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Chemical characterization of 
the adhesive secretions of the 
salamander Plethodon shermani 
(Caudata, Plethodontidae)
Janek von Byern  1,2, Ingo Grunwald3, Max Kosok4, Ralph A. Saporito5, Ursula Dicke6, Oliver 
Wetjen6, Karsten Thiel3, Kai Borcherding3, Thomas Kowalik3 & Martina Marchetti-Deschmann  4

Salamanders have developed a wide variety of antipredator mechanisms, including tail autotomy, 
colour patterns, and noxious skin secretions. As an addition to these tactics, the red-legged salamander 
(Plethodon shermani) uses adhesive secretions as part of its defensive strategy. The high bonding 
strength, the fast-curing nature, and the composition of the biobased materials makes salamander 
adhesives interesting for practical applications in the medical sector. To understand the adhesive 
secretions of P. shermani, its components were chemically analysed by energy dispersive X-ray 
spectroscopy (EDX), inductively coupled plasma mass spectrometry (ICP-MS), amino acid analysis, and 
spectroscopy (ATR-IR, Raman). In addition, proteins were separated by gel-electrophoresis and selected 
spots were characterised by peptide mass fingerprinting. The salamander secretion contains a high 
amount of water and predominantly proteins (around 77% in the dry stage). The gel-electrophoresis and 
peptide mass fingerprint analyses revealed a de novo set of peptides/proteins, largely with a pI between 
5.0 and 8.0 and a molecular mass distribution between 10 and 170 kDa. Only low homologies with other 
proteins present in known databases could be identified. The results indicate that the secretions of the 
salamander Plethodon clearly differ chemically from those shown for other glue-producing terrestrial or 
marine species and thus represent a unique glue system.

To date, research on adhesives in nature has been primarily carried out on marine animals1, 2. Studies on glue 
synthesis and composition in terrestrial animals such as amphibians are rare3–5, although the bonding strength 
of their glue (up to 1.7 MPa for the Australian frog genus Notaden) is amongst the highest in the animal kingdom 
and comparable with industrial super glues such as cyanoacrylates (1.7 MPa)6. When provoked by potential pred-
ators, the frog Notaden bennetti secretes a sticky nontoxic material from its dorsal skin5. The secretions transform 
rapidly into an elastic solid (hydrogel) and adhere tightly to a wide range of materials, including glass, plastic, 
metal and even teflon6. Studies of the nature of these glues show that, in a dry state, the secretions contain few 
carbohydrates and consist mainly of proteins (13–400 kDa). Graham et al.4 indicate that the Notaden glue func-
tions rather as a pressure-sensitive adhesive than through chemical mechanism such as that found in mussels 
and barnacles7, 8. This high bonding strength of the Notaden glue has already caused great interest for practical 
applications in the industrial3, 9 and medical sectors10, 11. This is a similar situation as has been given for the byssal 
system of mussels12, 13 or gecko nanotopography14.

Salamanders (caudates) have developed a wide variety of antipredator strategies15. The most effective strategies 
are various behavior patterns, tail autotomy, colour patterns, and the secretion of toxic, noxious or adhesive skin 
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secretions16–18. The red–legged salamander Plethodon shermani is, besides Ambystoma spp., Batrachoseps spp. and 
Bolitoglossa spp., one of the few North American salamander species which secretes adhesive as an antipredator 
strategy15, 19, 20. Behavioural observations of the plethodontid salamander Batrachoseps attenuatus have demon-
strated the effectiveness of this gluing strategy: Once attacked and grasped by a snake, the salamander loops its 
tail around the snake’s head and coats the snake with a sticky viscous fluid19. The adhesives in the secretion harden 
within seconds upon exposure to air20, 21 and immobilize the snake immediately19. The salamander then escapes, 
and the snake is unable to free itself for up to 48 hrs19.

Morphological and histochemical studies of Plethodon shermani have shown that the adhesive glands are 
mainly distributed along the lateral edges of the tail ridge and in the parotid region. Two gland types occur in 
the dermal layer of the skin22, 23: The mucous glands are distributed all over the skin and their secretory cells are 
densely packed with flocculent material, mostly acidic glycoproteins (positive staining for Alcian blue around pH 
2.5 as well as PAS23. The granular glands are present in all skin regions, but are especially concentrated and larger 
in the parotoid area of the head and in the tail. The granular glands secrete various granules of different sizes 
and densities that contain only basic proteinaceous material (strong staining with Biebrich scarlet at pH 6.0 and 
weakly at pH 8.5, but no reactivity at pH 9.5 and 10.5)23. In the isolated secretion, positive reactions for acidic and 
basic proteins are seen, indicating that both glands contribute to glue formation.

While much is known about the toxic skin secretions in salamanders16, 24, 25 and adhesives in frogs6, 9, only 
marginal data are currently available on the adhesive nature of salamander secretions. With this study, we aim to 
survey for the first time the secretions of the gluing species Plethodon shermani and to characterize the adhesive 
secretion in greater detail.

Results
Secretion Handling. The exposed salamander secretion sticks irreversibly within seconds to all types of 
material as given for the Notaden glue (see description above). We were unable to stop or temporarily delay its 
hardening process (e.g. in a vacuum or by cooling it down) or otherwise maintain the secretions in a liquid state. 
Therefore, we were only able to use the cured adhesive and dissolve it using various buffers.

Weight lost. The salamander secretion showed an increased rate of weight loss and reached its dry stage 
after 3 hrs, with a total weight loss of around 70% (Fig. 1). In contrast to this, tap water as control exhibited a 
continuous weight loss and needed longer (around 5 1/2 hrs) to evaporate completely. The aqueous wood glue, in 
contrast, evaporated much more slowly (no stable endpoint reached after 8 hrs) than water and the salamander 
secretion. It possesses an aqueous content of around 30%.

Protein and carbohydrate quantification. Protein assay indicated that the salamander glue consists of 
78% protein (w/w), while the colorimetric assay showed that the air-dried Plethodon glue contains only 0.41% 
carbohydrates (w/w). The glue dissolved more easily in the protein and carbohydrate assay buffers when heated 
up compared to a non-heated approach. The control measurement of bovine albumin serum was negative for the 
carbohydrate quantification.

Elemental analysis. The elemental analysis by EDX showed that the dried secretion mainly consists of car-
bon (≈60 at.%), nitrogen (≈16 at.%), oxygen (≈18 at.%) with a smaller amount of sodium (≈0.45 at.%), potas-
sium (≈0.29 at.%), sulphur (≈0.24 at.%), chloride (≈0.22 at.%) and phosphorus (≈0.12 at.%) (Fig. 2). Other 
elements such as magnesium and calcium were below detection limits (<0.1 at.%), however dot mapping of the 
sample indicates the presence of local spots for calcium (Fig. 2). The blank SEM stubs consist of aluminium and 
copper only.

Figure 1. Drying of the salamander adhesive. Under low humid conditions (36% r. H., 24° temperature), the 
Plethodon secretion (red lines and triangles) shows a fast and high weight loss of 70% within 3 hrs in relation 
water alone (blue line and dots, final minima after 5 1/2 hrs). The water in the water-based wood glue (green 
line and squares), evaporates relatively slowly with a loss of only 30% of its weight and still reaches no stable 
endpoint after an 8-hr analysis.
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Measurement by ICP-MS confirmed the presence of potassium (13.000 ppm) and sodium (1.000 ppm) in 
the salamander glue; furthermore, calcium (2.000 ppm), magnesium (500 ppm), iron (200 ppm), manganese 
(29 ppm), copper (23 ppm) and zinc (29 ppm) in addition to rubidium, strontium, barium and lead at concentra-
tions below 20 ppm could be confirmed via this more sensitive approach. Surprisingly, a concentration of arsenic 
(200 ppm) could be measured within the salamander secretion. The presence of other elements, such as Al, Li, Be, 
V, Cr, Co, Ni, Sr, Mo and Cd in the salamander adhesive, could not be confirmed by ICP-MS measurement; these 
elements were below the detection limit of the measurement procedure. Due to analytical limitations, sulphur and 
chlorine were not part of the element screening analysis using the selected ICP-MS equipment.

