
Bucknell University Bucknell University 

Bucknell Digital Commons Bucknell Digital Commons 

Faculty Journal Articles Faculty Scholarship 

9-4-2019 

Force Oscillations Distort Avalanche Shapes Force Oscillations Distort Avalanche Shapes 

Louis W. McFaul 
University of Illinois at Urbana-Champaign 

Wendelin J. Wright 
wendelin@bucknell.edu 

Jordan Sickle 
University of Illinois at Urbana-Champaign 

Karin A. Dahmen 
University of Illinois at Urbana-Champaign 

Follow this and additional works at: https://digitalcommons.bucknell.edu/fac_journ 

 Part of the Condensed Matter Physics Commons, Statistical, Nonlinear, and Soft Matter Physics 

Commons, and the Structural Materials Commons 

Recommended Citation Recommended Citation 
McFaul, Louis W.; Wright, Wendelin J.; Sickle, Jordan; and Dahmen, Karin A.. "Force Oscillations Distort 
Avalanche Shapes." Materials Research Letters (2019) : 496-502. 

This Article is brought to you for free and open access by the Faculty Scholarship at Bucknell Digital Commons. It 
has been accepted for inclusion in Faculty Journal Articles by an authorized administrator of Bucknell Digital 
Commons. For more information, please contact dcadmin@bucknell.edu. 

https://digitalcommons.bucknell.edu/
https://digitalcommons.bucknell.edu/fac_journ
https://digitalcommons.bucknell.edu/faculty-scholarship
https://digitalcommons.bucknell.edu/fac_journ?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/197?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1266?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1266?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/291?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1614&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu


Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tmrl20

Materials Research Letters

ISSN: (Print) 2166-3831 (Online) Journal homepage: https://www.tandfonline.com/loi/tmrl20

Force oscillations distort avalanche shapes

Louis W. McFaul, Wendelin J. Wright, Jordan Sickle & Karin A. Dahmen

To cite this article: Louis W. McFaul, Wendelin J. Wright, Jordan Sickle & Karin A. Dahmen (2019)
Force oscillations distort avalanche shapes, Materials Research Letters, 7:12, 496-502, DOI:
10.1080/21663831.2019.1659437

To link to this article:  https://doi.org/10.1080/21663831.2019.1659437

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 04 Sep 2019.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tmrl20
https://www.tandfonline.com/loi/tmrl20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/21663831.2019.1659437
https://doi.org/10.1080/21663831.2019.1659437
https://www.tandfonline.com/action/authorSubmission?journalCode=tmrl20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tmrl20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/21663831.2019.1659437
https://www.tandfonline.com/doi/mlt/10.1080/21663831.2019.1659437
http://crossmark.crossref.org/dialog/?doi=10.1080/21663831.2019.1659437&domain=pdf&date_stamp=2019-09-04
http://crossmark.crossref.org/dialog/?doi=10.1080/21663831.2019.1659437&domain=pdf&date_stamp=2019-09-04


MATER. RES. LETT.
2019, VOL. 7, NO. 12, 496–502
https://doi.org/10.1080/21663831.2019.1659437

REPORT

Force oscillations distort avalanche shapes

Louis W. McFaul a, Wendelin J. Wright b,c, Jordan Sicklea and Karin A. Dahmena
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ABSTRACT
Contradictory scaling behavior in experiments testing the principle of universality may be due to
external oscillations. Thus, the effect of damped oscillatory external forces on slip avalanches in
slowly deformed solids is simulated using a mean-field model. Akin to a resonance effect, oscilla-
tory driving forces change the dynamics of avalanches with durations close to the oscillation period.
This problem can be avoided by tuning mechanical resonance frequencies away from the range of
the inverse avalanche durations. The results provide critical guidance for experimental tests for uni-
versality and a quantitative understanding of avalanche dynamics under a wide range of driving
conditions.

IMPACT STATEMENT
Simulations of deformation show how commonly neglected errant oscillations distort the dynamics
of discrete plastic events and how the effects of these oscillations can be mitigated in experiments
and applications.
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Introduction

At low strain- or stress rates, many solids deform inter-
mittently with sudden ‘slip-avalanches’, similar to earth-
quakes. Theory and experiments probe universality, i.e.
whether differentmaterials show the same scaling behav-
ior for avalanche statistics and dynamics, irrespective of
the microscopic details [1–10], and in a variety of sys-
tems [11–16]. Universality, if it exists, is a powerful tool
for the prediction of materials properties and establish-
ing guidelines for experimental design. Thus far, studies
have focused almost exclusively on fixed strain-rate or
stress-rate deformation, sometimes reporting contradic-
tory scaling behaviors. All of these studies, however, have
neglected the effects of oscillations in the imposed load
or displacement signal, which is a critical omission for
two reasons: (1) real systems inherently experience oscil-
lations, and (2) as we show herein, ignoring oscillations
in the data can skew the experimental results, potentially

CONTACT Karin A. Dahmen dahmen@illinois.edu Physics and Institute of Condensed Matter Theory, University of Illinois at Urbana Champaign,
1110 West Green Street, Urbana, IL 61801, USA

leading to the false conclusion that related systems have
different scaling behavior. Simply put, ignoring oscilla-
tions may obscure the observation of universality across
materials systems.

