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Introduction 

 

When asking a current high school Geometry student about the material and 

content that is presented, they will normally reply with a simple response such as “shapes 

and proofs”.  I believe this is how most of the world views geometry. Large populations 

of high school students are unaware of the diversity and applications of different 

geometries. As a student in high school, I do not recall discussing the type of geometry 

that we were learning was considered Euclidean Geometry. It was not until my 

undergraduate program that I was introduced to the idea that there are different types of 

geometries. While looking through textbooks that are aligned to state standards for Ohio, 

there is little to no reference of Euclidian Geometry. I do understand the practicality of 

Euclidean Geometry in its application to how we view the world. I also understand for 

teachers there are state testing and standards that are required to be followed closely. 

These requirements create situations that can be difficult to deviate from. But I hope it 

can be agreed that all students would benefit from a deeper understanding of the diversity 

of geometry. The topics that will be discussed may not be appropriate for every student in 

every school, but some students will benefit from being challenged visually and by 

abstract concepts. Strong visual-spatial learners may consider some abstract and 

advanced concepts in Geometry more appealing while developing a deeper understanding 

of the subject.  The following unit will take a look into the basic concepts of topology. 

Students will be forced to think abstractly and visualize the figures and concepts 

discussed through a variety of notes, assignments, and activities.  Students will be 

introduced to the concept of topology, important figures in topology, and the properties 

that these figures possess. These figures are known as the sphere, torus, Klein bottle, 

Möbius strip, and projective plane. 

 

Structure of Unit and Classroom 

 

Before analyzing individual lesson plans of the unit presented in this paper, I want 

to provide an understanding of how I structured the worksheets, assignments, and the 

class in general. The worksheets for this unit were originally created in SMART 

Notebook, a program that utilizes a SMART Board.  Having a SMART Board is not a 

requirement for this unit to be successful but it is important to know that this unit was 

designed with the intention to take advantage of the various functions of the SMART 

Board.  These functions include easily drawing notes and assignments during class 

instruction, manipulating shapes or figures on the SMART Board, and allowing for an 

easier approach to guided notes. When going though each worksheet that was created 

there will be several places where red font is used. The red font is what the student might 

correctly state each question from one of the worksheets. This means that for the 

assignments, review, exit slips, and assessments the red font is essentially the answer key.  

When distributing these materials to students, it would be essential for the red font to not 

be present. For guided notes, students are expected to copy the red font how it is 

presented. The use of guided notes is very useful with my students as many of them 

struggle with taking classroom notes. Guided notes better allow for students to follow 

along and correctly complete their notes. I have learned through my years of teaching that 
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students prefer guided notes in my classes and it does allow for more time in class by 

shortening the amount of material that the students are required to write.   

Although the activities of each day in the unit will be formally discussed later, I 

want to provide a brief overview of how I structure my classroom. The unit was planned 

for a class that has 50 minutes of instructional time. Each day I begin with a bellwork 

problem that either is a review of previous material or a problem that will enhance the 

learning objective for that current lesson.  As students complete the bellwork, I walk 

around the room and observe their progress, allowing me to assist students as needed.  

The solution to the bellwork problem will be discussed with the class by me or a student 

giving the solution. Homework and classwork assignments are collected or checked the 

day after they are assigned. The solutions to the problems are displayed or verbally given 

to the students. I encourage students to ask questions if they have incorrect solutions or 

did not fully understand what the question was asking. I believe that it is essential for 

students to discuss their misconceptions or mistakes in order to have a better 

understanding of what is happening in the solution.  Discussing the solutions to problems 

as a class can lead to students communicating with each other how they saw the problem 

and even lead to discussing different ways of arriving at the same solution. As a result of 

the discussion, students develop the ability to discuss mathematical concepts. The 

homework or classwork is also used as a formative assessment when collected, giving me 

the opportunity to evaluate students understanding of the learning objectives assigned.   