Amino acid analysis. The amino acid analyses showed that the total protein content of the dried secretion 
was at least 78%. Eighteen amino acids were identified by hydrolysis (Table 1). The amino acid glycine was the 
most prominent of these, with a value of 7.8%. The sample contained more polar (52%) than non-polar (48%) 
and hydrophobic (38%) amino acids. Moreover, slightly more amino acids with acidic side chains (AsX and GlX 
in total 21%) than with basic ones (His, Lys, Arg in total about 12%) were present. Furthermore, a low level of 
L-3,4-Dihydroxyphenylalanin (L-DOPA) (0.12%) could be measured in the salamander adhesive.

ATR-IR spectroscopy. In freshly secreted samples, a strong signal from absorbed water molecules (O-H 
stretching region 3000–3650 cm−1; H-O-H- bending region 1600–1700 cm−1) could be detected (Fig. 3). Drying 
at +80 °C resulted in a significantly better spectrum corresponding to proteins (amide I at 1656 cm−1)26. Distinct 
peaks at 3291 cm−1 and 1545 cm−1 shown in the spectrum of the dried secretion indicated the absorption of an 
amide II vibration characteristic for N-H stretching26 (1580–1510 cm−1)27. The spectral peaks 1452 сm−1 and 
1395 сm−1 were characterized by vibrations of the C-H bond in methyl and methylene groups of peptide frag-
ments28. The analysed proteinaceous salamander secretion did not contain detectable amounts of phosphate 
(1253 cm−1)29 or polysaccharides (1150–1000 cm−1)30.

Raman spectroscopy. The Raman data resembled a spectrum of a biological adhesive material composed 
mostly of proteinaceous material. Peaks between 2800 cm−1 and 3000 cm−1 were from -C-H bonds, e.g. found for 
I –CH2 symmetric and –CH3 stretching vibrations of organic molecules from biological samples.

A clear signal could be detected for the Amide I (between 1610 cm− to 1690 cm−1) and Amide II (1420 cm−1 
to 1480 cm−1) bands. The Amide III bands showed weaker signals that could be divided into α-helix (1310 cm−1 
to 1330 cm−1) and β-sheet (1235 cm−1 to 1250 cm−1) signals31. Taken together, the results confirmed a relatively 
higher content of β-sheet structure than β-turn, α-helix and random coil (1680–1665 cm−1)31 (Fig. 4). In addition, 

Figure 2. (A) Spectrum of the elemental composition of the salamander secretion. Insert (B) SEM and 
corresponding dot mappings for the elements (C) sulphur (green) and aluminium (blue) resp. (D) carbon (red), 
aluminium (blue) and calcium (yellow spots and white arrows).
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Amino 
acid Side chains Plethodon Notaden

Euperi-
patoides Asterias Holothuria Dosima Lepas

Mega-
balanus Balanus

Phragmato-
poma

AsX Polar Negative 7.9 7.2 5.0 11.8 7.8 9.3 8.8 9.1 7.8 2.9

Thr Polar 5.0 4.4 3.6 7.8 8.7 4.8 5.3 7.0 6.6 2.2

Ser Polar 4.3 3.8 4.2 7.6 6.0 6.6 8.8 9.9 11.4 28.5

GlX Polar Negative 8.3 14.1 5.1 10.2 9.1 10.3 9.1 9.1 9.1 1.4

Gly Non-polar 7.8 15.8 27.3 9.7 26.6 4.2 9.6 7.9 8.3 26.2

Ala Non-polar Hydrophobic 3.2 2.8 3.5 6.2 8.8 5.6 9.0 7.5 6.9 9.8

Val Non-polar Hydrophobic 5.7 6.2 5.2 6.7 3.8 6.1 6.7 7.3 2.7 3.4

Met Non-polar Hydrophobic 1.3 1.1 1.4 1.7 1.0 0.5 0.6 1.6 0.7 0.0

Ile Non-polar Hydrophobic 4.2 4.8 5.1 4.5 2.8 5.7 5.9 5.3 4.4 0.6

Leu Non-polar Hydrophobic 5.6 6.9 4.5 6.1 3.7 8.1 9.8 8.3 8.8 3.4

Tyr Polar 4.5 2.2 3.8 2.7 2.0 2.7 3.7 4.2 4.9 4.0

Phe Non-polar Hydrophobic 4.1 3.8 2.8 3.8 2.0 5.1 3.7 3.7 3.7 1.1

His Positive Polar 1.6 3.1 2.2 5.6 2.6 0.4 2.7 1.3 2.3 3.5

Lys Positive Polar 5.1 5.8 6.9 2.1 3.1 2.3 3.9 5.7 5.5 4.4

Arg Positive Polar 2.8 3.8 3.9 4.1 5.0 6.4 6.1 5.6 5.9 2.9

Pro Non-polar Hydrophobic 4.2 8.8 13.1 6.1 5.5 4.3 5.0 4.9 8.4 2.7

Cys/2 Polar 0.5 0.7 0.0 3.2 1.4 0.7 1.1 1.6 6.8 0.4

Trp Non-polar Hydrophobic 1.4 N.D. N.D. N.D. N.D. 0.1 0.6 0.0 0.0 N.D.

Hyp Others N.D. 3.0 3.0 N.D. 0.0 N.D. N.D. N.D. N.D. N.D.

L-DOPA Others 0.1 N.D. N.D. N.D. N.D. 0.0 N.D. N.D. N.D. 2.1

Negative [%] 21 22 10 22 17 24 18 18 16 4

Polar [%] 52 46 34 55 46 52 49 54 58 50

Non-polar [%] 48 51 63 45 54 48 51 46 42 47

Hydrophobic [%] 38 35 35 35 28 43 41 39 34 21

Positive [%] 12 13 13 12 11 11 13 13 13 11

Others [%] 0 3 3 N.D. 0 0 N.D. N.D. N.D. 2

Water content [%] 70 85–90 90 N.D. N.D. 92 N.D. N.D. N.D. N.D.

Protein content [% dry weight] 78 55–60 55 20.6 59 84 N.D. 90 84 N.D.

Sugar content [% dry weight] 0.41 0.75 1.3 8 39 1.5 N.D. N.D. 1.05 N.D.

Table 1. Amino acid composition (values in residues per hundred) of the Plethodon shermani secretions 
(present study) with previous data given for Notaden bennetti5, 35, Euperipatoides kanangrensis36, Asterias 
rubens64 and Holothuria forskali39, Dosima fascicularis37 and Lepas anatifera43, Megabalanus rosa42 and Balanus 
crenatus65 as well as Phragmatopoma californica47. N.D. = not determined.

Figure 3. FTIR spectrum of dry salamander secretion. The region between 4.000 and 600 cm−1 is magnified 
and prominant vibrations from amide bonds have been colored green.
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a strong signal for phenylalanine (1003 cm−1 and 1606 cm−1)31, 32 bands arising from tyrosine residues (855 and 
832 cm−1)32 and tryptophan could be detected.

Vibrations for L-DOPA (735–730 cm−1)33 were not found and may correlate with the low amount found in 
the amino acid analyses. Furthermore, strong vibrations from disulphide bridges (510–540 cm−1)32 could also not 
be detected in the salamander secretion. Components from DNA nucleotide base-ring vibrations like guanine 
(665 cm−1 and 1575 cm−1), cytosine and uracil (785 cm−1) and adenine (720 cm−1) were also absent in detectable 
amounts29.

Alkaloid analysis. GC-MS analysis of the P. shermani skin extract yielded no detectable skin alkaloids.

Sequence analysis. In 1D gel electrophoresis (1D-PAGE), two intensive bands at approx. 50 and 70 kDa 
were observed, the first one most likely being a double band. In total, about 18 protein bands with a molecular 
mass ranging from 10 to 160 kDa were detected. Interestingly, the two samples taken from two different spots on 
the Aclar® foil (sample type Pos 1, Pos 2) showed similar yet non-identical protein patterns. The double band at 
50 kDa showed a lower intensity for the lower band and one band at approx. 100 kDa band was missing for the 
sample taken at Pos 1 (Fig. 5a). This can be explained by the fact that the secreted bioadhesive is expected to have 
a certain degree of biological variation caused by the different stress levels of the animals.

