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ABSTRACT OF THESIS 

 

 

COMMERCIALIZATION AND OPTIMIZATION OF THE PIXEL ROUTER 

 

The Pixel Router was developed at the University of Kentucky with the intent of 
supporting multi-projector displays by combining the scalability of commercial software 
solutions with the flexibility of commercial hardware solutions.  This custom hardware 
solution uses a Look Up Table for an arbitrary input to output pixel mapping, but suffers 
from high memory latencies due to random SDRAM accesses.  In order for this device to 
achieve marketability, the image interpolation method needed improvement as well.  
The previous design used the nearest neighbor interpolation method, which produces 
poor looking results but requires the least amount of memory accesses.  A cache was 
implemented to support bilinear interpolation to simultaneously increase the output 
frame rate and image quality.  A number of software simulations were conducted to test 
and refine the cache design, and these results were verified by testing the 
implementation on hardware.  The frame rate was improved by a factor of 6 versus 
bilinear interpolation on the previous design, and by as much as 50% versus nearest 
neighbor on the previous design.  The Pixel Router was also certified for FCC conducted 
and radiated emissions compliance, and potential commercial market areas were 
explored. 
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Section 1: Introduction 
 
Multi-Projector Displays 
 
The utilization of multiple projectors to create a single seamless, uniform display is 
quickly becoming a mature technology.  Television newscast sets, command and control 
centers, large conference halls, houses of worship, and many other markets take 
advantage of this technology to enhance the presentation of visual information.  By 
overlapping and “edge-blending” two or more video projectors, one can create a 
resulting image with higher resolution and brightness and less throw distance between 
the projection and the projector lens.   

Software Blended Displays 
 
There are two primary approaches to creating edge blended displays that are currently 
available in the market.  The first approach is a software-based process that runs on 
commodity hardware.  Typically, this process involves camera feedback to automatically 
align and blend the projectors to create blending and warping masks that result in a 
perfectly aligned and blended seamless display.  This process is the same for any 
number of projectors in any configuration, thus making it an extremely scalable method.  
The calibration procedure in software can be performed in a few minutes or seconds, 
even for large arrays of projectors.  In 2005, Brown et al presented a survey of available 
techniques for camera-based projector calibration, comparing capabilities and 
computational requirements for each method [1].  In this survey, the two primary 
metrics used to compare calibration techniques consisted of geometric registration and 
photometric correction.  Calibration techniques can compute the geometric registration 
on either planar surfaces or arbitrary surfaces, using one or several cameras.  On an 
arbitrary (non-planar) surface, the geometric warping can be computed for either a 
stationary viewer with a single ideal head position or for a moving viewer where the 
head position is tracked.  This second method, known as 3D global registration, allows 
for the creation of immersive displays capable of displaying 3D rendered content that 
correctly accounts for a user’s viewpoint.  The other important component to software 
blended displays is the photometric correction of the display.  In the paper, Brown 
discusses variables to which photometric correction can be applied: intra-projector 
variance, inter-projector variance, and overlap variance.  Intra-projector variance is a 
result of non-uniformities within the display of a single projector which can result from 
properties of the projector lamp or the display surface itself.  Inter-projector variance is 
the difference in luminance between separate projectors.  Even projectors of the same 
make and model can have differences in color and intensity due to manufacturing 
tolerances and uneven aging of projector lamps and other components in the device.  
Both intra-projector and inter-projector variance are small, however, compared to 
variance in the overlap regions between projectors.  In the software blending methods 
discussed, overlap blending is the primary focus for the photometric correction.  These 
methods use a linear or cosine ramp function in the overlap regions of the projectors to 
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produce smooth transitions between the display area of one projector to another.  
Brown gives an example of linear ramping by considering two overlapping projectors, P1 
and P2, whose contributions at a location x on the screen on the display surface are P1(x) 
and P2(x), respectively.  The blended intensity at x is calculated by the equation below, 
where α1+α2 = 1. 

                             

The alpha weights α1 and α2 are calculated based on the distance of x from the 
boundaries of the overlap region.  For a linear ramp function, α1 and α2 are calculated as 
follows, where d1 and d2 are the distances to the edges of the overlap region. 

       
  

     
         

  

     
 

Brown et al also give an example of the resulting blending masks from 4 overlapping 
projectors using this linear ramp function blending technique.  In that image, shown 
below in Figure 1 [1], the left most images are the alpha blending masks for these 
projectors, the middle image is the unblended but geometrically corrected image, and 
the right image is the geometrically and photometrically corrected image using these 
alpha masks. 

 

Figure 1 – Alpha blending mask example [1] 
 

Software blended displays are not without their disadvantages, however.  The output 
images to the projectors in the display are warped and blended through commodity 
graphics hardware in a PC.  However this hardware does not natively support blending 
and warping functions in the low-level drivers, thus an application must be written at 
the Operating System level which applies the geometric and photometric correction to 
any content that is desired to be displayed.  Generally, applications written for an OS are 
not designed to support blended multi-projector output, and thus source code 
modifications are required to enable this feature.  Most applications use proprietary 
source code that is not possible to modify as an end user, thus content is difficult to 
generate for software blended displays.  This limitation reduces the number of 
applications that software blended displays can be useful for to scenarios where the 
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content source code can be accessed either through open source modification or active 
cooperation with the company that produces the software.  Thus, software blended 
displays tend to only be used in high-end simulation and visualization applications that 
use specialized image generation software that can be easily modified.     

Hardware Blended Displays 
 
Another approach to creating multi-projector displays is to use customized hardware 
that acts as an image processing “pass-through” device.  These devices have one or 
more video inputs and at least two video outputs, and apply basic warping and blending 
techniques to achieve geometric and photometric uniformity on a display.  Unlike 
software blended displays which use camera feedback to automatically compute the 
warping and blending masks, these devices rely on a manual calibration process for 
image alignment and correction.  To compute this correction, projector is connected to 
each of the device’s video outputs and some alignment tool, such as a displayed grid 
pattern, is used to assist the user in manual overlap correction.  Once the display has 
been properly aligned and blended, the inputs on the device allow the user to treat the 
entire display as a single monitor.  Any compatible video input plugged in to the 
blending device will be shown across all projectors in a seamless, uniform manner.  The 
major disadvantage of systems such as these is setup time.  Consider a projector array 
with M projectors in the horizontal direction and N projectors in the vertical direction.  
Aligning a 1xN or Mx1 array is not a terribly complex task using these systems, but 
alignment difficulty grows dramatically with an MxN system, where M and N are both 
greater than 1.  In a 1xN or Mx1 array, no projector overlaps with more than 2 other 
projectors.  However in an MxN array, a projector may overlap with many other 
projectors, creating more variables and adjustment parameters than can be accounted 
for in a short period of time.  As the number of projectors is increased, the complexity of 
setup increases exponentially.  This presents a significant disadvantage as compared to 
software blended displays, whose calibration time is a linear function to the number of 
projectors in the display.  Thus, hardware-based blended displays typically are more 
useful in long term, stationary environments than in situations where there is need for 
frequent realignments. 
The Pixel Router 
 
The Pixel Router is a custom hardware device developed at the University of Kentucky 
with the intention of bridging the gap between software and hardware edge blending.  
The device, which has 4 HDMI inputs and 4 HDMI outputs, uses look-up tables (LUTs) 
generated by a software calibration process to warp and blend up to 4 input images 
across the outputs.  These LUTs represent alpha masks such as the one shown in Error! 
Reference source not found.Figure 1, and apply photometric alpha blending to correct 
for overlap variations.  Additionally, the LUTs can map any given input pixel to any given 
output pixel, allowing for the implementation of the geometric correction calculated by 
the calibration software [2].  This device takes advantage of the scalability and flexibility 
of the software calibration procedure while maintaining the content agnostic properties 
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of hardware based solutions.  This thesis will focus on efforts to improve the 
performance of the Pixel Router and potential opportunities for commercialization.  The 
primary area of performance improvement will be to improve the appearance of 
rotated, warped, and scaled images while maintaining an acceptable frame rate.  This 
will be achieved through the implementation of bilinear interpolation and the design of 
an efficient cache that improves the performance of this memory-intensive operation.  
Additionally, packaging the device and securing proper FCC certification will be 
explored.   
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Section 2: Previous Work 
 
Pixel Router Design 
 
The Pixel Router is the result of a number of years of work and research at the 
University of Kentucky (and the University of North Carolina Chapel Hill?), and has 
undergone several design iterations.  The current version is implemented on a Xilinx 
Virtex-4 FPGA, part number XC4VLX40-FF1148.  Four 32Meg x 32-bit DDR SDRAM 
memory banks are used to store LUT data as well as input and output video frame 
buffer data.  These memory banks are each made up of two Micron MT4632M16P-5B 
devices and operate at 133MHz for a data rate of 266MHz.  The HDMI interface uses 4 
Analog Devices AD9398 receivers on the input side and 4 Analog Devices AD9889B 
transceivers for video transmission [PR Spec].  This allows the Pixel Router to receive 
and transmit 4 independent HDMI channels each capable of handling video at up to 
1080p resolution (1920x1080 pixels).   
 
The Pixel Router is designed with a Look Up Table architecture that allows any input 
pixel to be mapped to any output pixel, with the pixel color value multiplied by an alpha 
to allow for image intensity blending.  The Look Up Table uses an inverse mapping 
function where the input pixel address required is determined by the output pixel 
location.  This is because an input pixel can be assigned to multiple output pixel 
locations, but not vice versa.  A diagram showing this inverse mapping concept is shown 
below.  In this diagram, the [X, Y] coordinate system represents the output pixel space 
and the [U,V] coordinate system represents the input pixel space.   

 

 
Figure 2 - Inverse Mapping 

 
These features make the Pixel Router a flexible device capable of performing arbitrary 
image warping in a variety of applications.  The intent of the device is act as a stand-
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alone hardware platform to perform the image blending and warping required for multi-
projector displays, keeping a computer out of the loop.   
 
Cache with Blocks 
 
Previous work has been done by Vijai Raghunathan [3] to design a cache for the Pixel 
Router that improves performance and allows for bilinear interpolation to be 
implemented.  In this project, an optimal cache was designed that allowed the Pixel 
Router to operate at reasonable frame rates independent of the amount of image 
rotation.  This cache system used the concept of “Memory Blocks”, which divides the 
memory space into blocks and effectively rearranges the access pattern to minimize 
memory latency.  In this design, it was determined that the optimal block size was 64x64 
pixels, and the optimal cache size was 64x32 pixels.  Below is an image comparing the 
performance of this cache system to direct SDRAM access [3].   
 

 
Figure 3 - Cache with Blocks Simulation [3] 

 
This simulation measured the SDRAM access time for one 1024x768 pixel image frame 
across different amounts of image rotation, with bilinear interpolation applied to 
improve the image quality.  The simulations suggest that this cache design provides a 
significant performance improvement over direct SDRAM access.  Additionally, this 
cache design is independent of the amount of image rotation, as the access time 
remains nearly flat at just under 40 milliseconds. 
 
Another way of describing the performance of cache design that is perhaps more 
intuitive is in terms of output frame rate rather than access time.  For these simulations, 
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the access time for one output frame was measured.  In the Pixel Router, however, 
there are 4 output ports, and each one is processed sequentially rather than in parallel.  
The block diagram below is taken from the Pixel Router Specification [3] and shows the 
data path of the video output signals.   

 
 

 

 
Figure 4 – Video Output Data Path [3] 

 
The transmit FIFOs in the diagram above are written sequentially in 256 word bursts, 
and therefore the number of pixel values output from the Rd Data port on the Output 
DDR Controller is equal to 4 times the output resolution on each channel.  This creates a 
bottleneck in processing the data, and that same bottleneck is present on the interface 
between the FPGA and the Input DDR Controller.  Thus when considering the real frame 
rate on the Pixel Router, the access time presented in Raghunathan’s thesis should be 
multiplied by 4.  Parallelizing these memory interfaces could help improve bandwidth 
and therefore frame rate, but such work is outside of the scope of this project as the 
goal is to optimize the performance for the current hardware revision.  The conversion 
for the access time in the simulations above to Pixel Router frame rate is shown below. 
 

            
 

             
 

 
The access time in these simulations was approximately 35 milliseconds, which 
corresponds to a frame rate on the Pixel Router of just over 7 frames per second.  While 
this marks an improvement over implementing bilinear interpolation on previous design 
with no cache architecture, it is below the design target of 60 frames per second, and 
also below the nearest neighbor operation of 20 frames per second.  Additionally, it was 
determined that implementation of this cache system would be complex and costly.  
One of the primary goals of this project is to design a cache that is simple and effective 
at improving the frame rate of the Pixel Router employing bilinear interpolation. 
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Section 3: Bilinear Interpolation and Memory Performance 

 

Previously, the Pixel Router calculated the input pixel value to be mapped to the output 
pixel through a process called nearest neighbor interpolation.  When computing the 
mapping between input and output pixels after warping an image, floating point 
numbers with a non-zero value after the radix for the input pixel locations are produced.  
However, pixels by their nature are quantized color values in integer grids.  In nearest 
neighbor interpolation, the floating point x and y locations in the pixel grid are rounded 
to the nearest whole number to produce exact pixel locations.  When implemented 
using pre-defined look-up tables, as in the Pixel Router, this process eliminates the need 
for any calculation to be performed by the graphics hardware and minimizes the 
required memory bandwidth.  However, this method of interpolation is the least visually 
appealing, especially for content such as text and lines with rotation relative to the pixel 
grid.  Below is an image used by Vijai Raghunathan that has been rotated and 
interpolated using the nearest neighbor method [3].  The text in this image, while 
readable, appears jagged and rough and below users’ expectations for current graphics 
hardware. 
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Figure 5 - Rotation with Nearest Neighbor Interpolation [3] 

  

Bilinear interpolation is an image processing technique for improving the appearance of 
scaled, rotated, or warped images.  Instead of rounding the floating point x and y 
coordinates of pixel values, the bilinear interpolation method computes a pixel value 
based on the weighted values of each of the 4 neighboring pixels [5].  This concept is 
illustrated in the image below. 
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Figure 6 - Bilinear Interpolation Diagram 

     
In the above image, the blue dots represent input pixels, where X0, X1, Y0, and Y1 are 
integer values representing pixel locations in the image.  The function F(Xa, Yb) 
represents the color values of these pixels.  The location (X,Y) is the interpolated input 
pixel location that maps to an output pixel location after an image warping operation, 
where X and Y are floating point, non-integer values.  The two black dots represent 
values that are linearly interpolated along the X-direction.  The equations below 
describe the calculations to compute the value of F(X, Y) by first linearly interpolating in 
the X-direction, and using the interpolated values to linearly interpolate in the Y-
direction.  In the context of an image, the distance between X0 and X1 is one pixel, and 
the same is true in the Y direction.  That assumption is made in these equations. 
 

                                         
 

                                         
 

                                      
 
 
This three step equation can be simplified in to one by substituting the equations for 
F(X, Y0) and F(X, Y1) into the final equation.   
 
In order to perform the bilinear interpolation calculation, the FPGA must be provided 
with a base input pixel address (u, v) and a value for both the x and y directions that 
represent that percentage of pixels (u+1, v), (u, v+1), and (u+1, v+1) to use.  It was 
determined by Vijai Raghunathan that providing 3 bits after the radix point for both the 
x and y floating point values yielded sufficient resolution to produce visually appealing 
results.  The bits after the radix point correspond to the values of (x1 – x), (x – x0), (y1 – 
y), and (y – y0), and determine the precision of the bilinear interpolation calculation.  
Figure 7 below is an image produced by Vijai Raghunathan rotated with bilinear 
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interpolation calculated using only 3 binary digits after the radix [3].  Vijai found that 
increasing the number of bits after the radix beyond 3 provided limited benefit to the 
resulting image quality.  Thus, to conserve bit space in the Look Up Table, 3 bits will be 
used for bilinear interpolation. 
  