 

Standards and Content 

 

The content that will be covered in this unit will be as follows: 

 

• Definition of Topology 

• Determine if mathematical figures are geometrically or topologically equivalent 

• Creating a torus and its properties   

• Creating a Mobius strip and its properties 

• Creating a Klein bottle and its properties 

• Identify figures that are orientable/non-orientable 

• Creating a projective plane and its properties 

• Global vs local properties 

• Extrinsic vs intrinsic properties 

• Open vs closed manifolds 

• Homogenous figures 

 

Students should be previously introduced to figures of the plane such as triangles, 

quadrilaterals, and circles as well as three dimensional figures like cubes, prisms and 

spheres. An appropriate situation in which these objectives could be implemented would 

be at the end of a Geometry class, a Math 4 class, or a Senior Math topics class. For Ohio 

schools there are End of Course Exams that conclude at the beginning of May, leaving 

approximately a month of time where this unit could be utilized. As previously stated, 

there are not any specific standards from Ohio’s Learning Standards in Mathematics that 

align with the above topics. The above content however can be connected to the 
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Standards for Mathematical Practice. These standards were created for mathematical 

educators to implement with their students. By implementing these standards, we create 

situations that improve how students think mathematically. This applies to all levels of 

mathematics. The Standards for Mathematical Practice are as follows: 

 

1. Make sense of problems and persevere in solving them 

2. Reason abstractly and quantitatively 

3. Construct viable arguments and critique the reasoning of others 

4. Model with Mathematics 

5. Use appropriate tools strategically 

6. Attend to precision 

7. Look for and make use of structure 

8. Look for and express regularity in repeated reasoning 

 

The learning objectives will greatly involve the first three Standards for 

Mathematical Practice. Students will have to consistently make sense of what the 

problem is asking them to do or understand. When solving the problems, students might 

come to find their solutions are incomplete or incorrect, for which they will need to 

persevere to solve them. Many of these concepts are abstract, even for students who 

typically excel in mathematics. Students will be required to reason with these abstract 

concepts in order to fully comprehend the concepts in the unit. This unit will also 

encourage students on multiple occasions to create arguments and explain their 

reasoning. I personally believe that this is an extremely important mathematical skill for 

students to acquire, as many students believe in just using a formula or algorithm to solve 

problems. Several students struggle when posed with the question of “Why?” or when 

they are required to explain their reasoning. Expanding a student’s ability related to these 

standards will develop and enhance how they think mathematically which should be the 

goal of a mathematics teacher. 

 

Unit Overview/Lesson Plans 

 

Within each lesson plan there will be an objective, procedures/strategies used, and 

materials required for that day. The procedures, strategies, and activities will have 

estimated times for each activity that may differ for classes depending on how students 

comprehend the content of each lesson. Each day proceeds in a sequential order designed 

to extend from previous lessons. Therefore if students are struggling, re-teaching or 

reinforcement of learning objectives could be required.  Following these lesson plans, the 

worksheets and materials to be used for that specific lesson will be inserted directly after.  

These worksheets all contain the red font that was previously discussed. When reading 

the lesson plan chart, TSW will stand for “the student will”. 
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Day 1 

 

Objectives:  

• TSW determine if mathematical 

figures have the same topology or 

geometry 

 

 

Procedures/Strategies: 

• TSW complete bellwork (5 mins) 

• TSW takes guided notes on 

objective (35 mins) 

• TSW complete Exit Slip: (10 

mins)-collected at end of class 

Materials: 

• Guided Notes: Topology vs 

Geometry 

• Exit Slip: Topology vs Geometry 

Assessment Strategies 

(Formative/Summative): 

• The exit slip will be used as a 

formative assessment 

 

The bellwork question for Day 1 requires students to describe what it means for 

two figures to be congruent. This question will lead students into the direction of what it 

means for figures to be geometrically equivalent. The guided notes will take students 

through the definitions of topology and geometry. Students will then investigate which 

figures, that are geometrically or topologically equivalent, look like while explaining the 

reasoning for their answers. Students will also be introduced to how two dimensional 

figures can be neither geometrically or topologically equivalent, in which the answer for 

this relationship is “neither”. The notes will then take students through the same 

procedure, only this time using three dimensional figures.  I recommend during this 

section to have the class provide answers as you go through each pair of figures, allowing 

students to have discussions and defend their answers. If figures are topologically 

equivalent, students should discuss how one could take a figure and create a second 

figure using topological properties. At the conclusion of the guided notes, students will 

complete an exit slip that requires students to state if two figures have the same topology, 

geometry, or neither.  The figure pairs will be both two dimensional and three 

dimensional.   This should be collected and used as a formative assessment and could 

also be used to pair or group specific students for tomorrow’s assignment. Groups may be 

required due to limited resources at the teacher’s disposal as discussed in the next lesson 

plane. The exit slip will determine a student’s understanding of the learning objective.   