Separating the sample containing the protein extract from the isolated glue scratched from the Aclar® foil 
(sample type “Mix”) showed a similar, but again different, protein pattern (Fig. 5b). The protein band at 70 kDa 
was significantly less intensive, the protein band at 50 kDa was the most intensive band and the proteins between 
30 and 50 kDa were almost not extracted. However, an additional protein band below 70 kDa was observed. 
This difference can be explained by the different extraction efficiency of the buffer systems used and by the bio-
logical variation of the secreted proteins. Pos 1 and Pos 2 were extracted with a buffer with a high solubility 
strength (LDS) for SDS-PAGE, while the Mix was extracted with urea, thiourea and CHAPS in preparation for 
2D-PAGE. Furthermore, Pos 1 and 2 were extracted under denaturating conditions (DTT), allowing proteins rich 
in disulphide bridges to become more soluble. However, amino acid analysis revealed only a low amount of Cys, 
while Raman spectroscopy lacked an abundant signal for disulphide bridges, making this a less likely possibility. 
Without taking the biological variation in account, it can be assumed that proteins observed in the Mix are more 
easily dissolved in aqueous solvents, especially the protein at 70 kDa.

2D-PAGE of 44 µg protein extract shows that the protein pattern in this adhesive is rather complex. Prominent 
spots around 15, 25, and 30 kDa can be found in the 2D-PAGE (Fig. 5c), while the prominent protein bands at 
higher MW (50 to 170 kDa) led to insufficient protein separation due to sample complexity, and only a few spots 
are clearly observable. Most of the proteins were observed between pH 5.0 and 7.0.

While studying the presence of proteins in the secretions of a provoked animal, one has to keep in mind that 
the collected sample will represent mainly the proteome of the secreted glue but can also contain proteins coming 
from the animal’s skin, e.g. keratin. Although protein separation was hampered in the higher molecular mass 
range (>50 kDa), spots between 8 and 70 kDa were selected at different apparent MWs and pIs (Fig. 5c, Suppl. 
Table).

Comparable PMFs and identical fragmentation patterns for many peptides indicated that spots 1, 2 and 3 
are protein isoforms (≈15 kDa, pI 5.2–5.5). The database search for the MS and MS/MS spectra did not give any 
significant results, but de novo sequencing in combination with a BLAST search resulted in a strong indication 
towards a NADH dehydrogenase subunit (subunit 2 or/and 4), a mitochondrial protein. Mitochondria are located 
where energy consumption is highest and since the adhesive collection was performed from syncytial gland cells, 
it is therefore conceivable that such proteins are present in the salamander secretion. The lower molecular mass 

Figure 4. Raman spectrum of the dry salamander secretion. The region between 3.800 and 380 cm−1 is 
magnified and prominant vibrations from amide bonds have been colored red. Addtional vibrations, e.g. typical 
for amino acids, have been added to the spectrum.
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(compared to the database entry) can be explained by protein degradation or sample preparation artefacts. Most 
peptides indicated subunit 4, but one peptide sequence showed similarity to NADH dehydrogenase subunit 2 in 
Plethodon sp. and subunit 6 in Ambystoma sp. Three peptides in spot 1 furthermore gave rise to the assumption 
that cytochrome b, also a mitochondrial protein, is present. However, one peptide had a higher similarity to a 
plethodontid modulating factor, which was also a result for the same peptide in spot 3. This finding has to be 
followed up to be better understood.

Also, in spots 9a and b (25 kDa, pI 5.8 and 6.0) peptide sequences had similarities to NADH dehydroge-
nase subunits (subunit 4 and 5), although one peptide also showed a partial, yet lower, sequence homology to 
cytochrome oxidase subunit 1 from Plethodon.

Also, gel spot 4a (≈25 kDa, pI 6.9) exhibited two peptides with sequences homologous to NADH dehydro-
genase subunits from salamanders, one to subunit 4 and the other to subunit 5. Only one of them had a relevant 
correlation to proteins from Plethodon. However, gel spots 4a and 4b (≈25 kDa, pI 6.9 and 7.2) showed an unex-
pectedly high number of peptides that were identified with statistical significance from MS/MS spectra to be kera-
tin from other vertebrates. Moreover, one peptide (m/z 1450.7) gave no identification after the MS/MS search, but 
de novo sequencing and the BLAST search indicated a partial sequence of keratin from Ambystoma mexicanum. 
It could be assumed that the presence of keratin in the secretion is the result of sample preparation as the glue 
was collected from the animal’s skin, where keratin is present34. Interestingly m/z 1400.7 gave a significant MS/
MS search result in SwissProt (lysozyme from Gorilla gorilla), yet we have reasonable doubts and consider this to 
be a false positive.

Spots 5a and 5b have slightly higher MWs (≈30 kDa) and similar pIs (7.1 and 8.5 resp.). Four peptides showed 
identical fragmentation patterns and molecular masses for both gel spots, once more indicating protein isoforms. 
De novo sequencing furthermore corroborated that these protein isoforms are NADH dehydrogenase subunits. 
This assumption was substantiated by a significant MS/MS database search result for m/z 2659.4 (NCBI), iden-
tifying this peptide to be from the NADH dehydrogenase subunit 2 (cross species identification). Interestingly, 
10a and b (≈35 kDa, pI 5.8 and 5.9) are also isoforms showing the same PMF and identical fragmentation pattern 
for three peptides. Although 10b gave a significant protein identification by PMF (centrin-3), this identification 
could not be confirmed by MS/MS (m/z 1400.7, 1421.7 and 1747.9). However, both sequence tags hinted again at 
NADH dehydrogenase subunit 2, and m/z 1747.9 in particular seems to be a highly conserved sequence of that 
subunit (all 166 BLAST search results, taxonomy: Amphibia).

Spot 7 (17 kDa, pI 9.3) did not give any clear results. Most of the peptide sequences were too short to provide 
any hints regarding protein identification. Only m/z 887.5 resulted in significant MS/MS identifications. The 
result from SwissProt was at the threshold level, yet of statistical significance. However, the species from which 
this protein was identified was not closely related to amphibia. Nevertheless, the result from NCBI gave an exten-
sive sequence homology for a peptide belonging to rhodopsin from Ambystoma tigrinum. Rhodopsin is a biologi-
cal pigment found in the rods of the retina and is a G-protein-coupled receptor (GPCR). However, it could not be 
excluded that part of the highly pigmented skin of Plethodon shermani was scratched off during glue collection, 
resulting in this sequence homology.

Figure 5. 1D- and 2D-PAGE. 1D-PAGE of the salamander secretion (A) extracted with LDS buffer from two 
different positions of an Aclar® foil (approx. 0.75 cm2 each) and (B) different concentrations of bioadhesive 
scratched from the Aclar® foil over an area of 2 cm2 solubilized in LDS buffer. (C) 2D-PAGE of 44 µg protein 
extracted from a salamander bioadhesive.
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Protein isoforms were also confirmed (identical PMF, MS/MS for selected peptides) for spot 11a/b (≈45 kDa, 
pI 5.8 and 5.9) and 12 a/b (≈60 kDa, pI 6.0 and 6.1). These spots also had many peptides in common (including 
MS/MS information), giving rise to the assumption that 11a/b are degradation products of 12a/b or that 12a/b 
are multimers of 11a/b. The identification of spot 11a as a serine/threonine-protein phosphatase (cross-species 
identification with Xenopus laevis) was not confirmed by MS/MS (m/z 607.3 and 1749.9). De novo sequencing 
and the BLAST search did not give conclusive results.

Spots 8a and b (both having MWs < 10 kDa, pI 5.6 and 5.8) were not identified due to low molecular mass and 
insignificant mass spectra.

Discussion
Although the composition of the skin secretions in Plethodon shermani has been previously studied22, 23 on a 
histochemical level, we still know little about the composition of the adhesive.

