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ABSTRACT OF THESIS 

 

 

TECTONIC CONTROLS ON LOWER DEVONIAN SANDSTONE DISTRIBUTION, ALABAMA 

The Devonian Frog Mountain Formation thickens abruptly eastward across the Eastern 
Coosa thrust fault from <12 m on the west to >70 m on the east. The thin Frog Mountain on the 
west unconformably overlies the Cambrian-Ordovician Knox Group. The thin Frog Mountain 
(mostly shale) is overlain by the Mississippian Maury Shale (~1 m thick) and Fort Payne Chert 
(~50 m thick). The thick Frog Mountain on the east rests on the Middle Ordovician Athens Shale, 
a black shale >150 m thick. The Athens overlies the Knox Group. The thick Frog Mountain is 
nearly all sandstone and is overlain by Fort Payne Chert which is only ~1 m thick 

In the Eastern Coosa hanging wall, an upper-level out-of-the-syncline thrust fault with 
thick Frog Mountain in the hanging wall cuts more than 290 m stratigraphically down section 
from Athens to lower Knox in the footwall. The upper-level Frog Mountain thrust sheet crosses 
over the Eastern Coosa fault, and truncates folds in the Eastern Coosa footwall, moving ~2 km. 

The thick Frog Mountain Formation associated with the Eastern Coosa thrust sheet has 
been transported ~100 km cratonward. The Frog Mountain Formation was deposited over a low 
topographic high, which was in the location of the Blountian peripheral foreland bulge. 

KEYWORDS: Lower Devonian Frog Mountain Formation, Eastern Coosa thrust sheet, out-of-
the-syncline thrust, Blountian peripheral foreland bulge, Alabama 
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CHAPTER 1: INTRODUCTION 

General 

In the Appalachian thrust belt in Alabama, the basal décollement is generally in Lower to 

Middle Cambrian starta, and the immediately overlying Upper Cambrian to Lower Ordovician 

Knox Group carbonates constitute a regional stiff layer that controls the structure of large-scale 

thrust sheets (Thomas and Bayona 2005). In much of the thrust belt, the basal décollement is in 

the Middle to lower Upper Cambrian Conasauga Formation; however, around the field area, 

older beds (Lower Cambrian Chilhowee, Shady, and Rome strata) are included in the hanging 

walls of large thrust faults. The strata above the Knox Group stiff layer were generally 

transported passively on the thrust sheets; however, in some thrust sheets upper-level 

detachments imbricate parts of the post-Knox succession (Thomas and Drahovzal, 1974). In the 

field area, the post-Knox succession exhibits abrupt variations, suggesting both local and/or 

larger scale faults. 

 In Alabama, the stratigraphic succession between the top of the Knox Group (top of the 

Lower Ordovician) and the top of the Fort Payne Chert (near the top of the Lower Mississippian) 

includes four regional unconformities and encompasses significant variations in thickness and 

facies between the unconformities (Thomas and Osborne, 1995). The stratigraphic variations are 

explained by gradual changes along strike within some thrust sheets, and contrasts between 

thrust sheets indicate tectonic shortening of the stratigraphic gradient. Within one thrust sheet 

(the Coosa thrust sheet), as mapped by Osborne and others (1988), an abrupt along-strike 

boundary between two strongly contrasting post-Knox successions is unexplained. Current 

mapping of the area (Thomas and Bayona, 2005) demonstrates a large regional-scale thrust 

fault, the Eastern Coosa fault, which translates the contrasting successions into close proximity. 

Purpose 

 To better understand to nature of the Eastern Coosa fault, a field study was conducted. 

The map area was chosen because it contains the junction of the Eastern Coosa and Western 

Coosa faults. The Field area is where the two contrasting post-Knox successions are in very close 

proximity. Field mapping, structural analysis of field area,  
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 Ever since the Frog Mountain Formation was first identified (Hayes, 1894 1902) it was 

been a chronostrigraphic unit rather than a lithostratigraphic unit (Butts, 1926). Any unit 

identufied as early Devonian in age was mapped as Frog Mountain. Thus the Frog Mountain 

Formation consists of several facies, but is dominated by a thick nearly all sandy facies, and a 

thin mostly shale facies. Comprehensive studies of the Frog Mountain Formation (Kiefer, 1970; 

Ferrill, 1984) have better identified age appropriate early Devonian strata, and have 

demonstrated that at the base of the Lower Devonian Frog Mountain Formation, there are as 

many as three regional unconformities merging. The top of the Frog Mountain formation is also 

marked by a regional unconformity. Alleghanian juxtaposition and erosion destroyed much of 

the Frog Mountain Formation facies relationships. Incorpoating conclusions from mapping, 

previous workers data, and a palinspastic restored thrust sheet map (Thomas and Bayona, 

2005), some conclusion can be drawn about the distribution of Lower Devonian Frog Mountain 

Formation. 

Field area 

The field area is in the southeastern Appalachian thrust belt in the Ellisville and 

Piedmont 7.5-minute quadrangles, Cherokee County, Alabama (Figure 1.1; Plate 1). The area has 

been mapped previously by Hayes (1894, 1902), Cloud (1967), Bearce and others (1977), and 

Osborne and others (1988, 1989). 

As currently mapped, the field area comprises the juncture of four thrust sheets: Rome, 

Western Coosa, Eastern Coosa, and Jacksonville. The Rome, the Western Coosa, and the Eastern 

Coosa thrust sheets have strongly contrasting stratigraphic successions, whereas the Eastern 

Coosa and Jacksonville thrust sheets share similar stratigraphy. In general, rock units in the area 

include the Lower Cambrian Shady Dolomite, Lower Cambrian Rome Formation, Middle to lower 

Upper Cambrian Conasauga Formation, Upper Cambrian to Lower Ordovician Knox Group, 

Middle Ordovician Athens Shale, Lower Devonian Frog Mountain Formation, Lower 

Mississpippian Maury Shale, Middle Mississippian Fort Payne Chert, and Upper Mississippian 

Bangor Limestone and Floyd Shale. 

Topography 

The field area lies in the Appalachian Valley and Ridge Province (Plate 1). The 

topography is dominated by ridges capped with relatively erosional resistant strata, and valleys 
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are floored with strata more erosionally susceptible. Terrapin Creek is a prominent erosional 

feature which meanders from south to north, bisecting a number of ridges through the field 

area. In general, the valleys and ridges trend northeast-southwest. Low hills in the northern part 

of the field area are lined with the Conasauga Formation. To the west, these hills are broken by 

Coloma Mountain, an easterly trending ridge with the Shady Dolomite at the base, and the 

Rome Formation at the crest. Coloma Mountain ridge ends to the east. A relatively small valley 

in the Conasauga Formation, cut by drains that flow into Terrapin Creek, separate Coloma 

Mountain from the next set of dominant ridges to the south. A nearly continuous ridgeline 

capped with the Knox Group traverses the field area. Roberts Mountain, Freeman Hill, and Craig 

Mountain are prominent features along the Knox capped ridgeline. The south side of the Knox 

Group ridgeline is a dip-slope. To the west, a set of three northerly striking ridges have Frog 

Mountain Formation at the crest and are separated by valleys floored with Floyd Shale and/or 

Bangor Limestone. These ridges culminate to the north in an irregularly shaped ridge capped 

with sandstone. In the central part of the field area, a dominant ridge of Frog Mountain 

Formation strikes northeast. This ridge includes Casey Hill, Frog Mountain proper, and Brown 

Mountain. The Frog Mountain Formation ridge as a whole will be referred to as Frog Mountain 

ridge herein. To the south of Frog Mountain ridge is a low valley lined with Athens Shale. Farther 

southeast, a low ridge of Knox Group strikes northeastward. Farther south, a low ridge of Rome 

traverses the field area. Another valley floored with the Consauga Group separates the Rome 

ridge from several low northeast-striking ridges of the Knox Group. 

Regional Stratigraphy 

Lower Cambrian Shady Dolomite 

The Shady Dolomite was described by Cloud (1967) as thinly laminated, light to dark-

gray, fine- to medium-grained dolostone, which is locally siliceous and silty. He described the 

upper 45 m as maroon, yellow, and mauve silty clay and clayey siltstone that grades upward into 

the overlying Rome Formation. Cloud (1967) estimated the Shady to be 113 m thick in Cherokee 

County. In Cherokee County, Cloud (1967) did not observe the Shady in place but mapped it on 

the basis of residuum and topography. 

 The Shady Dolomite is part of a transgressive succession that records deposition on a 

shallow continental shelf (Thomas and others, 2000). The Chilhowee Group, which underlies the 
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Shady, marks the beginning of the transgression. This transgression continued through the 

deposition of the Shady Dolomite. The Chilhowee-Shady transgressive sequence records the 

early post-rift subsidence along the Blue Ridge rift (Thomas and others, 2000). 

Lower Cambrian Rome Formation 

The Rome Formation consists of interbedded sandstone, siltstone, and shale. Minor 

amounts of carbonate are reported, and anhydrite is preserved in the subsurface (Thomas and 

Drahovzal, 1973; Thomas and others, 2000; Thomas and others 2001). Cloud (1967) estimated 

the Rome have a thickness of 304 m. The Rome Formation is gradational with the overlying 

Conasauga Formation. 

 The Rome Formation indicates an influx of siliciclastic sediment that was episodically 

exposed subaerially. The sudden influx of clastic sediment interrupted deposition of the Shady 

dolomite, and indicates a new source for detritus (Thomas and others, 2000). The initial 

deposition of the Rome Formation closely corresponds to Ouachita rifting, suggesting the influx 

of sediment is related to crustal extension (Thomas and others, 2000). The rift-related sediment 

supply continued through the Middle Cambrian. 

Middle to Lower Upper Cambrian Conasauga Formation 

The Conasauga Formation exhibits four distinct facies in the Western Coosa and Rome 

thrust sheets as identified by Cloud (1967) and Thomas and Drahovzal (1973). Conasauga 

exposed in the Western Coosa thrust sheet constists of a lower interbedded shale/limestone 

facies and an upper oolitc calcarenite facies. The lower Conasauga within the Rome thrust sheet 

is dominantly interbedded fine-grained clastic rocks, whereas the upper Conasauga is a ribbon-

bedded argillaceous limestone. 

The basal clastic-rich Conasauga represents the continued supply of clastic sediment 

related to Ouachita rifting (Thomas and others, 2000). The Conasauga is an intermediate unit 

between the underlying clastic-dominated Rome Formation and the overlying carbonate-

dominated Knox Group. 

Upper Cambrian to Lower Ordovician Knox Group 

The Knox Group consists of Copper Ridge Dolomite, Chepultepec Dolomite, Longview 

Limestone, and Newala Limestone in ascending order. The Knox Group ranges in thickness from 

800 m to 1100 m (Thomas and Drahovzal, 1973). The lower part of the Knox Group consists of 
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light-colored siliceous dolostone, which is overlain by fine- to coarse-grained limestones in the 

upper part of the group. The Longview Limestone and Newala Limestone were mapped together 

by Cloud (1967). Cloud (1967) estimated a combined thickness of 243 m, which is consistent 

with outcrop width. The Knox Group is bound by an unconformity at the top. 

The Knox Group was deposited on a huge carbonate platform on the Laurentian craton 

(Raymond, 1993). During Knox deposition, Laurentia straddled the equator, and much of what is 

now the southern United States was in the Southern Trade Wind belt (Scotese, 1990). The 

Copper Ridge Dolomite and the Chepultepec Dolomite of the Knox represent overall 

trangressive sequences followed by an abrupt deepening (Raymond, 1993). The post-Knox 

unconformity marks the Early and Middle Ordovician boundary (Sloss, 1988). 

