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Competition and Intraguild Predation Between 
Beetles, Pterostichus stygicus (Coleoptera: Carabidae) 
and Centipedes, Scolopocryptops sexspinosus 
(Scolopemdromorpha: Scolopocryptopidae)
Michele E. Julian, Cari-Ann M. Hickerson, and Carl D. Anthony

Abstract

Studying interactions between distantly related species is necessary to understand the complexity of food 
webs. Generalist predator interactions, such as intraguild predation (IGP) and competition, can 
alleviate predation pressure and weaken top–down control that predators have on lower trophic levels. 
Centipedes (Chilopoda) and carabid beetles (Coleoptera) are common deciduous forest floor generalist 
predators that may interact by competing for resources beneath rocks and logs on the forest floor, 
especially during dry periods when prey become confined to such microhabitats. We used laboratory and 
field studies to determine whether the carabid beetle, Pterostichus stygicus (Say), and the centipede, 
Scolopocryptops sexspinosus (Say) co-occur under artificial cover. Additionally, a laboratory mesocosm 
experiment was used to examine competi-tive interactions in intra- and interspecific trials. There was 
significant negative co-occurrence of beetles and centipedes beneath cover objects in the field and 
laboratory. Pairings of S. sexspinosus and P. stygicus within mesocosms resulted in high mortality of 
P. stygicus, and reciprocal but asymmetric IGP. Centipedes maintained weight within solitary, intra- and 
interspecific mesocosm treatments, however, beetles lost mass in all treat-ments. Scolopocryptops 
sexspinosus responded more favorably to intra- and interspecific competition than did P. stygicus. Analysis 
of the leaf litter mesofauna indicated that these predators consumed similar prey in laboratory mesocosms. 
Our results suggest that species with very different trophic morphology have the po-tential to compete for 
shared microhabitat and prey.

Key words:  cannibalism, aggression, co-occurrence, temperate deciduous forest, mesocosm

Competition for resources among species is thought to be ecologic-
ally important and can influence community structure and stability 
(Niemelä 1993, Levine et al. 2017, but see Lövei and Sunderland 
1996). At the community level, interspecific competition can lead 
to coexistence via niche partitioning, competitive exclusion, or local 
extinction of the inferior competitor (Schoener 1974, Jenkins et al. 
2019). Although there is empirical evidence of strong competitive 
interactions between phylogenetically distinct species, many studies 
have focused on testing the competition-relatedness hypothesis 
(Darwin and Wallace 1858) which predicts that niche space overlap, 
and therefore competition, should be greatest between closely re-
lated species because of morphological and functional similarity 
(i.e., niche conservatism). It is critical, however, to recognize that 
closely related species with similar morphology can differ in their 
functional traits (Resetarits and Chalcraft 2007), and that distantly 

related taxa may have similar function despite morphological differ-
ences (Brown and Davidson 1977, Gerhold et al. 2015). Phenotypic 
traits need not be similar between species for there to be strong 
competition for shared resources (Gall et  al. 2003, Wilcox et  al. 
2018). A newly proposed alternative to the competition-relatedness 
hypothesis proposes that researchers focus on a broad range of 
taxonomic relatedness (Wilcox et  al. 2018). This model assumes 
that closely related taxa will have high niche similarity and similar 
competitive abilities due to high phenotypic and functional overlap, 
but that distantly related taxa can also have high niche overlap 
due to shared functional traits. Distantly related taxa, however, 
may have even larger effects on competitors because, despite util-
izing similar resources, they may differ in other key morphological, 
physiological and/or behavioral traits. Any of these traits may place 
them at a competitive advantage.
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One way that individuals reduce the effects of competition is 
through direct predation of guild members. Intraguild predation (IGP) 
is common in food webs and has the potential to add significant com-
plexity to interactions among species within communities (Polis 1991, 
Wang et al. 2019). IGP occurs when potential competitors also engage 
in predator–prey interactions. IGP can be categorized as symmetrical 
(looping; Polis et al. 1989), in which species A and B are mutual pred-
ators of one another, or asymmetrical in which species A always preys 
on species B. Research investigating how IGP affects trophic cascades 
in food webs is important because it shows how interactions among 
guild members can potentially alter the strength of the indirect effects 
at lower trophic positions (Holt and Polis 1997). More specifically, 
studies have suggested that IGP can play a role in weakening top–
down effects in some systems (Finke and Denno 2002, 2003; Halaj 
and Wise 2002). Additionally, environmental factors such as the de-
gree of habitat complexity can alter the outcome of IGP. For example, 
Finke and Denno (2002) found evidence in the laboratory and field 
that IGP can affect herbivore density in a terrestrial arthropod system 
differently depending on the structural complexity of the micro-
habitat. In simple habitats, IGP between spiders and mirids relaxed 
predation on herbivorous leafhoppers, but in complex habitats, the 
two predators were collectively able to suppress herbivores because 
mirids were able to find refuge from spiders.