 

 
Figure 7 - Rotated Image with Bilinear Interpolation [3] 

 
Memory Performance 
 
Though bilinear interpolation provides great benefit to the appearance of rotated, 
warped, and scaled images, it is not without its cost.  The first penalty is the calculation 
time required to compute the resulting output pixel from the 4 input pixels.  The bilinear 
interpolation formula requires 4 multiplications and 4 additions to calculate the value of 
each output pixel.  However, this performance penalty can be treated as negligible 
because this process can be pipelined through hardware design.  The major 
performance penalty comes from having to read pixel values from 4 locations in 
Random Access Memory in order to compute the value of 1 output pixel.  This 
effectively multiplies the required memory bandwidth by 4.  Additionally, when 
accessing Random Access Memory, there is a latency penalty for opening a new 
memory row.  Bilinearly interpolated pixels always require pixel data from 2 different 
rows, exposing this latency penalty on every pixel calculation.  The Pixel Router is using 
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Micron MT4632M16P-5B devices for the memory banks.  These devices are set to 
operate at 133MHz, and are programmed to use 2.5 cycle CAS latency with a burst 
length of 2 [3].  Based on the datasheet, the row opening penalty is due to latency 
values, the Auto Refresh command (tRFC) and the Precharge command (tRP).  tRFC is 
specified at approximately 10 clock cycles and tRP at 2 clock cycles for a penalty of 12 
clock cycles each time a new row is accessed [6].  The image below, which is taken from 
the data sheet, shows the low-level signals required to access a memory location and 
the latency associated with such access. 
 
 
 

 
Figure 8 - SDRAM Read Timing Diagram [6] 
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If no action is taken to mitigate this latency when bilinear interpolation is implemented 
on the Pixel Router, the result is a dramatic decrease in performance (measured in 
output frame rate).  The current hardware operates at 20 frames per second using 
nearest neighbor interpolation.  The simulation by Vijai Raghunathan in the previous 
chapter suggests that the implementation of bilinear interpolation with no memory 
caching will cause the access time for one 1024x768 frame to drop to approximately 
100ms.  This equates to a frame rate on four 1024x768 output channels of 2.5 frames 
per second.  Such a low frame rate would render the Pixel Router useless for virtually all 
applications besides the display of still images.  The goal of the Pixel Router project is to 
produce a commercially viable product, and thus there cannot be a tradeoff between 
acceptable image quality and acceptable frame rate; both goals must be met.  Therefore 
a cache system must be designed to allow the Pixel Router to process image 
transformations using bilinear interpolation at a frame rate that meets users’ 
expectations. 
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Section 4: Prefetch Cache Design and Simulation 
 
Basic Cache System 
 
A common method of mitigating performance drops due to memory latency is to 
introduce a cache in the system.  A cache serves as a small block of memory that 
contains a subset of the data stored in a larger memory block, and can be accessed 
much more quickly.  Because the cache only contains a small amount of available 
memory, it should be loaded with data that is likely to be used on the next read 
attempt.  Of course, the memory address location that is requested cannot always be 
guaranteed to be available in the cache because it is likely that all or most of the 
memory address locations in the larger memory block will be accessed at some point.  
Thus, a cache design is often evaluated by its efficiency or hit rate, which is defined as 
the percentage of memory access requests where the data is available in the cache 
versus the total number of memory access requests.   
 
The design of the Pixel Router lends itself well to a cache system because the data in the 
input memory is always accessed in the same order.  The access pattern is described by 
Look Up Tables (LUTs) which are calculated offline and loaded into the Pixel Router’s 
memory at runtime.  Because there is a much larger clock cycle penalty for accessing 
new memory rows than for new memory columns, the goal of a cache design for the 
Pixel Router should be to minimize the number of rows that need to be opened in order 
to read one video frame from memory.  The previous work by Vijai Raghunathan 
described earlier focused on improving the performance of the pixel router under the 
worst-case scenario, which is a 45 degree rotation image transformation.  Under that 
scenario, each memory access attempt would request pixel data from a new row and 
column in memory.  His design proved effective at enhancing the performance of the 
Pixel Router under that condition, however the memory block system would have been 
costly and difficult to implement.  Additionally, a 45 degree image rotation is not a 
typical scenario for a multi projector display.  While projectors that are to be blended 
via software calibration can be placed arbitrarily, often they are at least “casually 
aligned” and placed in a generally normal, horizontal configuration.   Often, the average 
rotation amount for each projector is quite small.  The cache design for the Pixel Router 
will remove the constraint of rotation independence and instead focus on optimization 
for cases of image rotation of 5 degrees or less.  Thus, a simpler cache system can be 
designed that is highly efficient for small amounts of rotation, which covers a majority of 
applications.  Simulations will be conducted with up to 45 degrees of rotation, however, 
to fully evaluate any cache design.   
The primary goal of the cache for the Pixel Router is to improve the frame rate for 
performing bilinear interpolation.  Because bilinear interpolation requires two rows of 
input pixel data, the cache should contain at least two rows of data to avoid row 
opening penalties on every pixel read.  Below are tables showing simulations of the Pixel 
Router using bilinear interpolation with simple two row caches of various widths with 
different amounts of rotation on the input image.  Hennessy and Patterson [7] describe 



15 
 
 

several areas in which to optimize a cache.  These include reducing the hit time, 
increasing the cache bandwidth, reducing the penalty for a cache miss, reducing the 
cache miss rate, and adding parallelism to the cache architecture.  In these simulations, 
the effectiveness of the cache is evaluated by three metrics: frame rate, hit rate, and 
input memory efficiency.  The ultimate goal is to increase the frame rate on the device, 
and the effectivenss of the cache is determined by the hit rate and input memory 
efficiency.  The Frame Rate calculation uses the Pixel Router’s clock speed of 133MHz.  
The assumptions in this calculation are that the cache cannot be written to and read 
from at the same time, and that it takes one clock cycle to read one interpolated pixel 
from the cache (4 data locations due to bilinear interpolation).  The Pseudocode below 
describes the process for determining the total number of clock cycles to render one 
frame of data. 
 
for each (CacheLine_Refill) { 

 if(currentRow = lastRowOpened) 

  loadCycles = CACHE_WIDTH * T_READ_PIXEL 

 else 

loadCycles = T_OPEN_ROW + CACHE_WIDTH * 

T_READ_PIXEL 

 

Total_Cycles = Total_Cycles + loadCycles + 

pixelsProcessed 

} 

  
This code reflects the behavior of the SDRAM by including the clock cycle penalty for 
opening a new row of data.  This calculation also assumes that the cache cannot be 
written to and read from at the same time by adding the pixelsProcessed value to 
the number of cycles calculated.  The number of clock cycles calculated by this 
(Total_Cycles) refers to the cycles required for one frame of data on one video 
output.  The Pixel Router uses 4 video outputs that are written to in round-robin 
fashion, so to estimate the real frame rate this number must be multiplied by 4 
(assuming all video outputs have the same image transformation/rotation).  The clock 
cycle value listed in the tables below is calculated before this multiplication.  The frame 
rate is calculated as  

           
 

              
             

 
Input memory efficiency is related to the frame rate and describes how effectively the 
SDRAM for the input frame buffer is being utilized.  It can be calculated using the ratio 
of pixels read versus the total number of pixels possible to be read, and an efficiency of 
100% would mean that a pixel is read from the SDRAM at every available instance.  For 
DDR SDRAM operating at 133MHz, that corresponds to 266 million pixels read per 
second.  Row opening wait times, during which no input pixels can be read, reduces the 
memory efficiency.  The memory efficiency can be calculated based on the output frame 
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rate for cases of regular image transformation.  As discussed previously, when applying 
bilinear interpolation to the image 4 input pixels are required to calculate each output 
pixel.  However, for a regular image rotation there are 2 unique pixels used per output 
pixel, as there is overlap between the input pixels required to calculate each output 
pixel.  Therefore, input memory efficiency on DDR SDRAM for the Pixel Router can be 
calculated as 

                         
                                    

             
 

 
The cache hit rate describes how effectively the data within the cache is utilized by 
showing the number of times the cache is accessed where the desired data is in the 
cache versus the number of times where that data is not in the cache.  It is calculated as 
 

          
               

                       
 

 
The tables below show the results of the simulations of the initial cache design, 
evaluated using the metrics described above. 

Table 1 - 16 Pixel Cache Simulation 

Rotation (Degrees) Clock Cycles Frame Rate (fps) Hit Rate (%) Memory Eff. (%) 

0 3171612 10.48 92.77 24.80 
1 3358048 9.90 92.05 23.42 
2 3172687 10.48 92.14 24.79 

3 3953832 8.41 90.05 19.89 
4 2793343 11.90 92.39 28.15 
5 2859129 11.63 91.95 27.51 

10 5166938 6.44 85.46 15.22 
15 6999775 4.75 80.34 11.24 

20 8390303 3.96 76.48 9.37 
25 9368092 3.55 73.80 8.39 
30 9960016 3.34 72.23 7.90 
35 10190250 3.26 71.71 7.72 
40 10080609 3.30 72.16 7.80 
45 9651829 3.44 73.53 8.15 
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Table 2 - 32 Pixel Cache Simulation 

Rotation (Degrees) Clock Cycles Frame Rate (fps) Hit Rate (%) Memory Eff. (%) 

0 2355396 14.12 96.58 33.39 
1 2268204 14.66 96.52 34.67 
2 2091471 15.90 96.56 37.60 
3 3067752 10.84 94.95 25.64 
4 3993127 8.33 93.42 19.69 
5 4883897 6.81 91.95 16.10 

10 8824890 3.77 85.46 8.91 
15 11948447 2.78 80.34 6.58 
20 14310431 2.32 76.48 5.50 
25 15961532 2.08 73.80 4.93 

30 16947728 1.96 72.23 4.64 
35 17310474 1.92 71.71 4.54 
40 17087169 1.95 72.16 4.60 
45 16313397 2.04 73.53 4.82 

 

Table 3 - 64 Pixel Cache Simulation 

Rotation (Degrees) Clock Cycles Frame Rate (fps) Hit Rate (%) Memory Eff. (%) 

0 1974900 16.84 98.34 39.82 
1 1944180 17.10 98.25 40.45 
2 3822415 8.70 96.56 20.57 

3 5609832 5.93 94.95 14.02 
4 7303463 4.55 93.42 10.77 
5 8933433 3.72 91.95 8.80 

10 16140794 2.06 85.46 4.87 
15 21845791 1.52 80.34 3.60 

20 26150687 1.27 76.48 3.01 
25 29148412 1.14 73.80 2.70 
30 30923152 1.08 72.23 2.54 
35 31550922 1.05 71.71 2.49 
40 31100289 1.07 72.16 2.53 
45 29636533 1.12 73.53 2.65 
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Table 4 - 128 Pixel Cache Simulation 

Rotation (Degrees) Clock Cycles Frame Rate (fps) Hit Rate (%) Memory Eff. (%) 

0 1483583 22.41 99.12 53.01 
1 2822772 11.78 98.25 27.86 
2 5553359 5.99 96.56 14.16 
3 8151912 4.08 94.95 9.65 
4 10613799 3.13 93.42 7.41 
5 12982969 2.56 91.95 6.06 

10 23456698 1.42 85.46 3.35 
15 31743135 1.05 80.34 2.48 
20 37990943 0.88 76.48 2.07 
25 42335292 0.79 73.80 1.86 

30 44898576 0.74 72.23 1.75 
35 45791370 0.73 71.71 1.72 
40 45113409 0.74 72.16 1.74 
45 42959669 0.77 73.53 1.83 

 
 
Several conclusions can be drawn from this data.  The first is that, in terms of frame 
rate, none of these is an acceptable cache design.  While the cache is providing some 
benefit, the frame rate for all but one case is less than 20 fps.  This is despite the fact 
that the hit rate for each cache is very high.  All 4 cache widths have hit rates of over 
90% for image rotations of between 0 and 5 degrees.  Another conclusion is that 
generally smaller cache widths perform better for higher amounts of image rotation and 
larger cache widths perform better for lower amounts of image rotation.  A graph 
showing the frame rates of all 4 cache design is shown below.   
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Figure 9 - Cache Simulation Comparing Cache Width 

 
Another interesting aspect of this cache design that can be drawn from the data is that, 
for smaller cache widths especially, the frame rate is lower for no rotation than it is for 
small amounts of rotation (1-4 degrees generally).  Two factors contribute to this effect.  
The first is that there is an advantage when the row desired to be loaded in to the cache 
is the same as the previous row opened, and thus the row opening penalty does not 
apply as the row is already precharged.  Two separate rows are used on each cache 
load, but for small amounts of positive (counter-clockwise) rotation, as was simulated, 
the first line loaded in the current cache reload is the same row as the second line 
loaded in the previous cache load.  For instance, the cache might contain data from 
rows 0 and 1, and when it is refreshed contain data from rows 1 and 2.  In these 
simulations, images with no rotation did not enjoy this advantage because rows would 
always be loaded in alternating order (e.g. 0, 1, 0, 1, 0, 1, etc.).  With some effort, the 
same data rows could be loaded in the cache in the order 0, 1, 1, 0, 0, 1, etc., 
maximizing the efficiency of the memory in this case.  Because this was not simulated in 
this matter, 0 degree image rotation had in some cases significantly lower frame rate 
than small amounts of image rotation. 
 
As an aside, something similar to a “resonant frequency” of the cache can be 
determined by describing image rotation (a continuous function) using the number of 
pixels (discrete values) in the horizontal direction before a change in row value occurs.  
For a given image rotation amount, θ, this can be calculated using  

       
  

  
 

where Δr is the change in pixel row value, and Δc is the change in pixel column value.  
For angles less than 45 degrees, Δr can be assumed to be 1.  The caches described 
earlier will operate most efficiently at the amount of image rotation with a 
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corresponding Δc close to but below their cache width.  This means that few pixels at 
the end of the cache will go unused because they belong to the wrong row, resulting in 
fewer wasted clock cycles loading unnecessary pixels.  Below in Table 5 is a list of the 
frequencies that were simulated, along with their corresponding Δc.  A rotation of 0 
degrees would of course have an infinite Δc. 

 
Table 5 - Optimized Cache Sizes for Rotation 

Rotation (degrees) Δc 

1 57 
2 29 
3 19 
4 14 

5 11 
10 6 
15 4 
20 3 
25 2 
30 2 
35 1 
40 1 
45 1 

 
This means that a cache of width 64 will operate most efficiently for images rotated 
approximately 1 degree and a cache of width 32 will operate most efficiently for images 
rotated approximately 2 degrees.  A cache width of 16 presents an interesting scenario 
for images rotated 3 degrees.  Because Δc is 19, if 16 usable pixels are loaded in to the 
cache in one cache refill, only 3 usable pixels will be loaded in to the cache on the next 
cache refill because the image row changes on the 20th pixel.  Thirteen pixels loaded into 
the cache1 go unused in this cache refill.  Only 59% of the pixels loaded in the two cache 
refills are useful, and this perhaps more accurately describes this cache’s effectiveness 
than hit rate percentage. 
  
Prefetch Cache System 
 
Clearly, there exists room for improvement in the design of this cache system.  A major 
area of inefficiency lies in the fact that the cache cannot be written to and read from at 
the same time.  This can be addressed by exploring the concept of “prefetching”.  The 
pre-calculated LUT architecture of the Pixel Router allows for knowledge of the exact 
input pixel locations where the cache will need to be refilled.  This gives rise to the 
ability to create a “ping-pong” cache system, where one cache buffer is being read from 
while another cache buffer is being loaded with the next set of pixels to be used.   The 
net effect of this is a two stage cache pipeline system that eliminates the inefficiency of 
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being unable to read from and write to the cache at the same time.  The image below 
illustrates this concept with an example cache width of 8 pixels.   

