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ABSTRACT OF THESIS 

 

 

CHARACTERIZATION OF DEFECTS IN METAL SHEETS VIA INFRARED THERMOGRAPHY 

Defects in Aluminum, Stainless steel and galvanized steel sheets are studied in reflection 

mode infrared thermography. The effect of material properties, surface finish, heating intensity, 

heater emission spectra, pixel size and defect size are studied. Contrast is governed by heat 

quality, emissivity and defect geometry—which follows a logarithmic trend. The diameter 

detected via infrared thermography is found to be at least 30% larger than the measured 

diameter and sub-pixel defects can be detected. The use of gradient and Laplacian of 

temperature is introduced as a means of increasing defect contrast and mitigating heater 

variation. 

KEYWORDS: Infrared Thermography, Non-destructive Testing, Non-destructive Examination, 

 Inspection, Manufacturing 
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Chapter One: Introduction 

i. Review of Nondestructive Technology 

Nondestructive testing is often an essential step in ensuring product quality 

economically as safety factors are reduced and the demand on machines increases. Testing 

nondestructively transitioned from a laboratory operation to a valuable production tool in the 

1920’s [1]. The man-power shortage caused by the First World War, demonstrated the need for 

automated and fool-proof methods of inspection that did not rely on operator judgment [2]. To 

reduce defects, an inspection must provide feedback to processes upstream when a defect is 

discovered; increasing the number of off-line post-mortem  judgment inspections can only 

increase the reliability of inspection [3].   

Manual visual inspection is one of the easiest forms of inspection to implement and is 

the most common [4], but it is not necessarily the most reliable or cost-effective. Machine 

assisted vision systems may aid inspectors—however, they are subjective, require highly trained 

personal and relatively slow production speeds [5]. Automated mechanical-optical systems, 

eddy current detection, ultrasonic testing and infrared thermography all seek to provide more 

reliable inspection methods and detect a wide range of defects. 

Automated optical inspection systems are fast and can inspect as large area, but they 

cannot detected subsurface defects in metal sheets [6-8]. Eddy current detection is fast and can 

detect micron scale defects on the surface and in-depth, but the scanning area is relatively 

small, and is used in the aircraft and space industry [5, 9, 10].  Ultrasonic inspection and acoustic 

emissions can be used to determine grains size, inspect welds and determine elasticity, but 

requires contact and in the case of metal sheets, a large sample [11-13]. Infrared thermography 
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can be implemented on line in both active and passive sensing modes. It has been used to 

detect defects in the steel making process, marine coatings [14] and painted surfaces in 

automotive applications [15]. 

“Quality can be assured reasonable only when it is built in at the process and when 

inspection provides immediate and accurate feedback at the source of defects.” -Shigeo Shingo 

[3]. In reaching this goal, infrared thermography allows for high speed inspection surface and 

sub-surface inspection of large areas and may be useful in determining root cause. 
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ii. Background 

The infrared spectrum is normally split into three different ranges for inspection; 

short or near wave (.75–3 μm), middle wave (3–6 μm) and long or far (8–15 μm) [4, 16]. 

There are two main types of thermal sensors used in focal plane arrays, photonic and 

micro-bolometer. Micro-bolometers are sensitive over a wide range but have a longer 

response time than photonic detectors [4]. Photonic detectors have a very fast response 

time with a limited spectral response and usually require cooling [4, 16].  

Infrared sensing is either passive or active. In the active mode, the sample is 

heated or stimulated for the purposes of inspection. In passive mode, the emissions 

from the sample and reflections from its surroundings are studied without a stimulus 

provided for the purpose of inspection [1]. Active sensing can generally be performed in 

either reflection or transmission or reflection mode as shown in Figure 1-1. 

 
Figure 1-1 Reflection and transmission mode schematics. 

Reflection mode thermography may be used to detect surface and subsurface 

defects, where transmission mode may detect defect throughout the sample. Reflection 

mode thermography is not ideal for cases with a high rate of transmission—for instance 
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most plastics at low power intensities [17]. In some cases heating may be applied to the 

sample volumetrically with eddy currents 

Infrared thermography has been used to inspect carbon fiber [18-22], steel [23, 

24], ceramics [25, 26], coatings [14], concrete [27, 28] and in medical applications [29]. 

