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ABSTRACT OF THESIS 
 
 
 
 

ORIGIN OF BLUE RIDGE BASEMENT ROCKS, DELLWOOD QUAD, WESTERN 
NC: NEW EVIDENCE FROM U-PB ZIRCON GEOCHRONOLOGY AND WHOLE 

ROCK GEOCHEMISTRY 
 

Terrane discrimination in polycyclic continental basement rocks is challenging due to 
high-grade metamorphism and intense deformation. Based on early USGS mapping the 
Blue Ridge basement in the Dellwood quadrangle of the eastern Great Smoky Mountains 
was proposed to consist of augen orthogneisses of Laurentian (Grenvillian) affinity 
interfolded with migmatitic hornblende and biotite paragneisses (“Carolina Gneiss”) and 
amphibolites of uncertain affinity. However, detailed study reveals that the hornblende 
gneiss of Hadley and Goldsmith (1963) is a heterogeneous map unit consisting of (1) 
metaplutonic rocks; (2) variably foliated and folded felsic orthogneisses; (3) strongly 
migmatitic, folded Hbl+Bt-bearing gneisses; (4) foliated and lineated garnet 
amphibolites. Field relations, petrology, and geochemistry demonstrate that felsic 
orthogneisses are related to metaplutonic rocks via (post-Taconian) progressive 
deformation and reconstitution. Whole rock XRF geochemistry reveals likely protoliths 
of Hbl gneiss and Bt gneiss are geochemically similar and have common sources. U-Pb 
zircon geochronology and field relationships suggest felsic orthogneisses (1050 Ma, 
1150-1190 Ma, 1250-1300 Ma) are components of the Mesoproterozoic Grenville 
basement, and not part of a metamorphosed Neoproterozoic syn-rift Laurentian margin 
cover sequence. A previously unknown age mode for Mesoproterozoic plutonism in the 
southern Appalachians was discovered (~1250-1300 Ma) suggesting the presence of a 
component exotic to pre-Grenvillian Laurentia (Amazonia?).   
 
KEYWORDS:  Grenville basement, geochronology, geochemistry, Blue Ridge, 
petrogenesis 
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SECTION I.  INTRODUCTION 

Terrane discrimination in polycyclic continental basement rocks is challenging 

due to the high grade of metamorphism and intense deformation.  Protolith characteristics 

(mineralogy, fabrics) are obscured by processes such as prograde metamorphic reactions 

and migmatization.  Hybridization alters protolith compositions at lithologic contacts so 

that contacts are compositionally gradational and difficult to identify for mapping or 

sampling purposes.  Lithologic contacts may also exhibit contrasts so that strain may be 

partitioned into the weaker unit resulting in differences in foliation intensity or fold style 

and history.  Subsequent periods of tectonometamorphism, either prograde or retrograde, 

amplify difficulties in discrimination.  

Southern Appalachian Blue Ridge basement, a terrane of Amazonian provenance 

accreted ~ 1.15 Ga during the Grenville orogeny (Tohver et al., 2004), has experienced 

multiple tectonometamorphic events in its ca. 1 Ga history (Grenvillian: 1.3 to 0.9 Ga; 

Taconian: 450 Ma; Neo-Acadian to Alleghanian: 360-300 Ma) (Hatcher, 1987; Rankin, 

1975; Thomas, 1991).  In the vicinity of the Great Smoky Mountains, the basement is 

proposed to contain numerous pre-metamorphic terrane boundaries that are manifested as 

lithologic contacts between predominantly single lithologies.   For example, the Ashe 

Metamorphic Suite-basement contact and the Great Smoky Group-basement contact are 

proposed to be the  Chattahoochee-Holland Mountain (Merschat et al., 2006) and 

Greenbrier faults (Clemons and Moecher, 2008; Hadley and Goldsmith, 1963), 

respectively.  Packages of lithologies may also define a terrane.  The Hayesville fault has 

been identified as the Western Blue Ridge (Laurentian continental margin)-Eastern Blue 

Ridge (Iapetan oceanic assemblage) contact (Hatcher, 1978; Massey and Moecher, 2005).  
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Within the Mesoproterozoic (Grenville) basement terranes of western North Carolina and 

eastern Tennessee, Berquist et al. (2005) identified the Mars Hill terrane based primarily 

on relatively old Nd model ages (TDM = ~ 1.8 Ga) and zircon U-Pb ion probe ages (1.77 – 

1.38 Ga). The Mars Hill terrane is cryptic in the sense that it is lithologically similar to 

other Grenville basement rocks (gneisses, relict granulites) but was recognized solely 

from geochemistry.   

Within the Dellwood area the basement rocks include those of likely Laurentian 

affinity interfolded with migmatitic rocks of uncertain affinity. The latter were first 

designated as part of the Carolina gneiss (Grenvillian?) (Hadley and Goldsmith, 1963), 

then assigned to the Eastern Blue Ridge basement, then proposed to be Cartoogechaye 

terrane (Hatcher et al., 2004), a highly deformed and metamorphosed post-Grenvillian 

sequence.  Clearly, detailed petrologic, structural, and geochemical work is needed to 

provide additional constraints on the petrogenesis of the basement rocks within the 

quadrangle.   

Previous Work 

Since Hadley and Goldsmith’s (1963) description of the basement complex and 

mapping of the Dellwood quad, little work has been done in the quadrangle.  Massey and 

Moecher (2005) confirmed Hadley and Goldsmith’s (1963) assessment of the basement 

rocks in the region as polymetamorphic, and further correlated deformational events with 

metamorphic events along the Eastern Blue Ridge-Western Blue Ridge terrane boundary, 

showing how each phase of metamorphism is recognized in the rocks.  Moecher et al. 

(2004) provided precise time constraints for peak Taconian metamorphism (granulite 

facies) in the southern Blue Ridge, using zircons in migmatitic gneiss.  Montes (1997) 
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concluded that both the Greenbrier and Hayesville thrust sheets were emplaced before the 

peak metamorphic event.  Montes and Hatcher (1999) correlated the Great Smoky 

Group-Snowbird Group contact in the easternmost Western Blue Ridge with the 

premetamorphic Greenbrier fault, confining the entire Snowbird Group to the footwall of 

the Greenbrier fault.  Merschat and Cattanach (2008) completed mapping of the 

Asheville quadrangle at 1:100,000 scale, illustrating the most recent interpretation of 

structural relations among the basement rocks in the region.  Tohver et al. (2004) traced 

the transfer of the southern Appalachian Blue Ridge/Mars Hill terrane during Grenville 

orogenesis using Pb and Nd isotope geochemistry.  They concluded that isotopic 

signatures of basement gneisses in this terrane are distinct from those of the rest of the 

Grenville belt, but are similar to basement rocks of the southwest Amazon craton.  New 

age data (zircon U-Pb ion microprobe geochronology, E. Anderson, unpublished data) 

and field relationships (Anderson and Moecher, 2009) suggest that the hornblende 

gneisses may be an intensely deformed and metamorphosed component of the 

Mesoproterozoic Grenville basement, and not part of a Neoproterozoic cover sequence 

deposited on the rifted margin of Laurentia and subsequently metamorphosed during the 

Taconian orogeny (Hatcher et al., 2005).  Anderson and Moecher (2009) suggest that 

westward subduction of Laurentian (Grenvillian) continental crust beneath the Laurentian 

margin during the Taconian orogeny, which was later displaced cratonward during late 

Paleozoic deformation, may be responsible for the presence of Grenville-age hornblende 

gneisses in the Dellwood quadrangle as well as high-pressure metabasites and eclogites 

throughout the region.  Ryan et al. (2005) analyzed amphibolites and ultramafic rocks 5-

32 km to the southwest along strike of the Hayesville fault from Dellwood quadrangle 
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and concluded that the bulk chemical and trace element signatures of the amphibolites 

were consistent with igneous rocks of calc-alkaline composition.  They inferred that these 

rocks along with the enveloping metasedimentary rocks represent the block and matrix of 

an ancient accretionary sequence related to subduction.  They did not provide age 

constraints for these rocks.    

 

Purpose of Study 

Due to lack of exposure, the high grade of metamorphism, and structural 

complexity, the relationship between and origins of the biotite gneiss and hornblende 

gneiss are uncertain.  Detailed field work, structural analysis (comparison of foliation and 

fold histories), geochemistry, and geochronology have never been carried out on the 

basement units.  Preliminary geochronology (Anderson and Moecher, 2008; Anderson 

and Moecher, 2009) indicates some units initially mapped as hornblende gneiss (pЄch) 

(Hadley and Goldsmith, 1963) are Mesoproterozoic (1.25 Ga), and protoliths of biotite 

gneiss (pЄc) are post-Mesoproterozoic (Neoproterozoic sediments?) (Bream et al., 2004).  

Preliminary field work and petrology suggest that some rock bodies mapped as 

hornblende gneisses are related via progressive deformation and reconstitution to 

Mesoproterozoic orthogneisses.  This study is a detailed petrologic, structural, 

geochronological, and geochemical study of the hornblende gneisses and enclosing 

biotite gneisses intended to test the hypothesis that the hornblende gneisses are not 

components of the Neoproterozoic Laurentian margin sequence (i.e., a separate terrane), 

and to determine the age and likely protoliths of the gneisses. 
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SECTION II.  GEOLOGIC SETTING AND STUDY AREA 

The Dellwood quadrangle, positioned on the eastern flank of the Great Smoky 

Mountains region (Figure 2.1), was one of the first quadrangles to be mapped in the Blue 

Ridge of western North Carolina (Hadley and Goldsmith, 1963).  The basement rocks in 

the Dellwood quadrangle initially served as a frame of reference for understanding the 

Precambrian evolution of eastern Laurentia in the southern Appalachians.  These rocks, 

designated collectively as the Carolina Gneiss (Hadley and Goldsmith, 1963), consist of 

foliated to migmatitic biotite paragneisses originally inferred to have a sedimentary 

origin, foliated to migmatitic hornblende orthogneisses, which appear to have mafic to 

intermediate igneous protoliths based on mineralogy (hornblende + plagioclase ± 

biotite), and small amphibolite bodies (> 50 modal % hornblende + plagioclase).  The 

basement rocks are interpreted (Hadley and Goldsmith, 1963) to be nonconformably 

overlain by the Wading Branch and Longarm Formations of the Snowbird Group and the 

Thunderhead/Copperhill Formation of the Great Smoky Group, a thick sequence of 

metamorphosed siliciclastic rocks deposited in the late Precambrian (Hadley and 

Goldsmith, 1963; Hatcher et al., 2005; Merschat and Wiener, 1990; Montes, 1997).  The 

Ocoee, the stratigraphic equivalent of protoliths of the Ashe Metamorphic Suite (Rankin, 

1975), has been interpreted as eastern Laurentian syn-rift turbidite and fluvial to shallow 

marine deposits (King, 1964; Rast and Kohles, 1986) accompanying the break-up of 

Rodinia and the opening of the Iapetus Ocean (proto-Atlantic).   

Both the basement rocks and the metasedimentary cover sequence in the 

Dellwood quadrangle are enveloped within a larger belt (at least 35 miles wide) of rocks  
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experiencing regional metamorphism during the early Paleozoic (Taconian) that increases 

in intensity to the southeast (Hadley and Goldsmith, 1963; M2A  and M2B of Massey and 

Moecher, 2005) represented by isograds marking the initial occurrence of metamorphic 

index minerals (Hadley and Goldsmith, 1963).  A subsequent period of metamorphism 

and deformation produced the anticlinal uplifts of the basement and synclinal exposures 

of the Ocoee that dominate the structure within the quad (Hadley and Goldsmith, 1963; 

M3 and D3 of Massey and Moecher, 2005).   

 

Basement Rocks of Grenvillian Affinity 

The eastern Great Smoky Mountains region is located in a transitional area 

between rocks of known Grenville affinity (Mesoproterozoic: Merschat et al., 2006; 

(Mars Hill terrane: Gulley, 1985; Miller et al., 2000) to the north and northeast with rocks 

of inferred post-Grenvillian affinity (Neoproterozoic) (Cartoogechaye terrane: Hatcher et 

al., 2004) that extend farther to the south and southeast (Figure 2.2).  The Hayesville 

fault, inferred to be a premetamorphic fault separating the metasedimentary rocks of the 

Western Blue Ridge (Ocoee) from the high grade gneisses of the Central Blue Ridge 

(Hatcher, 1978), strikes northeast and purportedly enters the Dellwood quadrangle in its 

southeast corner (Montes, 1997).  Generally, the rocks to the northwest of the fault are 

proposed to be autochthonous and the rocks to the southeast of the fault are interpreted as 

allochthonous.  Gulley (1985) dated the ~ 1.8 Ga Early Proterozoic rocks of the Mars Hill 

terrane that crop out along strike of the Hayesville fault to the northeast of Dellwood 

quadrangle (Merschat and Cattanach, 2008).  The basement rocks in the Mars Hill 

terrane, accreted during the Grenville orogeny (Gulley, 1985; Ownby et al., 2004), are  
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footwall components of the Hayesville thrust sheet (see Hatcher, 2005, figure 2a).   

Additionally, small Grenville age basement massifs such as those of the Tallulah Falls 

dome, Toxaway dome, and the Trimont Ridge complex likely represent continental 

fragments rifted from Laurentia during the Neoproterozoic that were later accreted to the 

margin during Ordovician subduction and arc accretion (Hatcher et al., 2004). 

