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ABSTRACT

Nagle, EF, Sanders, ME, Gibbs, BB, Franklin, BA, Nagle, JA,

Prins, PJ, Johnson, CD, and Robertson, RJ. Reliability and

accuracy of a standardized shallow water running test to

determine cardiorespiratory fitness. J Strength Cond Res 31

(6): 1669–1677, 2017—A standardized fitness assessment is

critical for the development of an individualized exercise pre-

scription. Although the benefits of aquatic exercise have been

well established, there remains the need for a standardized

nonswimming protocol to accurately assess cardiorespiratory

fitness (CRF) in shallow water. The present investigation was

designed to assess (a) the reliability of a standardized shallow

water run (SWR) test of CRF and (b) the accuracy of a stan-

dardized SWR compared with a land-based treadmill (LTM)

test. Twenty-three healthy women (20 6 3 years), with body

mass index (23.5 6 3 kg$m22), performed 2 shallow water

peak oxygen consumption (V_ O2peak) running tests (SWRa

and SWRb), and 1 V_ O2max LTM. Intraclass correlation coef-

ficients indicated moderately strong reliability for V_ O2peak

(ml$kg21$min21) (r = 0.73, p , 0.01), HRpeak (b$min21)

(r = 0.82; p , 0.01), and O2pulse (V_ O2 [ml$kg21$min21]$

HR [b$min21]) (r = 0.77, p , 0.01). Using paired t-tests

and Pearson’s correlations, SWR V_ O2peak and HRpeak were

significantly lower than during LTM (p # 0.05) and showed

moderate correlations of 0.60 and 0.58 (p , 0.001) to LTM.

O2pulse was similar (p . 0.05) for the SWR and LTM tests with

a moderate correlation of 0.63. A standardized SWR test as

a measure of CRF is a reliable, and to some degree, valid alterna-

tive to conventional protocols and may be used by strength and

conditioning professionals to measure program outcomes and

monitor training progress. Furthermore, this protocol provides

a water-based option for CRF assessment among healthy women

and offers insight toward the development of an effective protocol

that can accommodate individuals with limited mobility, or those

seeking less musculoskeletal impact from traditional land-based

types of training.

KEY WORDS aquatic exercise, aerobic fitness, hydrodynamic,

cardiorespiratory assessment

INTRODUCTION

A
quatic exercise (AE) uses land-based physical
activity (i.e., walking, jogging, calisthenics, and

locomotor/resistive movements) adapted to

a water medium (14). Popular forms of AE

include water aerobics and both deep and shallow water

running. Previous studies that compared AE with traditional

swimming training programs in clinical and healthy popula-

tions reported improved health and psychosocial outcomes,

with specific reference to metabolic, musculoskeletal, cardio-

respiratory (CR), psychological, and performance benefits

for various aquatic interventions (27,34,39,43,46). Used by

trained individuals for rehabilitation or cross-training, shal-

low and deep water running have been shown to elicit sim-

ilar chronic CR effects as compared with land-based

treadmill (LTM) running (11). Compared to swimming

training, AE is considered a viable alternative for certain

individuals and has been reported to be a potentially more

enjoyable form of physical activity (18,34) as substantiated

by enhanced participation and compliance (14,34). Aquatic

exercise can also serve as an attractive option for individuals

unable to meet land-based training objectives or considered

biomechanically limited and not capable of performing

swimming strokes in a continuous fashion.



Shallow water AE is of particular interest because of its
partial weight bearing characteristics that occur when
performed at a water depth that offloads body weight
50%–90% when submerged from the hip to midaxillary
levels (22). Shallow water running (SWR), a popular
form of AE, is performed in a simple upright stance
(head and shoulders above the water’s surface), uses the
feet as the base of support, and simulates familiar and
functional land-based running movements. Previous stud-
ies comparing the physiological responses of AE to
land-based movements have largely focused on deep
water running exercise (5,11,12,15). A few SWR studies
included aquatic treadmill, tethered, and stationary meth-
ods of running in water for healthy and clinical popula-
tions (1,4,6,10,29,45). However, evidence to support
the utility of a reliable SWR protocol executed in a pool
is lacking, despite greater accessibility to recreational
pools nationwide. This highlights the need to accurately
evaluate the CR and metabolic responses of SWR to
quantify the associated energy expenditure for prescrip-
tive and training applications in clinical and athletic
populations.
Regardless of whether an activity is aquatic or land-

