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ABSTRACT OF DISSERTATION 

 

 

A MARKOV TRANSITION MODEL TO DEMENTIA  
WITH DEATH AS A COMPETING EVENT  

 

    The research on multi-state Markov transition model is motivated by the nature of the 
longitudinal data from the Nun Study (Snowdon, 1997), and similar information on the 
BRAiNS cohort (Salazar, 2004). Our goal is to develop a flexible methodology for 
handling the categorical longitudinal responses and competing risks time-to-event that 
characterizes the features of the data for research on dementia. To do so, we treat the 
survival from death as a continuous variable rather than defining death as a competing 
absorbing state to dementia. We assume that within each subject the survival component 
and the Markov process are linked by a shared latent random effect, and moreover, these 
two pieces are conditionally independent given the random effect and their corresponding 
predictor variables. The problem of the dependence among observations made on the 
same subject (repeated measurements) is addressed by assuming a first order Markovian 
dependence structure.  

    A closed-form expression for the individual and thus overall conditional marginal 
likelihood function is derived, which we can evaluate numerically to produce the 
maximum likelihood estimates for the unknown parameters. This method can be 
implemented using standard statistical software such as SAS Proc Nlmixed©. We present 
the results of simulation studies designed to show how the model’s ability to accurately 
estimate the parameters can be affected by the distributional form of the survival term.  

    Then we focus on addressing the problem by accommodating the residual life time of 
the subject’s confounding in the nonhomogeneous chain. The convergence status of the 
chain is examined and the formulation of the absorption statistics is derived.  We propose 
using the Delta method to estimate the variance terms for construction of confidence 
intervals. The results are illustrated with applications to the Nun Study data in details.  

     

 



KEYWORDS: Multi-state Markov Chain; Competing Event; Dementia; 
Shared Random Effect; Transition Model  
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Chapter 1 : Introduction 

 

1.1 Background 

In longitudinal studies it is common that repeated measurements on a response, an 

observation on a possibly censored time-to-event, and additional covariate information 

are collected on each participant. In most medical research interest often focuses on 

modeling and interpreting the interrelationships among these variables. A familiar 

example is that of studies on progression to dementia, covariates including demographic 

information, such as age, education level, and some gene-related factor, are recorded at 

baseline, and the outcome variable of interest is a series of correlated categorical 

responses which are observed at certain time points, sometimes several years apart. Time 

to progression to death is also recorded for each participant, although some subjects may 

fail to experience the event (“dementia” or “death”) by the time the study closes. The 

primary objectives of the study are (i) to understand within-subject patterns of transition 

among pre-disease states and dementia; (ii) to characterize the relationship between the 

risk of developing dementia across the long-term trajectory from time to death.  

However, addressing these objectives in practice is much more difficult depending on the 

nature of the data actually observed. The complications posed by the realities and the 

potential for biased inferences if naïve techniques are applied have led to considerable 

recent interest in so-called joint models, where models for the event time distribution and 

longitudinal data are taken to depend on some shared latent random effect. A desirable 

feature for joint modeling is that in the absence of the presumed association between the 
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longitudinal data and event times, the analysis should cover the same results as would be 

obtained from separate analyses for each component. 

Most previous work has been based on specific applications. Hogan and Laird (1997ab) 

give an excellent review of models and methods for joint analysis of data of this type. A 

well-known application is in AIDS research in which a biomarker such as CD4 

lymphocyte count is determined intermittently and its relationship with time to 

seroconversion or death is of interest (Pawitan and Self, 1993; Tsiatis et al., 1995; 

Wulfsohn and Tsiatis, 1997). Follman and Wu (1995) develop a class of random effects 

dependent selection models in the more general setting of the shared parameter models, 

which can also account for missing observations. The approach uses generalized linear 

models 

|  

|  

where  represents the shared random effect for the th subject,  and  are monotone 

link functions, ,  and  are fixed covariate matrices, and , , and  are the 

parameters associated with ,  and , respectively. The joint distribution of  and  

, | |  

is said to follow the shared random parameter model. Likelihood-based estimation 

procedures can accommodate right-censored values of . The likelihood function for a 

random effects model with censored  is 
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| , | ; , ; Γ , | ; |  

where 

, ; | | ; | 1 | ; . 

Xu and Zeger (2001) use a latent variable model to describe the relationship between 

time-to-event data, longitudinal response, and covariates, in which covariates could only 

affect the response through its influence on an assumed latent process. The model below 

shows the relationship between event time , biomarker response , and treatment 

indicator variable , by assuming an underlying latent process  corresponding to .  

, | , | , | | , | |  

The model is established on the basis of three major assumptions 

(a)  and  are conditionally independent given  

(b)  can affect  either through  or directly 

(c)  only affects  through its influence on  

To be more specific, , the observed value of the process at time  is modeled as an 

independent observation from a generalized linear model (GLM) with linear predictor 

. That is 

|  
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where  is generally assumed to follow a Gaussian stochastic process. And the model 

allows different forms of conditional hazard to be specified for | , . An application 

of this model is when the auxiliary variable  is an imperfect surrogate end point for . 

Fieuws and Verbeke (2006) propose a pairwise approach to resolve the computational 

complexity of high-dimensional joint random effects models. In such framework, 

estimates for the elements in the parameter space are obtained by maximizing each of the 

likelihoods of the pairwise bivariate models separately, instead of maximizing the 

likelihood of the joint mixed model. 

Elashoff et al. (2007) suggest joint modeling of the repeated measurements and 

competing risk failure time data to allow for more than one distinct failure type in the 

survival endpoint. The joint model belongs to the class of random effects selection 

models, using latent random variables and common covariates that link together the sub-

models.  

Huang et al. (2009) present the remeasurement method to diagnose random effect model 

misspecification of the type that leads to biased inference on joint models. The method is 

derived from the SIMEX method to reveal sensitivity of the target estimator to model 

assumptions on the random effects. The results are illustrated and compared with 

application to data for a primary endpoint and a longitudinal process. 

Other useful references include Faucett and Thomas (1996), Lavalley and Degrutolla 

(1996), Faucett et al. (1998), Finkelstein and Schoenfeld (1999), Kalbfleisch and Prentice 

(2002), and Tsiatis and Davidian (2004), Garrett Fitzmaurice et al. (2009, Chapter 13). 
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A further difficulty for making inference on the longitudinal process is that occurrence of 

the event may induce an informative censoring. It is frequently the case that clinical trials 

and observational studies involve some missing data. The occurrence of the key event is 

censored by some competing risk such as disease-related dropout, which could cause 

non-ignorable missing data. Subjects move away, fail to keep some appointments, or die. 

Adjustment of inferences about longitudinal measurements to allow for possibly 

outcome-dependent dropout has been discussed by Wu and Carroll (1988), Hogan and 

Laird (1997ab), and many other authors. Although the selection models we discussed 

have been widely applied to both longitudinal and survival studies, another class of 

models called mixture models appear to be used primarily for studies involved 

informative dropout. In such cases the mechanisms of the missingness in data need 

carefully examination. Valid inference requires a framework in which underlying 

relationships between the event and longitudinal process are explicitly acknowledged. 

We do not discuss this in detail here. 

Our goal is to develop a flexible methodology for handling the categorical longitudinal 

responses and competing risks time-to-event that characterizes the features of our data – 

the Nun Study data (Snowdon, 1997) for research on dementia. We start with the random 

effects dependent selection model formulation of Follman and Wu (1995), extending and 

adapting it to the Nun Study data. A central feature of our modeling strategy is to 

postulate a shared random effect  for subject , and assume that within each subject the 

two components are conditionally independent given the random effect. 
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1.2 Multi-state Markov transition model 

Progression of chronic diseases is often depicted in terms of distinct pre-clinical and 

clinical phases from normal. The idea of using a multi-state Markov model to model the 

transitions among these states and quantify the effects of changes in risk factors is 

straightforward. In particular, a nonhomogeneous Markov model can be easily applied to 

model the progression of disease with increasing or decreasing risks by time. Kay (1986) 

proposed a stochastic process to analyze biomarkers and disease states data in survival 

studies on cancer. Muenz and Rubinstein (1985) used a Markov chain to model a binary 

sequence of states and extended the basic model to allow time-dependent covariates. 

However, there are many circumstances in which estimation of the transition matrix is 

complicated by the complex relationship among transition probabilities. Craig and Sendi 

(2002) summarized methods to obtain the maximum likelihood estimate of the transition 

matrix for discrete-time Markov chains and used the bootstrap method to construct 

confidence intervals for functions of the transition matrix such as expected survival.  

Based on the transitional modeling (Agresti, 2002), Salazar (2004 and 2007) proposed his 

approach featured in modeling longitudinal categorical responses as a multi-state system 

where series of categorical outcomes are expressed in terms of states. The onset and 

progression of these outcomes are modeled as transitions among the states.  

For presentation purpose, we assume a finite stochastic system that consists of three 

transient states and two competing absorbing states. This corresponds to the five 

progression stages in the study of dementia (Tyas et al., 2007). According to Salazar et 

al. (2007), a multinomial logit parameterization could be applied to link the transition 

probabilities with the fix and random effects.  
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| ,
| , ,      2,3,4,5 

The model formulation in terms of logit functions allows us to find a closed form 

expression for each transition probability and hence to derive the marginal likelihood 

function based on the conditional distribution of the longitudinal response vector . The 

likelihood function for the th subject of his model is 

| | , , | ,  

The overall likelihood function can be obtained by evaluating the product of |  

defined by the trajectory of subject . We will discuss Salazar’s modeling approach in 

more detail in the following chapter. Yu et al. (2009) suggested to extend this model to 

account for the possible dependency between the baseline information and the random 

effects, and showed improvement in parameter estimation. 

 

1.3 Parameter estimation 

Assuming the random effect is normally distributed, the resultant marginal likelihood 

needs to be evaluated numerically in order to produce parameter estimates. Salazar et al. 

(2007) compared three commonly used techniques for approximating the type of 

integrations: Laplace approximation (Gao, 2004; Skrondal and Rabe-Hesketh, 2004), 

Gauss-Hermite quadrature technique (Hedeker and Gibbons, 1994; Skrondal and Rabe-

Hesketh, 2004), and importance sampling method (Salazar, 2004). Each of the method is 

tested using different distributional assumptions for the random effect during the 
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simulation study. The Gauss quadrature method is recommended in terms of less bias and 

better confidence interval coverage under all distributional forms of the random effect as 

well as its computational simplicity. 

In numerical analysis, Gauss–Hermite quadrature is an extension of Gaussian quadrature 

method for approximating the value of integrals from ∞ to ∞ of the kind: 

. Like all the other forms of Gaussian quadrature, it solves integrals in a 

numerical way by approximating the integral with summation using a series of optimal 

points and weights. In univariate case, the log likelihood function is written as follows 

 log ∑  

Here  and  are the corresponding Gaussian weights and abscissas (quadrature 

points), and ·  is the probability density function of the random effects term. In 

multivariate case, the approximation is analogous in the sense that each single quadrature 

point is replaced with a multi-dimensional vector of quadrature points (Hedeker and 

Gibbons, 1994). However, the computation can be heavily intensive since the terms in the 

summation increase exponentially as the dimension of random effects grows. Agresti 

(2002) proposed to use an adaptive version of Gauss-Hermite quadrature that requires 

less optimal points and therefore works more efficiently than the ordinary rule. Laplace’s 

method is also deemed to be useful and computationally efficient to construct asymptotic 

approximations in high dimensional settings.  
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1.4 Motivations 

The research on multi-state Markov transition model is motivated by the nature of the 

longitudinal data from the Nun Study (Snowdon, 1997), and similar information on the 

BRAiNS cohort (Salazar, 2004). Here BRAiNS is an acronym for Biologically Resilient 

Adults in Neurological Studies. Information on the progression of participants at risk for 

disease is available at unequally spaced points over time during which the conditions of 

the sisters are assessed and they may transition forward and backward among certain 

non-absorbing states until diagnosed with the dementia (for instance, Alzheimer’s 

Disease). These transient cognitive states are defined as Intact Cognition, Mild Cognitive 

Impairment, and Global Impairment in previous work (Salazar, 2004; Tyas et al., 2007). 

The criteria to classify a nun in a particular transient cognitive state are given below: 

Intact Cognition: The patient passes all cognitive and Activities of Daily Living tests. 

Mild Cognitive Impairment: The patient passes the Delayed Word Recall, Mini-Mental 

State Exam, and Activities of Daily Living tests but fails one or more of the other three 

cognitive tests (Boston Naming, Verbal Fluency, and Constructional Praxis). 

Global Impairment: The patient passes the Delayed Word Recall but fails the Mini-

Mental State Exam, Activities of Daily Living test, and one or more of the other three 

cognitive tests (Boston Naming, Verbal Fluency, and Constructional Praxis) without 

meeting criteria for dementia. 

The cognitive test battery is part of the Consortium to Establish a Registry for 

Alzheimer’s Disease (CERAD). The general structure of the Nun Study data is presented 

in Table 1.1.  
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Table 1.1 General structures of the Nun Study Data 

Subject 
Observed 

State Cov 1 … Cov p 
Residual 
Survival Cov 1 … Cov q 

Shared 
Random 
Effect 

1    …      …     
     …    …   
     …    …   
2    …     …    
     …    …   
     …    …   
      …      …    
    …     …    

     …    …   
     …    …   
      …      …    

    …     …    
     …    …   
    …   …   

 

In most longitudinal studies on progression to disease when the target population is 

elderly subjects, death is one of the competing risks. Our analyses on the Nun Study are 

based on data from the eleven successive examinations, which consists of 672 

participants aged 75+ when enrolled in the study. Among the final analytic sample of 461 

subjects, 74 (16%) survived without dementia, 162 (35%) developed dementia, and 225 

(49%) died before converting to dementia. In order to identify risk factors associated with 

transitions and thus to determine the probability that a nun with given risk factors will 

contract dementia before dying, most authors of earlier literature handle death as a 

competing absorbing state to dementia in the Markov process (Salazar, 2004; Salazar et 

al., 2007). In contrast with Salazar’s model, we propose to model the transition 

probability with a four state Markov chain, same transient states (Intact Cognition, 

M.C.I., and G.I.) but dementia being the only absorbing state. We consider incorporating 
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information on the actual residual survival times from death of the subjects into the 

stochastic system. Such an approach could allow different risk factors for dementia and 

death thus to improve the regression estimation since the model likelihood components 

are built up separately.    

Considerable literature can be found that focuses on constructing extended likelihood 

functions to accommodate missing data that are non-ignorable or informative drop-out 

(Follman and Wu, 1995; Ten Have et al., 1998 and 2000; Gao, 2004; Vonesh et al., 2006; 

Li et al., 2007; Shen and Gao, 2007). A popular approach in this respect is to define the 

shared random effects, given which the two likelihood components the follow-up 

response and the drop-out response are assumed to be conditionally independent (Ten 

Have et al., 1998). Recall the random effects dependent selection model formulation of 

Follman and Wu (1995) that we discussed in Section 1.1, the joint distribution of the 

follow-up response  and the censored event time  for the th subject can be expressed 

as 

, | |  

Here the random effects  ’s are assumed to have some prior distribution function form 

of · . This approach was adopted by Yu et al. (2009) for the purpose of extending the 

model likelihood to account for the baseline information. Similarly, we could base the 

analyses on this model formulation which makes it possible for us to incorporate the 

residual survival time of the subjects.  
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One major assumption we made about the residual survival is that the distribution follows 

a parametric family, Weibull in particular. This raises questions on the validity of 

inference in the case when the assumption gets violated. It is of interest to investigate in 

detail how the distributional assumption of the survival would actually affect the 

parameter estimates in the Markov chain. As a preliminary look at the model assumption, 

we can compute the estimated cumulative survival curves by Kaplan-Meier estimation 

method and check the fit statistics. We present a simulation study to further explore the 

impact of distributional assumption of the survival being violated in terms of estimating 

bias and MSE. What if the survival times of the subjects come from other common 

survival distributions, for instance, Log-normal. The influence brought by different 

sample sizes will also be discussed.  

The absorption statistics are of particular interest in a multi-state Markov model. 

Consider an arbitrary finite nonstationary absorbing Markov chain with state space 

1,2, … , . Define  to be the set of transient states and  the set of absorbing 

states. Let ,  denote the k-step transition matrix with  being the initial starting 

time of the chain, and , , … , , the product of k one-

step transition matrices. In the homogeneous cases, the stationary condition holds we end 

up having , . If there are  absorbing states and  transient states (so in our 

case =1 and =3), the one-step transition matrix will have the following canonical form 
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For a homogeneous Markov chain, the fundamental matrix  is well-

defined and its elements can be calculated from the converging series 

.  

However, in situations where the model involves time dependent risk factors such as age, 

the transition probabilities among states vary with time and the underlying transition 

probability matrix is no longer homogeneous. The corresponding fundamental matrix of 

the chain is replaced with an infinite matrix series whose convergence status requires a 

closer examination before the absorption statistics can be properly calculated; while the 

survival component confounding in the chain complicates the problem regarding 

formulation and computation for both the point and interval estimates. 

 

1.5 Outline of the dissertation 

The remainder of this dissertation is organized as follows: 

In Chapter two we proposed our approach to the problem that incorporate a residual 

survival from death to Salazar’s multi-state Markov model (2007). To do so, we treat the 

survival from death as a continuous variable rather than defining death as a competing 

absorbing state to dementia. We assume that within each subject the survival component 

and the Markov process are linked by a shared latent random effect, and moreover, these 

two pieces are conditionally independent given the random effect and their corresponding 

predictor variables. Then a closed-form expression for the individual and thus overall 

conditional marginal likelihood function is derived, which we can evaluate numerically to 

produce the maximum likelihood estimates for the unknown parameters. Later in the 
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chapter we present the results of the simulation studies that design to show how the 

model’s ability to accurately estimate the parameters can be affected by the distributional 

form of the survival term. Finally, we illustrate the results with an application to the Nun 

Study data. We discuss our findings and further provide the results by adding the missing 

portion of the baseline responses previously suggested by Yu et al. (2009) as comparison. 