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

Notes       Name:________________________ 

Topology vs. Geometry    Date:___________    Period:______ 

 

Definitions: 

 

Topology: Two mathematical figures have the same topology if one figure can be 

transformed into the other figure by twisting and stretching, not tearing. 
Geometry:  Two mathematical figures have the same geometry if the figures have the 

same shape and congruent measures. 
  

Example: Look at the following pairs of shapes and determine if they have the same 

geometry, topology, or have neither the same geometry/topology. Explain your reasoning 

1.) 

 

 
Topology 

 

Reason (s) Why:  
The figure on the left appears to be a rectangle while 

the right figure appears to be a square.  Rectangles 

have opposite sides congruent and a square has all 

sides congruent, so their measures are not congruent.   

You could stretch the figure on the right to get the 

figure on the left. 

2.) 

 
Geometry 

Reason (s) Why:  
The two figures have the same shape and measure.  

The dotted line shown is a line of reflection, which 

shows the figures are congruent. 

3.) 

 

 
 

 

Neither 

Reason (s) Why: 

The figure on the right has a hole in it, so it is not the 

same as the figure on the left.  That hole could not be 

created without tearing, so the figures do not have the 

same topology. 
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The previous examples were a two dimensional look at geometry vs topology, but we can 

also look at three dimensional examples. 

 

 
 

Topology 

 

 
 

 

Geometry 
 

Neither 

 

 
 

Topology 
 

Topology 

 
 

Neither 

 

 
 

 

Topology 

 
 

Neither 

 

 
 

Neither 
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Exit Slip      Name:________________________ 

 

Topology vs. Geometry    Date:___________    Period:______ 

 

State if the following shapes have the same geometry, topology, or neither. 

1)  

 

2) 

 

3) 

  
Topology Geometry Neither 

 

4) 

 

5) 

 

6) 

 
Geometry Topology Geometry 
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Day 2 

 

Objectives:  

• TSW determine if mathematical 

figures have the same topology or 

geometry 

 

Procedures/Strategies: 

• TSW complete bellwork (5 mins) 

• TSW will complete Assignment 1: 

Topology vs Geometry (45 mins) 

Materials: 

• Assignment 1: Topology vs 

Geometry 

• Pipe Cleaners (1 per student) 

• Play-Doh (1 container per student) 

Assessment Strategies 

(Formative/Summative): 

• The assignment can be used as a 

formative assessment 

 

The bellwork question for Day 2 is to take different pairs of figures and determine 

if they have the same geometry or topology, similar to the exercises from yesterday’s exit 

slip and guided notes. These figures should be both two and three dimensional pairs. For 

the assignment, students will be using the pipe cleaners and Play-Doh to create figures 

that have the same topology or geometry. If resources are limited, pair or group students 

based on the outcome of the previous exit slip. I recommend placing students who 

answered fewer than two correctly with students who answered at least 5 correctly from 

the exit slip. These groupings should allow for groups to work at a consistent pace. 

During the assignment, students will take the pipe cleaner and try to create various letters 

of the alphabet. Their goal is to determine if the methods they used to form the letter are 

geometrical, topological, or neither. A key point for this section would be the second 

question, which has the students trying to create the letter I where on the worksheet the I 

is only a vertical strike. The answer for this on the document is geometrically, but it could 

be argued that the pipe cleaner is not perfectly straight when the student starts. I would 

make sure to state to the students that each time we will assume that we start with a 

straight or linear pipe cleaner, even if it appears to be curved. The second part of the 

activity involves students using Play-Doh to create three dimensional figures.  As it was 

with the pipe cleaner, students should be instructed to assume they start with a perfect 

sphere each time before forming the desired figure. The questions that follow are 

designed to help students understand what physically can be done to a figure and still 

have it be topologically the same. Once students have finished with the pipe cleaner and 

Play-Doh, it is recommended that those materials are returned to the teacher. On the back 

of the assignment, students are given a set of figures in which they are to match all 

topologically equivalent figure groups together.  The final question asks students to 

demonstrate their ability to create their own figures that have the same geometry or 

topology to a given figure.  This question will require students to physically draw these 

figures, which may be difficult for some students to accomplish.  The skill of drawing 

figures will be practiced throughout the unit. 
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Assignment 1      Name:________________________ 

 

Topology vs. Geometry    Date:___________    Period:______ 

 

For each of the following take the given pipe cleaner and try to create the given example.  

