98.33
�max = 0.2 96.81 96.90 96.81 96.74

Again, we obtain the positive results with similar percentages. Therefore, Propo-

sition 4.7 still holds in majority cases when �max is small. Finally, we propose the

following hypothesis:

Hypothesis 4.2 Under assumptions (1)-(7) and when �max ≪ 1, with any batch
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size ki, ∀i, the following statement holds:

P (glbt) > P (glss) if and only if ẽtotalno−switcℎ > ẽtotalswitcℎ. (4.63)

4.3 Quality Improvability with respect to Product Sequenc-
ing

Product sequencing has an impact on product quality. For example, in automotive

paint shops, it is typical to sequence darker vehicles after the lighter one, and not

vice versa, to improve quality. Thus, scheduling an appropriate sequence to achieve

better quality is of significant importance. Developing a method to improve quality

through resequencing, and to identify the worst sequence to avoid during operations, is

necessary. Therefore, we define the improvability with respect to product sequencing

as follows:

Definition 4.1 A flexible system with product sequence sl is improvable in terms

of quality with respect to sequencing (referred to as Qs improvable) if there exists

another sequence sm such that

n∑
sli=1

k
sl
i∑

j=1

P (gsli,j) <
n∑

smi =1

ksm
i∑

j=1

P (gsmi ,j), ∀m ∈ {1, 2, . . . , (n− 1)!}. (4.64)

Otherwise it is unimprovable with respect to sequencing (Qs unimprovable).

In this section, we seek Qs improvability indicators based on the collected data,

rather than direct calculations of quality performance, to identify how to improve

quality through resequencing. We pursue to use such indicators to compare the

resulting system quality with different sequences.

In addition, we refer to the worst sequence in quality as the quality bottleneck

sequence, which is defined as
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Definition 4.2 A quality bottleneck sequence (BN-s) is the one that satisfies

min
l∈{1,2,...,(n−1)!}

{
n∑

sli=1

k
sl
i∑

j=1

P (gsli,j)

}
. (4.65)

Using a BN-s indicator, again based on the measured data on the factory floor, we

can discover which sequence will be the bottleneck sequence that should be avoided

in production operations.

In the case of strictly sequencing policy, i.e., ki = 1, ∀i, a system with sequence

sl is Qs improvable if there exists another sequence sm such that

n∑
sli=1

P (gsli) <
n∑

smi =1

P (gsmi ).

The BN-s is the sequence that satisfies

min
l∈{1,2,...,(n−1)!}

{
n∑

sli=1

P (gsli)

}
. (4.66)

To develop these indicators, we begin with the simple case under the Bernoulli-like

assumption, then extend to more general cases. The results are presented below.

4.3.1 Quality improvability under Bernoulli-like assumption

As one can see from quality performance in batch and strictly sequencing policies

(Equations (4.42) and (4.43)), only transitions between different products contribute

to product quality (since
∑n
i=1(ksli − 1)�sli,sli are identical for all sequences). Thus,

whether a system is Qs improvable or not can be answered by checking whether the

summation of all repair probabilities with product switch is improvable or not. In

other words, we have
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Proposition 4.11 Under assumptions (1)-(7) and the Bernoulli-like assumption

(4.41), a flexible system with product sequence sl is Qs improvable if and only if there

exists another sequence sm such that

n∑
i=2

�sli,sli−1
+ �sl1,sln <

n∑
i=2

�smi ,smi−1
+ �sm1 ,smn , (4.67)

∀m ∈ {1, 2, . . . , (n− 1)!},m ∕= l.

Otherwise, it is Qs unimprovable. In other words, P (gl) < P (gm) if and only if (4.67)

holds.

Thus,
∑n
i=2 �sli,sli−1

+�sl1,sln can be viewed as a Qs improvability indicator. Clearly,

the optimal (i.e., Qs unimprovable) sequence is the one that leads to maximum

∑n
i=2 �sli,sli−1

+ �sl1,sln .

The quality bottleneck sequence, i.e., the worst sequence in terms of quality, is

then defined by the smallest summation of all repair probabilities with product switch.

Therefore, an indicator for bottleneck sequence is introduced as:

BN-s Indicator: Under assumptions (1)-(7) and the Bernoulli-like assumption

(4.41), the quality bottleneck sequence is the one that satisfies

min
l∈{1,2,...,(n−1)!}

{
n∑
i=2

�sli,sli−1
+ �sl1,sln

}
. (4.68)

As one can see,
∑n
i=2 �sli,sli−1

+�sl1,sln can be used forQs improvability and bottleneck

sequence identifications from the point of view of product sequencing. In addition,

such an indicator holds independently of batch or strictly sequencing policies.
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4.3.2 Quality improvability under Bernoulli-relax assumption

In practice, Bernoulli-like assumption does not have too much discrepancy from prac-

tical scenarios. However, such a condition is still too strict. Therefore, we prefer to

relax this assumption to consider more general cases.

Approximations of P (g)

Under the Bernoulli-like assumption, a quality bottleneck sequence is the one with

the smallest
∑n
i=2 �sli,sli−1

+ �sl1,sln . Since �ij is identical to eij under the Bernoulli-

like assumption, the sequence with the smallest
∑n
i=2 esli,sli−1

+ esl1,sln results in worst

quality. In Bernoulli-relax scenario, the product quality will not only be dependent

on �ij, but also on �ij. Thus, some variations of indicator
∑n
i=2 �sli,sli−1

+ �sl1,sln need

to be discovered for improvability and bottleneck identifications. We consider the

possibility of developing an indicator by using eij. Specifically, we obtain:

Proposition 4.12 Under assumption (1)-(7) and the Bernoulli-relax assumption

(4.53), for a given sequence sl, the product quality can be evaluated as:

P (glbt) =

∑n
i=1(ksli − 1)esli,sli +

∑n
i=2 esli,sli−1

+ esl1,sln
K

+
(�sl1,sl1 − �sl1,sln)esl1,sln +

∑n−1
i=2 (�sli,sli − �sli,sli−1

)esli,sli−1

K

(
1− �sl1,sln

∏n
i=2 �sli,sli−1

∏n
i=1 �

k
sl
i
−1

sli,s
l
i

)

+
(�sln,sln − �sln,sln−1

)esln,sln−1
+
∑n−1
i=1 (�sli+1,s

l
i
− �sli,sli)esli,sli

K

(
1− �sl1,sln

∏n
i=2 �sli,sli−1

∏n
i=1 �

k
sl
i
−1

sli,s
l
i

)

+
(�sl1,sln − �sln,sln)esln,sln

K

(
1− �sl1,sln

∏n
i=2 �sli,sli−1

∏n
i=1 �

k
sl
i
−1

sli,s
l
i

)
+o(�2

max), (4.69)
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P (glss) =

∑n
i=2 esli,sli−1

+ esl1,sln
n

+
(�sl2,sl1 − �sl1,sln)esl1,sln +

∑n−1
i=2 (�sli+1,s

l
i
− �sli,sli−1

)esli,sli−1
+ (�sl1,sln − �sln,sln−1

)esln,sln−1

n

(
1− �sl1,sln

∏n
i=2 �sli,sli−1

)
+o(�2

max). (4.70)

Proof: See Appendix B.

In addition, with a relative loose approximation, we obtain

Proposition 4.13 Under assumption (1)-(7) and the Bernoulli-relax assumption

(4.53), for a given sequence sl, the product quality can be evaluated as:

P (glbt) =

∑n
i=1(ksli − 1)esli,sli +

∑n
i=2 esli,sli−1

+ esl1,sln
K

+ o(�max), (4.71)

P (glss) =

∑n
i=2 esli,sli−1

+ esl1,sln
n

+ o(�max). (4.72)

Proof: See Appendix B.

Given product sequence sl, by removing the terms of transitions within batches,

and the denominators (assuming they are close to K due to �ij ≪ 1), we define

I l�max
=

n∑
i=2

esli,sli−1
+ esl1,sln , (4.73)

I l�2max
=

n∑
i=2

esli,sli−1
+ esl1,sln +

n−1∑
i=1

(�sli+1,s
l
i
− �sli,sli)esli,sli + (�sl1,sln − �sln,sln)esln,sln

+(�sl1,sl1 − �sl1,sln)esl1,sln +
n−1∑
i=2

(�sli,sli − �sli,sli−1
)esli,sli−1

+(�sln,sln − �sln,sln−1
)esln,sln−1

. (4.74)

We will investigate next whether I�max and I�2max
can be used as Qs improvability and

bottleneck sequence indicators.
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Indicator I�2max

First we consider using I�2max
as an indicator for improvability and bottleneck identi-

fications. We expect to identify the Qs improvability using I�2max
, i.e.,

I l�2max
> Im�2max

if and only if P (gl) > P (gm). (4.75)

The unimprovable (or, optimal) sequence and the bottleneck sequence can also be

discovered by finding the ones which maximize and minimize I�2max
, respectively. To

check the correctness of such an indicator, we investigate the bound for o(�2
max) first.

Let function sum(⋅) represent the summation of the elements of a vector, i.e., for

� = [�1, �2, . . . , �n]T ,

sum(�) =
n∑
i=1

�i.

Then we obtain

Corollary 4.2 Under assumption (1)-(7) and the Bernoulli-relax assumption (4.53),

for a given sequence sl, the following bound is obtained:

∣o(�2
max)∣ ≤ 2

(
1

1− �max
− 1 + �max

1− �Kmax

)
sum

(
1

K
E
)
, (4.76)

where the vector E is defined as

E = [esl1,sln , esl1,sl1 , . . . , esl1,sl1 , esl2,sl1 , esl2,sl2 , . . . , esln,sln−1
, esln,sln , . . . , esln,sln ]T

for batch policy, and

E = [esl1,sln , esl2,sl1 , . . . , esln,sln−1
]T

for strictly sequencing policy.
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Proof: See Appendix B.

As one can expect, when �max is small, such a bound will also be small, which

implies that most likely Indicator I�2max
leads to an accurate identification. To further

investigate this accuracy, numerical experiments are carried out by randomly selecting

�ij. For any given �max, we randomly and equiprobably select �ij and then �ij such

that

�ij ∈ (0, �max],

�ij ∈ [1− �max, 1),

Such a selection implies that

1− �max < �ij + �ij < 1 + �max.

In addition, batch size ki is also selected randomly from

ki ∈ {1, 2, . . . , 6}.

Then, we investigate whether condition (4.75) holds or not under the Bernoulli-

relax assumption. For a selected �max, we randomly generate two sequences. We

calculate the quality efficiencies and evaluate the good job probabilities for both se-

quences. Then we compare the two sequences based on Indicator I�2max
(i.e., using

condition (4.75)) and the good job probabilities. If both comparisons result in iden-

tical conclusions, it implies that condition (4.75) is correct. Otherwise an incorrect

comparison is obtained. For the cases of incorrect comparison, we check the differ-

ences in quality between these two sequences. Such experiments are repeated for

10,000 times.
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The results of this experiment are summarized in Tables 4.6 and 4.7. It can be seen

from Tables 4.6 that condition (4.75) is correct almost for all cases (larger than 99%)

when �max = 0.1 and 0.2. For the cases where condition (4.75) results in incorrect

comparisons, let sl and sm are two sequences under comparison, and P (gl) and P (gm)

are the corresponding quality. When the comparison results are different, define

Δc = ∣P (gl)− P (gm)∣,

�c =
∣P (gl)− P (gm)∣

P (gl)+P (gm)
2

⋅ 100%.

Then, it can be seen from Table 4.7 that, in this case, the differences in quality between

these two sequences are extremely small. Thus, we conclude that Indicator I�2max
(i.e.,

condition (4.75)) can provide an effective comparison between two sequences.

Table 4.6: Effectiveness of Indicator I�2max
for Qs improvability (%)

n 3 4 5 6
�max=0.1 99.94 99.90 99.94 99.92
�max=0.2 99.62 99.67 99.68 99.74

To identify the effectiveness of Indicator I�2max
for Qs unimprovable sequence, the

optimal sequences selected by complete search of the possible combinations are com-

pared with the sequences chosen using Indicator I�2max
(i.e., maxl I

l
�2max

). When both

the chosen sequences are identical, the indicator results in an effective selection. The

percentages of correct selections under different scenarios are summarized in Table

4.8 for �max = 0.1 and 0.2. It is clear that when �max is small, which is the scenario

of majority cases, such an indicator results in a high percentage of correctness (about

99% or more).
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Table 4.7: Errors when Indicator I�2max
leads to incorrect comparisons

n 3 4 5 6
Average Δc 1.91E-05 9.67E-06 4.01E-06 8.12E-06
Maximal Δc 3.74E-05 2.75E-05 1.02E-05 3.03E-05

Average �c (%) 2.02E-03 1.02E-03 4.18E-04 8.54E-04
Maximal �c (%) 3.98E-03 2.89E-03 1.06E-03 3.21E-03

(a) �max = 0.1

n 3 4 5 6
Average Δc 1.90E-04 1.11E-04 8.63E-05 6.49E-05
Maximal Δc 1.29E-03 5.42E-04 3.87E-04 3.36E-04

Average �c (%) 2.12E-02 1.23E-02 9.63E-03 7.24E-03
Maximal �c (%) 1.45E-01 6.07E-02 4.34E-02 3.74E-02

(b) �max = 0.2

Again we investigate the cases where Indicator I�2max
does not select the optimal

sequence. In such scenario, a sub-optimal one is typically chosen. In Table 4.9, the

cases of incorrect selections are analyzed. First, the percentage that Indicator I�2max

selects the sequence with the second largest quality is presented. It can be seen that

among all the incorrectly chosen cases, roughly all of them result in selecting the

sequence with the second large quality based on Indicator I�2max
. Moreover, we inves-

tigate the differences in quality between the optimal sequence and the one selected

using Indicator I�2max
. Define

Δo = ∣P (gl)− P (gopt)∣,

�o =
∣P (gl)− P (gopt)∣

P (gopt)
⋅ 100%.

As one can see, such differences are extremely small.

Finally, we check the correctness of Indicator I�2max
for bottleneck identification

(i.e., minl I
l
�2max

). As shown in Tables 4.10 and 4.11, it can correctly identify the
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Table 4.8: Effectiveness of Indicator I�2max
for Qs unimprovable sequence (%)

n 3 4 5 6
�max = 0.1 99.92 99.90 99.69 99.67
�max = 0.2 99.66 99.31 98.92 98.35

Table 4.9: Errors when Indicator I�2max
identifies incorrect unimprovable sequence

n 3 4 5 6
Selecting 2nd largest quality (%) 100 100 100 100

Average Δo 1.44E-05 1.74E-05 1.07E-05 1.50E-05
Maximal Δo 8.31E-05 6.59E-05 5.58E-05 4.14E-05

Average �o (%) 1.51E-03 1.82E-03 1.13E-03 1.57E-03
Maximal �o (%) 8.67E-03 6.80E-03 5.89E-03 4.36E-03

(a) �max = 0.1

n 3 4 5 6
Selecting 2nd largest quality (%) 100 98.55 95.37 95.15

Average Δo 1.49E-04 1.47E-04 1.35E-04 1.17E-04
Maximal Δo 3.94E-04 5.46E-04 9.11E-04 5.09E-04

Average �o (%) 1.67E-02 1.61E-02 1.47E-02 1.28E-02
Maximal �o (%) 4.45E-02 6.00E-02 9.91E-02 5.43E-02

(b) �max = 0.2
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bottleneck sequence in almost all cases. Even if the identification is not correct, the

sequence with the second worst quality is typically identified and the differences in

quality comparing with the bottleneck one are extremely small. In Table 4.11, Δb

and �b are defined as:

Δb = ∣P (gl)− P (gb)∣,

�b =
∣P (gl)− P (gb)∣

P (gb)
⋅ 100%.

Table 4.10: Effectiveness of BN-s Indicator I�2max
(%)

n 3 4 5 6
�max = 0.1 99.93 99.88 99.72 99.65
�max = 0.2 99.66 99.38 98.86 98.77

Table 4.11: Errors when Indicator I�2max
results in incorrect BN-s identification

n 3 4 5 6
Selecting 2nd largest quality (%) 100 100 100 96.43

Average Δb 1.39E-05 1.52E-05 1.45E-05 9.81E-06
Maximal Δb 3.64E-05 5.90E-05 5.10E-05 3.94E-05

Average �b (%) 1.47E-03 1.60E-03 1.51E-03 1.02E-03
Maximal �b (%) 3.89E-03 6.19E-03 5.31E-03 4.08E-03

(a) �max = 0.1

n 3 4 5 6
Selecting 2nd largest quality (%) 100 99.12 96.77 96.75

Average Δb 2.17E-04 1.24E-04 9.79E-05 1.20E-04
Maximal Δb 9.78E-04 8.29E-04 4.17E-04 6.18E-04

Average �b (%) 2.40E-02 1.35E-02 1.07E-02 1.31E-02
Maximal �b (%) 1.10E-01 8.83E-02 4.54E-02 6.95E-02

(b) �max = 0.2

Based on the above results, we proposed the following hypothesis:
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Hypothesis 4.3 Under assumptions (1)-(7) and the Bernoulli-relax assumption

(4.53), a flexible system with product sequence sl is Qs improvable if and only if there

exists another sequence sm such that

I l�2max
< Im�2max

, ∀m ∈ {1, 2, . . . , (n− 1)!},m ∕= l. (4.77)

Otherwise, it is Qs unimprovable. In other words, P (gl) < P (gm) if and only if (4.77)

holds.

In addition, we propose the following BN-s indicator:

BN-s Indicator: Under assumptions (1)-(7) and the Bernoulli-relax assumption

(4.53), the quality bottleneck sequence is the one that satisfies

min
l∈{1,2,...,(n−1)!}

I l�2max
. (4.78)

Although Indicator I�2max
can lead to effective identification of Qs improvability

and bottleneck sequence, its computation is relatively complicated. To make the

indicator simple, we investigate Indicator I�max next.

Indicator I�max

Now we expect to identify the Qs improvability using I�max , i.e.,

I l�max
> Im�max

if and only if P (gl) > P (gm). (4.79)

Then, the maximal and minimal I�max can be used to identify the unimprovable and

the bottleneck sequences, respectively. In addition to the rationale from Equations

(4.42) and (4.43), Indicator I�max can also be understood by directly replacing �ij in

Proposition 4.11 with eij, where under Bernoulli-like assumption, they are identical.
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Intuitively we expect such replacement will lead to effective identification in most

cases.

First, we evaluate the bound for o(�max).

Corollary 4.3 Under assumption (1)-(7) and the Bernoulli-relax assumption (4.53),

for a given sequence sl, the following bound is obtained:

∣o(�max)∣ ≤ 2

(
1

1− �max
− 1

1− �Kmax

)
sum

(
1

K
E
)
, (4.80)

where the vector E is defined as

E = [esl1,sln , esl1,sl1 , . . . , esl1,sl1 , esl2,sl1 , esl2,sl2 , . . . , esln,sln−1
, esln,sln , . . . , esln,sln ]T

for batch policy, and

E = [esl1,sln , esl2,sl1 , . . . , esln,sln−1
]T

for strictly sequencing policy.

Proof: See Appendix B.

Thus, although o(�max) is inferior to o(�2
max), its bound is still small when �max is

small. Therefore, similar numerical experiments are carried out to further investigate

the effectiveness of Indicator I�max . The results for Qs improvability identification are

summarized in Table 4.12 and 4.13. It can be seen from Table 4.12 that Indicator

I�max (i.e., condition (4.79)) is correct for more than 98% and 96% for �max = 0.1

and 0.2, respectively. For the scenarios where condition (4.79) results in incorrect

comparisons, it can be seen from Table 4.13 that, in this case, the differences in

quality between two sequences are very small. Thus, we conclude that Indicator I�max

can provide an effective comparison between two sequences.
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Table 4.12: Effectiveness of Indicator I�max for Qs improvability (%)

n 3 4 5 6
�max=0.1 98.21 98.35 98.13 98.12
�max=0.2 98.18 96.52 96.05 96.20

Table 4.13: Errors when Indicator I�max leads to incorrect comparisons

n 3 4 5 6
Average Δc 3.80E-04 2.55E-04 2.37E-04 1.98E-04
Maximal Δc 3.01E-03 2.13E-03 1.63E-03 1.14E-03

Average �c (%) 4.00E-02 2.68E-02 2.50E-02 2.08E-02
Maximal �c (%) 0.31 0.23 0.17 0.12

(a) �max = 0.1

n 3 4 5 6
Average Δc 1.37E-03 1.01E-03 8.96E-04 8.76E-04
Maximal Δc 1.20E-02 8.85E-03 7.98E-03 8.70E-03

Average �c (%) 0.15 0.11 9.95E-02 9.71E-02
Maximal �c (%) 1.30 0.99 0.87 0.94

(b) �max = 0.2
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Similar results are obtained to validate that the maximal value of I�max leads to

Qs unimprovable (i.e., optimal) sequence. It is shown in Table 4.14 and 4.15 that the

correctness of using indicator is more than 98% for n = 3 and 93% for n = 6 when

�max = 0.1, and 96% for n = 3 and 85% for n = 6 when �max = 0.2. In addition, it

typically identifies the second largest quality and the difference (in quality) compared

with the optimal sequence is very small.