Middle Ordovician Athens Shale 

The Athens Shale is an organic-rich black shale with local dark-gray limestone and 

sandstone interbeds (Thomas and Osborne, 1995). Cloud (1967) estimated the thickness of the 

Athens Shale to be 30 m to 122 m. The Athens Shale represents the flysch-like deposits 

commonly found in the Appalachian basin, in a flexural-foreland basin model (Bayona and 

Thomas, 2003). The Athens Shale is part of the Taconic clastic wedge (Thomas and Osborne, 

1995). 

Lower Devonian Frog Mountain Formation 

Hayes (1894, 1902) originally recognized and named the Frog Mountain Formation for 

outcrops at the southwestern end of Frog Mountain ridge (Plate 1). Frog Mountain lies in the 

Eastern Coosa thrust sheet where the Devonian Frog Mountain Formation is abnormally thick, 

and nearly all sandstone. Hayes estimated 244 m to 366 m of thickness, whereas Ulrich (1909) 

measured 107 m of Frog Mountain Formation. Cloud (1967) estimated 152 m of Frog Mountain, 

and Kiefer (1970) measured 71 m. Drahovzal and Thomas (1977) measured 78 m at the type 

section locality. Ulrich’s (1909) measured section includes the siliceous dolomitic limestone 

exposed at the base of the Frog Mountain Formation at the type locality. Cloud (1967) and 

Drahovzal and Thomas (1977) mapped the siliceous dolomite as Ordovician. The variation in 

thicknesses of previous workers is probably a result of the structural complexity of the type 

section locality. Kiefer’s measured section is the most detailed estimate of the true thickness of 

the Frog Mountain Formation in the Eastern Coosa thrust sheet, and this section follows: 
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MISSISSIPPIAN SYSTEM 

 

Meters 

Fort Payne Chert or Floyd Shale (7.6+ m) 

 13. Cover, shaley chert  

float 7.6 

12. Chert, irregularly  

bedded, fossiliferous 0.9 

DEVONIAN SYSTEM 
 

 Frog Mountain Formation (71+ m) 

 11. Shale, thin to irregularly 

bedded, highly 

arenaceous, cherty 1.5 

10. Sandstone, medium to 

thick bedded, coarse- 

grained, massive 4.0 

9. Sandstone, thin to 

medium bedded, 

medium-grained 2.7 

8. Sandstone, very thin to 

thin bedded, medium-

grained 1.5 

7. Sandstone, thin to 

medium bedded, 

medium- to coarse-

grained 4.3 

6. Sandstone, very thin to 

medium bedded, 

occasionally irregularly 

bedded, medium-grained, 

cross-bedded 17.3 

5. Covered, calcareous 

coarse-grained sandstone 

float. 15.2 
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4. Sandstone, thick bedded, 

medium-grained 0.6 

3. Sandstone, very thin to 

medium bedded,  

medium-grained 3.7 

2. Covered, arenaceous 

limestone or calcareous 

sandstone float 20+ 

ORDOVICIAN SYSTEM 
 

 Newala Limestone (7.6+ m) 

 1. Limestone, thick to very 

thick bedded, finely 

crystalline, sparsely 

fossilliferous 7.6+ 

 

On the southern side of Frog Mountain ridge, the base of the Frog Mountain Formation is above 

the Middle Ordovician Athens Shale. On the northern side of Frog Mountain ridge, the base of 

the Frog Mountain Formation is above the Upper Cambrian to Lower Ordovician Knox Group 

(Plate 1). The thick, sandy, Frog Mountain Formation is mainly known from outcrops in the 

vicinity of Frog Mountain ridge. Another Athens–Frog Mountain Formation–Fort Payne 

succession; however, is exposed near Anniston, Alabama, within the Coosa deformed belt 

(Thomas and Drahovzal, 1974), where 30 m of Frog Mountain Formation ovelies the Athen 

Shale. Approximately 3 m to 5 m of Fort Payne Chert overlies the thick Frog Mountain. 

The thick Frog Mountain Formation was deposited in a marginal-marine environment 

(Butts, 1926; Kiefer, 1970). The unconformity at the base of the Frog Mountain represents the 

merging of two regional unconformities at the top of the Ordovician System, and at the top of 

the Silurian System (Ferril and Thomas, 1988). 

North and west of the Eastern Coosa fault in the Western Coosa thrust sheet, typical 

thickness of the Frog Mountain Formation is less than 12 m on the basis of outcrop width and 

measured sections. In general, only the upper third of the Frog Mountain Formation is 

sandstone. In the Western Coosa thrust sheet, the Frog Mountain Formation is exposed as 
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isolated thin beds or pebbly float. Complete sections of Frog Mountain are scarce. Thomas and 

Drahovzal (1977) measured 11 m at a road cut on Alabama highway 9 (Plate 1, NE 1/4, NE 1/4, 

sec. 18, T 12 S, R10 E). The dominant lithology of the Frog Mountain Formation is shale: 

MISSISSIPPIAN SYSTEM 

 

Meters 

Fort Payne Chert 

 DEVONIAN SYSTEM 
 

 Frog Mountain Formation 

 6. Sandstone, fine-

grained 0.6 

5. Claystone 
1.8 

4. Sandstone, fine- to  

coarse-grained 0.9 

3. Claystone and chert 

interbedded 2.7 

2. Claystone and chert 

interbedded 3.0 

1. Sandstone, fine- to 

medium-grained 0.9 

Covered 

 The site of this section is now covered, but the description is consistent with outcrops in road 

cuts along continuous ridges that extend outside the field area. The outcrop trend of the Frog 

Mountain is along northerly striking ridges. Cloud (1967) mapped these narrow ridges as late 

Devonian or early Mississippian, and noted that the sandstone rests unconformably on Early 

Ordovician Newala Limestone. Cloud (1967) suggested that transgressive Mississippian seas 

reworked the Devonian sediments. 

Lower Mississippian Maury Shale 

The Maury Shale is not exposed in the field area, but is exposed above the Frog 

Mountain Formation at nearby locations (Kiefer, 1970). The Maury Shale is no more than 3 m to 

only several centimeters thick. The shale is greenish-gray, contains phosphate nodules and 

glauconite, and represents most of Kinderhookian time (Conant and Swanson, 1961; Kiefer, 

1970; Thomas, 1972, 1977; Pashin, 1993). 
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Middle Mississippian Fort Payne Chert 

The Fort Payne Chert was originally undifferentiated from the Mississippian Floyd Shale 

and Bangor Limestone by Cloud (1967), but later was mapped as undifferentiated Devonian Frog 

Mountain Formation and Fort Payne Chert because the units are relatively thin (Bearce and 

others, 1977). The Fort Payne Chert is estimated to be 50 m thick in the Western Coosa thrust 

sheet. In the Eastern Coosa thrust sheet, the Fort Payne was reported to be ~1 m by previous 

workers (Kieffer, 1970; Thomas and Drahovzal, 1977). 

The Fort Payne represents the lower part of a carbonate ramp (Thomas, 1972). The 

abundant crinoids in the lower ramp indicate that it was relatively rich in oxygen and nutrients 

caused by upwelling of cold nutrient-rich water from the Ouachita embayment (Gutschick and 

Sandberg, 1983). 

Upper Mississippian Bangor Limestone and Floyd Shale 

The Bangor Limestone in Northern Alabama ranges from 130 m to 180 m thick (Thomas, 

1972). To west, the Bangor thins and grades into the Floyd Shale. To the southeast, in the fold-

trust belt, the Bangor thins and grades westward (along-strike of regional structures) to a clastic 

facies, as well. In northwestern Georgia, the Bangor is as much as 200 m thick (Thomas, 1979). 

In Georgia, the Bangor Limestone grades southeastward into and intertounges with the Floyd 

Shale, and the Bangor tongue includes many clastic interbeds of clay shale and sandstone. The 

Bangor Limestone with the sandstone and shale interbeds indicate intertoguing of the 

carbonate and clastic facies. 

The Floyd Shale in Alabama grades upward into the Bangor Limestone and Parkwood 

Formation (Thomas, 1979). In northeastern Alabama, the Floyd-Parkwood contact rises above 

the Bangor Limestone, and the Bangor is a massive carbonate tongue within the Floyd Shale. In 

Georgia, the Floyd Shale is as much as 290 m thick and is overlain by a tongue of Bangor. 

In the field area, intensely folded and weathered Bangor Limestone is surrounded by 

Floyd Shale within the Western Coosa thrust sheet. The exact Bangor-Floyd relationship is 

unknown, because of poor exposure; however, the Bangor Limestone in the field area marks the 

southernmost extent of Bangor Limestone, apparently as a tongue within the Floyd Shale. 

Echinoderm and foraminifera establish a Chesterian age for the Bangor Limestone (Rich 

1980). The Bangor signifies the development of carbonate bank cratonward of the Laurentian 
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continental margin (Pashin, 1993), and the limestone intertoungues with the Floyd Shale. The 

Floyd Shale represents a prodelta facies which prograded to the northwest in Georgia. 

Previous Structural Interpretations 

Previous mappers recognized the irregular relationship of the Lower Devonian Frog 

Mountain Formation and the underlying Ordovician strata. Cloud (1967) noted the thick Frog 

Mountain Formation along Frog Mountain ridge overlies the Knox Group (Chepultepec 

Dolomite, Longview Limestone, Newala Limestone), and Athens Shale and suggested a Taconic 

disturbance and an angular unconformity beneath the Frog Mountain Formation. Drahovzal and 

Thomas (1977) traced the thick Frog Mountain Formation west to two Frog Mountain Formation 

outliers along Terrapin Creek. Drahovzal and Thomas (1977) noted the Knox Group/Athens 

Shale/Frog Mountain Formation outcrop relationship. They also recognized abrupt structural 

changes within the Frog Mountain Formation outcrop belt, and a sandstone breccia commonly 

filled with limonite associated with the thick Frog Mountain Formation. Drahovzal and Thomas 

(1977) suggested a detachment surface at the base of the Frog Mountain Formation rather than 

a pre-Devonian angular unconformity, and the Frog Mountain outliers are thrust klippen. 

Hayes (1894, 1902) initially mapped the Coosa fault as an extensive regional fault that 

extends through the field area. Cloud (1967) noted outliers of the Knox Group resting on thin 

expressions of the Conasauga Formation near the Coosa fault and suggested the Providence 

Church fault: a steep, south-dipping normal fault which overprinted part of the Coosa fault. 

Drahovzal and Thomas (1977) included parts of the Providence Church fault but did not 

recognize it as structure that obliterated the Coosa fault. Subsequent regional mappers 

(Osborne and others, 1988; 1989) did not recognize the Providence Church fault, but mapped 

the Coosa fault. Thomas and Bayona (2005) recognized the Western Coosa and Eastern Coosa 

faults. Both faults have a similar detachment level, but contrasting post-Knox strata.
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Figure 1.1. Field area location denoted by black polygon. Birmingham, Alabama marked by large 

black circle. Piedmont, Alabama marked by small black circle. Thrust faults are red.
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CHAPTER 2: STRATIGRAPHY OF THE ROME THRUST SHEET 

Conasauga Formation 

In the field area, no strata younger than Conasauga are exposed in the Rome thrust 

sheet. Two of the four Conasauga regional facies are exposed (Plate 1 and Figure 2.1). The lower 

part is predominantly light- to dark-gray and olive shale, siltstone, and sandstone with sparse 

interbeds of dark-gray to black calcisiltite. Isolated outcrops of the lower Conasauga are in the 

low hills of the Rome thrust sheet. The upper part of the locally exposed Conasauga is buff to 

medium-gray, ribbon-bedded, argillaceous calcisiltite to calcilutite. A good exposure of the 

upper part of Conasauga facies is at Ellisville west of the water tank, on Alabama Highway 9, 

where it crosses Terrapin Creek (NW ¼, Sec 20, T 11 S, R 10 E, Plate 1). The true thickness of the 

Conasauga north of the Western Coosa thrust fault is difficult to estimate because of intense 

deformation within the Rome thrust sheet.
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Figure 2.1. Compiled columnar section of Conasauga Formation exposed in the Rome thrust 

sheet.
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CHAPTER 3: STRATIGRAPHY OF THE WESTERN COOSA THRUST SHEET 

The Paleozoic strata exposed in the Western Coosa thrust sheet range in age from Early 

Cambrian to Late(?) Mississippian. The hanging wall of the Western Coosa thrust fault 

juxtaposes Lower Cambrian Shady Dolomite onto Middle to lower Upper Cambrian Conasauga 

Formation in the Rome thrust sheet. The Rome Formation overlies the Shady Dolomite in the 

Western Coosa hanging wall, and in places, the fault cuts up section into the lower Rome. The 

Middle and lower Upper Cambrian Conasauga Formation, overlying the Rome, consists of two 

distinct facies. The Upper Cambrian to Lower Ordovician Knox Group overlies the Conasauga 

Formation in the Western Coosa thrust sheet. The Lower Devonian Frog Mountain Formation 

unconformably overlies the Knox Group. The Mississippian Maury Shale, Fort Payne Chert, Floyd 

Shale, and Bangor Limestone, in succession, overlie the Frog Mountain Formation. 

