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Low leaf N and P resorption contributes to nutrient limitation in two desert
shrubs

R.E. Drenovsky1,2 and J.H. Richards1,*

Key words: Chrysothamnus nauseosus ssp. consimilis, Nitrogen, Phosphorus, Resorption efficiency, 
Resorption proficiency, Sarcobatus vermiculatus

Abstract

Both water and nutrients are limiting in arid environments, and desert plants have adapted to these 
limitations through numerous developmental and physiological mechanisms. In the Mono Basin, Cali-
fornia, USA, co-dominant Sarcobatus vermiculatus and Chrysothamnus nauseosus ssp. consimilis are dif-
ferentially N and P limited. We hypothesized that low leaf N resorption contributes to N-limitation in 
Sarcobatus and that low leaf P resorption contributes to P-limitation in Chrysothamnus. As predicted, 
Sarcobatus resorbed proportionally 1.7-fold less N than Chrysothamnus, but reduced leaf P in senescent 
leaves to lower levels than Chrysothamnus (8.0 –10.8-fold lower based on leaf area or mass, respectively), 
consistent with N, but not P limitations in Sarcobatus. Again, as predicted, Chrysothamnus resorbed 
proportionally 2.0-fold less P than Sarcobatus yet reduced leaf N in senescent leaves to lower levels than 
Sarcobatus (1.8 –1.3-fold lower based on leaf area or mass, respectively), consistent with P, but not N 
limitations in Chrysothamnus. Leaf N and P pools were approximately 50% of aboveground pools in both 
species during the growing season, suggesting leaf resorption can contribute significantly to whole plant 
nutrient retention. This was consistent with changes in leaf N vs. P concentration as plants grew from 
seedlings to adults. Our results support the conclusion that N-limitation in Sarcobatus and P-limitation in 
Chrysothamnus are in part caused by physiological (or other) constraints that prevent more efficient 
resorption of N or P, respectively. For these species, differential nutrient resorption may be a key physi-
ological component contributing to their coexistence in this saline, low resource habitat.

Introduction

Desert ecosystems are resource-poor environ-
ments. Not only does low and infrequent precipi-
tation lead to low water availability, but it also
decreases nutrient availability. Without sufficient
leaching from precipitation, soil carbonates

accumulate, increasing soil alkalinity and leading
to low availability of P and other plant nutrients
(Lajtha and Schlesinger 1988; Misra and Tyler
2000). In addition, low and pulsed precipitation
limits biological N cycling, strongly limiting N
availability (Noy-Meir 1973; Schimel and Parton
1986; Fisher et al. 1987).



Desert plants have adapted to these low nutrient
conditions both developmentally and physiologi-
cally. Following precipitation-linked nutrient pul-
ses, rapid root proliferation (Jordan and Nobel
1984; Jackson and Caldwell 1989) and changes in
physiological uptake capacity (Jackson et al. 1990)
may occur. In many desert perennials high nutri-
ent use efficiency (Lajtha 1987), low growth rates,
long green tissue life span (Aerts and Chapin
2000), and tight nutrient recycling (West 1991;
Carrera et al. 2001) also contribute to nutrient
conservation.

In the Great Basin Desert of western North
America, two common shrubs, Chrysothamnus-
nauseosus (Palla.) Britton ssp. consimilis (Greene)
Hall and Clement (Asteraceae) and Sarcobatus-
vermiculatus (Hook.) Torrey (Chenopodiaceae),
often co-dominate saline, alkaline basin habitats,
typified by our Mono Basin, California field site
(West 1983; Fort and Richards 1998; Toft and
Elliott-Fisk 2002). However, these phreatophytic
shrubs differ greatly in water relations and
nutrient physiology; Sarcobatus is a halophyte
while Chrysothamnus is not (Donovan et al.
1996; Donovan and Richards 2000). Further-
more, despite similar rooting densities and sig-
nificant root overlap in the upper 1 m of soil
(Donovan et al. 1996, Donovan et al. 2003),
previous research has documented N limitation
in Sarcobatus and P and water co-limitation in
Chrysothamnus (Drenovsky and Richards 2004).
A factorial nutrient addition field experiment (N,
P, N+P, control) showed that Chrysothamnus,
although mycorrhizal, is water and P co-limited,
with addition of these resources increasing stem
growth by 70% relative to controls. In contrast,
Sarcobatus, which is usually non-mycorrhizal, is
strongly N-limited, with N additions increasing
stem growth by as much as 170%. These con-
trasting nutrient limitations may be one addi-
tional component of physiological differences
between these species that contributes to their
coexistence.