Table 4.14: Effectiveness of Indicator I�max for Qs unimprovable sequence (%)

n 3 4 5 6
�max = 0.1 98.08 96.26 94.53 92.22
�max = 0.2 96.22 92.37 88.15 84.89

Table 4.15: Errors when Indicator I�max identifies incorrect unimprovable sequence

n 3 4 5 6
Selecting 2nd largest quality (%) 100 94.65 89.40 86.50

Average Δo 6.38E-04 5.56E-04 5.48E-04 5.24E-04
Maximal Δo 3.42E-03 2.96E-03 3.05E-03 2.56E-03

Average �o (%) 6.72E-02 5.82E-02 5.72E-02 5.47E-02
Maximal �o (%) 0.36 0.31 0.32 0.27

(a) �max = 0.1

n 3 4 5 6
Selecting 2nd largest quality (%) 100 91.74 76.29 73.59

Average Δo 2.16E-03 2.11E-03 2.00E-03 1.89E-03
Maximal Δo 1.09E-02 1.43E-02 1.11E-02 9.98E-03

Average �o (%) 0.24 0.23 0.22 0.21
Maximal �o (%) 1.16 1.57 1.20 1.10

(b) �max = 0.2

Although the accuracy of Indicator I�max is not as good as that of Indicator I�2max
,

it is still relative high and acceptable for practical applications. More important, the

calculation is much simpler and is more intuitive. Therefore, another hypothesis is

proposed below:
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Hypothesis 4.4 Under assumptions (1)-(7) and the Bernoulli-relax assumption

(4.53), a flexible system with product sequence sl is Qs improvable if and only if there

exists another sequence sm such that

I l�max
< Im�max

, ∀m ∈ {1, 2, . . . , (n− 1)!},m ∕= l. (4.81)

Otherwise, it is Qs unimprovable. In other words, P (gl) < P (gm) if and only if (4.81)

holds.

Next we study bottleneck sequence. As shown in Table 4.16, when �max is small,

which is the scenario of majority cases in practice, Indicator I�max results in a relative

high percentage of correctness, typically more than 90%. For the incorrectly identified

cases, Table 4.17 suggests that the sequence with the second worst quality is typically

calculated. Roughly 90% and 80% of them result in selecting the sequences with the

second worst quality, for �max = 0.1 and 0.2, respectively. Moreover, the differences

in quality are also very small.

Table 4.16: Effectiveness of BN-s Indicator I�max (%)

n 3 4 5 6
�max = 0.1 98.14 96.26 94.14 92.19
�max = 0.2 96.54 92.03 88.65 84.99

Remark 4.8 In addition to the above cases where �max is small, for completeness

of the study, we also investigate the cases when �max is large. As one expects, the

percentage of correctness of BN-s indicator using Indicator I�max drops. However,

even when �max = 0.5, still the percentages that Indicator I�max can select the correct

bottleneck sequence are more than 90% and 65% for n = 3 and 6, respectively.
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Table 4.17: Errors when Indicator I�max results in incorrect BN-s identification

n 3 4 5 6
Selecting 2nd largest quality (%) 100 95.72 92.49 88.99

Average Δb 5.75E-04 5.24E-04 5.00E-04 4.70E-04
Maximal Δb 2.52E-03 2.69E-03 2.81E-03 2.39E-03

Average �b (%) 6.05E-02 5.48E-02 5.22E-02 4.90E-02
Maximal �b (%) 0.26 0.28 0.29 0.25

(a) �max = 0.1

n 3 4 5 6
Selecting 2nd largest quality (%) 100 90.46 82.64 76.28

Average Δb 2.42E-03 1.82E-03 1.83E-03 1.69E-03
Maximal Δb 1.56E-02 1.13E-02 9.82E-03 1.04E-02

Average �b (%) 0.27 0.20 0.20 0.18
Maximal �b (%) 1.70 1.23 1.06 1.17

(b) �max = 0.2

Based on the above, we conclude that Indicator I�max can be used as a criterion

to identify bottleneck sequence.

BN-s Indicator: Under assumptions (1)-(7) and the Bernoulli-relax assumption

(4.53), the quality bottleneck sequence is the one that satisfies

min
l∈{1,2,...,(n−1)!}

I l�max
. (4.82)

4.4 Summary

In this chapter, an analytical method based on Markov chain model is presented to

study the product sequence policy with respect to the quality performance in a flexible

manufacturing system with batch productions. In addition, we investigate the impact

of product sequencing on quality. The optimal sequences leading to best quality un-

der both batch and strict sequencing policies are obtained, the comparisons between
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different sequences under both policies are carried out, and finally the comparison be-

tween two policies is studied. It is shown that the product sequence observes the same

characteristics under both policies (e.g., the optimality and comparison results), and

batch policies outperforms the strictly sequencing policy if the total quality efficiency

without product switch is better than the total quality efficiency with product switch.

The model introduced here can be used to evaluate quality and investigate sequencing

policies in many flexible systems with batch operations. It can also provide guidance

for system design and operation to achieve better quality. As introduced in the ap-

plication example, significant improvement in quality can be obtained by selecting

a better sequencing and batch policy. However, it still has limitations. One of the

limitation of this method is that it requires substantial amount of data to obtain sta-

ble results on transition probabilities. It is typically more suitable for manufacturing

systems with 100% inspections, or for systems with sampling inspections but having

a necessary quality data to calculate transition probabilities. Another limitation is

related to the computation efficiency when the number of products is large. In this

case, the dimension of the matrix will be increasing significantly.

In addition, Qs improvability and quality bottleneck sequence are defined. A

flexible system is Qs improvable if there exists another sequence which renders better

quality, and a quality bottleneck sequence is the one that impedes quality in the

strongest manner. To check Qs improvability or to identify a quality bottleneck

sequence, indicators based on collected data on the factory floor are developed. Such

development provides a simple tool for production engineers and managers to design

the appropriate sequence to achieve higher quality in flexible manufacturing systems.
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CHAPTER 5

BOTTLENECK TRANSITION WITH RESPECT

TO QUALITY

As shown in Equations (4.36) and (4.40), the product quality is a function of the tran-

sition probabilities, such as �ij and �ij. Thus, improving these transition probabilities

could lead to improvement of product quality. The question is, which transition should

we focus on? To improve product quality most efficiently, the transition, whose im-

provement will lead to the largest improvement in product quality comparing with

improving all other transitions, should be the one. Such a transition is referred to

as quality bottleneck transition, which impedes the product quality in the strongest

manner. Therefore, the bottleneck transition has the largest impact on quality.

Based on the above, we define

Definition 5.1 Under assumptions (1)-(7), transition probability �ij is the neg-

ative bottleneck transition (n-BN-t) with respect to quality if

∂P (g)

∂�ij
<
∂P (g)

∂�uv
, ∀uv ∕= ij. (5.1)

Definition 5.2 Under assumptions (1)-(7), transition probability �ij is the posi-

tive bottleneck transition (p-BN-t) with respect to quality if

∂P (g)

∂�ij
>
∂P (g)

∂�uv
, ∀uv ∕= ij. (5.2)

Although Definitions 5.1 and 5.2 provide a characterization of quality bottleneck

transitions, it is difficult to implement on the factory floor. First, such derivatives
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are not measurable on the factory floor. Second, there may not be a closed-form

formula for these derivatives. Moreover, even if we can use the differences of P (g)

with respect to �ij and �ij within a step small enough to approximate such derivatives,

the computation effort is intensive. Therefore, it is necessary to develop bottleneck

transition indicators for n-BN-t and p-BN-t based on the available data on the factory

floor.

5.1 Implications from Simple Cases

We begin with two simple cases, three product types in strictly sequencing policy and

two product types each with batch size three in batch policy.

5.1.1 Three product types in strictly sequencing policy

Assume the product sequence is 1-2-3-1. Then the transition equations can be written

as follows:

P (g11) = �13P (g31) +
1

3
�13,

P (g21) = �21P (g11) +
1

3
�21,

P (g31) = �32P (g21) +
1

3
�32.

Then, we have

Proposition 5.1 Under assumption (1)-(7), for a given sequence s1 = {1, 2, 3},

the partial derivatives of product quality with respect to transitions can be evaluated

as:

∂P (gss)

∂�21

= − P (g11)

1− �21�13�32

(1 + �32 + �32�13), (5.3)
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∂P (gss)

∂�21

=
P (d11)

1− �21�13�32

(1 + �32 + �32�13), (5.4)

∂P (gss)

∂�32

= − P (g21)

1− �21�13�32

(1 + �13 + �13�21), (5.5)

∂P (gss)

∂�32

=
P (d21)

1− �21�13�32

(1 + �13 + �13�21), (5.6)

∂P (gss)

∂�13

= − P (g31)

1− �21�13�32

(1 + �21 + �21�32), (5.7)

∂P (gss)

∂�13

=
P (d31)

1− �21�13�32

(1 + �21 + �21�32). (5.8)

Proof: See Appendix C.

Next, we consider the scenario of batch productions. A simple case of two product

types and each type with batch size three is investigated first.

5.1.2 Two product types three batch sizes in batch policy

Assume there are two types of products, each with batch size three. The product

sequence will be 1-1-1-2-2-2-1. Similar with strict sequence, the transition equations

with good states only can be written as follows:

P (g11) = �12P (g23) +
1

6
�12,

P (g12) = �11P (g11) +
1

6
�11,

P (g13) = �11P (g12) +
1

6
�11,

P (g21) = �21P (g13) +
1

6
�21,

P (g22) = �22P (g21) +
1

6
�22,

P (g23) = �22P (g22) +
1

6
�22.

Then, the partial derivatives of P (g) with respect to its arguments �ij and �ij can

be derived.
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Proposition 5.2 Under assumption (1)-(7), for a given sequence with two prod-

uct types and three batch sizes s1 = {1, 1, 1, 2, 2, 2}, the partial derivatives of product

quality with respect to transitions can be evaluated as:

∂P (gbt)

∂�21

= − P (g13)

1− �21�2
11�12�2

22

(1 + �22 + �2
22 + �2

22�12 + �2
22�12�11 + �2

22�12�
2
11), (5.9)

∂P (gbt)

∂�21

=
P (d13)

1− �21�2
11�12�2

22

(1 + �22 + �2
22 + �2

22�12 + �2
22�12�11 + �2

22�12�
2
11), (5.10)

∂P (gbt)

∂�12

= − P (g13)

1− �21�2
11�12�2

22

(1 + �11 + �2
11 + �2

11�21 + �2
11�21�22 + �2

11�21�
2
22), (5.11)

∂P (gbt)

∂�12

=
P (d13)

1− �21�2
11�12�2

22

(1 + �11 + �2
11 + �2

11�21 + �2
11�21�22 + �2

11�21�
2
22), (5.12)

∂P (gbt)

∂�11

= − P (g12)

1− �21�2
11�12�2

22

(1 + �21 + �21�22 + �21�
2
22 + �21�

2
22�12 + �21�

2
22�12�11)

− P (g11)

1− �21�2
11�12�2

22

(1 + �11 + �11�21 + �11�21�22 + �11�21�
2
22 + �11�21�

2
22�12),

(5.13)

∂P (gbt)

∂�11

=
P (d12)

1− �21�2
11�12�2

22

(1 + �21 + �21�22 + �21�
2
22 + �21�

2
22�12 + �21�

2
22�12�11)

+
P (d11)

1− �21�2
11�12�2

22

(1 + �11 + �11�21 + �11�21�22 + �11�21�
2
22 + �11�21�

2
22�12),

(5.14)

∂P (gbt)

∂�22

= − P (g22)

1− �21�2
11�12�2

22

(1 + �12 + �12�11 + �12�
2
11 + �12�

2
11�21 + �12�

2
11�21�22)

− P (g21)

1− �21�2
11�12�2

22

(1 + �22 + �22�12 + �22�12�11 + �22�12�
2
11 + �22�12�

2
11�21),

(5.15)

∂P (gbt)

∂�22

=
P (d22)

1− �21�2
11�12�2

22

(1 + �12 + �12�11 + �12�
2
11 + �12�

2
11�21 + �12�

2
11�21�22)

+
P (d21)

1− �21�2
11�12�2

22

(1 + �22 + �22�12 + �22�12�11 + �22�12�
2
11 + �22�12�

2
11�21).

(5.16)

Proof: See Appendix C.

As shown in Propositions 5.1 and 5.2, the partial derivatives of P (g) with respect
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to �ij and �ij are mainly dependent on probabilities in states gij and dij and such

probabilities are not available nor collectable on the factory floor. Therefore, we seek

to develop some simple approximations of these partial derivatives without knowing

these probabilities, but based on the measured data only, so that it is easy to calculate

and understand.

5.2 Approximation of Derivatives of P (g)

In order to seek bottleneck transition indicators, the partial derivatives of product

quality with respect to transitions are expanded.

For strictly sequencing policy, we have

Proposition 5.3 Under assumption (1)-(7) and the Bernoulli-relax assumption

(4.53), for a given sequence sl, derivatives of the product quality with respect to tran-

sitions in strictly sequencing policy can be evaluated as:

∂P (glss)

∂�sl2,sl1
= − 1

n

[
(1 + �sl3,sl2)esl1,sln + �sl1,sln(esln,sln−1

− esl1,sln)
]

+ o(�2
max), (5.17)

∂P (glss)

∂�sl3,sl2
= − 1

n

[
(1 + �sl4,sl3)esl2,sl1 + �sl2,sl1(esl1,sln − esl2,sl1)

]
+ o(�2

max), (5.18)

∂P (glss)

∂�sli+1,s
l
i

= − 1

n

[
(1 + �sli+2,s

l
i+1

)esli,sli−1
+ �sli,sli−1

(esli−1,s
l
i−2
− esli,sli−1

)
]

+ o(�2
max),

i = 3, . . . , n− 2, (5.19)

∂P (glss)

∂�sln,sln−1

= − 1

n

[
(1 + �sl1,sln)esln−1,s

l
n−2

+ �sln−1,s
l
n−2

(esln−2,s
l
n−3
− esln−1,s

l
n−2

)
]

+ o(�2
max),

(5.20)

∂P (glss)

∂�sl1,sln
= − 1

n

[
(1 + �sl2,sl1)esln,sln−1

+ �sln,sln−1
(esln−1,s

l
n−2
− esln,sln−1

)
]

+ o(�2
max),(5.21)
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and

∂P (glss)

∂�sl2,sl1
= − 1

n

[
(1 + �sl3,sl2)(esl1,sln − 1) + �sl1,sln(esln,sln−1

− esl1,sln)
]

+ o(�2
max), (5.22)

∂P (glss)

∂�sl3,sl2
= − 1

n

[
(1 + �sl4,sl3)(esl2,sl1 − 1) + �sl2,sl1(esl1,sln − esl2,sl1)

]
+ o(�2

max), (5.23)

∂P (glss)

∂�sli+1,s
l
i

= − 1

n

[
(1 + �sli+2,s

l
i+1

)(esli,sli−1
− 1) + �sli,sli−1

(esli−1,s
l
i−2
− esli,sli−1

)
]

+ o(�2
max),

i = 3, . . . , n− 2, (5.24)

∂P (glss)

∂�sln,sln−1

= − 1

n

[
(1 + �sl1,sln)(esln−1,s

l
n−2
− 1) + �sln−1,s

l
n−2

(esln−2,s
l
n−3
− esln−1,s

l
n−2

)
]

+o(�2
max), (5.25)

∂P (glss)

∂�sl1,sln
= − 1

n

[
(1 + �sl2,sl1)(esln,sln−1

− 1) + �sln,sln−1
(esln−1,s

l
n−2
− esln,sln−1

)
]

+ o(�2
max).

(5.26)

Proof: See Appendix C.

For batch policy, the following is obtained

Proposition 5.4 Under assumption (1)-(7) and the Bernoulli-relax assumption

(4.53), for a given sequence sl, derivatives of the product quality with respect to tran-

sitions in batch policy can be evaluated as:

when batch size ksli = 2,

∂P (glbt)

∂�sl2,sl1
= − 1

K

[
(1 + �sl2,sl2)esl1,sl1 + �sl1,sl1(esl1,sln − esl1,sl1)

]
+ o(�2

max), (5.27)

∂P (glbt)

∂�sli+1,s
l
i

= − 1

K

[
(1 + �sli+1,s

l
i+1

)esli,sli + �sli,sli(esli,sli−1
− esli,sli)

]
+ o(�2

max),

i = 2, . . . , n− 1, (5.28)

∂P (glbt)

∂�sl1,sln
= − 1

K

[
(1 + �sl1,sl1)esln,sln + �sln,sln(esln,sln−1

− esln,sln)
]

+ o(�2
max), (5.29)

∂P (glbt)

∂�sl2,sl1
= − 1

K

[
(1 + �sl2,sl2)(esl1,sl1 − 1) + �sl1,sl1(esl1,sln − esl1,sl1)

]
+ o(�2

max), (5.30)
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∂P (glbt)

∂�sli+1,s
l
i

= − 1

K

[
(1 + �sli+1,s

l
i+1

)(esli,sli − 1) + �sli,sli(esli,sli−1
− esli,sli)

]
+ o(�2

max),

i = 2, . . . , n− 1, (5.31)

∂P (glbt)

∂�sl1,sln
= − 1

K

[
(1 + �sl1,sl1)(esln,sln − 1) + �sln,sln(esln,sln−1

− esln,sln)
]

+ o(�2
max), (5.32)

∂P (glbt)

∂�sl1,sl1
= − 1

K

[
(1 + �sl2,sl1)esl1,sln + �sl1,sln(esln,sln − esl1,sln)

]
+ o(�2

max), (5.33)

∂P (glbt)

∂�sli,sli
= − 1

K

[
(1 + �sli+1,s

l
i
)esli,sli−1

+ �sli,sli−1
(esli−1,s

l
i−1
− esli,sli−1

)
]

+ o(�2
max),

i = 2, . . . , n− 1, (5.34)

∂P (glbt)

∂�sln,sln
= − 1

K

[
(1 + �sl1,sln)esln,sln−1

+ �sln,sln−1
(esln−1,s

l
n−1
− esln,sln−1

)
]

+ o(�2
max),

(5.35)

∂P (glbt)

∂�sl1,sl1
= − 1

K

[
(1 + �sl2,sl1)(esl1,sln − 1) + �sl1,sln(esln,sln − esl1,sln)

]
+ o(�2

max), (5.36)

∂P (glbt)

∂�sli,sli
= − 1

K

[
(1 + �sli+1,s

l
i
)(esli,sli−1

− 1) + �sli,sli−1
(esli−1,s

l
i−1
− esli,sli−1

)
]

+ o(�2
max),

i = 2, . . . , n− 1, (5.37)

∂P (glbt)

∂�sln,sln
= − 1

K

[
(1 + �sl1,sln)(esln,sln−1

− 1) + �sln,sln−1
(esln−1,s

l
n−1
− esln,sln−1

)
]

+ o(�2
max).

(5.38)

when batch size ksli > 2,

∂P (glbt)

∂�sli+1,s
l
i

= − 1

K

[
(1 + �sli+1,s

l
i+1

)esli,sli

]
+ o(�2

max),

i = 1, . . . , n− 1, (5.39)

∂P (glbt)

∂�sl1,sln
= − 1

K

[
(1 + �sl1,sl1)esln,sln

]
+ o(�2

max), (5.40)

∂P (glbt)

∂�sli+1,s
l
i

= − 1

K

[
(1 + �sli+1,s

l
i+1

)(esli,sli − 1)
]

+ o(�2
max),

i = 1, . . . , n− 1, (5.41)
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∂P (glbt)

∂�sl1,sln
= − 1

K

[
(1 + �sl1,sl1)(esln,sln − 1)

]
+ o(�2

max), (5.42)

∂P (glbt)

∂�sl1,sl1
= − 1

K

[
(1 + �sl1,sl1)esl1,sln + (ksl1 − 3)(1 + �sl1,sl1)esl1,sl1 + (1 + �sl2,sl1)esl1,sl1

]
− 1

K

[
�sl1,sln(esln,sln − esl1,sln) + �sl1,sl1(esl1,sln − esl1,sl1)

]
+ o(�2

max), (5.43)

∂P (glbt)

∂�sli,sli
= − 1

K

[
(1 + �sli,sli)esli,sli−1

+ (ksli − 3)(1 + �sli,sli)esli,sli + (1 + �sli+1,s
l
i
)esli,sli

]
− 1

K

[
�sli,sli−1

(esli−1,s
l
i−1
− esli,sli−1

) + �sli,sli(esli,sli−1
− esli,sli)

]
+ o(�2

max),

i = 2, . . . , n, (5.44)

∂P (glbt)

∂�sl1,sl1
= − 1

K

[
(1 + �sl1,sl1)(esl1,sln − 1) + (ksl1 − 3)(1 + �sl1,sl1)(esl1,sl1 − 1)

+(1 + �sl2,sl1)(esl1,sl1 − 1)
]

− 1

K

[
�sl1,sln(esln,sln − esl1,sln) + �sl1,sl1(esl1,sln − esl1,sl1)

]
+ o(�2

max), (5.45)

∂P (glbt)

∂�sli,sli
= − 1

K

[
(1 + �sli,sli)(esli,sli−1

− 1) + (ksli − 3)(1 + �sli,sli)(esli,sli − 1)

+(1 + �sli+1,s
l
i
)(esli,sli − 1)

]
− 1

K

[
�sli,sli−1

(esli−1,s
l
i−1
− esli,sli−1

) + �sli,sli(esli,sli−1
− esli,sli)

]
+ o(�2

max),

i = 2, . . . , n. (5.46)

Proof: See Appendix C.

Remark 5.1 By ignoring the higher order terms of �2
max, the partial derivatives

are still complicated. The transition bottleneck indicators can be chosen as many

forms according to the following principles: first, the indicators must be accurate

enough; second, parameters of the indicators must be easily measured or calculated

from the factory floor; finally, the indicators can provide intrinsic insights into domi-

nating factors of quality improvement due to better transitions.
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5.3 Transition Bottleneck Indicators

Based on the approximation formulas in the previous section, the bottleneck transition

identification method is introduced for strictly sequencing and batch policies. Then

numerical experiments are carried out to prove it feasible.

