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Introduction

Predation and disease are important selective pressures that
affect individuals, populations, and communities, thereby
driving the evolution of highly diverse defensive strategies
(Edmunds 1974). The use of unpalatable or toxic com-
pounds as a defense mechanism is a common adaptation
present in a variety of microorganisms, plants, inverte-
brates, and vertebrates (reviewed in Mebs 2001). Among

vertebrates, chemical defenses are widely known for
protecting against predators, but they also play a critical
role in defending against pathogenic microorganisms
(Nicolas and Mor 1995). Amphibians secrete a variety of
chemicals from dermal granular glands, including biogenic
amines (Daly et al. 1987; Erspamer 1994; McClean et al.
2002), peptides and proteins (Rollins-Smith 2005; Conlon
2011a, b), steroidal bufadienolides (Daly 2004; Erspamer
1994), tetrodotoxin and related analogs (Yotsu-Yamashita
et al. 2004; Cardall et al. 2004), indolic alkaloids (Daly and
Garraffo 1990; Jeckel et al. 2015a), and an array of lipo-
philic alkaloids (Daly et al. 2005; Saporito et al. 2012).
Amphibians synthesize the majority of these chemical de-
fenses (Toledo and Jared 1995; Daly 1995), but some anti-
microbial peptides and metabolites are provided by micro-
bial symbionts (Brucker et al. 2008; Harris et al. 2009;
Becker and Harris 2010; Loudon et al. 2014), and lipophilic
alkaloids are acquired through diet (Saporito et al. 2009).
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Abstract
Most amphibians produce their own defensive chemicals; however, poison frogs sequester their alkaloid-based defenses 
from dietary arthropods. Alkaloids function as a defense against predators, and certain types appear to inhibit microbial 
growth. Alkaloid defenses vary considerably among populations of poison frogs, reflecting geographic differences in 
availability of dietary arthropods. Consequently, environmentally driven differences in frog defenses may have significant 
implications regard-ing their protection against pathogens. While natural alkaloid mixtures in dendrobatid poison frogs have 
recently been shown to inhibit growth of non-pathogenic microbes, no studies have examined the effectiveness of alkaloids 
against microbes that infect these frogs. Herein, we examined how alkaloid defenses in the dendrobatid poison frog, Oophaga 
pumilio, affect growth of the  known anuran pathogens Aeromonas hydrophila and Klebsiella pneumoniae. Frogs were 
collected from five locations through-out Costa Rica that are known to vary in their alkaloid profiles. Alkaloids were isolated 
from individual skins, and extracts were assayed against both pathogens. Microbe subcultures were inoculated with extracted 
alkaloids to create dose-response curves. Subsequent spectrophotometry and cell counting assays were used to assess growth 
inhibition. GC-MS was used to characterize and quantify alkaloids in frog extracts, and our results suggest that variation in 
alkaloid defenses lead to differences in inhibition of these pathogens. The present study provides the first evidence that alkaloid 
variation in a dendrobatid poison frog is associated with differences in inhibition of anuran pathogens, and offers further 
support that alkaloid defenses in poison frogs confer protection against both pathogens and predators.
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Poison frogs are a polyphyletic group of anurans that have
evolved to accumulate and secrete lipophilic alkaloids seques-
tered from dietary arthropods as a defense. This globally-
distributed assemblage is represented by more than 150 spe-
cies from seven lineages in the families Bufonidae
(Melanophryniscus), Dendrobatidae, Eleutherodactylidae
(Eleutherodactylus) , Mantell idae (Mantella) , and
Myobatrachidae (Pseudophryne) (reviewed in Saporito et al.
2012). Experimental evidence of alkaloid sequestration in
bufonids (Hantak et al. 2013), dendrobatids (Daly et al.
1994), mantellids (Daly et al. 1997), and myobatrachids
(Smith et al. 2002) suggests that poison frogs uptake and store
an assortment of lipophilic alkaloids (i.e., alkaloid cocktails)
obtained from alkaloid-containing ants, mites, beetles, and
millipedes (Daly et al. 2002; Saporito et al. 2007a, b, 2009).

Alkaloids in poison frogs are considered an effective de-
fense against predators as a result of their unpalatability and/or
toxicity (Hantak et al. 2016; Murray et al. 2016; Bolton et al.
2017), but they may also provide protection frommicroorgan-
isms including parasites, bacteria, and fungi (Macfoy et al.
2005; Weldon et al. 2006; Grant et al. 2012; Mina et al.
2015 ) . A lka lo i d s i n t he bu fon i d po i s on f r og ,
Melanophryniscus simplex, occupy muscle and liver tissues,
as well as oocytes, in the same relative proportions as the skin,
and may deter internal parasites (Grant et al. 2012).
Pumiliotoxin 251D, a common alkaloid among dendrobatid
poison frogs, appears to be a highly effective deterrent of a
tropical mosquito known to parasitize anurans (Weldon et al.
2006). Individual synthetic and natural alkaloids inhibit the
growth of the common bacteria Bacillus subtilis (Gram-
positive) and Escherichia coli (Gram-negative), and the fun-
gus Candida albicans (Macfoy et al. 2005). Most recently,
natural alkaloid cocktails isolated from the dendrobatid poison
frog, Oophaga pumilio, were found to inhibit growth of those
same commonmicrobes to varying degrees (Mina et al. 2015).

Over 1200 unique alkaloids in 28 structural classes have
been identified from poison frog skin secretions (Daly et al.
2005; Garraffo et al. 2012; Saporito et al. 2012; Jeckel et al.
2015a; Santos et al. 2016). Poison frogs accumulate between
one and 69 of these individual alkaloids in varying quantities
(Daly et al. 2005; Saporito et al. 2006, 2007a; Mina et al.
2015). Dendrobatid alkaloid defenses vary considerably in
diversity and quantity within and among populations primar-
ily as a result of differences in the local availability of dietary
arthropods (Myers and Daly 1976; Daly et al. 1987, 2008a;
Saporito et al. 2006, 2007a), although factors such as species,
sex, age, and life stage are also important determinants of
variation (Saporito et al. 2010a, b, 2012; Stynoski et al.
2014; Jeckel et al. 2015b). Given that antimicrobial activity
differs among individual alkaloids (Macfoy et al. 2005) and
among natural alkaloid cocktails (Mina et al. 2015),

environmentally-driven differences in alkaloid defenses may
influence protection against natural pathogens at the popula-
tion level. Specifically, populations with greater quantities of
alkaloids and more diverse alkaloid cocktails likely benefit
from enhanced protection from pathogenic microorganisms,
although this has not yet been tested.