You may not cut or tear the pipe cleaner.  Then claim if the shapes have the same 

geometry, topology, or neither. 

1. 

S 
Topology 

2. 

I 
Geometry 

3. 

L 
Topology 

 

4. 

O 
Neither 

Look at the number four and explain why the correct answer is neither (not geometrically 

or topologically equivalent). 

To create the “o” or circle, one would have to actually glue the ends together which is not 

allowed in topology. Geometrically they have different properties, therefore the answer is 

neither. 

We will complete the same exercise for the following shapes using Play-Doh. For each 

shape, start with a ball or sphere (you can easily create this by “rolling” it between your 

hands. Then state if the shapes have the same geometry, topology, or neither. 

5. 

 
Topology 

 

6. 

 
Topology 

7. 

Geometry 

8.  

Topology 

9. 

 
 

Neither 

10. 

Topology 

11. 

 
Neither 

12.  

 
Neither 
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For your answer to question 7, did you have to assume anything? 

That the Play-Doh was formed in a way that had the same measures as the Sphere. 

                                                                                                                                        

Consider the shapes in questions 9 and 11.  If you started your Play-Doh as the coffee 

cup, could you create a doughnut using topological properties? Explain. 

Yes because the two shapes are topologically equivalent. You flatten out the “cup” part 

of the coffee cup into the handle which would form a doughnut shape. The key is both 

shapes have one “hole” which means we can mold/form the two shapes into each other. 

 

Consider the shapes in questions 11 and 12. If you started your Play-Doh as the 

doughnut, could you create a fidget spinner using topological properties? Explain. 

No- The doughnut shape has one hole while the spinner has three holes. If you were to go 

from the doughnut to the spinner you would need to rip and tear two times in order to 

create the three holes, making the doughnut and the spinner not topologically equivalent. 

State which groups of the following shapes would be topologically equivalent. 

A. 

 

B. 

 

C. 

 
D. 

 

E. 

 

F. 

 

G.  

 

H. 

 

I. 

 

Answer: A and F, B and G, H and I, C and E 
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One of the shapes on the previous page does not match up with any of the others. State 

which shape it is and then explain your reasoning why. 

Shape D: Shape D has two holes, all of the other shapes have either 0, 1, or 3 holes. This 

means we could not create a shape D from the others without tearing or gluing together.  

 

Take each of the following shapes and draw something geometrically equivalent, 

topologically equivalent, and a shape that is neither.  YOU MUST CREATE A SHAPE 

NOT PREVIOUSLY SEEN ON THIS ASSIGNMENT.  

 

 

 
Geometrically: Answers will vary 

 

 

 

 

 

 

 

Answers will vary 

 

Topologically: Answers will vary 

 

 

 

 

 

 

 

 

Answers will vary 

 

Neither: Answers will vary 

 

 

 

 

 

 

Answers will vary 
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Day 3 

 

Objectives:  

• TSW determine what a two torus 

is (or flat torus) 

• TSW evaluate how a figure moves 

on the surface of a torus 

 

 

Procedures/Strategies: 

• TSW complete bellwork (5 mins) 

• TSW review Assignment 1 (5 

mins) 

• TSW complete guided notes: 

Torus (35 mins) 

• TSW complete exit slip (5 mins) 

Materials: 

• Guided Notes: Torus 

• Projector connected to computer 

with internet, or school issued 

student computer devices (like a 

Chromebook) 

Assessment Strategies 

(Formative/Summative): 

• Exit Slip 

 

The bellwork for Day 3 is to recreate the same question at the end of assignment 

one and have the students create a figure having the same geometry and topology as a 

given figure. After bellwork, instruct students to get out assignment one and discuss any 

problems or questions that the students have. After that period of discussion, collect the 

assignment and use it as a formative assessment to determine the students’ progress of 

mastering the learning goal from yesterday’s lesson. At the beginning of the guided 

notes, there is a link for a YouTube clip and a picture of an old game known as Asteroids. 