This thesis seeks to characterize defects in metal sheets via infrared thermography via 

scaling laws. 
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Chapter Two: Experimental Methods 

i. Mathematical Formulation 

A body subjected to incident radiation will reflect, absorb and transmit the incoming energy to 

various degrees depending on its material properties. For an opaque grey body the incident 

energy will be absorbed and reflected depending on the properties of the material's surface as 

described in Equation 2.1. 

                                (2.1)  

The absorbed energy will be lost to the environment in forms of convection from the surface, 

radiation to the surroundings and conduction within the body as shown in Figure 2-1. 

 

Figure 2-1 Energy balance diagram for a grey body 

Performing an energy balance for the grey body, the amount of energy absorbed is equal to the 

energy stored, conducted through the body, emitted and lost to convection. 

                                                       (2.2)  

Substituting in equations in for each term in Equation 2.2 

Sheet Sample

E
incident

E
absorbed

E
reflected

E
emitted

TsE
stored

E
conductive

E
convective
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(2.3)  

                 are the pixel area, thickness of the material and the view factor of one pixel to 

infinity respectively. The energy imparted unto the infrared detector for each pixel,   , is a 

combination of the energy reflected and emitted from the grey body as well as radiation from 

the surroundings as described in Equation 2.4. 

         (                        ) (2.4)  

  is a constant and includes the radiation from the surroundings and machine error. Solving 

Equation 2.1 for the energy reflected. 

                                (2.5)  

Substituting Equation 2.5 into Equation 2.4 to describe the energy reaching the detector in 

terms of the incident, absorbed and emitted energy: 

         (                              ) (2.6)  

Substituting Equation 2.3 into Equation 2.6: 
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The incident radiation is affected by the view factor of the pixel to the heater (      ), the area 

of the pixel (   ) and the energy emitted from the heater (  ). Note the energy emitted from 

the heater is determined a priori. The energy emitted from the heater is assumed to be much 

greater than that of the surroundings. 

                      (2.8)  

Substituting the incident energy from Equation 2.8 into Equation 2.7 produces Equation 2.9. 
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Factoring out the area of a pixel, assuming it is constant.  
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For a steady state condition with      , Equation 2.10 can be simplified as there is no longer 

storage, convection or emission to the surroundings.  

 
           (          (    )  ∫ ∫   

  

 

 

 

 (  
    

 )       ) (2.11)  

Taking the gradient in x, y and z of the detector energy: 
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(2.12)  

Assuming the energy from the heater is uniform. 
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(2.13)  

Taking the Laplacian of the detector energy: 
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Substituting in the value for the gradient in Equation 2.13 and simplifying. 
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(2.15)  

For a defect free isentropic metal sheet of uniform thickness, constant material properties and 

surface roughness  ,   and    are constant. 
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(2.16)  

Assuming the temperature of the detector is constant with respect to position and that the view 

factor of each pixel to the heater and to the detector is approximately constant in the 

neighborhood of a pixel. 

 
             (    

   ∫ ∫   

  

 

 

 

     
     ) (2.17)  

For metal sheets with a Biot number     the temperature of the sheet can be assumed 

constant. 

            
      (2.18)  

The temperature of each pixel is correlated to the radiation sensed by the detector over its 

detection band. 

 
   ∫ ∫   

  

 

    

    

     (2.19)  

Where      and      are the maximum wavelength and mimum wavelength the detector is 

sensitive to. Thus       and        if       and        respectively. The 
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parameters that influence the temperature measurement for cylindrical defects are listed in 

Equation 2.20.  

     (                              ) (2.20)  
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ii. Apparatus 

Samples were inspected in reflection mode infrared thermography. Since specular or 

partial specular reflection is expected with the samples, the infrared detector and heater are 

positioned at opposite but equal angles to the sample surface’s normal as shown in Figure 2-2. 