based, assessment of cardiorespiratory fitness (CRF)
using a standardized test protocol that is specific to the
performance medium is essential to the development of
safe and effective exercise training programs (28). Phys-
iologic responses to land-based activity differ from
aquatic activities due primarily to the hydrodynamic
and physical properties of water. Accordingly, consis-
tently lower peak heart rate (HR) and oxygen consump-
tion (V_ O2) responses at maximal exercise intensities
during stationary running, water walking, and deep water
running exercise have been shown when compared to
LTM protocols (16,38). Therefore, standardized aquatic
testing procedures must be used to ensure the accuracy
and generalizability of CRF data for effective AE pro-
gramming (1,4). The test accuracy should involve precise
and careful measurement of physiological/perceptual
responses to a standardized mode-specific aquatic (i.e.,
SWR) test protocol using previously established (vali-
dated) methodologies as the criterion measure. To date,
only 2 studies have examined the validity or reliability of
SWR protocols. Silva et al. (3) reported a high test-retest
reliability (r = 0.91) using a 12-minute running test in
shallow water depths ranging from 1.1 to 1.3 meters.
However, peak oxygen uptake (V_ O2peak) was not deter-
mined or predicted. Kaminsky et al. (26) developed a sta-
tistical model using a 500-yard shallow water run alone
(1.2–1.5 meter water depth) and in conjunction with
anthropometric measures to accurately predict V_ O2peak
where field tests such as the 1.5 mile run were employed
as the test criterion. Both studies, however, were limited
by the absence of a criterion measure of CRF (i.e.,
directly measured maximal oxygen uptake [V_ O2max])

that was assessed using a standardized mode-specific
aquatic test protocol.
Presently, a standardized nonswimming protocol capa-

ble of accurately assessing CRF in shallow water is not
available. Although newly developed commercial aquatic
treadmills can systematically regulate speed, grade, and
work output during water immersion, such devices are
costly, and studies on the validity of these measurement
procedures are lacking. Considering the issues around
feasibility and practical application, investigation of the
accuracy of a standardized pool-based SWR test to assess
CRF, using the indirect calorimetry method, is war-
ranted. Symptomatic individuals with physical limita-
tions from chronic conditions such as obesity, arthritis,
and fibromyalgia may prefer aquatic fitness testing pro-
tocols that are partial weight bearing and provide
optimal thermoregulatory properties of shallow water
(2,5,8,18,32,34,38,48). For athletes who are injured or
seeking an alternative modality to aerobic conditioning,
SWR may offer an ideal aquatic medium for training
(11,50). Furthermore, for those individuals who may be
comparatively less comfortable performing AE and less
skilled at swimming strokes, an SWR test may be used to
assess CRF in an aquatic medium. It follows that a stan-
dardized, mode-specific SWR test is needed to provide
an accurate measure of CRF (i.e., V_ O2peak), having appli-
cation in health-fitness and sport performance settings.
A standardized SWR test protocol is one that when care-
fully administered, will evoke measures that are generally
accepted as uniform, reliable and/or authoritative ren-
dering them useful as a rule or bases of comparison in
measuring quantitative and/or qualitative responses. For
strength and conditioning professionals, an SWR test will
provide an alternative V_ O2peak assessment that will assist
with further understanding of the aerobic demands of
a particular training type or sport. This will allow for
an exclusive aquatic prescription complimentary to tra-
ditional forms of land-based training. Therefore, the
present investigation was designed to examine the reli-
ability and accuracy of a standardized SWR test of
V_ O2peak in healthy adult women, using an LTM test as
the criterion protocol, with specific reference to the asso-
ciated aerobic, metabolic, cardiovascular, and perceptual
responses.