 
 

 
Figure 10 - Cache Refill Example 

 
In the above image, the blue outlined squares represent the output pixel space, and the 
rotated blue shaded squares represent input pixels in memory that get rotated in the 
image transformation.  The input image in this case is 16x4 pixels, and each cache buffer 
contains 8x2 pixels.  The image represents a simulation of 3 separate cache fills, first to 
Buffer A, then to Buffer B, then back to Buffer A.  The lower half of the image shows the 
input pixels applied to the output image space after bilinear interpolation.  The green 
pixels in the lower half of the image were interpolated from the input pixels in Buffer A, 
and the yellow pixels were interpolated from the input pixels in Buffer B.  The dark grey 
pixels are output pixels which have no corresponding input pixels due to the rotation 
and thus are ignored for processing and show up as black pixels on the output. 
This prefetching cache system was simulated in the same method as the non-prefetch 
cache system.  Again, in these simulations only each cache buffer contains only 2 rows 
of pixels.  The results of the simulation are shown in the tables and graph below. 
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Table 6 - 16 Pixel Cache Simulation with Prefetching 

Rotation (Degrees) Clock Cycles Frame Rate (fps) Hit Rate (%) Memory Eff. (%) 

0 2262312 14.70 92.77 34.76 
1 2357228 14.11 92.05 33.36 
2 2183259 15.23 92.14 36.02 
3 2701524 12.31 90.05 29.11 
4 1835531 18.11 92.39 42.84 
5 1846757 18.00 91.95 42.58 

10 3337974 9.96 85.46 23.56 
15 4525451 7.35 80.34 17.38 
20 5430239 6.12 76.48 14.48 
25 6071372 5.48 73.80 12.95 

30 6466160 5.14 72.23 12.16 
35 6630138 5.01 71.71 11.86 
40 6577329 5.06 72.16 11.96 
45 6321045 5.26 73.53 12.44 

 
Table 7 - 32 Pixel Cache Simulation with Prefetching 

Rotation (Degrees) Clock Cycles Frame Rate (fps) Hit Rate (%) Memory Eff. (%) 

0 1495236 22.24 96.58 52.60 
1 1391436 23.90 96.52 56.52 
2 1225999 27.12 96.56 64.15 

3 1796712 18.51 94.95 43.77 
4 2337959 14.22 93.42 33.64 
5 2859129 11.63 91.95 27.51 

10 5166938 6.44 85.46 15.22 
15 6999775 4.75 80.34 11.24 
20 8390303 3.96 76.48 9.37 
25 9368092 3.55 73.80 8.39 
30 9960016 3.34 72.23 7.90 
35 10190250 3.26 71.71 7.72 
40 10080609 3.30 72.16 7.80 
45 9651829 3.44 73.53 8.15 
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Table 8 - 64 Pixel Cache Simulation with Prefetching 

Rotation (Degrees) Clock Cycles Frame Rate (fps) Hit Rate (%) Memory Eff. (%) 

0 1139316 29.18 98.34 69.03 
1 1065588 31.20 98.25 73.80 
2 2091471 15.90 96.56 37.60 
3 3067752 10.84 94.95 25.64 
4 3993127 8.33 93.42 19.69 
5 4883897 6.81 91.95 16.10 

10 8824890 3.77 85.46 8.91 
15 11948447 2.78 80.34 6.58 
20 14310431 2.32 76.48 5.50 
25 15961532 2.08 73.80 4.93 

30 16947728 1.96 72.23 4.64 
35 17310474 1.92 71.71 4.54 
40 17087169 1.95 72.16 4.60 
45 16313397 2.04 73.53 4.82 

 
Table 9 - 128 Pixel Cache Simulation with Prefetching 

Rotation (Degrees) Clock Cycles Frame Rate (fps) Hit Rate (%) Memory Eff. (%) 

0 1041215 31.93 99.12 75.53 
1 1944180 17.10 98.25 40.45 
2 3822415 8.70 96.56 20.57 

3 5609832 5.93 94.95 14.02 
4 7303463 4.55 93.42 10.77 
5 8933433 3.72 91.95 8.80 

10 16140794 2.06 85.46 4.87 
15 21845791 1.52 80.34 3.60 
20 26150687 1.27 76.48 3.01 
25 29148412 1.14 73.80 2.70 
30 30923152 1.08 72.23 2.54 
35 31550922 1.05 71.71 2.49 
40 31100289 1.07 72.16 2.53 
45 29636533 1.12 73.53 2.65 
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Figure 11 - Cache Simulation with Prefetching 

 
Based on these simulations, the frame rate using a prefetching cache system is greatly 
improved over using a non-prefetching cache.  One item to note, however, is that the 
cache hit rate is unchanged between the two cache designs.  This is because cache hit 
rate is defined as 
 

                
            

                       
     . 

 
The number of cache hits and cache misses is unaffected by adding a second cache 
buffer.  The only operational difference is that when a cache miss occurs, the buffers are 
switched if the second buffer is done loading.  The table below shows the percentage 
improvement of the prefetching cache over the non-prefetching cache for the four 
cache widths examined. 
 

Table 10 - Prefetching Cache Improvement 

Cache Width (Pixels) Average Improvement (%) 

16 50.95 

32 68.89 
64 81.91 

128 45.03 
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Dynamically Loaded Cache System 
 
This cache design brings the Pixel Router operation with bilinear interpolation closer in 
line to the previous performance standard using nearest neighbor interpolation of 20 
frames per second.  In fact, several cache widths exceed this mark for small amounts of 
rotation.  However, it is clear that the performance of this cache is very dependent on 
the image transformation to be performed.  While the goal of this project was to design 
a cache that is optimized for small amounts of rotation, a robust design should make 
every effort to maximize performance in as many cases as possible while still 
maintaining its optimization target.  The prefetching cache design reduced or eliminated 
the clock cycle penalty of reading data from the cache.  However as the amount of 
image rotation is increased, more of the pixels that are loaded in to the cache remain 
unused.  Once again, the fixed nature of the LUT architecture of the Pixel Router lends 
itself to a solution to this issue.  Just as it is possible to know which memory address in 
the input buffer to begin loading the second cache buffer with, it is also possible to 
know which pixels in the cache will cause a cache miss.  Thus, an additional field can be 
added to the look up table that tells the Pixel Router how many pixels to load in the 
cache on a given cache refill.  This “Pixels to Load” field allows the cache to be 
dynamically loaded with only pixels that are guaranteed to be used rather than with an 
entire set of pixels equal to the cache width.    
 
To determine the impact of a dynamically loaded cache system, a 64 pixel wide cache 
was examined.  The table below shows the simulation results of the cache simulated 
under the same conditions as the previous cache designs.  The following graph 
compares the frame rates of the dynamically loaded cache with the 64 pixel statically 
loaded cache with and without prefetching.   
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Table 11 - Dynamically Loaded Cache Simulation 
 

Rotation (Degrees) Clock Cycles Frame Rate (fps) Hit Rate (%) 
Memory 
Eff. (%) 

0 1114740 29.83 98.34 70.55 
1 986036 33.72 98.25 79.76 
2 1171737 28.38 96.56 67.12 
3 1350784 24.62 94.95 58.22 
4 1518483 21.90 93.42 51.79 
5 1679797 19.79 91.95 46.82 

10 2652096 12.54 85.46 29.65 
15 3597563 9.24 80.34 21.86 

20 4320215 7.70 76.48 18.20 
25 4835102 6.88 73.80 16.27 
30 5155964 6.45 72.23 15.25 
35 5295096 6.28 71.71 14.85 
40 5263599 6.32 72.16 14.94 
45 5072001 6.56 73.53 15.51 

 

 

Figure 12 - Dynamically Loaded Cache Simulation 

Dynamically loading this cache with only pixels that are guaranteed to be useful 
provides an enormous performance increase, especially for cases with image rotation.  
This makes sense as image rotation causes fewer pixels in a given input row to be valid 
for a given output row.  Dynamically loading the cache brings any given cache width in 
line with the values in Table 5, where the effective cache width is roughly equal to Δc for 
a given image rotation value.  Based on these simulations, the Pixel Router should 
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operate at or above 20 frames per second for up to 5 degrees of rotation for a 1024x768 
pixel image. 

 
Cache Definitions 

 
The cache design implemented in the Pixel Router to support bilinear interpolation was 
a 64 pixel wide dynamically loaded cache with prefetching.  The image below presents 
this cache and the definitions of its fields. 
 

 

Figure 13 – Cache Field Definitions Definitions 

  
The cache is comprised of two buffers, Buffer A and Buffer B, which act as the prefetch 
pipeline.  One buffer is being read from while another buffer is being written to.  Each 
cache buffer consists of one cache line (Line 0).  A cache line contains data from two 
rows of input pixels, however this data is only valid for one output pixel line due to 
bilinear interpolation, thus one line represents two rows.  The input pixel rows in each 
cache line are referred to as banks, and each cache line contains two of them (Bank 0 
and Bank 1).  There are 64 columns in each bank which represent the 64 pixel locations 
available.  

 
Additional Cache Lines 
 
Cache simulations to this point have included one cache line per buffer.  The natural 
extension of this is to consider whether additional cache lines would provide 
performance benefits.  To determine this, an 8 line cache was examined.  In this case, 
Buffer A and Buffer B would each contain 8 cache lines, and each cache line would be 
filled starting with the address of the next predicted cache miss.  The simulation 
showing the percentage improvement in frame rate of an 8 line cache over a 1 line 
cache are shown below. 
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Table 12 - Cache with 8 Lines 

Rotation (Deg) Frame Rate, 8 Lines (fps) Frame Rate, 1 Line (fps) Improvement (%) 

0 38.81 29.83 30.13 

1 33.50 33.72 -0.66 

2 28.69 28.38 1.09 

3 25.08 24.62 1.90 

4 22.48 21.90 2.64 

5 20.43 19.79 3.21 

10 13.11 12.54 4.55 

15 9.72 9.24 5.13 

20 8.13 7.70 5.66 

25 7.31 6.88 6.27 

30 6.90 6.45 6.98 

35 6.77 6.28 7.87 

40 6.88 6.32 8.98 

45 7.24 6.56 10.47 

 
While the 8 line cache offers improvement for the case of 0 degree rotation, there is 
little difference in performance for images with rotation.  The improvement in the 0 
degree rotation case can be attributed to the fact that this cache is organized and 
written in such a way as to minimize row opening penalties.  To achieve this, all entries 
of a particular row within a cache refill are opened consecutively, regardless of the 
order they will be accessed in.  This has the greatest impact on images with no rotation 
because most of the entries in a particular cache refill are in the same video row, thus 
eliminating a greater number of row opening penalties.  For rotated images, however, 
roughly the same number of row opening penalties occur in an 8 line cache as in a 1 line 
cache, which is why there is little if any improvement gained by using an 8 line cache in 
this case.  Because the overall benefit of additional cache lines is minimal, it was decided 
that a 1 line cache would suffice in the final implementation of the Pixel Router to 
reduce hardware complexity and conserve memory space on the FPGA.    

 
Cache Operation Example 
 
To better understand the process of writing to and reading from a cache, here a clock 
cycle simulation is presented as an example.  This simulation uses data from a look up 
table that describes a 3 degree image rotation.  Below is the data from that look up 
table. 
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Table 13 - Prefetch LUT Data 

Pixels to Load Input Column Input Row Cache Line Bank 

20 0 0 0 0 
20 0 1 0 1 
22 18 1 0 0 
22 18 2 0 1 
20 38 2 0 0 
20 38 3 0 1 
22 56 3 0 0 
22 56 4 0 1 

 
There are a few points to note about this data.  The Pixels to Load field in this data, as in 
all cases, is an even value.  This is due to the fact that the DDR SDRAM data bus to the 
FPGA is effectively 64 bits per clock cycle, which is enough data for two 24-bit pixels.  
Thus, it does not make sense to load an odd number of pixels because two pixels are 
loaded per clock cycle no matter what.  In addition, the Input Column field is also even.  
This will be addressed in a later section, but to save space in the Look Up Table, the 
input address field was reduced by one bit, forcing the column of the address to be an 
even number.  The image below shows the timing diagram of the memory reads and 
writes for this simulation. 
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Figure 14 - Cache Operation Example Timing Diagram 

 
This conceptual timing diagram illustrates the impact of the memory overhead and the 
effect of the “ping-pong” cache.  The first line represents pixels output to the frame 
buffer, where they are stored before being output on the HDMI port.  The next two lines 
tell what activity is taking place on either Buffer A or Buffer B, and how many clock 
cycles it takes.  The last line is the Clock signal for reference.  Note that after the first 
time Buffer A is written to, the amount of time the output to the frame buffer is idle 
drops significantly.  Starting on the 45th clock cycle, the output frame buffer is written to 
for 57 clock cycles and idle for 47 clock cycles, giving it an active percentage of 54.8%.  
The first 44 clock cycles can be considered a one-time penalty at the beginning of the 
frame to load the first pixels into the first cache buffer, as after that output pixels will 
always be processed concurrently with cache refills.   

 
Measured Results   

 
This cache design has been implemented on the Pixel Router by Verien Design, Inc., an 
outside consulting firm, and is operational.  The frame rate for LUTs of different rotation 
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amounts was measured to validate the results from simulation.  The results are shown 
in the table below, along with the simulated values. 

 
Table 14 - Measured versus Simulated Frame Rates 

Rotation (Deg) Real Frame Rate (FPS) Simulated Frame Rate (FPS) 

0 20 29.83 
1 30 33.72 
2 20 28.38 
3 20 24.62 
4 20 21.90 
5 15 19.79 

10 12 12.54 

 
This frame rate data was taken from the Pixel Router control interface, which provides 
frame rate information for each input channel.  The frame rate on Channel 1 was 
measured.  The Pixel Router calculates frame rate in hardware and can only provide 
values that are divisors of 60, without rounding up.  This explains the difference 
between the simulated and measured values.  For instance, at 0 degrees rotation, the 
simulated value was 29.83 degrees, but the measured value in hardware rounded down 
to 20 degrees.  Based on this measurement restriction, however, the measured frame 
rate correlates directly with the simulated frame rate.  Unfortunately, measurements 
for images rotated more than 10 degrees were not able to be obtained due to a flaw in 
the hardware.   
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Section 5: LUT Description and Generation 
 
LUT Description 
 
The image transformation performed by the Pixel Router is calculated offline and 
described by Look Up Tables (LUTs) that tell the hardware what order to process the 
pixels in and the attenuation factor for specific pixels.  To accommodate the prefetching 
cache system, a dual LUT architecture was developed.  In this architecture, one LUT 
contains 2 entries for each cache refill (one for each row of input memory to be read) 
that describe which input pixels to load in the cache, how many to load, and which 
cache location they should be stored in.  This LUT is known as the “Prefetch LUT”.  The 
other LUT, known as the “Per-Pixel LUT”, has one entry per output pixel and contains 
information about where in the cache the input pixels are located, the attenuation 
factor of this output pixel, and the X and Y pixel weights for bilinear interpolation.  Both 
the Prefetch LUT and Per-Pixel LUT are made up of 32-bit entries, with headers at the 
top that describe which type of LUT it is and how many entries are present.  The Per-
Pixel LUT contains as many entries as there are pixels in the output space.  The number 
of entries in the Prefetch LUT is dependent on the number of cache refreshes required 
for a particular image transformation.  The tables below are described in the Pixel 
Router Specification [3] and contain a detailed description of each LUT field. 
 

Table 15 - Prefetch LUT Description [3] 

Bits Field Description 

31 Reserved Reserved 
30:26 Pixels_To_Load Pixels to be loaded in to the cache, mod 2.  The number of 

pixels loaded in to the cache is 2*(Pixels_To_Load+1). 
25:24 Channel_ID Input channel ID 
23:4 Offset Address of the first pixel to be loaded in to the cache line, 

mod 2.  Address space allows for an image with 
1920x1080 pixels 

3 CD_Bank Bank within Buffer A or B to which data will be written. 
2:0 CD_ID Cache line where the data will be written.  Note that the 

Pixel Router currently only supports 1 cache line, so this 
value is always 0. 
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Table 16 - Per Pixel LUT Description [3] 

Bits Field Description 

31:30 Command Command bits: 
00: User bilinear interpolation, normal operation. 
01: Switch cache buffers (A to B or B to A) due to cache 
miss. 

29:28 Reserved Reserved 
27 CD_ID1 Cache Destination ID 1.  Cache line in bank 1 containing 

pixel 3 and 4 for bilinear interpolation.   
26 CD_ID0 Cache Destination ID 0.  Cache line in bank 0 containing 

pixel 1 and 2 for bilinear interpolation. 
25:20 ADDR1 Address of pixel 3 within cache line CD_ID1.  Pixel 4 is 

located at ADDR1+1. 
19:14 ADDR0 Address of pixel 1 within cache line CD_ID0.  Pixel 2 is 

located at ADDR0+1. 
13:6 Alpha Alpha blending attenuation factor. 
5:3 SubY The Y coordinate of the output pixel relative to the input 

pixels for bilinear interpolation. 
2:0 SubX The X coordinate of the output pixel relative to the input 

pixels for bilinear interpolation. 

 
The LUT entry fields were designed to maximize flexibility for any future upgrades by 
enabling control of multiple cache lines (only one is used currently) and leaving bits 
available for future use.  For instance, the cache could be expanded to 128 pixels wide 
by using increasing the field size of ADDR1, ADDR0, and Pixels_To_Load by one bit using 
the bits that are currently labeled “Reserved” in the LUT description.  Alternatively, 
additional cache lines could be added, causing the field size of CD_ID1 and CD_ID0 to 
increase.  Through continued use of the Pixel Router and evaluation of future 
requirements, it will be determined which, if any, of these changes would provide 
maximum benefit or usefulness.   
 