In Chapter three we consider an extended nonhomogeneous Markov transition model. We 

focus on addressing the problem by accommodating the residual life time of the subjects 

confounding in the nonhomogeneous chain. The convergence status of the chain is 

examined and the formulation of the absorption statistics (1) probability of developing 

dementia before death , and (2) relative risk of absorption between the two competing 

events dementia and death , are derived.  Then we propose using the Delta 

method to estimate the variance terms to construct confidence intervals for  and the 

odds ratio / . Since the technique is based on the assumption of the 

asymptotic normal sampling distribution, we carefully check for normality with 

simulated samples (set to have 10,000 iterations). The results are illustrated with the Nun 

study data in detail.  

Finally in Chapter four we summarize the most relevant findings, state the advantages 

and disadvantages of our methodology, and provide the areas for future research.  

 

 

Copyright © Liou Xu 2010   
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Chapter 2 : A Markov transition model with death as a competing event 

 

2.1 Introduction 

In clinical trials and observational studies, it is common that the occurrence of the key 

event is censored by some competing risk such as disease-related dropout, which could 

cause non-ignorable missing data. More specifically, in most longitudinal studies on 

progression to a certain disease when the target population is elderly subjects, death is 

one of the competing risks. In Nun study among the total of 461 subjects – the final 

analytic sample for parameter estimating, almost half ( 225) died before converting 

to dementia. Several existing approaches have been developed in joint analysis of the 

longitudinal measurements and competing risks time-to-event data (Elashoff 2007; Xu 

and Zeger 2001). However, few involve categorical responses that characterize our data.  

Salazar (2007) proposed a suitable approach to the problem by defining a multi-state 

Markov chain to model the progression of dementia in which death was treated as a 

competing absorbing state to dementia. A possible alternative is to model the survival 

from death as continuous variable. We consider incorporating a Weibull survival to 

Salazar’s Markov model assuming a shared random effect. A closed-form expression for 

the conditional marginal likelihood function is derived. The model stability to the 

violation of the assumption on distributional form of survival is tested in simulation 

studies. 
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The chapter is organized as follows: in Section 2.2 we construct the model likelihood 

function; in Section 2.3 we present the results of the simulation studies; in Section 2.4 we 

apply the model to the Nun study data; and in Section 2.5 we summarize our findings.  

 

2.2 Model and estimation 

2.2.1 Salazar’s multi-state Markov model 

Suppose there are  subjects in the study. For subject  let , … ,  denote the 

random vector representing the observed cognitive states for subject  at  different 

ordered discrete occasions, where   1, 2, … , . We assume the Markov property 

holds, that is, the conditional distribution of  | , … ,  is identical to the 

conditional distribution of  |   for   1, 2, … , . Then conditioned on , 

the joint distribution of the random vector  can be written as 

 |    , , … , |    |   |  …   |  

Here the subscript  refers to the state occupied by the th subject at th occasion. In 

order to simplify the notation, we can use ,  |  to denote the one 

step transition probability from state  to state . So for instance, if  and 

, then  represents the probability of transition for subject  from state  to state 

 during the 1th and th visits. Throughout, we use upper-case letters to represent 

random variables and lower-case letters for their realizations; dependence on covariates is 

usually suppressed for notational clarity. 
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In the example to be discussed later – the nun study data, the status of a participant at 

each visit was recorded as being one of the states: intact cognition, mild cognitive 

impairments (M.C.I.), global impairments (G.I.), or dementia (Tyas et. al., 2007). The 

participants were followed during the study period until death occurred. The conditional 

distribution of the status of an individual participant at an arbitrary examination given her 

status at previous examinations was assumed to have the Markov property, i.e., that status 

at the examination depended on only the most recent previous examination and was 

independent of status at other previous examinations. Following Salazar et. al. (2007), a 

multi-state Markov chain was used to model transitions from one state to another, in 

which intact cognition, mild cognitive impairments, and global impairments were 

considered transient states, whereas dementia and death were absorbing states as shown 

in Figure 2.1. 

 

 

Figure 2.1 Possible cognitive transitions between three transient states (1) intact cognition 

(2) M.C.I. (3) G.I. and two absorbing states (4) dementia (5) death 
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Thus the one-step transition probability matrix could be presented in the form of 

| , | , | ,
| , | , | ,
| , | , | ,

| , | ,
| , | ,
| , | ,

0                    0                    0
0                    0                    0

1                    0
0                   1

 

According to Salazar et. al. (2007), a multinomial logit parameterization could be applied 

to link these transition probabilities with the fixed and random effects. 

log
| ,
| , ,   2,3,4,5. 

Here  represents the set of all the unknown parameters,  is the vector of intercepts,  

is the vector of unknown fixed effects for covariates , and  is the set of unknown fixed 

effects for the prior state. Also,  is the vector of unobserved random effects associated 

with subject . The formulation of Salazar’s model in terms of logit functions allows us to 

find the closed expression for each transition probability as follows 

| ,

1
1 ∑ exp 

               1

exp 
1 ∑ exp 

               1
 

Therefore, based on the conditional distribution of  , , … ,  |  the marginal 

likelihood function for the th subject is  

| | , , ,                         2.1
,Ω
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with Ω denoting the support for the distribution of the random vector . The probability 

density function for  is · . Here ,  and ,  are indicator functions valued at 1 if 

 and , and 0 otherwise. The overall likelihood function can be obtained 

by evaluating the product of (2.1) across the subjects under study. However, this 

approach may lead to biased or inconsistent estimates since the likelihood is based on the 

conditional distribution instead of the full distribution in which the baseline information 

is ignored. 

 

2.2.2 Model improvement with Weibull survival 

In Salazar’s model death is modeled as the competing absorbing state to dementia. A 

possible alternative approach is to incorporate information on the actual survival times 

from death of the subjects into the stochastic system.  

Xu and Zeger (2001) proposed a latent variable model to model the relationship between 

time-to-event data, longitudinal response, and covariates, in which covariates could only 

affect the longitudinal response through its influence on an assumed latent process. 

Elashoff et. al. (2006) suggested joint modeling of the repeated measures and competing 

risk failure time data by using latent random variables and common covariates to link the 

sub-models.  

However, in our case the data involves multinomial responses and the parameterization 

of a polychotomous logit under a discrete time Markov framework complicates the 

problem. We hypothesize that the survival times of the subjects come from certain 

parametric distribution which shares the same random effects used in Markov transition 
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model. Additionally these two pieces are conditionally independent given the random 

effects and their corresponding predictor variables. 

In contrast with Salazar’s model, we are modeling the transition probability with a four 

state Markov chain, same transient states but dementia being the only absorbing state. 

The one-step transition probability matrix now becomes 

| , | , | ,
| , | , | ,
| , | , | ,

| ,
| ,
| ,

      0                    0                    0        1

 

Each transition probability  could be postulated in the form of  

| ,

1
1 ∑ exp 

               1

exp 
1 ∑ exp 

               1
 

We further assume the survival time  ~ 0, , where . 

The probability of the th subject failing from the competing risk of death is 

| ,  

Here  is some indicator function valued at 1 if the th subject died at time  and 0 

otherwise.  is the parameter vector associated with both the transition probability and 

the probability of death. For each subject under study, the conditional marginal likelihood 

function for the th subject can be rewritten as 

| , | , , , | ,
,

. 
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2.2.3 Parameter estimation 

Assuming that the random effect is distributed as a 0, , the resultant log likelihood 

can be maximized using the Gauss-Hermite quadrature method combined with the 

Newton-Raphson method to numerically evaluate the derivatives and produce the 

parameter estimates. The estimates of the standard errors are computed by Fisher’s 

information method.  

 

2.3 Simulations 

The main purpose of the simulation study is to examine the sensitivity of the MLEs to the 

violations of the Weibull model assumption on the survival time. We want to quantify 

how the distributional form for the survival term affects the model estimates associated 

with the fixed effects. In addition, the model’s ability to accurately estimate the unknown 

parameters is of interest. To answer these questions we look at two aspects: (i) the bias of 

the MLEs to the true parameters and (ii) the mean squared errors of the MLEs.  

The simulation was set to have 300 iterations, with each containing 200 or 500 subjects. 

Each subject has up to ten follow-up waves starting from a baseline state of intact 

cognition. We considered four cases: 

1. Total of 200 subjects generated with prior distribution of survival being Weibull 

2. Total of 500 subjects generated with prior distribution of survival being Weibull 

3. Total of 200 subjects generated with prior distribution of survival being Lognormal  

4. Total of 500 subjects generated with prior distribution of survival being Lognormal 
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In the cases when the true prior distribution of survival being lognormal (case 3 and 4), 

the probability density functions were plotted along with the simulated Weibull 

distribution for comparison. As shown in Figure 2.2, the red line representing the 

lognormal densities from which the survival times of the simulation populations in case 3 

and 4 were generated; and the blue line indicating the simulated Weibull distribution that 

we fit in our model. The four plots correspond with the four possible combinations of the 

values from the two model covariates. The relative location and diversity of the two 

curves differ by the values of the covariates. 

Thus two sets of comparison could be made to explore: first, the effects of varying the 

sample size, and second, the effects of violating the original model assumption on the 

distributional form of survival term with a possible alternative.  

In both situations, the transition probabilities were dependent on three covariates age, 

prior state (intact cognition or M.C.I. or G.I.), and the presence/absence of an 

apolipoprotein E-4 allele (APOE4). The covariates entered in the survival model were 

age at entry and the APOE4 status of the subject. All the simulations were done using the 

IML procedure in SAS system. The results are presented in Table 2.1. 
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Figure 2.2 Probability densities of the prior distribution of survival (True vs. Simulated) 
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Table 2.1 Bias and Mean squared error of the model parameters 

(Base state: 1 = Intact Cognition)  

Risk Factors State 
True 

Parameter 
Weibull survival  

(200 subjects) 
Weibull survival  

(500 subjects) 
      Bias MSE Bias MSE 
Age 2 0.07  -0.0035 0.00046  -0.0017 0.00024  
  3 0.19  0.0039  0.00097 0.0025  0.00040 
  4 0.21  0.0713  0.01030 0.0593  0.00520 
APOE4 2 0.27  -0.0854 0.07311  -0.0636  0.03143 
  3 0.39  -0.1208  0.14037 -0.1092  0.04940 
  4 1.62  0.0221  0.35017 -0.0065  0.09960 
Prior state:             

    Intact Cognition 2 0.58  0.1389  0.30218 0.0884  0.08680 
  3 -3.12  0.0547  0.09054 0.0142  0.03484 
  4 -4.15  -0.2528  0.55932 -0.1517  0.21298 

     Mild Cognitive 2 1.79  0.1139  0.30504 0.0683  0.08110 
         Impairment 3 -2.43  0.0142  0.11078 0.0033  0.04011 

  4 -2.26  -0.1115  0.40921 -0.0953  0.14037 
        

Risk Factors State 
True 

Parameter 
Lognormal survival  

(200 subjects) 
Lognormal survival  

(500 subjects) 
      Bias MSE Bias MSE 
Age 2 0.07 0.0185  0.00070 0.0226  0.00064 
  3 0.19 0.0259  0.00150 0.0334  0.00147 
  4 0.21 0.0997  0.01372 0.0939  0.01032 
APOE4 2 0.27 -0.2442  0.10083 -0.1760  0.04622 
  3 0.39 -0.2733  0.16793 -0.2665  0.09779 
  4 1.62 -0.0983  0.20157 -0.1794  0.10875 
Prior state:             

Intact Cognition 2 0.58 -0.2302  0.27467 -0.2802  0.14252 
  3 -3.12 -0.2799  0.16309 -0.2801  0.11369 
  4 -4.15 -0.9934  0.75993 -0.4577  0.82227 

     Mild Cognitive 2 1.79 0.0222  0.20501 0.0036  0.06647 
         Impairment 3 -2.43 -0.0134  0.08151 0.0208  0.03255 

  4 -2.26 -0.0513  0.22739 -0.0255  0.09625 
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In general, increasing the sample size would improve the estimates in terms of reducing 

bias and MSE when the Weibull is the true distribution as we assumed. In the case when 

the prior distribution of survival being lognormal instead, only MSE was influenced by 

increasing the sample size from 200 to 500, while bias did not change much. Moreover, 

the results indicate that the maximum likelihood estimates are not sensitive to violations 

of the assumed Weibull model in the case when the lognormal is the true distribution. 

 

2.4 Application to the Nun Study 

The Nun Study began enrollment in 1991. The data consists of a cohort of 672 members 

of the School Sisters of Notre Dame born before 1917 and living in retirement 

communities in the Midwestern, eastern, and southern United States. The subjects were 

recruited in phases and received periodic cognitive assessments with brain donation at 

death. Analyses were based on data from the eleven successive examinations. A total of 

211 subjects were excluded from the study due to: missing examinations, missing APOE 

data, or presence of dementia at baseline visit. The final analytic sample consisted of 461 

participants, of which 74 survived without dementia, 162 developed dementia, and 225 

died before converting to dementia. The transitions among the cognitive states are 

summarized in Table 2.2 below. 
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Table 2.2 Number of transitions in the Nun Study 

  Current Visit 

Prior Visit Intact 
Cognition M.C.I. G.I. Dementia 

Intact Cognition 593 
(69.9%) 

197 
(23.2%) 

54       
(6.3%) 

5         
(0.6%) 

M.C.I. 177   
(16.2%) 

697   
(63.8%) 

136   
(12.5%) 

82       
(7.5%) 

G.I. 16       
(5.1%) 

39     
(12.4%) 

184   
(58.6%) 

75    
(23.9%) 

Dementia 0           
(0%) 

0           
(0%) 

0           
(0%) 

81      
(100%) 

 

The covariates of interest were age, education level, APOE4 status, and prior state. For 

simplicity purposes education was not included in the model in our simulations; but was 

considered here since it is a well-known risk factor and found to be significantly 

associated with dementia in previous studies. The covariates entered in the survival 

model were age at entry and APOE4 status. As shown in Figure 2.3 below, subjects were 

subgrouped based on their APOE4 status and age at entry, and thus four Weibull 

probability plots were created as a preliminary look at the model assumption. The 

estimated cumulative distribution function was computed by Kaplan-Meier estimation in 

the Lifereg procedure in SAS. The straight line represents the maximum likelihood fit, 

with the simultaneous parametric confidence bands on each side. The values of the 

censored observations are plotted along the top of each graph in red. The plots indicate 

that the assumed Weibull model fits the data reasonably well although not perfect since 

skewness arises in the tail of the distribution for some of the groups. 
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Figure 2.3 Weibull probability plots of the survival time in the Nun Study 

  

 

 

Similarly assuming the survival time of the subjects follows a lognormal distribution, the 

data was fitted and tested with the same covariates. It suggests that Weibull model is a 

better fit to the data. The lognormal probability plots for the four subgroups are illustrated 

in Figure 2.4. 
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Figure 2.4 Lognormal probability plots of the survival time in the Nun Study 

 

 

 

Table 2.3 lists the parameter estimates for the transition probabilities. First, as expected 

Age and APOE4 are significant predictors of a transition to M.C.I., G.I., and Dementia as 

opposed to a transition to cognitively normal because all the coefficients associated with 

Age and APOE4 are significant. The odds ratios ORAge=(1.10, 1.19, 1.18) and 

ORAPOE4=(2.31, 3.64, 4.10) are significantly different from one. Second, remaining 

cognitively intact favors the highly educated. Compared to those with more than 16 years 

of education, subjects with 12 years or less have significant odds ratios for transitions to 
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M.C.I. (OR=4.55) and G.I. (OR=4.77); Similarly, the corresponding odds ratios to M.C.I. 

(OR=1.59) and G.I. (OR=1.64) are significant for those with exactly 16 years of 

education. These results are consistent with those from previous studies. Moreover, Age 

and APOE4 are both significant predictors for survival time but education is not. The 

coefficient associated with Age is negative indicating that an elderly age at entry could be 

“protective” for subjects from the competing risk of death. That is, the likelihood of 

dementia before death increases with age. 

Table 2.3 Maximum likelihood estimates (SE) of model parameters in the Nun Study 

(Base state: 1 = Intact Cognition)  

Risk Factors State Estimates
Std. 

Error Risk Factors State Estimates
Std. 

Error 
Markov chain       Prior states:       
Age 2 0.092* (0.016) Intact Cognition 2 -1.232* (0.334) 
  3 0.172* (0.020)   3 -3.834* (0.326) 
  4 0.169* (0.023)   4 -5.344* (0.545) 
APOE4 2 0.838* (0.232) Mild Cognitive 2 0.670* (0.327) 
  3 1.292* (0.263)        Impairment 3 -2.375* (0.306) 
  4 1.412* (0.297)   4 -1.997* (0.327) 
Education:       Weibull  survival       

     < 16 years 2 1.515* (0.348) Age at Entry - -1.523* (0.183) 
    vs. > 16 years 3 1.562* (0.391) APOE4 - 0.447* (0.220) 

  4 1.403* (0.436) Rate  - 4.613* (0.272) 
     16 years  2 0.465* (0.158)         

    vs. > 16 years 3 0.497* (0.194) Sigma - 0.871* (0.100) 
  4 0.372 (0.235)         

 

* Significant at P < 0.05 
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2.5 Conclusion and discussion 

Considerable literature has focused on characterizing the relationship between 

longitudinal response process and time-to-event data. In contrast, relatively little research 

has been done to accommodate multinomial responses, with even fewer relying on a 

polychotomous logit parameterization under a discrete-time Markov chain. 

As an improvement to Salazar’s multi-state Markov model, we fit a Weibull model to the 

survival from death and correlate it with the Markov transition model by defining a 

shared random effect. The simulation study showed model stability in terms of violations 

of the distributional assumption on survival time. More specifically, the maximum 

likelihood estimates are not sensitive to violations of the assumed Weibull model if, in 

fact, a lognormal model should be used instead.  