Numerous pathogenic microorganisms infect amphib-
ians, including opportunistic Gram-negative bacteria, the
chytrid fungus Batrachochytrium dendrobatidis (Bd),
mycobacteria, ranaviruses, water molds, trematodes, and
other various parasites (Taylor et al. 2001; Green et al.
2002; Schadich and Cole 2010). Opportunistic Gram-
negative bacteria have been frequently implicated in bac-
terial dermatosepticemia, a fatal systemic infectious dis-
ease in frogs that has been linked to population declines
and extirpations in the wild (Nyman 1986; Bradford 1991;
Sherman and Morton 1993) and mass mortalities in captiv-
ity (Green et al. 1999). Although numerous Gram-negative
bacilli may cause dermatosepticemia, bacteria such as
Aeromonas hydrophila have been most frequently impli-
cated as the etiological agent, and host susceptibility de-
pends on the amphibian species as well as environmental,
stress, dietary, health, and immune status factors (Schadich
and Cole 2010). For instance, Schadich and Cole (2010)
isolated the Gram-negative A. hydrophila, Klebsiella
pneumoniae, and Proteus mirabilis from infected brown
tree frogs (Litoria ewingii) during a dermatosepticemia
epizootic, and determined that K. pneumoniae was the
most virulent in healthy frogs. Although antimicrobial pep-
tide defenses are thought to have evolved as a secondary,
broad-spectrum immune defense (Nicolas and Mor 1995;
Roelants et al. 2013) and are effective in that role
(Simmaco et al. 1998a, b; Zasloff 2002; Rollins-Smith
2005), there is a fundamental gap in our understanding of
the role that sequestered alkaloid defenses serve in
defending poison frogs from infection.

Research on the antimicrobial activity of alkaloid defenses
in frogs (Macfoy et al. 2005; Mina et al. 2015) has focused on
the dendrobatid poison frog, O. pumilio, a terrestrial
dendrobatid frog whose alkaloid defenses are relatively well-
characterized and vary considerably with geographic location
at both small and large spatial scales (Saporito et al. 2006,
2007a, 2010a). The substantial variability in O. pumilio alka-
loid defenses, in addition to an abundance of previously-
identified alkaloids, makesO. pumilio an ideal study organism
in which to examine ecologically relevant antimicrobial activ-
ity of sequestered alkaloid defenses. The aim of the present
study is to examine the extent to which the variable alkaloid
defenses in a dendrobatid poison frog, O. pumilio, inhibit the
growth of the anuran pathogens A. hydrophila and
K. pneumoniae.



Methods and Materials

Study Sites and Frog CollectionsA total of 70 adultO. pumilio
were collected from five lowland tropical rainforest sites
throughout eastern Costa Rica (n = 14 per site), which were
selected based on known differences in the alkaloid defenses
(i.e., number and quantity of unique alkaloids and alkaloid
structural classes) of O. pumilio from each site (alkaloid data
from Saporito et al. 2007a). Frogs were collected from each of
the following locations: La Selva Biological Station (10°26’
N, 83°59’ W; 7 males and 7 females), Finca los Nacientes
(10°21′53^ N, 84°8′6^ W; 8 males and 6 females),
Tortuguero (10°35′14^ N, 83°31′34^ W; 7 males and 7 fe-
males), Río Palmas (10°10′16^ N, 83°36′26^ W; 8 males
and 6 females), and Gandoca (9°35′03^ N, 82°37′13^ W; 7
males and 7 females). Frogs were collected within a single
45 m × 45 m collection plot at each site, sexed based on gular
skin patches (Donnelly 1989), measured for snout-to-vent
length (SVL), and euthanized by freezing at −20 °C. Frog
skins were stored individually in 4 mL of 100% methanol
contained in glass vials sealed with Teflon-lined caps (Bmeth-
anol extract^).

Alkaloid Fractionations Alkaloids were extracted from frog
skins using the procedure outlined in Saporito et al. (2010a),
which is briefly described here. One mL of each methanol
extract was transferred to a 10 mL conical vial and acidified
with 50 μL hydrochloric acid (1 N). Each sample was then
mixed and evaporated to a volume of 100 μL using nitrogen
gas, followed by dilution with 200 μL deionized water.
Samples were then extracted with four 300 μL portions of
hexane. The organic hexane layer was then disposed of, and
the remaining aqueous solution was basified with sodium bi-
carbonate. Once basicity was verified with pH paper, each
sample was extracted with three portions of 300 μL ethyl
acetate. Anhydrous sodium sulfate was added to remove re-
maining trace amounts of water. The remaining samples were
carefully evaporated to dryness with nitrogen gas. Alkaloid
fractions were resuspended in 100 μL of methanol and stored
at −20 °C.

Alkaloid Analysis To determine which unique alkaloids were
present in extracts, and in what quantities (μg), samples of
individual frog extracts containing a nicotine standard (1 μg/
10μL; (−)-nicotine ≥99%, Sigma-Aldrich) were analyzed using
gas chromatography-mass spectrometry (GC-MS). Analyses
were performed on a Varian Saturn 2100 T ion trapMS coupled
to a Varian 3900 GC with a 30 m × 0.25 mm ID Varian
FactorFour VF-5 ms fused silica column. The temperature pro-
gram increased from 100 °C to 280 °C at a rate of 10 °C/min
and heliumwas the carrier gas (flow rate of 1mL/min). Samples

of alkaloid fractions were analyzed using both electron impact
(EI) MS and chemical ionization (CI) MS, with methanol as the
CI reagent. EI-MS for alkaloid identification and quantification
was conducted in triplicate for each frog and CI-MS for alkaloid
identification was performed once. In total, four 1 μL samples
from each of 70 frogs’ alkaloid extract were analyzed (n = 280
GC-MS runs).