LUT Generation 
 
Once the image transformation has been determined, either through calibration or a 
regular function such as image rotation, a two-pass approach is used to generate the 
Look Up Tables for the Pixel Router.  The first pass transforms the output space of each 
output pixel to the input space via the image transformation function to correlate an 
input memory address for every output pixel.  In the second pass, a “virtual cache” is 
created to simulate the cache operation in the Pixel Router.  For each output pixel, it is 
determined whether or not the input pixel is present in the cache.  If the pixel is not 
present, a new Prefetch LUT entry is created for that input memory address.  A 
flowchart diagram describing the LUT generation process is shown below in Figure ***. 
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Figure 15 - LUT Generation Flowchart 
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Section 6: Packaging 
 
Case and Power Supply 
 
For successful marketing and commercialization, a product must be packaged in such a 
way that it is appealing as well as easy to use for end users.  Mindful of this, and for the 
practical needs of easy and safe transportation, a 1U rack mount case was chosen and 
modified to house the Pixel Router.  An off-the-shelf ATX power supply was placed in 
the case with the Pixel Router unit.  An image of the interior of the rack mount case is 
shown below in Figure 16. 
 

 

Figure 16 - Pixel Router Packaging 

 
The case design presented a few physical and technical challenges.  The first issue to 
address was making the HDMI ports available on the exterior of the case.  Few devices 
use 8 HDMI ports in their design, and there was no off-the-shelf 8 port HDMI jack 
available for purchase.  Therefore, in collaboration with the Center for Manufacturing 
Systems at UK, a custom device was developed to rigidly hold in place the female end of 
up to 8 male to female HDMI cables, with holes on the exterior side to allow the user to 
plug HDMI cables directly in to the box.  The male ends of the HDMI cables connect to 
the HDMI jacks on the board itself, thereby extending the HDMI ports from the interior 
to the exterior of the box. 
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The 1U ATX power supply chosen to power the Pixel Router presented a technical 
challenge as well.  ATX power supplies are designed to provide power to personal 
computer systems, which have much more varied voltage requirements than the Pixel 
Router.  The Pixel Router is designed to be supplied with +5V and +3.3V for power.  The 
ATX power supply provides output power at +12V, +5V, +3.3V, -5V, and -12V, and has 
minimum current requirements on each of these outputs.  Below is a table with the 
voltage outputs and the respective minimum current requirements, per the data sheet 
for the power supply [8]. 
 

Table 17 - ATX Power Supply Minimum Current Requirements 

Voltage (V) Minimum Current 

+12 2 Amps 
+5 3 Amps 

+3.3 0.3 Amps 
-5 0.1 Amps 

-12 0.1 Amps 

  
If the minimum current requirements are not met, the power supply will not function.  
The Pixel Router was not designed to accept power at all of these voltages, thus external 
resistors capable of handling high currents were applied to the power supply outputs to 
meet the current requirements.  The circuit diagram for this is shown below. 
 

 

Figure 17 - ATX Power Supply Power Dissipation Schematic 
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This design is extremely wasteful, as over 60W of power is essentially dissipated as heat.  
In fact, for safety reasons the 3.4Ω and 1.5Ω resistors, which constitute the bulk of the 
dissipated power, are attached directly to a heat sink which has a fan blowing over the 
plates.  Temperature measurements for these resistors were taken with the heat sink 
applied, and are listed below with the 1.5Ω resistor labeled R1 and the 3.4Ω resistor 
labeled R2.   

Table 18 - Heat Characteristics of Power Dissipation Resistors 

Time (min) R1 (°C) R2(°C) 

0 24.1 24.1 
1 34.4 55 
2 38 64 

3 47 73 

4 48 80.5 
5 50.5 83.5 
6 46.5 86 
7 48.5 78 
8 51.5 81.5 
9 50 81 

10 50 85 

 
Warning labels would need to be placed on or near the resistors stating that they should 
not be touched, as they get quite hot.  There is, however, no risk of fire or other damage 
due to their temperature.  Future iterations of packaging for the Pixel Router will 
include either a power supply designed specifically to meet its requirements or an off 
the shelf supply with fewer or no minimum current requirements.  This will reduce or 
eliminate the need for these resistors, which have the potential to be hazardous to end 
users. 
 
FCC Certification 
 
For products to be sold within the US, they must undergo testing to ensure they meet 
certain safety and regulatory requirements.  A requirement for electronic products is 
that they pass FCC conducted and radiated emissions testing that verifies the device is 
not unintentionally broadcasting electromagnetic signals at certain frequencies and 
power levels over the air or through power lines.  This helps prevent noise and 
interference between devices that could limit their effectiveness or capability.  The 
requirements for devices classified as “Unintentional Radiators”, of which the Pixel 
Router is one, is specified in Part 15, Subpart B of the FCC regulations.  Devices under 
these regulations fall under two categories for which two sets of standards exist.  The 
first category is “Class A Digital Devices”, which constitute devices “marketed for use in 
a commercial, industrial, or business environment” *9+.  The second category is “Class B 
Digital Devices”, consisting of devices “marketed for use in a residential environment”.  
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The Pixel Router is intended for commercial purposes, therefore it is required to meet 
Class A standards, which have tighter restrictions on conducted and radiated emissions 
limits.  These limits, taken from the FCC Part 15 guidelines [9], are listed in the tables 
below.  Note that for radiated emissions the units are converted from μV/m to dBμV/m 
for consistency with actual measurements taken during compliance testing for the Pixel 
Router. 
 

Table 19 - FCC Part 15 B Class A Radiated Emissions Limits [9] 

Frequency of Emission (MHz) Field Strength (dBμV/m) 

30-88 39 
88-216 43.5 

216-960 46.4 

Above 960 49.5 

 
Table 20 - FCC Part 15 B Class A Conducted Emissions Limits [9] 

Frequency of Emission (MHz) Conducted Limit (dBμV) 

 Quasi-peak Average 
0.15-0.5 79 66 
0.5-30 73 60 

  
To ensure compliance with these standards and obtain legal marketability, the Pixel 
Router underwent conducted and radiated emissions testing.  The Pixel Router is 
capable of operating in two modes: Pass-through Mode, in which the input sources are 
directly mapped to the video outputs and no transformation is applied, and blended 
mode, in which the LUT-based image transformation is applied.  Changes in operation of 
a device can affect its emissions characteristics due to changes in which signal traces are 
active and at which frequency, thus the Pixel Router was tested in both modes of 
operation.  Intertek Testing Services NA, Inc. performed the compliance testing in their 
10m semi-anechoic chamber.  This chamber acts as a tightly sealed Faraday cage which 
lets very little electromagnetic radiation enter or escape and minimizes electromagnetic 
reflection on interior surfaces, ensuring results that are unperturbed by outside 
interference.   
 
The Pixel Router was non-compliant for both conducted and radiated emissions tests on 
the first pass for each.  Some minor modifications were able reduce the emissions levels 
in both cases, however, and provide compliant results.  The initial non-compliant 
frequency scan for the radiated emissions test is shown below.  This test was conducted 
in Pass-through Mode.  In the plot, the red line indicates the compliance threshold, the 
blue line indicates the emission values for vertically polarized waves, and the green line 
for horizontally polarized waves. 
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Figure 18 - Initial Radiated Emissions Scan 
 
In the plot above, the blue triangle above the red line indicates a frequency that was 
closely examined for compliance due to the proximity of the peak in the initial scan to 
the compliancy level.  In this case, the emissions at that frequency (130.04 MHz) was 
found to be non-compliant with a value of 46.23 dBμV/m versus a compliancy limit of 
43.5 dBμV/m.  It was found that the cause of this non-compliance was poor connection 
and ground of several of the HDMI cables on the rear of the device.  The custom HDMI 
connection port that was designed to allow 8 HDMI cables to be connected was not 
designed with emissions compliance in mind.  Thus, the male and female cable ends 
would not always make a tight connection, allowing radiation to escape.  Two 
modifications were done to allow for FCC compliance.  The first was to support the 
cables near the connection point to prevent sagging.  This allowed the cables to enter 
the female end at an angle closer to 90 degrees, creating a more secure connection.  
The other modification was the application of an “RF gasket” along the top edge of the 
connection points.  This gasket is essentially conductive tape which creates a better 
connection between the ground shield on the HDMI cables and the chassis ground of 
the device.  An image of the rear connection with these modifications is shown below.  
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Figure 19 - Support for HDMI Cables 
 
In the above image, the RF gasket is the darker strip along the top of the cables, and the 
cable support is the white Styrofoam underneath the cables.  Minor modifications such 
as these are allowed to be included to produce compliant results, provided that 
sufficient steps are taken in the final product to address the issues alleviated by the 
modifications.  In a production version of the Pixel Router, these issues would be 
addressed by redesigning the HDMI connection port using standard HDMI jacks rather 
than male-female extension cables.  In addition to reducing the emissions spectrum, 
such a design change would also give the Pixel Router the look and feel of a 
professionally designed commercial device.  The chart below shows the results of 
emissions testing after these modifications, which produced compliant results.   
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Figure 20 - Compliant Radiated Emissions Scan 

In the chart above, there is a blue spike at 195 MHz which appears to be non-compliant 
as it crosses the red line.  However, upon close examination around that frequency, it 
was determined that the actual reading was 37.23 dBµV/m which is less than the 
compliant value at that frequency of 43.5 dBµV/m.  Thus, the radiated emissions were 
determined to be within compliant limits. 
 
The conducted emissions for the Pixel Router were also found to be non-compliant upon 
first scan.  The chart below shows the results of this initial scan.  In this test, the 
emissions are measured on the two power supply lines (“phase” and “neutral” for a 3-
pronged power outlet) relative to ground, which are referred to as Line 1 and Line 2.  
The green line in the chart below represents Line 1, and the blue line represents Line 2.  
Additionally, there are two standards for compliance, Quasi-peak and Average.  The 
Quasi-peak compliancy levels are shown by the black line on the chart, and the Average 
compliancy levels are shown by the red line.   
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Figure 21 - Initial Conducted Emissions Scan 

In the above scan, while the quasi-peak values are compliant, the average values on Line 
1 are above compliancy levels resulting in a non-compliant test.  Compliancy for 
conducted emissions is often related to the power supply of a device and how much 
filtering circuitry is in place to minimize emissions.  The off-the-shelf power supply 
chosen for the Pixel Router was operating in a non-compliant mode in this case.  To 
correct this non-compliancy, an in-line power filter (part number 15EF1F) was placed 
between the power connection and the power supply which acted as a low-pass filter to 
reduce the high frequency noise that was being emitted.  An image of this modification 
is shown below. 
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Figure 22 - In-line Power Filter 

In the above image, the in-line power filter is attached to the case of the Pixel Router 
with conductive copper tape, which ensured a connection to chassis ground.  The 
circuitry of the filter is shown in the schematic below, which is taken from the datasheet 
of the device [11].  The component values, listed on the outside label of the device, are 
as follows: L = 22.27H, C = 0.047µF (x2), R = 1.5MΩ. 
   

 

Figure 23 - In-line Power Filter Schematic [11] 

This in-line filter significantly reduced the conducted emissions levels of the Pixel 
Router.  The results of the second conducted emissions scan are shown below. 
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Figure 24 - Compliant Conducted Emissions Scan 

 
This chart shows the conducted emissions values well below compliance limits in both 
the average and quasi-peak measurements.  In a production version of the Pixel Router 
a different power supply would likely be chosen.  This would not only likely fix the 
conducted emissions non-compliance, but also address the need to waste power due to 
minimum current requirements on different voltage levels.  If a different power supply 
was chosen, conducted and radiated emissions tests would need to be performed again 
to ensure compliance.  If the same power supply was to be used, an in-line power filter 
such as the one used in testing would need to be installed to remain in compliance. 
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Section 7: Business Strategy 
 
Potential Markets 
 
The Pixel Router was designed to be a commercially viable product for performing 
image blending and warping for displays with multiple projectors.  With the 
improvements made to the image quality and frame rate, and obtaining the required 
federal certifications, commercial opportunities for the product can begin to be 
explored.  While the Pixel Router hardware could be useful in applications outside of 
multi-projector edge blending, for the purposes of this project only edge-blended 
display applications will be considered.   
 
A number of industries are currently making use of multi-projector displays for various 
purposes.  These industries can be broadly divided into two categories: 
military/government agencies and private industry.  The two primary needs for multi-
projector displays in the military sector are in troop training and simulation displays and 
command and control centers.  In FY2011, the US Army allocated $118M toward 
command and control procurement and $354M toward troop training and simulation 
systems procurement [12].  Additionally, $185M was allocated by the Army for research 
and development in command and control systems and $35M was allocated for 
research and development of Next Generation Training and Simulation systems [13].  
The total funds allocated in all of these categories amounts to $693M, which shows a 
strong demand by the Army for these types of systems.  Ultra-high resolution displays 
that can be rapidly set up and calibrated help meet the needs of the US military in both 
of these categories.  Such systems can provide a large screen to display content such as 
high-resolution images, video feeds, and other relevant information about a mission.  
Additionally, the flexibility of arbitrary projector calibration software allows for the 
creation of immersive training and simulation environments that can provide a sense of 
reality to the soldier.  The Pixel Router hardware is well positioned to meet these needs 
by allowing multiple video inputs of arbitrary content rather than requiring source code 
modification like many multi-projector software solutions.  Additionally, because the 
Pixel Router is FPGA-based hardware that does not run an operating system or connect 
to an IP network, it is highly reliable, requires no “boot-up” time, and is not prone to IP-
based network attacks, making it an ideal solution for mission critical or information 
sensitive displays.   
 
In-roads have been made in establishing the Pixel Router as a viable option for multi-
projector displays for the US military.  In 2008, a Phase II STTR sponsored by the Navy 
was awarded to the University of Kentucky for development and commercialization of 
this device.  STTR (Small Business Technology Transfer) grants are awarded as a 
partnership between a research institution and a small private company with the intent 
of assisting both entities in commercializing research.  Upon completion of a Phase II 
contract, the product developed under the STTR is eligible for a Phase III award, which is 
an open-ended contract for production and procurement.  The STTR awarded by the 
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Navy to the University of Kentucky was sponsored by the Naval Air Command for the 
development of portable immersive training systems.  The goal of this research is to 
develop shipboard flight simulators for mission rehearsal and training.  Through the 
completion of the Phase II project and research, the Pixel Router will be well positioned 
for future potential contracts with the Navy or other branches of the armed forces.   
 
The private sector also presents a market opportunity for the Pixel Router and large-
format, high-resolution displays.  Such displays could be useful in engineering design 
visualization, teleconferencing and telepresence, and command and control centers.  As 
in the military sector, the reliability, security, and rapid deployability of the Pixel Router 
specific niche markets within private industry.  One of these markets could be in the 
creation of a portable telepresence display to enable traveling executives the ability to 
conduct meetings while away from the conference room.  Another example market is 
trade show booth displays, where the largest, flashiest booth often draws the most 
attention.  In such displays, the portability and ease of set up is an extremely important 
factor.  While the private sector does present opportunities for the Pixel Router, the 
primary market focus should be on the government and military sector where large 
market size and lower barriers to entry allow for easier adoption and rapid expansion of 
business. 
 
Cost of Materials 
 
It outside of the scope of this document to examine the specific financial conjectures of 
any potential company that could be formed to develop and market the Pixel Router.  
However, to determine the viability of the product, the cost to produce the device is 
examined here.  Below is a table showing the costs associated with the most recent 
production of hardware, which occurred in mid 2008.   

Table 21 – Pixel Router Cost of Materials and Production [14] 

Item Cost per Board 

Surface Mount Components $1,302  
Case $138  

Power Supply $82  
PCB Fabrication $335  

Assembly $492  
Miscellaneous Manufacturer Expenses $190  

TOTAL $2,539  

 
These prices were quoted for a very small run of production intended only for research 
and testing, not for sale.  Should the need arise for larger volume production, it is 
believed that the cost of materials and production could be significantly reduced due to 
bulk order discounts.  The cost of producing the Pixel Router makes it unlikely that the 
device could ever be practical for the consumer market, however the commercial and 
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military markets would easily be able to bear the cost for such a device, even with a 
significant profit margin.  
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Section 8: Conclusion and Future Work 
 
Significant steps toward commercializing the Pixel Router have been taken by improving 
performance in frame rate and image quality, as well as packaging the device and 
certifying it for compliance with the FCC.  An effective cache system was designed that 
allowed for the implementation of bilinear interpolation at frame rates of at least 20 fps 
for up to 5 degrees of image rotation.  The maximum frame rate achieved in simulation 
was measured at over 33 fps for 1 degree of rotation on the image, and in practice the 
maximum frame rate measured was 30 fps for 1 degree of rotation.  The previous design 
of the Pixel Router, which used nearest neighbor interpolation, only performed at 20 
fps.  Thus, the cache system allowed for a 50% improvement in frame rate while 
processing 4 times as many pixels to perform bilinear interpolation.  The robust, 
portable design of the packaging for the Pixel Router and obtaining FCC certification for 
the device allow it to be marketed and legally sold in the US. 