METHODS

Experimental Approach to the Problem

This study employed a multiple observation, within subject,
counterbalanced design. Subjects were habituated to the
protocol via an orientation practice session. On separate
days, 2 shallow water V_ O2peak running (SWRa and SWRb)
tests and an LTM maximal oxygen consumption (V_ O2max)
running test were administered. All 3 experimental trials
were counterbalanced and separated by at least 2, but no
more than 7 days.

Standardized Shallow Water Running Test
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Subjects

Twenty-three healthy female subjects were recruited from
(a) University and community postings in the surrounding
areas; (b) University of Pittsburgh fitness classes; (c)
University of Pittsburgh Faculty and Staff Fitness Center;
and (d) basic instruction classes. Females were recruited
because most participants in AE classes tend to be women
(10). Subjects were included in the study if they met the
following criteria: (1) female; (2) aged 18–35 years; (3) body
mass index $18 and ,34.9 kg$m22 (37); (4) reported reg-
ular aerobic activity ,150 minutes per week for the pre-
vious 6 months; (5) were .157 and ,182 cm in height; and
(6) felt comfortable exercising in shallow water. After initial
contact, potential subjects were screened using a medical
inventory and the Physical Activity Readiness Question-
naire (PAR-Q) (20). If eligible, subjects were informed of
the benefits and risks of participation, followed by signature
of the informed consent document, and were scheduled for
an orientation session. All procedures received approval
from the Institutional Review Board at the University of
Pittsburgh. Physical characteristics of the study participants
are presented in Table 1.

Procedures

Orientation Session. On arrival to the laboratory, standing
height (in centimeters) was obtained followed by body
composition assessment using a Tanita (Arlington Height,
IL) bioelectrical impedance analyzer (25). Next, practice test
protocols to control for test familiarization bias in those
subjects who had not previously undergone a maximal oxy-
gen consumption (V_ O2max) LTM test or SWRV_ O2peak run-
ning test were administered. Subjects were allowed to
practice running on the Trackmaster TMX425C treadmill
(Newton, KS) using a standard land-based heel-to-toe gait,
to become familiarized with the metabolic measurement
system (i.e., facemask, nose clip, and mouthpiece) used in
the experimental trial (Cosmed, Chicago, IL). This included
an explanation of the test termination procedures which
were read to all subjects before the assessments. Subjects
were also familiarized with the Adult OMNI (1–10) rating
of perceived exertion (RPE) scale which was used in all

experimental trials. A standard set of OMNI scale rating
instructions and anchoring procedures was employed and
in full view of the subject during the orientation, SWR,
and LTM trials. This scale is used by health-fitness profes-
sionals and coaches to objectively evaluate an individual’s
perceived level of effort, strain, discomfort, and fatigue dur-
ing aerobic or resistance exercise (41,42).
The next phase of the experiment occurred in the pool

where subjects were shown a brief video clip of correct SWR
technique and biomechanics. The familiarization period also
included a written explanation of the procedures for the
SWRV_ O2peak running test. Subjects were fitted with a Polar
heart rate monitor (Port Washington, NY), mouthpiece, and
nose clip and instructed to practice SWR in the 22 meter
pool while wearing fitted water exercise shoes provided by
the investigators. Investigators gave subjects feedback
regarding water running technique (i.e., upright posture,
standard toe-to-heel gait, knees high, arms at sides similar
to running on land, and so on) and allowed them to become
familiar with the specified protocol intensities, as well as the
COSMED K4b2 and Aquatrainer metabolic unit (Chicago,
IL). Standardized running movements ensured that upward
knee movement did not exceed the hip line and that the
upper body was slightly forward leaning. The elbows were
submerged at 90-degree flexion, and moved alternately sim-
ilar to arm movements used while jogging (3). Water tem-
perature was maintained at approximately 27.58 Celsius.