Chrysothamnus and Sarcobatus have similar
phenological characteristics. They initiate shoot
growth in spring and grow most rapidly during
May and June (Donovan et al. 1997; Drenovsky
and Richards 2004). Similar growth patterns cor-
respond with similar timing of N acquisition in
spring (James and Richards 2005). Nighttime
transpiration and hydraulic lift have been mea-

sured in both species (Donovan et al. 2001, 2003),
which may contribute to nutrient acquisition in
their low nutrient habitat. In addition, both spe-
cies experience loss of nutrients due to leaf shed-
ding in late summer and in autumn.

One important nutrient conservation strategy
that has not been studied in these shrubs is
nutrient recycling and storage. If Chrysothamnus
and Sarcobatus differentially resorb N and P from
senescing leaves, we would have evidence for a key
physiological mechanism contributing to their
contrasting nutrient limitations. Because more
complete resorption may increase within-plant
nutrient recycling and fitness-related traits (May
and Killingbeck 1992; van Breemen 1995; Aerts
1996 and references cited therein; Eckstein et al.
1999; Aerts and Chapin 2000), we hypothesized
that differential leaf nutrient resorption may
contribute to these observed differences in nutrient
limitation. Specifically, since Chrysothamnus is P-
limited but not N-limited, we predicted that the
lack of N-limitation in Chrysothamnus is associ-
ated with higher percent N resorption (greater N
resorption efficiency) and lower N concentrations
in senesced leaf tissue (higher N resorption profi-
ciency, sensu Killingbeck 1996). In contrast,
because Sarcobatus is N-limited, but not P-limited,
we predicted that the lack of P-limitation in Sar-
cobatus is related to higher percent P resorption
(greater P resorption efficiency) and lower P
concentrations in senesced leaf tissue (higher P
resorption proficiency). For both species, we
hypothesized that low nutrient resorption effi-
ciency and proficiency for their respective limiting
nutrient (P in Chrysothamnus and N in Sarcoba-
tus) contributes to the respective nutrient limita-
tions in both shrubs.

The objectives of our experiment were (1) to
determine whether Chrysothamnus and Sarcobatus
differentially resorb N and P from leaves, consis-
tent with our hypothesis that Chrysothamnus is
more efficient and proficient at resorbing N and
Sarcobatus is more efficient and proficient at re-
sorbing P, (2) to determine the relative contribu-
tion leaf nutrient resorption makes to overall
aboveground N and P pools in these shrubs to
assess whether resorption is likely to affect plant
nutrient status, and (3) to relate these physiologi-
cal mechanisms to observed changes in leaf nutri-
ent concentrations in different age classes of
shrubs.
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Methods

Our study site is part of the Mono Basin Ecosys-
tem Research Site (MBERS) located in the Mono
Basin, CA, USA, approximately 1.5 km north of
the current lakeshore near two sites used previ-
ously (Sand Flat and Diverse Dunes, Donovan
and Richards 2000). Although long-term climate
change has caused the lake level to fluctuate, in
1941 inflow streams were diverted for agricultural
and urban purposes causing the lake level to rap-
idly decline, exposing lakebed surfaces. Our site
has been exposed for approximately 60 years (Toft
and Elliott-Fisk 2002). Soil pH is approximately
9.6, and soil saturated paste electrical conductivity
(ECe) is 3.8 dS m)1 (Donovan and Richards
2000).

