
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2010

FPGA BASED PARALLEL IMPLEMENTATION OF STACKED ERROR FPGA BASED PARALLEL IMPLEMENTATION OF STACKED ERROR

DIFFUSION ALGORITHM DIFFUSION ALGORITHM

Rishvanth Kora Venugopal
University of Kentucky, rkora3@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Kora Venugopal, Rishvanth, "FPGA BASED PARALLEL IMPLEMENTATION OF STACKED ERROR DIFFUSION
ALGORITHM" (2010). University of Kentucky Master's Theses. 40.
https://uknowledge.uky.edu/gradschool_theses/40

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF THESIS

Digital halftoning is a crucial technique used in digital printers to convert a continuous-
tone image into a pattern of black and white dots. Halftoning is used since printers have a
limited availability of inks and cannot reproduce all the color intensities in a continuous
image. Error Diffusion is an algorithm in halftoning that iteratively quantizes pixels in a
neighborhood dependent fashion. This thesis focuses on the development and design of a
parallel scalable hardware architecture for high performance implementation of a high
quality Stacked Error Diffusion algorithm. The algorithm is described in ‘C’ and requires
a significant processing time when implemented on a conventional CPU. Thus, a new
hardware processor architecture is developed to implement the algorithm and is
implemented to and tested on a Xilinx Virtex 5 FPGA chip. There is an extraordinary
decrease in the run time of the algorithm when run on the newly proposed parallel
architecture implemented to FPGA technology compared to execution on a single CPU.
The new parallel architecture is described using the Verilog Hardware Description
Language. Post-synthesis and post-implementation, performance based Hardware
Description Language (HDL), simulation validation of the new parallel architecture is
achieved via use of the ModelSim CAD simulation tool.

KEYWORDS: Halftoning, Stacked Error Diffusion, Verilog, Parallel Architecture, HDL
Simulation Validation.

FPGA BASED PARALLEL ARCHITECTURE IMPLEMENTATION OF STACKED
ERROR DIFFUSION ALGORITHM

RISHVANTH KORA VENUGOPAL

12/02/2010

FPGA BASED PARALLEL ARCHITECTURE IMPLEMENTATION OF STACKED
ERROR DIFFUSION ALGORITHM

By

RISHVANTH KORA VENUGOPAL

Director of Thesis

Director of Graduate Studies

Co-Director of Thesis

 Date

Dr. J. Robert Heath

Dr. Daniel Lau

Dr. Stephen Gedney

12/02/2010

Unpublished theses submitted for the Master’s degree and deposited in the University of
Kentucky Library are as a rule open for inspection, but are to be used only with due
regard to the rights of the authors. Bibliographical references may be noted, but
quotations or summaries of parts may be published only with the permission of the
author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the thesis in whole or in part also requires the
consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature
of each user.

Name Date

RULES FOR THE USE OF THESES

THESIS

Rishvanth Kora Venugopal

The Graduate School

University of Kentucky

2010

FPGA BASED PARALLEL IMPLEMENTATION OF STACKED ERROR DIFFUSION
ALGORITHM

THESIS

 A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in Electrical Engineering in the

College of Engineering at the University of Kentucky

By

Rishvanth Kora Venugopal

Lexington, Kentucky

Director: Dr. J. Robert Heath, Associate Professor of Electrical Engineering

Co-Director: Dr. Daniel Lau, Associate Professor of Electrical Engineering

Lexington, Kentucky

2010 Copyright © Rishvanth Kora Venugopal 2010

I authorize the University of Kentucky

Libraries to reproduce this thesis in

whole or in part for purposes of research.

MASTERS THESIS RELEASE

Signed:

Date:

Dedicated to my Family, Teachers and Friends.

ACKNOWLEDGMENTS

I express my sincere gratitude to my advisors Dr. Robert Heath and Dr. Daniel Lau,

whose encouragement, guidance and support throughout my research work helped me

develop a through understanding of the subject.

I would like to thank Dr. Meikang Qui for serving on my thesis committee. I would also

like to thank my colleagues at Computer Architecture Laboratory who supported me

during technical difficulties.

I sincerely thank my family members and friends who showed me kindness and

generosity throughout my life.

iii

Table of Contents

Acknowledgments.. iii

List of Tables... x

List of Figures... xi

Chapter 1.Introduction... 1

 1.1 Background.. 1

 1.1.1 Halftoning...1

 1.1.2 Error Diffusion .. 2

 1.1.3 Image Scanning Techniques... 3

 1.1.4 Blue-Noise..4

 1.1.5 Blue-Noise Halftoning ...4

 1.1.6 Multitoning... 6

 1.1.7 Blue-Noise Multitoning with Stacked Error Diffusion.................................... 8

 1.2 Previous Research on FPGA Implementation of Halftoning Algorithms..............10

 1.3 Objective of the Thesis...12

 1.4 Thesis Outline.. 12

Chapter 2.Processor Design Methodology...14

 2.1 Introduction.. 14

iv

 2.2 Gate Level design...14

 2.3 Register Level Design.. 14

 2.4 Target Technology..15

 2.4.1 Xilinx Virtex-5 FPGA.. 15

 2.5 Data Representation... 16

 2.5.1 Floating Point Arithmetic... 17

 2.5.2 Fixed Point Arithmetic... 19

 2.6 Types of Processors..23

 2.6.1 General Purpose Processors..23

 2.6.2 Special Purpose Processors.. 23

Chapter 3.High Level System Architecture... 24

 3.1 Introduction.. 24

 3.2 High Level System Hardware Architecture ..25

 3.2.1 Datapath Architecture...28

 3.2.2 Control Unit Architecture...31

 3.3 High Level Process Flow Description ...31

 3.4 Hardware Algorithm Execution... 37

Chapter 4.Input Data Memory Architecture Design ... 40

 4.1 Introduction.. 40

v

 4.2 Xilinx Virtex-5 Memory Components... 40

 4.2.1 Block RAM.. 41

 4.2.2 Distributed RAM.. 42

 4.3 Xilinx Core Generator..43

 4.4 Input Image FIFO... 43

 4.4.1 Input Image FIFO Design... 44

 4.4.2 FIFO Operational Procedure...45

 4.5 Parameter Registers and 8/12 Bit Convertor..46

 4.6 Droplet Densities Storage ROM.. 49

 4.7 Input Level FIFO..51

 4.8 Core Data FIFO ... 52

 4.9 Entire Input Data Memory Architecture...53

Chapter 5.Processor Core Architecture Development and Design.................................... 55

 5.1 Introduction.. 55

 5.2 Xilinx Virtex-5 Xtreme DSP Slice...55

 5.3 Input Data Registers... 57

 5.4 Adder-Subtractor Unit..58

 5.5 Threshold Comparison Circuit...60

 5.6 Error Limiting Circuit.. 63

vi

 5.7 Error Registers..64

 5.8 Random Weights-Values Generator...65

 5.9 Error-Filter Circuit... 68

 5.10 Processor Core Architecture ..73

Chapter 6.Error Storage Block Memory Architecture Design... 74

 6.1 Introduction.. 74

 6.2 Error Storage Block RAM Architecture...74

 6.3 Input Image Size Monitor...78

 6.4 Error Storage Memory Address Counter..79

 6.5 Total Functional View of Single Error Storage RAM Memory Module............... 81

Chapter 7.Output System Architecture Design..82

 7.1 Introduction.. 82

 7.2 Output Data FIFO...82

 7.3 Output Logic Unit.. 83

Chapter 8.Controller Architecture Development and Design.. 87

 8.1 Introduction.. 87

 8.2 Mealy and Moore State Machines..87

 8.3 Controller Design Techniques..88

 8.3.1 One-Hot Encoding..89

vii

 8.3.2 Almost One-Hot Encoding... 90

 8.3.3 One-Cold Encoding.. 90

 8.3.4 Almost One-Cold Encoding... 90

 8.3.5 Binary Encoding... 90

 8.3.6 Gray Encoding.. 91

 8.3.7 Sequence Register & Decoder Technique.. 91

 8.3.8 PLA Control... 92

 8.3.9 Microprogramed Control..93

 8.4 System Controller Architecture Strategy..94

 8.5 Input Memory Controller Design... 95

 8.6 Processor Cores Controller Design.. 100

 8.7 Processor Core Control Registers.. 107

 8.8 Error Storage Block RAM Control Registers...110

 8.9 Output Control Registers..112

 8.10 Control Registers Switching Circuit.. 115

 8.11 Auto-Write Data Core FIFO ..117

Chapter 9. System Architecture Performance, Functional Analysis and Results............120

 9.1 Overview.. 120

 9.2 Performance Analysis and Results... 120

viii

 9.3 HDL Functional and Performance Simulation Validation of Parallel Halftoning

Architecture...123

 9.4 Output Images from Simulation Results.. 152

 9.5 Image Quality Comparison...156

Chapter 10. Conclusions and Future Work..172

10.1 Summary... 172

10.2 Contributions...172

10.3 Conclusion and Future Work.. 173

Appendix A..175

References..185

VITA.. 188

ix

List of Tables

Table 2.1: Virtex-5 Specifications... 16

Table 2.2: Algorithm Requirements.. 16

Table 7.1: Input Values & Corresponding Outputs .. 84

Table 8.1: Control Table showing Outputs and States.. 99

Table 8.2: Control Table for Processor Core Controller..104

Table 8.3: Truth Table for Control Registers Switching Circuit..................................... 116

x

List of Figures

Figure 1.1: Floyd-Steinberg Error Diffusion..2

Figure 1.2: Error Filter... 3

Figure 1.3: Line Raster...3

Figure 1.4: Serpentine Raster...4

Figure 1.5: Halftone of Gray-Scale ramp generated with Floyd-Steinberg Error Diffusion.

Adapted from [4]..6

Figure 1.6: Halftone of Gray Scale Ramp generated with Ulichney's Error Diffusion.

Adapted from [4]..6

Figure 1.7: Decomposition of 3-ink multitone M in a series of Halftones satisfying the

stacking constraint. Adapted from [4]... 7

Figure 1.8: A Continuous tone image Y divided into N components resulting in a final

halftone M [4].. 9

Figure 1.9: Stacked Error Diffusion...10

Figure 2.1: 32 Bit Single Precision Floating-Point Representation................................... 17

Figure 2.2: 64 Bit Double Precision Floating-Point Representation................................. 17

Figure 2.3: Q 1.14, 16 Bit Fixed-Point Representation... 20

Figure 2.4: Fixed-Point Multiplication End Result..22

Figure 3.1: High Level System Hardware Architecture...26

Figure 3.2: Hardware Operational Procedure Flow Chart 1.. 32

xi

Figure 3.3: Hardware Operational Procedure Flow Chart 2.. 34

Figure 3.4: OFF / IDLE Timing Pixel Locations... 35

Figure 3.5: Hardware Operational Procedure Flow Chart 3.. 36

Figure 3.6: Processor Cores Pixel Execution Sequence.. 38

Figure 3.7: Current Hardware Execution Methodology...39

Figure 3.8: Alternate Hardware Execution Methodology..39

Figure 4.1: Types of Xilinx Virtex-5 RAM / ROM...41

Figure 4.2: Input Image FIFO Schematic...44

Figure 4.3: Software Code Snippet for Image FIFO and 12 Bit Conversion45

Figure 4.4: Parameter Register 1..46

Figure 4.5: Parameter Register 2..47

Figure 4.6: Register Schematic.. 48

Figure 4.7: Padding Technique.. 48

Figure 4.8: 8/12 Bit Hardware Convertor.. 49

Figure 4.9: Droplet Densities Storage ROMs.. 50

Figure 4.10: .COE File Format.. 50

Figure 4.11: Input Level RAM/FIFO...51

Figure 4.12: Core Data FIFO Schematic..52

Figure 4.13: Entire Input Data Memory Architecture..54

xii

Figure 5.1: Virtex-5 FPGA Components... 55

Figure 5.2: Software Code Snippet For Registers and Adder..57

Figure 5.3: Equivalent Hardware Circuit for Input and Previous Pixel Values58

Figure 5.4: Adder-Subtrator Unit Schematic... 59

Figure 5.5: Adder-Subtractor Connections.. 59

Figure 5.6: Software Code Snippet for Threshold Comparison...60

Figure 5.7: Threshold Comparator...61

Figure 5.8: Output Image Value Circuit.. 62

Figure 5.9: Threshold Comparison Circuit.. 62

Figure 5.10: Code Snippet for Subtractor and Error Limiting Circuit...............................63

Figure 5.11: Error Limiting Circuit..63

Figure 5.12: Comparators (Greater Than and Less Than)... 64

Figure 5.13: Error Registers...64

Figure 5.14: Code Snippet for Random Weights Generation in 'C'................................... 65

Figure 5.15: LFSR - 10 Binary Bits... 67

Figure 5.16: LFSR - 12 Binary Bits... 67

Figure 5.17: Random Weights Generator.. 68

Figure 5.18: Code Snippet for Error Filter Circuit...68

Figure 5.19: Error Update Technique.. 69

xiii

Figure 5.20: Multiplier Unit...70

Figure 5.21: Hardware Error-Filter Circuit..71

Figure 5.22: Processor Core Functional Architecture..72

Figure 6.1: Error Storage Block RAM Memory Schematic...75

Figure 6.2: Code Snippet Showing Random Values Stored in the Error Image Buffer....75

Figure 6.3: Error Storing Procedure Schematic... 76

Figure 6.4: Error Storage Block RAM Memory Unit.. 77

Figure 6.5: Image Size Counter Schematic..79

Figure 6.6: Error Storage Block RAM Memory Address Counter.................................... 80

Figure 6.7: Read & Write Port Connections.. 80

Figure 6.8: Error Storage Block RAM Memory Functional Architecture......................... 81

Figure 7.1: Output Data FIFO Schematic.. 83

Figure 7.2: Software Code Snippet for Output Calculation...83

Figure 7.3: Output Logic Unit..84

Figure 7.4: Entire Output System Architecture..86

Figure 8.1: Mealy & Moore Models.. 88

Figure 8.2: One-Hot Encoded Control Logic...89

Figure 8.3: Binary Encoded State Machine... 91

Figure 8.4: Gray Encoded State Machine.. 91

xiv

Figure 8.5: Sequence Register & Decoder Technique... 92

Figure 8.6: PLA Control Technique.. 93

Figure 8.7: Micro-Programmed Control Technique.. 94

Figure 8.8: Input Memory Controller Schematic... 96

Figure 8.9: State Diagram for Input Memory Controller... 97

Figure 8.10: Processor Core Controller Schematic..100

Figure 8.11: Processor Core Controller State Transition Diagram.................................. 101

Figure 8.12: Processor Core Control Registers..107

Figure 8.13: Control Register (1 Data Input)... 108

Figure 8.14: Control Register (3 Data Inputs)... 108

Figure 8.15: Control Register Connections..109

Figure 8.16: Error Storage Block RAM Control Registers..111

Figure 8.17: Error Storage Block RAMs Control Registers Connections....................... 111

Figure 8.18: Output Control Registers...113

Figure 8.19: Output Control Registers (1/3 bits) & Output Switch 113

Figure 8.20: Output Control Registers Connection Diagram.. 114

Figure 8.21: Switching Unit for Core & Output Control Registers................................. 116

Figure 8.22: Auto-Write Circuit for Core Data FIFO.. 117

xv

Figure 9.1: Graph Showing Execution Times of a Single CPU and Parallel Halftoning

Architecture Implemented to a FPGA..123

Figure 9.2: Parameter Register 1 & 2 - Simulation Result.. 125

Figure 9.3: Data Buffering Operation in Input Image FIFO - Simulation Result............126

Figure 9.4: 8 to 12 Bit Coversion and Droplet Densities Mapping - Simulation Result. 127

Figure 9.5: Core Data FIFOs [1-12] - Simulation Result.. 128

Figure 9.6: Input Pixel Register [1-12] Data Values - Simulation Result.......................129

Figure 9.7: Previous Pixel Values [1-12] - Simulation Result.. 130

Figure 9.8: Previous Pixel Register [1-12] Data Values - Simulation Result.................131

Figure 9.9: Input 1 of Adder-Subtractor Unit [1-12] - Simulation Result....................... 132

Figure 9.10: Input 2 of Adder-Subtractor Unit [1-12] - Simulation Result..................... 133

Figure 9.11: Output of Adder-Subtractor Unit [1-12] - Simulation Result.....................134

Figure 9.12: Calculated Error Values [1-12] - Simulation Result................................... 135

Figure 9.13: Error Values Stored in Error Register [1-12] - Simulation Result.............136

Figure 9.14: Error Values From Error Storage Block RAMs [1-12] - Simulation Result

..137

Figure 9.15: Error Values Stored in Error Storage Registers [1-12] - Simulation Result

..138

Figure 9.16: Output of Multiplier Unit [1/16] - [1-12] - Simulation Result....................139

Figure 9.17: Output of Multiplier Unit [5/16] - [1-12] - Simulation Result....................140

xvi

Figure 9.18: Output of Multiplier Unit [3/16] - [1-12] - Simulation Result....................141

Figure 9.19: Output of Multiplier Unit [7/16] - [1-12] - Simulation Result....................142

Figure 9.20: Data Output From Register [5/16] - [1-12] - Simulation Result.................143

Figure 9.21: Data Output From Register [3/16] - [1-12] - Simulation Result.................144

Figure 9.22: Data Output From Register [7/16] - [1-12] - Simulation Result.................145

Figure 9.23: Processor Core 1 Data Operations - Simulation Result...............................146

Figure 9.24: Error Storage Block RAM Address Counter [1-12] - Simulation Result

(Serpentine Scan)... 147

Figure 9.25: Error Storage Block RAM Data Buffering [1-12] - Simulation Result

(Serpentine Scan)... 148

Figure 9.26: Processor Core Control Registers [1-12] - Simulation Result.................... 149

Figure 9.27: Error Storage Block Control Registers [1-12] - Simulation Result.............150

Figure 9.28: Halftoned Output Pixels - Simulation Results.. 151

Figure 9.29: Original Image (CMYK)... 152

Figure 9.30: Halftoned Image (Software 'C' Code)..152

Figure 9.31: Halftoned Image (Hardware - FPGA)... 152

Figure 9.32: Original Image (CMYK)... 153

Figure 9.33: Halftoned Image (Software 'C' Code)..153

Figure 9.34: Halftoned Image (Hardware - FPGA)... 153

Figure 9.35: Original Image (CMYK)... 154

xvii

Figure 9.36: Halftoned Image (Software 'C' Code)..154

Figure 9.37: Halftoned Image (Hardware - FPGA)... 154

Figure 9.38: Original Image (GrayScale)...155

Figure 9.39: Halftoned Image (Hardware - FPGA)... 155

Figure 9.40: Halftoned Image by Binary Thresholding Technique - Zoomed Pixels

Showing Artifacts.. 156

Figure 9.41: Halftoned Image by N-Level Quantization Technique - Zoomed Pixels

Showing Artifacts.. 157

Figure 9.42: Halftoned Image by Stacked Error-Diffusion Technique (Software - 'C' Code

- CPU) - Zoomed Pixels Showing Visually Pleasant Pixels..158

Figure 9.43: Halftoned Image by Stacked Error-Diffusion Technique (Hardware - FPGA)

- Zoomed Pixels Showing Visually Pleasant Pixels.. 159

Figure 9.44: Halftoned Image by Stacked Error-Diffusion Technique (Software -'C' Code

- CPU) - Zoomed Pixels Showing Visually Pleasant Pixels..160

Figure 9.45: Halftoned Image by Stacked Error-Diffusion Technique (Hardware - FPGA)

- Zoomed Pixels Showing Visually Pleasant Pixels.. 161

Figure 9.46: Halftoned Image by Stacked Error-Diffusion Technique (Software - 'C' Code

- CPU) - Zoomed Pixels Showing Visually Pleasant Pixels..162

Figure 9.47: Halftoned Image by Stacked Error-Diffusion Technique (Hardware - FPGA)

- Zoomed Pixels Showing Visually Pleasant Pixels.. 163

Figure 9.48: Zoomed Pixels showing Artifacts... 164

Figure 9.49: Zoomed Pixels of Original Image showing Cyan Color Only.....................165

xviii

Figure 9.50: Zoomed Pixels of Halftoned Image Using Binary Thresholding Technique

(Cyan Color Only) ...166

Figure 9.51: Zoomed Pixels of Halftoned Image Using N-Level Quantization Technique

(Cyan Color Only) ..167

Figure 9.52: Zoomed Pixels of Halftoned Image Using Stacked Error-Diffusion 'C' Code

(Cyan Color Only) ..168

Figure 9.53: Zoomed Pixels of Halftoned Image Using Stacked Error-Diffusion

Hardware-FPGA (Cyan Color Only) ... 169

xix

 Chapter 1. Introduction

A digital image consists of millions of colors combined to form a continuous tone image.

In order to print an image using a printer where the device has a limited number of colors

(inks) available to represent the original image, a technique known as halftoning was

invented to convert the original image to a simple binary format. The Error Diffusion

technique and Serpentine scanning methodology used in halftoning makes parallel

processing implementation cumbersome as it creates huge inter-pixel dependencies along

with the generation of errors at each pixel location that has to be stored in the memory for

subsequent processing. This thesis focuses on the development and design of a high speed

parallel hardware architecture that implements a proprietary high quality halftoning 'C'

algorithm in FPGA technology. The purpose of this study is to improve the execution

speed of the algorithm by executing it on an FPGA as opposed to a conventional CPU

that takes enormous processing time to execute.

 1.1 Background

There have been many improvements in halftoning algorithms to achieve the best quality

without compromising the performance of the hardware devices running the algorithms.

Performance of the device depends entirely on the type of algorithm and the scanning

method used. This section of the chapter gives a detailed explanation of the algorithm

used and ways to improve the processing performance of the implementing hardware

system.

 1.1.1 Halftoning

Halftoning is a technique used to convert a continuous-tone image into a series of black

and white dots. Image reproduction devices such as printers and monitors are constrained

to a few colors and cannot print a digital image that consists of millions of colors. Thus,

halftoning transforms the original image into a binary image containing only 1’s and 0’s

where a '1' at a particular pixel suggests a black dot to be printed and 0 means that the

corresponding pixel should be empty. In the case of color image reproduction, the

1

halftoning is performed on each of the color channels, namely Red, Green and Blue

(RGB) or Cyan, Magenta, Yellow and Key (CMYK). Thus, ‘1’ in a color halftoned image

suggests a particular channel to be printed. There are many methods [1] in which

halftoning is performed on images and some of them include AM & FM Halftoning,

Table Halftoning, Threshold Halftoning, Ordered Dithering, Error Diffusion, Iterative

Halftoning, Hybrid AM-FM Halftoning and Multilevel Halftoning. This thesis deals with

the halftoning algorithm that uses the basic Error Diffusion technique [2].

 1.1.2 Error Diffusion

A common method for producing halftoned images is the Error Diffusion technique

invented by Floyd and Steinberg [2] where the error from each pixel is dispersed to the

neighboring pixels. The output value of each pixel depends on the input pixel and the

diffused error value from the previous pixel. Figure 1.1 shows the error diffusion method

where c and h represent the continuous and the halftoned images respectively. The input

pixel c is added with the Previous Pixel Error value p and compared with a threshold. The

output h is obtained from the comparison and the Error e is calculated by subtracting the

current output value h from the combined value of p and c. Further, the Error e is

multiplied with the weight filter and diffused across the neighboring pixels. The Error

dispersion and the Error Weight Filter is shown in Figure 1.2.

2

Figure 1.1: Floyd-Steinberg Error Diffusion

 1.1.3 Image Scanning Techniques

The two main techniques used in scanning an image are the Line Raster (left-to-right,

top-to-bottom approach) and the Serpentine Raster (left-to-right, right-to-left)

techniques. A Line Raster is the process of reading an image starting left and ending

right for each row from top till bottom of the image. This type of scan results in an output

halftone consisting of checkerboard patterns, worms and other geometric artifacts.

Serpentine Scan is the process of scanning even rows of an image in left-to-right fashion

and odd rows in right-to-left fashion. This research deals with a serpentine scan

methodology because this technique results in fewer artifacts. The downsides of using

this technique are that it makes parallel processing even more burdensome and the

memory required to store the errors generated at each pixel location is large. Figure 1.3

shows the line raster scan process where P0 till P10 are the pixels in the first row and P11

till P21 are the pixels in the second row.

When a line raster is implemented on the image, the processing starts from P0 and

reaches P10 and again from P11 and reaches P21. This type of scan has a high probability

3

Figure 1.2: Error Filter

Figure 1.3: Line Raster

of parallelism in which the pixel P11 can be processed right after the pixels P0 and P1 are

processed as the pixel P11 depends on P0 and P1 alone. Thus the inter-pixel dependency in

this method is kept to a minimum. Figure 1.4 shows the serpentine raster technique where

pixel P11 cannot be processed until all the pixels from P0 till P10 and P21 till P12 are

processed. As a result, the errors obtained at each pixel location must be stored in

memory till the specified pixel is processed. Thereby, this technique requires a large

memory space which in turn depends upon the image size being processed.

 1.1.4 Blue-Noise

Blue-noise is any noise with the least low frequency element and absolutely no intense

spikes of energy. Ulichney [3] studied the spectral charateristics and noted their

predominantly high frequency content, a characteristic he called Blue-Noise. This makes

it an important noise in halftoning as the retinal cells in the human eye are organized in a

manner similar to the blue-noise which results in great optical interpretation. The

arrangement of the droplets in a halftoned image creates an optical illusion which the

human eye mistakes for a continuous tone image. The introduction of blue-noise in error

diffusion has a great impact on the quality of the halftoned output image. It makes the

resulting image appear visually smooth.

 1.1.5 Blue-Noise Halftoning

Many algorithms have been implemented to produce halftone patterns with blue-noise

attributes. Blue-noise halftoning/dithering constitute an array of minority pixels that are

4

Figure 1.4: Serpentine Raster

uniformly distributed that results in halftones that lacks regularity and low frequency

elements. In the error diffusion algorithm proposed by Floyd and Steinberg [2], a

quantizer is used that compares the input pixel value with a threshold to determine the

value of the corresponding pixels. The quantizer error is calculated by subtracting the

input pixel with the threshold value and is diffused to the neighboring pixels using an

error filter P = [(7/16), (1/16), (5/16), (3/16)] shown in Figure 1.2. This process is

executed on all the pixels till the complete image has been processed. The output of the

algorithm applied to a gray-scale ramp is shown in Figure 1.5. Figure 1.5 shows that

when the image is scanned using Line Raster method, the final halftone consisted of

checkerboard patterns, worms and other geometric artifacts. Thus to avoid visual artifacts

arising from the conventional approach, a serpentine scanning approach is implemented

and the threshold error diffusion is altered depending on the outputs of the previously

processed pixels. The threshold in error diffusion technique can be altered depending

upon the previous outputs [5] or by the intensity of the present pixel as indicated by

Eschbach and Knox [6]. Eschbach [7] and Ostromoukhov [8] proposed changes in shape

of the filter and weights dependent on the inputs. Li and Allebach [9] proposed a

technique where the thresholds and weights are optimized based on the model for the

human visual system. The current algorithm under discussion uses a design proposed by

Ulichney [10] where a serpentine scan and randomness (R1, R2) in weights of the error

filter are introduced. The weights are calculated as [P1 + R1, P2 - R2 , P3 - R1, P4 + R2],

where R1 = (5/16) U[-1,1], R2 = (1/16) U[-1,1] and U(m,n) represents a uniformly

distributed random variable in the interval [m,n]. This randomness in the error filter

eliminates most of the geometric and checkerboard artifacts in the resultant output image.

The output of the algorithm applied to a gray-scale ramp is shown in Figure 1.6. The

original blue-noise model is implemented in Floyd-Steinberg's technique, whereas the

technique implemented by Ulichney is a realization of the model proposed by Lau and

Ulichney [11].