The present study indicate that the native secretion of Plethodon contains a relatively large amount of water 
(≈70%). A water content of 85–90% has also been measured in the adhesive skin secretions of the Australian 
frog Notaden and in the prey capture glue of the onychophoran species Euperipatoides35, 36. Values beyond 90% 
have even been demonstrated in other species, i.e. 92% for the sponge-like cement of the marine goose barnacle 
Dosima37 and 98% for the prey capture threads of the New Zealand glowworm larvae Arachnocampa luminosa38. 
The water evaporation and thereby the hardening of the secretion in Plethodon appears to be faster compared to 
either water alone or a water-based wood adhesive. As the adhesive secretions in salamander are used for defence, 
i.e. to immobilize predators or coat their teeth with the secretion19, a fast-curing system is obligatory to ensure 
survival. In the capture system of Arachnocampa, it takes three days for the water to evaporate completely and 
the weight loss to be completed38. As this particular adhesive is used for prey capture under highly humid condi-
tions38, a complete dehydration and loss of adhesiveness is thus prevented for as long as possible. Unfortunately, 
no data are available on the dehydration and curing speed for Notaden or any other glue-producing animal, which 
would indicate a general tendency of water evaporation speed in relation to the application of the adhesives by 
the animal.

The Plethodon secretions possess a high protein content (around 78% of dry weight according to Bradford 
assay), which could also be confirmed by the distinct amide peaks in the ATR-IT and Raman spectra. The histo-
chemical characterization of the adhesive secretions indicates the presence of acidic proteins (pH 2.5–4.3; weak 
reaction at pH 1.0) and basic proteins (pH 6.0–8.5, no reactivity at pH 9.5 and 10.5)23. This staining result could 
also be observed in the 2D-PAGE, showing protein spots from pI 5.0 to pI 8.0, confirming that the contents of 
both glands were secreted during the stressing of the animal. At this moment, it remains unclear whether there 
are more or less proteins present compared to SDS-PAGE because of the chosen 2D-PAGE setup (7 cm gels, 3–10 
NL and MW range). It is also possible that some of the proteins were not solubilized in the buffer system.

In relation to this, the glue of Notaden exhibits a lower protein amount (55–60% of dry weight), but most 
of the protein spots are in the same pI range (5.0–7.0), although some smaller proteins are very basic (pI 8.0–
10.0)35. So far only one gland type, the granular gland, has been proposed as forming the adhesive secretions in 
Notaden9, however a detailed morphological and histochemical characterization of the gland system is lacking. 
The absence of acidic secretions, like those produced by the mucous gland in Plethodon, in the Notaden glue may 
be a result of the different functions in both amphibians. Notaden uses the adhesive to attach to a partner during 
mating and fertilization9. Notaden only occasionally protect itself against ants and termites5, while Plethodon 
defends itself actively with its adhesive secretions. In other bioadhesives, proteinogenic contents lower than 20% 
(i.e. Holothuria, Littorina)39, 40 or higher than 84% (i.e. Lepas, Megabalanus, Dosima)37, 41–43 have been measured, 
demonstrating a wide and diverse range.

Apart from the differences in the protein amount and pI range, variations regarding the molecular mass range 
in relation to other glue-producing species are also given for Plethodon. In an earlier study of Plethodon, a protein 
band with an approximate molecular mass of 70 kDa is shown in the SDS-Page image in the dorsal and ventral 
skin extract22. Furthermore, ventrally a band between 28.9 and 34.8 kDa occurs which is lacking in the dorsal 
extract22. In the isolated noxious/sticky secretion, distinct bands appear below 20 kDa, at 40 kDa and 120 kDa 
(apart from the ventral 28.9 to 34.8 kDa band), while the 70 kDa band is lacking in this sample type22. In addition 
to the results above22, a “dark protein band near the top of the gel (estimated 260–330 kDa from gels run longer)” 
(citation from35) could also be observed for the dorsal skin secretion of P. shermani35. The authors35 also refer to 
protein bands of 47 kDa and 100 kDA (“In addition to proteins of approximately 120, 100, 47, 27 and 14 kDa22, 
…”), however, these bands could not be observed by re-examining the study22.

In the present study, the secreted Plethodon glue from the dorsal and ventral skin area contain 18 prominent 
bands, mainly at approx. 15, 20, 25, 27, multiple bands at 30 and 35 kDa and further bands at 40, 50, 70, 100 and 
120 kDa. Some of these bands correspond in their ranges to the dorsal/ventral skin extracts (28.9 to 34.8 kDa, 
70 kDa) and sticky secretions (<20 kDa, 40 kDa, 120 kDa) of the previous study22.

It remains unclear whether proteins beyond 200 kDa are also present in the Plethodon secretions as observed 
earlier35. Since significant staining beyond 220 kDa is visible, providing an indication of high molecular weight 
compounds, respective gel electrophoretic analysis with agarose gels will be followed up in a further study. In 
Notaden, in contrast, there is a wider range (13–500 kDa), but with less prominent protein bands (>8) and a dom-
inant glycoprotein (Nb-1R) at 350–500 kDa4, 35. Considering that only one gland type in Notaden is involved in 
glue production, it is interesting that there is a lower protein amount yet a wider mass range and high molecular 
proteins than in Plethodon. In addition to Notaden, the velvet worm Euperipatoides also possesses proteins with 
high (>600 kDa) and low molecular masses (13–19 kDa or lower than 13 kDa)36 and a dominant glycosylated 
protein (Er-P1) at 230/350 kDa35. In most other glue-producing species, however, the proteins are also smaller 
than 200 kDa: i.e. Holothuria = 220 kDa39; Dosima = 205.0 kDa37; Littorina = 118 kDa44; Mytilus = 110 kDa45 and 
Megabalanus = 100 kDa7.
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There are also differences between the glue-producing species regarding their carbohydrate amounts. In 
some (i.e. Holothuria, Littorina) there is a high carbohydrate fraction (15–40%)39, 40, 46, while in most others (e.g. 
Dosima, Lepas, Notaden, Euperipatoides), the carbohydrate content is relatively low (<3% dry weight)35, 37, 41. 
In the Plethodon secretions, a low carbohydrate concentration (0.41%) could likewise be measured, although 
the secretory content of both gland types as well as the isolated secretion show a high affinity for sugar residues 
such as mannose (from the mucous gland) or L-fucose and N-acetyl-d-glucosamine (from the granular gland)23. 
However, respective sugar moieties could not be measured by ATR-IR and Raman, which is surely related to its 
low amount in the secretions compared to the protein fraction.

In view of the amino acid distribution, the skin secretions of Plethodon possess a similar range of negatively 
and positively charged amino acids compared to those shown for all other glue-producing animals (Table 1), 
while Euperipatoides and Phragmatopoma clearly exhibit lower values (10% and lower) for acidic amino acids36, 47. 
While the salamander secretion contains slightly more polar groups (e.g. Tyr) than other marine species (Asterias, 
Dosima, Megabalanus, Balanus and Phragmatopoma)37, 42, 43, 47, 48, the secretions of the terrestrial Notaden and 
Euperipatoides are rather unpolar. There are again similarities regarding the quantity of hydrophobic amino acids 
given for most animals, including Plethodon, and only the two goose-barnacles Dosima and Lepas appear to be 
clearly higher (>40%), while the sandcastle worm Phragmatopoma is lower (21%). In general, in most listed 
adhesives a clear dominance (values >10%) of a few amino acids in relation to others can be observed, e.g. Gly 
in Notaden, Euperipatoides, Holothuria and Phragmatopoma, GlX in Notaden, Asterias, Dosima, AsX in Asterias 
and Dosima, Ser in Balanus and Phragmatopoma or Pro in Euperipatoides (see Table 1 for details). In the adhe-
sive secretions of the salamander Plethodon, in contrast, the composition is relative homogenous and all values 
are lower than 10%; there was no clear dominance of certain amino acids; nevertheless, also in Plethodon glue a 
slight tendency towards the amino acid Gly could be observed, similar as for other animals listed above. Although 
L-Dopa could be measured in the salamander glue (0.1%), its value is much lower in relation to those given for 
the sandcastle worm Phragmatopoma. Morphological studies furthermore have shown that DOPA-containing 
proteins could not be detected in the gland cells of Plethodon shermani23, therefore an involvement of L-Dopa in 
glue formation seems to be unfavourable for the salamander.