Shallow Water V_ O2peak Running Test. On arrival to the pool,
subjects were fitted with a Polar heart rate monitor,
mouthpiece, and nose clip and performed an incremental
test protocol as previously described (45). This protocol
was performed in a water depth of 1.2 meters with the
water surface ranging from slightly below the participant’s
xyphoid process to the midaxillary region. Similar to pre-
vious studies, V_ O2peak values were directly measured and
identified as the highest V_ O2 achieved during the SWR test
(49). This incremental self-regulated intensity protocol
involved running a minimum of 10 lengths of the 22 meter
pool, with rest periods after each length that decreased
from 10 to 3 seconds throughout the test. Using both visual

TABLE 1. Participant characteristics (n = 23).

Characteristic Mean 6 SD

Age (yrs) 20.1 6 2.9
Height (cm) 163 6 5.2
Weight (kg) 63.0 6 9.5
BMI (kg$m22) 23.5 6 3.4
Body fat (%) 26.28 6 7.6
Fat-free mass (kg) 45.4 6 3.1
Leg length (cm) 90.8 6 4.9

TABLE 2. Shallow water running Protocol.*

Stage Intensity No. lengths Rest period

1 50% (moderate) 4 10 s
2 70% (hard) 3 5 s
3 90% (very hard) 2 3–5 s
4 100% (maximal) 4–6 Continuous

*Rest period, rest time between pool lengths; Intensity,
subjectively determined; No. Lengths, 1 pool length = 22
meters.

Journal of Strength and Conditioning Research
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and verbal cues throughout each stage, the moderate, hard,
very hard, and maximal intensities listed in Table 2 corre-
sponded to 4–6, 6–8, 8–9, and .9 on the OMNI-RPE scale,
respectively (41). These targeted perceptual intensities
approximated 40–85% of oxygen uptake reserve (VO2R),
or 65–95% of maximum heart rate reserve (HRR) as spec-
ified by American College of Sports Medicine (ACSM)
(31). After 9 lengths, subjects ran continuously as fast as
possible with upward high knee movements nearly break-
ing the surface of the water till velocity completed per pool
length declined or until volitional fatigue occurred.
Expired ventilatory volume (VE), standard temperature and

pressure, dry, and concentrations of expired O2 (l$min21) and
CO2 (l$min21) were analyzed by the calibrated COSMED
K4b2 system and measured by open circuit spirometry in
15-second intervals. Immediate posttest RPE values were ob-
tained by having subjects touch the desired numerical cate-
gory rating on a posted scale attached to the pool wall.
Subjects participated in a cool-down by walking for 3 minutes
or until HR decreased to ,110 b$min21.

Land-Based Treadmill V_ O2max Running Test. Similar to the
SWR test, subjects were fitted with a Polar monitor, facemask,
and mouthpiece. As previously described, resting values of
HR (b$min21), V_ O2 (l$min21), and V_ CO2 (l$min21) were ob-
tained before testing. The progressive incremental Bruce
treadmill test consisted of 3-minute stages as follows: Stage
1 (2.74 km$h21) 10.0% grade; Stage 2 (4.02 km$h21) 12%
grade; Stage 3 (5.47 km$h21) 14% grade; Stage 4 (6.76
km$h21) 16% grade; Stage 5 (8.0 km$h21) 18% grade; and
Stage 6 (8.9 km$h21) 20% grade (31). V_ O2max was identified
as a change in V_ O2 of ,2.1 ml$kg21$min21 with increasing
exercise intensity, and reflected by the highest V_ O2 attained.
Additional secondary criteria for aquatic and land-based tests
included (a) a respiratory exchange ratio (RER) .1.10
(defined as ratio of [CO2]: [O2]) (b) HR 6 5 b$min21 of
the age-predicted maximum at maximal exercise; (c) an
RPE-OMNI .9; and (d) volitional termination due to
exhaustion (36). Expired ventilatory volume, V_ O2 (l$min21),
and V_ CO2 (l$min21) were analyzed and calculated by open
circuit spirometry in 15-second sampling intervals. On

TABLE 3. Peak cardiorespiratory and perceptual responses of repeated SWR trials.*†