 

Rocks of Inferred post-Grenvillian Affinity 

 Hatcher et al. (2004) identified two tectonostratigraphic terranes in the Hayesville 

thrust sheet.  The Cowrock terrane (not shown on Figure 2.2), on the leading edge of the 

thrust sheet in northern Georgia extending northeastward into southern North Carolina, is 

the southernmost of these terranes.  This terrane is composed of schists, metamafic rocks, 

metaultramafic rocks, biotite-plagioclase gneisses and “metasandstones,” the latter 

containing Grenville-age detrital zircons (Bream et al., 2004) indicating that these rocks 

are not basement, but likely a distal Laurentian margin sequence derived from erosion of 

Grenville gneisses (Hatcher et al., 2005).  The Cartoogechaye terrane (Hatcher et al., 

2004) structurally overlies the Cowrock terrane and is exposed to the northeast of it along 

the Hayesville fault.  Rocks composing this terrane include pelitic schist, metasandstone, 

metamafic and metaultramafic rocks, and some Grenville basement (Hatcher et al., 

2004).  Migmatitic fabrics are present as these rocks reached granulite facies 

metamorphism, experiencing peak temperature conditions at 458±1.0 Ma (Taconian) 

(Moecher et al., 2004).  Dating of detrital zircons from the metasandstones produced 

Grenville and older ages (Miller et al., 2000).  Farther east are the post-Grenvillian 

terranes of the Dahlonega Gold Belt, whose mafic and ultramafic complexes have 
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produced Ordovician U-Pb zircon ages (Bream, 2003; Thomas, 2001) and the Tugaloo 

terrane, consisting predominantly of Tallulah Falls-Ashe Formation metasandstone, 

pelitic schist, and amphibolite (Hatcher et al., 2005).   
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SECTION III.  LITHOLOGIC DESCRIPTIONS 

 Rocks of the basement complex comprise more than two-thirds of the area of the 

Dellwood quadrangle.  Lithologies designated as the Carolina Gneiss by Hadley and 

Goldsmith (1963), specifically biotite gneiss (pЄc), hornblende gneiss (pЄch), and 

amphibolite (pЄca) (Figure 3.1) are the main focus of the current study.  Due to the high 

grade of metamorphism and migmatization in the area, distinguishing among the 

lithologies can be problematic upon first inspection.  However, the biotite gneiss is easily 

distinguished in outcrop from hornblende gneiss by the lack of hornblende in the former, 

a higher abundance of coarse-grained muscovite, and, in migmatitic varieties, thicker 

leucosomes that locally exhibit a characteristic purple-gray hue.  Amphibolite is easily 

recognized in outcrop by its dark gray to black color, medium- to coarse-grained 

hornblende crystals, and the general presence of garnet.  The other common basement 

units in the map area are the granitoid and augen gneisses (pЄg and pЄga, respectively), 

which are generally considered to be Grenville-aged metaplutonic orthogneisses (E. 

Anderson, unpublished data; Hadley and Goldsmith, 1963; Montes, 1997).   

 

 

Biotite Gneiss 

 Biotite gneiss, the major constituent of the Carolina Gneiss suite, is exposed in the 

southeastern two-thirds of the quadrangle.  Large exposures are found at road cuts along 

Spy Rock Road in the Trinity Cove housing development (location 2, Figure 3.2); The 

Preserve housing development on Tanner Trail (location 12); just north of Garrett 

Cemetery along Wheat Grass Loop (location 13); and along Coleman Mtn. Road  
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approximately 0.5 km from the junction of U.S. Rt. 276 in the northeastern part of the 

quad (location 21).   

Biotite gneiss (Figure 3.3) is banded to migmatitic, light to medium gray in color, 

medium to coarse grained, consisting primarily of plagioclase, varying proportions of 

alkali feldspar, biotite, muscovite, and quartz.  Garnet is generally absent, but may be 

present locally.  Foliation is defined by the alignment of medium to coarse-grained biotite 

± muscovite.  Multiple foliations are present owing to the polymetamorphic history of 

the region.  Some varieties exhibit compositional layering (Figure 3.4) cross-cut by later 

fabrics defined by the fold hinges of chevron shaped similar folds (Figure 3.5).  

Migmatitic varieties exhibit highly deformed fabrics recognized by alternating 

leucosome/melanosome domains (Figure 3.6) that may exhibit syn- to post- peak 

metamorphic ptygmatic folding.  Thicknesses of quartzofeldspathic leucosomes, possibly 

resulting from dehydration melting of muscovite ± biotite (Le Breton and Thompson, 

1988), range from 0.5 cm to 5 cm; melanosome selvages are < 1 cm thick.   

 

 

Hornblende Gneiss 

 Bodies mapped collectively as “hornblende gneiss” are scattered throughout the 

central and eastern portions of the Dellwood quadrangle and are enveloped by the biotite 

gneiss.  Large exposures occur at several outcrops within The Preserve housing 

development along Tanner Trail near Utah Mountain (locations 11 and 12), east on Utah 

Mountain Road (SR 1311) along Countryside Drive (locations 6, 6A, and 6B), along 

Boyd Farm Road near Roundhill Cemetery (locations 5 and 10), at the Messer Farm  
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along U.S Rt. 276 ~300 m north of the Utah Mountain Road junction (locations 4 and 7), 

along Erwin Lane near Goatrock Ridge (location 19), and along Abbey Cove Road 

(location 16) on the southern margin of a large body on the southeast ridge of Purchase 

Knob.   

In contrast to the enclosing biotite gneiss, hornblende gneiss exhibits a greater 

heterogeneity in appearance.  This study resolved three separate lithologic types within 

the hornblende gneiss suite of Hadley and Goldsmith (1963): (1) unfoliated to foliated 

metaplutonic orthogneiss, (2) strongly foliated and deformed orthogneiss equivalents, and 

(3) hornblende-bearing migmatites.  There is a gradation in texture of the hornblende 

gneisses from massive orthogneiss, usually found within cores of the larger mapped 

bodies, to strongly foliated and deformed gneisses generally found within the smaller 

hornblende gneiss bodies or in large bodies near inferred contacts with biotite gneiss (ie., 

the contact between a more competent (pЄch) and less competent (pЄc) lithology). 

Some varieties of hornblende gneiss are texturally homogeneous (Figure 3.7). 

Others contain mafic enclaves (m- to cm-scale) of sub-round to extremely deformed, 

flattened pods or lenses of garnet amphibolite (Figure 3.8).  In several localities, 

migmatitic hornblende gneiss exhibits conspicuous hornblende-speckled leucosomes 

(Figure 3.9).  In varieties with minimal migmatization, rocks exhibit weak to well-

defined foliations defined by both compositional banding and late stage open to tight 

parallel folds whose hinges may represent axial plane crenulations of larger folds.  Some 

weakly deformed varieties preserve igneous textures (Figure 3.10) and appear to be 

related to the intensely deformed varieties via progressive deformation (Figure 3.11). 
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            The hornblende gneisses are generally darker in color than the biotite gneisses, 

but all gradations exist owing to the varying proportions of mafic minerals present.  The 

common mineral assemblage is plagioclase + hornblende >>quartz ± biotite, though 

potassium feldspar and quartz are present in moderate quantities in the more leucocratic 

varieties.  Accessory minerals include garnet, titanite, and epidote.  Evidence of biotite 

replacing hornblende exists which may indicate a gradational relationship between the 

two rock types.  However, the relationship (age, petrogenesis) between biotite gneiss and 

hornblende gneiss is inconclusive based on outcrop scale observations alone. 

 

 

Granitoid and Augen Gneiss 

 Large bodies of granitoid and augen gneiss are found in the central portion of the 

quadrangle.  These rocks are massive coarse-textured, inequigranular gneisses often 

containing elongated, lenticular, alkali feldspar augen that are variably recrystallized and 

set in a matrix of biotite + quartz folia (Figure 3.12).  Previous workers have concluded 

that these rocks are Grenville-age and plutonic in origin (E. Anderson, unpublished data; 

Hadley and Goldsmith, 1963; Montes, 1997) and, therefore, are not the focus of this 

study.   

 

 

Amphibolite 

Rare amphibolite bodies ranging from centimeter-scale pods and xenoliths within 

orthogneiss (Figure 3.10 a and c, Figure 3.11) to meter-scale pods (Figure 3.13) or lenses  
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to mappable bodies several hundreds of meters in all dimensions are present within the 

southern and east-central portions of the quadrangle.  Hadley and Goldsmith (1963) 

defined the amphibolite in this region as rocks containing 50% or more hornblende.  The 

largest exposure can be found at the entrance of the Ridge Crest housing development 

(location 23) along U.S. Rt. 276 and directly across the highway.  A smaller body with 

less exposure was found on private property (location 26) along Qualla Drive (Rt. 1324).  

A large (~2 m x 2 m x 2 m) float boulder was found near the top of the Trinity Cove 

housing development.  

The rocks are black to dark green/gray in hand sample, contain abundant 

hornblende and subordinate amounts of plagioclase, garnet, clinopyroxene, biotite, and 

quartz.  Accessory minerals include epidote, titanite, ilmenite, and apatite.  Meter-scale 

amphibolite bodies are found intercalated with biotite and/or hornblende gneiss and may 

represent deformed dikes, xenoliths, or a partitioning of mafic minerals during 

metamorphism (Figure 3.8).  The larger amphibolite bodies are generally granoblastic, 

medium- to coarse-grained, relatively homogenous, and weakly foliated.  The circular to 

sub-circular map pattern of large bodies appears consistent with Hadley and Goldsmith’s 

(1963) assumption that these bodies may be intrusive in origin.  Most are isolated and 

appear to have previously been relatively equidimensional and later folded and/or 

flattened along with the enclosing biotite and hornblende gneisses.  However, the 

presence of foliations in the amphibolite body at the entrance to the Ridge Crest 

development (location 23) led Anderson and Moecher (2009) to interpret the contacts 

between amphibolite and the enclosing gneisses to be tectonic in origin.   
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SECTION IV.  PETROGRAPHY 

 Petrology was based on examination of forty thin sections obtained from 

representative samples of biotite gneiss, three hornblende-bearing gneiss varieties, and 

amphibolite.  Petrographic analysis primarily focused on resolving relict igneous textures 

in orthogneisses, understanding the petrologic relationship between these rocks and their 

intensely deformed equivalents, and determining the relationship (if any) between the 

hornblende gneisses and the enveloping biotite gneisses.  Point counts were performed on 

three samples of metaplutonic orthogneiss, two samples of deformed orthogneiss, and 

one sample of biotite gneiss using a Swift Model F electronic counting stage.  Selected 

thin sections were deemed visually representative of the rocks from which they were 

taken.  For each sample, 1500 points were counted using a horizontal spacing of 2 mm 

and a vertical spacing of 1 mm.  Modes were recalculated on the basis of volumetric 

percentage of quartz, alkali feldspar, and plagioclase.   

  

 

Biotite Gneiss 

 The common mineral assemblage in the biotite gneiss is plagioclase + quartz + 

biotite in varying proportions.  Alkali feldspar, usually microcline, is present and 

subordinate to plagioclase in all samples and is locally perthitic.  Quartz ranges in modal 

abundance from 25 to 45 percent.  Muscovite, when present, amounts to as much as 5 

modal percent.  Biotite comprises as much as 30 modal percent.  Accessory minerals 

include titanite, epidote, apatite, garnet, spinel, ilmenite, and rarely zircon.  Garnet is 

poikiloblastic and fractured.   
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 Biotite gneiss exhibits an overall inequigranular texture consisting of coarse 

grains of porphyroclastic biotite and feldspar and finer grains of recrystallized quartz.  

The prevalent gneissic banding has diffuse margins, is compositional in nature,  and 

appears to be the result of incomplete mineralogic partitioning of quartz + feldspar from 

biotite ± muscovite during migmatization.  A small percentage (< 5%) of mica is present 

within quartzofeldspathic leucosomes.  A moderate to strong, spaced schistosity (Figure 

4.1) is present and is defined by the alignment of micas within microlithons and, 

additionally, recrystallization of quartz within parallel micro-shear bands.  The margins 

of biotite crystals are commonly found adjacent to and parallel with the long axes of 

feldspar grains, both aligned parallel to the foliation, in a manner which suggests 

dissolution of feldspar along the margin and possible replacement with biotite, further 

defining the foliation.  Epidote and titanite are commonly clustered within biotite-rich 

layers.  Within microlithons, strain appears to be accommodated in quartz mostly through 

sub-grain rotation, as quartz most often exhibits undulose extinction.  Recrystallization of 

quartz within these zones is less prevalent.  Deformation-induced myrmekite (Figure 4.2) 

commonly occurs along grain boundaries between microcline and plagioclase.   

 Replacement textures in biotite gneiss are generally limited to garnet with thin 

reaction rims of biotite (Figure 4.3) or replacement of garnet by biotite along fractures 

(Figure 4.4).   
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Hornblende Gneiss 

 The common mineral assemblage in the three hornblende gneiss varieties is alkali 

feldspar (commonly microcline) + quartz + hornblende + biotite + plagioclase.  

Plagioclase varies from trace to as much as 25 modal percent and is greatly exceeded by 

alkali feldspar in all samples.  Quartz ranges in amount from 25 to 45 percent.  Accessory 

minerals include anhedral to euhedral titanite and epidote, apatite, poikiloblastic and 

fractured garnet, ilmenite, spinel, and rarely zircon.     

 Metaplutonic Orthogneiss 

 Metaplutonic rocks at several locations exhibit an overall inequigranular and 

granoblastic to hypidiomorphic igneous texture (Figure 4.5).  Fine-grained 

recrystallization on margins of relict feldspar phenocrysts is common.   At one locality 

(location 7, Figure 3.2) metaplutonic rocks contain coarse-grained clinopyroxene 

phenocrysts (Figure 4.6) amounting to as much as 20 percent of the rock.  Medium-

grained interlocking hornblende phenocrysts are common and include prismatic allanite 

crystals (Figure 4.7).   

 Conspicuous replacement textures are present within the metaplutonic hornblende 

gneisses and are chiefly hydration reactions resulting from late Paleozoic uplift of the 

basement in this region.  Hornblende reaction rims encapsulating clinopyroxene 

phenocrysts (Figure 4.6) and biotite partially or completely replacing hornblende 

phenocrysts (Figure 4.8) may represent progressive hydration-replacement reactions.  

Biotite after garnet pseudomorphs (Figure 4.9) and hornblende + quartz symplectites after 

clinopyroxene (Figure 4.10) are present as well. 
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Deformed Orthogneiss 

 Aside from textural differences, the main petrologic difference between the 

metaplutonic orthogneiss and their intensely deformed equivalents is the occurrence of 

titanite and epidote (Figure 4.11). Epidote is much more abundant in the deformed 

varieties due to deformation-induced retrograde metamorphic reactions involving the 

breakdown of hornblende to biotite + epidote.  Epidote has a much lower abundance in 

the less deformed orthogneisses.  Replacement of hornblende with biotite along cleavage 

planes and on rims is common (Figure 4.12). 