Disulphide bonds are known to stabilise the protein complex and contribute to its cohesive strength48, 
and respective values of cysteine above 1% have been shown for the secretions of Asterias, Holothuria, Lepas, 
Megabalanus and Balanus. In the secretions of Plethodon, sulphur is present, as confirmed by EDX peaks and the 
amino acid methionine. Disulphide bonds, formed between the thiol groups of cysteine residues, could not be 
detected by Raman in the salamander secretions. Furthermore, the cysteine value is only around 0.5% and thus 
may not contribute as a main mechanism to the curing of the adhesive, as has been discussed for other biological 
adhesives49. In addition to the potential involvement in the stabilization of the adhesive secretion, this amino acid 
also serves as a pheromone for females50 or is part of the antioxidant protein pleurain-K1 (together with proline, 
free cysteine, tyrosine and tryptophan)51.

In addition to sulphur, in many marine adhesives, such as those from mussels52 and sandcastle worms53 as well 
as other species like caddisflies54, phosphorus also plays an important role in the phosphorylation of amino acids 
such as serine, threonine, tyrosine, histidine and aspartic acid52. Furthermore, divalent cations such as magne-
sium and calcium could be detected in adhesives37, 47 and to a lower extent also in the Plethodon glue by ICP-MS, 
supporting the hardening and stabilisation of the secretions. Although phosphoserine could not be chemically 
verified in the Plethodon adhesive, a phosphorylation of other potential available amino acids such as threonine, 
tyrosine, or aspartic acid could not be excluded at this stage.

Beyond the alkali metals and alkali earth metals also transitional metals such as iron, copper, manganese 
and zinc could be confirmed in Plethodon, as has been shown in the defence glue of the slug Arion subfus-
cus55. However, while the iron, copper and manganese concentrations in the slug glue is much lower (around 
2–7 ppm for all three elements) than those in the salamander glue (23 to 200 ppm), the opposite is given for 
zinc (70–340 ppm in the Arion55, 29 ppm in the Plethodon glue). Arsenic (and to a much lower extent, the alkali 
metal rubidium and earth metals strontium and barium) could only be confirmed in the glue of Plethodon so far. 
Further investigations are planned to exclude a contamination through the habitat as has been shown for other 
amphibians56 or to confirm its presence in other glue-producing animals. Unfortunately, no element analysis is 
given for the secretions of the other two terrestrial animals Notaden and Euperipatoides.

Despite the high zinc content, the analyses of the Arion glue concluded that, in particular, an increase of the 
solubility of the slug glue, moreover of a specific iron-binding protein (15 kDa), could be confirmed55. In addition 
to slugs, iron is also known to take a central position as a Fe(DOPA)3 cross-link in mussel byssus formation57. 
Further studies in salamanders are planned to verify its involvement in glue function as given for the two mollusc 
groups.

In summary, as demonstrated earlier by Graham35, the adhesive secretions of the frog Notaden show strong 
similarities regarding their composition and protein sequence to those of the velvet worm Euperipatoides. In 
contrast, congruence within the amphibians could not be confirmed; the chemical differences between the frog 
Notaden and the salamander Plethodon are too large. Also, regarding the other glue-producing marine species, 
clear differences in the amino acid composition and protein size range were observed in Plethodon, confirming a 
completely unique glue composition.

Material and Methods
Salamanders of the species Plethodon shermani were collected from populations in the vicinity of the Highlands 
Biological Station, North Carolina, USA. The collecting permit 10-SC00345 was issued by the North Carolina 
Wildlife Resources Commission Raleigh to Prof Dr Lynne D. Houck, Oregon State University, Cordley Hall, 
Oregon, USA. The wild-caught animals were housed in cooled boxes in a plastic container and transported 
according to American and German animal welfare regulations via airplane to Ursula Dicke (University of 



www.nature.com/scientificreports/

9SCIEnTIfIC REPORTS | 7: 6647 | DOI:10.1038/s41598-017-05473-z

Bremen). Directly before transport and immediately upon arrival at the airport in Germany, the animals were 
monitored by a veterinary officer. In Bremen, the animals were kept communally in terrariums with a substrate of 
moist soil and mulch, a temperature of 14 °C, a humidity of 80% and a dark-light cycle of 12 hrs. They were main-
tained on a diet of crickets. Collection of the salamander secretions followed the guidelines of the animal welfare 
law, approved by the Animal Care and Use Committee of the State Bremen, Germany.

To collect the adhesive, the salamanders’ legs were gently twitched with forceps while the animal was kept in a 
large Petri dish. The provoked animals started to exude a visible amount of a milky mucous secretion. This liquid 
aggregated and bonded strongly within seconds to different surfaces (Petri dish glass, plastic foil and metal for-
ceps) when exposed to air (Fig. 6). The adhesive was collected on clean Aclar® foils (Co. Groepl, Austria, Cat.-Nr. 
10501-10), laid out in a petri dish and subsequently divided into aliquots for the analyses. Aclar® foil (made from 
fluorinated-chlorinated resins, see US Patent No. 5088603 A and US Patent No. 3256981 A) is chemically resistant 
to all used buffers and, more importantly, does not contaminate the sample because the glue does not have to be 
scratched from glass (silica contamination) or plastic (polymers, plasticizers, …). However, in the present study, 
secretions from the dorsal and ventral glands of one or several P. shermani were used for the following investiga-
tions as no morphological or histochemical differences could be observed in an earlier study23.

For the weight loss experiments, the freshly isolated salamander secretions (n = 3) were collected in 
pre-weighted Eppendorf tubes and dried at 24 °C (36% relative humidity) in a moisture analyser (Mod. MA35, 
Co. Sartorius, Germany). Continuous weight measurements were taken until no more weight loss was meas-
urable. As a comparison, tap water and the aqueous wood glue Ponal® (Henkel, Germany, based on polyvinyl 
acetate – PVA) (in the same weight range as for the Plethodon glue) were used in parallel and dried under the 
same conditions.

The protein concentration of the salamander glue (in 5% v/v acetic acid) was determined with the Pierce™ 
Coomassie Plus (Bradford) Assay Kit (Co. Thermo Fischer, USA) according to the supplier’s instructions, 
with BSA as a calibrant on a nanophotometer (Co. Implen, Germany). Furthermore, 2-mercaptoethanol was 
added, at a total of 3% of the volume, and heated at 99 °C for 4 min. To change the acidic milieu to an alkaline 
one, rehydration buffer (7 M urea, 2 M thiourea, 2% CHAPS, 0.002% bromophenol blue) was added as well as 
2-mercaptoethanol, again heated three times at 99 °C for 4 min, resulting in a complete dissolution of the sample. 
All samples, standards and blanks were prepared and measured in triplicate and the absorption was measured at 
595 nm.

Quantification of the carbohydrate concentration in the salamander secretion was performed by Andrew 
Smith from Ithaca College, USA, using the orcinol-sulfuric acid method described in protocol 1 by58 with mod-
ification as described in40. In the present study, a 96-well plate approach was used, allowing the quantification 
of small sample amounts. Three samples (in each case around 1–2 mg), taken from several salamanders were 
solubilized in concentrated sulfuric acid for 1 hour and heated for 10 minutes at 80 °C. As a reference, different 
carbohydrates were tested44 and the protein bovine serum albumin was used as a negative control.

For the element analysis with energy dispersive X-ray spectroscopy (EDX), the freshly collected adhesive was 
directly attached to blank aluminium stubs and not sputtered with gold or carbon. The sample was directly meas-
ured with a Jeol IT 300 (Co. Jeol, Germany) equipped with an EDX spectrometer with a lithium-drifted silicon 
detector crystal. For evaluation, the software program EDAX Genesis 5.11 (Co. Mahwah, USA) was used. The 
collecting time of the elements in the samples was 100 s with a ~30% dead time at 20 KeV.