 

Figure 2-2 Schematic of Experimental Setup 

Detector 

Two FLIR ThermoVision SC4000 photonic—made from Indium Antimonide—mid-wave 

infrared (MWIR) detectors were used for this experiment.  The ThermoVision SC4000 MWIR has 

a spectral range of 3 µm to 5 µm with a pixel pitch of 30 µm x 30 µm and a sensitivity of 0.025 °C 

[30]. The cameras were equipped with a 25 mm and 50 mm focal length lenses and were 

Heater 

IR Detector 

Sample 
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positioned 31 cm and 54 cm away from the sample to produce a spot or pixel (px) size of .375 

mm and .325 mm respectively. The SC4000 with the 25 mm lens was used for heater settings 

less than or equal to 100 °C, while the SC4000 with the 50 mm lens was used for heater 

temperatures greater than 100 °C. 

Heaters 

 The Infrared Systems Development IR-160 black body with an IR-301 temperature 

controller was selected as it is a nearly uniform heater with black body emission characteristics. 

The heating portion of the IR-160 is 12” (30.5 cm) square and has a surface temperature that 

varies less than ± 0.1 °C spatially and temporally (for a short term) with an emissivity of 0.96 ± 

0.02%[31, 32]. 

 Two 500W Infrared Salamander ceramic heaters were chosen as the emission spectrum 

of ceramics ranges from 2 µm to 10 µm peaking at 5 µm[25, 33]. Each heater draws a maximum 

of 500W at 120V and is controlled by a potentiometer. Total wattage used was measured by a 

Kill-A-Watt P4400 which is accurate to ±0.1W was placed before the potentiometer. The 

dimensions of the heater as provided by the manufacturer are shown in Figure 2-3. 
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Figure 2-3 Infared Salamander Half Trough Emitter Schematic [34]. 

 

The overall view factor to the sample to the blackbody heater is .19 and .035 for the IR 

ceramic heater. The view factors were calculated using the contour double integral formula 

(CDIF) while assuming both were planar surfaces[35, 36].  The IR-160 was operated from 303 K 

to 573 K while the Ceramic Heater was operated with a heat flux between 480 W/m2 to 6800 

W/m2. To compare the two heaters, the heat quality—the amount of exergy destroyed— was 

considered. For this case as there is no work or chemical exergy to consider. 

      (  
  
  
) 

Where    is the ambient temperature,     is the heater temperature and     is the heat 

emitted from the heater. Settings were chosen such that the heat output from both heaters 

matches as shown Table 2.1 lists the different heater settings used. 
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Table 2.1 Heater settings for the black body and ceramic heater; controlled parameters are in 
bold. 

Black Body Ceramic Heater 

Qh 

[W/m2] 
T 

[K] 
HQ 

[W/m2] 
Qh 

[W/m2] 
T 

[K] 
HQ 

[W/m2] 

479 303 8 478 313 8 

618 323 48 615 318 47 

1099 373 221 1093 332 218 

2842 473 1051 2732 389 994 

6119 573 2936 6831 488 3374 

   10245 538 4665 
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iii. Sample Preparation 

Sheets of Aluminum alloy 5052, stainless steel type 304 and Galvanized steel ASTM 

A653 (Carbon Steel type B hot dipped in Zinc finish) where chosen with thicknesses of 1.9mm to 

2.0mm. Two finishes were tested for the Aluminum and stainless steel sheets. The Aluminum 

sheet was selected in a mirror-like No. 8 finish and a Satin No. 4 finish, while the stainless steel 

was selected in a mirror-like No. 8 finish and an unpolished finish. Thermal properties from 

literature are listed in Table 2.2 [4, 37, 38]. 

Table 2.2 Thermal properties of materials studied. 

Material 

Thermal 
Conductivity 

Density 
Specific 

Heat 
Emissivity 

(k) (ρ) (C) (ε) 

W/m.K kg/m3 J/kg.K 1st finish 2nd finish 

Aluminum 167 2700 896 0.01-0.10 0.30-0.60 

Stainless Steel 16.2 8000 500 0.01-0.15 0.20-0.60 

Galvanized Steel 47.3 7850 475 0.15-0.45 

 

From the metal sheets, 20cmx20cm plates were cut and 5 cylindrical holes were drilled into 

each plate with an E-mill Acer EVS-3VKH to simulate defects. The defect pattern is shown in 

Figure 2-4 and the nominal dimensions for each defect are listed in Table 2.3. 
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Figure 2-4 The defect plate arrangement. 