Deciduous forest floor communities are complex and contain a 
diversity of generalist predators (Polis 1991, Rosenheim et al. 1999, 
Hickerson et  al. 2012) which have the potential to interact within 
shared microhabitat beneath cover objects such as rotting logs and 
rocks. Such naturally occurring cover objects retain moisture and 
house invertebrates and some small vertebrates as the surrounding 
leaf litter environment dries. Therefore, moist microhabitats and prey 
can become limited resources during periods between precipitation 
events (Dillion and Dillion 1961, Jaeger 1981, Lewis 1981). It is during 
the dry periods that interactions among generalist forest floor pred-
ators are expected to be most intense because they are restricted from 
openly foraging in the leaf litter. Two groups of predators, centipedes 
(Chilopoda), and carabid beetles (Coleoptera) have large biomasses 
within forest floor communities (Lewis 1981, Loreau 1984), and 
are ecologically similar because they are thought to share prey and 
microhabitat. However, these predators bring disparate traits to the 
competitive stage. For example, unlike carabid beetles, centipedes are 
venomous. Carabid beetles have good vision, but many centipede spe-
cies are blind. It is these types of traits that might place one taxon at a 
competitive advantage. Additionally, studying the interactions between 
ecologically similar deciduous forest floor predators may prove helpful 
in determining interaction strengths within these systems.

We examined the potential for competitive interactions and 
IGP between two common forest floor predators [the centi-
pede, Scolopocryptops sexspinosus (Say) and the carabid beetle, 
Pterostichus stygicus (Say)]. To observe spatial distributions of these 
invertebrates, we examined the degree to which these two taxa 
co-occur in the microhabitat beneath artificial cover objects in both 
the field, and in simple arenas in the laboratory. Additionally, we 
conducted a laboratory mesocosm experiment in which we indirectly 
assessed competitive dominance in two ways. First, we measured 
changes in mass of individuals in intra- and interspecific pairs over 
time, and we recorded instances of IGP and cannibalism. Second, we 
assessed the degree of diet overlap by comparing the natural prey 
remaining in the intraspecific beetle and centipede mesocosms at the 
end of the experimental period. We hypothesized that S. sexspinosus 
and P. stygicus would be negatively associated under cover objects 
in the field and laboratory. Our prediction was based on data re-
ported from a predator removal study conducted by Hickerson et al. 

(2012) who found that the removal of centipedes from beneath arti-
ficial cover objects (ACOs) in the field had a strong positive effect on 
carabid beetle abundance (Fig. 1). Next, we hypothesized that com-
petition might be an important interaction between S. sexspinosus 
and P. stygicus in mesocosms containing natural prey, and it would 
be reflected in mass losses over time as resources become depleted 
but not experimentally replenished.

Materials and Methods

Co-occurrence Beneath Cover in the Field and 
Laboratory
To assess the degree of co-occurrence of carabid beetles and 
S. sexspinosus in the field, we collected data April 2004–December
2007 at the Cuyahoga Valley National Park (CVNP), Summit
County, OH (41°13′46.62″N, 81°31′7.77″W). The presence of
S. sexspinosus, and carabid beetles were recorded from beneath 72
ceramic ACOs (30.5 × 30.5 cm) spaced at least 1 m apart on a north
facing forested hillside (see Hickerson et  al. 2012, 2017 for a de-
tailed description of the site). We visited the site between 0800 and
1800 hours every other week (2004–2005) or weekly (2006–2007)
during the active season of our focal species (53 sampling dates,
April through November or early December each year). We assessed
the presence of centipedes and beetles by carefully lifting each ACO
and noting which taxa were present. Since the field data were col-
lected as part of an unrelated study, we did not know the species
identity of the carabid beetles used in this portion of our project.
We later were able to determine that P.  stygicus was not only the
most common species of carabid beetle at our field site but also had
the most similar surface activity pattern to S. sexspinosus and so we
used this species in subsequent laboratory experiments.

We used the methodology of Anthony et  al. (2007) to assess 
the ability of S.  sexspinosus and P.  stygicus to displace one an-
other in a structurally simple environment. We constructed arenas 
with low (dry portion of the arena), intermediate (dampened filter 
paper covering a portion of the arena floor), and high-quality 

Fig. 1. Mean number of carabid beetles quantified per year from beneath 
artificial cover objects in centipede removal compared to control plots. Data 
were collected in the Cuyahoga Valley National Park over a 4-yr period that 
included 53 sampling dates.

Copyedited by: OUP



microhabitats (dampened filter paper and space beneath artificial cover;  
Fig. 2). Arenas were kept at 18 ± 2°C, 12:12 (L:D) h photoperiod 
and were covered with white paper which was lifted during data 
collection. We placed either a single centipede, a single beetle, or 
one individual of each species into arenas, and after 24 h, the loca-
tions of individuals in nine interspecific pairs were compared to lo-
cations of nine solitary individuals of each species. In the absence of 
interference, individuals are expected to gain access to high-quality 
habitat (Anthony et  al. 2007). In interspecific trials, we predicted 
that, if competition were occurring for high-quality space, competi-
tively dominant individuals would gain access to the highest quality 
microhabitat in laboratory arenas.

