UK | d : University of Kentucky
b nowe ge UKnowledge

University of Kentucky Master's Theses Graduate School

2010

FPGA BASED PARALLEL IMPLEMENTATION OF STACKED ERROR
DIFFUSION ALGORITHM

Rishvanth Kora Venugopal
University of Kentucky, rkora3@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Kora Venugopal, Rishvanth, "FPGA BASED PARALLEL IMPLEMENTATION OF STACKED ERROR DIFFUSION
ALGORITHM" (2010). University of Kentucky Master's Theses. 40.
https://uknowledge.uky.edu/gradschool_theses/40

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@Isv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF THESIS

FPGA BASED PARALLEL ARCHITECTURE IMPLEMENTATION OF STACKED
ERROR DIFFUSION ALGORITHM

Digital halftoning is a crucial technique used in digital printers to convert a continuous-
tone image into a pattern of black and white dots. Halftoning is used since printers have a
limited availability of inks and cannot reproduce all the color intensities in a continuous
image. Error Diffusion is an algorithm in halftoning that iteratively quantizes pixels in a
neighborhood dependent fashion. This thesis focuses on the development and design of a
parallel scalable hardware architecture for high performance implementation of a high
quality Stacked Error Diffusion algorithm. The algorithm is described in ‘C’ and requires
a significant processing time when implemented on a conventional CPU. Thus, a new
hardware processor architecture is developed to implement the algorithm and is
implemented to and tested on a Xilinx Virtex 5 FPGA chip. There is an extraordinary
decrease in the run time of the algorithm when run on the newly proposed parallel
architecture implemented to FPGA technology compared to execution on a single CPU.
The new parallel architecture is described using the Verilog Hardware Description
Language. Post-synthesis and post-implementation, performance based Hardware
Description Language (HDL), simulation validation of the new parallel architecture is
achieved via use of the ModelSim CAD simulation tool.

KEYWORDS: Halftoning, Stacked Error Diffusion, Verilog, Parallel Architecture, HDL
Simulation Validation.

RISHVANTH KORA VENUGOPAL

12/02/2010

FPGA BASED PARALLEL ARCHITECTURE IMPLEMENTATION OF STACKED
ERROR DIFFUSION ALGORITHM

By
RISHVANTH KORA VENUGOPAL

Dr. J. Robert Heath

Director of Thesis

Dr. Daniel Lau

Co-Director of Thesis

Dr. Stephen Gedney

Director of Graduate Studies

12/02/2010

Date

RULES FOR THE USE OF THESES

Unpublished theses submitted for the Master’s degree and deposited in the University of
Kentucky Library are as a rule open for inspection, but are to be used only with due
regard to the rights of the authors. Bibliographical references may be noted, but
quotations or summaries of parts may be published only with the permission of the
author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the thesis in whole or in part also requires the
consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature
of each user.

Name Date

THESIS

Rishvanth Kora Venugopal

The Graduate School
University of Kentucky

2010

FPGA BASED PARALLEL IMPLEMENTATION OF STACKED ERROR DIFFUSION
ALGORITHM

THESIS

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in Electrical Engineering in the
College of Engineering at the University of Kentucky

By
Rishvanth Kora Venugopal
Lexington, Kentucky
Director: Dr. J. Robert Heath, Associate Professor of Electrical Engineering
Co-Director: Dr. Daniel Lau, Associate Professor of Electrical Engineering

Lexington, Kentucky

2010 Copyright © Rishvanth Kora Venugopal 2010

MASTERS THESIS RELEASE

I authorize the University of Kentucky
Libraries to reproduce this thesis in

whole or in part for purposes of research.

Signed:

Date:

Dedicated to my Family, Teachers and Friends.

ACKNOWLEDGMENTS

I express my sincere gratitude to my advisors Dr. Robert Heath and Dr. Daniel Lau,
whose encouragement, guidance and support throughout my research work helped me

develop a through understanding of the subject.

I would like to thank Dr. Meikang Qui for serving on my thesis committee. I would also
like to thank my colleagues at Computer Architecture Laboratory who supported me

during technical difficulties.

I sincerely thank my family members and friends who showed me kindness and

generosity throughout my life.

il

Table of Contents

ACKNOWIEAGMENES......ceieiece et e ee e re et e sneenreenneeneenes i
LISt Of TADIES.....ceeieeeeeee bt n e X
RS 0] T U =SS USSP Xi
Chapter LINtrOQUCTION.......cccueeiie ettt r e sraeenreesnneeteesneeans 1
1.1 BACKGIOUNG.......coueiiieiieieiesieste sttt ettt ettt sb b e 1

00 0 0 T o SR 1

1.1.2 Error DIffUSIONccoiiiiiieieeeeee e 2

1.1.3 Image Scanning TECANIQUES..........cecueeeerieeieseesteeseeeeeseeseeeeesreesaesaesreeeeenee e 3

1.1 4 BIUEB-NOISE. ... 4

1.1.5 Blue-NOiIS2 HATIONINGocveiviiiiiiiniieieeeee e 4

1.1.6 MUITIEONING. ...cvieieiiecteee ettt et e e saeete e e ree e e 6

1.1.7 Blue-Noise Multitoning with Stacked Error Diffusion............ccccceevereneniene. 8

1.2 Previous Research on FPGA Implementation of Halftoning Algorithms.............. 10
1.3 Objective Of the ThESIS.......cooiieeee e 12
1.4 THESIS OULIINE. ...ttt bbb 12
Chapter 2.Processor Design MethodolOgy........ccovveiiieiiiiiee e 14
pZ R 1 g 1 0o (0ot i o] o TSP 14

iv

2.2 Gt LEVEI AESIGN.ot 14

ZRCE RS o 1S (= g IS Y= I D= Lo o 14
2.4 Target TECNOIOGY......cccvieiuieeiiecie ettt e s n e nneas 15
241 XIINX VIMEX-5 FPGAcce et ee st ee et nns 15

2.5 Data REPIrESENIALION........eeiveeiecie ettt e eer e e e sreenns 16
2.5.1 Foating Point AMThMELIC.........ccooiiiiiiieecee s 17

2.5.2 Fixed Point AFtAMELIC...........cooveiiiieeesseeee e 19

2.6 TYPES OF PrOCESSOIS.....c.veiieieeesieeiieeeesteesteseesteesteseesteesteseesseessesneesseesbesneesseessesneens 23
2.6.1 General PUIPOSE PrOCESSOIS.......coueiuiriirieriirieeeeie et 23

2.6.2 Special PUrPOSE PrOCESSOIS......ccuuiiiieiieesieeitee st esseesteeseseseesseesseesressseesnee s 23
Chapter 3.High Level System ArchiteCture............cooeeeeieeienesescseseseeee e 24
S L INEFOTUCTION. ...ttt 24
3.2 High Level System Hardware ArchiteCture ooeveeeeieeiceere e 25
3.2.1 Datapath ArChiteCIUIE..........ccveiieeeeeece e 28

3.2.2 Control Unit ArChItECIUIE...........ooeiieieiieieeeeeeee e 31

3.3 High Level Process FIOW DESCIIPLIONcccierereririeiesiesie e 31
3.4 Hardware Algorithm EXECULION...........cccveieiieieeiie et 37
Chapter 4.Input Data Memory ArchiteCture DESIQNccooeiirereneeeeeeee e 40
4.1 INETOTUCTION. ...ttt 40

4.2.1 BIOCK RAM ..ottt sttt bbb 41
4.2.2 DISIDULEO RAM ...ttt 42
4.3 XilINX COrE GENENEION.......ccueeuieieeeite ettt st b e e sne e b b snenae e 43
4.4 INPUL IMAGE FIFO... ..o 43
4.4.1 Input IMage FIFO DESIQN......cuiiiiiieeiierieeiieieee et 44
4.4.2 FIFO Operational ProCEAUIE...........ccceiuieiieieesie et eie e nnes 45
4.5 Parameter Registers and 8/12 Bit CONVENTOL.........cccevueieereriirrieneeie e see s 46
4.6 Droplet Densities Storage ROMccooiieiiiirieiee e 49
A7 1INPUL LEVEL FIFO...... ittt st 51
4.8 COre DABFIFO ..o e 52
4.9 Entire Input Data Memory ArchiteCture..............cocevveveeve e 53
Chapter 5.Processor Core Architecture Development and Design.........cccceveeveneeneeennene 55
5.1 INEFOTUCTION. ...ttt 55
5.2 Xilinx Virtex-5 Xtreme DSP SHCE........ccoiiiiiiiiceeeees e 55
5.3 INPUL DAla REJISIEIS.......eiueeiieiieieiie sttt sn b e 57
5.4 Adder-SUBIaCIOr UNIL.........cceoiiiriiieesiesiee e 58
5.5 Threshold CompariSon CITCUIT...........ceerererieieiese s 60
5.6 Error Limiting CIrCUIT........c.ccueiiieie ettt 63

vi

5.7 EXTON REJISIEIS.....ceeiieeieeeees ettt bt be e 64

5.8 Random WeightS-ValueS GENErator............coveueieereereeeeseesieseeseeesee e sseenee e 65
S.9 ENTOr-FIlter CITCUIL.......eiieeeeeeeteee e 68
5.10 Processor Core ArChIitECIUNEceiirerieieiesiese e 73
Chapter 6.Error Storage Block Memory Architecture DeSign...........cccevveveveevecceceennns 74
6.1 INEFOAUCTION. ...ttt bbbt b e 74
6.2 Error Storage Block RAM ATChItECIUE..........cocveeieiiiecece et 74
6.3 INPUt IMage SIZE MONITON........coiiiiiierie e 78
6.4 Error Storage Memory Address COUNTES..........coviieriererenesese s 79
6.5 Total Functional View of Single Error Storage RAM Memory Module............... 81
Chapter 7.0utput System ArchiteCture DESIN.........ccueiereririererereeeeeese s 82
7. L INEFOTUCTION. ...ttt e b e een e 82

7.2 OULPUL DA FIFO........coiiiiiiiee s 82
7.3 OULPUL LOGIC UNIT....ceeeieeieciesieee ettt ssneenaeennenneas 83
Chapter 8.Controller Architecture Development and Design..........ccceeceeveeicieenieccieesienne 87
8L INIFOTUCTION. ...ttt ettt bbb e 87
8.2 Mealy and Moore State MaChiNES............cccueveeiieieeieeie et 87
8.3 Controller DeSIgN TECHNIQUES........c..eouirierierieeieeeee e 88
8.3.1 ONE-HOt ENCOAING......ccueiitieiiiiisieite ettt ee st sa e s ae e e sneenne e 89

vii

8.3.2 AIMOst One-HOt ENCOAING.........ceiiiiiiieieeie e 90

8.3.30Ne-COld ENCOAING......cceeieeeeriierieeieseesie e e e eee e ee e nee e se e sneennas 90
8.3.4 AImost One-Cold ENCOAING......ccueiiieiieiiiesie e 90
8.3.5BiNary ENCOUING........ceueieriiriirieriesiisieeieee et sre e 90
8.3.6 Gray ENCOUING.......cciuiiiiiieie ettt e ne s 91
8.3.7 Sequence Register & Decoder TEChNIQUE...........coererereeeeieeseseriesieeeees 91
8.3.8 PLA CONLIOL.....c.eiiiiiieeeeiietee et 92
8.3.9 Microprogramed CONLIOL...........ccceiirieiierienee e 93
8.4 System Controller Architecture Strategy..........ccooererererenireeeeeee e 9
8.5 Input Memory Controller DESIN........cccviiiieiieceecee e 95
8.6 Processor Cores Controller DESIQN........coereeieiieriene et 100
8.7 Processor Core Control REQISLEIS........ccieeiieieiiereeiee et see e sae e 107
8.8 Error Storage Block RAM Control REGISIENS.........oceieiiiirinereeeeeeese e 110
8.9 Output CoNtrol REGISLEIS......ccveieeeeeieseere et s ee e sreeae e e sneennens 112
8.10 Control Registers SWitching CirCUIL.........c.cccveviieiie e 115
8.11 Auto-Write Data Core FIFOooiiiiiiiieeriie e 117
Chapter 9. System Architecture Performance, Functional Analysis and Results............ 120
0.1 OVEIVIBWV. ...ttt bbbt s b e e bbbt e bt e e e e et e e e sn e ne e enis 120
9.2 Performance Analysis and RESUILS..........cceieeiieiie e 120

viii

9.3 HDL Functional and Performance Simulation Validation of Parallel Halftoning

ATCIITECIUIE. ... r b b n e 123
9.4 Output Images from Simulation RESUITS............coerireririeeesese e 152
9.5 Image Quality COMPAITSON........ccveiieiieieeieeeeseesteeee e sre e e e ste e sreesreeeesreennas 156

Chapter 10. Conclusions and FUtUre WOrK............cccueiiiiiiieneneseseeseeeeee e 172

FO.1 SUMIMEIY...ceiiiitiieiiiee et ee ettt et e e st e e st e e s sase e s sse e e s nae e e sbe e e sabeeesbneesbeeesnneeens 172
10.2 CONLITDULIONS. ...ttt 172
10.3 Conclusion and FULUrE WOTK..........ccceieierieiinie e 173

F N o 0= 0 G NS 175
REFEIEINCES.......eeeeeeee ettt b bbbt nne e 185
AT T TR 188

X

List of Tables

Table 2.1: Virtex-5 SPeCifiCationS..........ccoveceiieie ettt 16
Table 2.2: AIgorithm REQUITEMENTES........cc.ooiiiireeeeeee e 16
Table 7.1: Input Values & Corresponding OQULPULScccuveeereerieneeseeneseeseeeseeseesseenens 84
Table 8.1: Control Table showing Outputs and SEates............ccoeceeiieeeveeviieesee e 99
Table 8.2: Control Table for Processor Core Controller..........ooovvevenineeieiencneseniene 104
Table 8.3: Truth Table for Control Registers Switching Circuit..........c.ccccccvveieveeieennne 116

List of Figures

Figure 1.1: Floyd-Steinberg Error DiffuSiON..........ccovevereeiicce e 2
T (U g = g (o ol | (= PR 3
FIQUrEe 1.3: LINE RASLENcocieie ettt ettt e et e e s e ae e nneens 3
Figure 1.4: Serpenting RASLEN..........coiiiiiieiie ettt te et e e sre e ae e snaeeraeas 4

Figure 1.5: Halftone of Gray-Scale ramp generated with Floyd-Steinberg Error Diffusion.
AEPLEA TTOM [4]...e et b et n e n e benne e 6

Figure 1.6: Halftone of Gray Scale Ramp generated with Ulichney's Error Diffusion.
AdAPEEA TTOMI [4]...e ettt b bttt n e e ne b e enis 6

Figure 1.7: Decomposition of 3-ink multitone M in a series of Halftones satisfying the

stacking constraint. Adapted from [4]........coo v s 7

Figure 1.8: A Continuoustoneimage Y divided into N components resulting in afina

NAITLONE M [t a e e te e esreeteeneesreeseenee e 9
Figure 1.9: Stacked Error DIffUSION.........cocoiiiiiiieieee e e 10
Figure 2.1: 32 Bit Single Precision Floating-Point Representation............ccccceoererenenens 17
Figure 2.2: 64 Bit Double Precision Floating-Point Representation............cccceeveeecveenen. 17
Figure 2.3: Q 1.14, 16 Bit Fixed-Point REPresantation............ccocoerereeierieeneneseseseneens 20
Figure 2.4: Fixed-Point Multiplication End ResUlt..............cceiieiiiieiiececeeceee e 22
Figure 3.1: High Level System Hardware ArchiteCture............cccooeveienineneeieceeiee 26
Figure 3.2: Hardware Operational Procedure Flow Chart L.........cccccoevevvivnveenenceceene 32

xi

Figure 3.3: Hardware Operational Procedure Flow Chart 2............cccceoeviiiiininincneens 34

Figure 3.4: OFF / IDLE Timing PiXel LOCALONS.........ccccceiierieiesierieseeseeesie e seesee e 35
Figure 3.5: Hardware Operational Procedure Flow Chart 3...........ccoeevevieviecvencecie, 36
Figure 3.6: Processor Cores Pixel EXECULiON SEQUENCE.........cocovererererieeieneesie e 38
Figure 3.7: Current Hardware Execution Methodology..........c.cccovveeieeieiieeneece e 39
Figure 3.8: Alternate Hardware Execution Methodology............cceoeerererenenencneneceenes 39
Figure 4.1: Types of Xilinx Virtex-5 RAM / ROM.........ccoevevievieiisiece e eee e 41
Figure 4.2: Input Image FIFO SChemMatiC........cocoieiiiriiiieeeeee e e 44
Figure 4.3: Software Code Snippet for Image FIFO and 12 Bit Conversion 45
Figure 4.4: Parameter REQISLEN L........cccuviiieiiieiie st esee sttt st s e aeeneens 46
Figure 4.5: Parameter REQISIEN 2........ccoiiiirieriiriirieeeeeeie st sne s 47
Figure 4.6: Register SChemMaLiC.........cccoviieiiee et 48
Figure 4.7: Padding TEChNIQUE..........cooiiiiiiiieeeeeee e 48
Figure 4.8: 8/12 Bit Hardware CONVEITONccueieeieereesiesieseeie e seesieseesseesseeeesseenees 49
Figure 4.9: Droplet Densities Storage ROMS.........ccooiieiiiciie e 50
Figure 4.10: .COE Fil@ FOIMEL........c.ciiieriiieriesiesieeeee e nne s 50
Figure 4.11: Input Level RAM/FIFO........cci ittt 51
Figure 4.12: Core Data FIFO SCReMBELIC...........coeririeieeiesese e 52
Figure 4.13: Entire Input Data Memory ArchiteCture............ccoeveeeeieene e 54

xii

Figure 5.1: Virtex-5 FPGA COMPONENLS........ccoirtirirereeieeeseeseesse e ssessesseseessessessesseseens 55

Figure 5.2: Software Code Snippet For Registersand Adder...........cocoevveeeveeneeieseennnns 57
Figure 5.3: Equivaent Hardware Circuit for Input and Previous Pixel Vaues................ 58
Figure 5.4: Adder-Subtrator Unit SChEMEaLiC.........ccceevveieiiienesereeee e 59
Figure 5.5: Adder-Subtractor CONNECLIONS............ccveiierieeiieseeee e ste e 59
Figure 5.6: Software Code Snippet for Threshold Comparison...........ccccoeeverenereeieeieennns 60
Figure 5.7: Threshold COmMP@rator...........ccceiveieiieseeie e s eee et s es 61
Figure 5.8: Output IMage Value CirCUIL.........c.cueiiriiierieeieee et e 62
Figure 5.9: Threshold CompariSon CirCUIT...........ceverererierieiese s 62
Figure 5.10: Code Snippet for Subtractor and Error Limiting Circuit............cccoeveviveennnnne 63
Figure 5.11: Error Limiting CirCUIT.........cooireririnieieeee et 63
Figure 5.12: Comparators (Greater Than and Less Than)........ccccecveceeveeveccieseecie e 64
Figure 5.13: Error REQISIENS.......ccoiiiiiieiieieeeie ettt 64
Figure 5.14: Code Snippet for Random Weights Generation in 'C'...........cccocevvvceeveeennene 65
Figure 5.15: LFSR - 10 BiNary BitS......cccociiiiiiiiiece st s 67
Figure 5.16: LFSR - 12 BiNary BilS........ccoiviiiieiisereee e e 67
Figure 5.17: Random WeightS GENErator.............coieeiueieeieeie et eee e see e 68
Figure 5.18: Code Snippet for Error Filter CirCUit...........ooovvereeieeieieeesese e 68
Figure 5.19: Error Update TEChNIQUE...........ocieiiieeceesiecie e 69

xiii

Figure 5.20: MUITIPHEr UNIT....co.oiee e e 70

Figure 5.21: Hardware Error-Filter CIrCUIL...........coovevieieere e 71
Figure 5.22: Processor Core Functional ArchiteCture.............ccocuveveeviecieesee e 72
Figure 6.1: Error Storage Block RAM Memory SChematiC............ccoovvereneneneneneneenes 75

Figure 6.2: Code Snippet Showing Random Values Stored in the Error Image Buffer....75

Figure 6.3: Error Storing Procedure SChemMBatiC...........cocveveiereneneneneseeeeeeee e 76
Figure 6.4: Error Storage Block RAM Memory UNit..........cccccoevevniieveese e 77
Figure 6.5: Image Size Counter SChemMatiC...........coovriiiienere e 79
Figure 6.6: Error Storage Block RAM Memory Address COUuNter............cooevvrenenerienne 80
Figure 6.7: Read & Write Port CONNECLIONS...........ccccuieiieeiiecieecie et 80
Figure 6.8: Error Storage Block RAM Memory Functional Architecture............c.coe..... 81
Figure 7.1: Output Data FIFO SChEMELIC.........ccveiiiieieese e 83
Figure 7.2: Software Code Snippet for Output CalCulation.............cceoeeeeieeienenenenenne 83
Figure 7.3: OULPUL LOGIC UNIT.......ccciiieieieie ettt e e 84
Figure 7.4: Entire Output System ArChItECIUIE..........ccueeiveeeieeiee et 86
Figure 8.1: Mealy & MOOIre MOGEIS.........coeiiiiriceceee s 88
Figure 8.2: One-Hot Encoded Control LOGIC.........cccveieieeieeieseece e 89
Figure 8.3: Binary Encoded State MaChine............ccoooviiiiiieiiierereeeeeee e 91
Figure 8.4: Gray Encoded State MaChine.............cccoeeeiieie e 91

Xiv

Figure 8.6: PLA Control TEChNIQUE..........ccouerieiierieeeeseese et ee e ee e 93
Figure 8.7: Micro-Programmed Control TechniqUe............ccccoeeiieeiie i 94
Figure 8.8: Input Memory Controller SChematicC............coeverenerieieiee e 96
Figure 8.9: State Diagram for Input Memory Controller...........ccceoveveieereeceseereeee e 97
Figure 8.10: Processor Core Controller SChematiC..........cccoovverereninecieeeeese e 100
Figure 8.11: Processor Core Controller State Transition Diagram...........ccccecvevvevieenenne. 101
Figure 8.12: Processor Core Control REQISLEIS........coverieriereeie e 107
Figure 8.13: Control Register (1 Data INPUL)..........coeriieierienire e 108
Figure 8.14: Control Register (3 Data lNPULS)........cccueiiueiieeiiieeiie e esiee e 108
Figure 8.15: Control Register CONNECLIONS...........coerereeeeiieriesiesie st 109
Figure 8.16: Error Storage Block RAM Control REQISLErS........cccceeveeiieeeerieeie e 111
Figure 8.17: Error Storage Block RAMs Control Registers Connections...........cc.cce..... 111
Figure 8.18: Output Control REJISLEIS........ccceiveieiierieee e 113
Figure 8.19: Output Control Registers (1/3 bits) & Output Switchcccevvvvviivevieenee. 113
Figure 8.20: Output Control Registers Connection Diagram...........cccceveeeeveneneneneneennes 114
Figure 8.21: Switching Unit for Core & Output Control Registers.........cocevvevevvennenen. 116
Figure 8.22: Auto-Write Circuit for Core Data FIFO..........cccoooiiiiiininiceeee 117

XV

Figure 9.1: Graph Showing Execution Times of a Single CPU and Parallel Halftoning

Architecture Implemented to0 aFPGA ..o 123
Figure 9.2: Parameter Register 1 & 2 - Simulation ReSUIL............ccoceiiieninininecee, 125
Figure 9.3: Data Buffering Operation in Input Image FIFO - Simulation Result............ 126

Figure 9.4: 8 to 12 Bit Coversion and Droplet Densities Mapping - Simulation Result. 127

Figure 9.5: Core Data FIFOs[1-12] - Simulation ReSUt..........ccccceeveeceeneere e 128
Figure 9.6: Input Pixel Register [1-12] Data Values - Simulation Result...................... 129
Figure 9.7: Previous Pixel Values[1-12] - Simulation Result............ccoceveieneneneneenne. 130
Figure 9.8: Previous Pixel Register [1-12] DataVaues - Simulation Result................. 131
Figure 9.9: Input 1 of Adder-Subtractor Unit [1-12] - Simulation Result....................... 132
Figure 9.10: Input 2 of Adder-Subtractor Unit [1-12] - Simulation Result..................... 133
Figure 9.11: Output of Adder-Subtractor Unit [1-12] - Simulation Result..................... 134
Figure 9.12: Calculated Error Values[1-12] - Simulation Result............ccocveererenennene 135
Figure 9.13: Error Vaues Stored in Error Register [1-12] - Simulation Result............. 136

Figure 9.14: Error Vaues From Error Storage Block RAMs [1-12] - Simulation Result

.. 138
Figure 9.16: Output of Multiplier Unit [1/16] - [1-12] - Simulation Result.................... 139
Figure 9.17: Output of Multiplier Unit [5/16] - [1-12] - Smulation Result.................... 140

Xvi

Figure 9.18: Output of Multiplier Unit [3/16] - [1-12] - Simulation Result.................... 141
Figure 9.19: Output of Multiplier Unit [7/16] - [1-12] - Simulation Result.................... 142
Figure 9.20: Data Output From Register [5/16] - [1-12] - Simulation Result................. 143
Figure 9.21: Data Output From Register [3/16] - [1-12] - Simulation Result................. 144
Figure 9.22: Data Output From Register [7/16] - [1-12] - Simulation Resullt................. 145
Figure 9.23: Processor Core 1 Data Operations - Simulation Result..............cccceeeeenneee. 146
Figure 9.24: Error Storage Block RAM Address Counter [1-12] - Simulation Result
(SEIPENLINE SCAN).....eeeieiitirterieeeeie ettt sttt b e b st et e e e b sne e 147
Figure 9.25: Error Storage Block RAM Data Buffering [1-12] - Simulation Result
(S 1S 11 LS o=) IS 148
Figure 9.26: Processor Core Control Registers[1-12] - Simulation Result.................... 149
Figure 9.27: Error Storage Block Control Registers[1-12] - Simulation Result............. 150
Figure 9.28: Halftoned Output Pixels - Simulation ReSUItS...........cccccevevcevieieeieceenee, 151
Figure 9.29: Origina IMage (CMY K) ..ot 152
Figure 9.30: Halftoned Image (Software 'C' Code)..........ceeeereereeiienieneee e ee e 152
Figure 9.31: Halftoned Image (Hardware - FPGA)........ccciiiiiiinenieeee e 152
Figure 9.32: Origina IMage (CMY K) ..o 153
Figure 9.33: Halftoned Image (Software 'C' Code).........ccccveveeiiieiieiiieeiee e 153
Figure 9.34: Halftoned Image (Hardware - FPGA).......cccooiiiiiinineeee e 153
Figure 9.35: Original IMage (CMYK) ..ottt 154

xvil

Figure 9.36: Halftoned Image (Software 'C' Code).........ccooerererererieeieriereseseeseseeens 154

Figure 9.37: Halftoned Image (Hardware - FPGA)........ccoveieeviee e 154
Figure 9.38: Original Image (GraySCal€)..........ccuvueiuieieeiie e see et 155
Figure 9.39: Halftoned Image (Hardware - FPGA).......cccooiiiiinineneeeeeeee e 155

Figure 9.40: Halftoned Image by Binary Thresholding Technique - Zoomed Pixels
S T T oo N 1 = o 156

Figure 9.41: Halftoned Image by N-Level Quantization Technique - Zoomed Pixels
S T T T o N 1 1= o S 157

Figure 9.42: Halftoned Image by Stacked Error-Diffusion Technique (Software - 'C' Code
- CPU) - Zoomed Pixels Showing Visually Pleasant PIXelS..........ccccovviiiiiin e, 158

Figure 9.43: Halftoned Image by Stacked Error-Diffusion Technique (Hardware - FPGA)
- Zoomed Pixels Showing Visualy Pleasant PIXEIS........cocovieiiiieniniieeee e 159

Figure 9.44: Halftoned Image by Stacked Error-Diffusion Technique (Software -'C' Code
- CPU) - Zoomed Pixels Showing Visualy Pleasant PIXElS........ccooveeiiieieeiineieeee 160

Figure 9.45: Halftoned Image by Stacked Error-Diffusion Technique (Hardware - FPGA)
- Zoomed Pixels Showing Visually Pleasant PIXElS.........cccoverinerinienire s 161

Figure 9.46: Halftoned Image by Stacked Error-Diffusion Technique (Software - 'C' Code
- CPU) - Zoomed Pixels Showing Visualy Pleasant PIXElS.......ccoevvevvicevieicceceee, 162

Figure 9.47: Halftoned Image by Stacked Error-Diffusion Technique (Hardware - FPGA)

- Zoomed Pixels Showing Visualy Pleasant PIXEIS........cccevveievieiece e, 163
Figure 9.48: Zoomed Pixels showing ArtifaCtS..........ccoererieienereseeeeeeeee e 164
Figure 9.49: Zoomed Pixels of Original Image showing Cyan Color Only..................... 165

Xviii

Figure 9.50: Zoomed Pixels of Halftoned Image Using Binary Thresholding Technique
(@772 11 @C0] [T 0@ o] 1Y) TSSO 166

Figure 9.51: Zoomed Pixels of Halftoned Image Using N-Level Quantization Technique
(Cyan Color ONIY) ..ottt st b et sne e sne e e 167

Figure 9.52: Zoomed Pixels of Halftoned Image Using Stacked Error-Diffusion 'C' Code
(Cyan ColOr ONY) .ottt e et e e b b e 168

Figure 9.53: Zoomed Pixels of Halftoned Image Using Stacked Error-Diffusion
Hardware-FPGA (Cyan Color ONlY)ocoviiiiiiieeiere e 169

XIX

Chapter 1. Introduction

A digital image consists of millions of colors combined to form a continuous tone image.
In order to print an image using a printer where the device has a limited number of colors
(inks) available to represent the original image, a technique known as halftoning was
invented to convert the original image to a simple binary format. The Error Diffusion
technique and Serpentine scanning methodology used in halftoning makes parallel
processing implementation cumbersome as it creates huge inter-pixel dependencies along
with the generation of errors at each pixel location that has to be stored in the memory for
subsequent processing. This thesis focuses on the development and design of a high speed
parallel hardware architecture that implements a proprietary high quality halftoning 'C'
algorithm in FPGA technology. The purpose of this study is to improve the execution
speed of the algorithm by executing it on an FPGA as opposed to a conventional CPU

that takes enormous processing time to execute.

1.1 Background

There have been many improvements in halftoning algorithms to achieve the best quality
without compromising the performance of the hardware devices running the algorithms.
Performance of the device depends entirely on the type of algorithm and the scanning
method used. This section of the chapter gives a detailed explanation of the algorithm
used and ways to improve the processing performance of the implementing hardware

system.

1.1.1 Halftoning

Halftoning is a technique used to convert a continuous-tone image into a series of black
and white dots. Image reproduction devices such as printers and monitors are constrained
to a few colors and cannot print a digital image that consists of millions of colors. Thus,
halftoning transforms the original image into a binary image containing only 1’s and 0’s
where a 'l' at a particular pixel suggests a black dot to be printed and 0 means that the

corresponding pixel should be empty. In the case of color image reproduction, the

halftoning is performed on each of the color channels, namely Red, Green and Blue
(RGB) or Cyan, Magenta, Yellow and Key (CMYK). Thus, ‘1’ in a color halftoned image
suggests a particular channel to be printed. There are many methods [1] in which
halftoning is performed on images and some of them include AM & FM Halftoning,
Table Halftoning, Threshold Halftoning, Ordered Dithering, Error Diffusion, Iterative
Halftoning, Hybrid AM-FM Halftoning and Multilevel Halftoning. This thesis deals with
the halftoning algorithm that uses the basic Error Diffusion technique [2].

1.1.2 Error Diffusion

A common method for producing halftoned images is the Error Diffusion technique
invented by Floyd and Steinberg [2] where the error from each pixel is dispersed to the
neighboring pixels. The output value of each pixel depends on the input pixel and the
diffused error value from the previous pixel. Figure 1.1 shows the error diffusion method
where ¢ and /4 represent the continuous and the halftoned images respectively. The input
pixel ¢ is added with the Previous Pixel Error value p and compared with a threshold. The
output 4 is obtained from the comparison and the Error e is calculated by subtracting the
current output value 4 from the combined value of p and c. Further, the Error e is
multiplied with the weight filter and diffused across the neighboring pixels. The Error

dispersion and the Error Weight Filter is shown in Figure 1.2.

Threshold

Compare

\

Multiplier

4 Weight
Filter

Figure 1.1: Floyd-Steinberg Error Diffusion

716

g

MR

316 316 116

Figure 1.2: Error Filter

1.1.3 Image Scanning Techniques

The two main techniques used in scanning an image are the Line Raster (left-to-right,
top-to-bottom approach) and the Serpentine Raster (left-to-right, right-to-left)
techniques. A Line Raster is the process of reading an image starting left and ending
right for each row from top till bottom of the image. This type of scan results in an output
halftone consisting of checkerboard patterns, worms and other geometric artifacts.
Serpentine Scan is the process of scanning even rows of an image in left-to-right fashion
and odd rows in right-to-left fashion. This research deals with a serpentine scan
methodology because this technique results in fewer artifacts. The downsides of using
this technique are that it makes parallel processing even more burdensome and the
memory required to store the errors generated at each pixel location is large. Figure 1.3
shows the line raster scan process where Py till P,y are the pixels in the first row and P,

till P,; are the pixels in the second row.

Figure 1.3: Line Raster

When a line raster is implemented on the image, the processing starts from P, and

reaches Py and again from P;; and reaches P.;. This type of scan has a high probability

of parallelism in which the pixel P,; can be processed right after the pixels P, and P, are
processed as the pixel P;; depends on P, and P; alone. Thus the inter-pixel dependency in
this method is kept to a minimum. Figure 1.4 shows the serpentine raster technique where
pixel P;; cannot be processed until all the pixels from P, till P, and P, till P;, are
processed. As a result, the errors obtained at each pixel location must be stored in
memory till the specified pixel is processed. Thereby, this technique requires a large

memory space which in turn depends upon the image size being processed.

Figure 1.4: Serpentine Raster

1.1.4 Blue-Noise

Blue-noise is any noise with the least low frequency element and absolutely no intense
spikes of energy. Ulichney [3] studied the spectral charateristics and noted their
predominantly high frequency content, a characteristic he called Blue-Noise. This makes
it an important noise in halftoning as the retinal cells in the human eye are organized in a
manner similar to the blue-noise which results in great optical interpretation. The
arrangement of the droplets in a halftoned image creates an optical illusion which the
human eye mistakes for a continuous tone image. The introduction of blue-noise in error
diffusion has a great impact on the quality of the halftoned output image. It makes the

resulting image appear visually smooth.

1.1.5 Blue-Noise Halftoning
Many algorithms have been implemented to produce halftone patterns with blue-noise

attributes. Blue-noise halftoning/dithering constitute an array of minority pixels that are

uniformly distributed that results in halftones that lacks regularity and low frequency
elements. In the error diffusion algorithm proposed by Floyd and Steinberg [2], a
quantizer is used that compares the input pixel value with a threshold to determine the
value of the corresponding pixels. The quantizer error is calculated by subtracting the
input pixel with the threshold value and is diffused to the neighboring pixels using an
error filter P = [(7/16), (1/16), (5/16), (3/16)] shown in Figure 1.2. This process is
executed on all the pixels till the complete image has been processed. The output of the
algorithm applied to a gray-scale ramp is shown in Figure 1.5. Figure 1.5 shows that
when the image is scanned using Line Raster method, the final halftone consisted of
checkerboard patterns, worms and other geometric artifacts. Thus to avoid visual artifacts
arising from the conventional approach, a serpentine scanning approach is implemented
and the threshold error diffusion is altered depending on the outputs of the previously
processed pixels. The threshold in error diffusion technique can be altered depending
upon the previous outputs [5] or by the intensity of the present pixel as indicated by
Eschbach and Knox [6]. Eschbach [7] and Ostromoukhov [8] proposed changes in shape
of the filter and weights dependent on the inputs. Li and Allebach [9] proposed a
technique where the thresholds and weights are optimized based on the model for the
human visual system. The current algorithm under discussion uses a design proposed by
Ulichney [10] where a serpentine scan and randomness (R;, R;) in weights of the error
filter are introduced. The weights are calculated as /P, + R, P> - R, P; - R, P, + R],
where R, = (5/16) U[-1,1], R, = (1/16) UJ[-1,1] and U(m,n) represents a uniformly
distributed random variable in the interval /m,n/. This randomness in the error filter
eliminates most of the geometric and checkerboard artifacts in the resultant output image.
The output of the algorithm applied to a gray-scale ramp is shown in Figure 1.6. The
original blue-noise model is implemented in Floyd-Steinberg's technique, whereas the
technique implemented by Ulichney is a realization of the model proposed by Lau and

Ulichney [11].

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.3
0.4

0.5

0.6 0.6

0.7 0.7

0.8 & 0.5 Bl

09 &8 09

Figure 1.5: Halftone of Gray-Scaleramp Figure 1.6: Halftone of Gray Scale Ramp
generated with Floyd-Steinberg Error generated with Ulichney's Error Diffusion.
Diffusion. Adapted from [4] Adapted from [4]

1.1.6 Multitoning

Multitoning is the process of reproducing an image using multiple inks [4]. A multitone
is an embedded array of halftone patterns with different inks printed on top of each other
which is similar to color halftoning where 3 or more primary halftones are superimposed
in order to achieve the illusion of a continuous tone color image. A multitone dither
pattern with N different inks of intensities (g;, g,....... ,gy) where g is the gray level,
arranged starting from lightest (white, nothing printed having intensity g; = 0) to the
darkest (black, printed pixel having intensity gy = /) consists pixels of N+/ different
intensities. The main disadvantage in superimposing halftones is the emergence of a low-
frequency noise called Moiré. This anomaly occurs in dispersed dot patterns as an
irregularity in the arrangement of pixels which is referred to as Stochastic moiré. The

irregularity is caused due to the difference in placement of dots in the superimposed

halftones. Wang and Parker [29] suggested that the combination of two blue-noise
patterns doesn’t inherently produce a good quality pattern, but depends on both the
spectrum of individual patterns and the interrelationship between them. According to
threshold decomposition, a discrete signal which accepts one of k£ possible values can be

expressed as the weighted sum of & - / binary signals. Consider multitoning where M is

the multitone dither pattern and the array of halftones 7| 1 is defined as

L if M[n]=g,

H. =
dnl 0, else

(1.1)

The halftone H; describes the threshold decomposition of the multitone M at level i.
Equation 1.1 states that a printed pixel in H, implies that a printed pixel of intensity g, or
darker occurs in the multitone in the same location and also means that there is a printed
pixel in the same location in H; for all j <i. Thus the decomposition of the multitones into
an array of halftones is done by satisfying the stacking constraint or in other words the
halftones are constrained to a stack. It can be said that the multitone is a linear unification
of stacked blue-noise patterns. The multitone can be described in terms of its threshold

decomposition representation as
N
M[n]=2 dH,n] (12)
i=1

where d, = g,—g, ,| ., are the relative differences between intensities of the

printable inks. Figure 1.7 shows the decomposition where the multitone M is a 3X3

image printed with three inks with intensities (g;, g2, g3) = ((1/3),(2/3),1).