5.3.1 Transition bottleneck indicators in strictly sequencing policy

Given a strict sequence sl, we define:

I lss(�s2,s1) = esl1,sln(1 + �sl3,sl2), (5.47)

I lss(�si+1,si) = esli,sli−1
(1 + �sli+2,s

l
i+1

), i = 2, . . . , n− 2, (5.48)

I lss(�sn,sn−1) = esln−1,s
l
n−2

(1 + �sl1,sln), (5.49)

I lss(�s1,sn) = esln,sln−1
(1 + �sl2,sl1). (5.50)

and

I lss(�s2,s1) = (1− esl1,sln)(1 + �sl3,sl2), (5.51)

I lss(�si+1,si) = (1− esli,sli−1
)(1 + �sli+2,s

l
i+1

), i = 2, . . . , n− 2, (5.52)

I lss(�sn,sn−1) = (1− esln−1,s
l
n−2

)(1 + �sl1,sln), (5.53)

I lss(�s1,sn) = (1− esln,sln−1
)(1 + �sl2,sl1). (5.54)

Then, the transition bottleneck indicators are introduced as follows:

n-BN-t Indicator: Under assumptions (1)-(7), the negative bottleneck transition

(n-BN-t) in strictly sequencing policy for a given sequence sl is the one that satisfies

max
�

I lss(�), (5.55)
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where

� ∈ {�sl1,sln , �sl2,sl1 , . . . , �sli+1,s
l
i
, . . . , �sln,sln−1

}.

p-BN-t Indicator: Under assumptions (1)-(7), the positive bottleneck transition

(p-BN-t) in strictly sequencing policy for a given sequence sl is the one that satisfies

max
�

I lss(�), (5.56)

where

� ∈ {�sl1,sln , �sl2,sl1 , . . . , �sli+1,s
l
i
, . . . , �sln,sln−1

}.

Remark 5.2 A bottleneck transition can be determined by its immediately up-

stream and downstream transitions. The immediately upstream transition can be

treated as an estimate of good part probability of start state of bottleneck transi-

tion under the Bernoulli-like assumption (See Equation (4.43)). The immediately

downstream transition implies that only the states of the following two products are

considered when variations of transitions propagate through the state loop.

5.3.2 Transition bottleneck indicators in batch policy

Given a batch sequence sl, we define:

I lbt(�si+1,si) = esli,sli(1 + �sli+1,s
l
i+1

), i = 1, . . . , n− 1, (5.57)

I lbt(�s1,sn) = esl1,sl1(1 + �sln,sln), (5.58)

I lbt(�s1,s1) =

⎧⎨⎩
esl1,sln(1 + �sl2,sl1), when ksli = 2

esl1,sln(1 + �sl1,sl1) + (ksli − 3)esl1,sl1(1 + �sl1,sl1) + esl1,sl1(1 + �sl2,sl1),

when ksli > 2

(5.59)

I lbt(�si,si) =

⎧⎨⎩
esli,sli−1

(1 + �sli+1,s
l
i
), when ksli = 2

esli,sli−1
(1 + �sli,sli) + (ksli − 3)esli,sli(1 + �sli,sli) + esli,sli(1 + �sli+1,s

l
i
),

when ksli > 2
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i = 2, . . . , n− 1, (5.60)

I lbt(�sn,sn) =

⎧⎨⎩
esln,sln−1

(1 + �sl1,sln), when ksli = 2

esln,sln−1
(1 + �sln,sln) + (ksli − 3)esln,sln(1 + �sln,sln) + esln,sln(1 + �sl1,sln),

when ksli > 2

(5.61)

and

I lbt(�si+1,si) = (1− esli,sli)(1 + �sli+1,s
l
i+1

), i = 1, . . . , n− 1, (5.62)

I lbt(�s1,sn) = (1− esl1,sl1)(1 + �sln,sln), (5.63)

I lbt(�s1,s1) =

⎧⎨⎩
(1− esl1,sln)(1 + �sl2,sl1), when ksli = 2

(1− esl1,sln)(1 + �sl1,sl1) + (ksli − 3)(1− esl1,sl1)(1 + �sl1,sl1)

+(1− esl1,sl1)(1 + �sl2,sl1), when ksli > 2

(5.64)

I lbt(�si,si) =

⎧⎨⎩
(1− esli,sli−1

)(1 + �sli+1,s
l
i
), when ksli = 2

(1− esli,sli−1
)(1 + �sli,sli) + (ksli − 3)(1− esli,sli)(1 + �sli,sli)

+(1− esli,sli)(1 + �sli+1,s
l
i
), when ksli > 2

i = 2, . . . , n− 1, (5.65)

I lbt(�sn,sn) =

⎧⎨⎩
(1− esln,sln−1

)(1 + �sl1,sln), when ksli = 2

(1− esln,sln−1
)(1 + �sln,sln) + (ksli − 3)(1− esln,sln)(1 + �sln,sln)

+(1− esln,sln)(1 + �sl1,sln), when ksli > 2

(5.66)

Then, the transition bottleneck indicators are introduced as follows:

n-BN-t Indicator: Under assumptions (1)-(7), the negative bottleneck transition

(n-BN-t) in batch policy for a given sequence sl is the one that satisfies

max
�

I lbt(�), (5.67)

where

� ∈ {�sl1,sln , �sl2,sl1 , . . . , �sli+1,s
l
i
, . . . , �sln,sln−1

;�sl1,sl1 , . . . , �sli,sli , . . . , �sln,sln}.
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p-BN-t Indicator: Under assumptions (1)-(7), the positive bottleneck transition

(p-BN-t) in batch policy for a given sequence sl is the one that satisfies

max
�

I lbt(�), (5.68)

where

� ∈ {�sl1,sln , �sl2,sl1 , . . . , �sli+1,s
l
i
, . . . , �sln,sln−1

;�sl1,sl1 , . . . , �sli,sli , . . . , �sln,sln}.

5.3.3 Numerical justification

Numerical experiments have been carried out to justify the bottleneck indicators

above. More than 10000 cases are generated and tested. For �max = 0.2, we randomly

and equiprobably select �ij and then �ij such that

�ij ∈ (0, �max],

�ij ∈ [1− �max, 1),

Such a selection implies that

1− �max < �ij + �ij < 1 + �max.

In addition, batch size ki is also selected randomly from

ki ∈ {2, . . . , 6}.

The n-BN-t and p-BN-t indentified through indicators are compared with the

results obtained by computing and selecting the largest ΔP (g)/Δ�ij and ΔP (g)/Δ�ij

with Δ�ij = 0.001 and Δ�ij = 0.001, respectively. When both methods result in same

transition, a correct identification is obtained. In addition, the differences in partial
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derivatives of two bottleneck transitions from both methods are investigated when

indicators lead to incorrect bottleneck transitions. Define

Δt =

∣∣∣∣∣∂P (gl)

∂�ij
− ∂P (gl)

∂�uv

∣∣∣∣∣ or

∣∣∣∣∣∂P (gl)

∂�ij
− ∂P (gl)

∂�uv

∣∣∣∣∣ ,
�t =

∣∣∣∂P (gl)
∂�ij

− ∂P (gl)
∂�uv

∣∣∣
∂P (gl)
∂�ij

⋅ 100% or

∣∣∣∂P (gl)
∂�ij

− ∂P (gl)
∂�uv

∣∣∣
∂P (gl)
∂�ij

⋅ 100%.

where �ij and �ij are the bottleneck transitions obtained based on the largest ΔP (g)/Δ�ij

and ΔP (g)/Δ�ij, and �uv and �uv are the bottleneck transitions identified by indi-

cators.

Table 5.1: Effectiveness of n-BN-t and p-BN-t indicators in strictly sequencing pol-
icy(%)

n 2 3 4 5 6
n-BN-t 99.30 96.25 94.20 94.41 94.22
p-BN-t 99.64 98.05 95.44 93.97 93.00

Table 5.2: Errors when n-BN-t and p-BN-t indicators lead to incorrect comparisons
in strictly sequencing policy

n 2 3 4 5 6
2nd largest slope (%) 100 98.13 95.69 95.35 93.77

Average Δt 0.0015 0.0024 0.0022 0.0016 0.0013
Maximal Δt 0.0054 0.0113 0.0227 0.0082 0.0081

Average �t (%) 0.33 0.77 0.87 0.81 0.79
Maximal �t (%) 1.37 3.47 7.82 4.09 4.46

(a) n-BN-t

n 2 3 4 5 6
2nd largest slope (%) 100 100 98.25 97.68 95.29

Average Δt 5.51E-04 9.26E-04 0.0015 0.0011 9.76E-04
Maximal Δt 0.0020 0.0052 0.0071 0.0063 0.0045

Average �t (%) 0.89 2.13 3.64 3.34 3.51
Maximal �t (%) 3.05 10.22 14.74 14.79 15.55

(b) p-BN-t
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Table 5.3: Effectiveness of n-BN-t and p-BN-t indicators in batch policy(%)

n 2 3 4 5 6
n-BN-t 99.48 99.41 99.36 99.21 98.97
p-BN-t 97.81 97.16 97.36 97.00 97.06

Table 5.4: Errors when n-BN-t and p-BN-t indicators lead to incorrect comparisons
in batch policy

n 2 3 4 5 6
2nd largest slope (%) 100 98.61 98.44 98.73 98.06

Average Δt 0.0015 9.98E-04 7.91E-04 7.58E-04 5.51E-04
Maximal Δt 0.0066 0.0041 0.0032 0.0031 0.0024

Average �t (%) 0.56 0.45 0.43 0.44 0.36
Maximal �t (%) 2.32 2.30 2.38 1.68 1.63

(a) n-BN-t

n 2 3 4 5 6
2nd largest slope (%) 99.09 98.94 97.45 97.67 96.71

Average Δt 0.0014 9.36E-04 6.74E-04 5.35E-04 4.10E-04
Maximal Δt 0.0059 0.0056 0.0035 0.0037 0.0034

Average �t (%) 4.11 3.83 3.27 2.99 2.48
Maximal �t (%) 20.21 22.92 17.99 17.87 20.61

(b) p-BN-t
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It is shown in Tables 5.1 and 5.3 that the bottleneck indicators have resulted in

high accuracy to identify the bottlenecks, with more than 93% correctness in strictly

sequencing policy and 97% in batch policy. The differences in partial derivatives of two

bottleneck transitions from both methods shown in Tables 5.2 and 5.4 are very small

when incorrect bottleneck transitions are identified using indicators. In this case, the

transitions identified by indicators can be treated as real bottleneck transitions. Note

that maximal �t is usually large. That is because the partial derivatives of bottleneck

transitions in that cases are not large compared with the maximal Δt which is already

small. It implies that in some cases quality improvement due to better transitions can

not be expected significant. Therefore, we conclude that these bottleneck indicators

can be used for identifying the bottleneck transitions for quality improvement.

5.4 Summary

Identifying the bottleneck is an effective way to improve the quality. In this chap-

ter, we define a quality bottleneck transition as the transition that impedes quality

performance in the strongest manner. A method to evaluate the sensitivity of qual-

ity performance with respect to its transition probabilities is presented and quality

bottleneck transition indicators based on the data collected on the factory floor are

proposed. Using these indicators, negative and positive quality bottleneck transitions

can be identified effectively. Such methods provide a quantitative and practical tool

for production engineers and managers to improve quality in flexible manufacturing

systems.
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CHAPTER 6

PRODUCT SEQUENCING TO REDUCE

ENERGY CONSUMPTION AND

ATMOSPHERIC EMISSIONS

This chapter is to apply optimal batch and scheduling method to reduce energy

consumption and atmospheric emissions in automotive paint shops. Specifically, by

using the quality evaluation models, we analyze the energy usage and emission levels

of a vehicle painting process. The benefits in energy savings through optimal batch (to

group the vehicles with the same color together) and scheduling policies (to arrange

color sequence) are investigated.

6.1 Job Flow, Energy and Emission Evaluation in Paint Shops

6.1.1 Job flow

Automotive painting is an extremely complex process. In order to improve paint

quality, every vehicle will be inspected after color coating and baking operations.

Vehicles with paint defects will be either repaired or repainted. A typical structure

of painting process with repair is illustrated in Figure 6.1.

Paint
Process

Confirmation
good jobs

Repair
repaint jobs

good jobs

Figure 6.1: Illustration of job flow in paint in automotive assembly plant
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In such system, jobs after painting processes are inspected. A job is sent to the

confirmation station if it has good paint quality. The ratio that the jobs pass the

inspection after first time processing is referred to as first time quality (FTQ). All

defective jobs are routed to either repair or repaint based on the nature and severity

of the defects. Jobs with severe defects are sent back to the painting booths for

repaint, i.e., the complete painting process will be repeated. In the repair process,

either new parts (e.g., panels) are exchanged or light defects are fixed (e.g., scratches

are polished). After repair, jobs are inspected again. Jobs now with good quality are

routed to confirmation station. However, there is a possibility that some jobs still

have bad quality so that they will be sent back to painting both for repaint. In most

paint shops, the first time quality is typically above 80%, but the repaint quality is

much lower than the FTQ. The quality ratio is decreasing rapidly with more repaints.

In practice, a vehicle may be repainted no more than three times.

To analyze the energy consumption of the painting process, we simplify the process

in Figure 6.1 by ignoring the energy costs in repairing process, since such process is

typically finished manually. Then we aggregate the good job ratios in painting booths

and repair shops to define the quality buy rate (QBR) of the overall painting process,

and obtain a simplified model as shown in Figure 6.2. In other words, the good

jobs leaving from the painting process include the jobs pass the inspection directly

from painting booths and those go to confirmation station from repair. Similarly,

the repaint jobs are comprised by jobs with severe defects which are sent directly for

repaint after painting booths and inspection, and jobs which could not meet quality

standard even after repair. Using such a simplified model, we evaluate the energy
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consumption and Carbon emissions in painting process next.

Paint
Process

good jobs

repaint jobs

Confirmation

Figure 6.2: Simplified painting process

6.1.2 Energy evaluation

Introduce the following notation:

ni number of vehicles flow into the paint shop,

ng number of good quality vehicles produced,

np total number of vehicles going through the painting process,

q good job ratio after first painting,

� depreciation factor for repaint quality,

c unit cost of energy for each vehicle painting,

E total energy consumption.

Note that the number of vehicles flow into the paint shop per day, ni, is more than

the number of vehicles arriving the confirmation station, ng, due to possible scraps

(i.e., vehicles could not obtain good quality after three repaints will be scraped).

Then, the following relationship is obtained:

ng = niq + ni(1− q)�q + ni(1− q)(1− �q)�2q + ni(1− q)(1− �q)(1− �2q)�3q.(6.1)

The necessary number of vehicles ni to achieve production volume ng can be

calculated by
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ni =
ng

q[1 + (1− q)� + (1− q)(1− �q)�2 + (1− q)(1− �q)(1− �2q)�3]
. (6.2)

Then, the total number of vehicles going through the painting booths and ovens is

np = ni + ni(1− q) + ni(1− q)(1− �q) + ni(1− q)(1− �q)(1− �2q). (6.3)

Finally, the energy consumption E is described as:

E = cnp =
cng[1 + (1− q) + (1− q)(1− �q) + (1− q)(1− �q)(1− �2q)]

q[1 + (1− q)� + (1− q)(1− �q)�2 + (1− q)(1− �q)(1− �2q)�3]
. (6.4)

Consider a painting process having two scheduling procedures, whose first time

quality performances are characterized as q1 and q2. Assuming all other parameters,

�, c, and ng are the same. Then the energy consumptions of these two procedures,

E1 and E2, can be compared as

E1

E2
=

cng [1+(1−q1)+(1−q1)(1−�q1)+(1−q1)(1−�q1)(1−�2q1)]
q1[1+(1−q1)�+(1−q1)(1−�q1)�2+(1−q1)(1−�q1)(1−�2q1)�3]

cng [1+(1−q2)+(1−q2)(1−�q2)+(1−q2)(1−�q2)(1−�2q2)]
q2[1+(1−q2)�+(1−q2)(1−�q2)�2+(1−q2)(1−�q2)(1−�2q2)�3]

=
1 + (1− q1) + (1− q1)(1− �q1) + (1− q1)(1− �q1)(1− �2q1)]

1 + (1− q2) + (1− q2)(1− �q2) + (1− q2)(1− �q2)(1− �2q2)

⋅1 + (1− q2)� + (1− q2)(1− �q2)�
2 + (1− q2)(1− �q2)(1− �2q2)�

3

1 + (1− q1)� + (1− q1)(1− �q1)�2 + (1− q1)(1− �q1)(1− �2q1)�3
⋅ q2

q1
.(6.5)

Clearly, to evaluate the energy consumption E or to compare Es under different

policies (i.e., to evaluate E1/E2), the good job ratio q needs to be known first. In order

to investigate the impacts of batch and sequencing policies on energy consumption,

a quality evaluation model for paint system with batch production is needed. Such a

model is described in Chapter 3.
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6.1.3 Emission evaluation

Introduce the following notation:

nc number of purges due to color changes,

vp unit emissions during regular painting,

vc unit emissions during purge,

V Total emissions.

Other notation, ng, ni, np, and � are the same as in the energy model.

The total number of vehicles going through the painting process is np, thus, the

emissions during regular painting are npvp. In addition, the purge processes generate

emissions of ncvc. Therefore, the overall painting procedures have emissions of

V = npvp + ncvc = vp(np + �nc), (6.6)

where np is calculated in (6.3), � is the ration of emissions generated during purge

and regular painting, i.e., � = vc/vp, and nc is dependent on the batch and scheduling

policy, which will be introduced in Section 6.2.

Again, with the knowledge of paint quality, the total emissions V can be calculated

or the comparison of V s can be carried out.

6.2 Evaluation of Energy Usage and Atmospheric Emission
in Paint Shops

6.2.1 Comparison of energy usage

To evaluate the energy consumption in paint shops, we compare painting processes un-

der different scheduling policies by randomly selecting the quality parameters. Specif-

ically, the quality failure probabilities and efficiencies, and batch size are randomly
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and uniformly selected from the following sets:

�ii ∈ [0.05, 0.15],

�ij ∈ [0.1, 0.2],

eii ∈ [0.88, 0.96],

eij ∈ [0.85, 0.93],

k ∈ {2, 3, 4, 5, 6},

and �ii is calculated from �ii and eii. Similar calculation is used for �ij. In addition,

since in practice, the quality efficiency without color switch is typically higher than

that with color change, i.e.,

eii > eij, j ∕= i.

thus, only the cases that eii > eij are selected. The batch sizes for all colors are

assumed equal since we would like to compare with the scenario of strictly sequencing

policy. The depreciation factor of repaint quality, �, is chosen as 1, 0.75 and 0.5.

A total of 10,000 systems are generated and compared for energy consumption un-

der optimal and worst batch policies, optimal and worst strictly sequencing policies,

and randomly mixed policy (more details in paper [21]). The energy consumptions

under these policies are denoted as Ebt op (batch policy with optimal sequence in

terms of quality), Ebt wt (batch policy with worst sequence), Ess op (strictly sequenc-

ing policy with optimal sequence), Ess wt (strictly sequencing policy with optimal

sequence) and Ernd (sequence in randomly mixed policy), respectively. The results of

these comparisons are shown in Figures 6.3-6.6.

109



Batch policy with optimal quality vs. strictly sequencing policy with worst
quality

First we compare the results or optimal batch policy with strictly sequencing policy

having worst quality (Ebt op/Ess wt). Three scenarios with different depreciation fac-

tors in repaint quality, � = 1, 0.75 and 0.5, are considered in Figure 6.3, where the

average reductions of energy are illustrated. It is shown that when there is no quality

depreciation in repaint, at average about 4-5% savings in energy can be obtained.

When repaint quality is becoming lower (which is typical in most paint shops), the

savings are significantly higher, up to 11% when � = 0.5.
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Figure 6.3: Energy usage of optimal sequence in batch policy vs worst sequence in
strictly sequencing policy

Batch policy with optimal quality vs. strictly sequencing policy with op-
timal quality

The above comparison illustrate the best case we may have. Next we compare

batch policy with strictly sequencing policy, both under optimal sequence schedule

(Ebt op/Ess op). Such a comparison can justify the advantage using batch in paint
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shops. The results are similar but with smaller magnitude, as shown in Figure 6.4.

When � = 1, there is about 3% savings on average. Such savings become larger when

depreciation factor � is smaller. If � = 0.5, such savings are almost 5-6%, which

again is significant.
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Figure 6.4: Energy usage of optimal sequence in batch policy vs optimal sequence in
strictly sequencing policy

Batch policy with optimal quality vs. batch policy with worst quality

The above results show that batch policy can lead to substantial savings in energy

consumption. Next we compare the impact of sequencing in both batch production

environment, i.e., compare optimal and worst sequences with respect to quality in

batch production (Ebt op/Ebt wt). We observe that we can have close to 1% reduction

in energy when no repaint quality depreciation is assumed (see Figure 6.5). When

there is depreciation during repaint, the average savings is up to 2%. These results in-

dicate that selecting the optimal batch and sequence schedule is important to achieve

maximal improvement in energy efficiency.
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Figure 6.5: Energy usage of optimal sequence vs worst sequence in batch policy

Batch policy with optimal quality vs. randomly mixed policy with average
quality

Finally, since some paint shops are operating similar to randomly mixed scenario,

we compare it with optimal batch and sequence schedule. Here, randomly generated

incoming vehicle sequences are evaluated and average quality is calculated for com-

parison. Figure 6.6 illustrates the comparison results between Ebt op and Ernd. As

one can see, the energy savings that can be obtained are from 2-3% to 5-6% for �s

from 1 to 0.5.

In summary, these results suggest that introducing optimal batch and sequencing

policies can improve the quality performance and reduce the energy consumption.