Variable N SWRa SWRb Difference ICC

V_ O2peak (ml$kg21$min21) 18 38.2 6 6.05 38.5 6 5.8 20.3 6 4.5 0.73z
HRpeak (b$min21) 22 181 6 11.0 178 6 11.0 3.0 6 6§ 0.82z
O2pulse (V_ O2peak/HRpeak) 18 0.21 6 0.04 0.22 6 0.03 20.01 6 0.02 0.77z
Peak RER 17 1.08 6 0.12 1.09 6 0.11 0.01 6 0.16 NS
VEpeak (l$min21) 17 89.7 6 11.0 93.6 6 17.0 3.9 6 14.5 0.50§
Immediate posttest RPE 22 9.7 6 0.6 9.7 6 0.6 0.0 6 0.8 NS

*SWR = Shallow Water Run; SWRa = first shallow water running trial; SWRb = second shallow water running trial; RER =
respiratory exchange ratio; NS = nonsignificant; RPE = rating of perceived exertion.

†Values are in mean 6 SD.
zp , 0.01.
§p # 0.05.

TABLE 4. Peak cardiorespiratory and perceptual responses of SWR and LTM tests.*†

Variable N SWRa LTM Difference Pearson’s r

V_ O2peak (ml$kg21$min21) 23 37.1 6 6.8 44.2 6 8.4 27.1 6 6.9z 0.60z
HRpeak (b$min21) 23 181 6 11 191 6 11 210.0 6 10z 0.58z
O2pulse (V_ O2peak/HRpeak) 23 0.206 6 0.038 0.231 6 0.040 20.025 6 0.034 0.63z
Peak RER 23 1.09 6 0.12 1.11 6 0.10 20.02 6 0.15 NS
VEpeak (l$min21) 23 89.0 6 13.8 74.4 6 15.0 14.70 6 17.0z NS
Immediate posttest RPE 23 9.6 6 0.8 8.5 6 1.6 1.0 6 1.5z NS

*SWR = ShallowWater Run; SWRa = first shallow water running trial; LTM = land-based treadmill; SWRb = second shallow water
running trial; RER = respiratory exchange ratio; NS = nonsignificant; RPE = rating of perceived exertion.

†SWR included SWRa + SWRb when SWRa values were not captured. Values are in mean (SD).
zp , 0.01.
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completion of the test, subjects underwent a cool-down at 2.0
km$h21 and 0% grade for an additional 3 minutes, or until HR
decreased to ,110 b$min21.

Statistical Analyses

Sample size calculations showed that 22 participants would
provide 80% power with a = 0.05 to reject the null hypoth-
esis of an interclass correlation coefficient (ICC) of #0.50,
assuming a true underlying ICC of 0.80. Subject character-
istics were summarized by means and SDs. Reliability of the
SWR was assessed by comparing mean values of SWRa and
SWRb with paired t-tests and by calculating ICCs between
tests for V_ O2peak, VEpeak, RER, HRpeak, O2pulse, and
immediate posttest RPE. Accuracy of the SWRa test com-
pared to the LTM test was assessed by comparing mean
differences between tests with paired t-tests and Pearson’s
correlations for V_ O2peak, VEpeak, RER, HRpeak, O2pulse,
and immediate posttest RPE. Data were drawn from the first

SWRa test to simulate application where little to no practice
would typically occur for a participant before an initial AE
class. Table 4 included SWRa + SWRb values when SWRa
values were not captured (reflected as SWR). In addition,
Bland-Altman plots were used to evaluate concordance
between methods including systematic bias, patterns of
error, and a 95% confidence interval for observed differences
between methods (limits of agreement) (7).

RESULTS

Shallow Water Run Test Reliability

Twenty-two subjects completed the SWRa and SWRb trials.
Peak CR responses during the SWRa and SWRb tests are
presented in Table 3. Intraclass correlation coefficients indi-
cated moderately strong reliability for V_ O2peak (r = 0.73, p,
0.01), HRpeak (r = 0.82; p , 0.01), and O2pulse (r = 0.77;
p , 0.01) between the 2 repeated trials. A moderate agree-
ment was observed for VEpeak (r = 0.50; p # 0.05), with
a lack of significance occurring between peak RER and
immediate posttest RPE trials (p . 0.05). A paired t-test
revealed no differences in CR variables between SWRa
and SWRb with the exception of a greater HRpeak observed
in the SWRa trial (p # 0.05).