 

Table 2.3 The nominal depth and diameter for each defect plate. 

Plate 

Defect 1 Defect 2 Defect 3 Defect 4 Defect 5 

D 
(mm) 

L 
(mm) 

D 
(mm) 

L 
(mm) 

D 
(mm) 

L 
(mm) 

D 
(mm) 

L 
(mm) 

D 
(mm) 

L 
(mm) 

Array 1 1.00 1.00 1.00 0.50 1.00 0.25 1.00 0.75 1.00 0.10 
Array 2 0.50 1.00 0.50 0.50 0.50 0.25 0.50 0.75 0.50 0.10 
Array 3 1.50 0.25 1.00 0.25 0.50 0.25 2.00 0.25 0.25 0.25 

 

After milling the defect depths were measured with a Brown and Sharpe 6 inch vernier caliper 

with an accuracy of ±.0253mm. To measure diameter, microscopic images were taken of each 

defect with a Scalar DG-2A equipped with a 50x magnification lens to measure the defect 

diameter with a pixel size of .003mm. Two methods were used in the determination of the 

defect diameter. In the first method, points along the inner-edge of the defect were manually 

chosen and then fitted to a circle via the Taubin method[39, 40]. For this method, a minimum of 
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16 evenly spaced points were chosen, with more points used for larger defects. Figure 2-5 is the 

image of defect with a nominal size of 1.50mm in the mirror steel sheet with the fitted circle 

shown. 

 

Figure 2-5 Circle Fitted to points chosen along the edge of the defect. 

In the second method, the image of the defect is processed into a black and white image and 

the defect is then isolated from the surroundings and any gaps inside the defect image are filled 

in manually. This processes is demonstrated in Figure 2-6 
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Figure 2-6 a) Microscopic image of defect in mirror finish steel sheet b) Processed black and 
white image c) Processed image with surroundings removed and holes filled in d) Errant pixels 

removed and morphological operations performed. 

From Figure 2-6 d) the diameter of the defect is calculated in two ways. The pixels constituting 

the area of the defect are summed to find the area of the defect and from that area the 

diameter is determined assuming the defect is circular. Secondly, the edge pixels are fitted to a 

circle by the Taubin method. The results from both methods are averaged and compared to 

manually fitted circle for verification. The measured defect sizes can be found in Appendix A:. 

  

 

a) b) 

c) d) 
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iv. Estimation of Uncertainty 

There are two major sources of error in the calculation of contrast, the heaters and the 

infrared detector.  The SC4000 has an uncertainty of ±2% and the actual temperature has a 

greater error, but the difference (not the absolute value) is what is what is important.  The black 

body heater has a spatial variation of 0.1 K and a temporal variation of 0.1 K, but the temporal 

variation is unimportant as 1 frame can be used for the calculation and that frame is captured in 

2 ms or less. Examining the equation for contrast, S, in terms of temperature: 

   
      
  

 

Where,    is the background temperature—for simplicity, the heater temperature—and     is 

the temperature represented by the pixel of interest. Thus the error in    is mainly caused by 

the heater’s variability. The root sum square of these uncertainties is shown below. 

     √(
  

    
    )
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Considering the worst case scenario with             and                : 

     √[
 

      
(          )]

 

 [
      

       
(  )]

 

      

There is no data for the variability of the Ceramic heaters and while the error for them should be 

greater than that of the blackbody heaters it is unknown, but assumed to be of the same order 

of magnitude as the black body heaters. 
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v. Experimental Procedure 

1. The sample holder is bolted to an optical table and then the distances for the heater and 

detector are measured and marked. The heater and camera are then placed in their respective 

spots. 

2. The heater is turned on, set to the proper temperature or wattage and left to reach 

steady state for 1 hour. 