5

 1.1.6 Multitoning

Multitoning is the process of reproducing an image using multiple inks [4]. A multitone

is an embedded array of halftone patterns with different inks printed on top of each other

which is similar to color halftoning where 3 or more primary halftones are superimposed

in order to achieve the illusion of a continuous tone color image. A multitone dither

pattern with N different inks of intensities (g1, g2,.......,gN) where g is the gray level,

arranged starting from lightest (white, nothing printed having intensity g1 = 0) to the

darkest (black, printed pixel having intensity gN = 1) consists pixels of N+1 different

intensities. The main disadvantage in superimposing halftones is the emergence of a low-

frequency noise called Moiré. This anomaly occurs in dispersed dot patterns as an

irregularity in the arrangement of pixels which is referred to as Stochastic moiré. The

irregularity is caused due to the difference in placement of dots in the superimposed

6

Figure 1.5: Halftone of Gray-Scale ramp

generated with Floyd-Steinberg Error

Diffusion. Adapted from [4]

Figure 1.6: Halftone of Gray Scale Ramp

generated with Ulichney's Error Diffusion.

Adapted from [4]

halftones. Wang and Parker [29] suggested that the combination of two blue-noise

patterns doesn’t inherently produce a good quality pattern, but depends on both the

spectrum of individual patterns and the interrelationship between them. According to

threshold decomposition, a discrete signal which accepts one of k possible values can be

expressed as the weighted sum of k - 1 binary signals. Consider multitoning where M is

the multitone dither pattern and the array of halftones H i | i=1
N

is defined as

 H i[n]={1, if M [n]g i

0, else
 (1.1)

The halftone Hi describes the threshold decomposition of the multitone M at level i.

Equation 1.1 states that a printed pixel in Hi implies that a printed pixel of intensity gi or

darker occurs in the multitone in the same location and also means that there is a printed

pixel in the same location in Hj for all j ≤ i. Thus the decomposition of the multitones into

an array of halftones is done by satisfying the stacking constraint or in other words the

halftones are constrained to a stack. It can be said that the multitone is a linear unification

of stacked blue-noise patterns. The multitone can be described in terms of its threshold

decomposition representation as

 M [n]=∑
i=1

N

d i H i [n] (1.2)

where d i = g i−g i−1 | i=1
N are the relative differences between intensities of the

printable inks. Figure 1.7 shows the decomposition where the multitone M is a 3×3

image printed with three inks with intensities (g1, g2, g3) = ((1/3),(2/3),1).

7

Figure 1.7: Decomposition of 3-ink multitone M in a

series of Halftones satisfying the stacking constraint.

Adapted from [4]

 1.1.7 Blue-Noise Multitoning with Stacked Error Diffusion

Many halftoning developments have been proposed as extensions to previously

developed halftonig algorithms. Some of them are ; modification of the error diffusion

algorithm by replacing the binary thresholding by a multilevel quantizer [12], correlated

error diffusion applied to channels that represents available inks (Faheem [13]), screening

(Screening is the process of representing lighter degree of color as a tiny dot of ink)

applied in multitoning using Bayer dither arrays [12] and clustered-dot dithering [14].

The concept of gray level distribution is introduced in some of the algorithms where the

amount of each of the printable inks used to generate a certain gray level is defined and

controlled accordingly. This thesis research algorithm uses a concept of gray level

distribution where the amount of printable inks (colors) used to create a certain gray level

is known before hand. For a multitone to be visually pleasant and optimal, the dots of

different inks should be positioned in a correlated pattern. A technique similar to

threshold decomposition is used to divide multitones into halftones and to synthesize

them to make sure that the resultant picture is flawless. Assuming a constant block of

intensity g to be reproduced using the inks g i | i=1
N

in segments p i | i=1
N

, the intensity

of the block is represented as

g=∑
i=1

N

g i p ig  = ∑
i=1

N

d iig  (1.3)

where ig =∑
j=i

N

p jg  and d i = g i−g i−1 .Consider a block of intensity µ1(g)

halftoned using blue noise, the output dither pattern will have the same characteristics as

H1. The same process is executed for a block with intensity µ2(g) with the condition that

the resulting halftone should stack (depend) on the first halftone. Thus the output dither

pattern has the same characteristics required by H2. This depends on the number of levels

in the given image and assuming there are i levels, the same procedure is repeated for the

remaining ig  | i=3
N

 where the ith halftone stacks on the i – 1st halftone and the result

will be a series of N halftones. The linear unification of all the i halftones gives the best

blue-noise multitone. The method to multitone a continuous tone image Y is shown in

8

Figure 1.8. Firstly, the printing method provides the ink intensities gi and the

corresponding concentrations pi(g) are to be determined before hand by the user.

Secondly, the gray levels are mapped to corresponding droplet densities. This can be

accomplished with the help of a look-up-table.

Thirdly, halftoning is carried out with a suitable algorithm which in this thesis is Blue-

Noise Multitoning with Error Diffusion by taking the stacking constraint into account.

For example, to get H2, Y2 needs to be halftoned which stacks on the halftone H1. The

same procedure is followed with the remaining Y i | i=3
N

continuous-tone images.

Finally, Equation 1.2 is used to obtain the final multitone. The algorithm in this thesis

research work uses blue-noise multitoning with error diffusion and in order to generate

the multitones by this method, the stacking constraint should be incorporated in the pixel

quantization satisfying Equation 1.4 below.

H i[n]={1, if Y i [n]  H i
p ≥ 1

2
and H i−1=1

0, else
 (1.4)

9

Figure 1.8: A Continuous tone image Y divided into N components

resulting in a final halftone M [4]

where H i
p [n] is the error diffused to the pixel H i[n] and i = 1, …. , N. If i=1 ,

it is assumed that H 0[n]=1∀ n . Figure 1.9 shows the implementation of the stacked

error diffusion algorithm where the continuous input image c is added to the

corresponding diffused Error, the result is compared with the Threshold and the Previous

Level Output thus producing a halftone h based on the stacking constraint. The Error e in

the input pixel c and the output h is calculated. Hence the Error produced e is multiplied

with the Perturbed Weight Filter resulting in a diffused Error dispersed to soon-to-be-

processed pixels. The Perturbed Weight Filter eliminates the artifacts that arise in a

normal error diffusion method.

 1.2 Previous Research on FPGA Implementation of Halftoning Algorithms

There have been a number of proposals for implementing halftoning algorithms on Field

Programmable Gate Array (FPGA) technology. Metaxas [15] proposed an optimal Error-

Diffusion parallel algorithm for Digital Halftoning implemented in MasPar data-parallel

computers (SIMD – Single Instruction Multiple Data). Yuefeng Zhang [16] presented a

parallel Error-Diffusion algorithm, known as Line Diffusion implemented using a

massively parallel algorithm. Jae-woo Ahn and Wonyong Sung [17] proposed a

multimedia processor based implementation of an Error-Diffusion Halftoning Algorithm

where multiple pixels are processed simultaneously using subword-parallel arithmetic

and logic unit architecture in Multimedia Processors such as Intel Pentium MMX. None

of these halftoning algorithms have used FPGA technology to implement the Serpentine

10

Figure 1.9: Stacked Error Diffusion

Scan based Blue-Noise Multitoning with Stacked Error Diffusion algorithm/technique

presented in this thesis.

As an example of a parallel architecture implemented into FPGA technology that uses

line raster scan to implement an Error Diffusion based halftoning algorithm, an

architecture proposed by Christopher Brown and Andreas Savakis [18] will be

considered. They discuss the inter-pixel data dependencies, memory requirements and

hindrances to parallel processing introduced by their error diffusion technique. They

proposed a high performance hardware architecture which exploits multiprocessing to

overcome the disadvantages faced during halftoning using error diffusion. The main idea

in their approach is to concurrently process pixels in separate rows and columns by

eliminating the data dependencies across the processing elements. Their hardware

architecture is a high performance color error diffusion image processor realized using

FPGA technology. Their Error Diffusion algorithm implemented the basic error diffusion

technique invented by Floyd-Steinberg [2] and used a line raster scan technique as shown

in Figure 1.3. The input pixel size is 24 bits and the processor gives a 3-bit output. The

architecture uses four processing elements allocating one processing core per row thus the

first four rows can be processed simultaneously but with some lag between the processing

elements. The processor can support a resolution up to 600 dpi resulting in a maximum

image size of (5100x6600) which equals 33,660,000 pixels. The design goal is to increase

the speed at which the pixels are processed at minimum system cost. An output is

obtained every clock cycle and all the processors run on different rows and columns at

any point of time. The entire system runs at 80 MHz thus each processing element takes

50ns to complete each computation. Since the algorithm is a straight-forward approach to

Floyd-Steinberg's error diffusion, the quality may have been compromised giving rise to

artifacts which in turn degrades the whole output image.

In the research and development presented here, an efficient and economical approach

towards designing a high performance hardware architecture for serpentine scan based

blue-noise multitoning using “stacked” error diffusion is proposed, developed and tested

11

such that the output quality of the halftoned image is an improvement over those resulting

from the use of other halftoning algorithms and approaches.

 1.3 Objective of the Thesis

The main objectives of this thesis are described as follows.

• To thoroughly study the halftoning algorithm described in 'C' and convert the

whole into an equivalent high speed hardware parallel architecture design and

implementation without weakening the quality of the output produced by the

original algorithm (The hardware is designed so that the image output from the

FPGA and the output obtained by running the algorithm in a serial based CPU are

both accurate).

• To achieve a significant performance improvement by greatly increasing the

execution speed of the algorithm running on a FPGA when compared to a

conventional serial based CPU in which the speed achieved is lowest.

• To develop a high performance hardware architecture which exploits parallelism

to the maximum extent possible to improve overall processing performance.

• To design, HDL Simulation test and validate the whole system along with all the

components required to develop the system.

• To compare and validate the results obtained from the HDL simulation with the

results from the original algorithm running on a CPU.

• To suggest future improvement of the architecture related to enhancing processing

performance and output image quality.

 1.4 Thesis Outline

This thesis consists of ten chapters which deal with everything about the new halftoning

algorithm to HDL Simulation testing and validation of the architecture. The current

chapter has provided a detailed explanation of the halftoning algorithm used, previous

12

research work done on FPGA implementation of such algorithms, present research work

dealing with the high quality stacked error diffusion algorithm and the objectives of this

thesis.

Chapter 2 deals with the Processor design methodology where type of design, technology

used, Data arithmetic or representation, and types of processors used are addressed.

Chapter 3 explains the High level system architecture of the entire hardware system and

the working of the system.

Chapter 4 gives a detailed explanation of the Input data memory architecture and how the

input pixels are handled.

Chapter 5 provides a view of the architecture of the Processor Core, its design,

development and operation.

Chapter 6 shows the detailed architecture of the Error Storage System, its uses, design

and operation.

Chapter 7 shows the Output Circuit System Architecture where the output from the

Processor core is processed accordingly.

Chapter 8 deals with the Controller Architecture, its implementation, various types of

controllers and about the control registers used to minimize device utilization.

Chapter 9 provides a performance comparison with conventional a CPU and quality

comparison with other algorithms. It provides a conclusion and future work that can be

done to further enhance and improve the results of the current research project.

13

 Chapter 2. Processor Design Methodology

 2.1 Introduction

This chapter shows the methods and practices used to design the processor system from

the lowest level. The basic levels used to describe this architecture are gate level and the

register level. Later in this chapter, the chip technology and the Computer-Aided Design

(CAD) tools used to implement the design are discussed. The silicon technology and the

CAD software used also decides the design methodology. Design methodology is the first

step in the process of developing a hardware architecture. A hardware architecture is the

collection of tiny and large components that are interconnected to form a bigger system

with a special purpose. The combination of different levels of hardware design hierarchy

is called a system.

 2.2 Gate Level design

Gate level design, called logic level design, is the lowest level used to describe a

functional component. It is concerned with binary values confined to two binary digits 0

and 1. The components designed using gate level designs are logic gates, flip flops which

in turn results from the combination of several gates, combinational circuits and

sequential circuits resulting from the combination of flip flops.

 2.3 Register Level Design

Register level or register transfer level is the next level of abstraction to gate level design.

Here, bits are grouped into words and the data is processed as chunks. The main

component in this level of abstraction is called a register which is used to store words

(collection of bits). The components in register level designs include shift registers,

counters, storage registers and accumulators. This level is widely used particularly to save

the amount of time it requires to design a component or a system. An efficient

14

combination of gate level design and register level design is implemented in the hardware

architecture of this thesis to obtain the best performance possible.

 2.4 Target Technology

There are several latest technologies in which the given Error Diffusion algorithm can be

implemented. Some of them include Application Specific Integrated Circuit (ASIC),

Programmable Logic Devices (PLAs), Complex Programmable Logic Devices (CPLD),

General purpose CPU and Field Programmable Gate Array (FPGA). FPGA technology

has an edge over all the other technologies mentioned. FPGA's are flexible, reusable,

reprogrammable, cost effective and have the highest possibility of parallel processing.

They contain millions of tiny logic blocks with flip flops and have special routing

resources to implement a component or a functionality very efficiently. The main

difference between a conventional microprocessor and an FPGA is that the

microprocessor executes a program in a sequential manner but on the other hand FPGA

technology can exploit the parallel processing capability to speed up program execution.

FPGA's consist of rectangular array of logic cells. A logic cell basically consists of a

look-up-table, a D flip-flop and a 2-to-1 multiplexer. The basic idea behind this

technology is that a memory element can implement any type of combinational and

sequential function of a size proportional to the memory size. Look-Up-Tables (LUTs)

are referred to as memory elements and can be 3 input, 4 input, or 6 input tables. In this

research, a Xilinx Virtex-5 (5VFX70TFF665) commonly used FPGA chip [21], Xilinx

ISE 10.3 CAD tool [19] and ModelSim 6.4a [20] is used for developing the architecture.

 2.4.1 Xilinx Virtex-5 FPGA

Virtex-5 FX FPGA [21] provides the advanced technology for high performance

embedded systems along with serial connectivity. It contains many hard/soft Intellectual

Property cores, Block RAM's, second generation Xtreme DSP slices, Digital Clock

Managers (DCM), Phase-Lock-Loop (PLL) clock generators, Distributed RAM's, 6 input

look-up-tables(LUT) and a hard core PowerPC processor embedded inside the chip

fabric. The main reason for choosing this version of Virtex device is that the amount of

15

resources required by the algorithm is satisfied by the 5 series. Table 2.1 shows the

features provided by the virtex-5 devices. A hardware description language is used to

describe the digital components and program the same on FPGA. In this thesis, Verilog

HDL is used to design and develop the required digital logic circuits. Xilinx ISE is a

CAD software used to synthesize and implement the verilog code on chip. ModelSim is

used in this research to simulate the ISE translated design. The algorithm requires about

3527 Kb of Block RAM space to store the errors and input data generated. Table 2.2

shows the requirements of the current halftoning algorithm.

Table 2.1: Virtex-5 Specifications

Device Logic
Array
Size

Slices Distributed
RAM (Kb)

DSP
48E

Slices

Block
RAM
(Kb)

PowerPC
Blocks

User I/O

XC5VFX70T 160 x 38 11200 820 128 5328 1 640

Table 2.2: Algorithm Requirements

Device Slices DSP 48E
Slices

Block RAM
(Kb)

User I/O

XC5VFX70T 1616 108 3906 50

 2.5 Data Representation

Data can be represented in a processor in two ways, namely Fixed point representation

and Floating point representation. In this research work, Fixed point arithmetic is used in

order to achieve maximum throughput and increase the execution rate by decreasing the

execution time required. Floating point arithmetic requires a dedicated hardware unit and

consumes a lot of resources. Since FPGA's have a limited number of resources and the

clock speed at which the whole system runs is less when compared to a traditional CPU, a

Fixed Point Arithmetic is implemented.

16

 2.5.1 Floating Point Arithmetic

Floating point [22] is an arithmetic in which the decimal point can be present anywhere in

a number. It is also used to represent numbers that would be too wide or too small to fit in

computer hardware. The floating point numbers should be normalized to a specific form

which helps in simplification of data exchange, floating point algorithms and increases

the data storage accuracy. In other words, a floating point number needs to be normalized

to a base notation. Normalization says that leading 0's is unacceptable in floating point

format. Floating-Point representation has three main fields called Sign, Fraction and

Exponent. Exponent and Fraction are the two main terms in Floating-Point calculations.

Exponent is defined as the number of times a digit has to be multiplied by itself and

Fraction (mantissa) in hardware terms is a value that that lies between 0 and 1. Figure

2.1 and Figure 2.2 shows the representation of floating point numbers (32 and 64 Bits) in

hardware.

The 32 bit architecture provides 23 bits for the fraction, 8 bits for the exponent and 1 bit

for the sign. The number of bits allocated for fraction and exponent depends on two main

factors namely precision and range. Precision is the number of binary bits used to

represent a particular value in a hardware domain. Range is the difference between the

largest positive number and the largest negative number that can be represented in a given

format. Thus, precision of a fraction increases by increasing the number of bits allocated

for the fractional part and the range of numbers that can be represented increases by

increasing the number of bits in the exponent part. There is a possibility of two

17

Figure 2.1: 32 Bit Single Precision Floating-Point Representation

Figure 2.2: 64 Bit Double Precision Floating-Point Representation

exceptions in a Floating-Point format namely Overflow and Underflow. Overflow is an

exception in which a positive exponent is too wide to be accommodated in the exponent

field. Underflow is an exception in which a negative exponent is too wide to be

accommodated in the exponent field. To overcome these exceptions there exists a choice

between double precision (64 bits) and single precision (32 bits). If a system deals with

the values that exceed the expectations of a 32 bit hardware, it needs to switch to a double

precision format of 64 bits. The original Error Diffusion algorithm addressed in this

thesis, written in 'C', uses Floating-Point single precision format and this is one of the

reasons for a very high execution time when run on a single CPU. Thus, a Floating-Point

format would require at-least 32 bits for representing the data in the algorithm which in

turn requires substantial FPGA resources if implemented into FPGA technology and other

complex hardware components.

There are four main arithmetic operations performed in any algorithm, they are Addition,

Subtraction, Multiplication and Division. Floating-Point operations requires the operands

to be normalized before any of the arithmetic takes place. Firstly, the exponents of the

two operands should be compared and the smaller operand should be shifted to match the

larger operand. Secondly, perform the operation (Addition, Subtraction, Multiplication or

Division) on the significands. Thirdly, the result of the operation should again be

normalized by shifting and varying the exponent. Finally, check for overflow or

underflow and set the appropriate hardware bit if detected. Floating-Point multiplication

requires more hardware when compared to other operations as the end result will the

twice the length of the operand. The length of the result required depends upon the

algorithm, so if an algorithm requires more accuracy, it will use the whole end result but,

if the algorithm is not so constrained to accuracy, it uses a part of the results by using

techniques called Truncation and Rounding. Truncation is the process of truncating or

cutting off a required number of digits after the decimal point. Rounding is the process of

approximating a real value to an equivalent simpler value compromising the accuracy to

the smallest extent possible. Thus, the choice between rounding and truncation depends

solely on the application.

18

 2.5.2 Fixed Point Arithmetic

Fixed-Point [23], [24], [25] is a computer arithmetic in which all the data is represented

in integer format. In other words, the decimal point in a real data doesn't vary unlike

Floating-Point format. Fixed-Point format supports only a narrow range of values and the

hardware required to implement the format is simple. The main concepts used in

choosing a Fixed-Point format are Q-Format, Precision, Resolution, Range, Dynamic

Range and Accuracy. Both integers and fractions can be represented in fixed point

format. Fixed-Point format is used to represent both signed and unsigned data. In this

thesis, Fractional Fixed-Point format is chosen to match the original Floating-Point data

in the algorithm. Fractional Fixed-Point representation is chosen because it is most

suitable for Digital Signal Processing algorithms as the one used in this research work.

The range of numbers that the fractional format represents is between -1 and 1. The same

is the case in the research algorithm used in this thesis where values never go beyond -1

and 1. Q-Format is a scheme in Fractional Fixed-Point format used to represent fractions

bounded by a fixed binary word length where Q indicates the number of bits used to

represent the fraction. Precision is defined as the number of bits used to represent a data

value in a binary or digital world. Precision is equal to the total word length. Resolution

is the least non-zero value or magnitude which can be represented using a particular Q-

Format. Range is the difference between the maximum positive number and the least

negative number represented which ultimately depends on the Q-Format. Dynamic

Range is the ratio of maximum absolute value and the minimum absolute value that can

be represented using a specific format. Accuracy is the magnitude of the difference

between a real data value and it's equivalent representation. Due to the extra cost of

implementing a dedicated hardware unit for Floating-Point calculations, the Error

Diffusion algorithm in this thesis is implemented using a Fixed-Point format that results

in significant improvement in throughput, execution speed and reduced hardware

complexity. Thus, to improve the execution speed to achieve the best performance, some

considerations have to be made before using the Fixed-Point format. Let Q[I].[F] be the

Q-Format representation of a data value in Fixed-Point where Q[I] is the number of bits

used to represent the integer part of a value and Q[F] is the number of bits used to

19

represent the fractional part of the value. The sum of Q[I] and Q[F] yields the total

number of bits also called word length and a sign bit at the most significant location used

to represent the whole data value. The hardware architecture in this thesis uses Q[1][14]

format as shown in the Figure 2.3. Thus, the total number of bits equals 16 bits out of

which the most significant bit is reserved for the sign bit and the bits after the sign bit

location are reserved for representing the equivalent Fixed-Point value.

Figure 2.3 shows that the word length used is 16 bits or 2 bytes and the dynamic range of

the signed integers that can be represented using 16 bits is -32,768 to 32,767. The

resolution r of the Fixed-Point format is determined by the number of bits used in the

fractional part and is shown in Equation 2.1. The maximum positive value (Pmax) and

minimum negative value (Nmin) that can be represented using this format is shown in

equations 2.2 and 2.3.

 r= 1
2F =

1
214 = 0.00006103515625 (2.1)

Pmax =
216−1−1

214 =
32767
16384

= 1.99993896484375 (2.2)

 N min =
216−1

214 =
−32768
16384

= −2.0 (2.3)

Equation 2.4 shows the formula to convert a Floating-Point number (Nfloat) to an

equivalent Fixed-Point number (Nfixd). The same Equation is used to convert all the

Floating-Point data values to Fixed-Point values in this thesis work. The values obtained

after the decimal point are truncated as there is no significant deviation observed from the

real value. For example if Nfloat is 0.73948, Nfixd becomes 12115.6402 and truncating the

20

Figure 2.3: Q 1.14, 16 Bit Fixed-Point Representation

result gives the Fixed-Point value 12115 as shown in Equation 2.5. Equation 2.6 shows

the Fixed-Point value again converted to Floating-Point to show the accuracy of the

conversion.

 N fixd = N float∗214 (2.4)

 N fixd = 0.73948∗214 = 12115.6402 = 12115 (2.5)

 N float =
12115

214 = 0.73944091796875 (2.6)

The difference exists in the fifth decimal point which is about 0.00004 units. Thus, the

algorithm in study is not constrained to the accuracy and a meager deviation is allowable.

Arithmetic in Fixed-Point is the same as integer arithmetic with minor modifications to

multiplication and division operations. As the data being processed lies strictly between

-1 and 1, the exception of overflow doesn't occur in this algorithm. The addition and

subtraction operations are the same as integer arithmetic. Considering the multiplication

operation, if two fractions are multiplied then the resulting fraction will always result in a

fraction that will be less than or equal to the two fractions multiplied. But in case of

Fixed-Point multiplication, the Floating-Point numbers are first converted to Fixed-Point

by multiplying the real value with 2F where F is the number of bits used to represent the

fractional part. As a result, each the fraction number is multiplied by 2F that gives an

incorrect result in Fixed-Point format as shown in Equation 2.7. This can be corrected by

dividing the final result by 2F which will scale it back to Fixed-Point format as shown in

the Equation 2.8. Let {N1fixd , N2fixd}be the fraction numbers in Fixed-Point format,

{N1float , N2float}be the fraction numbers in Floating-Point format and {Nfixdm , Nfloatm} be the

result after multiplication in Fixed-Point and Floating-Point formats respectively.

Equation 2.4 is applied to Equation 2.9 for Floating-Point to Fixed-Point conversion and

the end result is shown in Equation 2.10. Hence the results in equations 2.8 and 2.10 are

equal generating the correct output.

 N fixdm = N1 fixd∗ N2 fixd = 8192∗8192 = 67108864 (2.7)

21

 N fixdm =
N1 fixd∗ N2 fixd

214 =
8192∗8192

16384
= 4096 (2.8)

 N floatm = N1 floatd∗ N2 floatd = 0.5∗0.5 = 0.25 (2.9)

 N fixdm = 0.25∗214 = 4096 (2.10)

In the case of Fixed-Point division, the final result should be multiplied by 2F. Equations

2.11, 2.12, 2.13 and 2.14 show the division algorithm in Fixed-Point format.{Nfixdd ,

Nfloatd} be the result obtained after division in Fixed-Point and Floating-Point formats.

N fixdd =
N1 fixd

N2 fixd
=

8192
8192

= 1 (2.11)

N fixdd =
N1 fixd

N2 fixd
∗214 =

8192
8192

∗16384 = 16384 (2.12)

N floatd = N1 floatd∗ N2 floatd =
0.5
0.5

= 1 (2.13)

N fixdd = 1∗214 = 16384 (2.14)

Multiplication produces a result which will be lesser than or equal to twice the width of

the operands. The end result can be truncated or rounded depending upon the application

requirements. The division by 2F in Fixed-Point multiplication is achieved by arithmetic

left shift and the multiplication by 2F in Fixed-Point division is achieved by arithmetic

right shift. In this research algorithm, Fixed-Point division is not used but all the other

arithmetic operations such as addition, subtraction and multiplication are used.

Multiplication in this thesis truncates the digits that are not required and uses only the 16

bit output of the multiplied result as shown in Figure 2.4. Bits 29 down to 14 are the only

useful bits in this hardware multiplication architecture. There is only a minor loss of

accuracy which is not significant.

22

Figure 2.4: Fixed-Point Multiplication End Result

 2.6 Types of Processors

Processors are designed based on the application to be executed. There are mainly two

types of processing systems, namely General Purpose Processors and Special Purpose

Processors. The details about them are discussed briefly in the following sections below.

 2.6.1 General Purpose Processors

General purpose processors are normally Programmable Processing systems that are used

in conventional computer systems to perform various tasks. Almost all the tasks required

by an end user can be run on a general purpose system like Floating-Point operations,

Integer arithmetic, external memory interface, general purpose I/O, signal processing and

control of other devices, etc. These processors are fast, but sometimes not very suitable to

run a specific application where parallelism and execution time are important. A

Programmable Processors Instruction Set Architecture (ISA) is a command set

architecture which tells the processor what to do with the data available at any instant of

time. For example, RISC is a Reduced Instruction Set Computer of length 32 bits and

CISC is a Complex Instruction Set Computer ISA which has more complex instructions

when compared to RISC.

 2.6.2 Special Purpose Processors

Special Purpose Processors, as the name suggests, are developed and used for specific

applications. This research work deals with a specific halftoning algorithm where the

same set of operations are repeated periodically. Thus, there is no need of an Instruction

Set Architecture where the processor needs to know what operation to perform. The

operations are hardwired in this type of application and there are dedicated control units

to execute the algorithm. The reasons behind choosing a Special Purpose Processor is that

the cost of making the chip is sometimes less for a specific purpose, the number of silicon

gates required depends upon the size of the algorithm and the execution speed can be

drastically increased due to exploitation of parallel processing in the algorithm. In this

thesis, an algorithm specific hardware parallel processor architecture is designed and

described using the Verilog Hardware Description Language. The architecture is

simulated, tested and validated using the ModelSim Simulation CAD tool.