Competition in Laboratory Mesocosms
We collected 53 P. stygicus (adults) and 53 S. sexspinosus (≥35 mm 
in length) from 1 June 2011 to 17 July 2011 from the CVNP. Prior 
to the start of the experiment, individuals were weighed, measured 
(mean mass for S. sexspinosus = 0.218 ± 0.067 g, P. stygicus = 0.132 ± 
0.015  g; mean length for S.  sexspinosus  =  41.89  ± 3.95  mm, 
P. stygicus = 16.23 ± 0.36 mm), and then housed in separate circular
Pyrex glass (Greencastle, PA) 473 ml containers in 50 g of leaf litter
collected from the same site. The leaf litter was mixed thoroughly
to ensure that naturally occurring mesofauna (prey items) were dis-
tributed throughout. We removed predatory macroinvertebrates and
vertebrates (spiders, salamanders, etc.) from the leaf litter by hand.
The mesocosms were kept on a 12:12 (L:D) h photoperiod and were
held at 18 ± 2°C. Leaf litter was kept moist by spraying spring water
into each container once a week, or as needed.

Experimental mesocosms consisted of rectangular 22.86  × 
33.02 × 5.08 cm Pyrex glass baking dishes. Each mesocosm received 
110 g of leaf litter with naturally occurring prey. To ensure animals 
could not escape from the mesocosms, aluminum foil was pressed 
around the top of the mesocosm and heavy-duty plastic wrap was 
wrapped around the mesocosm twice. After punching small holes 
through all layers of plastic and aluminum foil, rubber bands were 

stretched around the circumference of the mesocosm to hold the 
cover in place. Forty-five mesocosms were assigned to three treat-
ments categories: interspecific (one P.  stygicus paired with one 
S. sexspinosus; n  =  15), intraspecific P.  stygicus (two individuals
paired together; n  =  15) and intraspecific S.  sexspinosus (two in-
dividuals paired together; n = 15). Eight individuals of each species
were also kept individually in similarly constructed mesocosms to
assess any mass changes in the absence of the other predator (n = 8
P. stygicus and n = 8 S. sexspinosus). Size asymmetries in pairings
were minimized to reduce the fighting advantage of a larger animal
by randomly pairing animals within size classes. In order to distin-
guish between individual P. stygicus in intraspecific mesocosms, we
clipped two tarsal segments and claw from the middle leg on the
left side of one beetle, and repeated the procedure on the right side
of the other beetle. In S. sexspinosus pairings, we clipped the third
to last leg on the left side of one centipede and again repeated the
procedure on the right side of the other centipede. Mesocosms were
searched weekly for 9 wk to assess mortality and mass change. Each
week, individuals were removed and weighed (g) to an accuracy
of three decimal places before being returned to their mesocosm.
Evidence of IGP included finding the exoskeleton fragments of the
other predator in the mesocosm and substantial weight gain of the
surviving individual.

Mesocosm Leaf Litter Invertebrates
We used Berlese funnels (60W bulbs for 48 h, 70% EtOH) to extract 
invertebrate prey from leaf litter used in mesocosms. Invertebrates 
were counted and identified to order, and in some cases, family. 
Invertebrate prey from 15 litter samples were immediately extracted 
to determine baseline prey availability. An additional 15 mesocosms 
without adult beetles or centipedes were created to examine how 
prey availability changed over the 9-wk experimental period (post-
experimental controls). We estimated the diets of centipedes and 
beetles in intraspecific mesocosms by comparing remaining inverte-
brates to those in post-experimental control mesocosms with neither 
predator, a method used by Walton and Steckler (2005) to indirectly 
measure diet.

Statistical Analyses
Co-occurrence Beneath Cover in the Field and Laboratory
A Spearman Rank correlation was used to analyze co-occurrence 
under cover objects in the field (Hickerson et al. 2018). This approach 
was used to determine whether carabid beetles and S. sexspinosus had 
negative spatial associations under cover objects in the field. Cover 
objects that did not have either predator beneath them during the 
study were removed from the analysis. To be conservative, individual 
ACOs were examined for temporal co-occurrence within 4 wk of an 
individual occupying a tile. For example, if S. sexspinosus occupied 
an ACO during 1 wk and within 4 wk, a ground beetle was found 
under the same ACO, we defined such a scenario as a co-occurrence. 
This method over-estimates the frequency of co-occurrence between 
groups because an ACO occupied by a carabid beetle on one col-
lecting date and by a centipede on another is considered a shared 
cover object in the analysis. This approach, therefore, makes finding 
a significant negative correlation more difficult. Correlations (two-
tailed) of carabid beetles and centipedes were run on each year 
separately: 19 June 2004 to 30 September 2004 (n = 51), 20 June 
2005 to 1 October 2005 (n = 84), 17 May 2006 to 28 June 2006 
(n = 49) and 9 July 2007 to 28 September 2007 (n = 37). In our la-
boratory arenas, we used a Fisher exact test (two-tailed) to compare 

Fig. 2. Percentage of individuals of Scolopocryptops sexspinosus and 
Pterostichus stygicus occupying different quality microhabitats within 
laboratory arenas after 24 h. Pairing status (solitary or paired) is indicated 
above the bars. The arenas (24.5 × 24.5 cm) contained a cover object on damp 
filter paper (9.6% of arena), exposed damp filter paper (19.8% of arena), 
and a dry area (70.6% of arena). Both predators occupied the high-quality 
microhabitat beneath the cover object when alone in the arena. P. stygicus 
appears to exclude S. sexspinosus from high-quality microhabitat.
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the number of animals found in high, intermediate, and low-quality 
habitat when paired alone versus when paired interspecifically.