M

M d,H, dyH, dyH,

Figure 1.7: Decomposition of 3-ink multitoneM in a
series of Halftones satisfying the stacking constraint.
Adapted from [4]

1.1.7 Blue-Noise Multitoning with Stacked Error Diffusion

Many halftoning developments have been proposed as extensions to previously
developed halftonig algorithms. Some of them are ; modification of the error diffusion
algorithm by replacing the binary thresholding by a multilevel quantizer [12], correlated
error diffusion applied to channels that represents available inks (Faheem [13]), screening
(Screening is the process of representing lighter degree of color as a tiny dot of ink)
applied in multitoning using Bayer dither arrays [12] and clustered-dot dithering [14].
The concept of gray level distribution is introduced in some of the algorithms where the
amount of each of the printable inks used to generate a certain gray level is defined and
controlled accordingly. This thesis research algorithm uses a concept of gray level
distribution where the amount of printable inks (colors) used to create a certain gray level
is known before hand. For a multitone to be visually pleasant and optimal, the dots of
different inks should be positioned in a correlated pattern. A technique similar to
threshold decomposition is used to divide multitones into halftones and to synthesize

them to make sure that the resultant picture is flawless. Assuming a constant block of

N N
intensity g to be reproduced using the inks & il =1 in segments pil =1, the intensity

of the block is represented as

g=Z gp(g) = Zdiui(g) (1.3)

N
where p(g)=) p,(g) and d, = g—g,, .Consider a block of intensity u,(g)
j=i

halftoned using blue noise, the output dither pattern will have the same characteristics as
H,. The same process is executed for a block with intensity u>(g) with the condition that
the resulting halftone should stack (depend) on the first halftone. Thus the output dither
pattern has the same characteristics required by H,. This depends on the number of levels

in the given image and assuming there are i levels, the same procedure is repeated for the

remaining H (gl fv:3 where the ith halftone stacks on the i — /st halftone and the result
will be a series of N halftones. The linear unification of all the i halftones gives the best

blue-noise multitone. The method to multitone a continuous tone image Y is shown in

8

Figure 1.8. Firstly, the printing method provides the ink intensities g; and the
corresponding concentrations p;(g) are to be determined before hand by the user.
Secondly, the gray levels are mapped to corresponding droplet densities. This can be

accomplished with the help of a look-up-table.

—= Halftoning =

¥y

Y12, ([, >

H >—eesese >

—= Halftoning =

F_? H_'-'

—= Halftoning

}/.l H."

Figure 1.8: A Continuoustoneimage Y divided into N components

resulting in afina halftone M [4]

Thirdly, halftoning is carried out with a suitable algorithm which in this thesis is Blue-
Noise Multitoning with Error Diffusion by taking the stacking constraint into account.

For example, to get H, Y>needs to be halftoned which stacks on the halftone H,. The

same procedure is followed with the remaining Y il f’vza continuous-tone images.
Finally, Equation 1.2 is used to obtain the final multitone. The algorithm in this thesis
research work uses blue-noise multitoning with error diffusion and in order to generate
the multitones by this method, the stacking constraint should be incorporated in the pixel
quantization satisfying Equation 1.4 below.

H[n]= 1, if Y,[n]+ H' =

0, else

where H”[n] is the error diffused to the pixel H,[n] and i =1, ..., N.If i=1 ,

it is assumed that H([n]=1V n . Figure 1.9 shows the implementation of the stacked
error diffusion algorithm where the continuous input image c¢ is added to the
corresponding diffused Error, the result is compared with the Threshold and the Previous
Level Output thus producing a halftone / based on the stacking constraint. The Error e in
the input pixel ¢ and the output / is calculated. Hence the Error produced e is multiplied
with the Perturbed Weight Filter resulting in a diffused Error dispersed to soon-to-be-
processed pixels. The Perturbed Weight Filter eliminates the artifacts that arise in a

normal error diffusion method.

Threshold Previous
(0.5) Level Output (1.0 or 0.0)
- Compare l—» Compare h
c [s e > =
p
2 e

Multiplier | < Perturbed Weight

Filter

Figure 1.9: Stacked Error Diffusion
1.2 Previous Research on FPGA Implementation of Halftoning Algorithms

There have been a number of proposals for implementing halftoning algorithms on Field
Programmable Gate Array (FPGA) technology. Metaxas [15] proposed an optimal Error-
Diffusion parallel algorithm for Digital Halftoning implemented in MasPar data-parallel
computers (SIMD — Single Instruction Multiple Data). Yuefeng Zhang [16] presented a
parallel Error-Diffusion algorithm, known as Line Diffusion implemented using a
massively parallel algorithm. Jae-woo Ahn and Wonyong Sung [17] proposed a
multimedia processor based implementation of an Error-Diffusion Halftoning Algorithm
where multiple pixels are processed simultaneously using subword-parallel arithmetic
and logic unit architecture in Multimedia Processors such as Intel Pentium MMX. None

of these halftoning algorithms have used FPGA technology to implement the Serpentine

10

Scan based Blue-Noise Multitoning with Stacked Error Diffusion algorithm/technique

presented in this thesis.

As an example of a parallel architecture implemented into FPGA technology that uses
line raster scan to implement an Error Diffusion based halftoning algorithm, an
architecture proposed by Christopher Brown and Andreas Savakis [18] will be
considered. They discuss the inter-pixel data dependencies, memory requirements and
hindrances to parallel processing introduced by their error diffusion technique. They
proposed a high performance hardware architecture which exploits multiprocessing to
overcome the disadvantages faced during halftoning using error diffusion. The main idea
in their approach is to concurrently process pixels in separate rows and columns by
eliminating the data dependencies across the processing elements. Their hardware
architecture is a high performance color error diffusion image processor realized using
FPGA technology. Their Error Diffusion algorithm implemented the basic error diffusion
technique invented by Floyd-Steinberg [2] and used a line raster scan technique as shown
in Figure 1.3. The input pixel size is 24 bits and the processor gives a 3-bit output. The
architecture uses four processing elements allocating one processing core per row thus the
first four rows can be processed simultaneously but with some lag between the processing
elements. The processor can support a resolution up to 600 dpi resulting in a maximum
image size of (5100x6600) which equals 33,660,000 pixels. The design goal is to increase
the speed at which the pixels are processed at minimum system cost. An output is
obtained every clock cycle and all the processors run on different rows and columns at
any point of time. The entire system runs at 80 MHz thus each processing element takes
50ns to complete each computation. Since the algorithm is a straight-forward approach to
Floyd-Steinberg's error diffusion, the quality may have been compromised giving rise to

artifacts which in turn degrades the whole output image.

In the research and development presented here, an efficient and economical approach
towards designing a high performance hardware architecture for serpentine scan based

blue-noise multitoning using “‘stacked” error diffusion is proposed, developed and tested

11

such that the output quality of the halftoned image is an improvement over those resulting

from the use of other halftoning algorithms and approaches.

1.3 Objective of the Thesis

The main objectives of this thesis are described as follows.

To thoroughly study the halftoning algorithm described in 'C' and convert the
whole into an equivalent high speed hardware parallel architecture design and
implementation without weakening the quality of the output produced by the
original algorithm (The hardware is designed so that the image output from the
FPGA and the output obtained by running the algorithm in a serial based CPU are

both accurate).

To achieve a significant performance improvement by greatly increasing the
execution speed of the algorithm running on a FPGA when compared to a

conventional serial based CPU in which the speed achieved is lowest.

To develop a high performance hardware architecture which exploits parallelism

to the maximum extent possible to improve overall processing performance.

To design, HDL Simulation test and validate the whole system along with all the

components required to develop the system.

To compare and validate the results obtained from the HDL simulation with the

results from the original algorithm running on a CPU.

To suggest future improvement of the architecture related to enhancing processing

performance and output image quality.

1.4 Thesis Outline

This thesis consists of ten chapters which deal with everything about the new halftoning
algorithm to HDL Simulation testing and validation of the architecture. The current

chapter has provided a detailed explanation of the halftoning algorithm used, previous

12

research work done on FPGA implementation of such algorithms, present research work
dealing with the high quality stacked error diffusion algorithm and the objectives of this

thesis.

Chapter 2 deals with the Processor design methodology where type of design, technology

used, Data arithmetic or representation, and types of processors used are addressed.

Chapter 3 explains the High level system architecture of the entire hardware system and

the working of the system.

Chapter 4 gives a detailed explanation of the Input data memory architecture and how the

input pixels are handled.

Chapter 5 provides a view of the architecture of the Processor Core, its design,

development and operation.

Chapter 6 shows the detailed architecture of the Error Storage System, its uses, design

and operation.

Chapter 7 shows the Output Circuit System Architecture where the output from the

Processor core is processed accordingly.

Chapter 8 deals with the Controller Architecture, its implementation, various types of

controllers and about the control registers used to minimize device utilization.

Chapter 9 provides a performance comparison with conventional a CPU and quality
comparison with other algorithms. It provides a conclusion and future work that can be

done to further enhance and improve the results of the current research project.

13

Chapter 2. Processor Design Methodology

2.1 Introduction

This chapter shows the methods and practices used to design the processor system from
the lowest level. The basic levels used to describe this architecture are gate level and the
register level. Later in this chapter, the chip technology and the Computer-Aided Design
(CAD) tools used to implement the design are discussed. The silicon technology and the
CAD software used also decides the design methodology. Design methodology is the first
step in the process of developing a hardware architecture. A hardware architecture is the
collection of tiny and large components that are interconnected to form a bigger system
with a special purpose. The combination of different levels of hardware design hierarchy

is called a system.

2.2 Gate Level design

Gate level design, called logic level design, is the lowest level used to describe a
functional component. It is concerned with binary values confined to two binary digits 0
and 1. The components designed using gate level designs are logic gates, flip flops which
in turn results from the combination of several gates, combinational circuits and

sequential circuits resulting from the combination of flip flops.

2.3 Register Level Design

Register level or register transfer level is the next level of abstraction to gate level design.
Here, bits are grouped into words and the data is processed as chunks. The main
component in this level of abstraction is called a register which is used to store words
(collection of bits). The components in register level designs include shift registers,
counters, storage registers and accumulators. This level is widely used particularly to save

the amount of time it requires to design a component or a system. An efficient

14

combination of gate level design and register level design is implemented in the hardware

architecture of this thesis to obtain the best performance possible.

2.4 Target Technology

There are several latest technologies in which the given Error Diffusion algorithm can be
implemented. Some of them include Application Specific Integrated Circuit (ASIC),
Programmable Logic Devices (PLAs), Complex Programmable Logic Devices (CPLD),
General purpose CPU and Field Programmable Gate Array (FPGA). FPGA technology
has an edge over all the other technologies mentioned. FPGA's are flexible, reusable,
reprogrammable, cost effective and have the highest possibility of parallel processing.
They contain millions of tiny logic blocks with flip flops and have special routing
resources to implement a component or a functionality very efficiently. The main
difference between a conventional microprocessor and an FPGA is that the
microprocessor executes a program in a sequential manner but on the other hand FPGA
technology can exploit the parallel processing capability to speed up program execution.
FPGA's consist of rectangular array of logic cells. A logic cell basically consists of a
look-up-table, a D flip-flop and a 2-to-1 multiplexer. The basic idea behind this
technology is that a memory element can implement any type of combinational and
sequential function of a size proportional to the memory size. Look-Up-Tables (LUTs)
are referred to as memory elements and can be 3 input, 4 input, or 6 input tables. In this
research, a Xilinx Virtex-5 (SVFX70TFF665) commonly used FPGA chip [21], Xilinx
ISE 10.3 CAD tool [19] and ModelSim 6.4a [20] is used for developing the architecture.

2.4.1 Xilinx Virtex-5 FPGA

Virtex-5 FX FPGA [21] provides the advanced technology for high performance
embedded systems along with serial connectivity. It contains many hard/soft Intellectual
Property cores, Block RAM's, second generation Xtreme DSP slices, Digital Clock
Managers (DCM), Phase-Lock-Loop (PLL) clock generators, Distributed RAM's, 6 input
look-up-tables(LUT) and a hard core PowerPC processor embedded inside the chip

fabric. The main reason for choosing this version of Virtex device is that the amount of

15

resources required by the algorithm is satisfied by the 5 series. Table 2.1 shows the
features provided by the virtex-5 devices. A hardware description language is used to
describe the digital components and program the same on FPGA. In this thesis, Verilog
HDL is used to design and develop the required digital logic circuits. Xilinx ISE is a
CAD software used to synthesize and implement the verilog code on chip. ModelSim is
used in this research to simulate the ISE translated design. The algorithm requires about
3527 Kb of Block RAM space to store the errors and input data generated. Table 2.2

shows the requirements of the current halftoning algorithm.

Table 2.1: Virtex-5 Specifications

Device Logic | Slices | Distributed| DSP Block |PowerPC |User I/O
Array RAM (Kb) | 48E RAM Blocks
Size Slices (Kb)
XCSVFX70T [160 x 38| 11200 820 128 5328 1 640

Table 2.2: Algorithm Requirements

Device Slices DSP 48E Block RAM User /O
Slices (Kb)
XC5VEX70T 1616 108 3906 50

2.5 Data Representation

Data can be represented in a processor in two ways, namely Fixed point representation
and Floating point representation. In this research work, Fixed point arithmetic is used in
order to achieve maximum throughput and increase the execution rate by decreasing the
execution time required. Floating point arithmetic requires a dedicated hardware unit and
consumes a lot of resources. Since FPGA's have a limited number of resources and the
clock speed at which the whole system runs is less when compared to a traditional CPU, a

Fixed Point Arithmetic is implemented.

16

2.5.1 Floating Point Arithmetic

Floating point [22] is an arithmetic in which the decimal point can be present anywhere in
a number. It is also used to represent numbers that would be too wide or too small to fit in
computer hardware. The floating point numbers should be normalized to a specific form
which helps in simplification of data exchange, floating point algorithms and increases
the data storage accuracy. In other words, a floating point number needs to be normalized
to a base notation. Normalization says that leading 0's is unacceptable in floating point
format. Floating-Point representation has three main fields called Sign, Fraction and
Exponent. Exponent and Fraction are the two main terms in Floating-Point calculations.
Exponent is defined as the number of times a digit has to be multiplied by itself and
Fraction (mantissa) in hardware terms is a value that that lies between 0 and 1. Figure
2.1 and Figure 2.2 shows the representation of floating point numbers (32 and 64 Bits) in

hardware.

[31]30]29]28]27[2625 2423 22]21]20]19]18]17]16]15]14]13][12][11]10[9[8]7[6][5[4[3]2]1]0]
|<—~|<— Exponent (8Bits) I Fraction (23 bits) !

Sign
(1 Bit)

Figure 2.1: 32 Bit Single Precision Floating-Point Representation

[63]62[61]60][59]58]57[56]55]54]53[52]51[50[49]48[47[46[45[44][43]42[41[40]39][38[37[36][35[34[33]32]
|

|-—-!'7 Exponent (11 Bits) | Fraction !

Sign
(1 Bit)
[31]30]29[28]27]26]25]24]23]22]21]20]19]18[17]16] 15[14[13[12]11]10][9[8[7]6[5[4]3][2]1]0]

} Fraction !

Figure 2.2: 64 Bit Double Precision Floating-Point Representation

The 32 bit architecture provides 23 bits for the fraction, 8 bits for the exponent and 1 bit
for the sign. The number of bits allocated for fraction and exponent depends on two main
factors namely precision and range. Precision is the number of binary bits used to
represent a particular value in a hardware domain. Range is the difference between the
largest positive number and the largest negative number that can be represented in a given
format. Thus, precision of a fraction increases by increasing the number of bits allocated
for the fractional part and the range of numbers that can be represented increases by

increasing the number of bits in the exponent part. There is a possibility of two

17

exceptions in a Floating-Point format namely Overflow and Underflow. Overflow is an
exception in which a positive exponent is too wide to be accommodated in the exponent
field. Underflow is an exception in which a negative exponent is too wide to be
accommodated in the exponent field. To overcome these exceptions there exists a choice
between double precision (64 bits) and single precision (32 bits). If a system deals with
the values that exceed the expectations of a 32 bit hardware, it needs to switch to a double
precision format of 64 bits. The original Error Diffusion algorithm addressed in this
thesis, written in 'C', uses Floating-Point single precision format and this is one of the
reasons for a very high execution time when run on a single CPU. Thus, a Floating-Point
format would require at-least 32 bits for representing the data in the algorithm which in
turn requires substantial FPGA resources if implemented into FPGA technology and other

complex hardware components.

There are four main arithmetic operations performed in any algorithm, they are Addition,
Subtraction, Multiplication and Division. Floating-Point operations requires the operands
to be normalized before any of the arithmetic takes place. Firstly, the exponents of the
two operands should be compared and the smaller operand should be shifted to match the
larger operand. Secondly, perform the operation (Addition, Subtraction, Multiplication or
Division) on the significands. Thirdly, the result of the operation should again be
normalized by shifting and varying the exponent. Finally, check for overflow or
underflow and set the appropriate hardware bit if detected. Floating-Point multiplication
requires more hardware when compared to other operations as the end result will the
twice the length of the operand. The length of the result required depends upon the
algorithm, so if an algorithm requires more accuracy, it will use the whole end result but,
if the algorithm is not so constrained to accuracy, it uses a part of the results by using
techniques called Truncation and Rounding. Truncation is the process of truncating or
cutting off a required number of digits after the decimal point. Rounding is the process of
approximating a real value to an equivalent simpler value compromising the accuracy to
the smallest extent possible. Thus, the choice between rounding and truncation depends

solely on the application.

18

2.5.2 Fixed Point Arithmetic

Fixed-Point [23], [24], [25] is a computer arithmetic in which all the data is represented
in integer format. In other words, the decimal point in a real data doesn't vary unlike
Floating-Point format. Fixed-Point format supports only a narrow range of values and the
hardware required to implement the format is simple. The main concepts used in
choosing a Fixed-Point format are Q-Format, Precision, Resolution, Range, Dynamic
Range and Accuracy. Both integers and fractions can be represented in fixed point
format. Fixed-Point format is used to represent both signed and unsigned data. In this
thesis, Fractional Fixed-Point format is chosen to match the original Floating-Point data
in the algorithm. Fractional Fixed-Point representation is chosen because it is most
suitable for Digital Signal Processing algorithms as the one used in this research work.
The range of numbers that the fractional format represents is between -1 and 1. The same
is the case in the research algorithm used in this thesis where values never go beyond -1
and 1. Q-Format is a scheme in Fractional Fixed-Point format used to represent fractions
bounded by a fixed binary word length where Q indicates the number of bits used to
represent the fraction. Precision is defined as the number of bits used to represent a data
value in a binary or digital world. Precision is equal to the total word length. Resolution
is the least non-zero value or magnitude which can be represented using a particular Q-
Format. Range is the difference between the maximum positive number and the least
negative number represented which ultimately depends on the Q-Format. Dynamic
Range is the ratio of maximum absolute value and the minimum absolute value that can
be represented using a specific format. Accuracy is the magnitude of the difference
between a real data value and it's equivalent representation. Due to the extra cost of
implementing a dedicated hardware unit for Floating-Point calculations, the Error
Diffusion algorithm in this thesis is implemented using a Fixed-Point format that results
in significant improvement in throughput, execution speed and reduced hardware
complexity. Thus, to improve the execution speed to achieve the best performance, some
considerations have to be made before using the Fixed-Point format. Let Q/I]./F] be the
Q-Format representation of a data value in Fixed-Point where Q/I] is the number of bits

used to represent the integer part of a value and Q/F/ is the number of bits used to

19

represent the fractional part of the value. The sum of QfI] and Q/F] yields the total
number of bits also called word length and a sign bit at the most significant location used
to represent the whole data value. The hardware architecture in this thesis uses Q/1][14]
format as shown in the Figure 2.3. Thus, the total number of bits equals 16 bits out of
which the most significant bit is reserved for the sign bit and the bits after the sign bit

location are reserved for representing the equivalent Fixed-Point value.

o= 4[]l g7 [d]s]a]a]z]1]un]
& pla wla Fraction (14 Bits) »
1 og

Sien Imteger
(1 Bit) (1 Bit)
efy

Figure 2.3: Q 1.14, 16 Bit Fixed-Point Representation
Figure 2.3 shows that the word length used is 16 bits or 2 bytes and the dynamic range of
the signed integers that can be represented using 16 bits is -32,768 to 32,767. The
resolution » of the Fixed-Point format is determined by the number of bits used in the
fractional part and is shown in Equation 2.1. The maximum positive value (P,..) and
minimum negative value (N,.,) that can be represented using this format is shown in

equations 2.2 and 2.3.

rzz_lF - % = 0.00006103515625 @.1)
p = 201 32767 | 0003006484375 2.2)
me T W T Ye3g4 '
261 32768
N = ot = —20 .
ST 16384 (@3)

Equation 2.4 shows the formula to convert a Floating-Point number (Nj..) to an
equivalent Fixed-Point number (N;.). The same Equation is used to convert all the
Floating-Point data values to Fixed-Point values in this thesis work. The values obtained
after the decimal point are truncated as there is no significant deviation observed from the

real value. For example if Ny, 1s 0.73948, Nj. becomes 12115.6402 and truncating the

20

result gives the Fixed-Point value 12115 as shown in Equation 2.5. Equation 2.6 shows

the Fixed-Point value again converted to Floating-Point to show the accuracy of the

conversion.
Nﬁxd =]\'/v‘float*z14 (24)
Nﬁxd = 0.73948%2' = 12115.6402 = 12115 (2.5)
12115
Nﬂoa, = T = 0.73944091796875 (2.6)

The difference exists in the fifth decimal point which is about 0.00004 units. Thus, the
algorithm in study is not constrained to the accuracy and a meager deviation is allowable.
Arithmetic in Fixed-Point is the same as integer arithmetic with minor modifications to
multiplication and division operations. As the data being processed lies strictly between
-1 and 1, the exception of overflow doesn't occur in this algorithm. The addition and
subtraction operations are the same as integer arithmetic. Considering the multiplication
operation, if two fractions are multiplied then the resulting fraction will always result in a
fraction that will be less than or equal to the two fractions multiplied. But in case of
Fixed-Point multiplication, the Floating-Point numbers are first converted to Fixed-Point
by multiplying the real value with 2" where F is the number of bits used to represent the
fractional part. As a result, each the fraction number is multiplied by 2" that gives an
incorrect result in Fixed-Point format as shown in Equation 2.7. This can be corrected by
dividing the final result by 2" which will scale it back to Fixed-Point format as shown in
the Equation 2.8. Let {Nl;., N2gajbe the fraction numbers in Fixed-Point format,
{N1joar, N2soa}be the fraction numbers in Floating-Point format and {Nam, Npoam} be the
result after multiplication in Fixed-Point and Floating-Point formats respectively.
Equation 2.4 is applied to Equation 2.9 for Floating-Point to Fixed-Point conversion and
the end result is shown in Equation 2.10. Hence the results in equations 2.8 and 2.10 are

equal generating the correct output.

Ny = NI % N2

fixdm

ma = 8192x8192 = 67108864 (2.7)

21

NI, ,* N2, 8192%8192

N, = = = 4096 :
foxm oM 16384 28
N poum = NI g% N2, = 05%05 = 0.25 (2.9)
N jan = 0.25%2' = 4096 (2.10)

In the case of Fixed-Point division, the final result should be multiplied by 2F. Equations
2.11, 2.12, 2.13 and 2.14 show the division algorithm in Fixed-Point format. {Nju ,

Nuoaa} be the result obtained after division in Fixed-Point and Floating-Point formats.

NI, 8192

N, = — = =1 2.11
fixdd N2ﬁxd 8 1 9 2 ()
NI, 8192
N, = —0" = 272416384 = 16384 .
fixdd N2 o * 8192 (2.12)
B 05
N_ﬂoatd - N]_ﬂoatd* Nz_ﬂoatd - 0.5 =1 (213)
N = 1%2" = 16384 (2.14)

Multiplication produces a result which will be lesser than or equal to twice the width of
the operands. The end result can be truncated or rounded depending upon the application
requirements. The division by 2F in Fixed-Point multiplication is achieved by arithmetic
left shift and the multiplication by 2F in Fixed-Point division is achieved by arithmetic
right shift. In this research algorithm, Fixed-Point division is not used but all the other
arithmetic operations such as addition, subtraction and multiplication are used.
Multiplication in this thesis truncates the digits that are not required and uses only the 16
bit output of the multiplied result as shown in Figure 2.4. Bits 29 down to 14 are the only
useful bits in this hardware multiplication architecture. There is only a minor loss of

accuracy which is not significant.

[31]30]29]28]27[26]25]24[23[22]21]20]19]18]17]16]15]14[13[12]11]10]9[8[7[6]5]4[3]2]1]0]
I } Result (16 Bits) i Truncated i

Truncated

Figure 2.4: Fixed-Point Multiplication End Result

22

2.6 Types of Processors

Processors are designed based on the application to be executed. There are mainly two
types of processing systems, namely General Purpose Processors and Special Purpose

Processors. The details about them are discussed briefly in the following sections below.

2.6.1 General Purpose Processors

General purpose processors are normally Programmable Processing systems that are used
in conventional computer systems to perform various tasks. Almost all the tasks required
by an end user can be run on a general purpose system like Floating-Point operations,
Integer arithmetic, external memory interface, general purpose I/O, signal processing and
control of other devices, etc. These processors are fast, but sometimes not very suitable to
run a specific application where parallelism and execution time are important. A
Programmable Processors Instruction Set Architecture (ISA) is a command set
architecture which tells the processor what to do with the data available at any instant of
time. For example, RISC is a Reduced Instruction Set Computer of length 32 bits and
CISC is a Complex Instruction Set Computer ISA which has more complex instructions

when compared to RISC.

2.6.2 Special Purpose Processors

Special Purpose Processors, as the name suggests, are developed and used for specific
applications. This research work deals with a specific halftoning algorithm where the
same set of operations are repeated periodically. Thus, there is no need of an Instruction
Set Architecture where the processor needs to know what operation to perform. The
operations are hardwired in this type of application and there are dedicated control units
to execute the algorithm. The reasons behind choosing a Special Purpose Processor is that
the cost of making the chip is sometimes less for a specific purpose, the number of silicon
gates required depends upon the size of the algorithm and the execution speed can be
drastically increased due to exploitation of parallel processing in the algorithm. In this
thesis, an algorithm specific hardware parallel processor architecture is designed and
described using the Verilog Hardware Description Language. The architecture is

simulated, tested and validated using the ModelSim Simulation CAD tool.

23

Chapter 3. High Level System Architecture

3.1 Introduction

This chapter deals with describing the entire system architecture which implements the
halftoning algorithm and describes a process flow diagram showing the functional
operation of the architecture as it implements the halftoning algorithm. As discussed
earlier in Chapter 1., this thesis deals with a special purpose high performance processing
system which can efficiently execute a proprietary halftoning algorithm at the maximum
processing speed possible. Unlike general purpose processing systems, this architecture
does not need an Instruction Set Architecture but has a predefined set of instructions that
will run for every pixel that is processed. The concept of pipelining cannot be applied
here as inter pixel dependencies tend to be the highest. At any given point of time, a pixel
cannot be processed unless the preceding pixel is fully processed. Parallelism is
introduced in this system where different pixels can be processed in parallel. Thus, the 'C'
version of the algorithm is broken down into segments and the areas where the code can
be parallelized are determined. Equivalent hardware units are designed, tested and fully
verified before combining the units to form a larger system. Each of the combined system
functional units obtained by connecting the individual functional units of a system is also
rigorously tested for discrepancies and fixed if errors are found. The high level system
can also be referred to as a CPU (Central Processing Unit) which consists of processing
elements, memory elements and output logic. The system implements a sequence of
microoperations resulting in an output desired by the application. A system consists of
the data handling unit or the processing unit, control unit or controller and interfacing
units to communicate with other devices outside the chip. The processing part of the
system is also called the datapath of the CPU where input data is processed accordingly.
The datapath of a CPU consists of many smaller digital units namely multiplexers,
registers, decoders which in turn are built from a lower level components called gates.
Gates are derived from the basic component fransistor. The control unit is one of the

major components in a digital system which is responsible for the correct behavior of a

24

circuit. So, a control unit controls the datapath and other components which constitutes
the processing system. The High Level System Architecture of a system is defined as the
abstraction of lower level components by just describing the function or behavior of the
system. The following sections give a very detailed explanation on the behavior of the

hardware functional architecture.

3.2 High Level System Hardware Architecture

This section gives a detailed description of the hardware architecture of the unit that
implements the Stacked Error Diffusion Halftoning algorithm. It shows the organization
and operation of the whole system. Figure 3.1 shows the high level system architecture
design that includes five main modules, namely a Host PC, DDR2 RAM, Flash ROM,
FPGA and a Printer. The first module is the host PC which serves as the source from
which the input image pixels are buffered. Here, the image to be halftoned is read in an
interleaved format. Interleaved format of an image is the bundle of all the channels in one
pixel followed by the next pixel with all the channels packed. For example, if Cyan,
Magenta, Yellow and Key are the four channels in a pixel then, CMYK of the first pixel
will be packed together, CMYK of the second pixel and so on. The PC reads the input
image as [CMYK], ,[CMYK], ,[CMYK]s [CMYK], where 'n’ is the number of
pixels in the image. The data width of input pixels supported by the architecture is 8 or 12
bits per channel per color. The input data from the pixel is extracted and is buffered to the
DDR2 RAM (Double Data Rate Random Access Memory) for subsequent processing
with the help of any high speed interface preferably PCle (Peripheral Component
Interconnect Express). PCle is chosen to match the speed of the FPGA and the DDR2
memory as there should not be any delay in buffering which affects the performance
adversely. The second module comprises of a DDR2 RAM which will be filled with at
least two consecutive rows to prevent buffering problems. The third module is the Flash
ROM (Read Only Memory) used to store the bit stream file of the architecture generated
which is used to program the FPGA. As the FPGA is a volatile memory semiconductor

device, it needs an external flash memory to store the hardware architecture and initialize

25

itself at system power-up. The fourth and imperative module is the FPGA which the

hardware architecture described in Verilog HDL is programmed into.

ORIGINAL INPUT

IMAGE FROM
PC/ILAPTOP
DDR2 SDRAM RAM FLASH ROM
PARAMETER
INPUT IMAGE - REGISTERS 1 & 2
FIFO I *
* PROCESSOR CORE CONTROLLER
8TO12BIT INPUT MEMORY
CONVERTOR [CONTROLLER
DROPLET CORE ROCESSOR CORE 12| | prroR STORAGE
DENSITIES | DATA ROCESSOR CORE 11 BLOCK RAM 12 |8
STORAGE FIFO 12 ROCESSOR CORE 10|
ROM INPUT LEVEL .' L
FIFO 3 \d
™
. ™
N °
.‘ PROCESSOR CORE 5
CORE |PROCESSOR CORE 4
'NP:LCﬁVE'- L DATA [PrRocESSOR CORE 3| U
FIFO 1 PROCESSOR CORE 2 ERROR STORAGE
PROCESSOR CORE 1 ELOCK RAM 1
> REGISTERS \J
OUTPUT DATA
ADDER /
susTRACTOR | [ol L
OUTPUT
COMPARATORS LOGIG UNIT 4,
ERROR HANDLING & ;
CIRCUITS e
ERROR FILTER outPur |
UNIT ~I OUTPUT DATA LOGIC UNIT 1
FIFO 1
DSP =
MULTIPLIER L
| ADDER |
VIRTEX-5 FPGA
T T T -
OUTPUT
IMAGE TO
PRINTHEAD | | |

((

Figure 3.1: High Level System Hardware Architecture

26

The halftoning algorithm is examined and areas where the code can be parallelized are
determined. The algorithm uses the Stacked Error Diffusion technique which increases
the inter-pixel dependencies and as the Stacked Diffusion implies, each level in a pixel
depends upon the previous level of the same pixel. Thus, the pixel cannot be fully
processed without processing all the levels and there is no dependency among the colors
(inks or channels). The colors in the pixels can be processed in parallel and the only
constraint that exists is between the levels in each color of a given pixel. Another major
hurdle to parallel implementation is that the pixels are scanned in a serpentine fashion,
this amplifies the memory demand as the errors being diffused at each pixel needs to be
stored until the pixel to which the errors are dispersed is processed. Thus, the amount of
memory required is directly proportional to the width of the input image. Taking all the
dependencies into account, the following factors decide the implementation of the

algorithm in hand on a FPGA.

Each level in every channel is treated as an individual processing unit. So the
number of channels and the levels in each color decides the number of processing

cores to be used for executing the algorithm.

The errors dispersed in each pixel location should be stored in a data memory
which can be accessed later. Resolution is defined as the number of dots that can
be printed per inch of an image. The current algorithm supports a resolution of
720 dpi (dots per inch), maximum width of 24 inches and the error data is 16 bits
wide. Thus the memory required to store these errors will be 24 * 720 * 16 which

is approximately 276480 bits (33.75 KB) per processing core.

As discussed earlier in section 1.1.7 , droplet densities are to be stored in look-up
tables. This requires data memory that depends on the number of levels used in

the original image. For example, if 3 levels are used and the original image data

input is 12 bits, the amount of storage locations required is 3 * 212 = 12288. The
total amount of memory required if each data value to be stored is 16 bits will be

12288 * 16 = 196608 bits (24 KB).

27

The current hardware architecture is designed to handle up to 4 channels and 3
levels per channel. The different combinations possible in this design are
CORE[¢] = {[4,3].[4,2],[4,1],[3,3].[3,2],[3,11,[2,3].[2,2],[2,1],[1,3].[1,2],[1,1]}
where ¢, / is the number of channels and number of levels per channel
respectively. The design is flexible and can be extended depending on the printer

configuration and the input image depth (Number of bits per pixel).

The architecture implements fixed point arithmetic with Q1.14 format where the
calculations are done the same way as in integer arithmetic. The main reason for
using Fixed-Point arithmetic instead of Floating-Point is that the floating point
calculations requires complex calculations, takes a lot of resources and consumes
more time to process a pixel when compared to Fixed-Point arithmetic. Also,
there is no degradation observed in the output image when this format is used

when compared to a Floating-Point format.

The number of hardware units or logic resources used by the algorithm is
described as follows. The architecture requires 48 high speed multipliers (Xtreme
DSP (5.2)), 60 high speed adders (Xtreme DSP (5.2)), 405 KB of data memory
for storing the errors generated, 24 KB of storage memory for the loop-up tables

and 2 KB of memory for input buffering.

The main functional units in the architecture are the datapath, control unit and the output

logic unit. The datapath unit consists of Input Image FIFO, 8 to 12 bit Convertor, Droplet

Densities Storage ROM, Input Level FIFOs, Core Data FIFOs, Error Storage Block

RAMs, Processor Cores (1-12), Output Data FIFOs, Output Logic Units and the control

unit has Input Memory Controller and Processor Core Controller.

3.2.1 Datapath Architecture

The datapath of this system has a 16 bit architecture and every register and other storage

devices inside the FPGA are 16 bits wide except the Input image FIFO that is 12 bits

wide. Figure 3.1 shows the digital functional components connected to each other inside

the FPGA. The function of each component is described as follows.

28

Parameter Registers (1 and 2): There are two Parameter Registers of width 32
bits. Parameter Register 1 is used to store the input Image Size and Parameter
Register 2 is used to store the number of Channels, number of Levels and the
information about the number of bits required to represent each Channel (8 bits /

12 bits).

Input Image FIFO: The input pixels from the DDR2 RAM are stored inside the
FPGA with the help of this FIFO and accessed according to the need of the
processing cores. The data from the DDR2 RAM is transferred to the FPGA FIFO
with the help of a memory interface running at a speed proportional to the FPGA.
The Input Image FIFO is similar to a Distributed/Block RAM inside the FPGA
and the only difference is that it increments the address from the top of the stack
to its bottom with respect to the read or write command given to the FIFO. Data
can be simultaneously written to or read from the memory locations. At the
beginning of process start-up, the FPGA will not start processing until the Input
Image FIFO is completely filled.

8 to 12 Bit Convertor: The 8 to 12 Bit Convertor is a combinational circuit that
is used to convert an 8 bit input value to 12 bits with the help of Padding
Technique. Thus, the halftoning architecture can support 8 or 12 bits per channel

as shown in Figure 3.1.

Droplet Densities Storage ROM: Once the Input Image FIFO of Figure 3.1 is
filled, the pixels are buffered through a Droplet Densities Storage ROM also
called Look-Up-Tables (LUT) which is a Read only memory that has the

mappings from gray-level to droplet densities for each pixel value of 12 bits.

Input Level FIFOs (1-3): There are three Input Level FIFOs which are used to
buffer the data from the Droplet Densities Storage ROM. The number of Input
Level FIFOs used is directly proportional to the number of Levels in each channel

or the number of Droplet Densities per channel.

29

Core Data FIFOs (1-12) : There are 12 data buffering Core Data FIFO memory
files, one for each Processor Core of Figure 3.1. It stores the input pixel data to be
processed obtained from the LUT array and has 4 address locations each of width

16 bits.

Processor Cores (1-12): There are 12 processing cores in the architecture of
Figure 3.1. All the cores are identical and each of them consists of Registers,
Adder/Subtractors, Comparators, Error handling circuits and Error Filter circuits
containing multipliers and adders. Each core is 1 clock cycle behind the
immediate core succeeding it. For example, Processor core 2 is 1 cycle behind
Processor core 1, core 3 is 1 clock cycle behind core 2 and core 12 is 12 cycles
behind core 1. The registers are used to store input pixel data, previous pixel
values, current processed pixel values and neighboring partial pixel values. The
Adder / Subtractor unit is used to add the input pixel value with the previous pixel
value and to subtract the current output value from the combined value of input
pixel. The comparators are used to compare the results and the output of the
previous level with a threshold constant making sure that the values satisfy the
stacking constraint. The error handling circuit consists of a couple of comparators
to make sure that the error values produced are in the range between -1 and 1. The
error diffusion unit in each core contains 4 multipliers and 4 adder circuits to
calculate the errors. This unit also contains a random weights generator which is

used to perturb the weights at each pixel location.

Error Storage Block RAMs (1-12) : There are 12 Error Storage Block RAM
memory files, one for each Processor Core of Figure 3.1.The Error Storage Block
RAMs store the errors corresponding to the pixel locations. The Block RAM is 16
bits wide and has 17280 memory locations. The number of address locations is
calculated based on the maximum width of the image which is 24 inches

multiplied by the resolution of 720 dpi.

30

Output Data FIFOs (1-12): There are 12 Output Data FIFOs, one for each
Processor Core shown in Figure 3.1. The outputs from the Processor Cores are
stored in this Output Data FIFOs which are 1 bit wide having 2 memory locations

per Processor core.

Output Logic Units (1-4): Four Output Logic Units are designed based on the
number of colors and levels supported by the architecture. The number of Output
Logic Units is directly proportional to the number of channels in the image. The
outputs from the output FIFO array are mapped to 2 bits per channel per pixel.
The output data of the processed image (Halftoned Image) is sent directly to the
print head of a printer with the help of an output interface preferably Ethernet.

3.2.2 Control Unit Architecture

This section deals with the control strategy of the hardware architecture. The system
consists of two controllers, one for managing the memory (RAM) elements and the other
for controlling the Processor Core operations. Figure 3.1 shows the Input Memory
controller used to manage the data buffering operations and Processor Core Controller
used to control the operations of the Processor Core, Error Storage Block RAMs, Output
Data FIFOs and Output Logic Circuits. The control unit performs the timely execution of
predefined micro-instructions to obtain the desired performance and results. The whole
datapath is controlled using the two control units mentioned. Detailed explanation of

controller functionality and architecture is provided in Chapter 8.

3.3 High Level Process Flow Description

This section provides a detailed explanation of how the hardware system functionally
operates. Figure 3.2 shows the flow chart that provides the step by step operational
procedure of the halftoning algorithm running on the hardware architecture of Figure 3.1
programmed into the FPGA. The following points discuss the operational flow chart in

Figure 3.2.

31

START

Accept the
Image size,
Number of
Channels and
Levels

Channels,Levels and

& NO Image size within the
YES YES
l Start filling
. R DDR2 RAM
Initialize LUT.S with data
{Droplet Densities from the Host
Storage ROM) =
PC
NO
Swiich ON
Processing Is the
Elements RAM filled? (2
rows min)

YES
Fill the

Is

IIT':";;Z the FIFO
>
o full?

YES

Fetch the
Values
from Input
Image
FIFO
¥

8 to 12 Bit
Convertor

® ®

Figure 3.2: Hardware Operational Procedure Flow Chart 1

32

FPGA accepts the initial parameters of the image namely image size, number of

channels and levels from the host PC.