23

 Chapter 3. High Level System Architecture

 3.1 Introduction

This chapter deals with describing the entire system architecture which implements the

halftoning algorithm and describes a process flow diagram showing the functional

operation of the architecture as it implements the halftoning algorithm. As discussed

earlier in Chapter 1., this thesis deals with a special purpose high performance processing

system which can efficiently execute a proprietary halftoning algorithm at the maximum

processing speed possible. Unlike general purpose processing systems, this architecture

does not need an Instruction Set Architecture but has a predefined set of instructions that

will run for every pixel that is processed. The concept of pipelining cannot be applied

here as inter pixel dependencies tend to be the highest. At any given point of time, a pixel

cannot be processed unless the preceding pixel is fully processed. Parallelism is

introduced in this system where different pixels can be processed in parallel. Thus, the 'C'

version of the algorithm is broken down into segments and the areas where the code can

be parallelized are determined. Equivalent hardware units are designed, tested and fully

verified before combining the units to form a larger system. Each of the combined system

functional units obtained by connecting the individual functional units of a system is also

rigorously tested for discrepancies and fixed if errors are found. The high level system

can also be referred to as a CPU (Central Processing Unit) which consists of processing

elements, memory elements and output logic. The system implements a sequence of

microoperations resulting in an output desired by the application. A system consists of

the data handling unit or the processing unit, control unit or controller and interfacing

units to communicate with other devices outside the chip. The processing part of the

system is also called the datapath of the CPU where input data is processed accordingly.

The datapath of a CPU consists of many smaller digital units namely multiplexers,

registers, decoders which in turn are built from a lower level components called gates.

Gates are derived from the basic component transistor. The control unit is one of the

major components in a digital system which is responsible for the correct behavior of a

24

circuit. So, a control unit controls the datapath and other components which constitutes

the processing system. The High Level System Architecture of a system is defined as the

abstraction of lower level components by just describing the function or behavior of the

system. The following sections give a very detailed explanation on the behavior of the

hardware functional architecture.

 3.2 High Level System Hardware Architecture

This section gives a detailed description of the hardware architecture of the unit that

implements the Stacked Error Diffusion Halftoning algorithm. It shows the organization

and operation of the whole system. Figure 3.1 shows the high level system architecture

design that includes five main modules, namely a Host PC, DDR2 RAM, Flash ROM,

FPGA and a Printer. The first module is the host PC which serves as the source from

which the input image pixels are buffered. Here, the image to be halftoned is read in an

interleaved format. Interleaved format of an image is the bundle of all the channels in one

pixel followed by the next pixel with all the channels packed. For example, if Cyan,

Magenta, Yellow and Key are the four channels in a pixel then, CMYK of the first pixel

will be packed together, CMYK of the second pixel and so on. The PC reads the input

image as [CMYK]1 ,[CMYK]2 ,[CMYK]3 …......... [CMYK]n where 'n' is the number of

pixels in the image. The data width of input pixels supported by the architecture is 8 or 12

bits per channel per color. The input data from the pixel is extracted and is buffered to the

DDR2 RAM (Double Data Rate Random Access Memory) for subsequent processing

with the help of any high speed interface preferably PCIe (Peripheral Component

Interconnect Express). PCIe is chosen to match the speed of the FPGA and the DDR2

memory as there should not be any delay in buffering which affects the performance

adversely. The second module comprises of a DDR2 RAM which will be filled with at

least two consecutive rows to prevent buffering problems. The third module is the Flash

ROM (Read Only Memory) used to store the bit stream file of the architecture generated

which is used to program the FPGA. As the FPGA is a volatile memory semiconductor

device, it needs an external flash memory to store the hardware architecture and initialize

25

itself at system power-up. The fourth and imperative module is the FPGA which the

hardware architecture described in Verilog HDL is programmed into.

26

Figure 3.1: High Level System Hardware Architecture

The halftoning algorithm is examined and areas where the code can be parallelized are

determined. The algorithm uses the Stacked Error Diffusion technique which increases

the inter-pixel dependencies and as the Stacked Diffusion implies, each level in a pixel

depends upon the previous level of the same pixel. Thus, the pixel cannot be fully

processed without processing all the levels and there is no dependency among the colors

(inks or channels). The colors in the pixels can be processed in parallel and the only

constraint that exists is between the levels in each color of a given pixel. Another major

hurdle to parallel implementation is that the pixels are scanned in a serpentine fashion,

this amplifies the memory demand as the errors being diffused at each pixel needs to be

stored until the pixel to which the errors are dispersed is processed. Thus, the amount of

memory required is directly proportional to the width of the input image. Taking all the

dependencies into account, the following factors decide the implementation of the

algorithm in hand on a FPGA.

• Each level in every channel is treated as an individual processing unit. So the

number of channels and the levels in each color decides the number of processing

cores to be used for executing the algorithm.

• The errors dispersed in each pixel location should be stored in a data memory

which can be accessed later. Resolution is defined as the number of dots that can

be printed per inch of an image. The current algorithm supports a resolution of

720 dpi (dots per inch), maximum width of 24 inches and the error data is 16 bits

wide. Thus the memory required to store these errors will be 24 * 720 * 16 which

is approximately 276480 bits (33.75 KB) per processing core.

• As discussed earlier in section 1.1.7 , droplet densities are to be stored in look-up

tables. This requires data memory that depends on the number of levels used in

the original image. For example, if 3 levels are used and the original image data

input is 12 bits, the amount of storage locations required is 3 * 212 = 12288. The

total amount of memory required if each data value to be stored is 16 bits will be

12288 * 16 = 196608 bits (24 KB).

27

• The current hardware architecture is designed to handle up to 4 channels and 3

levels per channel. The different combinations possible in this design are

CORE[c,l] = {[4,3],[4,2],[4,1],[3,3],[3,2],[3,1],[2,3],[2,2],[2,1],[1,3],[1,2],[1,1]}

where c, l is the number of channels and number of levels per channel

respectively. The design is flexible and can be extended depending on the printer

configuration and the input image depth (Number of bits per pixel).

• The architecture implements fixed point arithmetic with Q1.14 format where the

calculations are done the same way as in integer arithmetic. The main reason for

using Fixed-Point arithmetic instead of Floating-Point is that the floating point

calculations requires complex calculations, takes a lot of resources and consumes

more time to process a pixel when compared to Fixed-Point arithmetic. Also,

there is no degradation observed in the output image when this format is used

when compared to a Floating-Point format.

• The number of hardware units or logic resources used by the algorithm is

described as follows. The architecture requires 48 high speed multipliers (Xtreme

DSP (5.2)), 60 high speed adders (Xtreme DSP (5.2)), 405 KB of data memory

for storing the errors generated, 24 KB of storage memory for the loop-up tables

and 2 KB of memory for input buffering.

The main functional units in the architecture are the datapath, control unit and the output

logic unit. The datapath unit consists of Input Image FIFO, 8 to 12 bit Convertor, Droplet

Densities Storage ROM, Input Level FIFOs, Core Data FIFOs, Error Storage Block

RAMs, Processor Cores (1-12), Output Data FIFOs, Output Logic Units and the control

unit has Input Memory Controller and Processor Core Controller.

 3.2.1 Datapath Architecture

The datapath of this system has a 16 bit architecture and every register and other storage

devices inside the FPGA are 16 bits wide except the Input image FIFO that is 12 bits

wide. Figure 3.1 shows the digital functional components connected to each other inside

the FPGA. The function of each component is described as follows.

28

• Parameter Registers (1 and 2): There are two Parameter Registers of width 32

bits. Parameter Register 1 is used to store the input Image Size and Parameter

Register 2 is used to store the number of Channels, number of Levels and the

information about the number of bits required to represent each Channel (8 bits /

12 bits).

• Input Image FIFO: The input pixels from the DDR2 RAM are stored inside the

FPGA with the help of this FIFO and accessed according to the need of the

processing cores. The data from the DDR2 RAM is transferred to the FPGA FIFO

with the help of a memory interface running at a speed proportional to the FPGA.

The Input Image FIFO is similar to a Distributed/Block RAM inside the FPGA

and the only difference is that it increments the address from the top of the stack

to its bottom with respect to the read or write command given to the FIFO. Data

can be simultaneously written to or read from the memory locations. At the

beginning of process start-up, the FPGA will not start processing until the Input

Image FIFO is completely filled.

• 8 to 12 Bit Convertor: The 8 to 12 Bit Convertor is a combinational circuit that

is used to convert an 8 bit input value to 12 bits with the help of Padding

Technique. Thus, the halftoning architecture can support 8 or 12 bits per channel

as shown in Figure 3.1.

• Droplet Densities Storage ROM: Once the Input Image FIFO of Figure 3.1 is

filled, the pixels are buffered through a Droplet Densities Storage ROM also

called Look-Up-Tables (LUT) which is a Read only memory that has the

mappings from gray-level to droplet densities for each pixel value of 12 bits.

• Input Level FIFOs (1-3): There are three Input Level FIFOs which are used to

buffer the data from the Droplet Densities Storage ROM. The number of Input

Level FIFOs used is directly proportional to the number of Levels in each channel

or the number of Droplet Densities per channel.

29

• Core Data FIFOs (1-12) : There are 12 data buffering Core Data FIFO memory

files, one for each Processor Core of Figure 3.1. It stores the input pixel data to be

processed obtained from the LUT array and has 4 address locations each of width

16 bits.

• Processor Cores (1-12): There are 12 processing cores in the architecture of

Figure 3.1. All the cores are identical and each of them consists of Registers,

Adder/Subtractors, Comparators, Error handling circuits and Error Filter circuits

containing multipliers and adders. Each core is 1 clock cycle behind the

immediate core succeeding it. For example, Processor core 2 is 1 cycle behind

Processor core 1, core 3 is 1 clock cycle behind core 2 and core 12 is 12 cycles

behind core 1. The registers are used to store input pixel data, previous pixel

values, current processed pixel values and neighboring partial pixel values. The

Adder / Subtractor unit is used to add the input pixel value with the previous pixel

value and to subtract the current output value from the combined value of input

pixel. The comparators are used to compare the results and the output of the

previous level with a threshold constant making sure that the values satisfy the

stacking constraint. The error handling circuit consists of a couple of comparators

to make sure that the error values produced are in the range between -1 and 1. The

error diffusion unit in each core contains 4 multipliers and 4 adder circuits to

calculate the errors. This unit also contains a random weights generator which is

used to perturb the weights at each pixel location.

• Error Storage Block RAMs (1-12) : There are 12 Error Storage Block RAM

memory files, one for each Processor Core of Figure 3.1.The Error Storage Block

RAMs store the errors corresponding to the pixel locations. The Block RAM is 16

bits wide and has 17280 memory locations. The number of address locations is

calculated based on the maximum width of the image which is 24 inches

multiplied by the resolution of 720 dpi.

30

• Output Data FIFOs (1-12): There are 12 Output Data FIFOs, one for each

Processor Core shown in Figure 3.1. The outputs from the Processor Cores are

stored in this Output Data FIFOs which are 1 bit wide having 2 memory locations

per Processor core.

• Output Logic Units (1-4): Four Output Logic Units are designed based on the

number of colors and levels supported by the architecture. The number of Output

Logic Units is directly proportional to the number of channels in the image. The

outputs from the output FIFO array are mapped to 2 bits per channel per pixel.

The output data of the processed image (Halftoned Image) is sent directly to the

print head of a printer with the help of an output interface preferably Ethernet.

 3.2.2 Control Unit Architecture

This section deals with the control strategy of the hardware architecture. The system

consists of two controllers, one for managing the memory (RAM) elements and the other

for controlling the Processor Core operations. Figure 3.1 shows the Input Memory

controller used to manage the data buffering operations and Processor Core Controller

used to control the operations of the Processor Core, Error Storage Block RAMs, Output

Data FIFOs and Output Logic Circuits. The control unit performs the timely execution of

predefined micro-instructions to obtain the desired performance and results. The whole

datapath is controlled using the two control units mentioned. Detailed explanation of

controller functionality and architecture is provided in Chapter 8.

 3.3 High Level Process Flow Description

This section provides a detailed explanation of how the hardware system functionally

operates. Figure 3.2 shows the flow chart that provides the step by step operational

procedure of the halftoning algorithm running on the hardware architecture of Figure 3.1

programmed into the FPGA. The following points discuss the operational flow chart in

Figure 3.2.

31

32

Figure 3.2: Hardware Operational Procedure Flow Chart 1

• FPGA accepts the initial parameters of the image namely image size, number of

channels and levels from the host PC.

• If the parameters are within the range of values that is supported by the FPGA,

then a 'go' signal is asserted to the DDR2 memory to accept input pixels from the

host PC else if the parameters don't match, the system shows an error message

stating that the parameters entered are unsupported. The FPGA also initializes the

Droplet Storage ROM and the Processor Cores are switched ON according to the

number of channels / levels.

• The memory interface checks whether at least 2 rows of data is inside the DDR2

memory. If the RAM is filled, the FPGA starts accepting the input data and fills

the Input Image FIFO. The controller inside the FPGA constantly monitors the

FIFO and stops filling it when it is full.

• The input pixels are buffered through a 12 bit convertor circuit which converts a 8

bit input value to 12 bits using a padding technique.

The following points address the flow chart in Figure 3.3.

• The output from the 12 bit convertor of Figure 3.2 is fed to the Look-up-tables or

the Droplet Densities Storage ROM to get the Droplet Size Values (see Figure

3.1) that are associated with a specific input pixel.

• The values obtained from the Droplet Densities Storage ROM are stored in the

Input Level FIFOs which in turn is diverted to the Core Data FIFOs specific to

each Processor Core as shown in Figure 3.3.

• All the processing elements have the same architecture and hence only one

architecture is shown in the flow chart.

33

• Data from the input Data RAM is fetched and stored in the Input Pixel Register.

The previous processed pixel value is stored in the Previous Pixel Register. The

34

Figure 3.3: Hardware Operational Procedure Flow Chart 2

two values are added with the help of an Adder-Subtractor unit.

• The result from the unit is compared with a threshold value (0.5 in this algorithm)

and the previous output of the level in the same channel is compared with a

constant 0.5.

• If the value satisfies the condition, the output value is tied to 1 and if the condition

is not satisfied, the output value is tied to 0.

• When the output value is assigned 1 or 0 there exists an error between the result

from the adder and the output value. The Error is determined by subtracting the

output value from the result of the Adder-Subtractor unit.

The following points address the operational flow chart in Figure 3.5.

• The error value is constantly scanned by an error limiting circuit that assigns 1 if

the error is greater than 1 and assigns -1 if the error is less than -1. But, if both

conditions aren't satisfied, then the error is within the limits and is stored in the

error register.

• The error diffusion circuit comes to play in this step. The controller checks the

corresponding pixel that is being processed and manages the operations of the

multiplier and the adder circuit according to the Figure 3.4.

35

Figure 3.4: OFF / IDLE Timing Pixel Locations

• Figure 3.4 shows the pixel locations where the error filter elements (Multiplier &

Adder) are in the OFF state. Figure 1.2 and 1.4 shows the weight distribution and

the weights at different pixel locations in a serpentine scan methodology.

36

Figure 3.5: Hardware Operational Procedure Flow Chart 3

• The multiplier is used to multiply the error stored in the error register with the

random weights produced by the Random Weight Generator. The adder then adds

the resultant value from the multiplier with the previously stored error value.

• The number of error values generated per pixel per channel per level is 4 as at

almost all the pixel locations, errors are distributed to the four nearest neighbors

as shown in Figure 1.2. The error values are stored in the Error Storage Block

RAM inside the FPGA for subsequent processing.

• The FPGA stops processing once it reaches the final pixel of the image and goes

to an IDLE state where it can be again restarted to process the next upcoming

image.

 3.4 Hardware Algorithm Execution

This section provides information about the Error Diffusion Halftoning algorithm

execution in FPGA. Figure 3.6 shows the operational design of the Stacked Error

Diffusion algorithm currently being used in this research. The input colors are mapped to

the processing cores and halftoned with the help of this algorithm. All the processing

cores are connected to their Core Data FIFO input and the output bit of the previous core.

As there exists no stacking constraint between the channels, the starting level of each

channel is tied to a constant bit of 1. One of the inputs of core 1 is tied to a constant 1 as

it is the first level. The succeeding cores are connected to one another i.e. the output of

the first core is connected to one of the inputs of the second core; the output of the second

core is connected to one of the inputs of the third and so on till it reaches the final core.

The output from each individual core is connected to an output logic which calculates the

output pixel value. As there is a dependency constraint, all the cores cannot start

processing a pixel at the same time. Thus, there exists a unit delay circuit in the design

which delays the processing time by one clock cycle compared to the succeeding core. In

other words, core ‘n’ will not produce the output until it receives the output from core (n-

1) where n=1, 2….n. The pixels are processed in parallel but the first core will be ahead

of its previous core by one clock.

37

Some of these cores can run in parallel at the same time and this parallelism is between

the colors or channels in the input image. For example, CMYK can be four channels in an

image assuming three levels in each color. Colors C, M, Y, K can be run in parallel since

38

Figure 3.6: Processor Cores Pixel Execution Sequence

there is no constraint between different colors. But in this architecture each core is set to

run behind its succeeding core as there is no performance difference and it can also

support more than 4 colors / 3 levels per color as in the case of this architecture. The

whole system is run at 50 MHz to achieve the desired performance and the output is

obtained every 8 clock cycles as shown in Figures 3.7 and 3.8 respectively.

Figure 3.7 shows the pixels being processed under current research methodology where

every core is one step behind its succeeding core. There is also an alternate architecture

shown in Figure 3.8 where all the colors per pixel are run in parallel and the output is still

obtained every 8 clock cycles. Thus, from this research the processing cores gives output

every 8 clock cycles irrespective of the number of channels and levels per channels in an

image. The current architecture is capable of speeds up to 130 MHz and can be altered

according to the printer requirements to achieve a specified throughput. The current

architecture is about twice as fast as the modern day wide format printers. Thus this

design is scalable, flexible and compatible with any printer configuration.

39

Figure 3.7: Current Hardware Execution Methodology

Figure 3.8: Alternate Hardware Execution Methodology

 Chapter 4. Input Data Memory Architecture Design

 4.1 Introduction

This chapter provides a comprehensive explanation of the memory systems and the

operations performed on different memory RAMs. The input memory architecture is the

first and foremost system that the processor core depends on for efficient buffering of

image pixels. Calculations are not performed in this segment as it deals primarily with

memory storage and access. The chapter discusses 5 major digital elements namely the

Input Image FIFO, Parameter Registers, Droplet Densities Storage ROM (LUTs), Input

Level FIFO and Input Core Data FIFO. The next section addresses about the Xilinx

Virtex-5 FPGA components used to build all the digital memory elements listed above.

 4.2 Xilinx Virtex-5 Memory Components

The Virtex-5 devices [26] consists of two main memory components called Block RAM

and Distributed RAM. The choice of the components depend upon the memory size and

speed requirements. For example, if a design requires buffering of data at high speed and

has a small storage constraint then Distributed RAM can be used to meet the

expectations. But if a design requires a large storage space inside the chip and an average

speed of access then a Block RAM can be used. Both RAM's are Static Random Access

Memory (SRAM) systems where the binary bits are stored with the help of internal

latches. The main reason for using SRAM is that it has shorter read and write cycles and

is faster when compared to other RAM's. An SRAM is a volatile element and loses its

contents when the device is powered OFF. Unlike Dynamic RAM's, SRAM's do not

require refresh and precharge cycles. Hence SRAM's are faster when compared to

DRAM's but not area efficient (consumes more space when compared). The current

design under consideration has a requirement of a very large storage space and an optimal

speed at which the algorithm should be run. So, the Input Memory Architecture design

40

incorporates both Distributed and Block RAM's to allow efficient execution of the

Stacked Error Diffusion halftoning algorithm.

 4.2.1 Block RAM

The block RAM in Virtex-5 FPGA (XC5VFX70T) chip can store a maximum of 5328

Kilobits of data. The RAM's can be cascaded and configured for a deeper and wider

memory space depending upon the storage requirements. The device supports both

synchronous and asynchronous memory operations but, the current design recommends a

synchronous operation to avoid timing conflicts in the design. Block RAM can be used as

a single port or a dual port memory element depending on the memory access

requirements. In this research, both single and dual port elements are used based on the

halftoning algorithm. The RAM can also be used as a ROM (Read-Only-Memory) which

has a major use in this algorithm implementation. The memory locations in the RAM can

be initialized to a predefined value and can be changed during the device operation. The

various configurations available in a Block RAM are Single-Port RAM/ROM, Simple

Dual-Port RAM and True-Dual Port RAM/ROM as shown in Figure 4.1.

Single-Port RAM/ROM is the memory storage component where there exists only one

data input and data output port. It can be used as a look-up-table for accessing stored

values by the processor. A Simple Dual-Port RAM is the storage element where there

exists one data input port and only one data output port. This can be typically used in

41

Figure 4.1: Types of Xilinx Virtex-5 RAM / ROM

scenarios where a processor needs to read from one location and write to another location

in the same RAM simultaneously. A True Dual-Port RAM/ROM is a type of memory

storage where more than one processing element with different read and write locations

wants to access the same storage element. It contains two data input ports and two data

output ports. The parameters in the Figure 4.1, namely addra, addrb, are the address

values that can be provided to access a particular location in the memory. rw, rwa and

rwb are the read-write controls signal used to select either read or write operation

(typically '0' indicates read and '1' indicates write); en, ena, enb are the enable signals that

is used to control the chip select operation (basically '0' means a chip can be used for

memory operations and '1' means that the chip cannot be used), clk, clka, clkb are the

clock ports for synchronous operation of the memory devices and din, dina, dinb, dout,

douta, doutb are the inputs and outputs of the corresponding memory blocks. There exists

three operating modes for the Block RAMs that regulates the read and write behavior of

the ports. The operating modes are Write First mode, Read First mode and No Change

mode. In Write-First mode, the input data is written to the memory location and the data

written is reflected at the output simultaneously. In the Read-First mode, the input data is

written to the memory location whereas the previous stored data is reflected at the output.

This mode is also called Read-before-Write. In No-Change mode, the data at the output

port reflects the same data from the previous read operation and is unaffected by the

current write operation. In this research, the No Change mode is used and the hardware is

designed in such a way that there exists no conflicts and collisions. The read and write

operations require one clock edge to provide the output. Large FIFO's (First-In First-Out)

can be instantiated using Block RAMs. Performance upto 450 MHz can be obtained using

the Block RAM module embedded inside the FPGA. But the current research work

doesn't need such high speeds and hence the memory modules are run at a speed required

by the application.

 4.2.2 Distributed RAM

In addition to the Block RAMs, there are Distributed RAMs embedded throughout the

FPGA chip. This RAM is very fast, available at all the regions inside the FPGA and is

42

optimal for high speed data buffering, small FIFO's and can be used as register files. The

Distributed RAM has all the features as the Block RAM such as Single-Port RAM/ROM,

Dual-Port RAM/ROM. The only disadvantage of these RAMs is that the memory

availability is much less compared to the Block RAM module. The Virtex-5 provides a

maximum of approximately 820 Kilobits of storage space in terms of distributed RAM.

Synchronous and Asynchronous operations can be performed efficiently on these RAMs

where write operation is typically synchronous and read is asynchronous. One can also

program the RAMs to perform fully synchronous behavior depending on the application

need. The RAM memory can be initialized with some values and can also be changed

during the device operation. Thus a full flexibility in design is allowed which is similar in

the case of Block RAMs.

 4.3 Xilinx Core Generator

The CORE Generator [27] in Xilinx is a proprietary design tool that instantiates

Intellectual Property (IP) modules which can run very efficiently on the Xilinx FPGAs.

The Core Generator provides functional digital elements such as FIFOs and memories

(both Block RAMs and Distributed RAMs), Multipliers (Xtreme DSP and LUT based),

Adders-Subtractors, Standard Bus Interfaces, Memory interfaces, Comparators, Counters,

Shift-Registers and Dividers. In this research, Core Generator modules are used at places

where the performance of the device is crucial. This results in less time consumed in

designing the hardware since it takes an ample amount of time to design a module like an

adder from the scratch and to test it and the modules provided by the Core Generator are

very efficient and fully tested. All the designs in this research project are described using

verilog and tested using the ModelSim simulation tool.

 4.4 Input Image FIFO

The first memory element in this hardware design is the Input Image FIFO (see Figure

3.1) which is used to store the input pixels sent by the host PC. This FIFO is generated

with the help of the Xilinx Core Generator design tool that utilizes Block RAMs in the

43

FPGA. The memory element is tailored to meet the requirements of the Halftoning

algorithm. The following sections briefly describe the design and operation of the Input

Image FIFO.

 4.4.1 Input Image FIFO Design

The Input Image FIFO is designed with the help of the Core Generator wizard. Verilog

HDL is used to describe the design and is fully tested using the ModelSim simulation

tool. In order to store the pixels for continuous buffering to the processor cores, the width

and depth of the FIFO must be large enough to prevent absence of data at a given time.

The width of the FIFO depends on the number of bits used by a channel in a pixel, as this

algorithm supports both 8 / 12 bit data, the data width of 12 bits is selected. To prevent

buffering discrepancies, the depth of the FIFO is 1024 bits. The depth of the memory

element indicates the number of address locations that can accommodate 12 bits per

location. So the number of address lines required to access 1024 locations is 10 bits (210 =

1024) starting from address 0 till 1023. From the width and depth of the FIFO, the

amount of storage space consumed can be calculated by multiplying the two parameters

12 * 1024 that comes to 12288 bits in total. The difference between a Random Access

Memory and a FIFO is that any address location in the RAM can be accessed at any point

of time but, in a FIFO there is an internal counter that increments the memory address by

a count of 1 depending on the operation (Read/Write) and it acts like a stack where the

first element filled should come out first and so on. Figure 4.2 shows the schematic of the

image FIFO used in this design.

44

Figure 4.2: Input Image

FIFO Schematic

 4.4.2 FIFO Operational Procedure

The FIFO is designed based on the original halftoning algorithm and a code snippet is

shown in Figure 4.3.

The line marked '1' in the code snippet indicates that an image is being read into the

'inputBuffer' unit which in this hardware architecture is the Input Image FIFO. Figure 4.2

shows the input and output pins of the FIFO where din[11:0]is the input pixel data of

width 8 or 12 bits, dout[11:0] is the output of the FIFO which has the same width as the

input port, wr_en is the write enable port ('1' in means that data is written to the FIFO and

'0' means that no data is written to the FIFO) , rd_en is the read enable port ('1' in means

that data is read from the FIFO and '0' means that no data is read from the FIFO), clk is

the clock input port (this signal is used for synchronous read and write operations; all the

operations are positive edge sensitive), srst is the reset or clear bit port (used to clear the

contents of the FIFO and set the internal counter to the initial state), full (Full set to '1'

indicates that all the address locations in the FIFO are filled), almost_full (almost_full set

to '1' indicates that all the address locations in the FIFO are filled except the last location),

empty (empty set to '1' indicates that all the address locations in the FIFO are unfilled) and

prog_empty (prog_empty set to '1' indicates that all the address locations in the FIFO are

unfilled except the number of locations programmed in the prog_empty bit) comprise the

FIFO status bit ports of the memory unit. How the FIFO opeartes in this Halftoning

system is described as follows.

• When the DDR2 RAM of Figure 3.1 is filled with atleast two consecutive rows

of the image to be halftoned, it gives a signal to the Input Image FIFO inside the

FPGA to start accepting the data. The controller inside the FPGA detects the

45

Figure 4.3: Software Code Snippet for Image FIFO and 12 Bit Conversion

signal and the write enable port in the Input Image FIFO is set to '1' filling the

FIFO at every positive clock edge.

• When the Input Image FIFO reaches the end of the stack which means all the

locations are filled with data, the full and almost_full bits are set to '1' indicating

to the controller that the FIFO is ready for operation.