3. A sample is placed in the holder and the camera is focused. 

4. Samples to be inspected are then placed in the sample holder and data is recorded at 5 

frames per second for one minute 

5. Sample is removed and the recording is checked 

6. Repeat steps 2-5 as needed. 

7. Data is transferred into the MATLAB file format and defect centers are manually 

located. 
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Chapter Three: Results and Discussion 

Contrast was used to determine the effect of each parameter tested. Contrast is how 

distinguishable an object is from its surroundings. However, contrast for an arbitrary image is 

not uniquely defined in literature [41]. In the case of a large, uniform background with a small 

test target, Weber contrast is commonly used [41]. The Weber contrast fraction is defined in 

Equation 3.1. 

 
  |

    
  

| (3.1) 

Where S is contrast,   is the intensity and    is the background intensity. In this case, the 

background intensity is the average temperature of a 10 px by 10 px sound area which is 

manually chosen. In the case of non-uniform background heating contrast is not well defined 

[41], but weber contrast will still be used in those cases. For the cases where contrast is 

calculated based on temperature the result is multiplied by 100 as dividing differences on the 

order of .5-10 K by values greater than 300K—this operation is not performed for contrasts of 

the Laplacian and gradient based thermograms. 
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i. Sample Images 

Presented in this section are infrared images of each material and finish under different 

heating conditions. 

 

 
Figure 3-1 Array 3 of mirror-like finish Aluminum with a) black body heater at 373 K b) ceramic 

heater at 1093 W/m2. 
 

a) 

b) 
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As shown in Figure 3-1, the black body heater provides even heating over its heating area, but 

the unevenness of the ceramic heater is quite pronounced for a low emissivity material such as 

mirror-like finish Aluminum alloy. In both cases the defects are visible. Processing may be able 

to mitigate the effect of the temperature variations in the ceramic heater. 

 

 
Figure 3-2 Array 3 of satin finish Aluminum with a) black body heater at 473 K b) ceramic heater 

at 1093 W/m2.  

 

a) 

b) 
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The surface roughness of the satin finish aluminum samples is noticeable in Figure 3-2. The 

increased roughness and emissivity minimize the differences between the black body and 

ceramic heater.  Only the larger defects are easily distinguishable; the diameter of the smallest 

defect, 0.281 mm, appears to be of the same order of magnitude as the width of the surface 

grooves.  

 

 
Figure 3-3 Array 2 of mirror-like finish stainless steel with a) black body heater at 303 K b) 

ceramic heater at 478 W/m2. 

a) 

b) 
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The mirror-like finish stainless steel shown in Figure 3-3 appears very similar to that of the 

mirror-like finish Aluminum. Even with defects below the Nyquist frequency are visible on 

uniform and very low emissivity surfaces. 

 

 
Figure 3-4 Array 3 of unpolished stainless steel with a) black body heater at 323 K b) ceramic 

heater at 615 W/m2. 
 

a) 

b) 
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As shown in Figure 3-4, the unpolished steel is not uniform, with scratches and other markings. 

The defects in both are visible, but the 4th defect is very close to another discontinuity. 

 

 
Figure 3-5 Temperature maps of Array 3 of galvanized steel with a) black body heater at 573 K b) 

ceramic heater at 6831 W/m2. 

The galvanized steel samples in Figure 3-5 show an uneven surface finish which may be due to 

variations in emissivity or the thickness of the Zinc coating.  
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ii. Effect of Diameter 

 
Figure 3-6 Diameter divided by pixel size plotted against contrast for array 3 with the black body 

heater at 373 K. 
 

The effect of diameter appears to vary logarithmically with emissivity more so than material 

properties. To illustrate this, the Aluminum and Steel samples were plotted on a logarithmic 

scale in Figure 3-7. 
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Figure 3-7 Effect of diameter for the array 3 with the black body heater at 373 K a) Low 

emissivity samples b) High emissivity samples. 
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The contrast appears to vary in a logarithmic manner and is dependent upon surface finish, not 

material properties. The change in contrast decreases as the diameter of the defect is 

represented by more pixels. In both cases, sub-pixel defects can be detected.  

For defects that are uniform, the largest change is around the edge of the defect; having 

more pixels represent the interior of a large, uniform defect does not appear to provide a large 

increase in contrast. The pixels representing where the discontinuity begins show the largest 

change, while the uniform portion of the defect does not vary greatly as shown in Figure 3-8. 

 
Figure 3-8 Contrast of a defect with D/px of 6. 
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iii. Detected Diameter 

The diameter of each defect was determined via the same method used in the Sample 

Preparation section. The defect was isolated and edge detection was performed in MATLAB 

2009a via the Sobel method with the default threshold. The area encompassed by the defect 

was then equated to the defect’s diameter by assuming that it was circular. 