 Textural and mineralogical similarities exist between the metaplutonic rocks and 

their intensely deformed equivalents.  The highly foliated varieties retain the 

inequigranular and granoblastic interlocking igneous texture, though often more 

deformed as indicated by a higher occurrence of recrystallized quartz and feldspar 

(Figure 4.13).  Deformed and amalgamated hornblende + quartz symplectites after 

clinopyroxene are present that show further progressive replacement of hornblende by 

biotite (Figure 4.14).  Modal percentages of quartz, alkali feldspar, and plagioclase are 

similar between the two lithologies and are distinct from that of biotite gneiss (Figure 

4.15). 

Migmatitic Hornblende Gneiss 

 Hornblende-bearing migmatites do not exhibit primary igneous textures, although 

they are mineralogically similar to and may be genetically related to the orthogneisses.  

They are distinctive in that these rocks exhibit obvious mesoscopic leucosomes (Figures 

3.7 and 3.8) that display igneous textures (Figure 4.16) possibly due to dehydration 

melting during peak thermal conditions.  Alternating with the leucosomes are  
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melanosomes containing mafic minerals that appear preferentially aligned (Figure 4.17), 

either through a previous foliation-producing event or reorientation to make space for 

crystallizing leucosome melt.  Field relationships indicate the former, as most migmatitic 

bodies contain similar foliation orientations.   

 Although most migmatitic hornblende gneiss in the study area displays medium-

grained, minimally deformed leucosomes, one locality (CG09-1-1) contains narrow late-

stage mylonite zones (Figure 4.18) that deform the leucosomatic texture in areas between 

hornblende porphyroclasts that have apparently impinged upon one another during 

deformation.  Poikiloblastic garnets containing two stages of inclusion trails (Figure 4.19) 

are also present at this location.   

  Conspicuous brittle fractures within melanosomes (Figure 4.20) occur at the 

mesoscopic scale at several locations resulting from late deformation occurring at high 

strain rates and/or low confining pressures.  Alignment of platy minerals (ie. biotite, 

hornblende) within melanosomes offer weak zones conducive to slip.   

Amphibolite 

 Rare amphibolite bodies in the study area exhibit inequigranular to equigranular 

unfoliated granoblastic texture and are interpreted as meta-igneous bodies, though one 

locality (location 23) exhibits moderate foliation.  The common mineral assemblage is 

hornblende + quartz + plagioclase ± garnet ± clinopyroxene ± titanite ± ilmenite 

(Figure 4.21).  Hornblende comprises more than 50 percent of the rock volume, greatly 

exceeding both quartz and plagioclase.  Garnet exhibits resorbed margins and includes 

titanite.  At one locality (location 7) amphibolite xenoliths contain clinopyroxene, 

amounting to approximately 20 percent of the rock.   
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SECTION V.  STRUCTURAL GEOLOGY 

 Structural observations were performed on the macro-, meso-, and microscopic 

scale for each sample location within the study area.  Measurement and description of 

structural elements focused on resolving the fold history and associated planar and linear 

petrofabrics in the area in order to characterize the deformation history of the basement 

rocks.  Thin sections from 16 oriented hand samples were analyzed to resolve 

microstructures associated with hand sample and outcrop-scale structural elements.   

 Structural measurements were taken at every accessible basement outcrop within 

the quadrangle.  Where possible, multiple foliation and fold axis orientation 

measurements were acquired to account for outcrop-scale heterogeneity.  Complete 

structural data can be found in Appendix A.   

 

 

 

Structural Elements 

Foliations 

 Although one NE-SW striking foliation (Figure 5.1) dominates the study area, an 

additional foliation associated with hand sample-scale to map-scale folds in the region is 

resolved in this study.  The dominant foliation (Figure 5.2) is compositional in nature 

resulting in the banded and layered appearance of the basement gneisses and is assumed 

to be the result of peak thermal conditions during regional metamorphism (Taconian), as 

dated by Anderson and Moecher (2009).  Although bedding (S0) and an early schistosity 

(S1) parallel to bedding is recognized in some metapsammitic rocks and metapelites in  
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the region (Massey, 2003; Massey and Moecher, 2005), S0 and S1 are not preserved in the 

basement gneisses.  Foliation nomenclature will hereafter follow that of Massey and 

Moecher (2005), where S0 (bedding) and S1 are not resolved in Dellwood quadrangle 

gneisses due to the high grade of metamorphism, S2 is the regional compositional 

foliation, and S3 is the late fabric associated with the dominant folding event.  S0, S1, and  

S2 relationships are consistent with previous work in the area (Eckert, 1984; Massey, 

2003; Massey and Moecher, 2005; Montes, 1997; Quinn, 1991).  A late non-penetrative 

S3 fabric deforms S2, is manifested locally as an axial plane crenulation (Figure 5.3), and 

is associated with macroscopic to microscopic, open to tight, chevron-shaped flexural slip 

and flexural flow folds (Figure 5.4) whose axial planes are at a moderate to high angle to 

S2.     

Folds 

 Polyphase folding is readily apparent at the outcrop scale throughout the study 

area.  The earliest generation of folds is manifested as tight to isoclinal, intrafolial,  

passive flow folds whose axial planes parallel S2 (Figure 5.5) and whose isoclines 

contribute to the banded appearance of the dominant foliation (Figure 5.6).  This 

generation of folds appears identical to the F2 folds of Massey (2003) and Massey and 

Moecher (2005) who described the fold history of the Eastern Blue Ridge-Western Blue 

Ridge boundary in the Sylva North quadrangle immediately to the southwest of Dellwood 

quad.  F1 folds, if preserved at all in the basement gneisses, were not differentiable from 

the aforementioned folds.  Thus, the earliest fold generation in the study area is hereafter 

regarded as F2.   
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            The dominant folding event in the study area (F3), characterized by open to tight 

chevron-shaped flexural folding as well as open to tight ptygmatic folding in migmatites, 

locally folds S2 and transposes the dominant foliation into a non-penetrative axial plane 

cleavage.  F3 folds commonly refold isoclinal F2 folds within S2 (Figure 5.7).  F3 folds 

have shallow to moderately plunging fold axes that plunge in a direction parallel to dip of 

S3.  Two dominant trends (Figure 5.8) occur in the F3 folds within the study area.  One set 

of mesoscopic F3 folds trend in a NE-SW direction consistent with macroscopic folding 

in the quadrangle.  Another set of F3 folds trend in a NW-SE direction.  This set is 

parallel to those with Grenvillian orogenesis (Cattanach and Merschat, 2005; Merschat 

and Wiener, 1990), but geochronology (Taconian metamorphism and migmatization) 

require it to result from transposition of F3 fold axial planes during late Paleozoic 

deformation associated with formation of high strain zones as there is no discernable 

difference in fold appearance between the sets.   

The axial planes of F3 folds produce the S3 planar fabric in all basement 

lithologies, with the exception of the meta-plutonic hornblende orthogneiss found in the 

interiors of large hornblende gneiss bodies.  The non-penetrative S3 foliation produced by 

the F3 folding event is possibly absent in these rocks due to contrasting competencies 

between the orthogneisses and the enveloping metasedimentary-derived biotite gneisses.  

Thus, the interiors of these bodies appear to have been shielded from the deformation 

associated with the F3 event.   

High Strain Zones 

 Retrograde high strain zones are found throughout the basement rocks within the 

quadrangle.  Most notable are thin (< 1 cm), relatively straight ultramylonite bands within  

54



 

55



56



granitoid augen gneiss (Figure 5.9) that cross-cut the dominate foliation at moderate to 

high angles, thus post-dating S2 formation.  Similar ultramylonite bands (Figure 5.10) are 

found within Eastern Blue Ridge hornblende gneiss assemblages along the Blue Ridge 

Parkway at the Mt. Lynn Lowry overlook in Sylva North quad, at Coleman Gap along 

Coleman Mountain Road in Clyde quad, and in Great Smoky Group kyanite-garnet-

staurolite schists throughout the Dellwood quadrangle.  These bands also appear late 

relative to S2 as they dismember earlier F2 isoclinal folds.  Similar localized high strain 

zones were described by Massey (2003) and are characterized microscopically by 

dynamic recrystallization of quartz and fracture of feldspar (Massey and Moecher, 2005).  

 A high temperature, high strain zone (Figure 5.11) ~ 2 m wide was discovered at 

a roadcut within The Preserve housing development near the Holiday Drive-Tanner Trail 

junction.  This zone exhibits a flattening fabric parallel to S2 resulting in boudinage of 

amphibolite pods and void-filling leucosome and, therefore, may be interpreted to be syn-

deformational relative to S2.  However, the same structure could also result from 

intensification of foliation around a more competent inclusion (boudin) during S3 

formation.  Outcrop-scale brittle faulting is not apparent within the basement suite in the 

field area.    

 

 

Microstructures 

Microstructures associated with S2 foliation (Figure 5.12) consist primarily of the 

preferred orientation of porphyroclastic coarse-grained biotite ± muscovite ± hornblende 

and recrystallization of quartz to accommodate flattening perpendicular to foliation.   
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Clasts of titanite and epidote, mostly within biotite-rich zones, are commonly strung out 

parallel to S2 and help to define the foliation.  The compositional nature of S2 is a result 

of alternating compositionally distinct zones of biotite, hornblende, titanite and epidote 

with zones primarily consisting of quartz and feldspars formed during migmatization.  

Spaced micro-shear bands consisting of finely recrystallized biotite and quartz parallel 

the foliation, contribute to its compositional nature, and contain cataclasized titanite 

grains (Figure 5.13), locally.  Mylonitic textures were observed at one locality (location 

14) in a float boulder of biotite gneiss.  The mylonitic foliation (Figure 5.14) is defined by 

complete recrystallization of quartz into fine, irregularly shaped crystals exhibiting 

sutured grain boundaries and is deflected by feldspar porphyroclasts.  Rare quartz ribbons 

are present.  Quartz and feldspar behavior within mylonite zones require lower 

temperatures relative to peak metamorphic conditions in the region.  Thus, mylonitic 

foliation must have occurred later than S2.   

The incipient, non-penetrative nature of S3 results in more obscure 

microstructures.   Where present, S3 is manifested as a disjunctive, anastomosing axial 

planar foliation (Figure 5.15) that wraps feldspar porphyroclasts, is defined by the 

reorientation and neocrystallization of mica paralleling F3 fold axial planes, and is more 

clearly resolved in the hinges of folds rather than the limbs.  
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SECTION VI.  ANALYTICAL METHODS 

 

Whole Rock Geochemistry 

Whole rock X-ray fluorescence geochemistry was performed at the Kentucky 

Geological Survey on samples in order to determine major and trace element 

compositions for protolith identification.  Samples visually deemed to be representative 

of the outcrop from which they were collected were washed and weathered surfaces were 

removed using a rock saw.  Due to the mineral heterogeneity within a single sample of 

foliated and/or migmatitic gneiss, precautions were taken to ensure proper 

homogenization of each sample.  A mass of 2-5 kg of material for each sample was 

crushed into pea-sized fragments using a jaw crusher and then manually homogenized 

and split.  This portion was then pulverized into powder using a 3-puck shatterbox 

equipped with iron-alloy grinding pucks.  A second homogenization and splitting 

technique was employed on the powder before preparing the fused discs for analysis. 

 X-ray fluorescence (XRF) geochemistry was carried out on a 4-kW Bruker S4 

Pioneer wavelength dispersive XRF spectrometer at the Kentucky Geological Survey X-

ray analytical lab in Lexington, KY.  Fused glass discs were prepared by incorporating a 

2:1 ratio of Premier Lab Supply GF-9010 Fluxite® (90% Li2B4O7/ 10% LiF) and 

unknown sample powder in an automated fluxer equipped with a platinum crucible for 

heating.  The concentrations of 10 major and 18 trace elements in the unknown samples 

were measured by comparing the X-ray intensity for each element with the intensities of 

reference material standards obtained from: United States Geological Survey (DNC-1, 

BIR-1, W2a, BCR-2, BHVO-1, BHVO-2, AVG-2, G-2, STM-1, GSP-1), Irish Geological 
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Association (OU-3, OU-4,AMH-1, YG-1, KPT-1), Canadian Certified References 

Materials Project (MRG-1, SY-2, SY-3), South African Reference Materials (SARM 4, 

SARM 50), Centre de Recherches Pétrographiques et Géochimiques (BE-N), Chinese 

National Standards (GBW 07105).  Spectrum Plus®, the proprietary data reduction 

system software of Bruker, was used to calculate major and trace element compositions 

in the unknowns. 

 

 

Geochronology 

U-Pb zircon geochronology was carried out at the Keck Lab, UCLA on the 

Cameca 1270 ion microprobe (SIMS).  Zircons were separated from eight basement 

gneiss samples for U-Pb zircon geochronology.  Approximately 0.5 kg of rock was 

crushed for each sample into pea-sized fragments using a jaw crusher, and then semi-

pulverized for ~10-15 seconds using a 3-puck shatterbox to allow for particle size 

heterogeneity.  The samples were then ultrasonically washed and wet sieved using a 250 

µm mesh.  The mesh was changed between samples in order to avoid cross-

contamination.  Particles <250 µm were rinsed with water.  Materials with low specific 

gravity (clay minerals, phyllosilicates, organic material) were decanted.   

The remainder of the sample was dried in an oven and separated using bromoform 

(CHBr3; specific gravity 2.85 g/mL).  During this separation the sample was placed in a 

500 mL glass separatory funnel equipped with a teflon stopcock that was filled with ~400 

mL of bromoform.  The sample was stirred 5-6 times during the first hour of separation, 
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then left undisturbed for >8 hours.  The heavy portion was drained from the funnel, 

rinsed with acetone, and allowed to de-gas overnight in a fume hood.   

The sample was further refined using a Frantz Isodynamic Magnetic Separator.  

Each sample was run through the separator three times under progressively stronger 

magnetic fields to ensure adequate removal of ferromagnetic minerals.  Care was taken to 

prevent cross-contamination between samples.  The separator channel and collection 

containers were cleaned with water then isopropanol before each sample change.   

The final heavy liquid separation required the use of methylene iodide 

(diodomethane) (CH2I2; specific gravity 3.30 g/mL).  The sample was placed in a 13 mL 

plastic centrifuge tube with ~11 mL of methylene iodide.  The tube was capped and 

shaken for proper mixing and placed in a hand-cranked centrifuge for 4-5 minutes.  The 

bottom ¼ of the tube was immediately placed in a liquid nitrogen bath for ~10 sec in 

order to retain the heaviest (zircon) portion of the sample.  After the material with lower 

specific gravity was decanted, the remaining zircon separate was rinsed in acetone and 

dried under a heat lamp in a fume hood.   