The application to the Nun study data found that Age and APOE4 are significant 

predictors of a transition to impaired states and Dementia as opposed to a transition to 

cognitively normal because all the coefficients associated with Age and APOE4 are 

significant and positive. Remaining cognitively intact favors the highly educated (> 16 

years education) which also agrees with the results from the previous models. Age and 

APOE4 are both significant predictors for survival time. Age at entry is “protective” for 

subjects from the competing risk of death since older subjects are more likely to become 

demented before death.  

Yu et. al. (2009) incorporated the missing portion of the baseline likelihood into the 

follow-up likelihood by assuming the two share the same random effect. The complete 

marginal likelihood function for the ith subject with baseline can be written as  



31 
 

, | | , , , | ,
,

 

Here  is the set of parameters associated with the baseline response components. The 

probability of the baseline state | ,  was similarly modeled by using 

multinomial logistic regression as for the one-step transition probability | ,  in 

the follow-up likelihood. It will also be interesting to combine this approach with our 

model to find a complete likelihood function that accommodates all the three pieces 

baseline, follow-up, and survival.  

The results from the Nun study data are presented in Table 2.4 below. Note that in this 

application 81 subjects who were diagnosed with dementia at the baseline visit entered to 

help estimate the baseline effects. Those subjects were dropped from our previous model 

without the baseline likelihood component. 
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Table 2.4 Maximum likelihood estimates (SE) of model parameters with baseline 

Risk Factors State Estimates
Std. 

Error Risk Factors State Estimates
Std. 

Error 
Markov chain       Baseline       
Age 2 0.118* (0.017) Age 2 0.121* (0.034) 
  3 0.199* (0.020) 3 0.269* (0.040) 
  4 0.196* (0.023) 4 0.270* (0.037) 
APOE4 2 1.078* (0.263) APOE4 2 0.642 (0.367) 
  3 1.536* (0.291) 3 1.400* (0.447) 
  4 1.649* (0.322)   4 1.703* (0.400) 
Education:       Education:       

     < 16 years 2 1.829* (0.388) < 16 years 2 2.215* (0.623) 
    vs. > 16 years 3 1.873* (0.427) vs. > 16 years 3 2.588* (0.706) 

  4 1.713* (0.468) 4 3.247* (0.653) 
     16 years  2 0.590* (0.177) 16 years 2 0.660* (0.287) 

    vs. > 16 years 3 0.618* (0.209) vs. > 16 years 3 0.458 (0.399) 
  4 0.493* (0.247) 4 0.693* (0.352) 
Prior states:       Weibull  survival       
     Intact Cognition 2 -0.837* (0.339) Age at Entry - -1.701* (0.198) 

3 -3.437* (0.330) APOE4 - 0.552* (0.248) 
  4 -4.947* (0.548) Rate  - 5.081* (0.279) 

Mild Cognitive  2 0.701* (0.335)         
Impairment   3 -2.346* (0.314) Sigma - 1.212* (0.085) 

  4 -1.968* (0.335)         
 

* Significant at P < 0.05 

 

We can see that although the new model produced similar values of the parameter 

estimates as our previous model, the magnitude of odds ratios are larger for all the risk 

factors Age, APOE4 status, education level and prior state under the new model with 

baseline. For example, keeping other covariates constant, the odds ratio of having 

APOE4 present for transitions from intact cognition to M.C.I. is 2.31, to G.I. is 3.64 and 

to dementia is 4.10 under the previous model. In comparison, the corresponding odds 

ratios are 2.94, 4.65 and 5.20 under the current model with baseline likelihood 
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component. The results are similar for the other risk factors in the model. The comparison 

of fit statistics presented in Table 2.5 also suggests that the inclusion of the baseline 

component might help make up for those information potentially missing from our 

previous model and improve the parameter estimates. 

Table 2.5 Comparison of fit statistics in the Nun Study data 

Fit  Statistics 

Model wo 
Baseline 
- Weibull 

Model w 
Baseline 
- Weibull 

Model w 
Baseline 

- Lognormal 
-2 Log Likelihood 6855.2 6814.3 7027.9 
AIC 6937.2 6896.3 7109.9 
AICC 6938.7 6897.8 7111.4 
BIC 7113.3 7072.4 7286.0 

 

Future extensions of the model may include considering the random-effects models, in 

which less strict assumptions about the association between the two outcomes  and  

are required. The general idea is to define separate but correlated latent variables  and 

 for  and , and let ,  denote the joint density (often bivariate normal). 

Then by assuming conditional independence of  and  given , , the joint 

density of ,  can be obtained from 

, | | , . 

A more flexible setting is to consider using a proportional hazard model for the residual 

survival time of the subject depending on fixed effects  and random effect  

| exp  
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with piecewise-constant baseline hazard (step-functions): ∑

 where 0  denotes a split of the time scale. 
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Chapter 3 : Extended nonhomogeneous Markov transition model 

 

3.1 Introduction 

In the study of chronic diseases like Alzheimer’s, it is commonly the case that the 

investigators are particularly interested in the probability of disease onset before dying 

given a set of risk factors such as age, education, and genetic status. The purpose of this 

chapter is to continue the study for an extended nonhomogeneous Markov transition 

model that involves time dependent risk factors as well as the survival component. In that 

case, the underlying transition probability matrix is no longer stationary. The 

convergence status of the chain needs further examination before the absorption statistics 

can be computed.  

The remainder of the chapter is organized as follows: Section 3.2 introduces notations for 

defining common absorption statistics; investigates the convergence status of the 

fundamental matrix series and derives the formulas to compute the probability of 

dementia before death. Section 3.3 illustrates the use of the Delta method to construct 

confidence intervals for the transition probabilities to dementia and the odds ratios. In 

Section 3.4 the results are applied to the Nun Study. Section 3.5 compares the results 

under a simplified model with the risk indicator variable that combines the effects of the 

original risk factors APOE4 and Education. Conclusions are summarized in Section 3.6. 
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3.2 Nonhomogeneous Markov chain 

3.2.1 Notation and definition 

A homogenous Markov chain has lots of nice properties and attributes. We can argue that 

in the homogeneous case the absorption of transient states is guaranteed and the 

absorption statistics can be calculated explicitly. However, the chain considered here 

involves time dependent risk factors such as age, in which case the transition probabilities 

among states vary with time and thus the underlying transition probability matrix is no 

longer stationary. In this section, we continue to investigate for the convergence status 

and the statistics characterizing transitions and absorptions among states for a 

nonhomogeneous chain. 

Now consider an arbitrary finite absorbing nonstationary Markov chain with state space 

1,2, … , . Define  to be the set of transient states and  the set of absorbing 

states. Let ,  denote the k-step transition matrix with  being the initial starting 

time of the chain, and , , … , , the product of k one-

step transition matrices. ,  can also be expressed in the following canonical form: 

, , ,

0
, ,

0
 

                           ∏ ,

0
 

here , , , , , .  and  

are the substochastic matrices describing transitions among the transient states and 

transitions from the transient states to the absorbing states, respectively. 
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Suppose the chain starts from transient state  at time . Note that when the stationary 

condition holds we have ,  since transitions in the chain no longer depend 

on time.  

The following subsections will focus on addressing the problem by accommodating the 

residual survival time of the subject confounding in the nonhomogeneous chain. The 

formulation of the absorption statistics and the construction of their confidence intervals 

are discussed in detail. 

 

3.2.2 Probability of dementia before death 

Suppose that a certain subject has initially started the process from state , . Let  

be the state that the process visits at time . Let min , , which is the 

time it takes for the process to enter an absorbing state.  is only observed at each visit 

time. Further define  to be the residual life time of this subject at the time he/she 

enrolled in the study.  is continuous. 

Recall that in the previous chapter we hypothesize that the residual survival times of the 

subjects come from known parametric distribution sharing the same random effects used 

in Markov chain, i.e. here · | ,  and · | ,  being the conditional Weibull 

probability density function and cumulative distribution function, respectively. 

Let  denote the initial starting time. For each fixed , the probability that absorption 

occurs after time  can thus be derived.  , we have 
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          | , | , ∑ | ,    

                                    , ∑ ∏ , ,  

                                    ∑ , ,  

where max | .  

| , , ,  

So,  , 

| , , | , | , | ,  

     , , · | ,  

       , , · 1 | ,  

Yu et al. (2009) showed that under certain conditions the norm of the substochastic 

matrix ,  converges to zero as ∞. Following the property of cumulative 

distribution functions 0 | , 1, we have  

 , | , , ,  

The probabilities of dementia before death converge with time.   

We have                            | , 1 | ,  
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Therefore, by taking the integral over the whole support for the distribution of the 

random vector , we have 

| , , · 1 | ,  

where ·  denotes the probability density function for . 

Given the random effects, the relative risk of absorption between the two competing 

events can be derived by taking the ratio 

|
|  

∑ , , · 1 | ,
1 ∑ , , · 1 | ,

 

The resultant integral can be solved numerically using the Gauss-Hermite quadrature 

method as discussed in Section 1.3. 

 

3.3 Construction of confidence intervals 

Our primary research interest in this study is to estimate the confidence intervals 

associated with the probabilities and odds ratios of developing dementia before death. 

One such approach is using the Delta method to estimate the corresponding standard 

errors and construct the confidence intervals based on the assumption of the normal 

sampling distribution.  
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It is necessary for us to check the normality of the estimated  and  in the Nun Study 

before applying the method. In the case when the distribution of  (or ) is skewed 

from normal, we will also look at possible transformations, such as logarithm of the 

statistic, for a better interval estimate. 

 

3.3.1 Checking for normality 

As shown in the diagram below, the simulation is performed in the following steps: 

Step1. The maximum likelihood estimates  as well as the associated covariance matrix 

 can be derived from our model as discussed in the previous chapter; 

Step2. Each individual vector of  is generated from the multivariate normal distribution 

, ; 

Step3. The transition probability matrices , |  and the cumulative survival 

distribution functions |  are then estimated; 

Step4. The probability of developing dementia before death can be calculated from the 

submatrices , | , , | , and | ; 

Step5. The s and s as well as their functional transformations i.e.,  and 

ln  are computed; 

Step6. Repeat the above steps for n times; 
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Step7. Standard univariate procedures are conducted to evaluate and compare the 

normality of these statistics , , , and ln . 

Figure 3.1 Diagram of the data generation procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

For illustration purposes, we pick a typical nun with baseline age 80, apoe4 positive, less 

than 16 years of education, and initial state being intact cognition. (The results for initial 

state being M.C.I. or G.I. are quite similar.) The number of iterations is 10,000.  

We are looking at the sampling distribution of Pr   , the odds 

ratio  , and the log or other type of transformations of them. To compute the 

odds ratio,  is taken from a nun with same baseline age, education level, and initial 

state, but apoe4 negative. The main output is presented as follows: 

Given True 

~ ,  

, |  and |  

, | , , | , 
and |  

 and  

Functional transformations of   and  

n Iterations
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Figure 3.2 Checking for normality of p in the Nun Study 

 

 

 

       Goodness-of-Fit Tests for Normal Distribution 
 

        Test                  ----Statistic-----   ------p Value------ 
 

                  Kolmogorov-Smirnov    D       0.00791052   Pr > D        0.132 
                  Cramer-von Mises      W-Sq    0.15989975   Pr > W-Sq     0.019 
                  Anderson-Darling      A-Sq    1.16387869   Pr > A-Sq    <0.005 
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Figure 3.3 Checking for normality of OR in the Nun Study 

 

 
 
 

       Goodness-of-Fit Tests for Normal Distribution 
 

        Test                  ----Statistic-----   ------p Value------ 
 
                  Kolmogorov-Smirnov    D       0.00686499   Pr > D       >0.150 
                  Cramer-von Mises      W-Sq    0.12037271   Pr > W-Sq     0.063 
                  Anderson-Darling      A-Sq    0.86690532   Pr > A-Sq     0.026 
 
 

The results suggest that direct estimates of , ln , , and  are not asymptotic 

normal while in comparison , the inverse trigonometric function of the square 

root of , is more likely to be normally distributed. Moreover, the sampling distribution 

for ln  is also normal, the hypothesis testing of normality is not rejected. 
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Consequently, based on asymptotic normal assumption, we would thus look at  

and ln  to construct the confidence interval for  and . 

 

3.3.2 Applying the Delta method 

(i) s.e. for arcsin  using Delta method 

Let Pr    , we have shown that 

| , , , · 1 | ,                 3.1  

By Delta method, if arcsin  then 

var arcsin  · ̂                                                                     3.2                         

                              
1

1
·

1
2

̂                                                                      3.3  

                              
1

2
̂                                                                               3.4  

                              
1

4 ̂                                                                                 3.5  

Here we can estimate ̂  by a second round of Delta method. i.e. we need to start 

with Eq. (3.1) and the covariance matrix of the estimated parameter vector . 

 

(ii) s.e. for ln  using Delta method 

Let Probability of dementia in group 1, and 

 Probability of dementia in group 2, we have .  
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By Delta method, 

1

1

1

1

1
1 1

1
 

                             2
1

1 ,                                                        3.6  

Then if we apply Delta method again with respect to the logarithm, we have 

1

1

1

1
· 1

1
                                                       3.7  

1
1 ,

 ̂
1

1 ,
 ̂                                                  

2 
1

1 1 ,
 ̂ , ̂                                                                     3.8   

 

3.3.3 Formulating the covariance matrix 

Let , 1 | , , then 

 | , ∑ , , · 1 | ,  

                           ∑ , , ,  

Define ∑ , , , , ,  is the covariate 

matrix associated with . For instance, given  80, 4 ,

16 , the three entries of  will be the probability of developing dementia 

before death for a certain subject with baseline age 80, apoe4 positive, less than 16 years 

of education starting from the initial state of intact cognition, M.C.I., and G.I., 

respectively.  
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Now let 
,

, .  is a 6 1 vector, which contains the probabilities 

from two different sets of covariates. We have 

 

                            

,

,

,

,
. 

In the following context we will address how to derive ,  through matrix 

calculation. ,  can be solved analogously by simply substituting  with . 

Assume the process consists of 3 transient states (normal, MCI, GI) and 1 absorbing state 

(dementia), 

• denote  by ,  is 9  (given  is the length of ) 

• denote  by ,  is 3   

• denote  by ,  is also 9   

Hence, we have 

 

Introduce the vector transformation as follows: 

1 1  

which gives a 3  matrix; 
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2 1 2  

also 3 ; 

Similarly, we can get  

 

2 3  

3 1 2

3  

Continuing in this manner, for general 1, the partials for a particular element 

∏  can be formulated as 

 

here, define  and ∏ . 

 
Given the specifications of estimated transition matrix  and the cumulative distribution 

function of the residual survival time , we can decompose the parameter vector  into 

i) Transition parameters that are invariant across the rows (e.g. intercept, age, 

education, apoe4) 

ii) Transition parameters that vary across the rows (e.g. prior state indicator: prior1 

and prior2) 
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iii) Survival parameters (e.g. intercept, age at entry, apoe4 in the survival part) 

Assume again a process with 3 transient states (normal, MCI, GI) and 1 absorbing state 

(dementia). The  matrix can be specified as 

1
1 ∑ exp 1

   
exp 1

1 ∑ exp 1
   

exp 1
1 ∑ exp 1

 

1
1 ∑ exp 2

   
exp 2

1 ∑ exp 2
   

exp 2
1 ∑ exp 2

1
1 ∑ exp

                               
exp

1 ∑ exp
                               

exp
1 ∑ exp

  

 

 matrix can be specified similarly 

exp 1
1 ∑ exp 1

exp 2
1 ∑ exp 2

exp
1 ∑ exp

 

 

And in  matrix,  1 exp , for 1,2,3; 

                            0, for   , 1,2,3. 

 

For a  which are the  estimates associated with the transition to state 2 (MCI), 

the partial of individual element of  given  is presented 

exp 1
1 ∑ exp 1

 

exp 2
1 ∑ exp 2

 

exp
1 ∑ exp
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1 ∑ exp 1 exp 1
1 ∑ exp 1

 

1 ∑ exp 2 exp 2
1 ∑ exp 2

 

1 ∑ exp exp
1 ∑ exp

 

exp 1 exp 1
1 ∑ exp 1

 

exp 2 exp 2
1 ∑ exp 2

 

exp exp
1 ∑ exp

 

 

Other partials of the s invariant across rows can be formulated similarly. 

For a 1  the partial of individual element of  given  is presented 

1
exp 1

1 ∑ exp 1
 

1
0 

1
0 

1
1 ∑ exp 1 exp 1

1 ∑ exp 1
 

1
0 

1
0 

1
exp 1 exp 1

1 ∑ exp 1
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1
0 

1
0 

Partials of 1  and 2 , 2,3 can be formulated similarly. 

Partials of s in i) and ii) with respect to  can be done analogously. 

For a  which are the  estimates associated with the survival components, the 

partial of individual element of  given  and  is presented 

exp ·         1,2,3 

0         , 1,2,3 

Other partials of the  can be formulated similarly. 

Partials of s in i) and ii) with respect to  are zeros.  

Partials of s in iii) with respect to  and  are zeros. 

 

Back to Eq. (3.5), the variance term for  can be estimated by selecting the 

corresponding diagonal element ̂   from the covariance matrix . 

Similarly, if we plug in  80, 4 , 16  and 

 80, 4 , 16 , we have ̂ , ̂ , and ̂ , ̂ , 

and can then get the variance estimate for ln  of the two groups by Eq. (3.8). 

We have shown in the previous section that the statistics  and ln  in our 

study satisfy the asymptotic normal assumption. Therefore, we can construct confidence 

intervals for  and  based on these statistics. 
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3.4 Application to the Nun Study Data 

In this section, we present the analysis of data in the Nun Study described in Section 2.4. 

The methodology of computing the probability that a subject develops dementia before 

death and thus the relative risk is now applied. The final analytic sample for parameter 

estimating consisted of 461 non-demented participants at baseline, of which almost half 

(n=225) died before converting to dementia. The 81 subjects diagnosed with dementia at 

their baseline visit were excluded.   