Lower Cambrian Shady Dolomite 

 The Shady Dolomite within Cherokee County is mostly covered except for a few thin 

discontinuous ribs of black to very dark-gray, hummocky, laminated, dolosiltite, which grades 

into the overlying Rome Formation (N ½, Sec 32, T 11 S, R 10 E, Plate 1). The contact with the 

overlying Rome Formation is covered, and the bottom is faulted.  The estimated thickness is 146 

m (Figure 3.1). 

Lower Cambrian Rome Formation 

 The Rome Formation crops out along the Coloma Mountain ridge in the Western Coosa 

thrust sheet (Plate 1, NW 1/4, Sec 32; SE 1/4, Sec 28; SW 1/4, NE1/4, Sec 27, T 11 S, R 10 E). The 

Rome Formation consists of interbedded sandstone, siltstone, and shale.  Both sandstone and 

siltstone are maroon to dark-brown or yellow, and are thin-bedded to laminated (Figure 3.1). 

The shale is purple to red, and buff to green. On the basis of outcrop width (Plate 1), the Rome is 

estimated at 274 m thick. The Rome Formation is gradational with the overlying Conasauga 

Formation. 

Middle to Lower Upper Cambrian Conasauga Formation 

In the Western Coosa thrust sheet, the Conasauga is conformable with the underlying 

Rome Formation and overlying Knox Group (Figure 3.1). A nearly complete section is exposed 

along Alabama Highway 9 and Terrapin creek (SE ¼, Sec 31, T 11 S, R 10 E and NE ¼, Sec 6, T 12 
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S, R 10 E, Plate 1). The lower part of the Conasauga is interbedded shale, limestone, and 

dolomitic limestone, approximately 35 m thick. The dominant lithology of the Conasauga in the 

hanging wall of the Western Coosa fault is oolitc calcarenite. The calcarenite is light to medium 

gray, and thin to medium bedded with some shaly partings. Some of the calcarenite is 

crossbedded. The upper part of the Conasauga is 390 m thick. The total thickness of the 

Conasauga in the Western Coosa thrust sheet is 425 m. The contact with the overlying Knox 

Group is sharp where exposed (Center, SE ¼, Sec 32, T 11 S, R 10 E, Plate 1). Much of the 

Conasauga is highly weathered, and is represented by residual chert float on slopes. 

Characteristic Conasauga chert float is commonly drusy or oolitic. 

Upper Cambrian to Lower Ordovician Knox Group 

 The Knox Group consists of Copper Ridge Dolomite, Chepultepec Dolomite, Longview 

Limestone, and Newala Limestone. The Knox Group is poorly exposed, and it is not practical to 

separate the individual formations in mapping as Cloud (1967) did. Various stratigraphic markers 

such as a sandstone body at the base of the Chepultepec Dolomite cannot be traced very far 

from local outcrops (SE ¼, Sec 5, T 12 S, R 10 E, Plate 1). Outcrops of the upper Knox units 

(Longview Limestone and Newala Limestone) are not laterally continuous; therefore, the Knox 

Group is mapped as undifferentiated. 

 The base of the Knox in the area is marked by a stromatolitic chert, which overlies the 

oolitic facies of the Conasauga Formation (Center, SE ¼, Sec 32, T 11 S, R10 E, Plate 1; Figure 3.1) 

(Cloud, 1967). The stromatolitic chert is composed of mottled white and black interdigitated 

chert. Where exposed, the Conasauga/Knox contact is easily recognized and consistent 

throughout the mapped area. The Copper Ridge Dolomite is exposed as ledges in Terrapin Creek 

(Center, NE 1/4, Sec 5, T 12 S, R 10 E, Plate 1). Only 30 m of Copper Ridge is exposed; and it is 

light-gray, chert-bearing, dolomitic calcisiltite. The best outcrop of lower Knox Group (Copper 

Ridge Dolomite and Chepultepec Dolomite) is along an abandoned meander of Terrapin Creek 

(SE ¼, Sec 5, T 12 S, R 10 E, Plate 1). Approximately 61 m of Chepultepec Dolomite are exposed. 

The Chepultepec is composed of medium- to dark-gray doloarenite with yellow chert nodules. 

The lower Knox generally is exposed as chert residuum float. The chert generally has dolomite-

rhomb molds. 
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The Longview Limestone and Newala Limestone are very poorly exposed in the map 

area. Sandy dolostone is indicative of the Longview Limestone (Cloud 1967). Several sandy 

dolostone float blocks on slopes below Frog Mountain Formation at the crest of a low ridge (SE 

¼, Sec 8, T 12 S, R 10 E, Plate 1) may represent the Longview Limestone.  Newala Limestone was 

not observed in outcrop in the Western Coosa thrust sheet.  The total thickness of the Knox 

Group is approximately 1150 m (Figure 3.1). 

Lower Devonian Frog Mountain Formation 

 The basal Frog Mountain Formation consists of interbedded greenish-gray shale and 

yellowish-brown chert (Figure 3.2). The shale yields brachiopods, corals, gastropods, and 

cephalopods (Kiefer, 1970). The upper sandstone of the Frog Mountain is medium- to light-gray, 

thin- to medium-bedded, and fine- to coarse-grained; and it contains some brachiopods. 

 The predominant lithology of the thin Frog Mountain within the Western Coosa thrust 

sheet is the basal shale that rests unconformably on the Newala Limestone of the Knox Group.  

The sandstone of the Frog Mountain is relatively thin and is unconformably overlain by the Early 

Mississippian Maury Shale or Fort Payne Chert. 

Lower Mississippian Maury Shale 

 The Maury Shale is not exposed in the field area, but has been measured at nearby 

locations (Kiefer, 1970). The Maury Shale is, generally, very thin, and may be covered in the 

Western Coosa thrust sheet. 

Middle Mississippian Fort Payne Chert 

 The Fort Payne Chert generally crops out as crinoid-bearing chert float in 1- to 5-cm long 

blocks. The Fort Payne is exposed in place at only a few localities (NE ¼, Sec 19, T 12 S, R 10 E; 

NE ¼, Sec 17, T 12 S, R 10 E, Plate 1), where it is yellowish-tan to white, thin-bedded chert with 

shaly partings (Figure 3.2). 

Upper Mississippian Bangor Limestone and Floyd Shale 

 Bangor Limestone in the field area is of unknown thickness. It is tightly folded, and 

bedding is nearly vertical. The best exposures of the Bangor are in the N ½, Sec 20, T 12 S, R 10 E 

(Plate 1), where it is dark- to light-gray, laminated to thinly bedded, argillaceous calcisiltite to 
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calcarenite (Figure 3.2). Some of the limestone is weathered to a shale-like residue with crinoid 

columnal and brachiopod molds. 

 The Floyd Shale in the field area forms valley floors in the Western Coosa thrust sheet.  

Exposure of the Floyd Shale is poor (SE ¼, Sec 18; SE ¼, Sec 19; NE ¼, Sec 20, T 12 S, R 10 E, Plate 

1). Where it is exposed, it is slightly silty to clay shale (Figure 3.2). The Floyd is fissile and has 

blocky fracture. 

 The Bangor Limestone in the field area is dipping nearly vertically; however, the Floyd 

Shale surrounds the Bangor Limestone.  This suggests the Bangor and the Floyd have an 

intertounging relationship in the field area. Because of intense small-scale folding, thickness is 

uncertain. 
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Figure 3.1. Compiled columnar section of lower Paleozoic strata exposed in the Western Coosa 

thrust sheet.
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Figure 3.2. Compiled columnar section of upper Paleozoic strata exposed in the Western Coosa 

thrust sheet.
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CHAPTER 4: STRATIGRAPHY OF THE EASTERN COOSA THRUST SHEET 

The stratigraphic section exposed southeast of the Eastern Coosa thrust fault includes 

formations from Early Cambrian to Middle Mississippian in age (Plate 1). The Lower Cambrian 

Rome Formation is the oldest exposed unit in the hanging wall of the Eastern Coosa thrust fault, 

and is overlain by the Middle to lower Upper Cambrian Consauga Formation. The Conasauga is 

overlain by the Upper Cambrian to Early Ordovician Knox Group. The Middle Ordovician Athens 

Shale unconformably overlies the Knox Group in the Eastern Coosa thrust sheet. The Lower 

Devonian Frog Mountain Formation overlies both the Athens Shale and the Knox Group. The 

contact relationships between the Knox Group, Athens Shale, and Frog Mountain Formation 

greatly affect both structural and stratigraphic interpretations within the Appalachian foreland. 

The Frog Mountain Formation is overlain by the Middle Mississippian Fort Payne Chert. 

Lower Cambrian Rome Formation 

 Rome Formation is exposed in the hanging wall of the Eastern Coosa fault (SE ¼, Sec 24, 

T 11 S, R 10 E, Plate 1). The Rome Formation consists of very thin- to medium-bedded, maroon 

siltstone, and maroon, gray, and tan, silty to clay shale (Figure 4.1). 

Middle to Lower Upper Cambrian Conasauga Formation 

 The Middle to lower Upper Cambrian Conasauga Formation is very poorly exposed in 

the Eastern Coosa thrust sheet. Oolitic chert-residuum is common along the trace of the Eastern 

Coosa thrust fault. Approximately 6 m of peloidal and oolitic calcarenite is observed in place 

northeast of Craig Mountain (NW ¼, Sec 35, T 11 S, R10 E, Plate 1 and Figure 4.1). This outcrop is 

located very close to the contact of the Conasauga Formation with the Knox Group. 

Upper Cambrian to Lower Ordovician Knox Group  

 The Upper Cambrian to Lower Ordovician Knox Group is poorly exposed in the Eastern 

Coosa thrust sheet, although a basal biostromal layer is observed as mottled chert residuum 

float. The Copper Ridge Dolomite is well exposed southwest of Craig Mountain (NE ¼, Sec 3, T 12 

S, R10 E, Plate 1 and Figure 4.1) in the Eastern Coosa thrust sheet. The Chepultepec Dolomite is 

not well exposed in the Eastern Coosa thrust sheet. Cloud (1967) was able to separate the 

Cooper Ridge from the Chepultepec, but any visible stratigraphic markers are no longer evident. 
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 The poor exposure and structural complexity in the field area make it difficult to 

determine the separate thicknesses of the Longview and Newala Limestones. Longview 

Limestone is well exposed at two locations north of Casey Hill. The best exposure is along 

Cherokee County Highway 33 (NW ¼, Sec 10, T 12 S, R 10 E, Plate 1). The Longview Limestone is 

medium- to dark-gray, thinly bedded, cross-bedded, sandy doloarenite or calcarenite with minor 

amounts of dark-gray, very thin-bedded to laminated dolosiltite and dololutite. Another 

exposure of Longview Limestone is located in a sinkhole north of Casey Hill (NW ¼, Sec 10, T 12 

S, R 10 E, Plate 1). The dolostone at this location is medium to dark-gray, wavy-bedded, cross-

bedded and sandy. These units of the Knox Group are exposed only in the Eastern Coosa thrust 

sheet. 