Unique alkaloids were identified by comparing and
matching retention times and mass spectral data of individual
peaks, largely with data from the alkaloid library presented in
Daly et al. 2005 (but also Daly et al. 2007, 2008a, b, 2009;
Saporito et al. 2007a; Garraffo et al. 2012; Grant et al. 2012;
Fitch et al. 2013; Andriamaharavo et al. 2015), which includes
alkaloid assignment data and confirmed/proposed alkaloid
structures. Synthetic standards for DHQ 195A, DHQ 211A,
and 5,8-I 235B (N. Toyooka, University of Toyama) were
used in identification, and to calibrate the retention times for
other alkaloids when comparing them to previously identified
alkaloids. The quantity of unique alkaloids present in each
frog was calculated by comparing each alkaloid’s peak to an
internal nicotine standard (1 μg/10 μL; (−)-nicotine ≥99%,
Sigma-Aldrich) using Varian MSWorkstation v.6.9 SPI; how-
ever, it should be noted that this type of quantitation should be
considered semi-quantitation, given that ionization likely dif-
fers between nicotine and frog alkaloids as well as among
di ffe ren t a lka lo ids ( for fu r the r d iscuss ion , see
Andriamaharavo et al. 2015).

Culture and Maintenance of Microbes Liquid cultures of
Aeromonas hydrophila (ATCC 35654) and Klebsiella
pneumoniae subsp. pneumoniae (ATCC 13883) were incubat-
ed in tryptic soy broth (TSB; Remel) for 18 hr at 30 °C
(A. hydrophila) or 37 °C (K. pneumoniae) with 200 rpm agi-
tation. All cultures were grown to the mid-log phase prior to
dilution for the growth inhibition assays.

Microbial Growth Inhibition Assays Optical density (OD) as-
says were adapted from an assay described by Mina et al.
(2015). Based on pilot growth experiments, cultures were di-
luted with TSB to a ratio of 1:10 (A. hydrophila) or 1:5
(K. pneumoniae) and equal volumes (200 μL; Bsubcultures^)
were immediately aliquotted into 96-well flat-bottom micro-
plate (Falcon). Aliquots of alkaloids from individual frogs and
pure methanol were added in the amount of 2.4 and 4.8 μL to
four replicate wells (subsamples) each. Methanol alone served
as the vehicle control given that alkaloid extracts were dis-
solved in methanol. Treatment volumes were selected based
on pilot experiments which indicated that 9.6 μL of methanol
in 200 μL of A. hydrophila was highly inhibitory and would
likely obscure any inhibition due to natural alkaloid extracts;
while treatments with 2.4 μL and 4.8 μL of methanol were



inhibitory compared to negative controls, differences between
methanol and alkaloid treatments were still evident at these
volumes. Moreover, the treatment volumes are considered
ecologically relevant for what microbes may be exposed to
on frog skin, representing 0.6% and 1.2%, respectively, of the
total quantity of alkaloids present in each individual frog skin.

Immediately following inoculation, the microplate was
placed in a Fisher Scientific Multiskan FC microplate reader
inside an incubator (ThermoForma) at the microbe’s corre-
sponding growth temperature. A baseline measurement of
each subculture’s OD at 620 nm (OD620) was recorded prior
to incubation to verify that all subcultures began at an OD
similar to those in pilot experiments (± 0.02 OD620) to account
for random variation. A 24-hr program that recorded OD620 at
15-min intervals after shaking the plate at medium speed for
five seconds was used to create 24-hr growth curves for each
treatment. The final OD620 readings of subsamples per treat-
ment were averaged for use in statistical analyses of OD assays.

Colony-forming unit (CFU) assays were used to assess the
viability of the aforementioned subcultures after a 24-hr incu-
bation period with natural alkaloid extracts and methanol
treatments. Immediately following the final measurement of
OD assays, three randomly-selected subsamples from each
treatment were serially-diluted in tenfold increments up to
10−7 using microplates. Ten microliters of each serial dilution
were then plated on TSA in square 6 × 6 gridded petri dishes
(Fisherbrand) and incubated until single colonies (i.e., colony-
forming units) formed. Once CFUs were visible, the number
of CFUs at each dilution (10−1 – 10−7) for each subsample was
recorded. When CFU counts exceeded 30, colonies tended to
grow into one another and it became difficult to accurately
quantify CFUs. Therefore, the serial dilution that grew
CFUs nearest to 30 in number, while still being equal to or
below 30, was used to calculate the original cell density
(OCD; CFU/mL; equation below) of each subsample. The
average of each treatment’s three subsample OCD values
was used in statistical analyses.

Original cell density CFU=mLð Þ

¼ Colony−forming unitsð Þ
Dilution factor

�
�
�
Volume of aliquot in mL

� �

In the OCD equation, dilution factor refers to the magni-
tude of dilution of the quantified aliquot (e.g., 10−7), and vol-
ume of aliquot in mL refers to the volume of each subsample’s
dilutions that were plated (10 μL in this case, or 0.01 mL).

Statistical Analyses Since alkaloid composition is a collective
measure of the number, type, and quantity of alkaloids within
individual frog skins, nonmetric multidimensional scaling
(NMDS) was used to visualize differences in alkaloid

composition among populations. Analysis of similarity
(ANOSIM) was used to detect statistical differences in alka-
loid composition among these populations. Multivariate anal-
yses were based on Bray-Curtis similarity matrices and per-
formed using PRIMER-E version 5.

