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The relationships between soil parent lithology, nutrient concentrations, microbial biomass and community
structure were evaluated in soils from a small watershed impacted by historic Hg mining. Upland and wetland
soils, stream sediments and tailings were collected and analyzed for nutrients (DOC, SO4

=, NO3
−), Hg, MeHg, and

phospholipid fatty acids (PLFA). Stream sediment was derived from serpentinite, siltstone, volcanic rocks and
mineralized serpentine with cinnabar, metacinnabar and other Hg phases. Soils from different parent materials
had distinct PLFA biomass and community structures that are related to nutrient concentrations and toxicity
effects of trace metals including Hg. The formation of MeHg appears to be most strongly linked to soil moisture,
which in turn has a correlative relationship with PLFA biomass in wetland soils. The greatest concentrations of
MeHg (N0.5 ng g−1 MeHg) were measured inwetland soils and soil with a volcanic parent (9.5–37 µg g−1 Hg).
Mercurymethylationwas associatedwith sulfate-reducing bacteria, includingDesulfobacter sp. andDesulfovibrio
sp., although these organisms are not exclusively responsible for Hg methylation. Statistical models of the data
demonstrated that soil microbial communities varied more with soil type than with season.

1. Introduction

Mercury (Hg) is a globally significant pollutant (Jackson, 1997;
Fitzgerald et al.,1998) associatedwith both industrial sources, including
coal combustion, smelting, paper pulping and waste incineration
(Nriagu and Pacyna, 1988), and natural sources, including volcanic gas
emissions (Nriagu and Becker, 2003; Pyle and Mather, 2003) and
thermal waters (White et al., 1970). Major Hg mineral deposits,
including those associated with volcanic centers (e.g., Almaden,
Spain), hot springs (e.g., Alaska, Nevada, California Coast Range), and
silica-carbonate deposits (e.g., California Coast Range) are derived from
these thermal waters (Rytuba, 2003).

Weathering of Hgmineral deposits releases sediments and colloids
to streamwater, flood plains and estuaries, contributing to a regionally
elevated background concentration in sediment and soil. Mining
accelerates sediment and colloid transport of Hg by preferentially
breaking down rocks that contain Hg and disturbing soil with
naturally elevated Hg through vegetation removal and road construc-
tion. Historic Hg mining in the northern California Coast Range has
had a regional-scale impact on the San Francisco Bay estuary, the
Sacramento River and its tributaries. Approximately 97,000 metric

tons of Hg were produced in the Coast Range between 1852 and 1972
(Bailey et al., 1973; Cargill et al., 1980), with a significant loss to the
atmosphere, approximately 34,500 metric tons (Churchill, 2000),
through the roasting and retorting processes that extracted Hg metal
from HgS minerals. The resulting atmospheric deposition of Hg had
local, regional and global impacts.

Sediment and colloids from the Coast Range and Sierra Nevada
were transported downstream through the Sacramento River and into
San Francisco Bay. Sediment cores from San Francisco Bay indicate pre-
mining sediment Hg was around 0.06 mg Hg kg−1 (Hornberger et al.,
1999), consistent with the mean soil Hg concentration for the
conterminous United States (0.06 mg Hg kg−1) (Smith et al., 2005).
Sediment core Hg corresponding to the mid-20th century reached a
maximum concentration of 0.9 mg Hg kg−1 in Grizzly Bay at the north
end of the San Francisco Bay, with maximum concentrations from 0.5
to 0.7 mg Hg kg−1 elsewhere in the bay in the mid-20th century
(Hornberger et al., 1999). Concentrations in post-mining sediment
core concentrations are between 0.2 and 0.5 mg Hg kg−1, well above
pre-mining background concentrations (Hornberger et al., 1999;
Conaway et al., 2004).

Methylmercury (CH3Hg+, or MeHg), a neurotoxin readily bioaccu-
mulated in aquatic ecosystems (Rudd, 1995), is formed from Hg(II) in
anoxic sediments. Sulfate-reducing bacteria (Compeau and Bartha,
1985; Choi et al.,1994; Devereux et al.,1996; Pak and Bartha,1998) and
iron-reducing bacteria (Fleming et al., 2006; Kerin et al., 2006) have
been demonstrated to methylate Hg in flooded, anoxic sediments.

⁎ Corresponding author.



Elevated MeHg concentrations have been documented in water
and sediment of the Sacramento River and Cache Creek (Domagalski,
2001). Cache Creek was determined to be a significant source of Hg to
the San Francisco Bay-Delta, with annual loads of 12 kg Hg yr −1

(Water Year 2000) and 4 kg Hg yr−1 (Water Year 2001), with loads of
1.1 to 6.7 g MgHg day−1 during storm events (Domagalski et al.,
2004). A significant proportion of the Hg load in Cache Creek appears
to be related to resuspension of bed sediments and colloids during
storm events (Domagalski et al., 2004).