Mass Changes in Mesocosms
As in many previous mesocosm studies, changes in mass over time 
were used to indirectly determine the intensity of competition 
(e.g., Wilbur 1987, Hickerson et  al. 2005, Benard and Middlemis 
Maher 2011). Dominant individuals were expected to gain mass 
at the expense of their mesocosm mate, so we predicted that in-
dividuals would be more likely to lose mass in intraspecific trials. 
A Pearson’s χ 2 test was used to assess if intraspecific competition was 
stronger than expected by chance. We divided our results into three 
categories: 1) those in which both individuals gained mass, 2) one 
gained mass/one lost mass, or 3) both lost mass. We compared our 
observed values to a random expectation of five mesocosms within 
each category. Mean changes in mass of individuals in the interspe-
cific treatment were compared using a paired T-test (two-tailed) to 
determine whether one species was a superior competitor. For all 
mass changes, only the first 4 wk could be analyzed due to a high 
rate of IGP. To verify that IGP had occurred in cases in which a 
mesocosm mate could not be located, the mass change of predators 
that were suspected of eating their mesocosm mate were compared 
to the mass change of a random set of animals that did not lose their 
box mate using a Wilcoxon signed ranks test (Hickerson et al. 2005). 
All mass data were analyzed using SPSS for Windows, Version 16.0.

Mesocosm Leaf Litter Invertebrates
To visualize any variation in invertebrate composition among the two 
intraspecific treatments and post-experimental control mesocosms, 
nonmetric multidimensional scaling (nMDS) was used. We did not 
include interspecific mesocosms in this analysis because there would 
be no way to know which species of predator had consumed prey 
in those mesocosms. A  one-way analysis of similarity (ANOSIM) 
was used to determine whether prey communities differed among 
the two intraspecific treatments and the control. The nMDS plots 
and ANOSIM are based on Bray-Curtis dissimilarity matrices. The 
statistical program PRIMER (v. 5)  was used to create the nMDS 
plots and ANOSIM results.

Results

Co-occurrence Beneath Cover in the Laboratory 
and Field
During the 4-yr field survey, we observed 406 beetles and 75 centi-
pedes. By allowing a 4-wk period of potential interaction, our defin-
ition of cohabitation beneath cover over-estimated co-occurrence. We 
observed predators under most ACOs (2004, 51.4%; 2005 62.5%; 
2006, 59.8%; 2007, 54.2%), but centipedes and beetles co-occurred 
only 18 times. Scolopocryptops sexspinosus and combined species 
of ground beetles showed a strong, negative correlation beneath 
cover objects in the field each year (2004: rs = −0.846, P < 0.001; 
2005: rs = −0.615, P < 0.001; 2006: rs = −0.654, P < 0.001; 2007: 
rs = −0.792, P < 0.001; all tests were two-tailed). These results sug-
gest that S. sexspinosus and carabid beetles do not commonly reside 
together under cover objects in the field.

When placed in the experimental arenas in the lab, P.  stygicus 
quickly located and made use of the cover objects, but S. sexspinosus 
tended to explore the arena perimeter prior to settling in any location. 
We observed mutual aggression and interference between the two spe-
cies. In at least four trials, P. stygicus chased and bit S. sexspinosus, 
and we observed at least three instances in which S. sexspinosus bit 
P. stygicus. The two species were never found sharing ACO’s at the

same time. When paired with P. stygicus only 12.5% of S. sexspinosus 
occupied high-quality habitat in the arena. In contrast, when housed 
alone, all S.  sexspinosus occupied cover (Fig. 2, Fisher exact test, 
P  =  0.0004). Pterostichus accessed high-quality habitat irrespective 
of pairing (89% when housed alone and 75% when paired with 
S. sexspinosus; Fisher exact test, P = 0.735).

Competition in Laboratory Mesocosms
IGP, Cannibalism, and Other Mortality
Because we could not observe predation events in our mesocosms, 
we estimated IGP and cannibalism indirectly via presence of exo-
skeleton remnants and mass gain in surviving predators. Death rates 
were higher in mesocosms with two animals supporting the notion 
that mortality was due to predation. IGP occurred mutually, but in-
stances in which S. sexspinosus preyed upon P. stygicus were more 
common. Predation of P. stygicus by S. sexspinosus occurred in 40% 
of interspecific mesocosms. Centipedes that preyed on beetles were 
significantly heavier the week following a predation event (n  =  6; 
paired Wilcoxon signed ranks test; P = 0.027). Additionally, preda-
tory S. sexspinosus gained a significant amount of mass when com-
pared to non-predatory S. sexspinosus (n = 6; Mann–Whitney U test; 
P = 0.037). Pterostichus stygicus preyed upon S. sexspinosus in only 
two mesocosms (13.3% of mesocosms), the first instance occurred 
within the first week of the experiment, and the second instance was 
after the sixth week. Within intraspecific pairings (n  =  15), canni-
balism occurred among S. sexspinosus in 13% of pairings and among 
P. stygicus in 33% of the pairings. Regardless of treatment type (soli-
tary, interspecific, or intraspecific pairings) mortality among individ-
uals of P. stygicus was higher compared to mortality of S. sexspinosus
(binomial test, P = 0.00002). By the end of the ninth week, 70% of
P. stygicus in intraspecific pairings had died. Of these deaths, 10 out
of 30 (33.3%) had been cannibalized by a conspecific and 13 (43.3%) 
died from other causes, presumably resource limitation. These indi-
viduals were found deceased, but intact. By the end of the experiment, 
five out of 30 (16.6%) S. sexspinosus from intraspecific mesocosms
had been cannibalized. By the end of the 9-wk experiment, 87.5%
of P.  stygicus housed alone in mesocosms had died. These solitary
beetle deaths started at week 4 and continued through the end of the
experiment. Mesocosms in which S. sexspinosus were alone did not
experience any mortality during the same time period.