Significant work remains to be done, however, to move the Pixel Router toward true 
marketability.  A frame rate of 20 to 30 fps, while acceptable in some applications, is 
below most users’ expectations of 60 fps, which is standard on most video devices.  One 
way to address this problem is to increase the clock speed of the processor and memory 
on the device.  Currently both components are operating at 133MHz.  Modern DDR3 
SDRAM devices are capable of operating at over 1333MHZ, which could improve the 
frame rate capability on the Pixel Router by a factor of 10.   Another topic of future work 
for the Pixel Router is to improve the ease of use of the device by calculating the 
projector blending and warping masks on the device, rather than in an offline step.  This 
would allow the Pixel Router to act as a completely stand-alone device, whereas 
currently a PC is required for the calculation of the LUTs.  This would require 
implementing a microcontroller on Pixel Router that is capable of performing these 
calculations.  Upgrading the RAM hardware and on-board LUT generation would 
transform the Pixel Router into a truly compelling product with the potential to achieve 
broad adoption across a variety of markets. 
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Appendix A: LUT Generation Code 
 

The following code, written in C++, is used to generate the LUTs used by the Pixel 
Router. 

#include<stdio.h> 

#include<stdlib.h> 

#include<conio.h> 

#include<imdebug.h> 

#include<iostream> 

#include<math.h> 

#include "CacheFunctions.h" 

 

 

using namespace std; 

 

const int ROTATION_ANGLE = 45; 

 

/*/////////////////////////////////////////////////////////

////////////////// 

Cache Fill Description 

 

The cache is filled in the following order: 

Bank 0, Line 0 

Bank 1, Line 0 

Bank 0, Line 1 

 

Bank 1, Line 1 

Bank 0, Line 2 

... 

Bank 0, Line 7 

Bank 1, Line 7 

 

There are 2 cache buffers (containing 2 cache banks each) 

that "ping-pong". 

As one cache buffer is being loaded with data from DRAM, 

the other cache 

buffer is being drained and providing data to the output.   

 

To conserve memory bandwidth, each cache line is only 

loaded with the number 

of valid pixels for that fill.  Valid pixels can be any 

pixel used for bilinear 

interpolation. 
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Each cacheLine contains a "numPixels" field defining the 

number of pixels that 

have been loaded in to it.   

 

The Prefetch LUT will be written such that cache lines 

containing the same  

row will be written consecutively to minimize the overhead 

penalty for  

opening a new cache row.   

 

/*/////////////////////////////////////////////////////////

////////////////// 

int round(float); 

char * convert(long int); 

 

void writelut(void); 

void get_input_pixel(float&, float&); 

int get_fractional_bits(float, bool&); 

//void DecodePixel(Pixel&); 

 

//void EncodePixel(Pixel&); 

void WritePrefetchLUT(int, cacheStart, int&); 

void WritePerPixelLUT(int, int, int, int, int, int, int); 

 

 

float* Rotate(int, int, int); 

//bool CheckNextPixel(Pixel, cacheStart); 

 

bool PIP = false;  //Picture In Picture 

int PIP_U_OFFSET = 800; 

int PIP_V_OFFSET = 450; 

int PIP_WIDTH = 320; 

int PIP_HEIGHT = 180; 

 

 

int salpha=0; 

long int *lut; 

int *fracBits; 

unsigned int *alpha; 

 

int perPixelEntries = 0; 

 

int 

no_of_proj,novertices,notri,minpixu,minpixv,maxpixu,maxpixv

; 

float maxu=-1e10, maxv=-1e10, minu=1e10, minv=1e10, urange, 

vrange; 
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float miniu,miniv,maxiu,maxiv,uprime,vprime; 

float *ucoord, *vcoord,*mesh; 

 

 

int main(int argc, char * argv[]) { 

 char *filez,*alphaz,strfile[2],blinz[20],*blinzi; 

 char alphaa[20]; 

 char perPixName[20], prefetchName[20]; 

 int filecnt=1; 

 int pip_int = 0; 

 if(argc == 12) 

 { 

  IWIDTH = atoi(argv[1]); 

  IHEIGHT = atoi(argv[2]); 

  OWIDTH = atoi(argv[3]); 

  OHEIGHT = atoi(argv[4]); 

  ICHANNELS = atoi(argv[5]); 

  OCHANNELS = atoi(argv[6]); 

  pip_int = atoi(argv[7]); 

  if(pip_int == 1) 

   PIP = true; 

  else 

   PIP = false; 

  PIP_U_OFFSET = atoi(argv[8]); 

  PIP_V_OFFSET = atoi(argv[9]); 

  PIP_WIDTH = atoi(argv[10]); 

  PIP_HEIGHT = atoi(argv[11]); 

 } 

 else if(argc == 7) 

 { 

  IWIDTH = atoi(argv[1]); 

  IHEIGHT = atoi(argv[2]); 

  OWIDTH = atoi(argv[3]); 

  OHEIGHT = atoi(argv[4]); 

  ICHANNELS = atoi(argv[5]); 

  OCHANNELS = atoi(argv[6]); 

  PIP = false; 

 } 

 else if(argc == 5) 

 { 

  IWIDTH = atoi(argv[1]); 

  IHEIGHT = atoi(argv[2]); 

  ICHANNELS = atoi(argv[3]); 

  OCHANNELS = atoi(argv[4]); 

  PIP = false; 

 } 

 else if(argc == 4) 
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 { 

  IWIDTH = atoi(argv[1]); 

  IHEIGHT = atoi(argv[2]); 

  ICHANNELS = atoi(argv[3]); 

  PIP = false; 

 } 

 else 

  printf("Correct Usage: finalpolate.exe [IWIDTH] 

[IHEIGHT] [OWIDTH] [OHEIGHT] [ICHANNELS] \n[PIP] 

[PIP_U_OFFSET] [PIP_V_OFFSET] [PIP_WIDTH] [PIP_HEIGHT]"); 

  

 

 char a[30],b[10]; 

 int i,j,temp,k; 

 float **vertices; // changing the number of vertices 

 int **triangles; // changing the number of triangles 

 alphaz=&alphaa[0]; 

 blinzi=&blinz[0]; 

 float tx1,ty1,tx2,ty2,tx3,ty3,tu1,tv1,tu2,tv2,tu3,tv3; 

 int tt1,tt2,tt3; 

 char *try1,lutv[33]; 

 long int cnt=0; 

 lut=new long int [OWIDTH*OHEIGHT]; 

 fracBits = new int [OWIDTH*OHEIGHT]; //Fractional Bits 

for Bilinear Interpolation 

 alpha=new unsigned int[OWIDTH*OHEIGHT]; 

 ucoord= new float[OWIDTH*OHEIGHT]; 

 vcoord= new float[OWIDTH*OHEIGHT]; 

 //mesh=new float[1024*768]; 

 //flex(); // reading flex file values 

 //Binary_flex(); // Reading basic info (number of 

projectors, inside BBox) 

// while(filecnt<no_of_proj) { 

  for(j=0;j<OHEIGHT;j++) {   

 //initializing lut,alpha,u and v 

   for(i=0;i<OWIDTH;i++) { 

    ucoord[j*OWIDTH+i]=-1; 

    lut[j*OWIDTH+i]=-1; 

    vcoord[j*OWIDTH+i]=-1; 

    alpha[j*OWIDTH+i]=-1; 

  //  mesh[j*1024+i]=-1; 

   } 

  } 

 

 

  strcpy(alphaa,"lut"); 

  strcpy(blinz,"cache_lut"); 



53 
 
 

  strcpy(perPixName,"perPixelTest"); 

  strcpy(prefetchName,"prefetchTest"); 

  _itoa(filecnt,strfile,10); 

  strcat(alphaa,strfile); 

  strcat(blinz,strfile); 

  strcat(perPixName,strfile); 

  strcat(prefetchName,strfile); 

  strcat(alphaa,".txt"); 

  strcat(blinz,".txt"); 

  strcat(perPixName,".csv"); 

  strcat(prefetchName,".csv"); 

  printf("\n%s",alphaz); 

  f2=fopen(alphaz,"wb+");   // opening the per-

pixel lut  ****Changed to w+ from wb+ to support testing 

  f3=fopen(blinzi,"wb+");  // opening the 

prefetching lut ****Changed to w+ from wb+ to support 

testing 

  perPix=fopen(perPixName,"w+"); 

  preFetch=fopen(prefetchName,"w+"); 

//  lutFile.open(alphaz, ios::out | ios::binary); 

//  fprintf(f2,"%d %d %d\n",filecnt,OWIDTH,OHEIGHT); 

  //Write header for LUTs in binary format 

///////////////////////////////////////////////////////////

//////////////////////////////////// 

//  Changes to support Ben in FPGA testing 

///////////////////////////////////////////////////////////

//////////////////////////////////// 

  int* p; 

  p = &filecnt; 

  fwrite(p,sizeof(int),1,f2); 

  p = &OWIDTH; 

  fwrite(p,sizeof(int),1,f2); 

  p = &OHEIGHT; 

  fwrite(p,sizeof(int),1,f2); 

//  int dummy = 55; 

//  p = &dummy; 

//  fwrite(p,sizeof(int),1,f2); 

  for(int i = 0; i < 3; i++) 

   fwrite(p,sizeof(int),1,f3); 

 

 

///////////////////////////////////////////////////////////

//////////////////////////////////// 

  //fprintf(f3,"\n");//Header space at the top, 

placeholder for size information 

  strcpy(alphaa,"test"); 

  _itoa(filecnt,strfile,10); 
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  strcat(alphaa,strfile); 

  strcat(alphaa,".csv"); 

  printf("\n%s",alphaz); 

   

  writelut(); 

  filecnt=filecnt+1; 

//  fclose(fp_binary); 

  fclose(preFetch); 

  fclose(perPix); 

// } 

 printf("\nFinished\n"); 

 getch(); 

 delete(lut); 

 delete(alpha); 

 delete [] ucoord; 

 delete [] vcoord; 

 delete(vertices); 

 delete(triangles); 

 return(0); 

} 

 

 

 

int round(float unrndval) { 

 int temp1=unrndval; 

 if(unrndval>=(temp1+0.5)) { 

  temp1=temp1+1; 

 } 

 return(temp1); 

} 

 

 

char * convert(long int lutval) { 

 char 

a[11],b[33],a1[11],b1[33],c[33]="000000000",c1[9],d[5]; 

 char *ret; 

 int k,i,j=0; 

// itoa(col,a,2); 

// itoa(row,b,2); 

 itoa(lutval,b1,2); 

 for(k=0;k<(32-strlen(b1));k++) { 

  c[k]='0'; 

 } 

 c[32-strlen(b1)]=NULL; 

 strcat(c,b1); 

 ret=&c[0]; 

 return(ret); 
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} 

void writelut (void) { 

  

 int i,j,k,trow,tcol,talpha=0,index=0; 

 int ufrac, vfrac; 

 int uprime_int; 

 int vprime_int; 

 char *lutval,lutv[33]; 

 unsigned char a1,a2,a3,a4; 

 unsigned int check=0; 

 long int store=0,offset; 

 FILE* prefetchTest; 

 FILE* perPixTest; 

 

 float *c; 

 int angle = ROTATION_ANGLE; 

 bool increment = false; 

 

 char preName [17] = "prefetchTest.csv"; 

 char perPixName [17] = "perPixText.csv"; 

 

 prefetchTest = fopen(preName, "w"); 

 perPixTest = fopen(perPixName, "w"); 

 

 //First pass FOR loops - Get input addresses and store 

them in an array 

 for(j=0;j<OHEIGHT; j++){  //change 

  for(i=0;i<OWIDTH;i++) { 

   c = Rotate(i, j, angle); 

   fprintf(perPixTest,"%d,%d,%4.2f,%4.2f\n",j, 

i, c[1],c[0]); 

   tcol = c[0]; 

   trow = c[1]; 

   talpha = 255; 

   index = 0; 

   ufrac = get_fractional_bits(c[0], 

increment); 

   //REMOVE FOR TESTING 

   //if(increment) 

   // tcol++; 

   vfrac = get_fractional_bits(c[1], 

increment); 

   //REMOVE FOR TESTING 

   //if(increment) 

   // trow++; 

    

   //TEST CODE// 
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//   ufrac = 0; 

//   vfrac = 0; 

   //tcol = tcol - 2; 

   if (tcol < 0 || tcol >=IWIDTH) 

   { 

    talpha = 0; 

   } 

   //trow--; 

   if (trow < 0 || trow >=IHEIGHT) 

   {  

    talpha = 0; 

   } 

 

 

   fracBits[j*OWIDTH+i] =  

((vfrac&7)<<3)|(ufrac&7); 

 

   offset=trow*IWIDTH+tcol; 

 

    

   //TEST MODE:  JUST USE PIXEL 0 

/*   offset = 0;   

   talpha = 255; 

   index = 0; 

   fracBits[j*OWIDTH+i] = 0; 

 

*/ 

 

   if ((talpha&255) == 0) 

   { 

    store = 0x80000000; 

    lut[(/*OHEIGHT-1-*/j)*OWIDTH+i] = 

store; 

   } 

   else 

   { 

    store=(0<<31) | ((talpha&255)<<23) | 

((index&3)<<21) | ((offset&0x001fffff)); 

    lut[(/*OHEIGHT-1-*/j)*OWIDTH+i] = 

store; 

   } 

  } 

 } 

  //Initial pass FOR loops 

 

 //Simulated cache values 

 cacheStart cacheBuffer; 
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 cacheStart cacheWriteBuffer; 

 

 sortedCache cacheSorted; 

 

 InitializeCache(cacheBuffer); 

 InitializeCache(cacheWriteBuffer); 

 InitializeSortedCache(cacheSorted); 

 

 bool inCache = false; //Pixel in cache? 

 bool firstEntry = true; 

 bool nearestNeighbor = false; 

 long lutOffset; 

 int lutAlpha; 

 int lutFrac; 

 int channelID; 

 int lutIgnore; 

 int command; 

 int bank0Column = 0; 

 int bank1Column = 0; 

 int prefetchSize=0; 

 

 int bank0Line = 0; 

 int bank1Line = 0; 

 

 //Variables for delayed per-pixel write 

 //This is done so that a command of '1' shows up on 

the last valid cache hit 

 int prevLutAlpha; 

 int prevLutFrac; 

 int prevCommand; 

 int prevBank0Column; 

 int prevBank1Column; 

 int prevBank1Line; 

 int prevBank0Line; 

 

 int lastRowOpened=0; 

 

 int refreshCommands = 0; 

  

 

 Pixel currentPixel; 

 Pixel ptrPixel; 

 

 

 //Second pass FOR loops - Determine per-pixel and 

prefetching LUT values, write to file 

 for(int r = 0; r < OHEIGHT; r++) 
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 { 

  for(int c = 0; c < OWIDTH; c++) 

  { 

   //Store row, column data in Pixel for easy 

portability 

   ptrPixel.row = r; 

   ptrPixel.column = c; 

   EncodePixel(ptrPixel); 

 

   //Determine if pixel is valid 

   lutIgnore = DecodeIgnore(lut[r*OWIDTH+c]); 

   if (lutIgnore != 1) 

   { 

    //Get the current pixel address and 

data 

    currentPixel.address = 

DecodeOffset(lut[r*OWIDTH+c]); 

    DecodeInputPixel(currentPixel);  

  

    channelID = DecodeCID(lut[r*OWIDTH+c]); 

    lutAlpha = 

DecodeAlpha(lut[r*OWIDTH+c]); 

    lutFrac = fracBits[r*OWIDTH+c]; 

     

    //CheckCache returns true unless cache 

is full 

    //If room exists in the cache, a pixel 

is placed there in CheckCache 

    inCache = CheckCache(currentPixel, 

ptrPixel, cacheBuffer, channelID, bank0Column, bank1Column, 

         command, 

nearestNeighbor, bank0Line, bank1Line); 

 

    //Set fractional bits to 0 for nearest 

neighbor 

    if(nearestNeighbor) 

     lutFrac = 0; 

      

     

    if(!inCache) 

    { 

     //Sort the cache for writing; 

     SortCache(cacheBuffer, 

cacheSorted); 

      

     //Write the cache 

     WriteCache(cacheSorted);  
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     //16 entries are written for every 

cache miss. 

     prefetchSize += 2*CACHE_LINES; 

 

 

     if(!firstEntry) 

     { 

      WritePerPixelLUT(1, 

prevBank1Line, prevBank0Line, prevBank1Column, 

prevBank0Column, 

        prevLutAlpha, 

prevLutFrac); 

      perPixelEntries++; 

      refreshCommands++; 

     } 

 

      

     //Reset cache, assume that none of 

the data can be reused. 