Ten to thirteen zircon grains of varying sizes were selected from each of the 8 

samples for U-Pb geochronology.  Zircons and standards (AS3, 1099.1 +/- 0.5 Ma, Paces 

and Miller, 1993) were hand-picked and placed on 3M® 701DL double-sided tape for 

mounting.  An air-cured epoxy mount was produced by mixing 5 parts (by weight) 

Buehler® 20-8130 epoxide resin with 1 part (by weight) Buehler® 20-8132 epoxide 

hardener, pouring the mixture into a 1” ring surrounding the zircons, and allowing 6-8 

hours to cure.  The mount was polished using a standard silica polishing medium 

followed by a brief, final polish with 1µm diamond powder.  The sample was 
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ultrasonically cleaned in 1N HCl for 1 minute to reduce common Pb contamination, and 

then ultrasonically cleaned in deionized water for ~ 5 minutes.  

Individual grains were imaged by cathodoluminescence (CL) for internal zoning 

on a LEO 1430 VP Scanning Electron Microscope (SEM) equipped with a 4-quadrant 

backscattered electron detector (BSD) and an Oxford "mini-CL" cathodoluminescene 

detector at UCLA.  The mount was sputter-coated with ~100Å of Au.  The standard 

operating conditions used for analysis closely follow those outlined by Quidelleur et al. 

(1997).  The primary O- ion beam was focused to a spot with a diameter of ~15 µm.  The 

secondary ion beam yielded a mass resolving power of ~5000, an energy window of 50 

eV, and a 15 eV offset for 238U+.  The sample chamber was flooded with oxygen to 

enhance secondary ionization of Pb+.  Each grain analysis consists of 10 cycles of 

measurement of isotopic ratios.  

 Raw U-Th-Pb isotope data was reduced using Isoplot (Ludwig, 1999), which 

calculates elemental and isotopic concentrations, isotope ratios, apparent ages, 

uncertainties and error-correlations using the algorithms developed by Ludwig (1980).   
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SECTION VII.  GEOCHEMISTRY 

 Whole rock major and trace element X-Ray fluorescence (XRF) spectrometric 

analysis was carried out on fifty samples of biotite gneiss, hornblende gneiss, and 

amphibolite within and near the Dellwood quadrangle (Figure 7.1) to elucidate 

geochemical trends associated with protolith type and tectonic setting of the rocks in the 

area.  Detailed preparation procedures and operating conditions for analysis can be found 

in Section VI.  An additional data set (E. Anderson, unpublished data) for basement 

gneisses and amphibolites collected from similar lithologies in the area (Figure 7.2) was 

incorporated so that geochemical trends within the basement suite could be more clearly 

resolved.  Complete geochemical data can be found in Appendix B.   

 

Results 

Whole Rock Major Element Geochemistry 

 Collectively, all gneisses and some amphibolites define a calc-alkaline trend on 

the AFM diagram (Figure 7.3).  The majority of amphibolites fall in the tholeiitic field 

(Figure 7.3).  Harker variation diagrams of major element oxides vs. SiO2 (Figure 7.4) 

illustrate that all samples are increasingly enriched in alkalis and progressively depleted 

in calcium, iron, magnesium and manganese with increasing silica content.  A total alkali 

vs. silica (TAS) diagram (Le Maitre et al., 2002) (Figure 7.5) reveals that the biotite 

gneiss suite ranges in composition from andesite to rhyolite.  The major element 

geochemistry is consistent with, but does not prove, a magmatic origin. However, 

gneisses derived primarily from immature, first-cycle volcanic and plutonic sediments 

resulting from basement weathering would exhibit the same geochemical signature as the  
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basement.  The metaplutonic and intensely deformed hornblende orthogneisses and 

hornblende-bearing migmatites appear to be related, geochemically, though hornblende 

gneiss migmatites are a more mafic member of this suite possibly resulting from a loss of 

melt during peak temperature conditions.  These rocks, ranging in composition from 

basalt to rhyolite (Figure 7.5), define a calc-alkaline trend with varying degrees of 

fractionation (Figure 7.3).   

The hornblende gneisses and biotite gneisses exhibit slightly different 

geochemical trends.  Quartz-albite-anorthite plots (Figure 7.6), based on the CIPW norm 

calculation (see Appendix A) show that the metaplutonic and deformed hornblende 

orthogneisses define an arcuate trend toward the albite endmember with increasing 

weight percentage of quartz.  In contrast, the biotite gneisses define a linear trend with 

increasing weight percentage of quartz and are comprised of less albite-rich samples.  

Chemical alteration of feldspars (albitization) does not appear to be a factor as no 

petrographic evidence of such alteration was found in any of the hornblende gneisses.  

For biotite gneisses, total alkali weight percentages remain relatively constant with 

increasing silica; for hornblende gneisses, total alkali weight percentages increase in a 

linear fashion with increasing silica (Figure 7.5).  However, the difference in 

geochemical trends is overshadowed by the obvious overlap in normative quartz range 

between the two lithologies (Figure 7.6a), excluding the most quartz-rich sample of 

biotite gneiss.  

Amphibolites in the study area have a more distinct and restricted range of 

compositions than the other lithologies.  Most samples are tholeiitic basalts of varying 

composition.  However, two samples plotted as andesites in the TAS diagram (Figure  
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7.5).  In contrast to the other lithologies, amphibolites exhibit a distinct tholeiitic trend 

(Figure 7.3).   

 

 

Trace Element Geochemistry 

 Trace element compositions of orthogneisses, their deformed equivalents, and 

biotite gneisses overlap considerably (Figure 7.7).  In contrast, the amphibolite 

geochemical trend increases from left (more incompatible elements) to right (less 

incompatible elements) on a chondrite normalized spider diagram.  Amphibolites are 

extremely depleted in the large ion lithophile elements Rb and K compared to the other 

lithologies.  Hornblende-bearing migmatites are anomalous as their respective trace 

element concentrations appear to be intermediate between the two other suites.  All 

lithologies are extremely enriched in uranium and slightly enriched in zirconium, 

consistent with the zircon-rich nature of Grenvillian rocks (Moecher and Samson, 2006).   

 Additional plots separating the more felsic lithologies (biotite gneiss and 

orthogneisses) from the more mafic lithologies (Hbl-bearing migmatites and 

amphibolites) (see Figure 7.5) show similarities between the rock types more easily 

(Figure 7.8).  Mafic to intermediate rocks, normalized to chondrites, exhibit similar but 

not identical trends.   

A further geochemical test of protoliths presented in Figure 7.9 (Werner, 1987) 

suggests that both the hornblende gneisses and biotite gneisses have igneous protoliths, a 

finding that further substantiates an igneous origin for the biotite gneiss.  The use of this 

test is geologically significant for two reasons: (1) common clastic sedimentary rocks,  
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specifically shales and some sandstones, generally contain higher TiO2 amounts than 

common felsic igneous rocks (Force, 1991) and (2) a worldwide average of granite  

chemical compositions (Blatt and Tracy, 1997) shows that the ratio of P2O5/TiO2 is 

slightly higher than the ratio of MgO/CaO in granites.  Since the compatibility displayed 

by Ti during fractionation results in enrichment in mafic and ultramafic rocks relative to 

felsic igneous rocks, this diagram should only be used to discriminate felsic igneous 

protoliths from clastic sedimentary protoliths. 

 

82



SECTION VIII.  GEOCHRONOLOGY 

 Cores of prismatic zircons from four samples of metaplutonic orthogneiss, two 

samples of intensely deformed orthogneiss interpreted to be the equivalent of the 

metaplutonic orthogneiss, one sample of migmatitic hornblende gneiss, and one sample 

of biotite gneiss were analyzed to determine crystallization ages of igneous protoliths 

and/or the age of deposition of the protolith of biotite gneiss.  U-Pb zircon geochronology 

was carried out on a Cameca 1270 ion microprobe (SIMS) at the University of California 

at Los Angeles.  Detailed preparation procedures and operating conditions for analysis 

can be found in Section VI.  Data reduction was performed using Isoplot (Ludwig, 1999).  

All errors reported are 2σ.  Complete geochronological data can be found in Appendix C.   

 

 

Metaplutonic Orthogneiss 

 Zircon from metaplutonic orthogneiss samples has both oscillatory zoned and 

unzoned cores with Th/U values consistent with magmatic crystallization ( > 0.1; 

Rubatto, 2002) (Figure 8.1), and thin (< 20 µm) unzoned rims consistent with 

metamorphic growth (Anderson and Moecher, 2009; Hanchar and Miller, 1993) (see 

grain 5, Figure 8.2a).  All generations of zircon from each of the four samples reflect a 

single generation of zircon crystallization (MSWD ≤ 0.82).   

DEL08-7a 

 This sample was taken from the western margin of a body mapped as hornblende 

gneiss by Hadley and Goldsmith (1963) that becomes progressively deformed toward the 

east (see Figure 3.2, location 7).  The western margin of the body is much less deformed,  
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retains igneous textures, and is non-migmatitic (Figure 3.10c).  Additionally, zircons 

from this sample contain magmatic cores with relatively high Th/U values (Figure 8.1).  

Thus, zircon ages obtained from this sample are interpreted to reflect plutonic 

crystallization ages.   

In addition to magmatic oscillatory zoning, some zircons have cores containing 

complicated, patchy zoning patterns (Figure 8.2a, grains 1 and 11).  High angle 

truncations of oscillatory magmatic zonation are present (grains 2, 8, and 9).  Ages in this 

sample range from 1191 Ma to 1366 Ma, with a dominant age mode at ~ 1300 Ma.  The 

seven most tightly clustered ages, which also exhibit similar CL zoning patterns, were 

used to calculate a weighted mean age of 1292 ± 65 Ma (MSWD=0.101, 

probability=0.99) (Figure 8.2).   

DEL08-7j 

 This sample was taken from the same location as sample DEL08-7a.  Zircons 

from this sample contain magmatic cores with relatively high Th/U values (Figure 8.1).  

In addition to magmatic oscillatory zoning, some grains exhibit distinct anhedral cores 

bounded by thick oscillatory zones (Figure 8.3a, grains 8 and 13).  Patchy zoning patterns 

(grains 2 and 12) are present as well as truncated oscillatory zoning (grains 1 and 5).  

Ages in this sample range from 897 Ma to 1345 Ma, with modes at ~ 1100 Ma and 1300 

Ma (Figure 8.3 b and d).  Two separate clusters of ages were used to calculate weighted 

mean age modes at 1170 ± 110 Ma and 1287 ± 79 Ma (Figure 8.3).   
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DEL09-16b 

 This sample is taken from a large exposure of hornblende gneiss on the southeast 

flank of Purchase Knob.  Magmatic cores and Th/U values for zircons obtained from this 

sample are consistent with igneous petrogenesis (Figure 8.1).  Thus, zircon ages obtained 

from these rocks are interpreted to represent crystallization ages.  In addition to magmatic 

oscillatory zoning, some zircons exhibit patchy unzoned cores (Figure 8.4a, grains 2, 3, 4, 

8, and 12).  All zircons exhibit thick (15-30 µm) metamorphic rims.  Ages in this sample 

range from 978 Ma to 1181 Ma, with one dominant mode at ~1150 Ma.  The six most 

tightly clustered ages were pooled and yielded a weighted mean age of 1153 ± 74 Ma 

(MSWD=0.070, probability=0.99) (Figure 8.4).   

DEL09-17d 

This sample was taken from the same hornblende gneiss body as the previous 

sample, DEL09-16b.  Magmatic cores and Th/U values for zircons obtained from this 

sample are consistent with igneous petrogenesis (Figure 8.1).  Thus, zircon ages obtained 

from these rocks are interpreted to represent crystallization ages.  Although oscillatory 

zoning is present in some zircons in this sample, most exhibit bright unzoned anhedral 

cores.  Most striking is the consistency in size and shape of these zircons and how 

different the CL zoning patterns are from zircons of other samples (Figure 8.5a).  Ages in 

this sample range from 1004 Ma to 1324 Ma, with a dominant mode at ~1000 Ma.  The 

ten mostly tightly clustered ages were pooled and yielded a weighted mean age of 1040 ± 

100 Ma (MSWD=0.007, probability=1.0) (Figure 8.5). 
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Deformed Orthogneiss 

 Zircon from intensely deformed orthogneiss has both oscillatory zoned and 

unzoned cores with Th/U values consistent with magmatic crystallization and thin (< 20 

µm) unzoned rims consistent with metamorphic growth.  However, 25% (5 grains) of the 

zircons analyzed have Th/U values consistent with metamorphic growth.  At least three 

Grenville-age modes are present in the two samples.  Of the three modes, two are 

common to the samples.  

DEL08-6c 

 This sample was taken from a large hornblende gneiss body located on 

Countryside Dr. Knob (location 08-6, Figure 3.2).  In addition to oscillatory zonation, 

zircons from this sample exhibit patchy cores (Figure 8.6a, grains 3 and 4), embayments 

of metamorphic overgrowth within cores (bright CL pattern, grain 5), and truncated 

oscillatory zoning within cores (grains 1, 7, and 10).  Ages in this sample range from 

1042 Ma to 1313 Ma, with three dominant modes at ~1050 Ma, 1150 Ma, and 1300 Ma.  

Three separate age modes are proposed, based on weighted mean calculations and plots 

(Figure 8.7): 1052 ± 170 Ma (MSWD=0.021, probability=0.89), 1163 ± 72 Ma 

(MSWD=0.005, probability=0.99), and 1292 ± 59 Ma (MSWD=0.40, probability=0.81).   

DEL09-19a 

 This sample of hornblende gneiss (Figure 3.11f, inset) was located at the end of 

Erwin Lane (location 19, Figure 3.2).  Oscillatory zoning is generally absent in these 

zircons with the exception of grain 12.  Patchy zoning (Figure 8.8a, grain 5) and anhedral 

cores (grains 2 and 3) are present.  Ages in this sample range from 463 Ma to 1166 Ma, 

with two modes at ~1030 Ma and 1150 Ma.  Two separate age modes are proposed,  
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based on CL zoning, weighted mean calculations, and plots (Figure 8.9): 1030 ± 56 Ma 

(MSWD=0.083, probability=0.77) and 1155 ± 54 Ma (MSWD=0.034, probability=0.99).  