 
Figure 3-9 Detected diameter divided by the measured diameter plotted against the measured 

diameter over pixel size. Ceramic heater set to 478 W/m2. 

In Figure 3-9, the detected infrared diameter, D*, is 30% greater than the measured diameter, 

D, at the highest diameter over pixel size and appears to be approaching one as there are more 

pixels comprise the defect. 
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Figure 3-10 Detected diameter divided by the measured diameter plotted against the measured 

diameter over pixel size. Black body heater set to 573 K. 

Figure 3-10 displays a similar trend to that of Figure 3-9, even with the tenfold increase in 

energy. As the number of pixels per defect increases the detected size approaches the 

measured size, while consistently staying above the measured size. The detected diameter is 

approximately 40% greater than the measure diameter at the largest D/px. 
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Figure 3-11 Measured diameter divided by the detected diameter and plotted against the 
measured diameter over pixel size for all array 3 tests. 

Considering the data points from all of the tests in Figure 3-11, the detected diameter is 30-40% 

greater than that of the measured diameter. If the logarithmic trend holds the detected 

diameter will reach parity with the measured diameter when D/px ≈ 17.  This finding is 

congruent with a finding by Rantala et al. for the detection of cracks in ceramics via 

photothermal microscopy; the cracks were at least 34% longer than their optical measurement 

and the measurements were independent of modulation frequency [42]. Furthermore, the 

emission spectrum of the heater and the intensity does not appear to have a large effect on the 

detected diameter, nor does the material’s thermal properties. Photothermal and infrared 

techniques may provide reliable crack length information in ceramics [26]. It requires some 

knowledge of the defect characteristics as it overestimates in a predictable manner.  It appears 

that the infrared detector is capturing the effect of the defect on its surroundings. 
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iv. Effect of Aspect Ratio 

 
Figure 3-12 The effect of aspect ratio on contrast using data from array 1 with the black body 

heater at 373 K. 

The effect of aspect ratio on contrast appears to be logarithmic for al samples in Figure 3-12 

except the satin finish Aluminum which appears to follow no trend. The effect of aspect ratio is 

dependent upon the surface and material properties of the material and the defect. The 

detector is measuring the radiance from the defect walls.  As the defect aspect ratio increases, 

less radiation from the bottom and the lower wall portions of the defect reaches the detector. 

Thus the surface characteristics of the defect are important as well.  
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v. Apparent Emissivity 

The emissions from a cylindrical cavity may be characterized by the apparent emissivity, 

which gives the total energy leaving the opening of the cavity divided by that of the energy 

emitted by a black-walled cavity; which is the same as a black area the size of the cavity opening 

[37]. The effect of aspect ratio on the hemispherical equivalent emissivity is plotted in Figure 

3-13. 

 
Figure 3-13 Apparent emissivity of a cavity opening for a cylindrical cavity of finite length with 

diffuse reflecting walls at a constant temperature. From Robert Siegel, John R. Howell; Thermal 
Radiation Heat transfer, 4th Edition [37]. 

To compare this information to the experimental data, the apparent emissivity,   , of each 

defect and the surface emissivity,   , was calculated assuming that the energy absorbed by the 

sample would be emitted thus      where    is the surface absorptivity. Since the samples are 
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opaque        where    is the reflectivity. Thus      |
  
    

 

  
    

 |, where    is the defect 

temperature,    is the heater temperature and    is the ambient temperature [37].  

 
Figure 3-14  Apparent emissivity for the array 1 defects in the aluminum samples. 

The trend from Figure 3-13 holds in Figure 3-14 even though the reflection—not the emission—

from the samples is what is being measured as the samples are at ambient temperature. After a 

certain point, the change in aspect ratio has little to no effect on the apparent emissivity. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5

A
p

p
ar

en
t 

Em
is

si
vi

ty
 

L/R 

0.11

0.57

Surface  
Emissivity 

Polynomial Fit 
Lines 



37 
 

vi. Effect of Heating and Heaters 

 
Figure 3-15 The effect of heating temperature on contrast by heater type on Aluminum samples 

with D ≈ 2mm. 