     InitializeCache(cacheBuffer); 

    

 InitializeSortedCache(cacheSorted); 

 

     //Place pixel in cache   

  

     inCache = CheckCache(currentPixel, 

ptrPixel, cacheBuffer, channelID, bank0Column, bank1Column, 

      command, nearestNeighbor, 

bank0Line, bank1Line); 

 

     prevCommand = 0;//1 is already 

written, don't write it again next time 

     prevBank1Line = bank1Line; 

     prevBank0Line = bank0Line; 

     prevBank1Column = bank1Column; 

     prevBank0Column = bank0Column; 

     prevLutAlpha = lutAlpha; 

     prevLutFrac = lutFrac; 

      

 

 

    }//!In Cache If 

    else 

    { 

    //Write Per Pixel LUT 

     if(!firstEntry) 
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     { 

      WritePerPixelLUT(prevCommand, 

prevBank1Line, prevBank0Line, prevBank1Column, 

       prevBank0Column, 

prevLutAlpha, prevLutFrac); 

      perPixelEntries++; 

      if(prevCommand==1) 

       refreshCommands++; 

     } 

     else //Debug first entry 

      cout<<"First entry: 

"<<command<<", "<<bank1Line<<", "<<bank0Line<<", "<< 

bank1Column<< 

       ", "<<bank0Column<<", 

"<<lutAlpha<<", "<<lutFrac<<endl; 

 

     //pixelsToLoad++;  

 

     prevCommand = command; 

     prevBank1Line = bank1Line; 

     prevBank0Line = bank0Line; 

     prevBank1Column = bank1Column; 

     prevBank0Column = bank0Column; 

     prevLutAlpha = lutAlpha; 

     prevLutFrac = lutFrac; 

    } 

 

   }//Ignore If 

   else 

   { 

    //Ignore 

    if(!firstEntry) 

    { 

     WritePerPixelLUT(prevCommand, 

prevBank1Line, prevBank0Line, prevBank1Column, 

      prevBank0Column, 

prevLutAlpha, prevLutFrac); 

     perPixelEntries++; 

     if(prevCommand==1) 

      refreshCommands++; 

    } 

 

    prevCommand = 0; 

    prevBank1Line = 0; 

    prevBank0Line = 0; 

    prevBank1Column = 0; 

    prevBank0Column = 0; 
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    prevLutAlpha = 0; 

    prevLutFrac = 0; 

   } 

 

   //This makes sure that nothing is written 

for the first value so that we don't have extra data 

   if (firstEntry) 

    { 

     firstEntry = false; 

    } 

 

  }//Per-pixel FOR loops 

 } 

 //Finished FOR loops, write last per-pixel entry; 

 //Make sure a '1' is written as the command 

 WritePerPixelLUT(1, prevBank1Line, prevBank0Line, 

prevBank1Column, 

      prevBank0Column, 

prevLutAlpha, prevLutFrac); 

 perPixelEntries++; 

 refreshCommands++; 

 

 cout<<"Per Pixel Entries:  "<<perPixelEntries<<endl; 

 cout<<"Cache Refresh Commands:  

"<<refreshCommands<<endl; 

 //Sort the cache for writing; 

 SortCache(cacheBuffer, cacheSorted); 

      

 //Write the cache 

 WriteCache(cacheSorted);  

      

 //16 entries are written for every cache miss. 

 prefetchSize += 2*CACHE_LINES; 

 

 //Write Prefetch Size Info at top of file 

///////////////////////////////////////////////////////////

////////////////////////////////////// 

// Changes to support Ben in FPGA testing 

///////////////////////////////////////////////////////////

////////////////////////////////////// 

 

 fseek(f3,0,0); 

 prefetchSize *= 4; //Prefetch Size in Bytes 

 int*p; 

 int dummy = 99; 

 p = &dummy; 

 fwrite(p,sizeof(int),1,f3); 
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 p = &prefetchSize; 

 fwrite(p,sizeof(int),1,f3); 

 dummy = 0; 

 p = &dummy; 

 fwrite(p,sizeof(int),1,f3); 

 

 fclose(f3); 

///////////////////////////////////////////////////////////

//////////////////////////////////////// 

 printf("\n%d\n", prefetchSize/4); 

} 

 

 

void get_input_pixel (float& vcoord, float& ucoord) 

{ 

 //u: WIDTH 

 //v: HEIGHT 

 float vcoord_norm = vcoord; 

 float ucoord_norm = ucoord; 

 float INWIDTH = IWIDTH/1.0; 

 float INHEIGHT = IHEIGHT/1.0; 

 float OUTWIDTH = OWIDTH/1.0; 

 float OUTHEIGHT = OHEIGHT/1.0; 

 unsigned int vf = 0, uf = 0; 

 

 //Row, column projector index 

 if (vcoord_norm > 0.5) 

  vf = 1; 

 if (ucoord_norm > 0.5) 

  uf = 1; 

 

 //One Input channel 

 if (ICHANNELS == 1) 

 { 

  //Channel 1 across all 4 projectors 

  ucoord = ucoord_norm*(INWIDTH); 

  vcoord = vcoord_norm*(INHEIGHT); 

//  ucoord = round(ucoord_norm*(INWIDTH/2) + 

uf*(INWIDTH/2)); 

//  vcoord = round(vcoord_norm*(INHEIGHT/2) + 

vf*(INHEIGHT/2)); 

 } 

 //Two Input Channels 

 else if (ICHANNELS == 2) 

 { 

  //Picture In Picture enabled 

  if (PIP){ 
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   if ((vcoord_norm*INHEIGHT >= PIP_V_OFFSET) 

&& 

    (vcoord_norm*INHEIGHT < PIP_V_OFFSET + 

PIP_HEIGHT) && 

    (ucoord_norm*INWIDTH >= PIP_U_OFFSET) 

&& 

    (ucoord_norm*INWIDTH < PIP_U_OFFSET + 

PIP_WIDTH)){ 

     

     vcoord = (vcoord_norm*(INHEIGHT-1) 

- PIP_V_OFFSET)*(INHEIGHT/PIP_HEIGHT); 

     ucoord = (ucoord_norm*(INWIDTH) - 

PIP_U_OFFSET)*(INWIDTH/PIP_WIDTH) + INWIDTH; 

   } 

   else{ 

    ucoord = ucoord_norm*(INWIDTH-2); 

    vcoord = vcoord_norm*(INHEIGHT-1); 

   } 

  } 

  else{ 

 

   //Channel 1 on top, channel 2 on bottom 

   if(OCHANNELS == 4) 

   { 

    if(vf == 0) { 

     ucoord = ucoord_norm*(INWIDTH); 

     vcoord = vcoord_norm*(INHEIGHT*2); 

    } 

    else if (vf == 1) { 

     ucoord = ucoord_norm*(INWIDTH) + 

INWIDTH; 

     vcoord = vcoord_norm*(INHEIGHT*2) 

- INHEIGHT; 

    } 

   } 

   //Channel 1 on left, channel 2 on right 

   if (OCHANNELS == 3) 

   { 

    if (uf == 0) 

     ucoord = ucoord_norm*(INWIDTH*2); 

    else if (uf == 1) 

     ucoord = ucoord_norm*(INWIDTH*2); 

 

    vcoord = vcoord_norm*(INHEIGHT); 

   } 

  } 

 } 
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 //Three Input Channels 

 else if (ICHANNELS == 3) 

 { 

  //Channel 1 spread across top, Channels 2 and 3 

on bottom 

  if(vf == 0){ 

   ucoord = ucoord_norm*(INWIDTH); 

   vcoord = vcoord_norm*(INHEIGHT*2); 

  } 

  else if (vf == 1){ 

   if (uf == 0){ 

    ucoord = ucoord_norm*(INWIDTH*2) + 

INWIDTH; 

    vcoord = vcoord_norm*(INHEIGHT*2) - 

INHEIGHT; 

   } 

   else if (uf == 1) { 

    ucoord = ucoord_norm*(INWIDTH*2) - 

INWIDTH; 

    vcoord = vcoord_norm*(INHEIGHT*2); 

   } 

  } 

 } 

 

 else //ICHANNELS == 4 

 { 

  ucoord = ucoord_norm * (INWIDTH*2-1); 

  vcoord = vcoord_norm * INHEIGHT*2; 

 } 

} 

 

 

int get_fractional_bits(float number, bool& increment) 

{ 

 int temp = number;  //convert to integer, drop the 

fractional bits 

 float fractional = number - temp; 

 

 increment = false; 

 

 //Assume 3 bit binary representation 

 int fractional_bits = 0; 

 if (fractional < (0.125))  

  fractional_bits = 0; 

 else if (fractional < (2*.125))// + 0.125/2)) 

  fractional_bits = 1; 

 else if (fractional < (3*.125))// + 0.125/2)) 
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  fractional_bits = 2; 

 else if (fractional < (4*.125))// + 0.125/2)) 

  fractional_bits = 3; 

 else if (fractional < (5*.125))// + 0.125/2)) 

  fractional_bits = 4; 

 else if (fractional < (6*.125))// + 0.125/2)) 

  fractional_bits = 5; 

 else if (fractional < (7*.125))// + 0.125/2)) 

  fractional_bits = 6; 

 else if (fractional < (8*.125))// + 0.125/2)) 

  fractional_bits = 7; //Some rounding error 

here, weighted toward 7, but we shouldn't see this case. 

 else 

 { 

  fractional_bits = 0; 

  increment = true; //Round up to next number 

  //printf("Increment"); 

 } 

 

 return fractional_bits; 

} 

 

 

 

 

void WritePerPixelLUT(int command, int CDID1, int CDID0, 

int bank1Column, int bank0Column, 

       int alpha, int fracBits) 

{ 

 

 

 int store = 0; 

 

 int yFrac =  0; 

 int xFrac = 0; 

 

 xFrac = fracBits&0x7; 

 yFrac = (fracBits&0x38)>>3; 

 

 /*Per-Pixel LUT Format: 

 |command|Reserved|CD_ID_1|CD_ID_0|bank1Column|bank0Col

umn|Alpha|Sub Y|Sub X| 

 31    30 29    28 27   27 26   26 25       20 19       

14 13  6 5   3 2   0 

 */ 

 //Cache_Adr_1:  Address of Pixel 3 within cache line 

for bilinear 
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 //Cache_Adr_1:  Address of Pixel 1 within cache line 

for bilinear 

 //fprintf(perPix,"%d,%d,%d,%d,%d,%d,%d,%d\n",command,C

DID1,CDID0,bank1Column,bank0Column,alpha,xFrac,yFrac); 

 store = 

((command&3)<<30)|((0&3)<<28)|((CDID1&1)<<27)|((CDID0&1)<<2

6)|((bank1Column&63)<<20) 

  

 |((bank0Column&63)<<14)|((alpha&255)<<6)|((fracBits&63

)); 

 

 short storeByte3 = (store & 0xFF000000)>>24; 

 short storeByte2 = (store & 0x00FF0000)>>16; 

 short storeByte1 = (store & 0x0000FF00)>>8; 

 short storeByte0 = (store & 0x000000FF); 

 

 

 fwrite(&storeByte0, 1, 1, f2); 

 fwrite(&storeByte1, 1,1,f2); 

 fwrite(&storeByte2,1,1,f2); 

 fwrite(&storeByte3,1,1,f2); 

} 

 

 

float* Rotate(int x1, int y1, int angle) 

{ 

 float angleRad = PI*angle/180.0; 

 float temp[3]; 

 float *out = new float[3]; 

 temp[2]=1; 

 temp[0]=((cos(angleRad)*x1)+(-

1*sin(angleRad)*y1))/temp[2]; 

 temp[1]=((sin(angleRad)*x1)+(cos(angleRad)*y1))/temp[2

]; 

 out[0]=temp[0]; 

 out[1]=temp[1]; 

 out[2]=temp[2]; 

 return(out); 

} 

 

 

#ifndef CACHEFUNCTIONS_H 

#define CACHEFUNCTIONS_H 

 

#define PI 3.14159 
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const int CACHE_WIDTH = 64; 

const int CACHE_LINES = 8; 

 

 

int IWIDTH = 1024; 

int IHEIGHT = 768; 

int OWIDTH = 1024; 

int OHEIGHT = 768; 

int ICHANNELS = 1; 

int OCHANNELS = 1; 

 

FILE *f1,*z2,*f2,*f3,*perPix,*preFetch; 

 

struct Pixel 

{ 

 long address; 

 int row; 

 int column; 

}; 

 

 

struct cacheLine 

{ 

 //The start of a cache line 

 int row; 

 int column; 

 int cid; 

 int numPixels; 

 Pixel data[CACHE_WIDTH]; 

}; 

 

struct cacheBank 

{ 

 cacheLine line[CACHE_LINES]; 

}; 

 

struct cacheStart 

{ 

 //Each Cache buffer contains 2 banks 

 cacheBank bank0; 

 cacheBank bank1; 

}; 

 

struct sortedCache 

{ 

 cacheLine line[CACHE_LINES*2]; 
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 int bank[CACHE_LINES*2]; 

 int entries; 

}; 

 

void InitializeCache(cacheStart&); 

void InitializeBank(cacheBank&); 

void InitializeLine(cacheLine&); 

bool CacheSearchAndPlace(Pixel, int, cacheStart&, int&, 

int&, int&); 

bool BankSearchAndPlace(Pixel, int, cacheBank&, int&, 

int&); 

bool LineSearchAndPlace(Pixel, int, cacheLine&, int&); 

bool FindEmptyCacheLine(Pixel, int, cacheBank&, int&, 

int&); 

void SortCache(cacheStart, sortedCache&); 

void SortBank(cacheBank&); 

void WriteCache(sortedCache); 

void WriteCacheLine(cacheLine, int, int); 

void InitializeSortedCache(sortedCache&); 

//void RemoveFromCache(cacheBank&, int); 

 

void DecodePixel(Pixel&); 

void EncodePixel(Pixel&); 

void DecodeInputPixel(Pixel&); 

long DecodeOffset(long); 

int DecodeCID(long); 

int DecodeAlpha(long); 

int DecodeIgnore(long); 

 

bool CheckCache(Pixel, Pixel, cacheStart&, int, int&, int&, 

int&, bool&, int&, int&); 

void WriteHexValue(FILE*, long); 

 

 

void InitializeCache(cacheStart& buffer) 

{ 

 InitializeBank(buffer.bank0); 

 InitializeBank(buffer.bank1); 

} 

 

void InitializeBank(cacheBank& bank) 

{ 

 for(int i = 0; i < CACHE_LINES; i++) 

 { 

  InitializeLine(bank.line[i]); 

 } 

} 
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void InitializeLine(cacheLine& line) 

{ 

 line.cid = -1; 

 line.column = -1; 

 line.row = -1; 

 line.numPixels = 0; 

 for(int i = 0; i < CACHE_WIDTH; i++) 

 { 

  line.data[i].address = -1; 

  line.data[i].column = -1; 

  line.data[i].row = -1; 

 } 

} 

 

bool CacheSearchAndPlace(Pixel pixel, int channelID, 

cacheStart& cache, int& bank, int& line, int& column) 

{ 

 DecodePixel(pixel); 

 bool bank0Placed, bank1Placed; 

 

 int bank0Line, bank1Line; 

 

 bank0Placed = BankSearchAndPlace(pixel, channelID, 

cache.bank0, bank0Line, column); 

 if(!bank0Placed) 

  bank1Placed = BankSearchAndPlace(pixel, 

channelID, cache.bank1, bank1Line, column); 

  

 if(bank0Placed) 

 { 

  bank = 0; 

  line = bank0Line; 

 } 

 else if (bank1Placed) 

 { 

  bank = 1; 

  line = bank1Line; 