Macalady et al. (2000) and Batten and Scow (2003) measured
MeHg concentrations in sediments and flocs fromHgmine sites in the
headwaters of Cache Creek, and also evaluatedmicrobial communities
using phospholipid fatty acids (PLFA). A major structural component
of microbial cell membranes, PLFAs provide information on microbial
biomass and community composition (Federle et al., 1983). PLFA
biomarkers analyzed in sediments collected from Clear Lake, located
approximately 60 km from the study site, showed a dominance of
Desulfobacter-like bacteria amongst sulfate-reducing bacteria, with an
increasing proportion of the microbial biomass represented by these
bacteria where MeHg potential was greater (Macalady et al., 2000).
Similarly, PLFA biomarkers indicated an association between sulfate-
reducing bacteria Desulfobacter and Desulfovibrio and MeHg in flocs
and sediments associated with Cache Creek Hg mines including the
Reed Mine in the Davis Creek watershed (Batten and Scow, 2003).

The purpose of this study is to evaluate MeHg concentrations and
accompanying microbial community structures in soils from a small
watershed impacted by historic Hgmining at the headwaters of Cache
Creek. Seasonal and spatial variations of MeHg and the soil microbial
community facilitating methylation were examined, building upon
previous work by addressing the extent to which Hg methylation

occurs in upland andwetland soils where cinnabar is a primary source
of Hg.

1.1. Site description

The studyarea is located in theDavis Creekwatershedupstream from
Davis Reservoir (drainage area ~1 km2) on the University of California
McLaughlin Preserve in thenorthernCalifornia Coast (Fig.1). Davis Creek
is a tributary to Cache Creek,whichflows eastward from the Coast Range
into the Sacramento River, draining an area of approximately 2950 km2.
Elevation ranges from370 to 730mabovemean sea level. The region has
a Mediterranean climate, with hot, dry summers and cool, wet winters.
Mean annual precipitation is 62 cm, with an average temperature of
25 °C in July and 8 °C in January. Vegetation includes mixed serpentine
and nonserpentine chaparral in the upland. The riparian zone along the
banks of Davis Creek is vegetated with willow, forbs and horsetails. The
stream enters Davis Creek Reservoir, forming a delta of sediment with
willow and cattails along the edge of the reservoir.

The study area includes the historic Reed and Andalucia Hg mines,
part of the historic Knoxville Hg mining district. Mercury in the
Knoxville district occurred primarily as cinnabar (HgS hexagonal) and
metacinnabar (HgS cubic) with minor montroydite (HgO) and native
Hg (Kim et al., 2004). The roasting and condensing process used to
extract Hg from the ore materials left behind calcines (roasted ore),
with fine-grained secondary Hg phases, including metacinnabar,
cinnabar, and mercuric chloride (HgCl2) (Kim et al., 2004), which
are readily transported downstream as colloids (Rytuba, 2003).

Reclamation work has removed or immobilized most tailings from
the Reed Mine. There is an exposed scarp and tailings in the vicinity of
the Andaluciamine. Used to concentrate Au during theMother Lode era

Fig. 1. Map of study site, showing sample locations for upland and alluvial soil, stream sediments and tailings collected June 2005. Replicate wetland samples from December 2004
and March 2005 were collected within the dark areas labeled “riparian” and “delta”. The riparian area is a seasonal wetland, flooded during winter and spring. The delta where Davis
Creek enters the reservoir is a permanent wetland, remaining flooded throughout the year. Hg-mineralized silica-carbonate deposits are hydrothermally altered serpentinites. The
geology base map was provided by the University of California McLaughlin Reserve.
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in the eastern Sierra Nevada andAg duringminingof the Comstock Lode
in western Nevada, Hg was intermittently mined in the Coast Range
from the 1850s until the 1970s (Bailey et al.,1973)with peak production
(2776 metric tons Hg) in 1877 (Bradley, 1918). The Knoxville district
produced an estimated 4170 metric tons of Hg (Rytuba et al., 1993)
through 1948.

Geology in the Davis Creek watershed includes the Knoxville
Formation, a siltstone basal unit of the Late Jurassic to Middle
Cretaceous Great Valley Sequence (Blake and Jones, 1981). The Coast
Range Ophiolite is a 600–1500 m thick sequence of metamorphosed
mafic and ultramafic rocks, including serpentinite (Carlson, 1984).
Thermal activity associated with the emplacement of the Clear Lake
Volcanics approximately 2.1 Ma (Hearn et al., 1988) resulted in
extensive serpentinite-hosted silica-carbonate type Hg deposits
(Rytuba, 2003).

Upland soils have parent materials derived from these rocks. In
addition to material weathered from upland soils, mine tailings
contribute to the overall sediment load in Davis Creek. Stream
sediment is the parent material for wetland soils in both riparian
and delta settings. A seasonal wetland, saturated in winter, was found
associated with a riparian area (Fig. 1), with a permanently saturated
wetland associated with the delta. Soils range in degree of develop-
ment from Entisols (e.g., Soboba) to Vertisols (e.g., Millsholm) to
Inceptisols (e.g., Climara) (Table 1).

2. Methods

Triplicate soil samples were collected from the riparian and delta
wetlands to evaluate variations in soil chemistry and microbial
communities between plant senescence (December 2004) and active
growth (March 2005). Additional upland soils, sediment and
tailings were collected from Davis Creek watershed in June 2005
to evaluate variations in methylmercury and microbial commu-
nities. Samples were collected using a stainless steel auger and
separated into splits to analyze for soluble nutrients, THg, MeHg,
and PLFA.