Previous data from this experiment demon-
strated P and water co-limitation in Chrysotham-
nus and N-limitation in Sarcobatus (Drenovsky
and Richards 2004). For the present study, control
plants from the previous study were analyzed for
resorption and storage patterns to test the
hypothesis that low resorption contributes to the
respective nutrient limitations of these two species.
Eight blocks, across 0.5 km of the site, were se-
lected in fall 1999 (Drenovsky and Richards 2004).
The present study was initiated in spring 2001.
Previous studies at this field site indicated mature
leaf N and P concentrations are maximal in June
(Donovan et al. 1997; R.E. Drenovsky, unpub-
lished data). All mature leaves from 8 to 10 upper
canopy stems were collected from shrubs of both
species in all blocks in mid-June, and, similarly,
senescent leaves were collected just prior to
abscission in mid-October. Leaf samples were kept
cold until leaf area could be determined from a
subsample of 50 –100 leaves from each plant
(WinRhizo Pro, version 5.1A; Quebec, Canada).
These leaves were oven-dried at 60 �C and weighed
to determine leaf mass per area. Oven-dried leaves
were ground and weighed for N and P analysis.
Leaf N was measured on a CN analyzer (Carlo
Erba; Milan, Italy). Samples for leaf P were dry-
ashed and dissolved in 1 N HCl before ICP-AES
analysis (Thermo-Jarrell Ash; Franklin, MA,
USA).

Both resorption efficiency and resorption profi-
ciency were measured in this study. Resorption
efficiency was defined as in Lajtha and Klein (1988):

RE ¼
(June nutrient mass per unit leaf area -- October nutrient mass per unit leaf area)

(June nutrient mass per unit leaf area)

Following the definition of Killingbeck (1996),
resorption proficiency was the nutrient concen-
tration in senesced leaves. In Killingbeck’s (1996)
comparison of 89 plant species, distinctions were
made between relatively complete (i.e., lowest
nutrient concentration at abscission), incomplete,
and intermediate resorption. Complete and
incomplete resorption are equivalent to high
(<50 lg cm)2 N or 3 lg cm)2 P) and low
(>75 lg cm)2 N or 8 lg cm)2 P) resorption pro-
ficiency, respectively. Intermediate resorption is
the range between complete and incomplete
resorption. Both resorption measures were calcu-
lated on an area basis (N or P concentration
(g kg)1) multiplied by leaf mass per area
(kg m)2)). Determining nutrient resorption on an
area basis, rather than a mass basis, removes the
confounding effect of decreased leaf mass due to
carbohydrate resorption in both species (Aerts
1996; van Heerwaarden et al. 2003) and salt
accumulation in Sarcobatus, but not Chrysotham-
nus. Resorption proficiency, however, was also
reported on a mass basis, to allow for comparison
with other resorption proficiency values in the
literature (see Killingbeck 1996).

As a relative measure, resorption efficiency
provides a link between nutrient requirements
(nutrient concentration in green, mature leaves)
and nutrient withdrawal (nutrient concentration in
senesced leaves). In contrast to resorption effi-
ciency, resorption proficiency is an absolute mea-
sure of nutrient withdrawal. It has been suggested
that resorption proficiency is more useful than
resorption efficiency for assessing the evolution of
resorption processes, since selection acts on traits
(such as nutrient concentrations in senesced leaves)
rather than proportions (such as the amount of
nutrients in green vs. senesced leaves) (Killingbeck
1996). As such, resorption proficiency may pro-
vide insight into relationships between nutrient
resorption, site fertility, and species traits.

To assess the relative contribution nutrient
resorption makes to overall aboveground nutrient
status, aboveground N and P pool sizes were
estimated (where pool size equals biomass times
nutrient mass concentration). The extensive root
system overlap and morphological similarity of
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Chrysothamnus and Sarcobatus fine roots pre-
vented an assessment of root N and P pools. In
June, samples containing old stems (>1 year old)
and young stems (current growing season) were
collected from five of the experimental shrubs to
determine N and P concentrations in stem mate-
rial. These samples were separated into their
component parts, dried at 60 �C, ground, and
analyzed for N and P, using the analytical methods
described above for leaf tissue. To obtain a June
biomass estimate without destroying the experi-
mental plants, relative biomass of old stems,
young stems, and leaves were estimated in June by
harvesting the aboveground biomass of five addi-
tional shrubs per species similar in size and
growing near the experimental shrubs. The N and
P concentrations in leaves, young stems, and old
stems from the experimental shrubs were averaged
and then multiplied by the average biomass values
from the reference shrubs to approximate nutrient
pool sizes for the June sampling period. The same
procedures were followed in October to determine
nutrient pool sizes. In the community, Chryso-
thamnus and Sarcobatus achieve the same sizes and
root depth distribution (Donovan et al. 1996;
Snyder et al. 2004). However, although the
experimental plants were randomly selected within
the same canopy volume classes, they did not ob-
tain similar mass by the end of the growing season.
To prevent the mass difference of the experimental
plants from confounding our analysis of nutrient
pools, we scaled each shrub to the same mass,
maintaining the measured ratios of leaves, young
stems, and old stems.

