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ABSTRACT OF THESIS

Digital halftoning is a crucial technique used in digital printers to convert a continuous-
tone image into a pattern of black and white dots. Halftoning is used since printers have a 
limited availability of inks and cannot reproduce all the color intensities in a continuous 
image. Error Diffusion is an algorithm in halftoning that iteratively quantizes pixels in a 
neighborhood dependent fashion. This thesis focuses on the development and design of a 
parallel  scalable hardware architecture for high performance implementation of a high 
quality Stacked Error Diffusion algorithm. The algorithm is described in ‘C’ and requires 
a significant processing time when implemented on a conventional CPU. Thus, a new 
hardware  processor  architecture  is  developed  to  implement  the  algorithm  and  is 
implemented to and tested on a Xilinx Virtex 5 FPGA chip. There is an extraordinary 
decrease  in  the  run  time  of  the  algorithm when  run  on  the  newly proposed  parallel 
architecture implemented to FPGA technology compared to execution on a single CPU. 
The  new  parallel  architecture  is  described  using  the  Verilog  Hardware  Description 
Language.  Post-synthesis  and  post-implementation,  performance  based  Hardware 
Description Language (HDL), simulation validation of the new parallel  architecture is 
achieved via use of the ModelSim CAD simulation tool. 

KEYWORDS: Halftoning, Stacked Error Diffusion, Verilog, Parallel Architecture, HDL 
Simulation Validation.
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 Chapter 1. Introduction

A digital image consists of millions of colors combined to form a continuous tone image. 

In order to print an image using a printer where the device has a limited number of colors 

(inks) available  to represent the original  image, a technique known as halftoning was 

invented to convert the original image to a simple binary format. The Error Diffusion 

technique  and  Serpentine  scanning  methodology  used  in  halftoning  makes  parallel 

processing implementation cumbersome as it creates huge inter-pixel dependencies along 

with the generation of errors at each pixel location that has to be stored in the memory for 

subsequent processing. This thesis focuses on the development and design of a high speed 

parallel hardware architecture that implements a proprietary high quality halftoning 'C' 

algorithm in FPGA technology. The purpose of this study is to improve the execution 

speed of the algorithm by executing it on an FPGA as opposed to a conventional CPU 

that takes enormous processing time to execute. 

 1.1  Background

There have been many improvements in halftoning algorithms to achieve the best quality 

without compromising the performance of the hardware devices running the algorithms. 

Performance of the device depends entirely on the type of algorithm and the scanning 

method used. This section of the chapter gives a detailed explanation of the algorithm 

used and ways to improve the processing performance of the implementing hardware 

system.

 1.1.1 Halftoning

Halftoning is a technique used to convert a continuous-tone image into a series of black 

and white dots. Image reproduction devices such as printers and monitors are constrained 

to a few colors and cannot print a digital image that consists of millions of colors. Thus, 

halftoning transforms the original image into a binary image containing only 1’s and 0’s 

where a '1' at a particular pixel suggests a black dot to be printed and 0 means that the 

corresponding  pixel  should  be  empty.  In  the  case  of  color  image  reproduction,  the 

1



halftoning is  performed on each of  the  color  channels,  namely Red,  Green and Blue 

(RGB) or Cyan, Magenta, Yellow and Key (CMYK). Thus, ‘1’ in a color halftoned image 

suggests  a  particular  channel  to  be  printed.  There  are  many  methods  [1]  in  which 

halftoning is  performed on images and some of them include AM & FM Halftoning, 

Table  Halftoning,  Threshold  Halftoning,  Ordered  Dithering,  Error  Diffusion,  Iterative 

Halftoning, Hybrid AM-FM Halftoning and Multilevel Halftoning. This thesis deals with 

the halftoning algorithm that uses the basic Error Diffusion technique [2].

 1.1.2 Error Diffusion 

A common  method  for  producing  halftoned  images  is  the  Error  Diffusion  technique 

invented by Floyd and Steinberg [2] where the error from each pixel is dispersed to the 

neighboring pixels. The output value of each pixel depends on the input pixel and the 

diffused error value from the previous pixel. Figure 1.1 shows the error diffusion method 

where c and h represent the continuous and the halftoned images respectively. The input 

pixel c is added with the Previous Pixel Error value p and compared with a threshold. The 

output h is obtained from the comparison and the Error e is calculated by subtracting the 

current  output  value  h from the  combined  value  of  p  and  c.  Further,  the  Error  e is 

multiplied with the weight filter and diffused across the neighboring pixels. The Error 

dispersion and the Error Weight Filter is shown in Figure 1.2.  

2

Figure 1.1: Floyd-Steinberg Error Diffusion



 1.1.3 Image Scanning Techniques

The two main techniques used in scanning an image are the  Line Raster (left-to-right, 

top-to-bottom  approach)  and  the  Serpentine  Raster (left-to-right,  right-to-left) 

techniques. A  Line Raster is the process of reading an image starting left and ending 

right for each row from top till bottom of the image. This type of scan results in an output 

halftone  consisting  of  checkerboard  patterns,  worms  and  other  geometric  artifacts. 

Serpentine Scan is the process of scanning even rows of an image in left-to-right fashion 

and  odd  rows  in  right-to-left  fashion.  This  research  deals  with  a  serpentine  scan 

methodology because this technique results in fewer artifacts. The downsides of using 

this  technique  are  that  it  makes  parallel  processing  even  more  burdensome  and  the 

memory required to store the errors generated at each pixel location is large. Figure 1.3 

shows the line raster scan process where P0 till P10 are the pixels in the first row and P11 

till P21 are the pixels in the second row. 

When a line  raster  is  implemented  on the  image,  the  processing starts  from  P0  and 

reaches  P10 and again from  P11 and reaches  P21. This type of scan has a high probability 

3

Figure 1.2: Error Filter
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of parallelism in which the pixel  P11 can be processed right after the pixels  P0  and P1 are 

processed as the pixel P11 depends on P0  and P1 alone. Thus the inter-pixel dependency in 

this method is kept to a minimum. Figure 1.4 shows the serpentine raster technique where 

pixel  P11 cannot  be processed until  all  the pixels  from  P0 till  P10 and  P21 till  P12 are 

processed.  As  a  result,  the  errors  obtained  at  each  pixel  location  must  be  stored  in 

memory till  the  specified  pixel  is  processed.  Thereby,  this  technique requires  a  large 

memory space which in turn depends upon the image size being processed.

 1.1.4 Blue-Noise

Blue-noise is any noise with the least low frequency element and absolutely no intense 

spikes  of  energy.  Ulichney  [3]  studied  the  spectral  charateristics  and  noted  their 

predominantly high frequency content, a characteristic he called Blue-Noise. This makes 

it an important noise in halftoning as the retinal cells in the human eye are organized in a 

manner  similar  to  the  blue-noise  which  results  in  great  optical  interpretation.  The 

arrangement of the droplets in a halftoned image creates an optical illusion which the 

human eye mistakes for a continuous tone image. The introduction of blue-noise in error 

diffusion has a great impact on the quality of the halftoned output image. It makes the 

resulting image appear visually smooth.

 1.1.5 Blue-Noise Halftoning 

Many algorithms have been implemented to produce halftone patterns with blue-noise 

attributes. Blue-noise halftoning/dithering constitute an array of minority pixels that are 
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uniformly distributed  that  results  in  halftones  that  lacks  regularity and low frequency 

elements.  In  the  error  diffusion  algorithm  proposed  by  Floyd  and  Steinberg  [2],  a 

quantizer is used that compares the input pixel value with a threshold to determine the 

value of the corresponding pixels. The quantizer error is calculated by subtracting the 

input pixel with the threshold value and is diffused to the neighboring pixels using an 

error  filter  P = [(7/16),  (1/16),  (5/16),  (3/16)] shown in  Figure  1.2.  This  process  is 

executed on all the pixels till the complete image has been processed. The output of the 

algorithm applied to a gray-scale ramp is shown in Figure  1.5. Figure  1.5 shows that 

when the image is  scanned using Line Raster method,  the final  halftone consisted of 

checkerboard patterns, worms and other geometric artifacts. Thus to avoid visual artifacts 

arising from the conventional approach, a serpentine scanning approach is implemented 

and the threshold error diffusion is altered depending on the outputs of the previously 

processed pixels.  The threshold in error diffusion technique can be altered depending 

upon the previous outputs [5]  or by the intensity of the present pixel  as indicated by 

Eschbach and Knox [6]. Eschbach [7] and Ostromoukhov [8] proposed changes in shape 

of  the  filter  and  weights  dependent  on  the  inputs.  Li  and  Allebach  [9]  proposed  a 

technique where the thresholds and weights are optimized based on the model for the 

human visual system. The current algorithm under discussion uses a design proposed by 

Ulichney [10] where a serpentine scan and randomness  (R1, R2) in weights of the error 

filter are introduced. The weights are calculated as [P1 + R1, P2  - R2 , P3  - R1, P4 + R2 ], 

where  R1 = (5/16)  U[-1,1],  R2 =  (1/16)  U[-1,1] and  U(m,n) represents  a  uniformly 

distributed  random variable  in  the  interval  [m,n].  This  randomness  in  the  error  filter 

eliminates most of the geometric and checkerboard artifacts in the resultant output image. 

The output of the algorithm applied to a gray-scale ramp is shown in Figure  1.6. The 

original blue-noise model is implemented in  Floyd-Steinberg's technique, whereas the 

technique implemented by Ulichney is a realization of the model proposed by Lau and 

Ulichney [11].
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 1.1.6 Multitoning

Multitoning is the process of reproducing an image using multiple inks [4]. A multitone 

is an embedded array of halftone patterns with different inks printed on top of each other 

which is similar to color halftoning where 3 or more primary halftones are superimposed 

in order to  achieve the illusion of a continuous tone color image. A multitone dither 

pattern with N different  inks  of  intensities  (g1,  g2,.......,gN) where  g is  the gray level, 

arranged starting from lightest  (white,  nothing printed having intensity  g1 = 0) to the 

darkest (black, printed pixel having intensity  gN = 1) consists  pixels of  N+1 different 

intensities. The main disadvantage in superimposing halftones is the emergence of a low-

frequency noise  called  Moiré.  This  anomaly  occurs  in  dispersed  dot  patterns  as  an 

irregularity in the arrangement of pixels which is referred to as  Stochastic moiré. The 

irregularity is  caused due to  the difference in  placement  of dots  in  the superimposed 
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Figure 1.5: Halftone of Gray-Scale ramp 

generated with Floyd-Steinberg Error 

Diffusion. Adapted from [4]

Figure 1.6: Halftone of Gray Scale Ramp 

generated with Ulichney's Error Diffusion. 

Adapted from [4]



halftones.  Wang  and  Parker  [29]  suggested  that  the  combination  of  two  blue-noise 

patterns  doesn’t  inherently produce  a  good  quality  pattern,  but  depends  on  both  the 

spectrum of  individual  patterns  and the interrelationship  between them.  According to 

threshold decomposition, a discrete signal which accepts one of k possible values can be 

expressed as the weighted sum of k - 1 binary signals. Consider multitoning where M is 

the multitone dither pattern and the array of halftones H i | i=1
N

is defined as

                                H i[ n ]={1, if M [n ]g i

0, else
 (1.1)

The halftone  Hi describes  the threshold  decomposition  of  the  multitone  M at  level  i. 

Equation 1.1 states that a printed pixel in Hi implies that a printed pixel of intensity gi or 

darker occurs in the multitone in the same location and also means that there is a printed 

pixel in the same location in Hj for all j ≤ i. Thus the decomposition of the multitones into 

an array of halftones is done by satisfying the stacking constraint or in other words the 

halftones are constrained to a stack. It can be said that the multitone is a linear unification 

of stacked blue-noise patterns. The multitone can be described in terms of its threshold 

decomposition representation as

                                               M [ n ]=∑
i=1

N

d i H i [ n ]       (1.2)

where  d i = g i−g i−1 | i=1
N  are  the  relative  differences  between  intensities  of  the 

printable inks. Figure  1.7 shows the decomposition where the multitone  M is a 3×3

image printed with three inks with intensities (g1, g2, g3) = ((1/3),(2/3),1).
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Figure 1.7: Decomposition of 3-ink multitone M in a 

series of Halftones satisfying the stacking constraint. 

Adapted from [4]



 1.1.7 Blue-Noise Multitoning with Stacked Error Diffusion

Many  halftoning  developments  have  been  proposed  as  extensions  to  previously 

developed halftonig algorithms. Some of them are ; modification of the error diffusion 

algorithm by replacing the binary thresholding by a multilevel quantizer [12], correlated 

error diffusion applied to channels that represents available inks (Faheem [13]), screening 

(Screening is the process of representing lighter degree of color as a tiny dot of ink) 

applied in multitoning using Bayer dither arrays [12] and clustered-dot dithering [14]. 

The concept of gray level distribution is introduced in some of the algorithms where the 

amount of each of the printable inks used to generate a certain gray level is defined and 

controlled  accordingly.  This  thesis  research  algorithm  uses  a  concept  of  gray  level 

distribution where the amount of printable inks (colors) used to create a certain gray level 

is known before hand.  For a multitone to be visually pleasant and optimal, the dots of 

different  inks  should  be  positioned  in  a  correlated  pattern.  A  technique  similar  to 

threshold decomposition  is  used to  divide multitones  into halftones  and to  synthesize 

them to make sure that the resultant picture is flawless. Assuming a constant block of 

intensity g to be reproduced using the inks g i | i=1
N

in segments p i | i=1
N

, the intensity 

of the block is represented as 

g=∑
i=1

N

g i p ig  = ∑
i=1

N

d iig  (1.3)

where  ig =∑
j=i

N

p jg   and  d i = g i−g i−1 .Consider  a  block of  intensity  µ1(g) 

halftoned using blue noise, the output dither pattern will have the same characteristics as 

H1. The same process is executed for a block with intensity µ2(g) with the condition that 

the resulting halftone should stack (depend) on the first halftone. Thus the output dither 

pattern has the same characteristics required by H2. This depends on the number of levels 

in the given image and assuming there are i levels, the same procedure is repeated for the 

remaining ig  | i=3
N

 where the ith halftone stacks on the i – 1st halftone and the result 

will be a series of N halftones. The linear unification of all the i halftones gives the best 

blue-noise multitone. The method to multitone a continuous tone image  Y is shown in 
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Figure  1.8.  Firstly,  the  printing  method  provides  the  ink  intensities  gi and  the 

corresponding  concentrations   pi(g)  are  to  be  determined  before  hand  by  the  user. 

Secondly,  the gray levels  are mapped to corresponding droplet  densities.  This can be 

accomplished with the help of a look-up-table. 

Thirdly, halftoning is carried out with a suitable algorithm which in this thesis is  Blue-

Noise Multitoning with Error Diffusion by taking the stacking constraint into account. 

For example, to get  H2,  Y2  needs to be halftoned which stacks on the halftone  H1. The 

same  procedure  is  followed  with  the  remaining  Y i | i=3
N

continuous-tone  images. 

Finally, Equation  1.2 is used to obtain the final multitone. The algorithm in this thesis 

research work uses blue-noise multitoning with error diffusion and in order to generate 

the multitones by this method, the stacking constraint should be incorporated in the pixel 

quantization satisfying Equation 1.4 below.

H i[ n ]={1, if Y i [n ]  H i
p ≥ 1

2
and H i−1=1

0, else
      (1.4)
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Figure 1.8: A Continuous tone image Y divided into N components 

resulting in a final halftone M [4]



where H i
p [ n ] is the error diffused to the pixel H i[ n ] and i = 1, …. , N. If i=1 , 

it is assumed that H 0[ n ]=1∀ n . Figure 1.9 shows the implementation of the stacked 

error  diffusion  algorithm  where  the  continuous  input  image  c is  added  to  the 

corresponding diffused Error, the result is compared with the Threshold and the Previous 

Level Output thus producing a halftone h based on the stacking constraint. The Error e in 

the input  pixel c and the output h is calculated. Hence the Error produced e is multiplied 

with the Perturbed Weight Filter resulting in a diffused Error dispersed to soon-to-be-

processed  pixels.  The  Perturbed  Weight  Filter  eliminates  the  artifacts  that  arise  in  a 

normal error diffusion method.

 1.2  Previous Research on FPGA Implementation of Halftoning Algorithms

There have been a number of proposals for implementing halftoning algorithms on Field 

Programmable Gate Array (FPGA) technology. Metaxas [15] proposed an optimal Error-

Diffusion parallel algorithm for Digital Halftoning implemented in MasPar data-parallel 

computers (SIMD – Single Instruction Multiple Data). Yuefeng Zhang [16] presented a 

parallel  Error-Diffusion  algorithm,  known  as  Line  Diffusion  implemented  using  a 

massively  parallel  algorithm.  Jae-woo  Ahn  and  Wonyong  Sung  [17]  proposed  a 

multimedia processor based implementation of an Error-Diffusion Halftoning Algorithm 

where  multiple  pixels  are  processed simultaneously using subword-parallel  arithmetic 

and logic unit architecture in Multimedia Processors such as Intel Pentium MMX. None 

of these halftoning algorithms have used FPGA technology to implement the Serpentine 
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Scan based Blue-Noise Multitoning with Stacked Error  Diffusion algorithm/technique 

presented in this thesis. 

As an example of a parallel architecture implemented into FPGA technology that uses 

line  raster  scan  to  implement  an  Error  Diffusion  based  halftoning  algorithm,  an 

architecture  proposed  by  Christopher  Brown  and  Andreas  Savakis  [18]  will  be 

considered.  They discuss the inter-pixel  data dependencies,  memory requirements  and 

hindrances  to  parallel  processing  introduced  by their  error  diffusion  technique.  They 

proposed a high performance hardware architecture which exploits  multiprocessing to 

overcome the disadvantages faced during halftoning using error diffusion. The main idea 

in  their  approach is  to  concurrently process  pixels  in  separate  rows  and columns  by 

eliminating  the  data  dependencies  across  the  processing  elements.  Their  hardware 

architecture is a high performance color error diffusion  image processor realized using 

FPGA technology. Their Error Diffusion algorithm implemented the basic error diffusion 

technique invented by Floyd-Steinberg [2] and  used a line raster scan technique as shown 

in Figure 1.3. The input pixel size is 24 bits and the processor gives a 3-bit output. The 

architecture uses four processing elements allocating one processing core per row thus the 

first four rows can be processed simultaneously but with some lag between the processing 

elements. The processor can support a resolution up to 600 dpi resulting in a maximum 

image size of (5100x6600) which equals 33,660,000 pixels. The design goal is to increase 

the  speed  at  which  the  pixels  are  processed  at  minimum  system cost.  An  output  is 

obtained every clock cycle and all the processors run on different rows and columns at 

any point of time. The entire system runs at 80 MHz thus each processing element takes 

50ns to complete each computation. Since the algorithm is a straight-forward approach to 

Floyd-Steinberg's error diffusion, the quality may have been compromised giving rise to 

artifacts which in turn degrades the whole output image. 

In the research and development presented here, an efficient and economical approach 

towards designing a high performance hardware architecture for serpentine scan based 

blue-noise multitoning using “stacked” error diffusion is proposed, developed and tested 

11



such that the output quality of the halftoned image is an improvement over those resulting 

from the use of other halftoning algorithms and approaches.

 1.3  Objective of the Thesis

The main objectives of this thesis are described as follows.

• To thoroughly study the halftoning algorithm described in  'C'  and convert  the 

whole into an equivalent  high speed hardware parallel  architecture design and 

implementation  without  weakening  the  quality  of  the  output  produced  by the 

original algorithm (The hardware is designed so that the image output from the 

FPGA and the output obtained by running the algorithm in a serial based CPU are 

both accurate).

• To  achieve  a  significant  performance  improvement  by  greatly  increasing  the 

execution  speed  of  the  algorithm  running  on  a  FPGA  when  compared  to  a 

conventional serial based CPU in which the speed achieved is lowest.

• To develop a high performance hardware architecture which exploits parallelism 

to the maximum extent possible to improve overall processing performance. 

• To design, HDL Simulation test and validate the whole system along with all the 

components required to develop the system.

• To compare and validate the results obtained from the HDL simulation with the 

results from the original algorithm running on a CPU.

• To suggest future improvement of the architecture related to enhancing processing 

performance and output image quality.

 1.4  Thesis Outline

This thesis consists of ten chapters which deal with everything about the new halftoning 

algorithm  to  HDL Simulation  testing  and  validation  of  the  architecture.  The  current 

chapter has provided a detailed explanation of the halftoning algorithm used, previous 
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research work done on FPGA implementation of such algorithms, present research work 

dealing with the high quality stacked error diffusion algorithm and the objectives of this 

thesis. 

Chapter 2 deals with the Processor design methodology where type of design, technology 

used, Data arithmetic or representation, and types of processors used are addressed.

Chapter 3 explains the High level system architecture of the entire hardware system and 

the working of the system.

Chapter 4 gives a detailed explanation of the Input data memory architecture and how the 

input pixels are handled.

Chapter  5  provides  a  view  of  the  architecture  of  the  Processor  Core,  its  design, 

development and operation.

Chapter 6 shows the detailed architecture of the Error Storage System, its uses, design 

and operation.

Chapter  7  shows the  Output  Circuit  System Architecture  where  the  output  from the 

Processor core is processed accordingly.

Chapter 8 deals with the Controller  Architecture,  its  implementation,  various types of 

controllers and about the control registers used to minimize device utilization.

Chapter  9  provides  a  performance  comparison  with  conventional  a  CPU and quality 

comparison with other algorithms. It provides a conclusion and future work that can be 

done to further enhance and improve the results of the current research project.
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 Chapter 2. Processor Design Methodology

 2.1  Introduction

This chapter shows the methods and practices used to design the processor system from 

the lowest level. The basic levels used to describe this architecture are gate level and the 

register level. Later in this chapter, the chip technology and the Computer-Aided Design 

(CAD) tools used to implement the design are discussed. The silicon technology and the 

CAD software used also decides the design methodology. Design methodology is the first 

step in the process of developing a hardware architecture. A hardware architecture is the 

collection of tiny and large components that are interconnected to form a bigger system 

with a special purpose. The combination of different levels of hardware design hierarchy 

is called a system. 

 2.2  Gate Level design

Gate  level  design,  called  logic  level  design,  is  the  lowest  level  used  to  describe  a 

functional component. It is concerned with binary values confined to two binary digits 0 

and 1. The components designed using gate level designs are logic gates, flip flops which 

in  turn  results  from  the  combination  of  several  gates,  combinational  circuits  and 

sequential circuits resulting from the combination of flip flops. 

 2.3  Register Level Design

Register level or register transfer level is the next level of abstraction to gate level design. 

Here,  bits  are  grouped  into  words  and  the  data  is  processed  as  chunks.  The  main 

component in this level of abstraction is called a register which is used to store words 

(collection  of  bits).  The  components  in  register  level  designs  include  shift  registers, 

counters, storage registers and accumulators. This level is widely used particularly to save 

the  amount  of  time  it  requires  to  design  a  component  or  a  system.  An  efficient 
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combination of gate level design and register level design is implemented in the hardware 

architecture of this thesis to obtain the best performance possible. 

 2.4  Target Technology

There are several latest technologies in which the given Error Diffusion algorithm can be 

implemented.  Some  of  them include  Application  Specific  Integrated  Circuit  (ASIC), 

Programmable Logic Devices (PLAs), Complex Programmable Logic Devices (CPLD), 

General purpose CPU and Field Programmable Gate Array (FPGA). FPGA technology 

has an edge over all  the other technologies mentioned.  FPGA's are flexible,  reusable, 

reprogrammable,  cost effective and have the highest possibility of parallel  processing. 

They contain  millions  of  tiny  logic  blocks  with  flip  flops  and  have  special  routing 

resources  to  implement  a  component  or  a  functionality  very  efficiently.  The  main 

difference  between  a  conventional  microprocessor  and  an  FPGA  is  that  the 

microprocessor executes a program in a sequential manner but on the other hand FPGA 

technology can exploit the parallel processing capability to speed up program execution. 

FPGA's consist  of rectangular array of logic cells.  A logic cell basically consists of a 

look-up-table,  a  D  flip-flop  and  a  2-to-1  multiplexer.  The  basic  idea  behind  this 

technology is  that  a  memory element  can  implement  any type  of  combinational  and 

sequential function of a size proportional to the memory size. Look-Up-Tables (LUTs) 

are referred to as memory elements and can be 3 input, 4 input, or 6 input tables. In this 

research, a Xilinx Virtex-5 (5VFX70TFF665) commonly used FPGA chip [21], Xilinx 

ISE 10.3 CAD tool [19] and ModelSim 6.4a [20] is used for developing the architecture.