A nested one-way analysis of variance (ANOVA) was used
to examine variation of growth inhibition within individual
frog alkaloid treatments in both OD and CFU assays for each
microbe. A two-tailed, unpaired, independent samples t-test
was used to determine the presence of a dose-response rela-
tionship between 2.4 and 4.8 μL doses in both OD and CFU
assays for each microbe. The effects of alkaloids on microbial
growth were assessed using one-way ANOVA; final optical
densities (growth inhibition) and CFU/mL after treatment (re-
maining viable cells) of frog alkaloid and methanol treatments
in the 4.8 μL treatment were compared among populations
and for each pathogen. Multiple comparisons (Tukey’s
HSD) were used to identify differences in microbial growth
inhibition of frog alkaloids from each population compared to
methanol treatments. To determine the effects of frog popula-
tion and sex on growth inhibition, two-way ANOVAwas con-
ducted for each assay with each microbe. Linear regression
analyses were performed to assess relationships between alka-
loid composition (diversity and quantity) and growth inhibi-
tion (OD and CFU assays) for each microbe, and to test the
relationship between OD and CFU assays for each microbe.
All parametric statistical analyses were performed using SPSS
version 14.0 and GraphPad Prism version 6.05.

Results

Alkaloid Analysis GC-MS analysis of 70 Oophaga pumilio
from five Costa Rican populations resulted in the identifica-
tion of 353 unique alkaloids (including isomers) represented
by 19 different structural classes (see Online Resource
Table 1 for the most common alkaloids identified in each
population and Online Resource Table 2 for all identified
alkaloids). The majority of these alkaloids are derived from
mites and ants. Alkaloid composition of O. pumilio differed
significantly among the five populations (Global R = 0.91;
P = 0.001; Online Resource Fig. 1a), but not between sexes
(Global R = 0.03; P = 0.966). Frogs from Finca los Nacientes
contained the largest number and greatest quantity of alka-
loids, while frogs from Gandoca contained the lowest number
of alkaloids and contained similarly low quantities of alka-
loids as frogs from La Selva (see Table 1 for details on alka-
loid composition by population and sex). In general, frogs
from Tortuguero and Finca los Nacientes contained about
three times as much alkaloid (in terms of quantity, μg per frog
skin) as frogs from La Selva, Río Palmas, and Gandoca
(Online Resource Fig. 1b).



Alkaloid quantity and diversity are also strongly correlated
(F1,68 = 49.47, P < 0.001; R2 = 0.421; Online Resource
Fig. 2), although the relationship appears to be exponential
rather than linear. In general, frogs containing higher quanti-
ties of alkaloids also possessed more diverse alkaloid cock-
tails, but fewer new types of alkaloids were represented with
increasing alkaloid quantities.

Dose-Response Relationship between 2.4 μL and 4.8 μL
Treatments Exposure of both A. hydrophila and
K. pneumoniae to increased doses of alkaloid treatments indi-
cates that there is a clear dose-response relationship between
treatments and microbial growth inhibition. With both
A. hydrophila and K. pneumoniae, 4.8 μL treatments resulted
in consistently lower final optical density readings (t138 =
13.19, P < 0.001; t138 = 10.15, P < 0.001) and reduced viable
cell counts (t138 = 8.47, P < 0.001; t138 = 6.65, P < 0.001), re-
spectively, in comparison to 2.4 μL treatments. In accordance

with the dose-response relationship, differences in microbial
growth inhibition between control and alkaloid treatments
were more evident in 4.8 μL treatments; therefore, the results
for all following assays and comparisons are reported for
4.8 μL treatments only (Figs. 1, 2, 3, 4 and 5).

Aeromonas hydrophila Optical Density Assays Mean optical
density of A. hydrophila treated with alkaloid cocktails from
the five locations of O. pumilio differed significantly among
the five populations of O. pumilio and methanol controls
(F5,78 = 13.04; P < 0.001; Fig. 1a); however, mean optical
density ofA. hydrophila treated with alkaloids from individual
frogs did not differ within samples (F18,312 = 1.09; P = 0.360).
The mean optical density of A. hydrophila treated with alka-
loids from Tortuguero, La Selva, and Finca los Nacientes
frogs was significantly less than the methanol control, while
the mean optical density of A. hydrophila treated with alka-
loids from Río Palmas and Gandoca frogs showed no change.

Table 1 Diversity (alkaloids per frog skin) and quantity (μg per frog skin) of alkaloid defenses from each population of Oophaga pumilio

Average
diversity

Average
♀
diversity

Average
♂
diversity

Total
diversity

Total ♀
diversity

Total ♂
diversity

Average
quantity

Average
♀
quantity

Average
♂
quantity

Total
quantity

Total ♀
quantity

Total ♂
quantity

Tortuguero 37 39 36 521 272 249 986 1224 748 13,807 8567 5239

La Selva 33 36 30 458 250 208 344 462 225 4811 3233 1578

Finca los Nacientes 54 55 53 758 441 317 1181 1219 1130 16,528 9750 6778

Río Palmas 39 42 36 548 334 214 264 295 223 3697 2357 1340

Gandoca 26 21 31 364 147 217 344 280 524 4812 1148 3665

All populations 38 39 37 2649 1444 1205 624 677 564 43,656 25,056 18,600

Total diversity represents the sum number of alkaloids identified in all 14 frogs from each location. Total quantity represents the sum quantity of alkaloid
present in all 14 frogs from each location

Fig. 1 Mean final optical
densities (OD620) (a) and viable
cell counts (CFU/mL) (b) of
Aeromonas hydrophila after
treatment with alkaloid cocktails
extracted from Oophaga pumilio.
The dotted line represents the
mean OD620 and CFU/mL for the
methanol control, error bars
represent ±1 SEM, and treatment
means that are significantly
different from each other are
indicated by different letters
(Tukey’s HSD, P < 0.05)



There was no interaction between the effects of frog popula-
tion and sex for optical density assays with A. hydrophila
(F4,60 = 0.92, P = 0.459).

Aeromonas hydrophila Colony-Forming Unit Assays The
number of viable cells of A. hydrophila treated with alkaloid
cocktails differed significantly among the five populations of
O. pumilio and methanol controls (F5,78 = 15.89; P < 0.001;
Fig. 1b); however, mean viable cell counts of A. hydrophila
treated with alkaloids from individual frogs did not differ
within samples (F12,234 = 0.90; P = 0.545). The CFU’s recov-
ered from A. hydrophila treated with alkaloids from all popu-
lations were significantly less than the methanol control.
There was a statistically significant interaction between frog
population and sex in CFU assays with A. hydrophila (F4,60 =
3.79, P = 0.008), although there was no difference in original
cell density between sexes after treatment with alkaloid cock-
tails from frogs (F1,60 = 0.99, P = 0.324); in other words, the
more inhibitory sex varied among populations.