2.1. Soil–water leachates and pH

Material used for soil–water leachates were shipped and stored
chilled in glass jars and leached within one week of collection. Soil–
water leachates were extracted using 10 g soil agitated in sterile
centrifuge tubes for 60 min in 30 mL distilled deionized water. This
period of time was selected to minimize dissolution of soil organic
matter while extracting pore waters with sufficient volume for
multiple analyses. Following centrifugation at 5000 rpm for an hour,
the solute was filtered through 0.45 µM Metricel filters, diluted for
analyses by quantitatively adding 20 mL distilled deionized water

and transferred to baked glass vials. Inorganic carbon was removed
with phosphoric acid and the remaining organic carbonwas oxidized
with ammonium persulfate and quantified by wet oxidation (Aiken,
1992). Nitrate was quantified by chemoluminescence (Sievers 280
Nitric Oxide Analyzer) after the conversion of NO3

− to NO in a VCl3
reagent followed by ozonation to produce NO⁎. Sulfate was
measured by ion chromatography. A 1:1 soil–water paste was used
to measure pH.

2.2. Total Hg and MeHg

Sample splits were collected in I-Chem jars with Teflon-lined lids,
pre-cleaned for organic compounds and trace metals. Samples were
frozen in the field on dry ice and shipped frozen to the Battelle/Marine
Sciences Laboratory in Sequim, Washington for analyses. Samples
analyzed for Hg and MeHg were mixed by hand but not ground prior
to analysis tominimize loss of MeHg through volatilization. Because of
the inhomogeneity inherent to natural samples, the average value
between duplicate samples was reported for Hg.

Sampleswere completely digested for total Hg using aqua regia. Hg
in the digestate was reduced by acidic SnCl2 to elemental Hg, purged
from the sample with argon, and detected by cold vapor atomic
absorption (EPA, 1996). Samples were extracted for MeHg with an
ethylating agent to form a volatile methyl-ethylmercury derivative,
and then purged onto graphitized carbon traps to preconcentration
and remove potential interferences (Bloom et al., 1997). The extracts
were pyrolitically reduced to elemental Hg and analyzed by cold vapor
fluorescence (Bloom, 1989).

The average detection limit was 0.005 µg g−1 for total Hg and
0.002 ng g−1 for MeHg. Total Hg was not detected above the achieved
detection limit in analytic blanks and the blank MeHg concentration
was b0.015 ng g−1, well below sample concentrations. Matrix spikes
and duplicates were analyzed for each analyte. Standard reference
materials NIST 2704 and MESS-3 were analyzed for total Hg with
recoveries from 99 to 103%. Standard reference material IAEA 405 was
analyzed forMeHgwith recoveries of 75 to 81%. The IAEA 405 standard
was certified using the distillationmethod,whichhas since been found
to exhibit a methylation artifact. The lower results analyzed by the
extractionmethod used for this study fall within the range of 70 to 95%
recovery.

2.3. Phospholipid fatty acids

Triplicate subsamples of soil were extracted for 2 h in a chloroform/
methanol/phosphate buffer (1:2:0.8 v/v/v/) with the amount of
phosphate buffer adjusted for existing soil–water content. Following
centrifugation, the supernatant was decanted into separatory funnel,
vortexed and re-extracted for 30 min with an additional extractant.

Table 1
Upland soils with bedrock parent material and wetland soils with stream sediment parent material.

Geomorphology Parent Soil seriesa Soil order General description Horizons and depthb

Upland Serpentinite and mineralized serpentinite Climara Haploxerert Magnesic, minimum horizon development,
high smectite content

A 0–5 m
B 5–20 cm
CR b20 cm

Upland Knoxville Formation siltstone Millsholm Haploxerept Minimal horizon development with no illuvation AC 0–10 cm
Upland Clear Lake Volcanics Entisol Thin, lithic soil, mixed; no horizon development AC 0–10 cm
Riparian (seasonal wetland) Alluvium Soboba Xerofluvent Sandy, poorly developed A 0–4 cm

C N4 cm
Delta (permanent wetland) Alluvium Soboba Xerofluvent Sandy, poorly developed, saturated A 0–18 cm

B1 18–25 cm
B2 N25 cm

a Soil series and order as detailed in Andrews (1972). Areas in the Davis Ck watershed that include serpentinite or volcanic rock with a thin veneer of soil are mapped as rockland.
Volcanic soil is similar in composition to the Hambright series, a Haploxeroll that has more extensive soil development.

b Horizon depths for riparian and delta soils represent the range found within samples collected in the field.
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The supernatants were combined with a PO4 buffer and CHCl3, shaken
and the phases were separated overnight. The CHCl3 layer was
decanted and dried under N2 at 32 °C. Phospholipids were separated
from neutral lipids and glycolipids on solid phase extraction columns
conditionedwith CHCl3, with neutral lipids and glycolipids elutedwith
CHCl3 and acetone and polar lipids eluted withmethanol and air dried
under N2. Polar lipids were subjected to mild alkaline methanolysis to
form fatty methyl esters. Extracts were prepared with hexane
containing the 19:0 lipid as an internal standard and analyzed by gas
chromatography (Hewlett Packard 6890) using a 25 m Ultra 2 (5%-
phenl)-methylpolysiloxane column (J&W Scientific). Peaks were
identified using FAME standards andMIDI peak identification software
(MIDI, Inc., Newark, DE) (Bossio and Scow, 1998).