We let the transition probabilities depend on four covariates: age, the prior state (intact 

cognition or M.C.I. or G.I.), the APOE4 status (presence/absence of an apolipoprotein E-

4 allele), and levels of education. The residual survival times of the subjects are assumed 

to follow a parametric Weibull distribution that depends on two covariates age at entry 

and the APOE4 status. We further assume that a shared random intercept connects these 

two components transition and survival within the same subject. 

Recall that the model likelihood function is constructed as follows 

… ,
…

| , , , , , | ,  

Suppose there are N subjects in the study. The random vector , … ,  

represents the cognitive states for the ith subject at  different ordered assessments. We 

let  denote the one step transition probability from state s to v. Here  is 

dependent on time/age m. The residual survival time of the subject is assumed to follow a 

Weibull distribution.  denotes the probability of the ith subject with survival time  
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failing from the competing risk of death.  and  are determined by the commonly 

known risk factors for dementia and death, respectively. The dependence of the two 

components within the same subject is captured by the shared random effect . 

Integrating over the whole support of the random effect, we thus obtain the likelihood 

function displayed above. 

Again the resultant integral can be approximated numerically using the Gauss quadrature 

method by assuming a normally distributed random effect with mean 0 and unknown 

variance . This part of the calculation is done using the SAS NLMIXED procedure. 

The maximum likelihood estimates are produced and presented in Table 3.1 below.  

Table 3.1 Parameter estimates for transition probabilities and residual survival in the Nun 

Study (Initial state: Intact cognition) 

Risk Factor MCI GI Dementia Residual 
Survival time 

Prior State: 
    Intact Cognition -1.1598* -3.7610* -5.2779* 
    MCI 0.7218* -2.3254* -1.9468* 
AGE 0.0949* 0.1746* 0.1723* 
EDUC < 16 yrs 1.5443* 1.5919* 1.4343* 
EDUC = 16 yrs 0.4723* 0.5041* 0.3792 
APOE4 STATUS 0.8422* 1.2971* 1.4184* 0.4238* 
AGE at ENTRY -0.2017* 

 

*Significant at P < 0.05 

Estimate of rate = 5.24; Estimate of sigma = 0.94 
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Table 3.2 Number of dementia and death by age in the Nun Study 

APOE4 –, EDUC ≥ 16 yrs, BASELINE = 1 

(Total = 117) 

 BEFORE 
AGE  80 85 90 95 95+

n1 (# of DEM) 0 2 3 5 2
n2 (# of DEAD) 0 12 29 22 5

⁄   0 0.14 0.09 0.19 0.29
 0 0.17 0.10 0.23 0.40

 

 

APOE4 –, EDUC ≥ 16 yrs, BASELINE = 1, 2, 3 

(Total = 330) 

 BEFORE 
AGE  80 85 90 95 95+

n1 (# of DEM) 3 15 26 38 20
n2 (# of DEAD) 3 25 61 55 23

⁄   0.5 0.375 0.30 0.41 0.47
 1 0.60 0.43 0.69 0.87

 

 

APOE4 –, EDUC ≥ 16 yrs, BASELINE = 1, 2, 3, 4 

(Total = 361) 

 BEFORE 
AGE  80 85 90 95 95+

n1 (# of DEM) 7 26 36 42 22
n2 (# of DEAD) 3 25 61 55 23

⁄   0.7 0.51 0.37 0.43 0.49
 2.33 1.04 0.59 0.76 0.96
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Table 3.2 above summarizes the number of dementia and death before age 75, 80, 85, 90, 

95 and after among the largest subgroup (the low risk group: negative APOE4, college or 

above Education) in the Nun Study data. For the baseline intact nuns (baseline=1), the 

number of cases of dementia observed in the age intervals are small (no larger than 5). 

Including the baseline M.C.I. and G.I. (baseline=2,3), the value of  decreases from 

age 85 to 90 and increases after 90. To further investigate the age effect, we add in a 

quadratic form of age to the original covariate vector and re-fit the model. It shows that 

the non-linear effect from age on transition is marginal since the associated Z-normal 

scores are only marginally significant at 5% level. These tables give a general idea how 

the probability of dementia before death and relative risk change with age in the data.  

Now consider the all subjects case. The empirical distribution of the probability of 

dementia before death in our data shows: in the low risk group, where the subjects have 

both risk factors being absent (negative APOE4 w/ high Education), the probability of 

dementia before death increases with age; while in the high risk groups, where the 

subjects have at least one of the risk factors being present (positive APOE4 w/ high 

Education, or negative APOE4 w/ low Education, or positive APOE4 w/ low Education), 

no significant age effect was found. The results are summarized as in Table 3.3 below. 
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Table 3.3 Summary of the age effect in the Nun Study (All subjects) 

Educ 
Pr of Dem 

before Death ≤ 12 yrs ≥ 16 yrs 

 
Apoe4 

 
+ 

 
Insufficient 

subjects 

 
No age 
effect 

 
– 

 
No age 
effect 

 
↑ by age 

 

Table 3.4 displays the estimated probabilities of dementia before death by different 

genetics and education group at age points 75, 80, 85, 90, and 95 with the initial state 

being intact cognition. These probabilities are calculated by replacing the unknown 

parameter vector with the corresponding MLEs from table 3.1.  

Table 3.4 Probability of dementia before death in the Nun Study 

(Initial state: Intact cognition) 

 AGE 
95 90 85 80 75 

APOE4 -, EDUC > 16 yrs 0.59 0.53 0.45 0.36 0.28 
APOE4 -, EDUC = 16 yrs 0.59 0.54 0.49 0.42 0.35 
APOE4 -, EDUC < 16 yrs 0.61 0.58 0.56 0.54 0.50 
APOE4 +, EDUC > 16 yrs 0.57 0.56 0.57 0.58 0.55 
APOE4 +, EDUC = 16 yrs 0.56 0.56 0.58 0.60 0.60 
APOE4 +, EDUC < 16 yrs 0.56 0.57 0.61 0.66 0.69 
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The result indicates that for intact cognitive subjects, having an apolipoprotein E-4 

present and low education increases the chance of dementia before death. In particular, 

(1) Subjects with APOE4 status being negative: 

The probability of converting to dementia before death increases with age. That is, a 

person is more likely to develop dementia at an elderly age. Education could help protect 

subjects from getting dementia. A person with lower education level would have greater 

chance of developing dementia than a same-aged person with higher education level. The 

education effect diminishes with the increase of age. More specifically, at age 75 the 

probability of dementia before death associated with less than 16 years of education is 

0.50, almost twice of that associated with over 16 years of education (0.28); while at age 

95 the difference is only 0.02. 

(2) Subjects with APOE4 status being positive: 

In general, subjects with positive APOE4 are much more likely to develop dementia at 

early ages (75, 80, and 85). A person at age 80 with positive APOE4 is almost same or 

more likely to convert to dementia as a person at age 95 with negative APOE4. The 

probability of dementia before death decreases with age for subjects having 16 years or 

less education. Among the highest education group, the change of the probabilities 

fluctuates by time and no monotone trend shows. The highly educated also retain lower 

risks of getting dementia except for those at age 95, when the probability is 0.57 slightly 

larger compared with the lower education levels (0.56).  However, the by-age difference 

is smaller in this case. 
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The estimated probabilities and odds ratios of dementia before death are computed by 

replacing the parameter vector with the corresponding maximum likelihood estimates 

from our model. For odds ratios, the comparison is made on the risk factor APOE 

(positive versus negative) for the same age and education group. The 90% confidence 

intervals for the probabilities and odds ratios are estimated using the Delta method as we 

discussed in the previous section. The results are presented in Figure 3.4 and 3.5. 

Figure 3.4 displays the estimated probabilities of developing dementia before death by 

APOE4, education, and at different age (75, 80, 85, 90, 95) with the initial state being 

intact cognition. The results show that in general the probabilities are only slightly 

changed by the genetics or education level in the elderly age groups (age 90 and age 95). 

In contrast the probabilities are more likely to be affected by these risk factors for nuns 

starting at a younger age. For nuns at age of 75-85, having an APOE4 present and low 

education increases the risk of getting dementia before death, and such influence from the 

genetics or education declines consistently with age. Particularly, in the youngest age 

group (age 75), the probability of developing dementia before death with APOE4 positive 

and lower than or equal to 12 years of education is more than twice higher than that with 

APOE4 negative and higher than 16 years of education. 

Figure 3.5 gives the estimated odds ratios of dementia before death in the two contrast 

APOE4 groups by education level and at age points (75, 80, 85, 90, 95) with the initial 

state being intact cognition. The results illustrate that having high education could 

somehow increase the odds ratio on APOE4, especially in the younger age groups. 
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Figure 3.4 Probabilities and 90% confidence intervals of dementia before death 
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Figure 3.5 Odds ratios and 90% confidence intervals of dementia before death (Risk 

factor: APOE4+ versus APOE4-) 
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3.5 Risk model 

The idea of replacing the original risk factors by a new indicator that represents the 

presence or absence status of certain risk factors for a given subject came directly from 

the results in the last section. As we found that among the subgroup of negative APOE4 

plus college or above education, which contains the majority of the participants in the 

study (n=330), there is a clear age effect on the probability of transition to dementia over 

time in contrast to the other three subgroups. Also, we hope it would help eliminate the 

observation insufficiency for low education by combining those subgroups with the risk 

indicator (n=4 for positive APOE4 w/ low education; n=44 for negative APOE4 w/ low 

education; and n=83 for positive APOE4 w/ high education). It is therefore of interest to 

compare the results under this “reduced” risk model and to look at the interval estimates 

of probabilities of developing dementia before death, which would now give more focus 

on the AGE effect.  

Base on the results from Chapter 2, we know that having positive APOE4 and low 

education are associated with higher risk of transition to dementia before death. We then 

consider grouping together the original risk factors APOE4 and EDUC by: first, re-define 

EDUC to be binary variable valued at 0 if having College or above education and 1 

otherwise; and second, newly define variable RISK as an indicator of the present/absent 

risk status of APOE4 and EDUC. 

Several models were compared which seemed substantively reasonable: 

Model I. As comparison, the main effects model with risk factors APOE4 (0 = 

negative; 1 = positive) and EDUC (0 = College or above; 1 = otherwise) 
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Model II. The main effects model with a two-level RISK (0 =  have neither of the 

risk factors present; 1 = have at least one of the two risk factors present) 

Model III. The main effects model with a three-level RISK (0 = have neither of the 

risk factors present; 1 =  have either one of the risk factors present; 2 = have both risk 

factors present) and 

Model IV. The model with 2-way interactions among AGE and RISK (0 = have 

neither of the risk factors present plus  85 years of age; 1 = otherwise) 

The fit criterions for these models are shown in Table 3.5 as follows. According to 

AIC/AICC, the three main effects models fit better than the interactions model. The BIC 

suggests that either the main effects model with a two-level RISK or the main effects 

model with a three-level RISK are reasonable; given this we opted for the simpler model 

– Model II, for ease of interpretation and parsimony. The model was fitted to the Nun 

study data and the results are presented in Table 3.6. The application found that APOE4 

is not a significant predictor for survival time. So it was excluded from the final RISK 

model. 

Table 3.5 Comparison of risk models on different fit criterions 

Risk Model   -2LogL AIC AICC BIC 

Main effects model (apoe4, educ) 

Main effects model (2-level risk) 

Main effects model (3-level risk) 

Interactions model (age*risk) 

5692.5 

5699.0 

5698.3 

5722.3 

5736.5 

5737.0 

5736.3 

5760.3 

5736.9 

5737.3 

5736.7 

5760.7 

5827.4 

5815.5 

5814.9 

5838.9 
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Table 3.6 Maximum likelihood estimates (SE) of model parameters in the Nun Study 

(Risk model; Base state: 1 = Intact Cognition) 

Risk Factors State Estimates
Std. 

Error Risk Factors State Estimates
Std. 

Error 
Markov chain       Weibull  survival       
Age 2 0.099* (0.016) Age at Entry - -0.204* (0.021) 
  3 0.177* (0.020) 
  4 0.172* (0.023) Rate  - 5.203* (0.306) 
Risk 2 0.899* (0.199)         
  3 1.222* (0.228) 
  4 1.299* (0.260)       
Prior states:       Sigma - 0.941* (0.106) 
Intact Cognition 2 -1.236* (0.333) 

  3 -3.830* (0.325) 
  4 -5.300* (0.544) 

Mild Cognitive 2 0.691* (0.326)         
       Impairment 3 -2.354* (0.305) 

  4 -1.963* (0.326)         
 

* Significant at P < 0.05 

 

We applied the Delta method again to produce the interval estimates for the probabilities 

of transition to dementia under the risk model. The simulated samples were generated to 

examine for normality and the results were quite similar to what we obtained under the 

previous model. The covariance matrix associated with the transition probabilities can be 

formulated analogously. The estimated mean probabilities with the 90% confidence 

intervals are displayed in Figure 3.6. These results are consistent with what we found in 

Section 3.3. Basically age plays an essential role on the transition probability to dementia 

for those subjects who have no potential genetics or education risk of the disease. In 

contrast, the subjects who have one or both of such risks show high probability of disease 
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at an earlier age of 75 while the impact of ageing is slight within the group. The 

probability of developing dementia increases steadily with age in the low risk group, and 

it will reach the same level of disease probability (p=0.6) at age 95, which is in average 

20 years later than those in the high risk group. 

 

Figure 3.6 Probabilities and 90% confidence intervals of dementia before death (Risk 

model) 
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3.6 Conclusion 

In the research of chronic diseases it is often of interest to study the absorption statistics 

that characterize the progression of disease associated with the effects of risk factors. 

Previous work showed that such statistics always exist in a time homogeneous Markov 

chain and they are directly related to the fundamental matrix. While in the 

nonhomogeneous case, proper assumptions are required to ensure the convergence of the 

corresponding matrix series. This chapter is focused on addressing the problem by 

accommodating the residual survival time of the subjects confounding in a 

nonhomogeneous Markov chain. The convergence status of the chain is examined and 

confirmed. Provide this condition, formulas are derived in computing (1) the probability 

of developing dementia before death and (2) the 90% confidence interval based on the 

Delta method. 

The results are illustrated with an application to the Nun study. The maximum likelihood 

estimates of the parameters (presented in Chapter 2) are applied to the computation of the 

absorption statistics and their confidence intervals. The analysis results indicate that age, 

education level, and APOE4 status are significant predictors of the transition 

probabilities. Low education and the presence of APOE4 increase the risk of converting 

to dementia before death. But the effect diminishes when the age increases. In addition, 

the odds ratio of dementia before death on APOE4 status (positive versus negative) 

increases as the level of education increases among younger age groups (age 75, 80, 85). 

 

 

Copyright © Liou Xu 2010 
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Chapter 4 : Summary and discussions 

 

4.1 Discussion of the model 

In medical applications, the response may refer to a disease state, and this multi-state 

process is often assumed to be Markov, which greatly simplifies the computation of the 

likelihood. We developed an improved parametric multi-state Markov model to model 

this type of longitudinal categorical response data.  

The model is based on Salazar’s multi-state Markov model (2007). Rather than defining 

death as a competing absorbing state to dementia, we treated the survival from death as a 

continuous variable. More specifically, we assumed that the residual survival time  of 

the th subject follows a Weibull distribution  ~ 0, 0 , and 

the probability of this subject failing from the risk of death has the form: 

| ,       4.1  

Here  is a shared random effect,  is some indicator function valued at 1 if the subject 

died at time  and 0 otherwise, and  represents the vector of all the unknown 

parameters. 

The joint distribution of the categorical response vector  conditional on the baseline 

state was determined by the product of the conditional distributions of  given , 

assuming the first order Markov property holds. A multinomial logit parameterization 

could be applied to link these transition probabilities with the fixed and random risk 

factors, which are expressed as follows: 
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          2,3,4                     4.2  

Base on equations (4.1) and (4.2), the contribution of the th participant to the likelihood 

function is 

| , | , , , | ,       4.3
,

 

The functions  and  denote the left hand sides of (4.1) and (4.2) while  denotes the 

cumulative distribution function for the shared random effect. The overall likelihood can 

be derived by evaluating the product of (4.3) across the N cohort participants under study. 

The resultant function was approximated using the Gauss-Hermite quadrature method to 

produce the maximum likelihood estimates of the parameters. 

The evaluation of the likelihood function of the proposed model requires a good choice 

for the distributional form of the survival term. Simulations in Chapter 2 showed that the 

model estimates were not sensitive to violations of the Weibull assumption in the case 

when lognormal is the true prior distribution. We considered four different case 

scenarios, under which two sets of comparisons were made to investigate: first, the 

effects of varying the sample size; and second, the effects of misspecification of the 

distributional form of survival from a possible alternative. The results indicated that when 

the prior distribution was correctly specified, increasing sample size would help improve 

the estimates in terms of reducing bias and MSE. On the other hand, only MSE was 

significantly affected by sample size if the distributional form of survival was 

misspecified. 
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4.2 Discussion of the transition probability 

To further investigate the long run behavior of the process, we considered the well known 

canonical form of the one-step transition matrix given by 

, , ,

0
 

We let  being the initial starting time of the process. Suppose that there are  absorbing 

states and  transient states in the chain, then ,  is a square  matrix of one-

step transition probabilities among the transient states, ,  is a  matrix of one-

step transition probabilities from a transient state to an absorbing state. For a 

homogeneous Markov chain, the fundamental matrix  is well-defined and 

its elements can be calculated explicitly from the converging series  

 

While in the nonhomogeneous case the fundamental matrix is replaced by the infinite 

series 

, , , , ,  

By accommodating the residual life time of the subjects confounding in the chain, we 

derived the following formula for computing the probability of dementia before death for 

a given subject assuming initially started the process from state  and baseline time : 

| , , , · 1 | ,                 1,2,3 
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Here  is the minimum time it takes for the process to enter an absorbing state, and 

· | ,  is the cumulative distribution function of survival time . 

Yu et al. (2009) proved that under certain conditions the norm of the substochastic matrix 

,  converge to zero as ∞, which does not depend on the initial time  or the 

states. Based on Platis et al.’s sufficient condition of convergence (1998) and the property 

of cumulative distribution functions, we showed that the probabilities of dementia before 

death converge with time.  