Prior studies of slip avalanches have usually ignored
oscillations despite their common occurrence in real sys-
tems [17–19]; here we employ a mean-field model of
slipping weak spots [1,6] to understand the effect of oscil-
lations on slip avalanches. We choose this model because
(1) it is confirmed by many recent experiments [8], (2)
it is currently the only model available that predicts more
than 12 different statistical properties observed in experi-
ments on bulk metallic glasses [8,20,21] in the absence of
oscillations, (3) experimental results on a wide range of
scales (nanocrystals, granular materials, and earthquakes
[5,22–24]) also agree with the model predictions, (4)
renormalization group treatments imply that the model
is even more widely applicable [1,6], and (5) the model
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is analytically solvable, and its simplicity affords crucial
intuition for predictions, design, and new approaches to
data analysis.

By imposing an oscillation on an otherwisemonotonic
driving force, we show that the model predicts that these
oscillations can distort average temporal profiles of the
avalanche propagation velocities. These distortions are
most apparent at ‘resonance’, i.e. when the duration of the
avalanches is comparable to the period of the oscillations.
Thus recognition and proper treatment of oscillations in
experimental load and displacement signals is essential.

The drive toward device miniaturization requires
quantitative information on slip avalanche behavior at
the nanoscale (e.g. [15,25]). At these length scales, the
effects of oscillations may be magnified and distort the
true materials behavior. Oscillations may arise when a
sudden slip event occurs, initiating an event that rever-
berates throughout the contact. Indeed the nanoinden-
ter was not developed with the intention of measuring
the dynamics of rapid plasticity events, so the available
instrumentation is evolving to meet these challenges.
In this work, we develop the requisite theory to pre-
dict and explain avalanche dynamics in the presence of
oscillations. A follow-up paper will analyze experimen-
tal avalanche shapes under this theoretical framework
[26,27].

Avalanche shapes in themean-field model

The mean-field avalanche model predicts the scaling
behavior of the distributions of avalanche sizes, dura-
tions, propagation velocities, and dynamics [6,28,29].
These scaling predictions have been tested in experimen-
tal avalanche data [8,23,30]. The model also predicts the
average ‘avalanche shape’, either for avalanches of a sim-
ilar duration or a similar size. The term ‘avalanche shape’
refers to the average temporal profile of the avalanche
velocity. While the propagation velocity of individual
avalanches fluctuates greatly, these average avalanche
shapes are predicted to be specific smooth scaling func-
tions of velocity versus time. The average avalanche shape
for avalanches of a similar duration (the ‘duration-binned
avalanche shape’) is predicted to be an inverted parabola
[31–33], but the average avalanche shape for avalanches
of a similar size (the ‘size-binned avalanche shape’) is pre-
dicted to follow a function f (t) = A*t*exp(–B*t2) for
non-universal constants A and B [28,31] with time t.
This specific size-binned scaling function has also been
tested in experimental data, with excellent agreement in
some cases [8,30,34] but with deviations in others that in
hindsight may be explained by inadvertently introduced
forced oscillations [25]. Given that the model’s scal-
ing functions are powerful predictions for experiments

(more stringent than single-valued experimentally-fitted
power law exponents), we must understand how these
scaling functions may change with physically realistic
external forcing other than a linear force increase.

We find that oscillations in the applied force affect
the average avalanche shapes. The model discretizes the
shear band into small cells. In previous studies, the
avalanches were triggered by monotonically increasing
applied stress (or strain).When the least-stable cell yields,
it can trigger other cells to yield in a chain-reaction-
like avalanche until all cells are stable and the avalanche
ends. For the slow driving case, the average applied stress
does not increase while an avalanche is ongoing. To study
the effect of oscillations, however, rather than linearly
increasing the applied stress with time, we instead take
the imposed boundary displacement (and thus the result-
ing stress) to be an exponentially-damped sinusoid that
starts concurrently with the beginning of the avalanche
and continues while the avalanche is ongoing. The oscil-
lation amplitude decays to zero after several oscillation
periods.