If the parameters are within the range of values that is supported by the FPGA,
then a 'go’ signal is asserted to the DDR2 memory to accept input pixels from the
host PC else if the parameters don't match, the system shows an error message
stating that the parameters entered are unsupported. The FPGA also initializes the
Droplet Storage ROM and the Processor Cores are switched ON according to the

number of channels / levels.

The memory interface checks whether at least 2 rows of data is inside the DDR2
memory. If the RAM is filled, the FPGA starts accepting the input data and fills
the Input Image FIFO. The controller inside the FPGA constantly monitors the
FIFO and stops filling it when it is full.

The input pixels are buffered through a 12 bit convertor circuit which converts a 8

bit input value to 12 bits using a padding technique.

The following points address the flow chart in Figure 3.3.
The output from the 12 bit convertor of Figure 3.2 is fed to the Look-up-tables or

the Droplet Densities Storage ROM to get the Droplet Size Values (see Figure

3.1) that are associated with a specific input pixel.

The values obtained from the Droplet Densities Storage ROM are stored in the
Input Level FIFOs which in turn is diverted to the Core Data FIFOs specific to

each Processor Core as shown in Figure 3.3.

All the processing elements have the same architecture and hence only one

architecture is shown in the flow chart.

33

O® ®

Output Droplet Size values
according to the pixel value

. . '
Input Level FIFO 1 Input Level FIFO 2 Input Level FIFO 3
F [
[e e R e ks, e bty ™
i it Sl e - 3 B > J‘;_j 2

Core | Core | Core

Core Core Core Core Core | Core Core Core | Core Data Data Data

Data Data Data Data Data Data Data Data Data
FIFO 1| FIFO 2| FIFO 3| FIFO 4| FIFO 5| FIFO 6| FIFO 7| FIFO 8| FIFO 9 F:EO F:];O F:;O
[I | I I [I [[1 | [

. [[[|
(K HHHHH AT
v v v v v v L v v v v Y

THIS IS A FORK AND ALL THE PROCESSOR CORES (PC [1-12]) HAVE THE SAME
OPERATIONAL PROCEDURE AS SHOWN BELOW

¥ L]
Fetch Data from Core Data FIFO Store the Previous Processed Pixel |
to the Input Pixel Register value in the Previous Pixel Register [

Add the two values stored in
the registers

s the Result >=Threshold
Value &
revious Core Value = 0.5

Previous Value to
Core Value Next Core

YES NO
Output Value = 1.0 —— Output Value f«—— Output Value = 0.0

Subtract the Qutput Value
from the Result to calculate the
Error

Figure 3.3: Hardware Operational Procedure Flow Chart 2

Data from the input Data RAM is fetched and stored in the Input Pixel Register.

The previous processed pixel value is stored in the Previous Pixel Register. The

34

two values are added with the help of an Adder-Subtractor unit.

The result from the unit is compared with a threshold value (0.5 in this algorithm)
and the previous output of the level in the same channel is compared with a

constant 0.5.

If the value satisfies the condition, the output value is tied to 1 and if the condition

is not satisfied, the output value is tied to 0.

When the output value is assigned 1 or 0 there exists an error between the result
from the adder and the output value. The Error is determined by subtracting the

output value from the result of the Adder-Subtractor unit.

The following points address the operational flow chart in Figure 3.5.

The error value is constantly scanned by an error limiting circuit that assigns 1 if
the error is greater than 1 and assigns -1 if the error is less than -1. But, if both
conditions aren't satisfied, then the error is within the limits and is stored in the

error register.

The error diffusion circuit comes to play in this step. The controller checks the
corresponding pixel that is being processed and manages the operations of the

multiplier and the adder circuit according to the Figure 3.4.

1 2

A v 1 — First pixel of an Image Row

2 — Last Pixel of an Image Row

3 — Final row of an Image
OFF/IDLE Timing Pixel Location:
Multiplier & Adder [1/16] -2 & 3
Multiplier & Adder |5/16] -3
Multiplier & Adder [3/16] -1 & 3
Multiplier & Adder [7/16] -2

3-113 1&3 -113 1&313 -Triw‘ 1&3 1&3 TB 113 TB
Figure 3.4: OFF / IDLE Timing Pixel Locations

35

Figure 3.4 shows the pixel locations where the error filter elements (Multiplier &
Adder) are in the OFF state. Figure 1.2 and 1.4 shows the weight distribution and

the weights at different pixel locations in a serpentine scan methodology.

©

Error Image = -1.0 *YES Error Value < Error Value > YES# Error Image = 1.0
.| Store the Error value |
In the error register
I
Y
Is it
Is it th
YES / the final YES -
.o final row of
pixel in the

he image?,

row?

YES|

Is it Is it Is it
the final the first the final
pixel in the pixel in the pixel in the

row? row? row?

NO NO NO
Y 3 L]
MULTIPLIER MULTIPLIER MULTIPLIER MULTIPLIER
& ADDER = & ADDER = & ADDER = & ADDER
(1/16) (5/16) (3/16) (7/16)
A
t t]
Random
Wei
! Sty Error
Generator
Storage
Block RAM

STOP

Figure 3.5: Hardware Operational Procedure Flow Chart 3

36

« The multiplier is used to multiply the error stored in the error register with the
random weights produced by the Random Weight Generator. The adder then adds

the resultant value from the multiplier with the previously stored error value.

« The number of error values generated per pixel per channel per level is 4 as at
almost all the pixel locations, errors are distributed to the four nearest neighbors
as shown in Figure 1.2. The error values are stored in the Error Storage Block

RAM inside the FPGA for subsequent processing.

- The FPGA stops processing once it reaches the final pixel of the image and goes
to an IDLE state where it can be again restarted to process the next upcoming

image.

3.4 Hardware Algorithm Execution

This section provides information about the Error Diffusion Halftoning algorithm
execution in FPGA. Figure 3.6 shows the operational design of the Stacked Error
Diffusion algorithm currently being used in this research. The input colors are mapped to
the processing cores and halftoned with the help of this algorithm. All the processing
cores are connected to their Core Data FIFO input and the output bit of the previous core.
As there exists no stacking constraint between the channels, the starting level of each
channel is tied to a constant bit of 1. One of the inputs of core 1 is tied to a constant 1 as
it is the first level. The succeeding cores are connected to one another i.e. the output of
the first core is connected to one of the inputs of the second core; the output of the second
core is connected to one of the inputs of the third and so on till it reaches the final core.
The output from each individual core is connected to an output logic which calculates the
output pixel value. As there is a dependency constraint, all the cores cannot start
processing a pixel at the same time. Thus, there exists a unit delay circuit in the design
which delays the processing time by one clock cycle compared to the succeeding core. In
other words, core ‘n’ will not produce the output until it receives the output from core (n-
1) where n=1, 2....n. The pixels are processed in parallel but the first core will be ahead

of its previous core by one clock.

37

OUTPUT (2 BITS PER COLOR PER PIXEL)

+ + + + + +
1) Y Y 1 1 i 1 Y 1
ConE pELAY| | [pELAY| | |pELAY| | |DELAY| | |DELAY| | |DELAY|| |DELAY| | |DELAY|| |DELAY| | [DELAY|| |DELAY
[f—'_
C?:J.E DELAY DELAY DELAY DELAY DELAY DELAY DELAY DELAY DELAY DELAY
[RS
C(l";“ DELAY DELAY DELAY DELAY DELAY DELAY DELAY DELAY DELAY
[3K
CORE 9 DELAY DELAY DELAY DELAY DELAY DELAY DELAY DELAY
A f—'_
CORER DELAY DELAY DELAY DELAY DELAY DELAY DELAY
it
CORE?| |DELAY DELAY DELAY | | |DELAY| | [DELAY| | |DELAY
CIORE 6 DELAY DELAY DELAY DELAY DELAY
[4‘_‘;
CORES| |DELAY| | [DELAY| | |DELAY|| |DELAY
[$_'_
CORE 4 DELAY DELAY DELAY
[+_|_
CORE3| |DELAY| | |DELAY
A4
CORE2| |DELAY
) 1‘_'_
CORE 1

I

INPUT (UPTO 12 BITS PER COLOR PER PIXEL)

Figure 3.6: Processor Cores Pixel Execution Sequence

Some of these cores can run in parallel at the same time and this parallelism is between

the colors or channels in the input image. For example, CMYK can be four channels in an

image assuming three levels in each color. Colors C, M, Y, K can be run in parallel since

38

there is no constraint between different colors. But in this architecture each core is set to
run behind its succeeding core as there is no performance difference and it can also
support more than 4 colors / 3 levels per color as in the case of this architecture. The
whole system is run at 50 MHz to achieve the desired performance and the output is

obtained every 8 clock cycles as shown in Figures 3.7 and 3.8 respectively.

PIXEL 4 PIXEL 3 PIXEL 2 PIXEL 1
QUTPUT OUTPUT QUTPUT QUTPUT

P5 |P4|P4 (P4 |P4 (P4 (P4 |P4|P4|P3 (P3P} |P3|P3|P3|P3 (P3|P2|P2|P2|P2 |P2|P2|P2 (P2 |P1|P1|P1|P1(P1([P1]|P1]|P1

P5 |P5 (P4 (P4 |Pa (P4 (P4 |Pa|pa|pa|P3|p3|P3|P3(P3 (P3 |P3 P3 P2 |P2 |P2 (P2 [P2 P2 [P2 [P2 |P1 |P1 [P1 |P1 |P1 [P1|P1 [P

P5 |P5 |P5 (P4 |P4 (P4 (P4 |P4|P4|P4(P4(P3|P3|P3|P3|P3 |P3|P3 (P} |P2|P2 P2 |P2 P2 (P2|P2|P2|P1|P1(P1|P1|P1(P1|P1]|P1

P5 |P5 |P5 |P5 |P4 (P4 (P4 |Pa |P4|P4|Pa|pPa|P3|P3 (P3 |P3 |P3 [P3|P3 |P3 |P2 [P2 |P2 P2 (P2 |P2 |P2 P2 [P1 |P1 |P1|P1|P1 [P1[P1|P1

P5 |P5 |P5 (P5 |P5 (P4 (P4 |P4|P4|P4(P4(P4|P4|P3|P3|P3 (P3|P3 (P3 P3|P3 (P2 |P2|P2(P2|P2|P2|P2|P2(P1(P1|P1|P1|P1|P1|P1|P1

P5 |P5 [P5 |P5 |P5 (P5 (P4 |P4 |P4| P4 |Pa(P4|P4|Pa(p3|P3 |P3 P3 |P3 |P3 |P3 |P3 |P2 P2 (P2 |P2 |P2 [P2 (P2 |P2 [P1 |P1|P1 [Pt [P1|P1|P1|P1
P5 |P5 [P5 |P5 |P5 [P5 [P5 P4 |P4|Pa|Pa|pa|P4|Pa(pa(P3 |P3 |P3 [P3|P3 |P3 |P3 |P3 |P2 (P2 [P2 |P2 P2 [P2 |P2 |P2 [P1 |P1 |P1 [P1|P1[P1[P1|P1

P5 |P5 |P5 |P5 |P5 [P5 [P5 |P5 |P4|P4|P4|P4|P4|P4 (P4 (P4 |P3 |P3 [P3 |P3 |P3 [P3|P3 |P3 P2 |P2 |P2 P2 [P2 |P2 |P2 (P2 [P1 |P1|P1|P1|P1[P1|P1|PI

P |P5 |P5 |P5 |P5 |P5 [P5 |P5 |P5 | P4 |Pa|pa|Pa|Pa(Pa|Pa|pa |P3 |3 |P3|P3 |P3 |P3 |P3 (P3 |P2 |P2 P2 [P2 |P2 [P2 |P2 |P2 P4 [P1|P1|P1|P1 P11 |P1

P6 |P6 [P5 |P5 |P5 [P5 [P5 |P5 |P5 |P5 P4 P4 |P4|P4 (P4 (P4 |P4 P4 |P3 |P3 |P3 |P3 |P3 |P3 |P3 |P3 |P2 P2 [P2 |P2 |P2 [P2|P2 |P2 [P1|P1|P1|P1|P1|P1|P1|P1

PG |P6 PG |P5 |P5 PS5 [P5 |P5 |P5 | P5 |P5 (P4 |Pa|Pa (P4 (Pa|Pa (P4 (Pa|P3 |P3 (P3|P3 |P3 (P33 |P3 (P2 (P2 |P2 |P2 [P2 [P2 |P2 |P2|P1|P1(P1|P1|P1 [P1|P1 P

P |P6 [P6 |P6 |P5 [P5 [P5 |P5 |P5 |P5 | P5 [P5 |P4| P4 (P4 (Pa|Pa (P4 (P4 |Pa|p3 [P3|P3 |P3 (P3 |P3|P3 |P3 (P2 |P2 |P2 (P2 |P2 P2 P2 |P2 [P1|P1|P1|P1|P1|P1[P1[P1

Figure 3.7: Current Hardware Execution Methodology

PIXEL 5 PIXEL 4 PIXEL 3 PIXEL 2 PIXEL 1
QUTPUT QUTPUT OUTRUT OUTRPUT OQUTPUT

P6 [P6 |P5|P5|P5|P5|pP5 | P5 |5 |P5 (P4 |p4|Pa|pa|palpaipa(re|r3|ra|p3|p3|P3(P3|P3|P3|p2|pP2|P2|P2[P2(P2|P2 (P2 [P1|P1|P1|P1|P1|P1|P1|P1

2
PG |Pé (P& | P5 |P5|P5|P5 P5 |P5 |P5(P5 P4 |P4|P4(P4(P4|P4|P4(P4(P3(P3|P3 P3 \P3(P3|P3|P3 P2 P2|P2|P2 P2 |P2|P2|P2|P1|P1|P1|P1|P1(P1(P1|P1

PG |P6 (PG PG |P5|P5|P5 |P5 |P5 |P5|P5 |P5|P4|P4(P4(P4|P4|P4|P4(P4(P3|P3|P3|P3(P3|P3|P3 |P3(P2|P2|P2|P2|P2|P2|P2|P2|P1|P1|P1|P1(P1(P1|P1 P1|

PG |P6 (P5 |P5 |P5|P5 | p5(P5(P5|P5 P4 |Pa|Pa(pa|pa|pa|ra|Pa(p3(p3|r3|P3|P3 P3(P3[P3|P2|P2 P2 (P2

R

Pz P2 [p2 [P1(P1(P1|P1|P1[P1|P1[P1

PG | PG (PG |P5 |P5|P5 | p5(P5 [P5|P5|P5 P4 |Pa(P4|pa|rs|Pa|Pa(pa(p3|r3|P3|P3 |P3(P3[P3|P3|P2 P2 (P2

bl

pz|p2[p2 (P2 [P1|P1|P1[P1|P1[P1|P1|P1

PG | PG | PG (PG |P5 | P5|P5|P5 (P5 |P5|P5 |P5 (P4 (P4 |P4|P4 P4 (P4|P4|Pa|P3|P3|P3|P3|P3[P3|P3|P3 P2 (P2

]

PG |P6 |P5 (P5 (P5 (P5|P5 (P5(P5(P5|P4|P4|P4(P4|P4|P4|P4|P4|P3|P3|P3|P3|P3 |P3|P3|P3(P2|P2|P2|P2

P& | PG (PG |P5 (PS5 |P5 | P5 (P5 |P5 [P5 |P5 P4 |P4(P4|P4 (P4 P4 |P4(P3|P3(PI|P3 P3|P3|P3|P3(P3 P2 |P2(P2

k]

Pé | PG (PG |PG (PS5 |P5 | P5 (P5 |P5 [P5|P5 P5|P4(P4|P4 (P4 P4 |P4(P4|P4(P3|P3 P3|P3(P3|P3(P3 P3 |P2(P2

k]

PG |P6 |P5 |P5 [P5 [P5|P5[P5(P5|P5 P4 |Pa|Pa(Pa|Pa|Pa|Pa |Pa|p3(P3|P3|P3|P3 P3(P3|P3|P2|P2 P2 (P2

b

PG |P6 |PG |P5 [P5 [P5|P5[P5 [P5|P5|P5 P4 |Pa(P4|Pa|rs|Pa|Pa|pa(pP3|P3|P3|P3 |P3(P3|P3|P3|P2 P2 (P2

b

]
PR RS B I P B B B A B B B
-
"
-
M
-
| w | e w | o w o
-
-
-
-
-
=
-
-
-
-
-
-
-
-y

PG [P6 |P% |P6 (P5 (P5|P5|P5(P5(P5|P5|P5 |P4(P4|P4|P4|P4(P4|P4|P4|P3|P3|P3 P3|P3|P3(P3|P3|P2|P2

]

Figure 3.8: Alternate Hardware Execution Methodol ogy
Figure 3.7 shows the pixels being processed under current research methodology where
every core is one step behind its succeeding core. There is also an alternate architecture
shown in Figure 3.8 where all the colors per pixel are run in parallel and the output is still
obtained every 8 clock cycles. Thus, from this research the processing cores gives output
every 8 clock cycles irrespective of the number of channels and levels per channels in an
image. The current architecture is capable of speeds up to 130 MHz and can be altered
according to the printer requirements to achieve a specified throughput. The current
architecture is about twice as fast as the modern day wide format printers. Thus this

design is scalable, flexible and compatible with any printer configuration.

39

Chapter 4. Input Data Memory Architecture Design

4.1 Introduction

This chapter provides a comprehensive explanation of the memory systems and the
operations performed on different memory RAMs. The input memory architecture is the
first and foremost system that the processor core depends on for efficient buffering of
image pixels. Calculations are not performed in this segment as it deals primarily with
memory storage and access. The chapter discusses 5 major digital elements namely the
Input Image FIFO, Parameter Registers, Droplet Densities Storage ROM (LUTs), Input
Level FIFO and Input Core Data FIFO. The next section addresses about the Xilinx

Virtex-5 FPGA components used to build all the digital memory elements listed above.

4.2 Xilinx Virtex-5 Memory Components

The Virtex-5 devices [26] consists of two main memory components called Block RAM
and Distributed RAM. The choice of the components depend upon the memory size and
speed requirements. For example, if a design requires buffering of data at high speed and
has a small storage constraint then Distributed RAM can be used to meet the
expectations. But if a design requires a large storage space inside the chip and an average
speed of access then a Block RAM can be used. Both RAM's are Static Random Access
Memory (SRAM) systems where the binary bits are stored with the help of internal
latches. The main reason for using SRAM is that it has shorter read and write cycles and
is faster when compared to other RAM's. An SRAM is a volatile element and loses its
contents when the device is powered OFF. Unlike Dynamic RAM's, SRAM's do not
require refresh and precharge cycles. Hence SRAM's are faster when compared to
DRAM's but not area efficient (consumes more space when compared). The current
design under consideration has a requirement of a very large storage space and an optimal

speed at which the algorithm should be run. So, the Input Memory Architecture design

40

incorporates both Distributed and Block RAM's to allow efficient execution of the

Stacked Error Diffusion halftoning algorithm.

4.2.1 Block RAM

The block RAM in Virtex-5 FPGA (XC5VFX70T) chip can store a maximum of 5328
Kilobits of data. The RAM's can be cascaded and configured for a deeper and wider
memory space depending upon the storage requirements. The device supports both
synchronous and asynchronous memory operations but, the current design recommends a
synchronous operation to avoid timing conflicts in the design. Block RAM can be used as
a single port or a dual port memory element depending on the memory access
requirements. In this research, both single and dual port elements are used based on the
halftoning algorithm. The RAM can also be used as a ROM (Read-Only-Memory) which
has a major use in this algorithm implementation. The memory locations in the RAM can
be initialized to a predefined value and can be changed during the device operation. The
various configurations available in a Block RAM are Single-Port RAM/ROM, Simple
Dual-Port RAM and True-Dual Port RAM/ROM as shown in Figure 4.1.

N

= D11 e Dina
A" —— . addra ——
— addra e addra
en — ==l Ll — e, | J0011EE ena— e [i11E2
ETH — ena
i _>) clka— clka clka—>
Single-Port RAM — - 1
TN addrb— —Dout addrbe—mi
addrb
A a— h
enb— r':‘. | Jouth CNb— s [011t D
en—- o [Y01t enb
clkb— clkb clkb—»
clk—» N
Simple Dual-Port True Dual-Port Dual-Port ROM

N
Single-Port ROM RAM RAM
Figure 4.1: Types of Xilinx Virtex-5 RAM / ROM
Single-Port RAM/ROM is the memory storage component where there exists only one
data input and data output port. It can be used as a look-up-table for accessing stored
values by the processor. A Simple Dual-Port RAM 1is the storage element where there

exists one data input port and only one data output port. This can be typically used in

41

scenarios where a processor needs to read from one location and write to another location
in the same RAM simultaneously. A True Dual-Port RAM/ROM is a type of memory
storage where more than one processing element with different read and write locations
wants to access the same storage element. It contains two data input ports and two data
output ports. The parameters in the Figure 4.1, namely addra, addrb, are the address
values that can be provided to access a particular location in the memory. rw, rwa and
rwb are the read-write controls signal used to select either read or write operation
(typically '0' indicates read and 'l' indicates write); en, ena, enb are the enable signals that
is used to control the chip select operation (basically '0' means a chip can be used for
memory operations and 'l' means that the chip cannot be used), clk, clka, clkb are the
clock ports for synchronous operation of the memory devices and din, dina, dinb, dout,
douta, doutb are the inputs and outputs of the corresponding memory blocks. There exists
three operating modes for the Block RAMs that regulates the read and write behavior of
the ports. The operating modes are Write First mode, Read First mode and No Change
mode. In Write-First mode, the input data is written to the memory location and the data
written is reflected at the output simultaneously. In the Read-First mode, the input data is
written to the memory location whereas the previous stored data is reflected at the output.
This mode is also called Read-before-Write. In No-Change mode, the data at the output
port reflects the same data from the previous read operation and is unaffected by the
current write operation. In this research, the No Change mode is used and the hardware is
designed in such a way that there exists no conflicts and collisions. The read and write
operations require one clock edge to provide the output. Large FIFO's (First-In First-Out)
can be instantiated using Block RAMs. Performance upto 450 MHz can be obtained using
the Block RAM module embedded inside the FPGA. But the current research work
doesn't need such high speeds and hence the memory modules are run at a speed required

by the application.

4.2.2 Distributed RAM
In addition to the Block RAMs, there are Distributed RAMs embedded throughout the
FPGA chip. This RAM is very fast, available at all the regions inside the FPGA and is

42

optimal for high speed data buffering, small FIFO's and can be used as register files. The
Distributed RAM has all the features as the Block RAM such as Single-Port RAM/ROM,
Dual-Port RAM/ROM. The only disadvantage of these RAMs is that the memory
availability is much less compared to the Block RAM module. The Virtex-5 provides a
maximum of approximately 820 Kilobits of storage space in terms of distributed RAM.
Synchronous and Asynchronous operations can be performed efficiently on these RAMs
where write operation is typically synchronous and read is asynchronous. One can also
program the RAMs to perform fully synchronous behavior depending on the application
need. The RAM memory can be initialized with some values and can also be changed
during the device operation. Thus a full flexibility in design is allowed which is similar in

the case of Block RAMs.

4.3 Xilinx Core Generator

The CORE Generator [27] in Xilinx is a proprietary design tool that instantiates
Intellectual Property (IP) modules which can run very efficiently on the Xilinx FPGAs.
The Core Generator provides functional digital elements such as FIFOs and memories
(both Block RAMs and Distributed RAMs), Multipliers (Xtreme DSP and LUT based),
Adders-Subtractors, Standard Bus Interfaces, Memory interfaces, Comparators, Counters,
Shift-Registers and Dividers. In this research, Core Generator modules are used at places
where the performance of the device is crucial. This results in less time consumed in
designing the hardware since it takes an ample amount of time to design a module like an
adder from the scratch and to test it and the modules provided by the Core Generator are
very efficient and fully tested. All the designs in this research project are described using

verilog and tested using the ModelSim simulation tool.

4.4 Input Image FIFO

The first memory element in this hardware design is the Input Image FIFO (see Figure
3.1) which is used to store the input pixels sent by the host PC. This FIFO is generated
with the help of the Xilinx Core Generator design tool that utilizes Block RAMs in the

43

FPGA. The memory element is tailored to meet the requirements of the Halftoning
algorithm. The following sections briefly describe the design and operation of the Input

Image FIFO.

4.4.1 Input Image FIFO Design

The Input Image FIFO is designed with the help of the Core Generator wizard. Verilog
HDL is used to describe the design and is fully tested using the ModelSim simulation
tool. In order to store the pixels for continuous buffering to the processor cores, the width
and depth of the FIFO must be large enough to prevent absence of data at a given time.
The width of the FIFO depends on the number of bits used by a channel in a pixel, as this
algorithm supports both 8 / 12 bit data, the data width of 12 bits is selected. To prevent
buffering discrepancies, the depth of the FIFO is 1024 bits. The depth of the memory
element indicates the number of address locations that can accommodate 12 bits per
location. So the number of address lines required to access 1024 locations is 10 bits (2'° =
1024) starting from address O till 1023. From the width and depth of the FIFO, the
amount of storage space consumed can be calculated by multiplying the two parameters
12 * 1024 that comes to 12288 bits in total. The difference between a Random Access
Memory and a FIFO is that any address location in the RAM can be accessed at any point
of time but, in a FIFO there is an internal counter that increments the memory address by
a count of 1 depending on the operation (Read/Write) and it acts like a stack where the
first element filled should come out first and so on. Figure 4.2 shows the schematic of the

image FIFO used in this design.

et din[11:0] dout[11:0] fem—
—wr_en almost_full f—
—rd_en full f—
—srst empty —
— clk prog_empty f—

Figure 4.2: Input Image
FIFO Schematic

44

4.4.2 FIFO Operational Procedure
The FIFO is designed based on the original halftoning algorithm and a code snippet is

shown in Figure 4.3.

for (m=0; m<imageRow; m++)
{
TIFFReadScanline(inTiff, inputBuffer, m, 0); —a 1
for (n=0; n<imageCol*imageChn; n++)
{
inputRowBuffer[n]=((int)inputBuffer[n] < <4) + ((int)inputBuffer[n] > >4); — 2
}

Figure 4.3: Software Code Snippet for Image FIFO and 12 Bit Conversion

The line marked '/' in the code snippet indicates that an image is being read into the
'inputBuffer' unit which in this hardware architecture is the Input Image FIFO. Figure 4.2
shows the input and output pins of the FIFO where din/11:0]is the input pixel data of
width 8 or 12 bits, dout[11:0] is the output of the FIFO which has the same width as the
input port, wr_en is the write enable port ('1' in means that data is written to the FIFO and
'0' means that no data is written to the FIFO) , rd en is the read enable port ('1' in means
that data is read from the FIFO and '0' means that no data is read from the FIFO), clk is
the clock input port (this signal is used for synchronous read and write operations; all the
operations are positive edge sensitive), srst is the reset or clear bit port (used to clear the
contents of the FIFO and set the internal counter to the initial state), full (Full set to 'l'
indicates that all the address locations in the FIFO are filled), almost full (almost_full set
to '1' indicates that all the address locations in the FIFO are filled except the last location),
empty (empty set to '1' indicates that all the address locations in the FIFO are unfilled) and
prog _empty (prog_empty set to '1' indicates that all the address locations in the FIFO are
unfilled except the number of locations programmed in the prog_empty bit) comprise the
FIFO status bit ports of the memory unit. How the FIFO opeartes in this Halftoning

system is described as follows.

When the DDR2 RAM of Figure 3.1 is filled with atleast two consecutive rows
of the image to be halftoned, it gives a signal to the Input Image FIFO inside the
FPGA to start accepting the data. The controller inside the FPGA detects the

45

signal and the write enable port in the Input Image FIFO is set to 'l' filling the
FIFO at every positive clock edge.

« When the Input Image FIFO reaches the end of the stack which means all the
locations are filled with data, the full and almost full bits are set to 'l' indicating

to the controller that the FIFO is ready for operation.

- The processor core starts to read the data from the Input Image FIFO by setting
the read enable port bit to '1'. When the FIFO reaches the end point where it
needs to again fill up with data, the empty and prog empty ports are set to 'l'
indicating the FIFO is empty.

- Data can be read and written to the Input Image FIFO simultaneously providing
full duplex capability preventing latency. Both read and write operations are
performed at the positive edge of the clock and have a latency of one clock cycle.
The Input Image FIFO is run at 50 MHz, the same frequency as the entire

system.

4.5 Parameter Registers and 8/12 Bit Convertor

The Parameter Registers of Figure 3.1 are memory components designed to store the
input parameters of the Halftoning system. There are two registers, each 32 bits wide,
used to store five input parameters; namely, Rows, Columns, Channels, Levels and 8/12
bit select. Figure 4.4 shows the distribution of the parameters in the register where the
bits 0 through 15 are used to store the number of columns in the image and bits 16

through 31 store the number of rows in the image.

- IMAGE SIZE >
- ROWS -;}: COLUMNS -

31302928 27262524 23222120 9 18 17 16 15 4 131211109 8§ 7 6 5 4 3 2 1 0
[16 Bits >l 16 Bits >

Figure 4.4: Parameter Register 1

46

Figure 4.5 shows the format for storing the information on the number of channels,
number of levels per channel and the choice of 8 or 12 bit image input.

8/12 Bit Selection

Reserved for Future Use —+H<Ch3""ﬂs’|+ Levels #

1)

31302928 27262524 23222120 9 1817161514 13121110 9 8 7 6 5 4 3 2 1 0
- 23 Bits —————————————————>|=»l=— 4 Bits —=|=—4 Bits
1 Bit

Figure 4.5: Parameter Register 2
Bits 0 through 3 are reserved for storing the number of levels per channel (color), bits 4
through 7 are used to represent the number of channels in the given image and the 8" bit
in the format is used to switch between an 8 or 12 bit image input. A '0' in the 8™ bit
suggests that the input is 12 bits wide and a 'l' indicates that the input is 8 bits wide. The
remaining 23 bits are reserved for future use where additional parameters can be
accommodated. This system design handles an image of width 24 inches and a resolution
of 720 dpi. Thus, 24*720 gives the maximum number of columns accepted in this design
which is equal to 17280. The height of the image, namely the number of rows in the
image that this design can handle is infinite. For a specific system design a certain
number is chosen for the sake of hardware power consumption. Thus, a image size of 44
inches which gives 31680 rows can be processed (Number of rows in the image can be of
any size). If any of the parameters are not in the range mentioned, the hardware sends an

error message to the host PC.

Figure 4.6 shows the design of the parameter register and this format is the same for any
register in this hardware architecture. The parameters rin/n:0] is the input to the register
where n 1s the Most significant bit of the data, cl/r is an input port used to clear the
memory contents, /s is the load-store input control bit which performs load or store
operations (when Is = '0', input is loaded in the memory register; when Is='l", input is
stored in the register), clk is the clock input to synchronize the operations with the clock

edge and rout/n:0] is the data output from the register.

47

e 101 [0 rout |0 () | f—

Figure 4.6: Register
Schematic
Initially, during system start-up, the number of rows, columns, channels, levels and 8/12
bit select values are loaded/stored in the two parameter registers. The 8" bit in parameter
register 2 is connected to the 8/12 bit convertor which is shown in Figure 4.7. The
convertor converts a 8 bit data value into an equivalent 12 bit value by padding where the
8 bit value is left shifted four times and filled with '/' in the leftmost digits. The line
number named '2' in Figure 4.3 shows the software conversion of the input pixel, thus this
convertor is an equivalent hardware technique to change a 8 bit value to a 12 bit value.
The output of the Input Image FIFO is connected to this 8/12 bit convertor as shown in

Figure 3.1 and the circuit design of the convertor is shown in the Figure 4.8.

|¢——— Left Shifted Value———»
Lofofofojujufofurjofufurjo [rjtjofrjojufrjo] | | | |
}-'l— Original 8 Bit Value —*I H—Driginal 8 Bit Value —"'“I

|«——— New Padded Value————»

fefofufofufurjofujufu]r]

|+ Padding -»|

Original Decimal Value =214
New Decimal Value = 3439

Figure 4.7: Padding Technique

The input port d/11:0] is the original value from the Image FIFO (it can be either 8 or 12
bit value), s is the select signal from the parameter register 2 that decides conversion ('0'

in s suggests that the input value is a 8 bit value and hence the conversion takes place and

48

'l' in s indicates that the data value is a 12 bit value in which case the input its reflected at
the output) and finally dout/11:0] is the output value (padded or un-padded depending
upon the input).

el [11:0] dout[11:0]rmme

5

Figure 4.8: 8/12 Bit Hardware
Convertor

4.6 Droplet Densities Storage ROM

This section deals with the input pixel being mapped to a maximum of three different
droplet intensities with the help of a Single-Port ROM as shown in Figure 4.9. The output
of the hardware convertor circuit is connected to the input of this ROM. As the input
address is of width 12 bits, the number of locations addressed by the ROM is 4096 (2'%).
The number of ROMs depend on the number of levels per channel which in this
architecture is 1, 2 or 3 depending on the output requirement. Thus, a total of 3 Block
RAM elements are required to store the droplet values. The values are calculated using
the original algorithm and stored in the corresponding ROMs. The data in the ROM is 16
bit wide Fixed-Point format and integer arithmetic is performed. Hence, the input pixel
value of 12 bits is mapped to three different droplet density values that are 16 bits wide.
The amount of storage memory required to store these values is calculated as follows: 3
ROMs each with 4096 address locations supporting 16 bit data per location requires
3*4096*16 which is equal to 196608 bits of memory space that can be taken from the
Block RAM column of the FPGA.

49

et A (11| 11:0] dout]15:0)] pee
ROM 3

— clk
|

—lJad(lrlll:l]] dﬂutlls:ﬂll—

| ROM 2
B clk

|
—’-‘uddﬂll:i}] dout]15:0)] e
| ROM 1
L elk

st ddr|11:0] dout]|15:0)]

—Jdelk

Droplet Densities Storage ROMs Single ROM

Figure 4.9: Droplet Densities Storage ROMs

The ROMs are generated using the Xilinx Core Generator wizard and the values are
initialized using a .COE file in Xilinx as shown in Figure 4.10. The .COE file requires
two parameters to be passed; one is the memory initialization_radix and the other is the
memory_initialization vector. The memory initialization radix defines the format of
representing the data which can be binary (radix = 2), octal (radix = 8) or hexadecimal
(radix = 16). In this research the data format is binary. Figure 4.9 shows the ROM
schematic where addr[11:0] is the 12 bit input pixel value, clk is the clock signal for
synchronous operation (the input is positive edge dependent) and dout/15:0] is the output
value related to droplet density. All the levels are grouped into a single ROM having the
same input values but provides 3 different output intensities. This unit is also run at the

system frequency of SOMHz.

mermory_initialization_radix = 2;
memory_imtialization_vector = 0000000000000000,0000000000000000..................., 0100000000000000,0100000000000000;

Figure 4.10: .COE File Format

50

4.7 Input Level FIFO

The Input Level FIFO is a digital memory component that acts as an intermediate buffer
to store the values obtained from the Storage ROM described in Section 4.6 . Figure 4.11
shows the FIFO schematic where data_in[15:0] is the 16 bit wide input data, clr is the
clear bit to reset the memory contents of the FIFO to a known value generally '0', rd en is
the control bit for read operation ('0' indicates no operation and 'l' indiates read
operation), wr_en is the write enable control bit for write operation ('0' indicates no
operation and 'l' indiates write operation), cl/k is the clock input port for synchronous
operation (data is buffered with respect to the positive clock edge), data_out[15:0] is the
16 bit wide output port, AFULL is an output port which indicates to the control unit that
all the memory locations except the last is filled, AEMPTY 1is a status bit that provides
information that none of the locations except one is full and FULL is the output status bit
that says that all the locations in the FIFO are filled. The current FIFO has a depth of 16
bits and stores 16 bit wide data.

eiilata_in[15:0] data_out]15:0)]
—clr
AFULLpF—
——rd_en
. AEMPTY [—
—wr_en
—clk FULL|—

Figure 4.11: Input Level RAM/FIFO

As discussed in Section 4.2.2 , this FIFO design uses the Distributed RAM to achieve
highest performance and minimum latency. Data can be read from or written to the FIFO
simultaneously and maximum care is taken in the design to avoid read/write conflicts.
The output from the Droplet Densities Storage ROM is connected to the 3 Input Level
FIFO's. The amount of distributed RAM space consumed by these FIFO elements is
3*16*16 that shows 768 bits of storage. These FIFOs eliminate the latency that exists
between the processor core and the Storage ROMs which would otherwise be 2 clock

cycles. Their operation is similar to that of the Input Image RAM/FIFO shown in Section

51

4.4.2 but the only difference is that the Input Image FIFO uses a Block RAM and the
Input Level RAM uses a Distributed RAM. This memory component is run at the system
frequency of 50 MHz.

4.8 Core Data FIFO

The Core Data FIFO memory system acts as a cache to the Processor Cores where the
data stored in the Input Level FIFOs is in turn buffered to the Core Data FIFOs. The
current hardware architecture supports a maximum of 4 channels and 3 levels per channel
which requires 12 Processor Cores. Thus, for 12 Processing Elements , 12 caches (Core
Data FIFO) are required to buffer the correct input data to the designated core. The data
from the Input Level FIFO is buffered and stored in the Core Data FIFO with the help of

the control unit.

el data_in|15:0] data out]15:0)]
—clr

—rd_en

—wr_en

—clk FULL}—

Figure 4.12: Core Data FIFO Schematic
Figure 4.12 shows the schematic of the Core Data FIFO which is similar to the Input
Level FIFO except for the absence of AFULL and AEMPTY status ports. The design and
operation of the Core Data FIFO is the same as the Input Level FIFO. The Core Data
FIFO supports a data width of 16 bits and has a maximum depth of 4 locations. The
memory required to implement 12 Core Data FIFOs is 12*4*16 which is equal to 768
bits. Distributed RAM 1is used to design this FIFO because the processing elements
communicate with this FIFO at the highest speed and lowest latency. This component is
also run at the system frequency of 50 MHz and the operations are performed at the
positive edge of the clock. The output of the Core Data FIFO is connected to the registers

in the Processor Cores of Figure 3.1 for subsequent computation.

52

4.9 Entire Input Data Memory Architecture

Figure 4.13 shows the fully connected memory elements of the entire Input Data Memory
Architecture starting from the Input Image FIFO, Parameter Registers, 8/12 Bit
Convertor, Droplet Densities Storage ROM, Input Level FIFO and Core Data FIFO. The
Core Data FIFOs are arranged in a sequential order starting from channel 1 (that includes
level 1, 2 and 3) and ending at channel 4 (includes level 1, 2 and 3). Initially the input
parameters are loaded into the Parameter Registers. The data from the DDR2 SDRAM is
buffered through the memory interface and is stored in the Input Image FIFO. Once the
Input Image FIFO is completely filled with the input pixel data, the control unit starts the
process of buffering the pixels to the processor core as follows. The data output from the
Input Image FIFO goes through a 8/12 bit convertor circuit that converts a 8 bit value to
the corresponding 12 bit value and feeds it to the Droplet Densities Storage ROM where
the input pixel is mapped to three different ink intensities. The Droplet Densities Storage
ROMs 1, 2 & 3 constitute a single unit named as Droplet Densities Storage ROM as
shown in Figure 4.13. During this time the Input Image FIFO is constantly monitored by
the control unit to fill the FIFO in case it is empty. All the operations are executed in
parallel thus improving the execution speed of the algorithm. The output from the Storage
ROM is stored in the Input Level FIFO where it is finally buffered to the Core Data FIFO.
The Core Data FIFO is arranged in such a way that if the image has only one channel, 3
levels per channel, then Channel 1 is chosen. If there are 2 colors in the input image then
Channels 1 and 2 are selected, else if there are 3 colors, channel 1,2 and 3 are selected
else of there are 4 colors, channels 1,2,3 and 4 are selected. All the memory components
are positive edge sensitive and run at the system frequency of 50 MHz. The memory unit
is designed such that when the Processor Cores start processing the input data, the
architecture ensures that the data is continuously buffered from the input to the
Processing Elements. Thus, from the Processor Core point of view, the data from the
input data memory is obtained every clock cycle without any interruption but actually it
takes 5 clock cycles to reach the Processor registers. The memory buffering devices like

Input Image FIFO, Input Level FIFOs and Core Data FIFOs are automatically filled.