Since a huge amount of energy is consumed in automotive paint shops, in particular

in painting process areas, even 2 or 3% reduction will be significant.
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Figure 6.6: Energy usage of optimal sequence in batch policy vs randomly mixed
policy

6.2.2 Emission Comparison

First, to compare the emissions under different batch and sequencing policies, the

number of color changes during the whole painting procedure for np vehicles need to

be estimated.

∙ For strictly sequencing policy, the number of color changes equals to np − 1.

∙ For batch policy with batch size k, we have ⌈ni

k
− 1⌉ color changes for first

time paint vehicles, ⌈ni(1−q)
k
−1⌉ for first repaint vehicles, ⌈ni(1−q)(1−�q)

k
−1⌉ and

⌈ni(1−q)(1−�q)(1−�2q)
k

− 1⌉ for second and third time repaint ones, respectively.

∙ If it is under randomly mixed policy, the average number of color changes for first

time paint vehicles will be ⌈ (ni−1)(n−1)
n

⌉. Then the numbers of purges for first,

second, and third time repaint vehicles are, ⌈ (ni−1)(n−1)
n

(1− q)⌉, ⌈ (ni−1)(n−1)
n

(1−

q)(1− �q)⌉ and ⌈ (ni−1)(n−1)
n

(1− q)(1− �q)(1− �2q)⌉, respectively.
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∙ Therefore, the total number of purges will be

strictly sequencing policy

nc = np − 1, (6.7)

batch policy

nc =
⌈ni
k
− 1

⌉
+
⌈ni(1− q)

k
− 1

⌉
+
⌈ni(1− q)(1− �q)

k
− 1

⌉
+
⌈ni(1− q)(1− �q)(1− �2q)

k
− 1

⌉
, (6.8)

randomly mixed policy

nc =
⌈(ni − 1)(n− 1)

n

⌉
+
⌈(ni − 1)(n− 1)

n
(1− q)

⌉
+
⌈(ni − 1)(n− 1)

n
(1− q)(1− �q)

⌉
+
⌈(ni − 1)(n− 1)

n
(1− q)(1− �q)(1− �2q)

⌉
. (6.9)

Denote the number of vehicles going through the painting process and number of

color changes for scheduling procedure j (batch, strictly sequencing, and randomly

mixed) as np,j and nc,j, respectively. Then the the total emissions in two scheduling

procedures, V1 and V2, can be compared as

V1

V2

=
vpnp,1 + nc,1vc
vpnp,2 + nc,2vc

, (6.10)

where np,j is calculated using (6.3).

Again a total of 10,000 systems are generated and compared for energy consump-

tion under optimal and worst batch policies, optimal and worst strictly sequencing

policies, and randomly mixed policy. The resulting Carbon emissions under these

policies are denoted as Vbt op (batch policy with optimal sequence in terms of qual-

ity), Vbt wt (batch policy with worst sequence), Vss op (strictly sequencing policy with
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optimal sequence), Vss wt (strictly sequencing policy with optimal sequence) and Vrnd

(sequence in randomly mixed policy), respectively. The results of these comparisons

are similar to those in energy models, and are illustrated in Figures 6.3-6.6.

Batch policy with optimal quality vs. strictly sequencing policy with worst
quality

First we compare the results of emissions under optimal batch policy with strictly

sequencing policy, both having worst quality (Vbt op/Vss wt). Again, we consider three

scenarios of depreciation factors in repaint quality, � = 1, 0.75 and 0.5. Figure 6.7

illustrates the average reductions of emissions. If there is no depreciation in quality

during repaints, at average about 7-8% reduction of emissions can be achieved. When

� is less than 1, i.e., repaint quality is becoming lower, the emission reductions are

more significant, up to 11 and 14%, when � = 0.75 and 0.5, respectively.
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Figure 6.7: Emissions: optimal sequence in batch policy vs worst sequence in strictly
sequencing policy
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Batch policy with optimal quality vs. strictly sequencing policy with op-
timal quality

Next we compare batch policy with strictly sequencing policy, both under optimal

sequence schedule, Vbt op/Vss op. As we expected, smaller magnitudes are obtained in

this comparison, as shown in Figure 6.8. When � = 1, there is about 5% reduction

in emissions. When depreciation factor � is smaller, the reduction is larger. For

example, if � = 0.5, such reduction is almost 9%, which is a substantial reduction of

emissions.
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Figure 6.8: Emissions: optimal sequence in batch policy vs optimal sequence in
strictly sequencing policy

Batch policy with optimal quality vs. batch policy with worst quality

Next the impact of sequencing on emissions is studied in batch production environ-

ment, i.e., we compare optimal and worst sequences with respect to quality in batch

production, Vbt op/Vbt wt. We observe that we can have almost 1% reduction in emis-

sion when no depreciation is assumed. When there lower quality during repaint,

the reduction can be more than 2% (see Figure 6.9). These results are due to that
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the emissions during purges are significantly less than that during regular painting

(through over spray). In this study, such a ratio, �, is selected as 1/50.
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Figure 6.9: Emission: optimal sequence vs worst sequence in batch policy

Batch policy with optimal quality vs. randomly mixed policy with average
quality

Finally, randomly mixed scenario is investigated by comparing with optimal batch

and sequencing policy. Figure 6.10 illustrates the comparison results between Vbt op

and Vrnd. As one can see, the emission reductions that can be obtained are from 4%

to 9% for different �s.

Similar to the energy reduction case, the above results again validate the im-

portance of introducing optimal batch and sequencing policy to improve the quality

performance and reduce atmospheric emissions.

6.3 Summary

In this chapter, we introduce application of optimal batch and scheduling policies to

reduce energy consumption and atmospheric emissions in automotive paint shops. We
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Figure 6.10: Emissions: optimal sequence in batch policy vs randomly mixed policy

show that the energy consumption and Carbon emissions can be reduced significantly.

Thus, without any equipment investment or process changes, energy efficiency can

be improved substantially, and emissions adverse to the environment can be reduced

significantly. Therefore, the method presented here provides another approach to

achieve sustainable manufacturing in automotive paint shops.
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CHAPTER 7

CASE STUDY

The method introduced in the previous chapters has been applied at an automotive

paint shop to evaluate paint quality and investigate potential improvement strategies.

In the painting system under consideration, the painting booth is capable of painting

any colors. An inspection station is next to the painting operation to check the paint

quality of every vehicle. Seven color options are available, and we denote them as

colors A to G.

The good job ratio of this painting systems is measured with P (g) = 0.8278. Since

the system is operating at a randomly mixed policy without specific sequencing, the

results obtained in paper [21] are used to model the system quality. Based on the

historical data, we calculate the quality failure and repair probabilities, �ij and �ij.

Using them, we obtain the calculated good job ratio as 0.8245, which is only 0.39%

difference with the measured one. Thus, the model is validated. (Note that in order

to confidentiality, the data presented here has been modified, however, the accuracy

is preserved.)

Next, using the calculated transition probabilities, we obtain the quality bottle-

neck sequence as ’A-D-G-C-E-F-B’, which leads to P (g) = 0.7356, much lower than

current one. Then, we investigate how to improve system quality through resequenc-

ing.
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∙ First, we select one sequence ’A-F-G-C-D-E-B’, with
∑
eij = 5.5884 and P (g) =

0.8235, which is close to current system measurement. We use this sequence as

a replacement of current system operating under sequence policy.

∙ Then, we randomly select another sequence ’A-F-E-G-B-C-D’, which has
∑
eij =

5.9837, and P (g) = 0.8564. It is clear that larger
∑
eij results in higher P (g).

∙ Next, we check how to change the order of colors so that quality can be im-

proved. For the sequence ’A-F-G-C-D-E-B’, we switch the order of ’F’ and ’G’,

and obtain a new sequence ’A-G-F-C-D-E-B’. This results in
∑
eij = 6.0936 and

P (g) = 0.8857. This implies a 7.55% improvement can be achieved by simply

switching the order of two colors.

Finally, the bottleneck transitions are identified to improve product quality. Us-

ing the n-BN-t and p-BN-t indicators, we identify �22 and �22 as the negative and

positive bottleneck transitions, respectively. This result is also verified by calculating

ΔP (g)/Δ�ij and ΔP (g)/Δ�ij numerically. By improving �22 from 0.2160 to 0.2,

the paint quality is increased to 0.8427. Or by improving �22 from 0.7215 to 0.75,

the product quality is upgraded to 0.8394. Therefore, quality improvement can be

achieved by focusing on mitigating the bottleneck transitions.

The above study indicates that the presented method can be used for quality

improvement in flexible manufacturing systems.
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CHAPTER 8

CONCLUSIONS

Flexible manufacturing systems have been studied extensively during the last thirty

year. Most of the studies emphasize on the tradeoffs between productivity and flexi-

bility, while the issue of product quality is usually neglected. It is typically assumed

that quality related issues have minimal impact. However, empirical evidences and

analytical studies have shown that flexibility has a significant impact on quality. In

addition, many flexible manufacturing systems implement batch productions to im-

prove product quality by reducing product changes which may affect product quality

during changeover. However, no analytical studies are available to address quality in

batch production enviromment. Therefore, there is a critical need to fully understand

the coupling between flexibility and quality in batch productions.

In this research, an analytical method based on Markov chain model is presented

to evaluate the quality performance in a flexible manufacturing system with batch

production. A closed formula is derived to quantify quality performance which is

defined as the probability of producing a good part. Structural properties to address

the transitions and appropriate batch size are discussed. Counter intuitively, mono-

tonicity with respect to transitions and batch size does not always hold. It is shown

that when quality failure probability is relative high, or repair probability relatively

low, or quality efficiency significantly low, monotonicity may not stand. In addition,
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more monotonic cases are observed when batch size increases. Necessary conditions

of transitions and batch sizes are provided to avoid possible negative effect due to

non-monotonicity when carrying out continuous improvement.

In addition, different product sequencing and batch policies may result in different

quality. Then, how to determine an appropriate sequence or batch policy? How to

select the optimal sequence with respect to quality? Will the quality characteristics

change under different policies? Answers to these questions can provide guidance

for system design and operation to achieve better product quality. Based on the

analytical model, the quality performance in batch and strictly sequencing policies

is studied. The optimal sequences leading to best quality under both policies are

obtained, the comparisons between different sequences under both policies are carried

out, and finally the comparison between two policies is studied. It is shown that the

optimality and superiority of a product sequence in one policy still hold in the other

one. In particular, batch policy outperforms strictly sequencing policy if the total

quality efficiency without product switch is better than the total quality efficiency

with product switch, and vice versa.

To improve the quality performance from the perspective of product sequencing,

the notions of quality improvability and bottleneck sequence are introduced. A flexible

system is improvable in terms of quality with respect to sequencing if there exists

another sequence which renders better quality, otherwise it is unimprovable (i.e.,

optimal). In addition, quality bottleneck sequence is defined as the one that impedes

the product quality in the strongest manner, i.e., the sequence that leads to the worst

quality among all possible ones. Indicators for quality improvability and bottleneck
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sequence, based on the data available on the factory floor rather than complicated

calculations of quality performance, are developed. Such developments provide a

simple tool for production engineers and managers to design the appropriate sequence

to achieve higher quality in flexible manufacturing systems.

Identifying the quality bottleneck transition is another effective way to improve

the quality of a flexible manufacturing system. Similar with bottleneck sequence,

the bottleneck transition is defined as the one that impedes quality performance

in the strongest manner. The sensitivity of quality performance with respect to

quality failure and repair probabilities is investigated and quality bottleneck transition

indicators are proposed based on the data collected on the factory floor.

In automotive assembly plants, the largest amount of energy consumption and

atmospheric emissions is in paint shop. Optimizing the energy usage to pursue max-

imum energy savings, and reducing of Carbon Dioxide equivalent emissions are of

significant importance in automotive paint shops. Instead of inventing new chemi-

cals, new painting processes or new control systems in painting booths and ovens,

an optimal batch and scheduling procedure of vehicles to achieve the goal of energy

and emission reduction is developed. Specifically, by selecting appropriate batch and

sequence policies, the paint quality can be improved and repaints can be reduced so

that less material and energy will be consumed, and fewer atmospheric emissions will

be generated. It is shown that such scheduling and control method can lead to sig-

nificant energy savings and emission reduction with no extra investment, nor changes

to existing painting processes.

The presented method has been applied at an automotive paint shop to evaluate
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paint quality and investigate potential improvement strategies. Based on historical

inspection data, quality failure and repair probabilities are calculated. Given the

transition probabilities and product sequence, the model is validated with good accu-

racy. Then the quality bottleneck sequence is identified, and how to improve product

quality through resequencing is introduced. Finally, the negative and positive bottle-

neck transitions are identified. Improving them can lead to substantial improvement

in quality.

The model introduced here can be used to evaluate quality and investigate se-

quencing policies in many flexible systems with batch productions. It provides indus-

trial engineers and operation managers a quantitative tool for continuous improve-

ment on product quality in flexible manufacturing environment. However, it still has

limitations. It is more suitable for manufacturing systems with 100% inspections such

that substantial amount of data can be obtained to calculate transition probabilities.

In addition, when the number of products is large, the computation efficiency of qual-

ity performance might be a problem. In such a case, the bottleneck indicators have

more advantages.

Future work can be directed to the following issues:

∙ First, consider the reprocessing cases. For example, at an automotive paint

shop, a vehicle is inspected defective and might be sent to the same paint booth

again for repaints. In this case, transition probabilities of this type usually

change during repaints compared with first painting. Besides, resequencing

problem appears each time a repaint is required.
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∙ Second, continue our application effort to apply the methods on the factory

floor, e.g., automotive paint shops, for model validation and quality improve-

ment.

∙ Finally, integrate this method into quality control and assurance strategies.
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APPENDICES

Appendix A: Proofs of Chapter 3

Proof of Theorem 3.1:

It can be shown that

P (g11) + P (d11) = P (g22) + P (d22),

P (g12) + P (d12) = P (g11) + P (d11),

P (g21) + P (d21) = P (g12) + P (d12).

Therefore

P (g11) + P (d11) = P (g12) + P (d12) = P (g21) + P (d21) = P (g22) + P (d22) =
1

4
.

Then

P (g11) = �12

[1
4
− P (g22)

]
+ (1− �12)P (g22)

=
1

4
�12 + (1− �12 − �12)P (g22),

P (g12) = �11

[1
4
− P (g11)

]
+ (1− �11)P (g11)

=
1

4
�11 + (1− �11 − �11)P (g11)

=
1

4
�11 +

1

4
�12(1− �11 − �11) + (1− �12 − �12)(1− �11 − �11)P (g22),

P (g21) = (1− �21)P (g12) + �21

[1
4
− P (g12)

]
=

1

4
�21 + (1− �21 − �21)P (g12)

=
1

4
�21 +

1

4
�11(1− �21 − �21) +

1

4
�12(1− �21 − �21)(1− �11 − �11)
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+(1− �21 − �21)(1− �12 − �12)(1− �11 − �11)P (g22),

P (g22) = �22

[1
4
− P (g21)

]
+ (1− �22)P (g21)

=
1

4
�22 + (1− �22 − �22)P (g21)

=
1

4
�22 +

1

4
�21(1− �22 − �22) +

1

4
�11(1− �21 − �21)(1− �22 − �22)

+
1

4
�12(1− �21 − �21)(1− �11 − �11)(1− �22 − �22)

+(1− �21 − �21)(1− �22 − �22)(1− �11 − �11)(1− �12 − �12)P (g22).

Furthermore

P (g22) =
(
�22 + �21(1− �22 − �22) + �11(1− �21 − �21)(1− �22 − �22)

+�12(1− �21 − �21)(1− �11 − �11)(1− �22 − �22)
)

/(
4[1− (1− �21 − �21)(1− �22 − �22)(1− �11 − �11)(1− �12 − �12)]

)
.

Hence, we can obtain the overall quality performance

P (g) = P (g11) + P (g12) + P (g21) + P (g22)

=
1

4
�12 + (1− �12 − �12)P (g22) +

1

4
�11 +

1

4
�12(1− �11 − �11)

+(1− �12 − �12)(1− �11 − �11)P (g22) +
1

4
�21 +

1

4
�11(1− �21 − �21)

+
1

4
�12(1− �21 − �21)(1− �11 − �11) + P (g22)

+(1− �21 − �21)(1− �12 − �12)(1− �11 − �11)P (g22)

=
1

4

[
�11 + �21 + �12 + �11(1− �21 − �21) + �12(1− �11 − �11)

+�12(1− �21 − �21)(1− �11 − �11)
]

+ P (g22)
[
1 + 1− �12 − �12

+(1− �12 − �12)(1− �11 − �11) + (1− �21 − �21)(1− �11 − �11)

(1− �12 − �12)
]
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=
1

4

[
�21 + �12 + �11(2− �21 − �21) + �12(1− �11 − �11)(2− �21 − �21)

]
+P (g22)

[
2− �12 − �12 + (1− �11 − �11)(2− �21 − �21)(1− �12 − �12)

]
=

1

4

[
�21 + �12 + [�11 + �12(1− �11 − �11)](2− �21 − �21)

]
+P (g22)

[
2− �12 − �12 + (1− �11 − �11)(1− �12 − �12)(2− �21 − �21)

]
=

1

4

[
�21 + �12 + [�11 + �12(1− �11 − �11)](2− �21 − �21)

]
+
[
2− �12 − �12 + (1− �11 − �11)(1− �12 − �12)(2− �21 − �21)

]
⋅
[
�22 + �21(1− �22 − �22) + �11(1− �21 − �21)(1− �22 − �22)

+�12(1− �21 − �21)(1− �11 − �11)(1− �22 − �22)
]

/[
4[1− (1− �21 − �21)(1− �22 − �22)(1− �11 − �11)(1− �12 − �12)]

]
=

[
�11(1− �21 − �21)[1 + (1− �22 − �22)(1− �12 − �12)]

+�12(1− �11 − �11)[1 + (1− �22 − �22)(1− �21 − �21)]

+�21(1− �22 − �22)[1 + (1− �12 − �12)(1− �11 − �11)]

+�22(1− �12 − �12)[1 + (1− �11 − �11)(1− �21 − �21)]

+�21[1 + (1− �22 − �22)(1− �12 − �12)]

+�12[1 + (1− �11 − �11)(1− �21 − �21)]

+�11[1 + (1− �22 − �22)(1− �21 − �21)]

+�22[1 + (1− �12 − �12)(1− �11 − �11)]
]

/[
4[1− (1− �21 − �21)(1− �22 − �22)(1− �11 − �11)(1− �12 − �12)]

]
=

[
[�21 + �11(1− �21 − �21)][1 + (1− �22 − �22)(1− �12 − �12)]

+[�11 + �12(1− �11 − �11)][1 + (1− �22 − �22)(1− �21 − �21)]
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+[�22 + �21(1− �22 − �22)][1 + (1− �12 − �12)(1− �11 − �11)]

+[�12 + �22(1− �12 − �12)][1 + (1− �11 − �11)(1− �21 − �21)]
]

/[
4[1− (1− �21 − �21)(1− �22 − �22)(1− �11 − �11)(1− �12 − �12)]

]
.

Let

A = [�21 + �11(1− �21 − �21)][1 + (1− �22 − �22)(1− �12 − �12)],

ℬ = [�11 + �12(1− �11 − �11)][1 + (1− �22 − �22)(1− �21 − �21)],

C = [�21 + �21(1− �22 − �22)][1 + (1− �12 − �12)(1− �11 − �11)],

D = [�12 + �22(1− �12 − �12)][1 + (1− �11 − �11)(1− �21 − �21)],

ℱ = (1− �21 − �21)(1− �22 − �22)(1− �11 − �11)(1− �12 − �12).

We have

P (g) =
A + ℬ + C + D

4(1− ℱ)
.

Proof of Corollary 3.1:

P (g) =
[
2[1 + (1− �11 − �11)(1− �21 − �21)][�21 + �11(1− �21 − �21)]

+2[1 + (1− �11 − �11)(1− �21 − �21)][�11 + �21(1− �11 − �11)]
]

/[
4[1− (1− �11 − �11)2(1− �21 − �21)2]

]
=

[
[1 + (1− �11 − �11)(1− �21 − �21)][�21 + �11(1− �21 − �21) + �11

+�21(1− �11 − �11)]
]/[

2[1− (1− �11 − �11)(1− �21 − �21)]

⋅[1 + (1− �11 − �11)(1− �21 − �21)]
]

=
�11 + �21 + �11(1− �21 − �21) + �21(1− �11 − �11)

2[1− (1− �11 − �11)(1− �21 − �21)]
,
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=
�11(2− �21 − �21) + �21(2− �11 − �11)

2[1− (1− �11 − �11)(1− �21 − �21)]
..

Proof of Corollary 3.2:

Since 0 < �11, �21, �11, �21 < 1, we have

−1 < 1− �11 − �11 < 1

−1 < 1− �21 − �21 < 1

In order to analyze the monotonicity with respect to �11, �21, �11, �21, we derive

the their corresponding partial differentials from Corollary 3.1 above.