Another primary research interest in the Nun Study is to estimate the confidence intervals 

associated with the probabilities and odds ratios of developing dementia before death. 

Our approach by using the Delta method to estimate the corresponding standard errors 

and to construct the confidence intervals was introduced and illustrated in detail in 

Chapter 3. Such a technique is based upon the assumption of the asymptotic normality of 

the sampling distribution of the statistics. The assumption was carefully examined with 

large simulated samples. 

These results for nonhomogeneous Markov chains make it possible to study the effects of 

the risk factors on the long run behavior of the chain and in the process account for the 

impact of the competing event death. 
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4.3 Areas of future research 

The model proposed in this dissertation is likelihood based subject specific model 

conditional on the unobserved latent variables represented by the random effects. One 

appealing feature of the polychotomous logistic regression model with shared random 

effect approach is that it allows us to perform statistical inference for the risk factors by 

means of odds ratios. By fitting the model we were able to study the different roles of the 

predictors on a subject specific transition.  

Further extensions of the model may include that of allowing less strict assumptions 

about the association between the longitudinal responses and the time-to-event data. The 

general idea is to define separate but correlated latent variables  and  for  and , 

and let ,  denote the joint density, often being bivariate normal. By assuming 

conditional independence of  and  given , , the joint density of  and  can 

be obtained as 

, | | , . 

The dissertation looked at the impact of violations of the distributional assumption of the 

survival term over the parameter estimation through simulations. The results are 

conditional on other aspects of the model specifications such as the mean structure, 

random effects structure, and linkage function. It is therefore of interest to compare such 

parametric survival approach with a nonparametric or semiparametric likelihood 

approach for survival. A more flexible setting is to consider using proportional hazard 

model for the residual survival time of the subject depending on fixed effects  and 

random effect  
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| exp  

with piecewise-constant baseline hazard (step-functions): ∑

 where 0  denotes a split of the time scale. 

In addition, research interests in this area can also be focused on misspecification of the 

linkage function of the model and procedures to assess goodness-of-fit for multi-state 

Markov models. Further investigation of the related model stability and verification of 

the model assumptions are both non-ignorable. 
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APPENDICES 

Appendix A: SAS code for model fitting 

libname thesis 'C:\Doc\My Doc_research'; 

ods output ParameterEstimates=est CovMatParmEst=cov; 
 
proc nlmixed data=nun4_M qpoints=1 cov;  
 
parms int1=0.01 int2=0.01 int3=0.01  
  age1=0.05 age2=0.05 age3=0.05  
  apo1=0.08 apo2=0.08 apo3=0.08  
      coll1=0.05 coll2=0.05 coll3=0.05   
  grad1=0.05 grad2=0.05 grad3=0.05   
      pri11=0.08 pri12=0.08 pri13=0.08  
  pri21=0.05 pri22=0.05 pri23=0.05  
       
  intb1=0.01 intb2=0.01 intb3=0.01 
      ageb1=0.05 ageb2=0.05 ageb3=0.05 
  apob1=0.08 apob2=0.08 apob3=0.08 
      collB1=0.05 collB2=0.05 collB3=0.05 
  gradB1=0.05 gradB2=0.05 gradB3=0.05 
 
  intc=0.01 entagec=0.05 apoc=0.05 
      ratc=0.5 
      sd=0.5; 
 
eta1=int1+age1*agec+apo1*apoe4+coll1*ed12+grad1*ed3+pri11*prior1+
pri21*prior2+u; 
eta2=int2+age2*agec+apo2*apoe4+coll2*ed12+grad2*ed3+pri12*prior1+
pri22*prior2+u; 
eta3=int3+age3*agec+apo3*apoe4+coll3*ed12+grad3*ed3+pri13*prior1+
pri23*prior2+u; 
 
exp_eta1=exp(eta1); 
exp_eta2=exp(eta2); 
exp_eta3=exp(eta3); 
den_eta=1+exp_eta1+ exp_eta2+exp_eta3; 
 
etab1=intb1+ageb1*agec+apob1*apoe4+collB1*ed12+gradB1*ed3+u; 
etab2=intb2+ageb2*agec+apob2*apoe4+collB2*ed12+gradB2*ed3+u; 
etab3=intb3+ageb3*agec+apob3*apoe4+collB3*ed12+gradB3*ed3+u; 
 
exp_etab1=exp(etab1); 
exp_etab2=exp(etab2); 
exp_etab3=exp(etab3); 
den_etab=1+exp_etab1+ exp_etab2+exp_etab3; 
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/* p1 denotes the baseline component */ 
if (priorstate=1) then p1=(1/den_etab)**baseline; 
else if (priorstate=2) then p1=(exp_etab1/den_etab)**baseline; 
else if (priorstate=3) then p1=(exp_etab2/den_etab)**baseline; 
else if (priorstate=4) then p1=(exp_etab3/den_etab)**baseline; 
 
/* p2 denotes the main transition process */ 
if (currentstate=1) then p2=(1/den_eta)**ind;  
else if (currentstate=2) then p2=(exp_eta1/den_eta)**ind;  
else if (currentstate=3) then p2=(exp_eta2/den_eta)**ind;  
else if (currentstate=4) then p2=(exp_eta3/den_eta)**ind; 
 
etac=intc+entagec*entrage+apoc*apoe4+u; 
exp_etac=exp(etac); 
 
/* p3 denotes the survival component */ 
if (indxi=1) then p3=(ratc*exp_etac*(survival**(ratc-1))*exp(-
exp_etac*(survival**ratc)))**(baseline*ind); 
else if (indxi=0) then p3=(exp(-
exp_etac*(survival**ratc)))**(baseline*ind); 
 
ll=log(p1*p2*p3);  
 
model currentstate ~ general (ll); 
random u ~ normal(0,sd*sd) subject=newid;  
run; 
 
 
data thesis.est; set est; run; 
data thesis.cov; set cov; run; 
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Appendix B: SAS macro data generation for simulations 

%MACRO data_gen(m,maxv); 
 
proc iml; 
 
START ptran(AGE, APOE, PRIOR1, PRIOR2, error); 
theta={-1.69 0.81 -1.05 0.07 0.19 0.21 0.27 0.39 1.62 0.58 -3.12 
-4.15 1.79 -2.43 -2.26}; 
agec=age-86; /* centered age */ 
p=j(4,4,0); 
 
p[1,1]=1/(1+exp(theta[1]+theta[4]*AGEC+theta[7]*APOE+theta[10]*PR
IOR1+error)+exp(theta[2]+theta[5]*AGEC+theta[8]*APOE+theta[11]*PR
IOR1+error)+exp(theta[3]+theta[6]*AGEC+theta[9]*APOE+theta[12]*PR
IOR1+error)); 
p[1,2]=exp(theta[1]+theta[4]*AGEC+theta[7]*APOE+theta[10]*PRIOR1+
error)/(1+exp(theta[1]+theta[4]*AGEC+theta[7]*APOE+theta[10]*PRIO
R1+error)+exp(theta[2]+theta[5]*AGEC+theta[8]*APOE+theta[11]*PRIO
R1+error)+exp(theta[3]+theta[6]*AGEC+theta[9]*APOE+theta[12]*PRIO
R1+error)); 
p[1,3]=exp(theta[2]+theta[5]*AGEC+theta[8]*APOE+theta[11]*PRIOR1+
error)/(1+exp(theta[1]+theta[4]*AGEC+theta[7]*APOE+theta[10]*PRIO
R1+error)+exp(theta[2]+theta[5]*AGEC+theta[8]*APOE+theta[11]*PRIO
R1+error)+exp(theta[3]+theta[6]*AGEC+theta[9]*APOE+theta[12]*PRIO
R1+error)); 
p[1,4]=exp(theta[3]+theta[6]*AGEC+theta[9]*APOE+theta[12]*PRIOR1+
error)/(1+exp(theta[1]+theta[4]*AGEC+theta[7]*APOE+theta[10]*PRIO
R1+error)+exp(theta[2]+theta[5]*AGEC+theta[8]*APOE+theta[11]*PRIO
R1+error)+exp(theta[3]+theta[6]*AGEC+theta[9]*APOE+theta[12]*PRIO
R1+error)); 
p[2,1]=1/(1+exp(theta[1]+theta[4]*AGEC+theta[7]*APOE+theta[13]*PR
IOR2+error)+exp(theta[2]+theta[5]*AGEC+theta[8]*APOE+theta[14]*PR
IOR2+error)+exp(theta[3]+theta[6]*AGEC+theta[9]*APOE+theta[15]*PR
IOR2+error)); 
p[2,2]=exp(theta[1]+theta[4]*AGEC+theta[7]*APOE+theta[13]*PRIOR2+
error)/(1+exp(theta[1]+theta[4]*AGEC+theta[7]*APOE+theta[13]*PRIO
R2+error)+exp(theta[2]+theta[5]*AGEC+theta[8]*APOE+theta[14]*PRIO
R2+error)+exp(theta[3]+theta[6]*AGEC+theta[9]*APOE+theta[15]*PRIO
R2+error));    
p[2,3]=exp(theta[2]+theta[5]*AGEC+theta[8]*APOE+theta[14]*PRIOR2+
error)/(1+exp(theta[1]+theta[4]*AGEC+theta[7]*APOE+theta[13]*PRIO
R2+error)+exp(theta[2]+theta[5]*AGEC+theta[8]*APOE+theta[14]*PRIO
R2+error)+exp(theta[3]+theta[6]*AGEC+theta[9]*APOE+theta[15]*PRIO
R2+error)); 
p[2,4]=exp(theta[3]+theta[6]*AGEC+theta[9]*APOE+theta[15]*PRIOR2+
error)/(1+exp(theta[1]+theta[4]*AGEC+theta[7]*APOE+theta[13]*PRIO
R2+error)+exp(theta[2]+theta[5]*AGEC+theta[8]*APOE+theta[14]*PRIO
R2+error)+exp(theta[3]+theta[6]*AGEC+theta[9]*APOE+theta[15]*PRIO
R2+error)); 
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p[3,1]=1/(1+exp(theta[1]+theta[4]*AGEC+theta[7]*APOE+error)+exp(t
heta[2]+theta[5]*AGEC+theta[8]*APOE+error)+exp(theta[3]+theta[6]*
AGEC+theta[9]*APOE+error)); 
p[3,2]=exp(theta[1]+theta[4]*AGEC+theta[7]*APOE+error)/(1+exp(the
ta[1]+theta[4]*AGEC+theta[7]*APOE+error)+exp(theta[2]+theta[5]*AG
EC+theta[8]*APOE+error)+exp(theta[3]+theta[6]*AGEC+theta[9]*APOE+
error)); 
p[3,3]=exp(theta[2]+theta[5]*AGEC+theta[8]*APOE+error)/(1+exp(the
ta[1]+theta[4]*AGEC+theta[7]*APOE+error)+exp(theta[2]+theta[5]*AG
EC+theta[8]*APOE+error)+exp(theta[3]+theta[6]*AGEC+theta[9]*APOE+
error)); 
p[3,4]=exp(theta[3]+theta[6]*AGEC+theta[9]*APOE+error)/(1+exp(the
ta[1]+theta[4]*AGEC+theta[7]*APOE+error)+exp(theta[2]+theta[5]*AG
EC+theta[8]*APOE+error)+exp(theta[3]+theta[6]*AGEC+theta[9]*APOE+
error)); 
p[4,4]=1; 
    
return(p); 
FINISH ptran; 
 
start RANDMULTINOMIAL(N, NumTrials, Prob); 
    mP = rowvec(Prob); 
 d = ncol(mP);  
 if N<1 then do; 
 print "The requested number of observations should be at   

least 1:" N; stop; 
 end; 
     if NumTrials <1 then do; 
 print "The number of trials should be at least 1:"   

NumTrials; stop; 
 end; 
 if abs(1 - sum(Prob))>1e-8 then do; 
     print "The probabilities must sum to 1:" (sum(Prob)) 

[label="Sum"]; stop; 
     end; 
 if ncol(loc(Prob>0)) < d then do; 
 print "Each probability should be positive:" Prob; stop; 
 end; 
 b = mP; 
 order = d + 1 - rank(mP); 
 mP[order] = b;  
 X = j(n,d,0); 
 z = 0; 
 do i = 1 to N; 
  if d = 1 then do; 
   X[i] = NumTrials; 
  end; 
  else do; 
      m = NumTrials; 
      q = 1;    
      call randgen(z,'BINOM',m,mP[1]);  
   X[i,1] = z; 
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       do j = 2 to d-1 by 1 while ( m > 0 );   
       m = m - X[i,j-1]; 
    q = q - mP[j-1]; 
    newp = mP[j]/q; 
    call randgen(z,'BINOM',m,newp);  
    X[i,j] = z; 
   end; 
   X[i,d] = m - z ;  
  end; 
 end; 
 outX = X;  
 outX[ , 1:d] = X[, order]; 
 return(outX); 
finish; 
 
 
history=j(&m,&maxv,.);  
currentage=j(&m,&maxv,.); 
apoe4=j(&m,&maxv,.); 
survival=j(&m,&maxv,.); 
do i=1 to &m; 
   error=rannor(1234)*1; /* assign random effects */ 
                apoe=ranbin(0,1,.2); 
   storeapoe=apoe; 
   rate=5.08; 
   theta_surv={-14.27 0.26 -0.72}; 
   age=80;surv=0; 
   do until (surv>age); 
     age=rannor(0)*3+80; 
     if age>81 then entrage=1; else entrage=0; 
              

para=exp(theta_surv[1]+theta_surv[2]*apoe+theta
_surv[3]*entrage+error); 

     unisurv=ranuni(0); 
 surv=(1/(para##(1/rate)))*((-

log(unisurv))##(1/rate))+75; 
   end; 
   storesurv=surv; 
   storeage=age; 
   deltage=exp(0.18); 
   prior=1; 
   storehist=prior; 
    
   do j=1 to (&maxv-1); 
             age=age+deltage; 
    if prior=1 then prior1=1; else prior1=0; 
    if prior=2 then prior2=1; else prior2=0;  
    p=ptran(AGE, APOE, PRIOR1, PRIOR2, error);  
    prob=t(p[prior,]); 
    if prob={0,0,0,1} then current=4; 
 else current=RANDMULTINOMIAL(1, 1, 

prob)*{1,2,3,4}; 
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    storeage=storeage // age; 
    storeapoe=storeapoe // apoe; 
    storesurv=storesurv // surv; 
    storehist=storehist // current; 
    prior=current;            
    end; 
 
history=history // t(storehist);  
currentage=currentage // t(storeage); 
apoe4=apoe4//t(storeapoe); 
survival=survival // t(storesurv); 
end;  
    apoe4=apoe4[(&m+1):nrow(apoe4),]; 
    survival=survival[(&m+1):nrow(survival),]; 
    history=history[(&m+1):nrow(history),]; 
    currentage=round(currentage[(&m+1):nrow(currentage),],0.001); 
 id=t(1:&m); 
 do h=1 to &m; 
    do k=1 to (ncol(history)-1); 
    if history[h,k]=5 then do; 
        history[h,k+1:ncol(history)]=.; 
        currentage[h,k+1:ncol(currentage)]=.; 
              apoe4[h,k+1:ncol(apoe4)]=.; 
     survival[h,k+1:ncol(survival)]=.; 
         end; 
             if (history[h,k]=4 & (history[h,k+1]=1 | 

history[h,k+1]=2 | history[h,k+1]=3)) then do; 
        history[h,k+1:ncol(history)]=.; 
        currentage[h,k+1:ncol(currentage)]=.; 
     survival[h,k+1:ncol(survival)]=.; 
       end; 
    end; 
      end; 
 
data=id || history || currentage || apoe4 || survival; 
 
dataset1=id || history; 
dataset2=id || currentage ; 
dataset3=id || apoe4; 
dataset4=id || survival; 
 
create tmp1 from dataset1; append from dataset1; 
create tmp2 from dataset2; append from dataset2; 
create tmp3 from dataset3; append from dataset3; 
create tmp4 from dataset4; append from dataset4; 
 
proc sort data=tmp1;  by COL1; 
proc sort data=tmp2;  by COL1; 
proc sort data=tmp3;  by COL1; 
proc sort data=tmp4;  by COL1; 
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data a;  
retain id state; drop COL1; 
set tmp1; 
id=COL1; 
array xx(i) COL2-COL50; 
do i = 1 to 49; 
state=xx; 
output; 
end;run;   
 
data b;   
retain id age;drop COL1; 
set tmp2; 
id=COL1; 
array xx(i) COL2-COL50; 
do i = 1 to 49; 
age=xx; 
output; 
end;run; 
 
data c;  
retain id apoe; drop COL1; 
set tmp3; 
id=COL1; 
array xx(i) COL2-COL50; 
do i = 1 to 49; 
apoe=xx; 
output; 
end;run;  
 
data d;  
retain id survival; drop COL1; 
set tmp4; 
id=COL1; 
array xx(i) COL2-COL50; 
do i = 1 to 49; 
survival=xx; 
output; 
end;run;  
 
data randata;  
retain seq id state age apoe survival; 
merge a b c d; by id; 
keep seq id state age apoe survival; 
seq+1;  
if state^=.; 
run; 
proc sort; by seq; run; 
quit; 
%mend; 
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Appendix C: SAS macro random sample generation for normality check 

*nsim:number of iterations; 
*age:actual age of subjects; 
*apoe:1=positive,0=negative; 
*educ:1<=12yrs,13<=2<=15yrs,3=16yrs,4>=17yrs; 
*basestate:state at baseline(1,2,or3),default=1; 
 
libname thesis 'C:\Doc\My Doc_research'; 
 