Depending on the technology and internet access available at the school, one could 

simply show the clip or allow students a brief moment of time to play the actual game. If 

you choose to play the game there are free online simulators, but many gaming websites 

are blocked on school internet access. The clip and questions are designed to introduce 

students to the concept of a torus.  Relating the concept of a torus to the video game 

Asteroids may help groups of students grasp the concept of what it means for the edges to 

be glued together. Watching the clip of the game will demonstrate how the spaceship and 

asteroids move throughout the torus space. The questions that follow on the back of the 

guided notes are designed for students to investigate what happens as a figure, a 

pentagon, moves throughout the surface of the torus. Students may be curious about the 

arrows that are marked on the rectangle in these problems. This will be clarified in the 

next section of the notes, which gives a visual definition of a flat two dimensional torus 

and explains how these arrows represent the gluing of the figure’s edges. The last set of 

questions lead students towards what a three dimensional representation of a torus is, 

which they will have to draw on their exit slip. A process for creating a three dimensional 

torus using our flat torus will be done later in the unit. The exit slip, attached at the 

bottom of the guided notes, poses the question of what happens when throwing a ball in a 

torus. It may help to inform students that the ball is not affected by gravity and will 

always stay on a constant path.  This exit slip can be done on a separate sheet of paper if 

it is desired to be used as a formative assessment.  
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Notes       Name:________________________ 

Torus       Date:___________    Period:______ 

 

Let’s watch the following clip of a classic game called Asteroids. 

https://www.youtube.com/watch?v=5rjjtJ2GMN8 

 
 

 

After watching the clip and using the picture answer the questions below: 

1. What shape appears to be the space for the game? Rectangle 

2. What happened when an object same into contact with one of the sides of the 

shape? Objects would appear on the opposite side they exited. For example, if the 

ship went through the top side, it would reappear coming through the bottom side 

and vice versa. 

3. If you were given a piece of paper (which is like our above mentioned shape), 

how could we recreate what happens to the objects in the game Asteroids? We 

could glue the top and bottom edges together. This would create a way for an 

object to continue on its path. NOTE: This would change the shape that we started 

with into something different. We started with a rectangle and if we physically 

glue the top and bottom together we would now have a shape that looks like a 

tube or cylinder. 

 

 

https://www.youtube.com/watch?v=5rjjtJ2GMN8
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Take the following images and the information above and complete the path of the 

“laser” of the ship in the Asteroid game. Assume the laser path is 5 dashes. 

a) 

 

b) 

 

c) 

  

d) 

 
 

What would happen if the laser continued? The ship would destroy itself. 

In the definition of topology, we mentioned gluing as an action that would make shapes 

topologically different.   Consider the right edge of the rectangles below "glued" to the 

left edge.  As well as the bottom edge being glued to the top edge.  NOTE: This gluing is 

represented by the arrows on the rectangle.  

 

 
 

 

How is the pentagon moving inside the rectangles? Horizontally 

Can the pentagon continue this path or will it run out of room? Yes since the edges are 

glued. 
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Complete the pictures given below (part of the pentagon is missing) 

 
We will now consider the following two dimensional marked torus: 

 

NOTE: The arrows represent the gluing of 

the shape.   You must think of the gluing 

"matching" up the arrows. 

 

What if instead of a two dimensional torus we had a three dimensional torus (or three 

torus). Consider the following questions. 

What shape did we initially use for a two dimensional torus? Square/Rectangle 

What is the three dimensional equivalent to that shape? A Cube/Prism 

How would the shape be glued together (be specific)? By the faces: left with right, top 

with bottom, and front with back. 

For your exit slip, draw a representation of a three torus (explain how the gluing would 

work in complete sentences). 