∂P (g)

∂�11

= −2�11[1− (1− �11 − �11)(1− �21 − �21)]

4[1− (1− �11 − �11)(1− �21 − �21)]2

−2(1− �21 − �21)[�11(2− �21 − �21) + �21(2− �11 − �11)]

4[1− (1− �11 − �11)(1− �21 − �21)]2

= −2[�21 + �11(1− �21 − �21)](2− �21 − �21)

4[1− (1− �11 − �11)(1− �21 − �21)]2

= −2[�21(1− �11) + �11(1− �21)](2− �21 − �21)

4[1− (1− �11 − �11)(1− �21 − �21)]2

< 0,

∂P (g)

∂�21

= −2�11[1− (1− �11 − �11)(1− �21 − �21)]

4[1− (1− �11 − �11)(1− �21 − �21)]2

−2(1− �11 − �11)[�11(2− �21 − �21) + �21(2− �11 − �11)]

4[1− (1− �11 − �11)(1− �21 − �21)]2

= −2[�11 + �21(1− �11 − �11)](2− �11 − �11)

4[1− (1− �11 − �11)(1− �21 − �21)]2

= −2[�11(1− �21) + �21(1− �11)](2− �11 − �11)

4[1− (1− �11 − �11)(1− �21 − �21)]2

< 0,

∂P (g)

∂�11

=
2(2− �21 − 2�21)[1− (1− �11 − �11)(1− �21 − �21)]

4[1− (1− �11 − �11)(1− �21 − �21)]2

130



−2(1− �21 − �21)[�11(2− �21 − �21) + �21(2− �11 − �11)]

4[1− (1− �11 − �11)(1− �21 − �21)]2

=
2[�21 + �11(1− �21 − �21)](2− �21 − �21)

4[1− (1− �11 − �11)(1− �21 − �21)]2

=
2[�21(1− �11) + �11(1− �21)](2− �21 − �21)

4[1− (1− �11 − �11)(1− �21 − �21)]2

> 0,

∂P (g)

∂�21

=
2(2− �11 − 2�11)[1− (1− �11 − �11)(1− �21 − �21)]

4[1− (1− �11 − �11)(1− �21 − �21)]2

−2(1− �11 − �11)[�11(2− �21 − �21) + �21(2− �11 − �11)]

4[1− (1− �11 − �11)(1− �21 − �21)]2

=
2[�11 + �21(1− �11 − �11)](2− �21 − �21)

4[1− (1− �11 − �11)(1− �21 − �21)]2

=
2[�11(1− �21) + �21(1− �11)](2− �21 − �21)

4[1− (1− �11 − �11)(1− �21 − �21)]2

> 0.

Proof of Corollary 3.3:

P (gbt)− P (gss)

=
�11 + �21 + �11(1− �21 − �21) + �21(1− �11 − �11)

2[1− (1− �11 − �11)(1− �21 − �21)]
− �21

�21 + �21

=
2�21 + 2�11 − �21(�11 + �11)− �11(�21 + �21)

2[�21 + �21 + �11 + �11 − (�21 + �21)(�11 + �11)]
− �21

�21 + �21

=
1

2

[
2�21(�21 + �21) + 2�11(�21 + �21)− �21(�21 + �21)(�11 + �11)

−�11(�21 + �21)2 − 2�21(�21 + �21)− 2�21(�11 + �11)

+2�21(�21 + �21)(�11 + �11)
]

/[
(�21 + �21)[�21 + �21 + �11 + �11 − (�21 + �21)(�11 + �11)]

]
=

�11(�21 + �21)(2− �21 − �21)− �21(�11 + �11)(2− �21 − �21)

(�21 + �21)[�21 + �21 + �11 + �11 − (�21 + �21)(�11 + �11)]

=
(2− �21 − �21)(�21�11 − �11�21)

(�21 + �21)[�21 + �21 + �11 + �11 − (�21 + �21)(�11 + �11)]
.
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Since

�21 + �21 + �11 + �11 − (�21 + �21)(�11 + �11)

= (
√
�21 + �21 −

√
�11 + �11)2

+
√

(�11 + �11)(�21 + �21)(2−
√

(�11 + �11)(�21 + �21)),

and

�21 + �21 < 2, �11 + �11 < 2,

we obtain

�21 + �21 + �11 + �11 > (�21 + �21)(�11 + �11).

If

e11 > e21,

i.e.,

�21�11 > �11�21,

we have P (gbt) > P (gss) and vice versa when e11 < e21.

Proof of Corollary 3.4:

P (gbt)− P (gr)

=
2�21 + 2�11 − �21(�11 + �11)− �11(�21 + �21)

2[1− (1− �11 − �11)(1− �21 − �21)]
− �11 + �21

�11 + �11 + �21 + �21

=
[
2�11(�11 + �11) + 2�11(�21 + �21) + 2�21(�11 + �11) + 2�21(�21 + �21)

−�11(�11 + �11)(�21 + �21)− �11(�21 + �21)2 − �21(�11 + �11)2

−�21(�11 + �11)(�21 + �21)− 2�11(�11 + �11)− 2�11(�21 + �21)
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+2�11(�11 + �11)(�21 + �21)− 2�21(�11 + �11)− 2�21(�21 + �21)

+2�21(�11 + �11)(�21 + �21)
]

/[
2[1− (1− �11 − �11)(1− �21 − �21)] ⋅ (�11 + �11 + �21 + �21)

]
=

[
(�11 + �21)(�11 + �11)(�21 + �21)− �11(�21 + �21)2 − �21(�11 + �11)2

]
/[

2[1− (1− �11 − �11)(1− �21 − �21)](�11 + �11 + �21 + �21)
]

=
(�11 + �11 − �21 − �21)(�21�11 − �11�21)

2[1− (1− �11 − �11)(1− �21 − �21)](�11 + �11 + �21 + �21)
.

Therefore, if �21�11 > �11�21, i.e., e11 > e21, and in addition, �11 +�11 > �21 +�21,

then

P (gbt) > P (gr).

where the second condition implies that �11
e11

> �21
e21

, the repair probability �11 is suffi-

ciently high.

Proof of Corollary 3.5:

From the transition equations, we can obtain

P (gij) + P (dij) =
1

nk
, i = 1, . . . , n; j = 1, . . . , k.

Replacing P (dij) with 1
nk
− P (gij) in the transition equations, we have for the

equal products case

P (g11) = (1− �21 − �21)P (gn,k) +
�21

nk
,

P (gi1) = (1− �21 − �21)P (gi−1,k) +
�21

nk
, i = 2, . . . , n

P (gij) = (1− �11 − �11)P (gi,j−1) +
�11

nk
, i = 1, . . . , n; j = 2, . . . , k.
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Therefore, for i = 1, . . . , n and j = 2, . . . , k,

P (gij) =
j−2∑
v=0

�11

nk
(1− �11 − �11)v + (1− �11 − �11)j−1P (gi1)

=
�11

nk
⋅ 1− (1− �11 − �11)j−1

�11 + �11

+ (1− �11 − �11)j−1P (gi1).

Adding all the states of first products, we have

n∑
i=1

P (gi1) = (1− �21 − �21)
(
P (gn,k) +

n∑
i=2

P (gi−1,k)
)

+
�21

k
,

= (1− �21 − �21)
(�11[1− (1− �11 − �11)k−1]

k(�11 + �11)

+(1− �11 − �11)k−1
n∑
i=1

P (gi1)
)

+
�21

k
.

Finally, we can obtain

n∑
i=1

P (gi1) =
�21(�11 + �11) + �11(1− �21 − �21)[1− (1− �11 − �11)k−1]

k(�11 + �11)[1− (1− �21 − �21)(1− �11 − �11)k−1]
.

The overall quality performance is

P (g) =
n∑
i=1

k∑
j=1

P (gij)

=
n∑
i=1

(
P (gi1) +

k∑
j=2

P (gij)
)

=
n∑
i=1

[
P (gi1) +

k∑
j=2

(�11

nk
⋅ 1− (1− �11 − �11)j−1

�11 + �11

+ (1− �11 − �11)j−1P (gi1)
)]

=
n∑
i=1

[1− (1− �11 − �11)k

�11 + �11

P (gi1) +
�11

nk(�11 + �11)

(
k − 1− (1− �11 − �11)k

�11 + �11

)]
=

1− (1− �11 − �11)k

�11 + �11

n∑
i=1

P (gi1) +
�11

k(�11 + �11)

(
k − 1− (1− �11 − �11)k

�11 + �11

)
=

�11

k(�11 + �11)

(
k − 1− (1− �11 − �11)k

�11 + �11

)
+

1− (1− �11 − �11)k

�11 + �11

⋅
(
�21(�11 + �11) + �11(1− �21 − �21)[1− (1− �11 − �11)k−1]

k(�11 + �11)[1− (1− �21 − �21)(1− �11 − �11)k−1]

)

=
�11

�11 + �11

+
(�11�21 − �21�11)[1− (1− �11 − �11)k]

k(�11 + �11)2[1− (1− �21 − �21)(1− �11 − �11)k−1]
.
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Proof of Proposition 3.1:

Let a = 1− �11 − �11 and b = 1− �21 − �21, then we have

∂P (g)

∂�21

=
−�11(1− ak)(1− bak−1)− (�11�21 − �21�11)(1− ak)ak−1

k(1− a)2(1− bak−1)2

= −(1− ak)[�11(1− ak−1) + �21a
k−1(1− a)]

k(1− a)2(1− bak−1)2
.

If a = 0, the partial differential equation can be simplified and we can easily find

∂P (g)
∂�21

< 0.

If ak−1 > 0, we can easily find ∂P (g)
∂�21

< 0.

If ak−1 < 0, that means a < 0 and therefore ak−2 > 0. The equation can be expressed

as follows

∂P (g)

∂�21

=
−�11(1− ak)(1− bak−1)− (�11�21 − �21�11)(1− ak)ak−1

k(1− a)2(1− bak−1)2

= −(1− ak)[�11(1− ak−1) + �21a
k−1(1− a)]

k(1− a)2(1− bak−1)2

= −(1− ak)(1− a)(�11 ⋅ Σk−2
m=0a

m + �21a
k−1)

k(1− a)2(1− bak−1)2

= −(1− ak)(1− a)(�11 ⋅ Σk−3
m=0a

m + �11a
k−2 + �21a

k−1)

k(1− a)2(1− bak−1)2

= −
(1− ak)(1− a)(�11

1−ak−2

1−a + (�11 + �21a)ak−2)

k(1− a)2(1− bak−1)2

= −
(1− ak)(1− a)[�11

1−ak−2

1−a + (�11 + �21 − �21�11 − �21�11)ak−2]

k(1− a)2(1− bak−1)2

= −
(1− ak)(1− a)[�11

1−ak−2

1−a + (�11(1− �21) + �21(1− �11))ak−2]

k(1− a)2(1− bak−1)2

< 0.

Similar derivation for ∂P (g)
∂�21

> 0

∂P (g)

∂�21

=
�11(1− ak)(1− bak−1)− (�11�21 − �21�11)(1− ak)ak−1

k(1− a)2(1− bak−1)2

=
(1− ak)[�11(1− ak−1) + �21a

k−1(1− a)]

k(1− a)2(1− bak−1)2
.
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If a = 0, the partial differential equation can be simplified and we can easily find

∂P (g)
∂�21

> 0.

If ak−1 > 0, we can easily find ∂P (g)
∂�21

> 0.

If ak−1 < 0, that means a < 0 and therefore ak−2 > 0. The equation can be expressed

as follows

∂P (g)

∂�21

=
�11(1− ak)(1− bak−1)− (�11�21 − �21�11)(1− ak)ak−1

k(1− a)2(1− bak−1)2

=
(1− ak)[�11(1− ak−1) + �21a

k−1(1− a)]

k(1− a)2(1− bak−1)2

=
(1− ak)(1− a)(�11 ⋅ Σk−2

m=0a
m + �21a

k−1)

k(1− a)2(1− bak−1)2

=
(1− ak)(1− a)(�11 ⋅ Σk−3

m=0a
m + �11a

k−2 + �21a
k−1)

k(1− a)2(1− bak−1)2

=
(1− ak)(1− a)(�11

1−ak−2

1−a + (�11 + �21a)ak−2)

k(1− a)2(1− bak−1)2

=
(1− ak)(1− a)[�11

1−ak−2

1−a + (�11 + �21 − �21�11 − �21�11)ak−2]

k(1− a)2(1− bak−1)2

=
(1− ak)(1− a)[�11

1−ak−2

1−a + (�11(1− �21) + �21(1− �11))ak−2]

k(1− a)2(1− bak−1)2

> 0

Note that the derivations are both based on the batch size k ≥ 2.

Proof of Proposition 3.2:

First we prove Dk+1 < Dk when k is odd, then the monotonicity follows immediately

by selecting e11 > e21 or e11 < e21. This proof is carried out by induction.

We first show that D2 < D1. We have

D2 −D1 =
1− a2

2(1− ba)
− 1− a

1− b
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= − (1− a)2(1 + b)

2(1− ba)(1− b)

< 0.

Next we assume that

D2j < D2j−1.

This implies that

D2j −D2j−1 =
1− a2j

2j(1− ba2j−1)
− 1− a2j−1

(2j − 1)(1− ba2j−2)

=
−(1− ba2j−2)(1− a2j) + (1− a)2ja2j−2(a− b)

2j(2j − 1)(1− ba2j−1)(1− ba2j−2)

< 0.

It follows that

(1− a)(a− b)2ja2j−2 < (1− a2j)(1− ba2j−2),

i.e.,

(1− a)(a− b)2ja2j < a2(1− a2j)(1− ba2j−2),

Now we need to show that D2j+2 < D2j+1.

D2j+2 −D2j+1

=
1− a2j+2

(2j + 2)(1− ba2j+1)
− 1− a2j+1

(2j + 1)(1− ba2j)

=
−(1− a2j)(1− ba2j+2)− (1− a)2(1 + b)a2j + 2ja2j(1− a)(a− b)

(2j + 1)(2j + 2)(1− ba2j+1)(1− ba2j)

<
−(1− a2j)(1− ba2j+2)− (1− a)2(1 + b)a2j + a2(1− a2j)(1− ba2j−2)

(2j + 1)(2j + 2)(1− ba2j+1)(1− ba2j)

=
−(1− a2j)(1− ba2j+2 − a2 + ba2j)− (1− a)2(1 + b)a2j

(2j + 1)(2j + 2)(1− ba2j+1)(1− ba2j)
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=
−(1− a2j)(1− a2 + ba2j(1− a2))− (1− a)2(1 + b)a2j

(2j + 1)(2j + 2)(1− ba2j+1)(1− ba2j)

=
−(1− a2j)(1− a2)(1− ba2j)− (1− a)2(1 + b)a2j

(2j + 1)(2j + 2)(1− ba2j+1)(1− ba2j)

< 0.

By induction, Dk+1 < Dk when k is odd.

Proof of Proposition 3.3:

First we prove Dk+2 < Dk when k is odd, then the monotonicity follows immediately

by selecting e11 > e21 or e11 < e21.

We first show that D3 < D1. Then

D3 −D1 =
1− a3

3(1− ba2)
− 1− a

1− b

=
1− a

3(1− ba2)(1− b)
[(1 + a+ a2)(1− b)− 3(1− ba2)]

= −(1− a)2[1 + ab+ (1 + a)(1 + a))]

3(1− ba2)(1− b)

= < 0.

Next we assume that

D2j+1 < D2j−1.

This implies that

D2j+1 −D2j−1 =
1− a2j+1

(2j + 1)(1− ba2j)
− 1− a2j−1

(2j − 1)(1− ba2j−2)

=
(2j − 1)(1− ba2j−2)(1− a2j+1)− (2j + 1)(1− ba2j)(1− a2j−1)

(2j − 1)(2j + 1)(1− ba2j−2)(1− ba2j)

=
−2(1− a2j−1)(1− ba2j) + (2j − 1)a2j−2(1− a2)(a− b)

(2j − 1)(2j + 1)(1− ba2j−2)(1− ba2j)

< 0.
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It follows that

−2(1− a2j−1)(1− ba2j) + (2j − 1)a2j−2(1− a2)(a− b) < 0.

Now we need to show that D2j+3 < D2j+1.

D2j+3 −D2j+1 =
1− a2j+3

(2j + 3)(1− ba2j+2)
− 1− a2j+1

(2j + 1)(1− ba2j)

=
(2j + 1)(1− ba2j)(1− a2j+3)− (2j + 3)(1− ba2j+2)(1− a2j+1)

(2j + 3)(2j + 1)(1− ba2j+2)(1− ba2j)

= [−2(1− a2j−1)(1− ba2j+4)− 2a2j−1(1− a2)2(1 + ab)

+(2j − 1)a2j(1− a2)(a− b)]

/[(2j + 3)(2j + 1)(1− ba2j+2)(1− ba2j)]

< [−2(1− a2j−1)(1− ba2j+4)− 2a2j−1(1− a2)2(1 + ab)

+2a2(1− a2j−1)(1− ba2j)]

/[(2j + 3)(2j + 1)(1− ba2j+2)(1− ba2j)]

=
−2(1− a2j−1)(1− a2)(1 + ba2j+2)− 2a2j−1(1− a2)2(1 + ab)

(2j + 3)(2j + 1)(1− ba2j+2)(1− ba2j)

= −2(1− a)2 (1− a2j−1)(1 + ba2j+2) + a2j−1(1− a2)(1 + ab)

(2j + 3)(2j + 1)(1− ba2j+2)(1− ba2j)

= −2(1− a)2 1− ba4j+1 − a2j+1 + ba2j

(2j + 3)(2j + 1)(1− ba2j+2)(1− ba2j)

= −2(1− a)2 (1− a2j+1)(1 + ba2j)

(2j + 3)(2j + 1)(1− ba2j+2)(1− ba2j)

< 0.

By induction, Dk+2 < Dk when k is odd.

Next we prove Dk+2 < Dk when k is even, then the monotonicity follows immediately

by selecting e11 > e21 or e11 < e21.

139



We first show that D4 < D2. Then

D4 −D2 =
1− a4

4(1− ba3)
− 1− a2

2(1− ba)

=
1− a2

4(1− ba3)(1− ba)
[(1 + a2)(1− ba)− 2(1− ba3)]

= − (1− a2)2(1 + ba)

4(1− ba3)(1− ba)

< 0.

Next we assume that

D2j+2 < D2j.

This implies that

D2j+2 −D2j =
1− a2j+2

(2j + 2)(1− ba2j+1)
− 1− a2j

(2j)(1− ba2j−1)

=
(2j)(1− ba2j−1)(1− a2j+2)− (2j + 2)(1− ba2j+1)(1− a2j)

(2j)(2j + 2)(1− ba2j−1)(1− ba2j+1)

=
−2(1− a2j)(1− ba2j+1) + (2j)a2j−1(1− a2)(a− b)

(2j)(2j + 2)(1− ba2j−1)(1− ba2j+1)

< 0.

It follows that

−2(1− a2j)(1− ba2j+1) + (2j)a2j−1(1− a2)(a− b) < 0.

Now we need to show that D2j+4 < D2j+2.

D2j+4 −D2j+2 =
1− a2j+4

(2j + 4)(1− ba2j+3)
− 1− a2j+2

(2j + 2)(1− ba2j+1)

=
(2j + 2)(1− ba2j+1)(1− a2j+4)− (2j + 4)(1− ba2j+3)(1− a2j+2)

(2j + 2)(2j + 4)(1− ba2j+1)(1− ba2j+3)

= [−2(1− a2j)(1− ba2j+5)− 2a2j(1− a2)2(1 + ab)

+(2j)a2j+1(1− a2)(a− b)]
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/[(2j + 2)(2j + 4)(1− ba2j+1)(1− ba2j+3)]

< [−2(1− a2j)(1− ba2j+5)− 2a2j(1− a2)2(1 + ab)

+2a2(1− a2j)(1− ba2j+1)]

/[(2j + 2)(2j + 4)(1− ba2j+1)(1− ba2j+3)]

=
−2(1− a2j)(1− a2)(1 + ba2j+3)− 2a2j(1− a2)2(1 + ab)

(2j + 2)(2j + 4)(1− ba2j+1)(1− ba2j+3)

< 0.

By induction, Dk+2 < Dk when k is even.

Therefore, in both cases we have Dk+2 − Dk < 0. The monotonicity statement

holds.

Appendix B: Proofs of Chapter 4

Proof of Theorem 4.1:

By substituting good states until only one exists, we have

P (g11) = �12[�22P (g21) +
�22

4
] +

�12

4

= �12�22[�21P (g12) +
�21

4
] + �12

�22

4
+
�12

4

= �12�22�21[�11P (g11) +
�11

4
] + �12�22

�21

4
+ �12

�22

4
+
�12

4

= �12�22�21�11P (g11) + �12�22�21
�11

4
+ �12�22

�21

4
+ �12

�22

4
+
�12

4
.

Therefore,

P (g11) =
�12�22�21

�11
4

+ �12�22
�21
4

+ �12
�22
4

+ �12
4

1− �12�22�21�11

.
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Similarly,

P (g12) =
�11�12�22

�21
4

+ �11�12
�22
4

+ �11
�12
4

+ �11
4

1− �12�22�21�11

,

P (g21) =
�21�11�12

�22
4

+ �21�11
�12
4

+ �21
�11
4

+ �21
4

1− �12�22�21�11

,

P (g22) =
�22�21�11

�12
4

+ �22�21
�11
4

+ �22
�21
4

+ �22
4

1− �12�22�21�11

.

The total good part probability can be derived

P (gbt) =
1

4
⋅ (1 + �21 + �22�21 + �12�22�21)�11

1− �11�12�22�21

+
1

4
⋅ (1 + �11 + �21�11 + �22�21�11)�12

1− �11�12�22�21

+
1

4
⋅ (1 + �22 + �12�22 + �11�12�22)�21

1− �11�12�22�21

+
1

4
⋅ (1 + �12 + �11�12 + �21�11�12)�22

1− �11�12�22�21

.

Proof of Proposition 4.2:

When n = 2, we have

�totalno−switcℎ = �11 + �22,

�totalswitcℎ = �12 + �21.

First, we prove

�totalswitcℎ

2(1 + �max)
< P (gss) <

�totalswitcℎ

2(1− �max)
,

�totalno−switcℎ + �totalswitcℎ

4(1 + �max)
< P (gbt) <

�totalno−switcℎ + �totalswitcℎ

4(1− �max)
.

For strictly sequencing policy, we have

P (g11) = �12P (g21) +
1

2
�12,

P (g21) = �21P (g11) +
1

2
�21.
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Since −�max < �12, �21 < �max, we can obtain

−�maxP (g21) +
1

2
�12 < P (g11) < �maxP (g21) +

1

2
�12,

−�maxP (g11) +
1

2
�21 < P (g21) < �maxP (g11) +

1

2
�21.