For element screening analysis with inductively coupled plasma mass spectrometry (ICP-MS), dried adhe-
sive was homogenized with an agate mortar, digested with (65%) nitric acid (Suprapur) at a heating plate (170 °C) 
and measured with ICP-MS (model: PerkinElmer Sciex 6100) at Seibersdorf Labor GmbH (Austria). The analysis 
was performed for alkali metals Li, Na, K and Rb, the alkaline earth metals Be, Mg, Ca, Sr and Ba, and the addi-
tional selected elements Fe, As, Al, V, Cr, Mn, Co, Ni, Cu, Zn, Mo and Cd.

Figure 6. Isolated glue of Plethodon shermani, sticking to the metal forceps.
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The amino acid composition of the adhesive secretions was determined by the Institute Kuhlmann 
(Germany), as described in ref. 37. In brief, tryptophan was determined after alkaline hydrolysis of the sample 
material with an amino acid analyser. For the determination of cysteine and methionine, the sample material was 
hydrolysed after a 15-hour performic acid treatment for 24 hours with 6 N HCl at 120 °C and afterwards deter-
mined with an amino acid analyser. The remaining amino acids were determined after the acid hydrolysis of the 
sample material for 24 hours with 6 N HCl at 120 °C, likewise with an amino acid analyser.

The measurements with ATR-IR spectroscopy were performed on a Bruker Equinox 55 instrument (Co. 
Bruker, Germany) with a Harrick Golden Gate ATR inlet (diamond crystal, one reflection). Measurements were 
taken with a resolution of 4 cm−1 and 32 scans. Background measurements were taken against air and water. The 
FT-Raman measurements were performed on a Bruker Vertex 80 with a RAM II module (Co. Bruker, Germany). 
A 1064 nm Nd Yg laser was used37. Measurements were taken with 250 scans at a resolution of 4 cm−1. For the 
analyses, freshly isolated salamander secretions were taken, applied directly to the diamond crystal (ATR-IR) or 
a gold sputtered slide (FT-Raman) and measured again. Afterwards, the samples were dried for a few hours at 
room temperature, measured again, and subsequently dried at 80 °C (to completely dry the sample) before being 
measured a third time.

For the alkaloid analysis one individual was anesthetized in 3% (v/v) MS-22, immediately decapitated and 
directly immersed in methanol solution. The presence of alkaloids was examined using an acid-base alkaloid 
fractionation, as outlined earlier59, 60. The entire skin of one individual P. shermani was placed in approx. 10 mL 
of 100% methanol. Gas chromatography-mass spectrometry (GC-MS) was performed of the skin extract on a 
Varian Saturn 2100 T ion trap MS instrument, which was coupled to a Varian 3900 GC with a 30 m × 0.25 mm i.d. 
Varian Factor Four VF-5 ms fused silica column. GC separation of compounds was attained using a temperature 
program from 100 to 280 °C at a rate of 10 °C per minute with helium as the carrier gas (1 mL/min). The fraction 
was analysed with both electron impact MS and chemical ionization (CI) MS with methanol as the CI reagent.

On the basis of ref. 37, the dried adhesive on Aclar® foil was prepared for gel electrophoreses as follows: Aclar® 
foil (these samples are referred to as being from Pos 1 and Pos 2) containing glue from one animal was cut from 
two different positions (approx. 0.75 cm² each), chopped into smaller pieces and placed in two sample vials. To 
exclude that material from the native foil was eluted, empty foil pieces were used as control. 100 μL of 2x NuPAGE 
Lithium Dodecyl Sulfate (LDS) Sample Buffer (Co. Life Technologies, USA, Cat-No. NP0007) were added, fol-
lowed by sonication (5 min) and heating (70 °C, 10 min). 100 μL of 100 mM DTT were added, followed again by 
sonication and heating. For one-dimensional polyacrylamide gel electrophoresis (1D-PAGE), the sample was 
spun and 10 µL of the supernatant was diluted with water (1:1), applied on pre-cast NuPAGE 4–12% Bis-Tris gels 
(Co. Life Technologies, USA, Cat-No. NP0326BOX) and separated using MOPS SDS Running Buffer (Co. Life 
Technologies, USA, Cat-No. NP0001). BenchMark Protein Ladder (Co. Life Technologies, USA, Cat-No. 10747-
012) was used as molecular weight marker (kDa). Gels were run at a constant voltage (200 V), a starting current 
of 100–125 mA/gel for 50 min, and an end current of 60–80 mA/gel.

In addition, glue was scratched from approx. 2 cm2 of Aclar® foil, put into a sample tube and dissolved in a 
buffer containing 2 M thiourea, 7 M urea and 2% (w/v) CHAPS (this sample is referred to as “Mix”). The protein 
concentration was determined as described. For 1D-PAGE, the sample was spun down and an aliquot of the 
supernatant was combined with 4x LDS and water to reach a final concentration of max. 10 mg protein per µL 
in 1x LDS buffer. The sample was separated on 4–12% Bis-Tris gels with a MOPS SDS buffer, as described above.

For two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), the dried adhesive was scratched from 
the Aclar® foil and dissolved in IEF rehydration buffer (2 M thiourea, 7 M urea, 2% (w/v) CHAPS, 0.002% bromo-
phenol blue, 2% (w/v) IPG buffer pH 3–10) overnight. Ready-made IPG strips (7 cm, Immobiline DryStrip, pH 
3-10NL; Co. GE Healthcare, UK) were rehydrated with protein-containing rehydration buffer overnight (44 µg) 
and the sample was separated with a Multiphore II (Co. GE Healthcare, UK) for 45 hours (30 kVh). The strip was 
equilibrated in 75 mM Tris-HCl pH 8.8 containing 6 M urea, 30% glycerol, 2% SDS, 1% (w/v) DTT and 0.002% 
bromophenol blue, followed by equilibration in 50 mM Tris-HCl pH 8.8 containing 6 M urea, 30% glycerol, 2% 
SDS and 4% (w/v) idoacetamide, 15 min each. The second dimension was again run on 4–12% Bis-Tris gels using 
a MOPS SDS buffer (for details see 1D-PAGE). Proteins were visualized by silver staining according to ref. 61.

In-gel tryptic digestion was carried out as previously described62 with the modification that purified pep-
tides were prepared for MALDI-TOF/TOF-MS. For this, the purified tryptic peptides were dissolved in 2 µL 
matrix solution (4 mg/mL α-Cyano-4-hydroxy cinnamic acid) and applied to stainless steel targets for analy-
sis. Peptide Mass Fingerprinting (PMF) and peptide sequencing (MS/MS) were carried out in positive ion, 
reflectron mode on an UltrafleXtreme (Co. Bruker, Germany). For all enzymatic digestion data, autolytic tryptic 
products, keratin and gel blank artefacts were assigned and removed prior to a database search on an in-house 
Mascot server v2.4.063. Against a database containing only protein sequences relevant for “amphibian” (NCBInr, 
329.171 sequence entries; Aug 31st, 2016) and against the latest NCBInr and SwissProt databases (both Aug 2016), 
both restricted to “chordate”. The database search was performed with the following parameters: monoisotopic 
mass values, peptide mass tolerance ± 0.3 Da, fragment ion tolerance ± 0.5 Da in the case of MS/MS analysis, 
one missed cleavage, carboxyamidomethylation as fixed modification and methionine oxidations as variable 
modification. In the case of an unsuccessful database search, de novo sequencing was performed with Biotools 
v3.2 (Co. Bruker, Germany) using information from the immonium ion region (m/z 40–170) for present amino 
acids. Amino acid sequences of high statistical probability were searched with BLAST against NCBInr (limited 
to “amphibia” or Plethodon). The search results were listed as a taxonomy report and the most likely results from 
salamanders were considered as potential protein identification. If more than one peptide from a gel spot gave 
the same BLAST result, this identification was considered to be an even more correct identification. The supple-
mentary material lists all the BLAST results, while the manuscript discusses only the most likely ones in detail.
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Ethical statement. Salamanders were wild-born individuals collected from populations in the vicinity of 
Highlands Biological Station, Highlands, North Carolina, USA (collecting permit, Highlands Biological Station) 
and according to the requirements of local nature conservation authorities. All methods in this study were 
approved to U.D. by the Institutional Animal Care and Use Committee in the University of Bremen Germany. 
Only for the alkaloid analyses one individual was anesthetized in 3% (v/v) MS-22, immediately decapitated and 
directly immersed in methanol solution. Within this study, no experiments with live animal were carried out. 
Only an absolute minimum of animals necessary to the research were stressed and its glue collected and used for 
the planned investigations.