Middle Ordovician Athens Shale 

 The Athens Shale is poorly exposed in the mapping area.  The best exposures are along 

the southern edge of the Frog Mountain ridge (Plate 1). On the basis of outcrop width, the 

estimated thickness of the Athens Shale is 152 m. The Athens Shale in the field area is tightly 

folded with the Newala Limestone; thus, an accurate thickness is difficult to estimate.  The 

Athens Shale at outcrop ranges from gray to black, fissile to blocky, silty shale (Figure 4.1). 

Graptolites are reported locally (Thomas and Drahovzal, 1977). The contact of the Middle 

Ordovician Athens Shale with the underlying Upper Cambrian to Lower Ordovician Knox Group 

is unconformable. The contact between the base of the Lower Devonian Frog Mountain 

Formation and the top of the Athens Shale is apparently parallel with bedding, but the outcrop 

pattern of the Frog Mountain Formation throughout the field area indicates a discordant 

contact between the Athens Shale and overlying Frog Mountain Formation. 

Lower Devonian Frog Mountain Formation 

 The thick Frog Mountain Formation of the Eastern Coosa thrust sheet is relatively well 

exposed as a dominant easterly trending ridge, Frog Mountain ridge (Plate 1, Sec 10, 11, 12, and 

1; T 12 S, R 10 E). The Frog Mountain Formation type section is located at the western end of 

this ridge (NW ¼, SW ¼, Sec 10, T 12 S, R 10 E) (Hayes, 1894; 1902). This section is so poorly 

exposed today that it is not practical to measure it. At Frog Mountain ridge, the base of the Frog 

Mountain Formation is above the Middle Ordovician Athens Shale at the southern side of Frog 

Mountain and above the Late Cambrian to Early Ordovician Knox Group along the northern side 

of Frog Mountain (Plate 1). 
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 The Frog Mountain Formation is buff, tan, light- to medium-gray, and light-red, mostly 

fine-grained with local coarse-grained sandstone, and is locally bimodal with sparse coarse sand 

grains in a fine-grained bed (Figure 4.1). It is generally thin- to medium-bedded, wavy, and 

internally massive; although there are local cross-beds and scours. The Frog Mountain is well 

cemented, but locally friable. The basal Frog Mountain Formation is hematitic and has abundant 

coral molds and brachiopods (NE ¼, NW ¼, Sec 12; Center, NW¼, Sec 11, T 12 S, R 10 E). Toward 

the top of the Frog Mountain Formation, rare crinoid molds are evident (SE ¼, SW ¼, Sec 10; NW 

¼, SW ¼, Sec 9, T 12 S, R 10 E). 

Middle Mississippian Fort Payne Chert 

 At the type section of the Frog Mountain Formation, Kiefer (1970) measured 0.9 m of 

Fort Payne Chert, and observed 7.6 m of chert float. Thomas and Drahovzal (1977) measured 

approximately 1 m of Fort Payne Chert. The Fort Payne Chert outcrop is not visible today, and 

no higher strata crop out in the Eastern Coosa thrust sheet (Figure 4.1).
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Figure 4.1. Compiled columnar section of Paleozoic strata exposed in the Eastern Coosa thrust 

sheet. The Jacksonville thrust sheet is stratigraphically similar, but no beds younger than 

Chepultepec Dolomite are included within the Jacksonville thrust sheet.
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CHAPTER 5: STRATIGRAPHY OF THE JACKSONVILLE THRUST SHEET 
The Lower Cambrian Rome Formation is the oldest exposed unit a in the hanging wall of 

the Jacksonville thrust fault and is overlain by the Middle to lower Upper Cambrian Conasauga 

Formation. The Consauga is overlain by the Upper Cambrian to Lower Ordovician Knox Group. 

The Knox Group is the youngest formation preserved south of the Jacksonville fault, within the 

map area (Figure 4.1). 

Lower Cambrian Rome Formation 

 Rome Formation is exposed in the hanging wall of the Jacksonville thrust sheet at 

McFrey Crossroads (SW ¼, Sec 22, T 12 S, R 10 E, Plate 1) and in a road cut at the NW ¼, Sec 28, 

T 12 S, R10 E (Plate 1). The Rome Formation at both locations consists of very thin- to medium-

bedded, maroon to red siltstone, and maroon, gray, and tan, silty to clay shale (Figure 4.1). The 

underlying Shady Dolomite and the overlying Conasauga Formation are not exposed at either of 

these outcrops. 

Middle to Lower Upper Cambrian Conasauga Formation 

 In the Jacksonville thrust sheet, an exposure of oolitic wavy-bedded dolomitic 

calcarenite of the Conasauga Formation crops out near Spring Garden School (SW¼, Sec 13, T 12 

S, R 10 E, Plate 1 and Figure 4.1). This outcrop is very close to the contact with the overlying 

Knox Group. In the southeast corner of the field area near La Garde Lake, within the Jacksonville 

thrust sheet, the Conasauga Formation outcrop consists of oolitic chert float. 

Upper Cambrian to Lower Ordovician Knox Group  

 In the Jacksonville thrust sheet, near La Garde Lake, the basal layer of the Knox Group is 

mottled dololutite. The Conasauga Formation and Knox Group contact is relatively easy to 

identify because of the contrast between the calcarenite of the Conasauga and the mottled 

dololutite and chert of the Knox. In the Jacksonville thrust sheet, Cooper Ridge Dolomite and 

Chepultepec Dolomite are indistinguishable because of poor exposure. No younger beds are 

identified in the Jacksonville thrust sheet (Figure 4.1).
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CHAPTER 6: TALLADEGA SLATE BELT EQUIVALENTS OF PRE-MISSISSIPPIAN 
STRATA EXPOSED IN THE FIELD AREA 

The Lower Devonian Frog Mountain Formation in the Eastern Coosa thrust sheet is at 

least 71 m thick, whereas, throughout much of fold-thrust belt in Alabama, the Lower Devonian 

Frog Mountain is less than 20 m thick (Ferrill, 1984). The Frog Mountain Formation in the fold-

thrust belt unconformably overlies Lower Ordovician to Silurian strata (Kiefer, 1970; Ferrill, 

1984). The only other succession of Lower Devonian strata in the region is south of the fold-

thrust belt, in the Talladega slate belt (Figure 6.1); however, the Lower Devonian succession in 

the Talladega slate belt is much thicker than the Lower Devonian succession in the fold-thrust 

belt. The Talladega slate belt contains the Talladega Group, a thick secession of Silurian(?) to 

Lower Mississippian strata. The Talladega Group overlies Cambrian to Lower Ordovician strata 

(Tull, 1998; 2002). The pre-Mississippian succession in the Talladega slate belt includes the 

Kahatchee Mountain Group, the Sylacauga Marble Group, and the Talladega Group in ascending 

order (Figure 6.2).  

Lower Cambrian Kahatchee Mountain Group 

 The Kahatchee Mountain Group consists of the Waxahatchee Slate, Brewer Phyllite, 

Stumps Creek Formation, and the Wash Creek Slate in ascending order (Guthrie, 1989). These 

units represent the distal Laurentian margin, and the Kahatchee Mountain Group is equivalent 

to the Chilhowee Group of the fold-thrust belt (Tull, 1998). The Kahatchee Mountain Group is 

composed of dark metapelite, metasandstone, quartz-pebble metaconglomerates, and sandy 

marble; it is more than 2 km thick (Tull and Guthrie, 1985). No Chilhowee Group is mapped in 

the field area, but the Chilhowe Group (Wiesner Formation) is exposed in the hanging wall of 

the Western Coosa thrust fault west of the field area. The Kahatchee Mountain Group is overlain 

by the Sylacauga Marble Group. 

Lower Cambrian to Lower Ordovician Sylacauga Marble Group 

  The Sylacauga Marble Group consists of the Jumbo Dolomite, Fayetteville Phyllite, 

Shelvin Rock Church Formation, Gooch Branch Chert, and Gantts Quarry Formation in ascending 

order (Tull and others, 1988; Guthrie, 1989). The Sylacauga Marble Group is 2550 m thick (Tull, 

1998) and is equivalent to the Lower Cambrian Shady Dolomite through the Upper Cambrian to 

Lower Ordovician Knox Group (Tull and others, 1988) (Figure 6.2). 
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The Jumbo Dolomite (equivalent to the Shady Dolomite) is light- to medium-gray, thin- 

to thick-bedded dolomitic marble, which is locally sandy (Osborne and others, 1988). The Jumbo 

Dolomite ranges in thickness generally from 15- to 65 m, but is locally as thick as 220 m (Guthrie, 

1989). The contact between the Wash Creek Slate and the Jumbo Dolomite is gradational. The 

Jumbo Dolomite is overlain by the Fayetteville Phyllite. 

 The Fayetteville Phyllite is equivalent to both the Lower Cambrian Rome 

Formation, and the lower part of the Middle to lower Upper Cambrian Conasauga Formation 

(Guthrie, 1989). The Fayetteville Phyllite is red to gray phyllite and slate, interlayered with light-

brown to light-gray metasiltstone, fine-grained metasandstone, and dolomite marble. The 

Fayetteville Phyllite is 150 m thick (Tull, 1998). The upper Conasauga is correlated to the Shelvin 

Rock Church Formation (Tull and others, 1988). The Shelvin Rock Church Formation is moderate-

pink to light-gray calcite and locally dolomite marble, and is 1000 m thick (Tull, 1998). 

 Equivalents to the Upper Cambrian to Lower Ordovician Knox Group are recognized in 

the Talladega slate belt (Tull and others, 1988; Guthrie, 1989). The Copper Ridge Dolomite, 

Longview Limestone, and Chepultepec Dolomite are correlated to the Gooch Branch Chert. The 

Gooch Branch Chert is 150 m thick (Tull, 1998), and consists of light-gray to light-brown marble 

with abundant light-gray to white foliated metachert. The Newala Limestone is correlated to the 

Gantts Quarry Formation (Tull and others, 1988). The Gantts Quarry Formation is white to light-

gray calcite marble with interlayered dolomite marble and thin phyllite layers, and is 600 m thick 

(Tull, 1998). 

 The Kahatchee Mountain and Sylacauga Marble Groups are unconformably overlain by 

the Silurian(?) to Lower Mississippian Talladega Group (Tull, 2002). The unconformity is angular 

and reported to be as great as 8.5o. 