Summing up these two equations, we have

−�maxP (gss) +
1

2
�totalswitcℎ < P (gss) < �maxP (gss) +

1

2
�totalswitcℎ.

Therefore,

�totalswitcℎ

2(1 + �max)
< P (gss) <

�totalswitcℎ

2(1− �max)
.

For batch policy, we have

P (g11) = �12P (g22) +
1

4
�12,

P (g12) = �11P (g11) +
1

4
�11,

P (g21) = �21P (g12) +
1

4
�21,

P (g22) = �22P (g21) +
1

4
�22.

Since −�max < �12, �11, �21, �22 < �max, we can obtain

−�maxP (g22) +
1

4
�12 < P (g11) < �maxP (g22) +

1

4
�12,

−�maxP (g11) +
1

4
�11 < P (g12) < �maxP (g11) +

1

4
�11,

−�maxP (g12) +
1

4
�21 < P (g21) < �maxP (g12) +

1

4
�21,

−�maxP (g21) +
1

4
�22 < P (g22) < �maxP (g21) +

1

4
�22.

Similarly, we can finally obtain

�totalswitcℎ + �totalno−switcℎ
4(1 + �max)

< P (gbt) <
�totalswitcℎ + �totalno−switcℎ

4(1− �max)
.
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Next, we proceed to prove the proposition.

If �totalno−switcℎ > �totalswitcℎ and �max <
�totalno−switcℎ−�

total
switcℎ

�total
no−switcℎ

+3�total
switcℎ

, then

�totalswitcℎ + �totalno−switcℎ
4(1 + �max)

>
�totalswitcℎ

2(1− �max)
.

Therefore,

P (gbt) > P (gss).

If �totalno−switcℎ < �totalswitcℎ and �max <
�totalswitcℎ−�

total
no−switcℎ

�total
no−switcℎ

+3�total
switcℎ

, then

�totalswitcℎ + �totalno−switcℎ
4(1− �max)

<
�totalswitcℎ

2(1 + �max)
.

Therefore,

P (gbt) < P (gss).

Proof of Equation 4.35:

First, we prove that det(I − Γ) = 1− ΠK
i=1i.

det(I − Γ) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ⋅ ⋅ ⋅ 0 −1

−2 1 ⋅ ⋅ ⋅ 0 0
0 −3 ⋅ ⋅ ⋅ 0 0
...

...
...

...
...

0 0 ⋅ ⋅ ⋅ −K 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
1 ⋅ ⋅ ⋅ 0 0
−3 ⋅ ⋅ ⋅ 0 0

...
...

...
...

0 ⋅ ⋅ ⋅ −K 1

⎞⎟⎟⎟⎟⎠+ (−1)K+1(−1)

⎛⎜⎜⎜⎜⎝
−2 1 ⋅ ⋅ ⋅ 0

0 −3 ⋅ ⋅ ⋅ 0
...

...
...

...
0 0 ⋅ ⋅ ⋅ −K

⎞⎟⎟⎟⎟⎠
= 1 + (−1)K+1(−1)ΠK

i=2(−i)

= 1− ΠK
i=1i
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Next, we show that ΓK = ΠK
i=1iI. Define transformation matrix Ir and a serial

of diagonal matrix Γi, i = 1, . . . , K, as

Ir =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ⋅ ⋅ ⋅ 0 1
1 0 ⋅ ⋅ ⋅ 0 0
0 1 ⋅ ⋅ ⋅ 0 0
...

...
...

...
...

0 0 ⋅ ⋅ ⋅ 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

Γi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0
0 i+1 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0
...

...
...

...
...

...
0 0 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 0
...

...
...

...
...

...
0 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ i−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The following properties are obtained:

IKr = I,

Γ = Γ1Ir,

I−1
r ΓiIr = Γi+1,

ΠK
i=1Γi = ΠK

i=1iI.

It follows that:

ΓK = Γ1IrΓ1Ir ⋅ ⋅ ⋅Γ1IrΓ1IrΓ1Ir

= Γ1IrΓ1Ir ⋅ ⋅ ⋅Γ1IrΓ1IrIrI
−1
r Γ1Ir

= Γ1IrΓ1Ir ⋅ ⋅ ⋅Γ1IrΓ1IrIrΓ2

= Γ1IrΓ1Ir ⋅ ⋅ ⋅Γ1IrIrI
−1
r Γ1IrIrΓ2

= Γ1IrΓ1Ir ⋅ ⋅ ⋅Γ1I
2
rΓ2IrΓ2

= Γ1IrΓ1Ir ⋅ ⋅ ⋅Γ1I
2
r IrI

−1
r Γ2IrΓ2

= Γ1IrΓ1Ir ⋅ ⋅ ⋅Γ1I
3
rΓ3Γ2
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= Γ1IrΓ1Ir ⋅ ⋅ ⋅Γ1I
i
rΓiΓi−1 ⋅ ⋅ ⋅Γ2

= Γ1I
K
r ΠK

i=2Γi

= ΠK
i=1Γi

= ΠK
i=1iI

Finally,we obtain

(I − Γ)

∑K
i=1 Γi−1

det(I − Γ)
=

∑K
i=1 Γi−1

det(I − Γ)
(I − Γ)

=

∑K
i=1 Γi−1 −∑K

i=1 Γi

det(I − Γ)

=
I − ΓK

det(I − Γ)

=
I − ΠK

i=1iI

det(I − Γ)

=
(1− ΠK

i=1i)I

1− ΠK
i=1i

= I

Therefore,

(I − Γ)−1 =

∑K
i=1 Γi−1

det(I − Γ)

Equation 4.35 follows immediately.

Proof of Proposition 4.5:

For batch policy, we have

P (glbt)− P (gmbt ) =
�sl1,sln +

∑n
i=2 �sli,sli−1

+
∑n
i=1(ksli − 1)�sli,sli∑n

i=1 ksli

−
�sm1 ,smn +

∑n
i=2 �smi ,smi−1

+
∑n
i=1(ksmi − 1)�smi ,smi∑n

i=1 ksmi
.

146



Note that
∑n
i=1 ksli =

∑n
i=1 ksmi and

∑n
i=1(ksli − 1)�sli,sli =

∑n
i=1(ksmi − 1)�smi ,smi , where

sli, s
m
i ∈ {1, 2, ..., n}. Then, we have

P (glbt)− P (gmbt ) =
(�sl1,sln +

∑n
i=2 �sli,sli−1

)− (�sm1 ,smn +
∑n
i=2 �smi ,smi−1

)∑n
i=1 ksli

.

For strictly sequencing policy, we obtain

P (glss)− P (gmss) =
�sl1,sln +

∑n
i=2 �sli,sli−1

n
−
�sm1 ,smn +

∑n
i=2 �smi ,smi−1

n

=
(�sl1,sln +

∑n
i=2 �sli,sli−1

)− (�sm1 ,smn +
∑n
i=2 �smi ,smi−1

)

n
.

Thus, the numerators are the same in both comparisons, which implies that

P (glbt) > P (gmbt )⇐⇒ P (glss) > P (gmss).

Proof of Proposition 4.7:

For a given sequence sl, we have

P (glbt)− P (glss) =
�sl1,sln +

∑n
i=2 �sli,sli−1

+
∑n
i=1(ksli − 1)�sli,sli∑n

i=1 ksli
−
�sl1,sln +

∑n
i=2 �sli,sli−1

n

=

∑n
i=1(ksli − 1)�sli,sli∑n

i=1 ksli
−
(

1

n
− 1∑n

i=1 ksli

)(
�sl1,sln +

n∑
i=2

�sli,sli−1

)

=
n∑
i=1

[
ksli∑n
i=1 ksli

− 1∑n
i=1 ksli

]
�sli,sli

−
(

1

n
− 1∑n

i=1 ksli

)(
�sl1,sln +

n∑
i=2

�sli,sli−1

)

= ẽtotalno−switcℎ − ẽtotalswitcℎ.

Therefore,we obtain

P (glbt) > P (glss)⇐⇒ ẽtotalno−switcℎ > ẽtotalswitcℎ.
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Proof of Proposition 4.8:

Define function sum(⋅) to represent the summation of elements of a vector, i.e.,

sum(�) =
n∑
i=1

�i.

where � = [�1, �2, . . . , �n]T .

For both policies, the probability of good parts is calculated by

P (gl) =
K∑
i=1

xi = sum

(
1

K

∑K
i=1 Γi−1

det(I − Γ)
Φ

)
.

In Bernoulli-like case, Γ is a matrix with all zero elements. Then, we have

�̃l =
1

K
Φ.

In Bernoulli-relax case, �max = maxij ∣�ij∣,

P (gl)− 1

1 + �max
�̃l = sum

(
1

K

∑K
i=1 Γi−1

det(I − Γ)
Φ

)
− sum

(
1

K(1 + �max)
Φ

)

= sum

(
1

K

∑K
i=1 Γi−1

det(I − Γ)
Φ− 1

K(1 + �max)
Φ

)

= sum

(∑K
i=1 Γi−1Φ(1 + �max)− det(I − Γ)Φ

K det(I − Γ)(1 + �max)

)

= sum

(∑K
i=1 Γi−1Φ(1 + �max)− (1− det(ΓK))Φ

K det(I − Γ)(1 + �max)

)

= sum

(
Γ
∑K
i=1 Γi−1Φ + �max

∑K
i=1 Γi−1Φ

K det(I − Γ)(1 + �max)

)

= sum

(
(Γ + �maxI)

∑K
i=1 Γi−1Φ

K det(I − Γ)(1 + �max)

)

= sum

(
(Γ + �maxI)X

1 + �max

)

Denote the transformation matrix It as

It =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0

0 0 0
. . . 0 0

0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Then,

sum

(
(Γ + �maxI)X

1 + �max

)
= sum

(
(ItΓ + �maxI)X

1 + �max

)

Note that matrix ItΓ+�maxI is diagonal and its elements are non-negative. Therefore,

P (gl) ≥ 1

1 + �max
�̃l.

Similarly, we obtain

1

1− �max
�̃l − P (gl) = sum

(
1

K(1− �max)
Φ

)
− sum

(
1

K

∑K
i=1 Γi−1

det(I − Γ)
Φ

)

= sum

(
1

K(1− �max)
Φ− 1

K

∑K
i=1 Γi−1

det(I − Γ)
Φ

)

= sum

(
det(I − Γ)Φ−∑K

i=1 Γi−1Φ(1− �max)
K det(I − Γ)(1− �max)

)

= sum

(
(1− det(ΓK))Φ−∑K

i=1 Γi−1Φ(1− �max)
K det(I − Γ)(1− �max)

)

= sum

(
−Γ

∑K
i=1 Γi−1Φ + �max

∑K
i=1 Γi−1Φ

K det(I − Γ)(1− �max)

)

= sum

(
(�maxI − Γ)

∑K
i=1 Γi−1Φ

K det(I − Γ)(1− �max)

)

= sum

(
(�maxI − Γ)X

1− �max

)

It follows that

sum

(
(�maxI − Γ)X

1− �max

)
= sum

(
(�maxI − ItΓ)X

1− �max

)

Matrix �maxI−ItΓ is again diagonal and its elements are non-negative. Therefore,

P (gl) ≤ 1

1− �max
�̃l.

Finally, we obtain

1

1 + �max
�̃l ≤ P (gl) ≤ 1

1− �max
�̃l.
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Proof of Proposition 4.9:

First, we show that

�̃lbt − �̃mbt
�̃lbt + �̃mbt

=
�̃lss − �̃mss
�̃lss + �̃mss

.

Under the Bernoulli-like assumption

�̃lbt =

∑n
i=1(ksli − 1)�sli,sli +

∑n
i=2 �sli,sli−1

+ �sl1,sln∑n
i=1 ksli

,

�̃lss =

∑n
i=2 �sli,sli−1

+ �sl1,sln
n

.

Since the total number of parts are identical for all sequences, i.e.,
∑n
i=1 ksli =

∑n
i=1 ksmi and

∑n
i=1(ksli − 1)�sli,sli =

∑n
i=1(ksmi − 1)�smi ,smi , where sli, s

m
i ∈ {1, 2, ..., n},

we have

�̃lbt − �̃mbt
�̃lbt + �̃mbt

=
[�sl1,sln +

∑n
i=2 �sli,sli−1

+
∑n
i=1(ksli − 1)�sli,sli∑n

i=1 ksli

−
�sm1 ,smn +

∑n
i=2 �smi ,smi−1

+
∑n
i=1(ksmi − 1)�smi ,smi∑n

i=1 ksmi

]

/
[�sl1,sln +

∑n
i=2 �sli,sli−1

+
∑n
i=1(ksli − 1)�sli,sli∑n

i=1 ksli

+
�sm1 ,smn +

∑n
i=2 �smi ,smi−1

+
∑n
i=1(ksmi − 1)�smi ,smi∑n

i=1 ksmi

]

=
(�sl1,sln +

∑n
i=2 �sli,sli−1

)− (�sm1 ,smn +
∑n
i=2 �smi ,smi−1

)

(�sl1,sln +
∑n
i=2 �sli,sli−1

) + (�sm1 ,smn +
∑n
i=2 �smi ,smi−1

)

=

(�
sl
1
,sln

+
∑n

i=2
�
sl
i
,sl
i−1

)

n
−

(�sm
1

,smn
+
∑n

i=2
�sm

i
,sm
i−1

)

n
(�

sl
1
,sln

+
∑n

i=2
�
sl
i
,sl
i−1

)

n
+

(�sm
1

,smn
+
∑n

i=2
�sm

i
,sm
i−1

)

n

=
�̃lss − �̃mss
�̃lss + �̃mss

.

Next, from Proposition 4.8, we obtain

(�̃lbt − �̃mbt)− �max(�̃lbt + �̃mbt)

1− �2
max

< P (glbt)− P (gmbt ) <
(�̃lbt − �̃mbt) + �max(�̃

l
bt + �̃mbt)

1− �2
max

,
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(�̃lss − �̃mss)− �max(�̃lss + �̃mss)

1− �2
max

< P (glss)− P (gmss) <
(�̃lss − �̃mss) + �max(�̃

l
ss + �̃mss)

1− �2
max

.

If �max < (�̃lbt − �̃mbt)/(�̃lbt + �̃mbt) = (�̃lss − �̃mss)/(�̃lss + �̃mss), then

(�̃lbt − �̃mbt)− �max(�̃lbt + �̃mbt) > 0,

(�̃lss − �̃mss)− �max(�̃lss + �̃mss) > 0.

Therefore,

P (glbt) > P (gmbt ),

P (glss) > P (gmss).

The arguments follow immediately.

Proof of Proposition 4.10:

Similar arguments can be applied.

�totalno−switcℎ − �totalswitcℎ

�totalno−switcℎ + k+1
k−1

�totalswitcℎ

=
(k − 1)

∑n
i=1 �sli,sli − (k − 1)[�sl1,sln +

∑n
i=2 �sli,sli−1

]

(k − 1)
∑n
i=1 �sli,sli + (k + 1)[�sl1,sln +

∑n
i=2 �sli,sli−1

]

=

[
�sl1,sln +

∑n
i=2 �sli,sli−1

+
∑n
i=1(k − 1)�sli,sli

nk
−
�sl1,sln +

∑n
i=2 �sli,sli−1

n

]
/[

�sl1,sln +
∑n
i=2 �sli,sli−1

+
∑n
i=1(k − 1)�sli,sli

nk
+
�sl1,sln +

∑n
i=2 �sli,sli−1

n

]

=
�̃lbt − �̃lss
�̃lbt + �̃lss

.

Therefore,

�max <
�totalno−switcℎ − �totalswitcℎ

�totalno−switcℎ + k+1
k−1

�totalswitcℎ

implies �max <
�̃lbt − �̃lss
�̃lbt + �̃lss

,
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which leads to

1

1 + �max
�̃lbt >

1

1− �max
�̃lss.

From Proposition 4.8, we obtain P (glbt) > P (glss).

Similarly,

�totalswitcℎ − �totalno−switcℎ

�totalno−switcℎ + k+1
k−1

�totalswitcℎ

=
(k − 1)[�sl1,sln +

∑n
i=2 �sli,sli−1

]− (k − 1)
∑n
i=1 �sli,sli

(k − 1)
∑n
i=1 �sli,sli + (k + 1)[�sl1,sln +

∑n
i=2 �sli,sli−1

]

=

[
�sl1,sln +

∑n
i=2 �sli,sli−1

n
−
�sl1,sln +

∑n
i=2 �sli,sli−1

+
∑n
i=1(k − 1)�sli,sli

nk

]
/[

�sl1,sln +
∑n
i=2 �sli,sli−1

+
∑n
i=1(k − 1)�sli,sli

nk
+
�sl1,sln +

∑n
i=2 �sli,sli−1

n

]

=
�̃lss − �̃lbt
�̃lbt + �̃lss

.

Therefore,

�max <
�totalswitcℎ − �totalno−switcℎ

�totalno−switcℎ + k+1
k−1

�totalswitcℎ

implies �max <
�̃lss − �̃lbt
�̃lbt + �̃lss

,

which leads to

1

1 + �max
�̃lss >

1

1− �max
�̃lbt.

From Proposition 4.8, we obtain P (glbt) < P (glss).

Proof of Proposition 4.12:

Rewrite P (gl) in Equation (A.3) as

P (gl) = sum
(

1

K
E
)

+ sum

(
1

K

Γ−Θ

det(I − Γ)
E

)

+sum

(
1

K

∑K
i=3 Γi−1

det(I − Γ)
E − 1

K

∑K−1
i=2 Γi−1

det(I − Γ)
ΘE

)
. (A.1)
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Since elements of
∑K
i=3 Γi−1,

∑K−1
i=2 Γi−1Θ and det(I − Γ) are polynomials with �ij

whose orders are no smaller than 2, we have

P (gl) = sum
(

1

K
E
)

+ sum

(
1

K

Γ−Θ

det(I − Γ)
E

)
+ o(�2

max).

For batch policy and strictly sequencing policy, it can be rewritten as

P (glbt) =

∑n
i=1(ksli − 1)esli,sli +

∑n
i=2 esli,sli−1

+ esl1,sln
K

+
(�sl1,sl1 − �sl1,sln)esl1,sln +

∑n−1
i=2 (�sli,sli − �sli,sli−1

)esli,sli−1

K

(
1− �sl1,sln

∏n
i=2 �sli,sli−1

∏n
i=1 �

k
sl
i
−1

sli,s
l
i

)

+
(�sln,sln − �sln,sln−1

)esln,sln−1
+
∑n−1
i=1 (�sli+1,s

l
i
− �sli,sli)esli,sli

K

(
1− �sl1,sln

∏n
i=2 �sli,sli−1

∏n
i=1 �

k
sl
i
−1

sli,s
l
i

)

+
(�sl1,sln − �sln,sln)esln,sln

K

(
1− �sl1,sln

∏n
i=2 �sli,sli−1

∏n
i=1 �

k
sl
i
−1

sli,s
l
i

)
+o(�2

max),

P (glss) =

∑n
i=2 esli,sli−1

+ esl1,sln
n

+
(�sl2,sl1 − �sl1,sln)esl1,sln +

∑n−1
i=2 (�sli+1,s

l
i
− �sli,sli−1

)esli,sli−1

n

(
1− �sl1,sln

∏n
i=2 �sli,sli−1

)

+
(�sl1,sln − �sln,sln−1

)esln,sln−1

n

(
1− �sl1,sln

∏n
i=2 �sli,sli−1

) + o(�2
max).

Proof of Proposition 4.13:

The good part probability is calculated by

P (gl) = sum

(
1

K

∑K
i=1 Γi−1

det(I − Γ)
Φ

)
.
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Define Θ and E for batch policy

Θ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�sl1,sln 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

0 �sl1,sl1 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
0 0 ⋅ ⋅ ⋅ �sl1,sl1 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 �sl2,sl1 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 0 �sl2,sl2 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ �sln,sln−1

0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 �sln,sln ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0
. . . 0

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ �sln,sln

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
E = [esl1,sln , esl1,sl1 , . . . , esl1,sl1 , esl2,sl1 , esl2,sl2 , . . . , esln,sln−1

, esln,sln , . . . , esln,sln ]T

and Θ and E for strictly sequencing policy

Θ =

⎛⎜⎜⎜⎜⎜⎝
�sl1,sln 0 ⋅ ⋅ ⋅ 0

0 �sl2,sl1 ⋅ ⋅ ⋅ 0

0 0
. . . 0

0 0 ⋅ ⋅ ⋅ �sln,sln−1

⎞⎟⎟⎟⎟⎟⎠
E = [esl1,sln , esl2,sl1 , . . . , esln,sln−1

]T

Then, it follows that

Φ = (I −Θ)E

Furthermore,

P (gl) = sum

(
1

K

∑K
i=1 Γi−1

det(I − Γ)
(I −Θ)E

)

= sum

(
1

K

∑K
i=1 Γi−1

det(I − Γ)
E − 1

K

∑K
i=1 Γi−1

det(I − Γ)
ΘE

)

= sum

(
1

K

I − ΓK−1Θ

det(I − Γ)
E +

1

K

∑K
i=2 Γi−1

det(I − Γ)
E − 1

K

∑K−1
i=1 Γi−1

det(I − Γ)
ΘE

)
(A.2)

Since

sum((I − ΓK−1Θ)E) = det(I − Γ)sum(E),
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we can obtain

P (gl) = sum
(

1

K
E
)

+ sum

(
1

K

∑K
i=2 Γi−1

det(I − Γ)
E − 1

K

∑K−1
i=1 Γi−1

det(I − Γ)
ΘE

)
. (A.3)

It can be shown that
∑K
i=2 Γi−1,

∑K−1
i=1 Γi−1Θ and det(I − Γ) are polynomials with �ij

whose orders are no smaller than 1. Thus,

P (gl) = sum
(

1

K
E
)

+ o(�max).