These modes may correlate with the two youngest modes from sample DEL08-6c.  One 

metamorphic zircon yielded an Ordovician age (463 ± 27 Ma) consistent with Taconian 

regional metamorphism (Anderson and Moecher, 2009).  

 

 

Migmatitic Hornblende Gneiss 

DEL08-10a 

All zircons from the migmatitic hornblende gneiss sample exhibit zoned and 

unzoned cores with Th/U values consistent with magmatic crystallization and thin (< 20 

µm) unzoned rims consistent with metamorphic growth.  Although oscillatory zoning is 

present, most zircons in this sample exhibit unzoned or thick zones of diffuse 

(oscillatory?) zoning within cores (Figure 8.10a, grains 2, 3, 6, 9, and 10).  Bright  

embayments appear to crosscut magmatic zoning in some zircons and are included within 

unzoned cores in other grains (Figure 8.10a; grains 5, 6, 9).  Ages in this sample range 

from 1059 Ma to 1321 Ma, with modes at ~1050 Ma and 1270 Ma.  Nine zircons from a 

sample of migmatitic hornblende gneiss collected along Boyd Farm Rd. (location 10, 

Figure 3.2) yielded a weighted mean age of 1125 ± 83 Ma (MSWD=2.2, 

probability=0.03) (Figure 8.10).  The high MSWD value and low probability suggests 

this group of zircons did not originate from the same age population.  Therefore, this age 

is not considered to be geologically significant.  Two separate age modes are proposed, 

based on weighted mean calculations and plots (Figure 8.11): 1059 ± 58 Ma  
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(MSWD=0.004, probability=0.99) and 1277 ± 88 Ma (MSWD=0.19, probability=0.97).  

The older mode is consistent with prior age dating (1230 ± 20 Ma) of the same body at 

location 5 (E. Anderson, unpublished data).   

 

 

Biotite Gneiss 

DEL08-2d 

Zircons from a sample of the least migmatitic biotite gneiss (Figure 5.2b) 

collected within the Trinity Cove housing development (location 2, Figure 3.2) exhibit 

mostly unzoned cores with Th/U values consistent with magmatic crystallization and 

very thin (< 10 µm) unzoned rims consistent with metamorphic growth.  Additionally, 

elongate prismatic crystal morphology in some zircons of this sample is consistent with a 

magmatic origin (Figure 8.12a, grains 3, 8, 12, 10, 13, and 14).  Patchy zonation is 

present (grains 2, 6, and 12).  Truncation of magmatic cores is not recognized in these 

zircons.  Ages range from 932 Ma to 1205 Ma, with a dominant mode at ~1050 Ma.  Ten 

zircons yielded a weighted mean age of 1055 ± 65 Ma (MSWD=0.31, probability=0.99) 

(Figure 8.12).   
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SECTION IX.  DISCUSSION AND CONCLUSIONS 

Textural and mineralogical similarities exist between the metaplutonic 

orthogneisses and their deformed equivalents that suggest these rocks are related via 

progressive deformation.  The presence of clinopyroxene, garnet, and hornblende + 

quartz symplectites after clinopyroxene in orthogneiss and amphibolite, along with 

Taconian migmatization (Anderson and Moecher, 2009), suggest these rocks reached 

upper amphibolite facies regional metamorphism during the Taconian Orogeny.  The 

prevalent compositional banding related to S2 is a result of migmatization under these 

conditions.  Dynamic recrystallization of quartz, brittle behavior of feldspar and titanite, 

and retrogression of garnet and clinopyroxene suggests these rocks were overprinted by 

one or more lower temperature (400-500 °C) tectonometamorphic events characterized 

by dynamic recrystallization of quartz, fracture of feldspar and titanite, and 

recrystallization of biotite.  The abundance of biotite and epidote in highly deformed 

orthogneisses, disparate sets of inclusion trails in garnet, and mylonitization fabrics in 

migmatitic hornblende gneiss substantiate a late retrograde event.  Structurally, strain is 

accommodated during this event by dynamic recrystallization of quartz in fold limbs and 

slip along mica-rich zones within fold hinges, taking advantage of differences in physical 

properties between the alternating compositional bands.  The S3 axial planar foliation and 

related incipient axial planar crenulation is a result of this late-stage deformation event.  

These observations are consistent with those of previous workers in the area (Massey, 

2003; Massey and Moecher, 2005). 

Field relationships, textural observations, and geochemical data suggest that the 

hornblende gneiss bodies are igneous in origin and are related by being progressively 
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deformed variants of granitic metaplutonic rocks.  The nature of the biotite gneiss is more 

ambiguous.  The calc-alkaline trend observed in this suite supports an igneous origin.  

However, due to a lack of preserved igneous texture and intensive migmatization of these 

rocks, the geochemistry does not preclude a source as immature clastic detritus derived 

directly from basement.  The virtually identical trace element geochemical trends of the 

hornblende gneisses and biotite gneisses and the overlap in major element trends indicate 

a common igneous source.   

Ryan et al. (2005) carried out whole rock geochemical analyses on amphibolites 

and hornblende migmatites in the Sylva North quadrangle immediately to the southwest 

of Dellwood quadrangle that are correlative to both the basement rocks in this study and 

the eastern Blue Ridge migmatitic gneiss of Massey (2003).  These rocks plot along a 

distinctly calc-alkaline trajectory and have bulk chemical and trace element signatures 

consistent with igneous rocks of intermediate composition.   

Field relationships, textural observations, and the distinctive tholeiitic trend of the 

amphibolite suite indicate that most amphibolites represent ancient fragments of oceanic 

crust that became disaggregated within a subduction setting.  Two scenarios can explain 

their presence in this area: (1) amphibolites may represent fragments of uppermost 

oceanic crust that were scraped off the subducting slab and were caught up in the 

accretionary wedge or (2) they represent xenoliths of oceanic crust incorporated into arc-

related magmatism.  Biotite gneiss geochronology, geochemistry, and field relationships 

(mafic enclaves present within the biotite gneiss at a variety of scales and over a wide 

area) suggest the latter explanation.  A small number of amphibolites are calc-alkaline 

basalts and may be related to the hornblende gneisses.    
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The preserved igneous texture in the metaplutonic hornblende orthogneisses 

suggests these bodies were more competent than the enveloping biotite gneisses.  Thus, 

the interiors of these bodies were somewhat shielded from the deformation associated 

with both the peak thermal event (Taconian) and the late-stage, lower temperature event.  

As such, these rocks are useful for obtaining U-Pb zircon crystallization ages, as the 

absence of migmatization ensures that zircons in these rocks are magmatic, rather than 

metamorphic (Moecher and Samson, 2006; Moecher et al., 2004; Oliver et al., 1999).  

This, however, does not preclude the presence of metamorphic overgrowths on magmatic 

zircons nucleated under upper amphibolite to granulite facies conditions.  Even so, the 

cores of magmatic zircons with metamorphic overgrowths are likely to preserve 

magmatic U and Pb concentrations (Moecher and Samson, 2006), due to the high closure 

temperature of zircon (~900 °C) (Cherniak and Watson, 2001).   

Three dominant age modes are resolved in the four lithologies in this study: 1030 

– 1055 Ma, 1153 – 1170 Ma, and 1287 – 1292 Ma.  Pooled together, the four 

metaplutonic orthogneiss samples contain representatives of all three modes.  One of the 

deformed orthogneisses (DEL08-6c) exhibits all three age modes.  The oldest age mode 

is absent in the other deformed orthogneiss (DEL09-19a).  The intermediate age mode is 

absent in the migmatitic hornblende gneiss sample.  The biotite gneiss sample has only 

the youngest age mode.   

Of the three modes listed above, the two youngest modes correspond to the 

widely observed dominant Grenville age modes of ~1050 Ma and ~1150 – 1190 Ma 

(Berquist et al., 2005; Carrigan et al., 2003; Easton, 1992; McLelland et al., 1996; 

McLelland et al., 2004; Ratcliffe et al., 1991; Walsh et al., 2004).  The oldest age mode, 
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observed in metaplutonic orthogneiss (DEL08-7a and DEL08-7j), deformed orthogneiss 

(DEL08-6c) and migmatitic hornblende gneiss (DEL08-10a), has not previously been 

recognized in southern Appalachian Blue Ridge basement rocks.  Tollo et al. (2006) 

reported three separate magmatic intervals consistent with the age modes in this study in 

charnockites, leucogranites, and granitoid rocks in the northern Virginia Blue Ridge.  

Southworth et al. (2005) concluded that the ages of the Mesoproterozoic basement rocks 

in the Great Smoky Mountain National Park area comprise three age groups consistent 

with age modes in this study (1192 – 1194 Ma, 1117 – 1168 Ma, 1029 – 1056 Ma).  

Neither of these studies recognized the earliest age mode discovered in the present study 

(1287 – 1292 Ma).   

Similar ages (~1250 – 1300 Ma) are reported in calc-alkaline AMCG granitoids 

of the Adirondacks (McLelland et al., 2004), the Green Mountains of Vermont (Ratcliffe 

et al., 1991), in western Connecticut (Walsh et al., 2004), and within the western Central 

Metasedimentary Belt of the Canadian Grenville province (Easton, 1992).  All of these 

calc-alkaline orthogneisses are interpreted as arc-related crustal additions emplaced 

during the (Elzeverian?) interval ca. 1400 – 1220 Ma (McLelland et al., 2004).    

  In this study, all lithologies exhibiting the oldest age mode contain zircons with 

internally zoned cores that are separated from their rims by geometrically irregular 

surfaces which truncate internal zoning (DEL08-7a, grains 2, 5, 8, 9; DEL08-7j, grains 1, 

8, 9; DEL08-6c, grains 1, 7; DEL08-10a, grains 9, 10) or distinct, euhedrally-shaped 

cores separated from the rim by later magmatic zoning (DEL08-10a, grain 2; DEL08-7a, 

grains 5 and 6) consistent with xenocrystic zircons (Corfu et al., 2003).  Thus, the oldest 
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age mode observed in this study may be related to the Grenvillian magmatism 

(Elzeverian) in the northern Appalachians.   

Three geochronological observations suggest that the protolith of the biotite 

gneiss sample (DEL08-2d) is igneous.  (1) The prismatic-shaped zircons are consistent 

with magmatic zircon growth, (2) the sample contains only one dominant Grenville age 

mode (1055 Ma), and (3) no zircons of Neoproterozoic age were found in the sample.  If 

this sample were a highly deformed and metamorphosed Neoproterozoic clastic rock 

derived from weathering and erosion of Grenville basement rocks, it should contain all 

Grenville age modes.  Chakraborty et al. (2010) showed that Neoproterozoic (Ocoee) 

sediment derived from Grenville basement has, in addition to all Grenville age modes, 

Neoproterozoic-aged (620 – 800 Ma) zircons derived from Neoproterozoic rift-related 

magmatic rocks (Aleinikoff et al., 1995; Tollo and Hutson, 1996).  The Ashe suite 

metaclastic rocks have a similar zircon distribution as the Ocoee metaclastic rocks 

(dominantly Grenville modes with a few Neoproterozoic ages; Moecher et al., in review).  

Thus, the definitive test for the origin of the biotite gneiss protolith would be to analyze 

≥100 zircon grains separated from the biotite gneiss to determine if Neoproterozoic 

grains are present.   

Modal data and XRF major and trace element geochemistry show that 

metaplutonic rocks, hornblende gneisses, and biotite gneisses are related and therefore 

may have a common source.  U-Pb zircon geochronology suggests metaplutonic 

orthogneisses, their deformed equivalents, migmatitic hornblende gneisses, and biotite 

gneisses are all derived from Grenvillian magmatism.  Petrographic observations 

(widespread replacement of hornblende by biotite) suggest that the biotite gneiss may 
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simply be retrograded hornblende gneiss.  The presence of gradational contacts between 

hornblende gneiss bodies and the enveloping biotite gneiss is consistent with this 

interpretation.  Field relationships, textural observations, geochemical trends, and 

geochronological data suggest that the protoliths of the hornblende gneisses are 

Grenville-age granitic plutons and are related by progressive deformation.  Major and 

trace element geochemistry, geochronology (along with the presence of magmatic 

zircons), and field relationships suggest an alternative (igneous) origin for the biotite 

gneiss.  Evidence presented in this study suggests that there is a larger exposure of 

Grenville basement in this region than previously thought.  A previously unknown age 

mode for Mesoproterozoic plutonism in the southern Appalachian Blue Ridge was 

discovered in this study (~1250-1300 Ma). 

 

 

Future Work 

Future work in the area should include a detrital zircon study of the Great Smoky 

Group schists and Longarm/Wading Branch formations exposed in the Dellwood 

quadrangle to compare with the geochronology of the biotite gneiss.  Absent 

Neoproterozoic ages in the biotite gneiss would confirm an igneous origin for these 

rocks.  U-Pb zircon geochronology should be carried out on some large amphibolite 

bodies within the quad to provide constraints on their emplacement.  A Sm-Nd isotopic 

analysis for obtaining depleted mantle model ages of the basement rocks would be useful 

for determining if these rocks are derived from juvenile crust or reworked older crust.  