In the mean-field model, the local stress on each cell
has two contributions: the stress from the neighboring
cells and the externally-imposed stress. The stress from
the neighboring cells on the ith cell is J

N
∑
j
(uj − ui),

where J/N is themean-field elastic coupling between cells
and uj is the position of the jth cell. The external stress on
the ith cell is KL(u0 − ui), where KL is the stiffness of the
boundary spring and u0 is the equilibrium position of the
cells due to the force of the boundary spring. This local
stress τi on the ith cell therefore obeys the equation:

τi = J
N

∑

j
(uj − ui) + KL(u0 − ui)

The model dynamics depend on J and KL through the
stress conservation parameter c = J

J+KL
; see [6,29,35] for

details. We simulate N = 5 × 105 cells for c = 1 − 1√
N

[35,36]. For slow monotonic driving, the equilibrium
position u0 increases linearly with time t as u0 = vt,
where the rate v is slow compared to the rate at which
avalanches propagate. To include applied-force oscilla-
tions we take u0 to be an exponentially damped sinu-
soid: u0 = Ae−t/θ sin(ωt) with amplitude A, frequency
ω, and decay time θ . The damped oscillation amplitude
A = 10/N in units of simulation stress divided by load-
ing stiffness KL, period 2π/ω = 100, and decay constant
θ = 114, both in units of simulation timesteps.

Figure 1 shows that in the presence of oscillations the
simulated average avalanche shapes look somewhat sim-
ilar to the shapes obtained for monotonic driving but
with additional oscillations. To compute these average
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Figure 1. Simulated avalanche shapes (averaged over 250 avalanches of given avalanche size), for oscillating sample boundary (oscil-
lation period 100 time steps). (a) Shapes for avalanche durations of roughly 1/10 of the oscillation period. The shapes agree with the
mean-field shape formonotonic driving (black line). (b) The avalanches in the two additional shapes have durations of about ½ the oscil-
lation period. The corresponding shapes deviate from the shape formonotonic driving. (c) Two additional shapes correspond to durations
of about 1–2 oscillation periods; they again deviate from themonotonically driven case. (d) Durations of the additional shapes are on the
order of multiple oscillation periods; their shapes agree with those of the monotonic case.

avalanche shapes for avalanches of a certain size, the
velocity versus time profiles of avalanches of a similar
size are averaged. (The size is proportional to the sum of
the total distances that the simulated cells move during a
particular avalanche.)

The oscillation-affected shapes differ in important
ways from those obtained for monotonic driving.
Figure 1 shows simulated average avalanche shapes for
different avalanche sizes. In each subfigure, the black
curve follows the predicted shape function u0(t) =
Ate−Bt2 for monotonic driving where A and B are non-
universal constants [6,28]. In the following we show
that avalanches with durations T that are either short
or long compared to the oscillation period 2π/ω fol-
low the mean-field shape for monotonic driving, while
avalanches with durations that are similar to the oscil-
lation period are distorted by the oscillations, similar

to a resonance effect. We compare the shapes to these
reference functions to clarify our observations:

(a) T � 2π/ω:

Figure 1(a) shows the average avalanche shapes com-
puted for the two smallest-size bins; these shapes closely
follow the mean-field prediction obtained for monotonic
driving. This result is expected because the durations of
most of the avalanches in these bins are about an order
of magnitude shorter than the period of oscillation (100
timesteps).

(b) T ∼ 2π/ω:

Figure 1(b) shows the average avalanche shapes for
two larger size bins that contain avalanches mainly with
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Figure 2. Attempted shape collapses for size-binned avalanche shapes, averaged over 250 avalanches each. (a) High-quality collapse
onto the predicted scaling function for constant boundary velocity. (b) Low-quality collapse for oscillatory boundarymotion (see Figure 1
for uncollapsed shapes).

durations on the order of half of the oscillation period.
These shapes begin to deviate from the monotonic-
driving shape prediction, with a steeper slope than pre-
dicted.

(c) T ∼ 2π/ω:

Figure 1(c) shows average avalanche shapes for two
even larger size bins that contain avalanches with dura-
tions on the order of 1–2 oscillation periods. These aver-
age shapes again deviate from the monotonic-driving
shape, with downward slopes that are either abnormally
steep or abnormally shallow. A signature of the oscilla-
tion period is observable as the ‘ledge’ or ‘shoulder’ in the
average shape of the size-3000-avalanches near a time of
100 timesteps.

(d) T � 2π/ω:

Figure 1(d) shows average avalanche shapes for the
two largest size bins, whose avalanches propagate for sev-
eral oscillation periods. Apart from some slight rounding
at the top of the largest-size average shape, this shape
again follows the shape for monotonic-driving, as in (a).