Student answers:  Using a "cube" you could glue the front face to the back, the left face to 

the right, and the top face to the bottom.  When throwing a ball at a face, it will come out 

from the opposite side.  For example if the ball is thrown at the front face, it would come 

out the back face. When reviewing answers it may help to show the "jungle gym" version 

of a torus and what happens as someone moves throughout it. 
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 Day 4 

 

Objectives:  

• TSW determine what a two torus 

is (or flat torus) 

• TSW demonstrate how a figure 

moves on the surface of a torus 

 

Procedures/Strategies: 

• TSW entrance activity 

(supplement to bellwork) 10 mins 

• TSW complete Assignment 2: 

Torus (40 mins) 

Materials: 

• Entrance Activity 

• Assignment 2: Torus 

Assessment Strategies 

(Formative/Summative): 

• Assignment 2: Torus 

 

The bellwork for the day will be replaced with an entrance activity, Tic Tac Toe 

torus. This worksheet starts with reminding students of the familiar game of Tic Tac Toe. 

If students do not know how to play the game then more time should be spent with them 

explaining the rules, as this information will be vital later for the assignment. The next 

part of the activity involves students playing Tic Tac Toe torus. Tic Tac Toe  torus 

involves having the board glued together like a torus. Students will answer questions that 

take them through how a Tic Tac Toe torus board works. Some students may struggle 

with the concept at first.  Showing them winning moves on the first torus board may help 

them better understand how the game works now that the board has become a torus. 

When students have completed the assignment, verify their answers before they start 

Assignment 2, making sure that they understand how the new gluing of the board works.  

Assignment 2 starts off with students playing Tic Tac Toe torus against a partner. 

Encourage students to discuss their strategies with each other and how the original game 

has changed.  Students will then determine the winning move for the “X” player for a 

game that has already been started. For students who struggled with the entrance activity 

or still do not fully understand the Tic Tac Toe torus game, it is recommended that 

students draw the “big” boards on a separate sheet of paper as seen on the entrance 

activity. This will allow students to have a better chance at seeing possible or winning 

moves. The next section in the assignment will have students moving a variety of figures 

through a torus. Students will see the original image and then have to draw where the 

missing part of the figure is placed in the torus. A follow up question will ask students to 

create their own original figure and place it in the torus so that it goes through a glued 

wall. The last question will ask students to further their previous investigation of a three 

dimensional torus. Students will now investigate what would happen if they walked 

through a face, instead of throwing a ball. The second part of this question will require a 

little more thought then the first.  Students will have to abstractly think about what they 

would see as they look through a specific face only with their head, essentially “peaking” 

though a face. It may be helpful for students to discuss this concept in groups to get a 

better understanding of what the question is asking. 
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Entrance Activity     Name:________________________ 

Tic Tac Toe (Torus)     Date:___________    Period:______ 

 

Consider the game Tic Tac Toe, where the goal is to get three in a row! Place the winning 

move for the X player in each of the following games. 

1)  

 

2) 

 

3)  

 

Consider the Tic Tac Toe board below and answer the following questions. 

 

4) What do the symbols on the middle of the 

board mean? The board is like a torus, opposite 

edges are glued. 

 

5) What happens if an “X” mark gets placed in 

the middle row, middle column of the middle 

board? An “X” will appear in the same spot on 

all boards. 

 

6) What happens if an “O” make gets placed in 

the bottom row, right column of the middle 

board? An “O” will appear in the same spot on 

all boards. 

 

7) Will this happen for all possible positions for 

the Tic Tac Toe board? Yes because of the 

properties of the torus. 

Find the winning move for player “X” in the following games (will only take one move): 
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Assignment 2      Name:________________________ 

Torus       Date:___________    Period:______ 

 

Partner with another student and play some torus Tic Tac Toe. If needed, extend the sides 

of the boards to help with how the torus “adds” to the board. 

   

   
 

Find the winning move for the “X” player in the following Tic Tac Toe torus game. All 

boards are a torus and in each board there is a winning move. 

1.  

 

2. 

 

3. 

 

4. 

 

5. 

 

6. 
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For each of the following you will be given a mathematical figure and a torus with part of 

that figure in it. You need to draw the missing part of the figure in the correct location in 

the torus. 

7. 

 

8.  

 
9. 

  

10. 

 

 

11. Create your own math figure as the original image. Then place the image in a corner 

so that your figure has to be “finished” in multiple places (as in question 10). 