We also compared nutrient concentrations in
leaves of seedling and adult Chrysothamnus and
Sarcobatus to assess consistency with resorption
differences (seedling data: L.A. Donovan and
J.H. Richards unpublished data; Chrysothamnus
adult data: Donovan et al. 1996; Sarcobatus adult
data: Drenovsky and Richards 2005 and R.E.
Drenovsky unpublished data). Due to variable
precipitation between years, where available, data
were averaged over below-average and average
rainfall years. All leaf tissue was collected mid-
growing season.

Differences between species resorption patterns
were determined using analysis of variance
(ANOVA), with species and block as the main
effects. Assumption of normality was tested using
the Shapiro –Wilks test, and weighted ANOVAs

were run when variance was unequal between
species (Neter et al. 1996). Post-hoc Tukey’s tests
were used to determine differences between spe-
cies means. t-tests were used to compare resorp-
tion efficiency values in Chrysothamnus and
Sarcobatus to average resorption efficiency values
for shrubs and trees and to compare leaf N and P
concentrations in different age classes of
Chrysothamnus and Sarcobatus. All data were
analyzed with SAS (SAS Institute 2001). Pool
sizes were not statistically comparable, as average
biomass values were multiplied by average
nutrient concentrations.

Results

Nutrient resorption

Chrysothamnus and Sarcobatus differentially re-
sorbed N and P whether calculated as resorption
efficiency or as resorption proficiency on either a
leaf area or a mass basis. Leaf N resorption effi-
ciency was 1.7-fold greater in Chrysothamnus than
in Sarcobatus (Figure 1a; Table 1). Chrysothamnus
also was most proficient at resorbing N, with se-
nesced leaf N concentrations 1.8 and 1.3-fold less
based on leaf area or mass, respectively, than in
Sarcobatus (Figure 1b and c; Table 1). Opposite to
leaf N resorption, Sarcobatus was 2.0-fold more
efficient at resorbing P than Chrysothamnus (Fig-
ure 1d; Table 1). Sarcobatus also was extremely
proficient at resorbing P, with senesced leaf P
concentrations 8.0 and 10.8-fold less based on leaf
area or mass, respectively, than in Chrysothamnus
(Figure 1e and f; Table 1).

Nutrient pools

Aboveground N and P pools, based on biomass
allocation and nutrient concentration patterns,
were assessed to estimate the relative contribution
leaf nutrient resorption could make to plant
nutrient status (Figure 2a –j). In June, at the height
of the growing season, leaf N and P pools ac-
counted for 43 –53% of aboveground N and P in
both species. In June, Chrysothamnus N and P
pools were greater in young stems (42% N pool,
37% P pool) than old stems (15% N pool, 13% P
pool), whereas Sarcobatus N and P pools were
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greater in old stems (36% N pool, 32% P pool)
than young stems (11% N pool, 17% P pool)
(Figure 2e, f, i and j). These differences in pool
sizes between young stems and old stems were
strongly influenced by biomass allocation between
these components (Figure 2a and b).

Allocation of N and P shifted following leaf
senescence in October. The percentage of the
aboveground N pool lost to leaf litter was higher
in Sarcobatus (37%) than in Chrysothamnus (19%),
where the total October aboveground pool is the
sum of young stem N, old stem N, and senesced
leaf N (Figure 2e, f). In contrast, the opposite
trends were observed for P pools, with larger P
pools tied up in Chrysothamnus leaf litter than in

Sarcobatus leaf litter (53% vs. 33% of October
aboveground P pools, respectively) (Figure 2i, j).
Overall, aboveground N and P pools declined be-
tween June and October.