Nomenclature for fatty acids uses the ratio of the number of
carbons to the number of double bonds (e.g., 17:0). The location of a
double bond is indicated by the number of carbons the methyl
headgroup of the molecule, followed by ω. and the cis (c) or trans (t)
orientation of the double bond (e.g., ω6c). Iso-branched (i), anteiso-
branched (a) or unspecific branching (br) structures are also
indicated. For example i17:1ω7c indicates an iso-branched seven-
teen-carbon lipid with a cis-oriented double bond seven carbons from
the methyl end. The notation 10Me indicates a methyl group on the
tenth carbon from the carboxyl end of the molecule (e.g., 10Me16:0).
The position of hydroxyl groups are noted (OH) and cy indicates
cyclopropane fatty acids.

Of the 137 identified peaks, a group of 23 PLFAs were selected to
evaluate microbial community structure based on presence in N75% of
samples analyzed at 1 mol% or greater or status as a biomarker for key
microbes (Table 2). The total PLFA concentration, expressed as nmol/
g, can be used as a relative measure of microbial biomass between
sites. Individual PLFAs used to address microbial community structure
were converted to mol% to compare microbial composition of
different sites independent of overall biomass.

2.4. Statistical methods

Interrelationships between MeHg, individual lipids and different
environmental variables that can influence methylation (e.g., pH, Hg,
DOC, SO4

2−, NO3
−) are complex and require multivariate approaches

for statistical analysis. The MeHg, Hg, soil leachate and PLFA datawere
analyzed using principal components analysis (PCA) using Canoco
software (Microcomputer Power, Inc., Ithaca, N.Y.). PCA uses indirect
gradient analysis to interpret patterns that are extracted from all
variation in large, multivariate data sets. This method is analogous to

performing multiple linear regressions. (Mendoza et al., 1978; Ter
Braak, 1995). All data used for statistical analyses are summarized in
Supplementary Table 1.

3. Results and discussion

3.1. Variation in Hg and MeHg in Upper Cache Creek

Soil Hg concentrations for samples collected June 2005 were
between 0.2 and 106 µg g−1 (Table 3), well above 0.06 µg g−1 Hg, the
mean soil concentration for the conterminous United States (Shackl-
ette and Boerngen, 1984; Smith et al., 2005). Elevated Hg in the
volcanic soil (37 µg g−1 Hg) may have been related to the
hydrothermal event that resulted in the Hg-rich mineralized serpenti-
nite soils (77–106 µg g−1 Hg). Other upland soil concentrations were
between 0.2 and 0.5 µg g−1 Hg, interpreted to be the result of dust
transport and volatilization of Hg through historic mining operations.
Weathering and transport of mineralized serpentinite and mine
tailings (280–380 µg g−1 Hg) resulted in stream sediments with
elevated Hg concentrations (0.5 and 61 µg g−1 Hg). Wetland soils
inherited elevated Hg concentrations (10–18 µg g−1Hg) from the
stream sediment parent material.

Upland soilMeHg concentrationswere between 0.05 and 5.1 ng g−1,
with greater concentrations (0.5–5.1 ng g−1) associated with wetland
soils (Table 3). Mine tailings in Davis Creek had the greatest Hg
concentrations (280 and 380 µg g−1) and the lowest MeHg concentra-
tions (0.1 and 0.2 ng g−1) measured in this study. By contrast, tailings
collected in the Upper Bear Creek, a watershed impacted by historic Hg
mining approximately 28 km north of Davis Creek, had a broad range of
both Hg (0.04–410 µg g−1) and MeHg (b0.01–57 µg g−1) concentra-
tions (Slowey and Rytuba, 2008). Tailings reported by Slowey and
Rytuba (2008) included serpentinite, likely at the low range of Hg and
MeHg concentrations and calcines, which are enriched in Hg. Davis
Creek sedimentHg (0.51 and 61 µg g−1) andMeHg (0.2 and 0.3 ng g−1)
concentrations (Table 3) also fell within the lower range of Upper Bear
Creek stream sediment Hg (0.02–360 ng g −1) and MeHg (b0.01–
68 ng g−1) concentrations (Slowey and Rytuba, 2008). Previouswork in
Davis Creek found awide range ofMeHg concentrations (3±3 and 21±
40ngg−1) thatmay inpart bedue to the incorporationof “floc”, possibly
a biofilm, into the samples (Batten and Scow, 2003). By comparison,
sediments from Clear Lake had 17±10 ng g−1 (Batten and Scow, 2003)
and 2–7 ng g−1 MeHg (Macalady et al., 2000).

Table 3
THg, MeHg and PLFA in sediment, tailings and soils in Upper Cache Creek watershed.

Location Sample type THg MeHg Biomass Ref.