Mass Changes Within Mesocosms
By the end of the fourth week of our experiment P. stygicus had loss 
mass in all treatments. There were, however, no differences in mass 
loss between beetles in interspecific compared to intraspecific pair-
ings (Fig. 3A, n = 15; Mann–Whitney U test; P = 0.76). Changes in 
mass of centipedes in interspecific compared to intraspecific pairings 
also did not differ (Fig. 3B, n = 15; Mann–Whitney U test; P = 0.47). 
Within intraspecific pairings, both species of predators experienced 
mass loss, but P. stygicus experienced a 9.8% loss compared to 1.3% 
for S.  sexspinosus (Fig. 3B and D, n = 28; Mann–Whitney U test; 
P = 0.0002), suggesting that intraspecific competition had a more 
negative effect on P.  stygicus than on S.  sexspinosus. In ten of 15 
intraspecific centipede mesocosms one individual gained mass at the 
expense of its box mate, and within three mesocosms, both indi-
viduals gained mass or remained the same mass (χ 2 = 3.53; df = 1; 
P = 0.06). In only three of 15 intraspecific P. stygicus mesocosms, did 
one individual gained mass while the other lost mass, and none of 
the individuals within the remaining 12 intraspecific pairings gained 
weight (χ 2 = 10.2, df = 1, P = 0.001).

Within interspecific pairings, 40% of S. sexspinosus gained mass 
or remained the same mass during the first 4 wk of the experiment 
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(Fig. 4A). However, when S. sexspinosus was paired with a conspe-
cific, over half of the individuals lost mass (Fig. 4B). When P. stygicus 
was paired with S.  sexspinosus, 73% lost mass (Fig. 4C), and in 
intraspecific pairings of P. stygicus 80% lost mass by the end of the 
fourth week (Fig. 4D). A larger proportion of P. stygicus lost mass 
when paired with S. sexspinosus (Fig. 4C) than S. sexspinosus lost 
when paired with P. stygicus (Fig. 4A), indicating that P. stygicus is 
an inferior interspecific competitor in laboratory mesocosms when 
compared to S. sexspinosus. Individuals of P. stygicus also suffered a 
much larger mass loss than S. sexspinosus, indicated by the distance 
of the points from the equal probability line in Fig. 4.

Leaf Litter Mesofauna
A total of 2,772 leaf litter invertebrates within 20 taxonomic groups 
were identified across the two intraspecific treatments (n = 15 each), 
the post-control mesocosms (n  =  15), and the pre-experimental 
samples (n = 15). Overall, invertebrate abundance was lower in the 
predator mesocosms than the pre- and post-control mesocosms, sug-
gesting that the predators were feeding upon the naturally occurring 
prey (Table 1). However, because some invertebrate groups increased 
in the presence of predators (e.g., Acari) and others decreased (e.g., 
Collembola), we did not detect a statistically significant effect on 
overall abundance. Invertebrate communities taken from the leaf 
litter of the P.  stygicus and S.  sexspinosus intraspecific treatments 
were not significantly different (ANOSIM, Global R  =  0.005, 
P  = 0.351, Fig. 5). There was a significant difference between the 

pairwise comparisons of each of the two predator treatments and the 
post-control mesocosms (Global R = 0.244, P = 0.003 [S. sexspinosus 
vs. control]; Global R = 0.214, P = 0.002 [P. stygicus vs. control]), 
indicating that the predators significantly affected the prey commu-
nity structure within mesocosms. Relative to the controls, centipedes 
and beetles reduced Collembola abundance by 83.6 and 82.6%, re-
spectively and Diplopoda by 77.3 and 91.8%, respectively. These re-
ductions relative to the controls, and other shared prey taxa (region 
A  in Fig. 6), suggest that S.  sexspinosus and P.  stygicus may have 
dietary overlap, at least seasonally. Mite numbers were higher in 
both intraspecific pairings compared to the post-control mesocosms, 
indicating that mites, and perhaps also Pseudoscorpiones, may be 
avoided by both predators (region C in Fig. 6). Region B in Fig. 6 
shows prey taxa that may contribute to dietary differences between 
these two predators.

Discussion

Despite empirical evidence supporting competition among phylo-
genetically divergent groups (reviewed in Wilcox et al. 2018), most 
work on niche dynamics focuses on related taxa. In an effort to help 
fill this knowledge gap, we examined the potential for competition 
between two phylogenetically distant species (a centipede and a 
carabid beetle) that overlap in prey and microhabitat use. Although 
similar in resource use, our focal species are profoundly different in 
key phenotypic features, including visual acuity, venom, locomotion, 
and trophic morphology. These unrelated phenotypic traits have the 
potential to contribute to asymmetric competition between other-
wise similar competitors (Wilcox et al. 2018). Our results suggest 
that species with very different trophic morphology have the po-
tential to compete for shared microhabitat and prey. Future studies 
might focus on shifts in trophic morphology, or changes in habitat 
use, by beetles in geographic regions where centipedes do not occur.