%macro check_norm(nsim, age, apoe, educ, basestate); 
proc iml; 
use thesis.est; read all into A; 
use thesis.cov; read all into B; 
theta0=A[,1]; 
cov_theta0=B[,2:27]; 
randbeta=randnormal(&nsim,theta0,cov_theta0); 
 
ed12=0; 
if &educ=1 then ed12=1; 
if &educ=2 then ed12=1; 
ed3=0; 
if &educ=3 then ed3=1; 
ENTAGE=&AGE-82; 
 
prob_est=.; 
do ll=1 to &nsim; 
thetatmp=randbeta[ll,]`; 
theta=thetatmp[1:3] // thetatmp[16:21] // thetatmp[4:15]; 
theta2=thetatmp[22:25]; 
sd=thetatmp[26]; 
 
sum1=0; 
do ii=1 to 100; 
AGEC=&AGE-88; 
AGED=&AGE-75; 
QMAT=I(3);RMATEMP=0*j(3,1); 
 
do jj=1 to ii; 
M=j(3,3,0); E=j(3,3,1);  
M[1,1]=theta[1]+theta[4]+theta[10]*AGEC+theta[13]*&APOE+theta[16]
*ed12+theta[19]*ed3; 
M[1,2]=theta[2]+theta[5]+theta[11]*AGEC+theta[14]*&APOE+theta[17]
*ed12+theta[20]*ed3; 
M[1,3]=theta[3]+theta[6]+theta[12]*AGEC+theta[15]*&APOE+theta[18]
*ed12+theta[21]*ed3; 
M[2,1]=theta[1]+theta[7]+theta[10]*AGEC+theta[13]*&APOE+theta[16]
*ed12+theta[19]*ed3; 
M[2,2]=theta[2]+theta[8]+theta[11]*AGEC+theta[14]*&APOE+theta[17]
*ed12+theta[20]*ed3; 
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M[2,3]=theta[3]+theta[9]+theta[12]*AGEC+theta[15]*&APOE+theta[18]
*ed12+theta[21]*ed3; 
M[3,1]=theta[1]+theta[10]*AGEC+theta[13]*&APOE+theta[16]*ed12+the
ta[19]*ed3; 
M[3,2]=theta[2]+theta[11]*AGEC+theta[14]*&APOE+theta[17]*ed12+the
ta[20]*ed3; 
M[3,3]=theta[3]+theta[12]*AGEC+theta[15]*&APOE+theta[18]*ed12+the
ta[21]*ed3; 
 
E=exp(M); 
P=j(4,4,0); 
p[1,1]= 1/(1+E[1,+]); 
p[1,2]= E[1,1]/(1+E[1,+]); 
p[1,3]= E[1,2]/(1+E[1,+]); 
p[1,4]= E[1,3]/(1+E[1,+]); 
p[2,1]= 1/(1+E[2,+]); 
p[2,2]= E[2,1]/(1+E[2,+]); 
p[2,3]= E[2,2]/(1+E[2,+]); 
p[2,4]= E[2,3]/(1+E[2,+]); 
p[3,1]= 1/(1+E[3,+]); 
p[3,2]= E[3,1]/(1+E[3,+]); 
p[3,3]= E[3,2]/(1+E[3,+]); 
p[3,4]= E[3,3]/(1+E[3,+]); 
p[4,4]=1; 
 
Q=P[1:3,1:3]; 
R=P[1:3,4]; 
RMAT=QMAT*R; 
QMAT=QMAT*Q; 
RMATEMP=RMATEMP+RMAT; 
AGEC=AGEC+1; 
END; 
 
QMATEMP=QMAT*j(3,1); 
mu=exp(theta2[1]+theta2[2]*ENTAGE+theta2[3]*&APOE); 
delta_F1=exp(-mu#((AGED+ii)##theta2[4]))-exp(-
mu#((AGED+ii+1)##theta2[4]));  
sum_temp1=RMATEMP[&basestate]*delta_F1; 
sum1=sum1+sum_temp1; 
END; 
 
prob1=sum1; 
prob_est=prob_est//prob1; 
END; 
create output1 from prob_est; append from prob_est; 
quit; 
 
%mend; 

%ODDS1(nsim=10000, age=80, apoe=1, educ=2, basestate=1); 
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data output1; 
set output1; 
if col1 ne .;  
col2=log(col1); 
col3=col1/(1-col1); 
col4=log(col3); 
run; 
 
data output1; 
set output1; 
P=col1; 
lnP=col2; 
RR=col3; 
lnRR=col4; 
arsin_sqrtP=arsin(sqrt(P)); 
keep P lnP RR lnRR arsin_sqrtP; 
run; 
 
 
goptions htext=1.5; 
proc univariate data=output1; var P;  
histogram P / normal(color=yellow w=2 percents=20 40 60 80  
midpercents) 
cfill=blue midpoints=0 to 1.3 by 0.03 cframe=ligr;  
inset n normal(ksdpval) / pos=ne format=6.3; 
run; 

proc univariate data=output1; var arsin_sqrtP;  
histogram arsin_sqrtP / normal(color=yellow w=2 percents=20 40 60 
80 midpercents) 
cfill=blue midpoints=0.5 to 1.4 by 0.02 cframe=ligr;  
inset n normal(ksdpval) / pos=ne format=6.3; 
run; 

 

proc univariate data=output1;  
qqplot P lnP RR lnRR arsin_sqrtP / normal(mu=est sigma=est 
color=red l=2) 
square cframe=ligr; 
run; 

  



81 
 

Appendix D: SAS macro to compute partial derivatives for P(m) 

*age:actual age of subjects; 
*apoe:1=positive,0=negative; 
*educ:1<=12yrs,13<=2<=15yrs,3=16yrs,4>=17yrs; 
*basestate:state at baseline(1,2,or3),default=1; 
 
libname thesis 'C:\Doc\My Doc_research'; 
 
%macro PARTIAL1(age, apoe, educ, basestate); 
proc iml; 
use thesis1.est; read all into A; 
use thesis1.cov; read all into B; 
theta0=A[,1]; 
cov_theta0=B[,2:27]; 
theta=theta0[1:3] // theta0[16:21] // theta0[4:15]; 
theta2=theta0[22:25]; 
sd=theta0[26]; 
 
ed12=0; 
if &educ=1 then ed12=1; 
if &educ=2 then ed12=1; 
ed3=0; 
if &educ=3 then ed3=1; 
ENTAGE=&AGE-82; 
 
Q_0=I(3); 
AGEC=&AGE-88; 
AGED=&AGE-75; 
M=j(3,3,0); E=j(3,3,1);  
M[1,1]=theta[1]+theta[4]+theta[10]*AGEC+theta[13]*&APOE+theta[16]
*ed12+theta[19]*ed3; 
M[1,2]=theta[2]+theta[5]+theta[11]*AGEC+theta[14]*&APOE+theta[17]
*ed12+theta[20]*ed3; 
M[1,3]=theta[3]+theta[6]+theta[12]*AGEC+theta[15]*&APOE+theta[18]
*ed12+theta[21]*ed3; 
M[2,1]=theta[1]+theta[7]+theta[10]*AGEC+theta[13]*&APOE+theta[16]
*ed12+theta[19]*ed3; 
M[2,2]=theta[2]+theta[8]+theta[11]*AGEC+theta[14]*&APOE+theta[17]
*ed12+theta[20]*ed3; 
M[2,3]=theta[3]+theta[9]+theta[12]*AGEC+theta[15]*&APOE+theta[18]
*ed12+theta[21]*ed3; 
M[3,1]=theta[1]+theta[10]*AGEC+theta[13]*&APOE+theta[16]*ed12+the
ta[19]*ed3; 
M[3,2]=theta[2]+theta[11]*AGEC+theta[14]*&APOE+theta[17]*ed12+the
ta[20]*ed3; 
M[3,3]=theta[3]+theta[12]*AGEC+theta[15]*&APOE+theta[18]*ed12+the
ta[21]*ed3; 
 
E=exp(M); 
P=j(4,4,0); 
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p[1,1]= 1/(1+E[1,+]); 
p[1,2]= E[1,1]/(1+E[1,+]); 
p[1,3]= E[1,2]/(1+E[1,+]); 
p[1,4]= E[1,3]/(1+E[1,+]); 
p[2,1]= 1/(1+E[2,+]); 
p[2,2]= E[2,1]/(1+E[2,+]); 
p[2,3]= E[2,2]/(1+E[2,+]); 
p[2,4]= E[2,3]/(1+E[2,+]); 
p[3,1]= 1/(1+E[3,+]); 
p[3,2]= E[3,1]/(1+E[3,+]); 
p[3,3]= E[3,2]/(1+E[3,+]); 
p[3,4]= E[3,3]/(1+E[3,+]); 
p[4,4]=1; 
QMAT=P[1:3,1:3]; 
RMAT=P[1:3,4]; 
mu=exp(theta2[1]+theta2[2]*ENTAGE+theta2[3]*&APOE); 
F1=exp(-mu#((AGED+1)##theta2[4]));  
FMAT=F1#I(3); 
 