207Pb/204Pb isotopic analysis of the basement rocks would be useful to test the hypothesis 
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that these rocks are of Laurentian affinity.  Elevated ratios may suggest a pre-Grenvillian 

(Gondwanan?) crustal heritage.   
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SECTION X.  APPENDICES 

 

108



APPENDIX A 

Structural Data 

The following is a compilation of structural data taken from field locations in Dellwood 

quadrangle.  Location numbers correspond to locations given in Figure 3.2.   
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Location Foliation Orientation Fold Axis Orientation 

  
strike (azimuth) / dip (°), dip 

direction plunge (°) / trend (azimuth) 

2 092/52 SW 44/226 
  081/65 SE 54/223 
  058/50 SE 60/226 
  090/80 S 76/206 
  059/54 SE 26/074 
  076/52 SE 32/097 
  064/52 SE   
  072/52 SE   
  142/52 NE   
  155/50 NE   
  072/77 SE   
  066/50 SE   
  134/33 NE   
      

10 144/60 SW No data 
  164/52 SW   
  144/63 SW   
  170/36 SW   
      

08-6 122/78 SW 4/120 
  130/52 SW 11/120 
  152/72 SW 10/130 
  053/40 SE 10/090 
  042/36 SE 0/100 
  110/64 SW 21/130 
  122/78 SW   
  095/25 SW   
  120/76 SW   
  090/36 S   
  130/80 SW   
  084/48 SE   
  112/24 SW   
  094/34 SW   
  052/32SE   
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Location Foliation Orientation Fold Axis Orientation 

  
strike (azimuth) / dip (°), dip 

direction plunge (°) / trend (azimuth) 

11 027/48 SE 55/130 
  060/44 SE 61/097 
  047/55 SE 52/114 
  057/53 SE 70/118 
  044/50 SE 42/102 
  078/56 SE 36/114 
  082/52 SE 52/140 
  070/55 SE 27/122 
  065/38 SE   
  046/40 SE   
  040/40 SE   
  043/44 SE   
  060/52 SE   
  048/48 SE   
  044/58 SE   
  048/50 SE   
      

12 No data 28/068 
   26/076 
   32/052 
   20/068 
   20/064 
   22/066 
      

09-6 051/27 SE 43/143 
  036/21 SE 28/127 
  051/18 SE 17/125 
  031/19 SE   
  032/29 SE   
  022/21 SE   
  082/24 SE   
      

6A 047/39 SE 38/250 
  067/15 SE 17/115 
  150/33 NE   
  010/18 SE   
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Location Foliation Orientation Fold Axis Orientation 

  
strike (azimuth) / dip (°), dip 

direction 
plunge (°) / trend (azimuth) 

13 001/76 NW 16/205 
  015/44 NW 1/239 
  175/60 SW 28/354 
  018/43 NW   
  160/21 SW   
      

15 052/66 SE 66/120 
  070/69 SE 55/147 
  088/38 SE 4/304 
  112/40 SW   
  095/34 SW   
  121/83 SW   
  119/47 SW   
      

16 084/86 NW No data 
  068/65 NW   
      

17 050/55 NW No data 
      

18 007/48 NW 30/345 
  175/64 SW 37/103 
      

19 110/20 SW No data 
      

21 020/77 SE No data 
      

23 10838 SW No data 
  122/22 SW   
  121/42 SW   
      

25 127/39 NE No data 
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APPENDIX B 

XRF Spectrometric Analysis 

The following whole rock major element oxide and trace element geochemistry for 

basement samples was performed at the Kentucky Geological Survey, Lexington, KY.  

Major element oxide concentrations are given in weight percents.  Trace element 

concentrations are given in ppm.  The standard error for major element oxides is 1-2%, 

for minor element oxides is < 5%, and for trace elements is 5-10%.  Error values were 

calculated at 95% confidence level.  Sample numbers with asterisks were obtained from 

E. Anderson (unpublished data).  Quadrangle codes are as follows: a = Cove Creek Gap, 

b = Clingmans Dome, c = Smokemont, d = Bunches Bald, e = Dellwood, f = Clyde, g = 

Sylva North, h = Fines Creek, i = Hazelwood, j = Lemons Gap.  Lithology codes are as 

follows: 1 = metaplutonic orthogneiss, 2 = deformed orthogneiss, 3 = migmatitic 

hornblende gneiss, 4 = amphibolite, 5 = biotite gneiss, 6 = pegmatite dike.   
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SAMPLE DEL08-
2d 

DEL08-
10A 

DEL08-
11B 

DEL08-
7H 

DEL09-
6A 

DEL09-
15A 

DEL08-
7A 

DEL09-
18A 

CG09-
1-1A 

DEL09-
19B 

SN09-
1 

DEL08-
7D 

Quadrangle e e e e e e e e f e g e 
Lithology 5 3 5 1 2 5 1 3 4 2 5 1 
SiO2 66.78 59.09 66.3 46.63 62.18 77.94 64.51 61.11 58.66 78.97 68.19 58.81 
TiO2 0.78 0.72 0.53 1.63 0.77 0.61 0.38 0.83 1.35 0.34 0.86 0.94 
Al2O3 13.56 15.94 14.28 12.2 13.43 9.84 15.74 14.99 13.61 8.31 13.29 14.44 
MnO 0.08 0.1 0.04 0.22 0.1 0.06 0.04 0.1 0.16 0.04 0.08 0.11 
FeO 4.71 5.63 3.11 8.91 6.14 3.21 3.26 6.01 8.16 1.93 5.02 6.98 
MgO 1.57 2.8 1.09 9.44 3.09 0.88 1.2 3.1 4.33 0.53 1.78 3.6 
CaO 1.79 5.52 2.72 12.24 3.15 0.36 3.67 5.53 6.22 0.85 2.47 5.29 
Na2O 2.08 3.67 3.18 1.67 2.58 0.41 3.7 3.51 2.54 1.02 2.58 2.97 
K2O 4.19 2.2 4.21 0.88 3.07 2.38 2.91 1.78 1.11 3.31 2.64 2.1 
P2O5 0.17 0.31 0.23 0.43 0.2 0.14 0.25 0.25 0.21 0.12 0.23 0.32 
LOI 3.77 3.4 3.96 4.76 4.6 3.82 4 2.12 2.72 4.38 2.31 3.67 
TOTAL 99.48 99.38 99.66 99.01 99.31 99.66 99.66 99.33 99.08 99.8 99.46 99.24 

                          

%AN 30.62 39.79 30.83 62.14 39.61 20.07 34.61 40.11 51.10 28.46 33.00 44.15 
Q 33.47 14.03 25.96 0.00 23.76 67.43 23.53 18.00 19.91 60.77 35.77 16.86 
or 25.81 13.51 25.95 5.50 19.11 14.64 17.94 10.80 6.79 20.46 16.02 12.95 
ab 18.35 32.28 28.06 14.94 23.00 3.61 32.67 30.48 22.24 9.03 22.42 26.23 
an 8.10 21.33 12.51 24.53 15.08 0.91 17.29 20.41 23.24 3.59 11.04 20.74 
ne 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C 2.87 0.00 0.10 0.00 0.65 6.53 0.45 0.00 0.00 1.87 2.31 0.00 
di 0.00 4.08 0.00 29.29 0.00 0.00 0.00 4.92 5.91 0.00 0.00 3.64 
hy 6.01 9.25 2.83 14.18 12.91 2.28 3.93 9.72 14.49 1.38 6.71 13.24 
ol 0.00 0.00 0.00 2.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
mt 3.45 3.35 2.85 4.80 3.47 2.76 2.84 3.47 4.28 0.03 3.51 3.69 
il 1.54 1.42 1.05 3.27 1.54 1.21 0.75 1.62 2.65 0.68 1.68 1.86 
hem 0.00 0.00 0.15 0.00 0.00 0.29 0.00 0.00 0.00 1.90 0.00 0.00 
ap 0.41 0.75 0.56 1.05 0.49 0.34 0.60 0.59 0.50 0.29 0.55 0.77 
ru 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

                          

Pb   29 13 24 7 11 23 19 13 5 21 22 12 
Cu    10 9 10 0 20 11 13 67 20 6 9 41 
Co   13 18 6 38 18 6 11 26 33 5 12 32 
Ni     29 35 18 118 95 27 19 68 55 18 32 48 
Cr    95 103 96 938 240 215 87 174 238 129 165 222 
Ce    104 82 100 95 66 90 77 81 48 80 81 109 
V      73 112 53 239 116 52 59 111 184 30 85 138 
La    66 40 44 35 20 47 40 54 17 8 33 41 
Ba   1018 1218 1499 176 869 937 1989 639 170 1129 692 1025 
Nb    22 11 11 17 15 18 10 12 14 16 19 20 
Zr     340 219 289 170 251 401 259 203 230 268 359 223 
Y      63 32 33 25 34 55 20 27 40 33 58 48 
Sr    247 745 449 321 367 60 907 657 173 256 236 615 
Rb   127 63 101 11 126 82 76 60 34 66 98 52 
U      18 18 18 18 18 18 18 18 18 18 18 18 
Th     21 17 17 17 19 20 17 17 17 17 17 17 
Ga   22 26 26 19 24 21 28 20 18 15 20 20 
Zn    83 74 46 112 88 101 42 76 68 20 87 89 
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SAMPLE DEL08-
7E 

DEL08-
6C dm 

DEL09-
17B 

DEL09-
6A-1 

DEL09-
25A 

DEL08-
7J 

DEL09-
14A 

DEL09-
16B 

DEL09-
17D 

DEL09-
16A 

DEL09-
26A 

DEL09-
6F 

Quadrangle e e e e e e e e e e e e 
Lithology 1 2 1 2 2 1 5 1 1 1 4 3 
SiO2 51.31 66.46 68.62 54 62.58 66.32 77.45 56.2 72.83 51.12 46.24 60.85 
TiO2 1.3 0.33 0.36 1.2 1.01 0.5 0.48 1.11 0.23 2.16 1.68 0.88 
Al2O3 16.43 14.9 14.43 17.29 15.49 15.83 8.13 15.7 12.83 15.9 14.07 14.26 
MnO 0.18 0.04 0.05 0.12 0.04 0.04 0.03 0.1 0.02 0.13 0.22 0.16 
FeO 8.76 2.66 2.64 7.7 4.64 3.1 1.93 7.61 1.47 8.6 11.52 6.57 
MgO 4.67 1 0.65 3.03 1.96 1.54 0.49 3.74 0.4 4.57 7.32 3.44 
CaO 7.17 3.06 1.56 5.72 3.82 3.68 0.12 5.19 1.61 6.07 11.57 5.15 
Na2O 3.94 3.48 1.78 3.94 3.28 4.43 0.27 2.36 2.54 2.44 1.81 2.96 
K2O 1.28 3.48 4.95 2.41 2.53 1.63 4.18 3.63 4.81 3.65 0.79 2.42 
P2O5 0.49 3.48 0.17 0.41 0.38 0.26 0.07 0.47 0.03 0.79 0.15 0.26 
LOI 3.49 3.48 4.5 3.33 3.76 2.31 6.63 3.07 3.06 3.61 3.34 2.32 
TOTAL 99.02 3.48 99.7 99.15 99.49 99.63 99.78 99.18 99.83 99.04 98.71 99.27 

                          

%AN 41.20 31.70 30.56 40.16 37.24 30.64 5.70 51.87 26.61 51.19 64.59 42.45 
Q 1.21 24.98 37.21 4.55 24.45 25.50 63.31 11.20 36.82 4.73 0.00 18.34 
or 7.90 23.67 30.67 14.82 15.58 9.88 26.46 22.26 29.33 22.52 4.88 14.72 
ab 34.80 30.63 15.79 34.70 28.92 38.44 2.45 20.72 22.17 21.55 16.01 25.77 
an 24.39 14.21 6.95 23.29 17.16 16.98 0.15 22.34 8.04 22.60 29.19 19.01 
ne 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C 0.00 0.00 3.89 0.00 1.38 0.73 3.33 0.00 0.61 0.00 0.00 0.00 
di 7.66 0.28 0.00 2.84 0.00 0.00 0.00 0.97 0.00 2.75 24.23 4.50 
hy 16.06 2.46 1.70 12.38 5.82 3.93 1.31 15.27 1.03 14.11 13.26 11.78 
ol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.93 0.00 
mt 4.24 2.54 2.34 4.07 3.79 2.95 0.00 3.93 0.00 5.54 4.82 3.55 
il 2.58 0.65 0.72 2.37 2.00 0.97 0.40 2.19 0.04 4.28 3.33 1.72 
hem 0.00 0.15 0.33 0.00 0.00 0.02 2.12 0.00 1.69 0.00 0.00 0.00 
ap 1.18 0.43 0.41 0.99 0.92 0.62 0.17 1.13 0.07 1.91 0.36 0.62 
ru 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.21 0.00 0.00 0.00 

                          

Pb   14 23 28 10 24 23 36 6 29 8 10 15 
Cu    26 13 5 7 15 20 20 19 10 6 22 24 
Co   31 7 5 24 15 17 2 30 2 43 45 23 
Ni     50 16 14 25 30 36 19 49 18 62 44 51 
Cr    97 61 114 47 108 129 186 226 171 85 327 220 
Ce    133 58 29 84 100 46 24 105 38 177 15 46 
V      186 52 48 151 92 67 34 152 24 184 307 140 
La    56 25 18 38 44 23 6 39 19 78 0 11 
Ba   587 2043 2212 452 1014 1085 1134 1650 1456 1460 123 802 
Nb    27 10 10 32 22 10 12 19 10 25 10 19 
Zr     229 227 200 235 309 252 301 278 236 476 100 277 
Y      43 30 32 56 26 20 36 54 20 44 26 41 
Sr    724 738 329 398 512 886 109 627 313 687 118 462 
Rb   26 81 121 112 87 58 112 102 90 107 11 78 
U      18 18 18 18 18 18 18 18 18 18 18 18 
Th     17 17 17 17 17 17 17 17 17 17 17 24 
Ga   22 19 19 24 21 20 14 20 17 21 16 20 
Zn    101 38 41 99 90 41 33 81 22 116 114 87 
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SAMPLE DEL09-
19A 

DEL08-
12A 

DEL08-
6C 

DEL09-
20 

DEL08-
7dmaf 

DEL08-
5 

DEL09-
13a 

SN09-
2a 

DEL08-
7dfel 

DEL08-
7c-2 

DEL08-
7c-
3maf 

DEL08-
7c-1f 

Quadrangle e e e e e e e g e e e e 
Lithology 2 5 2 1 4 3 5 1 1 1 4 1 
SiO2 71.99 60.39 62.23 60.6 47.75 61.57 63.4 54.84 66.91 56.72 49.97 64.52 
TiO2 0.32 0.72 0.52 1.23 1.94 0.71 0.72 1.01 0.28 0.91 1.47 0.46 
Al2O3 12.82 15.53 14.68 13.66 13.85 14.23 14.87 14.24 15.29 15.65 13.75 15.56 
MnO 0.03 0.1 0.06 0.13 0.21 0.12 0.06 0.13 0.04 0.12 0.2 0.07 
FeO 1.97 5.99 3.67 7.42 12.71 6.04 4.47 7.91 2.06 6.64 10.94 4.02 
MgO 0.58 3.05 1.27 4.39 6.98 3.06 2.04 5.41 0.98 4.28 6.84 1.98 
CaO 1.61 5.18 4.07 6.78 7.33 5.35 3.44 7.88 3.64 6.2 8.25 5.17 
Na2O 2.47 3.48 3.6 1.93 1.56 3.15 2.86 2.8 3.71 3.54 2.25 3.99 
K2O 5.1 2.35 3.3 0.94 2.86 1.85 3.23 0.96 2.76 1.69 1.59 1.2 
P2O5 0.12 0.3 0.24 0.16 0.45 0.21 0.33 0.17 0.19 0.24 0.17 0.24 
LOI 2.78 2.23 5.94 1.92 2.95 3.05 4.07 3.77 3.92 3.27 3.34 2.34 
TOTAL 99.79 99.32 99.59 99.16 98.59 99.34 99.5 99.12 99.78 99.26 98.77 99.55 