53

143

DDR2
SDRAM

INPUT
IMAGE
FIFO
(1024X12)Bits

Y
8/12 Bit

DROPLET
DENSITIES
STORAGE

ROM 3

(4096X16) Bits

CORE DATA
FIFO 12
(4X16)Rits

INPUT LEVEL
FIFO 3
(16 X16) Bits

Convertor
[y

DROPLET
DENSITIES
STORAGE

ROM 2

(4096X16) Bits

DROPLET
DENSITIES
STORAGE

ROM 1
(4096X16) Bits

INPUT LEVEL
FIFO 2
(16 X16) Bits

g

CORE DATA
FIFO 11
(4X16)Bits

CORE DATA
FIFO 10
(4X16)Bits

CORE DATA
FIF(9
(4X16)Birs

INPUT LEVEL
FIFO 1
(16 X16) Bits

CORE DATA
FIFO 8
(4X16)Bits

=

CORE DATA
FIFO 7
(4X16)Bits

—-

CORE DATA
FIFO 6
(4X16)Bits

L

FPGA

Parameter Registers

CORE DATA
FIFO §
(4X16)Bits

-

CORE DATA
FIFO 4
(4X16)Bits

—-

CORE DATA
FIFO 3
(4X16)Bits

CORE DATA
FIFO 2
(4X16)Bits

CORE DATA
FIFO 1
(4X16)Bits

Channel 4

Channel 3

Channel 2

Channel 1

T~ Positive Edge Sensitive

Figure 4.13: Entire Input Data Memory Architecture

Chapter S. Processor Core Architecture Development and Design

5.1 Introduction

This chapter gives a thorough insight into the development and design of the Processor
Core architecture for the Processor Cores of Figure 3.1. The Processor Core elements are
the most critical part of the hardware system in that they perform all the arithmetic,
logical and memory operations. This architecture uses Xtreme DSP slices for addition,
subtraction and multiplication as these are hard cores embedded inside the FPGA to
achieve the highest performance. The main components that constitute the Processor Core
are Input Data Registers, a Adder-Subtractor, Threshold Comparators, Error Limiting
Circuit, Error Registers, Random Weights/Values Generators and Error Filter Circuit that
consists of Multipliers and Adders. The halftoning algorithm written in 'C' is shown in the
code snippets of this chapter and the equivalent implementing hardware unit design is

designed.

5.2 Xilinx Virtex-5 Xtreme DSP Slice

The Xtreme DSP [28] slice in a Virtex-5 FPGA chip is also called DSP48E and it is used
for high speed digital signal processing. The DSP48E is a hard element which is etched
into the FPGA chip as shown in the Figure 5.1.

Block RAMSs
User Logic
Power PC 440
Xireme DSP Slices
(DSP4RE)
Virtex-5 FPGA

Figure 5.1: Virtex-5 FPGA Components

55

These slices can be used for functions such as multiply, multiply-accumulate, multiply-
add, add, subtract, barrel shift, bit wise logical operations, magnitude comparator and
counter. The merits of using the DSP48E components is because of the flexibility,
improved efficiency, reduced overall power consumption, increased maximum frequency
and reduced set-up plus clock-to-out time. The Processor Core architecture uses a lot of
these components to reduce the FPGA device utilization as the adder, subtractor and
multiplier is already available embedded in the FPGA , there is no need to design or
develop a new adder or multiplier circuit which takes substantial device resources and a
lot of time to test. The hard IP cores are fully tested and there is a faster execution of
operations that results in increased performance which is crucial for the Processor Core.
Another advantage of using the DSP components is that more functionality can be added
to the user design as the arithmetic unit utilizes 0% of the device, thus a bigger system
can be implemented on the FPGA. The unit supports both signed and unsigned data
arithmetic where it uses 2's complement methodology. The maximum frequency at which
the slices can be run is 550 MHz when a fully pipelined architecture is used. To support
higher data widths, the DSP slices can be cascaded without any downfall in the
performance. Using the DSP slices decreases the design and verification time of the
hardware architecture developed as a newly fabricated design would take a considerable
amount of time for verification and validation. The DSP slices are instantiated into the
hardware design with the help of the Xilinx Core Generator wizard. In this research, the
DSP4S8E slices are used to perform signed addition, subtraction and multiplication. The
number of DSP slices in the XC5VFX70T FPGA is 128 and the current hardware
architecture uses 108 of these slices. As discussed in Chapter 3., there are 12 Processor
Cores and each Core consumes 9 DSP48E slices and hence the total comes to 108.
Absolutely, no FPGA User Logic resources are utilized when these slices are instantiated
into the design. On the other hand, if the DSP slices were not used, there would have been
a tremendous increase in user logic resources. Typically more than 5000 slices would
have been required which results in a device utilization of over 80%. Thus, the DSP48E
slices play a major role in this hardware system by reducing the amount of on-chip

resources consumed, the design time is reduced by half and performance of the system is

56

increased. The following sections give in-depth details about the Processor Core

Architecture.

5.3 Input Data Registers

The input data registers are used to store the input data to the arithmetic unit for a
specified amount of time before the next data comes into the processing unit. There are
two 16 bit input registers namely Input Pixel Register and Previous Pixel Register. The
Input Pixel Register takes the data from the Core Data FIFO and consists of values of
each color component of the original image. The Previous Pixel Register is used to store
the error value diffused from the previously processed pixel location. The schematic of
these two registers is similar to the parameter registers shown in Figure 4.6 except that
the size of the register here is 16 bits. The format in which the data is stored in these
registers is shown in Figure 2.3. Figure 5.2 shows the software code snippet used in the
original halftoning algorithm written in 'C' that gives information about the input data

operation and the equivalent hardware circuit is shown in Figure 5.3.

for (c=0; c<imageChn; c++) C-1

: levels=numLevelsPerChannel[c];
for (1=0; Izlevels; |+ +) C-2
{indE}c:j+n*imagelvl+{rnwlndex%buﬂ:erﬁize}*imageLul*imageCul;
inputPixel=pixelBuffer[j+n*imagelvl]; C-3
outputlmage[index] =inputPixel +errorimage[index]; C-4

Figure 5.2: Software Code Snippet For Registers and Adder

The following points are derived from the software code.

« 'C-3'1s a part of the software code where 'inputPixel' represents the Input pixel
Register in hardware. The term 'pixelBuffer/c]' is the software buffer created to

provide the input pixel data to the inputPixel. Where the term 'c' represents the

57

color component of a particular pixel. The variable 'errorlmage' is the buffer

created in the 'C' code to store the previously processed pixel value.

From % 16 Previous
Core Data FIFO ; Pixel Value
INPUT PILXEL FPREVIOUS PIXEL
REGISTER ERROR REGISTER

"

Figure 5.3: Equivalent Hardware Circuit for Input and Previous Pixel Values

« The equivalent hardware circuit in Figure 5.3 shows that the Input Pixel Register
("inputPixel”) is connected to the Core Data FIFO (‘pixelBuffer/c]") and the
Previous Pixel Register is equivalent to the 'errorlmage/e]' where 'e' is the error
from the same component (same level in a channel) of the previous pixel. The

registers are positive edge triggered and takes one clock cycle to store the data.

5.4 Adder-Subtractor Unit

This unit performs the addition/subtraction operation depending on a control bit. Xilinx
Core Generator is used to create the Adder-Subtractor unit which uses a DSP48E slice.
The adder schematic is shown in Figure 5.4 where 'AB _IN', 'C_IN' are the input ports
(signed) to which the input value registers are connected, 'CE IN' is the clock-enable port
that controls the operations ('0' means device is inactive, 'l' means that the device is
active for operation), it is synchronized with the positive edge of the clock and has the
highest priority over other signals, 'RST IN' is the clear or reset bit that sets the output of
the unit to zero ('1' in this port drives the output to zero and '0' in this port means a normal
device operation; this port is normally used during system start-up), 'SUBTRACT IN' is
the control input port that decides the type of operation to be performed ('0' means Add
operation and 'l' means Subtract operation), 'CLK IN' is the clock port for connecting the
clock signal resulting in a synchronous operation and 'P_OUT is the output port that
provides the result of the operation used. There is no need for an overflow indicator in

this unit as the values strictly lie between -1 and 1.

58

—I AB_IN[15:0] P_OUT[].E:D]I—

o TN[15:0]
~—CE_IN

—RST_IN
—SUBTRACT_IN
—CLK_IN

Figure 5.4: Adder-Subtrator Unit
Schematic

The code snippet in Figure 5.2 delivers the following information.

« 'outputlmage/c]' shown in 'C-4' is a buffer location where the sum of 'inputPixel'

and 'errorlmagefe]' is stored.

Input Porel Value
£ 16

(Previous Pozel Value
16

Cutput Image Value yil: ¥
From Theshold e e
Comparison MUX MUX

ADDER /
SUBTRACTOR
(16 Bit)

&

-

L

Eesult obtaned from
addition

Figure 5.5: Adder-Subtractor Connections

« The Adder-Subtractor component shown in Figure 5.5 shows that each of the
input ports is connected to two different data inputs with the help of a multiplexer

as both addition and subtraction has to be performed. The 'outputimage/c]' in the

59

software is equivalent to the result obtained at the output port of this hardware
unit. The hardware unit is positive edge triggered and takes one clock cycle to

output the result.

5.5 Threshold Comparison Circuit

The threshold comparison circuit compares the output of the Adder-Subtractor unit with a
constant (0.5 in this research) and produces an output depending on the comparison. The
software code snippet for this operation is shown in Figure 5.6. The following can be

inferred from the software code.

if (I==0) // no stacking constraint C-5
{
if (outputlmage[index] >= Threshold)
{
outputlmage[index]=1.0;
}

else

{
outputlmage[index]=0.0;
}

}

else // enforce stacking constraint C-6

{

if ((pixelBuffer[j+n*imagelvl-1] > 0.5) && (outputlmagelindex] >= Threshold))
{
outputlmage[index]=1.0;
}
else
{
outputlmage[index]=0.0;
}
}

Figure 5.6: Software Code Snippet for Threshold Comparison

The code in 'C-5" indicates that it is applicable only for the first level (droplet
density) in any channel. It compares the 'outputimage/c]' which is the result from

the Adder-Subtractor unit with the threshold value (0.5), if the result is greater

60

than or equal to the threshold then 'outputimage/c]' is replaced by the value 1.0

and if less than 0.5 'outputimage/c]' is replaced by the value 0.0.

The code in 'C-6' is applicable to any level except the first, the codes 'C-5" and 'C-
6' are similar but the only difference is the term 'pixelBuffer[c-1]' which is the
output value of the previous level (either 1.0 or 0.0) in the same channel in the

same pixel.

The design of equivalent hardware for the threshold comparator circuit is described

below.

The Threshold Comparison circuit consists of three main components namely

Threshold Comparator, Previous Value Register and Output Image Value Circuit.

The Threshold Comparator is generated with the help of the Core Generator
wizard and it performs signed comparison with a constant threshold value of 0.5.
The Figure 5.7 shows the schematic of the comparator where 'a/15:0]' is the input
port connected to the result of the Adder-Subtractor unit, 'Constant 0.5' is the
value with which the result is to be compared and 'a_ge b' is the output from the

comparator.

al15:0] ageb
Constant (0.5)

Figure 5.7: Threshold

Comparator

The next important circuit is the Output Image Value Circuit shown in Figure 5.8
where 'cmp' 1s the input port connected to the output of the threshold comparator,
'pV' is the previous core value (previous level), 'en' is used to control the circuit ('0'
in 'en' means no operation and 'l' means regular operation), 'ov/15:0]' is the 16 bit
output value and 'nv' is the value to the next processing element (typically next
level in the same channel). This circuit gives an output image value of 1.0 if all

the three inputs are 1 and 0.0 otherwise.

61

—cmp OV | 15: ()]
—pv
—len nypF—

Figure 5.8: Output Image
Value Circuit

Figure 5.9 shows the Threshold Comparison Circuit where there is only one
hardware unit for all the levels in a channel unlike the two code segments shown
in Figure 5.6. The difference is evident from the Previous Core Value register
which is set to the value '1' for the first level in all the channels. This is done by
driving the reset bit in the register to '1'. For all other cores that doesn't represent
the initial level, the reset bit of the previous value register bit is disabled (tied to

'0"). This reduces the unnecessary replication of hardware circuits.

FREV OUTPUT IMAGE .
v‘?l'élﬁjf - VALUE —Ar—»__To Adder-Subtractor unit
{181

THRESHOLD
VALUE (0.5)

To Mext
Processor
Clore

a
&

Result from
Adder-Subtractor

utit

From Prewious

Proceszsor Core
(Previous Level)

Figure 5.9: Threshold Comparison Circuit

As the output from the Threshold Comparison Circuit is ceiled (rounded to the
nearest integer value) to one of the two values (1.0 or 0.0), there arises an error
which is the difference between the original value and the ceiled value. The Figure
5.10 shows the software code snippet 'C-7' where the output value is subtracted

from the result of the addition giving the error value. The Adder-Subtrator unit is

62

used for this subtraction operation with the help of two 16 bit multiplexers

controlled accordingly.

errorlmage[index] =errorlmage[index] +inputPixel-outputimage[index]; C-7

if (errorlmage[index]>ErrorLimit)

errorlmage[index]=ErrorLimit; c-8
else if (errorlmage[index] <-ErrorLimit)

errorimage[index]=-ErrorLimit;

Figure 5.10: Code Snippet for Subtractor and Error Limiting Circuit
5.6 Error Limiting Circuit

This circuit is implemented to monitor the error value that accumulates over a period of
time when the pixels are being processed. The error value is constrained to a range of
values strictly between -1 and 1. The code snippet 'C-8' shown in Figure 5.10 infers that
when the error value is greater than the 'ErrorLimit' (value is 1), then the value of
‘errorlmagefe]' s set to 'l', but when the error value is less than '-ErrorLimit' (negative of
'ErrorLimit' which is '-1") the value of 'errorlmage/e]' is set to '-1' else if neither of the
conditions is satisfied, the error value remains unchanged. The equivalent hardware

conversion is shown in Figure 5.11.

(E?iorEalue from Adder—Subtr@
% 75

A

Y

[NEGERROR |i 46,/ POSERROR
LIMIT VALUE (-1.0) P AXTMULTIPLEXER |« LIMIT VALUE (1.0

) P }

A

Figure 5.11: Error Limiting Circuit

Both the Comparators are IP cores generated by using Core Generator software which
has a 'greater than' function and the other with a 'less than' function. The 'Neg Error Limit

Value (-1.0)' and 'Pos Error Limit Value (1.0)' are combinational circuits producing a

63

constant value of -1 or 1. The multiplexer is used to select one of the values based on the
output from the comparators. Figure 5.12 shows the schematic of both the comparators
where 'a gt b' and 'a [t b' are output bits obtained after comparison ('0' when the

condition is false and '1' when the condition is true).

—a|15:0] a_gt bl— a|15:0) alt bf—
D‘ Constant (1.0) Constant (-1.0)

Figure 5.12: Comparators (Greater Than and Less Than)

5.7 Error Registers

There are two Error Registers present in the Processor Core, one for storing the error
value output from the Error Limiting Circuit and the other to store the previously stored
error values in the Error Storage Block RAMs. The registers have the same design as the

Input Value registers that are 16 bits wide shown in Figure 5.13.

From Error Limiting Circuit
i’ 16

ERROR STORAGE
ERROR REGISTER REGISTER 16,

From Error
Storage Block
RAM

16
To Error Filter Circuit

Figure 5.13: Error Registers
The code snippet 'C-8" in Figure 5.10 indicates 'errorlmage/e]' which is equivalent to the
Error Register hardware unit. The registers are positive edge sensitive digital elements
and are very fast compared to Distributed or Block RAMs. They provide synchronous
operation avoiding timing conflicts. The upper half of this unit deals mainly with
calculating the output and the error value and the lower half gives details about the error

diffusion circuit with random weights generator circuits.

64

5.8 Random Weights-Values Generator

The importance and use of randomness in an image is discussed in Chapter 1., Section
1.1.5 . The software code snippet in Figure 5.14 shows the random numbers generated
using 'C' program. Thus, to design an equivalent hardware random number generator, the

'C' code must be thoroughly analyzed in order to match the outputs with the software unit.

void LAUsetWeights(float *weights)
{

float frand;

weights[1]=0.0;

weights[2]=0.0;

frand=((float)rand()/(float) RAND_MAX-0.5)*5.0/16.0; C-9
weights[0]=7.0/16.0-frand;
weights[4]=5.0/16.0+frand;

frand=((float)rand()/(float)RAND_MAX-0.5)*1.0/16.0; C-10
weights[3]=3.0/16.0-frand;
weights[5]1=1.0/16.0 +frand;

return;

Figure 5.14: Code Snippet for Random Weights Generation in 'C'
To design a hardware unit to generate the random weights and numbers, code snippets 'C-
9" and 'C-10' in Figure 5.14 have to be fully broken down into small segments for easier
understanding of the number generation process. All the floating-point numbers are
converted to equivalent Fixed-Point numbers and the range of numbers for 'frandl' shown
in the code snippet is determined. The calculated range of values for 'frand2' in code 'C-9'
is [-0.15625,0.15625] (Floating-Point), [-2560,2560] (Fixed-Point) and in code 'C-10" is
[-0.03125,0.03125] (Floating-Point), [-512,512] (Fixed-Point). The fixed-Point number
for the weight [7/16] is 7168, for [5/16] it is 5120, for [3/16] it is 3072 and for [1/16] it is
1024. Thus the added sum of all the weights should be equal to 1 or 16384 (Fixed-Point).
The value range for all the weights are shown in the following Equations 5.1, 5.2, 5.3 and

5.4.

65

7

weight[0] = — — frandl = 7168—([-2560 to 2560]) (5.1

6 .1
weight [4] = li6 + frandl = 5120+([-2560 to 2560]) (5.2)
weight [3] = 13_6 — frand2 = 3072—([-512t0 512]) (5.3)
weight [5] = % + frand2 = 1024—([-512t0 512]) (5.4)

Random numbers can be generated in hardware with the help of a Linear Feedback Shift
Register (LFSR) circuit [29], [30]. A LFSR is a sequential digital circuit designed with
the help of D-Flip Flops and XOR gates. The design depends on the basic fundamentals
of polynomial arithmetic in cyclic coding theory. If there are 'n' binary bits, the LFSR
produces a sequence of (2" — 1) different non-zero values. The circuit needs to be
designed in such a way that it satisfies the generating function called 'Primitive
Polynomial'. A 'Primitive Polynomial' is an irreducible polynomial that produces all the
elements in a given set. The sequence of random numbers generated by the LFSR has a
property in which a number will never be repeated until the whole sequence of numbers
are executed. The LFSR acts as a counter except that it produces randomness without
incrementing the result by 1 and it is faster than any other counter. Any digital counter
can count a particular range of values depending on the number of binary bits. Thus, for
representing the 'frandl' value of range [-2560,2560], the number of bits used must be
adjusted. The nearest number range that matches the above range is [-2048,2047] which
requires 12 binary bits to represent the whole range. 'frand?2' values range from [-512,512]
which can be represented exactly by 10 bits except the value 512. Hence from this
discussion it can be concluded that apporximately 95% of the random values can be
generated similar to the software 'C' code. This doesn't affect the performance or the
quality of the image as there is enough randomness introduced into the system to avoid
the artifacts. As the number of binary bits required are known, a primitive polynomial has
to be found that produces all the values in the range supported by the number of bits. The
polynomial is defined by the powers of 'x' as shown in the Equations 5.5 and 5.6.

66

Primitive polynomial (10 bits) = x"°+x’+1 (5.5)
Primitive polynomial (12 bits) = x"+x +x*+x’+1 (5.6)

LFSR consists of only D-Flip Flops and XOR gates. The gates are placed according to the
primitive polynomial. One end of the register is always 1 ('x”) and the other end is always
'x"" where 'n' is the number of bits used to generate the random numbers. Figure 5.15, 5.16

shows the design of LFSRs for 10 and 12 bits respectively.

£
.
F
)
-
)
-
)
-
)
-
)
[
)
CEI
) ;
F Y
)
Y
)
-

Figure 5.15: LFSR - 10 Binary Bits

O N:j@«'o
D D Die—Dff—D D—Dll—D D D D D [«

X X X X X X X X X X X X X

Figure 5.16: LFSR - 12 Binary Bits

To generate the weights [0,4,3,5], the random number generator hardware must interface
with an adder logic as from Equations 5.1, 5.2, 5.3 and 5.4, the 'frandl' or 'frand?2' is
added to the weight filter [7/16,5/16] and [3/16,1/16]. A two's complement
Adder/Subtractor is designed with one port of the adder tied to a constant value and the
other port is connected to the random number generator. The random weight filter is
divided into two units one with 'frandl' and the other with 'frand2' as constant values.
Each random weight filter has two adder/subtractor units, each connected to one of the
four constant values shown in the Equations 5.1, 5.2, 5.3 and 5.4. Both hardware units are
combined to form a fully functional random weights generator unit. Figure 5.17 shows
the random weights generator hardware unit where 'c/k' represents the synchronous clock,
'rst' 1s the clear bit that resets the registers to the initial setting, 'en' is the control port that
controls all the operations ('0' — no operation, 'l' — normal operation), 'wts0' is the random

weight[0], 'wts4' is random weight[4], 'wts3' is the random weight[3] and 'wits5' is the

67

random weight[5]. This hardware unit is a positive edge sensitive circuit. The output from

this unit is connected to the Error Filter Circuit.

wisO|15:0] =
—clk
wisd|15:0] p—
—&n
. wis3|15:0] p—
™ wisS|15:0]

Figure 5.17: Random Weights

Generator

5.9 Error-Filter Circuit

m_p=rowlndex+1; C-11

n_p=n;

if (m_p >= 0 && m_p < imageRow &8& n_p >= 0 && n_p < imageCol)
{

indexPrime=j+n_p*imagelvl+(m_p%bufferSize)*imageLvl*imageCol;

errorlmage[indexPrime] += errorlmage[index] * weightMatrix[4]; c-12

}

m_p=rowlhdex;

n_p=n+d;

if (m_p >= 0 && m_p < imageRow && n_p >= 0 && n_p < imageCol)
{

indexPrime=j+n_p*imagelvl+(m_p%bufferSize)*imageLvl*imageCol;
errorlmage[indexPrime] += errorlmage[index] * weightMatrix[0];

c-13

}

m_p=rowlndex+1;

n_p=n-d;

if (m_p >= 0 && m_p < imageRow && n_p >= 0 && n_p < imageCol)
{

indexPrime=j+n_p*imagelvl+(m_p%bufferSize)*imageLvl*imageCol;
errorlmage[indexPrime] += errorlmage[index] * weightMatrix[3];

}

m_p=rowlndex+1;

n_p=n+d;

if (m_p >= 0 && m_p < imageRow && n_p >= 0 && n_p < imageCol)
{

indexPrime=j+n_p*imagelvl+(m_p%bufferSize)*imageLvl*imageCol;
errorlmage[indexPrime] += errorlmage[index] * weightMatrix[5]; C-15

Figure 5.18: Code Snippet for Error Filter Circuit
The hardware circuit discussed in this section is one of the critical units used to diffuse

the errors generated at each pixel location. Figure 5.18 shows the software

68

implementation of the error filter circuit in 'C' code. The code in 'C-7/1' shown in Figure
5.18 describes the ON-OFF timing locations in the image and is also mentioned in Figure
3.4.Code'C-12','C-13",'C-14" and 'C-15" are the four error filters used to diffuse errors to
the neighboring pixels. Figure 5.19 shows how the error value at a particular location is
updated. Let 'PI','P2','P3', 'P4', 'P5', 'P6' be the pixels of an image and 'EPI', 'EP2',
'EP3' be the errors at the corresponding pixels 'P4', 'P5', 'P6', the error 'EPI' cannot be
used for processing until all the pixels 'P1', 'P2', 'P3" are processed. The code snippets 'C-
12", 'C-13', 'C-14' and 'C-15' shows two important variables 'errorlmage/c]' and

'weightMatrix[w]' that are multiplied and added to the previous error value at

S,

P4 \P5|P6

corresponding locations.

Figure 5.19:

Error Update

Technique
The hardware equivalent circuit uses multipliers, adders and register components to
efficiently perform the error diffusion mechanism. The multipliers and adders in this
circuit are implemented using the Xilinx Core Generator. Both the units are performed
signed operations and the multiplier unit has an output port the same width as the input
port. The implementation of the multiplier is shown in Figure 5.20 where 'a/15:0]',
'b[15:0]' are the input ports connected to the error register and the random weight
generator, ‘ce' is the clock-enable pin with highest priority that controls the multiply
operation ('0' — no operation, 'l' — normal operation), 'sc/r' is the clear bit used to reset the
multiplier output to a known value done during system start-up, 'c/k' is the clock input as
the unit is synchronized with a clock and finally 'p/29:14]' is the truncated output of the
multiplier circuit. The process of truncation doesn't affect the output and as the data bus is
16 bits wide, the result needs to be broken down taking the useful value alone. The adder

circuit is similar to the Adder-Subtractor circuit discussed earlier in this chapter in

69

Section 5.4 , the only difference being the absence of the 'SUBTRACT IN' input port as
the subtraction operation is not necessary. From Code snippets 'C-12', 'C-13', 'C-14" and
'C-15', it is evident that four multipliers, adders and registers are required to handle the
errors. The reason for using four 16 bit wide registers can be inferred from the Figure
5.19 that the error needs to be stored and propagated among the register circuits till the
error value is fully updated. Each error filter unit is arranged in a way that it diffuses the

error value generated to corresponding pixel.

—1[15:0] p[29:14] fm
e [1520
—_ e
—sclr
—telk

Figure 5.20: Multiplier Unit

The Error-Filter unit is shown in Figure 5.21 where there exists two random value
generator circuits for randomizing the error values, Random Value Generator 1 generates
values for all the input pixel locations but Random Value Generator 2 is enabled for
certain pixel locations only. The error value from the error register is given as one of the
inputs to the multiplier circuit and the random weight-values from the random weight
generator is used as the second input. Each of the adder units is connected to a 16 bit
register which stores the partial error value and shifts the value during successive pixel
operation. The Error-Filter [7/16] gives the error value of the next unprocessed neighbor,
thus the output of this filter is directly connected to the Previous Pixel Value Register.
The final updated value of the error is stored in the Error Storage Block RAM. The stored
error values are buffered through the Error Storage Register and finally to the error filter
[7/16] to add the error at the particular pixel location. The equivalent hardware circuit for
code 'C-12" is the Error-Filter [5/16], 'C-13' is error filter [7/16], 'C-14" is the Error-Filter
[3/16] and 'C-15'" is the Error-Filter [1/16] respectively.

70

1L

MULTIPLIER
1116

Error from Error Eegister
&

From Error Storage Block EAM

RANDOM VALUE
GENERATCR 1

ADDER
{16 Bit}

RANDOM VALUE
GEMERATOR 2

—

16
i

MULTIPLIER
516

16 Bit REGISTER

16 Bit REGISTER

16

ADDER
(16 Bit)

MULTIPLIER
31a

ADDER
(16 Bit)

i’

MULTIPLIER
THE

16 Bit REGISTER

. To Preswous Pizel Value Eegister
A

ADDER

(16 Bit)

fné
To Error Storage
Block EAM
/e
2X1
ALK

A A

Figure 5.21: Hardware Error-Filter Circuit

L

CORE 1

16 16
INPUT VALLUE PREVIOUS PIXEL
+ REGISTER ERROR REGISTER
PREV OUTPUT IMAGE s i
| VALLE > VALUE 18) ¥ +
(1Bit)
21 #x1
MUX MUX
ADDER /
SUBTRACTOR
(16 Bit)
i3 A 16 Y
Y
164 MNEGERROR i 16| POSERROR | 1
COMP;\.\:RATOR e 1.0) 9& X1 MULTIPLEXER (Xt 0% ST 1.0} e COMPARATOR
bt
¥
RANDOM WEIGHTS ERROR STORAGE
GENERATOR ERRORREGISTER REGISTER -
Jos & J
16
MULTIPLIER RANDOM VALUE MULTIPLIER MULTIPLIER
116 GENERATOR 2 5016 3116
34 [R’
RANDOM VALUE 2 : 2
ke 16 Bit REGISTER 16 Bit REGISTER 16 Bit REGISTER

ADDER
(16 Bit)

ADDER
(16 Bit)

ADDER
(16 Bit)

MULTIFLIER
TG

ADDER
(16 Bit)

I

Figure 5.22: Processor Core Functional Architecture

5.10 Processor Core Architecture

Figure 5.22 shows the full schematic of a single Processor Core unit of Figure 3.1 where
'A' is the data input pixels from the Core Data FIFO, 'B' is the Previous Core (Level)
value, 'C' is the value from the present Core connected to the next Core, 'D' is the stored
error values from the Error Storage Block RAM and 'E" is the final error value from the
Error-Filter circuit connected to the Error Storage Block RAM for storage. Output from
each Processor Core also represented as 'C', is obtained every 8 clock cycles and the

whole system runs at a frequency of 50 MHz which is also the system frequency.

73

Chapter 6. Error Storage Block Memory Architecture Design

6.1 Introduction

This chapter introduces the detailed concepts and information about the memory unit
designed to store the errors generated by a Processor core of Figure 3.1 at every pixel
location. This memory system is a most essential unit in the architecture and handles the
error storage operations and is responsible for efficient operation of the Error-Filter
Circuit in the Processor Core. All the hardware modules in this chapter are described in

Verilog HDL and fully tested using the ModelSim simulation tool.

6.2 Error Storage Block RAM Architecture

The size of each Error Storage Block RAM depends on the image width and the data
width of the values generated. The high level system architecture of Figure 3.1 consists of
12 cores, so the number of error storage blocks is equal to 12. The system supports an
image width of 24 inches and a resolution of 720 dpi which gives 17280 pixels in a given
row. The memory size doesn't depend on the number of rows or height of an image. The
number of address locations in the given memory should be 17280 and each address
space supports data of 16 bits. The total memory required for storing the errors generated
by all the cores is 207376 (12*16*17280) bits. Since it requires a large memory to
accommodate the data, Xilinx Block RAMs are used. In order to get the most efficient
and reliable design, the memory system is designed using the Xilinx Core Generator
wizard. The design uses a simple dual-port RAM configuration shown in Figure 4.1
where the data can be read from or written-to the memory simultaneously. Figure 6.1
shows a higher level schematic of the Error Storage Memory Block where 'dina/15:0]' is
the input port to the memory that transfers the error data, 'doutb/15:0]' is the error data
output port, 'addra[14:0]' is the address port for writing the error data to a particular
location, 'addrb[14:0]' is the address port for reading the error data from a particular

location, 'clka' , 'clkb' are the clock inputs for synchronous operation, 'wea' is the write

74

enable port used to control the write operations of the unit ('0' — No Write, 'l' — Normal
Write operation) and 'end' is the enable port for controlling the read operations in the unit
('0' — No Read, 'l' — Normal Read operation). The clock inputs 'clka' and 'clkb' are
connected to the same clock to perform read and write operations at the same clock
frequency. The input of the memory unit is connected to the Error Output of the Processor
Core and the address locations at which the data needs to be read from or written into is
controlled by the Processor Core Control Unit. The output from this unit is fed back to

the Error Filter circuit in the Processor Core.

jdina[lS:O]
addra[14:0]

— clka
st Sddrb[14:0] doutb[15:0] jmm

— enb

— clkb

Figure 6.1: Error Storage Block
RAM Memory Schematic

for (m=0; m<bufferSize; m++)

{for (n=0; n<imageCol; n++)
{for{c:O; c<imagelvl; c++)
{errorlmage{c+n*imagel.vi-i-m*imagetoi*imagel.ui]:{{fioat]fand{Jr‘{onat]RANDvMAXO.SJ*noiseLevei;
}}

}

Figure 6.2: Code Snippet Showing Random Values Stored in the Error Image Buffer

The code snippet in Figure 6.2 shows that initially all the memory locations are filled
with some random value, this is shown in the software code in terms of 'errorimage/]'.
This is achieved by initializing all the memory locations to some random values with the
help of a .COE file shown in Figure 4.10. The value for 'noiseLevel' in the code is a

constant value of 0.1. The initialization values are generated from the same 'C' code and

75

converted to a binary format that can be loaded into the hardware memory unit. The
address ports in this unit are connected to an address counter unit that increments or
decrements the address depending on the pixel location. If 'n' is the number of columns
(width) of an image, then '(n-2)' error values need to be stored. This is explained in detail
with respect to the image shown in Figure 6.3. Generally in any image, errors are
produced at every pixel location and the average number of error updates per pixel
location is 3. But, for cases discussed in Figure 3.4, the number of error updates comes
down to 2. The terms '4' and 'B' in the Figure 6.3 provide important information about
how the stored errors are added to the corresponding pixel locations. The stored error at a
pixel value should be added with the error-filter weight [7/16] and sent to the Previous
Pixel Register for processing. '4' indicates the errors being read from the storage unit and
B' indicates the errors generated at each pixel location being stored in the memory unit. It
can be observed that all the error values from the pixels are stored in the memory storage
except the last 2 pixels. The gray boxes indicate the 16 bit register associated with the
weight filter [7/16] in the Processor Core which is shown in Figure 5.21 in which the
register takes either the input from the Error Storage Register or the value from Adder

[3/16].

ERROR STORAGE MEMORY UNIT |
v
|##ﬁﬁﬁﬁﬁﬁﬁ¢ﬁﬁ#ﬁﬁﬁﬁ#ﬁfﬁ

@

| g—
—|
l—|
g—|
lg—|
L g—|
||
lg—|
|g—]
||
||
||
||
| —
||
at—|
|—|
| —

ﬁﬁ;—7@7¥¥;;;;7¥¥!;;;;;;ﬁ
RO N A K A A A A O A A A A A
####*#######*##*###

|
- Pixels

Figure 6.3: Error Storing Procedure Schematic

76

This process is better shown by the black boxes that represent the errors produced at each
pixel. The process of reading and writing the errors occur simultaneously. Referring to
the Figure 1.4, the last pixel in a row doesn't have the Error-Filter weights [7/16] and
[1/16]; the error at this location needs to be added to the value of the next pixel. Thus,
this error is connected directly to the Previous Pixel Register and this is the reason why
the error is not stored in the Error Storage Memory Unit. The read and write addresses
are connected to the same address counter and the storage unit is ingeniously designed in
such a way that the address is the same for reading and writing at any point of time and
the only difference is that the data is not read or written to the memory unit at the same
clock edge. This prevents collisions that may occur if an address location is read and
written at the same time. Since the system implements a serpentine scan technique, the
counter must be able to count up and down depending on the image row being processed.
The error corresponding to a pixel location must be added with the error-filter weight
[7/16] of the previous pixel and the result is to be sent to the Previous Pixel Register of

the current pixel.

To Firor Storage Register

{Processor Core)

ERROR STORAGE
BLOCK

ERROR
STORAGE RAM
(17280 X 16) Bits

From Processor .
Core

ADDRESS
COUNTER
(14 Bits)

Figure 6.4: Error Storage Block RAM Memory Unit

77

Figure 6.4 shows the high level schematic of the Error Storage Block RAM Memory Unit
which has two data ports, one from the Processor core and the other to the Core. The
address generation and control is discussed in detail in the next section which includes
the design and implementation of the address counter for the memory unit including the

Input Image Size Monitor.

6.3 Input Image Size Monitor

This section deals with the design and implementation of the unit used to count the
number of rows and columns of an image being processed. The Image Size monitor is a
binary counter with some combinatorial circuits added to control other units in the whole
system. The input to this counter is the output from Parameter Register 2 which gives the
number of Rows and Columns in the input image to be processed. This counter controls
the Address Counter of the Error Storage Memory Unit indicating when to count up or
down. If the current row being processed is odd, the Image Size Monitor instructs the
Address counter to count up and if the row is even then it instructs the counter to count
down thus establishing a serpentine scan technique. Figure 6.5 shows the higher level
schematic of the Image Size Counter circuit where 'cin/15:0]' represents the number of
columns (image width), 'rin/15:0]' represents the number of rows (image height), 'up' is
the control bit that instructs the counter to count up ('0' — no count, 'l' — count up), 'c/r' is
the clear bit to reset the counter initially to a known value, 'c/k' is the clock input, 'FCOL'
is the output port that indicate whether it is the First Column (pixel) in a row, 'LCOL'
indicates whether it is the Last Pixel in the row, 'LROW indicates whether it is the Last
Row being processed and 'up_err' is the control bit connected to the Address Counter of
the Error Storage Memory Unit ('0' — count-up, 'l' — count-down). This counter counts up
for odd-numbered rows and counts down for even-numbered rows. The address range for
up-count is '0' to '[rows — 2]' and for odd rows is '[rows — 2]' to '0'. The Image Size
Counter 1s incremented by the Processor Core Controller depending on the row to be

processed and is a positive edge sensitive digital circuit.

78

=—cin|15:0] FCOL
—rin|15:ﬂ] LCOL.

—up I
LROW

—clr
clk up_err

Figure 6.5: Image Size
Counter Schematic

6.4 Error Storage Memory Address Counter

The Address Counter is the digital component that provides addresses to the Storage
memory unit for parallel reading and writing of the errors generated at each pixel of the
image. The schematic for the address counter is shown in Figure 6.6 where 'ce' is the
clock-enable input port that controls the operation of the counter ('0' — no operation, '1' —
normal operation), 'c/r' is the clear bit, 'enr' is the read-enable bit ('0' — Read, 'l' — No
Read), 'enw' is the write-enable bit ('0' — Write, 'l1' — No Write), 'up_dn' is the control bit
used to instruct the counter to count up or down depending on the row number ('0' —
count-up, 'l' — count-down) and also this port is connected to the output port 'up_err' of
the Image Size Counter, 'clk' is the clock input for synchronous operation, 'addr[14:0]' is
the address port connected to the 'addra[i14:0]', 'addrb[14:0]' of the Error Storage
Memory, 'rd _en' is the read-enable output port connected the 'enb' port of the Error
Memory and 'wr_en' is the write-enable output port connected to 'wea' port of the Error
Memory. The ports 'enr' and 'enw' are directly connected to 'rd en' and 'wr_en' with a
delay circuit in between to transfer the control signal from the controller to the Error

Memory at the correct clock edge as shown in the Figure 6.7.

79

addr|14:0] ju
— I

enr
rd_en f—
enw
=t up_dn wr_enjp—
— clk

Figure 6.6: Error Storage Block RAM

Memory Address Counter

The controller provides the read/write commands to the Error Memory approximately two
clock cycles ahead and in order to transfer the control at the correct clock edge, a delay
unit is introduced. The delay unit is a positive edge triggered D-flip-flop and two of these
elements are used. The controller is a negative edge triggered system and gives the output
after the negative edge, and this is captured at the positive edge by the Address Counter
and at the next positive edge by the Error Storage Memory unit. The unit is designed very
carefully meeting the set-up and hold time constraints. All the units in the Error Storage
Memory Architecture are run at 50 MHz, the same as the overall system frequency. All

the units were fully tested and verified with the help of the ModelSim simulation

software.