Co-occurrence Beneath Cover in the Field and 
Laboratory
Although there has been much debate about whether or not negative 
spatial associations in communities can arise randomly and in the 
absence of competition (reviewed in Hausdorf and Hennig 2007), 
the idea remains that if interspecific competition is an important 
factor shaping species distributions then the interaction should re-
sult in non-overlapping spatial patterns via exclusion of one or more 
species (Diamond 1975). Hickerson et al. (2012) used ACOs to dem-
onstrate that the removal of centipedes from open field plots resulted 
in a significant increase in the number of carabid beetles compared 
to control plots where no predators were removed. In our study, 
we examined more specifically, and at smaller scale, co-occurrence 
beneath cover using removal data from Hickerson et al. (2012) and 
found that during seasons in which both taxonomic groups were 
active on the surface, carabid beetles were significantly negatively 
associated with S. sexspinosus under ACOs. Our results corroborate 
the findings of Hickerson et al. (2012) and suggest that centipedes 
may exclude beetles from cover in the field.

We next determined that the most abundant carabid beetle spe-
cies at Hickerson’s field site was P. stygicus which we paired with 
the centipede, S. sexspinosus, in laboratory arenas to assess which 
species would gain access to the best quality microhabitat when 
presented with a gradient of poor to high-quality in simple arenas. 
While alone in arenas, both species occupied high-quality micro-
habitat. When paired in arenas, P. stygicus was able to inhabit the 
most desirable microhabitat underneath the cover and exclude 

Fig. 3. Mean mass of (A) Pterostichus stygicus, and (B) Scolopocryptops 
sexspinosus within interspecific (open circles), intraspecific (closed circles) 
and solitary treatments (triangles) over the course of the first 4 wk of the 
experiment (mean ± SE).
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S. sexspinosus in most pairings. Pterostichus stygicus quickly located 
the cover objects upon being placed in the arenas in all treatments
(solitary and interspecific pairings). However, when S.  sexspinosus

were placed within the arenas, all individuals explored the arena per-
imeter prior to settling in a location. Differences in behavior between 
the two species may be due to the inability of S. sexspinosus to see 

Table 1.  Mean (SE) numbers of invertebrates in control and experimental treatments

Control Predator

Taxa Pre Post S. sexpinosus P. stygicus

Collembola 8.73 (1.18) 19.53 (6.75) 3.43 (1.47) 3.40 (1.41)
Hymenoptera 0.13 (1.84) 0 (0.00) 0 (0.00) 0 (0.00)
Formicidae 1.27 (0.09) 0 (0.00) 0(0.00) 0.07 (0.07)
Acari 43.67 (0.28) 16.07 (2.87) 36.64 (9.68) 30.93 (10.37)
Isopoda 0.4 (12.47) 0.4 (0.19) 0.14 (0.10) 0.53 (0.22)
Coleoptera (adult) 0.2 (0.22) 0.33 (0.19) 0.07 (0.07) 0 (0.00)
Coleoptera (larvae) 1.53 (0.11) 0.73 (0.25) 0.21 (0.11) 0.8 90.26)
Rove Beetle 0.2 (0.67) 0.2 (0.11) 0.07 (0.07) 0.33 (0.13)
Lepidoptera (larvae) 1.33 (0.11) 0.67 (0.32) 0.36 (0.17) 0.27 (0.15)
Araneae 0.2 (0.46) 0.33 (0.16) 0 (0.00) 0.13 (0.09)
Diptera (adult) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Diptera (larvae) 0.47 (0.00) 0.73 (0.32) 0.64 (0.23) 0.07 (0.07)
Diplopoda 1.067 (0.17) 3.53 (1.41) 0.29 (0.16) 0.8 (0.28)
Annelida 0.2 (0.31) 0.27 (0.21) 0.29 (0.16) 0.67 (0.35)
Pseudoscorpionida 0.53 (0.15) 0.13 (0.09) 0.43 (0.17) 0.4 (0.16)
Thysanoptera 0.53 (0.17) 0.33 (0.33) 0 (0.00) 0 (0.00)
Nemotoda 0.4 (0.41) 0 (0.00) 0 (0.00) 0 (0.00)
Hemiptera nymph 0.27 (0.22) 0.4 (0.16) 0.07 (0.08) 0.07 (0.07)
Gastropoda 0.73 (0.16) 0.07 (0.07) 0 (0.00) 0.2 (0.20)
Chilopoda 0.4 (0.49) 0.2 (0.11) 0 (0.00) 0 (0.00)