 2.4.1 Xilinx Virtex-5 FPGA

Virtex-5  FX  FPGA  [21]  provides  the  advanced  technology  for  high  performance 

embedded systems along with serial connectivity. It contains many hard/soft Intellectual 

Property  cores,  Block  RAM's,  second  generation  Xtreme  DSP  slices,  Digital  Clock 

Managers (DCM), Phase-Lock-Loop (PLL) clock generators, Distributed RAM's, 6 input 

look-up-tables(LUT)  and  a  hard  core  PowerPC  processor  embedded  inside  the  chip 

fabric. The main reason for choosing this version of Virtex device is that the amount of 
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resources  required by the  algorithm is  satisfied  by the  5 series.  Table  2.1 shows the 

features provided by the virtex-5 devices. A hardware description language is used to 

describe the digital components and program the same on FPGA. In this thesis, Verilog 

HDL is used to design and develop the required digital logic circuits. Xilinx ISE is a 

CAD software used to synthesize and implement the verilog code on chip. ModelSim is 

used in this research to simulate the ISE translated design. The algorithm requires about 

3527 Kb of Block RAM space to store the errors and input data generated. Table 2.2 

shows the requirements of the current halftoning algorithm.

Table 2.1: Virtex-5 Specifications

Device Logic 
Array
Size

Slices Distributed 
RAM (Kb)

DSP 
48E 

Slices

Block 
RAM 
(Kb)

PowerPC
Blocks

User I/O

XC5VFX70T 160 x 38 11200 820 128 5328 1 640

Table 2.2: Algorithm Requirements

Device Slices DSP 48E 
Slices

Block RAM 
(Kb)

User I/O

XC5VFX70T 1616 108 3906 50

 2.5  Data Representation

Data can be represented in a processor in two ways, namely Fixed point representation 

and Floating point representation. In this research work, Fixed point arithmetic is used in 

order to achieve maximum throughput and increase the execution rate by decreasing the 

execution time required. Floating point arithmetic requires a dedicated hardware unit and 

consumes a lot of resources. Since FPGA's have a limited number of resources and the 

clock speed at which the whole system runs is less when compared to a traditional CPU, a 

Fixed Point Arithmetic is implemented.
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 2.5.1 Floating Point Arithmetic

Floating point [22] is an arithmetic in which the decimal point can be present anywhere in 

a number. It is also used to represent numbers that would be too wide or too small to fit in 

computer hardware. The floating point numbers should be normalized to a specific form 

which helps in simplification of data exchange, floating point algorithms and increases 

the data storage accuracy. In other words, a floating point number needs to be normalized 

to a base notation. Normalization says that leading 0's is unacceptable in floating point 

format.  Floating-Point  representation  has  three  main  fields  called  Sign,  Fraction  and 

Exponent. Exponent and Fraction are the two main terms in Floating-Point calculations. 

Exponent is defined as the number of times a digit has to be multiplied by itself and 

Fraction (mantissa) in hardware terms is a value that that lies between 0 and 1.  Figure 

2.1 and Figure 2.2 shows the representation of floating point numbers (32 and 64 Bits) in 

hardware. 

The 32 bit architecture provides 23 bits for the fraction, 8 bits for the exponent and 1 bit 

for the sign. The number of bits allocated for fraction and exponent depends on two main 

factors  namely  precision  and  range.  Precision  is  the  number  of  binary bits  used  to 

represent a particular value in a hardware domain.  Range is the difference between the 

largest positive number and the largest negative number that can be represented in a given 

format. Thus, precision of a fraction increases by increasing the number of bits allocated 

for the fractional  part  and the range of numbers that  can be represented increases by 

increasing  the  number  of  bits  in  the  exponent  part.  There  is  a  possibility  of  two 
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Figure 2.1: 32 Bit Single Precision Floating-Point Representation

Figure 2.2: 64 Bit Double Precision Floating-Point Representation



exceptions in a Floating-Point format namely Overflow and Underflow.  Overflow is an 

exception in which a positive exponent is too wide to be accommodated in the exponent 

field.  Underflow is  an  exception  in  which  a  negative  exponent  is  too  wide  to  be 

accommodated in the exponent field. To overcome these exceptions there exists a choice 

between double precision (64 bits) and single precision (32 bits). If a system deals with 

the values that exceed the expectations of a 32 bit hardware, it needs to switch to a double 

precision  format  of  64 bits.  The original  Error  Diffusion  algorithm addressed in  this 

thesis, written in 'C', uses Floating-Point single precision format and this is one of the 

reasons for a very high execution time when run on a single CPU. Thus, a Floating-Point 

format would require at-least 32 bits for representing the data in the algorithm which in 

turn requires substantial FPGA resources if implemented into FPGA technology and other 

complex hardware components. 

There are four main arithmetic operations performed in any algorithm, they are Addition, 

Subtraction, Multiplication and Division. Floating-Point operations requires the operands 

to be normalized before any of the arithmetic takes place. Firstly, the exponents of the 

two operands should be compared and the smaller operand should be shifted to match the 

larger operand. Secondly, perform the operation (Addition, Subtraction, Multiplication or 

Division)  on  the  significands.  Thirdly,  the  result  of  the  operation  should  again  be 

normalized  by  shifting  and  varying  the  exponent.  Finally,  check  for  overflow  or 

underflow and set the appropriate hardware bit if detected. Floating-Point multiplication 

requires more hardware when compared to other operations as the end result  will  the 

twice the  length  of  the  operand.  The length  of  the  result  required  depends  upon the 

algorithm, so if an algorithm requires more accuracy, it will use the whole end result but,  

if the algorithm is not so constrained to accuracy, it uses a part of the results by using 

techniques called Truncation and Rounding. Truncation is the process of truncating or 

cutting off a required number of digits after the decimal point. Rounding is the process of 

approximating a real value to an equivalent simpler value compromising the accuracy to 

the smallest extent possible. Thus, the choice between rounding and truncation depends 

solely on the application.  
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 2.5.2 Fixed Point Arithmetic

Fixed-Point [23], [24], [25] is a computer arithmetic in which all the data is represented 

in integer format.  In other words, the decimal point in a real data doesn't vary unlike 

Floating-Point format. Fixed-Point format supports only a narrow range of values and the 

hardware  required  to  implement  the  format  is  simple.  The  main  concepts  used  in 

choosing a  Fixed-Point  format  are  Q-Format,  Precision,  Resolution,  Range,  Dynamic 

Range  and  Accuracy.  Both  integers  and  fractions  can  be  represented  in  fixed  point 

format. Fixed-Point format is used to represent both signed and unsigned data. In this 

thesis, Fractional Fixed-Point format is chosen to match the original Floating-Point data 

in  the  algorithm.  Fractional  Fixed-Point  representation  is  chosen  because  it  is  most 

suitable for Digital Signal Processing algorithms as the one used in this research work. 

The range of numbers that the fractional format represents is between -1 and 1. The same 

is the case in the research algorithm used in this thesis where values never go beyond -1 

and 1. Q-Format is a scheme in Fractional Fixed-Point format used to represent fractions 

bounded by a fixed binary word length where Q indicates the number of bits  used to 

represent the fraction. Precision is defined as the number of bits used to represent a data 

value in a binary or digital world. Precision is equal to the total word length. Resolution 

is the least non-zero value or magnitude which can be represented using a particular Q-

Format.  Range is the difference between the maximum positive number and the least 

negative  number  represented  which  ultimately  depends  on  the  Q-Format.  Dynamic 

Range is the ratio of maximum absolute value and the minimum absolute value that can 

be  represented  using  a  specific  format.  Accuracy is  the  magnitude  of  the  difference 

between a real  data value and it's  equivalent  representation.  Due to  the extra  cost  of 

implementing  a  dedicated  hardware  unit  for  Floating-Point  calculations,  the  Error 

Diffusion algorithm in this thesis is implemented using a Fixed-Point format that results 

in  significant  improvement  in  throughput,  execution  speed  and  reduced  hardware 

complexity. Thus, to improve the execution speed to achieve the best performance, some 

considerations have to be made before using the Fixed-Point format. Let Q[I].[F]  be the 

Q-Format representation of a data value in Fixed-Point where Q[I]  is the number of bits 

used to represent the integer part  of a value and  Q[F] is  the number of bits  used to 
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represent the fractional part of the value. The sum of  Q[I]  and  Q[F]  yields the total 

number of bits also called word length and a sign bit at the most significant location used 

to represent the whole data value. The hardware architecture in this thesis uses Q[1][14]  

format as shown in the Figure  2.3. Thus, the total number of bits equals 16 bits out of 

which the most significant bit is reserved for the sign bit and the bits after the sign bit 

location are reserved for representing the equivalent Fixed-Point value.   

Figure 2.3 shows that the word length used is 16 bits or 2 bytes and the dynamic range of 

the  signed  integers  that  can  be  represented  using  16  bits  is  -32,768  to  32,767.  The 

resolution  r of the Fixed-Point format is determined by the number of bits used in the 

fractional part and is shown in Equation  2.1. The maximum positive value (Pmax) and 

minimum negative value (Nmin) that  can be represented using this  format  is  shown in 

equations 2.2 and 2.3.  

                   r= 1
2F =

1
214 = 0.00006103515625 (2.1)

Pmax =
216−1−1

214 =
32767
16384

= 1.99993896484375  (2.2)    

             N min =
216−1

214 =
−32768
16384

= −2.0 (2.3)

Equation  2.4 shows  the  formula  to  convert  a  Floating-Point  number  (Nfloat)  to  an 

equivalent  Fixed-Point  number  (Nfixd).  The  same  Equation  is  used  to  convert  all  the 

Floating-Point data values to Fixed-Point values in this thesis work. The values obtained 

after the decimal point are truncated as there is no significant deviation observed from the 

real value. For example if Nfloat  is 0.73948,  Nfixd becomes 12115.6402 and truncating the 
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result gives the Fixed-Point value 12115 as shown in Equation 2.5. Equation 2.6 shows 

the  Fixed-Point  value  again  converted  to  Floating-Point  to  show the  accuracy of  the 

conversion.

             N fixd = N float∗214 (2.4)

            N fixd = 0.73948∗214 = 12115.6402 = 12115 (2.5)

           N float =
12115

214 = 0.73944091796875 (2.6)

The difference exists in the fifth decimal point which is about 0.00004 units. Thus, the 

algorithm in study is not constrained to the accuracy and a meager deviation is allowable. 

Arithmetic in Fixed-Point is the same as integer arithmetic with minor modifications to 

multiplication and division operations. As the data being processed lies strictly between 

-1 and 1, the exception of overflow doesn't occur in this  algorithm. The addition and 

subtraction operations are the same as integer arithmetic. Considering the multiplication 

operation, if two fractions are multiplied then the resulting fraction will always result in a 

fraction that will be less than or equal to the two fractions multiplied.  But in case of 

Fixed-Point multiplication, the Floating-Point numbers are first converted to Fixed-Point 

by multiplying the real value with 2F where F is the number of bits used to represent the 

fractional part. As a result,  each the fraction number is multiplied by 2F   that gives an 

incorrect result in Fixed-Point format as shown in Equation 2.7. This can be corrected by 

dividing the final result by  2F which will scale it back to Fixed-Point format as shown in 

the  Equation  2.8.  Let  {N1fixd  ,  N2fixd}be  the  fraction  numbers  in  Fixed-Point  format, 

{N1float , N2float}be the fraction numbers in Floating-Point format and {Nfixdm , Nfloatm} be the 

result  after  multiplication  in  Fixed-Point  and  Floating-Point  formats  respectively. 

Equation 2.4 is applied to Equation 2.9 for Floating-Point to Fixed-Point conversion and 

the end result is shown in Equation 2.10. Hence the results in equations 2.8 and 2.10 are 

equal generating the correct output.

            N fixdm = N1 fixd∗ N2 fixd = 8192∗8192 = 67108864 (2.7)
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        N fixdm =
N1 fixd∗ N2 fixd

214 =
8192∗8192

16384
= 4096       (2.8)

        N floatm = N1 floatd∗ N2 floatd = 0.5∗0.5 = 0.25           (2.9)

          N fixdm = 0.25∗214 = 4096            (2.10)

In the case of Fixed-Point division, the final result should be multiplied by 2F. Equations 

2.11,  2.12,  2.13 and  2.14 show the  division  algorithm in  Fixed-Point  format.{Nfixdd  , 

Nfloatd} be the result obtained after division in Fixed-Point and Floating-Point formats.

N fixdd =
N1 fixd

N2 fixd
=

8192
8192

= 1 (2.11)

N fixdd =
N1 fixd

N2 fixd
∗214 =

8192
8192

∗16384 = 16384 (2.12)

N floatd = N1 floatd∗ N2 floatd =
0.5
0.5

= 1 (2.13)

N fixdd = 1∗214 = 16384 (2.14)

Multiplication produces a result which will be lesser than or equal to twice the width of 

the operands. The end result can be truncated or rounded depending upon the application 

requirements. The division by 2F  in Fixed-Point multiplication is achieved by arithmetic 

left shift and the multiplication by 2F  in Fixed-Point division is achieved by arithmetic 

right shift. In this research algorithm, Fixed-Point division is not used but all the other 

arithmetic  operations  such  as  addition,  subtraction  and  multiplication  are  used. 

Multiplication in this thesis truncates the digits that are not required and uses only the 16 

bit output of the multiplied result as shown in Figure 2.4. Bits 29 down to 14 are the only 

useful  bits  in this  hardware multiplication  architecture.  There is  only a minor  loss of 

accuracy which is not significant. 
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 2.6  Types of Processors

Processors are designed based on the application to be executed. There are mainly two 

types of processing systems,  namely General Purpose Processors and Special  Purpose 

Processors. The details about them are discussed briefly in the following sections below.

 2.6.1 General Purpose Processors

General purpose processors are normally Programmable Processing systems that are used 

in conventional computer systems to perform various tasks. Almost all the tasks required 

by an end user can be run on a general purpose system like Floating-Point operations, 

Integer arithmetic, external memory interface, general purpose I/O, signal processing and 

control of other devices, etc. These processors are fast, but sometimes not very suitable to 

run  a  specific  application  where  parallelism  and  execution  time  are  important.  A 

Programmable  Processors  Instruction  Set  Architecture  (ISA)  is  a  command  set 

architecture which tells the processor what to do with the data available at any instant of 

time. For example, RISC is a Reduced Instruction Set Computer of length 32 bits and 

CISC is a Complex Instruction Set Computer ISA which has more complex instructions 

when compared to RISC. 

 2.6.2 Special Purpose Processors

Special Purpose Processors, as the name suggests, are developed and used for specific 

applications.  This  research work deals with a specific  halftoning algorithm where the 

same set of operations are repeated periodically. Thus, there is no need of an Instruction 

Set  Architecture  where the processor  needs  to  know what  operation  to  perform.  The 

operations are hardwired in this type of application and there are dedicated control units 

to execute the algorithm. The reasons behind choosing a Special Purpose Processor is that 

the cost of making the chip is sometimes less for a specific purpose, the number of silicon 

gates required depends upon the size of the algorithm and the execution speed can be 

drastically increased due to exploitation of parallel processing in the algorithm. In this 

thesis,  an  algorithm specific  hardware  parallel  processor  architecture  is  designed and 

described  using  the  Verilog  Hardware  Description  Language.  The  architecture  is 

simulated, tested and validated using the ModelSim Simulation CAD tool.  
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 Chapter 3. High Level System Architecture

 3.1  Introduction

This chapter deals with describing the entire system architecture which implements the 

halftoning  algorithm  and  describes  a  process  flow  diagram  showing  the  functional 

operation  of  the architecture  as  it  implements  the  halftoning algorithm.  As discussed 

earlier in Chapter 1., this thesis deals with a special purpose high performance processing 

system which can efficiently execute a proprietary halftoning algorithm at the maximum 

processing speed possible. Unlike general purpose processing systems, this architecture 

does not need an Instruction Set Architecture but has a predefined set of instructions that 

will run for every pixel that is processed. The concept of pipelining cannot be applied 

here as inter pixel dependencies tend to be the highest. At any given point of time, a pixel 

cannot  be  processed  unless  the  preceding  pixel  is  fully  processed.  Parallelism  is 

introduced in this system where different pixels can be processed in parallel. Thus, the 'C' 

version of the algorithm is broken down into segments and the areas where the code can 

be parallelized are determined.  Equivalent hardware units are designed, tested and fully 

verified before combining the units to form a larger system. Each of the combined system 

functional units obtained by connecting the individual functional units of a system is also 

rigorously tested for discrepancies and fixed if errors are found. The high level system 

can also be referred to as a CPU (Central Processing Unit) which consists of processing 

elements,  memory elements  and output  logic.  The system implements  a  sequence  of 

microoperations resulting in an output desired by the application. A system consists of 

the data handling unit or the processing unit, control unit or controller and interfacing 

units  to communicate with other devices outside the chip.  The processing part  of the 

system is also called the datapath of the CPU where input data is processed accordingly. 

The  datapath of  a  CPU consists  of  many smaller  digital  units  namely multiplexers, 

registers, decoders which in turn are built from a lower level components called  gates. 

Gates are derived from the basic component  transistor. The  control unit is one of the 

major components in a digital system which is responsible for the correct behavior of a 
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circuit. So, a control unit controls the datapath and other components which constitutes 

the processing system. The High Level System Architecture of a system is defined as the 

abstraction of lower level components by just describing the function or behavior of the 

system. The following sections give a very detailed explanation on the behavior of the 

hardware functional architecture.

 3.2  High Level System Hardware Architecture      

This section gives a detailed description of the hardware architecture of the unit  that 

implements the Stacked Error Diffusion Halftoning algorithm. It shows the organization 

and operation of the whole system. Figure 3.1 shows the high level system architecture 

design that includes five main modules, namely a Host PC, DDR2 RAM, Flash ROM, 

FPGA and a Printer. The first module is the host PC which serves as the source from 

which the input image pixels are buffered. Here, the image to be halftoned is read in an 

interleaved format. Interleaved format of an image is the bundle of all the channels in one 

pixel  followed by the next  pixel  with all  the channels packed. For example,  if  Cyan, 

Magenta, Yellow and Key are the four channels in a pixel then, CMYK of the first pixel 

will be packed together, CMYK of the second pixel and so on. The PC reads the input 

image as [CMYK]1 ,[CMYK]2 ,[CMYK]3  …......... [CMYK]n  where 'n' is the number of 

pixels in the image. The data width of input pixels supported by the architecture is 8 or 12 

bits per channel per color. The input data from the pixel is extracted and is buffered to the 

DDR2 RAM (Double Data Rate Random Access Memory) for subsequent processing 

with  the  help  of  any  high  speed  interface  preferably  PCIe  (Peripheral  Component 

Interconnect Express). PCIe is chosen to match the speed of the FPGA and the DDR2 

memory as there should not be any delay in buffering which affects  the performance 

adversely. The second module comprises of a DDR2 RAM which will be filled with at 

least two consecutive rows to prevent buffering problems. The third module is the Flash 

ROM (Read Only Memory) used to store the bit stream file of the architecture generated 

which is used to program the FPGA. As the FPGA is a volatile memory semiconductor 

device, it needs an external flash memory to store the hardware architecture and initialize 
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itself  at  system power-up. The fourth and imperative  module  is  the FPGA which the 

hardware architecture described in Verilog HDL is programmed into. 
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Figure 3.1: High Level System Hardware Architecture



The halftoning algorithm is examined and areas where the code can be parallelized are 

determined. The algorithm uses the Stacked Error Diffusion technique which increases 

the inter-pixel dependencies and as the Stacked Diffusion implies, each level in a pixel 

depends  upon  the  previous  level  of  the  same  pixel.  Thus,  the  pixel  cannot  be  fully 

processed without processing all the levels and there is no dependency among the colors 

(inks or channels). The colors in the pixels  can be processed in parallel  and the only 

constraint that exists is between the levels in each color of a given pixel. Another major 

hurdle to parallel implementation is that the pixels are scanned in a serpentine fashion, 

this amplifies the memory demand as the errors being diffused at each pixel needs to be 

stored until the pixel to which the errors are dispersed is processed. Thus, the amount of 

memory required is directly proportional to the width of the input image. Taking all the 

dependencies  into  account,  the  following  factors  decide  the  implementation  of  the 

algorithm in hand on a FPGA.

• Each level in every channel is treated as an individual  processing unit.  So the 

number of channels and the levels in each color decides the number of processing 

cores to be used for executing the algorithm. 

• The errors dispersed in each pixel location should be stored in a data memory 

which can be accessed later. Resolution is defined as the number of dots that can 

be printed per inch of an image. The current algorithm supports a resolution of 

720 dpi (dots per inch), maximum width of 24 inches and the error data is 16 bits  

wide. Thus the memory required to store these errors will be 24 * 720 * 16 which 

is approximately 276480 bits (33.75 KB) per processing core.

• As discussed earlier in section 1.1.7 , droplet densities are to be stored in look-up 

tables. This requires data memory that depends on the number of levels used in 

the original image. For example, if 3 levels are used and the original image data 

input is 12 bits, the amount of storage locations required is 3 * 212 = 12288. The 

total amount of memory required if each data value to be stored is 16 bits will be 

12288 * 16 = 196608 bits (24 KB).
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• The current hardware architecture is designed to handle up to 4 channels and 3 

levels  per  channel.  The  different  combinations  possible  in  this  design  are 

CORE[c,l]  =  {[4,3],[4,2],[4,1],[3,3],[3,2],[3,1],[2,3],[2,2],[2,1],[1,3],[1,2],[1,1]} 

where  c,  l is  the  number  of  channels  and  number  of  levels  per  channel 

respectively. The design is flexible and can be extended depending on the printer 

configuration and the input image depth (Number of bits per pixel). 

• The architecture implements fixed point arithmetic with Q1.14 format where the 

calculations are done the same way as in integer arithmetic. The main reason for 

using Fixed-Point arithmetic instead of Floating-Point is that the floating point 

calculations requires complex calculations, takes a lot of resources and consumes 

more time to process  a pixel  when compared to  Fixed-Point  arithmetic.  Also, 

there is no degradation observed in the output image when this format is used 

when compared to a Floating-Point format.

• The  number  of  hardware  units  or  logic  resources  used  by  the  algorithm  is 

described as follows. The architecture requires 48 high speed multipliers (Xtreme 

DSP ( 5.2 )), 60 high speed adders (Xtreme DSP ( 5.2 )), 405 KB of data memory 

for storing the errors generated, 24 KB of storage memory for the loop-up tables 

and 2 KB of memory for input buffering.

The main functional units in the architecture are the datapath, control unit and the output 

logic unit. The datapath unit consists of Input Image FIFO, 8 to 12 bit Convertor, Droplet 

Densities  Storage  ROM,  Input  Level  FIFOs,  Core  Data  FIFOs,  Error  Storage  Block 

RAMs, Processor Cores (1-12), Output Data FIFOs, Output Logic Units and the control 

unit has Input Memory Controller and Processor Core Controller.

 3.2.1 Datapath Architecture

The datapath of this system has a 16 bit architecture and every register and other storage 

devices inside the FPGA are 16 bits wide except the Input image FIFO that is 12 bits 

wide. Figure 3.1 shows the digital functional components connected to each other inside 

the FPGA. The function of each component is described as follows.
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• Parameter Registers (1 and 2): There are two Parameter Registers of width 32 

bits. Parameter Register 1 is used to store the input Image Size and Parameter 

Register 2 is used to store the number of Channels, number of Levels and the 

information about the number of bits required to represent each Channel (8 bits / 

12 bits).

• Input Image FIFO:  The input pixels from the DDR2 RAM are stored inside the 

FPGA with  the  help  of  this  FIFO and accessed  according to  the  need of  the 

processing cores. The data from the DDR2 RAM is transferred to the FPGA FIFO 

with the help of a memory interface running at a speed proportional to the FPGA. 

The Input Image FIFO is similar to a Distributed/Block RAM inside the FPGA 

and the only difference is that it increments the address from the top of the stack 

to its bottom with respect to the read or write command given to the FIFO. Data 

can  be  simultaneously written  to  or  read  from the  memory locations.  At  the 

beginning of process start-up, the FPGA will not start processing until the Input 

Image FIFO is completely filled. 

• 8 to 12 Bit Convertor: The 8 to 12 Bit Convertor is a combinational circuit that 

is  used  to  convert  an  8  bit  input  value  to  12  bits  with  the  help  of  Padding 

Technique. Thus, the halftoning architecture can support 8 or 12 bits per channel 

as shown in Figure 3.1.

• Droplet Densities Storage ROM: Once the Input Image FIFO of Figure  3.1 is 

filled,  the  pixels  are  buffered  through a  Droplet  Densities  Storage ROM also 

called  Look-Up-Tables  (LUT)  which  is  a  Read  only  memory  that  has  the 

mappings from gray-level to droplet densities for each pixel value of 12 bits. 

• Input Level FIFOs (1-3):  There are three Input Level FIFOs which are used to 

buffer the data from the Droplet Densities Storage ROM. The number of Input 

Level FIFOs used is directly proportional to the number of Levels in each channel 

or the number of Droplet Densities per channel.  
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• Core Data FIFOs (1-12) : There are 12 data buffering Core Data FIFO memory 

files, one for each Processor Core of Figure 3.1. It stores the input pixel data to be 

processed obtained from the LUT array and has 4 address locations each of width 

16 bits.