IR r

DELAY [——
wea

FROM CORE D-Flip Flop
CONTROLLER

DELAY |—»

enb

ERROR
STORAGE
MEMORY

D-Flip Flop
Figure 6.7: Read & Write Port Connections

80

6.5 Total Functional View of Single Error Storage RAM Memory Module

Figure 6.8 shows the entire architecture of the Error Storage Block RAM memory unit.
The Input Image size monitor is connected to the Error Storage Block RAM Address
Counter unit that generates the address to which the data is to be stored and read. The
error values produced in the Processor Cores are sent to the Error Storage Block RAM
and the error values corresponding to a pixel location are accessed from the Block RAM
memory. The Error Storage Block RAM is a positive edge sensitive unit and the Error

Storage Block RAM Address Counter is negative edge sensitive.

FROM
PROCESSOR
CORE -
(16 Bits)

TO ERROR

STORAGE | o ERROR STORAGE
REGISTER BLOCK RAM
(16 Bits) (17280 X 16) Bits

ERROR STORAGE
INPU’STIEE/IAGE — BLOCK RAM MEMORY
MONITOR ADDRESS COUNTER ’

(15 Bits)

Figure 6.8: Error Storage Block RAM Memory Functional Architecture

81

Chapter 7. Output System Architecture Design

7.1 Introduction

This chapter addresses the development and design of output functional units of the
System Architecture of Figure 3.1. It gives a detailed explanation on the Output Data
FIFOs and Output Logic Units used in this Halftoning Architecture. The output unit is
one of the most critial units in the architecture as the output pixels generated by the
Processor Cores need to be buffered accordingly and the effective output image value is
to be calculated with the help of an output logic circuit. All the functional elements in the
Output System Architecture are described using Verilog HDL and simulated using

ModelSim simulation software.

7.2 Output Data FIFO

Each Output Data FIFO [1-12] of Figure 3.1 is a small memory unit connected to the
output of a Processor Core Unit to collect the output bits. This FIFO has 2 address
locations that supports data width of 1 bit. The reason of the FIFO having only 2 address
locations can be explained with respect to the Figure 3.7 where the gray colored boxes
indicate the output produced by each Processor Core. Cores 1 to 4 produce the output of
the next pixel when Core 12 delivers the output of the previous pixel. Thus, a FIFO with
2 address locations can accommodate and buffer the output bits without any loss. Figure
7.1 shows the schematic of the Output Data FIFO where 'data in' is the input port
connected to the Processor Core, 'data_out' is the output port of the FIFO unit, 'c/r' is the
clear bit, 'rd_en' is the control bit of the FIFO that dominates the read operation ('0' — No
Read, 'l' - Read), 'wr_en' is the write control bit of the FIFO ('0' — No Write, '1' — Write)
and 'clk' is the clock input. The output from the FIFO is taken every 8 clock cycles and the
control is given by the Core Controller. This is a fully automated process leading to

efficient buffering of output pixels. Figure 5.6 shows the software code snippet where the

82

term 'outputimage/[index]' represents the equivalent hardware memory that is the Output

Data FIFO.

——data_in data outp—
i clr

—trd_en
—iWr_en

— el

Figure 7.1: Output Data FIFO
Schematic
7.3 Output Logic Unit

j=0;
for (m=0; m<imageCol; m++)
{

for (n=0; n<imageChn; n++)

{
levels=numLevelsPerChannel[n];
pixel=0;
for (1=0; Izlevels; 1+ +)

{

|pixel+ =(outputBuffer[j]>0.5); - C-16
J++;

}

inputBuffer[n+m*imageChn]=pixel;

Figure 7.2: Software Code Snippet for Output
Calculation

This unit shown in Figure 3.1 is the most important unit for calculating the combined
output from the Processor Cores. Figure 7.2 shows the software code snippet for output
calculation using 'C' code. The variables in the code 'imageCol' represent the number of

columns (width) of the image, 'imageChn' represents the number of colors/channels in the

83

image, 'levels' represent the number of levels per channel, 'pixel' is a temporary variable
used to calculate the effective output from the Output FIFOs and 'outputBuffer/[j]' is the
output stored in a temporary buffer unit for subsequent output value calculation. It also
represents the Output Data FIFOs of Figure 3.1 in digital hardware. The value per level in
each pixel will be either '1' or '0' and the code suggests adding all the values in the levels
in each channel individually. Figure 7.3 shows the equivalent hardware unit for the output
calculation where '//2:0]' is the input port connected to three Output Data FIFOs and
'O[1:0]" is the 2 bit output calculated by the hardware. This unit is a combinatorial circuit
that uses Look-up-tables to produce the output. An adder used in the software code is
replaced by the LUTs as it is fast, simple and very efficient. The output is 2 bits wide
which can support four possible values (0,1,2,3). The ouput logic counts the number of

1's in all the three levels per channel and the value ranges from 0 to 3.

—412:0) O[1:0]}—

Figure 7.3: Output Logic Unit
Table 7.1 shows the output values according to the input values and these values are

stored in memory to access the data according to the input.

Table 7.1: Input Values & Corresponding Outputs

Input (Binary) Input (Decimal) Output (Binary) Output (Decimal)
'000' 0 '00' 0
'001" 1 '01' 1
'010' 2 '01' 1
011 3 '10' 2
'100' 4 '01' 1
101" 5 '10' 2
110 6 '10' 2
1 7 1 3

84

The Output Logic Circuit is designed using a gate level coding technique for maximum
performance and minimum gate delay. Figure 7.4 shows the full Output System
Architecture Figure 3.1 (Output Data FIFOs and Output Logic Units) and its connections.
The Output Logic Architecture consists of 4 Output Logic Units and 12 Output Data
FIFOs (1 per Processor Core). The Cores {1,2,3}, {4,5,6}, {7,8,9}, {10,11,12} represent
four channels (1 channel per set of Cores mentioned before) and each channel supports 3
levels. The allocation of the processing elements are done according to the channels and
starts from the very first set of cores. For example, if there are 3 channels , 3 levels per
channel, the sets {1,2,3}, {4,5,6} and {7,8,9} are switched ON for processing. The output
obtained is 2 bits per channel per pixel and the total is 8 bits per pixel. As the output logic
unit is a combinatorial circuit, the output of the whole system will be obtained in under
one clock cycle after the Output Data FIFO provides the output data. For maximum
quality in the output image, the number of levels per channel must be 3. The stacking
constraint as discussed in Section 1.1.7 is applicable to the elements in each set of
channels but not between the sets (no constraint between channels). The throughput in
this architecture doesn't depend on the number of channels and levels used, it is the same
for any number channels and levels. The output can be directly connected to a printer
head for image reproduction using the processed output pixels. The output image pixels
can also be stored inside the FPGA using a Block RAM unit for further buffering to other

printing devices.

85

From Processor Core 12 — Qutput Data FIFO 12

Output 2
" |Logic Unit 4

¥

From Processor Core 11 ——= OQutput Data FIFO 11

From Processor Core 10 —— Qutput Data FIFO 10

From Processor Core 9 —— Qutput Data FIFO 9

Y

| Output 2
" |Logie Unit 3

Y

From Processor Core 8 —— Output Data FIFO 8

From Processor Core 7 —— Output Data FIFO 7

8 Output

(8 Bits/Pixel)

From Processor Core 6 —— Qutput Data FIFO 6

Y

_| Output 2
" |Logie Unit 2

Y

From Processor Core 5 — Qutput Data FIFO 5

Y

From Processor Core 4 — Qutput Data FIFO 4

From Processor Core 3 ——» Qutput Data FIFO 3

| Output 2
" |Logic Unit 1

From Processor Core 2 ——» Qutput Data FIFO 2

Y

Y

From Processor Core 1 —| Quitput Data FIFO 1

Figure 7.4: Entire Output System Architecture

86

Chapter 8. Controller Architecture Development and Design

8.1 Introduction

The previous chapters in this research work dealt with the Datapath architecture where
the digital elements responsible for the arithmetic, logical and storage operations were
discussed. In this chapter a very detailed explanation of the control logic design is
presented. In fact, the most challenging and critical part of the system is the controller
design. The controller fully automates the system and completely reduces control
constraints that arise. The controller can be designed only when the Halftoning algorithm
at hand is thoroughly understood and when all constraints are known. The main
responsibility of the control logic is to provide command signals for specifying
operations to be performed at each system clock cycle. The controller will be a Finite
State Machine type which can be defined as a digital logic system that has a fixed number
of states and follows a predefined procedure. A 'State' in the Finite State Machine
Controller is an entity that defines the operation of a digital element (functional unit) on
a particular clock cycle of the system clock. A controller needs to know the previous,
present and next state according to the inputs given to the circuit. Thus a Finite State
Machine is a combination of both sequential and combinatorial elements. A control logic
fully controls all the elements in a digital circuit and leads to production of correct output
from the unit. The chapter provides all information about the controller used to entire the

whole Halftoning system.

8.2 Mealy and Moore State Machines

Finite state machines fall under two categories, one is the Mealy Model [31] and the other
is the Moore Model [31]. In the Mealy model, the output of the State Machine is
dependent upon both the input and the present state of the control logic system. Figure 8.1
shows the schematic of both Mealy and Moore models in which the Mealy model output

(Control Signal) are a function of both the input and present state whereas the Moore

87

model output is a function of the present state alone. The Moore state machine is easier to
implement and design when compared to the Mealy model as it is dependent on the
present state only, so less circuit dependency exists. The Mealy model consumes less
states to build since the next state is dependent on the input and present state, there will
be less memory required to store the value of previous and next states. The output in a
Mealy model is sensitive to the input irrespective of the clock edge. The output can
change when the input changes. In the case of the Moore model, the output changes only
on the next clock edge. A control algorithm can be modeled by using either a State
Transition Table or State Transition Diagram. A State Transition Table describing a
Finite State Machine shows the values of input, present state, next state and output values
of the Controller. The State Transition Diagram gives a schematic representation of all
the states and their transitions from one state to the other including outputs. Thus for
every controller logic, there exists a State Table and the State Transition diagram can be
drawn using the data obtained from the State table. There are several coding techniques
used to design a control unit and they are selected depending on the application. The next

section shows the various ways to design a control unit.

Input Input
Next State Logic Next State Logic
{Combinational {(Combinational
Circuit) Qutpit lagic Circuit) | Output logic
{Combinational {(Combinational
Stale memory Circuit) Slale memory > Circuit)
register . register
(Sequential (Sequential
Circuit) Circuit)
Moore Mealy

Figure 8.1: Mealy & Moore Models
8.3 Controller Design Techniques

The design technique is chosen according to application constraints. Some of the
constraints are speed of the system, size of the system and desired efficiency of the unit.

The major objective of the control logic design is to build a hardware circuit that achieves

88

the desired control algorithm in a coherent and uncomplicated procedure. Some types of
encoding a Finite State Machine are One-Hot encoding [35], One-Cold encoding [35],
Binary encoding [35], Gray Encoding, Almost One-Hot [35], Almost One-Cold [35],
Sequence Register and Decoder [34], PLA control [34] and Microprogramed control [34].

The following sections briefly discuss about each of these techniques.

8.3.1 One-Hot Encoding

This method uses one flip-flop per state in the control circuit. The term 'One-Hot' means
that only one flip-flop is set to ('l') at any particular time. The control bit is transferred
from one flip-flop to another at each clock cycle. The number of flip-flops used is equal
to the number of states which results in more flip-flop consumption than any other
method. This technique is not useful for Large Scale Integrated circuit implementation.
The One-Hot encoding technique is one of the fastest, simplest to build (both
combinatorial & sequential), the output logic is very simple to implement and includes
only 'OR' gates. This research project will use a One-Hot Encoded type Controller for
best performance, noise reduction and simplicity of implementation. Figure 8.2 shows an
example of the One-Hot encoding technique for a 7 state Finite State Machine. It can be
inferred that each of the 7 states have one flip-flop. There is a separate block for input
logic, next state logic and output logic. The output logic contains only 'OR' gates as the
output is equivalent to the output from one or more of the D-Flip-flops. Thus this coding

technique is simple and efficient.

Input

!

Input and Next State logic
(Combinational Circuit)

A + A + A + A + J + 4 * 4 +

-+ DFF -+ DFF -+ DFF -+ DFF -+ DFF -+ DFF | DFF

Qutput logic
(Combinational Circuit)

'

Qutput

DFF - D Flip-Flop

Figure 8.2: One-Hot Encoded Control Logic

&9

8.3.2 Almost One-Hot Encoding

This method is the same as One-Hot except that it takes a bit less than the one-hot. For
example, let 'n' be the number of bits/states in a control logic, One-Hot takes 'n' flip-flops
to implement the logic whereas Almost One-Hot takes '(n-1)' flip-flops to implement the
same logic. This is done by using all zero's to represent a state (typically Initial or Clear
State). The performance is the same as compared to the One-Hot but reduces the number

of flip-flops to represent a control logic.

8.3.3 One-Cold Encoding

This technique is similar to One-Hot encoding which uses one Flip-Flop to represent a
state but the flip-flop currently at work is cleared or set to '0' and all the others are set to
'I". This coding technique has all the attributes of One-Hot encoding and gives the same

results.

8.3.4 Almost One-Cold Encoding

This method is similar to Almost One-Hot where it takes a bit less compared to One-Hot.
Here the Almost One-Cold also takes a bit less when compared to the One-Cold
technique where there exists a state in which all the flip-flops have 1's for a clear or initial

state.

8.3.5 Binary Encoding

This type of encoding uses a minimum number of flip-flops depending on the number of
states in the given control algorithm. For example, if an algorithm has 7 states, the logic
requires 3 flip-flops to accommodate the whole sequence (2° = 8). Thus binary encoding
is proportional to the power of 2. This technique uses the minimum number of flip-flops
per range of states. With 'n' flip-flops, 2" states can be implemented. Figure 8.3 shows the
sequence of states in binary encoding for a 7 state control algorithm. The output
potentially can contain glitches as there can be more than 1 flip-flop changing state per
clock edge and the combinatorial logic circuit is also more complex when compared to

One-Hot encoding.

90

001 010 OI1 100 101 110 111
S, S8 S8 S, S S8 S

S« Represents the state
Figure 8.3: Binary Encoded State Machine

8.3.6 Gray Encoding

This type of encoding works on the principle of gray code where only one bit out of 'n'
changes at a given point of time or clock edge. Gray encoding overcomes the
disadvantages of binary encoding where there occurs a lot of glitches and the logic
required is reduced. This encoding is useful when the outputs are utilized asynchronously.
Figure 8.4 shows the sequence of states in Gray coding where only one bit changes per
clock cycle. The number of states that this technique can represent is the same as the
binary encoding method except the implementation is different. As only one bit changes,
the next state logic and the output logic utilizes less hardware when compared to the

Binary state machine.

000 001 011 o010 110 111 101
S, S8 S8 S8 S S8 S,

S: Represents the state

Figure 8.4: Gray Encoded State Machine

8.3.7 Sequence Register & Decoder Technique

This method is used in Medium Scale Integrated circuits where the techniques discussed
previously are not so efficient and feasible. This method uses a register to transition
through the states and the output of the register is connected to a decoder to provide the
outputs. If 'n' flip-flops are used in the sequence register, it can support 2" states and the
decoder provides 2" outputs as well. Figure 8.5 shows the schematic of this technique
where the input logic unit decides which state to go to according to the output of the
decoder. The output from the decoder is taken as the present state logic and compared
with the input logic to get the next state value. Thus all the control signals required to

control a system can be generated using this technique.

91

Input

Y

State Logic
(Combinational |-

Circuit) L
* Decoder Output
sequence —r
Register
(Sequential
Circuit)

Figure 8.5: Sequence Register & Decoder Technique

8.3.8 PLA Control

PLA is the acronym for Programmable Logic Array which is a device used to implement
complex digital circuits. It is a Large Scale Integrated (LSI) circuit that can be used to
design large complex combinational circuits efficiently. This method is similar to the
Sequence Register and Decoder method but all the combinational -circuits are
implemented using a PLA. The PLA logic reduces the hardware logic and decreases the
routing complexity. Figure 8.6 shows a PLA based controller where the Sequence
Register provides the present state information and the PLA connected to the input along
with the sequence register decides the microoperations to be performed. This control
method is used in circuits with a complex hardware and which is difficult to control using
conventional state machine techniques. For example, for approximately 100 states, One-
Hot encoding uses 100 flip-flops and not so feasible for large complex circuit control.
Thus, PLA based control comes to play in these circuits which offers a feasible solution

to accommodate all the states.

92

Input

sequence
Register
(Sequential
Circuit)

—p-| PLA = Output

Figure 8.6: PLA Control Technique

8.3.9 Microprogramed Control

In this type of control, the control program or sequence is coded into a memory (stored in
memory). The memory is typically a ROM (Read-Only Memory) where the control code
is hard-coded. This type of control is useful for applications or algorithms in which there
is a specific sequence that needs to execute periodically over a long time. Each micro-
instruction is stored in an address location and is accessed accordingly at each clock edge.
The control algorithm can be updated by simply re-writing the ROM with a new
sequence. The control unit consists of an opcode which defines the operation to be
performed by the datapath unit. It has a control address register and decoder that selects
the micro-instructions. The control address register gives the address location where the
specific micro-instruction is located. The micro-instruction field has the address value of
the next micro-instruction and the present control sequence. The address of the next
micro-instruction is fed to the address register so that the micro-instruction is obtained
from the ROM. This type of control technique is used in general purpose processor

architectures like Reduced Instruction Set Computers (RISC).

93

Opcode | Address

v

Control Address |e—

¥

Decoder

y

Mirco-Instruction
Memory (ROM)

y

Output -s=—] Instruction | Address

Figure 8.7: Micro-Programmed Control

Technique
8.4 System Controller Architecture Strategy

The Halftoning Hardware Architecture has 2 main Controllers for controlling the entire
system. It has the Input Memory Controller and the Processor Core Controller. The Input
Memory Controller controls the Input Image FIFO, Parameter Registers 1 and 2, Droplet
Densities Storage ROM, Input Level FIFOs and the Core Data FIFOs. The Processor
Core Controller controls the Processor Cores, Error Storage Block RAMs, Image Size
Monitor, Error Storage Block RAM Address Counter, Output Data FIFOs and Output
Logic Units. One way to implement a control logic is to replicate the Processor Core
Controller depending on the number of Processor Cores. In this research project, only one
Processor Core Controller is used and the control outputs are connected to the respective
Processor Cores with the help of Control Registers. The data buffering operations are
controlled by the Input Memory Controller. Both the Controllers are designed using One-

Hot encoding and the following sections discuss their design and operation in detail.

94

8.5 Input Memory Controller Design

The Input Memory Controller unit shown in Figure 3.1 is one of the two crucial
controllers that manages the input data transfer to the Processor Cores. This controller
controls the Input Data FIFO, Parameter Registers 1 and 2, Droplet Densities Storage
ROM, Input Level FIFO and Core Data FIFO as shown in Figure 4.13. The high level
schematic of the controller is shown in Figure 8.8 where the inputs are on the left and the
outputs to the right. This controller is designed using One-Hot encoding technique.
'C[1:0]" is the input port that is connected to Parameter Register 2 which gives the
number of channels per pixel, 'INIT" is the port connected to the Processor Core
Controller which indicates that all the Cores are ready for processing, 'LVAEMPTY" is the
signal that is connected to the 'Almost Empty' port of the Input Level FIFO, 'LVAFULL' is
the signal that is connected to the 'Almost Full' port of the Input Level FIFO, 'LVFULL' is
the signal that is connected to the 'Full' port of the Input Level FIFO, 'ON OFF" is the
control switch for this controller, 'RFULLI', 'RFULL?2', 'RFULL3', 'RFULL4" are the
signals connected to the "Full' ports of the Core Data FIFOs (1, 2 and 3), (4, 5 and 6), (7, 8
and 9), (10, 11 and 12), 'START is the input port that instructs the Input Controller to start
buffering the data, 'clr' is the reset bit used to clear the controller, 'clk' is the clock input
for synchronous operation, 'op/7:0]' is the output port that has all the control signals
connected to specific ports in the Input Data Memory Architecture and 'STOUT is the
output that instructs the Processor Core Controller to start processing the data. All the
elements this controller manages are positive edge sensitive, thus the control logic is
designed to be sensitive at the negative edge of the clock. This prevents any set-up and
hold time violations that may occur. The state diagram for the Input Memory Controller
shown in Figure 8.9 describes the operations that take place at each state. The following
describes the control sequence of the controller. Some variables are used in the state

diagram in which 'port' represents 'port = I' and 'port' represents 'port = ()'.

'Doy' 1s the first state in which the controller remains till it receives the 'ON_OFF

signal.

95

C[1:0] 0p|7:0] e
INIT

LVAEMPTY
LVAFULL

LVFULL

ON_OFF

RFULLI

RFULL?2

RFULL3

RFULLA

START

clr

clk STOUT

Figure 8.8: Input Memory

Controller Schematic

'Derr' 1s the clear state that resets all the datapath elements controlled by this unit.

'Drpy 1s the state in which the Input Image FIFO tells the controller to start the
data buffering operations. This is done by the port 'READY'. The controller

remains in the same state for 'READY" and moves to the next state for 'READY".

'Dy' and 'D,' are the states in the sequence that starts the input memory buffering.
The data is read from the Input Image FIFO and sent through the Droplet
Densities Storage ROM and finally received by the Input Level FIFOs.

'D," and 'D;' are the states that are executed in parallel where the Input Level FIFO
is filled with the values from the Storage ROM. The controller keeps reading the
Input Image FIFO till the Input Level FIFO is almost full. When 'LVAFULL' is
active, then the controller stops reading from the Input Image FIFO. It is the same

in case of the state 'D;' which is used to write data into Input Level FIFO.

96

LVYAFULL (o

LVAFULL

LVFULL & INIT

LVFULL

LVAEMPTY

(;

LYAEMPTY

RFULLI & C1_

kl):/

C
RFL LL1 & C1
RFULL2 & C2
RFU LL2 & C2

RFULL3 & C3
RFLLL3 & C3

RFULL4 & C4

!

_ RFULL4 & C4

Figure 8.9: State Diagram for Input Memory Controller

97

The controller has two small parallel control operations that take place till the
final pixel of the image is reached. The controller goes to state 'Ds' when the 'INIT
or ready signal from the Processor Controller and the Level FIFOs full signal is
asserted. In this state, the controller enables the read operation of the Level FIFO
as the read or write operations have one clock cycle latency, the read signal must
be given to the FIFO one clock edge before enabling the write-enable bit of the
Core Data FIFO.

The state 'D¢', 'D7', 'Ds', 'Dy' deals with the Core Data FIFO read/write operations.
There are 4 states mentioned as the architecture supports up to 4 channels. The
term 'C/1:0]' gives the number of channels in the given image ('C/' — 1 channel,
'C2"' — 2 channels, 'C3' — 3 channels, 'C4' — 4 channels). The sequence of execution
of the four states mentioned depends on the channel count and doesn't depend on
the number of levels. For example, if there are 4 colors then, states circulate from
'D¢' — 'D;' = 'Ds' — 'Dy' till the FIFO is filled. For 3 colors it is 'D¢' — 'D;' —
'Dy', for 2 colors it is 'Ds' — 'D;" and for 1 color it is 'D¢'. The Input Level FIFO is

read and Core Data FIFO is written simultaneously in all the mentioned states.

The controller enters state 'D;o' when the Core Data FIFOs are almost full. In this
state the read-enable signal is deactivated as the reading is one clock ahead of
writing. The last location in the Core Data FIFO is filled with the data from the
Level FIFO.

The last state is the 'Dy,' state which enables the start signal of the Processor Core
Controller resulting in pixel processing. The signal connected to the Core

controller is represented by 'CC'.

The states 'Ds', 'D¢', 'D;, 'Ds', 'Dd', Dy, 'Dyi' are executed only once at the
beginning before the pixels are processed. The Core Data FIFOs are automatically
filled by a small unit connected to Core Controller. This reduces the complexity
and results in the simplest design possible. But the states 'D', 'Dy', 'D,', 'Ds', 'D4'

are executed all the time till the image is completely buffered.

98

Table 8.1: Control Table showing Outputs and States

Control| op[0] | op[1] | op[2] | op[3] | op[4] | op[5] | op[6] | op[7] STOUT
State

DON

DCLR

DRDY

Do

D,

D,

D;

Dy

Ds

Ds

D,

Ds

Dy

=N EelEe =R el =l e =R o el Bl el R e i)
=N EeNEe =R Ee =1 Rl = el e R e i el)
S| = === =0 0o 0o o o o o o
— O | O | ORI OO0 |00 | OO
el =l el B el el e B e B Re R =N el e i e R e
i ==l N el el f el e B el R R e 2 B =2 =l e R)
ol B el e B el el e B e B Re R e 2 B =2 =l el)

Do

=R EelNe =R -l el =R EelRelle =Rl R
iRl Nellellel el leol e E=E ==l el e k=]

Dy 0 0 0 0 0 0 0

The outputs of this controller represented by 'op/7:0]' carries the control signals
for the Input Data Memory Architecture. 'op/0]' is the signal to reset all the
datapath elements connected to this controller, 'op/1]' activates the read-enable bit
of the Input Image FIFO, 'op/2]' is responsible for writing the data from Input
Image FIFO to the Input Level FIFO, 'op/3]' sets the read-enable bit to 'l1' for
reading the data values from the Input Level FIFO, 'op/4]' writes data from Input
Level FIFO to the Core Data FIFO (1, 2 & 3), 'op/5]' writes data from Input Level
FIFO to the Core Data FIFO (4, 5 & 6), 'op/6]' writes data from Input Level FIFO
to the Core Data FIFO (7, 8 & 9), 'op/7]" writes data from Input Level FIFO to the
Core Data FIFO (10, 11 & 12) and 'STOUT is the start signal given to the Core
Controller for processing the data in the Core Data FIFO. Table 8.1 shows the

control table for the Input Memory Controller.

99

8.6 Processor Cores Controller Design

This control unit is the most vital part of the Hardware Architecture that is responsible for
flawless processing of the input pixels. The controller is responsible for controlling the
Processor Cores, Error Storage Block RAM Memory System and the Output logic
System. Figure 8.10 shows the high level schematic of the Core Controller which is
positive edge sensitive. This Controller is designed using One-Hot Encoding technique.
'FCOL','LCOL','LROW are the input ports of the controller connected to the Input Image
Size Monitor that determines the specific pixel location, 'ON_OFF is the start signal
given to the control unit to initialize, 'START is the signal connected to the Input Memory
Controller that enables the Processor cores to start processing the input pixels, 'c/r' is used
to reset the controller at the start, 'c/k' is the clock input for synchronous operation,
'eop[2:0]" are the control signals connected to the Error Storage RAM, 'op/23:0]' are the
control signals connected to the Processor Cores, 'cop' is used to control the Input Image
Size Monitor, 'oop' is the signal to control the output system and 'INIT is the signal to the
Input Memory Controller stating that the Processor Core Controller is ready for
processing. The Figure 8.11 shows the state transition diagram for the Core Controller

unit. The operations in various states are described below as follows.

— FCOL eop|2:0] f=—
— LCOL 0p[23:0] fum—
- LROW cop p—
—1 ON_OFF INIT p—
— START 0op f—
- clr

—clk

Figure 8.10: Processor

Core Controller Schematic

100

Figure 8.11: Processor Core Controller State Transition Diagram

'Doy' 1s the first state in which the controller remains till it receives the 'ON_OFF
signal. Both Input Memory Controller and the Processor Core controller are

started at the same time (switched -ON).

'Dy' is the state where the controller activates the read-enable bit of the Data Core

FIFO. The data is read from the Core FIFO.

'Drpy 1s the state in which the controller indicates that it is ready to accept data.
The control unit stays in this state until the 'START signal is activated by the Input
Memory Controller.

'D,' is the state where the controller instructs the Input Pixel Register and the

Previous Pixel register to store the data obtained. The data read from the Core

101

FIFO is loaded into the Input Pixel Register and the Previous Pixel Register is

loaded with a previous data value from the processor core.

'D,' is the control state which notifies the adder to add the values in the two

registers (Input Pixel & Previous Pixel).

In the state 'Dj;', the controller activates the threshold comparison circuit which
compares the adder output with a constant threshold value. The signal 'LRLC
informs the controller that it is the last pixel in the last row being processed (final
pixel of the image). This state is branched into three other states to perform

parallel operations.
'Derr' s the clear state that resets all the datapath elements controlled by this unit.

'Dwrap 1s the state in which the controller drives the datapath elements to a halt as
it will be the final pixel of the image being processed. The controller goes back to

the state 'Doy' after 'Dyrap'.

State 'E, is reached after 'D;' where the controller enables the read operation of the
Error storage RAM. The controller enters this loop only when the current pixel

being processed is neither the first or the last in a given row.

'Ey' is the state where the controller performs the write operation on the Error
Storage RAM. The errors generated by the Error-Diffusion unit are stored at this
stage with the help of the Core Controller.

'E;)" is the state that increments the Error Storage Memory Address Counter to
read or write the errors in the Error Storage Block RAM. The 'CNTR' signal is
connected to the Memory Address Counter that is responsible for incrementing or

decrementing the address depending on the row being processed.

As long as the final pixel of the image is not reached, the following states are
executed. 'D,' is the state where the Adder-Subtractor unit is activated to subtract
the ceiled output value from the original adder value. The result obtained is the

error of the particular channel per pixel.

102

In 'Ds', the error value is fed to the Error-Limiting-Circuit to prevent the

uncontrollable build up of error.

'Ds' 1s the state where the controller instructs the Error Register to store the final
error value. The previous error from the Error Storage RAM is also loaded into
the Error Storage Register simultaneously. The random weights generator is also

activated to produce the weights.

The controller reaches the states 'Digrc7, 'Dirrcs' and 'Digrcs' only when the pixel

being processed is in first column and it is the last row of the image.

The controller reaches the states 'Dix;, 'Dirs' and 'Digs' only when the core is

processing the last row of the image except the first pixel of the last row.

The controller reaches the states 'Drc7, 'Drcs' and 'Drco' only when the first pixel of

each row is being processed except the last row of the image.

The controller reaches the states 'D;c7', 'Dics' and 'Dyco' only when the last pixel of

each row is being processed except the last row of the image.

The controller reaches the states 'D;, 'Ds' and 'Dy' only when it is neither the first

column, last column of a row and last row of the image being processed.

The states 'DLRFC7', 'DLR7', 'DFC7‘, 'DLC7' and 'D7' instructs the multipliers in the Error-

Diffusion units to multiply the stored errors with the random weights.

The states 'Digrcs's 'Digs's 'Drcs, 'Dics' and 'Ds' in the controller performs the
addition operation with the previously diffused errors. In these states, the Core

Data FIFO is read for processing the next pixel in line.

'Dirrce'y 'Dirds 'Drcd'y 'Dice' and 'Dy' are states where the controller notifies the
registers in the Error-Diffusion unit to store the partially processed errors for
further processing. The controller directs the Input Pixel Register and the Previous
Pixel Register to load the data values. Table 8.2 shows the control table for

Processor Core Controller.

103

Table 8.2: Control Table for Processor Core Controller

op[1]

op[9]

op[8]

op[7]

op[6]

op[3]

op[4]

op[3]

op[2]

0

1

1

0

0

CN.ST| op[0]

DON

DCLR

DRDY

Do

D,

D,

D;

D,

Ds

De

D;

Dy

Dy

DE,
DE,
DE,

DLRFC7

D LRFC8

D LRFC9

D LR7

DLR8

DLR9

DFC7

DFCS

DFC9

DLC7

DLC8

DLC9

DWRAP
CN.ST — Control State

104

Table 8.2 (Continued)

0

0

0
0

1

0

CN.ST|op[10]|op[11]|op[12] op[13]|op[14] op[15] op[16] | op[l17] op[18]|op[19]

DON

DCLR

DRDY

Do

D,

D,

D;

D,

Ds

De

D,

Ds

Dy

DE,
DE,
DE,

DLRFC7

D LRFC8

D LRFC9

D LR7

DLR8

DLR9

DFC7

DFCS

DFC9

DLC7

DLC8

DLC9

DWRAP
CN.ST — Control State

105

Table 8.2 (Continued)

INIT

00p

eop[0] | eop[1] | eop[2]

cop

0

0

0
0
0

0

CN.ST| op[20] | op[21] | op[22] | op[23]

DON

DCLR

DRDY

Do

D,

D,

D;

D,

Ds

De

D,

Ds

Dy

DE,
DE,
DE,

DLRFC7

D LRFC8

D LRFC9

D LR7

DLR8

DLR9

DFC7

DFCS

DFC9

DLC7

DLC8

DLC9

DWRAP
CN.ST — Control State

106

8.7 Processor Core Control Registers

The Halftoning architecture consists of 12 Processor Cores and each core is one clock
cycle behind the succeeding core. The Core Control unit is designed for one core and to
control all the cores present in the architecture, there must be 12 control units. This
results in higher hardware utilization and is not so efficient. In this research, a high speed
and a very efficient control unit is designed which avoids the need for redundant Core
Controllers. The main control unit is the Core Controller that is positive edge sensitive
and as the Processor Cores are also positive edge sensitive, the control unit for these
datapath elements must be negative edge sensitive to eliminate timing problems. Thus,
the Core Controller unit is connected to 12 control registers in a sequence as shown in

Figure 8.12.

O T T T T T U N W N Ny

Core Controller —',Lp. CIH-{C2 - CIF CA e CSH{ Co e CT H{ CS He{ C9 |- : o c 5 €
24 10 11 12

24 24 24 uf 24 z4r 24 24 24 mt ME 24

Core | Core | Core | Core | Core | Core | Core | Core | Core | Core | Core | Core

1 2 3 4 3 6 7 8 9 10 11 12
B TR TR TR I R TR R T B s s
Pu;i:i:::\i‘:ﬂe "eg::‘;:fés‘:ge C1 to C12 - Control Registers

Figure 8.12: Processor Core Control Registers
This process creates a delay between the processing elements and results in the correct
execution of the input pixels. The control registers represent a huge shift register shifting
its value to the next control register every clock cycle. The control register 'C12" is 12

clock cycles behind the register 'C/' and this establishes the one clock cycle delay

107

between the Processor Cores. There are two different control register designs in this

architecture depending on the number of levels per channel used.

= rin|23:0] rout[23:0]
— 210
— clr

clk

Figure 8.13: Control Register (1
Data Input)
One of the registers is shown in Figure 8.13 where 'rin/23:0]' is the control input
connected to the output of the Core Control Unit, 'rout/23:0]' is the output of the register
which is connected to the control bits of the Processor Cores, 'en' is the input bit that
enables or disables the control register according to the Image parameters, 'c/r' is the reset
bit used to clear the contents of the register initially and 'c/k' is the clock input for

performing synchronous operations. All the Control Registers are negative edge sensitive.

din1[23:0] dout[23:0]jem
din2[23:0]
din3[23:0)
= addr|1:0]
— eI

— clr

- clk

Figure 8.14: Control Register (3
Data I nputs)
Figure 8.14 shows the other type of Control Register designed to handle the constraints
where 'dinl[23:0]', 'din2[23:0]', 'din3/23:0]" are the data inputs in which the register can
accept the incoming data from 3 different Control Registers, 'addr/1:0]' indicates which
Control Register to accept data from and the rest of the ports are similar to the Control

Register in Figure 8.13. This design is used for the cores that support the first level in

108

each channel with the exception of the first channel. The control bits for the control

registers are supplied by a separate unit shown in Figure 8.21.

Figure 8.15 shows how all the control registers are connected. These connections are
based on the various image configurations that the Halftoning hardware system supports.
The maximum number of channels channels supported are 4 and the number of levels are
3. All the Processor Cores are divided into 4 units with 3 Processor Cores each. The Core
'C4' uses the 3 data input control register configuration which has inputs from 'C/', 'C2'
and 'C3', 'C7" is connected to the inputs from 'C4', 'C5' ,'C6' and finally 'C10' is connected
to the inputs from 'C7', 'C8' and 'C9'. These configurations are explained in the points

described below where 'I/c,l]' represents the image with 'c' channels and '/' levels.

C11

HT

C12

I 24 I 24, Iz-i:
I

Figure 8.15: Control Register Connections

For 1/4,3], the control data is transferred from 'CC' — 'CI' — 'C2' — 'C3' —
'C4 - 'CSs' - 'C6' - 'C7" - 'CS8' - 'C9 - 'CI10" — 'Cl1' — 'CI2" with one
clock cycle delay between each Control Register.

For 1/4,2], the control data is transferred from 'CC' — 'CI' — 'C2' — 'C4' —
'CS'—'C7'—'C8 - 'Cl10"—'ClI'.

For I/4,1], the control data is transferred from 'CC' — 'CI' — 'C4' — 'C7' —
'C10'.

For 1/3,3], the control data is transferred from 'CC' — 'CI' — 'C2' — 'C3' —

'C4 —'C5'—'C6' - 'C7'—'C8' —'CY".

109

For 1/3,2], the control data is transferred from 'CC' — 'CI' — 'C2' — 'C4' —
'C5'—-'C7' —'CS'.

For I/3,1], the control data is transferred from 'CC' — 'CI' — 'C4' — 'C7".

For 1/2,3], the control data is transferred from 'CC' — 'CI' — 'C2' — 'C3' —
'C4' —'C5' —'C6'.

For 1/2,2], the control data is transferred from 'CC' — 'CI' — 'C2' — 'C4' —
'C5'.

For 1/2,1], the control data is transferred from 'CC' — 'CI' — 'C4'.
For I/1,3], the control data is transferred from 'CC' — 'CI' — 'C2' — 'C3".
For I/1,2], the control data is transferred from 'CC' — 'CI' — 'C2".

For I/1,1], the control data is transferred from 'CC' — 'CI".

8.8 Error Storage Block RAM Control Registers

The Processor Core Controller controls the operations of Error Storage Block RAMs.
Each Processor Core has one Error Storage Block RAM to store the errors generated at
each pixel location. There are 12 Error Storage Block RAMs in this hardware design and
all of them are controlled by using Error Storage Block RAM control registers. The
operating procedure is similar to the Processor Core Control Registers where each
register is 1 clock cycle behind its succeeding register. Figure 8.16 shows the high level
schematic of the Error Storage Block RAM control registers where 'E/' though 'E12'
represent the control registers connected in sequence serially. Each register is 3 bits wide

and are negative edge triggered to eliminate timing problems.

Figure 8.17 shows the connection diagram of all the Error Storage Block RAM Control
Registers. All the Error Storage Block RAMs are divided according to the Processor
Cores. The configurations are explained in the points described below where 'I/c,/]'

represents the image with 'c' channels and '/' levels.

110

L T T T T T T A A T

Core |3, |.. E E E
» J L L LS g { 3

Controller 7 El1 E2] E3] Ed] ES e K6 e E7 e E8] E9 | 10 B 11 — 12

Y Y Y Y Y YN Yy YN
Error|Error|Error|Error |Error |Error |Error|Error|Error|Error|Error|Error
RAM|RAM |JRAM |RAM |[RAM |RAM |RAM |RAM | RAM | RAM |RAM |[RAM

1 2 3 4 5 6 7 8 9 10 11 12

P“;i";fi;iﬁige "egz"r;?"ifgg" Ef to E12 - Error Storage Black RAMs Gontrol Registors

Figure 8.16: Error Storage Block RAM Control Registers

El —jP E4 ? E7 ? E10
L 4 A 4

K2 Es S Ell

3, 3/ 3; 3
y 7 y \ I
K3 E6 E9 E12

3, 3 3, 4

r4 .ff ri _’L'"

Figure 8.17: Error Storage Block RAMs Control Registers Connections

For 1/4,3], the control data is transferred from 'CC' — 'El' — 'E2' — 'E3' —
'E4' — 'ES' - 'E6' — 'E7' — 'E§8' — 'E9' — 'EI0' — 'E1l' — 'E12' with one
clock cycle delay between each Control Register.

For I/4,2], the control data is transferred from 'CC' — 'El' — 'E2' — 'E4' —
'ES' - 'E7' - 'ES8' = 'E10' — 'E1]'.