Klebsiella pneumoniae Optical Density Assays Mean optical
density of K. pneumoniae treated with alkaloid cocktails from
the five locations of O. pumilio differed significantly among
the five populations of O. pumilio and methanol controls
(F5,78 = 12.67; P < 0.001; Fig. 2a); however, mean optical
density of K. pneumoniae treated with alkaloids from individ-
ual frogs differed within samples (F18,312 = 2.93; P < 0.001).
The mean optical density of K. pneumoniae treated with alka-
loids from Tortuguero, Finca los Nacientes, and Gandoca
frogs was significantly less than the methanol control, while
the mean optical density of K. pneumoniae treated with alka-
loids from La Selva and Río Palmas frogs showed no change.
There was no interaction between the effects of frog popula-
tion and sex for optical density assays with K. pneumoniae
(F4,60 = 1.99, P = 0.107).

Klebsiella pneumoniae Colony-Forming Unit Assays The
number of viable cells of K. pneumoniae treated with alkaloid
cocktails differed significantly among the five populations of

Fig. 2 Mean final optical
densities (OD620) (a) and viable
cell counts (CFU/mL) (b) of
Klebsiella pneumoniae after
treatment with alkaloid cocktails
extracted from Oophaga pumilio.
The dotted line represents the
mean OD620 and CFU/mL for the
methanol control, error bars
represent ±1 SEM, and treatment
means that are significantly
different from each other are
indicated by different letters
(Tukey’s HSD, P < 0.05)

Tortuguero La Selva Finca los Nacientes Palmas Gandoca

a bFig. 3 Relationship between
optical density and colony-
forming unit assays for (a)
Aeromonas hydrophila and (b)
Klebsiella pneumoniae treated
with alkaloids extracted from
Oophaga pumilio



O. pumilio and methanol controls (F5,78 = 26.41; P < 0.001;
F ig . 2b) ; however, mean v iab le ce l l coun t s o f
K. pneumoniae treated with alkaloids from individual frogs
did not differ within samples (F12,234 = 0.52; P = 0.899). The
CFU’s recovered from K. pneumoniae treated with alkaloids
from all populations was significantly less than the methanol
control. There was a statistically significant interaction be-
tween frog population and sex in colony-forming unit assays
with K. pneumoniae (F4,60 = 2.81, P = 0.033), although there
was no difference in original cell density between sexes after
treatment with alkaloid cocktails from frogs (F1,60 = 0.14, P =
0.706); similarly to colony-forming unit assays with
A. hydrophila, the more inhibitory sex varied among
populations.

Relationship between Optical Density and Colony-Forming
Unit Assays Optical density assays and colony-forming unit
assays were strongly correlated for both A. hydrophila
(F1,68 = 80.88, P < 0.001, R2 = 0.543; Fig. 3a) and
K. pneumoniae (F1,68 = 85.52, P < 0.001, R2 = 0.557; Fig.

3b). The patterns in growth inhibition among O. pumilio pop-
ulations were identical between the two assays for both mi-
crobes (Figs. 1 and 2).

Relationships between Alkaloid Composition and Growth
Inhibition Alkaloid-based growth inhibition of A. hydrophila
was correlated with both alkaloid diversity and composition of
O. pumilio (Fig. 4). Alkaloid diversity was a moderate predic-
tor of growth inhibition by proxy of both OD (F1,68 = 48.60,
P < 0.001, R2 = 0.417; Fig. 4a) and CFU assays (F1,68 =
17.92, P < 0.001, R2 = 0.209; Fig. 4b). Alkaloid quantity was
also a moderate predictor of growth inhibition by proxy of
both OD (F1,68 = 53.46, P < 0.001, R2 = 0.440; Fig. 4c) and
CFU assays (F1,68 = 13.79, P < 0.001, R2 = 0.169; Fig. 4d).

Alkaloid quantity, but not diversity, was a better predictor
of growth inhibition of K. pneumoniae compared to
A. hydrophila (Figs. 4 and 5). Alkaloid diversity was a mod-
erately weak predictor of both OD (F1,68 = 19.05, P < 0.001,
R2 = 0.219; Fig. 5a) and CFU assays (F1,68 = 34.22,P < 0.001,
R2 = 0.335; Fig. 5b). However, alkaloid quantity was a
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comparatively stronger predictor of both OD (F1,68 = 63.35,
P < 0.001,R2 = 0.482; Fig. 5c) and CFU assays (F1,68 = 68.73,
P < 0.001, R2 = 0.503; Fig. 5d) for K. pneumoniae.

Discussion

Alkaloid-based chemical defenses in poison frogs are unpal-
atable and/or toxic to a variety of invertebrates and verte-
brates, and function accordingly as a defense against predators
(Brodie and Tumbarello 1978; Fritz et al. 1981; Szelistowski
1985; Weldon et al. 2013; Stynoski et al. 2014; Hantak et al.
2016; Hovey et al. 2016; Murray et al. 2016). Individual al-
kaloids and natural alkaloid cocktails from the dendrobatid
poison frog O. pumilio have also recently been shown to in-
hibit the growth of select microbes (Macfoy et al. 2005; Mina
et al. 2015), suggesting that alkaloids may provide a dual
defense against both predators and infection. The present
study supports this hypothesis and demonstrates that seques-
tered alkaloid defenses from various populations ofO. pumilio
inhibit the growth of microbes that infect anurans and

contribute to substantial mortality in captivity and in the wild
(i.e., pathogenic microbes); however, populations of
O. pumilio also appear to vary in their ability to inhibit these
pathogens.