• The processor core starts to read the data from the Input Image FIFO by setting

the read enable port bit to '1'. When the FIFO reaches the end point where it

needs to again fill up with data, the empty and prog_empty ports are set to '1'

indicating the FIFO is empty.

• Data can be read and written to the Input Image FIFO simultaneously providing

full duplex capability preventing latency. Both read and write operations are

performed at the positive edge of the clock and have a latency of one clock cycle.

The Input Image FIFO is run at 50 MHz, the same frequency as the entire

system.

 4.5 Parameter Registers and 8/12 Bit Convertor

The Parameter Registers of Figure 3.1 are memory components designed to store the

input parameters of the Halftoning system. There are two registers, each 32 bits wide,

used to store five input parameters; namely, Rows, Columns, Channels, Levels and 8/12

bit select. Figure 4.4 shows the distribution of the parameters in the register where the

bits 0 through 15 are used to store the number of columns in the image and bits 16

through 31 store the number of rows in the image.

46

Figure 4.4: Parameter Register 1

Figure 4.5 shows the format for storing the information on the number of channels,

number of levels per channel and the choice of 8 or 12 bit image input.

Bits 0 through 3 are reserved for storing the number of levels per channel (color), bits 4

through 7 are used to represent the number of channels in the given image and the 8th bit

in the format is used to switch between an 8 or 12 bit image input. A '0' in the 8th bit

suggests that the input is 12 bits wide and a '1' indicates that the input is 8 bits wide. The

remaining 23 bits are reserved for future use where additional parameters can be

accommodated. This system design handles an image of width 24 inches and a resolution

of 720 dpi. Thus, 24*720 gives the maximum number of columns accepted in this design

which is equal to 17280. The height of the image, namely the number of rows in the

image that this design can handle is infinite. For a specific system design a certain

number is chosen for the sake of hardware power consumption. Thus, a image size of 44

inches which gives 31680 rows can be processed (Number of rows in the image can be of

any size). If any of the parameters are not in the range mentioned, the hardware sends an

error message to the host PC.

Figure 4.6 shows the design of the parameter register and this format is the same for any

register in this hardware architecture. The parameters rin[n:0] is the input to the register

where n is the Most significant bit of the data, clr is an input port used to clear the

memory contents, ls is the load-store input control bit which performs load or store

operations (when ls = '0', input is loaded in the memory register; when ls='1', input is

stored in the register), clk is the clock input to synchronize the operations with the clock

edge and rout[n:0] is the data output from the register.

47

Figure 4.5: Parameter Register 2

Initially, during system start-up, the number of rows, columns, channels, levels and 8/12

bit select values are loaded/stored in the two parameter registers. The 8 th bit in parameter

register 2 is connected to the 8/12 bit convertor which is shown in Figure 4.7. The

convertor converts a 8 bit data value into an equivalent 12 bit value by padding where the

8 bit value is left shifted four times and filled with '1' in the leftmost digits. The line

number named '2' in Figure 4.3 shows the software conversion of the input pixel, thus this

convertor is an equivalent hardware technique to change a 8 bit value to a 12 bit value.

The output of the Input Image FIFO is connected to this 8/12 bit convertor as shown in

Figure 3.1 and the circuit design of the convertor is shown in the Figure 4.8.

The input port d[11:0] is the original value from the Image FIFO (it can be either 8 or 12

bit value), s is the select signal from the parameter register 2 that decides conversion ('0'

in s suggests that the input value is a 8 bit value and hence the conversion takes place and

48

Figure 4.7: Padding Technique

Figure 4.6: Register

Schematic

'1' in s indicates that the data value is a 12 bit value in which case the input its reflected at

the output) and finally dout[11:0] is the output value (padded or un-padded depending

upon the input).

 4.6 Droplet Densities Storage ROM

This section deals with the input pixel being mapped to a maximum of three different

droplet intensities with the help of a Single-Port ROM as shown in Figure 4.9. The output

of the hardware convertor circuit is connected to the input of this ROM. As the input

address is of width 12 bits, the number of locations addressed by the ROM is 4096 (212).

The number of ROMs depend on the number of levels per channel which in this

architecture is 1, 2 or 3 depending on the output requirement. Thus, a total of 3 Block

RAM elements are required to store the droplet values. The values are calculated using

the original algorithm and stored in the corresponding ROMs. The data in the ROM is 16

bit wide Fixed-Point format and integer arithmetic is performed. Hence, the input pixel

value of 12 bits is mapped to three different droplet density values that are 16 bits wide.

The amount of storage memory required to store these values is calculated as follows: 3

ROMs each with 4096 address locations supporting 16 bit data per location requires

3*4096*16 which is equal to 196608 bits of memory space that can be taken from the

Block RAM column of the FPGA.

49

Figure 4.8: 8/12 Bit Hardware

Convertor

The ROMs are generated using the Xilinx Core Generator wizard and the values are

initialized using a .COE file in Xilinx as shown in Figure 4.10. The .COE file requires

two parameters to be passed; one is the memory_initialization_radix and the other is the

memory_initialization_vector. The memory_initialization_radix defines the format of

representing the data which can be binary (radix = 2), octal (radix = 8) or hexadecimal

(radix = 16). In this research the data format is binary. Figure 4.9 shows the ROM

schematic where addr[11:0] is the 12 bit input pixel value, clk is the clock signal for

synchronous operation (the input is positive edge dependent) and dout[15:0] is the output

value related to droplet density. All the levels are grouped into a single ROM having the

same input values but provides 3 different output intensities. This unit is also run at the

system frequency of 50MHz.

50

Figure 4.9: Droplet Densities Storage ROMs

Figure 4.10: .COE File Format

 4.7 Input Level FIFO

The Input Level FIFO is a digital memory component that acts as an intermediate buffer

to store the values obtained from the Storage ROM described in Section 4.6 . Figure 4.11

shows the FIFO schematic where data_in[15:0] is the 16 bit wide input data, clr is the

clear bit to reset the memory contents of the FIFO to a known value generally '0', rd_en is

the control bit for read operation ('0' indicates no operation and '1' indiates read

operation), wr_en is the write enable control bit for write operation ('0' indicates no

operation and '1' indiates write operation), clk is the clock input port for synchronous

operation (data is buffered with respect to the positive clock edge), data_out[15:0] is the

16 bit wide output port, AFULL is an output port which indicates to the control unit that

all the memory locations except the last is filled, AEMPTY is a status bit that provides

information that none of the locations except one is full and FULL is the output status bit

that says that all the locations in the FIFO are filled. The current FIFO has a depth of 16

bits and stores 16 bit wide data.

As discussed in Section 4.2.2 , this FIFO design uses the Distributed RAM to achieve

highest performance and minimum latency. Data can be read from or written to the FIFO

simultaneously and maximum care is taken in the design to avoid read/write conflicts.

The output from the Droplet Densities Storage ROM is connected to the 3 Input Level

FIFO's. The amount of distributed RAM space consumed by these FIFO elements is

3*16*16 that shows 768 bits of storage. These FIFOs eliminate the latency that exists

between the processor core and the Storage ROMs which would otherwise be 2 clock

cycles. Their operation is similar to that of the Input Image RAM/FIFO shown in Section

51

Figure 4.11: Input Level RAM/FIFO

4.4.2 but the only difference is that the Input Image FIFO uses a Block RAM and the

Input Level RAM uses a Distributed RAM. This memory component is run at the system

frequency of 50 MHz.

 4.8 Core Data FIFO

The Core Data FIFO memory system acts as a cache to the Processor Cores where the

data stored in the Input Level FIFOs is in turn buffered to the Core Data FIFOs. The

current hardware architecture supports a maximum of 4 channels and 3 levels per channel

which requires 12 Processor Cores. Thus, for 12 Processing Elements , 12 caches (Core

Data FIFO) are required to buffer the correct input data to the designated core. The data

from the Input Level FIFO is buffered and stored in the Core Data FIFO with the help of

the control unit.

Figure 4.12 shows the schematic of the Core Data FIFO which is similar to the Input

Level FIFO except for the absence of AFULL and AEMPTY status ports. The design and

operation of the Core Data FIFO is the same as the Input Level FIFO. The Core Data

FIFO supports a data width of 16 bits and has a maximum depth of 4 locations. The

memory required to implement 12 Core Data FIFOs is 12*4*16 which is equal to 768

bits. Distributed RAM is used to design this FIFO because the processing elements

communicate with this FIFO at the highest speed and lowest latency. This component is

also run at the system frequency of 50 MHz and the operations are performed at the

positive edge of the clock. The output of the Core Data FIFO is connected to the registers

in the Processor Cores of Figure 3.1 for subsequent computation.

52

Figure 4.12: Core Data FIFO Schematic

 4.9 Entire Input Data Memory Architecture

Figure 4.13 shows the fully connected memory elements of the entire Input Data Memory

Architecture starting from the Input Image FIFO, Parameter Registers, 8/12 Bit

Convertor, Droplet Densities Storage ROM, Input Level FIFO and Core Data FIFO. The

Core Data FIFOs are arranged in a sequential order starting from channel 1 (that includes

level 1, 2 and 3) and ending at channel 4 (includes level 1, 2 and 3). Initially the input

parameters are loaded into the Parameter Registers. The data from the DDR2 SDRAM is

buffered through the memory interface and is stored in the Input Image FIFO. Once the

Input Image FIFO is completely filled with the input pixel data, the control unit starts the

process of buffering the pixels to the processor core as follows. The data output from the

Input Image FIFO goes through a 8/12 bit convertor circuit that converts a 8 bit value to

the corresponding 12 bit value and feeds it to the Droplet Densities Storage ROM where

the input pixel is mapped to three different ink intensities. The Droplet Densities Storage

ROMs 1, 2 & 3 constitute a single unit named as Droplet Densities Storage ROM as

shown in Figure 4.13. During this time the Input Image FIFO is constantly monitored by

the control unit to fill the FIFO in case it is empty. All the operations are executed in

parallel thus improving the execution speed of the algorithm. The output from the Storage

ROM is stored in the Input Level FIFO where it is finally buffered to the Core Data FIFO.

The Core Data FIFO is arranged in such a way that if the image has only one channel, 3

levels per channel, then Channel 1 is chosen. If there are 2 colors in the input image then

Channels 1 and 2 are selected, else if there are 3 colors, channel 1,2 and 3 are selected

else of there are 4 colors, channels 1,2,3 and 4 are selected. All the memory components

are positive edge sensitive and run at the system frequency of 50 MHz. The memory unit

is designed such that when the Processor Cores start processing the input data, the

architecture ensures that the data is continuously buffered from the input to the

Processing Elements. Thus, from the Processor Core point of view, the data from the

input data memory is obtained every clock cycle without any interruption but actually it

takes 5 clock cycles to reach the Processor registers. The memory buffering devices like

Input Image FIFO, Input Level FIFOs and Core Data FIFOs are automatically filled.

53

54

Figure 4.13: Entire Input Data Memory Architecture

54

 Chapter 5. Processor Core Architecture Development and Design

 5.1 Introduction

This chapter gives a thorough insight into the development and design of the Processor

Core architecture for the Processor Cores of Figure 3.1. The Processor Core elements are

the most critical part of the hardware system in that they perform all the arithmetic,

logical and memory operations. This architecture uses Xtreme DSP slices for addition,

subtraction and multiplication as these are hard cores embedded inside the FPGA to

achieve the highest performance. The main components that constitute the Processor Core

are Input Data Registers, a Adder-Subtractor, Threshold Comparators, Error Limiting

Circuit, Error Registers, Random Weights/Values Generators and Error Filter Circuit that

consists of Multipliers and Adders. The halftoning algorithm written in 'C' is shown in the

code snippets of this chapter and the equivalent implementing hardware unit design is

designed.

 5.2 Xilinx Virtex-5 Xtreme DSP Slice

The Xtreme DSP [28] slice in a Virtex-5 FPGA chip is also called DSP48E and it is used

for high speed digital signal processing. The DSP48E is a hard element which is etched

into the FPGA chip as shown in the Figure 5.1.

55

Figure 5.1: Virtex-5 FPGA Components

These slices can be used for functions such as multiply, multiply-accumulate, multiply-

add, add, subtract, barrel shift, bit wise logical operations, magnitude comparator and

counter. The merits of using the DSP48E components is because of the flexibility,

improved efficiency, reduced overall power consumption, increased maximum frequency

and reduced set-up plus clock-to-out time. The Processor Core architecture uses a lot of

these components to reduce the FPGA device utilization as the adder, subtractor and

multiplier is already available embedded in the FPGA , there is no need to design or

develop a new adder or multiplier circuit which takes substantial device resources and a

lot of time to test. The hard IP cores are fully tested and there is a faster execution of

operations that results in increased performance which is crucial for the Processor Core.

Another advantage of using the DSP components is that more functionality can be added

to the user design as the arithmetic unit utilizes 0% of the device, thus a bigger system

can be implemented on the FPGA. The unit supports both signed and unsigned data

arithmetic where it uses 2's complement methodology. The maximum frequency at which

the slices can be run is 550 MHz when a fully pipelined architecture is used. To support

higher data widths, the DSP slices can be cascaded without any downfall in the

performance. Using the DSP slices decreases the design and verification time of the

hardware architecture developed as a newly fabricated design would take a considerable

amount of time for verification and validation. The DSP slices are instantiated into the

hardware design with the help of the Xilinx Core Generator wizard. In this research, the

DSP48E slices are used to perform signed addition, subtraction and multiplication. The

number of DSP slices in the XC5VFX70T FPGA is 128 and the current hardware

architecture uses 108 of these slices. As discussed in Chapter 3., there are 12 Processor

Cores and each Core consumes 9 DSP48E slices and hence the total comes to 108.

Absolutely, no FPGA User Logic resources are utilized when these slices are instantiated

into the design. On the other hand, if the DSP slices were not used, there would have been

a tremendous increase in user logic resources. Typically more than 5000 slices would

have been required which results in a device utilization of over 80%. Thus, the DSP48E

slices play a major role in this hardware system by reducing the amount of on-chip

resources consumed, the design time is reduced by half and performance of the system is

56

increased. The following sections give in-depth details about the Processor Core

Architecture.

 5.3 Input Data Registers

The input data registers are used to store the input data to the arithmetic unit for a

specified amount of time before the next data comes into the processing unit. There are

two 16 bit input registers namely Input Pixel Register and Previous Pixel Register. The

Input Pixel Register takes the data from the Core Data FIFO and consists of values of

each color component of the original image. The Previous Pixel Register is used to store

the error value diffused from the previously processed pixel location. The schematic of

these two registers is similar to the parameter registers shown in Figure 4.6 except that

the size of the register here is 16 bits. The format in which the data is stored in these

registers is shown in Figure 2.3. Figure 5.2 shows the software code snippet used in the

original halftoning algorithm written in 'C' that gives information about the input data

operation and the equivalent hardware circuit is shown in Figure 5.3.

The following points are derived from the software code.

• 'C-3' is a part of the software code where 'inputPixel' represents the Input pixel

Register in hardware. The term 'pixelBuffer[c] ' is the software buffer created to

provide the input pixel data to the inputPixel. Where the term 'c' represents the

57

Figure 5.2: Software Code Snippet For Registers and Adder

color component of a particular pixel. The variable 'errorImage' is the buffer

created in the 'C' code to store the previously processed pixel value.

• The equivalent hardware circuit in Figure 5.3 shows that the Input Pixel Register

('inputPixel') is connected to the Core Data FIFO ('pixelBuffer[c]') and the

Previous Pixel Register is equivalent to the 'errorImage[e]' where 'e' is the error

from the same component (same level in a channel) of the previous pixel. The

registers are positive edge triggered and takes one clock cycle to store the data.

 5.4 Adder-Subtractor Unit

This unit performs the addition/subtraction operation depending on a control bit. Xilinx

Core Generator is used to create the Adder-Subtractor unit which uses a DSP48E slice.

The adder schematic is shown in Figure 5.4 where 'AB_IN', 'C_IN' are the input ports

(signed) to which the input value registers are connected, 'CE_IN' is the clock-enable port

that controls the operations ('0' means device is inactive, '1' means that the device is

active for operation), it is synchronized with the positive edge of the clock and has the

highest priority over other signals, 'RST_IN' is the clear or reset bit that sets the output of

the unit to zero ('1' in this port drives the output to zero and '0' in this port means a normal

device operation; this port is normally used during system start-up), 'SUBTRACT_IN' is

the control input port that decides the type of operation to be performed ('0' means Add

operation and '1' means Subtract operation), 'CLK_IN' is the clock port for connecting the

clock signal resulting in a synchronous operation and 'P_OUT' is the output port that

provides the result of the operation used. There is no need for an overflow indicator in

this unit as the values strictly lie between -1 and 1.

58

Figure 5.3: Equivalent Hardware Circuit for Input and Previous Pixel Values

The code snippet in Figure 5.2 delivers the following information.

• 'outputImage[c]' shown in 'C-4' is a buffer location where the sum of 'inputPixel'

and 'errorImage[e] ' is stored.

• The Adder-Subtractor component shown in Figure 5.5 shows that each of the

input ports is connected to two different data inputs with the help of a multiplexer

as both addition and subtraction has to be performed. The 'outputImage[c] ' in the

59

Figure 5.5: Adder-Subtractor Connections

Figure 5.4: Adder-Subtrator Unit

Schematic

software is equivalent to the result obtained at the output port of this hardware

unit. The hardware unit is positive edge triggered and takes one clock cycle to

output the result.

 5.5 Threshold Comparison Circuit

The threshold comparison circuit compares the output of the Adder-Subtractor unit with a

constant (0.5 in this research) and produces an output depending on the comparison. The

software code snippet for this operation is shown in Figure 5.6. The following can be

inferred from the software code.

• The code in 'C-5' indicates that it is applicable only for the first level (droplet

density) in any channel. It compares the 'outputImage[c] ' which is the result from

the Adder-Subtractor unit with the threshold value (0.5), if the result is greater

60

Figure 5.6: Software Code Snippet for Threshold Comparison

than or equal to the threshold then 'outputImage[c]' is replaced by the value 1.0

and if less than 0.5 'outputImage[c] ' is replaced by the value 0.0.

• The code in 'C-6' is applicable to any level except the first, the codes 'C-5' and 'C-

6' are similar but the only difference is the term 'pixelBuffer[c-1]' which is the

output value of the previous level (either 1.0 or 0.0) in the same channel in the

same pixel.

The design of equivalent hardware for the threshold comparator circuit is described

below.

• The Threshold Comparison circuit consists of three main components namely

Threshold Comparator, Previous Value Register and Output Image Value Circuit.

• The Threshold Comparator is generated with the help of the Core Generator

wizard and it performs signed comparison with a constant threshold value of 0.5.

The Figure 5.7 shows the schematic of the comparator where 'a[15:0]' is the input

port connected to the result of the Adder-Subtractor unit, 'Constant 0.5' is the

value with which the result is to be compared and 'a_ge_b' is the output from the

comparator.

• The next important circuit is the Output Image Value Circuit shown in Figure 5.8

where 'cmp' is the input port connected to the output of the threshold comparator,

'pv' is the previous core value (previous level), 'en' is used to control the circuit ('0'

in 'en' means no operation and '1' means regular operation), 'ov[15:0]' is the 16 bit

output value and 'nv' is the value to the next processing element (typically next

level in the same channel). This circuit gives an output image value of 1.0 if all

the three inputs are 1 and 0.0 otherwise.

61

Figure 5.7: Threshold

Comparator

• Figure 5.9 shows the Threshold Comparison Circuit where there is only one

hardware unit for all the levels in a channel unlike the two code segments shown

in Figure 5.6. The difference is evident from the Previous Core Value register

which is set to the value '1' for the first level in all the channels. This is done by

driving the reset bit in the register to '1'. For all other cores that doesn't represent

the initial level, the reset bit of the previous value register bit is disabled (tied to

'0'). This reduces the unnecessary replication of hardware circuits.

• As the output from the Threshold Comparison Circuit is ceiled (rounded to the

nearest integer value) to one of the two values (1.0 or 0.0), there arises an error

which is the difference between the original value and the ceiled value. The Figure

5.10 shows the software code snippet 'C-7' where the output value is subtracted

from the result of the addition giving the error value. The Adder-Subtrator unit is

62

Figure 5.9: Threshold Comparison Circuit

Figure 5.8: Output Image

Value Circuit

used for this subtraction operation with the help of two 16 bit multiplexers

controlled accordingly.

 5.6 Error Limiting Circuit

This circuit is implemented to monitor the error value that accumulates over a period of

time when the pixels are being processed. The error value is constrained to a range of

values strictly between -1 and 1. The code snippet 'C-8' shown in Figure 5.10 infers that

when the error value is greater than the 'ErrorLimit' (value is 1), then the value of

'errorImage[e]' is set to '1', but when the error value is less than '-ErrorLimit' (negative of

'ErrorLimit' which is '-1') the value of 'errorImage[e]' is set to '-1' else if neither of the

conditions is satisfied, the error value remains unchanged. The equivalent hardware

conversion is shown in Figure 5.11.

Both the Comparators are IP cores generated by using Core Generator software which

has a 'greater than' function and the other with a 'less than' function. The 'Neg Error Limit

Value (-1.0)' and 'Pos Error Limit Value (1.0)' are combinational circuits producing a

63

Figure 5.10: Code Snippet for Subtractor and Error Limiting Circuit

Figure 5.11: Error Limiting Circuit

constant value of -1 or 1. The multiplexer is used to select one of the values based on the

output from the comparators. Figure 5.12 shows the schematic of both the comparators

where 'a_gt_b' and 'a_lt_b' are output bits obtained after comparison ('0' when the

condition is false and '1' when the condition is true).

 5.7 Error Registers

There are two Error Registers present in the Processor Core, one for storing the error

value output from the Error Limiting Circuit and the other to store the previously stored

error values in the Error Storage Block RAMs. The registers have the same design as the

Input Value registers that are 16 bits wide shown in Figure 5.13.

The code snippet 'C-8' in Figure 5.10 indicates 'errorImage[e]' which is equivalent to the

Error Register hardware unit. The registers are positive edge sensitive digital elements

and are very fast compared to Distributed or Block RAMs. They provide synchronous

operation avoiding timing conflicts. The upper half of this unit deals mainly with

calculating the output and the error value and the lower half gives details about the error

diffusion circuit with random weights generator circuits.

64

Figure 5.12: Comparators (Greater Than and Less Than)

Figure 5.13: Error Registers

 5.8 Random Weights-Values Generator

The importance and use of randomness in an image is discussed in Chapter 1., Section

 1.1.5 . The software code snippet in Figure 5.14 shows the random numbers generated

using 'C' program. Thus, to design an equivalent hardware random number generator, the

'C' code must be thoroughly analyzed in order to match the outputs with the software unit.

To design a hardware unit to generate the random weights and numbers, code snippets 'C-

9' and 'C-10' in Figure 5.14 have to be fully broken down into small segments for easier

understanding of the number generation process. All the floating-point numbers are

converted to equivalent Fixed-Point numbers and the range of numbers for 'frand1' shown

in the code snippet is determined. The calculated range of values for 'frand2' in code 'C-9'

is [-0.15625,0.15625] (Floating-Point), [-2560,2560] (Fixed-Point) and in code 'C-10' is

[-0.03125,0.03125] (Floating-Point), [-512,512] (Fixed-Point). The fixed-Point number

for the weight [7/16] is 7168, for [5/16] it is 5120, for [3/16] it is 3072 and for [1/16] it is

1024. Thus the added sum of all the weights should be equal to 1 or 16384 (Fixed-Point).

The value range for all the weights are shown in the following Equations 5.1, 5.2, 5.3 and

5.4.

65

Figure 5.14: Code Snippet for Random Weights Generation in 'C'

 weight [0] =
7

16
− frand1 = 7168−[-2560 to 2560] (5.1)

weight [4] =
5

16
 frand1 = 5120[-2560 to 2560] (5.2)

weight [3] =
3

16
− frand2 = 3072−[-512 to 512] (5.3)

weight [5] =
1

16
 frand2 = 1024−[-512 to 512] (5.4)

Random numbers can be generated in hardware with the help of a Linear Feedback Shift

Register (LFSR) circuit [29], [30]. A LFSR is a sequential digital circuit designed with

the help of D-Flip Flops and XOR gates. The design depends on the basic fundamentals

of polynomial arithmetic in cyclic coding theory. If there are 'n' binary bits, the LFSR

produces a sequence of (2n – 1) different non-zero values. The circuit needs to be

designed in such a way that it satisfies the generating function called 'Primitive

Polynomial'. A 'Primitive Polynomial' is an irreducible polynomial that produces all the

elements in a given set. The sequence of random numbers generated by the LFSR has a

property in which a number will never be repeated until the whole sequence of numbers

are executed. The LFSR acts as a counter except that it produces randomness without

incrementing the result by 1 and it is faster than any other counter. Any digital counter

can count a particular range of values depending on the number of binary bits. Thus, for

representing the 'frand1' value of range [-2560,2560], the number of bits used must be

adjusted. The nearest number range that matches the above range is [-2048,2047] which

requires 12 binary bits to represent the whole range. 'frand2' values range from [-512,512]

which can be represented exactly by 10 bits except the value 512. Hence from this

discussion it can be concluded that apporximately 95% of the random values can be

generated similar to the software 'C' code. This doesn't affect the performance or the

quality of the image as there is enough randomness introduced into the system to avoid

the artifacts. As the number of binary bits required are known, a primitive polynomial has

to be found that produces all the values in the range supported by the number of bits. The

polynomial is defined by the powers of 'x' as shown in the Equations 5.5 and 5.6.

66

Primitive polynomial (10 bits) = x10x31 (5.5)

Primitive polynomial (12 bits) = x12 x7x4x31 (5.6)

LFSR consists of only D-Flip Flops and XOR gates. The gates are placed according to the

primitive polynomial. One end of the register is always 1 ('x0') and the other end is always

'xn' where 'n' is the number of bits used to generate the random numbers. Figure 5.15, 5.16

shows the design of LFSRs for 10 and 12 bits respectively.

To generate the weights [0,4,3,5], the random number generator hardware must interface

with an adder logic as from Equations 5.1, 5.2, 5.3 and 5.4, the 'frand1' or 'frand2' is

added to the weight filter [7/16,5/16] and [3/16,1/16]. A two's complement

Adder/Subtractor is designed with one port of the adder tied to a constant value and the

other port is connected to the random number generator. The random weight filter is

divided into two units one with 'frand1' and the other with 'frand2' as constant values.

Each random weight filter has two adder/subtractor units, each connected to one of the

four constant values shown in the Equations 5.1, 5.2, 5.3 and 5.4. Both hardware units are

combined to form a fully functional random weights generator unit. Figure 5.17 shows

the random weights generator hardware unit where 'clk' represents the synchronous clock,

'rst' is the clear bit that resets the registers to the initial setting, 'en' is the control port that

controls all the operations ('0' – no operation, '1' – normal operation), 'wts0' is the random

weight[0], 'wts4' is random weight[4], 'wts3' is the random weight[3] and 'wts5' is the

67

Figure 5.15: LFSR - 10 Binary Bits

Figure 5.16: LFSR - 12 Binary Bits

random weight[5]. This hardware unit is a positive edge sensitive circuit. The output from

this unit is connected to the Error Filter Circuit.