Ecological comparisons between age classes

Leaf nutrient concentrations in seedlings and adults
were compared to determine whether differences in
N and P resorption were consistent with patterns of
nutrient concentration over a shrub’s lifespan
(Table 2). Consistent with expectations, leaf N was
over 1.5-fold higher in Chrysothamnus adults
than in seedlings, whereas there was no significant
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Figure 1. (a –f) N and P resorption efficiency (NRE and PRE, respectively) and N and P resorption proficiency (NRP and PRP,

respectively) for Chrysothamnus and Sarcobatus (2001 growing season). Proficiency values are expressed both on an area basis (b, e)

and mass basis (c, f). Data are means ±SE (n = 8). Letters indicate significant differences between species means following post-hoc

Tukey’s tests (a=0.05). In a and d, the reference line indicates the average resorption efficiency value for deciduous shrubs and trees

(Aerts 1996). In b, c, e, and f, the area above the upper reference line is the incomplete resorption range, below the lower reference line

is the complete resorption srange, and between the upper and lower reference lines is the intermediate resorption range (sensu

Killingbeck 1996).
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difference in leaf P between Chrysothamnus seed-
lings and adults (Tables 2 and 3). Although leaf N
was significantly higher in Sarcobatus adults than
in seedlings, there was only a 1.17-fold increase in
leaf N concentration between the two age classes
(Tables 2 and 3). Leaf P was significantly higher in
Sarcobatus adults than in seedlings, translating into
a 1.85-fold increase in leaf P between age classes
(Tables 2 and 3).

Discussion

Most research suggests more efficient leaf nutrient
resorption leads to increased nutrient use efficiency
in deciduous plants from infertile environments
(van Breemen 1995; Aerts 1996, 1997; Aerts and
Chapin 2000). Consistent with our hypothesis that
low resorption might contribute to nutrient limi-
tation, both Chrysothamnus and Sarcobatus were
less efficient and less proficient in resorbing the
nutrient most limiting their growth than their non-
limiting nutrient. Although Chrysothamnus is P-
limited, it resorbed P poorly compared to Sar-
cobatus and other perennial species (i.e., it had
incomplete P resorption proficiency vs. Sarcobatus
having intermediate to complete P resorption
proficiency, sensu Killingbeck 1996; Figure 1e and
f). Although average P resorption efficiency in
Chrysothamnus was lower than the average value

for deciduous shrubs and trees, this difference was
not significant (Figure 1d, Table 3). In contrast,
Sarcobatus, although N-limited, resorbed N
poorly compared to Chrysothamnus and other
perennial species (i.e., it had intermediate to

Table 1. ANOVA of nutrient resorption efficiency (the pro-

portion of nutrients withdrawn before leaf senescence) and

nutrient resorption proficiency (the nutrient concentration in

senesced leaf tissue). Degrees of freedom for numerator (dfn)

and denominator (dfd) were (1,7) where species was the source

and (7,7) where block was the source. F and p values are shown

(significant values in bold).

Variable Source F p

N resorption efficiency Species 46.41 0.0003

Block 0.86 0.58

N resorption proficiency (area basis) Species 12.43 0.01

Block 1.00 0.50

N resorption proficiency (mass basis) Species 8.37 0.02

Block 3.00 0.09

P resorption efficiency Species 13.97 0.007

Block 1.16 0.43

P resorption proficiency (area basis) Species 24.54 0.002

Block 1.06 0.47

P resorption proficiency (mass basis) Species 31.13 0.0008

Block 1.13 0.44
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incomplete N resorption proficiency vs. Chryso-
thamnus having intermediate N resorption profi-
ciency; Figure 1b and c). Additionally, compared
to average N resorption efficiency for deciduous
shrubs and trees, Sarcobatus resorbed significantly
less N, while Chrysothamnus resorbed significantly
more (Figure 1a, Table 3). In addition, June leaf
N and P pools were approximately 50% of both
species’ aboveground nutrient pools, suggesting
leaves can contribute significantly to N and P
retention in these species. Together, these data
support our hypothesis that Chrysothamnus and
Sarcobatus differentially resorb N and P and that
this low resorption is substantial enough to con-
tribute to their respective nutrient limitations.