A=j(9,24,0); 
B=j(3,24,0); 
C=j(9,24,0); 
A[1,1]= -E[1,1]/((1+E[1,+])##2); 
A[2,1]= -E[2,1]/((1+E[2,+])##2); 
A[3,1]= -E[3,1]/((1+E[3,+])##2); 
A[4,1]= (1+E[1,+]-E[1,1])*E[1,1]/((1+E[1,+])##2); 
A[5,1]= (1+E[2,+]-E[2,1])*E[2,1]/((1+E[2,+])##2); 
A[6,1]= (1+E[3,+]-E[3,1])*E[3,1]/((1+E[3,+])##2); 
A[7,1]= -E[1,2]*E[1,1]/((1+E[1,+])##2); 
A[8,1]= -E[2,2]*E[2,1]/((1+E[2,+])##2); 
A[9,1]= -E[3,2]*E[3,1]/((1+E[3,+])##2); 
A[1,2]= -E[1,2]/((1+E[1,+])##2); 
A[2,2]= -E[2,2]/((1+E[2,+])##2); 
A[3,2]= -E[3,2]/((1+E[3,+])##2); 
A[4,2]= -E[1,1]*E[1,2]/((1+E[1,+])##2); 
A[5,2]= -E[2,1]*E[2,2]/((1+E[2,+])##2); 
A[6,2]= -E[3,1]*E[3,2]/((1+E[3,+])##2); 
A[7,2]= (1+E[1,+]-E[1,2])*E[1,2]/((1+E[1,+])##2); 
A[8,2]= (1+E[2,+]-E[2,2])*E[2,2]/((1+E[2,+])##2); 
A[9,2]= (1+E[3,+]-E[3,2])*E[3,2]/((1+E[3,+])##2); 
A[1,3]= -E[1,3]/((1+E[1,+])##2); 
A[2,3]= -E[2,3]/((1+E[2,+])##2); 
A[3,3]= -E[3,3]/((1+E[3,+])##2); 
A[4,3]= -E[1,1]*E[1,3]/((1+E[1,+])##2); 
A[5,3]= -E[2,1]*E[2,3]/((1+E[2,+])##2); 
A[6,3]= -E[3,1]*E[3,3]/((1+E[3,+])##2); 
A[7,3]= -E[1,2]*E[1,3]/((1+E[1,+])##2); 
A[8,3]= -E[2,2]*E[2,3]/((1+E[2,+])##2); 
A[9,3]= -E[3,2]*E[3,3]/((1+E[3,+])##2); 
A[1,4]= -E[1,1]/((1+E[1,+])##2); 
A[4,4]= (1+E[1,+]-E[1,1])*E[1,1]/((1+E[1,+])##2); 
A[7,4]= -E[1,2]*E[1,1]/((1+E[1,+])##2); 
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A[1,5]= -E[1,2]/((1+E[1,+])##2); 
A[4,5]= -E[1,1]*E[1,2]/((1+E[1,+])##2); 
A[7,5]= (1+E[1,+]-E[1,2])*E[1,2]/((1+E[1,+])##2); 
A[1,6]= -E[1,3]/((1+E[1,+])##2); 
A[4,6]= -E[1,1]*E[1,3]/((1+E[1,+])##2); 
A[7,6]= -E[1,2]*E[1,3]/((1+E[1,+])##2); 
A[2,7]= -E[2,1]/((1+E[2,+])##2); 
A[5,7]= (1+E[2,+]-E[2,1])*E[2,1]/((1+E[2,+])##2); 
A[8,7]= -E[2,2]*E[2,1]/((1+E[2,+])##2); 
A[2,8]= -E[2,2]/((1+E[2,+])##2); 
A[5,8]= -E[2,1]*E[2,2]/((1+E[2,+])##2); 
A[8,8]= (1+E[2,+]-E[2,2])*E[2,2]/((1+E[2,+])##2); 
A[2,9]= -E[2,3]/((1+E[2,+])##2); 
A[5,9]= -E[2,1]*E[2,3]/((1+E[2,+])##2); 
A[8,9]= -E[2,2]*E[2,3]/((1+E[2,+])##2); 
A[1,10]= -E[1,1]*AGEC/((1+E[1,+])##2); 
A[2,10]= -E[2,1]*AGEC/((1+E[2,+])##2); 
A[3,10]= -E[3,1]*AGEC/((1+E[3,+])##2); 
A[4,10]= (1+E[1,+]-E[1,1])*E[1,1]*AGEC/((1+E[1,+])##2); 
A[5,10]= (1+E[2,+]-E[2,1])*E[2,1]*AGEC/((1+E[2,+])##2); 
A[6,10]= (1+E[3,+]-E[3,1])*E[3,1]*AGEC/((1+E[3,+])##2); 
A[7,10]= -E[1,2]*E[1,1]*AGEC/((1+E[1,+])##2); 
A[8,10]= -E[2,2]*E[2,1]*AGEC/((1+E[2,+])##2); 
A[9,10]= -E[3,2]*E[3,1]*AGEC/((1+E[3,+])##2); 
A[1,11]= -E[1,2]*AGEC/((1+E[1,+])##2); 
A[2,11]= -E[2,2]*AGEC/((1+E[2,+])##2); 
A[3,11]= -E[3,2]*AGEC/((1+E[3,+])##2); 
A[4,11]= -E[1,1]*E[1,2]*AGEC/((1+E[1,+])##2); 
A[5,11]= -E[2,1]*E[2,2]*AGEC/((1+E[2,+])##2); 
A[6,11]= -E[3,1]*E[3,2]*AGEC/((1+E[3,+])##2); 
A[7,11]= (1+E[1,+]-E[1,2])*E[1,2]*AGEC/((1+E[1,+])##2); 
A[8,11]= (1+E[2,+]-E[2,2])*E[2,2]*AGEC/((1+E[2,+])##2); 
A[9,11]= (1+E[3,+]-E[3,2])*E[3,2]*AGEC/((1+E[3,+])##2); 
A[1,12]= -E[1,3]*AGEC/((1+E[1,+])##2); 
A[2,12]= -E[2,3]*AGEC/((1+E[2,+])##2); 
A[3,12]= -E[3,3]*AGEC/((1+E[3,+])##2); 
A[4,12]= -E[1,1]*E[1,3]*AGEC/((1+E[1,+])##2); 
A[5,12]= -E[2,1]*E[2,3]*AGEC/((1+E[2,+])##2); 
A[6,12]= -E[3,1]*E[3,3]*AGEC/((1+E[3,+])##2); 
A[7,12]= -E[1,2]*E[1,3]*AGEC/((1+E[1,+])##2); 
A[8,12]= -E[2,2]*E[2,3]*AGEC/((1+E[2,+])##2); 
A[9,12]= -E[3,2]*E[3,3]*AGEC/((1+E[3,+])##2); 
A[1,13]= -E[1,1]*&APOE/((1+E[1,+])##2); 
A[2,13]= -E[2,1]*&APOE/((1+E[2,+])##2); 
A[3,13]= -E[3,1]*&APOE/((1+E[3,+])##2); 
A[4,13]= (1+E[1,+]-E[1,1])*E[1,1]*&APOE/((1+E[1,+])##2); 
A[5,13]= (1+E[2,+]-E[2,1])*E[2,1]*&APOE/((1+E[2,+])##2); 
A[6,13]= (1+E[3,+]-E[3,1])*E[3,1]*&APOE/((1+E[3,+])##2); 
A[7,13]= -E[1,2]*E[1,1]*&APOE/((1+E[1,+])##2); 
A[8,13]= -E[2,2]*E[2,1]*&APOE/((1+E[2,+])##2); 
A[9,13]= -E[3,2]*E[3,1]*&APOE/((1+E[3,+])##2); 
A[1,14]= -E[1,2]*&APOE/((1+E[1,+])##2); 
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A[2,14]= -E[2,2]*&APOE/((1+E[2,+])##2); 
A[3,14]= -E[3,2]*&APOE/((1+E[3,+])##2); 
A[4,14]= -E[1,1]*E[1,2]*&APOE/((1+E[1,+])##2); 
A[5,14]= -E[2,1]*E[2,2]*&APOE/((1+E[2,+])##2); 
A[6,14]= -E[3,1]*E[3,2]*&APOE/((1+E[3,+])##2); 
A[7,14]= (1+E[1,+]-E[1,2])*E[1,2]*&APOE/((1+E[1,+])##2); 
A[8,14]= (1+E[2,+]-E[2,2])*E[2,2]*&APOE/((1+E[2,+])##2); 
A[9,14]= (1+E[3,+]-E[3,2])*E[3,2]*&APOE/((1+E[3,+])##2); 
A[1,15]= -E[1,3]*&APOE/((1+E[1,+])##2); 
A[2,15]= -E[2,3]*&APOE/((1+E[2,+])##2); 
A[3,15]= -E[3,3]*&APOE/((1+E[3,+])##2); 
A[4,15]= -E[1,1]*E[1,3]*&APOE/((1+E[1,+])##2); 
A[5,15]= -E[2,1]*E[2,3]*&APOE/((1+E[2,+])##2); 
A[6,15]= -E[3,1]*E[3,3]*&APOE/((1+E[3,+])##2); 
A[7,15]= -E[1,2]*E[1,3]*&APOE/((1+E[1,+])##2); 
A[8,15]= -E[2,2]*E[2,3]*&APOE/((1+E[2,+])##2); 
A[9,15]= -E[3,2]*E[3,3]*&APOE/((1+E[3,+])##2); 
A[1,16]= -E[1,1]*ed12/((1+E[1,+])##2); 
A[2,16]= -E[2,1]*ed12/((1+E[2,+])##2); 
A[3,16]= -E[3,1]*ed12/((1+E[3,+])##2); 
A[4,16]= (1+E[1,+]-E[1,1])*E[1,1]*ed12/((1+E[1,+])##2); 
A[5,16]= (1+E[2,+]-E[2,1])*E[2,1]*ed12/((1+E[2,+])##2); 
A[6,16]= (1+E[3,+]-E[3,1])*E[3,1]*ed12/((1+E[3,+])##2); 
A[7,16]= -E[1,2]*E[1,1]*ed12/((1+E[1,+])##2); 
A[8,16]= -E[2,2]*E[2,1]*ed12/((1+E[2,+])##2); 
A[9,16]= -E[3,2]*E[3,1]*ed12/((1+E[3,+])##2); 
A[1,17]= -E[1,2]*ed12/((1+E[1,+])##2); 
A[2,17]= -E[2,2]*ed12/((1+E[2,+])##2); 
A[3,17]= -E[3,2]*ed12/((1+E[3,+])##2); 
A[4,17]= -E[1,1]*E[1,2]*ed12/((1+E[1,+])##2); 
A[5,17]= -E[2,1]*E[2,2]*ed12/((1+E[2,+])##2); 
A[6,17]= -E[3,1]*E[3,2]*ed12/((1+E[3,+])##2); 
A[7,17]= (1+E[1,+]-E[1,2])*E[1,2]*ed12/((1+E[1,+])##2); 
A[8,17]= (1+E[2,+]-E[2,2])*E[2,2]*ed12/((1+E[2,+])##2); 
A[9,17]= (1+E[3,+]-E[3,2])*E[3,2]*ed12/((1+E[3,+])##2); 
A[1,18]= -E[1,3]*ed12/((1+E[1,+])##2); 
A[2,18]= -E[2,3]*ed12/((1+E[2,+])##2); 
A[3,18]= -E[3,3]*ed12/((1+E[3,+])##2); 
A[4,18]= -E[1,1]*E[1,3]*ed12/((1+E[1,+])##2); 
A[5,18]= -E[2,1]*E[2,3]*ed12/((1+E[2,+])##2); 
A[6,18]= -E[3,1]*E[3,3]*ed12/((1+E[3,+])##2); 
A[7,18]= -E[1,2]*E[1,3]*ed12/((1+E[1,+])##2); 
A[8,18]= -E[2,2]*E[2,3]*ed12/((1+E[2,+])##2); 
A[9,18]= -E[3,2]*E[3,3]*ed12/((1+E[3,+])##2); 
A[1,19]= -E[1,1]*ed3/((1+E[1,+])##2); 
A[2,19]= -E[2,1]*ed3/((1+E[2,+])##2); 
A[3,19]= -E[3,1]*ed3/((1+E[3,+])##2); 
A[4,19]= (1+E[1,+]-E[1,1])*E[1,1]*ed3/((1+E[1,+])##2); 
A[5,19]= (1+E[2,+]-E[2,1])*E[2,1]*ed3/((1+E[2,+])##2); 
A[6,19]= (1+E[3,+]-E[3,1])*E[3,1]*ed3/((1+E[3,+])##2); 
A[7,19]= -E[1,2]*E[1,1]*ed3/((1+E[1,+])##2); 
A[8,19]= -E[2,2]*E[2,1]*ed3/((1+E[2,+])##2); 
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A[9,19]= -E[3,2]*E[3,1]*ed3/((1+E[3,+])##2); 
A[1,20]= -E[1,2]*ed3/((1+E[1,+])##2); 
A[2,20]= -E[2,2]*ed3/((1+E[2,+])##2); 
A[3,20]= -E[3,2]*ed3/((1+E[3,+])##2); 
A[4,20]= -E[1,1]*E[1,2]*ed3/((1+E[1,+])##2); 
A[5,20]= -E[2,1]*E[2,2]*ed3/((1+E[2,+])##2); 
A[6,20]= -E[3,1]*E[3,2]*ed3/((1+E[3,+])##2); 
A[7,20]= (1+E[1,+]-E[1,2])*E[1,2]*ed3/((1+E[1,+])##2); 
A[8,20]= (1+E[2,+]-E[2,2])*E[2,2]*ed3/((1+E[2,+])##2); 
A[9,20]= (1+E[3,+]-E[3,2])*E[3,2]*ed3/((1+E[3,+])##2); 
A[1,21]= -E[1,3]*ed3/((1+E[1,+])##2); 
A[2,21]= -E[2,3]*ed3/((1+E[2,+])##2); 
A[3,21]= -E[3,3]*ed3/((1+E[3,+])##2); 
A[4,21]= -E[1,1]*E[1,3]*ed3/((1+E[1,+])##2); 
A[5,21]= -E[2,1]*E[2,3]*ed3/((1+E[2,+])##2); 
A[6,21]= -E[3,1]*E[3,3]*ed3/((1+E[3,+])##2); 
A[7,21]= -E[1,2]*E[1,3]*ed3/((1+E[1,+])##2); 
A[8,21]= -E[2,2]*E[2,3]*ed3/((1+E[2,+])##2); 
A[9,21]= -E[3,2]*E[3,3]*ed3/((1+E[3,+])##2); 
B[1,1]= -E[1,3]*E[1,1]/((1+E[1,+])##2); 
B[2,1]= -E[2,3]*E[2,1]/((1+E[2,+])##2); 
B[3,1]= -E[3,3]*E[3,1]/((1+E[3,+])##2); 
B[1,2]= -E[1,3]*E[1,2]/((1+E[1,+])##2); 
B[2,2]= -E[2,3]*E[2,2]/((1+E[2,+])##2); 
B[3,2]= -E[3,3]*E[3,2]/((1+E[3,+])##2); 
B[1,3]= (1+E[1,+]-E[1,3])*E[1,3]/((1+E[1,+])##2); 
B[2,3]= (1+E[2,+]-E[2,3])*E[2,3]/((1+E[2,+])##2); 
B[3,3]= (1+E[3,+]-E[3,3])*E[3,3]/((1+E[3,+])##2); 
B[1,4]= -E[1,3]*E[1,1]/((1+E[1,+])##2); 
B[1,5]= -E[1,3]*E[1,2]/((1+E[1,+])##2); 
B[1,6]= (1+E[1,+]-E[1,3])*E[1,3]/((1+E[1,+])##2); 
B[2,7]= -E[2,3]*E[2,1]/((1+E[2,+])##2); 
B[2,8]= -E[2,3]*E[2,2]/((1+E[2,+])##2); 
B[2,9]= (1+E[2,+]-E[2,3])*E[2,3]/((1+E[2,+])##2); 
B[1,10]= -E[1,3]*E[1,1]*AGEC/((1+E[1,+])##2); 
B[2,10]= -E[2,3]*E[2,1]*AGEC/((1+E[2,+])##2); 
B[3,10]= -E[3,3]*E[3,1]*AGEC/((1+E[3,+])##2); 
B[1,11]= -E[1,3]*E[1,2]*AGEC/((1+E[1,+])##2); 
B[2,11]= -E[2,3]*E[2,2]*AGEC/((1+E[2,+])##2); 
B[3,11]= -E[3,3]*E[3,2]*AGEC/((1+E[3,+])##2); 
B[1,12]= (1+E[1,+]-E[1,3])*E[1,3]*AGEC/((1+E[1,+])##2); 
B[2,12]= (1+E[2,+]-E[2,3])*E[2,3]*AGEC/((1+E[2,+])##2); 
B[3,12]= (1+E[3,+]-E[3,3])*E[3,3]*AGEC/((1+E[3,+])##2); 
B[1,13]= -E[1,3]*E[1,1]*&APOE/((1+E[1,+])##2); 
B[2,13]= -E[2,3]*E[2,1]*&APOE/((1+E[2,+])##2); 
B[3,13]= -E[3,3]*E[3,1]*&APOE/((1+E[3,+])##2); 
B[1,14]= -E[1,3]*E[1,2]*&APOE/((1+E[1,+])##2); 
B[2,14]= -E[2,3]*E[2,2]*&APOE/((1+E[2,+])##2); 
B[3,14]= -E[3,3]*E[3,2]*&APOE/((1+E[3,+])##2); 
B[1,15]= (1+E[1,+]-E[1,3])*E[1,3]*&APOE/((1+E[1,+])##2); 
B[2,15]= (1+E[2,+]-E[2,3])*E[2,3]*&APOE/((1+E[2,+])##2); 
B[3,15]= (1+E[3,+]-E[3,3])*E[3,3]*&APOE/((1+E[3,+])##2); 
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B[1,16]= -E[1,3]*E[1,1]*ed12/((1+E[1,+])##2); 
B[2,16]= -E[2,3]*E[2,1]*ed12/((1+E[2,+])##2); 
B[3,16]= -E[3,3]*E[3,1]*ed12/((1+E[3,+])##2); 
B[1,17]= -E[1,3]*E[1,2]*ed12/((1+E[1,+])##2); 
B[2,17]= -E[2,3]*E[2,2]*ed12/((1+E[2,+])##2); 
B[3,17]= -E[3,3]*E[3,2]*ed12/((1+E[3,+])##2); 
B[1,18]= (1+E[1,+]-E[1,3])*E[1,3]*ed12/((1+E[1,+])##2); 
B[2,18]= (1+E[2,+]-E[2,3])*E[2,3]*ed12/((1+E[2,+])##2); 
B[3,18]= (1+E[3,+]-E[3,3])*E[3,3]*ed12/((1+E[3,+])##2); 
B[1,19]= -E[1,3]*E[1,1]*ed3/((1+E[1,+])##2); 
B[2,19]= -E[2,3]*E[2,1]*ed3/((1+E[2,+])##2); 
B[3,19]= -E[3,3]*E[3,1]*ed3/((1+E[3,+])##2); 
B[1,20]= -E[1,3]*E[1,2]*ed3/((1+E[1,+])##2); 
B[2,20]= -E[2,3]*E[2,2]*ed3/((1+E[2,+])##2); 
B[3,20]= -E[3,3]*E[3,2]*ed3/((1+E[3,+])##2); 
B[1,21]= (1+E[1,+]-E[1,3])*E[1,3]*ed3/((1+E[1,+])##2); 
B[2,21]= (1+E[2,+]-E[2,3])*E[2,3]*ed3/((1+E[2,+])##2); 
B[3,21]= (1+E[3,+]-E[3,3])*E[3,3]*ed3/((1+E[3,+])##2); 
C[1,22]= (-mu#((AGED+1)##theta2[4]))*exp(mu#((AGED+1) 
##theta2[4])); 
C[5,22]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4])); 
C[9,22]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4])); 
C[1,23]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4]))*ENTAGE; 
C[5,23]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4]))*ENTAGE; 
C[9,23]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4]))*ENTAGE; 
C[1,24]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4]))*&APOE; 
C[5,24]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4]))*&APOE; 
C[9,24]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4]))*&APOE; 
AMAT=A;  
BMAT=B; 
CMAT=C; 
partemp=(RMAT`@I(3))*CMAT+FMAT*BMAT; 
AGEC=AGEC+1; 
 
do k=2 to 100; 
M=j(3,3,0); E=j(3,3,1);  
M[1,1]=theta[1]+theta[4]+theta[10]*AGEC+theta[13]*&APOE+theta[16]
*ed12+theta[19]*ed3; 
M[1,2]=theta[2]+theta[5]+theta[11]*AGEC+theta[14]*&APOE+theta[17]
*ed12+theta[20]*ed3; 
M[1,3]=theta[3]+theta[6]+theta[12]*AGEC+theta[15]*&APOE+theta[18]
*ed12+theta[21]*ed3; 
M[2,1]=theta[1]+theta[7]+theta[10]*AGEC+theta[13]*&APOE+theta[16]
*ed12+theta[19]*ed3; 
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M[2,2]=theta[2]+theta[8]+theta[11]*AGEC+theta[14]*&APOE+theta[17]
*ed12+theta[20]*ed3; 
M[2,3]=theta[3]+theta[9]+theta[12]*AGEC+theta[15]*&APOE+theta[18]
*ed12+theta[21]*ed3; 
M[3,1]=theta[1]+theta[10]*AGEC+theta[13]*&APOE+theta[16]*ed12+the
ta[19]*ed3; 
M[3,2]=theta[2]+theta[11]*AGEC+theta[14]*&APOE+theta[17]*ed12+the
ta[20]*ed3; 
M[3,3]=theta[3]+theta[12]*AGEC+theta[15]*&APOE+theta[18]*ed12+the
ta[21]*ed3; 
E=exp(M); 
P=j(4,4,0); 
p[1,1]= 1/(1+E[1,+]); 
p[1,2]= E[1,1]/(1+E[1,+]); 
p[1,3]= E[1,2]/(1+E[1,+]); 
p[1,4]= E[1,3]/(1+E[1,+]); 
p[2,1]= 1/(1+E[2,+]); 
p[2,2]= E[2,1]/(1+E[2,+]); 
p[2,3]= E[2,2]/(1+E[2,+]); 
p[2,4]= E[2,3]/(1+E[2,+]); 
p[3,1]= 1/(1+E[3,+]); 
p[3,2]= E[3,1]/(1+E[3,+]); 
p[3,3]= E[3,2]/(1+E[3,+]); 
p[3,4]= E[3,3]/(1+E[3,+]); 
p[4,4]=1; 
Q=P[1:3,1:3]; 
R=P[1:3,4]; 
QMAT=QMAT // Q; 
RMAT=RMAT // R; 
mu=exp(theta2[1]+theta2[2]*ENTAGE+theta2[3]*&APOE); 
F1=exp(-mu#((AGED+k)##theta2[4]));  
F=F1#I(3); 
FMAT=FMAT // F; 
 