µg g−1 ng g−1 nmol
PLFA g−1

Davis Creek Yolo Co., CA Upland soil 0.2–106 0.05–1.3 7–45 1
Davis Creek Yolo Co., CA Wetland soil 10–18 0.5–5.1 3–34 1
Davis Creek watershed
Yolo Co., CA

Mine tailings 280, 380 0.1, 0.2 5, 34 1

Upper Bear Creek,
Colusa Co., CA

Mine tailings 0.04–410 b0.01–6, 57 2

Davis Creek Yolo Co., CA Stream sediment 0.5, 61 0.2–0.3 3–9 1
Bear Valley, Colusa Co, CA Stream sediment 0.02–360 b0.01–68 2
Reed Mine, Davis Sediment+floc

1999
2±2 3±3 214±371 3

Creek, Yolo Co, CA Sediment+floc
2000

7±10 21±40 223±310

Sulphur Bank Mine; Clear
Lake, Lake Co, CA

Sediment+floc 13±10 17±10 884±344 3

Clear Lake, Lake Co., CA Lake sediment 2–34 2–7 370–1900 4

1This study, showing data from June 2005; 2(Slowey and Rytuba, 2008); values reported
for paired Hg and MeHg data; 3 (Batten and Scow, 2003); THg and MeHg values were
interpolated from graphics; standard deviations are reported 4(Macalady et al., 2000);
standard deviations are reported.

Table 2
PLFA biomarkers.

PLFA Biomarker/bioindicator Reference

14:0, 15:0, 16:0, 17:0, 18:0 Common
Monoenoic: i15:0, a15:0,
i16:0, i17:0, a17:0, cy17:0, cy19:0

Gram+ Wilkinson (1988)

Branched: 16:1ω5c, 16:1ω7c,
18:1ω6c, 18:1ω9c

Gram− Harwood and Russell
(1984)

i17:1 (especially i17:1ω7c) Desulfovibrio sp.
Sulfate-reducing
bacteria

Edlung et al. (1985),
Scheuerbrandt
and Bloch (1962),
Taylor and Parkes (1983)

10Me16:0 Desulfobacter sp.
Sulfate-reducing
bacteria

Taylor and Parkes (1983),
Dowling et al. (1986)

10Me18:0 (with 10Me16:0) Actinomycetes Kroppenstedt (1985),
Kroppenstedt and
Kutzner (1972)

18:2ω6c, 18:3ω6c Fungi Frostegard and Bååth (1996),
Vestal and White (1989)

18:1ω9c Algae, aerobic bacteria Findlay et al. (1985),
Rajendran et al. (1992)
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3.2. Biogeochemical constraints on Hg dissolution and methylation

Multiple geochemical and microbial factors can influence the
extent to which Hg in soils, tailings and sediment is methylated. Data
from the Davis Creek watershed show an upward trend in MeHg with
Hg concentration to a threshold level of approximately 17 µg g−1 Hg,
after which point MeHg concentrations decrease with increasing Hg
(Fig. 2A). This trend may be explained by differences in the form of Hg
in higher-concentration material or by the suppression of microbial
Hg methylation by increasing concentrations of Hg.

Cinnabar and metacinnabar (HgS) are highly insoluble forms of Hg
(Schwarzenbach and Widmer, 1963; Sillen, 1964). Assuming cinnabar
is the primary form of Hg in altered serpentinite soils, volcanic soil,
tailings, and stream sediment, the dissolution of HgS to Hg2+ is the
limiting reaction in forming MeHg. In aquatic ecosystems, the
dissolution of HgS is enhanced in the presence of elevated sulfide
concentrations at pHN6 (Hurley et al., 1994;Wang and Driscoll, 1995).
The methodology used for soil–water extracts would have resulted in
the rapid conversion of sulfide to sulfate in the presence of oxygen.
Thus, elevated SO4

2− concentrations to some extent reflect the
presence of H2S in wetland soils, which are likely to be reduced
when saturated. Increasing SO4

2− concentrations in wetland soils (37–
195 µg g−1 SO4

2−) are associated with a general increase in MeHg
concentrations (Fig. 2B), with the greatest concentration of MeHg
(5.1 µg g−1) occurring in the Delta B1 horizon. This horizon exhibited
gley (bluish grey) coloration consistent with reducing conditions that
support methylation.

Dissolved organic matter, particularly aromatic organic matter, has
been shown to dramatically increase mercury release from cinnabar
(Ravichandran et al.,1998;Waples et al., 2005). The organic carbonpool is
also significant in that it is used by the overall microbial community to
build new cells and includes CH3, which combines with Hg2+ to form
MeHg. There is nocorrelative relationship reflected in theplotofDOCwith
MeHg concentrations (Fig. 2C). A possible explanation is that a relatively

small fraction of DOC is present as aromatic organic carbon. Measure-
ments that could estimate aromatic content (e.g., specific UV absorbance)
were notmade for these samples. There appears to be an excess of water-
extractable organic carbon relative to biological (e.g., microbes and
vegetation)uptake, particularly in streamsediments, serpenitine soils and
the volcanic soil that may influence how DOC relates to MeHg.

Moisture content correlates reasonably well with MeHg concentra-
tions, particularly in wetland soils (Fig. 2D). Increasing soil moisture is
accompanied by an increase in water-saturated micropores in soils,
facilitating the reduced environment required by both sulfate- and iron-
reducing bacteria.