 } 

 else 

 { 

  bank = 99; //Return 99 to show that the pixel was 

not placed in a bank 

  line = bank0Line; //This value will also be 99;l 

 } 

 

 return bank0Placed || bank1Placed; 
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} 

 

bool BankSearchAndPlace(Pixel pixel, int channelID, 

cacheBank& bank, int& line, int& column) 

{ 

 DecodePixel(pixel); 

 bool linePlaced = false; 

 

 line = 0; 

 

 while(!linePlaced && line < CACHE_LINES) 

 { 

  linePlaced = LineSearchAndPlace(pixel, channelID, 

bank.line[line], column); 

  if(!linePlaced) 

   line++; 

 } 

 

 if(!linePlaced) 

  line = 99; 

 

 return linePlaced; 

} 

 

bool LineSearchAndPlace(Pixel pixel, int channelID, 

cacheLine& line, int& column) 

{ 

 int placementColumn = pixel.column - line.column; 

 

 column = 0; 

 

 if(line.numPixels < CACHE_WIDTH && //cache line is not 

full 

  line.cid == channelID && //channelIDs match 

  line.row == pixel.row && //rows match 

  placementColumn < CACHE_WIDTH && //Pixel is 

within cache 

  placementColumn >= 0) //Pixel is within cache 

 { 

  //cout<<"Pixel should be found"<<endl; 

  while(line.data[column].column != pixel.column && 

column < line.numPixels) 

  { 

   column++; 

  } 

/*  if(column == line.numPixels) 

  { 
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   cout<<"This Shouldn't Happen"<<endl; 

  } 

  else if (column >= CACHE_WIDTH) 

  { 

   cout<<"This also shouldn't happen"<<endl; 

  } 

*/  if(line.data[column].column == pixel.column) 

  { 

  // cout<<"Pixel already in cache"<<endl;   

   return true; 

  } 

  else 

  { 

   //Should not place a pixel in the cache 

here!  Make sure that other pixels will not cause 

   //the cache to miss and be refilled! 

   line.data[column] = pixel; 

   line.numPixels++; 

  // cout<<"Pixel added to cache"<<endl; 

   return true; 

    

  } 

 } 

 else 

 { 

//  cout<<"numPixels: "<<line.numPixels<<" line.cid: 

"<<line.cid<<" channelID: "<<channelID<< 

//   " line.row: "<<line.row<<" pixel.row: 

"<<pixel.row<<" placementColumn: "<<placementColumn<<endl; 

  return false; 

 } 

} 

   

 

//Find a cache line with no pixels in it 

bool FindEmptyCacheLine(Pixel pixel, int channelID, 

cacheBank& bank, int& line, int& column) 

{ 

 //cout<<"In FindEmptyCacheLine with pixel 

:"<<pixel.column<<"  "<<pixel.row<<endl; 

 line = 0; 

 bool lineFound = false; 

 while(!lineFound && line < CACHE_LINES) 

 { 

  //cout<<"Line:  "<<line<<endl; 

  if(bank.line[line].numPixels == 0) 

  { 
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   //cout<<"Empty Line Found!  Line: 

"<<line<<endl; 

   lineFound = true; 

   bank.line[line].cid = channelID; 

   bank.line[line].column = pixel.column - 

pixel.column%2; 

   bank.line[line].row = pixel.row; 

   bank.line[line].data[0].address = 

pixel.address - pixel.column%2; 

   bank.line[line].data[0].column = 

pixel.column - pixel.column%2; 

   bank.line[line].data[0].row = pixel.row; 

   bank.line[line].numPixels++; 

   if(pixel.column%2 == 1) 

   { 

    bank.line[line].numPixels++; 

    column++; 

    bank.line[line].data[1].address = 

pixel.address; 

    bank.line[line].data[1].column = 

pixel.column; 

    bank.line[line].data[1].row = 

pixel.row; 

   } 

   //cout<<"Found Empty Cache Line"<<endl; 

  } 

  else 

  { 

   line++; 

   //cout<<"Empty Line not found.  Next line to 

check:  "<<line<<endl; 

  } 

 } 

 

 return lineFound; 

} 

 

void SortCache(cacheStart cache, sortedCache& sorted) 

{ 

 SortBank(cache.bank0); 

 SortBank(cache.bank1); 

 

 int bank0Index = 0; 

 int bank1Index = 0; 

 

// sorted.line[0] = cache.bank0.line[0]; 

// sorted.line[1] = cache.bank1.line[0]; 



73 
 
 

  

 if(abs(cache.bank1.line[0].row - 

cache.bank0.line[0].row) > 1) 

 

 printf("%d,%d\n",cache.bank0.line[0].row,cache.bank1.l

ine[0].row); 

 //Merge the two banks together 

 for(int i = 0; i < CACHE_LINES*2; i++) 

 { 

  if(bank0Index < CACHE_LINES) 

  { 

   if(bank1Index < CACHE_LINES) 

   { 

    //Compare the line row numbers 

    if(cache.bank0.line[bank0Index].row <= 

cache.bank1.line[bank1Index].row) 

    { 

     sorted.line[i] = 

cache.bank0.line[bank0Index]; 

     sorted.bank[i] = 0; 

     bank0Index++; 

    } 

    else 

    { 

     sorted.line[i] = 

cache.bank1.line[bank1Index]; 

     sorted.bank[i] = 1; 

     bank1Index++; 

    } 

 

   } 

   else //bank1 is done being processed 

   { 

    sorted.line[i] = 

cache.bank0.line[bank0Index]; 

    sorted.bank[i] = 0; 

    bank0Index++; 

   } 

  } 

  else if (bank1Index < CACHE_LINES) //Bank 0 is 

done being processed 

  { 

   sorted.line[i] = 

cache.bank1.line[bank1Index]; 

   sorted.bank[i] = 1; 

   bank1Index++; 

  } 



74 
 
 

 }//End of For loop 

 

} 

 

 

void SortBank(cacheBank & bank) 

{ 

 for(int i = 0; i < CACHE_LINES -1; i++) 

 { 

  int min = i; 

  for (int j = i+1; j <CACHE_LINES; j++) 

  { 

   if(bank.line[j].row < bank.line[min].row) 

   { 

    min = j; 

   } 

  } 

  if (i != min) 

  { 

   cacheLine swapLine = bank.line[i]; 

   bank.line[i] = bank.line[min]; 

   bank.line[min] = swapLine; 

  } 

 } 

} 

 

void WriteCache(sortedCache cache) 

{ 

 int bank0LineNum = 0; 

 int bank1LineNum = 0; 

 for(int i = 0; i < CACHE_LINES*2; i++) 

 { 

  if(cache.bank[i] == 0) 

  { 

   WriteCacheLine(cache.line[i], cache.bank[i], 

bank0LineNum); 

   bank0LineNum++; 

  } 

  else if (cache.bank[i] == 1) 

  { 

   WriteCacheLine(cache.line[i], cache.bank[i], 

bank1LineNum); 

   bank1LineNum++; 

  } 

 } 

// if(abs(cache.line[1].row-cache.line[0].row)>1) 
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// 

 printf("%d,%d\n",cache.line[0].row,cache.line[1].row); 

} 

 

void WriteCacheLine(cacheLine line, int bank, int lineNum) 

{ 

 unsigned int store = 0; 

 Pixel cacheMarker; 

 

 

 if(line.numPixels%2 == 1) 

  line.numPixels++; 

  

 while(line.numPixels > CACHE_WIDTH) 

  line.numPixels -= 2; 

 

 //SET NUMBER OF PIXELS TO CACHE WIDTH FOR THESIS DATA 

 //line.numPixels = CACHE_WIDTH; 

 

 line.numPixels = line.numPixels >> 1; 

 

 line.numPixels--; 

 

 //Possible bug in Ben's code, make sure that 

line.numPixels >= 4 

 if(line.numPixels < 4) 

  line.numPixels = 4; 

 

 //Make sure a -1 doesn't sneak in 

 if(line.column < 0) 

  line.column = 0; 

 if(line.row < 0) 

  line.row = 0; 

 if(line.cid < 0) 

  line.cid = 0; 

 

 if(line.column > IWIDTH) 

  printf("Column too high! %d 

%d\n",line.column,line.row); 

  //cout<<"Column too high! "<<line.column<<"  

"<<line.row<<endl; 

 if(line.row > IHEIGHT) 

  printf("Row too high! %d 

%d\n",line.column,line.row); 

  //cout<<"Row too hight! "<<line.column<<"  

"<<line.row<<endl; 
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 cacheMarker.column = line.column; 

 cacheMarker.row = line.row; 

 EncodePixel(cacheMarker); 

 

 //fprintf(preFetch,"%d,%d,%d,%d,%d,%d\n",line.numPixel

s,line.cid,line.column, line.row,bank, lineNum); 

 

 //Prefetch LUT Format 

 // |Reserved|Pixels to Load| CID 

|Offset|CD_BANK|CD_ID| 

 // |31    31|30    26|25 24|23   4|3     

3|2   0| 

 

 store = 

((line.numPixels&0x1F)<<26)|((line.cid&0x3)<<24)|(((cacheMa

rker.address&0x1FFFFE)>>1)<<4)|((lineNum&1)<<3)|(bank&0x7);  

  

 //fwrite(&store, sizeof(long), 1, f3); 

 //fwrite(&store, 2, 2, f3); 

 //short storeLower = store &0x0000FFFF; 

 short storeByte3 = (store & 0xFF000000)>>24; 

 short storeByte2 = (store & 0x00FF0000)>>16; 

 short storeByte1 = (store & 0x0000FF00)>>8; 

 short storeByte0 = (store & 0x000000FF); 

 

 

 fwrite(&storeByte0, 1, 1, f3); 

 fwrite(&storeByte1, 1,1,f3); 

 fwrite(&storeByte2,1,1,f3); 

 fwrite(&storeByte3,1,1,f3); 

 //fwrite(&store, 2, 1, f3); 

 

 ///////////////////////////////////////////// 

 //Function Supports Ben's FPGA Testing 

 ///////////////////////////////////////////// 

 //WriteHexValue(f3, store); 

 

} 

 

 

void InitializeSortedCache(sortedCache& cache) 

{ 

 for(int i = 0; i < CACHE_LINES*2; i++) 

 { 

  cache.bank[i] = 0; 

  cache.line[i].cid = 0; 

  cache.line[i].column = 0; 
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  cache.line[i].numPixels = 0; 

  cache.line[i].row = 0; 

 } 

 cache.entries = 0; 

} 

 

//Get the address column and row from the raw address 

void DecodePixel(Pixel &pix) 

{ 

 pix.column = pix.address%OWIDTH; 

 pix.row = (pix.address - pix.column)/OWIDTH; 

} 

 

//Get the raw address of the pixel from the row and column 

void EncodePixel(Pixel &pix) 

{ 

 pix.address = pix.row*OWIDTH + pix.column; 

} 

 

 

bool CheckCache(Pixel currentPixel, Pixel ptrPixel, 

cacheStart& cache, int channelID, int& bank0Column, 

    int& bank1Column, int& command, bool& 

nearestNeighbor, int& bank0Line, int& bank1Line) 

{ 

 Pixel x2, y1, y2; 

 

 //Make sure we have row/column information 

 DecodeInputPixel(currentPixel); 

 

 bool currentPlaced, x2Placed, y1Placed, y2Placed, 

cacheHit; 

 

 bool cacheFull = false; 

  

 bool nextHit; 

 

 int currentLine, x2Line, y1Line, y2Line; 

 int currentBank, x2Bank, y1Bank, y2Bank; 

 int currentColumn, x2Column, y1Column, y2Column; 

 

 //Find other 3 pixels for bilinear.  Normally assume 

down and right in the array, but 

 //on edges compensate by going the other way to avoid 

accessing a ptr value that does not exist 

 if((ptrPixel.row < OHEIGHT - 1) && (ptrPixel.column < 

OWIDTH -1)) 
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 { 

   //If input boundary, assume nearest neighbor 

  if((currentPixel.column == IWIDTH -

1)||(currentPixel.row == IHEIGHT -1)) 

  { 

   x2.address = currentPixel.address; 

   DecodeInputPixel(x2); 

   y1.address = currentPixel.address; 

   DecodeInputPixel(y1); 

   y2.address = currentPixel.address; 

   DecodeInputPixel(y2);  

   nearestNeighbor = true; 

  } 

  else { 

   x2.address = currentPixel.address+1; 

   DecodeInputPixel(x2); 

   y1.address = currentPixel.address+OWIDTH; 

//OWIDTH?  IWIDTH? 

   DecodeInputPixel(y1); 

   y2.address = currentPixel.address+OWIDTH+1; 

   DecodeInputPixel(y2); 

   nearestNeighbor = false; 

  } 

 } 

 else //if on the boundary, assume nearest neighbor 

interpolation 

 { 

     //If input boundary, assume 

nearest neighbor 

  if((currentPixel.column == IWIDTH -

1)||(currentPixel.row == IHEIGHT -1)) 

  { 

   x2.address = currentPixel.address; 

   DecodeInputPixel(x2); 

   y1.address = currentPixel.address; 

   DecodeInputPixel(y1); 

   y2.address = currentPixel.address; 

   DecodeInputPixel(y2);  

   nearestNeighbor = true; 

  } 

  else { 

   x2.address = currentPixel.address; 

   DecodeInputPixel(x2); 

   y1.address = currentPixel.address; 

   DecodeInputPixel(y1); 

   y2.address = currentPixel.address; 

   DecodeInputPixel(y2);  
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   nearestNeighbor = true; 

  } 

 } 

 

 

 //Check if currentPixel and x2, y1, and y2 are in the 

cache 

 //Assume:  column0 == column1 

// if (!nearestNeighbor) 

// { 

  currentPlaced = BankSearchAndPlace(currentPixel, 

channelID, cache.bank0, currentLine, currentColumn); 

  x2Placed = BankSearchAndPlace(x2, channelID, 

cache.bank0, x2Line, x2Column); 

   

  if(!nearestNeighbor) { 

   y1Placed = BankSearchAndPlace(y1, channelID, 

cache.bank1, y1Line, y1Column); 

   y2Placed = BankSearchAndPlace(y2, channelID, 

cache.bank1, y2Line, y2Column); 

  } 

  else{ 

   y1Placed = BankSearchAndPlace(y1, channelID, 

cache.bank0, y1Line, y1Column); 

   y2Placed = BankSearchAndPlace(y2, channelID, 

cache.bank0, y2Line, y2Column); 

  } 

  //Don't need the following code with only 1 cache 

line! 

   

  if(!currentPlaced) 

  { 

   //cout<<"currentPixel Not Placed:  

"<<ptrPixel.column<<"  "<<ptrPixel.row<<endl; 

   cacheFull = 

!FindEmptyCacheLine(currentPixel, channelID, cache.bank0, 

currentLine, currentColumn); 

   if(!cacheFull)//Should be able to place x2 

now if cacheLine is not full 

    cacheFull = !BankSearchAndPlace(x2, 

channelID, cache.bank0, x2Line, x2Column);    

  } 

 

  if(!y1Placed) 

  { 
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   cacheFull = cacheFull | 

!FindEmptyCacheLine(y1, channelID, cache.bank1, y1Line, 

y1Column); 

   if(!cacheFull)//Should be able to place y2 

now if cacheLine is not full 

    cacheFull = !BankSearchAndPlace(y2, 

channelID, cache.bank1, y2Line, y2Column); 

  } 

   

 

  cacheHit = (currentPlaced && x2Placed && y1Placed 

&& y2Placed)||!cacheFull; 

 

 if(cacheHit) 

 { 

  //Put the pixels in the cache! 