Original Figure: 

 

Answers will vary; suggest a square for 

struggling students.  

 
 

12. Draw both representations of a three dimensional torus.  Explain what you would see 

will standing inside the figure. 

Images should include both: 

 
 

Students should discuss how standing in a three torus would show them standing in each 

of the “tori” in the image on the left.  The created in a torus is replicated through all the 

other tori. 
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Day 5 

 

Objectives:  

• TSW define orientability 

• TSW define and create a Möbius 

strip 

• TSW define and understand the 

properties of a Klein Bottle 

 

Procedures/Strategies: 

• TSW complete bellwork (5mins) 

• TSW review Assignment 2: Torus 

(5 mins) 

• TSW complete Orientability 

activity (15 mins) 

• TSW complete guided notes: 

Orientability (25 mins) 

Materials: 

• Orientability Activity –“Band” 

Sheet and Instructions/Questions 

• Guided Notes: Orientability 

Assessment Strategies 

(Formative/Summative): 

• Orientability Activity  

 

The bellwork question for today is for students to move an object through a torus 

(as previously discussed). After bellwork the solutions for Assignment 2 should be 

discussed as a class and students’ questions should be clarified. The next activity will 

take students through what it means for a shape to be orientable or non-orientable. 

Students will draw their own figure that needs to be verified in case the created figure 

prevents the student from determining if anything has happened to its orientation. Once 

the figure is created, the students will copy it onto one side of the paper strip and then 

trace the image onto the other side. It is important that the students do not simply redraw 

the figure on the back side of the paper. The figure needs to be traced so that they can see 

the switching of the orientation. The activity will then direct students into what their 

figure does when the band is half twisted or fully twisted. This will be the first time for 

students to see the orientation of a figure changing and also interact with a Möbius strip. 

If students finish quickly, have them create new figures and experiment with multiple 

twists of their strip. Once the activity is completed, students will then complete the 

guided notes. Due to time restrictions, this part of the lesson may not be completely 

finished. Time is built into the next lesson that allows the class to finish the rest of the 

guided notes. The guided notes will start off with defining orientability, the Mobius strip, 

and the Klein bottle. It is important that when describing the Klein bottle that students 

understand the difference in the gluing of it’s edges.  One of the pairs of edges will have 

a gluing that is orientation reversing, making the Klein bottle non orientable. It should be 

noted to students that the gluing arrows will be in opposite directions to represent the 

reversing of orientation. Students will also see a comparison to how the Klein bottle and 

torus are represented. The next section will take a pentagon and move it throughout the 

surface of the Klein bottle. Questions that follow discuss how the orientation of the 

pentagon is reversed and how the orientation could be reversed back. This should 

conclude the amount of time that is remaining in the class for the guided notes.  
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Orientable Activity     Name:________________________ 

 

       Date:___________    Period:______ 

 

Using the given strip of paper and pen/marker: 

 

1.  Create a figure and place it in the box below. NOTE: Your figure needs to have the 

ability to be seen as “upside down” and “right side up”. For instance: 

 

Figures that would not work Figures that will work 

 
 

  

 

Draw your figure here:        and then verify with the teacher that it is correct. 

 

2. Draw that figure in each square of your strip. Try to keep each figure congruent. 

3. Flip your strip over and trace out each image from the other side, do not just simply re 

draw it. NOTE: Depending on your figure it may seem like you created a reflection. 

4. Take your completed strip and form it into a band. What do you notice about the 

starting and ending images? Draw the starting and ending figures: 

 

The starting and ending images 

are identical. 

NOTE: Student images will vary 

based on starting image. 

 

Start End 

  

5. Take the band end and give it a half twist. What do you notice about the starting and 

ending images? Draw the starting and ending figures: 

 

The ending figure is an upside 

down version of the starting 

figure. 

 

Start End 
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6. Take the band end and give it a full twist. What do you notice about the starting and 

ending images? Draw the starting and ending figures: 

 

The ending figure is now again 

the same as the starting figure. 

 

Start End 

  
 

7. Take other strips and try to find other shapes, letters, and figures that have similar or 

different results. 