Shallow Water Run Test Accuracy

To assess accuracy, peak CR responses measured during the
SWR were compared to those measured during the LTM
tests (Table 4). Twenty-three subjects completed valid SWR
and LTM tests. Shallow water run included SWRa + SWRb
trials when SWRa values were not captured. A moderate
correlation was found between SWR and LTM for V_ O2peak
(r = 0.60; p , 0.01), HRpeak (r = 0.58; p , 0.01), and
O2pulse (r = 0.63, p , 0.01). There was no significant cor-
relation found between trials for VEpeak, peak RER, and
immediate posttest RPE trials (p . 0.05). Compared to
SWR, the LTM test elicited greater mean V_ O2peak and
HRpeak values (p # 0.05).
Bland-Altman analyses (Figure 1) revealed a systematic

error with a mean difference of 27.1 ml$kg21$min21 for
V_ O2peak. A mean difference of 210 b$min21 for peak HR
across SWRa and LTM trials suggests a systematic error with
a slightly negative mean bias (Figure 2). In both cases, limits
of agreement were wide (220.5 to 6.6 ml$kg21$min21; 230
to 9 b$min21). Furthermore, the Bland-Altman plots revealed
no obvious patterns of error, suggesting that errors were not
related to mean V_ O2 or HR.

DISCUSSION

Our findings indicated that a standardized SWR test of CRF
demonstrated moderately strong test-retest reliability and
that it may be considered a viable alternative to land-based
protocols. This is the first SWR pool protocol to examine the
reliability of V_ O2peak using indirect calorimetry. Using a 12-
minute running test in a pool, Silva et al. (3) found a strong
agreement between the completed distances in 2 repeated

Figure 1. Bland-Altman plot for SWR V_ O2peak accuracy. The difference
between SWR V_ O2peak and LTM V_ O2peak is shown on the Y-axis. The
dotted line shows the mean of the differences. SWR = Shallow Water
Run; LTM = land-based treadmill test.

Figure 2. Bland-Altman plot for SWR HRpeak accuracy. The difference
between SWR HRpeak and LTM HRpeak is shown on the Y-axis. The
dotted line shows the mean of the differences. SWR = Shallow Water
Run; LTM = land-based treadmill test.



tests (r = 0.91) where distance traveled and HRs served as the
primary outcome measures. Although separate studies have
examined SWR performance using underwater treadmill or
stationary tethered running, the present protocol was con-
ducted in a pool using a standardized self-regulated graded
intensity protocol similar to previous investigations
(16,40,45,47). This methodology offered several advantages.
The protocol standardization included conducting the test at
a water depth of 1.2 meters. The weight bearing effect of
partial water immersion allowed participants foot contact
with the bottom of the pool. Also, the standardized ramped
protocol varied between 9 and 14 minutes in duration, fell
within optimal recommendations for duration of graded
exercise testing (30,51), and was well tolerated by subjects.
Finally, stage 3 stage increases in running velocity and cor-
responding intensities were self-regulated via a cueing system
that used RPE and associated somatic signals learned during
the orientation session. The cues prompted participants to
regulate one’s individual SWR intensity. In our study, the
reliability coefficients for V_ O2peak, HRpeak and O2pulse
ranged from 0.73 to 0.85. This demonstrated the efficacy of
the standardized SWR test in young healthy females who
participate in AE. The nonsignificant findings for peak
RER and immediate posttest RPE trials may be explained
by low SDs reflecting a lack of distribution in the data.
Although our results may not be generalized to all popula-
tions, this study provides valuable insights to support the
development of a standardized SWR test protocol for clinical
populations and those unable to participate in land-based
programs.
The r values between SWR and LTM tests could be con-