The MeHg concentration increases in general with PLFA biomass,
with the relationshipmore pronounced for high-Hg soils (mineralized
serpentinite, volcanic and wetland soils). The PLFA biomass is
significant in that no single microbial process is in isolation from
others. For example, nitrogen-fixing bacteria and algae break bonds in
atmospheric N2, generating a labile pool of N for the physical structure
of microbes. Fungi and heterotrophic bacteria break down complex
organic matter from vegetation, generating labile C for structures and
releasing CH4. Because of these interrelationships, it is useful to
address the largermicrobial community structurewhen evaluating the
formation of MeHg.

3.3. Variation of soil microbial communities with soil type

The trends in biogeochemical variables (Fig. 2) were used to
construct a statistical model using principle components analysis
(PCA), which interprets patterns extracted from all variations in soil
environmental (DOC, NO3

−, SO4
=, MeHg, Hg, pH) and microbial

community data (Fig. 3). Microbial community structure was defined
using PLFA data normalized to mole percent of the total PLFA biomass.
The hypotheses tested through this model include: 1) MeHg increases
with Hg to a threshold concentration, after which MeHg decreases
with Hg and 2) MeHg is primarily the product of SRB. Since there is no

Fig. 2. A) Total H andMeHg concentrations for upland andwetland soils, tailings, and stream sediment collected in June 2005. Data have been plotted in log–log plots. Each data point
represents a single sample. Upland soils are identified by parent material, with A, B and C horizons plotted for altered serpentinite and serpentinite soils. Wetland soils include
permanent wetland A, B1 and B2 horizons, with A and C horizon for seasonal soils. B) MeHg concentrations as a function of soil and sediment moisture content. C) MeHg
concentrations as a function of DOC concentration. D) MeHg concentrations as a function of SO4

2− concentration. E) MeHg concentration as a function of PLFA biomass.
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recognized PLFA biomarker for IRB, the relationship between Fe-
reducers and MeHg cannot be adequately tested using this approach.

Data were fit to matrices, with vectors pointing in the expected
direction of the steepest increase of values for individual variables.
Vector length is a measure of fit for the variables with the ordination
axes and angles between vectors indicate correlations between
individual variables, but not necessarily a correlation between sample
points. For example, the acute angles between DOC andMeHg indicate
these variables are correlative. However, the shorter length of its vector
indicates that DOC is not as good of a fit within themodel asMeHg. The
correlation between variables is negativewhen the angle is larger than
90° (e.g., 16:1ω7c and 19:0cy; THg and MeHg). The relationship
between a sample and a vector for a given environmental or PLFA
variable can be determined by projecting a perpendicular line from the

sample point to the vector. These projections can be used to
approximate the optima of individual samples with respect to values
of that variable.

The negative correlation between MeHg and Hg reflects the
threshold concentrations of Hg for MeHg formation identified in
Fig. 2A. Samples plotting in the Axis 2 positive direction (mineralized
serpentine soil, tailings (1), sediment (2)) hadmicrobial communities
that were strongly influenced by Hg concentrations. Mineralized
serpentinite soils and the B- and C-horizons of serpentinite soils show
a strong relationship with vectors for cy19:0. This biomarker has been
associated with anaerobic Gram-negative bacteria (Vestal and White,
1989) as well as Gram-negative bacteria under nutritional (Wilkinson,
1988; Kieft et al., 1995) or moisture stress (Wilkinson, 1988) and
associated with slow microbial growth in serpentinite soils (deGrood

Fig. 3. Principal components analysis (PCA) of PLFA biomarkers and environmental data (Hg, MeHg, SO4
2, DOC, NO3, and pH) for soils, tailings and sediment collected June 2005. Axis 1

explains 35.9% of variance and Axis 2 explains 60.4% of the variance between PLFA and environmental data. Plots are on the same set of coordinates. Samples are represented as points
with vectors showing the general direction of PLFA and environmental variable increase. Angles between vectors indicate relationships between variables. Acute angles showpositive
correlations, angles N90° show negative correlations. The relationship between environmental and PLFA vectors and sample points can be defined by projecting a perpendicular line
between a given sample point and a vector.
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et al., 2005). Serpentinite B and C horizons and to a lesser extent,
mineralized serpentine soils also associated with 10Me16:0, a
biomarker for Desulfobacter sp. (Taylor and Parkes, 1983; Dowling
et al., 1986). Soils forming on serpentinite had elevated Cr and Ni

concentrations (1900–2500 mg Cr kg−1; 1600–2500 mg Ni kg−1;
(Morrison et al., 2008), and the presence of these toxic trace metals, in
addition to the elevated Hg concentrations associated with miner-
alization, may favor stress-adapted bacteria and Desulfobacter.

Fig. 4. Depth profiles of wetland soils collected in March, 2005, showing Hg, MeHg, DOC, SO4
=, and PLFA concentrations. Triplicate samples were plotted as individual profiles to demonstrate

variationswithin eachgroupof soils,withdatapoints placed at themidpoint of eachhorizondepth interval. Delta soils inpermanentwetlands and riparian soils in seasonalwetlands are shown.