We observe that when the oscillation period and the
avalanche durations are similar in length then the oscil-
lations distort the mean-field size-binned shape so that it
deviates from the shape obtained for monotonic driving.
The mid-size average avalanche shapes (which contain
avalanches with durations roughly on the order of half
an oscillation period to a few oscillation periods) have
tails that are distorted compared to the mean-field shape
function for monotonic driving. The reason is that in
this case the oscillations dynamically interact with the
ongoing avalanche.

This finding is also supported by the corresponding
scaling collapses in Figure 2(a and b). Figure 2(a) shows
the shape collapse for monotonic driving; the shapes col-
lapse onto each other and onto the mean-field shape
function. In contrast, Figure 2(b) shows that for oscilla-
tory stresses the shapes no longer collapse.

Figure 3 shows that the corresponding scatterplots
of avalanche duration T versus size S without oscilla-
tions (Figure 3(a)) and with oscillations (Figure 3(b))
both agree well with the predicted T∼S1/2 scaling law.
Figure 3(c) shows the complementary cumulative distri-
bution function (CCDF) for the avalanche sizes S. With-
out oscillations, it follows the expected –0.5 power law.
In contrast, with oscillations it deviates from a power law,
but in a hypothetical or experimental dataset with instru-
mental noise superimposed on the avalanche signal, such
a CCDF may be misinterpreted as following a power law
with a wrong exponent (of roughly 0.6 instead of 0.5 for
these simulation parameters). Figure 3(d) shows a simi-
lar distortion for the duration CCDF, which (with noisier
data) could also be misinterpreted as a power law with a
modified exponent (roughly 1.1 instead of 1.0 for these
simulation parameters).

Implications for experiments

The model predicts that oscillations may not be rel-
evant to the avalanche-propagation dynamics, if the
avalanche durations are either short or long compared
to the oscillation period. In experiments, the effect of
the oscillations will therefore depend on how well these
timescales match. For example, in some micropillar
compression experiments, there may be a large mis-
match between the avalanche durations and the period
of oscillations so that the oscillations have little effect
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Figure 3. Size and duration scaling of avalanches. (a) Duration T vs. size S scatterplot for monotonically-increasing stress, agrees with
prediction T∼S1/2 (black line). (b) T vs. S for an oscillating boundary, agrees with prediction T∼S1/2. (c) CCDF of avalanche sizes without
(blue x) andwith (redo) anoscillatingboundary. (d) CCDFof avalanchedurationswithout (blue x) andwith (redo) anoscillatingboundary.
In (c) and (d), the oscillatory-model CCDFs may be mistaken for power laws with the wrong exponents (dashed line).

on avalanche-propagation dynamics [26,27]. In other
experiments, however, oscillations distort the avalanche
dynamics so much, that by neglecting their effect, non-
universality can falsely be inferred [15,25–27].

The keymessage of this paper, i.e. that stress- or strain-
oscillations distort those avalanches with durations on
the order of the oscillation period, is widely applicable.
Details on the specifics of the shape distortion in any real
experiment depend on the specific form of the resonant
oscillation (e.g. its amplitude and decay constants, fre-
quencies, and excitation mode). The numerical values of
the apparent power-law deviations in Figure 3(c and d)
are also not universal predictions; rather the power-law
deviations will depend on the specific resonance charac-
teristics of an actual experimental system.Our point then
is to show that if similar deviations are observed in exper-
iments, oscillations may be the underlying cause, rather
than deviation from universality.

The lesson for experimental design is simple: compare
the timescales of the avalanches to the timescales of the
boundary oscillation, and if they are on the same order
of magnitude, then the experiment should be modified

in order to separate the timescales. This can be accom-
plished either by tuning the oscillation period of the
experimental setup (e.g. machine stiffness, sample size,
etc., if possible), or by choosing a specimen that yields
avalanche durations compatible with (i.e. an order of
magnitude either larger or smaller than) the applied-
force oscillation period. The range of avalanche dura-
tions in a compression experiment may be adjustable
by changing the cross-sectional area and height of the
specimens.

Conclusions

Resonant oscillations affect avalanche dynamics, espe-
cially for avalanches with durations comparable to the
period of the mechanical resonance of the experimen-
tal setup. For avalanche durations that are long (or
short) compared to the resonant period, the simu-
lated average avalanche shape reverts to the mean-field
shape prediction for monotonic driving. For experi-
ments the results imply that a comparison of the res-
onant oscillation period of the experimental system to
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the avalanche durations is necessary for correct inter-
pretation of the data. To obtain undistorted avalanche
shapes, it is important to tune the oscillation period
away from the avalanche durations. The results further
imply that avalanche shapes can be used to identify sub-
tle oscillations in the driving force and their frequency.
Our findings are relevant also to other avalanching
systems, including magnets [27,32,34,37,38] and earth-
quakes [39,40].
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