Silurian(?) to Lower Mississippian Talladega Group 

 The Talladega Group is Silurian(?) to earliest Mississippian in age, and is more than 2.5 

km thick. The Talladega Group consists of the Lay Dam Formation, Cheaha/Butting Ram 

Quartzite, and Jemison Chert (Tull, 2002). The Lay Dam Formation unconformably overlies the 

Sylacauga Marble and Kahatchee Mountain Group. It is greater than 2 km thick and consists of 

metaturbidite, arkosic conglomerate, and thick olistostromal beds. The olistostromal beds 

contain boulder- to sand-sized carbonate rock, metachert, metasandstone, and metasiltstone 
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typical of the underlying Sylacauga marble and Kahatchee Mountain Group. The olistotrmal 

beds also contain fragments of granite and granitic gneiss, which have a Grenville age (Telle and 

others, 1979). The olistostromal units near Jemison, where the Lay Dam Formation is ~1250 m 

thick, represent proximal submarine fan facies (Tull and Telle, 1989), whereas the ~2400 m thick 

Lay Dam Formation northeastward beneath the Erin Slate represents distal turbidite facies (Tull 

and Telle, 1989; Lim, 1998). The immature clasts within the olistostromal beds indicate rapid 

and steep uplift, and unusually fast deposition (Tull, 2002). The age of the Lay Dam Formation is 

defined by the following: 1.) the youngest underlying rocks of the Sylacauga Marble group 

contain Early Ordovician conodonts (Tull and others, 1988); 2.) the overlying Butting Ram 

Quartzite and Jemison Chert contain Early to Middle Devonian fauna (Butts, 1926; Carrington, 

1973); 3.) the upper Lay Dam contains conodonts with a Silurian to Pennsylvanian age range 

(Tull and others, 1988). The Lay Dam is bracketed between a Silurian to Early Devonian age. 

 The Butting Ram Quartzite and the northeastern equivalent, the Cheaha Quartzite, 

overlie the Lay Dam Formation (Tull, 2002). The Butting Ram and Cheaha Quartzite is a thick 

succession of metasandstones and metaconglomerates. The Butting Ram and Cheaha Quartzites 

range from ~200 m to ~380 m thick (Carter, 1985), but locally are as much as 850 m thick (Tull, 

1979). Shallow-marine fossil assemblages within the Butting Ram Quartzite indicate but are not 

definitive of an Early Devonian age (Carrington, 1973). The Butting Ram and Cheaha Quartzites 

grade upward into the Jemison Chert. 

 The Jemison Chert is as much as 400 m thick, and consists of grayish-white to yellowish-

orange, massive, thick-bedded, fine-grained, locally argillaceous, locally fossiliferous, metachert, 

and light- to dark-gray, fine- to medium-grained, fissile quartz-sericite-chlorite phyllite, and 

schist (Szabo and others, 1988). The age of the Jemison Chert is restricted to late Early Devonian 

or older, but not younger than early Late Devonian (Tull, 2002). 

 Given rapid sediment accumulation, an Early Devonian age is allowable for the Lay Dam 

Formation (Tull and Telle, 1986; Ferrill and Thomas, 1988; Tull, 2002). With an Early Devonian 

age for the Butting Ram Quartzite and Jemison Chert, the Talladega Group is age correlated to 

the Lower Devonian Frog Mountain Formation. Furthermore, the Butting Ram Quartzite and 

Frog Mountain Formation both contain feldspars derived from a granitic-gneiss cratonic 

basement source (Ferrill and Thomas, 1988).
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Figure 6.1. Location of the Talladega Group in Alabama (red circle marks Jemison, Alabama).
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Figure 6.2. Correlations between the stratigraphic successions within the Western Coosa thrust 

sheet, the Eastern Coosa thrust sheet, and the Talladega Slate belt. Thicknesses of the Sylacauga 

Marble Group and the Talladega Group are from Tull (1998). No horizontal scale.
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CHAPTER 7: STRUCTURE OF THE ROME THRUST SHEET 

Regional 
 The trailing edge of the regionally extensive Rome thrust sheet is in the northern part of 

the field area (Figure 7.1). Strata in the thrust sheet are limited to the Conasauga Group (Osborn 

and others, 1988; Thomas and Bayona, 2005). The leading edge of the Rome thrust sheet is in 

the upper Conasauga; whereas the lower Conasauga crops out at the trailing edge. Northwest of 

the field area, the Rome thrust fault parallels strike with the Dunaway Mountain and Peavine 

thrust sheets (Figure 7.1). East of the Peavine thrust sheet, the Rome fault cuts more easterly 

across the Kingston, Chattooga, and Rocky Mountain thrust sheets. Northeast of the field area, 

the fault trace is highly irregular where it cuts across the Horseleg thrust sheet. The trailing edge 

of the Rome thrust sheet is truncated by the Helena, Western Coosa, and Eastern Coosa thrust 

faults along strike (Figure 7.1). The Rome thrust sheet is apparently very thin and shallow. The 

upper and lower Conasauga at the leading and trailing edges of the thrust sheet, respectively, 

indicate a very low dip on the Rome fault. A lack of seismic imaging and loss of resolution of the 

structure because of surface noise also indicate a thin shallow thrust sheet (Thomas and Bayona 

2005). As further evidence of a shallow, thin, thrust sheet, where the Rome fault cuts across the 

Horseleg thrust sheet, the map trace of the Rome fault is highly irregular, following topographic 

contours, indicating a nearly flat surface which truncates folds in the footwall (Cressler 1970; 

Georgia Geological Survey, 1976). The Rome fault is folded by the footwall folds (Thomas and 

Bayona, 2005). 

Field Area 
 In the field area, the trailing edge of the Rome thrust sheet is truncated by segments of 

the Western and Eastern Coosa thrust faults (Plate 1). The Western Coosa thrust fault 

juxtaposes Shady Dolomite onto the Conasauga Formation of the trailing edge of the Rome 

thrust sheet. The Western Coosa fault cuts up section to the east where the map trace merges 

with that of the Eastern Coosa thrust fault. Although the Eastern Coosa fault brings Conasauga 

in the hanging wall onto Conasauga of the Rome thrust sheet, a distinct difference in facies 

helps to delineate the Eastern Coosa fault trace.  South of the fault, although outcrop is rare in 

the Conasauga, oolitic and peliodal chert float can be found.  North of the fault, an interbedded 

siltstone and shale facies of the Conasauga is exposed in scattered outcrops in the Rome thrust 

sheet. 
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The mean bedding attitude of Conasauga in the Rome thrust sheet is N52oE 56oSE 

(Figure 7.2); however, outcrops nearest the Eastern and Western Coosa faults show the greatest 

range of attitudes within the Rome thrust sheet. The thrust sheet contains open and closed 

folds. The axes of these folds are sub-parallel to the mean strike. A mapped fold, near Ellisville 

(W ½ Sec 20 T 11 S, R 10 E, Plate 1), is one of the best exposed folds in the Rome thrust sheet in 

the field area, and helps illustrate the style of folding in the thrust sheet. The fold plunges at 

S74oW 5o (oblique to regional strike). It is a closed, asymmetric fold with an amplitude of 394 m 

and wavelength of 1842 m (A-A’, Plate 1; Plate 2). Other mapped folds in the area are open and 

plunge nearly parallel to strike, in contrast to the fold in cross section A-A’ (Plate 1 and Plate 2). 

Beds in the Rome thrust sheet nearest to the Western and Eastern Coosa thrust faults 

strike from N70oW to N40oE and have an average dip of 18o SE to SW. Outcrop and map-scale 

folds are common close to the trailing edge of the Rome thrust sheet (SE ¼ Sec 30 and NW ¼ Sec 

27 T 11 S, R 10 E, Plate 1). These tight, isoclinals folds plunge nearly perpendicular to the 

Western and Eastern Coosa faults and indicate east-west shortening of the thrust sheet. Overall, 

the variability of strike and the relatively low dip angles, along with the regional evidence, 

suggests that the Rome thrust sheet is relatively flat but includes local folds (F-F’, Plate 1; Plate 

2).
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Figure 7.1. Location of the Rome thrust sheet in relation to the field area (DM = Dunaway 

Mountain, P= Peavine, K = Kingston, C = Chattooga, RM = Rocky Mountain, HL = Horseleg, H = 

Helena, WC = Western Coosa, and EC = Eastern Coosa faults).
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Figure 7.2. Stereonet plot of poles to bedding attitudes within the Rome thrust sheet, which 

includes attitudes north of the field area. Scattered poles in the southern hemisphere reflect 

bedding at the trailing edge of the Rome thrust sheet.
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CHAPTER 8: STUCTURE OF THE WESTERN COOSA THRUST SHEET 

Regional 
The Western Coosa thrust sheet includes strata from the Lower Cambrian Chilhowee 

Group to the Upper Mississippian Bangor Limestone and Floyd Shale (Osborne and others, 1988, 

Thomas and Bayona, 2005). The Western Coosa thrust sheet is bound by the Rome thrust sheet 

to the north and west (where the Western Coosa fault curves to the south near Weisner 

Mountain) (Figure 8.1). The Western Coosa fault curves abruptly in strike, trending east-west, 

where it is bound by the Helena thrust sheet to the north. Farther west, the Western Coosa 

Fault curves in strike to more nearly northeast-southwest, where it truncates the Angel block. 

The Angel block overrides part of the Coosa deformed belt. The Coosa deformed belt is a set of 

thrust sheets arranged in three strike-parallel tiers (Thomas and Drahovzal, 1974). The thrust 

sheets within each tier (frontal, intermediate, and interior) have contrasting thickness and 

successions of strata. Faults and folds from the intermediate tier of the Coosa deformed belt 

extend into the Angel block and into the Western Coosa thrust sheet (Thomas and Bayon, 2005). 

The trailing edge of the Western Coosa thrust sheet is bound by the Pell City fault to the south 

and west, and by the Jacksonville fault and the Eastern Coosa fault to the east. 

Field Area 
 In the mapped area, the Western Coosa thrust sheet consists of the Shady Dolomite, 

Rome Formation, Conasauga Formation, Knox Group, Frog Mountain Formation, Fort Payne 

Chert, Floyd Shale, and Bangor Limestone (Figure 3.1, Figure 3.2, Plate 1). The Western Coosa 

thrust fault extends northeast through the mapped area, parallel to Coloma Mountain ridge, 

juxtaposing Shady Dolomite onto the Conasauga Formation in the Rome thrust sheet. Eastward, 

the fault cuts up section, in the hanging wall, through the Rome Formation into the Conasauga 

Formation and map trace of the Western Coosa thrust fault merges with the Eastern Coosa 

thrust fault (SW ¼, Sec 26, T 11 S, R 10 E, Plate 1). The trailing edge of the Western Coosa thrust 

sheet is truncated by the Eastern Coosa thrust fault, and trends north-northeast.  Near the point 

where the two faults merge, the Eastern Coosa thrust fault brings the Conasauga Formation 

onto Conasauga and Knox of the Western Coosa thrust sheet. The Eastern Coosa fault cuts up 

section in both the hanging wall and footwall toward the southwest, and places Athens Shale in 

the hanging wall onto the Bangor Limestone and Floyd Shale in the Western Coosa thrust sheet. 
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 Internally, attitudes and fold axes generally parallel the trend of the trace of the 

Western Coosa thrust fault. The mean bedding attitude is N48oE 38oSE (Figure 8.2). Knox 

outcrops in the area where the Eastern and Western Coosa faults merge suggest tight fold 

hinges nearly perpendicular to the trace of the Western Coosa fault (Sec 33 and Sec 34, T 11 S, R 

10 E, Plate 1). 

An outlier of the Knox Group near Coloma Mountain rests on a thin expression of the 

Conasauga (SW ¼, Sec 32, T 11 S, R 10 E, Plate 1). The outcrop relationships suggest that the 

Knox is a small klippe (B-B’, Plate 1; Plate 2). If the Knox is a klippe, then Conasauga-Knox 

contact must be part of a downward cutting fault that places lower Knox onto lower Conasauga. 