Fig. 4. Equal probability plots illustrating mass gain and loss in three mesocosm treatments: two intraspecific pairings and the interspecific pairings. Points 
above the line indicate a mass gain by the end of the first 4 wk of the experiment, and points below the line represent individuals that lost weight during the 
same period. The further away the point is from the line, the greater the change in mass. (A) Changes in mass of S. sexspinosus (S) in interspecific pairings 
with P. stygicus (P). (B) Changes in mass of S. sexspinosus (S) when paired with a conspecific (S). (C) Changes in mass of P. stygicus (P) when paired with 
S. sexspinosus (S). (D) Changes in mass of P. stygicus (P) when paired with a conspecific (P). There are more points in intraspecific trails because both animals 
were included in the same plot.
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(Shelley 2002) and the ability of many species of carabid beetles to at 
least sense light and dark areas in their environment (Thiele 1977). 
In simply constructed arenas, P.  stygicus was able to easily detect 
the cover object and go directly to it, but S. sexspinosus took more 
time to determine its location. This delay in locating the cover object 
may have allowed the beetles to reach the high-quality microhabitat 
first and provided them with a residency advantage when defending 
the cover object from the centipede (Sensu Alcock and Bailey 1997, 
Gall et al. 2003). Our results indicate that although these two groups 
utilize similar microhabitat beneath cover, they do not do so at 
the same time. Results from Hickerson et al. (2012) showing that 
carabid beetles invaded cover objects that centipedes were removed 
from, and the data presented herein, suggest that competition may 

be preventing the co-occurrence of our focal predators. Other studies 
have found evidence in support of competition between species by 
examining negative co-occurrence. For example, Eastern Red-backed 
Salamanders (Plethodon cinereus) exhibit negative associations with 
centipedes (Anthony et al. 2007, Hickerson et al. 2004) and spiders 
(Hickerson et al. 2018); behavioral studies suggest that these spatial 
distributions arise via aggressive interference. During our mesocosm 
cover object experiment, we recorded instances of aggression. This 
behavior may be indicative of territorial defense of cover objects, but 
homing studies and laboratory observational trials to measure ad-
vertisement, defense and expulsion of intruders would be necessary 
prerequisites to drawing conclusions about territoriality.

IGP and Cannibalism
Laboratory mesocosms that mimicked forest floor leaf litter micro-
habitat allowed us to assess how shared, limited resources affect 
interactions between P.  stygicus and S.  sexspinosus. These pred-
ators experienced unequal, reciprocal IGP, S.  sexspinosus con-
sumed P.  stygicus in 40% of pairings, and P.  stygicus consumed 
S. sexspinosus in only 13% of pairings. Predation upon guild mem-
bers is expensive and risky behavior because large amounts of en-
ergy are required to subdue prey that are similar in size and fighting
ability to the predator (Polis et  al. 1989). Despite the risks, there
is a large and immediate energy gain for the predator, the elimin-
ation of a competitor, and possibly the elimination of predation
threats on juveniles of the predator species (Polis et  al. 1989). 
Scolopocrypotops sexspinosus is venomous and larger in mass and
length than P. stygicus, which may have given centipedes an advan-
tage in mesocosms via interference. Also, carabid beetles are known
to be voracious feeders (Lövei and Sunderland 1996) and likely
depleted prey within the mesocosms during the experiment. Thus,
although we cannot rule out other mesocosm related effects, the
high mortality rate by week 9 in solitary mesocosms may have been
due to starvation. Pterostichus stygicus, if weakened by starvation,
would have been vulnerable to predation by venomous centipedes.
Scolopocryptops sexspinosus appeared to better handle the stress of
reduced prey abundance over time and benefited from preying upon
P. stygicus, indicated by their significant gains in mass following
predation events. Polis et  al. (1989) suggested that at lower prey
densities, predators may expand their diet to include guild members, 
stabilizing predator–prey cycles and releasing pressure on non-guild
prey. Low prey density, leading to IGP, has been documented in other 
terrestrial arthropods, including spiders (Turner 1983), scorpions
(Polis and McCormick 1986), and ants (Mabelis 1984, Rosengren
1986). Many of the risks and benefits of IGP are similar to those of
cannibalism (Polis 1981). Cannibalism in intraspecific S. sexspinosus
pairings was relatively uncommon, occurring in 2 out of 15 pairings. 
However, cannibalism was much more common among conspecific
pairings of P.  stygicus (10 out of 15 mesocosms), suggesting that
intraspecific competition was much more intense within P. stygicus
pairings than in S. sexspinosus pairings.

High instances of IGP and cannibalism in laboratory mesocosms 
suggest that coexistence of these two species would be unlikely. 
However, there are many examples in which species partition niche 
space to alleviate strong effects of competition (Ross 1986, Martin 
et al. 2004, Proffit et al. 2007). Habitat complexity can play a role 
in the trophic interactions between intraguild predators by allowing 
them to occupy different microhabitats and thereby decreasing en-
counter rates. For example, Denno et al. (2004) found that Pardosa 
wolf spiders and Grammonota web-building spiders avoided can-
nibalism and IGP in complex habitats relative to simple laboratory 

Fig. 5. nMDS plot of invertebrate prey composition in the leaf litter from 
intraspecific Pterostichus stygicus mesocosms (white circles), intraspecific 
Scolopocryptops sexspinosus mesocosms (black circles), and the post-
experimental control mesocosms which did not contain either predator (X). 
Each point represents invertebrate prey from a single replicate mesocosm. 
The closer the points are to one another on the plot, the more similar they 
are in invertebrate composition. Invertebrates from the leaf litter of the two 
intraspecific treatments were not significantly different (Global R  =  0.005, 
P  =  0.351). There was a significant difference between the two predator 
treatments and the control mesocosms (ANOSIM, Global R = 0.244, P = 0.003 
[S. sexspinosus]; ANOSIM, Global R = 0.214, P = 0.002 [P. stygicus]).