For I/4,1], the control data is transferred from 'CC' — 'El' — 'E4' — 'E7' —
'E10'.

111

For 1/3,3], the control data is transferred from 'CC' — 'El' — 'E2' — 'E3' —
'E4' — 'ES' - 'E6' > 'E7' — 'ES8' > 'EY".

For 1/3,2], the control data is transferred from 'CC' — 'El' — 'E2' — 'E4' —
'ES' - 'E7'—'ES'.

For 1/3,1], the control data is transferred from 'CC' — 'El' — 'E4' — 'E7".

For 1/2,3], the control data is transferred from 'CC' — 'El' — 'E2' — 'E3' —
'E4' — 'E5' — 'E6'.

For 1/2,2], the control data is transferred from 'CC' — 'El' — 'E2' — 'E4' —
'ES'.

For I/2,1], the control data is transferred from 'CC' — 'El' — 'E4'".

For I/1,3], the control data is transferred from 'CC' — 'El' — 'E2' — 'E3".

For I/1,2], the control data is transferred from 'CC' — 'El' — 'E2".

For I/1,1], the control data is transferred from 'CC' — 'E1".

8.9 Output Control Registers

The Output Control Registers manages the operations of the Output System/Logic. There
are 12 registers, one for each Output Data FIFO. The Core Controller provides the control
signals to these registers and the operation procedure is same as the Core Control
Registers. Figure 8.18 shows the ideal connection of all the Output control Registers
where the controllers are connected in sequence one after the other. The Output Register
Control Circuit consists of 3 main components namely 1-Input Output Control Register,
3-Inputs Control Register and an Output Switch Circuit. The Core Controller gives a
single bit control signal to the output registers and depending on the configuration of the

input image, the control data is transferred from one output register to the other.

112

Core
Controller

1

Out
Switch

Out
FIFO
1

Out
FIFO
2

Out
FIFO
3

Out
FIFO
4

Out
FIFO
5

Out
FIFO
6

Ont
FIFO
7

Out
FIFO
8

Out
FIFO
9

Out
FIFO
10

Out
FIFO
11

Out
FIFO
12

[

i

I

i

1

i

i

I

i

i

i

i

b
—,

S JF T P LA

Negative-Edge
f__ Sensitive

Positive-Edge

Sensitive 01 to 012 — Output Control Registers

Figure 8.18: Output Control Registers

Figure 8.19 shows the schematic of the three components that constitute the Output
Control system where 'inpt', 'inpt[3:1]', 'inpt[12:1]" is the control input ports of 1/3 bit
Output control Registers and Output Switch, 'en' is the port used to enable or disable the
Control Register according to the Image Configuration, 'addr[1:0]', 'addr[3:0]' indicates
the control register from which the data is to be obtained (3 bit Output control Register &
Output Switch) and the rest of the ports in all the 3 Registers are the same as that of the
Core Control Registers. The output port of each Output Control Register (1/3 bits) is
connected to the write-enable port of the corresponding Output FIFO and the output port
of the Output Switch is connected to the read-enable ports of all the Output FIFOs.

— inpt|3:1] oupt inp|12:1] outp }—
—inpt oupt}— —faddr[1:0] —addr|3:0]
—den —ien —1en
—clr —cir —¢cir
—clk —clk —clk
1 Bit Output 3 Bit Output Output Switch

Conirol Register

Control Register

Figure 8.19: Output Control Registers (1/3 bits) & Output Switch

The Figure 8.20 shows the connection diagram of the Output Control Registers along
with the Output Switching Circuit. The Output Control registers are connected to the

113

write-enable port of the Output Data FIFOs and the Output Switch is connected to the
read-enable port of all the Output Data FIFOs. Given below are the key points that govern

the switching procedure of these Output Control Registers:

1 1 1 0
o1 |’ o4 - o7’ 010 U
P
ki l:
o2 | os os | o11
T To Ouiput
e FIFO
y ¥ 3 | Read-enable Port
03 P« 06 |4 09 s 012

T —-=w

Figure 8.20: Output Control Registers Connection Diagram
For 1/4,3], the output control bit is transferred from 'CC' — 'OI' — '0O2' — 'O3'
—'04'—'05' - '06' - '07' - '08' - '09' — '010' = '011' - '012' = '0S
with one clock cycle delay between each Control Register. 'OS' represents the

Out Switch.

For 1/4,2], the control data is transferred from 'CC' — 'Ol' — '02' — '04' —
'05' —'07' —'08' - '010' - '011' - '0S'.

For 1/4,1], the control data is transferred from 'CC' — 'Ol' — '04' — 'O7' —
'010'—'0S".

For 1/3,3], the control data is transferred from 'CC' — 'Ol' — '02' — '03' —
'04' —>'05' - '06' —'07' - '08' — '09' - '0S.

For 1/3,2], the control data is transferred from 'CC' — 'Ol' — '02' — '04' —
'05'—'07'—'08' — '0S'.

For 1/3,1], the control data is transferred from 'CC' — 'Ol' — '04' — 'O7' —
'0S'.

114

For 1/2,3], the control data is transferred from 'CC' — 'Ol' — '02' — '03' —
'04' —>'05' —'06' = '0S'.

For 1/2,2], the control data is transferred from 'CC' — 'Ol' — '02' — '04' —
'05'—'0S'.

For 1/2,1], the control data is transferred from 'CC' — 'O1' — '0O4' — 'OS.

For I/1,3], the control data is transferred from 'CC' — 'Ol' — '02' — '03' —
'0S'.

For I/1,2], the control data is transferred from 'CC' — 'O1' — '02' — 'OS.

For I/1,1], the control data is transferred from 'CC' — 'O1' — 'OS'.

8.10 Control Registers Switching Circuit

The image configuration is enabled in the Control Registers using the 'en' pin shown in
figures 8.13 and 8.14. Figure 8.21 shows the combinational switching unit used to enable
the Control Registers (both Core & Output) where 'CL/4:0]' is the channel and level
input taken from the Parameter Register 2, 'cin_cont[1:0]' is the output port that has
information about the number of channels in the given Input Image, 'en/12:1]' provides
the control bits to the Control Registers (both Core & Output) depending on the
channel/level configuration, 'opt addr[3:0]' is the output bits that enable the Output
Control Register according to the Configuration and 'sel_addr/[1:0]' is the output port that
is connected to the 'addr[1:0]' port of 3 Data Input Control Register shown in Figure
8.14. Truth tables are used to design the combinational circuit to produce the outputs
'cin_cont[1:0]', 'en[12:1]', 'opt_addr[3:0]', 'sel_addr[1:0]' from the Channel/Level input
from the Parameter Register 2. Truth table for 'en/12:1]', 'cin_cont[1:0]', 'opt_addr[3:0]'
and 'sel_addr[1:0]" are shown in Table 8.3. 'C' represents the number of channels and 'L’
represents the number of levels in the original image. The circuit is fully combinational

and is designed using Gate Level implementation for minimum latency.

115

—{ CL|4:0]

cin_cont|1:0]
en|12:1]
opt_addr[3:0]
sel_addr|1:0]

Figure 8.21: Switching Unit for
Core & Output Control Registers

Table 8.3: Truth Table for Control Registers Switching Circuit

C L en[12:1] cin_cont[1:0] | opt_addr[3:0]| sel addr[1:0]
100 11 "T11111111111" "1 '1100' "1
4) 3)

100 10 '011011011011" 1 '"1011" '10'
4) 2)

100 01 '001001001001" "1 '1010' '01'
4) (1)

011 11 '000111111111" '10' '1001" "1
3) 3)

011 10 '00001101101T1" '10' '1000' '"10'
3) 2)

011 01 '000001001001" '10' '0111" '01'
3) (1)

010 11 '000000111111" 01’ '0110" "1
(2) A3)

010 10 '000000011011" '01' '0101" '10'
(2) 2)

010 01 '000000001001" '01' '0100' '01'
(2) (1)

001 11 '0000000001 11" '00' '0011' "1
(1) A3)

001 10 '000000000011" '00' '0010' '10'
(1) 2)

001 01 '000000000001" '00' '0001" '01'
(1) (1)

116

8.11 Auto-Write Data Core FIFO

This section deals with the Input Data Memory control where initially the Data Core
FIFO is filled (write operation) with the help of the Input Memory Controller and as the
Processor Core starts processing the input data, the Data Core FIFO should be filled
accordingly as there exists a delay between each Processor Core. Figure 8.22 shows the
Auto-Write circuit that reads the Input Level FIFO and then writes the data obtained from
it to the Core Data FIFO.

1, 1, 1
01 04 071 H —— o1

i V]
7
Core Input Core
Core IMC—p| Data Level | 1728 Lo iMc Core
FIFO FIFO
IMC—s] D212 FIFO Data | oo
“Mrro 4.5.6 7,89 i
123 [10,11,12
IMC

Figure 8.22: Auto-Write Circuit for Core Data FIFO
This circuit uses the control signals from Output Control Registers where 'RD1', 'RD2",
'RD3', 'RD4" are the read-enable bits managing the read operations of the Input Level
FIFO, 'WRI' is the write-enable bit for Data Core FIFOs (1, 2, 3), 'WR2' is the write-
enable bit for Data Core FIFOs (4, 5, 6), '"WR3' is the write-enable bit for Data Core
FIFOs (7, 8, 9), 'WR4' is the write-enable bit for Data Core FIFOs (10, 11, 12) and 'IMC'
represents Input Memory Controller unit. 'RDI', 'RD2', 'RD3', 'RD4' uses the 3-Input
Control Register configuration and 'WRI', 'WR2', 'WR3', 'WR4' uses the 1-Input Control

117

Register to implement the Auto-Write and Auto-Read operations. The connections to the
ports of these registers are similar to the Output Control Registers. Initially the Input
Level FIFO is read and the Data Core FIFO is written with the data from the Level FIFO
using the Input Memory Controller. This process stops when the Core Data FIFOs are
completely full and from this point, the control unit has no control over the write-enable
pin of the Data Core FIFOs. The main reason behind this type of implementation is that
the input data read from the Core FIFOs does not occur at the same time (different for
each Processor Core, 1 clock cycle delay), thus the cores are divided based on channels as
shown in Figure 4.13. The image parameters decide the time when the Data Core FIFO

should be filled and the procedure is described below briefly.

For I/4,3], the read and write control is transferred from 'CC' — 'Ol' - '02' —
'03' — 'RDI' — 'WRI','0O4' — '05' — 'O6' — 'RD2' — 'WR2','O7' — '08"' —
'09' — 'RD3' — 'WR3','010' - 'O11' - '012' — 'RD4' — 'WR4".

For I/4,2], the read/write control data is transferred from 'CC' — 'OI' — 'O2'
— 'RDI' — 'WRI', 'O4' — '05' — 'RD2' — 'WR2', 'O7' — 'O8' — 'RD3' —
'"WR3','0O10" — 'O11' — 'RD4' — 'WR4".

For I/4,1], the read/write control data is transferred from 'CC' — 'OIl' — 'RDI'
— 'WRI','O4' — 'RD2' — 'WR2', 'O7' — 'RD3' — 'WR3', 'O10' — 'RD4' —
'"WR4'.

For 1/3,3], the read/write control data is transferred from 'CC' — 'OI' — 'O2'
— '03' — 'RDI' — 'WRI','0O4' — '05' — '0O6' — 'RD2' — 'WR2','O7' — 'O8'
—'09' — 'RD3' — 'WR3'.

For 1/3,2], the read/write control data is transferred from 'CC' — 'OI' — 'O2'
— 'RDI' — 'WRI', 'O4' — 'O5' — 'RD2' — 'WR2', 'O7' — 'O8' — 'RD3' —
'"WR3'.

For 1/3,1], the read/write control data is transferred from 'CC' — 'OI' — 'RDI'
— '"WRI','0O4' — 'RD2' — 'WR2','O7' — 'RD3' — 'WR3'.

118

For 1/2,3], the read/write control data is transferred from 'CC' — 'OI' — 'O2'
—'03' - 'RDI' — 'WRI','O4' — '05' — '06' — 'RD2' — 'WR2".

For 1/2,2], the read/write control data is transferred from 'CC' — 'OI' — 'O2'
— 'RDI' — 'WRI','04' — '05' — 'RD2' — 'WR2".

For 1/2,1], the read/write control data is transferred from 'CC' — 'OIl' — 'RDI'
— '"WRI','0O4' — 'RD2' — '"WR2'.

For I/1,3], the read/write control data is transferred from 'CC' — 'OI' — 'O2'
—'03' - 'RDI' — 'WRI'.

For I/1,2], the read/write control data is transferred from 'CC' — 'OI' — 'O2'
— 'RDI' — '"WRI'.

For I/1,1], the read/write control data is transferred from 'CC' — 'OI' — 'RDI'
— '"WRI.
The digital components discussed in this chapter constitute to form the Control Unit for
this Halftoning Architecture. The circuits are described using Verilog and fully tested
using ModelSim. One-Hot Encoding technique is used to maximize the performance and
minimize the hardware logic. All the control units in this architecture run at 50 MHz

which is also the system frequency.

119

Chapter 9. System Architecture Performance and Functional
Analysis and Results

9.1 Overview

This chapter provides detailed information on the system architecture performance and
functional analysis and results results obtained from HDL post-implementation
simulation. The Halftoning hardware architecture discussed in the previous chapters is
tested with the help of a Verilog test fixture which is a testbench written in Verilog HDL.
Input image pixels (CMYK) / parameters are passed to the hardware architecture using a
testbench file and the outputs were written to a text file to convert the output pixels to an
image format usiing Matlab. The following sections discuss the performance and

functional analysis of the architecture and results.

9.2 Performance Analysis and Results

The halftoning algorithm described in this research implements all the basic concepts of
blue-noise multitoning with error diffusion. In this algorithm, the number of colors and
the number of gray levels are taken from the input image. The Droplet Densities Storage
ROM of the architecture are filled with the gray level intensities used for dividing the
original image into sub-images. Consider the case of the algorithm being implemented in
a traditional sequential CPU and that the input image pixels are processed in a serpentine
fashion and that the concept of Parallelism is not used in the original software code. It
starts with the first color, goes through every piece of code until it reaches the end of the
image. The concept of stacking is only between the different levels of a color but not
between different colors. Thus it can be said that the color in one pixel need not wait for a
different color in the same pixel for processing. But as the algorithm is run on a CPU and
due to the lack of parallelism in the code, the execution takes place in an interdependent
sequence. The advantages of randomizing the error filter and the reason for using a

serpentine scan method were discussed in section 1.1.3 . Thus the average time taken by a

120

sequentially executing CPU executing the algorithm for an image size of 799 X 1195
pixels is approximately 2.8 seconds without any other process running in the background.
The time taken by the CPU is calculated by using a 'C' code that tells the amount of time
consumed to execute a code. The image is run on the CPU for 100 times and an average
is taken. The time consumed is more than 3 seconds when this code is run along with
other background processes in CPU. It is felt the major advantage of this halftoning
algorithm is that the output image or the halftoned image obtained has better quality
when compared to other halftoning algorithms. The performance and throughput of the
algorithm can be maximized by parallelizing the code to the maximum extent possible
which was done prior to development of the parallel implementing system architecture
presented within this thesis. The algorithm, written in ‘C’, was decomposed into
segments and each segment is thoroughly analyzed for an equivalent hardware circuit
implementation. The resulting system architecture as implemented into the FPGA chip is
run at 50 MHz where an output is obtained every 8 clock cycles. The number of pixels of
an input image that this hardware can process per second is calculated [36] using

Equation 9.1. Hence, the hardware can process 6.25 million pixels per second as shown in

Equation 9.2.
) System Clock Frequency
Th hput (Pixels|Second) = .
roughput (Pixels/Second) Number of Clocks per Output ©-1)
6
Throughput = SO0 Clocks/Second) _— 655000 piels Second 9.2)

(8 Clocks| Pixel)

The algorithm was run on a single sequential CPU for 100 times and the average
execution time was calculated. The output results were tested, verified and the related
performance was calculated using the Equation 9.5. According to the Equation 9.2, when
an image size of 799 X 1195 pixels is fed as input to the system architecture, the entire
image will be processed in 0.153 seconds or in just 153 milliseconds as shown in the
calculation 9.3.

(799% 1195 Pixels)
(6250000 Pixels/ Second)

Execution Time = = 0.1527688 Seconds 9.3)

121

The initial data buffering operations take about 20 microseconds which is constant for an
image of any size and the buffer time when added to the execution time gives the total

time taken to process the image shown in calculation 9.4.

Execution Time = (0.1527688+(20%107°)) Seconds = 0.1527888 Seconds (9.4)

Thus, there is a 18X speedup when the same halftoning algorithm is converted into
parallel algorithm and executed on the parallel system architecture executed on an FPGA
as shown obtained via Equations 9.5 and 9.6.

Execution time sequential Architecture CPU
Execution time FPGA

Speed —up = 9.5)

2.81677 Seconds
Speed —up = = 18.4357 .
PECETUP = 1527888 Seconds (©.6)

The algorithm is designed to handle wide format images and currently the hardware can
support images up to a size of 24 X 44 inches which is equal to 548 million pixels. The
time taken to process an image of this size on a conventional CPU is about 27 minutes
which can also create problems in printing the image. The parallel architecture
implemented into a in the FPGA takes only 87.6 seconds (1.46 minutes) to process a 24 X
44 inch size image which shows a large margin of improvement in the performance of the
equivalent hardware unit. The total area of the image that can be processed per second is

given in the Equations 9.7 and 9.8.

Image Area Processed (Square Inches | Second) = ;T:fztisolrzleti(ri?gr:ci?lc(?se)S) 9.7)
Image Area Processed = % = 12.054 Square Inches|Second (9.8)

Figure 9.1 shows the graphical representation of sequential CPU execution time
(Seconds) versus the parallel architecture implementation (CPU & FPGA) execution

time for a 799 X 1195 image size.

122

CPU VERSUSFPGA IMPLEMENTATION

u CPU
EFPGA

Execution Time (Seconds)

000000000 FEEEEEREERE MR NRMNR N
OhrmwkbowupoRrEnwREbo DoMWL REL DD oW

Figure 9.1: Graph Showing Execution Times of a Single CPU and Parallel Halftoning
Architecture Implemented to a FPGA
9.3 HDL Functional and Performance Simulation Validation of Parallel Halftoning

Architecture

The HDL simulation results were obtained from the Mentor Graphics ModelSim CAD
simulation tool software [20]. The simulation results shown in this section are Post-Place
and Route HDL simulation results implying all hardware propagation delays are included
in the simulation results meaning the simulation results can be used to evaluate the
functionality and performance of the parallel architecture. There is no way to show results
from each and every functional unit in the architecture. All main components, functional
units and the entire parallel architecture are covered and discussed. The architecture uses
13 clocks in total to minimize clock skew where 'clk' is the clock input to the Input Data
Memory Architecture, 'clkl' through 'clkl2' are used for each Processor Core starting
from 1 through 12. Figures 9.2 to 9.28 shows the simulation results of the Parallel
Hardware Halftoning Architecture using a step by step approach. The shown results start
from buffering the input pixels to the Input Image FIFO, converting the input data to 12
bit data, reading the corresponding droplet densities from the Droplet Densities ROM,

123

filling up the Level FIFOs with the values from the ROM, filling the Core Data FIFO,
starting the Processor Cores when the Data FIFOs are full, calculating the error value,
running the Error-Diffusion unit to disperse errors to the neighboring pixels, storing the
errors generated in a Block Memory storage unit and finally buffering of the output every
8 clock cycles. The system is run at 50 MHz which is the timing constraint set to the
hardware. Each and every component (functional unit) in the Architecture was fully tested
and validated. A HDL testbench was written using the Verilog Test Fixture software in
the Xilinx ISE 10.3 CAD tool set and the outputs of the testbench were simulated using
ModelSim. The input pixels are extracted from the input image using MATLAB and
stored in a text file as shown in Figure 9.3. The data in the text file is accessed by the test
fixture software and fed to the internal memory of the FPGA. The output from the
simulation is directly written to a text file in a binary format as shown in Figure 9.28 and
they are converted to an image with the help of a MATLAB code. The obtained results
were thoroughly analyzed and validated using the ModelSim and MATLAB CAD tools.
Considering all obtained HDL Post-Place and Route simulation results shown in 9.2
through 9.39, it was concluded that the previously presented Special Purpose Parallel

Architecture correctly executes the new Stacked Error Diffusion Halftoning Algorithm.

124

GCl

pewtestbenchock [L L[L L L L L L L L L L]

[newtestbench0/clr | I |

[newtestbench0/ON_OFF | |
/newtestbenchO/otswt

/newtestbench0/img_out —§00000000

—
/newtestbench0/uut/\ROWS_COLUMNS/COLS 0 |[z00
1
/newtestbench0/uut/\ROWS_COLUMNS/ROWS 0 429
—p—
/newtestbench0/uut/\COLOR_LEVELS/COLVL 00000 // 10011
wtestbench0 t_addr J000 [Jic 1]
[newtestbench0/uut/ocont_addr { // \‘
/newtestbench0/uut/cin {00 i | ‘
b +
Parameter Register 1 Parameter Register 2
(Rows & Columns) (Channels, Levels)

Figure 9.2: Parameter Register 1 & 2 - Simulation Result

9tl1

nestestbencho/ek LI | LML LML LU U U U U Uy ULt
/newrestbench0/dr
/newrestbench0/ON_OFF
[newrestbench0/otswe
[newtestbenchOfimage_in 13910078]189|131]12395 |218)213 |181 177 |254 251 |244 [238 |255 253]255 | 254 |255 254 | 255 | 232 |255 | 235

CMYKCMYK ¥} EditPad Lite - [C:\Users\RISHV@NTH\Desktop\parrotimage.txt]
¢ ¢ File Edit Search Block Convert Options View Help
Dle| i~ &l -0 -l DBIQAAAR|ET.-
Pixel 1 Pixel 2 || parrotimage. txt

139
100
Input Image FIFO Write Operation Zgg
131
123
95
218
213
181
177
254
251
244
238
255
255
255
253
255
254
255

Figure 9.3: Data Buffering Operation in Input Image FIFO - Simulation Result

LTl

Inewtestbench0/ck][L] My gy prurL

[newtestbench0/clr

[newtestbench0/ON_OFF
/newtestbench0/otswt

/newtestbench0/image_in 254

[newtestbench0/img_out 00000000

[newtestbench0/uut/\ROWS_COLUMNS/COLS 300

[newtestbench0/uut/\ROWS_COLUMNS/ROWS 429

[newtestbench0/uut/\COLOR_LEVELS/COLVL 10011

/newtestbench0/uut/ocont_addr 100

[newtestbenchO/uut/cin 11

[newtestbenchO/uut/addr 0

139 Jio0 78 189

181 177 254 251 Jo44| 238]255

131 123 Jos Jo18 Jai3
i

/newtestbenchO/uut/add 15 2239 B1615 [11263 J]3039 §2111 1983 §1535 J3503 J3423

2911 |2847 Q4079 R4031 §3919 [13823 [4095

Levels/ /newtestbenchO/uut/w1 180 16384 |15288 [12288 | 16384 14328 |16384
V4 1 1 1 1 1
Droplet /newtestbenchO/uut/w2 0 / J10490 4096 2871]15996 [8954 7417 J4096]16384 J14460] 13692 [16384
V4 1
Densities Jnewtestbench0/uut/w3 £ 409 [0 To278 8318 4096 Ti6101 15615 (12271 13110 [16384

8 to 12 Bit Conversion

Droplet Densities ROM Read Operation

Figure 9.4: 8 to 12 Bit Coversion and Droplet Densities Mapping - Simulation Result

8¢l

[newtestbench0/clk |

[newtestbench0/clr

/newtestbench0/ON_OFF
/newtestbench0/otswt
[newtestbench0/image_in
/newtestbench0/img_out
[newtestbenchO/uut/\LEVEL1_FIFOQ/data_out
[newtestbench0/uut/\LEVEL3_FIFO/data_out
[newtestbenchO/uut/\LEVEL2_FIFO/data_out
[newtestbenchO/uut/\FIFOCORE1/data_out
[newtestbenchO/uut/\FIFOCORE2/data_out
[newtestbenchO/uut/\FIFOCORE3/data_out
[newtestbench0/uut/\FIFOCORE4/data_out
[newtestbench0/uut/\FIFOCORES/data_out
[newtestbenchO/uut/\FIFOCORE6/data_out
[newtestbench0/uut/\FIFOCORE7/data_out
/newtestbench0/uut/\FIFOCORES/data_out

—

254

00000000

§10010110)

16384

16384

T15999

16384 16191 I

16384

]16384

110490

]3954

|16334

[15288

116334

[2096

17417

[12288

T14328

[2871

J4096

[newtestbench0/uut/\FIFOCORE9/data_out

/newtestbench0/uut/\FIFOCORE10/data_out

|16384

[newtestbench0/uut/\FIFOCORE11/data_out
/newtestbench0/uut/\FIFOCORE12/data_out

5996

ol |2o] |9 o] |2 |2 2] |90 |2 |2 o |

14096

Core Data FIFO Read

Operation

Figure 9.5: Core Data FIFOs[1-12] - Simulation Result

6¢Cl

mewtestoenchocir LT MU U U Uy Uy U oy Uy U
mestesthenchorek2 | T MU U U U Uy uUp Uy Uy Uy Uy gy U
mewtestoenchorels LT MU UM Uiy Uy oy U oy gy U
mewtestbenchorcls LT MU U U Uy gy U oy gy U
mewtestbenchorcks LT MU U U Uy Uy U oy gy U
mewtesthenchorcks || ML T U Uy Uy U Uy gy U
mewtestoenchorel? LT MU UM Uy Uuyuup Uy ooy u gy U
mewtestbenchorclks LT MU U Ui Uy Uiy U oy gy U
mewtestbenchoreld LT MU UM U Uy Uy U oy gy U
mewtesthenchockro | [T MUTLTUTLTF U Uy Uy oy U gy
mewtestoenchorcit LT MU U U U U U Uy pyyuy gy u
/newtestbench0/clk12 U_LI_J'LI_U_I_LI_ —U_U— _U_U— -U_LI_ _U_U__J_U—L_U_U_ I
/newtestbench0/uut/\CORE1/INPUT_PIXEL_REGISTER/data_out 0 [16384
/newtestbench0/uut/\CORE2/INPUT_PIXEL_REGISTER/data_out 0] 10490 [8954 [16384
/newtestbench0/uut/\CORE3/INPUT_PIXEL_REGISTER/data_out 0 [8318 [15615
/newtestbench0/uut/\CORE4/INPUT_PIXEL_REGISTER/data_out 0 [1528}8 [16384
/newtestbench0/uut/\CORES/INPUT_PIXEL_REGISTER/data_out 0 J4096 17417 114460 1163§4
/newtestbench0/uut/\CORES/INPUT_PIXEL_REGISTER/data_out 0 J4096 |14271
/newtestbench0/uut/\CORE7/INPUT_PIXEL_REGISTER/data_out 0 [12288 |14328 116384
/newtestbench0/uut/\CORES/INPUT_PIXEL_REGISTER/data_out 0 J4096 11369'2 |16344
[newtestbench0/uut/\CORES/INPUT_PIXEL_REGISTER/data_out 0 14096 o119
[newtestbenchO/uut/\CORE10/INPUT_PIXEL_REGISTER/data_out 0 [16384
[newtestbench0/uut/\CORE11/INPUT_PIXEL_REGISTER/data_out 0 [15996 [16384
[newtestbench0/uut/\CORE12/INPUT_PIXEL_REGISTER/data_out 0 140?6 [§278 [16191

T~

Input Data Registers Cores 1 - 12

Figure 9.6: Input Pixel Register [1-12] Data Values - Simulation Result

0¢I

mentestoencho/cir LT TU U U U U P U U U U U U U U U Uy uyUp Uy
mentestoencho/cik2 | [T T LU U UL U Uy uupguyuUyUpguyuy gy
mentestoencho/is L LT T LML U U U U Uy Uy puyuy gy
fentestbencho/ctks LT LT LT LM MU UL U Uy puyuypyuyya
mentestoenchorcls LT LT T U U U UUUPUyuUUpuyuuyuy gyl
fewtestencho/ks | [[T LML MU UL U Uy uupuyuUyU gy gy
etestbencho/ci? L LT T LM MU UL U Uy Uy Uy u gy
mentestoencho/clis LT T U U U U U U PUYUUpuUyuuyuu gyl
mentestoencho/cie LT LT T U U U U U Uy Uy Uy puyuy gy
newtestoencho/ckao | [T LT LML MU UL U Uy uupuy Uy puyuy gy
prewtestbencho/ckrt LT LT T UL MU UL U Uy uupdy Uy uy gy
fnewtestbencho/cki2 L[| LML LML MU L UL T L C L L T P T P LT
/newtestbench0/uut/\CORE1/pp_in 0 817 1-254* I-613
/nevitestbench0/uut/\CORE2/pp_in 0 [-2578 J1970 Jos4 |82
/newtestbench0/uut/\CORE3/pp_in 0 817 [3332 |
/newtestbenchO/uut/\CORE4/pp_in 0 J-430 l-102*7 I-345
/newtestbench0/uut/\CORES/pp_in 0 Ji791]-3955 [-2466
/newtestbench0/uut/\CORE6/pp_in 0 817 11536
/newtestbench0/uut/\CORE7/pp_in 0 1-1792 1-2500 13989
/newtestbench0/uut/\CORES/pp_in 0]iZSS 11522]-408
/newtestbench0/uut/\CORE9/pp_in 0]-817*]i536
/newtestbench0/uut/\CORE10/pp_in 0 1-817 1254
/newtestbench0/uut/\CORE11/pp_in 0 170 [-s92 |
/newtestbench0/uut/\CORE12/pp_in 0 11791 l-31142

Previous Pixel Value
Figure 9.7: Previous Pixel Values[1-12] - Simulation Result

I¢l

mentestbenchorcie LU T LU U U U Uy Uy U Uy Uy gy ul
mestesthencorie | LT T LU U U U Uy Uy U Uy Uy gy ul
mentestbenchorclis LTI U U U U U Uy Uy U Uy Uy gy ul
mentesthenchorcis LU T LT U U U Uy Uy U Uy Uy gy ul
mentestbenchorclis LU T LML U U U oy Uy U puy Uy gy ul
nestestoencho/cks | LT T LTLM AU U U U Uy U oy Uy U oy U
mentesthenchorclr LTI LU U U U Uy Uy U Uy Uy gy ul
mentestbenchorcis LU T LU U U U Uy Uy U Uy Uy gy ul
eatestoencho/cke LT LML LT U U Uiy U oy U iy Uy U
mewtesthenchojckso L[T U U U U U U U U U U Uy U Uy Uyt
mewtestoenchorckt L[LT T U U U U Uy Uy Uy Uy gy u
fnewtestbencho/cit2 | [11| T LIS 11 11 L 11T 1] 1]
[newtestbench0/uut/\CORE1/PREVIOUS_PIXEL_REGISTER/data_out 0 |-817]-254 [-613
/newtestbenchO/uut/\CORE2/PREVIOUS_PIXEL_REGISTER/data_out 0 |-2578 [1970 Jos4 |
[newtestbenchO/uut/\CORE3/PREVIOUS_PIXEL_REGISTER/data_out 0 |-817 12382
/newtestbench0/uut/\CORE4/PREVIOUS_PIXEL_REGISTER/data_out 0 [-<80 [-1027 [-345
[newtestbenchO/uut/\CORES/PREVIOUS_PIXEL_REGISTER/data_out 0 |1791 |-3955]-246?
[newtestbenchO/uut/\CORE6/PREVIOUS_PIXEL_REGISTER/data_out 0 |-817 J1535
[newtestbenchO/uut/\CORE7/PREVIOUS_PIXEL_REGISTER/data_out 0 |-1792]-2500]-939
/newtestbench0/uut/\CORES/PREVIOUS_PIXEL_REGISTER/data_out 0 [1255 11522‘ [-<08
[newtestbench0/uut/\CORE9/PREVIOUS_PIXEL_REGISTER/data_out 0 [817 [1536
/newtestbench0/uut/\CORE10/PREVIOUS_PIXEL_REGISTER/data_out 0]-817 |
/newtestbench0/uut/\CORE11/PREVIOUS_PIXEL_REGISTER/data_out 0 |-170 |-892
[newtestbench0/uut/\CORE12/PREVIOUS_PIXEL_REGISTER/data_out 0 1}791 |-3142

N

Previous Pixel Register

Figure 9.8: Previous Pixel Register [1-12] Data Values - Simulation Result

(43!

mentestoencho/cis LTI LT LT U U U U UUUUpuyuupuyuupuyudpuy
mestestoencho/ci LTI LT LT U U U U U U UUUUpuUyuupuyuupuyudpuy
mentestoencho/ctis LTI T LT U U U U UUUUpuyuupuyuupuyudpuy
mentestoencho/cks LTI TUT LT U U U U U UUpuyuupuyuupuyudpuy
mentestoencho/clks LTI LT LT U U U U U UUUUPUuUpuyuupuyudpuy
mentestoencho/cks L[LT LT U LU U U U U UUUUPUYUUpUyuupuyuudpuy
mentestoencho/ciy LTI LT T U U U U UUUUpguyuupuyuupuyudpuy
mentestoencho/cs LTI LT LT UL U U U U U UUUUPUuUpuyuupuyudpuy
fnentestbencho/cike LTI TLIL UMT MU Uiy ooy Uy ur gy ur oy U oy
mewtestoencho/ckro LTI LT UL U UUUUpuyuupuyuupuyudpuy
mentestoencho/ckrs LT T U U LU U U U U UUUUPUUUpuyuupuyudpuy
fnewstestbencho/eikt2 | L LTI AT L UL LA LU UL LU AL UL P LU UL
/newtestbench0/uut/\CORE1/adr1 0 I 163841 Jo [)i6384 1o [16384} 0 1163?4 Jo 16334 o Y
/newtestbenchO/uut/\CORE2/adr1 0 i Jie3s¢]o [10490 [s954]0 8954 l16334 [Jo Ji6384 Jo [)16384)1
/newtestbench0/uut/\CORE3/adr1 0 Jesis]o [318] Jusessfreass 03156}5 16384
/newtestbench0/uut/\CORE4/adr1 0 [:s2eq 163840 1152883 J16384 0 ll63§4 lo_Ji6384 Jo_Ji6384
/newtestbench0/uut/\CORES/adr1 0 40960 [4096 [7a17]i638¢ 0 7417]:«w[:smlo J14460 l163{84 |0 116384*
/newtestbench0/uut/\CORE6/adr1 0 Je0se0 J2096 wnfiesmafo 14271
/newtestbench0/uut/\CORE7/adr1 0 [uzs]iessafo J12288 Jiws[iessafo Jid32s [fie3s4 | Jo (o33 Jo_[l16384
/newtestbench0/uut/\CORES/adr1 0 Lsni]o 13871 I409615 Ja096 | Juesd]iesss]o 11369§ J16384 10ﬁ Je6324
/newtestbench0/uut/\CORE9/adr1 0 J4096]0 [4096 Jsus]ie3s4 [0
/newtestbench0/uut/\CORE10/adr1 0 16334 [Jo]i6384 Jo Ji6384 Jo []16384 [0
/newtestbenchO/uut/\CORE11/adr1 0 lnsmgsmlo 15996 11631_84410 16384* lea?‘t
Inewtestbench0/uut/\CORE12/adr1 0 Jaoss]0 Jass Joarslessefo Joors [l Jueisefo Juero1 | Jieasy

~—

Adder/Subtractor Input 1
Figure 9.9: Input 1 of Adder-Subtractor Unit [1-12] - Simulation Result

eel

mestestoencho/cit LT T U U U U U U UHU U UUUUpuUyuupuyuuyuy
mestestoencho/ciz | LTI UM U U U U U UyUUpuyuypuyuipguyuuyguy
mestestbencho/cis LT T U U U U U U UHU U UyUUpuUyuupuyuupyuy
mewtestbencho/cks LTI T U U U U U U UHU U UUUUpUyuupuyuupyuy
mewtestoencho/ctks LTI UM U U U U UyuUUpguyuypuyuipguyuuyuy
mesestoencho/aks | LT MU U U U U U U U U Uy udpguyuuyuy
mestestoenchorciz LT T T U U U U U U UU U UYUUpuUyuupuyuupyuy
mewtestoencho/ctks LTI UM U U U U Uy uupuyuypuyuipguyuuyuy
metestbencho/cie LTI T U U U U U U UHU U UUUUpUyuupuyuuyuy
mewtestoencho/ckso | LT MU U U U U U U UTUUUP U UyuUpguyuuyguy
mewtestoencho/ct LT U U U UL U U UUUPgUyuupuyuupuyuuyuy
[newtestbench0/clk12 l_ﬂ_r WWM
/newtestbench0/uut/\CORE1/adr2 0 J1e384]0 Jie384]0 1-8171155671;817 1-2541@;01-254 [-613]15771] 613
/newtestbenchO/uut/\CORE2/adr2 0) (e) (0 s7s]6376]-2578 11970123;111970 [os4 l;"ilw J-82 iz |82
/newtestbench0/uut/\CORE3/adr2 0 l-81117501 [-e17 IMIIMJJ%:3I3382 GEED B2
/newtestbench0/uut/\CORE4/adr2 0 lmssl-u:%IO l48olxmli80 J1027] 257]-1027 I-NSIggl-%S I-653]
/newtestbench0/uut/\CORES/adr2 0 Jaoss _ Jo [1791]9208] 7176]1791 1-3955];0505 [ss79]-3955 1-246§lxmsl-2;166 [
/newtestbench0/uut/\CORE6/adr2 0 [-817)3279 1-813 11536]159011-577!15’36
/newtestbench0/uut/\CORE7/adr2 0 Jzs Leose]o [oeldls] 1702 [asofusesd]-2500 J-o8]s39s).989
/newtestbench0/uut/\CORES/adr2 0 J2871 o Ji2ss[5351 []1255 [1522]15214 J-1170] 1522 J-208]1s976]-408
/newtestbench0/uut/\CORE9/adr2 0 If817l327i9 1-8‘17 11536117‘?515[{
/newtestbench0/uut/\CORE10/adr2 0 J:oe{Jo [1s38¢[0 [-817]1s567]-817 J-254]:61% 2
. t t 1 2
/newtestbenchO/uut/\CORE11/adr2 0 1599 -388J0 |-170fie2x¢]170 |-802]15492{ 892 1-286] 16035]
/newtestbench0/uut/\CORE12/adr2 0 [4096[Jo l'17911x1069 1'5315117.91]-3142[u§-9[-3335]'-3142 [13s4]

Adder/Subtractor Input 2
Figure 9.10: Input 2 of Adder-Subtractor Unit [1-12] - Simulation Result

vel

/newtestbench0/clk1 U—U—
/newtestbencho/clk2 | [[]
[newtestbench0/clk3]_|—|_|_
[newtestbench0/clk4]_IU
/newtestbencho/clks | [[}
/newtestbencho/clké | [[]
/newtestbench0/clk7]_|_|_|_
/newtestbench0/clk8]_IU
/newtestbencho/clk | [1 [
/newtestbencho/clk10 | [[]
/newtestbench0/clk11]_ru_
[newtestbench0/clk12]_IU

583555555585
SS5555555525
555555555525
SEEEEEEEEEEE
555555555585
SSS55555552S
555555555525

L]
15}
L]
L]
L]
L]
L
L]
L]
L]
L]
(L1

SS5555255528S

555555555555
555555555555
SEEEEEEEEEEE

| SEEEEEEEEEEE

—

163840 J15567]-817 [16130]-254 J15771]-613
t 1 1

110490]-5894 16376 118354]1970]17348]964]16302]-82
t

...
[=23
w
L)

|2
o

/newtestbench0/uut/\CORE1/gte_in
/newtestbench0/uut/\CORE2/gte_in

/newtestbench0/uut/\CORE3/gte_in

[7501 J18997]2613]170;{]
[15358]10%)) 50 R S5 =
4096 1920'3 |-7176 11(;505 |-5879];39181-2466]
]153073-577
[12288]-4096 [12536]-3848 113884]-2500] l15*395]-989
]287; 153‘51 115214]-1170 115976]-*408

13279 1146;5}1729
116384}0]163:34]0 J15567)-817 11613013«,F

/newtestbench0/uut/\CORE4/gte_in
/newtestbench0/uut/\CORES/gte_in
/newtestbench0/uut/\CORE6/gte_in
/newtestbench0/uut/\CORE7/gte_in
/newtestbench0/uut/\CORES/gte_in
/newtestbench0/uut/\CORE9/gte_in
/newtestbench0/uut/\CORE10/gte_in

/newtestbench0/uut/\CORE11/gte_in

1
J15996]-338 [16214]-170 J15492]-892 116098]
1 1 1
14096]11069]-5315]13049]-3335 |
1 1

L

Ol |19] |9] |2 2] 2] |9 |2 |2 |2 |0 |©
S
w
~
~
{'=]

[newtestbench0/uut/\CORE12/gte_in

~

Adder/Subtractor Output
Figure 9.11: Output of Adder-Subtractor Unit [1-12] - Simulation Result

Gel

mewtestoencho/ciks L LT LT T U U U Upuyuupiyuyupuyudpguyuyt
mestestoencho/cike | LT LT U U U U Uiy uupuyudpguyuupt
fnewtestoenchozlis "L ML LML MU U U Uy Uy Uy U Uy Uy
mewtestbencho/ciks LTI LT U U U U UpUyuupuyuupuyudpuyuyt
mentestoencho/clks L T LT T U U U UpUyuupuyuupuyudpyuyuupt
mewtestbencho/cks || T LT U U U UHU U UYUUUuupuyupguyuupt
mentestoencho/clk? L T LT U Uy uupuyudpuyuyt
mewtestoencho/ciks LTI LT T U UUUpUyuupiyuyupuyudpguyuyt
mentestoencho/cie L T LT T U U U U Uy uupuyudpguyuupt
mewtestbencho/ckio | [T UUU U UHUUPUHU U YUy uupguyuupt.
mewtestencho/ciktr | T LT U U U Uy uupuyuuiyuyyuy Uyt
fnewtestbencho/ck12 || [T [T {1 1] L L] (11T U
/newtestbenchO/uut/\CORE1/er_in 0 1-817 l? J-254 [Jo]-613; o
[newtestbenchO/uut/\CORE2/er_in 0 | []-5894]o 16375 [Jo 1197930 Jos4 o 32 Jo
[newtestbenchO/uut/\CORE3/er_in 0 I7s01 Jo 2613 Jo 1633 [Jo
[newtestbench0/uut/\CORE4/er_in 0 -1096 Jo [-480]?]-1027]]o]-345:10]-653 |
[newtestbench0/uut/\CORES/er_in 0 14096 []0]-7176 Jo I-5879 Jo J-2466 [o)
/newtestbench0/uut/\CORE6/er_in 0 [3279J? 1577 1
[newtestbenchO/uut/\CORE7/er_in 0 1-4096 Jo |-3343(]o [-2500 |0 Jo32 Jo
[newtestbench0/uut/\CORES/er_in 0 1287;10 Is351 Jo 11117010 14081?
[newtestbench0/uut/\CORE9/er_in 0 13279 [Jo [-172*9 o
/newtestbench0/uut/\CORE10/er_in 0 1817 o J-25¢ Jo
/newtestbenchO/uut/\CORE11/er_in 0) EEE () [-i70 Jo k822 Io I-236 [Jo
/newtestbench0/uut/\CORE12/er_in 0 Ja0%6 Jo I-5315(]o]3335 Jo [134]

Calculated Error
Figure 9.12: Calculated Error Values[1-12] - Simulation Result

9¢l

[newtestbench0/clk1 —|_|_
Inewtestbencho/clk2 | [']
[newtestbench0/clk3 —|_|_
[newtestbench0/clk4 _I_[—
[newtestbench0/clkS _[_]—
Inevttestbencho/clké | ['|
[newtestbench0/clk7 —U—
[newtestbench0/clk8 —|_|—
[newtestbench0/clk9 —|_|_
Jnewtestbencho/clk10 | [
[newtestbench0/clk11 —|_|_
[newtestbench0/clk12 —l_[—

SS555555555S
555555555555
SS5555555555
SEEEEEEEEEEE
SS5555555555
555555855555
555555555555
SEEEEEEEEEEE
SS855555555S
SS55555585555
SS5555555558
SS555555555S
=EEEEEEEEEEE

| SEEEEEEEEREE

]
(=
—_
~
.