Poison frogs accumulate unique suites of alkaloids gradu-
ally over the course of their lifetime as they consume alkaloid-
containing arthropods (Saporito et al. 2009). In the present
study, the composition of alkaloid defenses (i.e., quantity
and diversity) differed significantly among populations,
reflecting disparities in the type and availability of dietary
arthropods at each location (Saporito et al. 2007a, 2009,
2012). Similarly, the extent of growth inhibition of both
A. hydrophila and K. pneumoniae differed significantly
among populations, most likely as a direct result of each pop-
ulation’s distinct alkaloid composition.

Alkaloid quantity and alkaloid diversity are strongly corre-
lated in the studied populations of O. pumilio. As the quantity
of alkaloids in individual frogs increased, so did the number of
unique alkaloids acquired. Likewise, alkaloid cocktails in the
present study inhibited the growth of A. hydrophila and
K. pneumoniae more effectively as alkaloid quantity and
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alkaloid diversity increased. Accordingly, alkaloid cocktails
from Finca los Nacientes and Tortuguero frogs inhibited
growth of A. hydrophila and K. pneumoniae most effectively
of all populations in both assays. Finca los Nacientes frogs
were protected by alkaloid defenses that were, on average,
nearly threefold greater in quantity and 40–100% more di-
verse than those La Selva, Río Palmas, and Gandoca frogs.
Alkaloid cocktails from Tortuguero frogs were comparable in
quantity to alkaloids from Finca los Nacientes frogs, but were
instead similar in diversity to alkaloids from La Selva and Río
Palmas frogs and higher in diversity than Gandoca.
Additionally, the predominant alkaloids present in Finca los
Nacientes frog alkaloid cocktails (comprising about half of the
total quantity) included 5,8-disubstituted indolizidines,
decahydroquinolines, and histrionicotoxins, whereas the most
abundant alkaloids in Tortuguero frogs (over 60% of the total
quantity) were 5,8-disubstituted indolizidines and 5,6,8-tri-
substituted indolizidines. On the basis of these findings, larger
quantities of more diverse alkaloids provided enhanced anti-
microbial protection, but 5,8-disubstituted indolizidines,
5,6,8-trisubstituted indolizidines, decahydroquinolines, and
histrionicotoxins may also be particularly inhibitory alkaloid
classes.

All populations of O. pumilio in the present study
contained disproportionately high quantities and numbers of
mite-derived, branched-chain alkaloids, such as 5,8-disubsti-
tuted indolizidines and 5,6,8-trisubstituted indolizidines,
which is typical of Costa Rican O. pumilio (Saporito et al.
2007b, 2009, 2011, 2015; Bolton et al. 2017). However, the
alkaloid cocktails from the same populations also varied wide-
ly in inhibitory efficacy despite sharing large proportions of
these common mite-derived alkaloids. The large quantities of
these common alkaloids present in the more inhibitory Finca
los Nacientes and Tortuguero frogs suggest that these alka-
loids may become particularly inhibitory above a certain
threshold, which could explain the comparatively reduced in-
hibition by other populations that share these same alkaloids,
but in lower quantities. Alternatively, Finca los Nacientes
frogs also contained distinctly high quantities of ant-derived
decahydroquinoline and histrionicotoxin alkaloids when com-
pared to other populations, which may also play an important
role in Finca los Nacientes frogs’ markedly effective inhibi-
tion. Although these findings from both mite- and ant-derived
alkaloids suggest that alkaloid quantity contributes more to
microbial growth inhibition than alkaloid diversity, the acqui-
sition of such extreme quantities of alkaloid defenses presum-
ably takes years to accrue in individual frogs. Interestingly,
inhibition by La Selva frogs indicates that tremendous quan-
tities of alkaloids, such as those present in frogs from Finca los
Nacientes and Tortuguero, are not necessary for comparable
protection.

In the present study, alkaloid diversity varied considerably,
from an average of 26 unique alkaloids in Gandoca frogs to 54

unique alkaloids in Finca los Nacientes frogs, although
Tortuguero, La Selva, and Río Palmas frogs contained the
average 38 unique alkaloids per frog. The alkaloid defenses
of frogs from La Selva and Gandoca were virtually identical in
terms of average quantity, but Gandoca alkaloids were about
25% less diverse than those from La Selva, representing a
unique opportunity to compare microbial growth inhibition
and alkaloid diversity with quantity held constant. In both
OD and CFU assays with A. hydrophila, Gandoca frog alka-
loids were the least inhibitory of all populations, in accord
with their low diversity. In contrast, La Selva frog alkaloid
cocktails inhibited A. hydrophila virtually as well as those
from Finca los Nacientes and Tortuguero, despite having
300% lower quantities of less diverse alkaloids. These find-
ings may indicate that microbial inhibition increases at a pro-
gressively reduced rate after a certain threshold in the quantity
and/or diversity of alkaloids (e.g., average quantity and diver-
sity of La Selva frogs), and also clearly demonstrates that
increased alkaloid diversity has the potential to considerably
enhance microbial growth inhibition.

In certain cases, however, a high diversity of alkaloids may
not be enough to compensate for low quantities of alkaloids.
For instance, the alkaloid cocktails of Río Palmas frogs were
marginally more diverse than those from Tortuguero frogs, yet
inhibited growth of K. pneumoniae the least effectively of all
populations. Such substantially reduced growth inhibition of
K. pneumoniae by Río Palmas frog alkaloids was most likely
a result of having the lowest quantities of alkaloids of all
populations, despite their high diversity. In this case, the av-
erage quantity of alkaloids in Río Palmas frogs may have been
comparatively far below the hypothetical threshold quantity
after which gains in microbial inhibition diminish. Moreover,
if such a threshold quantity exists, then particular alkaloid
classes are likely required rather than any arbitrary suite of
alkaloids. Coincidentally, the already low quantities of alka-
loids in Río Palmas frogs were also evenly distributed among
the identified alkaloid structural classes, which was not the
case in other populations. For example, the five most abun-
dant alkaloids among Río Palmas frogs were each of a differ-
ent structural class and comprised just 28% of the population’s
total ~3700 μg of alkaloids, whereas the five most abundant
alkaloids in the more inhibitory Tortuguero frog alkaloid
cocktails comprised just the two most common structural clas-
ses (5,8-disubstituted and 5,6,8-trisubstituted indolizidines)
and 62% of Tortuguero’s total ~14,000 μg of alkaloids.
Accordingly, optimal growth inhibition likely requires certain
quantities of specific types of alkaloids, although even com-
paratively low quantities (e.g., Río Palmas) and diversities
(e.g., Gandoca) of alkaloids can inhibit the growth of these
pathogens to an extent.