Proof of Corollary 4.2:

From Equation (A.1), we obtain

∣∣∣∣∣sum
(

1

K

Γi − Γi−1Θ

det(I − Γ)
E

)∣∣∣∣∣ ≤ 2�imax
1− �Kmax

sum
(

1

K
E
)

Then,

∣o(�2
max)∣ =

∣∣∣∣∣sum
(

1

K

∑K
i=3 Γi−1

det(I − Γ)
E − 1

K

∑K−1
i=2 Γi−1

det(I − Γ)
ΘE

)∣∣∣∣∣
=

∣∣∣∣∣sum
(

1

K

∑K−1
i=2 (Γi − Γi−1Θ)

det(I − Γ)
E

)∣∣∣∣∣
=

∣∣∣∣∣
K−1∑
i=2

sum

(
1

K

Γi − Γi−1Θ

det(I − Γ)
E

)∣∣∣∣∣
≤

K−1∑
i=2

∣∣∣∣∣sum
(

1

K

Γi − Γi−1Θ

det(I − Γ)
E

)∣∣∣∣∣
≤

K−1∑
i=2

2�imax
1− �Kmax

sum
(

1

K
E
)

= 2

(
1

1− �max
− 1 + �max

1− �Kmax

)
sum

(
1

K
E
)
.
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Proof of Corollary 4.3:

∣o(�max)∣ =

∣∣∣∣∣sum
(

1

K

∑K
i=2 Γi−1

det(I − Γ)
E − 1

K

∑K−1
i=1 Γi−1

det(I − Γ)
ΘE

)∣∣∣∣∣
=

∣∣∣∣∣sum
(

1

K

∑K−1
i=1 (Γi − Γi−1Θ)

det(I − Γ)
E

)∣∣∣∣∣
=

∣∣∣∣∣
K−1∑
i=1

sum

(
1

K

Γi − Γi−1Θ

det(I − Γ)
E

)∣∣∣∣∣
≤

K−1∑
i=1

∣∣∣∣∣sum
(

1

K

Γi − Γi−1Θ

det(I − Γ)
E

)∣∣∣∣∣
≤

K−1∑
i=1

2�imax
1− �Kmax

sum
(

1

K
E
)

= 2

(
1

1− �max
− 1

1− �Kmax

)
sum

(
1

K
E
)
.

Appendix C: Proofs of Chapter 5

Proof of Proposition 5.1:

Assume the product sequence is 1-2-3-1. Then the transition equations can be written

as follows:

P (g11) = �13P (g31) +
1

3
�13,

P (g21) = �21P (g11) +
1

3
�21,

P (g31) = �32P (g21) +
1

3
�32.

Consider a subtle increment Δ�21 of �21. Then, we have

P (g11) + ΔP (g11) = �13[P (g31) + ΔP (g31)] +
1

3
�13,

P (g21) + ΔP (g21) = (�21 −Δ�21)[P (g11) + ΔP (g11)] +
1

3
�21,

P (g31) + ΔP (g31) = �32[P (g21) + ΔP (g11)] +
1

3
�32.
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By subtracting the transition equations after subtle change with the ones before

change, we obtain

ΔP (g11) = �13ΔP (g31),

ΔP (g21) = −Δ�21P (g11) + (�21 −Δ�21)ΔP (g11),

ΔP (g31) = �32ΔP (g21).

Since

lim
Δ�21−→0

ΔP (gij)

Δ�21

=
∂P (gij)

∂�21

,

we have

∂P (g11)

∂�21

= �13
∂P (g31)

∂�21

,

∂P (g21)

∂�21

= −P (g11) + �21
∂P (g11)

∂�21

,

∂P (g31)

∂�21

= �32
∂P (g21)

∂�21

.

Thus,

∂P (g21)

∂�21

= − P (g11)

1− �21�13�32

. (A.4)

The partial derivative of P (gss) with respect to �21 is

∂P (gss)

∂�21

=
∂P (g21)

∂�21

+
∂P (g31)

∂�21

+
∂P (g11)

∂�31

=
∂P (g21)

∂�21

(1 + �32 + �32�13)

= − P (g11)

1− �21�13�32

(1 + �32 + �32�13).

Similarly, consider a subtle increment Δ�21 of �21. Then, we have

P (g11) + ΔP (g11) = �13[P (g31) + ΔP (g31)] +
1

3
�13,
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P (g21) + ΔP (g21) = (�21 −Δ�21)[P (g11) + ΔP (g11)] +
1

3
(�21 + Δ�21),

P (g31) + ΔP (g31) = �32[P (g21) + ΔP (g11)] +
1

3
�32.

By subtracting the transition equations after subtle change with the ones before

change, we obtain

ΔP (g11) = �13ΔP (g31),

ΔP (g21) = −Δ�21[P (g11)− 1

3
] + (�21 −Δ�21)ΔP (g11),

ΔP (g31) = �32ΔP (g21).

Thus,

∂P (g21)

∂�21

= −
P (g11)− 1

3

1− �21�13�32

. (A.5)

The partial derivative of P (gss) with respect to �21 is

∂P (gss)

∂�21

=
∂P (g21)

∂�21

+
∂P (g31)

∂�21

+
∂P (g11)

∂�31

=
∂P (g21)

∂�21

(1 + �32 + �32�13)

= −
P (g11)− 1

3

1− �21�13�32

(1 + �32 + �32�13).

Since P (g11) + P (d11) = 1
3
, the equation can be rewritten as

∂P (gss)

∂�21

=
P (d11)

1− �21�13�32

(1 + �32 + �32�13).

Following similar derivation, the conclusions hold.

Proof of Proposition 5.2:

Assume there are two types of products, each with batch size three. The product

sequence will be 1-1-1-2-2-2-1. Similar with strict sequence, the transition equations
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with good states only can be written as follows:

P (g11) = �12P (g23) +
1

6
�12,

P (g12) = �11P (g11) +
1

6
�11,

P (g13) = �11P (g12) +
1

6
�11,

P (g21) = �21P (g13) +
1

6
�21,

P (g22) = �22P (g21) +
1

6
�22,

P (g23) = �22P (g22) +
1

6
�22.

In batch policy, transitions with product switch appear once while transitions

without product switch happen more as batch sizes increase. We investigate transi-

tions with switch first and then without switch.

Transitions with switch

Consider a subtle increment Δ�21 of �21. Then, we have

P (g11) + ΔP (g11) = �12[P (g23) + ΔP (g23)] +
1

6
�12,

P (g12) + ΔP (g12) = �11[P (g11) + ΔP (g11)] +
1

6
�11,

P (g13) + ΔP (g13) = �11[P (g12) + ΔP (g12)] +
1

6
�11,

P (g21) + ΔP (g21) = (�21 −Δ�21)[P (g13) + ΔP (g13)] +
1

6
�21,

P (g22) + ΔP (g22) = �22[P (g21) + ΔP (g21)] +
1

6
�22,

P (g23) + ΔP (g23) = �22[P (g22) + ΔP (g22)] +
1

6
�22.
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By subtracting the transition equations after subtle change with the ones before

change, we obtain

ΔP (g11) = �12ΔP (g23),

ΔP (g12) = �11ΔP (g11),

ΔP (g13) = �11ΔP (g12),

ΔP (g21) = −Δ�21P (g13) + (�21 −Δ�21)ΔP (g13),

ΔP (g22) = �22ΔP (g21),

ΔP (g23) = �22ΔP (g22).

Since

lim
Δ�21−→0

ΔP (gij)

Δ�21

=
∂P (gij)

∂�21

,

we have

∂P (g11)

∂�21

= �12
∂P (g23)

∂�21

,

∂P (g12)

∂�21

= �11
∂P (g11)

∂�21

,

∂P (g13)

∂�21

= �11
∂P (g12)

∂�21

,

∂P (g21)

∂�21

= −P (g13) + �21
∂P (g13)

∂�21

,

∂P (g22)

∂�21

= �22
∂P (g21)

∂�21

,

∂P (g23)

∂�21

= �22
∂P (g22)

∂�21

.

Thus,

∂P (g21)

∂�21

= − P (g13)

1− �21�2
11�12�2

22

. (A.6)
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The partial derivative of P (gbt) with respect to �21 is

∂P (gbt)

∂�21

=
∂P (g21)

∂�21

+
∂P (g22)

∂�21

+
∂P (g23)

∂�31

+
∂P (g21)

∂�21

+
∂P (g22)

∂�11

+
∂P (g12)

∂�13

=
∂P (g21)

∂�21

(1 + �22 + �2
22 + �2

22�12 + �2
22�12�11 + �2

22�12�
2
11)

= − P (g13)

1− �21�2
11�12�2

22

(1 + �22 + �2
22 + �2

22�12 + �2
22�12�11 + �2

22�12�
2
11).

Similarly, the partial derivative of P (gbt) with respect to �21 is

∂P (gbt)

∂�21

=
∂P (g21)

∂�21

+
∂P (g22)

∂�21

+
∂P (g23)

∂�31

+
∂P (g21)

∂�21

+
∂P (g22)

∂�11

+
∂P (g12)

∂�13

=
∂P (g21)

∂�21

(1 + �22 + �2
22 + �2

22�12 + �2
22�12�11 + �2

22�12�
2
11)

=
P (d13)

1− �21�2
11�12�2

22

(1 + �22 + �2
22 + �2

22�12 + �2
22�12�11 + �2

22�12�
2
11).

Transitions without switch

Consider a subtle increment Δ�11 of �11. Then, we have

P (g11) + ΔP (g11) = �12[P (g23) + ΔP (g23)] +
1

6
�12,

P (g12) + ΔP (g12) = (�11 −Δ�11)[P (g11) + ΔP (g11)] +
1

6
�11,

P (g13) + ΔP (g13) = (�11 −Δ�11)[P (g12) + ΔP (g12)] +
1

6
�11,

P (g21) + ΔP (g21) = �21[P (g13) + ΔP (g13)] +
1

6
�21,

P (g22) + ΔP (g22) = �22[P (g21) + ΔP (g21)] +
1

6
�22,

P (g23) + ΔP (g23) = �22[P (g22) + ΔP (g22)] +
1

6
�22.

By subtracting the transition equations after subtle change with the ones before

change, we obtain

ΔP (g11) = �12ΔP (g23),
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ΔP (g12) = −Δ�11P (g11) + (�11 −Δ�11)ΔP (g11),

ΔP (g13) = −Δ�11P (g12) + (�11 −Δ�11)ΔP (g12),

ΔP (g21) = �21ΔP (g13),

ΔP (g22) = �22ΔP (g21),

ΔP (g23) = �22ΔP (g22).

Since

lim
Δ�21−→0

ΔP (gij)

Δ�21

=
∂P (gij)

∂�21

,

we have

∂P (g11)

∂�11

= �12
∂P (g23)

∂�11

,

∂P (g12)

∂�11

= −P (g11) + �11
∂P (g11)

∂�11

,

∂P (g13)

∂�11

= −P (g12) + �11
∂P (g12)

∂�11

,

∂P (g21)

∂�11

= �21
∂P (g13)

∂�11

,

∂P (g22)

∂�11

= �22
∂P (g21)

∂�11

,

∂P (g23)

∂�11

= �22
∂P (g22)

∂�11

.

Thus,

∂P (g13)

∂�11

= −P (g12) + �11P (g11)

1− �21�2
11�12�2

22

. (A.7)

The partial derivative of P (gbt) with respect to �11 is

∂P (gbt)

∂�11

=
∂P (g13)

∂�11

+
∂P (g21)

∂�11

+
∂P (g22)

∂�11

+
∂P (g23)

∂�11

+
∂P (g11)

∂�11

+
∂P (g12)

∂�11

=
∂P (g13)

∂�11

(1 + �21 + �21�22 + �21�
2
22 + �21�

2
22�12 + �21�

2
22�12�11)− P (g11)
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= − P (g12)

1− �21�2
11�12�2

22

(1 + �21 + �21�22 + �21�
2
22 + �21�

2
22�12 + �21�

2
22�12�11)

− P (g11)

1− �21�2
11�12�2

22

(1 + �11 + �11�21 + �11�21�22 + �11�21�
2
22 + �11�21�

2
22�12).

Similarly, consider a subtle increment Δ�11 of �11. Then, we have

P (g11) + ΔP (g11) = �12[P (g23) + ΔP (g23)] +
1

6
�12,

P (g12) + ΔP (g12) = (�11 −Δ�11)[P (g11) + ΔP (g11)] +
1

6
(�11 + Δ�11),

P (g13) + ΔP (g13) = (�11 −Δ�11)[P (g12) + ΔP (g12)] +
1

6
(�11 + Δ�11),

P (g21) + ΔP (g21) = �21[P (g13) + ΔP (g13)] +
1

6
�21,

P (g22) + ΔP (g22) = �22[P (g21) + ΔP (g21)] +
1

6
�22,

P (g23) + ΔP (g23) = �22[P (g22) + ΔP (g22)] +
1

6
�22.

By subtracting the transition equations after subtle change with the ones before

change, we obtain

ΔP (g11) = �12ΔP (g23),

ΔP (g12) = −Δ�11[P (g11)− 1

6
] + (�11 −Δ�11)ΔP (g11),

ΔP (g13) = −Δ�11[P (g12)− 1

6
] + (�11 −Δ�11)ΔP (g12),

ΔP (g21) = �21ΔP (g13),

ΔP (g22) = �22ΔP (g21),

ΔP (g23) = �22ΔP (g22).

When Δ�11 −→ 0 and P (g11) + P (d11) = P (g12) + P (d12) = 1
6
, we have

∂P (g11)

∂�11

= �12
∂P (g23)

∂�11

,

163



∂P (g12)

∂�11

= P (d11) + �11
∂P (g11)

∂�11

,

∂P (g13)

∂�11

= P (d12) + �11
∂P (g12)

∂�11

,

∂P (g21)

∂�11

= �21
∂P (g13)

∂�11

,

∂P (g22)

∂�11

= �22
∂P (g21)

∂�11

,

∂P (g23)

∂�11

= �22
∂P (g22)

∂�11

.

Thus,

∂P (g13)

∂�11

=
P (d12) + �11P (d11)

1− �21�2
11�12�2

22

. (A.8)

The partial derivative of P (gbt) with respect to �11 is

∂P (gbt)

∂�11

=
∂P (g13)

∂�11

+
∂P (g21)

∂�11

+
∂P (g22)

∂�11

+
∂P (g23)

∂�11

+
∂P (g11)

∂�11

+
∂P (g12)

∂�11

=
∂P (g13)

∂�11

(1 + �21 + �21�22 + �21�
2
22 + �21�

2
22�12 + �21�

2
22�12�11) + P (d11)

=
P (d12)

1− �21�2
11�12�2

22

(1 + �21 + �21�22 + �21�
2
22 + �21�

2
22�12 + �21�

2
22�12�11)

+
P (d11)

1− �21�2
11�12�2

22

(1 + �11 + �11�21 + �11�21�22 + �11�21�
2
22 + �11�21�

2
22�12).

Following similar derivation, the conclusions hold.

Proof of Proposition 5.3 and 5.4:

P (gl) = sum
(

1

K
(I − Γ)−1Φ

)
= sum

(
1

K

∑K
i=1 Γi−1

det(I − Γ)
Φ

)
.
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where Γ and Φ for batch policy

Γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 �sl1,sln
�sl1,sl1 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0

0
. . . 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ �sl1,sl1 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 �sl2,sl1 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 0 �sl2,sl2 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 0 0
. . . 0 0 ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ �sln,sln−1
0 ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 �sln,sln ⋅ ⋅ ⋅ 0 0

0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0
. . . 0 0

0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ �sln,sln 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Φ = [�sl1,sln , �sl1,sl1 , . . . , �sl1,sl1 , �sl2,sl1 , �sl2,sl2 , . . . , �sln,sln−1
, �sln,sln , . . . , �sln,sln ]T ,

and Γ and Φ for strictly sequencing policy

Γ =

⎛⎜⎜⎜⎜⎜⎝
0 ⋅ ⋅ ⋅ 0 �sl1,sln

�sl2,sl1 ⋅ ⋅ ⋅ 0 0

0
. . . 0 0

0 ⋅ ⋅ ⋅ �sln,sln−1
0

⎞⎟⎟⎟⎟⎟⎠ ,
Φ = [�sl1,sln , �sl2,sl1 , . . . , �sln,sln−1

]T .

Step 1: Transform P (gl) as a equation of �sli,slj and esli,slj .

Define Θ and E for batch policy

Θ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�sl1,sln 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

0 �sl1,sl1 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
0 0 ⋅ ⋅ ⋅ �sl1,sl1 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 �sl2,sl1 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 0 �sl2,sl2 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ �sln,sln−1

0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 �sln,sln ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0
. . . 0

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ �sln,sln

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

E = [esl1,sln , esl1,sl1 , . . . , esl1,sl1 , esl2,sl1 , esl2,sl2 , . . . , esln,sln−1
, esln,sln , . . . , esln,sln ]T ,
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and Θ and E for strictly sequencing policy

Θ =

⎛⎜⎜⎜⎜⎜⎝
�sl1,sln 0 ⋅ ⋅ ⋅ 0

0 �sl2,sl1 ⋅ ⋅ ⋅ 0

0 0
. . . 0

0 0 ⋅ ⋅ ⋅ �sln,sln−1

⎞⎟⎟⎟⎟⎟⎠ ,
E = [esl1,sln , esl2,sl1 , . . . , esln,sln−1

]T .

Then,

Φ = (I −Θ)E,

Θ = ΓP.

where

P =

⎛⎜⎜⎜⎜⎝
0 1 ⋅ ⋅ ⋅ 0

0 0
. . . 0

0 0 ⋅ ⋅ ⋅ 1
1 0 ⋅ ⋅ ⋅ 0

⎞⎟⎟⎟⎟⎠ .

Furthermore,

P (gl) = sum

(
1

K

∑K
i=1 Γi−1

det(I − Γ)
(I −Θ)E

)

= sum

(
1

K

∑K
i=1 Γi−1

det(I − Γ)
(I − ΓP )E

)

= sum

(
1

K

∑K
i=1 Γi−1

det(I − Γ)
E − 1

K

∑K
i=1 Γi

det(I − Γ)
PE

)

= sum

(
1

K

I − ΓKP

det(I − Γ)
E +

1

K

∑K
i=2 Γi−1

det(I − Γ)
E − 1

K

∑K−1
i=1 Γi

det(I − Γ)
PE

)

= sum

(
1

K

I − ΓKP

det(I − Γ)
E

)
+ sum

(
1

K

∑K−1
i=1 Γi

det(I − Γ)
(I − P )E

)
.

Since

sum
(
(I − ΓKP )E

)
= det(I − Γ)sum (E) ,
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we can obtain

P (gl) = sum
(

1

K
E
)

+ sum

(
1

K

∑K−1
i=1 Γi

det(I − Γ)
(I − P )E

)
,

=
1

K
sum (E) +

1

K det(I − Γ)
sum

(
K−1∑
i=1

Γi(I − P )E

)
.

Step 2: Partial derivatives and ignoring 2nd order �sli,slj .

Let �sli,slj and esli,slj for batch policy

�sli,slj ∈ {�sl1,sln , �sl2,sl1 , �sl3,sl2 , . . . , �sln,sln−1
, �sl1,sl1 , �sl2,sl2 , . . . , �sln,sln},

esli,slj ∈ {esl1,sln , esl2,sl1 , esl3,sl2 , . . . , esln,sln−1
, esl1,sl1 , esl2,sl2 , . . . , esln,sln}.

and �sli,slj and esli,slj for strictly sequencing policy

�sli,slj ∈ {�sl1,sln , �sl2,sl1 , �sl3,sl2 , . . . , �sln,sln−1
},

esli,slj ∈ {esl1,sln , esl2,sl1 , esl3,sl2 , . . . , esln,sln−1
}.

The partial derivatives can be calculated as

∂P (gl)

∂�sli,slj
=

∂P (gl)

∂�sli,slj

∂�sli,slj
∂�sli,slj

+
∂P (gl)

∂esli,slj

∂esli,slj
∂�sli,slj

,

∂P (gl)

∂�sli,slj
=

∂P (gl)

∂�sli,slj

∂�sli,slj
∂�sli,slj

+
∂P (gl)

∂esli,slj

∂esli,slj
∂�sli,slj

.

We can easily obtain

∂�sli,slj
∂�sli,slj

= −1,

∂�sli,slj
∂�sli,slj

= −1;

∂esli,slj
∂�sli,slj

= −
esli,slj

1− �sli,slj
,

∂esli,slj
∂�sli,slj

=
1− esli,slj
1− �sli,slj

.
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Then,

∂P (gl)

∂�sli,slj
=

1

K det(I − Γ)

∂sum
(∑K−1

i=1 Γi(I − P )E
)

∂�sli,slj

−
sum

(∑K−1
i=1 Γi(I − P )E

)
K det(I − Γ)2

∂det(I − Γ)

∂�sli,slj
,

∂P (gl)

∂esli,slj
=

1

K

∂sum(E)

∂esli,slj
+

1

K det(I − Γ)

∂sum
(∑K−1

i=1 Γi(I − P )E
)

∂esli,slj
.

Strictly Sequencing Policy

In this case, i = j + 1 or i = 1 when j = n. In the following derivation, the index

sli, s
l
j must satisfy the rule:

if i = 1 or j = 1

i− 1 = i− 1 + n,

j − 1 = j − 1 + n.

if i = n or j = n

i+ 1 = i+ 1− n,

j + 1 = j + 1− n.