A=j(9,24,0); 
B=j(3,24,0); 
C=j(9,24,0); 
A[1,1]= -E[1,1]/((1+E[1,+])##2); 
A[2,1]= -E[2,1]/((1+E[2,+])##2); 
A[3,1]= -E[3,1]/((1+E[3,+])##2); 
A[4,1]= (1+E[1,+]-E[1,1])*E[1,1]/((1+E[1,+])##2); 
A[5,1]= (1+E[2,+]-E[2,1])*E[2,1]/((1+E[2,+])##2); 
A[6,1]= (1+E[3,+]-E[3,1])*E[3,1]/((1+E[3,+])##2); 
A[7,1]= -E[1,2]*E[1,1]/((1+E[1,+])##2); 
A[8,1]= -E[2,2]*E[2,1]/((1+E[2,+])##2); 
A[9,1]= -E[3,2]*E[3,1]/((1+E[3,+])##2); 
A[1,2]= -E[1,2]/((1+E[1,+])##2); 
A[2,2]= -E[2,2]/((1+E[2,+])##2); 
A[3,2]= -E[3,2]/((1+E[3,+])##2); 
A[4,2]= -E[1,1]*E[1,2]/((1+E[1,+])##2); 
A[5,2]= -E[2,1]*E[2,2]/((1+E[2,+])##2); 
A[6,2]= -E[3,1]*E[3,2]/((1+E[3,+])##2); 
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A[7,2]= (1+E[1,+]-E[1,2])*E[1,2]/((1+E[1,+])##2); 
A[8,2]= (1+E[2,+]-E[2,2])*E[2,2]/((1+E[2,+])##2); 
A[9,2]= (1+E[3,+]-E[3,2])*E[3,2]/((1+E[3,+])##2); 
A[1,3]= -E[1,3]/((1+E[1,+])##2); 
A[2,3]= -E[2,3]/((1+E[2,+])##2); 
A[3,3]= -E[3,3]/((1+E[3,+])##2); 
A[4,3]= -E[1,1]*E[1,3]/((1+E[1,+])##2); 
A[5,3]= -E[2,1]*E[2,3]/((1+E[2,+])##2); 
A[6,3]= -E[3,1]*E[3,3]/((1+E[3,+])##2); 
A[7,3]= -E[1,2]*E[1,3]/((1+E[1,+])##2); 
A[8,3]= -E[2,2]*E[2,3]/((1+E[2,+])##2); 
A[9,3]= -E[3,2]*E[3,3]/((1+E[3,+])##2); 
A[1,4]= -E[1,1]/((1+E[1,+])##2); 
A[4,4]= (1+E[1,+]-E[1,1])*E[1,1]/((1+E[1,+])##2); 
A[7,4]= -E[1,2]*E[1,1]/((1+E[1,+])##2); 
A[1,5]= -E[1,2]/((1+E[1,+])##2); 
A[4,5]= -E[1,1]*E[1,2]/((1+E[1,+])##2); 
A[7,5]= (1+E[1,+]-E[1,2])*E[1,2]/((1+E[1,+])##2); 
A[1,6]= -E[1,3]/((1+E[1,+])##2); 
A[4,6]= -E[1,1]*E[1,3]/((1+E[1,+])##2); 
A[7,6]= -E[1,2]*E[1,3]/((1+E[1,+])##2); 
A[2,7]= -E[2,1]/((1+E[2,+])##2); 
A[5,7]= (1+E[2,+]-E[2,1])*E[2,1]/((1+E[2,+])##2); 
A[8,7]= -E[2,2]*E[2,1]/((1+E[2,+])##2); 
A[2,8]= -E[2,2]/((1+E[2,+])##2); 
A[5,8]= -E[2,1]*E[2,2]/((1+E[2,+])##2); 
A[8,8]= (1+E[2,+]-E[2,2])*E[2,2]/((1+E[2,+])##2); 
A[2,9]= -E[2,3]/((1+E[2,+])##2); 
A[5,9]= -E[2,1]*E[2,3]/((1+E[2,+])##2); 
A[8,9]= -E[2,2]*E[2,3]/((1+E[2,+])##2); 
A[1,10]= -E[1,1]*AGEC/((1+E[1,+])##2); 
A[2,10]= -E[2,1]*AGEC/((1+E[2,+])##2); 
A[3,10]= -E[3,1]*AGEC/((1+E[3,+])##2); 
A[4,10]= (1+E[1,+]-E[1,1])*E[1,1]*AGEC/((1+E[1,+])##2); 
A[5,10]= (1+E[2,+]-E[2,1])*E[2,1]*AGEC/((1+E[2,+])##2); 
A[6,10]= (1+E[3,+]-E[3,1])*E[3,1]*AGEC/((1+E[3,+])##2); 
A[7,10]= -E[1,2]*E[1,1]*AGEC/((1+E[1,+])##2); 
A[8,10]= -E[2,2]*E[2,1]*AGEC/((1+E[2,+])##2); 
A[9,10]= -E[3,2]*E[3,1]*AGEC/((1+E[3,+])##2); 
A[1,11]= -E[1,2]*AGEC/((1+E[1,+])##2); 
A[2,11]= -E[2,2]*AGEC/((1+E[2,+])##2); 
A[3,11]= -E[3,2]*AGEC/((1+E[3,+])##2); 
A[4,11]= -E[1,1]*E[1,2]*AGEC/((1+E[1,+])##2); 
A[5,11]= -E[2,1]*E[2,2]*AGEC/((1+E[2,+])##2); 
A[6,11]= -E[3,1]*E[3,2]*AGEC/((1+E[3,+])##2); 
A[7,11]= (1+E[1,+]-E[1,2])*E[1,2]*AGEC/((1+E[1,+])##2); 
A[8,11]= (1+E[2,+]-E[2,2])*E[2,2]*AGEC/((1+E[2,+])##2); 
A[9,11]= (1+E[3,+]-E[3,2])*E[3,2]*AGEC/((1+E[3,+])##2); 
A[1,12]= -E[1,3]*AGEC/((1+E[1,+])##2); 
A[2,12]= -E[2,3]*AGEC/((1+E[2,+])##2); 
A[3,12]= -E[3,3]*AGEC/((1+E[3,+])##2); 
A[4,12]= -E[1,1]*E[1,3]*AGEC/((1+E[1,+])##2); 
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A[5,12]= -E[2,1]*E[2,3]*AGEC/((1+E[2,+])##2); 
A[6,12]= -E[3,1]*E[3,3]*AGEC/((1+E[3,+])##2); 
A[7,12]= -E[1,2]*E[1,3]*AGEC/((1+E[1,+])##2); 
A[8,12]= -E[2,2]*E[2,3]*AGEC/((1+E[2,+])##2); 
A[9,12]= -E[3,2]*E[3,3]*AGEC/((1+E[3,+])##2); 
A[1,13]= -E[1,1]*&APOE/((1+E[1,+])##2); 
A[2,13]= -E[2,1]*&APOE/((1+E[2,+])##2); 
A[3,13]= -E[3,1]*&APOE/((1+E[3,+])##2); 
A[4,13]= (1+E[1,+]-E[1,1])*E[1,1]*&APOE/((1+E[1,+])##2); 
A[5,13]= (1+E[2,+]-E[2,1])*E[2,1]*&APOE/((1+E[2,+])##2); 
A[6,13]= (1+E[3,+]-E[3,1])*E[3,1]*&APOE/((1+E[3,+])##2); 
A[7,13]= -E[1,2]*E[1,1]*&APOE/((1+E[1,+])##2); 
A[8,13]= -E[2,2]*E[2,1]*&APOE/((1+E[2,+])##2); 
A[9,13]= -E[3,2]*E[3,1]*&APOE/((1+E[3,+])##2); 
A[1,14]= -E[1,2]*&APOE/((1+E[1,+])##2); 
A[2,14]= -E[2,2]*&APOE/((1+E[2,+])##2); 
A[3,14]= -E[3,2]*&APOE/((1+E[3,+])##2); 
A[4,14]= -E[1,1]*E[1,2]*&APOE/((1+E[1,+])##2); 
A[5,14]= -E[2,1]*E[2,2]*&APOE/((1+E[2,+])##2); 
A[6,14]= -E[3,1]*E[3,2]*&APOE/((1+E[3,+])##2); 
A[7,14]= (1+E[1,+]-E[1,2])*E[1,2]*&APOE/((1+E[1,+])##2); 
A[8,14]= (1+E[2,+]-E[2,2])*E[2,2]*&APOE/((1+E[2,+])##2); 
A[9,14]= (1+E[3,+]-E[3,2])*E[3,2]*&APOE/((1+E[3,+])##2); 
A[1,15]= -E[1,3]*&APOE/((1+E[1,+])##2); 
A[2,15]= -E[2,3]*&APOE/((1+E[2,+])##2); 
A[3,15]= -E[3,3]*&APOE/((1+E[3,+])##2); 
A[4,15]= -E[1,1]*E[1,3]*&APOE/((1+E[1,+])##2); 
A[5,15]= -E[2,1]*E[2,3]*&APOE/((1+E[2,+])##2); 
A[6,15]= -E[3,1]*E[3,3]*&APOE/((1+E[3,+])##2); 
A[7,15]= -E[1,2]*E[1,3]*&APOE/((1+E[1,+])##2); 
A[8,15]= -E[2,2]*E[2,3]*&APOE/((1+E[2,+])##2); 
A[9,15]= -E[3,2]*E[3,3]*&APOE/((1+E[3,+])##2); 
A[1,16]= -E[1,1]*ed12/((1+E[1,+])##2); 
A[2,16]= -E[2,1]*ed12/((1+E[2,+])##2); 
A[3,16]= -E[3,1]*ed12/((1+E[3,+])##2); 
A[4,16]= (1+E[1,+]-E[1,1])*E[1,1]*ed12/((1+E[1,+])##2); 
A[5,16]= (1+E[2,+]-E[2,1])*E[2,1]*ed12/((1+E[2,+])##2); 
A[6,16]= (1+E[3,+]-E[3,1])*E[3,1]*ed12/((1+E[3,+])##2); 
A[7,16]= -E[1,2]*E[1,1]*ed12/((1+E[1,+])##2); 
A[8,16]= -E[2,2]*E[2,1]*ed12/((1+E[2,+])##2); 
A[9,16]= -E[3,2]*E[3,1]*ed12/((1+E[3,+])##2); 
A[1,17]= -E[1,2]*ed12/((1+E[1,+])##2); 
A[2,17]= -E[2,2]*ed12/((1+E[2,+])##2); 
A[3,17]= -E[3,2]*ed12/((1+E[3,+])##2); 
A[4,17]= -E[1,1]*E[1,2]*ed12/((1+E[1,+])##2); 
A[5,17]= -E[2,1]*E[2,2]*ed12/((1+E[2,+])##2); 
A[6,17]= -E[3,1]*E[3,2]*ed12/((1+E[3,+])##2); 
A[7,17]= (1+E[1,+]-E[1,2])*E[1,2]*ed12/((1+E[1,+])##2); 
A[8,17]= (1+E[2,+]-E[2,2])*E[2,2]*ed12/((1+E[2,+])##2); 
A[9,17]= (1+E[3,+]-E[3,2])*E[3,2]*ed12/((1+E[3,+])##2); 
A[1,18]= -E[1,3]*ed12/((1+E[1,+])##2); 
A[2,18]= -E[2,3]*ed12/((1+E[2,+])##2); 
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A[3,18]= -E[3,3]*ed12/((1+E[3,+])##2); 
A[4,18]= -E[1,1]*E[1,3]*ed12/((1+E[1,+])##2); 
A[5,18]= -E[2,1]*E[2,3]*ed12/((1+E[2,+])##2); 
A[6,18]= -E[3,1]*E[3,3]*ed12/((1+E[3,+])##2); 
A[7,18]= -E[1,2]*E[1,3]*ed12/((1+E[1,+])##2); 
A[8,18]= -E[2,2]*E[2,3]*ed12/((1+E[2,+])##2); 
A[9,18]= -E[3,2]*E[3,3]*ed12/((1+E[3,+])##2); 
A[1,19]= -E[1,1]*ed3/((1+E[1,+])##2); 
A[2,19]= -E[2,1]*ed3/((1+E[2,+])##2); 
A[3,19]= -E[3,1]*ed3/((1+E[3,+])##2); 
A[4,19]= (1+E[1,+]-E[1,1])*E[1,1]*ed3/((1+E[1,+])##2); 
A[5,19]= (1+E[2,+]-E[2,1])*E[2,1]*ed3/((1+E[2,+])##2); 
A[6,19]= (1+E[3,+]-E[3,1])*E[3,1]*ed3/((1+E[3,+])##2); 
A[7,19]= -E[1,2]*E[1,1]*ed3/((1+E[1,+])##2); 
A[8,19]= -E[2,2]*E[2,1]*ed3/((1+E[2,+])##2); 
A[9,19]= -E[3,2]*E[3,1]*ed3/((1+E[3,+])##2); 
A[1,20]= -E[1,2]*ed3/((1+E[1,+])##2); 
A[2,20]= -E[2,2]*ed3/((1+E[2,+])##2); 
A[3,20]= -E[3,2]*ed3/((1+E[3,+])##2); 
A[4,20]= -E[1,1]*E[1,2]*ed3/((1+E[1,+])##2); 
A[5,20]= -E[2,1]*E[2,2]*ed3/((1+E[2,+])##2); 
A[6,20]= -E[3,1]*E[3,2]*ed3/((1+E[3,+])##2); 
A[7,20]= (1+E[1,+]-E[1,2])*E[1,2]*ed3/((1+E[1,+])##2); 
A[8,20]= (1+E[2,+]-E[2,2])*E[2,2]*ed3/((1+E[2,+])##2); 
A[9,20]= (1+E[3,+]-E[3,2])*E[3,2]*ed3/((1+E[3,+])##2); 
A[1,21]= -E[1,3]*ed3/((1+E[1,+])##2); 
A[2,21]= -E[2,3]*ed3/((1+E[2,+])##2); 
A[3,21]= -E[3,3]*ed3/((1+E[3,+])##2); 
A[4,21]= -E[1,1]*E[1,3]*ed3/((1+E[1,+])##2); 
A[5,21]= -E[2,1]*E[2,3]*ed3/((1+E[2,+])##2); 
A[6,21]= -E[3,1]*E[3,3]*ed3/((1+E[3,+])##2); 
A[7,21]= -E[1,2]*E[1,3]*ed3/((1+E[1,+])##2); 
A[8,21]= -E[2,2]*E[2,3]*ed3/((1+E[2,+])##2); 
A[9,21]= -E[3,2]*E[3,3]*ed3/((1+E[3,+])##2); 
B[1,1]= -E[1,3]*E[1,1]/((1+E[1,+])##2); 
B[2,1]= -E[2,3]*E[2,1]/((1+E[2,+])##2); 
B[3,1]= -E[3,3]*E[3,1]/((1+E[3,+])##2); 
B[1,2]= -E[1,3]*E[1,2]/((1+E[1,+])##2); 
B[2,2]= -E[2,3]*E[2,2]/((1+E[2,+])##2); 
B[3,2]= -E[3,3]*E[3,2]/((1+E[3,+])##2); 
B[1,3]= (1+E[1,+]-E[1,3])*E[1,3]/((1+E[1,+])##2); 
B[2,3]= (1+E[2,+]-E[2,3])*E[2,3]/((1+E[2,+])##2); 
B[3,3]= (1+E[3,+]-E[3,3])*E[3,3]/((1+E[3,+])##2); 
B[1,4]= -E[1,3]*E[1,1]/((1+E[1,+])##2); 
B[1,5]= -E[1,3]*E[1,2]/((1+E[1,+])##2); 
B[1,6]= (1+E[1,+]-E[1,3])*E[1,3]/((1+E[1,+])##2); 
B[2,7]= -E[2,3]*E[2,1]/((1+E[2,+])##2); 
B[2,8]= -E[2,3]*E[2,2]/((1+E[2,+])##2); 
B[2,9]= (1+E[2,+]-E[2,3])*E[2,3]/((1+E[2,+])##2); 
B[1,10]= -E[1,3]*E[1,1]*AGEC/((1+E[1,+])##2); 
B[2,10]= -E[2,3]*E[2,1]*AGEC/((1+E[2,+])##2); 
B[3,10]= -E[3,3]*E[3,1]*AGEC/((1+E[3,+])##2); 
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B[1,11]= -E[1,3]*E[1,2]*AGEC/((1+E[1,+])##2); 
B[2,11]= -E[2,3]*E[2,2]*AGEC/((1+E[2,+])##2); 
B[3,11]= -E[3,3]*E[3,2]*AGEC/((1+E[3,+])##2); 
B[1,12]= (1+E[1,+]-E[1,3])*E[1,3]*AGEC/((1+E[1,+])##2); 
B[2,12]= (1+E[2,+]-E[2,3])*E[2,3]*AGEC/((1+E[2,+])##2); 
B[3,12]= (1+E[3,+]-E[3,3])*E[3,3]*AGEC/((1+E[3,+])##2); 
B[1,13]= -E[1,3]*E[1,1]*&APOE/((1+E[1,+])##2); 
B[2,13]= -E[2,3]*E[2,1]*&APOE/((1+E[2,+])##2); 
B[3,13]= -E[3,3]*E[3,1]*&APOE/((1+E[3,+])##2); 
B[1,14]= -E[1,3]*E[1,2]*&APOE/((1+E[1,+])##2); 
B[2,14]= -E[2,3]*E[2,2]*&APOE/((1+E[2,+])##2); 
B[3,14]= -E[3,3]*E[3,2]*&APOE/((1+E[3,+])##2); 
B[1,15]= (1+E[1,+]-E[1,3])*E[1,3]*&APOE/((1+E[1,+])##2); 
B[2,15]= (1+E[2,+]-E[2,3])*E[2,3]*&APOE/((1+E[2,+])##2); 
B[3,15]= (1+E[3,+]-E[3,3])*E[3,3]*&APOE/((1+E[3,+])##2); 
B[1,16]= -E[1,3]*E[1,1]*ed12/((1+E[1,+])##2); 
B[2,16]= -E[2,3]*E[2,1]*ed12/((1+E[2,+])##2); 
B[3,16]= -E[3,3]*E[3,1]*ed12/((1+E[3,+])##2); 
B[1,17]= -E[1,3]*E[1,2]*ed12/((1+E[1,+])##2); 
B[2,17]= -E[2,3]*E[2,2]*ed12/((1+E[2,+])##2); 
B[3,17]= -E[3,3]*E[3,2]*ed12/((1+E[3,+])##2); 
B[1,18]= (1+E[1,+]-E[1,3])*E[1,3]*ed12/((1+E[1,+])##2); 
B[2,18]= (1+E[2,+]-E[2,3])*E[2,3]*ed12/((1+E[2,+])##2); 
B[3,18]= (1+E[3,+]-E[3,3])*E[3,3]*ed12/((1+E[3,+])##2); 
B[1,19]= -E[1,3]*E[1,1]*ed3/((1+E[1,+])##2); 
B[2,19]= -E[2,3]*E[2,1]*ed3/((1+E[2,+])##2); 
B[3,19]= -E[3,3]*E[3,1]*ed3/((1+E[3,+])##2); 
B[1,20]= -E[1,3]*E[1,2]*ed3/((1+E[1,+])##2); 
B[2,20]= -E[2,3]*E[2,2]*ed3/((1+E[2,+])##2); 
B[3,20]= -E[3,3]*E[3,2]*ed3/((1+E[3,+])##2); 
B[1,21]= (1+E[1,+]-E[1,3])*E[1,3]*ed3/((1+E[1,+])##2); 
B[2,21]= (1+E[2,+]-E[2,3])*E[2,3]*ed3/((1+E[2,+])##2); 
B[3,21]= (1+E[3,+]-E[3,3])*E[3,3]*ed3/((1+E[3,+])##2); 
C[1,22]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4])); 
C[5,22]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4])); 
C[9,22]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4])); 
C[1,23]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4]))*ENTAGE; 
C[5,23]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4]))*ENTAGE; 
C[9,23]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4]))*ENTAGE; 
C[1,24]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4]))*&APOE; 
C[5,24]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4]))*&APOE; 
C[9,24]= (-mu#((AGED+1)##theta2[4]))*exp(-mu#((AGED+1) 
##theta2[4]))*&APOE; 
 



92 
 

AMAT=AMAT // A; 
BMAT=BMAT // B; 
CMAT=CMAT // C; 
AGEC=AGEC+1; 
END; 
 
 
TEMP_TOTAL=j(3,24,0); 
do kk=2 to 100; 
   TEMP_A=I(9); 
   TEMP_C=I(3); 
   TEMP_B=j(9,24,0); 
   do ii=1 to kk-1; 
       TEMP_B1=I(9); 
       TEMP_B2=I(3); 
       if ii=kk-1 then TEMP_B1=I(9); 
       else do pp=ii+1 to kk-1; 
       T_B1=QMAT[(3*pp-2):(3*pp),]`@I(3); 
       TEMP_B1=TEMP_B1*T_B1; 
       END; 
       do qq=1 to ii-1; 
       T_B2=QMAT[(3*qq-2):(3*qq),]; 
       TEMP_B2=TEMP_B2*T_B2; 
       END;  
   T_A=QMAT[(3*ii-2):(3*ii),]`@I(3); 
   TEMP_A=TEMP_A*T_A; 
   T_C=QMAT[(3*ii-2):(3*ii),]; 
   TEMP_C=TEMP_C*T_C; 
   S_B=TEMP_B1*(I(3)@(FMAT[(3*kk-2):(3*kk),]*TEMP_B2)) 
*AMAT[(9*ii-8):(9*ii),]; 
   TEMP_B=TEMP_B+S_B; 
   END; 
   TEMP_TS=(RMAT[(3*kk-2):(3*kk),]`@I(3))*(TEMP_A*CMAT[(9*kk-
8):(9*kk),]+TEMP_B)+FMAT[(3*kk-2):(3*kk),]*TEMP_C*BMAT[(3*kk-
2):(3*kk),]; 
   TEMP_TOTAL=TEMP_TOTAL+TEMP_TS; 
END; 
PAR_TOTAL=partemp+TEMP_TOTAL; 
print PAR_TOTAL; 
quit; 
%mend; 
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