Fig. 6. Changes in mean prey abundance within intraspecific mesocosms 
relative to control mesocosms. Region A shows prey taxa that were similarly 
reduced by Pterostichus stygicus (white bars) and by Scolopocryptops 
sexspinosus (black bars). Region B illustrates instances where diets of 
predators may differ. Region C contains prey that was avoided by both 
species of predator.
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arenas. Results from our studies indicate that being confined to 
mesocosms without resource replenishment elevated the chance of 
IGP and cannibalism. In the field, centipedes and carabid beetles can 
leave the simple microhabitat beneath cover and forage in the leaf 
litter thus avoiding predation or interference competition.

Leaf Litter Mesofauna—Diet Overlap
We detected no significant difference in mesofauna composition be-
tween the two predator treatments at the end of the experiment. 
The composition of mesofauna from the intraspecific mesocosms 
was significantly different than the post-experimental control 
mesocosms, indicating that the predators feeding habits were 
influencing mesofauna abundance and composition. The fact that 
P. stygicus and S. sexspinosus intraspecific treatments had a similar
composition of mesofauna suggests that their diets may overlap,
at least seasonally. Relative to the controls, centipedes and beetles
reduced Collembola and millipede abundance by over threefold.
Collembola represents a common prey for many generalist food
web predators (Clarke and Grant 1968, Maerz et al. 2005) and in
a laboratory study, Pterostichus melanarius consumed millipedes
in feeding trials (Brunke et al. 2009). Therefore, a reduction in the
numbers of these taxa may be a result of direct predation by pred-
ators in our mesocosms. Mite numbers were 2.28 times higher in
the S. sexspinosus mesocosms and 1.92 times higher in P. stygicus
mesocosms relative to controls. Increased mite numbers suggest that
mites may have benefited by the presences of the predators and that
the predators were not actively consuming them. Several studies
have shown that feces and nitrogenous waste can contribute to
predator effects on lower trophic levels in terrestrial above-ground
ecosystems (Pastor et  al. 1993, McNaughton et  al. 1997, Walton
and Steckler 2005). For example, the presence of red-backed sala-
manders enhances the densities of Collembola and mites in labora-
tory mesocosms by promoting the growth of microflora (Walton and 
Steckler 2005). Microflora serves as a food resource for Collembola
and many mite species are predatory on Collembola (Koehler 1999). 
In our mesocosms, feces and other wastes produced by centipedes
and beetles may have contributed to the growth of fungal hyphae
and ultimately contributed to increases in mite numbers.

Mass Changes Within Mesocosms
Over the course of the 9-wk experiment, mortality was high within 
mesocosms and instances of IGP and cannibalism made it difficult 
to detect the strength of interspecific competition using changes in 
mass. Scolopocryptops sexspinosus and P.  stygicus lost weight in 
both intra- and interspecific treatments, but treatment type had no 
effect on the amount of weight lost by the two predators. However, 
S. sexspinosus, on average, maintained their weight much better than 
P. stygicus. Although these results suggest that the pressures of intra- 
and interspecific competition more negatively affected P. stygicus, it
is also possible that beetles simply do not thrive in mesocosms. For
example, in our control (solitary) treatments, mortality and loss of
body mass by beetles necessitated using only the first 4 wk of data
to assess the strength of competitive interactions. For both species,
inter- and intraspecific competition had similar negative effects on
mass change within mesocosms at low resource levels, but we inter-
pret these results with some caution because we only marked indi-
viduals in intraspecific trials. If the marking technique had negative
effects, we may have over-estimated the effects of intraspecific com-
petition. However, we detected no differences in mortality between
marked and unmarked individuals, so we doubt that limb clipping
had a significant effect. Future studies could be conducted using leaf

litter collected during higher periods of secondary productivity, ei-
ther in mid-spring or early fall, when moisture levels are higher and 
when leaf litter mesofauna are more abundant.

Evidence from this study suggests that P.  stygicus and 
S. sexspinosus compete for similar resources in mesocosms, and may 
compete in the field, indicated by their negative spatial associations
in the field and laboratory. In temperate forest floor ecosystems, sea-
sonal fluctuations in leaf litter mesofauna, which are more abundant
in the spring and fall, and less abundant in the summer, may change
the outcome of intra-and interspecific competition within these com-
munities. The estimated similarity in diet and negative co-occurrence 
under cover objects of the focal predators in this study suggests
that exploitative competition may be occurring between these two
species. The high rate of IGP on P. stygicus by S. sexspinosus adds
to the growing evidence that IGP is a widespread occurrence and
probably important in helping explain food web dynamics (Polis
et al. 1989, Polis and Strong 1996, Holt and Polis 1997). Although
S. sexspinosus preyed heavily on P. stygicus in our mesocosms, intra-
specific competition appears to be more intense than interspecific
competition for both species. Mechanisms that allow coexistence
in natural systems with multiple competitors (more than two) are
understudied, and we do not fully understand how community
structure affects coexistence and ultimately species richness (Levine
et al. 2017). Future research aimed at examining the effects of IGP
on competitive outcomes could include density manipulations of
more than two intraguild predator species crossed with intra- and
interspecific treatments and should include estimates of interaction
strengths for each treatment. Such an experimental design may help
us better understand how such mechanisms of coexistence in forest
floor systems maintain stability.
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