Low N resorption efficiency has been correlated
with greater whole plant nutrient loss (Eckstein
et al. 1999). Therefore, low leaf N resorption in
Sarcobatus may contribute to its N-limitation at
this site, due to cumulative N loss in litterfall and
poor mineralization capacity in these dry soils.

Although high N litter increases site fertility in
temperate ecosystems (van Breemen 1995; Aerts
1996, 1997), in deserts N mineralization is tightly
linked to precipitation events, which are both
infrequent and low (Noy-Meir 1973; Schimel and
Parton 1986; Fisher et al. 1987). Therefore, the N
in abscised leaves is lost to the slowly cycling or-
ganic matter pool and, as a result, only leads to
higher microsite fertility after many decades or
centuries (Schaber 1994).

Given these low N conditions, a strong selec-
tive pressure for more efficient and proficient N
resorption in Sarcobatus should be expected.
However, several physiological constraints may
prevent more complete N resorption in Sarcoba-
tus and thus contribute to its N limitation. First,
during leaf senescence, N is required for enzymes
and transporters necessary to metabolize leaf
components and translocate them through the
phloem. This sets a minimum pool of N that
cannot be resorbed from leaves. In the desert
shrub Larrea tridentata, resorption efficiency de-
creased concurrently with nutrient availability,
suggesting the small pool of potentially remobi-
lized nutrients impeded more efficient resorption
(Lajtha 1987). Second, the halophytic and
drought tolerant nature of Sarcobatus may pre-
vent effective N retranslocation because of the
need for N-containing compatible solutes. As soil
water potential decreases through the season
(Donovan et al. 1996), Sarcobatus accumulates
Na in leaf cell vacuoles (Donovan et al. 1997),
reducing plant water potential below soil water
potential. To prevent osmotic imbalance, Sarcobatus
concurrently accumulates the N-containing com-
pound glycine-betaine in cytoplasm (T. W-M.
Fan and J.H. Richards, unpublished data).

Table 3. Statistical comparisons of seedling and adult leaf nutrient concentrations in Chrysothamnus and Sarcobatus and N resorption

efficiency (NRE) and P resorption efficiency (PRE) values with average values reported in the literature. Significant values, based on

one-tailed t-tests, are in bold.

Null hypothesis Chrysothamnus Sarcobatus

t p t p

Seedlings vs. adults

No difference between seedling and adult leaf N concentrations )7.4 <0.0001 )2.57 0.008

No difference between seedling and adult leaf P concentrations )0.59 0.28 )5.43 <0.0001

Study species vs. average for deciduous species

No difference between study species and average deciduous species leaf NRE 4.89 0.0009 )5.10 0.0007

No difference between study species and average deciduous species leaf PRE )1.76 0.06 3.60 0.004

Table 2. Chrysothamnus and Sarcobatus leaf N and P concen-

trations from shrubs of different age classes growing in the

Mono Basin, CA, USA. The sites included are non-saline to

moderately saline, and the soil is very low in both total N and

bicarbonate-extractable P (Donovan and Richards 2000; Dre-

novsky and Richards 2004).

Species Age class Leaf N

(g kg)1)

Leaf P

(g kg)1)

Chrysothamnus Seedling (n=24) 14.0±0.05 4.1±0.46

Adult (n=6) 21.2±1.3 4.4±0.6

Sarcobatus Seedling

(n=19

for leaf N,

n=11 for leaf P)

11.8±0.7 0.7±0.1

Adult (n=8) 13.8±0.3 1.4±0.1
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Without this cytoplasmically compatible solute
accumulation, cellular and whole plant water
relations would not be maintained, impeding
metabolic activity necessary to sustain phloem
export of catabolized substrates. In support, data
from a separate experiment in a different year
show that Sarcobatus leaf ash content was nega-
tively correlated with N resorption efficiency and
positively correlated with N resorption profi-
ciency (r2=0.81 and 0.67, respectively) (ash con-
tent reported in Donovan et al. 1997, resorption
efficiency and proficiency calculated from sea-
sonal data also included in that paper). As leaf
ash content (including accumulated leaf Na) in-
creased, Sarcobatus resorbed a smaller proportion
of leaf N (lower resorption efficiency), and end-
of-season leaf N concentrations were higher
(poorer resorption proficiency). Further work
investigating possible links between high leaf Na
and low leaf N resorption in halophytic species is
currently underway in our laboratory.