 5.9 Error-Filter Circuit

The hardware circuit discussed in this section is one of the critical units used to diffuse

the errors generated at each pixel location. Figure 5.18 shows the software

68

Figure 5.17: Random Weights

Generator

Figure 5.18: Code Snippet for Error Filter Circuit

implementation of the error filter circuit in 'C' code. The code in 'C-11' shown in Figure

5.18 describes the ON-OFF timing locations in the image and is also mentioned in Figure

3.4. Code 'C-12', 'C-13', 'C-14' and 'C-15' are the four error filters used to diffuse errors to

the neighboring pixels. Figure 5.19 shows how the error value at a particular location is

updated. Let 'P1', 'P2', 'P3', 'P4', 'P5', 'P6' be the pixels of an image and 'EP1', 'EP2',

'EP3' be the errors at the corresponding pixels 'P4', 'P5', 'P6', the error 'EP1' cannot be

used for processing until all the pixels 'P1', 'P2', 'P3' are processed. The code snippets 'C-

12', 'C-13', 'C-14' and 'C-15' shows two important variables 'errorImage[c]' and

'weightMatrix[w] ' that are multiplied and added to the previous error value at

corresponding locations.

The hardware equivalent circuit uses multipliers, adders and register components to

efficiently perform the error diffusion mechanism. The multipliers and adders in this

circuit are implemented using the Xilinx Core Generator. Both the units are performed

signed operations and the multiplier unit has an output port the same width as the input

port. The implementation of the multiplier is shown in Figure 5.20 where 'a[15:0]',

'b[15:0]' are the input ports connected to the error register and the random weight

generator, 'ce' is the clock-enable pin with highest priority that controls the multiply

operation ('0' – no operation, '1' – normal operation), 'sclr' is the clear bit used to reset the

multiplier output to a known value done during system start-up, 'clk' is the clock input as

the unit is synchronized with a clock and finally 'p[29:14]' is the truncated output of the

multiplier circuit. The process of truncation doesn't affect the output and as the data bus is

16 bits wide, the result needs to be broken down taking the useful value alone. The adder

circuit is similar to the Adder-Subtractor circuit discussed earlier in this chapter in

69

Figure 5.19:

Error Update

Technique

Section 5.4 , the only difference being the absence of the 'SUBTRACT_IN' input port as

the subtraction operation is not necessary. From Code snippets 'C-12', 'C-13', 'C-14' and

'C-15', it is evident that four multipliers, adders and registers are required to handle the

errors. The reason for using four 16 bit wide registers can be inferred from the Figure

5.19 that the error needs to be stored and propagated among the register circuits till the

error value is fully updated. Each error filter unit is arranged in a way that it diffuses the

error value generated to corresponding pixel.

The Error-Filter unit is shown in Figure 5.21 where there exists two random value

generator circuits for randomizing the error values, Random Value Generator 1 generates

values for all the input pixel locations but Random Value Generator 2 is enabled for

certain pixel locations only. The error value from the error register is given as one of the

inputs to the multiplier circuit and the random weight-values from the random weight

generator is used as the second input. Each of the adder units is connected to a 16 bit

register which stores the partial error value and shifts the value during successive pixel

operation. The Error-Filter [7/16] gives the error value of the next unprocessed neighbor,

thus the output of this filter is directly connected to the Previous Pixel Value Register.

The final updated value of the error is stored in the Error Storage Block RAM. The stored

error values are buffered through the Error Storage Register and finally to the error filter

[7/16] to add the error at the particular pixel location. The equivalent hardware circuit for

code 'C-12' is the Error-Filter [5/16], 'C-13' is error filter [7/16], 'C-14' is the Error-Filter

[3/16] and 'C-15' is the Error-Filter [1/16] respectively.

70

Figure 5.20: Multiplier Unit

71

Figure 5.21: Hardware Error-Filter Circuit

71

72

Figure 5.22: Processor Core Functional Architecture

72

 5.10 Processor Core Architecture

Figure 5.22 shows the full schematic of a single Processor Core unit of Figure 3.1 where

'A' is the data input pixels from the Core Data FIFO, 'B' is the Previous Core (Level)

value, 'C' is the value from the present Core connected to the next Core, 'D' is the stored

error values from the Error Storage Block RAM and 'E' is the final error value from the

Error-Filter circuit connected to the Error Storage Block RAM for storage. Output from

each Processor Core also represented as 'C', is obtained every 8 clock cycles and the

whole system runs at a frequency of 50 MHz which is also the system frequency.

73

 Chapter 6. Error Storage Block Memory Architecture Design

 6.1 Introduction

This chapter introduces the detailed concepts and information about the memory unit

designed to store the errors generated by a Processor core of Figure 3.1 at every pixel

location. This memory system is a most essential unit in the architecture and handles the

error storage operations and is responsible for efficient operation of the Error-Filter

Circuit in the Processor Core. All the hardware modules in this chapter are described in

Verilog HDL and fully tested using the ModelSim simulation tool.

 6.2 Error Storage Block RAM Architecture

The size of each Error Storage Block RAM depends on the image width and the data

width of the values generated. The high level system architecture of Figure 3.1 consists of

12 cores, so the number of error storage blocks is equal to 12. The system supports an

image width of 24 inches and a resolution of 720 dpi which gives 17280 pixels in a given

row. The memory size doesn't depend on the number of rows or height of an image. The

number of address locations in the given memory should be 17280 and each address

space supports data of 16 bits. The total memory required for storing the errors generated

by all the cores is 207376 (12*16*17280) bits. Since it requires a large memory to

accommodate the data, Xilinx Block RAMs are used. In order to get the most efficient

and reliable design, the memory system is designed using the Xilinx Core Generator

wizard. The design uses a simple dual-port RAM configuration shown in Figure 4.1

where the data can be read from or written-to the memory simultaneously. Figure 6.1

shows a higher level schematic of the Error Storage Memory Block where 'dina[15:0]' is

the input port to the memory that transfers the error data, 'doutb[15:0]' is the error data

output port, 'addra[14:0]' is the address port for writing the error data to a particular

location, 'addrb[14:0]' is the address port for reading the error data from a particular

location, 'clka' , 'clkb' are the clock inputs for synchronous operation, 'wea' is the write

74

enable port used to control the write operations of the unit ('0' – No Write, '1' – Normal

Write operation) and 'enb' is the enable port for controlling the read operations in the unit

('0' – No Read, '1' – Normal Read operation). The clock inputs 'clka' and 'clkb' are

connected to the same clock to perform read and write operations at the same clock

frequency. The input of the memory unit is connected to the Error Output of the Processor

Core and the address locations at which the data needs to be read from or written into is

controlled by the Processor Core Control Unit. The output from this unit is fed back to

the Error Filter circuit in the Processor Core.

The code snippet in Figure 6.2 shows that initially all the memory locations are filled

with some random value, this is shown in the software code in terms of 'errorImage[] '.

This is achieved by initializing all the memory locations to some random values with the

help of a .COE file shown in Figure 4.10. The value for 'noiseLevel' in the code is a

constant value of 0.1. The initialization values are generated from the same 'C' code and

75

Figure 6.1: Error Storage Block

RAM Memory Schematic

Figure 6.2: Code Snippet Showing Random Values Stored in the Error Image Buffer

converted to a binary format that can be loaded into the hardware memory unit. The

address ports in this unit are connected to an address counter unit that increments or

decrements the address depending on the pixel location. If 'n' is the number of columns

(width) of an image, then '(n-2)' error values need to be stored. This is explained in detail

with respect to the image shown in Figure 6.3. Generally in any image, errors are

produced at every pixel location and the average number of error updates per pixel

location is 3. But, for cases discussed in Figure 3.4, the number of error updates comes

down to 2. The terms 'A' and 'B' in the Figure 6.3 provide important information about

how the stored errors are added to the corresponding pixel locations. The stored error at a

pixel value should be added with the error-filter weight [7/16] and sent to the Previous

Pixel Register for processing. 'A' indicates the errors being read from the storage unit and

'B' indicates the errors generated at each pixel location being stored in the memory unit. It

can be observed that all the error values from the pixels are stored in the memory storage

except the last 2 pixels. The gray boxes indicate the 16 bit register associated with the

weight filter [7/16] in the Processor Core which is shown in Figure 5.21 in which the

register takes either the input from the Error Storage Register or the value from Adder

[3/16].

76

Figure 6.3: Error Storing Procedure Schematic

This process is better shown by the black boxes that represent the errors produced at each

pixel. The process of reading and writing the errors occur simultaneously. Referring to

the Figure 1.4, the last pixel in a row doesn't have the Error-Filter weights [7/16] and

[1/16]; the error at this location needs to be added to the value of the next pixel. Thus,

this error is connected directly to the Previous Pixel Register and this is the reason why

the error is not stored in the Error Storage Memory Unit. The read and write addresses

are connected to the same address counter and the storage unit is ingeniously designed in

such a way that the address is the same for reading and writing at any point of time and

the only difference is that the data is not read or written to the memory unit at the same

clock edge. This prevents collisions that may occur if an address location is read and

written at the same time. Since the system implements a serpentine scan technique, the

counter must be able to count up and down depending on the image row being processed.

The error corresponding to a pixel location must be added with the error-filter weight

[7/16] of the previous pixel and the result is to be sent to the Previous Pixel Register of

the current pixel.

77

Figure 6.4: Error Storage Block RAM Memory Unit

Figure 6.4 shows the high level schematic of the Error Storage Block RAM Memory Unit

which has two data ports, one from the Processor core and the other to the Core. The

address generation and control is discussed in detail in the next section which includes

the design and implementation of the address counter for the memory unit including the

Input Image Size Monitor.

 6.3 Input Image Size Monitor

This section deals with the design and implementation of the unit used to count the

number of rows and columns of an image being processed. The Image Size monitor is a

binary counter with some combinatorial circuits added to control other units in the whole

system. The input to this counter is the output from Parameter Register 2 which gives the

number of Rows and Columns in the input image to be processed. This counter controls

the Address Counter of the Error Storage Memory Unit indicating when to count up or

down. If the current row being processed is odd, the Image Size Monitor instructs the

Address counter to count up and if the row is even then it instructs the counter to count

down thus establishing a serpentine scan technique. Figure 6.5 shows the higher level

schematic of the Image Size Counter circuit where 'cin[15:0]' represents the number of

columns (image width), 'rin[15:0]' represents the number of rows (image height), 'up' is

the control bit that instructs the counter to count up ('0' – no count, '1' – count up), 'clr' is

the clear bit to reset the counter initially to a known value, 'clk' is the clock input, 'FCOL'

is the output port that indicate whether it is the First Column (pixel) in a row, 'LCOL'

indicates whether it is the Last Pixel in the row, 'LROW' indicates whether it is the Last

Row being processed and 'up_err' is the control bit connected to the Address Counter of

the Error Storage Memory Unit ('0' – count-up, '1' – count-down). This counter counts up

for odd-numbered rows and counts down for even-numbered rows. The address range for

up-count is '0' to '[rows – 2]' and for odd rows is '[rows – 2]' to '0'. The Image Size

Counter is incremented by the Processor Core Controller depending on the row to be

processed and is a positive edge sensitive digital circuit.

78

 6.4 Error Storage Memory Address Counter

The Address Counter is the digital component that provides addresses to the Storage

memory unit for parallel reading and writing of the errors generated at each pixel of the

image. The schematic for the address counter is shown in Figure 6.6 where 'ce' is the

clock-enable input port that controls the operation of the counter ('0' – no operation, '1' –

normal operation), 'clr' is the clear bit, 'enr' is the read-enable bit ('0' – Read, '1' – No

Read), 'enw' is the write-enable bit ('0' – Write, '1' – No Write), 'up_dn' is the control bit

used to instruct the counter to count up or down depending on the row number ('0' –

count-up, '1' – count-down) and also this port is connected to the output port 'up_err' of

the Image Size Counter, 'clk' is the clock input for synchronous operation, 'addr[14:0]' is

the address port connected to the 'addra[14:0]', 'addrb[14:0]' of the Error Storage

Memory, 'rd_en' is the read-enable output port connected the 'enb' port of the Error

Memory and 'wr_en' is the write-enable output port connected to 'wea' port of the Error

Memory. The ports 'enr' and 'enw' are directly connected to 'rd_en' and 'wr_en' with a

delay circuit in between to transfer the control signal from the controller to the Error

Memory at the correct clock edge as shown in the Figure 6.7.

79

Figure 6.5: Image Size

Counter Schematic

The controller provides the read/write commands to the Error Memory approximately two

clock cycles ahead and in order to transfer the control at the correct clock edge, a delay

unit is introduced. The delay unit is a positive edge triggered D-flip-flop and two of these

elements are used. The controller is a negative edge triggered system and gives the output

after the negative edge, and this is captured at the positive edge by the Address Counter

and at the next positive edge by the Error Storage Memory unit. The unit is designed very

carefully meeting the set-up and hold time constraints. All the units in the Error Storage

Memory Architecture are run at 50 MHz, the same as the overall system frequency. All

the units were fully tested and verified with the help of the ModelSim simulation

software.

80

Figure 6.6: Error Storage Block RAM

Memory Address Counter

Figure 6.7: Read & Write Port Connections

 6.5 Total Functional View of Single Error Storage RAM Memory Module

Figure 6.8 shows the entire architecture of the Error Storage Block RAM memory unit.

The Input Image size monitor is connected to the Error Storage Block RAM Address

Counter unit that generates the address to which the data is to be stored and read. The

error values produced in the Processor Cores are sent to the Error Storage Block RAM

and the error values corresponding to a pixel location are accessed from the Block RAM

memory. The Error Storage Block RAM is a positive edge sensitive unit and the Error

Storage Block RAM Address Counter is negative edge sensitive.

81

Figure 6.8: Error Storage Block RAM Memory Functional Architecture

 Chapter 7. Output System Architecture Design

 7.1 Introduction

This chapter addresses the development and design of output functional units of the

System Architecture of Figure 3.1. It gives a detailed explanation on the Output Data

FIFOs and Output Logic Units used in this Halftoning Architecture. The output unit is

one of the most critial units in the architecture as the output pixels generated by the

Processor Cores need to be buffered accordingly and the effective output image value is

to be calculated with the help of an output logic circuit. All the functional elements in the

Output System Architecture are described using Verilog HDL and simulated using

ModelSim simulation software.

 7.2 Output Data FIFO

Each Output Data FIFO [1-12] of Figure 3.1 is a small memory unit connected to the

output of a Processor Core Unit to collect the output bits. This FIFO has 2 address

locations that supports data width of 1 bit. The reason of the FIFO having only 2 address

locations can be explained with respect to the Figure 3.7 where the gray colored boxes

indicate the output produced by each Processor Core. Cores 1 to 4 produce the output of

the next pixel when Core 12 delivers the output of the previous pixel. Thus, a FIFO with

2 address locations can accommodate and buffer the output bits without any loss. Figure

7.1 shows the schematic of the Output Data FIFO where 'data_in' is the input port

connected to the Processor Core, 'data_out' is the output port of the FIFO unit, 'clr' is the

clear bit, 'rd_en' is the control bit of the FIFO that dominates the read operation ('0' – No

Read, '1' - Read), 'wr_en' is the write control bit of the FIFO ('0' – No Write, '1' – Write)

and 'clk' is the clock input. The output from the FIFO is taken every 8 clock cycles and the

control is given by the Core Controller. This is a fully automated process leading to

efficient buffering of output pixels. Figure 5.6 shows the software code snippet where the

82

term 'outputImage[index]' represents the equivalent hardware memory that is the Output

Data FIFO.

 7.3 Output Logic Unit

This unit shown in Figure 3.1 is the most important unit for calculating the combined

output from the Processor Cores. Figure 7.2 shows the software code snippet for output

calculation using 'C' code. The variables in the code 'imageCol' represent the number of

columns (width) of the image, 'imageChn' represents the number of colors/channels in the

83

Figure 7.1: Output Data FIFO

Schematic

Figure 7.2: Software Code Snippet for Output

Calculation

image, 'levels' represent the number of levels per channel, 'pixel' is a temporary variable

used to calculate the effective output from the Output FIFOs and 'outputBuffer[j] ' is the

output stored in a temporary buffer unit for subsequent output value calculation. It also

represents the Output Data FIFOs of Figure 3.1 in digital hardware. The value per level in

each pixel will be either '1' or '0' and the code suggests adding all the values in the levels

in each channel individually. Figure 7.3 shows the equivalent hardware unit for the output

calculation where 'I[2:0]' is the input port connected to three Output Data FIFOs and

'O[1:0]' is the 2 bit output calculated by the hardware. This unit is a combinatorial circuit

that uses Look-up-tables to produce the output. An adder used in the software code is

replaced by the LUTs as it is fast, simple and very efficient. The output is 2 bits wide

which can support four possible values (0,1,2,3). The ouput logic counts the number of

1's in all the three levels per channel and the value ranges from 0 to 3.

Table 7.1 shows the output values according to the input values and these values are

stored in memory to access the data according to the input.

Table 7.1: Input Values & Corresponding Outputs

Input (Binary) Input (Decimal) Output (Binary) Output (Decimal)
'000' 0 '00' 0

'001' 1 '01' 1

'010' 2 '01' 1

'011' 3 '10' 2

'100' 4 '01' 1

'101' 5 '10' 2

'110' 6 '10' 2

'111' 7 '11' 3

84

Figure 7.3: Output Logic Unit

The Output Logic Circuit is designed using a gate level coding technique for maximum

performance and minimum gate delay. Figure 7.4 shows the full Output System

Architecture Figure 3.1 (Output Data FIFOs and Output Logic Units) and its connections.

The Output Logic Architecture consists of 4 Output Logic Units and 12 Output Data

FIFOs (1 per Processor Core). The Cores {1,2,3}, {4,5,6}, {7,8,9}, {10,11,12} represent

four channels (1 channel per set of Cores mentioned before) and each channel supports 3

levels. The allocation of the processing elements are done according to the channels and

starts from the very first set of cores. For example, if there are 3 channels , 3 levels per

channel, the sets {1,2,3}, {4,5,6} and {7,8,9} are switched ON for processing. The output

obtained is 2 bits per channel per pixel and the total is 8 bits per pixel. As the output logic

unit is a combinatorial circuit, the output of the whole system will be obtained in under

one clock cycle after the Output Data FIFO provides the output data. For maximum

quality in the output image, the number of levels per channel must be 3. The stacking

constraint as discussed in Section 1.1.7 is applicable to the elements in each set of

channels but not between the sets (no constraint between channels). The throughput in

this architecture doesn't depend on the number of channels and levels used, it is the same

for any number channels and levels. The output can be directly connected to a printer

head for image reproduction using the processed output pixels. The output image pixels

can also be stored inside the FPGA using a Block RAM unit for further buffering to other

printing devices.

85

86

Figure 7.4: Entire Output System Architecture

 Chapter 8. Controller Architecture Development and Design

 8.1 Introduction

The previous chapters in this research work dealt with the Datapath architecture where

the digital elements responsible for the arithmetic, logical and storage operations were

discussed. In this chapter a very detailed explanation of the control logic design is

presented. In fact, the most challenging and critical part of the system is the controller

design. The controller fully automates the system and completely reduces control

constraints that arise. The controller can be designed only when the Halftoning algorithm

at hand is thoroughly understood and when all constraints are known. The main

responsibility of the control logic is to provide command signals for specifying

operations to be performed at each system clock cycle. The controller will be a Finite

State Machine type which can be defined as a digital logic system that has a fixed number

of states and follows a predefined procedure. A 'State' in the Finite State Machine

Controller is an entity that defines the operation of a digital element (functional unit) on

a particular clock cycle of the system clock. A controller needs to know the previous,

present and next state according to the inputs given to the circuit. Thus a Finite State

Machine is a combination of both sequential and combinatorial elements. A control logic

fully controls all the elements in a digital circuit and leads to production of correct output

from the unit. The chapter provides all information about the controller used to entire the

whole Halftoning system.

 8.2 Mealy and Moore State Machines

Finite state machines fall under two categories, one is the Mealy Model [31] and the other

is the Moore Model [31]. In the Mealy model, the output of the State Machine is

dependent upon both the input and the present state of the control logic system. Figure 8.1

shows the schematic of both Mealy and Moore models in which the Mealy model output

(Control Signal) are a function of both the input and present state whereas the Moore

87

model output is a function of the present state alone. The Moore state machine is easier to

implement and design when compared to the Mealy model as it is dependent on the

present state only, so less circuit dependency exists. The Mealy model consumes less

states to build since the next state is dependent on the input and present state, there will

be less memory required to store the value of previous and next states. The output in a

Mealy model is sensitive to the input irrespective of the clock edge. The output can

change when the input changes. In the case of the Moore model, the output changes only

on the next clock edge. A control algorithm can be modeled by using either a State

Transition Table or State Transition Diagram. A State Transition Table describing a

Finite State Machine shows the values of input, present state, next state and output values

of the Controller. The State Transition Diagram gives a schematic representation of all

the states and their transitions from one state to the other including outputs. Thus for

every controller logic, there exists a State Table and the State Transition diagram can be

drawn using the data obtained from the State table. There are several coding techniques

used to design a control unit and they are selected depending on the application. The next

section shows the various ways to design a control unit.

 8.3 Controller Design Techniques

The design technique is chosen according to application constraints. Some of the

constraints are speed of the system, size of the system and desired efficiency of the unit.

The major objective of the control logic design is to build a hardware circuit that achieves

88

Figure 8.1: Mealy & Moore Models

the desired control algorithm in a coherent and uncomplicated procedure. Some types of

encoding a Finite State Machine are One-Hot encoding [35], One-Cold encoding [35],

Binary encoding [35], Gray Encoding, Almost One-Hot [35], Almost One-Cold [35],

Sequence Register and Decoder [34], PLA control [34] and Microprogramed control [34].

The following sections briefly discuss about each of these techniques.

 8.3.1 One-Hot Encoding

This method uses one flip-flop per state in the control circuit. The term 'One-Hot' means

that only one flip-flop is set to ('1') at any particular time. The control bit is transferred

from one flip-flop to another at each clock cycle. The number of flip-flops used is equal

to the number of states which results in more flip-flop consumption than any other

method. This technique is not useful for Large Scale Integrated circuit implementation.

The One-Hot encoding technique is one of the fastest, simplest to build (both

combinatorial & sequential), the output logic is very simple to implement and includes

only 'OR' gates. This research project will use a One-Hot Encoded type Controller for

best performance, noise reduction and simplicity of implementation. Figure 8.2 shows an

example of the One-Hot encoding technique for a 7 state Finite State Machine. It can be

inferred that each of the 7 states have one flip-flop. There is a separate block for input

logic, next state logic and output logic. The output logic contains only 'OR' gates as the

output is equivalent to the output from one or more of the D-Flip-flops. Thus this coding

technique is simple and efficient.

89

Figure 8.2: One-Hot Encoded Control Logic

 8.3.2 Almost One-Hot Encoding

This method is the same as One-Hot except that it takes a bit less than the one-hot. For

example, let 'n' be the number of bits/states in a control logic, One-Hot takes 'n' flip-flops

to implement the logic whereas Almost One-Hot takes '(n-1)' flip-flops to implement the

same logic. This is done by using all zero's to represent a state (typically Initial or Clear

State). The performance is the same as compared to the One-Hot but reduces the number

of flip-flops to represent a control logic.

 8.3.3 One-Cold Encoding

This technique is similar to One-Hot encoding which uses one Flip-Flop to represent a

state but the flip-flop currently at work is cleared or set to '0' and all the others are set to

'1'. This coding technique has all the attributes of One-Hot encoding and gives the same

results.

 8.3.4 Almost One-Cold Encoding

This method is similar to Almost One-Hot where it takes a bit less compared to One-Hot.

Here the Almost One-Cold also takes a bit less when compared to the One-Cold

technique where there exists a state in which all the flip-flops have 1's for a clear or initial

state.

 8.3.5 Binary Encoding

This type of encoding uses a minimum number of flip-flops depending on the number of

states in the given control algorithm. For example, if an algorithm has 7 states, the logic

requires 3 flip-flops to accommodate the whole sequence (23 = 8). Thus binary encoding

is proportional to the power of 2. This technique uses the minimum number of flip-flops

per range of states. With 'n' flip-flops, 2n states can be implemented. Figure 8.3 shows the

sequence of states in binary encoding for a 7 state control algorithm. The output

potentially can contain glitches as there can be more than 1 flip-flop changing state per

clock edge and the combinatorial logic circuit is also more complex when compared to

One-Hot encoding.

90

 8.3.6 Gray Encoding

This type of encoding works on the principle of gray code where only one bit out of 'n'

changes at a given point of time or clock edge. Gray encoding overcomes the

disadvantages of binary encoding where there occurs a lot of glitches and the logic

required is reduced. This encoding is useful when the outputs are utilized asynchronously.

Figure 8.4 shows the sequence of states in Gray coding where only one bit changes per

clock cycle. The number of states that this technique can represent is the same as the

binary encoding method except the implementation is different. As only one bit changes,

the next state logic and the output logic utilizes less hardware when compared to the

Binary state machine.

 8.3.7 Sequence Register & Decoder Technique

This method is used in Medium Scale Integrated circuits where the techniques discussed

previously are not so efficient and feasible. This method uses a register to transition

through the states and the output of the register is connected to a decoder to provide the

outputs. If 'n' flip-flops are used in the sequence register, it can support 2n states and the

decoder provides 2n outputs as well. Figure 8.5 shows the schematic of this technique

where the input logic unit decides which state to go to according to the output of the

decoder. The output from the decoder is taken as the present state logic and compared

with the input logic to get the next state value. Thus all the control signals required to

control a system can be generated using this technique.

91

Figure 8.4: Gray Encoded State Machine

Figure 8.3: Binary Encoded State Machine

 8.3.8 PLA Control

PLA is the acronym for Programmable Logic Array which is a device used to implement

complex digital circuits. It is a Large Scale Integrated (LSI) circuit that can be used to

design large complex combinational circuits efficiently. This method is similar to the

Sequence Register and Decoder method but all the combinational circuits are

implemented using a PLA. The PLA logic reduces the hardware logic and decreases the

routing complexity. Figure 8.6 shows a PLA based controller where the Sequence

Register provides the present state information and the PLA connected to the input along

with the sequence register decides the microoperations to be performed. This control

method is used in circuits with a complex hardware and which is difficult to control using

conventional state machine techniques. For example, for approximately 100 states, One-

Hot encoding uses 100 flip-flops and not so feasible for large complex circuit control.

Thus, PLA based control comes to play in these circuits which offers a feasible solution

to accommodate all the states.

92

Figure 8.5: Sequence Register & Decoder Technique

 8.3.9 Microprogramed Control

In this type of control, the control program or sequence is coded into a memory (stored in

memory). The memory is typically a ROM (Read-Only Memory) where the control code

is hard-coded. This type of control is useful for applications or algorithms in which there

is a specific sequence that needs to execute periodically over a long time. Each micro-

instruction is stored in an address location and is accessed accordingly at each clock edge.

The control algorithm can be updated by simply re-writing the ROM with a new

sequence. The control unit consists of an opcode which defines the operation to be

performed by the datapath unit. It has a control address register and decoder that selects

the micro-instructions. The control address register gives the address location where the

specific micro-instruction is located. The micro-instruction field has the address value of

the next micro-instruction and the present control sequence. The address of the next

micro-instruction is fed to the address register so that the micro-instruction is obtained

from the ROM. This type of control technique is used in general purpose processor

architectures like Reduced Instruction Set Computers (RISC).

93

Figure 8.6: PLA Control Technique

 8.4 System Controller Architecture Strategy

The Halftoning Hardware Architecture has 2 main Controllers for controlling the entire

system. It has the Input Memory Controller and the Processor Core Controller. The Input

Memory Controller controls the Input Image FIFO, Parameter Registers 1 and 2, Droplet

Densities Storage ROM, Input Level FIFOs and the Core Data FIFOs. The Processor

Core Controller controls the Processor Cores, Error Storage Block RAMs, Image Size

Monitor, Error Storage Block RAM Address Counter, Output Data FIFOs and Output

Logic Units. One way to implement a control logic is to replicate the Processor Core

Controller depending on the number of Processor Cores. In this research project, only one

Processor Core Controller is used and the control outputs are connected to the respective

Processor Cores with the help of Control Registers. The data buffering operations are

controlled by the Input Memory Controller. Both the Controllers are designed using One-

Hot encoding and the following sections discuss their design and operation in detail.