References
 1. von Byern, J. & Grunwald, I. Biological Adhesive Systems: from Nature to Technical and Medical Application Springer Verlag, 

WienNewYork (2010).
 2. Smith, A. M. & Callow, J. A. Biological Adhesives Springer-Verlag, Heidelberg (2006).
 3. Tyler, M. J. & Ramshaw, J. A. An adhesive derived from amphibian skin secretions. PCT/AU2001/001172[WO2002/022756], 1–29, 

2002 Australia (2002).
 4. Graham, L. D. et al. Characterization of a protein-based adhesive elastomer secreted by the Australian frog Notaden bennetti. 

Biomacromolecules 6, 3300–3312 (2005).
 5. Graham, L. D. et al. An adhesive secreted by Australian frogs of the genus Notaden (eds Smith, A. M. & Callow, J. A.) Ch. 11, 207–223 

(Springer-Verlag, 2006).
 6. Graham, L. D. Biological adhesives from nature (eds Bowlin, G. L. & Wnek, G.), 1–18 (Taylor & Francis, 2005).
 7. Kamino, K. et al. Barnacle cement proteins - Importance of disulfide bonds in their insolubility. Journal of Biological Chemistry 275, 

27360–27365 (2000).
 8. Sagert, J., Sun, C. & Waite, J. H. Chemical subtleties of Mussel and Polychaete holdfasts (eds Smith, A. M. & Callow, J. A.) Ch. 7, 

125–143 (Springer-Verlag, 2006).
 9. Tyler, M. J. Adhesive dermal secretions of the Amphibia, with particular reference to the Australian Limnodynastid genus Notaden 

(eds von Byern, J. & Grunwald, I.) Ch. 11, 181–186 (Springer Verlag, 2010).
 10. Millar, N. L. et al. Frog glue enhances rotator cuff repair in a laboratory cadaveric model. Journal of Shoulder and Elbow Surgery 18, 

639–645 (2009).
 11. Szomor, Z. L., Murrell, G. A. C., Appleyard, R. C. & Tyler, M. J. Meniscal repair with a new biological glue: An ex vivo study. 

Techniques in Knee Surgery 7, 261–265 (2009).
 12. Ornes, S. Mussels’ sticky feet lead to applications. Proceedings of the National Academy of Sciences of the United States of America 110, 

16697–16699 (2013).
 13. Lee, H., Lee, B. P. & Messersmith, P. B. A reversible wet/dry adhesive inspired by mussel and geckos. Nature Letters 448, 338–341 

(2007).
 14. Mahdavi, A. et al. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proceedings of the National Academy of 

Sciences of the United States of America 105, 2307–2312 (2008).
 15. Brodie, E. D. Antipredator adaptations of Salamanders: Evolution and convergence among terrestical species (eds Margaris, N. S., 

Arianoutsou-Faraggitaki, M. & Reiter, R. J.), 109–133 (Plenum Publishing Corporation, 1983).
 16. Brodie, E. D. & Smatresk, N. J. The antipredator arsenal of fire salamanders: Spraying of secretions from highly pressurized dorsal 

skin glands. Herpetologica 46, 1–7 (1990).
 17. Nowak, R. T. & Brodie, E. D. Rib penetration and associated antipredator adaptations in the salamander Pleurodeles waltl 

(Salamandridae). Copeia 1978, 424–429 (1978).
 18. Heiss, E. et al. Hurt yourself to hurt your enemy: new insights on the function of the bizarre antipredator mechanism in the 

salamandrid Pleurodeles waltl. Journal of Zoology 280, 156–162 (2010).
 19. Arnold, S. J. A quantitative approach to antipredator performance: salamander defense against snake attack. Copeia 1982, 247–253 

(1982).
 20. Brodie, E. D. & Gibson, L. S. Defensive behavior and skin glands of the Northwestern Salamander. Ambystoma gracile. Herpetologica 

25, 187–194 (1969).
 21. Williams, T. A. & Anthony, C. D. Technique to isolate Salamander granular gland products with a comment on the evolution of 

adhesiveness. Copeia 2, 541 (1994).
 22. Largen, W. & Woodley, S. K. Cutaneous tail glands, noxious skin secretions, and scent marking in a terrestrial salamander (Plethodon 

shermani). Herpetologica 64, 270–280 (2008).
 23. von Byern, J. et al. Morphological characterization of the glue-producing system in the salamander Plethodon shermani (Caudata, 

Plethodontidae). Zoology (Jena) 118, 334–347 (2015).
 24. Mebs, D. & Pogoda, W. Variability of alkaloids in the skin secretion of the European fire salamander (Salamandra salamadra 

terrestris). Toxicon 45, 603–606 (2005).
 25. Heiss, E. et al. Three types of cutaneous glands in the skin of the salamandrid Pleurodeles waltl. A histological and ultrastructural 

study. Journal of Morphology 270, 892–902 (2009).
 26. Krimm, S. & Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins (eds Anfinsen, C. B., 

Edsall, J. T. & Richards, F. M.), 181–364 (Academic Press, 1986).
 27. Barlow, D. E. & Wahl, K. J. Optical spectroscopy of marine bioadhesive interfaces. Annual Review of Analytical Chemistry 5, 229–251 

(2012).
 28. Rava, R. P., Baraga, J. J. & Feld, M. S. Near infrared fourier transfrom Raman spectroscopy of human artery. Spectrochimica Acta Part 

1: Molecular Spectroscopy 47, 509–512 (1991).
 29. Gremlich, H. U. & Yan, B. Infrared and Raman Spectroscopy of biological materials (Practical Spectroscopy) Marcel Dekker, Basel 

(2001).
 30. Omoike, A. & Chorover, J. Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: aqueous chemistry and 

adsorption effects. Biomacromolecules 5, 1219–1230 (2004).
 31. Jiskoot, W. & Crommelin, D. Methods for Structural Analysis of Protein Pharmaceuticals AAPS Press, Arlington (2005).
 32. Severcan, F. & Haris, P. I. Vibrational Spectroscopy in Diagnosis and Screening IOS Press, Amsterdam (2012).
 33. Ooka, A. A. & Garrell, R. L. Surface-enhanced Raman Spectroscopy of DOPA-containing peptides related to adhesive protein of 

marine mussel, Mytilus edulis. Biopolymers (Biospectroscopy) 57, 92–102 (2000).
 34. Fox, H. The structure of the integument (eds Heatwole, H.) Ch. 1, 179–315 (Surrey Beatty and Sons, 1994).
 35. Graham, L. D. et al. The adhesive skin exudate of Notaden bennetti frogs (Anura: Limnodynastinae) has similarities to the prey 

capture glue of Euperipatoides sp. velvet worms (Onychophora: Peripatopsidae). Comparative Biochemistry and Physiology Series B 
Biochemistry & Molecular Biology 165, 250–259 (2013).

 36. Benkendorff, K. et al. Characterization of the slime gland secretion from the peripatus, Euperipatoides kanangrensis (Onychophora: 
Peripatopsidae). Comparative Biochemistry and Physiology Series B Biochemistry & Molecular Biology 124, 457–465 (1999).

 37. Zheden, V. et al. Biochemical analyses of the cement float of the goose barnacle Dosima fascicularis. Biofouling 30, 949–963 (2014).



www.nature.com/scientificreports/

1 2SCIEnTIfIC REPORTS | 7: 6647 | DOI:10.1038/s41598-017-05473-z

 38. von Byern, J. et al. Characterization of the fishing lines in Titiwai (=Arachnocampa luminosa Skuse, 1890) from New Zealand and 
Australia. Public Library of Science One 11, e0162687 (2016).