In contrast to Sarcobatus, Chrysothamnus is a
drought stress avoider, functioning only at higher
water potentials (Donovan et al. 1996) and abs-
cising some leaves earlier in the season than Sar-
cobatus (R.E. Drenovsky, personal observation).
Chrysothamnus also has greater selectivity against
Na uptake and low leaf Na concentrations even
under moderately saline conditions (<1.8 g kg)1;
Donovan et al. 1996; R.E. Drenovsky, unpub-
lished data). Therefore, by avoiding drought stress
and minimizing Na accumulation, compatible
solute accumulation likely is lower in Chryso-
thamnus than in Sarcobatus. As a result, Chryso-
thamnus may have less N invested in substrates
that must remain in solution to maintain osmotic
potential of leaf cytoplasm. This would allow
greater N resorption, as we documented.

Contrary to N resorption, Sarcobatus was both
highly efficient and proficient at resorbing P
(Figure 1d –f). The low and ineffective mycorrhi-
zal infection of Sarcobatus, compounded by the
low soil P conditions at the site, create an expected
selective pressure for low P concentrations in se-
nesced leaf tissue (i.e., high P resorption profi-
ciency). Therefore, it appears that internal P
recycling may be critical to the success of Sarcob-
atus. Similarly, in the desert shrub Larrea triden-
tata it was hypothesized that tight internal
recycling of leaf P may account for much of that
shrub’s P needs (Lajtha 1987).

Parallel to Sarcobatus, a selective pressure for
more efficient and proficient P resorption in
Chrysothamnus should be expected. However, we
observed poor P resorption in Chrysothamnus,
which we hypothesize contributes to its P limita-
tion. There is not a clear mechanistic explanation
for a physiological constraint preventing more
complete P resorption in Chrysothamnus, nor is it
clear why Chrysothamnus has such a high P
requirement. In previous work at our site,
mycorrhizal infection was extensive in juvenile
Chrysothamnus shrubs (L.A. Donovan and J.H.
Richards, unpublished data). However, even with
high leaf P (>5 g kg)1), P and water co-limited
Chrysothamnus shoot growth (Drenovsky and
Richards 2004). Although not detected in their
study, Chapin and Kedrowski (1983) suggested
that differential nutrient resorption could lead to
distinct nutrient requirements between species. As
differential resource limitations may provide a
mechanism for species coexistence (Tilman and
Pacala 1993), it is possible that lower P resorp-
tion in Chrysothamnus than in Sarcobatus con-
tributes to nutrient niche differentiation at our
study site.

Nevertheless, both Chrysothamnus and Sar-
cobatus invest a significant proportion of their
shoot N and P in leaves, suggesting incomplete
N and/or P resorption may lead to significant
nutrient losses through litterfall. Over the life-
time of these long-lived shrubs, P losses in
Chrysothamnus and N losses in Sarcobatus may
negatively affect their P and N status, respec-
tively. Although a change in biomass allocation
over time may contribute to these observed dif-
ferences in leaf nutrient concentrations, alloca-
tion should affect N and P equally, whereas our
data show that these nutrients are differentially
affected over time. These observations are con-
sistent with our resorption data suggesting that
nutrient limitation is in part caused by the
existence of physiological (or other) constraints
that prevent more efficient and proficient
resorption of nutrients. Together, it appears that
low soil P availability and low P resorption may
contribute to the P-limited status of Chryso-
thamnus. In contrast, low soil N availability and
low leaf N resorption may contribute to the
N-limited status of Sarcobatus. Further study of
other species is needed to determine if this
relationship is more widespread.
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