• Processor  Cores  (1-12): There  are  12  processing  cores  in  the  architecture  of 

Figure  3.1.  All  the cores are identical  and each of them consists  of Registers, 

Adder/Subtractors, Comparators, Error handling circuits and Error Filter circuits 

containing  multipliers  and  adders.  Each  core  is  1  clock  cycle  behind  the 

immediate core succeeding it.  For example, Processor core 2 is 1 cycle behind 

Processor core 1, core 3 is 1 clock cycle behind core 2 and core 12 is 12 cycles 

behind core 1.  The registers are used to  store input  pixel  data,  previous pixel 

values, current processed pixel values and neighboring partial pixel values. The 

Adder / Subtractor unit is used to add the input pixel value with the previous pixel 

value and to subtract the current output value from the combined value of input 

pixel.  The comparators  are  used to  compare  the results  and the output  of  the 

previous level with a threshold constant making sure that the values satisfy the 

stacking constraint. The error handling circuit consists of a couple of comparators 

to make sure that the error values produced are in the range between -1 and 1. The 

error diffusion unit  in each core contains 4 multipliers  and 4 adder circuits  to 

calculate the errors. This unit also contains a random weights generator which is 

used to perturb the weights at each pixel location.    

• Error Storage Block RAMs (1-12) : There are 12 Error Storage Block RAM 

memory files, one for each Processor Core of Figure 3.1.The Error Storage Block 

RAMs store the errors corresponding to the pixel locations. The Block RAM is 16 

bits wide and has 17280 memory locations. The number of address locations is 

calculated  based  on  the  maximum  width  of  the  image  which  is  24  inches 

multiplied by the resolution of 720 dpi.
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• Output  Data  FIFOs  (1-12): There  are  12  Output  Data  FIFOs,  one  for  each 

Processor Core shown in Figure  3.1. The outputs from the Processor Cores are 

stored in this Output Data FIFOs which are 1 bit wide having 2 memory locations 

per Processor core.

• Output Logic Units (1-4):  Four Output Logic Units are designed based on the 

number of colors and levels supported by the architecture. The number of Output 

Logic Units is directly proportional to the number of channels in the image. The 

outputs from the output FIFO array are mapped to 2 bits per channel per pixel. 

The output data of the processed image (Halftoned Image) is sent directly to the 

print head of a printer with the help of an output interface preferably Ethernet.

 3.2.2 Control Unit Architecture

This  section  deals with  the control  strategy of  the hardware architecture.  The system 

consists of two controllers, one for managing the memory (RAM) elements and the other 

for  controlling  the  Processor  Core  operations.  Figure  3.1 shows  the  Input  Memory 

controller used to manage the data buffering operations and Processor Core Controller 

used to control the operations of the Processor Core, Error Storage Block RAMs, Output 

Data FIFOs and Output Logic Circuits. The control unit performs the timely execution of 

predefined micro-instructions to obtain the desired performance and results. The whole 

datapath is  controlled using the two control  units  mentioned.  Detailed explanation  of 

controller functionality and architecture is provided in  Chapter 8.

 3.3  High Level Process Flow Description 

This section provides a detailed explanation of how the hardware system functionally 

operates.  Figure  3.2 shows  the  flow chart  that  provides  the  step  by step  operational 

procedure of the halftoning algorithm running on the hardware architecture of Figure 3.1 

programmed into the FPGA. The following points discuss the operational flow chart in 

Figure 3.2.
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• FPGA accepts the initial parameters of the image namely image size, number of 

channels and levels from the host PC.

• If the parameters are within the range of values that is supported by the FPGA, 

then a 'go' signal is asserted to the DDR2 memory to accept input pixels from the 

host PC else if the parameters don't match, the system shows an error message 

stating that the parameters entered are unsupported. The FPGA also initializes the 

Droplet Storage ROM and the Processor Cores are switched ON according to the 

number of channels / levels.

• The memory interface checks whether at least 2 rows of data is inside the DDR2 

memory. If the RAM is filled, the FPGA starts accepting the input data and fills 

the Input Image FIFO. The controller inside the FPGA constantly monitors the 

FIFO and stops filling it when it is full.

• The input pixels are buffered through a 12 bit convertor circuit which converts a 8 

bit input value to 12 bits using a padding technique.

The following points address the flow chart in Figure 3.3.

• The output from the 12 bit convertor of Figure 3.2 is fed to the Look-up-tables or 

the Droplet Densities Storage ROM to get the Droplet Size Values (see Figure 

3.1) that are associated with a specific input pixel.

• The values obtained from the Droplet Densities Storage ROM are stored in the 

Input Level FIFOs which in turn is diverted to the Core Data FIFOs specific to 

each Processor Core as shown in Figure 3.3.

• All  the  processing  elements  have  the  same  architecture  and  hence  only  one 

architecture is shown in the flow chart.
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• Data from the input Data RAM is fetched and stored in the Input Pixel Register. 

The previous processed pixel value is stored in the Previous Pixel Register. The 
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two values are added with the help of an Adder-Subtractor unit.

• The result from the unit is compared with a threshold value (0.5 in this algorithm) 

and the previous  output  of  the level  in  the  same channel  is  compared with  a 

constant 0.5. 

• If the value satisfies the condition, the output value is tied to 1 and if the condition 

is not satisfied, the output value is tied to 0.

• When the output value is assigned 1 or 0 there exists an error between the result 

from the adder and the output value. The Error is determined by subtracting the 

output value from the result of the Adder-Subtractor unit.

The following points address the operational flow chart in Figure 3.5.

• The error value is constantly scanned by an error limiting circuit that assigns 1 if 

the error is greater than 1 and assigns -1 if the error is less than -1. But, if both 

conditions aren't satisfied, then the error is within the limits and is stored in the 

error register.

• The error diffusion circuit comes to play in this step. The controller checks the 

corresponding pixel that is  being processed and manages the operations of the 

multiplier and the adder circuit according to the Figure 3.4. 
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• Figure 3.4 shows the pixel locations where the error filter elements (Multiplier & 

Adder) are in the OFF state. Figure 1.2 and 1.4 shows the weight distribution and 

the weights at different pixel locations in a serpentine scan methodology.
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• The multiplier is used to multiply the error stored in the error register with the 

random weights produced by the Random Weight Generator. The adder then adds 

the resultant value from the multiplier with the previously stored error value.

• The number of error values generated per pixel per channel per level is 4 as at 

almost all the pixel locations, errors are distributed to the four nearest neighbors 

as shown in Figure  1.2. The error values are stored in the Error Storage Block 

RAM inside the FPGA for subsequent processing.

• The FPGA stops processing once it reaches the final pixel of the image and goes 

to an IDLE state where it can be again restarted to process the next upcoming 

image. 

 3.4  Hardware Algorithm Execution

This  section  provides  information  about  the  Error  Diffusion  Halftoning  algorithm 

execution  in  FPGA.  Figure  3.6 shows  the  operational  design  of  the  Stacked  Error 

Diffusion algorithm currently being used in this research. The input colors are mapped to 

the processing cores and halftoned with the help of this algorithm. All the processing 

cores are connected to their Core Data FIFO input and the output bit of the previous core. 

As there exists  no stacking constraint between the channels, the starting level of each 

channel is tied to a constant bit of 1. One of the inputs of core 1 is tied to a constant 1 as  

it is the first level. The succeeding cores are connected to one another i.e. the output of 

the first core is connected to one of the inputs of the second core; the output of the second 

core is connected to one of the inputs of the third and so on till it reaches the final core.  

The output from each individual core is connected to an output logic which calculates the 

output  pixel  value.  As  there  is  a  dependency  constraint,  all  the  cores  cannot  start 

processing a pixel at the same time. Thus, there exists a unit delay circuit in the design 

which delays the processing time by one clock cycle compared to the succeeding core. In 

other words, core ‘n’ will not produce the output until it receives the output from core (n-

1) where n=1, 2….n. The pixels are processed in parallel but the first core will be ahead 

of its previous core by one clock. 
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Some of these cores can run in parallel at the same time and this parallelism is between 

the colors or channels in the input image. For example, CMYK can be four channels in an 

image assuming three levels in each color. Colors C, M, Y, K can be run in parallel since 
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there is no constraint between different colors. But in this architecture each core is set to 

run behind its  succeeding core as  there is  no performance difference and it  can also 

support more than 4 colors / 3 levels per color as in the case of this architecture. The 

whole system is run at 50 MHz to achieve the desired performance and the output is 

obtained every 8 clock cycles as shown in Figures 3.7 and 3.8 respectively. 

Figure 3.7 shows the pixels being processed under current research methodology where 

every core is one step behind its succeeding core. There is also an alternate architecture 

shown in Figure 3.8 where all the colors per pixel are run in parallel and the output is still 

obtained every 8 clock cycles. Thus, from this research the processing cores gives output 

every 8 clock cycles irrespective of the number of channels and levels per channels in an 

image. The current architecture is capable of speeds up to 130 MHz and can be altered 

according to  the  printer  requirements  to  achieve a specified throughput.  The current 

architecture is  about  twice as fast  as the modern day wide format  printers.  Thus this 

design is scalable, flexible and compatible with any printer configuration.
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 Chapter 4. Input Data Memory Architecture Design 

 4.1  Introduction

This  chapter  provides  a  comprehensive  explanation  of  the  memory systems  and  the 

operations performed on different memory RAMs. The input memory architecture is the 

first and foremost system that the processor core depends on for efficient buffering of 

image pixels. Calculations are not performed in this segment as it deals primarily with 

memory storage and access. The chapter discusses 5 major digital elements namely the 

Input Image FIFO, Parameter Registers, Droplet Densities Storage ROM (LUTs), Input 

Level  FIFO and Input  Core Data FIFO. The next  section  addresses  about  the Xilinx 

Virtex-5 FPGA components used to build all the digital memory elements listed above. 

 4.2  Xilinx Virtex-5 Memory Components

The Virtex-5 devices [26] consists of two main memory components called Block RAM 

and Distributed RAM. The choice of the components depend upon the memory size and 

speed requirements. For example, if a design requires buffering of data at high speed and 

has  a  small  storage  constraint  then  Distributed  RAM  can  be  used  to  meet  the 

expectations. But if a design requires a large storage space inside the chip and an average 

speed of access then a Block RAM can be used. Both RAM's are Static Random Access 

Memory (SRAM) systems  where  the  binary bits  are  stored  with  the  help  of  internal 

latches. The main reason for using SRAM is that it has shorter read and write cycles and 

is faster when compared to other RAM's. An SRAM is a volatile element and loses its 

contents  when the device is  powered OFF. Unlike  Dynamic  RAM's,  SRAM's do not 

require  refresh  and  precharge  cycles.  Hence  SRAM's  are  faster  when  compared  to 

DRAM's  but  not  area  efficient  (consumes  more  space  when  compared).  The  current 

design under consideration has a requirement of a very large storage space and an optimal 

speed at which the algorithm should be run. So, the Input Memory Architecture design 
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incorporates  both  Distributed  and  Block  RAM's  to  allow  efficient  execution  of  the 

Stacked Error Diffusion halftoning algorithm. 

 4.2.1 Block RAM

The block RAM in Virtex-5 FPGA (XC5VFX70T) chip can store a maximum of 5328 

Kilobits  of data.  The RAM's can be cascaded and configured for a deeper and wider 

memory  space  depending  upon  the  storage  requirements.  The  device  supports  both 

synchronous and asynchronous memory operations but, the current design recommends a 

synchronous operation to avoid timing conflicts in the design. Block RAM can be used as 

a  single  port  or  a  dual  port  memory  element  depending  on  the  memory  access 

requirements. In this research, both single and dual port elements are used based on the 

halftoning algorithm. The RAM can also be used as a ROM (Read-Only-Memory) which 

has a major use in this algorithm implementation. The memory locations in the RAM can 

be initialized to a predefined value and can be changed during the device operation. The 

various  configurations  available  in  a  Block RAM are  Single-Port  RAM/ROM, Simple  

Dual-Port RAM  and True-Dual Port RAM/ROM as shown in Figure 4.1. 

Single-Port RAM/ROM is the memory storage component where there exists only one 

data input and data output port.  It can be used as a look-up-table for accessing stored 

values by the processor. A  Simple Dual-Port RAM is the storage element where there 

exists one data input port and only one data output port. This can be typically used in 
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scenarios where a processor needs to read from one location and write to another location 

in the same RAM simultaneously. A  True Dual-Port RAM/ROM is a type of memory 

storage where more than one processing element with different read and write locations 

wants to access the same storage element. It contains two data input ports and two data 

output ports. The parameters in the Figure  4.1,  namely  addra, addrb,  are the address 

values that can be provided to access a particular location in the memory.  rw, rwa and 

rwb  are  the  read-write  controls  signal  used  to  select  either  read  or  write  operation 

(typically '0' indicates read and '1' indicates write); en, ena, enb are the enable signals that 

is used to control the chip select operation (basically '0'  means a chip can be used for 

memory operations and '1' means that the chip cannot be used),  clk, clka, clkb  are the 

clock ports for synchronous operation of the memory devices and din, dina, dinb, dout,  

douta, doutb are the inputs and outputs of the corresponding memory blocks. There exists 

three operating modes for the Block RAMs that regulates the read and write behavior of 

the ports. The operating modes are Write First mode, Read First mode and No Change 

mode. In Write-First mode, the input data is written to the memory location and the data 

written is reflected at the output simultaneously. In the Read-First mode, the input data is 

written to the memory location whereas the previous stored data is reflected at the output. 

This mode is also called Read-before-Write. In No-Change mode, the data at the output 

port reflects the same data from the previous read  operation and is unaffected by the 

current write operation. In this research, the No Change mode is used and the hardware is 

designed in such a way that there exists no conflicts and collisions. The read and write 

operations require one clock edge to provide the output. Large FIFO's (First-In First-Out) 

can be instantiated using Block RAMs. Performance upto 450 MHz can be obtained using 

the  Block  RAM module  embedded  inside  the  FPGA.  But  the  current  research  work 

doesn't need such high speeds and hence the memory modules are run at a speed required 

by the application.  

 4.2.2 Distributed RAM

In addition to the Block RAMs, there are Distributed RAMs embedded throughout the 

FPGA chip. This RAM is very fast, available at all the regions inside the FPGA and is  
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optimal for high speed data buffering, small FIFO's and can be used as register files. The 

Distributed RAM has all the features as the Block RAM such as Single-Port RAM/ROM, 

Dual-Port  RAM/ROM.  The  only  disadvantage  of  these  RAMs  is  that  the  memory 

availability is much less compared to the Block RAM module. The Virtex-5 provides a 

maximum of approximately 820 Kilobits of storage space in terms of distributed RAM. 

Synchronous and Asynchronous operations can be performed efficiently on these RAMs 

where write operation is typically synchronous and read is asynchronous. One can also 

program the RAMs to perform fully synchronous behavior depending on the application 

need. The RAM memory can be initialized with some values and can also be changed 

during the device operation. Thus a full flexibility in design is allowed which is similar in 

the case of Block RAMs.

 4.3  Xilinx Core Generator

The  CORE  Generator  [27]  in  Xilinx  is  a  proprietary  design  tool  that  instantiates 

Intellectual Property (IP) modules which can run very efficiently on the Xilinx FPGAs. 

The Core Generator provides functional digital elements such as FIFOs and memories 

(both Block RAMs and Distributed RAMs), Multipliers (Xtreme DSP and LUT based), 

Adders-Subtractors, Standard Bus Interfaces, Memory interfaces, Comparators, Counters, 

Shift-Registers and Dividers. In this research, Core Generator modules are used at places 

where the performance of the device is crucial.  This results in less time consumed in 

designing the hardware since it takes an ample amount of time to design a module like an 

adder from the scratch and to test it and the modules provided by the Core Generator are 

very efficient and fully tested. All the designs in this research project are described using 

verilog and tested using the ModelSim simulation tool.

 4.4  Input Image FIFO

The first memory element in this hardware design is the Input Image FIFO (see Figure 

3.1) which is used to store the input pixels sent by the host PC. This FIFO is generated 

with the help of the Xilinx Core Generator design tool that utilizes Block RAMs in the 
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FPGA.  The  memory element  is  tailored  to  meet  the  requirements  of  the  Halftoning 

algorithm. The following sections briefly describe the design and operation of the Input 

Image FIFO.

 4.4.1 Input Image FIFO Design

The Input Image FIFO is designed with the help of the Core Generator wizard. Verilog 

HDL is used to describe the design and is fully tested using the ModelSim simulation 

tool. In order to store the pixels for continuous buffering to the processor cores, the width 

and depth of the FIFO must be large enough to prevent absence of data at a given time. 

The width of the FIFO depends on the number of bits used by a channel in a pixel, as this 

algorithm supports both 8 / 12 bit data, the data width of 12 bits is selected. To prevent 

buffering discrepancies, the depth of the FIFO is 1024 bits. The depth of the memory 

element  indicates  the number  of  address  locations  that  can accommodate  12 bits  per 

location. So the number of address lines required to access 1024 locations is 10 bits (210 = 

1024)  starting  from address  0 till  1023.  From the  width  and depth  of  the  FIFO, the 

amount of storage space consumed can be calculated by multiplying the two parameters 

12 * 1024 that comes to 12288 bits in total. The difference between a Random Access 

Memory and a FIFO is that any address location in the RAM can be accessed at any point  

of time but, in a FIFO there is an internal counter that increments the memory address by 

a count of 1 depending on the operation (Read/Write) and it acts like a stack where the 

first element filled should come out first and so on. Figure 4.2 shows the schematic of the 

image FIFO used in this design. 
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 4.4.2 FIFO Operational Procedure

The FIFO is designed based on the original halftoning algorithm and a code snippet is 

shown in Figure 4.3. 

The line marked '1'  in the code snippet indicates that an image is being read into the 

'inputBuffer' unit which in this hardware architecture is the Input Image FIFO. Figure 4.2 

shows the input and output pins of the FIFO where  din[11:0]is the input pixel data of 

width 8 or 12 bits, dout[11:0] is the output of the FIFO which has the same width as the 

input port, wr_en is the write enable port ('1' in means that data is written to the FIFO and 

'0' means that no data is written to the FIFO) , rd_en is the read enable port ('1' in means 

that data is read from the FIFO and '0' means that no data is read from the FIFO), clk is 

the clock input port (this signal is used for synchronous read and write operations; all the 

operations are positive edge sensitive), srst is the reset or clear bit port (used to clear the 

contents of the FIFO and set the internal counter to the initial state),  full  (Full set to '1' 

indicates that all the address locations in the FIFO are filled), almost_full (almost_full set 

to '1' indicates that all the address locations in the FIFO are filled except the last location), 

empty (empty set to '1' indicates that all the address locations in the FIFO are unfilled) and 

prog_empty (prog_empty set to '1' indicates that all the address locations in the FIFO are 

unfilled except the number of locations programmed in the prog_empty bit) comprise the 

FIFO status  bit  ports  of the memory unit.  How the FIFO opeartes  in  this  Halftoning 

system is described as follows.

• When the DDR2 RAM of Figure 3.1 is filled with atleast two consecutive rows 

of the image to be halftoned, it gives a signal to the Input Image FIFO inside the 

FPGA to start accepting the data. The controller  inside the FPGA detects the 

45

Figure 4.3: Software Code Snippet for Image FIFO and 12 Bit Conversion 



signal and the write enable port in the Input Image FIFO is set to '1' filling the 

FIFO at every positive clock edge. 

• When the Input Image FIFO reaches the end of the stack which means all the 

locations are filled with data, the full and almost_full bits are set to '1' indicating 

to the controller that the FIFO is ready for operation.

• The processor core starts to read the data from the Input Image FIFO by setting 

the read enable port bit to '1'. When the FIFO reaches the end point where it 

needs to again fill up with data, the  empty and  prog_empty ports are set to '1' 

indicating the FIFO is empty. 

• Data can be read and written to the Input Image FIFO simultaneously providing 

full  duplex  capability preventing latency.  Both  read and write  operations  are 

performed at the positive edge of the clock and have a latency of one clock cycle. 

The Input  Image FIFO is  run  at  50  MHz,  the  same  frequency as  the  entire 

system.

 4.5  Parameter Registers and 8/12 Bit Convertor

The Parameter  Registers of Figure  3.1 are memory components  designed to store the 

input parameters of the Halftoning system. There are two registers, each 32 bits wide, 

used to store five input parameters; namely, Rows, Columns, Channels, Levels and 8/12 

bit select. Figure  4.4 shows the distribution of the parameters in the register where the 

bits  0 through 15 are used to store the number of columns  in the image and bits  16 

through 31 store the number of rows in the image. 
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Figure  4.5 shows the  format  for  storing  the  information  on the  number  of  channels, 

number of levels per channel and the choice of 8 or 12 bit image input. 

Bits 0 through 3 are reserved for storing the number of levels per channel (color), bits 4 

through 7 are used to represent the number of channels in the given image and the 8th bit 

in the format is used to switch between an 8 or 12 bit image input. A '0' in the 8th bit 

suggests that the input is 12 bits wide and a '1' indicates that the input is 8 bits wide. The 

remaining  23  bits  are  reserved  for  future  use  where  additional  parameters  can  be 

accommodated. This system design handles an image of width 24 inches and a resolution 

of 720 dpi. Thus, 24*720 gives the maximum number of columns accepted in this design 

which is equal to 17280. The height of the image, namely the number of rows in the 

image  that  this  design  can  handle  is  infinite.  For  a  specific  system design  a  certain 

number is chosen for the sake of hardware power consumption. Thus, a image size of 44 

inches which gives 31680 rows can be processed (Number of rows in the image can be of 

any size). If any of the parameters are not in the range mentioned, the hardware sends an 

error message to the host PC. 

Figure 4.6 shows the design of the parameter register and this format is the same for any 

register in this hardware architecture. The parameters rin[n:0] is the input to the register 

where  n is  the Most significant bit  of the data,  clr is  an input  port  used to clear the 

memory contents, ls  is  the  load-store  input  control  bit  which  performs  load or  store 

operations (when ls = '0', input is loaded in the memory register; when ls='1', input is 

stored in the register), clk is the clock input to synchronize the operations with the clock 

edge and rout[n:0] is the data output from the register. 
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Initially, during system start-up, the number of rows, columns, channels, levels and 8/12 

bit select values are loaded/stored in the two parameter registers. The 8 th bit in parameter 

register  2  is  connected  to  the  8/12  bit  convertor  which  is  shown in  Figure  4.7.  The 

convertor converts a 8 bit data value into an equivalent 12 bit value by padding where the 

8 bit value is left shifted four times and filled with '1' in the leftmost digits. The line 

number named '2' in Figure 4.3 shows the software conversion of the input pixel, thus this 

convertor is an equivalent hardware technique to change a 8 bit value to a 12 bit value. 

The output of the Input Image FIFO is connected to this 8/12 bit convertor as shown in 

Figure 3.1 and the circuit design of the convertor is shown in the Figure 4.8. 

The input port d[11:0] is the original value from the Image FIFO (it can be either 8 or 12 

bit value), s is the select signal from the parameter register 2 that decides conversion ('0' 

in s suggests that the input value is a 8 bit value and hence the conversion takes place and 
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Figure 4.7: Padding Technique

Figure 4.6: Register 

Schematic



'1' in s indicates that the data value is a 12 bit value in which case the input its reflected at 

the output) and finally dout[11:0] is the output value (padded or un-padded depending 

upon the input).

 4.6  Droplet Densities Storage ROM

This section deals with the input pixel being mapped to a maximum of three different 

droplet intensities with the help of a Single-Port ROM as shown in Figure 4.9. The output 

of the hardware convertor circuit is connected to the input of this ROM. As the input 

address is of width 12 bits, the number of locations addressed by the ROM is 4096 (212). 

The  number  of  ROMs  depend  on  the  number  of  levels  per  channel  which  in  this 

architecture is 1, 2 or 3 depending on the output requirement. Thus, a total of 3 Block 

RAM elements are required to store the droplet values. The values are calculated using 

the original algorithm and stored in the corresponding ROMs. The data in the ROM is 16 

bit wide Fixed-Point format and integer arithmetic is performed. Hence, the input pixel 

value of 12 bits is mapped to three different droplet density values that are 16 bits wide. 

The amount of storage memory required to store these values is calculated as follows: 3 

ROMs each with 4096 address  locations  supporting 16 bit  data  per  location  requires 

3*4096*16 which is equal to 196608 bits of memory space that can be taken from the 

Block RAM column of the FPGA. 
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The ROMs are generated using the Xilinx  Core Generator wizard and the values  are 

initialized using a .COE file in Xilinx as shown in Figure 4.10. The .COE file requires 

two parameters to be passed; one is the memory_initialization_radix and the other is the 

memory_initialization_vector.  The  memory_initialization_radix  defines  the  format  of 

representing the data which can be binary (radix = 2), octal (radix = 8) or hexadecimal 

(radix  = 16).  In this  research  the  data  format  is  binary. Figure  4.9 shows the  ROM 

schematic where  addr[11:0] is the 12 bit input pixel value,  clk is the clock signal for 

synchronous operation (the input is positive edge dependent) and dout[15:0] is the output 

value related to droplet density. All the levels are grouped into a single ROM having the 

same input values but provides 3 different output intensities. This unit is also run at the 

system frequency of 50MHz.
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 4.7  Input Level FIFO

The Input Level FIFO is a digital memory component that acts as an intermediate buffer 

to store the values obtained from the Storage ROM described in Section 4.6 . Figure 4.11 

shows the FIFO schematic where data_in[15:0]  is the 16 bit wide input data,  clr is the 

clear bit to reset the memory contents of the FIFO to a known value generally '0', rd_en is 

the  control  bit  for  read  operation  ('0'  indicates  no  operation  and  '1'  indiates  read 

operation), wr_en is  the  write  enable  control  bit  for  write  operation  ('0'  indicates  no 

operation and '1' indiates write operation), clk  is the clock input port for synchronous 

operation (data is buffered with respect to the positive clock edge), data_out[15:0] is the 

16 bit wide output port, AFULL is an output port which indicates to the control unit that 

all the memory locations except the last is filled,  AEMPTY  is a status bit that provides 

information that none of the locations except one is full and FULL is the output status bit 

that says that all the locations in the FIFO are filled. The current FIFO has a depth of 16 

bits and stores 16 bit wide data. 