                          

%AN 25.63 40.22 31.72 61.27 62.86 41.90 38.12 49.74 34.88 42.14 54.41 38.35 
Q 35.12 15.58 20.51 24.93 0.00 20.62 25.28 10.90 27.12 10.41 2.33 23.79 
or 31.01 14.27 20.78 5.70 17.61 11.33 19.96 5.93 16.98 10.38 9.82 7.28 
ab 21.51 30.26 32.46 16.75 13.75 27.62 25.30 24.78 32.69 31.13 19.89 34.66 
an 7.41 20.36 15.08 26.49 23.28 19.92 15.59 24.53 17.51 22.68 23.74 21.56 
ne 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C 0.61 0.00 0.00 0.00 0.00 0.00 1.26 0.00 0.04 0.00 0.00 0.00 
di 0.00 3.28 3.81 5.60 9.44 5.02 0.00 12.31 0.00 6.19 14.56 2.54 
hy 1.49 10.83 2.60 13.71 25.29 10.29 7.02 15.32 2.54 13.22 21.85 5.79 
ol 0.00 0.00 0.00 0.00 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
mt 0.25 3.31 3.12 4.06 5.20 3.32 3.37 3.81 0.83 3.63 4.50 2.92 
il 0.63 1.41 1.05 2.40 3.84 1.40 1.43 2.01 0.55 1.80 2.92 0.90 
hem 1.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.28 0.00 0.00 0.00 
ap 0.29 0.71 0.59 0.38 1.09 0.50 0.80 0.41 0.46 0.58 0.41 0.57 
ru 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

                          

Pb   25 14 25 8 8 10 19 15 26 13 8 19 
Cu    7 30 6 29 41 2 5 17 43 24 32 78 
Co   5 26 12 31 45 25 14 37 9 19 36 15 
Ni     13 47 24 66 59 47 38 100 31 44 56 37 
Cr    90 245 124 260 443 175 78 255 107 133 167 116 
Ce    106 76 73 106 377 106 200 72 92 116 145 75 
V      32 116 80 170 233 120 72 151 35 126 262 65 
La    19 31 41 5 74 20 59 11 30 24 19 20 
Ba   1550 968 1491 211 724 875 981 186 2064 712 377 564 
Nb    10 10 16 15 37 10 13 13 10 15 18 10 
Zr     291 205 229 213 206 160 285 120 244 175 110 144 
Y      30 30 30 39 72 28 37 30 25 28 34 14 
Sr    425 612 717 145 339 556 421 216 817 582 381 662 
Rb   111 63 52 26 53 74 111 24 65 42 30 23 
U      18 18 18 18 18 18 18 18 18 18 18 18 
Th     88 17 17 17 17 17 17 17 17 17 17 17 
Ga   18 20 20 19 20 21 21 20 21 20 20 22 
Zn    20 71 43 71 153 63 72 86 28 72 106 42 
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SAMPLE DEL09-
22a 

DEL08-
7c-3fel 

CLY09-
2a 

DEL08-
7k 

DEL09-
24a 

DEL08-
7f 

CLY09-
1 

DEL08-
1 

DEL08-
11c 

DEL08-
11g 

DEL08-
1m 

DEL08-
3c 

Quadrangle e e f e e e f e e e e e 
Lithology 5 1 4 1 2 1 6 3 5 2 3 3 
SiO2 56.16 58.03 47.91 60.4 56.32 51.63 72.31 45.46 52.51 61.9 47.59 59.03 
TiO2 0.91 0.79 3.04 0.75 2.38 1.18 0.15 4.34 1.01 0.96 1.96 1.02 
Al2O3 22.25 16.27 14.66 16.62 14.88 15.9 14.4 14.37 14.32 13.96 13.83 15.73 
MnO 0.17 0.11 0.19 0.1 0.18 0.18 0.01 0.18 0.2 0.13 0.23 0.1 
FeO 7.27 5.81 13.57 5.3 8.36 8.86 0.97 14.15 8.76 6.89 13.02 5.81 
MgO 2.29 3.77 4.32 2.44 2.99 5.51 0.39 4.9 7.21 2.89 6.34 2.04 
CaO 1.39 5.72 9.19 4.97 6.59 7.78 2.42 7.83 6.68 4.61 10.27 8.06 
Na2O 2.08 3.88 2.1 4.09 1.37 3.24 4.91 2.87 2.67 2.73 2.42 2.75 
K2O 3.22 1.72 0.46 1.79 0.34 1.38 1.03 0.62 2.77 2.7 0.28 1.24 
P2O5 0.21 0.24 0.56 0.36 1.13 0.35 0.05 0.44 0.21 0.27 0.2 0.38 
LOI 3.24 3.02 2.48 2.58 4.52 3.02 3.27 3.26 2.68 2.21 2.42 3.18 
TOTAL 99.19 99.35 98.49 99.4 99.06 99.03 99.91 98.42 99.02 99.24 98.57 99.35 

                          

%AN 23.89 40.01 62.18 38.54 68.59 47.46 21.94 50.22 45.56 43.61 55.98 53.63 
Q 24.04 11.36 8.33 15.67 32.33 2.54 35.33 4.07 0.81 21.17 0.98 20.75 
or 19.78 10.53 2.82 10.90 2.12 8.47 6.29 3.83 16.95 16.40 1.71 7.60 
ab 18.30 34.00 18.42 35.66 12.21 28.48 42.95 25.37 23.39 23.75 21.22 24.14 
an 5.74 22.68 30.29 22.37 26.66 25.72 12.07 25.59 19.58 18.36 27.00 27.92 
ne 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C 13.85 0.00 0.00 0.00 3.14 0.00 0.96 0.00 0.00 0.00 0.00 0.00 
di 0.00 4.10 10.84 0.50 0.00 9.75 0.00 9.64 10.77 2.73 20.08 8.93 
hy 12.37 11.78 15.15 9.22 10.10 17.83 1.00 13.00 22.26 11.42 19.48 3.96 
ol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
mt 3.63 3.44 6.82 3.36 5.93 4.04 0.00 8.84 3.77 3.67 5.20 3.79 
il 1.80 1.55 5.99 1.47 4.76 2.33 0.02 8.61 1.99 1.87 3.86 2.01 
hem 0.00 0.00 0.00 0.00 0.00 0.00 1.11 0.00 0.00 0.00 0.00 0.00 
ap 0.51 0.58 1.35 0.86 2.76 0.84 0.12 1.06 0.50 0.64 0.48 0.91 
ru 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 

                          

Pb   34 12 6 14 9 11 15 5 6 13 0 14 
Cu    10 20 8 25 1 22 10 6 8 21 28 1 
Co   6 24 48 21 25 43 2 62 46 24 41 13 
Ni     15 39 31 40 22 51 12 38 168 42 32 15 
Cr    164 114 66 136 130 206 9 97 507 161 277 90 
Ce    403 81 98 145 435 239 15 41 75 115 25 78 
V      103 107 236 104 204 180 13 313 140 115 312 136 
La    111 25 15 45 101 59 5 11 26 48 5 32 
Ba   654 800 210 905 607 432 251 284 372 1051 71 1246 
Nb    39 12 22 16 34 21 10 18 20 20 10 13 
Zr     215 196 201 237 534 179 187 160 115 282 124 240 
Y      95 23 28 29 41 40 6 22 44 48 29 13 
Sr    168 621 631 706 370 576 611 410 283 379 117 739 
Rb   130 45 7 38 6 25 19 6 108 70 4 16 
U      18 18 18 18 18 18 18 18 18 18 18 18 
Th     47 17 17 17 17 17 17 17 17 17 17 17 
Ga   30 21 20 23 20 21 23 18 20 21 18 22 
Zn    129 64 151 65 79 106 33 142 130 91 82 62 
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SAMPLE DEL08-
3eNorth 

DEL09-
17c 

CCG03-
3* 

CCG03-
5* 

CG03-
1* 

CG03-
2* 

CH02-
1* 

CH02-
2* 

CH02-
4* 

CT04-
3B* 

DEL03-
1* 

DEL03-
1L* 

Quadrangle e e a a f f c c c f e e 
Lithology 3 1 1 1 1 1 1 1 1 4 5 1 
SiO2 44.03 45.82 66.23 76.58 61.46 56.87 63.31 64.31 64.04 54.12 71.01 75.13 
TiO2 1.22 2.49 1.08 0.14 1.10 1.48 1.26 1.21 1.12 1.40 0.56 0.08 
Al2O3 16.36 15.35 14.94 13.68 16.59 15.68 15.50 15.48 16.20 18.21 14.14 14.10 
MnO 0.26 0.14 0.10 0.05 0.14 0.18 0.14 0.10 0.09 0.12 0.06 0.02 
FeO 12.59 9.55 5.57 1.78 7.80 9.71 6.30 5.93 5.58 8.41 4.27 0.91 
MgO 7.25 6.67 1.10 0.33 3.46 4.81 1.31 1.27 1.22 3.96 1.23 0.20 
CaO 8.49 7.48 2.15 0.93 3.82 7.10 4.51 4.22 3.63 8.97 2.27 1.42 
Na2O 2.48 2.7 3.82 2.70 2.73 2.72 2.71 3.63 3.40 2.97 2.94 2.57 
K2O 2.34 3.21 4.68 3.77 2.68 1.26 4.27 3.24 4.10 1.22 3.37 5.48 
P2O5 0.24 0.76 0.35 0.02 0.22 0.20 0.68 0.62 0.62 0.62 0.15 0.09 
LOI 3.33 4.77 0.84 1.27 1.59 1.34 2.57 0.62 2.20 1.71 0.03 0.40 
TOTAL 98.59 98.94 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

                          

%AN 69.01 48.52 20.68 16.46 43.22 53.90 43.36 34.80 32.74 56.62 29.21 22.83 
Q 0.00 0.00 19.81 43.93 19.69 12.17 20.29 20.62 19.81 7.66 33.80 36.10 
or 14.48 20.06 27.57 22.27 15.82 7.43 25.15 19.10 24.14 7.20 19.85 32.33 
ab 12.50 22.76 32.20 22.80 23.00 22.91 22.85 30.60 28.66 25.04 24.87 21.75 
an 27.84 21.45 8.40 4.49 17.51 26.79 17.49 16.34 13.95 32.68 10.26 6.43 
ne 5.13 0.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C 0.00 0.00 0.51 3.50 2.76 0.00 0.00 0.00 1.05 0.00 1.88 1.58 
di 12.01 9.97 0.00 0.00 0.00 5.72 0.29 0.44 0.00 6.27 0.00 0.00 
hy 0.00 0.00 4.92 0.83 14.84 17.38 5.90 5.26 5.00 12.85 4.93 0.50 
ol 20.92 12.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
mt 4.13 6.12 3.76 0.67 3.81 4.35 4.06 3.94 3.85 4.25 3.00 0.00 
il 2.43 5.00 2.04 0.27 2.08 2.79 2.39 2.28 2.12 2.64 1.07 0.04 
hem 0.00 0.00 0.00 1.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.01 
ap 0.58 1.86 0.80 0.05 0.50 0.47 1.58 1.43 1.43 1.42 0.35 0.21 
ru 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 

                          

Pb   9 10            
Cu    7 15            
Co   50 49            
Ni     99 74 5 14 52 54 8 19 6 52 31 9 
Cr    339 149 303 439 495 442 332 418 260 304 469 268 
Ce    63 132            
V      229 213 60 19 159 206 74 69 65 172 65 16 
La    23 46            
Ba   730 2107 1672 984 841 325 2179 1395 2070 1485 675 1830 
Nb    15 10            
Zr     176 340 652 237 219 195 462 467 579 296 225 72 
Y      34 30 65 30 42 36 52 56 60 28 53 32 
Sr    422 1156 337 116 196 166 557 507 549 650 280 502 
Rb   53 83 99 86 69 27 86 80 93 23 121 111 
U      18 18            
Th     17 17            
Ga   20 19 21 24 21 18 20 21 22 21 22 19 
Zn    133 105                     
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SAMPLE DEL03-
2* 

DEL03-
3* 

DEL03-
3B* 

DEL03-
3C* 

DEL03-
3D* 

DEL04-
5* 

DEL05-
3B2* 

FC04-
1A* 

FC04-
1B* 

FC04-
2* H03-1* H03-2* 

Quadrangle e e e e e e e h h h e e 
Lithology 5 4 4 4 4 1 4 1 1 1 1 1 
SiO2 68.06 47.15 44.15 43.88 44.52 68.85 46.77 53.26 69.96 67.25 76.20 71.16 
TiO2 0.88 2.19 2.65 2.80 2.79 0.33 1.83 3.52 0.66 0.54 0.67 0.40 
Al2O3 14.54 14.26 14.28 14.33 13.59 16.32 14.15 13.87 15.54 16.13 12.31 15.54 
MnO 0.09 0.24 0.30 0.31 0.32 0.04 0.20 0.14 0.08 0.07 0.06 0.05 
FeO 5.50 13.74 16.34 16.97 15.41 2.84 15.20 11.01 4.03 3.70 3.68 2.77 
MgO 1.70 7.24 7.07 6.65 7.54 0.82 6.02 3.79 1.03 1.37 1.34 0.46 
CaO 1.49 11.46 12.53 12.53 12.67 3.03 13.07 6.69 1.68 3.34 1.10 4.20 
Na2O 1.93 2.94 2.26 2.06 2.28 4.28 2.51 2.43 2.50 3.40 1.41 4.50 
K2O 5.61 0.55 0.08 0.11 0.54 3.32 0.07 3.29 4.45 4.02 3.07 0.80 
P2O5 0.19 0.23 0.35 0.36 0.33 0.16 0.18 1.99 0.07 0.17 0.17 0.13 
LOI 3.04 0.13 0.75 0.92 1.53 0.66 1.29 2.90 0.00 0.32 2.91 1.83 
TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.07 100.00 100.00 100.00 

                          