94

Figure 8.7: Micro-Programmed Control

Technique

 8.5 Input Memory Controller Design

The Input Memory Controller unit shown in Figure 3.1 is one of the two crucial

controllers that manages the input data transfer to the Processor Cores. This controller

controls the Input Data FIFO, Parameter Registers 1 and 2, Droplet Densities Storage

ROM, Input Level FIFO and Core Data FIFO as shown in Figure 4.13. The high level

schematic of the controller is shown in Figure 8.8 where the inputs are on the left and the

outputs to the right. This controller is designed using One-Hot encoding technique.

'C[1:0]' is the input port that is connected to Parameter Register 2 which gives the

number of channels per pixel, 'INIT' is the port connected to the Processor Core

Controller which indicates that all the Cores are ready for processing, 'LVAEMPTY' is the

signal that is connected to the 'Almost Empty' port of the Input Level FIFO, 'LVAFULL' is

the signal that is connected to the 'Almost Full' port of the Input Level FIFO, 'LVFULL' is

the signal that is connected to the 'Full' port of the Input Level FIFO, 'ON_OFF' is the

control switch for this controller, 'RFULL1', 'RFULL2', 'RFULL3', 'RFULL4' are the

signals connected to the 'Full' ports of the Core Data FIFOs (1, 2 and 3), (4, 5 and 6), (7, 8

and 9), (10, 11 and 12), 'START' is the input port that instructs the Input Controller to start

buffering the data, 'clr' is the reset bit used to clear the controller, 'clk' is the clock input

for synchronous operation, 'op[7:0]' is the output port that has all the control signals

connected to specific ports in the Input Data Memory Architecture and 'STOUT' is the

output that instructs the Processor Core Controller to start processing the data. All the

elements this controller manages are positive edge sensitive, thus the control logic is

designed to be sensitive at the negative edge of the clock. This prevents any set-up and

hold time violations that may occur. The state diagram for the Input Memory Controller

shown in Figure 8.9 describes the operations that take place at each state. The following

describes the control sequence of the controller. Some variables are used in the state

diagram in which 'port' represents 'port = 1' and 'port' represents 'port = 0'.

• 'DON' is the first state in which the controller remains till it receives the 'ON_OFF'

signal.

95

• 'DCLR' is the clear state that resets all the datapath elements controlled by this unit.

• 'DRDY' is the state in which the Input Image FIFO tells the controller to start the

data buffering operations. This is done by the port 'READY'. The controller

remains in the same state for 'READY' and moves to the next state for 'READY'.

• 'D0' and 'D1' are the states in the sequence that starts the input memory buffering.

The data is read from the Input Image FIFO and sent through the Droplet

Densities Storage ROM and finally received by the Input Level FIFOs.

• 'D2' and 'D3' are the states that are executed in parallel where the Input Level FIFO

is filled with the values from the Storage ROM. The controller keeps reading the

Input Image FIFO till the Input Level FIFO is almost full. When 'LVAFULL' is

active, then the controller stops reading from the Input Image FIFO. It is the same

in case of the state 'D3' which is used to write data into Input Level FIFO.

96

Figure 8.8: Input Memory

Controller Schematic

97

Figure 8.9: State Diagram for Input Memory Controller

• The controller has two small parallel control operations that take place till the

final pixel of the image is reached. The controller goes to state 'D5' when the 'INIT'

or ready signal from the Processor Controller and the Level FIFOs full signal is

asserted. In this state, the controller enables the read operation of the Level FIFO

as the read or write operations have one clock cycle latency, the read signal must

be given to the FIFO one clock edge before enabling the write-enable bit of the

Core Data FIFO.

• The state 'D6', 'D7', 'D8', 'D9' deals with the Core Data FIFO read/write operations.

There are 4 states mentioned as the architecture supports up to 4 channels. The

term 'C[1:0] ' gives the number of channels in the given image ('C1' – 1 channel,

'C2' – 2 channels, 'C3' – 3 channels, 'C4' – 4 channels). The sequence of execution

of the four states mentioned depends on the channel count and doesn't depend on

the number of levels. For example, if there are 4 colors then, states circulate from

'D6' –> 'D7' –> 'D8' –> 'D9' till the FIFO is filled. For 3 colors it is 'D6' –> 'D7' –>

'D8', for 2 colors it is 'D6' –> 'D7' and for 1 color it is 'D6'. The Input Level FIFO is

read and Core Data FIFO is written simultaneously in all the mentioned states.

• The controller enters state 'D10' when the Core Data FIFOs are almost full. In this

state the read-enable signal is deactivated as the reading is one clock ahead of

writing. The last location in the Core Data FIFO is filled with the data from the

Level FIFO.

• The last state is the 'D11' state which enables the start signal of the Processor Core

Controller resulting in pixel processing. The signal connected to the Core

controller is represented by 'CC'.

• The states 'D5', 'D6', 'D7', 'D8', 'D9', 'D10', 'D11' are executed only once at the

beginning before the pixels are processed. The Core Data FIFOs are automatically

filled by a small unit connected to Core Controller. This reduces the complexity

and results in the simplest design possible. But the states 'D0', 'D1', 'D2', 'D3', 'D4'

are executed all the time till the image is completely buffered.

98

Table 8.1: Control Table showing Outputs and States

Control
State

op[0] op[1] op[2] op[3] op[4] op[5] op[6] op[7] STOUT

DON 0 0 0 0 0 0 0 0 0

DCLR 1 0 0 0 0 0 0 0 0

DRDY 0 0 0 0 0 0 0 0 0

D0 0 1 0 0 0 0 0 0 0

D1 0 1 0 0 0 0 0 0 0

D2 0 1 0 0 0 0 0 0 0

D3 0 0 1 0 0 0 0 0 0

D4 0 0 0 0 0 0 0 0 0

D5 0 0 0 1 0 0 0 0 0

D6 0 0 0 1 1 0 0 0 0

D7 0 0 0 1 0 1 0 0 0

D8 0 0 0 1 0 0 1 0 0

D9 0 0 0 1 0 0 0 1 0

D10 0 0 0 0 1 1 1 1 0

D11 0 0 0 0 0 0 0 0 1
• The outputs of this controller represented by 'op[7:0]' carries the control signals

for the Input Data Memory Architecture. 'op[0]' is the signal to reset all the

datapath elements connected to this controller, 'op[1]' activates the read-enable bit

of the Input Image FIFO, 'op[2]' is responsible for writing the data from Input

Image FIFO to the Input Level FIFO, 'op[3]' sets the read-enable bit to '1' for

reading the data values from the Input Level FIFO, 'op[4]' writes data from Input

Level FIFO to the Core Data FIFO (1, 2 & 3), 'op[5]' writes data from Input Level

FIFO to the Core Data FIFO (4, 5 & 6), 'op[6]' writes data from Input Level FIFO

to the Core Data FIFO (7, 8 & 9), 'op[7]' writes data from Input Level FIFO to the

Core Data FIFO (10, 11 & 12) and 'STOUT' is the start signal given to the Core

Controller for processing the data in the Core Data FIFO. Table 8.1 shows the

control table for the Input Memory Controller.

99

 8.6 Processor Cores Controller Design

This control unit is the most vital part of the Hardware Architecture that is responsible for

flawless processing of the input pixels. The controller is responsible for controlling the

Processor Cores, Error Storage Block RAM Memory System and the Output logic

System. Figure 8.10 shows the high level schematic of the Core Controller which is

positive edge sensitive. This Controller is designed using One-Hot Encoding technique.

'FCOL', 'LCOL', 'LROW' are the input ports of the controller connected to the Input Image

Size Monitor that determines the specific pixel location, 'ON_OFF' is the start signal

given to the control unit to initialize, 'START' is the signal connected to the Input Memory

Controller that enables the Processor cores to start processing the input pixels, 'clr' is used

to reset the controller at the start, 'clk' is the clock input for synchronous operation,

'eop[2:0]' are the control signals connected to the Error Storage RAM, 'op[23:0]' are the

control signals connected to the Processor Cores, 'cop' is used to control the Input Image

Size Monitor, 'oop' is the signal to control the output system and 'INIT' is the signal to the

Input Memory Controller stating that the Processor Core Controller is ready for

processing. The Figure 8.11 shows the state transition diagram for the Core Controller

unit. The operations in various states are described below as follows.

100

Figure 8.10: Processor

Core Controller Schematic

• 'DON' is the first state in which the controller remains till it receives the 'ON_OFF'

signal. Both Input Memory Controller and the Processor Core controller are

started at the same time (switched -ON).

• 'D0' is the state where the controller activates the read-enable bit of the Data Core

FIFO. The data is read from the Core FIFO.

• 'DRDY' is the state in which the controller indicates that it is ready to accept data.

The control unit stays in this state until the 'START' signal is activated by the Input

Memory Controller.

• 'D1' is the state where the controller instructs the Input Pixel Register and the

Previous Pixel register to store the data obtained. The data read from the Core

101

Figure 8.11: Processor Core Controller State Transition Diagram

FIFO is loaded into the Input Pixel Register and the Previous Pixel Register is

loaded with a previous data value from the processor core.

• 'D2' is the control state which notifies the adder to add the values in the two

registers (Input Pixel & Previous Pixel).

• In the state 'D3', the controller activates the threshold comparison circuit which

compares the adder output with a constant threshold value. The signal 'LRLC'

informs the controller that it is the last pixel in the last row being processed (final

pixel of the image). This state is branched into three other states to perform

parallel operations.

• 'DCLR' is the clear state that resets all the datapath elements controlled by this unit.

• 'DWRAP' is the state in which the controller drives the datapath elements to a halt as

it will be the final pixel of the image being processed. The controller goes back to

the state 'DON' after 'DWRAP'.

• State 'E4' is reached after 'D3' where the controller enables the read operation of the

Error storage RAM. The controller enters this loop only when the current pixel

being processed is neither the first or the last in a given row.

• 'E9' is the state where the controller performs the write operation on the Error

Storage RAM. The errors generated by the Error-Diffusion unit are stored at this

stage with the help of the Core Controller.

• 'E11' is the state that increments the Error Storage Memory Address Counter to

read or write the errors in the Error Storage Block RAM. The 'CNTR' signal is

connected to the Memory Address Counter that is responsible for incrementing or

decrementing the address depending on the row being processed.

• As long as the final pixel of the image is not reached, the following states are

executed. 'D4' is the state where the Adder-Subtractor unit is activated to subtract

the ceiled output value from the original adder value. The result obtained is the

error of the particular channel per pixel.

102

• In 'D5', the error value is fed to the Error-Limiting-Circuit to prevent the

uncontrollable build up of error.

• 'D6' is the state where the controller instructs the Error Register to store the final

error value. The previous error from the Error Storage RAM is also loaded into

the Error Storage Register simultaneously. The random weights generator is also

activated to produce the weights.

• The controller reaches the states 'DLRFC7', 'DLRFC8' and 'DLRFC9' only when the pixel

being processed is in first column and it is the last row of the image.

• The controller reaches the states 'DLR7', 'DLR8' and 'DLR9' only when the core is

processing the last row of the image except the first pixel of the last row.

• The controller reaches the states 'DFC7', 'DFC8' and 'DFC9' only when the first pixel of

each row is being processed except the last row of the image.

• The controller reaches the states 'DLC7', 'DLC8' and 'DLC9' only when the last pixel of

each row is being processed except the last row of the image.

• The controller reaches the states 'D7', 'D8' and 'D9' only when it is neither the first

column, last column of a row and last row of the image being processed.

• The states 'DLRFC7', 'DLR7', 'DFC7', 'DLC7' and 'D7' instructs the multipliers in the Error-

Diffusion units to multiply the stored errors with the random weights.

• The states 'DLRFC8', 'DLR8', 'DFC8', 'DLC8' and 'D8' in the controller performs the

addition operation with the previously diffused errors. In these states, the Core

Data FIFO is read for processing the next pixel in line.

• 'DLRFC9', 'DLR9', 'DFC9', 'DLC9' and 'D9' are states where the controller notifies the

registers in the Error-Diffusion unit to store the partially processed errors for

further processing. The controller directs the Input Pixel Register and the Previous

Pixel Register to load the data values. Table 8.2 shows the control table for

Processor Core Controller.

103

Table 8.2: Control Table for Processor Core Controller

CN.ST op[0] op[1] op[2] op[3] op[4] op[5] op[6] op[7] op[8] op[9]

DON 0 0 0 0 0 0 0 0 0 0

DCLR 0 1 1 1 1 0 0 0 1 1

DRDY 0 0 0 0 0 0 0 0 0 0

D0 1 0 0 0 0 0 0 0 0 0

D1 1 0 0 0 0 0 0 0 0 0

D2 1 0 0 0 0 0 0 0 0 0

D3 1 0 0 0 0 0 0 0 0 0

D4 1 0 0 0 0 0 0 0 0 0

D5 1 0 0 0 0 0 0 0 0 0

D6 1 0 0 0 0 0 0 0 0 0

D7 1 0 0 0 0 1 0 1 1 1

D8 1 1 1 1 1 0 0 0 0 0

D9 1 0 0 0 0 0 1 0 0 0

DE4 0 0 0 0 0 0 0 0 0 0

DE9 0 0 0 0 0 0 0 0 0 0

DE11 0 0 0 0 0 0 0 0 0 0

DLRFC7 1 0 0 0 0 0 0 0 1 0

DLRFC8 1 1 0 0 0 0 0 0 0 0

DLRFC9 1 0 0 0 0 0 0 0 0 0

DLR7 1 0 0 0 0 1 0 0 1 0

DLR8 1 1 0 0 0 0 0 0 0 0

DLR9 1 0 0 0 0 0 0 0 0 0

DFC7 1 0 0 0 0 0 1 1 1 0

DFC8 1 1 0 1 1 0 0 0 0 0

DFC9 1 0 0 0 0 0 1 0 0 0

DLC7 0 0 0 0 0 0 0 0 0 1

DLC8 0 0 1 1 0 0 0 0 0 0

DLC9 0 0 0 0 0 1 0 0 0 0

DWRAP 0 0 0 0 0 0 0 0 0 0
CN.ST – Control State

104

Table 8.2 (Continued)

CN.ST op[10] op[11] op[12] op[13] op[14] op[15] op[16] op[17] op[18] op[19]

DON 0 0 0 0 0 0 0 0 0 0

DCLR 1 1 0 0 0 1 0 0 0 0

DRDY 0 0 0 0 0 0 0 0 0 0

D0 0 0 0 0 0 0 0 0 0 1

D1 0 0 0 0 0 0 0 0 1 0

D2 0 0 0 0 0 1 1 1 0 0

D3 0 0 0 0 0 0 0 1 0 0

D4 0 0 0 1 0 1 0 1 0 0

D5 0 0 0 0 1 0 0 1 0 0

D6 0 0 1 0 1 0 0 0 0 0

D7 1 1 0 0 0 0 0 0 0 0

D8 0 0 0 0 0 0 0 0 0 1

D9 0 0 0 0 0 0 0 0 1 0

DE4 0 0 0 0 0 0 0 0 0 0

DE9 0 0 0 0 0 0 0 0 0 0

DE11 0 0 0 0 0 0 0 0 0 0

DLRFC7 0 0 0 0 0 0 0 0 0 0

DLRFC8 0 0 0 0 0 0 0 0 0 1

DLRFC9 0 0 0 0 0 0 0 0 1 0

DLR7 0 0 0 0 0 0 0 0 0 0

DLR8 0 0 0 0 0 0 0 0 0 1

DLR9 0 0 0 0 0 0 0 0 1 0

DFC7 1 1 0 0 0 0 0 0 0 0

DFC8 0 0 0 0 0 0 0 0 0 1

DFC9 0 0 0 0 0 0 0 0 1 0

DLC7 1 0 0 0 0 0 0 0 0 0

DLC8 0 0 0 0 0 0 0 0 0 1

DLC9 0 0 0 0 0 0 0 0 1 0

DWRAP 0 0 0 0 0 0 0 1 0 0
CN.ST – Control State

105

Table 8.2 (Continued)

CN.ST op[20] op[21] op[22] op[23] cop eop[0] eop[1] eop[2] oop INIT

DON 0 0 0 0 0 0 0 0 0 0

DCLR 1 0 0 0 0 0 0 0 0 0

DRDY 0 0 0 0 0 0 0 0 0 1

D0 0 0 0 0 0 0 0 0 0 0

D1 0 0 0 0 0 0 0 0 0 0

D2 0 0 0 0 0 0 0 0 0 0

D3 0 0 0 1 0 0 0 0 0 0

D4 0 0 0 1 0 0 0 0 1 0

D5 0 0 0 1 0 0 0 0 0 0

D6 0 1 0 0 0 0 0 0 0 0

D7 0 1 0 0 1 0 0 0 0 0

D8 0 1 0 0 0 0 0 0 0 0

D9 0 1 0 0 0 0 0 0 0 0

DE4 0 0 0 0 0 1 0 0 0 0

DE9 0 0 0 0 0 0 1 0 0 0

DE11 0 0 0 0 0 0 0 1 0 0

DLRFC7 0 0 0 0 1 0 0 0 0 0

DLRFC8 0 0 0 0 0 0 0 0 0 0

DLRFC9 0 0 0 0 0 0 0 0 0 0

DLR7 0 1 0 0 1 0 0 0 0 0

DLR8 0 1 0 0 0 0 0 0 0 0

DLR9 0 1 0 0 0 0 0 0 0 0

DFC7 0 0 1 0 1 0 0 0 0 0

DFC8 0 0 0 0 0 0 0 0 0 0

DFC9 0 0 0 0 0 0 0 0 0 0

DLC7 0 0 0 0 1 0 0 0 0 0

DLC8 0 0 0 0 0 0 0 0 0 0

DLC9 0 0 0 0 0 0 0 0 0 0

DWRAP 0 0 0 0 0 0 0 0 1 0
CN.ST – Control State

106

 8.7 Processor Core Control Registers

The Halftoning architecture consists of 12 Processor Cores and each core is one clock

cycle behind the succeeding core. The Core Control unit is designed for one core and to

control all the cores present in the architecture, there must be 12 control units. This

results in higher hardware utilization and is not so efficient. In this research, a high speed

and a very efficient control unit is designed which avoids the need for redundant Core

Controllers. The main control unit is the Core Controller that is positive edge sensitive

and as the Processor Cores are also positive edge sensitive, the control unit for these

datapath elements must be negative edge sensitive to eliminate timing problems. Thus,

the Core Controller unit is connected to 12 control registers in a sequence as shown in

Figure 8.12.

This process creates a delay between the processing elements and results in the correct

execution of the input pixels. The control registers represent a huge shift register shifting

its value to the next control register every clock cycle. The control register 'C12' is 12

clock cycles behind the register 'C1' and this establishes the one clock cycle delay

107

Figure 8.12: Processor Core Control Registers

between the Processor Cores. There are two different control register designs in this

architecture depending on the number of levels per channel used.

One of the registers is shown in Figure 8.13 where 'rin[23:0] ' is the control input

connected to the output of the Core Control Unit, 'rout[23:0]' is the output of the register

which is connected to the control bits of the Processor Cores, 'en' is the input bit that

enables or disables the control register according to the Image parameters, 'clr' is the reset

bit used to clear the contents of the register initially and 'clk' is the clock input for

performing synchronous operations. All the Control Registers are negative edge sensitive.

Figure 8.14 shows the other type of Control Register designed to handle the constraints

where 'din1[23:0]', 'din2[23:0]', 'din3[23:0]' are the data inputs in which the register can

accept the incoming data from 3 different Control Registers, 'addr[1:0]' indicates which

Control Register to accept data from and the rest of the ports are similar to the Control

Register in Figure 8.13. This design is used for the cores that support the first level in

108

Figure 8.14: Control Register (3

Data Inputs)

Figure 8.13: Control Register (1

Data Input)

each channel with the exception of the first channel. The control bits for the control

registers are supplied by a separate unit shown in Figure 8.21.

Figure 8.15 shows how all the control registers are connected. These connections are

based on the various image configurations that the Halftoning hardware system supports.

The maximum number of channels channels supported are 4 and the number of levels are

3. All the Processor Cores are divided into 4 units with 3 Processor Cores each. The Core

'C4' uses the 3 data input control register configuration which has inputs from 'C1', 'C2'

and 'C3', 'C7' is connected to the inputs from 'C4', 'C5' ,'C6' and finally 'C10' is connected

to the inputs from 'C7', 'C8' and 'C9'. These configurations are explained in the points

described below where 'I[c,l] ' represents the image with 'c' channels and 'l' levels.

• For I[4,3], the control data is transferred from 'CC' → 'C1' → 'C2' → 'C3' →

'C4' → 'C5' → 'C6' → 'C7' → 'C8' → 'C9' → 'C10' → 'C11' → 'C12' with one

clock cycle delay between each Control Register.

• For I[4,2], the control data is transferred from 'CC' → 'C1' → 'C2' → 'C4' →

'C5' → 'C7' → 'C8' → 'C10' → 'C11'.

• For I[4,1], the control data is transferred from 'CC' → 'C1' → 'C4' → 'C7' →

'C10'.

• For I[3,3], the control data is transferred from 'CC' → 'C1' → 'C2' → 'C3' →

'C4' → 'C5' → 'C6' → 'C7' → 'C8' → 'C9'.

109

Figure 8.15: Control Register Connections

• For I[3,2], the control data is transferred from 'CC' → 'C1' → 'C2' → 'C4' →

'C5' → 'C7' → 'C8'.

• For I[3,1], the control data is transferred from 'CC' → 'C1' → 'C4' → 'C7'.

• For I[2,3], the control data is transferred from 'CC' → 'C1' → 'C2' → 'C3' →

'C4' → 'C5' → 'C6'.

• For I[2,2], the control data is transferred from 'CC' → 'C1' → 'C2' → 'C4' →

'C5'.

• For I[2,1], the control data is transferred from 'CC' → 'C1' → 'C4'.

• For I[1,3], the control data is transferred from 'CC' → 'C1' → 'C2' → 'C3'.

• For I[1,2], the control data is transferred from 'CC' → 'C1' → 'C2'.

• For I[1,1], the control data is transferred from 'CC' → 'C1'.

 8.8 Error Storage Block RAM Control Registers

The Processor Core Controller controls the operations of Error Storage Block RAMs.

Each Processor Core has one Error Storage Block RAM to store the errors generated at

each pixel location. There are 12 Error Storage Block RAMs in this hardware design and

all of them are controlled by using Error Storage Block RAM control registers. The

operating procedure is similar to the Processor Core Control Registers where each

register is 1 clock cycle behind its succeeding register. Figure 8.16 shows the high level

schematic of the Error Storage Block RAM control registers where 'E1' though 'E12'

represent the control registers connected in sequence serially. Each register is 3 bits wide

and are negative edge triggered to eliminate timing problems.

Figure 8.17 shows the connection diagram of all the Error Storage Block RAM Control

Registers. All the Error Storage Block RAMs are divided according to the Processor

Cores. The configurations are explained in the points described below where 'I[c,l] '

represents the image with 'c' channels and 'l' levels.

110

• For I[4,3], the control data is transferred from 'CC' → 'E1' → 'E2' → 'E3' →

'E4' → 'E5' → 'E6' → 'E7' → 'E8' → 'E9' → 'E10' → 'E11' → 'E12' with one

clock cycle delay between each Control Register.

• For I[4,2], the control data is transferred from 'CC' → 'E1' → 'E2' → 'E4' →

'E5' → 'E7' → 'E8' → 'E10' → 'E11'.

• For I[4,1], the control data is transferred from 'CC' → 'E1' → 'E4' → 'E7' →

'E10'.

111

Figure 8.16: Error Storage Block RAM Control Registers

Figure 8.17: Error Storage Block RAMs Control Registers Connections

• For I[3,3], the control data is transferred from 'CC' → 'E1' → 'E2' → 'E3' →

'E4' → 'E5' → 'E6' → 'E7' → 'E8' → 'E9'.

• For I[3,2], the control data is transferred from 'CC' → 'E1' → 'E2' → 'E4' →

'E5' → 'E7' → 'E8'.

• For I[3,1], the control data is transferred from 'CC' → 'E1' → 'E4' → 'E7'.

• For I[2,3], the control data is transferred from 'CC' → 'E1' → 'E2' → 'E3' →

'E4' → 'E5' → 'E6'.

• For I[2,2], the control data is transferred from 'CC' → 'E1' → 'E2' → 'E4' →

'E5'.

• For I[2,1], the control data is transferred from 'CC' → 'E1' → 'E4'.

• For I[1,3], the control data is transferred from 'CC' → 'E1' → 'E2' → 'E3'.

• For I[1,2], the control data is transferred from 'CC' → 'E1' → 'E2'.

• For I[1,1], the control data is transferred from 'CC' → 'E1'.

 8.9 Output Control Registers

The Output Control Registers manages the operations of the Output System/Logic. There

are 12 registers, one for each Output Data FIFO. The Core Controller provides the control

signals to these registers and the operation procedure is same as the Core Control

Registers. Figure 8.18 shows the ideal connection of all the Output control Registers

where the controllers are connected in sequence one after the other. The Output Register

Control Circuit consists of 3 main components namely 1-Input Output Control Register,

3-Inputs Control Register and an Output Switch Circuit. The Core Controller gives a

single bit control signal to the output registers and depending on the configuration of the

input image, the control data is transferred from one output register to the other.

112

Figure 8.19 shows the schematic of the three components that constitute the Output

Control system where 'inpt', 'inpt[3:1]', 'inpt[12:1] ' is the control input ports of 1/3 bit

Output control Registers and Output Switch, 'en' is the port used to enable or disable the

Control Register according to the Image Configuration, 'addr[1:0]', 'addr[3:0]' indicates

the control register from which the data is to be obtained (3 bit Output control Register &

Output Switch) and the rest of the ports in all the 3 Registers are the same as that of the

Core Control Registers. The output port of each Output Control Register (1/3 bits) is

connected to the write-enable port of the corresponding Output FIFO and the output port

of the Output Switch is connected to the read-enable ports of all the Output FIFOs.

The Figure 8.20 shows the connection diagram of the Output Control Registers along

with the Output Switching Circuit. The Output Control registers are connected to the

113

Figure 8.19: Output Control Registers (1/3 bits) & Output Switch

Figure 8.18: Output Control Registers

write-enable port of the Output Data FIFOs and the Output Switch is connected to the

read-enable port of all the Output Data FIFOs. Given below are the key points that govern

the switching procedure of these Output Control Registers:

• For I[4,3], the output control bit is transferred from 'CC' → 'O1' → 'O2' → 'O3'

→ 'O4' → 'O5' → 'O6' → 'O7' → 'O8' → 'O9' → 'O10' → 'O11' → 'O12' → 'OS'

with one clock cycle delay between each Control Register. 'OS' represents the

Out Switch.

• For I[4,2], the control data is transferred from 'CC' → 'O1' → 'O2' → 'O4' →

'O5' → 'O7' → 'O8' → 'O10' → 'O11' → 'OS'.

• For I[4,1], the control data is transferred from 'CC' → 'O1' → 'O4' → 'O7' →

'O10' → 'OS'.

• For I[3,3], the control data is transferred from 'CC' → 'O1' → 'O2' → 'O3' →

'O4' → 'O5' → 'O6' → 'O7' → 'O8' → 'O9' → 'OS'.

• For I[3,2], the control data is transferred from 'CC' → 'O1' → 'O2' → 'O4' →

'O5' → 'O7' → 'O8' → 'OS'.

• For I[3,1], the control data is transferred from 'CC' → 'O1' → 'O4' → 'O7' →

'OS'.

114

Figure 8.20: Output Control Registers Connection Diagram

• For I[2,3], the control data is transferred from 'CC' → 'O1' → 'O2' → 'O3' →

'O4' → 'O5' → 'O6' → 'OS'.