Fig. 5. Data from all horizons of riparian and deltawetlands fromDecember 2004 andMarch 2005 showing the effect of Hg concentrations onMeHg concentration, PLFA biomass and
concentrations of selected PLFA biomarkers.
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Desulfovibrio sp. biomarker i17:1 (Scheuerbrandt and Bloch, 1962;
Taylor and Parkes, 1983; Edlung et al., 1985) plotted in the negative
quartile for Axes 1 and 2. The serpentinite A horizon, riparian C
horizon and tailings (2) correspond to this area of the ordination plot.
When comparing the position of sample points to either SRB
biomarker vector, the model suggests that several soils and tailings
(serpentinite A, B and C horizons; mineralized serpentinite C horizon,
Riparian C horizon, Tailings (2)) have a combination of the two SRB
groups that potentially contribute to methylation. Other soils and
sediment (delta A horizon, delta B2 horizon, sediment (1), sediment
(2)) don't project onto the vector for either SRB PLFA biomarker. These
sample points project onto the 16:1ω7c vector, a common PLFA that is
also a major constituent of the cellular membrane for a Geobacter
metallireducens isolate (Lovley et al., 1993). Although this association
does not demonstrate methylation by Geobacter sp. in these samples,
the overall model does suggest that methylation by SRB is not the only
process forming MeHg in this sample suite.

3.4. Temporal and spatial variations in wetland soils

Seasonal and permanentwetland soils were examined for variations
in biogeochemistry and microbial community structures using samples
collected December 2004 and March 2005. Permanent wetland soils in
the deltahad threedistinct horizons (A, B1, B2)with gley soil (indicating
anoxic redox conditions) at the B1 horizon accompanied by a faint
hydrogen sulfide odor. Seasonal wetland soils in the riparian area were
poorly developed, but were influenced by a dynamic piezometric
surface. Profiles of Hg, MeHg, DOC, SO4

=, and PLFA biomass show
distinctions between these two wetland soils (Fig. 4). The reduced B1
horizon in delta soils show an increase in Hg, DOC, and SO4

=

concentrations, as well as PLFA biomass. Two of the three delta profiles
also show an increase inMeHg concentration in the B1 horizon. The soil
structure in delta soils allows a stabilized environments that may

enhance Hg accumulation as well as dissolution due to enhanced
availability of SO4

= and DOC at this horizon. The poorly developed
riparian soil shows a more narrow range of MeHg, DOC and SO4

=

concentrations, with lower PLFA biomass. There is no consistent pattern
of concentration increases or decreases with depth for the riparian soil.

Although there are differences in chemistry between delta and
riparian soils, some generalizations can be made by plotting all
wetland soil data together. The Hg threshold noted in soils, sediments
and tailings (Fig. 2) was seen in wetland soils collected in December
and March (Fig. 5). There is a positive correlation between Hg and
MeHg (r2=0.40) and PLFA biomass (r2=0.51) at Hg concentrations
below 20 µg g−1. After this concentration, the relationship becomes
less distinct. Specific lipid biomarkers also follow this pattern, with
positive correlations between individual biomarkers i17:1 (r2=0.61),
10Me16:0 (r2=0.52), and 16:1w7c (r2=0.46) at Hg concentrations
below 20 µg g−1. The apparent threshold concentration identified for
wetland soils as well as upland soils, sediment and tailings indicate
that Hg concentrations between 17 and 20 µg g−1 inhibit microbial
growth and biotic MeHg methylation. While this effect in itself is not
surprising, it is notable that microbial biomass persists at lower levels
and microbial Hg methylation continues even at Hg concentrations
exceeding 20 µg g−1.

Seasonal shifts in wetland biogeochemistry can be seen in MeHg
between December 2004 and March 2005. Following the dry summer
to fall, December rainfall initiated increased flow in Davis Creek,
flooding seasonal riparian wetlands and increasing the soil moisture
content in permanent wetlands. Soil moisture is strongly correlated
with MeHg concentrations (r2=0.71 in December; r2=0.64 in
March; Fig. 6). Soil nutrient concentrations were greater in December
(5–24 µg g−1 DOC; 1–116 µg g−1 SO4

= with one anomalous value of
818 µg g−1; 1–34 µg/g NO3

−1) early in the wet season. As vegetation
growth increases into March, plant uptake of nutrients decreases
nutrient concentrations available for microbial activity (1–7 µg g−1

Fig. 6. Data from all horizons of riparian and delta wetlands showing seasonal differences in the relationship between MeHg and nutrient concentrations.
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DOC; 6–93 µg g−1 SO4
=; 0–1.5 µg/g NO3

−1). Vegetation decay during
the dry late spring to summer months releases nutrients back into the
soil pore waters. Reduced nutrient pools result in an increased degree
of correlation of MeHg to DOC concentrations in March (r2=0.62)
relative to December samples (r2=0.22), suggesting that the
available organic carbon pool becomes limiting for microbial Hg
methylation. The relatively low correlation between MeHg and SO4

=

concentrations (r2=0.37) suggests that even in March, there is an
excess of SO4

= in these wetland ecosystems relative to the amount of S
required to sustain methylation by SRB. These shifts in nutrient
concentration drive variations in soil microbial communities.