 To the southeast, away from the trace of the Western Coosa fault, several ridges with a 

more northerly trend contain up-plunge structures of the northeastern part of the Coosa 

deformed belt and are capped with hematitic sandstone breccia (Plate 1). These ridges have 

thrust-imbricated sections of Frog Mountain Formation, Fort Payne Chert, Floyd Shale, and 

Bangor Limestone. The valleys between these ridges are synclinal folds which plunge to the 

south. At the northern (structurally up plunge) end of these ridges (Sec 8, T 12 S, R10 E; C-C‘, 

Plate 1; Plate 2), a small syncline, cored with Floyd Shale, has the eastern limb truncated by a 

fault which has the Knox Group in the hanging wall. Cross section D-D’ (Plate 1; Plate 2) 

illustrates the along-strike southward continuation of the same syncline with the fault-truncated 

eastern limb. Farther down-plunge, cross section E-E’ (Plate 1; Plate 2) illustrates this 

westernmost syncline; however, the eastern limb of the syncline is preserved.  

 In the hanging wall of the previously described fault, the Knox Group is in both the 

footwall and hanging wall (C-C’, Plate 1; Plate 2). Farther down plunge, to the south, tightly 

folded Frog Mountain and Fort Payne are preserved in the hanging wall (NE ¼, Sec 17, T 12 S, R 

10 E, Plate 1; D-D’, Plate 1; Plate 2). To the southwest, cross section E-E’ illustrates the down-

plunge form of the fault and folds. The fault cuts up southwestward to Fort Payne in the 

footwall and Frog Mountain in the hanging wall. The tight folds illustrated in cross section D-D’ 

plunge southwestward into a more open asymmetric syncline cored with Floyd Shale and 

Bangor Limestone. The eastern limb of the eastern syncline is truncated by the Eastern Coosa 

fault. Wave length and amplitude vary along strike, but comparing the folds illustrated in cross 

section E-E’; the westernmost folds have a wave length of 334 m and an amplitude of 111 m, 

while the eastern folds have a wave length of 2333 m and an amplitude of 244 m. In the field 
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area, fold axes in the southwest part of the Western Coosa thrust sheet are sub-parallel to the 

Eastern Coosa fault (Figure 8.2). These folds are generally open and plunge to the south. 

 Irregularly shaped ridges along cross sections C-C’, D-D’, and E-E’ (Plate 1; Plate 2) are 

capped with hematitic sandstone breccia float. Although the float is generally sparse, prospect 

pits with the sandstone breccia and relatively thick blocks of sandstone are found throughout 

the area.  This float can be traced directly east, across the Eastern Coosa fault to a continuous 

ridge of Frog Mountain Formation (Sec 8 and Sec 9, T 12 S, R10 E, Plate 1). The stratigraphy of 

the Frog Mountain Formation in the Western Coosa thrust sheet is strikingly different from that 

in the Eastern Coosa thrust sheet (Figure 3.2 and Figure 4.1). A hematitic sandstone breccia is 

common along the northern edge of a large area of Frog Mountain outcrops in the Eastern 

Coosa thrust sheet. Outcrop patterns and attitudes of the Frog Mountain Formation in the 

Western Coosa thrust sheet indicate that the stratigraphically thin Frog Mountain Formation 

(characteristic of the Western Coosa thrust sheet) is underneath the thicker Frog Mountain 

Formation like that of the Eastern Coosa thrust sheet, suggesting the that thick Frog Mountain 

Formation on the Western Coosa thrust sheet is allocthonous.
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Figure 8.1. Location of the Western Coosa thrust sheet in relation to the field area (R = Rome 

fault; WM = Wiesner Mountain; H = Helena fault; PC= Pell City fault; ATZ = Anniston transverse 

zone, shown by outline; AB = Angel block; CDB = Coosa deformed belt; EC = Eastern Coosa fault).
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Figure 8.2. Stereonet plot of poles to all bedding attitudes and plunges of folds within the 

Western Coosa thrust sheet.
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CHAPTER 9: STRUCTURE OF THE EASTERN COOSA THRUST SHEET 

Regional 
 The Eastern Coosa thrust sheet is an expansive thrust sheet in Georgia and Alabama 

(Figure 9.1). In northwestern Georgia, the Eastern Coosa thrust sheet is bound by the Dalton 

thrust sheet in the footwall to the west (Thomas and Bayona, 2005). To the south, along strike, 

the Rome thrust sheet bounds the Eastern Coosa thrust fault in the footwall. In northwestern 

Georgia, the Eastern Coosa fault bends westward, and extends westward with the Rome thrust 

sheet in the footwall (Osborne and others, 1988; Thomas and Bayona, 2005). In eastern 

Alabama within the field area, the Eastern Coosa fault curves in strike to more southerly, and 

truncates the Western Coosa thrust sheet. To the south, the Eastern Coosa fault is truncated by 

the Jacksonville fault. The Jacksonville fault ends eastward, and the trailing edge of the Eastern 

Coosa thrust sheet is truncated by the Indian Mountain thrust fault which strikes northeast, but 

curves abruptly to the southeast, and ends eastward in westernmost Georgia (Figure 9.1). 

Farther east, the Cartersville and Great Smoky faults truncate the trailing edge of the Eastern 

Coosa thrust sheet. 

The Eastern Coosa thrust sheet contains Lower Cambrian Rome Formation, Middle to 

lower Upper Cambrian Conasauga Formation, Upper Cambrian to Lower Ordovician Knox Group, 

Middle Ordovician Athens Shale, a thick succession of Lower Devonian Frog Mountain 

Formation, and a thin Middle Mississippian Fort Payne Chert (Figure 4.1). 

Field Area 
In the field area, the Eastern Coosa thrust sheet is bounded on the north by the Rome 

thrust sheet, on west by the Western Coosa thrust sheet, and on the south by Jacksonville thrust 

sheet (Plate 1). The Eastern Coosa fault to the northeast of the field area cuts down eastward to 

the Rome Formation, but it abruptly cuts up section westward juxtaposing the Eastern Coosa 

oolitic facies of the Conasauga Formation onto the shale and siltstone facies of the Conasauga in 

the Rome thrust sheet. In the field area, the Western Coosa thrust fault diverges southwestward 

from the Eastern Coosa fault, and the Eastern Coosa fault takes a more southerly trace. The 

Eastern Coosa fault cuts up section very gradually southwestward along strike. South of the 

intersection of the two faults, Conasauga Formation in the Eastern Coosa is thrust onto 

Conasauga of the Western Coosa thrust sheet; to the south, Knox is faulted onto Knox. Farther 
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southwest, the Eastern Coosa fault brings Middle Ordovician Athens Shale onto Upper 

Mississippian Bangor Limestone.  An internal fault diverges eastward from the Eastern Coosa 

thrust fault, and continues as a trailing splay. Farther south, the Eastern Coosa fault is truncated 

by the leading edge of the Jacksonville thrust fault. 

The leading edge of the thrust sheet places the oolitic and peloidal carbonate facies of 

the Conasauga on to the clastic-dominated Conasauga facies of the Rome thrust sheet (Plate 1, 

Figure 2.1, and Figure 4.1). Topographically, the northern part of the thrust sheet is dominated 

by a northeast-trending ridge of Knox Group (SE 1/4, Sec 34, T 11 S, R 10 E, Plate 1). Although, 

Terrapin Creek cuts across the ridge, a ridge continuing south of the creek matches the trend of 

Eastern Coosa fault. The fault gradually cuts up section through the Knox Group to the Devonian 

Frog Mountain Formation (Sec 9 and Sec 17, T 12 S, R 10E, Plate 1), which is in a complex 

shallow thrust sheet. Farther southeast, the Eastern Coosa fault cuts through the Middle 

Ordovician Athens Shale in the hanging wall (SE ¼, Sec 17, T 12 S, R 10 E, Plate 1). 

The dominant fold in the Eastern Coosa thrust sheet, a syncline cored with Athens Shale, 

is sub-parallel to the east-northeast striking Eastern Coosa fault (Plate 1). The northern limb of 

the syncline has upper Knox, Athens Shale, and a thick succession of Frog Mountain Formation; 

the beds dip gently to the southeast (F-F’, Plate 1; Plate 2). The southern limb of the syncline has 

upper Knox Group and Athens Shale. The Athens is generally vertical; although, some steep to 

overturned beds are evident (Plate 1). The western part of the syncline has lower Knox chert on 

the southeast resting on Athens Shale, indicating that the southern limb of the fold is truncated 

by a southeast-dipping fault with Knox in the hanging wall. To the east, this fault places lower 

Knox onto Newala Limestone (upper Knox). Furthermore, the Newala Limestone outcrop shows 

tight folding of the upper Knox Group and the Athens Shale, and the fold is fault-truncated by 

the lower Knox (Sec 11, T 12 S, R 10 E, Plate 1).  

On the east, the irregular outcrop pattern of the thick Frog Mountain Formation shows 

that it lies discordantly on the Chepultepec Dolomite (Sec 1 and Sec 2, T 12 S, R 10 E, Plate 1). 

On the west, outliers of the thick Frog Mountain are on both sides of the Eastern Coosa fault 

(Figure 9.2; Sec 8 and Sec 9, T 12 S, R 10 E, Plate 1). The cross-cutting relationship of the Eastern 

Coosa fault and the outcrop patterns of the Knox Group, Athens Shale, and Frog Mountain 

Formation make it difficult to discern stratigraphic and structural relationships within the 

Eastern Coosa thrust sheet. 
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Internally, the mean bedding attitude in the Eastern Coosa thrust sheet is N58oE 28oSE, 

which roughly matches the northeasterly trend of the Eastern Coosa fault (Plate 1, Figure 9.3). 

The scatter of poles to bedding, however, displays a high degree of variance within the thrust 

sheet (Figure 9.3). Folds in the thrust sheet are open on average; however, they plunge 

southward, nearly perpendicular to average bedding. The fold plunge is approximately parallel 

to the more north-south trending section of the Eastern Coosa fault. Most of the fold data are 

from the dominant ridge of Frog Mountain Formation containing the dominant topography of 

the Frog Mountain ridge (Figure 9.2; SE ¼, Sec 10, T 12 S, R 10E, Plate 1). 

An irregular, northeast-trending belt of thick Frog Mountain Formation extends through 

the field area along a topographic ridge called Frog Mountain ridge (area 1, Figure 9.2; Plate 1). 

The westernmost outcrops of the Frog Mountain Formation adjacent to the Eastern Coosa 

thrust sheet are in a ridge parallel to the Eastern Coosa fault (areas 2 and 3, Figure 9.2). The 

southernmost Frog Mountain overlies the Athens Shale (area 2, Figure 9.2; SE ¼, Sec 17, T 12 S, 

R 10 E, Plate 1). The westernmost outcrops of Frog Mountain Formation extend onto the 

Western Coosa thrust sheet (area 4, Figure 9.2). 

The Frog Mountain Formation at the western end of Frog Mountain ridge (area 1a, 

Figure 9.2; SW ¼, Sec 10, T 12 S, R 10 E, Plate 1) is apparently concordant with the dip of the 

underlying Knox Group on the north. To the east, on the north side of Frog Mountain ridge, the 

Knox Group and Frog Mountain Formation are concordant as well (area 1b, Figure 9.2; NE 1/4 , 

Sec 10, T 12 S, R 10 E, Plate 1). The ridge continues eastward, and bifurcates around a 

topographically low spot in the ridge, where siliceous dolomite indicative of the upper Knox 

Group is found (area 1c, Figure 9.2; NE ¼, Sec 11, T 12 S, R 10 E, Plate 1). This low area in the 

ridge is surrounded by Frog Mountain Formation. Farther east, the ridge forks to the north, 

where the Frog Mountain Formation outcrop pattern shows that the Frog Mountain Formation 

rests on the Chepultepec Dolomite of the Knox Group (area 1d, Figure 9.2; Sec 2 and Sec 1, T 12 

S, R 10 E, Plate 1). Where the southern fork of Frog Mountain ridge continues to the northeast, 

Athens Shale crops out on both the north side and the south side of the ridge adjacent to the 

Frog Mountain Formation (area 1e, Figure 9.2; SW ¼, Sec 1, T 12 S, R 10 E, Plate 1). The base of 

the Frog Mountain Formation along the north side of the Frog Mountain ridge is dominated by a 

hematitic sandstone breccia, which can be used to trace the Frog Mountain Formation 
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westward from Frog Mountain ridge across the Eastern Coosa fault (areas 2, 3, and 4, Figure 9.2; 

Sec 8, T 12 S, R 10 E, Plate 1). 