 39. DeMoor, S., Waite, J. H., Jangoux, M. & Flammang, P. Characterization of the adhesive from cuvierian tubules of the sea cucumber 
Holothuria forskali (Echinodermata, Holothuroidea). Marine Biotechnology 5, 45–57 (2003).

 40. Smith, A. M., Quick, T. J. & St.Peter, R. L. Differences in the composition of adhesive and non-adhesive mucus from the limpet Lottia 
limatula. Biological Bulletin 196, 34–44 (1999).

 41. Walker, G. & Youngson, A. The biochemical composition of Lepas anatifera (L.) cement (Crustacea: Cirripedia). Journal of the 
Marine Biological Association of the United Kingdom 55, 703–707 (1975).

 42. Kamino, K., Odo, S. & Maruyama, T. Cement proteins of the acorn barnacle. Megabalanus rosa. Biological Bulletin 190, 403–409 
(1996).

 43. Jonker, J. L. et al. The chemistry of stalked barnacle adhesive (Lepas anatifera) using SEM-EDS, ATR/FTIR and Raman. Interface 
Focus 5, 20140062_1–20140062_13 (2015).

 44. Smith, A. M. & Morin, M. C. Biochemical differences between trail mucus and adhesive mucus from marsh periwinkle snails. 
Biological Bulletin 203, 338–346 (2002).

 45. Waite, J. H. Adhesion á la Moule. Integrative and Comparative Biology 42, 1172–1180 (2002).
 46. Smith, A. M. The structure and function of adhesive gels from invertebrates. Integrative and Comparative Biology 42, 1164–1171 

(2002).
 47. Zhao, H., Sun, C., Stewart, R. J. & Waite, J. H. Cement proteins of the tube-building polychaete Phragmatopoma californica. Journal 

of Biological Chemistry 280, 42938–42944 (2005).
 48. Flammang, P. Adhesive secretions in echinoderms: An overview (eds Smith, A. M. & Callow, J. A.) Ch. 10, 183–206 (Springer-Verlag, 

2006).
 49. Wiegemann, M., Kowalik, T. & Hartwig, A. Noncovalent bonds are key mechanisms for the cohesion of barnacle (Balanus crenatus) 

adhesive proteins. Marine Biology 149, 241–246 (2006).
 50. Park, D. et al. Discrimination of conspecific sex and reproductive condition using chemical cues in axolotls (Ambystoma 

mexicanum). Journal of Comparative Physiology A Neuroethology, Sensory, Neural, and Behavioral Physiology 190, 415–427 (2004).
 51. Yang, H. et al. Antioxidant peptidomics reveals novel skin antioxidant system. Molecular & Cellular Proteomics 8, 571–583 (2009).
 52. Flammang, P., Lambert, A., Bailly, P. & Hennebert, E. Polyphosphoprotein-containing marine adhesives. The Journal of Adhesion 85, 

447–464 (2009).
 53. Stewart, R. J., Weaver, J. C., Morse, D. E. & Waite, J. H. The tube cement of Phragmatopoma californica: a solid foam. Journal of 

Experimental Biology 207, 4727–4734 (2004).
 54. Stewart, R. J. & Wang, C. S. Adaptation of caddisfly larval silks to aquatic habitats by phosphorylation of h-fibroin serines. 

Biomacromolecules 11, 969–974 (2010).
 55. Werneke, S. W. et al. The role of metals in molluscan adhesive gels. Journal of Experimental Biology 210, 2137–2145 (2007).
 56. Adlassnig, W. et al. Amphibians in metal-contaminated habitats. Salamandra 49, 149–158 (2013).
 57. Sever, M. J. et al. Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angewandte Chemie International 

Edition 43, 448–450 (2004).
 58. Kennedy, J. F. & Pagliuca, G. Oligosaccharides (eds Chaplin, M. F. & Kennedy, J. F.) Ch. 2, 43–72 (IRL Press at Oxford University 

Press, 1994).
 59. Jeckel, A. M., Grant, T. & Saporito, R. A. Sequestered and Synthesized Chemical Defenses in the Poison Frog Melanophryniscus 

moreirae. Journal of Chemical Ecology 41, 505–512 (2015).
 60. Mina, A. E. et al. Variation in alkaloid-based microbial defenses of the dendrobatid poison frog Oophaga pumilio. Chemoecology 25, 

169–178 (2015).
 61. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide 

gels. Analytical Chemistry 68, 850–858 (1996).
 62. Tesei, D. et al. Proteome of tolerance fine-tuning in the human pathogen black yeast Exophiala dermatitidis. Journal of Proteomics 

128, 39–57 (2015).
 63. Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases 

using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).
 64. Flammang, P. et al. A study of the temporary adhesion of the podia in the sea star Asterias rubens (Echinodermata, Asteroidea) 

through their footprints. Journal of Experimental Biology 201, 2383–2395 (1998).
 65. Walker, G. The biochemical composition of the cement of two barnacles species, Balanus hameri and Balanus crenatus. Journal of the 

Marine Biological Association of the United Kingdom 52, 429–435 (1972).

Acknowledgements
The first author would like to thank in particular Prof. Dr. Andrew Smith for his great support and kindness 
in performing the carbohydrate analysis of the Plethodon secretions. Our thanks also go to Prof Dr Edmund D. 
Brodie of the Department of Biology, Utah State University, USA, and Ms Victoria Dorrer, Vienna University 
of Technology, Institute of Chemical Technologies and Analytics, Vienna, Austria, for their editorial assistance. 
We would also like to thank Dr Lynne Houck, Oregon State University, Corvallis, OR, USA, for providing the 
Plethodon shermani specimens for this study. This research was funded by the Hochschuljubilaeumsfonds of the 
City of Vienna (H-1857/2008) and the Austrian Science Fund (Project P) to J.v.B., with travel costs paid by COST 
ACTION TD0906 “Biological adhesives: from biology to biomimetics” (http://www.cost-bioadhesives.org) to J.v.B.

Author Contributions
J.v.B., U.D. and O.W. collected the salamander secretions; I.G. and T.K. contributed with the ATR-IR and Raman 
spectroscopy measurements. M.K. and M.M.D. performed the Bradford Assay, 1D- and 2D-Page, PMF and 
peptide sequencing while R.A.S. did the GC-MS analysis. Elemental analysis was done by K.T., ICP-MS by K.B., 
water loss measurements by J.v.B. Finally, J.v.B., I.G. and M.M.D. wrote the main manuscript text and prepared 
all figures and tables.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-05473-z
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1038/s41598-017-05473-z


www.nature.com/scientificreports/

13SCIEnTIfIC REPORTS | 7: 6647 | DOI:10.1038/s41598-017-05473-z

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	John Carroll University
	Carroll Collected
	7-2017

	Chemical characterization of the adhesive secretions of the salamander Plethodon shermani (Caudata, Plethodontidae)
	Janek von Byern
	Ingo Grunwald
	Max Kosok
	Ralph Saporito
	Ursula Dicke
	See next page for additional authors
	Recommended Citation
	Authors


	Chemical characterization of the adhesive secretions of the salamander Plethodon shermani (Caudata, Plethodontidae)
	Results
	Secretion Handling. 
	Weight lost. 
	Protein and carbohydrate quantification. 
	Elemental analysis. 
	Amino acid analysis. 
	ATR-IR spectroscopy. 
	Raman spectroscopy. 
	Alkaloid analysis. 
	Sequence analysis. 

	Discussion
	Material and Methods
	Ethical statement. 

	Acknowledgements
	Figure 1 Drying of the salamander adhesive.
	Figure 2 (A) Spectrum of the elemental composition of the salamander secretion.
	Figure 3 FTIR spectrum of dry salamander secretion.
	Figure 4 Raman spectrum of the dry salamander secretion.
	Figure 5 1D- and 2D-PAGE.
	Figure 6 Isolated glue of Plethodon shermani, sticking to the metal forceps.
	Table 1 Amino acid composition (values in residues per hundred) of the Plethodon shermani secretions (present study) with previous data given for Notaden bennetti5, 35, Euperipatoides kanangrensis36, Asterias rubens64 and Holothuria forskali39, Dosima fas