 

 

  //Find the relative column that the pixel is in 

  //column = currentPixel.column - cache.column0; 

  bank0Column = currentColumn; 

  bank1Column = y1Column; 

 

  command = 0; 

  /*//Determine which command to use 

  if(nextHit) 

   command = 0; 

  else 

   command = 1; 

   */ 

 

  //Last pixel should have a command of 1 

  if(ptrPixel.column == OWIDTH-1 && ptrPixel.row == 

OHEIGHT -1) 

  { 

   command = 1; 

   bank0Column = currentColumn; 

   bank1Column = y1Column; 

   //column = currentPixel.column -

cache.column0; 

   cacheHit = true; 

  } 

  bank0Line = currentLine; 

  bank1Line = y1Line; 

 } 

 else 

 { 
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  //Last pixel should have a command of 1 

  if(ptrPixel.column == OWIDTH-1 && ptrPixel.row == 

OHEIGHT -1) 

  { 

   command = 1; 

   bank0Column = currentColumn; 

   bank1Column = y1Column; 

   bank1Line = 0; 

   bank0Line = 0; 

   //column = currentPixel.column -

cache.column0; 

  } 

  else 

  { 

   command = 1;  //Switch to 0? 

   bank0Column = currentPixel.column%2; 

   bank1Column = y1.column%2; 

   bank1Line = 0;  //Set to 0 for now at least 

   bank0Line = 0; 

   //column = currentPixel.column%2; 

//   if(abs(currentPixel.address-y1.address) > 

OWIDTH)  

    //printf("%d,%d\n",currentPixel.row, 

y1.row); 

  } 

 } 

 

 

 return cacheHit; 

} 

 

 

//Get the address column and row from the raw address 

void DecodeInputPixel(Pixel &pix) 

{ 

 pix.column = pix.address%IWIDTH; 

 pix.row = (pix.address - pix.column)/IWIDTH; 

} 

 

 

long DecodeOffset(long store) 

{ 

 return store&0x001FFFFF; 

} 

 

int DecodeCID(long store) 
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{ 

 return (store>>21)&0x3; 

} 

 

int DecodeAlpha(long store) 

{ 

 return(store>>23)&0xFF; 

} 

 

int DecodeIgnore(long store) 

{ 

 if((store&0xFF000000)>>24 == 0x80) 

  return 1; 

 else 

  return 0; 

} 

 

 

void WriteHexValue(FILE* f, long store) 

{ 

 unsigned int a1,a2,a3,a4; 

 unsigned char* p; 

 unsigned int check=0; 

// unsigned int value =store; 

 

 char lowByte[2]; 

 char highByte[2]; 

 char lowByte2[2]; 

 char highByte2[2]; 

 

 a1=(store&0xff000000)>>24; 

 a2=(store&0x00ff0000)>>16; 

 a3=(store&0x0000ff00)>>8; 

 a4=(store&0x000000ff)>>0; 

 

 itoa(a4, lowByte, 16); 

 itoa(a3, highByte, 16); 

  

/* if(lowByte[1] == NULL) 

  lowByte[1] = '0'; 

 if(highByte[1] == NULL) 

  highByte[1] = '0'; 

*/ 

 if(a4 == 0) 

 {  

  lowByte[0] = '0'; 

  lowByte[1] = '0'; 
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 } 

 else if (a4 <= 0xf) 

 { 

  lowByte[1] = lowByte[0]; 

  lowByte[0] = '0'; 

 } 

 if(a3 == 0) 

 { 

  highByte[0] ='0'; 

  highByte[1] = '0'; 

 } 

 else if (a3 <= 0xf) 

 { 

  highByte[1] = highByte[0]; 

  highByte[0] = '0'; 

 } 

 

 char lowNib[] = {highByte[0], highByte[1], lowByte[0], 

lowByte[1], '\n'};// lowByte[1], lowByte[0], 

highByte[1],highByte[0], '\n'}; 

 

 itoa(a2, lowByte2, 16); 

 itoa(a1, highByte2, 16); 

 

 if(a2 == 0) 

 { 

  lowByte2[0] = '0'; 

  lowByte2[1] = '0'; 

 } 

 else if (a2 <= 0xf) 

 { 

  lowByte2[1] = lowByte2[0]; 

  lowByte2[0] = '0'; 

 } 

 if (a1 == 0) 

 { 

  highByte2[0] = '0'; 

  highByte2[1] = '0'; 

 } 

 else if (a1 <= 0xf) 

 { 

  highByte2[1] = highByte2[0]; 

  highByte2[0] = '0'; 

 } 
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 char highNib[] = {highByte2[0], highByte2[1], 

lowByte2[0], lowByte2[1], '\n'};// lowByte2[1], 

lowByte2[0], highByte2[1], highByte2[0], '\n'}; 

  

 //unsigned char nl = '\n'; 

 

// p = &a4; 

 fwrite(lowNib, sizeof(unsigned 

char),sizeof(lowNib),f); 

 fwrite(highNib, sizeof(unsigned 

char),sizeof(highNib),f); 

 

} 

 

 

#endif 

 

Appendix B: Cache Simulation Code 
 

The following code, written in C++, is used to simulate the behavior of the Pixel Router’s 
SDRAM, cache, and FGPA.  The code processes a Look Up Table and determines the 
corresponding output image frame rate. 

 

#include<string.h> 

#include<stdio.h> 

#include<iostream> 

#include<fstream> 

#include<sstream> 

#include<stdlib.h> 

#include<queue> 

#include<math.h> 

//#include "cache.h" 

 

using namespace std; 

 

struct Pixel 

{ 

 long address; 

 int row; 

 int column; 

}; 

 

struct PerPixelEntry 
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{ 

 int command; 

 int CD_ID1; 

 int CD_ID0; 

 int addr1; 

 int addr0; 

 int alpha; 

 int suby; 

 int subx; 

 

}; 

 

 

 

void ReadFiles(); //Returns number of blank pixels 

int ProcessPixels(void); 

//void DecodePixel(Pixel&); 

bool RefillEntry(unsigned int); 

void ReadPrefetchEntry(int, int&, int&, int&); 

void DecodeOffset(unsigned int, int&, int&); 

int DecodePixels(unsigned int); 

bool DecodePerPixelEntry(unsigned int, PerPixelEntry&); 

bool ReadPerPixelEntry(int, PerPixelEntry&); 

float AverageRotation(void); 

float StandardDevRotation(float); 

 

const int PI = 3.14159265; 

 

//LUT length = Output Width * Output Height + 1 

const int OWIDTH = 1024; 

const int OHEIGHT = 768; 

 

const int IWIDTH = 1024; 

const int IHEIGHT = 768; 

 

int CACHE_WIDTH = 64; 

int CACHE_LINES = 2; 

 

//Clock Frequency 

const float CLK = 133000000.0; 

 

const int T_OPEN_ROW = 12; //Number of cycles to close 

current DRAM row and open a new one 

const float T_READ_PIXEL = 0.5; //Number of clock cycles to 

read a pixel on a cache line 
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unsigned int ptr [OWIDTH*OHEIGHT]; //Stores data read from 

per-pixel LUT 

unsigned int cache_ptr[OWIDTH*OHEIGHT]; //Prefetch LUT 

entries 

float rotation_amount[OWIDTH*OHEIGHT]; 

 

int prefetchSize = 0; 

int cacheMisses = 0; 

int cacheHits = 0; 

 

struct address 

{ 

 int col; 

 int row; 

}; 

 

int main (int argc, char * argv[]) 

{ 

 //int cache_width[4] = {8, 16, 32, 64}; 

 //int cache_lines[4] = {2, 4, 6, 8}; 

 

 int numCycles; 

 

 string outFile = "Cache Simulation Results P2L.csv"; 

 ofstream ofile(outFile.c_str(), ios::out); 

 float frameRate = 0; 

 

 /*if (argc != 2) 

 { 

  cout<<"Correct usage:  Bilinear Cache 

Simulation.exe [perPixelLUT.txt]"<<endl; 

  exit(1); 

 } 

 

 string PerPixelLUT = argv[1]; 

*/ 

 ofile<<"Cache Width, Cache Lines, # Pixels, Clock 

Cycles, Frame Rate"<<endl; 

 

 //Get the data from the Prefetching LUT and store it 

in ptr 

 ReadFiles(); 

  

 numCycles = ProcessPixels(); 

    

 frameRate = 1/(4*numCycles*1/CLK); 

 //TODO:  Include Hit-rate 
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 ofile<<CACHE_WIDTH<<","<<CACHE_LINES<<","<<OWIDTH*OHEI

GHT<<","<<numCycles<<","<< 

 

 1/(4*numCycles*1/CLK)<<","<<(cacheHits*100.0)/(cacheHi

ts+cacheMisses*1.0)<<","<< 

  (1024*768*4*2*frameRate)/(CLK*2)<<"\n"; 

 

 ofile<<"\n\n"; 

   

 ofile.close(); 

 

 float rotationAverage = AverageRotation(); 

 float standardDeviation = 

StandardDevRotation(rotationAverage); 

 

 cout<<"Average Rotation: "<<rotationAverage<<endl; 

 cout<<"Standard Deviation: "<<standardDeviation<<endl; 

 

 cout<<"Finished!"<<endl; 

 int var; 

 cin>>var; 

 return 0; 

} 

 

void ReadFiles() 

{ 

 FILE * perPixelLUT = fopen("lut1.txt", "rb"); 

 FILE * prefetchLUT = fopen("cache_lut1.txt", "rb"); 

 

 if(perPixelLUT == 0) //Can't open the file 

 { 

  cout<<"File not located"<<endl; 

  exit(2); 

 } 

 

 int fileNum = 0; 

 int outWidth = 0; 

 int outHeight = 0; 

 int dummy = 0; 

 int extraPrefetchEntries = 0; 

 int extraPerPixelEntries = 0; 

 

 //int prefetchSize= 0; 

 

 //Read in per-pixel header information 

 fread(&fileNum, sizeof(int), 1, perPixelLUT); 

 fread(&outWidth, sizeof(int), 1, perPixelLUT); 
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 fread(&outHeight, sizeof(int), 1, perPixelLUT); 

 fread(&dummy, sizeof(int), 1, perPixelLUT); 

 

 //Read in the data from the LUT 

 for(int i = 0; i < OWIDTH*OHEIGHT; i++) 

  fread(&ptr[i], sizeof(int), 1, perPixelLUT); 

 try { 

  cout<<"Per Pixel Extra Entries"<<endl; 

  for (int j = 0; j < 100; j++) 

  { 

   fread(&dummy, sizeof(int), 1, perPixelLUT); 

   cout<<dummy<<endl; 

  } 

 } 

 catch (char* str) 

 { 

  cout<<"No extra data in per pixel LUT"<<endl; 

 } 

 

 //Read in prefetching header information 

 fread(&dummy, sizeof(int), 1, prefetchLUT); 

 fread(&prefetchSize, sizeof(int), 1, prefetchLUT); 

 fread(&dummy, sizeof(int), 1, prefetchLUT); 

 

 for(int j = 0; j < prefetchSize/4; j++) 

  fread(&cache_ptr[j], sizeof(int), 1, 

prefetchLUT); 

 try { 

  cout<<"Prefetch Extra Entries"<<endl; 

  for (int k = 0; k < 100; k++) { 

   fread(&dummy, sizeof(int), 1, prefetchLUT); 

   cout<<dummy<<endl; 

  } 

 } 

 catch (char* str) 

 { 

  cout<<"No extra data in prefetch LUT"<<endl; 

 } 

 fclose(perPixelLUT); 

 fclose(prefetchLUT); 

} 

 

//Return the number of clock cycles required for processing 

the LUT 

int ProcessPixels() 

{ 
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 int pixels1 = 0; 

 int pixels2 = 0; 

 int pixelsLast = 0; 

 int refillCycles = 0; 

 int pixelsSinceRefill = 0; 

 int numCycles = 0; 

  

 int prefetchIndex = 0; 

 int lastRowOpened = 0; 

 int prefetchRow = 0; 

 int prefetchCol = 0; 

 int lastPrefetchRow = 0; 

 

 int perPixelCommand = 0; 

 int perPixelIndex = 0; 

 int refreshCommands = 0; 

 int prefetchEntries = 0; 

 int pixelsSinceRefresh = 0; 

 

 int additionalPerPixelEntries = 0; 

 

 int rowAdvantage = 0; 

 int ignorePixels = 0; 

 

 int pixelRotation = 0; 

 int lastLoadedRow = 0; 

 int firstRow = 0; 

 int rotationPixels = 0; 

 

 int PixelsToLoad = 0; 

 

 PerPixelEntry entry; 

 

 for(int i = 0; i < prefetchSize/4; i++) 

 { 

   

  ReadPrefetchEntry(i, prefetchRow, prefetchCol, 

pixels1); 

  prefetchEntries++; 

  firstRow = prefetchRow; 

 

  PixelsToLoad = pixels1; 

 

  //Used to simulate no PixelsToLoad 

  //pixels1 = CACHE_WIDTH; 

 

 



90 
 
 

  if(prefetchRow == lastRowOpened) 

  { 

   refillCycles = (pixels1)*T_READ_PIXEL; 

//numRefillCyclesOneRow; 

   rowAdvantage++; 

  } 

  else 

   refillCycles = T_OPEN_ROW + 

(pixels1)*T_READ_PIXEL; //numRefillCycles; 

   

  if (prefetchRow > OHEIGHT) 

   cout<<"Prefetch Row Too Big! (first row) 

"<<prefetchRow<<"  "<<prefetchCol<<endl; 

 

  lastRowOpened = prefetchRow; 

 

  //read the second row 

  i++; 

  ReadPrefetchEntry(i, prefetchRow, prefetchCol, 

pixels2); 

 

  //if (prefetchRow > OHEIGHT) 

   //cout<<"Prefetch Row Too Big! (second 

row)"<<endl; 

 

  if(prefetchRow == lastRowOpened) 

  { 

   refillCycles += (pixels1)*T_READ_PIXEL; 

//numRefillCyclesOneRow; 

   rowAdvantage++; 

   //cout<<"Shouldn't happen  "<<prefetchRow<<"  

"<<prefetchCol<<endl; 

  } 

  else 

   refillCycles += T_OPEN_ROW + 

(pixels1)*T_READ_PIXEL; //numRefillCycles; 

 

  lastRowOpened = prefetchRow; 

 

   

  pixelsSinceRefresh = 0; 

 

 

  numCycles += refillCycles; 

 } 

  

 for (int i = perPixelIndex; i < OHEIGHT*OWIDTH; i++) 
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 { 

  additionalPerPixelEntries ++; 

 } 

 

 return numCycles; 

} 

 

bool RefillEntry(unsigned int lutEntry) 

{ 

 int refill; 

 

 //cout<<lutEntry<<endl; 

 

 refill = (lutEntry&0x40000000)>>30; 

 

 if (refill == 1) 

  return true; 

 else 

  return false; 

} 

 

void ReadPrefetchEntry(int index, int& row, int& col, int& 

pixels) 

{ 

 DecodeOffset(cache_ptr[index], row, col); 

 pixels = DecodePixels(cache_ptr[index]); 

} 

 

void DecodeOffset(unsigned int prefetchEntry, int& row, 

int& col) 

{ 

 int offset = ((prefetchEntry&0x000FFFFF0)>>4)*2; 

 col = offset%IWIDTH; 

 row = (offset-col)/IWIDTH; 

} 

 

int DecodePixels(unsigned int prefetchEntry) 

{ 

 int pixelsLoaded = 

(((prefetchEntry&0x7C000000)>>26)+1)*2; 

 return pixelsLoaded; 

} 

 

bool ReadPerPixelEntry(int index, PerPixelEntry & entry) 

{ 

 return DecodePerPixelEntry(ptr[index], entry); 

} 
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bool DecodePerPixelEntry(unsigned int perPixelEntry, 

PerPixelEntry& entry) 

{ 

 entry.command = ((perPixelEntry&0xC0000000)>>30); 

 entry.CD_ID1 = ((perPixelEntry&0x08000000)>>27); 

 entry.CD_ID0 = ((perPixelEntry&0x04000000)>>26); 

 entry.addr1 = ((perPixelEntry&0x03F00000)>>20); 

 entry.addr0 = ((perPixelEntry&0x000FC000)>>14); 

 entry.alpha = ((perPixelEntry&0x00003FC0)>>6); 

 entry.suby = ((perPixelEntry&0x00000038)>>3); 

 entry.subx = ((perPixelEntry&0x00000007)); 

 

 if (entry.CD_ID0 != 0 || entry.CD_ID1 != 0 || 

(entry.command != 0 && entry.command != 1)) 

 { 

  //something is wrong with the entry, return false 

  return false; 

 } 

 else 

  return true; 

} 

 

 

float AverageRotation() 

{ 

 float rotationSum = 0; 

 for (int i = 0; i < OWIDTH*OHEIGHT; i++) { 

  rotationSum += rotation_amount[i]; 

 } 

 return rotationSum/(OWIDTH*OHEIGHT); 

} 

 

float StandardDevRotation(float avg) 

{ 

 float standardDevSum = 0.0; 

 for (int i = 0; i < OWIDTH*OHEIGHT; i++) { 

  standardDevSum += 

(float)pow((float)(rotation_amount[i]-avg), 2); 

 } 

 return sqrt(standardDevSum/(OWIDTH*OHEIGHT)); 

} 
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