As discussed in Section 4.2.2  , this FIFO design uses the Distributed RAM to achieve 

highest performance and minimum latency. Data can be read from or written to the FIFO 

simultaneously and maximum care is taken in the design to avoid read/write conflicts. 

The output from the Droplet Densities Storage ROM is connected to the 3 Input Level 

FIFO's.  The amount  of  distributed  RAM space consumed by these FIFO elements  is 

3*16*16 that shows 768 bits of storage. These FIFOs eliminate the latency that exists 

between the processor core and the Storage ROMs which would otherwise be 2 clock 

cycles. Their operation is similar to that of the Input Image RAM/FIFO shown in Section
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4.4.2  but the only difference is that the Input Image FIFO uses a Block RAM and the 

Input Level RAM uses a Distributed RAM. This memory component is run at the system 

frequency of 50 MHz.

 4.8  Core Data FIFO 

The Core Data FIFO memory system acts as a cache to the Processor Cores where the 

data stored in the Input Level FIFOs is in turn buffered to the Core Data FIFOs. The 

current hardware architecture supports a maximum of 4 channels and 3 levels per channel 

which requires 12 Processor Cores. Thus, for 12 Processing Elements , 12 caches (Core 

Data FIFO) are required to buffer the correct input data to the designated core. The data 

from the Input Level FIFO is buffered and stored in the Core Data FIFO with the help of  

the control unit. 

Figure  4.12 shows the schematic of the Core Data FIFO which is similar to the Input 

Level FIFO except for the absence of AFULL and AEMPTY status ports. The design and 

operation of the Core Data FIFO is the same as the Input Level FIFO. The Core Data 

FIFO supports a data width of 16 bits  and has a maximum depth of 4 locations.  The 

memory required to implement 12 Core Data FIFOs is 12*4*16 which is equal to 768 

bits.  Distributed  RAM is  used  to  design  this  FIFO because  the  processing  elements 

communicate with this FIFO at the highest speed and lowest latency. This component is 

also run at the system frequency of 50 MHz and the operations are performed at the 

positive edge of the clock. The output of the Core Data FIFO is connected to the registers 

in the Processor Cores of Figure 3.1 for subsequent computation.   
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 4.9  Entire Input Data Memory Architecture

Figure 4.13 shows the fully connected memory elements of the entire Input Data Memory 

Architecture  starting  from  the  Input  Image  FIFO,  Parameter  Registers,  8/12  Bit 

Convertor, Droplet Densities Storage ROM, Input Level FIFO and Core Data FIFO. The 

Core Data FIFOs are arranged in a sequential order starting from channel 1 (that includes 

level 1, 2 and 3) and ending at channel 4 (includes level 1, 2 and 3). Initially the input 

parameters are loaded into the Parameter Registers. The data from the DDR2 SDRAM is 

buffered through the memory interface and is stored in the Input Image FIFO. Once the 

Input Image FIFO is completely filled with the input pixel data, the control unit starts the 

process of buffering the pixels to the processor core as follows. The data output from the 

Input Image FIFO goes through a 8/12 bit convertor circuit that converts a 8 bit value to 

the corresponding 12 bit value and feeds it to the Droplet Densities Storage ROM where 

the input pixel is mapped to three different ink intensities. The Droplet Densities Storage 

ROMs 1, 2 & 3 constitute a single unit named as Droplet Densities Storage ROM as 

shown in Figure 4.13. During this time the Input Image FIFO is constantly monitored by 

the control unit to fill the FIFO in case it is empty. All the operations are executed in 

parallel thus improving the execution speed of the algorithm. The output from the Storage 

ROM is stored in the Input Level FIFO where it is finally buffered to the Core Data FIFO. 

The Core Data FIFO is arranged in such a way that if the image has only one channel, 3 

levels per channel, then Channel 1 is chosen. If there are 2 colors in the input image then 

Channels 1 and 2 are selected, else if there are 3 colors, channel 1,2 and 3 are selected 

else of there are 4 colors, channels 1,2,3 and 4 are selected. All the memory components 

are positive edge sensitive and run at the system frequency of 50 MHz. The memory unit 

is  designed  such  that  when  the  Processor  Cores  start  processing  the  input  data,  the 

architecture  ensures  that  the  data  is  continuously  buffered  from  the  input  to  the 

Processing Elements.  Thus, from the Processor Core point of view, the data from the 

input data memory is obtained every clock cycle without any interruption but actually it 

takes 5 clock cycles to reach the Processor registers. The memory buffering devices like 

Input Image FIFO, Input Level FIFOs and Core Data FIFOs are automatically filled.
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Figure 4.13: Entire Input Data Memory Architecture
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 Chapter 5. Processor Core Architecture Development and Design

 5.1  Introduction

This chapter gives a thorough insight into the development and design of the Processor 

Core architecture for the Processor Cores of Figure 3.1. The Processor Core elements are 

the most  critical  part  of  the  hardware system in that  they perform all  the  arithmetic, 

logical and memory operations. This architecture uses Xtreme DSP slices for addition, 

subtraction  and multiplication  as  these  are  hard cores  embedded inside  the  FPGA to 

achieve the highest performance. The main components that constitute the Processor Core 

are  Input  Data  Registers,  a  Adder-Subtractor,  Threshold  Comparators,  Error  Limiting 

Circuit, Error Registers, Random Weights/Values Generators and Error Filter Circuit that 

consists of Multipliers and Adders. The halftoning algorithm written in 'C' is shown in the 

code snippets of this chapter and the equivalent implementing hardware unit design is 

designed.

 5.2  Xilinx Virtex-5 Xtreme DSP Slice

The Xtreme DSP [28] slice in a Virtex-5 FPGA chip is also called DSP48E and it is used 

for high speed digital signal processing. The DSP48E is a hard element which is etched 

into the FPGA chip as shown in the Figure 5.1. 
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These slices can be used for functions such as multiply, multiply-accumulate, multiply-

add, add, subtract,  barrel shift,  bit  wise logical operations,  magnitude comparator and 

counter.  The  merits  of  using  the  DSP48E  components  is  because  of  the  flexibility, 

improved efficiency, reduced overall power consumption, increased maximum frequency 

and reduced set-up plus clock-to-out time. The Processor Core architecture uses a lot of 

these components  to  reduce the FPGA device utilization  as  the adder,  subtractor and 

multiplier is already available embedded  in the FPGA , there is no need to design or 

develop a new adder or multiplier circuit which takes substantial device resources and a 

lot of time to test. The hard IP cores are fully tested and there is a faster execution of 

operations that results in increased performance which is crucial for the Processor Core. 

Another advantage of using the DSP components is that more functionality can be added 

to the user design as the arithmetic unit utilizes 0% of the device, thus a bigger system 

can be implemented  on the FPGA. The unit  supports  both  signed and unsigned data 

arithmetic where it uses 2's complement methodology. The maximum frequency at which 

the slices can be run is 550 MHz when a fully pipelined architecture is used. To support 

higher  data  widths,  the  DSP  slices  can  be  cascaded  without  any  downfall  in  the 

performance.  Using the  DSP slices  decreases  the  design and verification  time  of  the 

hardware architecture developed as a newly fabricated design would take a considerable 

amount of time for verification and validation. The DSP slices are instantiated into the 

hardware design with the help of the Xilinx Core Generator wizard. In this research, the 

DSP48E slices are used to perform signed addition, subtraction and multiplication. The 

number  of  DSP  slices  in  the  XC5VFX70T  FPGA  is  128  and  the  current  hardware 

architecture uses 108 of these slices. As discussed in  Chapter 3., there are 12 Processor 

Cores  and each Core consumes  9 DSP48E slices  and hence  the  total  comes  to  108. 

Absolutely, no FPGA User Logic resources are utilized when these slices are instantiated 

into the design. On the other hand, if the DSP slices were not used, there would have been 

a tremendous increase in user logic resources.  Typically more than 5000 slices would 

have been required which results in a device utilization of over 80%. Thus, the DSP48E 

slices  play a  major  role  in  this  hardware  system by reducing the  amount  of  on-chip 

resources consumed, the design time is reduced by half and performance of the system is 
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increased.  The  following  sections  give  in-depth  details  about  the  Processor  Core 

Architecture.

 5.3  Input Data Registers

The input  data  registers  are  used to  store  the  input  data  to  the  arithmetic  unit  for  a 

specified amount of time before the next data comes into the processing unit. There are 

two 16 bit input registers namely Input Pixel Register and Previous Pixel Register. The 

Input Pixel Register takes the data from the Core Data FIFO and consists of values of 

each color component of the original image. The Previous Pixel Register is used to store 

the error value diffused from the previously processed pixel location. The schematic of 

these two registers is similar to the parameter registers shown in Figure 4.6 except that 

the size of the register here is 16 bits. The format in which the data is stored in these 

registers is shown in Figure 2.3. Figure 5.2 shows the software code snippet used in the 

original halftoning algorithm written in 'C' that gives information about the input data 

operation and the equivalent hardware circuit is shown in Figure 5.3. 

The following points are derived from the software code.

• 'C-3' is a part of the software code where 'inputPixel' represents the Input pixel 

Register in hardware. The term 'pixelBuffer[c] ' is the software buffer created to 

provide the input pixel data to the inputPixel. Where the term 'c' represents the 
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color  component  of  a  particular  pixel.  The variable  'errorImage'  is  the  buffer 

created in the 'C' code to store the previously processed pixel value.  

• The equivalent hardware circuit in Figure 5.3 shows that the Input Pixel Register 

('inputPixel')  is  connected  to  the  Core  Data  FIFO  ('pixelBuffer[c]')  and  the 

Previous Pixel Register is equivalent to the 'errorImage[e]' where 'e' is the error 

from the same component (same level in a channel) of the previous pixel. The 

registers are positive edge triggered and takes one clock cycle to store the data.

 5.4  Adder-Subtractor Unit

This unit performs the addition/subtraction operation depending on a control bit. Xilinx 

Core Generator is used to create the Adder-Subtractor unit which uses a DSP48E slice. 

The adder schematic is shown in Figure  5.4 where  'AB_IN', 'C_IN' are the input ports 

(signed) to which the input value registers are connected, 'CE_IN' is the clock-enable port 

that  controls  the operations  ('0' means device is  inactive,  '1' means that  the device is 

active for operation), it is synchronized with the positive edge of the clock and has the 

highest priority over other signals, 'RST_IN' is the clear or reset bit that sets the output of 

the unit to zero ('1' in this port drives the output to zero and '0' in this port means a normal 

device operation; this port is normally used during system start-up), 'SUBTRACT_IN' is 

the control input port that decides the type of operation to be performed ('0' means Add 

operation and '1' means Subtract operation), 'CLK_IN' is the clock port for connecting the 

clock signal resulting in a synchronous operation and 'P_OUT'  is the output  port that 

provides the result of the operation used. There is no need for an overflow indicator in 

this unit as the values strictly lie between -1 and 1. 
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The code snippet in Figure 5.2 delivers the following information.

• 'outputImage[c]' shown in 'C-4' is a buffer location where the sum of 'inputPixel' 

and 'errorImage[e] ' is stored.

• The Adder-Subtractor component  shown in Figure  5.5 shows that  each of  the 

input ports is connected to two different data inputs with the help of a multiplexer 

as both addition and subtraction has to be performed. The 'outputImage[c] ' in the 
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Figure 5.5: Adder-Subtractor Connections

Figure 5.4: Adder-Subtrator Unit 

Schematic



software is equivalent to the result obtained at the output port of this hardware 

unit. The hardware unit is positive edge triggered and takes one clock cycle to 

output the result.

 5.5  Threshold Comparison Circuit

The threshold comparison circuit compares the output of the Adder-Subtractor unit with a 

constant (0.5 in this research) and produces an output depending on the comparison. The 

software code snippet for this operation is shown in Figure  5.6. The following can be 

inferred from the software code.

• The code in 'C-5'  indicates that it  is applicable only for the first  level (droplet 

density) in any channel. It compares the 'outputImage[c] ' which is the result from 

the Adder-Subtractor unit with the threshold value (0.5), if the result is greater 
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than or equal to the threshold then 'outputImage[c]' is replaced by the value 1.0 

and if less than 0.5 'outputImage[c] ' is replaced by the value 0.0. 

• The code in 'C-6' is applicable to any level except the first, the codes 'C-5' and 'C-

6' are similar but the only difference is the term 'pixelBuffer[c-1]' which is the 

output value of the previous level (either 1.0 or 0.0) in the same channel in the 

same pixel. 

The  design  of  equivalent  hardware  for  the  threshold  comparator  circuit  is  described 

below.

• The Threshold  Comparison  circuit  consists  of  three  main  components  namely 

Threshold Comparator, Previous Value Register and Output Image Value Circuit.

• The  Threshold  Comparator  is  generated  with  the  help  of  the  Core  Generator 

wizard and it performs signed comparison with a constant threshold value of 0.5. 

The Figure 5.7 shows the schematic of the comparator where 'a[15:0]' is the input 

port  connected to the result  of the Adder-Subtractor unit,  'Constant  0.5'  is  the 

value with which the result is to be compared and 'a_ge_b' is the output from the 

comparator.   

• The next important circuit is the Output Image Value Circuit shown in Figure 5.8 

where 'cmp' is the input port connected to the output of the threshold comparator, 

'pv' is the previous core value (previous level), 'en' is used to control the circuit ('0' 

in 'en' means no operation and '1' means regular operation), 'ov[15:0]' is the 16 bit 

output value and 'nv' is the value to the next processing element (typically next 

level in the same channel). This circuit gives an output image value of 1.0 if all 

the three inputs are 1 and 0.0 otherwise.  
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Comparator



• Figure  5.9 shows  the  Threshold  Comparison  Circuit  where  there  is  only one 

hardware unit for all the levels in a channel unlike the two code segments shown 

in Figure  5.6. The difference is evident from the Previous Core Value register 

which is set to the value '1' for the first level in all the channels. This is done by 

driving the reset bit in the register to '1'. For all other cores that doesn't represent 

the initial level, the reset bit of the previous value register bit is disabled (tied to 

'0'). This reduces the unnecessary replication of hardware circuits.

• As the output from the Threshold Comparison Circuit is ceiled (rounded to the 

nearest integer value) to one of the two values (1.0 or 0.0), there arises an error 

which is the difference between the original value and the ceiled value. The Figure 

5.10 shows the software code snippet 'C-7' where the output value is subtracted 

from the result of the addition giving the error value. The Adder-Subtrator unit is 

62

Figure 5.9: Threshold Comparison Circuit

Figure 5.8: Output Image 

Value Circuit



used  for  this  subtraction  operation  with  the  help  of  two  16  bit  multiplexers 

controlled accordingly.

 5.6  Error Limiting Circuit

This circuit is implemented to monitor the error value that accumulates over a period of 

time when the pixels are being processed. The error value is constrained to a range of 

values strictly between -1 and 1. The code snippet 'C-8' shown in Figure 5.10 infers that 

when  the  error  value  is  greater  than  the  'ErrorLimit'  (value  is  1),  then  the  value  of 

'errorImage[e]' is set to '1', but when the error value is less than '-ErrorLimit' (negative of 

'ErrorLimit' which is '-1') the value of 'errorImage[e]' is set to '-1' else if neither of the 

conditions  is  satisfied,  the  error  value  remains  unchanged.  The  equivalent  hardware 

conversion is shown in Figure 5.11. 

Both the Comparators are IP cores generated by using  Core Generator software which 

has a 'greater than' function and the other with a 'less than' function. The 'Neg Error Limit  

Value (-1.0)' and 'Pos Error Limit Value (1.0)' are  combinational circuits producing a 
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Figure 5.10: Code Snippet for Subtractor and Error Limiting Circuit

Figure 5.11: Error Limiting Circuit



constant value of -1 or 1. The multiplexer is used to select one of the values based on the 

output from the comparators. Figure 5.12 shows the schematic of both the comparators 

where  'a_gt_b'  and  'a_lt_b'  are  output  bits  obtained  after  comparison  ('0'  when  the 

condition is false and '1' when the condition is true).

 5.7  Error Registers

There are two Error Registers present in the Processor Core, one for storing the error 

value output from the Error Limiting Circuit and the other to store the previously stored 

error values in the Error Storage Block RAMs. The registers have the same design as the 

Input Value registers that are 16 bits wide shown in Figure 5.13. 

The code snippet 'C-8' in Figure 5.10 indicates 'errorImage[e]' which is equivalent to the 

Error Register hardware unit. The registers are positive edge sensitive digital elements 

and are very fast compared  to Distributed or Block RAMs. They provide synchronous 

operation  avoiding  timing  conflicts.  The  upper  half  of  this  unit  deals  mainly  with 

calculating the output and the error value and the lower half gives details about the error 

diffusion circuit with random weights generator circuits.
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Figure 5.12: Comparators (Greater Than and Less Than)

Figure 5.13: Error Registers



 5.8  Random Weights-Values Generator

The importance and use of randomness in an image is discussed in  Chapter 1., Section 

 1.1.5 . The software code snippet in Figure 5.14 shows the random numbers generated 

using 'C' program. Thus, to design an equivalent hardware random number generator, the 

'C' code must be thoroughly analyzed in order to match the outputs with the software unit.

To design a hardware unit to generate the random weights and numbers, code snippets 'C-

9' and 'C-10' in Figure 5.14 have to be fully broken down into small segments for easier 

understanding  of  the  number  generation  process.  All  the  floating-point  numbers  are 

converted to equivalent Fixed-Point numbers and the range of numbers for 'frand1' shown 

in the code snippet is determined. The calculated range of values for 'frand2' in code 'C-9' 

is [-0.15625,0.15625] (Floating-Point), [-2560,2560] (Fixed-Point) and in code 'C-10' is 

[-0.03125,0.03125] (Floating-Point),  [-512,512] (Fixed-Point).  The fixed-Point  number 

for the weight [7/16] is 7168, for [5/16] it is 5120, for [3/16] it is 3072 and for [1/16] it is  

1024. Thus the added sum of all the weights should be equal to 1 or 16384 (Fixed-Point).  

The value range for all the weights are shown in the following Equations 5.1, 5.2, 5.3 and 

5.4.
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Figure 5.14: Code Snippet for Random Weights Generation in 'C'



 weight [0 ] =
7

16
− frand1 = 7168−[-2560 to 2560] (5.1)

weight [ 4 ] =
5

16
 frand1 = 5120[-2560 to 2560] (5.2)

weight [3 ] =
3

16
− frand2 = 3072−[-512 to 512]    (5.3)

weight [5 ] =
1

16
 frand2 = 1024−[-512 to 512]    (5.4)

Random numbers can be generated in hardware with the help of a Linear Feedback Shift 

Register (LFSR) circuit [29], [30]. A LFSR is a sequential digital circuit designed with 

the help of D-Flip Flops and XOR gates. The design depends on the basic fundamentals 

of polynomial arithmetic in cyclic coding theory. If there are 'n' binary bits, the LFSR 

produces  a  sequence  of  (2n –  1)  different  non-zero  values.  The  circuit  needs  to  be 

designed  in  such  a  way  that  it  satisfies  the  generating  function  called  'Primitive  

Polynomial'. A 'Primitive Polynomial' is an irreducible polynomial that produces all the 

elements in a given set. The sequence of random numbers generated by the LFSR has a 

property in which a number will never be repeated until the whole sequence of numbers 

are executed. The LFSR acts as a counter except that it produces randomness without 

incrementing the result by 1 and it is faster than any other counter. Any digital counter 

can count a particular range of values depending on the number of binary bits. Thus, for 

representing the 'frand1' value of range [-2560,2560], the number of bits used must be 

adjusted. The nearest number range that matches the above range is [-2048,2047] which 

requires 12 binary bits to represent the whole range. 'frand2' values range from [-512,512] 

which  can  be  represented  exactly by 10  bits  except  the  value  512.  Hence  from this 

discussion it  can be concluded that  apporximately 95% of the random values can be 

generated similar  to the software 'C' code.  This  doesn't  affect the performance or the 

quality of the image as there is enough randomness introduced into the system to avoid 

the artifacts. As the number of binary bits required are known, a primitive polynomial has 

to be found that produces all the values in the range supported by the number of bits. The 

polynomial is defined by the powers of 'x' as shown in the Equations 5.5 and 5.6.
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Primitive polynomial (10 bits) = x10x31                (5.5)

Primitive polynomial (12 bits) = x12 x7x4x31 (5.6)

LFSR consists of only D-Flip Flops and XOR gates. The gates are placed according to the 

primitive polynomial. One end of the register is always 1 ('x0') and the other end is always 

'xn' where 'n' is the number of bits used to generate the random numbers. Figure 5.15, 5.16 

shows the design of LFSRs for 10 and 12 bits respectively.  

To generate the weights [0,4,3,5], the random number generator hardware must interface 

with an adder logic as from Equations  5.1,  5.2,  5.3 and  5.4, the 'frand1' or 'frand2' is 

added  to  the  weight  filter  [7/16,5/16]  and  [3/16,1/16].  A  two's  complement 

Adder/Subtractor is designed with one port of the adder tied to a constant value and the 

other port  is  connected to the random number generator.  The random weight filter  is 

divided into two units one with 'frand1' and the other with 'frand2' as constant values. 

Each random weight filter has two adder/subtractor units, each connected to one of the 

four constant values shown in the Equations 5.1, 5.2, 5.3 and 5.4. Both hardware units are 

combined to form a fully functional random weights generator unit. Figure  5.17 shows 

the random weights generator hardware unit where 'clk' represents the synchronous clock, 

'rst' is the clear bit that resets the registers to the initial setting, 'en' is the control port that 

controls all the operations ('0' – no operation, '1' – normal operation), 'wts0' is the random 

weight[0],  'wts4'  is random weight[4], 'wts3'  is the random weight[3] and 'wts5'  is the 
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Figure 5.15: LFSR - 10 Binary Bits

Figure 5.16: LFSR - 12 Binary Bits



random weight[5]. This hardware unit is a positive edge sensitive circuit. The output from 

this unit is connected to the Error Filter Circuit. 

 5.9  Error-Filter Circuit

The hardware circuit discussed in this section is one of the critical units used to diffuse 

the  errors  generated  at  each  pixel  location.  Figure  5.18 shows  the  software 
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Figure 5.17: Random Weights 

Generator

Figure 5.18: Code Snippet for Error Filter Circuit



implementation of the error filter circuit in 'C' code. The code in 'C-11' shown in Figure 

5.18 describes the ON-OFF timing locations in the image and is also mentioned in Figure 

3.4. Code 'C-12', 'C-13', 'C-14' and 'C-15' are the four error filters used to diffuse errors to 

the neighboring pixels. Figure 5.19 shows how the error value at a particular location is 

updated.  Let 'P1', 'P2', 'P3', 'P4', 'P5', 'P6' be the pixels of an image and  'EP1', 'EP2', 

'EP3' be the errors at the corresponding pixels 'P4', 'P5', 'P6', the error 'EP1' cannot be 

used for processing until all the pixels 'P1', 'P2', 'P3' are processed. The code snippets 'C-

12',  'C-13',  'C-14'  and  'C-15'  shows  two  important  variables  'errorImage[c]'  and 

'weightMatrix[w] '  that  are  multiplied  and  added  to  the  previous  error  value  at 

corresponding locations.  

The  hardware  equivalent  circuit  uses  multipliers,  adders  and  register  components  to 

efficiently perform the  error  diffusion  mechanism.  The multipliers  and adders  in  this 

circuit are implemented using the Xilinx Core Generator. Both the units are performed 

signed operations and the multiplier unit has an output port the same width as the input 

port.  The  implementation  of  the  multiplier  is  shown in  Figure  5.20 where  'a[15:0]', 

'b[15:0]'  are  the  input  ports  connected  to  the  error  register  and  the  random  weight 

generator,  'ce'  is  the clock-enable  pin  with  highest  priority that  controls  the  multiply 

operation ('0' – no operation, '1' – normal operation), 'sclr' is the clear bit used to reset the 

multiplier output to a known value done during system start-up, 'clk' is the clock input as 

the unit is synchronized with a clock and finally 'p[29:14]' is the truncated output of the 

multiplier circuit. The process of truncation doesn't affect the output and as the data bus is 

16 bits wide, the result needs to be broken down taking the useful value alone. The adder 

circuit  is  similar  to  the  Adder-Subtractor  circuit  discussed  earlier  in  this  chapter  in 
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Section 5.4 , the only difference being the absence of the 'SUBTRACT_IN' input port as 

the subtraction operation is not necessary. From Code snippets 'C-12', 'C-13', 'C-14' and 

'C-15', it is evident that four multipliers, adders and registers are required to handle the 

errors. The reason for using four 16 bit wide registers can be inferred from the Figure 

5.19 that the error needs to be stored and propagated among the register circuits till the 

error value is fully updated. Each error filter unit is arranged in a way that it diffuses the 

error value generated to corresponding pixel. 