In Figure 3-15 the smoother mirror finish Aluminum the black body heater has a lower contrast 

in each case. This may be due to the variability of the heater or the difference in emission 

spectrums.  The satin finish Aluminum does not exhibit the same behavior as both heaters are in 

the same general pattern with a very good curve fit for the combined data set.  Instead of the 

temperature of the heater, consider the heat quality (HQ). 
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Figure 3-16 Effect of heat quality on contrast with respect to heater type. 

 

In Figure 3-16, when HQ quality is on the abscissa the mirror-like sample converges while the 

rough sample diverges. The rough sample may interact differently with the longer wavelengths 

of the ceramic heater affecting the amount of absorption and scattering. It may be possible to 

use two heaters with different emission spectra to determine surface roughness with only one 

detection band for the detector. 
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vii.Derivatives as Filters 

The gradient and Laplacian of the uniform area of a thermogram should be 

approximately zero as demonstrated in the mathematical formulation. Furthermore, small 

changes in heater uniformity should also be smoothed out as most heaters do not feature a 

sharp change in temperature within a small region.  

 

 

a) 

b) 
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Figure 3-17 Aluminum Mirror Array 3 with ceramic heater at 2732 W/m2 a) thermogram b) 

magnitude of the gradient of the thermogram c) Laplacian of the thermogram. 

The derivatives images have a much higher signal for the defects than the surroundings as 

shown in Figure 3-17. The small variations in heater temperature are also mitigated. To 

demonstrate this contrast maps for the gradient and Laplacian were plotted in Figure 3-18. Note 

the sound area signal is approximately zero. 

 

 

 

c) 
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Figure 3-18 Contrast maps for a) gradient of temperature b) Laplacian of temperature. 

The contrast for derivatives is much higher than that of the temperature contrast. It appears 

that the defect on the right is more easily detected by the gradient method, while the smallest 

defect in the center would be easier to detect by the Laplacian. Looking at the average contrast 

by material for all arrays and heating conditions in Figure 3-19 

a) 

b) 
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Figure 3-19 Average contrast by material for all defects, heating conditions and arrays. 

The Laplacian contrast is always greater than the gradient contrast and both are always greater 

than the Temperature contrast. The temperature contrast is multiplied by 100 while the 

gradient and Laplacian contrasts are not. 
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Chapter Four: Conclusions and Future Work 

Reflection mode IRT has been used to characterize cylindrical defects in metal sheets 

with varying defect sizes, surface finishes and material properties. The contrast of the defects is 

mainly governed by heat quality, the apparent surface emissivity and defect geometry. The 

temperature contrast follows a logarithmic trend in the cases shown.  

It is possible to detect sub-pixel defects in some of the finishes.  The mirror finishes and 

galvanized steel show better contrast in relation to D/px— even though the galvanized steel 

does not have a uniform surface finish—indicating that the contrast in relation to the defect 

diameter depends more on the apparent emissivity.  Furthermore, this may also be due to the 

samples being specular or partially specular reflectors. 

Regardless of surface finish, the detected diameter via infrared thermography is larger 

than the measured diameter.  For all cases the measured diameter is at least 30% larger than 

the measured diameter. The detected diameter will reach parity measured diameter at a D/px ≈ 

16 if the trend holds. However, thermal effect of the defect on its surroundings should always 

cause the defect to appear larger than it is. 

Derivatives can mitigate uneven heating and increase the contrast for defects even with 

rough surface finishes. The contrast for the gradient and Laplacian of temperature is always 

greater than that of the temperature contrast as the background intensity is approximately zero. 

The derivatives and thresholding can be used to detect defects and areas of interest. 

In future work, I would like to attempt to measure surface roughness with two heaters 

of different wavelengths and one detector. Heat quality shows a large difference between 

heaters for the rough finish aluminum but not the mirror finish; the emissivity and surface 

roughness is suspected of being the cause. 
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Furthermore, study the same samples in transmission mode.  Investigate different 

defect geometry and thermal property ratios; including defects with much larger diameters to 

verify the logarithmic trends seen and no change in geometry.  Study the optical properties of 

semi-transparent media like plastics. Create a library allowing for the rapid deployment of IRT 

systems and possibly the automated detection of defects. 
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Appendix A: Defect Sizes 

Compiled is a list of measurements for the depth and diameter of each defect. 