sidered moderately accurate and somewhat valid. The SWR
test elicited systematically lower V_ O2peak values compared
to those obtained during LTM. Because these responses are
similar to those of previous investigations, the SWR protocol
can be considered a reproducible and uniform alternative to
the LTM test. This is consistent with previous findings com-
paring land-based protocols to both shallow and deep water
protocols (19,33,47). V_ O2peak and HRpeak values deter-
mined during the SWR test were 84 and 95% of those
observed for the LTM test. These results are similar to sev-
eral previous investigations that used both underwater tread-
mill and swimming pool running protocols (16,33–35,45,47).
The underlying mechanisms that explain these differences
involve hydrodynamic properties, viscosity, and hydrostatic
pressure, as well as the water depth. These variables will, in
turn, affect buoyancy, propulsion, drag forces, ground reac-
tion forces (i.e., forces exerted by the floor on the body), and
muscle recruitment patterns throughout AE movements
(12,13,16,23). When the individual is immersed to a depth
where water level reaches the xiphoid process, buoyancy
properties reduce vertical ground reaction forces and offload
body weight by approximately 60% or more (22,24). This
decreases neuromuscular activation of the postural and
lower extremity muscles. As such, cellular oxidative energy

demand and V_ O2peak values are comparatively lower (12).
Although an individual’s body composition (i.e., greater
percentage of fat mass) can augment the effects of buoyancy
in water (44), the present study’s participants had normal
BMI (23.5 kg$m22) and healthy percent body fat (26.3%).
Furthermore, the addition of anterior ground reaction
forces caused by frontal drag and turbulence decreases
the frequency and velocity of running strides while moving
forward in water (16,23). Given the standardized require-
ments of the SWR test protocol, including a water depth
similar to or greater than that used in the present study (1.2
meters), a reduction in energy expenditure and HR would
result. In addition, increased hydrostatic pressure on the
CR system lowers the HR response in shallow water as
compared with land-based exercise performed at similar
relative metabolic rates (13).
There was no statistically significant difference between

the SWR and LTM tests in peak O2pulse, despite consis-
tently lower V_ O2peak and HR values during the former
tests. Although not significantly correlated, the immediate
posttest RPE was significantly greater in the SWR than in
the LTM test. In contrast to previous investigations, the
present study did not examine the V_ O2/HR relationship
by stage (10,16). Therefore, examining metabolic efficiency
of an SWR test may be of value to clarify the impact of
increased intensity and drag forces on running proficiency
in water. Compared to an LTM test, this may influence
neuromuscular recruitment patterns of active muscles and
elicit a greater RPE response.
Of interest, the VEpeak was significantly greater during

the SWR than LTM test. Shallow water and deep water
studies (9,17) have shown similar or lower VEpeak re-
sponses during AE compared to land-based running. How-
ever, our results were similar to previous studies that
observed greater VEpeak from an SWR vs. land-based run-
ning protocol (9,45). The higher VEpeak in our study could
be explained by increased breathing frequency that occurs
while submerged in water where the surface is equal to the
chest level (45). A comparatively greater ventilatory drive
may have been needed to overcome the effects of hydro-
static pressure on the thoracic cavity, causing an increased
residual volume, and decreased tidal volume and vital
capacity. This may have resulted in an increased work of
breathing, less O2 available to working muscles, and
reduced V_ O2peak values in water (21,45). Because SWR
evokes a comparatively greater increase in respiratory rate,
this inspiratory muscle challenge may serve as an important
component of an aquatic therapy prescription or training
stimulus for athletic performance.
The importance of standardizing water depth should be

considered when comparing physiological responses of
shallow water compared with land-based test protocols.
The present test protocol used a uniform water depth of 1.2
meters. This resulted in water surface levels that ranged from
the participant’s xyphoid to midaxillary levels. As such, the
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energy cost to overcome anterior and vertical ground forces
varied between female participants, highlighting interindi-
vidual differences in body height. Stride frequency was not
measured, and because of its potential to alter respiratory-
metabolic responses, its absence could be considered a limi-
tation of the study. At water depths less than 1.2 meters, foot
contacts and stepping velocity will increase, requiring
a greater energy cost to overcome frontal resistance and
elicit potentially greater V_ O2peak responses. Therefore,
SWR protocols that are not standardized to a uniform water
depths (i.e., ,1.2 meters) may evoke a higher V_ O2 and asso-
ciated energy expenditure.
Similarly, the significance of conducting a standardized