The  Error-Filter  unit  is  shown  in  Figure  5.21 where  there  exists  two  random value 

generator circuits for randomizing the error values, Random Value Generator 1 generates 

values for all  the input  pixel locations but Random Value Generator 2 is enabled for 

certain pixel locations only. The error value from the error register is given as one of the 

inputs to the multiplier circuit and the random weight-values from the random weight 

generator is used as the second input. Each of the adder units is connected to a 16 bit  

register which stores the partial error value and shifts the value during successive pixel 

operation. The Error-Filter [7/16] gives the error value of the next unprocessed neighbor, 

thus the output of this filter is directly connected to the Previous Pixel Value Register. 

The final updated value of the error is stored in the Error Storage Block RAM. The stored 

error values are buffered through the Error Storage Register and finally to the error filter 

[7/16] to add the error at the particular pixel location. The equivalent hardware circuit for 

code 'C-12' is the Error-Filter [5/16], 'C-13' is error filter [7/16], 'C-14' is the Error-Filter 

[3/16] and 'C-15' is the Error-Filter [1/16] respectively.
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Figure 5.20: Multiplier Unit
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Figure 5.21: Hardware Error-Filter Circuit
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Figure 5.22: Processor Core Functional Architecture
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 5.10  Processor Core Architecture 

Figure 5.22 shows the full schematic of a single Processor Core unit of Figure 3.1 where 

'A'  is the data input pixels from the Core Data FIFO, 'B'  is the Previous Core (Level) 

value, 'C' is the value from the present Core connected to the next Core, 'D' is the stored 

error values from the Error Storage Block RAM and 'E' is the final error value from the 

Error-Filter circuit connected to the Error Storage Block RAM for storage. Output from 

each Processor Core also represented as 'C',  is  obtained every 8 clock cycles and the 

whole system runs at a frequency of 50 MHz which is also the system frequency. 

73



 Chapter 6. Error Storage Block Memory Architecture Design

 6.1  Introduction

This chapter introduces the detailed  concepts  and information  about the memory unit 

designed to store the errors generated by a Processor core of Figure  3.1 at every pixel 

location. This memory system is a most essential unit in the architecture and handles the 

error  storage  operations  and  is  responsible  for  efficient  operation  of  the  Error-Filter 

Circuit in the Processor Core. All the hardware modules in this chapter are described in 

Verilog HDL and fully tested using the ModelSim simulation tool. 

 6.2  Error Storage Block RAM Architecture

The size of each Error Storage Block RAM depends on the image width and the data 

width of the values generated. The high level system architecture of Figure 3.1 consists of 

12 cores, so the number of error storage blocks is equal to 12. The system supports an 

image width of 24 inches and a resolution of 720 dpi which gives 17280 pixels in a given 

row. The memory size doesn't depend on the number of rows or height of an image. The 

number of address locations  in  the given memory should be 17280 and each address 

space supports data of 16 bits. The total memory required for storing the errors generated 

by all  the  cores  is  207376 (12*16*17280)  bits.  Since  it  requires  a  large  memory to 

accommodate the data, Xilinx Block RAMs are used. In order to get the most efficient 

and reliable  design,  the memory system is  designed using the Xilinx  Core Generator 

wizard.  The design  uses  a  simple  dual-port  RAM configuration  shown in  Figure  4.1 

where the data can be read from or written-to the memory simultaneously. Figure  6.1 

shows a higher level schematic of the Error Storage Memory Block where 'dina[15:0]' is 

the input port to the memory that transfers the error data, 'doutb[15:0]' is the error data 

output port,  'addra[14:0]'  is the address port for writing the error data to a particular 

location,  'addrb[14:0]'  is  the address port for reading the error data from a particular 

location, 'clka' , 'clkb' are the clock inputs for synchronous operation, 'wea' is the write 
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enable port used to control the write operations of the unit ('0' – No Write, '1' – Normal  

Write operation) and 'enb' is the enable port for controlling the read operations in the unit 

('0'  –  No Read,  '1'  –  Normal  Read operation).  The clock  inputs  'clka'  and  'clkb'  are 

connected to  the same clock to  perform read and write  operations  at  the same clock 

frequency. The input of the memory unit is connected to the Error Output of the Processor 

Core and the address locations at which the data needs to be read from or written into is  

controlled by the Processor Core Control Unit. The output from this unit is fed back to 

the Error Filter circuit in the Processor Core. 

The code snippet in Figure  6.2 shows that initially all the memory locations are filled 

with some random value, this is shown in the software code in terms of 'errorImage[] '. 

This is achieved by initializing all the memory locations to some random values with the 

help of a .COE file shown in Figure  4.10. The value for 'noiseLevel'  in the code is a 

constant value of 0.1. The initialization values are generated from the same 'C' code and 
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Figure 6.1: Error Storage Block 

RAM Memory Schematic

Figure 6.2: Code Snippet Showing Random Values Stored in the Error Image Buffer



converted  to a binary format  that can be loaded into the hardware memory unit.  The 

address ports  in this  unit  are connected to an address counter unit  that increments  or 

decrements the address depending on the pixel location. If 'n' is the number of columns 

(width) of an image, then '(n-2)' error values need to be stored. This is explained in detail 

with  respect  to  the  image  shown  in  Figure  6.3.  Generally  in  any image,  errors  are 

produced  at  every pixel  location  and  the  average  number  of  error  updates  per  pixel 

location is 3. But, for cases discussed in Figure 3.4, the number of error updates comes 

down to 2. The terms 'A' and 'B' in the Figure  6.3 provide important information about 

how the stored errors are added to the corresponding pixel locations. The stored error at a 

pixel value should be added with the error-filter weight [7/16] and sent to the Previous 

Pixel Register for processing. 'A' indicates the errors being read from the storage unit and 

'B' indicates the errors generated at each pixel location being stored in the memory unit. It 

can be observed that all the error values from the pixels are stored in the memory storage 

except the last 2 pixels. The gray boxes indicate the 16 bit register associated with the 

weight filter [7/16] in the Processor Core which is shown in Figure  5.21 in which the 

register takes either the input from the Error Storage Register or the value from Adder 

[3/16].      
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Figure 6.3: Error Storing Procedure Schematic



This process is better shown by the black boxes that represent the errors produced at each 

pixel. The process of reading and writing the errors occur simultaneously. Referring to 

the Figure  1.4, the last pixel in a row doesn't have the Error-Filter weights [7/16] and 

[1/16]; the error at this location needs to be added to the value of the next pixel. Thus, 

this error is connected directly to the Previous Pixel Register and this is the reason why 

the error is  not stored in the Error Storage Memory Unit. The read and write addresses 

are connected to the same address counter and the storage unit is ingeniously designed in 

such a way that the address is the same for reading and writing at any point of time and 

the only difference is that the data is not read or written to the memory unit at the same 

clock edge. This prevents collisions that may occur if an address location is read and 

written at the same time. Since the system implements a serpentine scan technique, the 

counter must be able to count up and down depending on the image row being processed. 

The error corresponding to a pixel location must be added with the error-filter weight 

[7/16] of the previous pixel and the result is to be sent to the Previous Pixel Register of  

the current pixel. 
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Figure 6.4: Error Storage Block RAM Memory Unit



Figure 6.4 shows the high level schematic of the Error Storage Block RAM Memory Unit 

which has two data ports, one from the Processor core and the other to the Core. The 

address generation and control is discussed in detail in the next section which includes 

the design and implementation of the address counter for the memory unit including the 

Input Image Size Monitor.

 6.3  Input Image Size Monitor

This  section  deals  with  the design and implementation  of  the  unit  used to  count  the 

number of rows and columns of an image being processed. The Image Size monitor is a 

binary counter with some combinatorial circuits added to control other units in the whole 

system. The input to this counter is the output from Parameter Register 2 which gives the 

number of Rows and Columns in the input image to be processed. This counter controls 

the Address Counter of the Error Storage Memory Unit indicating when to count up or 

down. If the current row being processed is odd, the Image Size Monitor instructs the 

Address counter to count up and if the row is even then it instructs the counter to count 

down thus establishing a serpentine scan technique. Figure  6.5 shows the higher level 

schematic of the Image Size Counter circuit where 'cin[15:0]' represents the number of 

columns (image width), 'rin[15:0]' represents the number of rows (image height), 'up' is 

the control bit that instructs the counter to count up ('0' – no count, '1' – count up), 'clr' is 

the clear bit to reset the counter initially to a known value, 'clk' is the clock input,  'FCOL' 

is the output port that indicate whether it is the First Column (pixel) in a row, 'LCOL' 

indicates whether it is the Last Pixel in the row, 'LROW' indicates whether it is the Last 

Row being processed and 'up_err' is the control bit connected to the Address Counter of 

the Error Storage Memory Unit ('0' – count-up, '1' – count-down). This counter counts up 

for odd-numbered rows and counts down for even-numbered rows. The address range for 

up-count is '0' to '[rows – 2]'  and for odd rows is '[rows – 2]'  to '0'. The Image Size 

Counter is  incremented by the Processor Core Controller  depending on the row to be 

processed and is a positive edge sensitive digital circuit.          
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 6.4  Error Storage Memory Address Counter

The Address Counter  is  the digital  component  that  provides addresses to  the Storage 

memory unit for parallel reading and writing of the errors generated at each pixel of the 

image. The schematic for the address counter is shown in Figure  6.6 where 'ce' is the 

clock-enable input port that controls the operation of the counter ('0' – no operation, '1' – 

normal operation), 'clr' is the clear bit, 'enr' is the read-enable bit ('0' – Read, '1' – No 

Read), 'enw' is the write-enable bit ('0' – Write, '1' – No Write), 'up_dn' is the control bit 

used to instruct the counter to count up or down depending on the row number ('0' – 

count-up, '1' – count-down) and also this port is connected to the output port 'up_err' of 

the Image Size Counter, 'clk' is the clock input for synchronous operation, 'addr[14:0]' is 

the  address  port  connected  to  the  'addra[14:0]',  'addrb[14:0]'  of  the  Error  Storage 

Memory,   'rd_en'  is  the read-enable output  port  connected the 'enb'  port  of the Error 

Memory and 'wr_en' is the write-enable output port connected to 'wea' port of the Error 

Memory. The ports 'enr' and 'enw' are directly connected to 'rd_en' and 'wr_en' with a 

delay circuit  in between to transfer the control signal from the controller  to the Error 

Memory at the correct clock edge as shown in the Figure 6.7. 
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The controller provides the read/write commands to the Error Memory approximately two 

clock cycles ahead and in order to transfer the control at the correct clock edge, a delay 

unit is introduced. The delay unit is a positive edge triggered D-flip-flop and two of these 

elements are used. The controller is a negative edge triggered system and gives the output 

after the negative edge, and this is captured at the positive edge by the Address Counter 

and at the next positive edge by the Error Storage Memory unit. The unit is designed very 

carefully meeting the set-up and hold time constraints. All the units in the Error Storage 

Memory Architecture are run at 50 MHz, the same as the overall system frequency. All 

the  units  were  fully  tested  and  verified  with  the  help  of  the  ModelSim  simulation 

software.  
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Figure 6.7: Read & Write Port Connections



 6.5  Total Functional View of Single Error Storage RAM Memory Module

Figure 6.8 shows the entire architecture of the Error Storage Block RAM memory unit. 

The Input Image size monitor is connected to the Error Storage Block RAM Address 

Counter unit that generates the address to which the data is to be stored and read. The 

error values produced in the Processor Cores are sent to the Error Storage Block RAM 

and the error values corresponding to a pixel location are accessed from the Block RAM 

memory. The Error Storage Block RAM is a positive edge sensitive unit and the Error 

Storage Block RAM Address Counter is negative edge sensitive.
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 Chapter 7. Output System Architecture Design

 7.1  Introduction

This  chapter  addresses  the  development  and design  of  output  functional  units  of  the 

System Architecture of Figure  3.1. It gives a detailed explanation on the Output Data 

FIFOs and Output Logic Units used in this Halftoning Architecture. The output unit is 

one of the most  critial  units  in  the architecture as the output  pixels  generated by the 

Processor Cores need to be buffered accordingly and the effective output image value is 

to be calculated with the help of an output logic circuit. All the functional elements in the 

Output  System  Architecture  are  described  using  Verilog  HDL  and  simulated  using 

ModelSim simulation software.

 7.2  Output Data FIFO

Each Output Data FIFO [1-12] of Figure  3.1 is a small memory unit connected to the 

output  of  a  Processor  Core Unit  to  collect  the  output  bits.  This  FIFO has  2 address  

locations that supports data width of 1 bit. The reason of the FIFO having only 2 address 

locations can be explained with respect to the Figure  3.7 where the gray colored boxes 

indicate the output produced by each Processor Core. Cores 1 to 4 produce the output of 

the next pixel when Core 12 delivers the output of the previous pixel. Thus, a FIFO with 

2 address locations can accommodate and buffer the output bits without any loss. Figure 

7.1 shows  the  schematic  of  the  Output  Data  FIFO where  'data_in'  is  the  input  port 

connected to the Processor Core, 'data_out' is the output port of the FIFO unit, 'clr' is the 

clear bit, 'rd_en' is the control bit of the FIFO that dominates the read operation ('0' – No 

Read, '1' - Read), 'wr_en' is the write control bit of the FIFO ('0' – No Write, '1' – Write) 

and 'clk' is the clock input. The output from the FIFO is taken every 8 clock cycles and the 

control  is  given by the Core Controller.  This  is  a fully automated process leading to 

efficient buffering of output pixels. Figure 5.6 shows the software code snippet where the 
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term 'outputImage[index]' represents the equivalent hardware memory that is the Output 

Data FIFO.

 7.3  Output Logic Unit

This unit shown in Figure  3.1 is the most important unit for calculating the combined 

output from the Processor Cores. Figure 7.2 shows the software code snippet for output 

calculation using 'C' code. The variables in the code 'imageCol' represent the number of 

columns (width) of the image, 'imageChn' represents the number of colors/channels in the 
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image, 'levels' represent the number of levels per channel, 'pixel' is a temporary variable 

used to calculate the effective output from the Output FIFOs and 'outputBuffer[j] ' is the 

output stored in a temporary buffer unit for subsequent output value calculation. It also 

represents the Output Data FIFOs of Figure 3.1 in digital hardware. The value per level in 

each pixel will be either '1' or '0' and the code suggests adding all the values in the levels 

in each channel individually. Figure 7.3 shows the equivalent hardware unit for the output 

calculation where 'I[2:0]'  is the input port connected to three Output Data FIFOs and 

'O[1:0]' is the 2 bit output calculated by the hardware. This unit is a combinatorial circuit 

that uses Look-up-tables to produce the output. An adder used in the software code is 

replaced by the LUTs as it is fast, simple and very efficient. The output is 2 bits wide 

which can support four possible values (0,1,2,3). The ouput logic counts the number of 

1's in all the three levels per channel and the value ranges from 0 to 3.    

Table  7.1 shows the output values according to the input values and these values are 

stored in memory to access the data according to the input. 

Table 7.1: Input Values & Corresponding Outputs 

Input (Binary) Input (Decimal) Output (Binary) Output (Decimal)
'000' 0 '00' 0

'001' 1 '01' 1

'010' 2 '01' 1

'011' 3 '10' 2

'100' 4 '01' 1

'101' 5 '10' 2

'110' 6 '10' 2

'111' 7 '11' 3
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The Output Logic Circuit is designed using a gate level coding technique for maximum 

performance  and  minimum  gate  delay.  Figure  7.4 shows  the  full  Output  System 

Architecture Figure 3.1 (Output Data FIFOs and Output Logic Units) and its connections. 

The Output  Logic Architecture consists  of 4 Output  Logic Units  and 12 Output  Data 

FIFOs (1 per Processor Core). The Cores {1,2,3}, {4,5,6}, {7,8,9}, {10,11,12} represent 

four channels (1 channel per set of Cores mentioned before) and each channel supports 3 

levels. The allocation of the processing elements are done according to the channels and 

starts from the very first set of cores. For example, if there are 3 channels , 3 levels per 

channel, the sets {1,2,3}, {4,5,6} and {7,8,9} are switched ON for processing. The output 

obtained is 2 bits per channel per pixel and the total is 8 bits per pixel. As the output logic 

unit is a combinatorial circuit, the output of the whole system will be obtained in under 

one clock cycle  after  the Output  Data FIFO provides  the output  data.  For  maximum 

quality in the output image, the number of levels per channel must be 3. The stacking 

constraint  as  discussed  in  Section 1.1.7  is  applicable  to  the  elements  in  each  set  of 

channels but not between the sets (no constraint between channels). The throughput in 

this architecture doesn't depend on the number of channels and levels used, it is the same 

for any number channels and levels. The output can be directly connected to a printer 

head for image reproduction using the processed output pixels. The output image pixels 

can also be stored inside the FPGA using a Block RAM unit for further buffering to other 

printing devices.    
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Figure 7.4: Entire Output System Architecture



 Chapter 8. Controller Architecture Development and Design

 8.1  Introduction

The previous chapters in this research work dealt with the Datapath architecture where 

the digital elements responsible for the arithmetic, logical and storage operations were 

discussed.  In  this  chapter  a  very detailed  explanation  of  the  control  logic  design  is 

presented. In fact, the most challenging and critical part of the system is the controller 

design.  The  controller  fully  automates  the  system  and  completely  reduces  control 

constraints that arise. The controller can be designed only when the Halftoning algorithm 

at  hand  is  thoroughly  understood  and  when  all  constraints  are  known.  The  main 

responsibility  of  the  control  logic  is  to  provide  command  signals  for  specifying 

operations to be performed at each system clock cycle. The controller will be a Finite 

State Machine type which can be defined as a digital logic system that has a fixed number 

of  states  and  follows  a  predefined  procedure.  A  'State'  in  the  Finite  State  Machine 

Controller is an entity that defines the operation of  a digital element (functional unit) on 

a particular clock cycle of the system clock. A controller needs to know the previous, 

present and next state according to the inputs given to the circuit.  Thus a Finite State 

Machine is a combination of both sequential and combinatorial elements. A control logic 

fully controls all the elements in a digital circuit and leads to production of correct output 

from the unit. The chapter provides all information about the controller used to entire the 

whole Halftoning system.

 8.2  Mealy and Moore State Machines

Finite state machines fall under two categories, one is the Mealy Model [31] and the other 

is  the  Moore  Model  [31].  In  the  Mealy model,  the  output  of  the  State  Machine  is 

dependent upon both the input and the present state of the control logic system. Figure 8.1 

shows the schematic of both Mealy and Moore models in which the Mealy model output 

(Control Signal) are a function of both the input and present state whereas the Moore 
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model output is a function of the present state alone. The Moore state machine is easier to 

implement  and design when compared to  the Mealy model  as it  is  dependent  on the 

present state only, so less circuit  dependency exists.  The Mealy model  consumes less 

states to build since the next state is dependent on the input and present state, there will  

be less memory required to store the value of previous and next states.  The output in a 

Mealy model  is  sensitive  to  the input  irrespective  of  the clock edge.  The output  can 

change when the input changes. In the case of the Moore model, the output changes only 

on the next  clock edge.  A control  algorithm can be modeled  by using either  a State 

Transition  Table  or  State  Transition  Diagram.  A State  Transition  Table  describing  a 

Finite State Machine shows the values of input, present state, next state and output values 

of the Controller. The State Transition Diagram gives a schematic representation of all 

the states and their transitions from one state to the other including outputs. Thus for 

every controller logic, there exists a State Table and the State Transition diagram can be 

drawn using the data obtained from the State table. There are several coding techniques 

used to design a control unit and they are selected depending on the application. The next 

section shows the various ways to design a control unit.

 8.3  Controller Design Techniques

The  design  technique  is  chosen  according  to  application  constraints.  Some  of  the 

constraints are speed of the system, size of the system and desired efficiency of the unit. 

The major objective of the control logic design is to build a hardware circuit that achieves 
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the desired control algorithm in a coherent and uncomplicated procedure. Some types of 

encoding a Finite State Machine are One-Hot encoding [35], One-Cold encoding [35], 

Binary encoding [35],  Gray Encoding,  Almost  One-Hot [35],  Almost  One-Cold  [35], 

Sequence Register and Decoder [34], PLA control [34] and Microprogramed control [34]. 

The following sections briefly discuss about each of these techniques.

 8.3.1 One-Hot Encoding

This method uses one flip-flop per state in the control circuit. The term 'One-Hot' means 

that only one flip-flop is set to ('1') at any particular time. The control bit is transferred 

from one flip-flop to another at each clock cycle. The number of flip-flops used is equal 

to  the  number  of  states  which  results  in  more  flip-flop  consumption  than  any other 

method. This technique is not useful for Large Scale Integrated circuit implementation. 

The  One-Hot  encoding  technique  is  one  of  the  fastest,  simplest  to  build  (both 

combinatorial & sequential), the output logic is very simple to implement and includes 

only 'OR' gates. This research project will use a One-Hot Encoded type Controller for 

best performance, noise reduction and simplicity of implementation. Figure 8.2 shows an 

example of the One-Hot encoding technique for a 7 state Finite State Machine. It can be 

inferred that each of the 7 states have one flip-flop. There is a separate block for input 

logic, next state logic and output logic. The output logic contains only 'OR' gates as the 

output is equivalent to the output from one or more of the D-Flip-flops. Thus this coding 

technique is simple and efficient.     
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 8.3.2 Almost One-Hot Encoding

This method is the same as One-Hot except that it takes a bit less than the one-hot. For 

example, let 'n' be the number of bits/states in a control logic, One-Hot takes 'n' flip-flops 

to implement the logic whereas Almost One-Hot takes '(n-1)' flip-flops to implement the 

same logic. This is done by using all zero's to represent a state (typically Initial or Clear 

State). The performance is the same as compared to the One-Hot but reduces the number 

of flip-flops to represent a control logic.

 8.3.3 One-Cold Encoding

This technique is similar to One-Hot encoding which uses one Flip-Flop to represent a 

state but the flip-flop currently at work is cleared or set to '0' and all the others are set to 

'1'. This coding technique has all the attributes of One-Hot encoding and gives the same 

results.

 8.3.4 Almost One-Cold Encoding

This method is similar to Almost One-Hot where it takes a bit less compared to One-Hot. 

Here  the  Almost  One-Cold  also  takes  a  bit  less  when  compared  to  the  One-Cold 

technique where there exists a state in which all the flip-flops have 1's for a clear or initial 

state.

 8.3.5 Binary Encoding

This type of encoding uses a minimum number of flip-flops depending on the number of 

states in the given control algorithm. For example, if an algorithm has 7 states, the logic 

requires 3 flip-flops to accommodate the whole sequence (23  = 8). Thus binary encoding 

is proportional to the power of 2. This technique uses the minimum number of flip-flops 

per range of states. With 'n' flip-flops, 2n states can be implemented. Figure 8.3 shows the 

sequence  of  states  in  binary  encoding  for  a  7  state  control  algorithm.  The  output 

potentially can contain glitches as there can be more than 1 flip-flop changing state per 

clock edge and the combinatorial logic circuit is also more complex when compared to 

One-Hot encoding.
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 8.3.6 Gray Encoding

This type of encoding works on the principle of gray code where only one bit out of 'n' 

changes  at  a  given  point  of  time  or  clock  edge.  Gray  encoding  overcomes  the 

disadvantages  of  binary encoding  where  there  occurs  a  lot  of  glitches  and  the  logic 

required is reduced. This encoding is useful when the outputs are utilized asynchronously. 

Figure 8.4 shows the sequence of states in Gray coding where only one bit changes per 

clock cycle. The number of states that this technique can represent is the same as the 

binary encoding method except the implementation is different. As only one bit changes, 

the next  state logic and the output  logic utilizes less hardware when compared to the 

Binary state machine. 

 8.3.7 Sequence Register & Decoder Technique

This method is used in Medium Scale Integrated circuits where the techniques discussed 

previously are  not  so efficient  and feasible.  This  method uses a  register  to  transition 

through the states and the output of the register is connected to a decoder to provide the 

outputs. If 'n' flip-flops are used in the sequence register, it can support  2n states and the 

decoder provides  2n outputs as well. Figure  8.5 shows the schematic of this technique 

where the input logic unit decides which state to go to according to the output of the 

decoder. The output from the decoder is taken as the present state logic and compared 

with the input logic to get the next state value. Thus all the control signals required to 

control a system can be generated using this technique.
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 8.3.8 PLA Control

PLA is the acronym for Programmable Logic Array which is a device used to implement 

complex digital circuits. It is a Large Scale Integrated (LSI) circuit that can be used to 

design large complex combinational  circuits  efficiently.  This method is similar  to the 

Sequence  Register  and  Decoder  method  but  all  the  combinational  circuits  are 

implemented using a PLA. The PLA logic reduces the hardware logic and decreases the 

routing  complexity.  Figure  8.6 shows  a  PLA  based  controller  where  the  Sequence 

Register provides the present state information and the PLA connected to the input along 

with the sequence register decides  the microoperations  to  be performed.  This  control 

method is used in circuits with a complex hardware and which is difficult to control using 

conventional state machine techniques. For example, for approximately 100 states, One-

Hot encoding uses 100 flip-flops and not so feasible for large complex circuit control. 