Alkaloid defenses from all five populations of O. pumilio
effectively inhibited growth of the opportunistic, Gram-
negative bacteria A. hydrophila and K. pneumoniae, although



OD and CFU assays suggest slightly different interpretations
of the results. For example, growth inhibition approximated
by OD assays indicated that certain populations ofO. pumilio,
such as Río Palmas and Gandoca, did not effectively inhibit
the growth of these pathogens compared to control, which
may indicate that they are susceptible to infection. However,
as evident from CFU assays, treatment with alkaloid cocktails
from these same locations significantly reduced the amount of
viable bacterial cells persisting after 24.5 hr in A. hydrophila
and K. pneumoniae cultures compared to control, which sug-
gests that alkaloid cocktails fromRío Palmas and Gandoca are
effective antimicrobial agents. These observations of effective
growth inhibition in CFU assays but not OD assays demon-
strate the value of CFU assays, and may in fact provide a more
ecologically valid assessment of antimicrobial efficacy. The
discrepancies in effective growth inhibition between OD and
CFU assays for Río Palmas and Gandoca frogs are likely
explained by each assay’s measured growth variable; OD as-
says measured the density of both live and dead cells
suspended in solution, whereas CFU assays evaluated the
quantity of viable (i.e., able to multiply via binary fission)
bacterial cells remaining after treatment with O. pumilio alka-
loid cocktails. Moreover, OD assays and CFU assays were
strongly correlated, and the relative patterns of growth inhibi-
tion among populations are nearly identical between OD as-
says and CFU assays, wherein the most (Finca los Nacientes
and/or Tortuguero) and least inhibitory (Río Palmas and/or
Gandoca) populations were consistent between assays for
each pathogen.

On the basis of the relationships amongO. pumilio alkaloid
quantity, diversity and microbial growth inhibition in the pres-
ent study, the efficacy of alkaloid-based microbial growth in-
hibition appears to increase most notably when alkaloid de-
fenses comprise sufficient (e.g., >400 μg per frog skin) quan-
tities of diverse suites of alkaloids (e.g., >30 individual alka-
loids), and when there are high quantities of certain types of
alkaloids. In other words, although the general quantity and
diversity of alkaloids in poison frog defenses undoubtedly
drive variation among populations, the presence of specific
types of alkaloids also likely plays an important role in micro-
bial growth inhibition. Overall, these findings support the hy-
pothesis that alkaloid defenses from distinct populations of
O. pumilio inhibit pathogens to different degrees, which may
influence how those populations respond to emerging infec-
tious pathogens.

Individual alkaloids inhibit the growth of the bacteria
B. subtilis and E. coli to varying degrees or not at all
(Macfoy et al. 2005), which indicates that alkaloid types differ
in their inhibitory activity against specific types of microbes
(e.g., Gram-negative or Gram-positive bacteria, or various
fungi, viruses, etc.). For instance, Macfoy et al. (2005) report

that nearly all individual assayed alkaloids inhibited the
growth of B. subtilis, whereas only a piperidine alkaloid
inhibited E. coli. Similarly, certain individual pyrrolidine, pi-
peridine, decahydroquinoline, and pumiliotoxin alkaloids ef-
fectively inhibited growth of the fungus C. albicans (Macfoy
et al. 2005). In contrast, Mina et al. (2015) reported that
C. albicans was inhibited only by Isla Solarte (Panama) frog
alkaloid cocktails containing primarily decahydroquinolines
and pumiliotoxin alkaloids, although alkaloid cocktails from
Puerto Viejo (Costa Rica) frogs, consisting of large amounts
of decahydroquinolines and histrionicotoxins, also inhibited
C. albicans somewhat effectively. These findings are consis-
tent with results from the present study in concluding that
certain alkaloid classes such as decahydroquinolines and
histrionicotoxins, which are unbranched-chain alkaloids de-
rived from ants (Spande et al. 1999; Daly et al. 2005; Jones
et al. 2012), may be particularly inhibitory. However, micro-
bial inhibition by alkaloid defenses appears to be influenced
by more than just the presence of specific alkaloid types.

Important complementary and/or synergistic relationships
among sequestered alkaloids may enhance protection from
pathogens in poison frogs. For example, while the aforemen-
tioned individual alkaloids differ in terms of which types of
bacteria they can inhibit (Macfoy et al. 2005), natural alkaloid
cocktails from O. pumilio that contain a diversity of alkaloids
consistently inhibit the same bacteria (Mina et al. 2015). In
synthesized amphibian chemical defenses, such as antimicro-
bial peptides, a combination of various peptides is more effec-
tive than the individual peptides at inhibiting pathogenic mi-
crobes, including A. hydrophila (Rollins-Smith et al. 2002a, b;
Rollins-Smith 2005; Rosenfeld et al. 2006; Conlon 2011a).
Additionally, more diverse suites of peptides have been pro-
posed to provide protection from a wider range of pathogens
by enhancing other peptides’ inhibitory activity (i.e., synergy),
or by different peptides or classes targeting different classes of
microbes (i.e., complementary) (Nicolas and Mor 1995;
Simmaco et al. 1998b; Zasloff 2002; Tennessen et al. 2009).
Based on previous alkaloid-based microbial inhibition re-
search and relationships between inhibition and alkaloid com-
position from the present study, similar synergistic and/or
complementary effects may occur in sequestered alkaloid de-
fenses, where comparatively diverse alkaloid cocktails pro-
vide enhanced protection from a wider range of pathogens.