• For I[2,2], the control data is transferred from 'CC' → 'O1' → 'O2' → 'O4' →

'O5' → 'OS'.

• For I[2,1], the control data is transferred from 'CC' → 'O1' → 'O4' → 'OS'.

• For I[1,3], the control data is transferred from 'CC' → 'O1' → 'O2' → 'O3' →

'OS'.

• For I[1,2], the control data is transferred from 'CC' → 'O1' → 'O2' → 'OS'.

• For I[1,1], the control data is transferred from 'CC' → 'O1' → 'OS'.

 8.10 Control Registers Switching Circuit

The image configuration is enabled in the Control Registers using the 'en' pin shown in

figures 8.13 and 8.14. Figure 8.21 shows the combinational switching unit used to enable

the Control Registers (both Core & Output) where 'CL[4:0] ' is the channel and level

input taken from the Parameter Register 2, 'cin_cont[1:0]' is the output port that has

information about the number of channels in the given Input Image, 'en[12:1]' provides

the control bits to the Control Registers (both Core & Output) depending on the

channel/level configuration, 'opt_addr[3:0]' is the output bits that enable the Output

Control Register according to the Configuration and 'sel_addr[1:0]' is the output port that

is connected to the 'addr[1:0]' port of 3 Data Input Control Register shown in Figure

8.14. Truth tables are used to design the combinational circuit to produce the outputs

'cin_cont[1:0]', 'en[12:1]', 'opt_addr[3:0]', 'sel_addr[1:0] ' from the Channel/Level input

from the Parameter Register 2. Truth table for 'en[12:1]', 'cin_cont[1:0]', 'opt_addr[3:0]'

and 'sel_addr[1:0] ' are shown in Table 8.3. 'C' represents the number of channels and 'L'

represents the number of levels in the original image. The circuit is fully combinational

and is designed using Gate Level implementation for minimum latency.

115

Table 8.3: Truth Table for Control Registers Switching Circuit

C L en[12:1] cin_cont[1:0] opt_addr[3:0] sel_addr[1:0]

100
(4)

11
(3)

'111111111111' '11' '1100' '11'

100
(4)

10
(2)

'011011011011' '11' '1011' '10'

100
(4)

01
(1)

'001001001001' '11' '1010' '01'

011
(3)

11
(3)

'000111111111' '10' '1001' '11'

011
(3)

10
(2)

'000011011011' '10' '1000' '10'

011
(3)

01
(1)

'000001001001' '10' '0111' '01'

010
(2)

11
(3)

'000000111111' '01' '0110' '11'

010
(2)

10
(2)

'000000011011' '01' '0101' '10'

010
(2)

01
(1)

'000000001001' '01' '0100' '01'

001
(1)

11
(3)

'000000000111' '00' '0011' '11'

001
(1)

10
(2)

'000000000011' '00' '0010' '10'

001
(1)

01
(1)

'000000000001' '00' '0001' '01'

116

Figure 8.21: Switching Unit for

Core & Output Control Registers

 8.11 Auto-Write Data Core FIFO

This section deals with the Input Data Memory control where initially the Data Core

FIFO is filled (write operation) with the help of the Input Memory Controller and as the

Processor Core starts processing the input data, the Data Core FIFO should be filled

accordingly as there exists a delay between each Processor Core. Figure 8.22 shows the

Auto-Write circuit that reads the Input Level FIFO and then writes the data obtained from

it to the Core Data FIFO.

This circuit uses the control signals from Output Control Registers where 'RD1', 'RD2',

'RD3', 'RD4' are the read-enable bits managing the read operations of the Input Level

FIFO, 'WR1' is the write-enable bit for Data Core FIFOs (1, 2, 3), 'WR2' is the write-

enable bit for Data Core FIFOs (4, 5, 6), 'WR3' is the write-enable bit for Data Core

FIFOs (7, 8, 9), 'WR4' is the write-enable bit for Data Core FIFOs (10, 11, 12) and 'IMC'

represents Input Memory Controller unit. 'RD1', 'RD2', 'RD3', 'RD4' uses the 3-Input

Control Register configuration and 'WR1', 'WR2', 'WR3', 'WR4' uses the 1-Input Control

117

Figure 8.22: Auto-Write Circuit for Core Data FIFO

Register to implement the Auto-Write and Auto-Read operations. The connections to the

ports of these registers are similar to the Output Control Registers. Initially the Input

Level FIFO is read and the Data Core FIFO is written with the data from the Level FIFO

using the Input Memory Controller. This process stops when the Core Data FIFOs are

completely full and from this point, the control unit has no control over the write-enable

pin of the Data Core FIFOs. The main reason behind this type of implementation is that

the input data read from the Core FIFOs does not occur at the same time (different for

each Processor Core, 1 clock cycle delay), thus the cores are divided based on channels as

shown in Figure 4.13. The image parameters decide the time when the Data Core FIFO

should be filled and the procedure is described below briefly.

• For I[4,3], the read and write control is transferred from 'CC' → 'O1' → 'O2' →

'O3' → 'RD1' → 'WR1', 'O4' → 'O5' → 'O6' → 'RD2' → 'WR2', 'O7' → 'O8' →

'O9' → 'RD3' → 'WR3', 'O10' → 'O11' → 'O12' → 'RD4' → 'WR4'.

• For I[4,2], the read/write control data is transferred from 'CC' → 'O1' → 'O2'

→ 'RD1' → 'WR1', 'O4' → 'O5' → 'RD2' → 'WR2', 'O7' → 'O8' → 'RD3' →

'WR3', 'O10' → 'O11' → 'RD4' → 'WR4'.

• For I[4,1], the read/write control data is transferred from 'CC' → 'O1' → 'RD1'

→ 'WR1', 'O4' → 'RD2' → 'WR2', 'O7' → 'RD3' → 'WR3', 'O10' → 'RD4' →

'WR4'.

• For I[3,3], the read/write control data is transferred from 'CC' → 'O1' → 'O2'

→ 'O3' → 'RD1' → 'WR1', 'O4' → 'O5' → 'O6' → 'RD2' → 'WR2', 'O7' → 'O8'

→ 'O9' → 'RD3' → 'WR3'.

• For I[3,2], the read/write control data is transferred from 'CC' → 'O1' → 'O2'

→ 'RD1' → 'WR1', 'O4' → 'O5' → 'RD2' → 'WR2', 'O7' → 'O8' → 'RD3' →

'WR3'.

• For I[3,1], the read/write control data is transferred from 'CC' → 'O1' → 'RD1'

→ 'WR1', 'O4' → 'RD2' → 'WR2', 'O7' → 'RD3' → 'WR3'.

118

• For I[2,3], the read/write control data is transferred from 'CC' → 'O1' → 'O2'

→ 'O3' → 'RD1' → 'WR1', 'O4' → 'O5' → 'O6' → 'RD2' → 'WR2'.

• For I[2,2], the read/write control data is transferred from 'CC' → 'O1' → 'O2'

→ 'RD1' → 'WR1', 'O4' → 'O5' → 'RD2' → 'WR2'.

• For I[2,1], the read/write control data is transferred from 'CC' → 'O1' → 'RD1'

→ 'WR1', 'O4' → 'RD2' → 'WR2'.

• For I[1,3], the read/write control data is transferred from 'CC' → 'O1' → 'O2'

→ 'O3' → 'RD1' → 'WR1'.

• For I[1,2], the read/write control data is transferred from 'CC' → 'O1' → 'O2'

→ 'RD1' → 'WR1'.

• For I[1,1], the read/write control data is transferred from 'CC' → 'O1' → 'RD1'

→ 'WR1'.

The digital components discussed in this chapter constitute to form the Control Unit for

this Halftoning Architecture. The circuits are described using Verilog and fully tested

using ModelSim. One-Hot Encoding technique is used to maximize the performance and

minimize the hardware logic. All the control units in this architecture run at 50 MHz

which is also the system frequency.

119

 Chapter 9. System Architecture Performance, Functional Analysis and

Results

 9.1 Overview

This chapter provides detailed information on the system architecture performance and

functional analysis and results results obtained from HDL post-implementation

simulation. The Halftoning hardware architecture discussed in the previous chapters is

tested with the help of a Verilog test fixture which is a testbench written in Verilog HDL.

Input image pixels (CMYK) / parameters are passed to the hardware architecture using a

testbench file and the outputs were written to a text file to convert the output pixels to an

image format usiing Matlab. The following sections discuss the performance and

functional analysis of the architecture and results.

 9.2 Performance Analysis and Results

The halftoning algorithm described in this research implements all the basic concepts of

blue-noise multitoning with error diffusion. In this algorithm, the number of colors and

the number of gray levels are taken from the input image. The Droplet Densities Storage

ROM of the architecture are filled with the gray level intensities used for dividing the

original image into sub-images. Consider the case of the algorithm being implemented in

a traditional sequential CPU and that the input image pixels are processed in a serpentine

fashion and that the concept of Parallelism is not used in the original software code. It

starts with the first color, goes through every piece of code until it reaches the end of the

image. The concept of stacking is only between the different levels of a color but not

between different colors. Thus it can be said that the color in one pixel need not wait for a

different color in the same pixel for processing. But as the algorithm is run on a CPU and

due to the lack of parallelism in the code, the execution takes place in an interdependent

sequence. The advantages of randomizing the error filter and the reason for using a

serpentine scan method were discussed in section 1.1.3 . Thus the average time taken by a

120

 Chapter 9. System Architecture Performance and Functional
Analysis and Results

sequentially executing CPU executing the algorithm for an image size of 799 X 1195

pixels is approximately 2.8 seconds without any other process running in the background.

The time taken by the CPU is calculated by using a 'C' code that tells the amount of time

consumed to execute a code. The image is run on the CPU for 100 times and an average

is taken. The time consumed is more than 3 seconds when this code is run along with

other background processes in CPU. It is felt the major advantage of this halftoning

algorithm is that the output image or the halftoned image obtained has better quality

when compared to other halftoning algorithms. The performance and throughput of the

algorithm can be maximized by parallelizing the code to the maximum extent possible

which was done prior to development of the parallel implementing system architecture

presented within this thesis. The algorithm, written in ‘C’, was decomposed into

segments and each segment is thoroughly analyzed for an equivalent hardware circuit

implementation. The resulting system architecture as implemented into the FPGA chip is

run at 50 MHz where an output is obtained every 8 clock cycles. The number of pixels of

an input image that this hardware can process per second is calculated [36] using

Equation 9.1. Hence, the hardware can process 6.25 million pixels per second as shown in

Equation 9.2.

 Throughput Pixels /Second  =
 System Clock Frequency
Number of Clocks per Output (9.1)

 Throughput = 50∗106Clocks / Second 
8Clocks /Pixel 

= 6250000 Pixels /Second (9.2)

The algorithm was run on a single sequential CPU for 100 times and the average

execution time was calculated. The output results were tested, verified and the related

performance was calculated using the Equation 9.5. According to the Equation 9.2, when

an image size of 799 X 1195 pixels is fed as input to the system architecture, the entire

image will be processed in 0.153 seconds or in just 153 milliseconds as shown in the

calculation 9.3.

Execution Time =
799∗1195 Pixels

6250000 Pixels/ Second 
= 0.1527688 Seconds (9.3)

121

The initial data buffering operations take about 20 microseconds which is constant for an

image of any size and the buffer time when added to the execution time gives the total

time taken to process the image shown in calculation 9.4.

 Execution Time = 0.152768820∗10−6Seconds = 0.1527888 Seconds (9.4)

Thus, there is a 18X speedup when the same halftoning algorithm is converted into

parallel algorithm and executed on the parallel system architecture executed on an FPGA

as shown obtained via Equations 9.5 and 9.6.

Speed−up =
Execution time sequential Architecture CPU
 Execution time FPGA (9.5)

 Speed−up =
 2.81677 Seconds
0.1527888 Seconds

= 18.4357 (9.6)

The algorithm is designed to handle wide format images and currently the hardware can

support images up to a size of 24 X 44 inches which is equal to 548 million pixels. The

time taken to process an image of this size on a conventional CPU is about 27 minutes

which can also create problems in printing the image. The parallel architecture

implemented into a in the FPGA takes only 87.6 seconds (1.46 minutes) to process a 24 X

44 inch size image which shows a large margin of improvement in the performance of the

equivalent hardware unit. The total area of the image that can be processed per second is

given in the Equations 9.7 and 9.8.

Image Area Processed Square Inches /Second  =
Image Size (Square Inches)
Execution time (Seconds) (9.7)

Image Area Processed =
24∗44
87.6

= 12.054 Square Inches /Second (9.8)

Figure 9.1 shows the graphical representation of sequential CPU execution time

(Seconds) versus the parallel architecture implementation (CPU & FPGA) execution

time for a 799 X 1195 image size.

122

 9.3 HDL Functional and Performance Simulation Validation of Parallel Halftoning

Architecture

The HDL simulation results were obtained from the Mentor Graphics ModelSim CAD

simulation tool software [20]. The simulation results shown in this section are Post-Place

and Route HDL simulation results implying all hardware propagation delays are included

in the simulation results meaning the simulation results can be used to evaluate the

functionality and performance of the parallel architecture. There is no way to show results

from each and every functional unit in the architecture. All main components, functional

units and the entire parallel architecture are covered and discussed. The architecture uses

13 clocks in total to minimize clock skew where 'clk' is the clock input to the Input Data

Memory Architecture, 'clk1' through 'clk12' are used for each Processor Core starting

from 1 through 12. Figures 9.2 to 9.28 shows the simulation results of the Parallel

Hardware Halftoning Architecture using a step by step approach. The shown results start

from buffering the input pixels to the Input Image FIFO, converting the input data to 12

bit data, reading the corresponding droplet densities from the Droplet Densities ROM,

123

Figure 9.1: Graph Showing Execution Times of a Single CPU and Parallel Halftoning

Architecture Implemented to a FPGA

filling up the Level FIFOs with the values from the ROM, filling the Core Data FIFO,

starting the Processor Cores when the Data FIFOs are full, calculating the error value,

running the Error-Diffusion unit to disperse errors to the neighboring pixels, storing the

errors generated in a Block Memory storage unit and finally buffering of the output every

8 clock cycles. The system is run at 50 MHz which is the timing constraint set to the

hardware. Each and every component (functional unit) in the Architecture was fully tested

and validated. A HDL testbench was written using the Verilog Test Fixture software in

the Xilinx ISE 10.3 CAD tool set and the outputs of the testbench were simulated using

ModelSim. The input pixels are extracted from the input image using MATLAB and

stored in a text file as shown in Figure 9.3. The data in the text file is accessed by the test

fixture software and fed to the internal memory of the FPGA. The output from the

simulation is directly written to a text file in a binary format as shown in Figure 9.28 and

they are converted to an image with the help of a MATLAB code. The obtained results

were thoroughly analyzed and validated using the ModelSim and MATLAB CAD tools.

Considering all obtained HDL Post-Place and Route simulation results shown in 9.2

through 9.39, it was concluded that the previously presented Special Purpose Parallel

Architecture correctly executes the new Stacked Error Diffusion Halftoning Algorithm.

124

125

Figure 9.2: Parameter Register 1 & 2 - Simulation Result

125

126

Figure 9.3: Data Buffering Operation in Input Image FIFO - Simulation Result

126

127

Figure 9.4: 8 to 12 Bit Coversion and Droplet Densities Mapping - Simulation Result

127

128

Figure 9.5: Core Data FIFOs [1-12] - Simulation Result

128

129

Figure 9.6: Input Pixel Register [1-12] Data Values - Simulation Result

129

130

Figure 9.7: Previous Pixel Values [1-12] - Simulation Result

130

131

Figure 9.8: Previous Pixel Register [1-12] Data Values - Simulation Result

131
131
131

132

Figure 9.9: Input 1 of Adder-Subtractor Unit [1-12] - Simulation Result

132

133

Figure 9.10: Input 2 of Adder-Subtractor Unit [1-12] - Simulation Result

133

134

Figure 9.11: Output of Adder-Subtractor Unit [1-12] - Simulation Result

134
134
134

135

Figure 9.12: Calculated Error Values [1-12] - Simulation Result

135

136

Figure 9.13: Error Values Stored in Error Register [1-12] - Simulation Result

136

137

Figure 9.14: Error Values From Error Storage Block RAMs [1-12] - Simulation Result

137

138

138

Figure 9.15: Error Values Stored in Error Storage Registers [1-12] - Simulation Result

139

Figure 9.16: Output of Multiplier Unit [1/16] - [1-12] - Simulation Result

139

140

Figure 9.17: Output of Multiplier Unit [5/16] - [1-12] - Simulation Result

140

141

Figure 9.18: Output of Multiplier Unit [3/16] - [1-12] - Simulation Result

141

142

Figure 9.19: Output of Multiplier Unit [7/16] - [1-12] - Simulation Result

142

143

Figure 9.20: Data Output From Register [5/16] - [1-12] - Simulation Result

143

144

Figure 9.21: Data Output From Register [3/16] - [1-12] - Simulation Result

144
144
144

145

Figure 9.22: Data Output From Register [7/16] - [1-12] - Simulation Result

145

146

Figure 9.23: Processor Core 1 Data Operations - Simulation Result

146

147

Figure 9.24: Error Storage Block RAM Address Counter [1-12] - Simulation Result (Serpentine Scan)

147

148

Figure 9.25: Error Storage Block RAM Data Buffering [1-12] - Simulation Result (Serpentine Scan)

148

149

Figure 9.26: Processor Core Control Registers [1-12] - Simulation Result

149

150

Figure 9.27: Error Storage Block Control Registers [1-12] - Simulation Result

150

151

Figure 9.28: Halftoned Output Pixels - Simulation Results

151

 9.4 Output Images from Simulation Results

Figure 9.29: Original Image

(CMYK)

Figure 9.30: Halftoned Image

(Software 'C' Code)

Figure 9.31: Halftoned Image

(Hardware - FPGA)

152

152

153

Figure 9.32: Original Image (CMYK) Figure 9.33: Halftoned Image (Software

'C' Code)

Figure 9.34: Halftoned Image (Hardware

- FPGA)

153
153
153

154

Figure 9.35: Original Image (CMYK) Figure 9.36: Halftoned Image (Software

'C' Code)

Figure 9.37: Halftoned Image (Hardware

- FPGA)

154
154
154

155

Figure 9.38: Original Image

(GrayScale)

Figure 9.39: Halftoned Image

(Hardware - FPGA)

 9.5 Image Quality Comparison

156

Figure 9.40: Halftoned Image by Binary Thresholding Technique - Zoomed Pixels Showing

Artifacts

156
156
156

157

Figure 9.41: Halftoned Image by N-Level Quantization Technique - Zoomed Pixels Showing

Artifacts

157
157
157

158

Figure 9.42: Halftoned Image by Stacked Error-Diffusion Technique (Software - 'C' Code - CPU) -

Zoomed Pixels Showing Visually Pleasant Pixels

158

159

Figure 9.43: Halftoned Image by Stacked Error-Diffusion Technique (Hardware - FPGA) - Zoomed

Pixels Showing Visually Pleasant Pixels

159
159
159

160

Figure 9.44: Halftoned Image by Stacked Error-Diffusion Technique (Software -'C' Code - CPU) -

Zoomed Pixels Showing Visually Pleasant Pixels

160
160
160

161

Figure 9.45: Halftoned Image by Stacked Error-Diffusion Technique (Hardware - FPGA) - Zoomed

Pixels Showing Visually Pleasant Pixels

161
161
161

162

Figure 9.46: Halftoned Image by Stacked Error-Diffusion Technique (Software - 'C' Code - CPU) -

Zoomed Pixels Showing Visually Pleasant Pixels

162
162
162

163

Figure 9.47: Halftoned Image by Stacked Error-Diffusion Technique (Hardware - FPGA) - Zoomed

Pixels Showing Visually Pleasant Pixels

163
163
163

164

Figure 9.48: Zoomed Pixels showing Artifacts

165

Figure 9.49: Zoomed Pixels of Original Image showing Cyan Color Only

165

166

Figure 9.50: Zoomed Pixels of Halftoned Image Using Binary Thresholding Technique (Cyan Color Only)

166
166
166

167

Figure 9.51: Zoomed Pixels of Halftoned Image Using N-Level Quantization Technique (Cyan Color Only)

167

168

Figure 9.52: Zoomed Pixels of Halftoned Image Using Stacked Error-Diffusion 'C' Code (Cyan Color Only)

168
168
168

169

Figure 9.53: Zoomed Pixels of Halftoned Image Using Stacked Error-Diffusion Hardware-FPGA (Cyan Color Only)

169
169
169

The Figures 9.29 through 9.39 shows different images executed using Stacked Error-

Diffusion Halftoning algorithm in a serial based CPU and in Parallel Hardware

Architecture implemented in FPGA. The aim was to compare the halftoned output of an

image executed in a serial based CPU with the halftoned output of the same image

obtained from the Hardware Architecture in FPGA. Figure 9.29 shows the original color

image (CMYK). Figure 9.30 shows the halftoned output of the image using Software 'C'

code which was run in a serial based CPU. The pixels in the Figure 9.30 appears very

smooth and pleasant to the naked eye. The same output was obtained when the original

image was processed using FPGA as shown in Figure 9.31. The pixels in both the Figures

9.30 and 9.31 shows that the Halftoned image obtained is visually smooth and pleasant.

Thus, the results obtained were the same from the FPGA HDL simulation when

compared to the results obtained from the serial CPU without the loss in quality of the

halftoned image. The comparison process was done using different images to ensure that

the Hardware Architecture works for any input image. Figures 9.32 through 9.34 shows a

different input image and the corresponding halftoned images. The halftoned output

(Figure 9.34) when compared with the halftoned output in Figure 9.33 gives a clear idea

of the accuracy obtained in the image quality. Figures 9.36 and 9.37 shows the halftoned

outputs of the original image shown in Figure 9.35. Figure 9.38 shows a grayscale image

that is used to show that the current Hardware Architecture supports any number of

channels and levels. Figure 9.39 shows the halftoned output of the grayscale image that

has only one channel and 3 levels per channel.

Figures 9.40 and 9.41 shows the halftoned output of the original image shown in Figure

9.32 using Binary Thresholding and N-Level Quantization halftoning algorithms. The

Stacked Error-Diffusion algorithm is similar to Multitoning technique which results in an

halftoned image of similar quality. A particular area of the in the image was marked and

zoomed to show the difference in quality of the halftoned images obtained using Stacked

Error-Diffusion Algorithm. The zoomed pixels in Figures 9.40 and 9.41 shows many

artifacts (Staircase and Banding) present in Binary Thresholding and N-Level

Quantization techniques. Figures 9.42 and 9.43 shows the zoomed pixels at the same

170

location using Stacked Error Diffusion technique executed in CPU and FPGA. It can be

inferred that the pixels have the least number of artifacts (almost none) that results in

smooth and visually pleasant halftoned image. Figures 9.44 through 9.47 shows pixels in

the zoomed image and proves that the image obtained was smooth with fewer artifacts.

Based on the halftoned images from the above figures mentioned, Figure 9.48 shows the

zoomed version of all the algorithms compared with the Stacked Error-Diffusion

Algorithm executed in hardware (Figure 9.34). From Figure 9.48, it can be concluded

that artifacts (horizontal and vertical streaks of the same color intensity) are prevalent in

all the other algorithms except the Stacked Error-Diffusion Algorithm (no two

neighboring color intensities are the same, it appears visually smooth). Figure 9.49 shows

the original continuous tone image (Cyan channel only) and the halftoned outputs of this

image using different techniques in Figures 9.50, 9.51, 9.52 and 9.53. These figures show

the comparison of different algorithms with the Stacked Error-Diffusion Algorithm taking

only the Cyan channel. It can be inferred that Binary thresholding and N-Level

Quantization technique results in banding artifacts [38] that degrades the image quality. It

can be observed from the figures mentioned above that the Stacked Error-Diffusion

Algorithm has fewer artifacts resulting in better image quality.

171

Chapter 10. Conclusions and Future Work

10.1 Summary

This thesis provided a detailed explanation of hardware and software techniques used to

develop, simulate and validate a special purpose parallel architecture processor system

that efficiently implements a new Stacked Error Diffusion Halftoning Algorithm. The

hardware logic consumed by this architecture in the FPGA is described in detail in

Appendix A. The introductory chapter at the beginning provided a thorough explanation

of the Stacked Error-Diffusion algorithm. Chapter 2 gave a thorough insight into the data

representation format used. Chapter 3 exclusively discussed the High Level System

Architecture where the entire Hardware Halftoning System was shown (Figure 3.1).

Chapters 4, 5, 6, 7 and 8 gave a comprehensive view of how the datapath and controller

architecture was designed. Chapter 9 showed practical results obtained from the HDL

simulations and compared and validated these results with the original results obtained

from the algorithm executed on a serial commercially available CPU. The resulting

parallel halftoning architecture this hardware design can be used to process wide images

and print them with the help of the Wide Format Printers.

10.2 Contributions

• The Halftoning Algorithm written in 'C' was converted to an equivalent High

Speed Hardware Parallel Architecture Design and Implemented into a Virtex-5

FPGA chip without compromising the Image Quality.

• A significant performance improvement can be achieved by increasing the

execution speed of the algorithm by implementing if in the parallel architecture

system implemented into a FPGA chip. Execution speed-up of 18 X is obtained

by the algorithm implemented into a FPGA chip when compared to a

conventional serial CPU.

172

• A very High Performance Parallel Hardware Architecture for implementation of

new Stacked Error-Diffusion Halftoning Algorithm was designed, developed and

validated.

• The entire system along with all the digital components required to develop the

system were HDL simulated, tested and validated.

• The results obtained from the HDL simulation were compared and validated with

the results from the original algorithm running on a serial general purpose CPU.

10.3 Conclusion and Future Work

This research accomplished the objectives addressed in Chapter 1. Output images

obtained from the new hardware architecture was tested, evaluated and validated to be

correct. The entire system runs at 50 MHz and can even run at a higher speed of 130

MHz. The base clock frequency of 50 MHz chosen for the new architecture produces the

output twice as fast as a printer can print the data. This results in the avoidance of

buffering problems between the printer and the FPGA. The software halftoning algorithm

implemented in a commercial general purpose processor was very slow so that the

printer had to stop for the pixels to be processed and then buffered into its memory. A

substantial increase in throughput (12 square inches per second, 18X Speed) was

achieved using the hardware implementation. The developed hardware unit was designed

using the Xilinx ISE 10.3 CAD tool set [19] and simulated with the help of Mentor

Graphics ModelSim CAD tool HDL simulator [20].

The next phase of this research work is to build a hardware prototype and test it

connecting it to a Wide Format Printer. To extract the input image pixels from the host

PC, an interface preferably PCI Express (because of higher speed) should be designed. A

DDR2 SDRAM interface must be designed to continuously buffer the pixels from the

host PC to the FPGA. SRAM (used to buffer pixels from the host PC) would be a better

choice when compared to DRAM as it is faster and more efficient. The goal is for the

entire architecture to run in a portable processing card known as PICO E-17 [37] which

173

has all the components required namely Virtex-5 FPGA, DDR2 SDRAM, PCIe, Ethernet

and a Flash ROM to store the FPGA bit images. The speed of the architecture can be

changed according to requirements. This research project met all original objectives. The

hardware architecture was designed to be flexible and scalable. This architecture in

addition to being implemented into FPGA technology can also be implemented to an

Application Specific Integrated Circuit (ASIC) to achieve maximum performance.