Thus, PLA based control comes to play in these circuits which offers a feasible solution 

to accommodate all the states.
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 8.3.9 Microprogramed Control

In this type of control, the control program or sequence is coded into a memory (stored in 

memory). The memory is typically a ROM (Read-Only Memory) where the control code 

is hard-coded. This type of control is useful for applications or algorithms in which there 

is a specific sequence that needs to execute periodically over a long time. Each micro-

instruction is stored in an address location and is accessed accordingly at each clock edge. 

The  control  algorithm  can  be  updated  by  simply  re-writing  the  ROM  with  a  new 

sequence.  The  control  unit  consists  of  an  opcode  which  defines  the  operation  to  be 

performed by the datapath unit. It has a control address register and decoder that selects 

the micro-instructions. The control address register gives the address location where the 

specific micro-instruction is located. The micro-instruction field has the address value of 

the  next  micro-instruction  and the  present  control  sequence.  The address  of  the  next 

micro-instruction is fed to the address register so that the micro-instruction is obtained 

from the  ROM. This  type  of  control  technique  is  used  in  general  purpose  processor 

architectures like Reduced Instruction Set Computers (RISC). 
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 8.4  System Controller Architecture Strategy

The Halftoning Hardware Architecture has 2 main Controllers for controlling the entire 

system. It has the Input Memory Controller and the Processor Core Controller. The Input 

Memory Controller controls the Input Image FIFO, Parameter Registers 1 and 2, Droplet 

Densities  Storage ROM, Input Level FIFOs and the Core Data FIFOs. The Processor 

Core Controller controls the Processor Cores, Error Storage Block RAMs, Image Size 

Monitor, Error Storage Block RAM Address Counter, Output Data FIFOs and Output 

Logic Units.  One way to implement a control logic is to replicate the Processor Core 

Controller depending on the number of Processor Cores. In this research project, only one 

Processor Core Controller is used and the control outputs are connected to the respective 

Processor Cores with the help of Control Registers. The data buffering operations are 

controlled by the Input Memory Controller. Both the Controllers are designed using One-

Hot encoding and the following sections discuss their design and operation in detail.  
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 8.5  Input Memory Controller Design

The  Input  Memory  Controller  unit  shown  in  Figure  3.1 is  one  of  the  two  crucial 

controllers that manages the input data transfer to the Processor Cores. This controller 

controls the Input Data FIFO, Parameter Registers 1 and 2, Droplet Densities Storage 

ROM, Input Level FIFO and Core Data FIFO as shown in Figure 4.13.  The high level 

schematic of the controller is shown in Figure 8.8 where the inputs are on the left and the 

outputs  to  the  right. This  controller  is  designed  using  One-Hot  encoding  technique. 

'C[1:0]'  is  the  input  port  that  is  connected  to  Parameter  Register  2  which  gives  the 

number  of  channels  per  pixel,  'INIT'  is  the  port  connected  to  the  Processor  Core 

Controller which indicates that all the Cores are ready for processing, 'LVAEMPTY' is the 

signal that is connected to the 'Almost Empty' port of the Input Level FIFO, 'LVAFULL' is 

the signal that is connected to the 'Almost Full' port of the Input Level FIFO, 'LVFULL' is 

the signal that is connected to the 'Full' port of the Input Level FIFO, 'ON_OFF' is the 

control  switch  for  this  controller,  'RFULL1',  'RFULL2',  'RFULL3',  'RFULL4'  are  the 

signals connected to the 'Full' ports of the Core Data FIFOs (1, 2 and 3), (4, 5 and 6), (7, 8 

and 9), (10, 11 and 12), 'START' is the input port that instructs the Input Controller to start 

buffering the data, 'clr' is the reset bit used to clear the controller, 'clk' is the clock input 

for synchronous operation,  'op[7:0]'  is  the output  port  that has all  the control signals 

connected to specific ports in the Input Data Memory Architecture and  'STOUT' is the 

output that instructs the Processor Core Controller to start processing the data.  All the 

elements  this  controller  manages are positive edge sensitive,  thus the control logic  is 

designed to be sensitive at the negative edge of the clock. This prevents any set-up and 

hold time violations that may occur. The state diagram for the Input Memory Controller 

shown in Figure 8.9 describes the operations that take place at each state. The following 

describes the control  sequence of the controller.  Some variables are used in  the state 

diagram in which 'port' represents 'port = 1' and 'port' represents 'port = 0'.

• 'DON' is the first state in which the controller remains till it receives the 'ON_OFF' 

signal.

95



• 'DCLR' is the clear state that resets all the datapath elements controlled by this unit.

• 'DRDY' is the state in which the Input Image FIFO tells the controller to start the 

data  buffering  operations.  This  is  done  by  the  port  'READY'.  The  controller 

remains in the same state for 'READY' and moves to the next state for 'READY'.

• 'D0' and 'D1' are the states in the sequence that starts the input memory buffering. 

The  data  is  read  from  the  Input  Image  FIFO  and  sent  through  the  Droplet 

Densities Storage ROM and finally received by the Input Level FIFOs.

• 'D2' and 'D3' are the states that are executed in parallel where the Input Level FIFO 

is filled with the values from the Storage ROM. The controller keeps reading the 

Input Image FIFO till the Input Level FIFO is almost full. When 'LVAFULL' is 

active, then the controller stops reading from the Input Image FIFO. It is the same 

in case of the state 'D3' which is used to write data into Input Level FIFO. 
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• The controller has two small  parallel  control operations that take place till  the 

final pixel of the image is reached. The controller goes to state 'D5' when the 'INIT' 

or ready signal from the Processor Controller and the Level FIFOs full signal is 

asserted. In this state, the controller enables the read operation of the Level FIFO 

as the read or write operations have one clock cycle latency, the read signal must 

be given to the FIFO one clock edge before enabling the write-enable bit of the 

Core Data FIFO. 

• The state 'D6', 'D7', 'D8', 'D9' deals with the Core Data FIFO read/write operations. 

There are 4 states mentioned as the architecture supports up to 4 channels. The 

term 'C[1:0] ' gives the number of channels in the given image ('C1' – 1 channel, 

'C2' – 2 channels, 'C3' – 3 channels, 'C4' – 4 channels). The sequence of execution 

of the four states mentioned depends on the channel count and doesn't depend on 

the number of levels. For example, if there are 4 colors then, states circulate from 

'D6' –> 'D7' –> 'D8' –> 'D9' till the FIFO is filled. For 3 colors it is 'D6' –> 'D7' –> 

'D8', for 2 colors it is 'D6' –> 'D7' and for 1 color it is 'D6'. The Input Level FIFO is 

read and Core Data FIFO is written simultaneously in all the mentioned states.

• The controller enters state 'D10' when the Core Data FIFOs are almost full. In this 

state the read-enable signal is deactivated as the reading is one clock ahead of 

writing. The last location in the Core Data FIFO is filled with the data from the 

Level FIFO.

• The last state is the 'D11' state which enables the start signal of the Processor Core 

Controller  resulting  in  pixel  processing.  The  signal  connected  to  the  Core 

controller is represented by 'CC'.

• The  states  'D5',  'D6',  'D7',  'D8',  'D9',  'D10',  'D11'  are  executed  only  once  at  the 

beginning before the pixels are processed. The Core Data FIFOs are automatically 

filled by a small unit connected to Core Controller. This reduces the complexity 

and results in the simplest design possible. But the states 'D0', 'D1', 'D2', 'D3', 'D4' 

are executed all the time till the image is completely buffered.
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Table 8.1: Control Table showing Outputs and States

Control
State

op[0] op[1] op[2] op[3] op[4] op[5] op[6] op[7] STOUT

DON 0 0 0 0 0 0 0 0 0

DCLR 1 0 0 0 0 0 0 0 0

DRDY 0 0 0 0 0 0 0 0 0

D0 0 1 0 0 0 0 0 0 0

D1 0 1 0 0 0 0 0 0 0

D2 0 1 0 0 0 0 0 0 0

D3 0 0 1 0 0 0 0 0 0

D4 0 0 0 0 0 0 0 0 0

D5 0 0 0 1 0 0 0 0 0

D6 0 0 0 1 1 0 0 0 0

D7 0 0 0 1 0 1 0 0 0

D8 0 0 0 1 0 0 1 0 0

D9 0 0 0 1 0 0 0 1 0

D10 0 0 0 0 1 1 1 1 0

D11 0 0 0 0 0 0 0 0 1
• The outputs of this controller represented by 'op[7:0]' carries the control signals 

for  the  Input  Data  Memory Architecture.  'op[0]'  is  the  signal  to  reset  all  the 

datapath elements connected to this controller, 'op[1]' activates the read-enable bit 

of the Input Image FIFO, 'op[2]' is responsible for writing the data from Input 

Image FIFO to the Input Level FIFO, 'op[3]'  sets the read-enable bit  to '1' for 

reading the data values from the Input Level FIFO, 'op[4]' writes data from Input 

Level FIFO to the Core Data FIFO (1, 2 & 3), 'op[5]' writes data from Input Level 

FIFO to the Core Data FIFO (4, 5 & 6), 'op[6]' writes data from Input Level FIFO 

to the Core Data FIFO (7, 8 & 9), 'op[7]' writes data from Input Level FIFO to the 

Core Data FIFO (10, 11 & 12) and 'STOUT' is the start signal given to the Core 

Controller for processing the data in the Core Data FIFO. Table  8.1 shows the 

control table for the Input Memory Controller.
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 8.6  Processor Cores Controller Design

This control unit is the most vital part of the Hardware Architecture that is responsible for 

flawless processing of the input pixels. The controller is responsible for controlling the 

Processor  Cores,  Error  Storage  Block  RAM  Memory  System  and  the  Output  logic 

System.  Figure  8.10 shows the high level  schematic  of  the Core Controller  which is 

positive edge sensitive. This Controller is designed using One-Hot Encoding technique. 

'FCOL', 'LCOL', 'LROW' are the input ports of the controller connected to the Input Image 

Size Monitor that determines  the specific pixel  location,  'ON_OFF'  is  the start  signal 

given to the control unit to initialize, 'START' is the signal connected to the Input Memory 

Controller that enables the Processor cores to start processing the input pixels, 'clr' is used 

to  reset  the  controller  at  the  start,  'clk'  is  the clock input  for  synchronous operation, 

'eop[2:0]' are the control signals connected to the Error Storage RAM, 'op[23:0]' are the 

control signals connected to the Processor Cores, 'cop' is used to control the Input Image 

Size Monitor, 'oop' is the signal to control the output system and 'INIT' is the signal to the 

Input  Memory  Controller  stating  that  the  Processor  Core  Controller  is  ready  for 

processing. The Figure  8.11 shows the state transition diagram for the Core Controller 

unit. The operations in various states are described below as follows.
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• 'DON' is the first state in which the controller remains till it receives the 'ON_OFF' 

signal.  Both  Input  Memory  Controller  and  the  Processor  Core  controller  are 

started at the same time (switched -ON).

• 'D0' is the state where the controller activates the read-enable bit of the Data Core 

FIFO. The data is read from the Core FIFO.

• 'DRDY' is the state in which the controller indicates that it is ready to accept data. 

The control unit stays in this state until the 'START' signal is activated by the Input 

Memory Controller.

• 'D1'  is  the state  where the controller  instructs  the Input Pixel  Register and the 

Previous Pixel register to store the data obtained. The data read from the Core 
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FIFO is loaded into the Input Pixel Register and the Previous Pixel Register is 

loaded with a previous data value from the processor core.

• 'D2'  is  the control  state  which notifies  the adder to  add the values  in  the two 

registers (Input Pixel & Previous Pixel).

• In the state 'D3', the controller activates the threshold comparison circuit which 

compares the adder output  with a constant  threshold value.  The signal 'LRLC' 

informs the controller that it is the last pixel in the last row being processed (final 

pixel  of  the  image).  This  state  is  branched into  three  other  states  to  perform 

parallel operations.

• 'DCLR' is the clear state that resets all the datapath elements controlled by this unit.

• 'DWRAP' is the state in which the controller drives the datapath elements to a halt as 

it will be the final pixel of the image being processed. The controller goes back to 

the state 'DON' after 'DWRAP'.

• State 'E4' is reached after 'D3' where the controller enables the read operation of the 

Error storage RAM. The controller enters this loop only when the current pixel 

being processed is neither the first or the last in a given row.

• 'E9'  is  the state  where the controller  performs the write operation on the Error 

Storage RAM. The errors generated by the Error-Diffusion unit are stored at this 

stage with the help of the Core Controller.

• 'E11' is the state that increments the Error Storage Memory Address Counter to 

read or write the errors in the Error Storage Block RAM. The 'CNTR' signal is 

connected to the Memory Address Counter that is responsible for incrementing or 

decrementing the address depending on the row being processed.

• As long as the final pixel of the image is not reached, the following states are 

executed. 'D4' is the state where the Adder-Subtractor unit is activated to subtract 

the ceiled output value from the original adder value. The result obtained is the 

error of the particular channel per pixel.
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• In  'D5',  the  error  value  is  fed  to  the  Error-Limiting-Circuit  to  prevent  the 

uncontrollable build up of error.

• 'D6' is the state where the controller instructs the Error Register to store the final 

error value. The previous error from the Error Storage RAM is also loaded into 

the Error Storage Register simultaneously. The random weights generator is also 

activated to produce the weights.

• The controller reaches the states 'DLRFC7', 'DLRFC8' and 'DLRFC9' only when the pixel 

being processed is in first column and it is the last row of the image.

• The controller  reaches  the states  'DLR7',  'DLR8'  and 'DLR9'  only when the  core is 

processing the last row of the image except the first pixel of the last row.

• The controller reaches the states 'DFC7', 'DFC8' and 'DFC9' only when the first pixel of 

each row is being processed except the last row of the image.

• The controller reaches the states 'DLC7', 'DLC8' and 'DLC9' only when the last pixel of 

each row is being processed except the last row of the image.

• The controller reaches the states 'D7', 'D8' and 'D9' only when it is neither the first 

column, last column of a row and last row of the image being processed.

• The states 'DLRFC7', 'DLR7', 'DFC7', 'DLC7' and 'D7' instructs the multipliers in the Error-

Diffusion units to multiply the stored errors with the random weights.

• The  states  'DLRFC8',  'DLR8',  'DFC8',  'DLC8'  and  'D8'  in  the  controller  performs  the 

addition operation with the previously diffused errors. In these states, the Core 

Data FIFO is read for processing the next pixel in line.

• 'DLRFC9',  'DLR9',  'DFC9',  'DLC9'  and 'D9'  are  states  where the controller  notifies  the 

registers  in  the  Error-Diffusion  unit  to  store  the  partially processed  errors  for 

further processing. The controller directs the Input Pixel Register and the Previous 

Pixel  Register  to  load  the  data  values.  Table  8.2 shows  the  control  table  for 

Processor Core Controller. 
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Table 8.2: Control Table for Processor Core Controller

CN.ST op[0] op[1] op[2] op[3] op[4] op[5] op[6] op[7] op[8] op[9]

DON 0 0 0 0 0 0 0 0 0 0

DCLR 0 1 1 1 1 0 0 0 1 1

DRDY 0 0 0 0 0 0 0 0 0 0

D0 1 0 0 0 0 0 0 0 0 0

D1 1 0 0 0 0 0 0 0 0 0

D2 1 0 0 0 0 0 0 0 0 0

D3 1 0 0 0 0 0 0 0 0 0

D4 1 0 0 0 0 0 0 0 0 0

D5 1 0 0 0 0 0 0 0 0 0

D6 1 0 0 0 0 0 0 0 0 0

D7 1 0 0 0 0 1 0 1 1 1

D8 1 1 1 1 1 0 0 0 0 0

D9 1 0 0 0 0 0 1 0 0 0

DE4 0 0 0 0 0 0 0 0 0 0

DE9 0 0 0 0 0 0 0 0 0 0

DE11 0 0 0 0 0 0 0 0 0 0

DLRFC7 1 0 0 0 0 0 0 0 1 0

DLRFC8 1 1 0 0 0 0 0 0 0 0

DLRFC9 1 0 0 0 0 0 0 0 0 0

DLR7 1 0 0 0 0 1 0 0 1 0

DLR8 1 1 0 0 0 0 0 0 0 0

DLR9 1 0 0 0 0 0 0 0 0 0

DFC7 1 0 0 0 0 0 1 1 1 0

DFC8 1 1 0 1 1 0 0 0 0 0

DFC9 1 0 0 0 0 0 1 0 0 0

DLC7 0 0 0 0 0 0 0 0 0 1

DLC8 0 0 1 1 0 0 0 0 0 0

DLC9 0 0 0 0 0 1 0 0 0 0

DWRAP 0 0 0 0 0 0 0 0 0 0
CN.ST – Control State
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Table 8.2 (Continued)

CN.ST op[10] op[11] op[12] op[13] op[14] op[15] op[16] op[17] op[18] op[19]

DON 0 0 0 0 0 0 0 0 0 0

DCLR 1 1 0 0 0 1 0 0 0 0

DRDY 0 0 0 0 0 0 0 0 0 0

D0 0 0 0 0 0 0 0 0 0 1

D1 0 0 0 0 0 0 0 0 1 0

D2 0 0 0 0 0 1 1 1 0 0

D3 0 0 0 0 0 0 0 1 0 0

D4 0 0 0 1 0 1 0 1 0 0

D5 0 0 0 0 1 0 0 1 0 0

D6 0 0 1 0 1 0 0 0 0 0

D7 1 1 0 0 0 0 0 0 0 0

D8 0 0 0 0 0 0 0 0 0 1

D9 0 0 0 0 0 0 0 0 1 0

DE4 0 0 0 0 0 0 0 0 0 0

DE9 0 0 0 0 0 0 0 0 0 0

DE11 0 0 0 0 0 0 0 0 0 0

DLRFC7 0 0 0 0 0 0 0 0 0 0

DLRFC8 0 0 0 0 0 0 0 0 0 1

DLRFC9 0 0 0 0 0 0 0 0 1 0

DLR7 0 0 0 0 0 0 0 0 0 0

DLR8 0 0 0 0 0 0 0 0 0 1

DLR9 0 0 0 0 0 0 0 0 1 0

DFC7 1 1 0 0 0 0 0 0 0 0

DFC8 0 0 0 0 0 0 0 0 0 1

DFC9 0 0 0 0 0 0 0 0 1 0

DLC7 1 0 0 0 0 0 0 0 0 0

DLC8 0 0 0 0 0 0 0 0 0 1

DLC9 0 0 0 0 0 0 0 0 1 0

DWRAP 0 0 0 0 0 0 0 1 0 0
CN.ST – Control State
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Table 8.2 (Continued)

CN.ST op[20] op[21] op[22] op[23] cop eop[0] eop[1] eop[2] oop INIT

DON 0 0 0 0 0 0 0 0 0 0

DCLR 1 0 0 0 0 0 0 0 0 0

DRDY 0 0 0 0 0 0 0 0 0 1

D0 0 0 0 0 0 0 0 0 0 0

D1 0 0 0 0 0 0 0 0 0 0

D2 0 0 0 0 0 0 0 0 0 0

D3 0 0 0 1 0 0 0 0 0 0

D4 0 0 0 1 0 0 0 0 1 0

D5 0 0 0 1 0 0 0 0 0 0

D6 0 1 0 0 0 0 0 0 0 0

D7 0 1 0 0 1 0 0 0 0 0

D8 0 1 0 0 0 0 0 0 0 0

D9 0 1 0 0 0 0 0 0 0 0

DE4 0 0 0 0 0 1 0 0 0 0

DE9 0 0 0 0 0 0 1 0 0 0

DE11 0 0 0 0 0 0 0 1 0 0

DLRFC7 0 0 0 0 1 0 0 0 0 0

DLRFC8 0 0 0 0 0 0 0 0 0 0

DLRFC9 0 0 0 0 0 0 0 0 0 0

DLR7 0 1 0 0 1 0 0 0 0 0

DLR8 0 1 0 0 0 0 0 0 0 0

DLR9 0 1 0 0 0 0 0 0 0 0

DFC7 0 0 1 0 1 0 0 0 0 0

DFC8 0 0 0 0 0 0 0 0 0 0

DFC9 0 0 0 0 0 0 0 0 0 0

DLC7 0 0 0 0 1 0 0 0 0 0

DLC8 0 0 0 0 0 0 0 0 0 0

DLC9 0 0 0 0 0 0 0 0 0 0

DWRAP 0 0 0 0 0 0 0 0 1 0
CN.ST – Control State
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 8.7  Processor Core Control Registers

The Halftoning architecture consists of 12 Processor Cores and each core is one clock 

cycle behind the succeeding core. The Core Control unit is designed for one core and to 

control  all  the  cores  present  in  the architecture,  there must  be 12 control  units.  This 

results in higher hardware utilization and is not so efficient. In this research, a high speed 

and a very efficient control unit is designed which avoids the need for redundant Core 

Controllers. The main control unit is the Core Controller that is positive edge sensitive 

and as the Processor Cores are also positive edge sensitive,  the control unit  for these 

datapath elements must be negative edge sensitive to eliminate timing problems. Thus, 

the Core Controller unit is connected to 12 control registers in a sequence as shown in 

Figure 8.12. 

This process creates a delay between the processing elements and results in the correct 

execution of the input pixels. The control registers represent a huge shift register shifting 

its value to the next control register every clock cycle. The control register 'C12' is 12 

clock  cycles  behind  the  register  'C1'  and  this  establishes  the  one  clock  cycle  delay 
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between the  Processor  Cores.  There  are  two different  control  register  designs  in  this 

architecture depending on the number of levels per channel used. 

One  of  the  registers  is  shown  in  Figure  8.13 where  'rin[23:0] '  is  the  control  input 

connected to the output of the Core Control Unit, 'rout[23:0]' is the output of the register 

which is connected to the control bits of the Processor Cores, 'en' is the input bit that 

enables or disables the control register according to the Image parameters, 'clr' is the reset 

bit  used  to  clear  the  contents  of  the  register  initially and 'clk'  is  the  clock input  for 

performing synchronous operations. All the Control Registers are negative edge sensitive. 

Figure 8.14 shows the other type of Control Register designed to handle the constraints 

where 'din1[23:0]', 'din2[23:0]', 'din3[23:0]' are the data inputs in which the register can 

accept the incoming data from 3 different Control Registers, 'addr[1:0]' indicates which 

Control Register to accept data from and the rest of the ports are similar to the Control 

Register in Figure  8.13. This design is used for the cores that support the first level in 
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each channel  with the exception  of the first  channel.  The control  bits  for the control 

registers are supplied by a separate unit shown in Figure 8.21.

Figure  8.15 shows how all  the control  registers are connected.  These connections  are 

based on the various image configurations that the Halftoning hardware system supports. 

The maximum number of channels channels supported are 4 and the number of levels are 

3. All the Processor Cores are divided into 4 units with 3 Processor Cores each. The Core 

'C4' uses the 3 data input control register configuration which has inputs from 'C1', 'C2' 

and 'C3', 'C7' is connected to the inputs from 'C4', 'C5' ,'C6' and finally 'C10' is connected 

to the inputs from 'C7', 'C8' and 'C9'. These configurations are explained in the points 

described below where 'I[c,l] ' represents the image with 'c' channels and 'l' levels.

• For I[4,3], the control data is transferred from 'CC' → 'C1' → 'C2' → 'C3' → 

'C4' → 'C5' → 'C6' → 'C7' → 'C8' → 'C9' → 'C10' → 'C11' → 'C12' with one 

clock cycle delay between each Control Register.

• For I[4,2], the control data is transferred from 'CC' → 'C1' → 'C2' → 'C4' → 

'C5' → 'C7' → 'C8' → 'C10' → 'C11'.

• For I[4,1], the control data is transferred from 'CC' → 'C1' → 'C4' → 'C7' → 

'C10'.

• For I[3,3], the control data is transferred from 'CC' → 'C1' → 'C2' → 'C3' → 

'C4' → 'C5' → 'C6' → 'C7' → 'C8' → 'C9'.
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• For I[3,2], the control data is transferred from 'CC' → 'C1' → 'C2' → 'C4' → 

'C5' → 'C7' → 'C8'.

• For I[3,1], the control data is transferred from 'CC' → 'C1' → 'C4' → 'C7'.

• For I[2,3], the control data is transferred from 'CC' → 'C1' → 'C2' → 'C3' → 

'C4' → 'C5' → 'C6'.

• For I[2,2], the control data is transferred from 'CC' → 'C1' → 'C2' → 'C4' → 

'C5'.

• For I[2,1], the control data is transferred from 'CC' → 'C1' → 'C4'.

• For I[1,3], the control data is transferred from 'CC' → 'C1' → 'C2' → 'C3'.

• For I[1,2], the control data is transferred from 'CC' → 'C1' → 'C2'.

• For I[1,1], the control data is transferred from 'CC' → 'C1'.

 8.8  Error Storage Block RAM Control Registers

The Processor Core Controller  controls the operations of Error Storage Block RAMs. 