Seasonal shifts in biogeochemistry and microbial community
structure for wetland soils were modeled using PCA (Fig. 7). Axis 1
explains 29.9% of data variability with 59.7% environmental and

microbial data variability explained by Axis 2. There is a weakly
correlative relationship between Hg and MeHg in this model,
reflecting wetland soils with actively growing vegetation commu-
nities. All nutrients were positively correlated with MeHg, Delta A and
B1 horizon soils from December plotted in areas that are perpendi-
cular to the vector for Desulfovibrio sp. (i17:1). There is a shift in delta
soil microbial communities indicated by an arrow in Fig. 7. This shift
was produced by decreased nutrient concentrations (Fig. 6), with a
decrease in vectors for 18:1ω(7,9,12)c, a biomarker for aerobic
bacteria and algae, and vectors for common PLFAs 16:1ω5c
and 16:1ω7c. This shift also increases the degree of sample
correspondence to the vector for the Desulfobacter sp. biomarker
10me16:0. Riparian wetland soils do not show any notable seasonal
shifts or changes with soil horizon in this model.

Fig. 7. Principal components analysis (PCA) of PLFA biomarkers and environmental data (Hg, MeHg, pH, nutrients) for permanent (delta) and seasonal (riparian) soils collected in
December 2004 and March 2005. Axis 1 explains 39.9% of variance and Axis 2 explains 59.7% of the variance between PLFA and environmental conditions. Plots are on the same set of
coordinates. Samples are represented as points with vectors showing the general direction of variable increase. Angles between vectors indicate relationships between variables. Acute
angles show positive correlations, angles N90° show negative correlations. The relationship between environmental and PLFA vectors and sample points can be defined by projecting a
perpendicular line between a given sample point and a vector. The grey block arrow indicates a general direction of shift for permanent wetlands from December to March.
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3.5. Soil, organic matter and mercury

Mercury in the Knoxville mining district occurs primarily as HgS
minerals (Kim et al., 2004) with limited solubility, inhibiting the
formation of MeHg from the aqueous species Hg2+. However, organic
matter, in particular, aromatic organic compounds, have been shown
to enhance the dissolution of HgS, possibly through the surface
complexation of HgS and oxidation of surface sulfur species by the
organic matter (Ravichandran et al., 1998). Sequential extractions
performed in a separate study on soils described in the present work
found that Hg was present as HgS in the delta and riparian wetland
soils and in tailings with Hg bound to oxideminerals (e.g. chromite) in
a serpentine soil (Süß, 2006). Laboratory experiments with these soils
produced an increase in Hg2+with increasing pH due to solubilization
of soil organic matter (SOM) (Süß, 2006). Derived primarily from
vegetation, SOM could potentially facilitate the conversion of HgS to
Hg(II). For this reason, alluvial soils as well as their sediment parent
material should be examined when evaluating the potential for
methylation in watersheds.

3.6. Methylation: from headwaters to the San Francisco Bay

Elevated methyl-Hg concentrations are associated with San Francisco
Bay estuaries, from 1–12 ng g−1 methyl-Hg (Thomas et al., 2002). Cache
Creek, a tributary in the Sacramento River watershed, has extensive
historicHgmines in its headwaters, had aMeHg loadof 6.7 gMeHgday−1

measuredover a31dayperiod in2000 (Domagalski et al., 2004). Elevated
MeHg concentrations in Cache Creek in turn resulted in the bioaccumula-
tion and trophic transfer of Hg andMeHg in aquatic organisms, including
crayfish (Hothemet al., 2007) andfish (Slotton et al., 2004), leading to the
release of multiple fish advisories (Gassel et al., 2005). By comparison,
most upland soils in the Davis Creek watershed had relatively lowMeHg
concentrations (b0.3 ng g−1 MeHg). The volcanic soil was a notable
exception, with 1.3 ng g−1 MeHg. Wetland soils had elevated MeHg
concentrations (0.5–5.1 ng g−1 MeHg) due to the enhancement of
methylation through a large pool of DOC and other nutrients created by
seasonal cycles of vegetation growth and decay. Thus, thewetlands along
Davis Creek Reservoir enhance localized Hg methylation while reducing
the downstreammovement of Hg-rich sediments resulting from historic
mining.

4. Conclusions

The formation of MeHg in the Davis Creek watershed was a
function of nutrient supply and soil moisture. Sulfate was not a
limiting factor in Hg methylation as concentrations are elevated in all
soil pore waters. Total Hg concentrations span three orders of
magnitude in this historic Hg mining district, with the greater
concentrations appearing to suppress the biological formation of
MeHg. The greatest MeHg concentrations were in wetland soils (0.5–
5.1 ng g−1 MeHg), at least twice the magnitude of MeHg in the stream
sediment parent material (0.19–0.25) for these soils. Microbial
consortia identified using PLFA biomarkers included Desulfovibrio sp.
(i17:1), Desulfobacter sp. (10me16:0).

The determinants of microbial community structure (nutrients
and soil moisture) were related to the formation of MeHg. Wetland
soils had much greater concentrations of MeHg than stream
sediments, the parent material for these soils. The stability of soil
and accumulation of DOC, SO4

=, and NO3
− from decaying vegetation

supported a larger microbial biomass and more diverse microbial
community. Wetland microbial communities varied more signifi-
cantly with soil or sediment composition than with time.

While the results of this study indicate that MeHg production is
magnified in wetland soils, the value of the Davis Reservoir wetlands
for Hg-rich sediment entrainment and on-site Hg removal should be
considered. A study of constructed wetlands indicated that the

benefits of a wetland, including the entrainment of suspended and
particulate Hg removal, should be considered together with the risk of
MeHg production (Gustin et al., 2006).
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