174

Appendix A

Map Report
Release 10.1.03 Map K.39 (nt)

Xilinx Map Application Log File for Design 'Processor'

Design Information

Command Line:map -ise "C:/Documents and
Settings/Rishvanth/Desktop/Error_diffusion_system/ERR_DIFF_SYSTEM.ise" -intstyle ise -p xc5vfx70t-
ff665-1 -w -logic_opt off -ol high -t 1 -cm area -pr off -k 6 -lc off -power off -o Processor_map.ncd
Processor.ngd Processor.pcf

Target Device : xc5vfx70t

Target Package : ff665

Target Speed : -1

Mapper Version : virtex5 -- $Revision: 1.46.12.2 $

Mapped Date : Thu Nov 04 18:14:35 2010

Mapping design into LUTs...

Running directed packing...

Running delay-based LUT packing...

INFO:Map:215 - The Interim Design Summary has been generated in the MAP Report (.mrp).

Running timing-driven packing...

Phase 1.1

Phase 1.1 (Checksum:2e20b97) REAL time: 42 secs

Phase 2.7

Phase 2.7 (Checksum:2e20b97) REAL time: 42 secs

Phase 3.31

Phase 3.31 (Checksum:2e20b97) REAL time: 42 secs

Phase 4.33

Phase 4.33 (Checksum:2e20b97) REAL time: 1 mins 5 secs

Phase 5.32

Phase 5.32 (Checksum:2e20b97) REAL time: 1 mins 7 secs

Phase 6.2

....

Phase 6.2 (Checksum:2fe3f91) REAL time: 1 mins 11 secs

..

...................................

175

.....

Phase 7.30

Phase 7.30 (Checksum:2fe3f91) REAL time: 3 mins 43 secs

Phase 8.3

...

Phase 8.3 (Checksum:3570f59) REAL time: 3 mins 43 secs

Phase 9.5

Phase 9.5 (Checksum:3570f59) REAL time: 3 mins 43 secs

Phase 10.8

..

..................

...............................

.........

...............

......................

Phase 10.8 (Checksum:3c4ec1f2) REAL time: 6 mins 24 secs

Phase 11.29

Phase 11.29 (Checksum:3c4ec1f2) REAL time: 6 mins 24 secs

Phase 12.5

Phase 12.5 (Checksum:3c4ec1f2) REAL time: 6 mins 24 secs

Phase 13.18

Phase 13.18 (Checksum:3d244906) REAL time: 6 mins 55 secs

Phase 14.5

Phase 14.5 (Checksum:3d244906) REAL time: 6 mins 55 secs

Phase 15.34

Phase 15.34 (Checksum:3d244906) REAL time: 6 mins 55 secs

REAL time consumed by placer: 6 mins 58 secs

176

CPU time consumed by placer: 6 mins 54 secs

Design Summary

Design Summary:

Number of errors: 0

Number of warnings: 3

Slice Logic Utilization:

 Number of Slice Registers: 3,647 out of 44,800 8%

 Number used as Flip Flops: 3,647

 Number of Slice LUTs: 2,947 out of 44,800 6%

 Number used as logic: 2,733 out of 44,800 6%

 Number using O6 output only: 2,373

 Number using O5 output only: 78

 Number using O5 and O6: 282

 Number used as Memory: 210 out of 13,120 1%

 Number used as Dual Port RAM: 210

 Number using O6 output only: 30

 Number using O5 output only: 30

 Number using O5 and O6: 150

 Number used as exclusive route-thru: 4

 Number of route-thrus: 94 out of 89,600 1%

 Number using O6 output only: 82

 Number using O5 output only: 12

Slice Logic Distribution:

 Number of occupied Slices: 1,616 out of 11,200 14%

 Number of LUT Flip Flop pairs used: 4,508

 Number with an unused Flip Flop: 861 out of 4,508 19%

 Number with an unused LUT: 1,561 out of 4,508 34%

 Number of fully used LUT-FF pairs: 2,086 out of 4,508 46%

 Number of unique control sets: 249

 Number of slice register sites lost

 to control set restrictions: 489 out of 44,800 1%

A LUT Flip Flop pair for this architecture represents one LUT paired with one Flip Flop within a slice. A
control set is a unique combination of clock, reset, set, and enable signals for a registered element. The
Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if
Placement fails.

177

IO Utilization:

 Number of bonded IOBs: 62 out of 360 17%

Specific Feature Utilization:

 Number of BlockRAM/FIFO: 109 out of 148 73%

 Number using BlockRAM only: 109

 Total primitives used:

 Number of 18k BlockRAM used: 217

 Total Memory used (KB): 3,906 out of 5,328 73%

 Number of BUFG/BUFGCTRLs: 13 out of 32 40%

 Number used as BUFGs: 13

 Number of DSP48Es: 108 out of 128 84%

Peak Memory Usage: 599 MB

Total REAL time to MAP completion: 7 mins 33 secs

Total CPU time to MAP completion: 7 mins 26 secs

Mapping completed.

See MAP report file "Processor_map.mrp" for details.

Place and Route Report
Release 10.1.03 par K.39 (nt)

Copyright (c) 1995-2008 Xilinx, Inc. All rights reserved.

OPTI960:: Thu Dec 02 14:59:14 2010

par -w -intstyle ise -ol std -t 1 Processor_map.ncd Processor.ncd Processor.pcf

Constraints file: Processor.pcf.

Loading device for application Rf_Device from file '5vfx70t.nph' in environment C:\Xilinx\10.1\ISE.

"Processor" is an NCD, version 3.2, device xc5vfx70t, package ff665, speed -1

Initializing temperature to 85.000 Celsius. (default - Range: 0.000 to 85.000 Celsius)

Initializing voltage to 0.950 Volts. (default - Range: 0.950 to 1.050 Volts)

Device speed data version: "PRODUCTION 1.64 2008-12-19".

Device Utilization Summary:

 Number of BUFGs 13 out of 32 40%

 Number of DSP48Es 108 out of 128 84%

 Number of External IOBs 62 out of 360 17%

 Number of LOCed IOBs 0 out of 62 0%

 Number of RAMB18X2s 109 out of 148 73%

 Number of Slice Registers 3647 out of 44800 8%

178

 Number used as Flip Flops 3647

 Number used as Latches 0

 Number used as LatchThrus 0

 Number of Slice LUTS 2947 out of 44800 6%

 Number of Slice LUT-Flip Flop pairs 4508 out of 44800 10%

Overall effort level (-ol): Standard

Router effort level (-rl): Standard

Starting initial Timing Analysis. REAL time: 28 secs

Finished initial Timing Analysis. REAL time: 28 secs

Starting Router

Phase 1: 43997 unrouted; REAL time: 31 secs

Phase 2: 28801 unrouted; REAL time: 33 secs

Phase 3: 6167 unrouted; REAL time: 41 secs

Phase 4: 6167 unrouted; (59559) REAL time: 47 secs

Phase 5: 6169 unrouted; (0) REAL time: 51 secs

Phase 6: 6169 unrouted; (0) REAL time: 51 secs

Phase 7: 0 unrouted; (0) REAL time: 1 mins 17 secs

Updating file: Processor.ncd with current fully routed design.

Phase 8: 0 unrouted; (0) REAL time: 1 mins 20 secs

Phase 9: 0 unrouted; (0) REAL time: 1 mins 20 secs

Phase 10: 0 unrouted; (0) REAL time: 1 mins 33 secs

Total REAL time to Router completion: 1 mins 34 secs

Total CPU time to Router completion: 1 mins 33 secs

Partition Implementation Status

 No Partitions were found in this design.

Generating "PAR" statistics.

Generating Clock Report

179

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| Clock Net | Resource | Locked | Fanout | Net Skew (ns) | Max Delay(ns) |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk2_BUFGP | BUFGCTRL_X0Y12 | No | 164 | 0.277 | 2.018 |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk9_BUFGP | BUFGCTRL_X0Y1 | No | 164 | 0.421 | 2.072 |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk3_BUFGP | BUFGCTRL_X0Y10 | No | 164 | 0.352 | 2.074 |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk10_BUFGP| BUFGCTRL_X0Y31 | No | 164 | 0.382 | 2.022 |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk5_BUFGP |BUFGCTRL_X0Y21 | No | 163 | 0.519 | 2.061 |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk7_BUFGP | BUFGCTRL_X0Y5 | No | 164 | 0.432 | 1.961 |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk11_BUFGP|BUFGCTRL_X0Y20 | No | 164 | 0.501 | 2.072 |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk_BUFGP | BUFGCTRL_X0Y8 | No | 156 | 0.335 | 1.917 |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk4_BUFGP | BUFGCTRL_X0Y9 | No | 164 | 0.393 | 2.015 |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk12_BUFGP|BUFGCTRL_X0Y13 | No | 166 | 0.528 | 2.074 |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk6_BUFGP | BUFGCTRL_X0Y7 | No | 164 | 0.387 | 1.924 |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk1_BUFGP |BUFGCTRL_X0Y23 | No | 165 | 0.454 | 2.099 |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

| clk8_BUFGP |BUFGCTRL_X0Y25 | No | 164 | 0.501 | 2.048 |

+-----------------+----------------------------+----------+----------+-------------------+--------------------+

* Net Skew is the difference between the minimum and maximum routing

only delays for the net. Note this is different from Clock Skew which

is reported in TRCE timing report. Clock Skew is the difference between

the minimum and maximum path delays which includes logic delays.

180

Timing Score: 0

Asterisk (*) preceding a constraint indicates it was not met.

 This may be due to a setup or hold violation.

 Constraint | Check | Worst Case | Best Case | Timing | Timing

 | | Slack | Achievable | Errors | Score

 OFFSET = IN 4 ns BEFORE COMP "clk" | SETUP | 0.313ns | 3.687ns | 0 | 0

 OFFSET = IN 4 ns BEFORE COMP "clk11" | SETUP | 0.638ns | 3.362ns | 0 | 0

 OFFSET = IN 4 ns BEFORE COMP "clk12" | SETUP | 0.836ns | 3.164ns | 0 | 0

 OFFSET = IN 4 ns BEFORE COMP "clk7" | SETUP | 1.035ns | 2.965ns | 0 | 0

 TS_clk4 = PERIOD TIMEGRP "clk4" | SETUP | 1.237ns | 17.526ns | 0 | 0

 20 ns HIGH 50% | HOLD | 0.302ns | | 0 | 0

 OFFSET = IN 4 ns BEFORE COMP "clk3" | SETUP | 1.328ns | 2.672ns | 0 | 0

 OFFSET = IN 4 ns BEFORE COMP "clk2" | SETUP | 1.550ns | 2.450ns | 0 | 0

 TS_clk12 = PERIOD TIMEGRP "clk12" | SETUP | 1.597ns | 16.806ns | 0 | 0

 20 ns HIGH 50% | HOLD | 0.238ns | | 0 | 0

 OFFSET = IN 4 ns BEFORE COMP "clk9" | SETUP | 1.624ns | 2.376ns | 0 | 0

 OFFSET = IN 4 ns BEFORE COMP "clk8" | SETUP | 1.755ns | 2.245ns | 0 | 0

 OFFSET = IN 4 ns BEFORE COMP "clk10" | SETUP | 2.069ns | 1.931ns | 0 | 0

 OFFSET = IN 4 ns BEFORE COMP "clk1" | SETUP | 2.219ns | 1.781ns | 0 | 0

 TS_clk10 = PERIOD TIMEGRP "clk10" | SETUP | 2.406ns | 15.188ns | 0 | 0

 20 ns HIGH 50% | HOLD | 0.299ns | | 0 | 0

181

 OFFSET = IN 4 ns BEFORE COMP "clk5" | SETUP | 2.536ns | 1.464ns | 0 | 0

 OFFSET = IN 4 ns BEFORE COMP "clk6" | SETUP | 2.538ns | 1.462ns | 0 | 0

 OFFSET = IN 4 ns BEFORE COMP "clk4" | SETUP | 2.704ns | 1.296ns | 0 | 0

 TS_clk = PERIOD TIMEGRP "clk" | SETUP | 2.818ns | 14.364ns | 0 | 0

 20 ns HIGH 50% | HOLD | 0.452ns | | 0 | 0

 TS_clk11 = PERIOD TIMEGRP "clk11" | SETUP | 2.840ns | 14.320ns | 0 | 0

 20 ns HIGH 50% | HOLD | 0.348ns | | 0 | 0

 TS_clk6 = PERIOD TIMEGRP "clk6" | SETUP | 2.884ns | 14.232ns | 0 | 0

 20 ns HIGH 50% | HOLD | 0.336ns | | 0 | 0

 TS_clk9 = PERIOD TIMEGRP "clk9" | SETUP | 2.969ns | 14.062ns | 0 | 0

 20 ns HIGH 50% | HOLD | 0.311ns | | 0 | 0

 TS_clk3 = PERIOD TIMEGRP "clk3" | SETUP | 3.447ns | 13.106ns | 0 | 0

 20 ns HIGH 50% | HOLD | 0.234ns | | 0 | 0

 TS_clk2 = PERIOD TIMEGRP "clk2" | SETUP | 3.564ns | 12.872ns | 0 | 0

 20 ns HIGH 50% | HOLD | 0.229ns | | 0 | 0

 TS_clk7 = PERIOD TIMEGRP "clk7" | SETUP | 4.185ns | 11.630ns | 0 | 0

 20 ns HIGH 50% | HOLD | 0.311ns | | 0 | 0

 TS_clk8 = PERIOD TIMEGRP "clk8" | SETUP | 4.260ns | 11.480ns | 0 | 0

 20 ns HIGH 50% | HOLD | 0.323ns | | 0 | 0

 TS_clk5 = PERIOD TIMEGRP "clk5" | SETUP | 4.398ns | 11.204ns | 0 | 0

 20 ns HIGH 50% | HOLD | 0.315ns | | 0 | 0

 TS_clk1 = PERIOD TIMEGRP "clk1" | SETUP | 5.448ns | 9.104ns | 0 | 0

182

 20 ns HIGH 50% | HOLD | 0.328ns | | 0 | 0

 OFFSET = OUT 260 ns AFTER COMP "clk12"| MAXDELAY| 241.236ns| 18.764ns| 0 | 0

 OFFSET = OUT 260 ns AFTER COMP "clk11" | MAXDELAY| 247.665ns| 12.335ns| 0 | 0

 OFFSET = OUT 260 ns AFTER COMP "clk8" | MAXDELAY| 248.267ns| 11.733ns| 0 | 0

 OFFSET = OUT 260 ns AFTER COMP "clk10" | MAXDELAY| 248.526ns| 11.474ns| 0 | 0

 OFFSET = OUT 260 ns AFTER COMP "clk9" | MAXDELAY| 248.535ns| 11.465ns| 0 | 0

 OFFSET = OUT 260 ns AFTER COMP "clk7" | MAXDELAY| 248.942ns| 11.058ns| 0 | 0

 OFFSET = OUT 260 ns AFTER COMP "clk3" | MAXDELAY| 249.278ns| 10.722ns| 0 | 0

 OFFSET = OUT 260 ns AFTER COMP "clk1" | MAXDELAY| 249.423ns| 10.577ns| 0 | 0

 OFFSET = OUT 260 ns AFTER COMP "clk4" | MAXDELAY| 249.663ns| 10.337ns| 0 | 0

 OFFSET = OUT 260 ns AFTER COMP "clk6" | MAXDELAY| 249.852ns| 10.148ns| 0 | 0

 OFFSET = OUT 260 ns AFTER COMP "clk5" | MAXDELAY| 249.902ns| 10.098ns| 0 | 0

 OFFSET = OUT 260 ns AFTER COMP "clk2" | MAXDELAY| 249.957ns| 10.043ns| 0 | 0

 OFFSET = OUT 260 ns AFTER COMP "clk" | MAXDELAY| 250.549ns| 9.451ns| 0 | 0

All constraints were met.

Generating Pad Report.

All signals are completely routed.

Total REAL time to PAR completion: 1 mins 41 secs

Total CPU time to PAR completion: 1 mins 37 secs

Peak Memory Usage: 457 MB

Placer: Placement generated during map.

183

Routing: Completed - No errors found.

Timing: Completed - No errors found.

Number of error messages: 0

Number of warning messages: 0

Number of info messages: 0

Writing design to file Processor.ncd

PAR done!

184

References

[1] http://staffwww.itn.liu.se/~sasgo/TNM011/Digital_Halftoning

[2] R. W. Floyd and I. Steinberg, “An adaptive algorithm for spatial grayscale,” Proc.

SID, vol. 17, no. 2, pp. 75–78, 1976.

[3] R. A. Ulichney, “Dithering with blue noise,” Proc. IEEE, vol. 77, no.1, pp. 56–79,

Jan. 1988.

[4] J.B. Rodríguez, G.R. Arce and D.L. Lau, Blue-noise multitone dithering, IEEE

Trans. Image Process. 17 (8) (2008), pp. 245–267.

[5] J. Sullivan, R. Miller, and G. Pios, “Image halftoning using a visual model in error

difussion,” J. Opt. Soc. Amer. A, vol. 10, no. 8, pp.1714–1724, Aug. 1993.

[6] R. Eschbach and K. T. Knox, “Error-diffusion algorithm with edge enhancement,”J.

Opt. Soc. Amer. A, vol. 8, no. 8, pp. 1844–1850, Dec.1991.

[7] R. Eschbach, “Reduction of artifacts in error difussion by means of input-dependent

weights,” J. Electron. Imag., vol. 2, no. 4, pp.352–358, Oct. 1993.

[8] V. Ostromoukhov, “A simple and efficient error-difussion algorithm,” in Proc.

SIGGRAPH, 2001, pp. 567–572.

[9] P. Li and J. P. Allebach, “Tone-dependent error difussion,” IEEE Trans. Image

Process., vol. 13, no. 2, pp. 201–215, Feb. 2004.

[10] R. A. Ulichney, “Dithering with blue noise,” Proc. IEEE, vol. 77, no.1, pp. 56–79,

Jan. 1988.

[11] D. L. Lau and R. Ulichney, “Blue-noise halftoning for hexagonal grids,” IEEE

Trans. Image Process., vol. 15, no. 5, pp. 1270–1284, May 2006.

[12] R. S. Gentile, E. Walowit, and J. P. Allebach, “Quantization and multilevel

halftoning of color images for near-original image quality.,” J. Opt. Soc. Amer. A,

vol. 7, no. 6, pp. 1019–1026, Jun. 1990.

185

http://staffwww.itn.liu.se/~sasgo/TNM011/Digital_Halftoning

[13] F. Faheem, G. R. Arce, and D. L. Lau, “Digital multitoning using gray level

separation,” J. Imag. Sci. Technol., vol. 46, no. 5, pp. 385–397, Sep./Oct. 2002.

[14] R. Miller and C. Smith, J. P. Allebach and B. E. Rogowitz, Eds., “Mean-preserving

multilevel halftoning algorithm,” in Proc. SPIE: Human Vision. Visual Processing

and Digital Display TV, 1993, vol. 1913, pp. 367–377.

[15] P.T. Mataxas, “Parallel Digital halftoning by error diffusion”, June 2003, ACM

Proceedings of, the Paris C. Kanellakis memorial workshop on Principles of

computing & knowledge.

[16] Yuefeng Zhang, Line Diffusion: A Parallel Error Diffusion Algorithm for Digital

Halftoning, The Visual Computer, 12 (1) 40-46, 1996.

[17] Jae-woo Ahn and Wonyong Sung, “Multimedia processor based implementation of

an error-diffusion halftoning algorithm exploiting subword parallelism,” IEEE

Trans. on Circuits and Systems for Video Technology, vol. 16, no. 2, pp. 129-138,

Feb. 2001.

[18] C.R. Brown and A. Savakis, “High-Performance Architecture for Color Error

Diffusion,” Proceedings of SPIE-IS&T Electronic Imaging, SPIE Vol. 5012, 2003.

[19] http://www.xilinx.com/support/download/index.htm

[20] http://model.com/content/modelsim-se-high-performance-simulation-and-debug

[21] http://www.xilinx.com/products/virtex5/index.htm

[22] D.A. Patterson and J.L. Hennessy, “Computer Organization and Design: The

Hardware/Software Interface,” Morgan Kaufmann Publishers, 3rd ed., 2004.

[23] E.L. Oberstar, “Fixed-point representation & fractional math”, Oberstar Consulting,

2007.

[24] Randy Yates, “Fixed-Point Arithmetic: An Introduction,”

www.digitalsignallabs.com/fp.pdf , 2009.

186

http://www.digitalsignallabs.com/fp.pdf
http://www.xilinx.com/products/virtex5/index.htm
http://model.com/content/modelsim-se-high-performance-simulation-and-debug
http://www.xilinx.com/support/download/index.htm

[25] Randy Yates, “Practical Considerations in Fixed-Point FIR Filter Implementations,”

www.digitalsignallabs.com/ fir .pdf , 2009.

[26] http://www.xilinx.com/support/documentation/user_guides/ug190.pdf

[27] www. xilinx .com/itp/ xilinx 6/books/docs/cgn/cgn.pdf

[28] www.xilinx.com/support/documentation/user_guides/ug193.pdf

[29] V. Nelson, H. Nagle, B. Carroll, and J. Irwin, “Digital Logic Circuit Analysis and

Design,” Prentice Hall, 1995.

[30] www.doe.carleton.ca/~jknight/97.478/97.478_03F/Advdig5cirJ.pdf

[31] http://www.ccse.kfupm.edu.sa/~elrabaa/coe202/Lessons/Lesson4_5.pdf

[32] J.P. Hayes, “Computer Architecture and Organization,” WCB / McGraw-Hill, 3rd

ed., 1998.

[33] M.M. Mano, “Digital Logic and Computer Design,” Prentice Hall, 2002.

[34] M.M. Mano, “Digital Design,” Pearson Prentice Hall, 2007.

[35] http://www.asic-world.com/verilog/memory_fsm2.html

[36] D.A. Patterson and J.L. Hennessy, “Computer Architecture: A Quantitative

Approach,” Morgan Kaufmann Publishers, 4th ed., 2007.

[37] http://www.picocomputing.com/support/E-17.php

[38] D.L. Lau and G.R. Arce, “Modern Digital Halftoning (Signal Processing and

Communications),” CRC Press, 2nd ed., 2008.

187

http://www.picocomputing.com/support/E-17.php
http://www.asic-world.com/verilog/memory_fsm2.html
http://www.ccse.kfupm.edu.sa/~elrabaa/coe202/Lessons/Lesson4_5.pdf
http://www.doe.carleton.ca/~jknight/97.478/97.478_03F/Advdig5cirJ.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/itp/xilinx6/books/docs/cgn/cgn.pdf
http://www.xilinx.com/itp/xilinx6/books/docs/cgn/cgn.pdf
http://www.xilinx.com/itp/xilinx6/books/docs/cgn/cgn.pdf
http://www.xilinx.com/itp/xilinx6/books/docs/cgn/cgn.pdf
http://www.xilinx.com/itp/xilinx6/books/docs/cgn/cgn.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.digitalsignallabs.com/fir.pdf
http://www.digitalsignallabs.com/fir.pdf
http://www.digitalsignallabs.com/fir.pdf

VITA

Rishvanth Kora was born on May 31, 1985 in Sriharikota, Andhra Pradesh, India. The

author received his Bachelor of Engineering (B.E.) degree in Electrical and Electronics

from Anna University, Tamilnadu, India in the year 2006. He has worked as a software

engineer in IBM, Bangalore, India before enrolling for Masters program in Electrical

Engineering at University of Kentucky, Lexington. He has been working at Computer

Architecture Laboratory as a Graduate Research Student under the guidance of Dr. J.

Robert Heath since January 2009.

188

	FPGA BASED PARALLEL IMPLEMENTATION OF STACKED ERROR DIFFUSION ALGORITHM
	Recommended Citation

	Abstract Of Thesis
	Title Page
	Dedication
	Acknowledgments
	Table Of Contents
	List of Tables
	List of Figures
	 Chapter 1. Introduction
	 1.1 Background
	 1.1.1 Halftoning
	 1.1.2 Error Diffusion
	 1.1.3 Image Scanning Techniques
	 1.1.4 Blue-Noise
	 1.1.5 Blue-Noise Halftoning
	 1.1.6 Multitoning
	 1.1.7 Blue-Noise Multitoning with Stacked Error Diffusion

	 1.2 Previous Research on FPGA Implementation of Halftoning Algorithms
	 1.3 Objective of the Thesis
	 1.4 Thesis Outline

	 Chapter 2. Processor Design Methodology
	 2.1 Introduction
	 2.2 Gate Level design
	 2.3 Register Level Design
	 2.4 Target Technology
	 2.4.1 Xilinx Virtex-5 FPGA

	 2.5 Data Representation
	 2.5.1 Floating Point Arithmetic
	 2.5.2 Fixed Point Arithmetic

	 2.6 Types of Processors
	 2.6.1 General Purpose Processors
	 2.6.2 Special Purpose Processors

	 Chapter 3. High Level System Architecture
	 3.1 Introduction
	 3.2 High Level System Hardware Architecture
	 3.2.1 Datapath Architecture
	 3.2.2 Control Unit Architecture

	 3.3 High Level Process Flow Description
	 3.4 Hardware Algorithm Execution

	 Chapter 4. Input Data Memory Architecture Design
	 4.1 Introduction
	 4.2 Xilinx Virtex-5 Memory Components
	 4.2.1 Block RAM
	 4.2.2 Distributed RAM

	 4.3 Xilinx Core Generator
	 4.4 Input Image FIFO
	 4.4.1 Input Image FIFO Design
	 4.4.2 FIFO Operational Procedure

	 4.5 Parameter Registers and 8/12 Bit Convertor
	 4.6 Droplet Densities Storage ROM
	 4.7 Input Level FIFO
	 4.8 Core Data FIFO
	 4.9 Entire Input Data Memory Architecture

	 Chapter 5. Processor Core Architecture Development and Design
	 5.1 Introduction
	 5.2 Xilinx Virtex-5 Xtreme DSP Slice
	 5.3 Input Data Registers
	 5.4 Adder-Subtractor Unit
	 5.5 Threshold Comparison Circuit
	 5.6 Error Limiting Circuit
	 5.7 Error Registers
	 5.8 Random Weights-Values Generator
	 5.9 Error-Filter Circuit
	 5.10 Processor Core Architecture

	 Chapter 6. Error Storage Block Memory Architecture Design
	 6.1 Introduction
	 6.2 Error Storage Block RAM Architecture
	 6.3 Input Image Size Monitor
	 6.4 Error Storage Memory Address Counter
	 6.5 Total Functional View of Single Error Storage RAM Memory Module

	 Chapter 7. Output System Architecture Design
	 7.1 Introduction
	 7.2 Output Data FIFO
	 7.3 Output Logic Unit

	 Chapter 8. Controller Architecture Development and Design
	 8.1 Introduction
	 8.2 Mealy and Moore State Machines
	 8.3 Controller Design Techniques
	 8.3.1 One-Hot Encoding
	 8.3.2 Almost One-Hot Encoding
	 8.3.3 One-Cold Encoding
	 8.3.4 Almost One-Cold Encoding
	 8.3.5 Binary Encoding
	 8.3.6 Gray Encoding
	 8.3.7 Sequence Register & Decoder Technique
	 8.3.8 PLA Control
	 8.3.9 Microprogramed Control

	 8.4 System Controller Architecture Strategy
	 8.5 Input Memory Controller Design
	 8.6 Processor Cores Controller Design
	 8.7 Processor Core Control Registers
	 8.8 Error Storage Block RAM Control Registers
	 8.9 Output Control Registers
	 8.10 Control Registers Switching Circuit
	 8.11 Auto-Write Data Core FIFO

	 Chapter 9. System Architecture Performance, Functional Analysis and Results
	 9.1 Overview
	 9.2 Performance Analysis and Results
	 9.3 HDL Functional and Performance Simulation Validation of Parallel Halftoning Architecture
	 9.4 Output Images from Simulation Results
	 9.5 Image Quality Comparison

	Chapter 10. Conclusions and Future Work
	10.1 Summary
	10.2 Contributions
	10.3 Conclusion and Future Work

	Appendix A
	References
	VITA