Each Processor Core has one Error Storage Block RAM to store the errors generated at 

each pixel location. There are 12 Error Storage Block RAMs in this hardware design and 

all  of  them are controlled  by using  Error  Storage Block RAM control  registers.  The 

operating  procedure  is  similar  to  the  Processor  Core  Control  Registers  where  each 

register is 1 clock cycle behind its succeeding register. Figure 8.16 shows the high level 

schematic  of the Error  Storage Block RAM control  registers where 'E1'  though 'E12' 

represent the control registers connected in sequence serially. Each register is 3 bits wide 

and are negative edge triggered to eliminate timing problems.

Figure 8.17 shows the connection diagram of all the Error Storage Block RAM Control 

Registers.  All  the Error Storage Block RAMs are divided according to  the Processor 

Cores.  The  configurations  are  explained  in  the  points  described  below where  'I[c,l] ' 

represents the image with 'c' channels and 'l' levels. 
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• For I[4,3], the control data is transferred from 'CC' → 'E1' → 'E2' → 'E3' → 

'E4' → 'E5' → 'E6' → 'E7' → 'E8' → 'E9' → 'E10' → 'E11' → 'E12' with one 

clock cycle delay between each Control Register.

• For I[4,2], the control data is transferred from 'CC' → 'E1' → 'E2' → 'E4' → 

'E5' → 'E7' → 'E8' → 'E10' → 'E11'.

• For I[4,1], the control data is transferred from 'CC' → 'E1' → 'E4' → 'E7' → 

'E10'.
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• For I[3,3], the control data is transferred from 'CC' → 'E1' → 'E2' → 'E3' → 

'E4' → 'E5' → 'E6' → 'E7' → 'E8' → 'E9'.

• For I[3,2], the control data is transferred from 'CC' → 'E1' → 'E2' → 'E4' → 

'E5' → 'E7' → 'E8'.

• For I[3,1], the control data is transferred from 'CC' → 'E1' → 'E4' → 'E7'.

• For I[2,3], the control data is transferred from 'CC' → 'E1' → 'E2' → 'E3' → 

'E4' → 'E5' → 'E6'.

• For I[2,2], the control data is transferred from 'CC' → 'E1' → 'E2' → 'E4' → 

'E5'.

• For I[2,1], the control data is transferred from 'CC' → 'E1' → 'E4'.

• For I[1,3], the control data is transferred from 'CC' → 'E1' → 'E2' → 'E3'.

• For I[1,2], the control data is transferred from 'CC' → 'E1' → 'E2'.

• For I[1,1], the control data is transferred from 'CC' → 'E1'.

 8.9  Output Control Registers

The Output Control Registers manages the operations of the Output System/Logic. There 

are 12 registers, one for each Output Data FIFO. The Core Controller provides the control 

signals  to  these  registers  and  the  operation  procedure  is  same  as  the  Core  Control 

Registers.  Figure  8.18 shows the ideal  connection of all  the Output  control  Registers 

where the controllers are connected in sequence one after the other. The Output Register 

Control Circuit consists of 3 main components namely 1-Input Output Control Register, 

3-Inputs Control  Register and an Output  Switch Circuit.  The Core Controller  gives a 

single bit control signal to the output registers and depending on the configuration of the 

input image, the control data is transferred from one output register to the other.
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Figure  8.19 shows the  schematic  of  the  three  components  that  constitute  the  Output 

Control system where 'inpt', 'inpt[3:1]', 'inpt[12:1] ' is the control input ports of 1/3 bit 

Output control Registers and Output Switch, 'en' is the port used to enable or disable the 

Control Register according to the Image Configuration, 'addr[1:0]', 'addr[3:0]' indicates 

the control register from which the data is to be obtained (3 bit Output control Register & 

Output Switch) and the rest of the ports in all the 3 Registers are the same as that of the 

Core Control Registers. The output port of each Output Control Register (1/3 bits) is 

connected to the write-enable port of the corresponding  Output FIFO and the output port 

of the Output Switch is connected to the read-enable ports of all the Output FIFOs.

The Figure  8.20 shows the connection diagram of the Output Control Registers along 

with the Output  Switching Circuit.  The Output  Control registers are connected to the 
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Figure 8.18: Output Control Registers



write-enable port of the Output Data FIFOs and the Output Switch is connected to the 

read-enable port of all the Output Data FIFOs. Given below are the key points that govern 

the switching procedure of these Output Control Registers:

• For I[4,3], the output control bit is transferred from 'CC' → 'O1' → 'O2' → 'O3' 

→ 'O4' → 'O5' → 'O6' → 'O7' → 'O8' → 'O9' → 'O10' → 'O11' → 'O12' → 'OS' 

with one clock cycle delay between each Control Register. 'OS' represents the 

Out Switch. 

• For I[4,2], the control data is transferred from 'CC' → 'O1' → 'O2' → 'O4' → 

'O5' → 'O7' → 'O8' → 'O10' → 'O11' → 'OS'.

• For I[4,1], the control data is transferred from 'CC' → 'O1' → 'O4' → 'O7' → 

'O10' → 'OS'.

• For I[3,3], the control data is transferred from 'CC' → 'O1' → 'O2' → 'O3' → 

'O4' → 'O5' → 'O6' → 'O7' → 'O8' → 'O9' → 'OS'.

• For I[3,2], the control data is transferred from 'CC' → 'O1' → 'O2' → 'O4' → 

'O5' → 'O7' → 'O8' → 'OS'.

• For I[3,1], the control data is transferred from 'CC' → 'O1' → 'O4' → 'O7' → 

'OS'.
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• For I[2,3], the control data is transferred from 'CC' → 'O1' → 'O2' → 'O3' → 

'O4' → 'O5' → 'O6' → 'OS'.

• For I[2,2], the control data is transferred from 'CC' → 'O1' → 'O2' → 'O4' → 

'O5' → 'OS'.

• For I[2,1], the control data is transferred from 'CC' → 'O1' → 'O4' → 'OS'.

• For I[1,3], the control data is transferred from 'CC' → 'O1' → 'O2' → 'O3' → 

'OS'.

• For I[1,2], the control data is transferred from 'CC' → 'O1' → 'O2' → 'OS'.

• For I[1,1], the control data is transferred from 'CC' → 'O1' → 'OS'.

 8.10  Control Registers Switching Circuit

The image configuration is enabled in the Control Registers using the 'en' pin shown in 

figures 8.13 and 8.14. Figure 8.21 shows the combinational switching unit used to enable 

the Control  Registers (both Core & Output)  where 'CL[4:0] '  is  the channel and level 

input  taken from the Parameter  Register 2,  'cin_cont[1:0]'  is  the output  port  that  has 

information about the number of channels in the given Input Image, 'en[12:1]' provides 

the  control  bits  to  the  Control  Registers  (both  Core  &  Output)  depending  on  the 

channel/level  configuration,  'opt_addr[3:0]'  is  the  output  bits  that  enable  the  Output 

Control Register according to the Configuration and 'sel_addr[1:0]' is the output port that 

is connected to the 'addr[1:0]'  port of 3 Data Input Control Register shown in Figure 

8.14. Truth tables are used to design the combinational circuit  to produce the outputs 

'cin_cont[1:0]', 'en[12:1]', 'opt_addr[3:0]', 'sel_addr[1:0] ' from the Channel/Level input 

from the Parameter Register 2. Truth table for 'en[12:1]', 'cin_cont[1:0]', 'opt_addr[3:0]' 

and 'sel_addr[1:0] ' are shown in Table 8.3. 'C' represents the number of channels and 'L' 

represents the number of levels in the original image. The circuit is fully combinational 

and is designed using Gate Level implementation for minimum latency.
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Table 8.3: Truth Table for Control Registers Switching Circuit

C L en[12:1] cin_cont[1:0] opt_addr[3:0] sel_addr[1:0]

100
(4)

11
(3)

'111111111111' '11' '1100' '11'

100
(4)

10
(2)

'011011011011' '11' '1011' '10'

100
(4)

01
(1)

'001001001001' '11' '1010' '01'

011
(3)

11
(3)

'000111111111' '10' '1001' '11'

011
(3)

10
(2)

'000011011011' '10' '1000' '10'

011
(3)

01
(1)

'000001001001' '10' '0111' '01'

010
(2)

11
(3)

'000000111111' '01' '0110' '11'

010
(2)

10
(2)

'000000011011' '01' '0101' '10'

010
(2)

01
(1)

'000000001001' '01' '0100' '01'

001
(1)

11
(3)

'000000000111' '00' '0011' '11'

001
(1)

10
(2)

'000000000011' '00' '0010' '10'

001
(1)

01
(1)

'000000000001' '00' '0001' '01'
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 8.11  Auto-Write Data Core FIFO 

This section deals with the Input Data Memory control  where initially the Data Core 

FIFO is filled (write operation) with the help of the Input Memory Controller and as the 

Processor Core starts  processing the input  data,  the Data Core FIFO should be filled 

accordingly as there exists a delay between each Processor Core. Figure 8.22 shows the 

Auto-Write circuit that reads the Input Level FIFO and then writes the data obtained from 

it to the Core Data FIFO. 

This circuit uses the control signals from Output Control Registers where 'RD1', 'RD2', 

'RD3',  'RD4'  are the read-enable bits  managing the read operations of the Input Level 

FIFO, 'WR1' is the write-enable bit for Data Core FIFOs (1, 2, 3), 'WR2' is the write-

enable bit  for Data Core FIFOs (4, 5, 6), 'WR3'  is  the write-enable bit  for Data Core 

FIFOs (7, 8, 9), 'WR4' is the write-enable bit for Data Core FIFOs (10, 11, 12) and 'IMC' 

represents  Input  Memory Controller  unit.  'RD1',  'RD2',  'RD3',  'RD4'  uses  the  3-Input 

Control Register configuration and 'WR1', 'WR2', 'WR3', 'WR4' uses the 1-Input Control 
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Register to implement the Auto-Write and Auto-Read operations. The connections to the 

ports  of these registers are similar  to the Output  Control  Registers. Initially the Input 

Level FIFO is read and the Data Core FIFO is written with the data from the Level FIFO 

using the Input Memory Controller. This process stops when the Core Data FIFOs are 

completely full and from this point, the control unit has no control over the write-enable 

pin of the Data Core FIFOs. The main reason behind this type of implementation is that 

the input data read from the Core FIFOs does not occur at the same time (different for  

each Processor Core, 1 clock cycle delay), thus the cores are divided based on channels as 

shown in Figure 4.13. The image parameters decide the time when the Data Core FIFO 

should be filled and the procedure is described below briefly.

• For I[4,3], the read and write control is transferred from 'CC' → 'O1' → 'O2' → 

'O3' → 'RD1' → 'WR1', 'O4' → 'O5' → 'O6' → 'RD2' → 'WR2', 'O7' → 'O8' → 

'O9' → 'RD3' → 'WR3', 'O10' → 'O11' → 'O12' → 'RD4' → 'WR4'.

• For I[4,2], the read/write control data is transferred from 'CC' → 'O1' → 'O2' 

→ 'RD1' → 'WR1', 'O4' → 'O5' → 'RD2' → 'WR2', 'O7' → 'O8' → 'RD3' → 

'WR3', 'O10' → 'O11' → 'RD4' → 'WR4'.

• For I[4,1], the read/write control data is transferred from 'CC' → 'O1' → 'RD1' 

→ 'WR1', 'O4' → 'RD2' → 'WR2', 'O7' → 'RD3' → 'WR3', 'O10' → 'RD4' → 

'WR4'.

• For I[3,3], the read/write control data is transferred from 'CC' → 'O1' → 'O2' 

→ 'O3' → 'RD1' → 'WR1', 'O4' → 'O5' → 'O6' → 'RD2' → 'WR2', 'O7' → 'O8' 

→ 'O9' → 'RD3' → 'WR3'.

• For I[3,2], the read/write control data is transferred from 'CC' → 'O1' → 'O2' 

→ 'RD1' → 'WR1', 'O4' → 'O5' → 'RD2' → 'WR2', 'O7' → 'O8' → 'RD3' → 

'WR3'.

• For I[3,1], the read/write control data is transferred from 'CC' → 'O1' → 'RD1' 

→ 'WR1', 'O4' → 'RD2' → 'WR2', 'O7' → 'RD3' → 'WR3'.
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• For I[2,3], the read/write control data is transferred from 'CC' → 'O1' → 'O2' 

→ 'O3' → 'RD1' → 'WR1', 'O4' → 'O5' → 'O6' → 'RD2' → 'WR2'.

• For I[2,2], the read/write control data is transferred from 'CC' → 'O1' → 'O2' 

→ 'RD1' → 'WR1', 'O4' → 'O5' → 'RD2' → 'WR2'.

• For I[2,1], the read/write control data is transferred from 'CC' → 'O1' → 'RD1' 

→ 'WR1', 'O4' → 'RD2' → 'WR2'.

• For I[1,3], the read/write control data is transferred from 'CC' → 'O1' → 'O2' 

→ 'O3' → 'RD1' → 'WR1'.

• For I[1,2], the read/write control data is transferred from 'CC' → 'O1' → 'O2' 

→ 'RD1' → 'WR1'.

• For I[1,1], the read/write control data is transferred from 'CC' → 'O1' → 'RD1' 

→ 'WR1'.

The digital components discussed in this chapter constitute to form the Control Unit for 

this  Halftoning Architecture.  The circuits  are described using Verilog and fully tested 

using ModelSim. One-Hot Encoding technique is used to maximize the performance and 

minimize the hardware logic. All the control units  in this architecture run at 50 MHz 

which is also the system frequency.      
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 Chapter 9.  System Architecture Performance, Functional Analysis and 

Results

 9.1  Overview

This chapter provides detailed information on the system architecture performance and 

functional  analysis  and  results  results  obtained  from  HDL  post-implementation 

simulation. The Halftoning hardware architecture discussed in the previous chapters is 

tested with the help of a Verilog test fixture which is a testbench written in Verilog HDL. 

Input image pixels (CMYK) / parameters are passed to the hardware architecture using a 

testbench file and the outputs were written to a text file to convert the output pixels to an 

image  format  usiing  Matlab.  The  following  sections  discuss  the  performance  and 

functional analysis of the architecture and results. 

 9.2  Performance Analysis and Results

The halftoning algorithm described in this research implements all the basic concepts of 

blue-noise multitoning with error diffusion. In this algorithm, the number of colors and 

the number of gray levels are taken from the input image. The Droplet Densities Storage 

ROM of the architecture are filled with the gray level intensities used for dividing the 

original image into sub-images. Consider the case of the algorithm being implemented in 

a traditional sequential CPU and that the input image pixels are processed in a serpentine 

fashion and that the concept of Parallelism is not used in the original software code. It 

starts with the first color, goes through every piece of code until it reaches the end of the 

image. The concept of stacking is only between the different levels of a color but not 

between different colors. Thus it can be said that the color in one pixel need not wait for a 

different color in the same pixel for processing. But as the algorithm is run on a CPU and 

due to the lack of parallelism in the code, the execution takes place in an interdependent 

sequence.  The advantages  of  randomizing  the  error  filter  and the  reason for  using  a 

serpentine scan method were discussed in section 1.1.3 . Thus the average time taken by a 
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sequentially executing CPU executing the algorithm for an image size of 799 X 1195 

pixels is approximately 2.8 seconds without any other process running in the background. 

The time taken by the CPU is calculated by using a 'C' code that tells the amount of time 

consumed to execute a code. The image is run on the CPU for 100 times and an average 

is taken. The time consumed is more than 3 seconds when this code is run along with 

other  background processes  in  CPU. It is  felt  the major  advantage of  this  halftoning 

algorithm is  that  the output  image or the halftoned image obtained has better  quality 

when compared to other halftoning algorithms. The performance and throughput of the 

algorithm can be maximized by parallelizing the code to the maximum extent possible 

which was done prior to development of the parallel implementing system architecture 

presented  within  this  thesis.  The  algorithm,  written  in  ‘C’,  was  decomposed  into 

segments and each segment is thoroughly analyzed for an equivalent hardware circuit 

implementation. The resulting system architecture as implemented into the FPGA chip is 

run at 50 MHz where an output is obtained every 8 clock cycles. The number of pixels of 

an  input  image  that  this  hardware  can  process  per  second  is   calculated  [36]  using 

Equation 9.1. Hence, the hardware can process 6.25 million pixels per second as shown in 

Equation 9.2.

 Throughput Pixels /Second  =
    System Clock Frequency
Number of Clocks per Output                       (9.1)

 Throughput = 50∗106Clocks / Second 
8Clocks /Pixel 

= 6250000 Pixels /Second           (9.2)

The  algorithm  was  run  on  a  single  sequential  CPU  for  100  times  and  the  average 

execution time was calculated. The output results were tested, verified and the related 

performance was calculated using the Equation 9.5. According to the Equation 9.2, when 

an image size of 799 X 1195 pixels is fed as input to the system architecture, the entire 

image will be processed in 0.153 seconds or in just 153 milliseconds as shown in the 

calculation 9.3. 

Execution Time =
799∗1195 Pixels

6250000 Pixels/ Second 
= 0.1527688 Seconds         (9.3)
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The initial data buffering operations take about 20 microseconds which is constant for an 

image of any size and the buffer time when added to the execution time gives the total  

time taken to process the image shown in calculation 9.4.

 Execution Time = 0.152768820∗10−6Seconds = 0.1527888 Seconds (9.4)

Thus,  there  is  a  18X speedup when the  same halftoning algorithm is  converted  into 

parallel algorithm and executed on the parallel system architecture executed on an  FPGA 

as shown obtained via Equations 9.5 and 9.6. 

Speed−up =
Execution time sequential Architecture CPU
              Execution time FPGA                              (9.5)

             Speed−up =
  2.81677 Seconds
0.1527888 Seconds

= 18.4357                                     (9.6)

The algorithm is designed to handle wide format images and currently the hardware can 

support images up to a size of  24 X 44 inches which is equal to 548 million pixels. The 

time taken to process an image of this size on a conventional CPU is about 27 minutes 

which  can  also  create  problems  in  printing  the  image.  The  parallel  architecture 

implemented into a in the FPGA takes only 87.6 seconds (1.46 minutes) to process a 24 X 

44 inch size image which shows a large margin of improvement in the performance of the 

equivalent hardware unit. The total area of the image that can be processed per second is 

given in the Equations 9.7 and 9.8.

Image Area Processed Square Inches /Second  =
Image Size (Square Inches)
Execution time (Seconds) (9.7)

Image Area Processed =
24∗44
87.6

= 12.054 Square Inches /Second              (9.8)

Figure  9.1 shows  the  graphical  representation  of  sequential  CPU  execution  time 

(Seconds) versus the parallel   architecture implementation  (CPU & FPGA) execution 

time for a 799 X 1195 image size.
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 9.3  HDL Functional and Performance Simulation Validation of Parallel Halftoning 

Architecture

The HDL simulation results were obtained from the Mentor Graphics ModelSim CAD 

simulation tool software [20]. The simulation results shown in this section are Post-Place 

and Route HDL simulation results implying all hardware propagation delays are included 

in  the  simulation  results  meaning  the  simulation  results  can  be  used  to  evaluate  the 

functionality and performance of the parallel architecture. There is no way to show results 

from each and every functional unit in the architecture. All main components, functional 

units and the entire parallel architecture are covered and discussed. The architecture uses 

13 clocks in total to minimize clock skew where 'clk' is the clock input to the Input Data 

Memory Architecture,  'clk1'  through 'clk12'  are used for each Processor Core starting 

from 1  through  12.  Figures  9.2 to  9.28 shows  the  simulation  results  of  the  Parallel 

Hardware Halftoning Architecture using a step by step approach. The shown results start 

from buffering the input pixels to the Input Image FIFO, converting the input data to 12 

bit data, reading the corresponding droplet densities from the Droplet Densities ROM, 
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filling up the Level FIFOs with the values from the ROM, filling the Core Data FIFO, 

starting the Processor Cores when the Data FIFOs are full, calculating the error value, 

running the Error-Diffusion unit to disperse errors to the neighboring pixels, storing the 

errors generated in a Block Memory storage unit and finally buffering of the output every 

8 clock cycles. The system is run at 50 MHz which is the timing constraint set to the 

hardware. Each and every component (functional unit) in the Architecture was fully tested 

and validated. A HDL testbench was written using the Verilog Test Fixture software in 

the Xilinx ISE 10.3 CAD tool set and the outputs of the testbench were simulated using 

ModelSim.  The input  pixels  are extracted from the input  image using MATLAB and 

stored in a text file as shown in Figure 9.3. The data in the text file is accessed by the test 

fixture  software  and fed  to  the  internal  memory of  the  FPGA.  The  output  from the 

simulation is directly written to a text file in a binary format as shown in Figure 9.28 and 

they are converted to an image with the help of a MATLAB code. The obtained results  

were thoroughly analyzed and validated using the ModelSim and MATLAB CAD tools. 

Considering  all  obtained  HDL Post-Place  and Route  simulation  results  shown in  9.2 

through  9.39,  it  was concluded that  the previously presented Special  Purpose Parallel 

Architecture correctly executes the new Stacked Error Diffusion Halftoning Algorithm.
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Figure 9.2: Parameter Register 1 & 2 - Simulation Result
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Figure 9.3: Data Buffering Operation in Input Image FIFO - Simulation Result
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Figure 9.4: 8 to 12 Bit Coversion and Droplet Densities Mapping - Simulation Result
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Figure 9.5: Core Data FIFOs [1-12] - Simulation Result
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Figure 9.6: Input Pixel Register [1-12] Data Values - Simulation Result
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Figure 9.7: Previous Pixel Values [1-12] - Simulation Result
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Figure 9.8: Previous Pixel Register [1-12] Data Values  - Simulation Result
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Figure 9.9: Input 1 of Adder-Subtractor Unit [1-12] - Simulation Result
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Figure 9.10: Input 2 of Adder-Subtractor Unit [1-12] - Simulation Result
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Figure 9.11: Output of Adder-Subtractor Unit [1-12] - Simulation Result
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Figure 9.12: Calculated Error Values [1-12] - Simulation Result
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Figure 9.13: Error Values Stored in Error Register  [1-12] - Simulation Result
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Figure 9.14: Error Values From Error Storage Block RAMs [1-12] - Simulation Result
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Figure 9.15: Error Values Stored in Error Storage Registers [1-12] - Simulation Result
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Figure 9.16: Output of Multiplier Unit [1/16] - [1-12] - Simulation Result
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Figure 9.17: Output of Multiplier Unit [5/16] - [1-12] - Simulation Result
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Figure 9.18: Output of Multiplier Unit [3/16] - [1-12] - Simulation Result
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Figure 9.19: Output of Multiplier Unit [7/16] - [1-12] - Simulation Result
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Figure 9.20: Data Output From Register [5/16] - [1-12] - Simulation Result
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Figure 9.21: Data Output From Register [3/16] - [1-12] - Simulation Result

144
144
144



145

Figure 9.22: Data Output From Register [7/16] - [1-12] - Simulation Result
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Figure 9.23: Processor Core 1 Data Operations - Simulation Result
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Figure 9.24: Error Storage Block RAM Address Counter [1-12] - Simulation Result (Serpentine Scan)
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Figure 9.25: Error Storage Block RAM Data Buffering [1-12] - Simulation Result (Serpentine Scan)

148



149

Figure 9.26: Processor Core Control Registers [1-12] - Simulation Result
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Figure 9.27: Error Storage Block Control Registers [1-12] - Simulation Result
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Figure 9.28: Halftoned Output Pixels - Simulation Results
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 9.4  Output Images from Simulation Results

  

      

Figure 9.29: Original Image 

(CMYK)

     

Figure 9.30: Halftoned Image 

(Software 'C' Code)

     

Figure 9.31: Halftoned Image 

(Hardware - FPGA)
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Figure 9.32: Original Image (CMYK) Figure 9.33: Halftoned Image (Software 

'C' Code)

Figure 9.34: Halftoned Image (Hardware 

- FPGA)
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Figure 9.35: Original Image (CMYK) Figure 9.36: Halftoned Image (Software 

'C' Code)

Figure 9.37: Halftoned Image (Hardware 

- FPGA)
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Figure 9.38: Original Image 

(GrayScale)

Figure 9.39: Halftoned Image 

(Hardware - FPGA)



 9.5  Image Quality Comparison
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Figure 9.40: Halftoned Image by Binary Thresholding Technique - Zoomed Pixels Showing 

Artifacts
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Figure 9.41: Halftoned Image by N-Level Quantization Technique - Zoomed Pixels Showing 

Artifacts
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Figure 9.42: Halftoned Image by Stacked Error-Diffusion Technique (Software - 'C' Code - CPU) - 

Zoomed Pixels Showing Visually Pleasant Pixels
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Figure 9.43: Halftoned Image by Stacked Error-Diffusion Technique (Hardware - FPGA) - Zoomed 

Pixels Showing Visually Pleasant Pixels
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Figure 9.44: Halftoned Image by Stacked Error-Diffusion Technique (Software -'C' Code - CPU) - 

Zoomed Pixels Showing Visually Pleasant Pixels
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Figure 9.45: Halftoned Image by Stacked Error-Diffusion Technique (Hardware - FPGA) - Zoomed 

Pixels Showing Visually Pleasant Pixels
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Figure 9.46: Halftoned Image by Stacked Error-Diffusion Technique (Software - 'C' Code - CPU) - 

Zoomed Pixels Showing Visually Pleasant Pixels

162
162
162



163

Figure 9.47: Halftoned Image by Stacked Error-Diffusion Technique (Hardware - FPGA) - Zoomed 

Pixels Showing Visually Pleasant Pixels
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Figure 9.48: Zoomed Pixels showing Artifacts
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Figure 9.49: Zoomed Pixels of Original Image showing Cyan Color Only
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Figure 9.50: Zoomed Pixels of Halftoned Image Using Binary Thresholding Technique (Cyan Color Only) 
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Figure 9.51: Zoomed Pixels of Halftoned Image Using N-Level Quantization Technique (Cyan Color Only)  
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Figure 9.52: Zoomed Pixels of Halftoned Image Using Stacked Error-Diffusion 'C' Code (Cyan Color Only)  
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Figure 9.53: Zoomed Pixels of Halftoned Image Using Stacked Error-Diffusion Hardware-FPGA (Cyan Color Only)  
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The Figures  9.29 through  9.39 shows different  images executed using Stacked Error-

Diffusion  Halftoning  algorithm  in  a  serial  based  CPU  and  in  Parallel  Hardware 

Architecture implemented in FPGA. The aim was to compare the halftoned output of an 

image executed  in  a  serial  based  CPU with  the  halftoned  output  of  the  same image 

obtained from the Hardware Architecture in FPGA. Figure 9.29 shows the original color 

image (CMYK). Figure 9.30 shows the halftoned output of the image using Software 'C' 

code which was run in a serial based  CPU. The pixels in the Figure 9.30 appears very 

smooth and pleasant to the naked eye. The same output was obtained when the original 

image was processed using FPGA as shown in Figure 9.31. The pixels in both the Figures 

9.30 and 9.31 shows that the Halftoned image obtained is visually smooth and pleasant. 