orientation session to practice SWR technique should not be
overlooked. Those who are more proficient at running in
water demonstrate lower HR responses for a given V_ O2 (i.e.,
O2pulse), favoring submaximal performance and metabolic
efficiency of SWR (16). Although our study used an orienta-
tion session, all running speeds were not performed equally in
duration. Therefore, a more standardized orientation session
is recommended as part of the SWR experimental design.
There are several areas of interest regarding SWR testing

that warrant further investigation. Despite our use of a stan-
dardized test protocol, the present results apply only to young
adult females. Therefore, future studies should examine the
efficacy of the SWR test using clinical populations, athletes,
and those unable to perform land-based programs. Also, given
limitations of a fixed water depth and pool length, the effects
of different water depths and pool lengths during SWR tests
on V_ O2 and energy cost should be explored. The present
results were considered somewhat valid. Furthermore, the
nonsignificant correlation observed between LTM and SWR
tests for immediate posttest RPE and VEpeak questions if the
SWR tests may be more valid at lower intensities. Therefore,
future validation experiments should compare responses to
a pool-based SWR test with those from flume-based proto-
cols at a wide range of intensities where an underwater tread-
mill would allow systematic control of standardized velocities
in an aquatic environment. By establishing the validity of the
SWR test, statistical models may be designed to predict CRF.
The inclusion of dependent variables such as HR or RPE into
these models would eliminate the need for costly and techni-
cally complex indirect calorimetry measures and serve as
a practical tool to estimate CRF in a swimming pool setting.
A standardized pool-based running protocol would also pro-
mote investigations on the chronic effects of SWR or other
AE training regimens on health-fitness and other performance
outcomes. This should help inform aquatic agencies and
coaches on the most appropriate and safe methods to assess
and monitor, considering an individual’s health history and
baseline level of CRF and conditioning.

PRACTICAL APPLICATIONS

Currently, a standardized and uniform pool protocol to
accurately measure CRF in a shallow water community type

pool is not available. Outcomes of aquatic training can only be
accurately assessed and appropriately generalized if standard-
ized testing (i.e., SWR protocol) is also performed in an
aquatic medium. Investigating a standardized SWR protocol
to assess CRF is a vital step for determining an athlete’s or
client’s baseline level of fitness for prescriptive purposes and
will serve as a method of outcome assessment of an SWR or
other AE training program. For athletes, implementation of
standardized test methodology for CRF evaluation can be
important to the development of a training needs analysis
and serves as a baseline measure from which AE training
adaptations may be monitored. Furthermore, when CRF or
other performance outcomes are evaluated, both before and
periodically throughout an AE program, such testing proto-
cols will serve as motivational tools to monitor training and
promote program compliance.
Measurement of a mode-specific (i.e., aquatic running)

CRF training using a standardized aquatic test protocol can
be administered in most swimming pools. Once an accurate
assessment of CRF has been conducted, the proposed AE
program would provide the appropriate conditioning
stimulus necessary to improve health-fitness outcomes
and athletic performance. The identification of a V_ O2peak
in water may be used to prescribe training protocols,
including initial intensity level, session duration, and activ-
ity type (31). Specifically, self-regulated running intensity
using prescribed target RPEs can aid in the implementation
of high-intensity interval training or lower intensity physi-
cal conditioning. This may be ideal for an athlete or client
unable to exercise on land, or those who exclusively train
on land, and desire to cross-train or run in water for assess-
ment or rehabilitative purposes. By standardizing methods
of AE assessment and programming, we are encouraging
strength and conditioning professionals to better promote
the unique benefits and physiologic advantages of AE. This
may lead to the adoption of AE as a more widely practiced
form of physical activity.
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