Much like antimicrobial peptides, alkaloid defenses in poi-
son frogs may provide dual predator and pathogen protection.
For example, prospective predators that sample and ultimately
reject poison frogs as a prey item (Brodie and Tumbarello
1978; Fritz et al. 1981; Szelistowski 1985; Gray et al. 2010;
Stynoski et al. 2014; Hantak et al. 2016; Hovey et al. 2016;
Murray et al. 2016) stimulate the secretion of defensive alka-
loids onto the skin, and may inflict wounds that could be



potentially fatal if infected. In this case, poison frog alkaloid
secretions could potentially reducewound infection and inhib-
it the growth of non-residential microbes including pathogens.
While most amphibian antimicrobial peptides exert activity
through pore formation in cellular mebranes (Yang et al.
2001; Brogden 2005; Diamond et al. 2009; Chen et al.
2012), more research is needed on the antimicrobial capacity
and mechanism of action of poison frog alkaloids. However, it
should be noted that a resident microbiota community almost
certainly persists in the presence of alkaloid defenses (Culp
et al. 2007; Lauer et al. 2007;Walke et al. 2015). Additionally,
it is feasible that incipient infections in poison frogs may elicit
a stress response that stimulates smooth muscle around gran-
ular glands, thereby inducing the secretion of additional alka-
loids onto the skin to reduce the viable infection load. For
instance, Rana esculenta and Bombina orientalis induce
and/or upregulate synthesized antimicrobial peptide defenses
after exposure to microbes, including A. hydrophila (Miele
et al. 1998; Simmaco et al. 1998a; Mangoni et al. 2001).
Sequestration of arthropod-derived alkaloids by poison frogs
may therefore be analogous in some ways to synthesized pep-
tide defenses (Zasloff 1987; Pask et al. 2013) and play an
important role in protection from infectious pathogens, espe-
cially when the innate immune system is compromised or the
frog is wounded.

Amphibians are inhabited by communities of microbes
(e.g., gut-associated microbes and skin-associated microbes),
some of which are symbiotic and complement their innate
immune system by defending the host from infectious patho-
gens (Culp et al. 2007; Lauer et al. 2007, 2008; Woodhams
et al. 2007a, b, c; Myers et al. 2012; Park et al. 2014; Becker
et al. 2015). Conversely, certain Gram-negative gut- or skin-
resident microbes that are frequently isolated from wild and
captive frogs, such as A. hydrophila and K. pneumoniae
(Bradford 1991; Barra et al. 1998), can cause fatal systemic
infections in immunocompromised amphibians (Carr et al.
1976; Hubbard 1981). Of these microbes, A. hydrophila in
particular has been linked to wild and captive population am-
phibian declines (Nyman 1986; Pearson et al. 2000; Miller
et al. 2008; Hill et al. 2010). The resistance and resulting
virulence of A. hydrophila appears to be due to its production
of extracellular proteases that break down amphibian antimi-
crobial peptides, rendering these synthesized chemical de-
fenses largely ineffective (Rollins-Smith et al. 2002a;
Schadich and Cole 2009). Metabolites of Phyllomedusa
distincta skin microbiota also effectively inhibited growth of
E. coli and other microbes in an optical density-based growth
inhibition assay, whereas A. hydrophila was most resistant to
growth inhibition. Additionally, K. pneumoniae was not
inhibited by the same metabolites, although in a separate
streak assay (Brito de Assis et al. 2016). In the present study,

alkaloid cocktails from all populations of O. pumilio clearly
inhibited the resistant pathogen A. hydrophila and the relative-
ly resistant, more pathogenic, K. pneumoniae. The conclusion
that poison frog alkaloids can reliably inhibit A. hydrophila
may indicate that the extracellular proteases produced by the
pathogen are inactive against sequestered alkaloids, especially
given that those proteolytic compounds confer A. hydrophila
resistance to antimicrobial peptides (Rollins-Smith et al.
2002a; Tennessen et al. 2009; Brito de Assis et al. 2016).
This is consistent with the hypothesis that A. hydrophila pro-
teases coevolved specifically with widespread amphibian
chemical defenses, such as synthesized peptides or
microsymbiont-derived metabolites, as an adaptation to sur-
vive on amphibian skin (Schadich and Cole 2009).
Alternatively, the mechanism of action of poison frog alka-
loids may simply be more effective against A. hydrophila and
K. pneumoniae than that of the antimicrobial peptides and
metabolites studied so far. However, the same antimicrobial
peptides that do not inhibit A. hydrophila can effectively in-
hibit the pathogen most closely associated with global am-
phibian population declines and biodiversity loss,
Batrachochytrium dendrobatidis (Berger et al. 1998;
Rollins-Smith et al. 2002b). The inhibitory activity of seques-
tered alkaloid defenses against Bd is not yet known. Thus,
although findings from the present study demonstrate that
poison frog alkaloids can function as an effective defense
against virulent pathogens, the inhibitory activity of alkaloid
defenses against other highly-relevant pathogens remains to
be determined.

Our results demonstrate that alkaloid-based chemical
defenses in the dendrobatid poison frog O. pumilio inhibit
the growth of known anuran pathogens, and may function
as a defense against both predators and pathogenic micro-
organisms. Much like variation in alkaloid defenses is hy-
pothesized to play a role in defense against predators
(Saporito et al. 2006, 2007a; Murray et al. 2016), these
findings suggest that the natural variation in poison frog
alkaloid defenses influences protection from pathogenic
microbes. Although the antimicrobial activity of alkaloid
cocktails from other poison frog lineages have not been
studied, similar variation may be observed given the com-
parable variation in dietary arthropods (Clark et al. 2006;
Bonansea and Vaira 2007; Daly et al. 2008a; Quiroga et al.
2011; Andriamaharavo et al. 2015). However, the patho-
gens used in the present study do not pose a particularly
significant threat to amphibian biodiversity. Future studies
should aim to assess the effectiveness of sequestered alka-
loid defenses from multiple poison frog lineages against
pathogens associated with emerging infectious diseases
and widespread amphibian population declines, such as
ranaviruses and Bd (Pessier 2002; Whitfield et al. 2013).
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