]
o
—
w

[newtestbenchO/uut/\CORE1/ERROR_REGISTER/data_out

....
&
r

-
[=2)
w
=

[newtestbench0/uut/\CORE2/ERROR _REGISTER/data_out J1970

.
—
(=
o

[newtestbench0/uut/\CORE3/ERROR _REGISTER/data_out [7501
I

—
no
v
—
w

—_—

]-10% |-4 -1027 [-345

8

[newtestbench0/uut/\CORE4/ERROR _REGISTER/data_out

[newtestbench0/uut/\CORES/ERROR_REGISTER/data_out J4096 [-7176 |-5879 [-2466

..

[newtestbench0/uut/\CORES/ERROR_REGISTER/data_out 3279 |-577

[newtestbenchO/uut/\CORE7/ERROR _REGISTER/data_out

]-4096]-3848 |-2500]-989

/newtestbench0/uut/\CORES/ERROR_REGISTER/data_out

[2871 [5351 J1170 [-408
1

[newtestbench0/uut/\COREQ/ERROR_REGISTER/data_out 13279 |-1729

/newtestbench0/uut/\CORE10/ERROR_REGISTER/data_out |-817]-254

[newtestbench0/uut/\CORE11/ERROR _REGISTER/data_out

|-383 1-170* |-892 |

Ol 19] |9] |9 |9 9] |9 o |90 |9 |9 |

[newtestbench0/uut/\CORE12/ERROR_REGISTER/data_out 140?6 1-15315 [-3335

\ Error Stored in the Regsiter
Figure 9.13: Error Values Stored in Error Register [1-12] - Simulation Result

LEL

/newtestbencho/clk1 |||
/newtestbench0/clk2 U
[newtestbencho/clk3 | []
/newtestbench0/clk4 1]_
/newtestbench0/clkS U
[newtestbencho/clké | []
/newtestbench0/clk7 1]-
/newtestbench0/clk8 U
/newtestbench0/clk9 1|_
/newtestbencho/clk10 | []
[newtestbench0/clk11 U
/newtestbench0/clk12 U

98555555555S

EEEEEEEEEEE
595555555555

5555555335
-EEEEEEEEEEE

SSSs255555S
sEEEEEEEEEEE

55553555555

S5S5555555s
-EEEEEEEEEEE

[newtestbenchO/uut/error_inl
/newtestbenchO/uut/error_in2
[newtestbenchO/uut/error_in3
[newtestbenchO/uut/error_ind
[newtestbenchO/uut/error_in5
[newtestbenchO/uut/error_iné
[newtestbenchO/uut/error_in7
[newtestbenchO/uut/error_in8
/newtestbenchO/uut/error_in9
/newtestbenchO/uut/error_in10
/newtestbenchO/uut/error_in11
/newtestbenchO/uut/error_in12

—
[ed
-
~N

| SEEETEEEEEEEE

Ji04

| SEEEEEEEEEEE

et
w
o
w

3
L O

| K5

~

-y
b

-502

&

-817

Jio04

I-502

LAIE55555555555

1817

) §

b

502

I-817

1-817

J104

| &34

| 5

®

1~

-817

J104

I-817

Ji04

104

Jio4

ol o] |2] |9 |2 |2 |9 |9 |2 o] |0 |©

Ji04

Error from Error Storage Block RAM
Figure 9.14: Error Values From Error Storage Block RAMs [1-12] - Simulation Result

8¢l

metestoenchoreks LT MU UL U U U U Uy Uy udpuy
mestesthencho/cie | [[T U U U U YU U U U PUUUpguyyuyguya
meatesthencho/cie L[| T U U U YU U U PUUUpuyyuyguya
meatesthencho/cle L[T U U U U U U pUyUUpguyyuyuyan
mentesthencho/cls L[| [T U U U YU U U UUPUUU Uy uyguya
mestestoencho/cs | [| [T LT U U U YU U U Uy uyguya
mestesthencho/cly L[| MU U U U U U pUyuUdpguyyuyuyan
metestoenchoreks L ML LT U U U Uy Uy udpuyu
meatesthencho/cie L[T U U U YU U U PUyUUpguyyuyguyan
mewtesthencho/cka LT T UL U U U Uy Uy Uy Uiy ut
mewtesthencho/ckty LT T UL U U U U Uy Uy Uiy
newtestbencho/ckt2 || T LTL T] 1] 11T 1] 11T
/newtestbench0/uut/\CORE1/ERROR_STORAGE_REGISTER/data_out 0 |-817 J104 J-502 J505
/newtestbench0/uut/\CORE2/ERROR_STORAGE_REGISTER/data_out 0 |-817 | 104 |-s02 |
/newtestbench0/uut/\CORE3/ERROR_STORAGE _REGISTER/data_out 0 [-817 [104 [-502
[newtestbench0/uut/\CORE4/ERROR_STORAGE_REGISTER/data_out 0 [-817 [104 [502
[newtestbench0/uut/\CORES/ERROR_STORAGE_REGISTER/data_out 0 |-817 [104]-502
Jnewtestbench0/uut/\CORES/ERROR_STORAGE_REGISTER/data_out 0 [-817,]104 |-502
/newtestbench0/uut/\CORE7/ERROR_STORAGE_REGISTER/data_out 0 |-817]104]-502
[newtestbench0/uut/\CORES/ERROR_STORAGE_REGISTER/data_out 0 [-817 Ji04 [-502
Jnewtestbench0/uut/\CORES/ERROR_STORAGE_REGISTER/data_out 0 [-817 [104 [502
[newtestbench0/uut/\CORE10/ERROR_STORAGE_REGISTER/data_out 0 |-817 [104 |
[newtestbench0/uut/\CORE11/ERROR_STORAGE_REGISTER/data_out 0 [-817 J104
[newtestbench0/uut/\CORE12/ERROR_STORAGE_REGISTER /data_out 0 J817 [104

N

Error from Error Storage Block
RAM Stored in Register

Figure 9.15: Error Values Stored in Error Storage Registers [1-12] - Simulation Result

6¢l

[newtestbench0/clk1 —U_
[newtestbencho/ck2 | ||
/newtestbench0/clk3 —[_]_
/newtestbencho/ckd | ||
/newtestbench0/clk5 —|_|_
[newtestbench0/clk6 —|_|_
[newtestbench0/clk7 —|_|_
/newtestbench0/clk8 U
[newtestbench0/clk9 _[_]—
/newtestbench0/clk10 | []
[newtestbench0/clk11 _I_[—
[newtestbench0/clk12 _[_]_

55555555555
IEEEEEEEEEEE
55555559555
555535555555
55555555555
555525555555
| 3SR
555525555555
55555559555
SEEEEIEEEEEE
ES555555555S
555525555555
55555559555

555555555555

—
o
~N

/newtestbench0/uut/\CORE1/adr41]-17

/newtestbench0/uut/\CORE2/adr41]-370 J400 124 |61

|165

—
o
~
~N

/newtestbenchO/uut/\CORE3/adr41

[-69 | 0 22

[
(=1
w

/newtestbench0/uut/\CORE4/adr41

/newtestbench0/uut/\CORES/adr41 [256 451 371]-157

/newtestbench0/uut/\CORE6/adr41 1206]-37

/newtestbench0/uut/\CORE7/adr41 |-257]-242]-158 1-6

w

/newtestbench0/uut/\CORES/adr41 [179]335 |72 |26

/newtestbench0/uut/\CORE9/adr41 J206 |

/newtestbench0/uut/\CORE10/adr41 |52

]-2

w
—

/newtestbench0/uut/\CORE11/adr41 -11]-57

ol 9] |9] 2] 2] 2] |9 |9 |9 |2 |0 |©

/newtestbench0/uut/\CORE12/adr41 [256 334 211

Multiplier Unit [1/16] (Error * Random Weights)
Figure 9.16: Output of Multiplier Unit [1/16] - [1-12] - Simulation Result

orl

mentestbencho/cky LTI LT LT T U U U Uy Uy Uy Uy Uy ut
mestestbencho/cik L[T U U U UUU U UyuupguUyuUpguyut
mentestbencho/ctis LI T T U U U UU U U UUU Uy U uyut
mentestbencho/cks LI LT LT LT U U U Uy Uy gy U Uy ut
mentestoencho/cs LI TP UUU U UyuUUpguUyyuUUpguyut
mentestbencho/cks L[1T LT U U U UUPUYUU T UYUUpgUy Uyt
mentestbencho/ciz LI LT LT U U U U Uy Uy Uy U Uyt
mentestbencho/cks L[| LT LT LT MU U Uy Uy Uy Uy Uy ut
mentestbencho/cke LI T LT U U U UU U U UYUUpgUy Uyt
fnewtestbencho/ckao | [T LML T U U U Uy U Uy U Uyt
fewtestbencho/ckrr LTI UL T U U U Uy Uy Wyt
fnewtestbencho/ctki2 | LU UL LU LU P CL L PV L UL PP P L P L LU
/newtestbench0/uut/\CORE1/adr01 0 |-256]-20 |
/newtestbench0/uut/\CORE2/adr01 0 J-1843 J1994 J616 J302
/newtestbench0/uut/\CORE3/adr01 0 2347 Js19
/newtestbench0/uut/\CORE4/adr01 0 343]-151 [-322]-109
/newtestbenchO/uut/\CORES/adr01 0]1280]-2245]-1841 |-774
/newtestbench0/uut/\CORE6/adr01 0 1026]-181
/newtestbench0/uut/\CORE7/adr01 0 J-1281 J-1204 |-783 |-311
/newtestbench0/uut/\CORES/adr01 0 J397 1673]-367]-128
/newtestbench0/uut/\CORE9/adr01 0 1026 |
/newtestbench0/uut/\CORE10/adr01 0 |-256
/newtestbench0/uut/\CORE11/adr01 0 J-122 |-54]-280
/newtestbench0/uut/\CORE12/adr01 0 11280 [-1663 1-104f;

Multiplier Unit [5/16] (Error * Random Weights)
Figure 9.17: Output of Multiplier Unit [5/16] - [1-12] - Simulation Result

vl

mentestbencho/cit | ML LML U U UpyuUypuyuy iy Uyt
premtesthenchojeike || 1ML LMLMLMU L LU UL U U U L U LU
nesestoenchorelis LI LT LT MU U U Uy Uy Uy Uy
fewtestbencho/cis | ML LTI U U Uy puyuy iy Uy Uyt
mentestoencho/cks | T U U U U HUUTUHUU U U PUYUU UL
prestesthenchojeks 7| 1L LMLMLMU LU UL U U U L U LU
nestestoencho/ely "L LT LT MU U Uy Uy U gy Uy
fentestbencho/ciks | ML LTI U U Uy Upuyuy iy Uy Uyt
mentestoencho/cke L T U U U U U UHUU U U pUyUuU Uyl
preseeyctuipiipipipigipipigigiyipipipipigigipipgigiyipipigupiyigipipgigiyigipgiply
fretestoencho/et LT ML LU MU U U Uy Uy Uy Uy pruy
frewtestbencho/elkt2 || LT L LTI LU LU L P LU
/newtestbenchO/uut/\CORE1/adr31 0 |-153 |-48 |
/newtestbenchO/uut/\CORE2/adr31 0]1193]368 J179
Jnewtestbench0/uut/\CORE3/adr31 0 J1402 J487
/newtestbenchO/uut/\CORE4/adr31 0 [-90 |-193 1-65
/newtestbench0/uut/\CORES/adr31 0 |-1344]-1100]-460
/newtestbench0/uut/\CORE6/adr31 0 J613]-108
Jnewtestbench0/uut/\CORE7/adr31 0 |-721 |-468 |-185
/newtestbenchO/uut/\CORES/adr31 0 J1002 J-219 |-77
/newtestbench0/uut/\CORES/adr31 0]613 |
/newtestbench0/uut/\CORE10/adr31 0]-153
/newtestbench0/uut/\CORE11/adr31 0 |-32]-167
/newtestbench0/uut/\CORE12/adr31 0 [-996 |-624

Multiplier Unit [3/16] (Error * Random Weights)
Figure 9.18: Output of Multiplier Unit [3/16] - [1-12] - Simulation Result

wl

[newtestbench0/clk1 U
[newtestbencho/clk2 | ['|
/newtestbencho/clk3 | [']
[newtestbench0/clk4 1[_
[newtestbench0/clkS —I_l_
/newtestbencho/clké | ']
[newtestbench0/clk7 U
[newtestbench0/clk8 —U_
[newtestbench0/clk9 _]_|_
/newtestbench0/clk10 | []
/newtestbench0/clk11 —I_]_
[newtestbench0/clk12 —I_r

555555555555
SEEEEEEEEERE

SS55555555285

EEEEEEEEEEEE
SS5555555525
585555555585

SS555555552S

555555555555
SEEEEEEEEERE

SEEEEEEEEEEE
555555555555
SEEEEEEEEEEE

SESSEssSEnes

/newtestbench0/uut/\CORE1/adr51

1555555555555

g

—
g

[
(=]
<2 el

/newtestbench0/uut/\CORE2/adr51

]-2578

2787

O
w
(=2

/newtestbench0/uut/\CORE3/adr51

1140

/newtestbench0/uut/\CORE4/adr51

]-151

b

/newtestbench0/uut/\CORES5/adr51

|-2570

1-1077

/newtestbench0/uut/\CORE6/adr51

11432

]-252

/newtestbench0/uut/\CORE7/adr51

[-1792

]-1633

1-432

]-1093
1

/newtestbench0/uut/\CORES/adr51

1255

12339

|-512

]-179

/newtestbench0/uut/\CORE9/adr51

1432

I-

755

/newtestbench0/uut/\CORE10/adr51

]-358

]-111

[newtestbench0/uut/\CORE11/adr51

1-170

-75

]-390

1-125

Ol |O] |9] |9o] 9] 9] |2 |9 |2 o] | |

/newtestbench0/uut/\CORE12/adr51

1791

2325

[-1458

|-592

\

Multiplier Unit [7/16] (Error * Random Weights)
Figure 9.19: Output of Multiplier Unit [7/16] - [1-12] - Simulation Result

evl

Inewtestbencho/ck1 | [']
Inewestbencht/ck2 | [[']
Inewtestbencht/cka | [']
Inewtestbencht/cks | [[
Inewtestbencht/cks | [1]
Inewtestbencht/cks | [[
Inewrestbencht/ck7 | [
Inewtestbench/cks | [[
Inewtestbench/cks | [[
Inewtestbench0/dk10 | [][]
Inewtestbench0/dk11 | [']
Jnewtestbencho/dk12 | [1]

555555555555

SEEEEEEEEEEE
SEEEEEEEEEEE

55555555555
=ErEEEEEEEER

55555555555
=ErEEEEEEEEEE

55555555555
SEEEEEEEEEEE

L L L LR

/newrestbench0/uut/\CORE1/REGISTER _0/dout 0

555555555555

—
~

—
S

¥

jiEeeeasie

/newtestbench0/uut/\CORE2/REGISTER _0/dout 0

03

"

1132

§

JnewtestbenchO/uut/\CORE3/REGISTER_0/dout 0

0

|5

.
-

/newtestbench0/uut/\CORE4/REGISTER _0/dout 0

Jnewtestbench/uut/\CORES/REGISTER_0/dout 0

|4 258

[-447

/newrestbench0/uut/\CORE6/REGISTER _0/dout 0

) 2] 12

/newtestbench0/uut/\CORE7/REGISTER_0/dout 0

]-238

/newtestbench0/uut/\CORES/REGISTER_0/dout 0

J4 |:81

B39

/newrestbench0/uut/\CORES/REGISTER _0/dout 0

St
-
-—
~

&

/newtestbench0/uut/\CORE10/REGISTER _0/dout 0

14

/newtestbench0/uut/\CORE11/REGISTER _0/dout 0

4

)54

/newtestbench0/uut/\CORE12/REGISTER _0/dout 0

J-330

Figure 9.20: Data Output From Register [5/16] - [1-12] - Simulation Result

Register 0 Data

Output

124!

Inewestbenchorais LML LML UL LU oo iy urur U g
mesestoenchrai | [MU U U U U U U U U UUUU U U Uyuupuyut
mewestoenchyals L MU U U U U U U U U UL UL P U U Uy U Uyt
mesestoenchrke | MU U U U U U U U U UUUU P U U U UUUUpuUyut
meweshenchvdks || T U U U U U P UHUUPUUU U U U Uyuupuyu
mesestoenchrels | [MU U U U U U U LUUU P UUUU P U U U UUUU Uyl
mewesoenchoyely " MU U U U P Uy uUU Uy Uy Uy Uy
mesestoenchrls | [MU U U U U U U U U UU P UUUU P U U U UUUU Uy
mesestoenchreks "L MU U U U P U U U UU U U U Uyuupuyut
Inewressencho/diso L | MM U U U P U U UyuuUpuyuupyuyuupuyul
meweessencho/dits L [T U U U U UUUpUyuupuyuupyuyuupuyul
Jnewtestbencho/dki2 |]| 1107 1 1117 1M 110 10 (1]
/newtestbench0/uut/\CORE1/rg3_in 0 18 2 252 124
/newtestbench0/uut/\CORE2/rg3_in 0 |-1839 1626 11020 1434
Inewtestbenchl/ut/\CORE3/rg3_in 0 s & T3t i
/newtestbench0/uut/\CORE4/rg3_in 0]-339 |-218] [-349 |-166
Inewtestbenchl/ut/\CORES/rg3_in 0 [2s4)-1567 Y2388 Ji7
/newtestbench0/ut/\CORES/rg3_in 0 J)2 Ji030) EE
/newtestbench0/uut/\CORE7/rg3_in 0 11277 |-1459 l-‘mzx |-461
Inewtestbench/ut/\CORES/rg3_in 0 [sor = =]
/newtestbench0/uut/\CORES/rg3_in 0 |8 12 1030
[newtestbench0/uut/\CORE10/rg3_in 0]2 |5 252
[newtestbench0/uut/\CORE11/rg3_in 0 Fiis 177 T257
/newtestbench0/uut/\CORE12/rg3_in 0 1284 |-1405 J-1374

T~

Register 3 Value
Figure 9.21: Data Output From Register [3/16] - [1-12] - Simulation Result

Syl

[newtestbencht/ck1 |
Inewtestbencht/dk2 |
[newtestbench0/ck3 |
Inewtestbench/cks ||
Inewtestbencht/cks | |
Inewtestbencht/cké ||
Inewtestbencht/ck? ||
Inewtestbench/cks ||
Inewtestbench0/ckd ||
Inewtestbench0/dk10 ||
[newtestbench0/dk11 ||
Inewtestbench0/dk12 ||

555555555555

—
5

55555355555

555555555558

EEEEEEEEEEEE

555555555555
EEEEEEEEEEEE
559595955555

555555555355
1555555555555

EEEEEEEEEEEE
555555555555

555555555555

SEEEEEEEEERE

[newtestbench0/uut/\CORE1/REGISTER S/out 0

A
~

2

8

Les=aa555a8555

[newtestbench0/uut/\CORE2/REGISTER S/out 0

8

[newrestbench0/uut/\CORE3/REGISTER S/out 0

8

[newtestbench0/uut/\CORE4/REGISTER S/out 0

]-817

T502
13

[newrestbench0/uut/\CORES/REGISTER S/out 0

1502

[newtestbench0/uut/\CORE6/REGISTER S/out 0

Jio4

|-502

[newtestbench0/uut/\CORE7/REGISTER S/out 0

104

[newrestbench0/uut/\CORES/REGISTER S/out 0

104

&5 |

[newtestbench0/uut/\CORES/REGISTER S/out 0

104

/newtestbench0/uut/\CORE10/REGISTER S/out 0

104

Jnewtestbench/uut/\CORE11/REGISTER S/out 0

Ji04

/newtestbench0/uut/\CORE12/REGISTER S/out 0

Register 5 Data
Figure 9.22: Data Output From Register [7/16] - [1-12] - Simulation Result

4!

/newtestbench0/uut/\CORE1/INPUT_PIXEL_REGISTER/data_out
[newtestbench0/uut/\CORE1/pp_in
/newtestbench0/uut/\CORE1/PREVIOUS_PIXEL_REGISTER/data o

Inewtestbench0/uut)\eORE1/adr1

Addition nestastbencRl G \CORE Ucte.in
Ineypdstbench0/uut/\CORE1 /adr2
newtestbench0/uut/\CORE /er_in
[newtestbench@uut/\CORE1/ERROR_REGISTER/data_out

/newtestbenchO/uut/error_in1 104

[newtestbenzk0/uut/\COREL/ERROR_STORAGE_REGISTER/data_out

/newtestbench0/uut/\CORE1/adré1 -
/newtestbench0/uut/\CORE1/rg0_in
/newtestbench0/uut/\CORE1/REGISTER_0/dout

Multiplication¥/neestench/ut/\CORE /ad01 -
[newtestbench0/uut/\COREL/rg3_in 2 |-252
/newtestbench0/uut/\COREL/REGISTER _3/data_out 2 I-Z

/newtestbench0/uut/\CORE1/adr31

uut/\CORE1/REGISTER _S/out

newtestbench0/uut/\CORE1/adr51
[newtestbench(y Ut \COREL/TD

[newtestbenchO/uut/data_out1 4 |-151

Inemsesthenchtveks 1L LML LML LML L U UL L L
16384 1
L3vi FE | EE IR —) £E5)
J-254 J-613 [238
16384 I). 638 fo {16384 .'ﬂ Jiema i
ST I— | (G| 5 i e >pSubtraction
‘l || | SER (G570 58 \glesszzjzsa
0 254 1 \ s
— " Er:'or Valtlje =
— Stored Error}— 39
104 < - from Block |—/ L
RAM |
S— B/
{ Register 0 —/5
Addition |
7 T
7 Jiss
-153 |-114
/ ,// (238
03 7 7 lgs:x
-358 / // |-ps7
252 | | ’/’/’” X 238
Register 3 Register 5
Addition Addition

Previous Pixel Error Value to Next Pixel

To Error Storage Block Memory Unit

Figure 9.23: Processor Core 1 Data Operations - Simulation Result

Lyl

Inewrestbencho/clis2 [ITTTYUIMANT s
/newtestbench0/uut/\COUNTER_BRAM1/addr [293 [J294 J295 296|257 296255 J292 [I233 J252 231 Josd| J289 | J288 J2s7
/newrestbench0/uut/\COUNTER_BRAM2/addr |293 | J294 zss:]z'ssjzer]2}96:]29.» 3 = EEE 292359132903239 288|287
/newtestbench0/uut/\COUNTER_BRAM3/addr 3l Jas4 mjl_zssﬁ_z% Lzssﬁzssjm 293 zszj‘_mﬂz%oﬂzss 288 | Jas7
/newrestbench0/uut/\COUNTER_BRAM4/addr [<[293 J294 | J295 [[296 297]zsstsstJm 292|251 [2%0 [285 J2s8 | J=
/newtestbench0/uut/\COUNTER_BRAMS/addr |22 253 295 | J2ge |297 lzssﬁ_zesﬁz?ﬂzsz 292 | J2s1 ‘290 2;39 -
Inewtestbench0/uut/\COUNTER_BRAM6/addr [202[293 234 J255 | J296 [[257 J296 [[235 3¢ [233 J2s2(J25: (20 [285 288 |
/newestbench0/uut/\COUNTER_BRAM7/addr |292 293]2%43295 296 | J297 J296_| J295 29432%33292 291 | J2%0 2393;}15:,
/newestbench0/uut/\COUNTER_BRAMS/addr [292 [[293 294 295 J2%6 | J297 se] J255 (232 293 J52 J251] J2%0 |[283 [288
Inewtestbench0/ut/\COUNTER _BRAMS/addr [252]]293 zsjzésjzss 297 1 29¢ ‘zssjzéz—lm 2%0 zsejzg_
/newtestbench0/uut/\COUNTER_BRAM10/addr [232 | J293 [[23¢ 295]_29? J257 lzsf 35| J23¢ |[253 232 [231 J2s0 J289 |[288_
/newtestbench0/uut/\COUNTER_BRAM11/addr [J292] J293 [J294 J295 |29 J257) R = I N R zszjzmjzso 289 | Jz88
/newtestbench0/uut/\COUNTER_BRAM12/addr [=]252 J293 | J294 [[295 2% 57 2% s 293|232 TR P I=

[newtestbenchO/uut/dats_outl 214 J471_ 365 J-195 J386 |]600 |52 325 23108 |ss3_ J-12¢ J-169 Ja7s | 595 J-1%5 141 |
newtestbenchOjuns/dsta_out2 103 338 335 Y202 e | 555 sk 13{5 3 57 ST0H | SN SETE z&o “Yaie| Jeer 4% 3%
[newtestbenchOfuut/dats_out3 -1807 |-1102 -mﬁ-s‘esﬁm 542 | J5p7 lmﬁ z31ﬂ 162 | Ja82 -mﬁ«mﬁ-mj 1244] |-1678 |-1184
Inewtestbench0/uut/data_outs 199 | J462 361J-'1sstsstoo b2 lzsz mJ 108] Jss3 124 |- 173J4694[577 238 |[s8
Inewtestbench/uut/dats_outs J625| Ja15_|]340]-200]3§2 538 Jjs22 nsﬁ-zw Ji10_ Js51 [T130 J193 lss X9zo J& | Jee7
[newtestbenchl/uut/data_outs 3-&3 ss | Ji837 ﬁ;jelszjsgs -639{ l-mzj-'nozjsa}ms 333 [[262_ | mzsz;juze | Y
inewtestbenchO/uut/dats_out? +=]203_ Ja65| 362 |J-155 386 Je00 |][522 325|213 [108 Jss3 J4 | 172 Jert lssz x-zzs | &
InewtestbenchOfuut/data_outS Eéz_o:ko?:lm -179 nzjo7 -51:9 J326 -210:1-}102356?:1-107 «j-lws]-zés«si
inewtestbenchO/uut/dats_outd 1304]-230 |-3166 J-3557 J-2158| J-1428 |-1843 2523 J-1248[2550 |-5028 [-2914 J-1297 J1683| 3914 Je321 2530 |
Inewtestbench0/uut/data_out10 217 114:];06:]332:1-202 382 [[5% :]-‘szz 25| 213 -uoj§s1:1-1ixj-1ss 21575 _13825
[newtestbench0/uut/dats_out11 -1883 J-977 -mJa; 273 322 |5 529) X I 5221) BEX sst-z'st-ufsz-zszs -zxzjszs
InewtestbenchO/uvt/data_outt2 [303 | 2164 [|3210 J.265% J2598 Y2661 [}o2 [5508 STEI (N SO0 | 2 S0 Ol I GO |)
4 4

I Left to Right Image Scan (Counting Up) | |Right to Left Image Scan (Counting Down)|

I Serpentine Technique |

Figure 9.24: Error Storage Block RAM Address Counter [1-12] - Simulation Result (Serpentine Scan)

871

/newtestbench0/dk12

newtestbenchO/uut/dats_
[newtestbenchl)uut/data_
[newtestbenchl)uut/data_
[newtestbenchO/uut/data_
[newtestbenchO/uut/dats_
[newtestbenchO/uut/data_
[newtestbenchl)uut/data_
[newtestbenchl)uut/data_
[newtestbenchl/uut/data_

[newtestbench0/uut/data_

Inewtestbench/uut/dats_

[newtestbench0/uut/data_
/newtestbench0/uut/\COREL/ERROR_STORAGE_REGISTER/data_
/newtestbench0/uut/\CORE2/ERROR_STORAGE_REGISTER/data_
/newtestbench0/uut/\CORE3/ERROR_STORAGE_REGISTER/data_
/newtestbench0/uut/\CORE4/ERROR_STORAGE_REGISTER/data_
/newtestbench0/uut/\CORES/ERROR_STORAGE_REGISTER/data_
/newtestbench0/uut/\CORES/ERROR_STORAGE_REGISTER/data_
Inewtestbench0/uut/\CORE7/ERROR_STORAGE_REGISTER /data_
Inewtestbench0/uut/\CORES/ERROR_STORAGE_REGISTER /data_
Jnewtestbench0/uut/\CORES/ERROR_STORAGE_REGISTER /data_
Inewtestbench/uut/\CORE10/ERROR_STORAGE_REGISTER/data_
/newtestbench/uut/\CORE11/ERROR_STORAGE_REGISTER/data_
Inewtestbench/uut/\CORE12/ERROR_STORAGE_REGISTER/data_

509 [J214 Jert J365 195 J386 | [600 RS2 s o308 Jss3 124 J1e9 Je7s [[5s5 J-155
Ji88] Ji03 m—la*ssﬁ-zaz_mz 599‘\522 1325 J-213] |-110 snﬁ-ﬁnﬁ-z&ojm 462 []-4%6
4-15301-1807 -1102 -309?-3165129 542 | 1537]3£9ﬁ-23}ﬂ-162 482 -30973701 7937 1244 Juere
wfees J1o9 | Jee2 (361 J-155 [386 Je0o | {522 25)23 Jae8[553 [[12¢ | 173j4ssjs77 | =
s Jenl Jes [Je0 Jow e)5 a2 (3N 533 SV G | SEO SO R O O
0 (L O O I (TS O . T | SEET SYUEN UM 3 XN P50 £ £ &
110 475:13(:)3:1465 362_|J-195 386:1650 -523 325 -213:[-1:@]553 -124 | |-172 47135%2]
233 |2135_J820 [eo? 2] 173 ez Jeor_Ysts J326 [2:0 J-102 lseo J-107 (84 |1475
208 | J1304 J-230 J-3166 |-3557 J-2158] |-1428 }-1863Y]-2523 J-1248] [-2990]-5028 |- 2914] 1297]1633 14 _Ja321
£33 | 3 1333 5T £33 5 '\|.'szz 2 I ST S 5 xm e Ja_Jfes
2416|1883 977 -mjyj zr 342 | 573 {529) EXE) I 5223) ST GO & nsj uss] 2525 [
T J3 | T a0 Joess Josw e Jeaen J.112 Ji04s Y1570 [[-2475 1-1570 [Teia| [~
752 Joir s |37 27 [Je10 Jon \Jeoo (o3 Jios Joss Jeri| Joie | o5 o Jsi2)]
% e P oy o] Jew [bn A VG2 I | S S £ () T 0

752 | J61 |36 [;27 727 610 [711 ‘\1542 J257 365)-309]-fmz J-i807 J1570] Js95 J257

|52 111368ﬁ 3277727ﬁ61o -711 ‘\]eogﬁm -195 mﬁ-:szﬁw;ﬁ«s 83 ||-6s1
752 Teit [ees -3z7j727jmoj 711 \]s?ejm 200 | [340 41sjszsjz1ssj721 | (5
w752 Jei1| 368 327J7z7JmoJ 711 sssts;J&n 1837 ssJeoJmstm Jou
ssf752 611 J3es | [-327 727 l-610 J-711 lzss l195 1362 | Je65 J203 l475 ii0]]~
5351;52:]61‘13368 -327 727:];10]-71:1 eo7:1392:I mjm 609 2oj:' 135]233

535|752 [eir e8| [327 [J727 Je10 Jit l (1863|1428 12158 [3557 J3166[230 J304 J20s ||
E7szj§n:]%§j—3z7 727 ﬁoj-'?u i ‘599 382:[-'20233%:1406 114 2173-’652

535 [[752 is11 1368]327 J727 (610)it l' \573 B2]2]3; J312 J577 | Ji883 J-2416
55|)72 i]sn [xs]327 7271 610 |71t 'i ‘|-3364 2661]]-2538]-{2554 1-35101-2164 1203 |J3%6

Output From Error Storage Block RAM

Input to Error Storage Block RAM

Figure 9.25: Error Storage Block RAM Data Buffering [1-12] - Simulation Result (Serpentine Scan)

6v1

Inewtestbench0/ck1 ||
Inewtestbench0/dk2 ||
Inewtestbench0/ck3 ||
Inewtestbench0/dks |__|
Inewtestbench0/cks ||
Inewtestbench0/cdké |__|
Inewrestbench/ck7 ||
Inewrestbench0/cks ||
Inewtestbench0/ck9 |__|
Inewtestbench0/dk10 ||
/newtestbench0/dk11 ||
/newtestbench0/dk12 ||

[newtestbench0/uut/\CONTROL_REGISTER1/rout
/newtestbench0/uut/\CONTROL_REGISTER2/rout
/newtestbench0/uut/\CONTROL_REGISTER3/rout
[newtestbench0/uut/\CONTROL_REGISTER4/dout
[newtestbench0/uut/\CONTROL_REGISTERS/rout
[newtestbench0/uut/\CONTROL_REGISTERS/rout
/newtestbench0/uut/\CONTROL_REGISTER7/dout
[newtestbench/ut/\CONTROL_REGISTERS/rout
/newtestbench0/uut/\CONTROL_REGISTER9/rout
/newtestbench0/uut/\CONTROL_REGISTER10/dout
[newtestbench0/uut/\CONTROL_REGISTER11/rout
[newtestbench0/uut/\CONTROL_REGISTER12/rout

:

:

:

:

:

:
Mﬁlﬁ'ﬁ'ﬁghhh'ﬁ'ﬁ

loeooox]oaooon]osaooxlazoooz]amx]am1lm1]4mx]oaoom]omxlo;soo:]szooonlmoo:jmomlzosomlzodal 8

Ioaoom]oooooxIozeooxlamom]smon]moox[zosoo1]m1loaoom[o-uoou]a:soonlmoo: Iazaom[szmxlzosooxln

Jos0001 Jo40001 Jo38001 Js20001 |smoo:|az4001|zasoo:[m MmIanouloseoo: [gmooxlswx Mxln
1 1

Josooo1 Jos0001 Jo38001 820001 | 822001 824001 |205001 J400dc1 J08001b [040041 J038001 [820001 [822001 [

1 i 3 1 1
]oeooon[oqooox[o:aoox]szoom]moox[azmn]zosom]mm[oeoom]oooou]osaoox[mom[u

loeoooxlooooxlo:aoox]azooonlwoo: [auoox]zosoonlm: Ioeoom]ocooulosaoo:]u

loeoaox]oaooox]o;eoox[smx]szmx]smx[mx]mn]woom[mx e

Josoco1]oaooon loxooxlazooot 822001 J824001 lzosom]aoom loeooml-

Y

Ioaooox Jo40001 [omm]azooonlmoo: Iaz-:om]zosoonlwom |8

loeooo:lotooox]monlszooo:[amox]womlmxl'-

L4

[oeooox[ooooox]omooxlezooox[mn]azaooxln

080001 1 MI 820001 -

Core Control Registers with 1 Clock Cycle
Delay between each Processor Core

Figure 9.26: Processor Core Control Registers [1-12] - Simulation Result

0s1

Jnewtestbencho/ckt _ [L[L
Inewtestbencht/ck2 _ [| [|
Inewtestbencho/cks _ [| [||
InewtestbenchO/cks _ [| [||
/newtestbench0/dkS _]__’_|_
Inewrestbencht/cké _ [| [||
Inewtestbencht/ck? _ [~ | [||
Inewtestbencht/cks _ [| [||
Jnewrestbencht/cke _ [~ | [||
Jnewtestbench0/ck10 _ [| [|
JnewtestbenchO/dk1t _ [| [||
Jnewtestbencho/ck12 _ [|| |

/newrestbench0/uut/\ERROR_CNTRL_REG1/eout
/newrestbench0/uut/\ERROR_CNTRL_REG2/eout
Jnewtestbench0/uut/\ERROR_CNTRL_REG3/eout
/newtestbench0/uut/\ERROR_CNTRL_REG4/eout
/newtestbench0/uut/\ERROR_CNTRL_REGS/eout
/newtestbench0/uut/\ERROR_CNTRL_REG6/eout
Jnewtestbench0/uut/\ERROR_CNTRL_REG7/eout
/newtestbench0/uut/\ERROR_CNTRL_REGS/eout
/newtestbench0/uut/\ERROR_CNTRL_REGSY/eout
/newtestbench0/uut/\ERROR_CNTRL_REG10/eout
/newtestbench0/uut/\ERROR_CNTRL_REG11/eout
Jnewtestbenchl/uut/\ERROR_CNTRL_REG12/eout

)1

10}

h5q05555509

11

10

10

_—
-

|1

Jo

|1

o

J1

o

o

|1

ala

|1 1o

|4

10

J1

o

12

J1 o

12

14

Jo

1

o

| §1

o

12

J4

o

It

Jo

1

) (1]

]2

|4

) (1

1

Jo

)5

Jo

12

14

Jo

11

J1

fo

12

J4

o

11

10

12

14

ol 9] o] o] o] o] o o] o] |9 e

1

0

Error Storage Control Registers with 1
Clock Cycle Delay

Figure 9.27: Error Storage Block Control Registers[1-12] - Simulation Result

IS1

mewestrescroiek [MMM U U U U uupuj Uiy uupruy o
/newrestbench0/dr
/newtestbench0/ON_OFF
[newtestbench0/otswe 11 1 1 1
[newtestbench0/image_in 25;1
/newtestbench0/img_out]10010110 J11011001]11101010 11111111
8 CIOCk cycles =1 Output File Edit Search Block Convert Options View Help
(ol vmalO -0 140 RAaanaT.
| parsimoutpix.txt
Output (8 Bits/Pixel) 10010110
—(11011001
10 01 01 10 11101010
CMY K
1111111
1111111
1111111
1111111
10101011
11011011
10010111
11011011
11010111
11011011

Figure 9.28: Halftoned Output Pixels - Simulation Results

49!