Table A.1 Defect Measurements for Aluminum Mirror-Like Finish Samples. 

Aluminum Mirror-Like Finish 

Array 1 

Defect D (mm) L (mm) D/L 

1 1.116 1.14 0.98 

2 1.122 0.64 1.74 

3 1.091 0.36 3.06 

4 1.185 0.85 1.40 

5 1.103 0.23 4.78 

Array 2 

Defect D (mm) L (mm) D/L 

1 0.726 0.31 2.37 

2 0.593 0.65 0.91 

3 0.631 0.52 1.21 

4 0.637 0.47 1.34 

5 0.568 0.26 2.22 

Array 3 

Defect D (mm) L (mm) D/L 

1 1.533 0.41 3.76 

2 1.010 0.40 2.53 

3 0.552 0.41 1.36 

4 2.215 0.44 5.04 

5 0.315 0.51 0.61 
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Table A.2 Defect Measurements for Aluminum Satin Finish Samples. 

Aluminum Satin Finish 

Array 1 

Defect D (mm) L (mm) D/L 

1 1.082 1.19 0.91 

2 1.064 0.72 1.48 

3 1.064 0.43 2.45 

4 1.064 0.97 1.10 

5 1.014 0.25 4.11 

Array 2 

Defect D (mm) L (mm) D/L 

1 0.588 1.09 0.54 

2 0.576 0.56 1.03 

3 0.582 0.30 1.93 

4 0.588 0.81 0.73 

5 0.594 0.57 1.04 

Array 3 

Defect D (mm) L (mm) D/L 

1 1.563 0.42 3.69 

2 0.994 0.42 2.34 

3 0.556 0.48 1.15 

4 2.013 0.44 4.60 

5 0.281 0.30 0.95 
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Table A.3 Defect Measurements for Steel Mirror-Like Finish Samples. 

Steel Mirror-Like Finish 

Array 1 

Defect D (mm) L (mm) D/L 

1 1.084 1.21 0.89 

2 1.058 0.68 1.56 

3 1.184 0.44 2.72 

4 1.071 0.91 1.17 

5 1.052 0.17 6.01 

Array 2 

Defect D (mm) L (mm) D/L 

1 0.650 1.14 0.57 

2 0.644 0.62 1.04 

3 0.625 0.37 1.71 

4 0.606 0.81 0.75 

5 0.613 0.15 4.09 

Array 3 

Defect D (mm) L (mm) D/L 

1 1.596 1.21 1.32 

2 1.010 0.68 1.48 

3 0.637 0.44 1.46 

4 2.082 0.91 2.28 

5 0.271 0.17 1.55 

 

Table A.4 Defect Measurements for Steel Unpolished Finish Samples. 

Steel Unpolished Finish 

Array 2 

Defect D (mm) L (mm) D/L 

1 0.654 1.02 0.44 

2 0.635 0.56 1.14 

3 0.559 0.30 1.89 

4 0.616 0.54 1.13 

5 0.578 0.12 4.63 

Array 3 

Defect D (mm) L (mm) D/L 

1 1.47 0.28 5.32 

2 1.03 0.29 3.52 

3 0.61 0.29 2.09 

4 1.99 0.27 7.46 

5 0.35 0.19 1.88 
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Table A.5 Defect Measurements for Galvanized Steel Samples. 

Galvanized Steel 

Array 1 

Defect D (mm) L (mm) D/L 

1 1.164 1.24 0.93 

2 1.113 0.71 1.57 

3 1.069 0.40 2.68 

4 1.176 0.92 1.28 

5 1.063 0.30 3.57 

Array 2 

Defect D (mm) L (mm) D/L 

1 0.662 1.04 0.64 

2 0.669 0.59 1.13 

3 0.669 0.30 2.21 

4 0.638 0.83 0.77 

5 0.619 0.15 4.14 

Array 3 

Defect D (mm) L (mm) D/L 

1 1.552 0.43 3.58 

2 1.022 0.42 2.41 

3 0.669 0.42 1.58 

4 2.013 0.44 4.58 

5 0.341 0.37 0.91 
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