On the southern side of the Frog Mountain ridge (area 1, Figure 9.2), the Frog Mountain 

Formation rests mostly on the Middle Ordovician Athens Shale, except at the western end of the 

ridge where the Frog Mountain rests on the Newala Limestone of the Knox Group. The strike of 

the Athens Shale bedding is nearly parallel to the strike of Frog Mountain bedding; however, the 

Athens dips, on average, are vertical to overturned, and generally steeper than Frog Mountain 

Formation dips (Sec 11, T 12 S, R 10 E, Plate 1). The Frog Mountain Formation close to the 

contact of the Athens Shale has the appearance of quartzite. 

Tracing the thick Frog Mountain Formation west of Frog Mountain ridge, two isolated 

ridges of Frog Mountain Formation crop out. The southern ridge overlies the Athens Shale (area 

2, Figure 9.2). The southeastern face of this ridge dips steeply to the southeast. An anticline 

hinge crops out at the southern end of the ridge with a bearing and plunge of S45oW 37o  (Figure 

9.4). The Frog Mountain Formation on the northern ridge (area 3, Figure 9.2NE ¼ Sec 17 and SW 

¼, Sec 9, T 12 S, R 10 E, Plate 1) overlies the Knox Group, and also dips steeply to the east (Figure 

9.5). 

Tracing the hematitic sandstone breccias farther to the west shows the Frog Mountain 

Formation discordantly overlying the folded and faulted stratigraphic succession of the Western 

Coosa thrust sheet (area 4, Figure 9.2). Although thick Frog Mountain Formation outcrop is rare 

(SE ¼, Sec 8, T 12 S, R 10 E, Plate 1), blocks of sandstone float thicker than the Western Coosa 

Frog Mountain Formation sandstone facies are found on the irregularly shaped ridges of the 

Western Coosa thrust sheet. 

Isolating the bedding attitudes in the Frog Mountain Formation on a stereonet plot 

reveals scattered bedding orientations; however, dominant northeast-striking beds dip relatively 

gently to the southeast (Figure 9.6). A secondary trend on the plot is of bedding striking 

northwest and dipping to the southwest. The average attitude for the Frog Mountain Formation 

is N71oE 22oSE. The plot for all units except Frog Mountain in the Eastern Coosa thrust sheet 

(Figure 9.7) is less noisy with an average attitude of N43oE 38oSE. 

In summary, the base of the Frog Mountain Formation is above the Middle Ordovician 

Athens Shale at the southern side of Frog Maintain ridge and above the Upper Cambrian to 
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Lower Ordovician Knox Group along the northern side of Frog Mountain ridge (Plate 1). Previous 

mappers recognized this relationship and suggested (1.) a Taconic disturbance and an angular 

unconformity beneath the Frog Mountain Formation (Cloud, 1967); or (2.) the Frog Mountain 

ridge is a thrust klippe as inferred from the outcrop pattern and internal structure (Bearce and 

others, 1977). The Frog Mountain Formation on the south side of the ridge is in contact with the 

Athens Shale, and is relatively quartzite-like; and individual grains are difficult to impossible to 

discern. The Frog Mountain on the northern side of the ridge is in contact with the Knox Group, 

and is characterized by hematitic sandstone breccia. The rock fabrics of the Frog Mountain 

suggest structural deformation along the base, indicating that the contact of the Frog Mountain 

Formation with the Athens Shale and Knox Group is a fault. Therefore, the thick Frog Mountain 

Formation ridge is interpreted to be a thrust klippe that has been transported northward, and 

the original depositional contact was with the Athens Shale. The Frog Mountain fault cut 

downward stratigraphically in the footwall in the direction of transportation. 

Regionally, the lower Devonian Frog Mountain Formation is known to unconformably 

overlie the Red Mountain Formation, the Chickamauga Limestone, the Athens Shale, the Little 

Oak Limestone, and the Newala Limestone; but it is not known to rest on any rocks older than 

the Newala Limestone (Keifer, 1970). Distribution of Frog Mountain Formation in the field area 

shows the Frog Mountain rests not only on the Newala Limestone, but on the Chepultepec 

Dolomite of the Knox Group as well, supporting the idea of a downward cutting fault at the base 

of the Frog Mountain Formation, and the Frog Mountain in the field area is a thrust sheet (NE ¼ 

Sec 1 T 12 S, R 10 E, Plate 1). 

To the west of the Frog Mountain ridge, outliers of the Frog Mountain thrust sheet are 

truncated folds in the Eastern Coosa hanging wall (area 2 and area 3, Figure 9.2). Furthermore, 

the thick Frog Mountain Formation can be traced across the Eastern Coosa fault, where it 

truncates folds and faults in the Western Coosa thrust sheet which is the Eastern Coosa footwall 

(cross sections C-C’, D-D’, and E-E’, Plate 1; Plate 2). 

Frog Mountain Fault Mechanism 
 From the geologic map of the field area (Plate 1), a translational distance of ~2 km for 

the fault at the base of the Frog Mountain Formation can be derived by measuring from the 

Knox Group/Athens Shale contact in the Eastern Coosa thrust sheet (NE ¼, Sec 16, T 12 S, R 10 E, 

Plate 1) to the northernmost Frog Mountain Formation outlier in the Western Coosa thrust 
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sheet (NE ¼, Sec 8, T 12 S, R 10 E, Plate 1). A translational distance of ~1.2 km is measured from 

the Athens Shale/Knox Group contact in SW ¼, Sec 1, T 12 S, R 10 E (Plate 1) to the Frog 

Mountain Formation in the NW ¼, Sec 1, T 12 S, R 10 E (Plate 1). Using part of cross section F-F’ 

(Plate 2) a sequence of events can explain the stratigraphically downward cutting fault at the 

base of the Frog Mountain Formation which truncates structures within the Western Coosa 

thrust sheet (Plate 3). A model for the Frog Mountain fault (Plate 3) was developed using a 

stiff/weak-layer model and an out-of-the-syncline thrust (Butler, 1982). 

After emplacement of Western Coosa thrust sheet, movement begins on the Eastern 

Coosa thrust fault (I, Plate 3). A fault-bend fold develops in the hanging wall at the frontal ramp 

of the Eastern Coosa fault (I, Plate 3). Later faults are shown in Plate 3; hanging wall/footwall 

cutoffs are shown (A0, B0, and C0 in Plate 3). 

As strain increases in the Eastern Coosa thrust sheet, a break-back splay thrust fault 

develops and begins to propagate through the Knox Group, but does not break through the 

Knox Group (stiff layer) (II, Plate 3). As shortening in the Athens Shale (weak layer) and 

underlying Knox Group continues, thrust separation and tectonic thickening and thinning in the 

Athens Shale accompanies ductile deformation and tight folding with the upper part of the 

underlying Knox Group, while the overlying Frog Mountain Formation (stiff layer) is not 

incorporated with folding. The area of ductile deformation of the Athens Shale is controlled by 

distance needed to transport the Frog Mountain Formation roughly 2 km, and is constrained by 

the location of the trailing Easter Coosa splay (Plate 1). Initial displacement of 640 m between A0 

and A1, translates to shortening of the top of the Knox Group by 640 m as the top of the Knox 

Group is tightly folded with the Athens Shale. An out-of-the-syncline thrust at the base of the 

Frog Mountain Formation (stiff layer) develops over the tectonically shortened and thickened 

Athens Shale (II, Plate 3). This thrust, cuts stratigraphically down section in the footwall through 

the Athens Shale and truncates the fault-bend fold in the Eastern Coosa hanging wall. As the 

out-of the-syncline thrust continues to cut structurally higher, it incorporates Athens Shale in 

the hanging wall, and truncates the Eastern Coosa fault by 640 m, the distance between B0 and 

B1 (II, Plate 3). 

Reactivation of the Eastern Coosa trailing splay emplaced Knox Group over the 

deformed Athens Shale and uppermost Knox Group. Break through at C0, resulted in a final 

movement of ~360 m along the base of the Frog Mountain Formation (measuring the bed length 
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of the base of the Frog Mountain Formation) (B1 to B2, III, Plate 3). A minimum net movement of 

1 km has occurred at the base of the Frog Mountain Formation. Although the translation 

distance demonstrated in Plate 3 is not as great as illustrated on Plate 1, alterations to the Knox 

ramp could modify translational distance. 
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Figure 9.1. Location of the Eastern Coosa thrust sheet in relation to the field area (D = Dalton, R 

= Rome, WC = Western Coosa, J = Jacksonville, and IM = Indian Mountain faults).
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Figure 9.2. Outline map of faults and thick Frog Mountain Formation (red) labeled 1 through 4. 

Frog Mountain Formation in contact with the upper Knox Group at 1a through 1c. Frog 

Mountain Formation in contact with Chepultepec Dolomite of the Knox Group at 1d. The Frog 

Mountain Formation overlies the Athens shale at 1e.
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Figure 9.3. Stereonet plot of poles to all bedding attitudes within the Eastern Coosa thrust sheet.
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Figure 9.4. Slumped fold hinge in the Frog Mountain Formation with a bearing and plunge of 

S45oW 37o (area 2, Figure 9.2)
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Figure 9.5. Dip slope of Frog Mountain Formation (area 3, Figure 9.2).
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Figure 9.6. Stereonet plot of poles to bedding attitudes of the Frog Mountain Formation within 
the Eastern Coosa thrust sheet.
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Figure 9.7. Stereonet plot of poles to bedding attitudes in the Eastern Coosa thrust sheet for all 

units other than the Frog Mountain Formation.
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CHAPTER 10: STRUCTURE OF THE JACKSONVILLE THRUST SHEET 

Regional 
Splays of the Jacksonville thrust fault extend to the northwest into the Eastern Coosa 

thrust sheet (Figure 10.1), and the Jacksonville thrust sheet merges with the trailing part of the 

Eastern Coosa thrust sheet (Thomas and Bayona, 2005). To the southeast, the Jacksonville fault 

truncates the Eastern Coosa fault and truncates the trailing edge of the Western Coosa trust 

sheet. The Jacksonville fault abruptly strikes to the south, and it truncates the trailing edge of 

Pell City thrust sheet. Farther south, the Jacksonville fault changes strike, to a more westerly 

trend. To the southwest, the Jacksonville fault may merge with the Pell City fault (Cook and 

Thomas, 2009). The Sleeping Giants klippe to the southwest of the trace of the Jacksonville fault 

may be trailing imbricates of the Jacksonville fault. The trailing edge of the Jacksonville thrust 

sheet is truncated by the Talladega fault and the Indian Mountain fault. 

Field Area 
In the field area, outcrop data in the Jacksonville thrust sheet are sparse. Most of the 

surface structural relationships were mapped on the basis of float. The Jacksonville fault 

maintains an average strike of N60oE, and on the basis of outcrop width and Conasauga-type 

float, places Conasauga of the Jacksonville thrust sheet onto Knox of the Eastern Coosa thrust 

sheet (Sec 13 and Sec 14, T 12 S, R10 E, Plate 1). The fault cuts down section along-strike 

southwestward in the hanging wall, placing Rome of the Jacksonville thrust sheet onto Knox of 

the Eastern Coosa thrust sheet.  The Jacksonville fault bends to the south, and truncates the 

Eastern Coosa fault (Sec 29, T 12 S, R 10 E, Plate 1). An average attitude for bedding in and just 

south of the field area is N55oE 44oSE. Two splays off the Jacksonville fault repeat sections of 

Conasauga and Knox (cross section F-F’’, Plate 1; Plate 2) 
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Figure 10.1. Location of the Jacksonville thrust sheet (EC = Eastern Coosa, PC = Pell City SG = 

Sleeping Giants, and IM = Indian Mountain faults).
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CHAPTER 11: REGIONAL DISTRIBUTION OF FROG MOUNTAIN 

FORMATION 

 The Devonian Frog Mountain Formation in northern Alabama and northwestern Georgia 

is bounded above and below by unconformities. The pre-Frog Mountain Formation 

unconformity truncates strata from Siliruian (Red Mountain Formation) to Lower Ordovician 

(Newala Limestone of the Knox Group) in age. 