Thus,  the  results  obtained  were  the  same  from  the  FPGA  HDL  simulation  when 

compared to the results obtained from the serial CPU without the loss in quality of the 

halftoned image. The comparison process was done using different images to ensure that 

the Hardware Architecture works for any input image. Figures 9.32 through 9.34 shows a 

different  input  image  and  the  corresponding  halftoned  images.  The  halftoned  output 

(Figure 9.34) when compared with the halftoned output in Figure 9.33 gives a clear idea 

of the accuracy obtained in the image quality. Figures 9.36 and 9.37 shows the halftoned 

outputs of the original image shown in Figure 9.35. Figure 9.38 shows a grayscale image 

that  is  used to  show that  the current  Hardware Architecture  supports  any number  of 

channels and levels. Figure 9.39 shows the halftoned output of the grayscale image that 

has only one channel and 3 levels per channel. 

Figures 9.40 and 9.41 shows the halftoned output of the original image shown in Figure 

9.32 using Binary Thresholding and N-Level  Quantization  halftoning algorithms.  The 

Stacked Error-Diffusion algorithm is similar to Multitoning technique which results in an 

halftoned image of similar quality. A particular area of the in the image was marked and 

zoomed to show the difference in quality of the halftoned images obtained using Stacked 

Error-Diffusion Algorithm.  The zoomed pixels  in  Figures  9.40 and  9.41 shows many 

artifacts  (Staircase  and  Banding)  present  in  Binary  Thresholding  and  N-Level 

Quantization techniques.  Figures  9.42 and  9.43 shows the zoomed pixels  at  the same 
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location using Stacked Error Diffusion technique executed in CPU and FPGA. It can be 

inferred that the pixels have the least number of artifacts (almost none) that results in 

smooth and visually pleasant halftoned image. Figures 9.44 through 9.47 shows pixels in 

the zoomed image and proves that the image obtained was smooth with fewer artifacts. 

Based on the halftoned images from the above figures mentioned, Figure 9.48 shows the 

zoomed  version  of  all  the  algorithms  compared  with  the  Stacked  Error-Diffusion 

Algorithm executed in hardware (Figure  9.34). From Figure  9.48,  it can be concluded 

that artifacts (horizontal and vertical streaks of the same color intensity) are prevalent in 

all  the  other  algorithms  except  the  Stacked  Error-Diffusion  Algorithm  (no  two 

neighboring color intensities are the same, it appears visually smooth). Figure 9.49 shows 

the original continuous tone image (Cyan channel only) and the halftoned outputs of this 

image using different techniques in Figures 9.50, 9.51, 9.52 and 9.53. These figures show 

the comparison of different algorithms with the Stacked Error-Diffusion Algorithm taking 

only  the  Cyan  channel.  It  can  be  inferred  that  Binary  thresholding  and  N-Level 

Quantization technique results in banding artifacts [38] that degrades the image quality. It 

can  be  observed  from the  figures  mentioned  above  that  the  Stacked  Error-Diffusion 

Algorithm has fewer artifacts resulting in better image quality.    
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Chapter 10. Conclusions and Future Work

10.1 Summary

This thesis provided a detailed explanation of  hardware and software techniques used to 

develop, simulate and validate a special purpose parallel architecture processor system 

that efficiently implements  a new Stacked Error Diffusion Halftoning Algorithm. The 

hardware  logic  consumed  by this  architecture  in  the  FPGA is  described  in  detail  in 

Appendix A. The introductory chapter at the beginning provided a thorough explanation 

of the Stacked Error-Diffusion algorithm. Chapter 2 gave a thorough insight into the data 

representation  format  used.  Chapter  3  exclusively  discussed  the  High  Level  System 

Architecture  where  the  entire  Hardware  Halftoning  System  was  shown  (Figure  3.1). 

Chapters 4, 5, 6, 7 and 8 gave a comprehensive view of how the datapath and controller 

architecture was designed. Chapter 9 showed practical results  obtained from the HDL 

simulations and compared and validated these results with the original results obtained 

from  the  algorithm  executed  on  a  serial  commercially  available  CPU.  The  resulting 

parallel halftoning architecture this hardware design can be used to process wide images 

and print them with the help of the Wide Format Printers. 

10.2 Contributions

• The Halftoning Algorithm written  in  'C'  was converted  to  an equivalent  High 

Speed Hardware Parallel  Architecture Design and Implemented into a Virtex-5 

FPGA chip without compromising the Image Quality.

• A  significant  performance  improvement  can  be  achieved  by  increasing  the 

execution speed of the algorithm by implementing if in the parallel architecture 

system implemented into a FPGA chip. Execution speed-up of 18 X is obtained 

by  the  algorithm  implemented  into  a  FPGA  chip  when  compared  to  a 

conventional serial CPU.
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• A very High Performance Parallel Hardware Architecture for implementation of 

new Stacked Error-Diffusion Halftoning Algorithm was designed, developed and 

validated.

• The entire system along with all the digital components required to develop the 

system were HDL simulated, tested and validated.

• The results obtained from the HDL simulation were compared and validated with 

the results from the original algorithm running on a serial general purpose CPU.

10.3 Conclusion and Future Work

This  research  accomplished  the  objectives  addressed  in Chapter  1. Output  images 

obtained from the new hardware architecture was tested, evaluated and validated to be 

correct. The entire system runs at 50 MHz and can even run at a higher speed of 130 

MHz. The base clock frequency of 50 MHz chosen for the new architecture produces the 

output  twice  as  fast  as  a  printer  can  print  the  data.  This  results  in  the avoidance  of 

buffering problems between the printer and the FPGA. The software halftoning algorithm 

implemented  in  a  commercial  general  purpose  processor  was  very  slow so  that  the 

printer had to stop for the pixels to be processed and then buffered into its memory. A 

substantial  increase  in  throughput  (12  square  inches  per  second,  18X  Speed)  was 

achieved using the hardware implementation. The developed hardware unit was designed 

using the Xilinx  ISE 10.3 CAD tool  set  [19]  and simulated with the help of Mentor 

Graphics ModelSim CAD tool HDL simulator [20]. 

The  next  phase  of  this  research  work  is  to  build  a  hardware  prototype  and  test  it 

connecting it to a Wide Format Printer. To extract the input image pixels from the host 

PC, an interface preferably PCI Express (because of higher speed) should be designed. A 

DDR2 SDRAM interface must be designed to continuously buffer the pixels from the 

host PC to the FPGA. SRAM (used to buffer pixels from the host PC) would be a better  

choice when compared to DRAM as it is faster and more efficient. The goal is for the 

entire architecture to run in a portable processing card known as PICO E-17 [37] which 
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has all the components required namely Virtex-5 FPGA, DDR2 SDRAM, PCIe, Ethernet 

and a Flash ROM to store the FPGA bit images. The speed of the architecture can be 

changed according to requirements. This research project met all original objectives. The 

hardware  architecture  was  designed  to  be  flexible  and  scalable.  This  architecture  in 

addition to being implemented into FPGA technology can also be implemented to an 

Application Specific Integrated Circuit (ASIC) to achieve maximum performance.  
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Appendix A

Map Report
Release 10.1.03 Map K.39 (nt)

Xilinx Map Application Log File for Design 'Processor'

Design Information

------------------

Command Line:map -ise "C:/Documents and 
Settings/Rishvanth/Desktop/Error_diffusion_system/ERR_DIFF_SYSTEM.ise" -intstyle ise -p xc5vfx70t-
ff665-1 -w -logic_opt off -ol high -t 1 -cm area -pr off -k 6 -lc off -power off -o Processor_map.ncd 
Processor.ngd Processor.pcf 

Target Device  : xc5vfx70t

Target Package : ff665

Target Speed   : -1

Mapper Version : virtex5 -- $Revision: 1.46.12.2 $

Mapped Date    : Thu Nov 04 18:14:35 2010

Mapping design into LUTs...

Running directed packing...

Running delay-based LUT packing...

INFO:Map:215 - The Interim Design Summary has been generated in the MAP Report (.mrp).

Running timing-driven packing...

Phase 1.1

Phase 1.1 (Checksum:2e20b97) REAL time: 42 secs 

Phase 2.7

Phase 2.7 (Checksum:2e20b97) REAL time: 42 secs 

Phase 3.31

Phase 3.31 (Checksum:2e20b97) REAL time: 42 secs 

Phase 4.33

Phase 4.33 (Checksum:2e20b97) REAL time: 1 mins 5 secs 

Phase 5.32

Phase 5.32 (Checksum:2e20b97) REAL time: 1 mins 7 secs 

Phase 6.2

....

Phase 6.2 (Checksum:2fe3f91) REAL time: 1 mins 11 secs 

........................................

...................................
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.....

Phase 7.30

Phase 7.30 (Checksum:2fe3f91) REAL time: 3 mins 43 secs 

Phase 8.3

...

Phase 8.3 (Checksum:3570f59) REAL time: 3 mins 43 secs 

Phase 9.5

Phase 9.5 (Checksum:3570f59) REAL time: 3 mins 43 secs 

Phase 10.8

........................................

..................

...............................

.........

...............

......................

Phase 10.8 (Checksum:3c4ec1f2) REAL time: 6 mins 24 secs 

Phase 11.29

Phase 11.29 (Checksum:3c4ec1f2) REAL time: 6 mins 24 secs 

Phase 12.5

Phase 12.5 (Checksum:3c4ec1f2) REAL time: 6 mins 24 secs 

Phase 13.18

Phase 13.18 (Checksum:3d244906) REAL time: 6 mins 55 secs 

Phase 14.5

Phase 14.5 (Checksum:3d244906) REAL time: 6 mins 55 secs 

Phase 15.34

Phase 15.34 (Checksum:3d244906) REAL time: 6 mins 55 secs 

REAL time consumed by placer: 6 mins 58 secs 
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CPU  time consumed by placer: 6 mins 54 secs 

Design Summary

--------------

Design Summary:

Number of errors:      0

Number of warnings:    3

Slice Logic Utilization:

  Number of Slice Registers:                3,647 out of  44,800    8%

  Number used as Flip Flops:               3,647

  Number of Slice LUTs:                     2,947 out of  44,800    6%

  Number used as logic:                       2,733 out of  44,800    6%

  Number using O6 output only:          2,373

  Number using O5 output only:          78

  Number using O5 and O6:                 282

  Number used as Memory:                  210 out of  13,120    1%

  Number used as Dual Port RAM:       210

  Number using O6 output only:           30

  Number using O5 output only:           30

  Number using O5 and O6:                  150

  Number used as exclusive route-thru:  4

  Number of route-thrus:                        94 out of  89,600    1%

  Number using O6 output only:            82

  Number using O5 output only:            12

Slice Logic Distribution:

  Number of occupied Slices:                 1,616 out of  11,200   14%

  Number of LUT Flip Flop pairs used:  4,508

  Number with an unused Flip Flop:       861 out of   4,508   19%

  Number with an unused LUT:              1,561 out of   4,508   34%

  Number of fully used LUT-FF pairs:    2,086 out of   4,508   46%

  Number of unique control sets:             249

  Number of slice register sites lost

  to control set restrictions:                      489 out of  44,800    1%

A LUT Flip Flop pair for this architecture represents one LUT paired with one Flip Flop within a slice.  A 
control set is a unique combination of clock, reset, set, and enable signals for a registered element. The  
Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if 
Placement fails.
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IO Utilization:

  Number of bonded IOBs:                      62 out of     360   17%

Specific Feature Utilization:

  Number of BlockRAM/FIFO:               109 out of     148   73%

  Number using BlockRAM only:            109

  Total primitives used:

   Number of 18k BlockRAM used:         217

   Total Memory used (KB):                    3,906 out of   5,328   73%

    Number of BUFG/BUFGCTRLs:       13 out of      32   40%

    Number used as BUFGs:                    13

    Number of DSP48Es:                         108 out of     128   84%

Peak Memory Usage:  599 MB

Total REAL time to MAP completion:  7 mins 33 secs 

Total CPU time to MAP completion:   7 mins 26 secs 

Mapping completed.

See MAP report file "Processor_map.mrp" for details.

Place and Route Report
Release 10.1.03 par K.39 (nt)

Copyright (c) 1995-2008 Xilinx, Inc.  All rights reserved.

OPTI960::  Thu Dec 02 14:59:14 2010

par -w -intstyle ise -ol std -t 1 Processor_map.ncd Processor.ncd Processor.pcf

Constraints file: Processor.pcf.

Loading device for application Rf_Device from file '5vfx70t.nph' in environment C:\Xilinx\10.1\ISE.

"Processor" is an NCD, version 3.2, device xc5vfx70t, package ff665, speed -1

Initializing temperature to 85.000 Celsius. (default - Range: 0.000 to 85.000 Celsius)

Initializing voltage to 0.950 Volts. (default - Range: 0.950 to 1.050 Volts)

Device speed data version:  "PRODUCTION 1.64 2008-12-19".

Device Utilization Summary:

   Number of BUFGs                         13 out of 32     40%

   Number of DSP48Es                      108 out of 128    84%

   Number of External IOBs               62 out of 360    17%

   Number of LOCed IOBs                  0 out of 62      0%

   Number of RAMB18X2s                 109 out of 148    73%

   Number of Slice Registers               3647 out of 44800   8%
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   Number used as Flip Flops              3647

   Number used as Latches                  0

   Number used as LatchThrus            0

   Number of Slice LUTS                    2947 out of 44800   6%

   Number of Slice LUT-Flip Flop pairs    4508 out of 44800  10%

Overall effort level (-ol):   Standard 

Router effort level (-rl):    Standard 

Starting initial Timing Analysis.  REAL time: 28 secs 

Finished initial Timing Analysis.  REAL time: 28 secs 

Starting Router

Phase 1: 43997 unrouted;       REAL time: 31 secs 

Phase 2: 28801 unrouted;       REAL time: 33 secs 

Phase 3: 6167 unrouted;       REAL time: 41 secs 

Phase 4: 6167 unrouted; (59559)      REAL time: 47 secs 

Phase 5: 6169 unrouted; (0)      REAL time: 51 secs 

Phase 6: 6169 unrouted; (0)      REAL time: 51 secs 

Phase 7: 0 unrouted; (0)      REAL time: 1 mins 17 secs 

Updating file: Processor.ncd with current fully routed design.

Phase 8: 0 unrouted; (0)      REAL time: 1 mins 20 secs 

Phase 9: 0 unrouted; (0)      REAL time: 1 mins 20 secs 

Phase 10: 0 unrouted; (0)      REAL time: 1 mins 33 secs 

Total REAL time to Router completion: 1 mins 34 secs 

Total CPU time to Router completion: 1 mins 33 secs 

Partition Implementation Status

-------------------------------

  No Partitions were found in this design.

-------------------------------

Generating "PAR" statistics.

**************************

Generating Clock Report

**************************
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+-----------------+----------------------------+----------+----------+-------------------+--------------------+

|   Clock Net     |         Resource              | Locked  | Fanout  | Net Skew (ns) | Max Delay(ns) |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk2_BUFGP |  BUFGCTRL_X0Y12 |      No     |    164    |       0.277         |        2.018        |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk9_BUFGP | BUFGCTRL_X0Y1    |      No     |    164    |       0.421         |        2.072        |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk3_BUFGP | BUFGCTRL_X0Y10  |       No    |    164    |       0.352         |        2.074        |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk10_BUFGP| BUFGCTRL_X0Y31 |       No    |    164    |       0.382         |        2.022        |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk5_BUFGP  |BUFGCTRL_X0Y21  |       No   |     163    |      0.519          |        2.061      |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk7_BUFGP  | BUFGCTRL_X0Y5   |       No   |     164    |      0.432          |        1.961      |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk11_BUFGP|BUFGCTRL_X0Y20  |       No   |     164    |      0.501          |        2.072      |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk_BUFGP   | BUFGCTRL_X0Y8    |       No   |     156    |      0.335          |        1.917      |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk4_BUFGP | BUFGCTRL_X0Y9    |      No    |     164    |      0.393          |        2.015      |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk12_BUFGP|BUFGCTRL_X0Y13  |      No    |     166    |      0.528          |        2.074      |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk6_BUFGP  | BUFGCTRL_X0Y7   |      No    |     164    |      0.387          |        1.924      |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk1_BUFGP  |BUFGCTRL_X0Y23  |      No    |     165    |      0.454          |        2.099      |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk8_BUFGP  |BUFGCTRL_X0Y25  |      No    |     164    |      0.501          |        2.048      |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

* Net Skew is the difference between the minimum and maximum routing

only delays for the net. Note this is different from Clock Skew which

is reported in TRCE timing report. Clock Skew is the difference between

the minimum and maximum path delays which includes logic delays.

180



Timing Score: 0

Asterisk (*) preceding a constraint indicates it was not met.

   This may be due to a setup or hold violation.

-------------------------------------------------------------------------------------------------------------------------------------

  Constraint                                        |  Check  | Worst Case |  Best Case  | Timing |   Timing   

                                                           |              |      Slack      | Achievable |  Errors  |    Score   

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = IN 4 ns BEFORE COMP "clk"          | SETUP |     0.313ns    |     3.687ns  |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = IN 4 ns BEFORE COMP "clk11"      | SETUP |     0.638ns    |     3.362ns  |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = IN 4 ns BEFORE COMP "clk12"      | SETUP |     0.836ns    |     3.164ns  |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = IN 4 ns BEFORE COMP "clk7"        | SETUP |     1.035ns    |     2.965ns  |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  TS_clk4 = PERIOD TIMEGRP "clk4"                | SETUP |     1.237ns    |    17.526ns  |       0     |           0

  20 ns HIGH 50%                                                  | HOLD  |     0.302ns    |                     |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = IN 4 ns BEFORE COMP "clk3"        | SETUP |     1.328ns    |     2.672ns   |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = IN 4 ns BEFORE COMP "clk2"        | SETUP |     1.550ns    |     2.450ns   |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  TS_clk12 = PERIOD TIMEGRP "clk12"            | SETUP |     1.597ns    |    16.806ns   |       0     |           0

  20 ns HIGH 50%                                                  | HOLD  |     0.238ns    |                      |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = IN 4 ns BEFORE COMP "clk9"        | SETUP |     1.624ns    |     2.376ns    |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = IN 4 ns BEFORE COMP "clk8"        | SETUP |     1.755ns    |     2.245ns    |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = IN 4 ns BEFORE COMP "clk10"      | SETUP |     2.069ns    |     1.931ns    |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = IN 4 ns BEFORE COMP "clk1"        | SETUP |     2.219ns    |     1.781ns    |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  TS_clk10 = PERIOD TIMEGRP "clk10"            | SETUP |     2.406ns    |    15.188ns   |       0     |           0

  20 ns HIGH 50%                                                  | HOLD  |     0.299ns    |                      |       0     |           0
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-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = IN 4 ns BEFORE COMP "clk5"        | SETUP |     2.536ns    |     1.464ns    |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = IN 4 ns BEFORE COMP "clk6"       | SETUP   |     2.538ns   |     1.462ns   |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = IN 4 ns BEFORE COMP "clk4"       | SETUP   |     2.704ns   |     1.296ns   |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  TS_clk = PERIOD TIMEGRP "clk"                   | SETUP   |     2.818ns   |    14.364ns   |       0     |           0

  20 ns HIGH 50%                                                 | HOLD    |     0.452ns   |                      |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  TS_clk11 = PERIOD TIMEGRP "clk11"           | SETUP   |     2.840ns   |    14.320ns   |       0     |           0

  20 ns HIGH 50%                                                 | HOLD    |     0.348ns   |                      |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  TS_clk6 = PERIOD TIMEGRP "clk6"               | SETUP   |     2.884ns   |    14.232ns    |       0     |           0

  20 ns HIGH 50%                                                 | HOLD    |     0.336ns   |                       |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  TS_clk9 = PERIOD TIMEGRP "clk9"               | SETUP   |     2.969ns   |    14.062ns    |       0     |           0

  20 ns HIGH 50%                                                 | HOLD    |     0.311ns   |                       |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  TS_clk3 = PERIOD TIMEGRP "clk3"               | SETUP   |     3.447ns   |    13.106ns    |       0     |           0

  20 ns HIGH 50%                                                 | HOLD    |     0.234ns   |                       |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  TS_clk2 = PERIOD TIMEGRP "clk2"               | SETUP   |     3.564ns   |    12.872ns    |       0     |           0

  20 ns HIGH 50%                                                 | HOLD    |     0.229ns   |                       |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  TS_clk7 = PERIOD TIMEGRP "clk7"               | SETUP   |     4.185ns   |    11.630ns    |       0     |           0

  20 ns HIGH 50%                                                 | HOLD    |     0.311ns   |                       |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  TS_clk8 = PERIOD TIMEGRP "clk8"               | SETUP   |     4.260ns   |    11.480ns    |       0     |           0

  20 ns HIGH 50%                                                 | HOLD    |     0.323ns   |                       |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  TS_clk5 = PERIOD TIMEGRP "clk5"               | SETUP   |     4.398ns   |    11.204ns    |       0     |           0

  20 ns HIGH 50%                                                 | HOLD    |     0.315ns   |                       |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  TS_clk1 = PERIOD TIMEGRP "clk1"               | SETUP   |     5.448ns   |     9.104ns     |       0     |           0
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  20 ns HIGH 50%                                                 | HOLD    |     0.328ns   |                       |       0     |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = OUT 260 ns AFTER COMP "clk12"| MAXDELAY|   241.236ns|    18.764ns|       0   |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = OUT 260 ns AFTER COMP "clk11"    | MAXDELAY|   247.665ns|    12.335ns|     0  |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = OUT 260 ns AFTER COMP "clk8"     | MAXDELAY|   248.267ns|    11.733ns|     0  |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = OUT 260 ns AFTER COMP "clk10"    | MAXDELAY|   248.526ns|    11.474ns|    0 |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = OUT 260 ns AFTER COMP "clk9"     | MAXDELAY|   248.535ns|    11.465ns|     0  |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = OUT 260 ns AFTER COMP "clk7"     | MAXDELAY|   248.942ns|    11.058ns|     0  |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = OUT 260 ns AFTER COMP "clk3"     | MAXDELAY|   249.278ns|    10.722ns|     0  |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = OUT 260 ns AFTER COMP "clk1"     | MAXDELAY|   249.423ns|    10.577ns|     0  |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = OUT 260 ns AFTER COMP "clk4"     | MAXDELAY|   249.663ns|    10.337ns|     0  |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = OUT 260 ns AFTER COMP "clk6"     | MAXDELAY|   249.852ns|    10.148ns|     0  |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = OUT 260 ns AFTER COMP "clk5"     | MAXDELAY|   249.902ns|    10.098ns|     0  |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = OUT 260 ns AFTER COMP "clk2"     | MAXDELAY|   249.957ns|    10.043ns|     0  |           0

-------------------------------------------------------------------------------------------------------------------------------------

  OFFSET = OUT 260 ns AFTER COMP "clk"      | MAXDELAY|   250.549ns|     9.451ns|       0  |           0

-------------------------------------------------------------------------------------------------------------------------------------

All constraints were met.

Generating Pad Report.

All signals are completely routed.

Total REAL time to PAR completion: 1 mins 41 secs 

Total CPU time to PAR completion: 1 mins 37 secs 

Peak Memory Usage:  457 MB

Placer: Placement generated during map.
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Routing: Completed - No errors found.

Timing: Completed - No errors found.

Number of error messages: 0

Number of warning messages: 0

Number of info messages: 0

Writing design to file Processor.ncd

PAR done!
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