Define the matrix Q

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 0 . . . 0

0
. . . 0 0

. . . 0
0 . . . qi−1,i−1 0 . . . 0
0 . . . 0 qi,i . . . 0

0
. . . 0 0

. . . 0
0 . . . 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

where qi−1,i−1 = det(I − Γ) and qi,i = 1, and i− 1 = n if i = 1.
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We can find

det(I − Γ)
∂sum(E)

∂esli,slj
=

∂sum (Q(I − P )E)

∂esli,slj
.

Considering

∂det(I − Γ)

∂�sli,slj
= o(�n−1

max),

the partial derivatives can be obtained

∂P (gl)

∂�sli,slj

=
∂P (gl)

∂�sli,slj

∂�sli,slj
∂�sli,slj

+
∂P (gl)

∂esli,slj

∂esli,slj
∂�sli,slj

= − 1

n det(I − Γ)

∂sum
(∑n−1

i=1 Γi(I − P )E
)

∂�sli,slj
+

o(�nmax)

n det(I − Γ)2

−
esli,slj

1− �sli,slj

⎡⎣ 1

n

∂sum(E)

∂esli,slj
+

1

n det(I − Γ)

∂sum
(∑n−1

i=1 Γi(I − P )E
)

∂esli,slj

⎤⎦
= − 1

n det(I − Γ)

⎡⎣∂sum
(∑2

i=1 Γi(I − P )E
)

∂�sli,slj
+ o(�2

max)

⎤⎦+
o(�nmax)

n det(I − Γ)2

− 1

n det(I − Γ)

esli,slj
1− �sli,slj

⎡⎣det(I − Γ)
∂sum(E)

∂esli,slj
+
∂sum

(∑n−1
i=1 Γi(I − P )E

)
∂esli,slj

⎤⎦
= − 1

n det(I − Γ)

⎡⎣∂sum
(∑2

i=1 Γi(I − P )E
)

∂�sli,slj

⎤⎦+
o(�2

max)

n det(I − Γ)
+

o(�nmax)

n det(I − Γ)2

− 1

n det(I − Γ)

esli,slj
1− �sli,slj

⎡⎣∂sum
(
(Q+

∑n−1
i=1 Γi)(I − P )E

)
∂esli,slj

⎤⎦
= − 1

n det(I − Γ)

[
(1 + �sli+1,s

l
j+1

)(esli−1,s
l
j−1
− esli,slj)

+�sli−1,s
l
j−1

(esli−2,s
l
j−2
− esli−1,s

l
j−1

)

]

− 1

n det(I − Γ)

esli,slj
1− �sli,slj

[
(1− �sli,slj)(1 + �sli+1,s

l
j+1

+ o(�2
max))

]

+
o(�2

max)

n det(I − Γ)
+

o(�nmax)

n det(I − Γ)2
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= − 1

n det(I − Γ)

[
(1 + �sli+1,s

l
j+1

)esli−1,s
l
j−1

+ �sli−1,s
l
j−1

(esli−2,s
l
j−2
− esli−1,s

l
j−1

)
]

+
o(�2

max)

n det(I − Γ)
+

o(�nmax)

n det(I − Γ)2

= − 1

n(1− o(�nmax))
[
(1 + �sli+1,s

l
j+1

)esli−1,s
l
j−1

+ �sli−1,s
l
j−1

(esli−2,s
l
j−2
− esli−1,s

l
j−1

)
]

+
o(�2

max)

n(1− o(�nmax))
+

o(�nmax)

n(1− o(�nmax))

= − 1

n

[
(1 + �sli+1,s

l
j+1

)esli−1,s
l
j−1

+ �sli−1,s
l
j−1

(esli−2,s
l
j−2
− esli−1,s

l
j−1

)
]

+ o(�2
max).

∂P (gl)

∂�sli,slj

=
∂P (gl)

∂�sli,slj

∂�sli,slj
∂�sli,slj

+
∂P (gl)

∂esli,slj

∂esli,slj
∂�sli,slj

= − 1

n det(I − Γ)

∂sum
(∑n−1

i=1 Γi(I − P )E
)

∂�sli,slj
+

o(�nmax)

n det(I − Γ)2

+
1− esli,slj
1− �sli,slj

⎡⎣ 1

n

∂sum(E)

∂esli,slj
+

1

n det(I − Γ)

∂sum
(∑n−1

i=1 Γi(I − P )E
)

∂esli,slj

⎤⎦
= − 1

n det(I − Γ)

⎡⎣∂sum
(∑2

i=1 Γi(I − P )E
)

∂�sli,slj
+ o(�2

max)

⎤⎦+
o(�nmax)

n det(I − Γ)2

+
1

n det(I − Γ)

1− esli,slj
1− �sli,slj

⎡⎣det(I − Γ)
∂sum(E)

∂esli,slj
+
∂sum

(∑n−1
i=1 Γi(I − P )E

)
∂esli,slj

⎤⎦
= − 1

n det(I − Γ)

⎡⎣∂sum
(∑2

i=1 Γi(I − P )E
)

∂�sli,slj

⎤⎦+
o(�2

max)

n det(I − Γ)
+

o(�nmax)

n det(I − Γ)2

+
1

n det(I − Γ)

1− esli,slj
1− �sli,slj

⎡⎣∂sum
(
(Q+

∑n−1
i=1 Γi)(I − P )E

)
∂esli,slj

⎤⎦
= − 1

n det(I − Γ)

[
(1 + �sli+1,s

l
j+1

)(esli−1,s
l
j−1
− ei,j)

+�sli−1,s
l
j−1

(esli−2,s
l
j−2
− esli−1,s

l
j−1

)

]

+
1

n det(I − Γ)

1− esli,slj
1− �sli,slj

[
(1− �sli,slj)(1 + �sli+1,s

l
j+1

+ o(�2
max))

]

+
o(�2

max)

n det(I − Γ)
+

o(�nmax)

n det(I − Γ)2

170



= − 1

n det(I − Γ)

[
(1 + �sli+1,s

l
j+1

)(esli−1,s
l
j−1
− 1) + �sli−1,s

l
j−1

(esli−2,s
l
j−2
− esli−1,s

l
j−1

)
]

+
o(�2

max)

n det(I − Γ)
+

o(�nmax)

n det(I − Γ)2

= − 1

n(1− o(�nmax))
[
(1 + �sli+1,s

l
j+1

)(esli−1,s
l
j−1
− 1) + �sli−1,s

l
j−1

(esli−2,s
l
j−2
− esli−1,s

l
j−1

)
]

+
o(�2

max)

n(1− o(�nmax))
+

o(�nmax)

n(1− o(�nmax))

= − 1

n

[
(1 + �sli+1,s

l
j+1

)(esli−1,s
l
j−1
− 1) + �sli−1,s

l
j−1

(esli−2,s
l
j−2
− esli−1,s

l
j−1

)
]

+ o(�2
max).

Batch Policy

In this case, i = j+1 or i = 1 when j = n for transitions with switch, and i = j for

transitions without switch. In the following derivation, the index sli, s
l
j must satisfy

the rule:

if i = 1 or j = 1

i− 1 = i− 1 + n,

j − 1 = j − 1 + n.

if i = n or j = n

i+ 1 = i+ 1− n,

j + 1 = j + 1− n.

Transitions with switch:

Define the matrix Q

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 0 . . . 0

0
. . . 0 0

. . . 0
0 . . . qm−1,m−1 0 . . . 0
0 . . . 0 qm,m . . . 0

0
. . . 0 0

. . . 0
0 . . . 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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where m =
∑i
ℎ=2(ksl

ℎ−1
+ 1) when i > 1 or m = 1 when i = 1, qm−1,m−1 = det(I − Γ)

and qm,m = 1, and m− 1 = K if m = 1.

We can find

det(I − Γ)
∂sum(E)

∂esli,slj
=

∂sum (Q(I − P )E)

∂esli,slj
.

Considering

∂det(I − Γ)

∂�sli,slj
= o(�n−1

max),

the partial derivatives can be obtained

If the batch size kslj = 2

∂P (gl)

∂�sli,slj

=
∂P (gl)

∂�sli,slj

∂�sli,slj
∂�sli,slj

+
∂P (gl)

∂esli,slj

∂esli,slj
∂�sli,slj

= − 1

K det(I − Γ)

∂sum
(∑K−1

i=1 Γi(I − P )E
)

∂�sli,slj
+

o(�Kmax)

K det(I − Γ)2

−
esli,slj

1− �sli,slj

⎡⎣ 1

K

∂sum(E)

∂esli,slj
+

1

K det(I − Γ)

∂sum
(∑K−1

i=1 Γi(I − P )E
)

∂esli,slj

⎤⎦
= − 1

K det(I − Γ)

⎡⎣∂sum
(∑2

i=1 Γi(I − P )E
)

∂�sli,slj
+ o(�2

max)

⎤⎦+
o(�Kmax)

K det(I − Γ)2

− 1

K det(I − Γ)

esli,slj
1− �sli,slj

⎡⎣det(I − Γ)
∂sum(E)

∂esli,slj
+
∂sum

(∑K−1
i=1 Γi(I − P )E

)
∂esli,slj

⎤⎦
= − 1

K det(I − Γ)

⎡⎣∂sum
(∑2

i=1 Γi(I − P )E
)

∂�sli,slj

⎤⎦+
o(�2

max)

K det(I − Γ)
+

o(�Kmax)

K det(I − Γ)2

− 1

K det(I − Γ)

esli,slj
1− �sli,slj

⎡⎣∂sum
(
(Q+

∑K−1
i=1 Γi)(I − P )E

)
∂esli,slj

⎤⎦
= − 1

K det(I − Γ)

[
(1 + �sli,slj+1

)(esli−1,s
l
j
− esli,slj) + �sli−1,s

l
j
(esli−1,s

l
j−1
− esli−1,s

l
j
)
]
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− 1

K det(I − Γ)

esli,slj
1− �sli,slj

[
(1− �sli,slj)(1 + �sli,slj+1

+ o(�2
max))

]

+
o(�2

max)

K det(I − Γ)
+

o(�Kmax)

K det(I − Γ)2

= − 1

K det(I − Γ)

[
(1 + �sli,slj+1

)esli−1,s
l
j

+ �sli−1,s
l
j
(esli−1,s

l
j−1
− esli−1,s

l
j
)
]

+
o(�2

max)

K det(I − Γ)
+

o(�Kmax)

K det(I − Γ)2

= − 1

K(1− o(�Kmax))
[
(1 + �sli,slj+1

)esli−1,s
l
j

+ �sli−1,s
l
j
(esli−1,s

l
j−1
− esli−1,s

l
j
)
]

+
o(�2

max)

K(1− o(�Kmax))
+

o(�Kmax)

K(1− o(�Kmax))

= − 1

K

[
(1 + �sli,slj+1

)esli−1,s
l
j

+ �sli−1,s
l
j
(esli−1,s

l
j−1
− esli−1,s

l
j
)
]

+ o(�2
max).

∂P (gl)

∂�sli,slj

=
∂P (gl)

∂�sli,slj

∂�sli,slj
∂�sli,slj

+
∂P (gl)

∂esli,slj

∂esli,slj
∂�sli,slj

= − 1

K det(I − Γ)

∂sum
(∑K−1

i=1 Γi(I − P )E
)

∂�sli,slj
+

o(�Kmax)

K det(I − Γ)2

+
1− esli,slj
1− �sli,slj

⎡⎣ 1

K

∂sum(E)

∂esli,slj
+

1

K det(I − Γ)

∂sum
(∑K−1

i=1 Γi(I − P )E
)

∂esli,slj

⎤⎦
= − 1

K det(I − Γ)

⎡⎣∂sum
(∑2

i=1 Γi(I − P )E
)

∂�sli,slj
+ o(�2

max)

⎤⎦+
o(�Kmax)

K det(I − Γ)2

+
1

K det(I − Γ)

1− esli,slj
1− �sli,slj

⎡⎣det(I − Γ)
∂sum(E)

∂esli,slj
+
∂sum

(∑K−1
i=1 Γi(I − P )E

)
∂esli,slj

⎤⎦
= − 1

K det(I − Γ)

⎡⎣∂sum
(∑2

i=1 Γi(I − P )E
)

∂�sli,slj

⎤⎦+
o(�2

max)

K det(I − Γ)
+

o(�Kmax)

K det(I − Γ)2

+
1

K det(I − Γ)

1− esli,slj
1− �sli,slj

⎡⎣∂sum
(
(Q+

∑K−1
i=1 Γi)(I − P )E

)
∂esli,slj

⎤⎦
= − 1

K det(I − Γ)

[
(1 + �sli,slj+1

)(esli−1,s
l
j
− esli,slj) + �sli−1,s

l
j
(esli−1,s

l
j−1
− esli−1,s

l
j
)
]

+
1

K det(I − Γ)

1− esli,slj
1− �sli,slj

[
(1− �sli,slj)(1 + �sli,slj+1

+ o(�2
max))

]
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+
o(�2

max)

K det(I − Γ)
+

o(�Kmax)

K det(I − Γ)2

= − 1

K det(I − Γ)

[
(1 + �sli,slj+1

)(esli−1,s
l
j
− 1) + �sli−1,s

l
j
(esli−1,s

l
j−1
− esli−1,s

l
j
)
]

+
o(�2

max)

K det(I − Γ)
+

o(�Kmax)

K det(I − Γ)2

= − 1

K(1− o(�Kmax))
[
(1 + �sli,slj+1

)(esli−1,s
l
j
− 1) + �sli−1,s

l
j
(esli−1,s

l
j−1
− esli−1,s

l
j
)
]

+
o(�2

max)

K(1− o(�Kmax))
+

o(�Kmax)

K(1− o(�Kmax))

= − 1

K

[
(1 + �sli,slj+1

)(esli−1,s
l
j
− 1) + �sli−1,s

l
j
(esli−1,s

l
j−1
− esli−1,s

l
j
)
]

+ o(�2
max).

If the batch size kslj > 2

∂P (gl)

∂�sli,slj

=
∂P (gl)

∂�sli,slj

∂�sli,slj
∂�sli,slj

+
∂P (gl)

∂esli,slj

∂esli,slj
∂�sli,slj

= − 1

K det(I − Γ)

∂sum
(∑K−1

i=1 Γi(I − P )E
)

∂�sli,slj
+

o(�Kmax)

K det(I − Γ)2

−
esli,slj

1− �sli,slj

⎡⎣ 1

K

∂sum(E)

∂esli,slj
+

1

K det(I − Γ)

∂sum
(∑K−1

i=1 Γi(I − P )E
)

∂esli,slj

⎤⎦
= − 1

K det(I − Γ)

⎡⎣∂sum
(∑2

i=1 Γi(I − P )E
)

∂�sli,slj
+ o(�2

max)

⎤⎦+
o(�Kmax)

K det(I − Γ)2

− 1

K det(I − Γ)

esli,slj
1− �sli,slj

⎡⎣det(I − Γ)
∂sum(E)

∂esli,slj
+
∂sum

(∑K−1
i=1 Γi(I − P )E

)
∂esli,slj

⎤⎦
= − 1

K det(I − Γ)

⎡⎣∂sum
(∑2

i=1 Γi(I − P )E
)

∂�sli,slj

⎤⎦+
o(�2

max)

K det(I − Γ)
+

o(�Kmax)

K det(I − Γ)2

− 1

K det(I − Γ)

esli,slj
1− �sli,slj

⎡⎣∂sum
(
(Q+

∑K−1
i=1 Γi)(I − P )E

)
∂esli,slj

⎤⎦
= − 1

K det(I − Γ)

[
(1 + �sli,slj+1

)(esli−1,s
l
j
− esli,slj) + �sli−1,s

l
j
(esli−1,s

l
j
− esli−1,s

l
j
)
]

− 1

K det(I − Γ)

esli,slj
1− �sli,slj

[
(1− �sli,slj)(1 + �sli,slj+1

+ o(�2
max))

]
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+
o(�2

max)

K det(I − Γ)
+

o(�Kmax)

K det(I − Γ)2

= − 1

K det(I − Γ)

[
(1 + �sli,slj+1

)esli−1,s
l
j

]
+

o(�2
max)

K det(I − Γ)
+

o(�Kmax)

K det(I − Γ)2

= − 1

K(1− o(�Kmax))
[
(1 + �sli,slj+1

)esli−1,s
l
j

]
+

o(�2
max)

K(1− o(�Kmax))
+

o(�Kmax)

K(1− o(�Kmax))

= − 1

K

[
(1 + �sli,slj+1

)esli−1,s
l
j

]
+ o(�2

max).

∂P (gl)

∂�sli,slj

=
∂P (gl)

∂�sli,slj

∂�sli,slj
∂�sli,slj

+
∂P (gl)

∂esli,slj

∂esli,slj
∂�sli,slj

= − 1

K det(I − Γ)

∂sum
(∑K−1

i=1 Γi(I − P )E
)

∂�sli,slj
+

o(�Kmax)

K det(I − Γ)2

+
1− esli,slj
1− �sli,slj

⎡⎣ 1

K

∂sum(E)

∂esli,slj
+

1

K det(I − Γ)

∂sum
(∑K−1

i=1 Γi(I − P )E
)

∂esli,slj

⎤⎦
= − 1

K det(I − Γ)

⎡⎣∂sum
(∑2

i=1 Γi(I − P )E
)

∂�sli,slj
+ o(�2

max)

⎤⎦+
o(�Kmax)

K det(I − Γ)2

+
1

K det(I − Γ)

1− esli,slj
1− �sli,slj

⎡⎣det(I − Γ)
∂sum(E)

∂esli,slj
+
∂sum

(∑K−1
i=1 Γi(I − P )E

)
∂esli,slj

⎤⎦
= − 1

K det(I − Γ)

⎡⎣∂sum
(∑2

i=1 Γi(I − P )E
)

∂�sli,slj

⎤⎦+
o(�2

max)

K det(I − Γ)
+

o(�Kmax)

K det(I − Γ)2

+
1

K det(I − Γ)

1− esli,slj
1− �sli,slj

⎡⎣∂sum
(
(Q+

∑K−1
i=1 Γi)(I − P )E

)
∂esli,slj

⎤⎦
= − 1

K det(I − Γ)

[
(1 + �sli,slj+1

)(esli−1,s
l
j
− esli,slj) + �sli−1,s

l
j
(esli−1,s

l
j
− esli−1,s

l
j
)
]

+
1

K det(I − Γ)

1− esli,slj
1− �sli,slj

[
(1− �sli,slj)(1 + �sli,slj+1

+ o(�2
max))

]

+
o(�2

max)

K det(I − Γ)
+

o(�Kmax)

K det(I − Γ)2

= − 1

K det(I − Γ)

[
(1 + �sli,slj+1

)(esli−1,s
l
j
− 1)

]
+

o(�2
max)

K det(I − Γ)
+

o(�Kmax)

K det(I − Γ)2

= − 1

K(1− o(�Kmax))
[
(1 + �sli,slj+1

)(esli−1,s
l
j
− 1)

]
+

o(�2
max)

K(1− o(�Kmax))
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+
o(�Kmax)

K(1− o(�Kmax))

= − 1

K

[
(1 + �sli,slj+1

)(esli−1,s
l
j
− 1)

]
+ o(�2

max).

Transitions without switch:

Define the matrix Q

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 . . . 0 . . . 0 . . . 0

0
. . . 0 . . . 0 . . . 0

. . . 0
0 . . . qj−k

sl
i
,j−k

sl
i

. . . 0 . . . 0 . . . 0

0 . . . 0
. . . 0 . . . 0 . . . 0

0 . . . 0 . . . qj−m,j−m . . . 0 . . . 0

0 . . . 0 . . . 0
. . . 0 . . . 0

0 . . . 0 . . . 0 . . . qj,j . . . 0

0
. . . 0 . . . 0 . . . 0

. . . 0
0 . . . 0 . . . 0 . . . 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

where j =
∑i
ℎ=1(ksl

ℎ
+ 1), qj−k

sl
i
,j−k

sl
i

= det(I − Γ), qj−m,j−m = 1 − det(I − Γ),m =

2, . . . , ksli − 1, and qj,j = 1, and the index must follow the above rule.

We can find

det(I − Γ)
∂sum(E)

∂esli,sli
=

∂sum (Q(I − P )E)

∂esli,sli
.

Considering

∂det(I − Γ)

∂�sli,sli
= o(�n−1

max),

the partial derivatives can be obtained

If the batch size ksli = 2

∂P (gl)

∂�sli,sli
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=
∂P (gl)

∂�sli,sli

∂�sli,sli
∂�sli,sli

+
∂P (gl)

∂esli,sli

∂esli,sli
∂�sli,sli

= − 1

K det(I − Γ)

∂sum
(∑K−1

i=1 Γi(I − P )E
)

∂�sli,sli
+

o(�Kmax)

K det(I − Γ)2

−
esli,sli

1− �sli,sli

⎡⎣ 1

K

∂sum(E)

∂esli,sli
+

1

K det(I − Γ)

∂sum
(∑K−1

i=1 Γi(I − P )E
)

∂esli,sli

⎤⎦
= − 1

K det(I − Γ)

⎡⎣∂sum
(∑2

i=1 Γi(I − P )E
)

∂�sli,sli
+ o(�2

max)

⎤⎦+
o(�Kmax)

K det(I − Γ)2

− 1

K det(I − Γ)

esli,sli
1− �sli,sli

⎡⎣det(I − Γ)
∂sum(E)

∂esli,sli
+
∂sum

(∑K−1
i=1 Γi(I − P )E

)
∂esli,sli

⎤⎦
= − 1

K det(I − Γ)

⎡⎣∂sum
(∑2

i=1 Γi(I − P )E
)

∂�sli,sli

⎤⎦+
o(�2

max)

K det(I − Γ)
+

o(�Kmax)

K det(I − Γ)2

− 1
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