9.4 Output Images from Simulation Results

Figure 9.29: Original Image
(CMYK)

Figure 9.30: Halftoned Image
(Software 'C' Code)

Figure 9.31: Halftoned Image
(Hardware - FPGA)

153

Figure 9.33: Halftoned Image (Software Figure 9.34: Halftoned Image (Hardware

Figure 9.32: Origina Image (CMYK)

- FPGA)

'C' Code)

129!

Figure 9.35: Origina Image (CMYK)

Figure 9.36: Halftoned Image (Software Figure 9.37: Halftoned Image (Hardware
'C' Code) - FPGA)

Figure 9.38: Original Image
(GrayScale)

Figure 9.39: Halftoned Image
(Hardware - FPGA)

155

9¢1

9.5 Image Quality Comparison

Artifacts (Staircase Patterns)

Figure 9.40: Halftoned Image by Binary Thresholding Technique - Zoomed Pixels Showing
Artifacts

LS1

Artifacts (Staircase Patterns)

Figure 9.41: Halftoned Image by N-Level Quantization Technique - Zoomed Pixels Showing
Artifacts

8S1

Smooth and Visually Pleasant Pixels

Figure 9.42: Halftoned Image by Stacked Error-Diffusion Technique (Software - 'C' Code - CPU) -
Zoomed Pixels Showing Visually Pleasant Pixels

651

Smooth and Visually Pleasant Pixels

o~

Figure 9.43: Halftoned Image by Stacked Error-Diffusion Technique (Hardware - FPGA) - Zoomed

Pixels Showing Visually Pleasant Pixels

091

Smooth and Visually Pleasant Pixels

Figure 9.44: Halftoned Image by Stacked Error-Diffusion Technique (Software -'C' Code - CPU) -
Zoomed Pixels Showing Visualy Pleasant Pixels

191

Smooth and Visually Pleasant Pixels

Figure 9.45: Halftoned Image by Stacked Error-Diffusion Technique (Hardware - FPGA) - Zoomed
Pixels Showing Visually Pleasant Pixels

o1

Smooth and Visually Pleasant Pixels

Figure 9.46: Halftoned Image by Stacked Error-Diffusion Technique (Software - 'C' Code - CPU) -
Zoomed Pixels Showing Visualy Pleasant Pixels

€91

Smooth and Visually Pleasant Pixels

Figure 9.47: Halftoned Image by Stacked Error-Diffusion Technique (Hardware - FPGA) - Zoomed
Pixels Showing Visually Pleasant Pixels

Technique

Artifacts

N-Level
Quantization
Technique

Stacked Error
Diffusion

Zoomed Halftone Image

Figure 9.48: Zoomed Pixels showing Artifacts

164

165

Figure 9.49: Zoomed Pixels of Original Image showing Cyan Color Only

991

Figure 9.50: Zoomed Pixels of Halftoned Image Using Binary Thresholding Technigue (Cyan Color Only)

L91

Figure 9.51: Zoomed Pixels of Halftoned Image Using N-Level Quantization Technigque (Cyan Color Only)

891

s P F s 334

-t
aw LR - "{'ﬁ

'--:-5'.'0.'#.{':::'- Al

. e L
-

B R T T S S T

o = A
A AT e L
.:n.':.':i\\ artn g .-

.{.
. " .-
RasaL - - - Beann"e o
RO T ?-.-;’_
v "

Figure 9.52: Zoomed Pixels of Halftoned Image Using Stacked Error-Diffusion 'C' Code (Cyan Color Only)

691

Figure 9.53: Zoomed Pixels of Halftoned Image Using Stacked Error-Diffusion Hardware-FPGA (Cyan Color Only)

The Figures 9.29 through 9.39 shows different images executed using Stacked Error-
Diffusion Halftoning algorithm in a serial based CPU and in Parallel Hardware
Architecture implemented in FPGA. The aim was to compare the halftoned output of an
image executed in a serial based CPU with the halftoned output of the same image
obtained from the Hardware Architecture in FPGA. Figure 9.29 shows the original color
image (CMYK). Figure 9.30 shows the halftoned output of the image using Software 'C'
code which was run in a serial based CPU. The pixels in the Figure 9.30 appears very
smooth and pleasant to the naked eye. The same output was obtained when the original
image was processed using FPGA as shown in Figure 9.31. The pixels in both the Figures
9.30 and 9.31 shows that the Halftoned image obtained is visually smooth and pleasant.
Thus, the results obtained were the same from the FPGA HDL simulation when
compared to the results obtained from the serial CPU without the loss in quality of the
halftoned image. The comparison process was done using different images to ensure that
the Hardware Architecture works for any input image. Figures 9.32 through 9.34 shows a
different input image and the corresponding halftoned images. The halftoned output
(Figure 9.34) when compared with the halftoned output in Figure 9.33 gives a clear idea
of the accuracy obtained in the image quality. Figures 9.36 and 9.37 shows the halftoned
outputs of the original image shown in Figure 9.35. Figure 9.38 shows a grayscale image
that is used to show that the current Hardware Architecture supports any number of
channels and levels. Figure 9.39 shows the halftoned output of the grayscale image that

has only one channel and 3 levels per channel.

Figures 9.40 and 9.41 shows the halftoned output of the original image shown in Figure
9.32 using Binary Thresholding and N-Level Quantization halftoning algorithms. The
Stacked Error-Diffusion algorithm is similar to Multitoning technique which results in an
halftoned image of similar quality. A particular area of the in the image was marked and
zoomed to show the difference in quality of the halftoned images obtained using Stacked
Error-Diffusion Algorithm. The zoomed pixels in Figures 9.40 and 9.41 shows many
artifacts (Staircase and Banding) present in Binary Thresholding and N-Level

Quantization techniques. Figures 9.42 and 9.43 shows the zoomed pixels at the same

170

location using Stacked Error Diffusion technique executed in CPU and FPGA. It can be
inferred that the pixels have the least number of artifacts (almost none) that results in
smooth and visually pleasant halftoned image. Figures 9.44 through 9.47 shows pixels in
the zoomed image and proves that the image obtained was smooth with fewer artifacts.
Based on the halftoned images from the above figures mentioned, Figure 9.48 shows the
zoomed version of all the algorithms compared with the Stacked Error-Diffusion
Algorithm executed in hardware (Figure 9.34). From Figure 9.48, it can be concluded
that artifacts (horizontal and vertical streaks of the same color intensity) are prevalent in
all the other algorithms except the Stacked Error-Diffusion Algorithm (no two
neighboring color intensities are the same, it appears visually smooth). Figure 9.49 shows
the original continuous tone image (Cyan channel only) and the halftoned outputs of this
image using different techniques in Figures 9.50, 9.51, 9.52 and 9.53. These figures show
the comparison of different algorithms with the Stacked Error-Diffusion Algorithm taking
only the Cyan channel. It can be inferred that Binary thresholding and N-Level
Quantization technique results in banding artifacts [38] that degrades the image quality. It
can be observed from the figures mentioned above that the Stacked Error-Diffusion

Algorithm has fewer artifacts resulting in better image quality.

171

Chapter 10. Conclusions and Future Work

10.1 Summary

This thesis provided a detailed explanation of hardware and software techniques used to
develop, simulate and validate a special purpose parallel architecture processor system
that efficiently implements a new Stacked Error Diffusion Halftoning Algorithm. The
hardware logic consumed by this architecture in the FPGA is described in detail in
Appendix A. The introductory chapter at the beginning provided a thorough explanation
of the Stacked Error-Diffusion algorithm. Chapter 2 gave a thorough insight into the data
representation format used. Chapter 3 exclusively discussed the High Level System
Architecture where the entire Hardware Halftoning System was shown (Figure 3.1).
Chapters 4, 5, 6, 7 and 8 gave a comprehensive view of how the datapath and controller
architecture was designed. Chapter 9 showed practical results obtained from the HDL
simulations and compared and validated these results with the original results obtained
from the algorithm executed on a serial commercially available CPU. The resulting
parallel halftoning architecture this hardware design can be used to process wide images

and print them with the help of the Wide Format Printers.

10.2 Contributions

The Halftoning Algorithm written in 'C' was converted to an equivalent High
Speed Hardware Parallel Architecture Design and Implemented into a Virtex-5
FPGA chip without compromising the Image Quality.

A significant performance improvement can be achieved by increasing the
execution speed of the algorithm by implementing if in the parallel architecture
system implemented into a FPGA chip. Execution speed-up of 18 X is obtained
by the algorithm implemented into a FPGA chip when compared to a

conventional serial CPU.

172

A very High Performance Parallel Hardware Architecture for implementation of
new Stacked Error-Diffusion Halftoning Algorithm was designed, developed and
validated.

The entire system along with all the digital components required to develop the

system were HDL simulated, tested and validated.

The results obtained from the HDL simulation were compared and validated with

the results from the original algorithm running on a serial general purpose CPU.

10.3 Conclusion and Future Work

This research accomplished the objectives addressed in Chapter 1. Output images
obtained from the new hardware architecture was tested, evaluated and validated to be
correct. The entire system runs at 50 MHz and can even run at a higher speed of 130
MHz. The base clock frequency of 50 MHz chosen for the new architecture produces the
output twice as fast as a printer can print the data. This results in the avoidance of
buffering problems between the printer and the FPGA. The software halftoning algorithm
implemented in a commercial general purpose processor was very slow so that the
printer had to stop for the pixels to be processed and then buffered into its memory. A
substantial increase in throughput (12 square inches per second, 18X Speed) was
achieved using the hardware implementation. The developed hardware unit was designed
using the Xilinx ISE 10.3 CAD tool set [19] and simulated with the help of Mentor
Graphics ModelSim CAD tool HDL simulator [20].

The next phase of this research work is to build a hardware prototype and test it
connecting it to a Wide Format Printer. To extract the input image pixels from the host
PC, an interface preferably PCI Express (because of higher speed) should be designed. A
DDR2 SDRAM interface must be designed to continuously buffer the pixels from the
host PC to the FPGA. SRAM (used to buffer pixels from the host PC) would be a better
choice when compared to DRAM as it is faster and more efficient. The goal is for the

entire architecture to run in a portable processing card known as PICO E-17 [37] which

173

has all the components required namely Virtex-5 FPGA, DDR2 SDRAM, PCle, Ethernet
and a Flash ROM to store the FPGA bit images. The speed of the architecture can be
changed according to requirements. This research project met all original objectives. The
hardware architecture was designed to be flexible and scalable. This architecture in
addition to being implemented into FPGA technology can also be implemented to an

Application Specific Integrated Circuit (ASIC) to achieve maximum performance.

174

Appendix A

Map Report

Release 10.1.03 Map K.39 (nt)

Xilinx Map Application Log File for Design 'Processor’
Design Information

Command Line:map -ise "C:/Documents and
Settings/Rishvanth/Desktop/Error_diffusion_system/ERR_DIFF _SYSTEM.ise" -intstyle ise -p xc5vfx70t-
ff665-1 -w -logic_opt off -ol high -t 1 -cm area -pr off -k 6 -Ic off -power off -o Processor map.ncd
Processor.ngd Processor.pcf

Target Device : xc5vfx70t

Target Package : ff665

Target Speed : -1

Mapper Version : virtex5 -- $Revision: 1.46.12.2 $
Mapped Date : Thu Nov 04 18:14:35 2010

Mapping design into LUTs...

Running directed packing...

Running delay-based LUT packing...

INFO:Map:215 - The Interim Design Summary has been generated in the MAP Report (.mrp).
Running timing-driven packing...

Phase 1.1

Phase 1.1 (Checksum:2¢20b97) REAL time: 42 secs

Phase 2.7

Phase 2.7 (Checksum:2¢20b97) REAL time: 42 secs

Phase 3.31

Phase 3.31 (Checksum:2¢20b97) REAL time: 42 secs
Phase 4.33

Phase 4.33 (Checksum:2e20b97) REAL time: 1 mins 5 secs
Phase 5.32

Phase 5.32 (Checksum:2e20b97) REAL time: 1 mins 7 secs
Phase 6.2

Phase 6.2 (Checksum:2fe3f91) REAL time: 1 mins 11 secs

175

Phase 7.30
Phase 7.30 (Checksum:2fe3f91) REAL time: 3 mins 43 secs

Phase 8.3

Phase 8.3 (Checksum:3570f59) REAL time: 3 mins 43 secs

Phase 9.5
Phase 9.5 (Checksum:3570f59) REAL time: 3 mins 43 secs

Phase 10.8

Phase 10.8 (Checksum:3c4ec1f2) REAL time: 6 mins 24 secs

Phase 11.29
Phase 11.29 (Checksum:3c4ecl1f2) REAL time: 6 mins 24 secs

Phase 12.5
Phase 12.5 (Checksum:3c4ec1f2) REAL time: 6 mins 24 secs

Phase 13.18
Phase 13.18 (Checksum:3d244906) REAL time: 6 mins 55 secs

Phase 14.5
Phase 14.5 (Checksum:3d244906) REAL time: 6 mins 55 secs

Phase 15.34

Phase 15.34 (Checksum:3d244906) REAL time: 6 mins 55 secs

REAL time consumed by placer: 6 mins 58 secs

176

CPU time consumed by placer: 6 mins 54 secs

Design Summary

Design Summary:

Number of errors: 0

Number of warnings: 3

Slice Logic Utilization:
Number of Slice Registers:
Number used as Flip Flops:
Number of Slice LUTs:

Number used as logic:

Number using O6 output only:

Number using O5 output only:

Number using O5 and O6:

Number used as Memory:

Number used as Dual Port RAM:
Number using O6 output only:
Number using OS5 output only:

Number using O5 and O6:

3,647 out of 44,800 8%
3,647

2,947 out of 44,800 6%
2,733 out of 44,800 6%
2,373

78

282

210 out of 13,120 1%
210

30

30

150

Number used as exclusive route-thru: 4

Number of route-thrus:

Number using O6 output only:

Number using O5 output only:
Slice Logic Distribution:

Number of occupied Slices:

94 out of 89,600 1%
82
12

1,616 out of 11,200 14%

Number of LUT Flip Flop pairs used: 4,508

Number with an unused Flip Flop:

Number with an unused LUT:

Number of fully used LUT-FF pairs:

Number of unique control sets:

861 out of 4,508 19%
1,561 out of 4,508 34%
2,086 out of 4,508 46%
249

Number of slice register sites lost

to control set restrictions: 489 out of 44,800 1%

A LUT Flip Flop pair for this architecture represents one LUT paired with one Flip Flop within a slice. A
control set is a unique combination of clock, reset, set, and enable signals for a registered element. The

Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if
Placement fails.

177

10 Utilization:
Number of bonded I0Bs: 62 outof 360 17%
Specific Feature Utilization:
Number of BlockRAM/FIFO: 109 outof 148 73%
Number using BlockRAM only: 109
Total primitives used:

Number of 18k BlockRAM used: 217

Total Memory used (KB): 3,906 out of 5,328 73%
Number of BUFG/BUFGCTRLs: 13outof 32 40%
Number used as BUFGs: 13

Number of DSP48Es: 108 out of 128 84%

Peak Memory Usage: 599 MB

Total REAL time to MAP completion: 7 mins 33 secs
Total CPU time to MAP completion: 7 mins 26 secs

Mapping completed.

See MAP report file "Processor_map.mrp" for details.

Place and Route Report

Release 10.1.03 par K.39 (nt)

Copyright (¢) 1995-2008 Xilinx, Inc. All rights reserved.

OPTI960:: Thu Dec 02 14:59:14 2010

par -w -intstyle ise -ol std -t 1 Processor _map.ncd Processor.ncd Processor.pcf
Constraints file: Processor.pcf.

Loading device for application Rf Device from file 'Svfx70t.nph' in environment C:\Xilinx\10.1\ISE.
"Processor" is an NCD, version 3.2, device xc5vfx70t, package ff665, speed -1
Initializing temperature to 85.000 Celsius. (default - Range: 0.000 to 85.000 Celsius)
Initializing voltage to 0.950 Volts. (default - Range: 0.950 to 1.050 Volts)

Device speed data version: "PRODUCTION 1.64 2008-12-19".

Device Utilization Summary:

Number of BUFGs 13 outof 32 40%
Number of DSP48Es 108 out of 128 84%
Number of External IOBs 62 outof 360 17%
Number of LOCed I0Bs Ooutof62 0%
Number of RAMB18X2s 109 out of 148 73%
Number of Slice Registers 3647 out of 44800 8%

178

Number used as Flip Flops 3647

Number used as Latches 0
Number used as LatchThrus 0
Number of Slice LUTS 2947 out of 44800 6%

Number of Slice LUT-Flip Flop pairs 4508 out of 44800 10%
Overall effort level (-ol): Standard
Router effort level (-rl): Standard
Starting initial Timing Analysis. REAL time: 28 secs
Finished initial Timing Analysis. REAL time: 28 secs
Starting Router
Phase 1: 43997 unrouted; REAL time: 31 secs
Phase 2: 28801 unrouted; REAL time: 33 secs
Phase 3: 6167 unrouted,; REAL time: 41 secs
Phase 4: 6167 unrouted; (59559) REAL time: 47 secs
Phase 5: 6169 unrouted; (0) REAL time: 51 secs
Phase 6: 6169 unrouted; (0) REAL time: 51 secs
Phase 7: 0 unrouted; (0) REAL time: 1 mins 17 secs
Updating file: Processor.ncd with current fully routed design.
Phase 8: 0 unrouted; (0) REAL time: 1 mins 20 secs
Phase 9: 0 unrouted; (0) REAL time: 1 mins 20 secs
Phase 10: 0 unrouted; (0) REAL time: 1 mins 33 secs
Total REAL time to Router completion: 1 mins 34 secs
Total CPU time to Router completion: 1 mins 33 secs

Partition Implementation Status

No Partitions were found in this design.

Generating "PAR" statistics.

sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok kR kR Rk koK ok

Generating Clock Report

sfe sk st steske she sk skeske she sk skeske s skeoskeskeosk skeokoskosk skokosksk

179

+ + + + + +

| Clock Net | Resource | Locked | Fanout | Net Skew (ns) | Max Delay(ns) |
+ + + + + +

|clk2 BUFGP | BUFGCTRL X0Y12| No | 164 | 0277 | 2.018
+ + + + + +

|clk9 BUFGP | BUFGCTRL X0Y1 | No | 164 | 0.421 | 2.072
+ + + + + +

| clk3 BUFGP | BUFGCTRL _X0Y10 | No | 164 | 0352 | 2.074
+ + + + + +

|clk10 BUFGP| BUFGCTRL X0Y31| No | 164 | 0.382 | 2.022
+ + + + + +

| clk5 BUFGP [BUFGCTRL X0Y21 | No | 163 | 0.519 | 2.061
+ + + + + +

| clk7 BUFGP | BUFGCTRL X0Y5 | No | 164 | 0432 | 1.961
+ + + + + +

|clkll BUFGPBUFGCTRL X0Y20 | No | 164 | 0.501 \ 2.072
+ + + + + +

|clk BUFGP |BUFGCTRL_X0Y8 | No | 156 | 0.335 \ 1.917
+ + + + + +

| clk4 BUFGP | BUFGCTRL X0Y9 | No | 164 | 0.393 | 2.015
+ + + + + +

|clk12 BUFGPBUFGCTRL X0Y13 | No | 166 | 0.528 \ 2.074
+ + + + + +

|clk6 BUFGP | BUFGCTRL X0Y7 | No | 164 | 0.387 | 1.924
+ + + + + +

|clkl BUFGP [BUFGCTRL X0Y23 | No | 165 | 0.454 | 2.099
+ + + + + +

| clk§ BUFGP BUFGCTRL X0Y25 | No | 164 | 0.501 | 2.048
+ + + + + +

* Net Skew is the difference between the minimum and maximum routing
only delays for the net. Note this is different from Clock Skew which
is reported in TRCE timing report. Clock Skew is the difference between

the minimum and maximum path delays which includes logic delays.

180

+

+

Timing Score: 0

Asterisk (*) preceding a constraint indicates it was not met.

This may be due to a setup or hold violation.

Constraint | Check | Worst Case | Best Case | Timing | Timing
| | Slack | Achievable | Errors | Score
OFFSET = IN 4 ns BEFORE COMP "clk" |SETUP| 0.313ns | 3.687ns | 0 | 0
OFFSET =IN 4 ns BEFORE COMP "clk11" |SETUP| 0.638ns | 3.362ns| 0 | 0
OFFSET =IN 4 ns BEFORE COMP "clk12" |SETUP| 0.836ns | 3.164ns| O | 0
OFFSET = IN 4 ns BEFORE COMP "clk7" |SETUP| 1.035ns | 2.965ns| 0 | 0
TS clk4 = PERIOD TIMEGRP "clk4" |SETUP| 1.237ns | 17.526ns | O 0
20 ns HIGH 50% |[HOLD | 0.302ns | | 0 0
OFFSET = IN 4 ns BEFORE COMP "clk3" |SETUP| 1328ns | 2.672ns | O 0
OFFSET = IN 4 ns BEFORE COMP "clk2" |SETUP| 1.550ns | 2.450ns | O 0
TS clk12 = PERIOD TIMEGRP "clk12" |SETUP| 1.597ns | 16.806ns | O 0
20 ns HIGH 50% |HOLD | 0.238ns | | 0 0
OFFSET = IN 4 ns BEFORE COMP "clk9" |SETUP| 1.624ns | 2376ns | O 0
OFFSET = IN 4 ns BEFORE COMP "clk8" |SETUP| 1.755ns | 2.245ns | O 0
OFFSET =IN 4 ns BEFORE COMP "clk10" |SETUP| 2.069ns | 193Ins | O 0
OFFSET = IN 4 ns BEFORE COMP "clk1" |SETUP| 2219ns | 1.78lns | 0 0
TS clk10 = PERIOD TIMEGRP "clk10" |SETUP| 2.406ns | 15.188ns | O 0
20 ns HIGH 50% |HOLD | 0.299ns | | 0 0

181

OFFSET = IN 4 ns BEFORE COMP "clk5" |SETUP| 2.536ns | 1.464ns |
OFFSET = IN 4 ns BEFORE COMP "clk6" |SETUP | 2.538ns | 1.462ns |
OFFSET = IN 4 ns BEFORE COMP "clk4" |SETUP | 2.704ns | 1.296ns |
TS_clk = PERIOD TIMEGRP "clk" |SETUP | 2.818ns | 14.364ns

20 ns HIGH 50% |HOLD | 0.452ns | |
TS_clk11 = PERIOD TIMEGRP "clk11" |SETUP | 2.840ns | 14.320ns

20 ns HIGH 50% |HOLD | 0.348ns | |
TS_clk6 = PERIOD TIMEGRP "clk6" |SETUP | 2.884ns | 14.232ns |
20 ns HIGH 50% |HOLD | 0.336ns | |
TS_clk9 = PERIOD TIMEGRP "clk9" |SETUP | 2.969ns | 14.062ns |
20 ns HIGH 50% |HOLD | 031lns | |
TS_clk3 = PERIOD TIMEGRP "clk3" SETUP | 3.447ns | 13.106ns |
20 ns HIGH 50% |HOLD | 0.234ns | |
TS_clk2 = PERIOD TIMEGRP "clk2" |SETUP | 3.564ns | 12.872ns |
20 ns HIGH 50% |HOLD | 0.229ns | |
TS_clk7 = PERIOD TIMEGRP "clk7" |SETUP | 4.185ns | 11.630ns |
20 ns HIGH 50% |HOLD | 03l1lns | |
TS_clk8 = PERIOD TIMEGRP "clk8" |SETUP | 4.260ns | 11.480ns |
20 ns HIGH 50% |HOLD | 0.323ns | |
TS_clk5 = PERIOD TIMEGRP "clk5" |SETUP | 4.398ns | 11.204ns |
20 ns HIGH 50% |HOLD | 0.315ns | |
TS_clkl = PERIOD TIMEGRP "clk1" |SETUP | 5.448ns | 9.104ns |

182

20 ns HIGH 50% |HOLD | 0.328ns | |0 |

OFFSET = OUT 260 ns AFTER COMP "clk12"| MAXDELAY| 241.236ns| 18.764ns| 0 |

OFFSET = OUT 260 ns AFTER COMP "clk11" |MAXDELAY| 247.665ns| 12.335ns| O |

OFFSET = OUT 260 ns AFTER COMP "clk8" |MAXDELAY| 248.267ns| 11.733ns| 0 |

OFFSET = OUT 260 ns AFTER COMP "clk10" |MAXDELAY| 248.526ns| 11.474ns| 0|

OFFSET = OUT 260 ns AFTER COMP "clk9" | MAXDELAY| 248.535ns| 11.465ns| O |

OFFSET = OUT 260 ns AFTER COMP "clk7" | MAXDELAY| 248.942ns| 11.058ns| O |

OFFSET = OUT 260 ns AFTER COMP "clk3" |MAXDELAY| 249.278ns| 10.722ns| 0 |

OFFSET = OUT 260 ns AFTER COMP "clk1" | MAXDELAY| 249.423ns| 10.577ns| O |

OFFSET = OUT 260 ns AFTER COMP "clk4" |MAXDELAY| 249.663ns| 10.337ns| O |

OFFSET = OUT 260 ns AFTER COMP "clk6" |MAXDELAY| 249.852ns| 10.148ns| 0 |

OFFSET = OUT 260 ns AFTER COMP "clk5" | MAXDELAY| 249.902ns| 10.098ns| O |

OFFSET = OUT 260 ns AFTER COMP "clk2" |MAXDELAY| 249.957ns| 10.043ns| 0 |

OFFSET = OUT 260 ns AFTER COMP "clk" | MAXDELAY| 250.549ns| 9.45Ins| O |

All constraints were met.

Generating Pad Report.

All signals are completely routed.

Total REAL time to PAR completion: 1 mins 41 secs
Total CPU time to PAR completion: 1 mins 37 secs
Peak Memory Usage: 457 MB

Placer: Placement generated during map.

183

Routing: Completed - No errors found.

Timing: Completed - No errors found.
Number of error messages: 0

Number of warning messages: 0
Number of info messages: 0

Writing design to file Processor.ncd
PAR done!

184

References

[1] http://staffwww.itn.liu.se/~sasgo/TNMO1 1/Digital Halftoning

[2] R. W. Floyd and I. Steinberg, “An adaptive algorithm for spatial grayscale,” Proc.
SID, vol. 17, no. 2, pp. 7578, 1976.

[3] R. A. Ulichney, “Dithering with blue noise,” Proc. IEEE, vol. 77, no.1, pp. 5679,
Jan. 1988.

[4] J.B. Rodriguez, G.R. Arce and D.L. Lau, Blue-noise multitone dithering, /EEE
Trans. Image Process. 17 (8) (2008), pp. 245-267.

[5] J. Sullivan, R. Miller, and G. Pios, “Image halftoning using a visual model in error

difussion,” J. Opt. Soc. Amer. A, vol. 10, no. 8, pp.1714-1724, Aug. 1993.

[6] R. Eschbach and K. T. Knox, “Error-diffusion algorithm with edge enhancement,”J.
Opt. Soc. Amer. A, vol. 8, no. 8, pp. 1844-1850, Dec.1991.

[7] R. Eschbach, “Reduction of artifacts in error difussion by means of input-dependent

weights,” J. Electron. Imag., vol. 2, no. 4, pp.352-358, Oct. 1993.

[8] V. Ostromoukhov, “A simple and efficient error-difussion algorithm,” in Proc.

SIGGRAPH, 2001, pp. 567-572.

[9] P. Li and J. P. Allebach, “Tone-dependent error difussion,” IEEE Trans. Image
Process., vol. 13, no. 2, pp. 201-215, Feb. 2004.

[10] R. A. Ulichney, “Dithering with blue noise,” Proc. IEEE, vol. 77, no.1, pp. 56-79,
Jan. 1988.

[11] D. L. Lau and R. Ulichney, “Blue-noise halftoning for hexagonal grids,” IEEE
Trans. Image Process., vol. 15, no. 5, pp. 1270-1284, May 2006.

[12] R. S. Gentile, E. Walowit, and J. P. Allebach, “Quantization and multilevel
halftoning of color images for near-original image quality.,” J. Opt. Soc. Amer. A,

vol. 7, no. 6, pp. 1019-1026, Jun. 1990.

185

http://staffwww.itn.liu.se/~sasgo/TNM011/Digital_Halftoning

[13] F. Faheem, G. R. Arce, and D. L. Lau, “Digital multitoning using gray level
separation,” J. Imag. Sci. Technol., vol. 46, no. 5, pp. 385-397, Sep./Oct. 2002.

[14] R. Miller and C. Smith, J. P. Allebach and B. E. Rogowitz, Eds., “Mean-preserving
multilevel halftoning algorithm,” in Proc. SPIE: Human Vision. Visual Processing

and Digital Display TV, 1993, vol. 1913, pp. 367-377.

[15] P.T. Mataxas, “Parallel Digital halftoning by error diffusion”, June 2003, ACM
Proceedings of, the Paris C. Kanellakis memorial workshop on Principles of

computing & knowledge.

[16] Yuefeng Zhang, Line Diffusion: A Parallel Error Diffusion Algorithm for Digital
Halftoning, The Visual Computer, 12 (1) 40-46, 1996.

[17] Jae-woo Ahn and Wonyong Sung, “Multimedia processor based implementation of
an error-diffusion halftoning algorithm exploiting subword parallelism,” /EEE
Trans. on Circuits and Systems for Video Technology, vol. 16, no. 2, pp. 129-138,
Feb. 2001.

[18] C.R. Brown and A. Savakis, “High-Performance Architecture for Color Error
Diffusion,” Proceedings of SPIE-IS&T Electronic Imaging, SPIE Vol. 5012, 2003.

[19] http://www .xilinx.com/support/download/index.htm
[20] http://model.com/content/modelsim-se-high-performance-simulation-and-debug

[21] http://www.xilinx.com/products/virtex5/index.htm

[22] D.A. Patterson and J.L. Hennessy, “Computer Organization and Design: The

Hardware/Software Interface,” Morgan Kaufmann Publishers, 3" ed., 2004.

[23] E.L. Oberstar, “Fixed-point representation & fractional math”, Oberstar Consulting,
2007.

[24] Randy Yates, “Fixed-Point Arithmetic: An Introduction,”

www.digitalsignallabs.com/fp.pdf , 2009.

186

http://www.digitalsignallabs.com/fp.pdf
http://www.xilinx.com/products/virtex5/index.htm
http://model.com/content/modelsim-se-high-performance-simulation-and-debug
http://www.xilinx.com/support/download/index.htm

[25] Randy Yates, “Practical Considerations in Fixed-Point FIR Filter Implementations,”

www.digitalsignallabs.com/fir.pdf , 2009.

[26] http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
[27] www.xilinx.com/itp/Xilinx6/books/docs/cgn/cgn.pdf

[28] www.xilinx.com/support/documentation/user_guides/ug193.pdf

[29] V. Nelson, H. Nagle, B. Carroll, and J. Irwin, “Digital Logic Circuit Analysis and
Design,” Prentice Hall, 1995.

[30] www.doe.carleton.ca/~jknight/97.478/97.478 03F/Advdig5cirJ.pdf

[31] http.//www.ccse.kfupm.edu.sa/~elrabaa/coe202/Lessons/Lessond_5.pdf

[32] J.P. Hayes, “Computer Architecture and Organization,” WCB / McGraw-Hill, 3"
ed., 1998.

[33] M.M. Mano, “Digital Logic and Computer Design,” Prentice Hall, 2002.
[34] M.M. Mano, “Digital Design,” Pearson Prentice Hall, 2007.

[35] http://www.asic-world.com/verilog/memory_fsm2.html

[36] D.A. Patterson and J.L. Hennessy, “Computer Architecture: A Quantitative
Approach,” Morgan Kaufmann Publishers, 4™ ed., 2007.

[37] http://www.picocomputing.com/support/E-17.php

[38] D.L. Lau and G.R. Arce, “Modern Digital Halftoning (Signal Processing and
Communications),” CRC Press, 2™ ed., 2008.

187

http://www.picocomputing.com/support/E-17.php
http://www.asic-world.com/verilog/memory_fsm2.html
http://www.ccse.kfupm.edu.sa/~elrabaa/coe202/Lessons/Lesson4_5.pdf
http://www.doe.carleton.ca/~jknight/97.478/97.478_03F/Advdig5cirJ.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/itp/xilinx6/books/docs/cgn/cgn.pdf
http://www.xilinx.com/itp/xilinx6/books/docs/cgn/cgn.pdf
http://www.xilinx.com/itp/xilinx6/books/docs/cgn/cgn.pdf
http://www.xilinx.com/itp/xilinx6/books/docs/cgn/cgn.pdf
http://www.xilinx.com/itp/xilinx6/books/docs/cgn/cgn.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.digitalsignallabs.com/fir.pdf
http://www.digitalsignallabs.com/fir.pdf
http://www.digitalsignallabs.com/fir.pdf

VITA

Rishvanth Kora was born on May 31, 1985 in Sriharikota, Andhra Pradesh, India. The
author received his Bachelor of Engineering (B.E.) degree in Electrical and Electronics
from Anna University, Tamilnadu, India in the year 2006. He has worked as a software
engineer in IBM, Bangalore, India before enrolling for Masters program in Electrical
Engineering at University of Kentucky, Lexington. He has been working at Computer
Architecture Laboratory as a Graduate Research Student under the guidance of Dr. J.

Robert Heath since January 2009.

188

	FPGA BASED PARALLEL IMPLEMENTATION OF STACKED ERROR DIFFUSION ALGORITHM
	Recommended Citation

	Abstract Of Thesis
	Title Page
	Dedication
	Acknowledgments
	Table Of Contents
	List of Tables
	List of Figures
	 Chapter 1. Introduction
	 1.1 Background
	 1.1.1 Halftoning
	 1.1.2 Error Diffusion
	 1.1.3 Image Scanning Techniques
	 1.1.4 Blue-Noise
	 1.1.5 Blue-Noise Halftoning
	 1.1.6 Multitoning
	 1.1.7 Blue-Noise Multitoning with Stacked Error Diffusion

	 1.2 Previous Research on FPGA Implementation of Halftoning Algorithms
	 1.3 Objective of the Thesis
	 1.4 Thesis Outline

	 Chapter 2. Processor Design Methodology
	 2.1 Introduction
	 2.2 Gate Level design
	 2.3 Register Level Design
	 2.4 Target Technology
	 2.4.1 Xilinx Virtex-5 FPGA

	 2.5 Data Representation
	 2.5.1 Floating Point Arithmetic
	 2.5.2 Fixed Point Arithmetic

	 2.6 Types of Processors
	 2.6.1 General Purpose Processors
	 2.6.2 Special Purpose Processors

	 Chapter 3. High Level System Architecture
	 3.1 Introduction
	 3.2 High Level System Hardware Architecture
	 3.2.1 Datapath Architecture
	 3.2.2 Control Unit Architecture

	 3.3 High Level Process Flow Description
	 3.4 Hardware Algorithm Execution

	 Chapter 4. Input Data Memory Architecture Design
	 4.1 Introduction
	 4.2 Xilinx Virtex-5 Memory Components
	 4.2.1 Block RAM
	 4.2.2 Distributed RAM

	 4.3 Xilinx Core Generator
	 4.4 Input Image FIFO
	 4.4.1 Input Image FIFO Design
	 4.4.2 FIFO Operational Procedure

	 4.5 Parameter Registers and 8/12 Bit Convertor
	 4.6 Droplet Densities Storage ROM
	 4.7 Input Level FIFO
	 4.8 Core Data FIFO
	 4.9 Entire Input Data Memory Architecture

	 Chapter 5. Processor Core Architecture Development and Design
	 5.1 Introduction
	 5.2 Xilinx Virtex-5 Xtreme DSP Slice
	 5.3 Input Data Registers
	 5.4 Adder-Subtractor Unit
	 5.5 Threshold Comparison Circuit
	 5.6 Error Limiting Circuit
	 5.7 Error Registers
	 5.8 Random Weights-Values Generator
	 5.9 Error-Filter Circuit
	 5.10 Processor Core Architecture

	 Chapter 6. Error Storage Block Memory Architecture Design
	 6.1 Introduction
	 6.2 Error Storage Block RAM Architecture
	 6.3 Input Image Size Monitor
	 6.4 Error Storage Memory Address Counter
	 6.5 Total Functional View of Single Error Storage RAM Memory Module

	 Chapter 7. Output System Architecture Design
	 7.1 Introduction
	 7.2 Output Data FIFO
	 7.3 Output Logic Unit

	 Chapter 8. Controller Architecture Development and Design
	 8.1 Introduction
	 8.2 Mealy and Moore State Machines
	 8.3 Controller Design Techniques
	 8.3.1 One-Hot Encoding
	 8.3.2 Almost One-Hot Encoding
	 8.3.3 One-Cold Encoding
	 8.3.4 Almost One-Cold Encoding
	 8.3.5 Binary Encoding
	 8.3.6 Gray Encoding
	 8.3.7 Sequence Register & Decoder Technique
	 8.3.8 PLA Control
	 8.3.9 Microprogramed Control

	 8.4 System Controller Architecture Strategy
	 8.5 Input Memory Controller Design
	 8.6 Processor Cores Controller Design
	 8.7 Processor Core Control Registers
	 8.8 Error Storage Block RAM Control Registers
	 8.9 Output Control Registers
	 8.10 Control Registers Switching Circuit
	 8.11 Auto-Write Data Core FIFO

	 Chapter 9. System Architecture Performance, Functional Analysis and Results
	 9.1 Overview
	 9.2 Performance Analysis and Results
	 9.3 HDL Functional and Performance Simulation Validation of Parallel Halftoning Architecture
	 9.4 Output Images from Simulation Results
	 9.5 Image Quality Comparison

	Chapter 10. Conclusions and Future Work
	10.1 Summary
	10.2 Contributions
	10.3 Conclusion and Future Work

	Appendix A
	References
	VITA