Kiefer (1970) studied the Lower Devonian Frog Mountain Formation in eastern Alabama, 

and Ferrill (1984) studied the Frog Mountain in central Alabama. Kiefer (1970) based his 

interpretations on data from 66 measured sections, and palinspastic restorations of the thrust 

belt. By looking at the restored distribution of grain sizes, he concluded the Frog Mountain was 

derived from northern sources (i. e., the Nashville Dome). Isopachs created by Kiefer (1970) 

show a narrow linear trend of the Frog Mountain Formation, suggesting some possible thickness 

and facies control by northeast-southwest trending basement normal faults. 

Ferrill (1984) measured 37 sections, mostly in the fold-and-thrust belt, but also some in 

the Talladega slate belt. Ferrill ruled out a northern source for the Frog Mountain Formation, 

but suggested the Frog Mountain Formation was partly reworked Silurian strata. The Frog 

Mountain Formation is more feldspathic than underlying sedimentary rocks, and the feldspars 

are the same type as those in the Butting Ram Quartzite of the Talladega Group, suggesting that 

the Butting Ram and Frog Mountain have a shared source. 

 The goal for this portion of the project is to develop a restored map of the outcrops 

using palinspastic restoration of thrust sheets in Alabama and Georgia by Thomas and Bayona 

(2005). The restoration was based on balanced structural cross sections, which used data from 

outcrops, deep wells, and seismic lines. 

Method 

 Using shape files from the USGS, a base map of counties and Public Land Survey System 

(PLSS) for Alabama and Georgia was compiled. Measured-section locations of Kiefer (1970) and 

data from county reports published by the Georgia Geological Survey (Croft, 1964; Cressler, 

1970, 1964a, b, 1963) were approximated using the PLSS and county information (Figure 11.1). 

The original measured sections were referenced using township and range in Alabama. 
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Measured sections in Georgia were located using geographic and thrust sheet loctions. Accurate 

location of outcrops points would have been aided by locations given in latitude/longitude. 

 The restoration of Frog Mountain outcrops is based on the restoration of the thrust belt 
in Alabama and Georgia ( 

Figure 11.2). The restored map of Thomas and Bayona (2005) was downloaded as a Portable 

Document File (PDF), cropped, and converted to a Tagged Image Format File (TIFF). The TIFF 

image contained information about the present location of thrust faults, cross section lines, the 

palinspastic position of the thrust faults, and locations of basement faults. Much of the geologic 

information was traced from the Alabama 1:250,000 Geologic Map (Osborne and others, 1988) 

which is in a polyconic projection, and the Georgia 1:500,000 Geologic Map (Lawton and others, 

1976). The image was georeferenced in many different ways, trying not to distort the image too 

much (some distortion occurs when georeferencing an image). Large errors developed from the 

method of the primary data collectors (Township and Range), as well as error generated by 

georeferencing the image. The paper geologic maps were traced in pieces then assembled. 

Paper maps will stretch with time, and small offsets from the paper stretching will result in 

errors. When an image is registered, one pixel of the image is assigned coordinates. Errors will 

result if the pixels are not the correct distance apart. During rectification of the image, the 

image is stretched and compressed to match the coordinates given to the pixels. This results in a 

loss in accuracy, because pixels don’t compress. Many attempts were made at georeferencing 

the image to a polyconic projection, but the projection could not be attained using Blue Marble 

Geographic Transformer 3, or ArcInfo 9.3, so the image was projected into UTM Zone 16N, NAD 

1927 using ArcMap 9.3.1. UTM was chosen because it would result in rotation of the image 

rather than compressing it. Data from the image were then collected using ArcInfo 9.3, 

converted to ArcGIS shape files, and projected into decimal degree using ESRI’s projection 

utility. Projecting vectors does not introduce much error, because vectors will readily compress 

and expand from one projection to the other. The resultant error is approximately 0.8 km at its 

largest (at any scale). No other techniques were used to mitigate this error. 

 The measured-section locations were projected on to a map of the top of the Cambrian 

Conasauga Formation, restored parallel to the balanced structural cross sections, and placed in 

palinspastic positions (Figure 11.3). The thickness of the Frog Mountain Formation was then 
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contoured using ArcMap 9.3.1, and the initial isopach was then hand edited using ArcInfo 9.3 to 

create a final isopach (Figure 11.4). 

Results 

The initial restoration of the Frog Mountain points demonstrates the abnormally thick 

Frog Mountain type section is translated a distance of 100 km (Figure 11.3). Thus, the 

stratigraphic gradient has been greatly shortened. Isopach contours show thickening to the 

southeast. There is local thickening, as much as 29 m, in the northern area. Projection of known 

basement faults leads to the interpretation that there may indeed be some fault control on the 

northern depocenter of the Frog Mountain Formation. The local, abnormally thick section may 

have been deposited in a graben that had rotated down to the southwest, and preserved more 

of the Lower Devonian section (Figure 11.4). The thick southeastern Frog Mountain Formation, 

associated with the Eastern Coosa thrust sheet, restores closer to a southern source, closer to 

the Laurentian continental margin. The Frog Mountain Formation thins and pinches out 

cratonward. 

 Mapping the Frog Mountain subcrop illustrates that the Frog Mountain overlies rocks of 

Early Ordovician to Early Silurian in age (Figure 11.5). Four areas on the map stand out: (1.) the 

northern region where the Frog Mountain Formation generally is absent or where present, 

overlies the Lower Silurian Red Mountain Formation, (2.) a north-central region, where the Frog 

Mountain Formation overlies Middle Ordovician Little Oak Limestone and Chickamauga 

Limestone, (3.) a central region where the Frog Mountain Formation overlies the Lower 

Ordovician Newala Limestone of the Knox Group, and (4.) a southern region where the Frog 

Mountain Formation overlies the Middle Ordovician Athens Shale. The subcrop map displays 

four regional unconformities merging and diverging. The unconformities are at Early-Middle 

Ordovician, Late Ordovician-Early Silurian, Middle Silurian-Early Devonian, and Middle Devonian 

times (Figure 11.6). These unconformities bound varying successions of strata which record the 

tectonic history of the Laurentian margin near Alabama and Georgia.  

The Athens Shale represents the flysch-like deposits of the Blountian synorogenic clastic 

wedge (Bayona and Thomas, 2003). As the peripheral foreland bulge migrated cratonward 

during the Blountian tectophase of the Taconic orogeny, preexisting basement faults were 

reactivated. This resulted in the inversion of the Birmingham graben (Figure 11.5) (Bayona and 
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Thomas, 2003). The Middle Ordovician Athens Shale lapped onto the Blountian peripheral 

foreland bulge (Figure 11.5 and Figure 11.6), the central region of Lower Ordovician Newala 

Limestone. Cratonward from the bulge, during Middle Ordovician time, the foreland was 

relatively stable, and carbonates continued to be deposited (the Little Oak Limestone and the 

Chickamauga Limestone) (Bayona and Thomas, 2003). The Lower Silurian Red Mountain 

Formation lapped onto the Middle Ordovician Chickamauga Limestone but pinched out 

southward, and did not lap down onto the Newala Limestone, suggesting the Blountian 

peripheral foreland bulge remained a topographic high during Early Silurian time. During the 

Acadian orogeny, oblique convergence and southwestward migration of the orogen occurred 

(Ettensohn 1985, 1987). Dextral transpression at the Alabama promontory resulted in basement 

uplifts and deposition of the Talladega Group (Ferrill and Thomas, 1988). Similarities between 

the Butting Ram Quartzite of the Talladega Group and sandstones of the Frog Mountain 

Formation suggest a shared provenance (Ferril, 1984; Ferrill and Thomas, 1988). The Frog 

Mountain Formation thins and pinches out cratonward (Figure 11.4). Where the Frog Mountain 

Formation overlies the Athens Shale, it is generally thicker and nearly all sand. Where the Frog 

Mountain Formation overlies the Newala Limestone it is generally thin and mostly shale. The 

facies relationships and subcrop pattern of the Frog Mountain Formation suggest that the Frog 

Mountain Formation was deposited over a low topographic high during Early Devonian time. 

The topographic high may have impeded dispersal of coarser clastic sediment cratonward. The 

low topographic high occupied the same area as the Blountian peripheral foreland bulge.
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Figure 11.1. Measured sections located using Public Land Survey System and layered on thrust 

fault locations for Alabama and Georgia (Cressler, 1964a; 1964b; Kiefer, 1970)
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Figure 11.2. Palinspastic map from Thomas and Bayona (2005).
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Figure 11.3. Measured sections of Frog Mountain Formation restored parallel to restored cross 

sections.



62 

Figure 11.4. Isopach map of Frog Mountain Formation with locations of restored measured 

sections.
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Figure 11.5. Subcrop below unconformable base of Frog Mountain Fromation, using locations of 

restored measured sections. The facies transition from shaly Frog Mountain Formation to sandy 

Frog Mountain Formation is shown by the hatchered polygon.
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Figure 11.6. A.) Cross section illustrating stratigraphic relationships of the Frog Mountain 

Formation subcrop (datum) and Talladega Group Lower Devonian equivalents, as well as 

regional unconformities (cross section I-I’, Figure 11.5). B.) Diagrammatic section illustrating 

Early Devonian stratigraphic relationships.
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CHAPTER 12: CONCLUSIONS 
• A sub-horizontal out-of-the-syncline thrust fault at the base of the stratigraphically 

thicker Frog Mountain Formation in the Eastern Coosa thrust sheet cuts down section 

stratigraphically in the direction of transportation from the Athens Shale to the 

Chepultepec Dolomite of the Knox Group. The fault also cuts across the Eastern Coosa 

fault onto the Western Coosa thrust sheet. 

• Outliers of thick Frog Mountain Formation in the Western Coosa thrust sheet are 

allocthonous, and initially were part of the Eastern Coosa thrust sheet. The outliers of 

thick Frog Mountain overlie a folded succession that includes the stratigraphically thin 

Frog Mountain Formation in the Western Coosa thrust sheet. The Frog Mountain 

Formation allocthon has been transported a minimum of 1000 m. 

• Crosscutting relationships in the field area demonstrate a break-back thrust history for 

all exposed thrust sheets. The stacking order is: (1.) the Rome thrust sheet, (2.) the 

Western Coosa thrust sheet, (3.) the Eastern Coosa thrust sheet (Frog Mountain thrust 

sheet), and (4.) Jacksonville thrust sheets. The anomalous outcrop pattern of the Frog 

Mountain Formation in the field area is a result of faulting during the Alleghanian 

orogeny 

• The two different post-Knox successions within the Western Coosa thrust sheet and the 

Eastern Coosa thrust sheet were initially far apart. On the basis of the map of restored 

thrust sheets (Thomas and Bayona, 2005), Alleghenian thrusting translated the Eastern 

Coosa thrust sheet ~100 km to the present position. 

• On the basis of the subcrop of the Lower Devonian Frog Mountain Formation, the Frog 

Mountain Formation was deposited over a regional low topographic high. The regional 

topographic high was in the same location as the Blountian peripheral foreland bulge.  
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