%AN 27.49 51.26 61.75 62.93 62.52 27.83 56.10 45.60 27.09 34.94 26.80 34.31 
Q 28.80 0.00 0.00 0.00 0.00 23.86 0.00 11.79 32.91 22.88 52.15 32.61 
or 33.10 3.23 0.48 0.67 3.16 19.60 0.42 19.37 26.22 23.70 18.11 4.70 
ab 16.29 22.84 17.64 17.33 15.08 36.17 21.14 20.45 21.10 28.75 11.88 37.97 
an 6.18 24.02 28.47 29.42 25.15 13.95 27.01 17.14 7.84 15.44 4.35 19.83 
ne 0.00 1.05 0.75 0.00 2.25 0.00 0.03 0.00 0.00 0.00 0.00 0.00 
C 3.01 0.00 0.00 0.00 0.00 0.56 0.00 0.00 3.73 0.50 5.06 0.00 
di 0.00 25.44 25.67 24.94 28.90 0.00 30.32 2.34 0.00 0.00 0.00 0.07 
hy 6.99 0.00 0.00 0.85 0.00 2.20 0.00 10.33 3.65 4.33 3.58 1.11 
ol 0.00 13.39 15.14 14.43 13.17 0.00 12.32 0.00 0.00 0.00 0.00 0.00 
mt 3.53 5.36 6.04 6.26 6.26 2.67 4.88 7.34 3.14 2.97 3.22 2.33 
il 1.67 4.14 5.01 5.29 5.27 0.63 3.47 6.66 1.26 1.03 1.27 0.76 
hem 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 
ap 0.43 0.54 0.80 0.83 0.76 0.37 0.40 4.59 0.16 0.40 0.38 0.31 
ru 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

                          

Pb                
Cu                 
Co                
Ni     21 47 64 53 55 11 48 14 17 9 31 6 
Cr    126 453 455 417 313 196 405 126 420 166 351 299 
Ce                 
V      90 365 355 340 407 48 291 227 51 62 64 56 
La                 
Ba   1304 243 174 221 217 1580 170 3276 1169 1880 725 278 
Nb                 
Zr     293 134 184 212 169 185 108 492 206 187 273 198 
Y      59 30 40 43 38 31 34 40 47 36 53 26 
Sr    215 127 70 68 81 918 141 755 342 600 143 651 
Rb   153 12 6 8 8 73 6 49 95 86 111 40 
U                   
Th                  
Ga   21 17 16 16 18 22 16 19 20 21 20 25 
Zn                            
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SAMPLE H03-4B* H03-4D* H03-4E* HM03-2* HM03-3* HM03-4* HM03-5A* HM03-5B* JUN04-
1A* 

MLL04-
1A* 

MLL04-
1B* 

MLL04-
1C* 

Quadrangle e e e f f f f f f i i i
Lithology 4 4 4 5 1 1 4 1 1 5 5 3
SiO2 50.96 47.99 49.63 71.71 64.84 73.29 50.98 75.27 54.56 62.26 58.31 57.10 
TiO2 2.75 2.73 2.91 0.37 0.92 0.15 0.82 0.29 1.48 1.04 0.92 1.92 
Al2O3 15.50 17.17 17.52 14.98 16.29 15.78 15.12 13.48 16.61 16.71 19.77 15.55 
MnO 0.24 0.22 0.27 0.06 0.07 0.02 0.23 0.04 0.22 0.08 0.09 0.13 
FeO 13.42 13.69 13.22 2.90 5.90 1.15 10.05 1.97 10.06 5.99 6.22 9.80 
MgO 3.62 4.20 3.33 0.84 1.77 0.35 9.62 0.66 5.68 3.03 2.74 3.95 
CaO 9.48 9.68 8.74 3.23 4.57 2.63 9.49 3.52 7.57 4.47 4.63 5.90 
Na2O 2.50 3.11 3.16 3.54 3.29 4.69 1.87 4.35 2.33 3.53 4.41 2.87 
K2O 0.59 0.49 0.45 2.24 2.00 1.88 1.62 0.38 1.28 2.65 2.70 2.47 
P2O5 0.95 0.72 0.77 0.13 0.34 0.05 0.20 0.04 0.22 0.23 0.23 0.30 
LOI 1.16 2.18 2.43 0.69 1.85 0.55 3.08 0.00 1.69 2.55 0.00 2.23 
TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 101.68 100.00 100.00 100.10 100.00 

             

%AN 58.16 54.42 54.70 33.66 42.37 24.25 64.00 30.50 61.13 40.92 36.52 47.75 
Q 9.12 0.84 5.24 34.63 24.97 32.74 0.00 40.27 9.03 16.69 7.16 11.36 
or 3.44 2.87 2.63 13.23 11.79 11.11 9.53 2.27 7.51 15.65 15.89 14.55 
ab 21.02 26.23 26.63 29.86 27.79 39.66 15.77 36.72 19.70 29.82 37.19 24.24 
an 29.23 31.31 32.16 15.15 20.43 12.69 28.03 16.12 30.98 20.65 21.39 22.15 
ne 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C 0.00 0.00 0.00 1.17 1.20 1.36 0.00 0.00 0.00 0.44 1.74 0.00 
di 9.45 9.81 4.96 0.00 0.00 0.00 14.30 0.82 4.12 0.00 0.00 4.15 
hy 14.15 15.93 14.64 2.22 7.74 0.88 22.57 1.26 21.00 10.51 10.86 14.21 
ol 0.00 0.00 0.00 0.00 0.00 0.00 4.34 0.00 0.00 0.00 0.00 0.00 
mt 6.20 6.19 6.46 2.73 3.56 0.00 3.46 0.53 4.37 3.75 3.51 5.02 
il 5.20 5.16 5.51 0.71 1.75 0.04 1.56 0.54 2.80 1.98 1.73 3.64 
hem 0.00 0.00 0.00 0.00 0.00 1.28 0.00 1.40 0.00 0.00 0.00 0.00 
ap 2.20 1.65 1.78 0.30 0.78 0.12 0.46 0.09 0.50 0.53 0.53 0.69 
ru 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 

             

Pb               
Cu                
Co               
Ni     21 18 11 17 16 10 177 5 54 47 35 32 
Cr    281 80 106 250 297 145 620 304 295 289 217 240 
Ce                
V      203 209 198 49 99 16 156 38 223 111 103 158 
La                
Ba   257 234 310 1709 1120 404 513 202 278 501 569 538 
Nb                
Zr     297 229 245 236 330 147 115 103 169 201 269 149 
Y      34 28 31 27 35 18 26 14 40 37 46 33 
Sr    389 486 460 675 440 738 298 687 129 353 507 298 
Rb   10 10 6 53 85 43 27 12 30 89 85 61 
U                  
Th                 
Ga   20 20 20 21 20 24 18 20 20 21 23 19 
Zn                
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SAMPLE MP04-2* MV02-2* MV02-3* MV02-4A* MV02-6B* MV02-
6HB* MV02-7* MV02-8* NB04-1B* OS03-1B* OS03-

1GN* PK03-1* 

Quadrangle j e e e e e e e e g g e 

Lithology 1 5 1 2 5 2 1 1 1 1 1 2 

SiO2 63.63 65.66 64.57 65.89 75.02 52.41 68.29 65.37 65.79 73.03 71.57 64.51 

TiO2 1.30 0.94 0.72 0.67 0.27 0.39 0.89 0.74 0.70 0.18 0.40 0.56 

Al2O3 15.32 15.51 16.84 16.45 13.39 17.45 15.63 16.40 16.21 15.09 14.51 18.11 

MnO 0.12 0.08 0.09 0.08 0.04 0.16 0.11 0.09 0.10 0.02 0.05 0.06 

FeO 6.24 6.01 4.77 4.43 1.78 7.74 5.84 4.45 4.62 1.41 3.10 4.35 

MgO 1.38 2.68 1.80 1.41 0.54 9.44 1.84 1.64 1.79 0.28 0.74 0.91 

CaO 4.48 3.26 3.66 3.41 2.65 7.04 1.71 3.72 4.05 1.61 1.85 3.50 

Na2O 3.21 3.04 3.79 3.33 2.67 2.18 1.93 3.71 3.66 3.44 3.34 3.02 

K2O 3.69 2.69 3.50 4.13 3.57 3.09 3.55 3.61 2.84 4.86 4.27 4.72 

P2O5 0.64 0.12 0.25 0.21 0.07 0.08 0.21 0.26 0.24 0.08 0.16 0.26 

LOI 1.44 0.00 2.40 3.55 0.92 1.20 4.33 0.35 0.26 1.94 1.41 2.58 

TOTAL 100.00 100.28 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

                          

%AN 37.80 37.43 34.00 35.52 35.95 60.81 30.45 34.78 37.43 20.42 22.34 37.98 

Q 20.13 25.35 18.29 21.10 39.49 0.00 36.10 19.53 21.99 30.73 30.96 19.80 

or 21.74 15.86 20.65 24.33 21.06 18.24 20.90 21.28 16.76 28.68 25.21 27.86 

ab 27.07 25.67 32.00 28.15 22.55 18.45 16.25 31.33 30.88 29.07 28.20 25.52 

an 16.45 15.36 16.49 15.51 12.66 28.63 7.12 16.71 18.48 7.46 8.11 15.63 

ne 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

C 0.00 1.95 0.76 0.80 0.48 0.00 6.00 0.26 0.33 1.43 1.41 2.28 

di 1.23 0.00 0.00 0.00 0.00 4.59 0.00 0.00 0.00 0.00 0.00 0.00 

hy 5.35 10.22 6.61 5.15 1.33 16.13 7.88 5.64 6.50 0.69 2.20 4.22 

ol 0.00 0.00 0.00 0.00 0.00 10.26 0.00 0.00 0.00 0.00 0.00 0.00 

mt 4.09 3.54 3.28 3.23 0.00 2.78 3.58 3.25 3.19 0.00 2.78 3.04 

il 2.46 1.79 1.37 1.26 0.45 0.74 1.69 1.39 1.32 0.04 0.75 1.06 

hem 0.00 0.00 0.00 0.00 1.79 0.00 0.00 0.00 0.00 1.56 0.00 0.00 

ap 1.49 0.28 0.57 0.48 0.16 0.19 0.49 0.61 0.56 0.19 0.38 0.60 

ru 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.16 0.00 0.00 

                          

Pb                

Cu                 

Co                

Ni     3 89 8 9 10 279 27 12 9 6 13 9 

Cr    199 403 184 187 238 654 334 178 104 238 500 379 

Ce                 

V      65 123 72 65 27 84 91 71 80 18 38 52 

La                 

Ba   1467 957 1384 1765 1666 443 879 1570 827 1512 1326 3589 

Nb                 

Zr     472 223 267 226 176 91 302 252 189 133 238 320 

Y      59 37 37 38 24 28 55 38 44 27 35 40 

Sr    559 432 562 608 577 426 203 595 478 554 446 545 

Rb   92 82 101 113 55 74 111 97 89 87 93 92 

U                   

Th                  

Ga   22 20 20 20 19 18 22 20 22 21 21 21 

Zn                            
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SAMPLE PK03-2* PK03-5* PR04-1* SC04-1* SC04-2* SC04-3* SC04-4* SC04-5* SC04-6* 

Quadrangle e e e e e e e e e 

Lithology 1 1 1 1 1 1 1 1 1 

SiO2 69.60 68.55 67.43 74.89 70.70 71.51 69.33 72.32 68.74 

TiO2 0.41 0.66 0.70 0.21 0.43 0.46 0.49 0.38 0.59 

Al2O3 14.79 15.43 16.31 12.94 14.63 14.51 15.91 14.77 15.67 

MnO 0.06 0.09 0.08 0.04 0.06 0.06 0.05 0.05 0.06 

FeO 3.67 3.97 3.34 2.38 2.78 2.81 3.60 3.36 3.38 

MgO 0.95 1.37 0.67 0.42 1.04 0.83 1.24 1.22 1.26 

CaO 2.97 2.35 3.33 1.37 2.61 2.49 2.61 4.15 2.21 

Na2O 2.42 3.66 3.52 2.25 3.46 3.57 2.80 3.17 3.09 

K2O 4.97 3.70 4.33 5.42 4.16 3.61 3.77 0.44 4.80 

P2O5 0.14 0.20 0.28 0.07 0.12 0.15 0.20 0.14 0.20 

LOI 2.12 1.78 3.08 0.68 0.48 1.70 2.58 0.15 2.82 

TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

                    

%AN 40.29 25.01 33.06 25.00 29.25 27.31 32.95 42.34 27.04 

Q 28.46 26.12 22.98 37.61 27.81 30.72 31.28 41.38 26.26 

or 29.29 21.82 25.52 31.98 24.56 21.30 22.24 2.61 28.32 

ab 20.45 30.91 29.72 19.02 29.20 30.16 23.67 26.75 26.08 

an 13.79 10.31 14.68 6.34 12.07 11.33 11.63 19.64 9.66 

ne 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

C 0.37 1.61 0.44 1.04 0.00 0.56 2.94 1.86 1.84 

di 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 

hy 3.72 4.33 1.67 1.05 2.56 2.05 3.90 3.98 3.19 

ol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

mt 2.82 3.18 2.46 2.18 2.27 2.15 2.95 2.74 3.09 

il 0.78 1.26 1.33 0.40 0.82 0.87 0.94 0.72 1.12 

hem 0.00 0.00 0.56 0.22 0.38 0.50 0.00 0.00 0.00 

ap 0.33 0.47 0.65 0.16 0.28 0.35 0.45 0.33 0.45 

ru 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

                    

Pb             

Cu              

Co             

Ni     11 6 1 28 9 6 24 18 10 

Cr    246 149 152 953 237 164 225 235 170 

Ce              

V      47 68 33 31 42 42 61 48 51 

La              

Ba   2208 1114 1611 1233 692 880 1010 405 1990 

Nb              

Zr     188 223 438 156 160 204 190 200 225 

Y      53 46 54 32 42 38 36 20 37 

Sr    557 445 752 354 401 415 428 698 609 

Rb   93 121 118 126 112 85 107 23 86 

U                

Th               

Ga   19 22 23 19 21 21 22 21 21 

Zn                      
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APPENDIX C 

U-Pb Zircon Geochronology 

The following U-Pb zircon geochronologic analyses were carried out at the Keck Lab, 

University of California at Los Angeles.  
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