 

Orientable Activity Slips: 
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Notes       Name:________________________ 

 

Orientability, Möbius Strip, Klein Bottle  Date:___________    Period:______ 

 

Orientability: A surface is orientable if a figure making all possible global trips on the 

surface does not change its orientation at any time. 

 

Möbius Strip: A figure created by taking a rectangular plane and gluing with a 180° or 

half twist. Note: We use a rectangular shape as a model, but the strip itself has no 

thickness. 

 

Klein Bottle: A figure in two dimensions represented by a rectangle where one pair of 

opposite sides are reverse glued. 

Torus: 

 

Klein 

Bottle: 

 

 

Note: The other  

pair of sides could 

be glued together. 

What is the difference between the torus and the Klein bottle? One of the pairs of glued 

sides has the arrows going in the opposite direction (DOES NOT MATTER WHICH 

PAIR). 

What happens when figures go “through a gluing”? As a figure passes through the gluing 

it’s orientation is reversed, like what happened when traveling on a Möbius Strip. 

Consider the pentagon moving through a Klein bottle as we did with the torus previously: 

1. 

 

2. 

 

3. 

 
4.  

 

5.  

 

6.  

 
Would this happen if the pentagon moved up and down instead of left and right? No, 

since gluing marks are not reversed, meaning the orientation is preserved. 

What would happen if an upside down pentagon went through the right side again? It 

would come out with the orientation that it started with, or look like the first picture. 
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Day 6 

 

Objectives:  

• TSW define orientability 

• TSW define and create a Möbius 

strip 

• TSW define and understand the 

properties of a Klein bottle 

 

Procedures/Strategies: 

• TSW complete bellwork/entrance 

activity (5mins) 

• TSW complete guided notes (15 

mins) 

• TSW complete Assignment 3: 

Orientability (30 mins) 

Materials: 

• Entrance Activity 

• Guided Notes: Orientability 

• Assignment 3: Orientability 

Assessment Strategies 

(Formative/Summative): 

• Assignment 3: Orientability 

• Entrance Slip 

 

Students will begin class by completing an entrance slip instead of their bellwork.  

The entrance slip takes the asteroid questions from the torus notes and changes the “game 

board” to a Klein bottle. These questions are a review of where the students left off in the 

notes the previous day. The portion of the guided notes that needs to be finished will 

demonstrate to the students how to take a flat torus and Klein bottle and turn them into a 

three dimensional representation. A flat torus can be formed into a doughnut shape and a 

flat Klein bottle can be formed into a figure that has its neck glued into itself (as seen in 

the notes). This process can be very abstract for students, so it might be necessary to 

clarify explanations and ensure students have an understanding of each step while 

forming the figures.  Following the conclusion of the guided notes, students will then 

complete Assignment 3. This assignment will begin with a section on Klein bottle Tic 

Tac Toe, first introducing students to a big board version. Klein bottle Tic Tac Toe can be 

more challenging then torus Tic Tac Toe.  Students may need some assistance in 

comprehending how the boards surrounding the “original board” change based on the 

gluing of the Klein bottle. As suggested in the torus Tic Tac Toe, some students may 

need to draw the surrounding boards in order to see winning moves. Students will then 

play Klein bottle Tic Tac Toe with a partner and also determine the winning move from a 

preset board. The next section will take various figures partially shown on a Klein bottle 

that need to be completed. Students will have to interpret how the gluing changes the 

orientation of the given figure. The final problem of the assignment asks the students to 

find Möbius strips within the Klein bottle. One way to help students who struggle with 

this is to remind them of what property the Klein bottle and Möbius strip have in 

common. This property is that figures will switch their orientation while traveling across 

both figures (or that the Klein bottle and Möbius strip are nonorientable). For a student to 

find a Möbius strip, they need to create a strip on the Klein bottle that includes the 

orientation reversing edges as the start and end of the band.  When reviewing the 

assignment in the following lesson, ensure that students understand how to create the 

Möbius strip on a Klein bottle, as there are multiple ways of doing this. 
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Entrance Slip      Name:________________________ 

 

Orientability      Date:___________    Period:______ 

 

What if the “game board” we used for Asteroids was a Klein bottle instead of a tours? 

How would the new board change the “laser” being shot from your ship? Complete the 

laser path below. Remember each shot contains 5 dashes. 

1. 

 

2. 

 

3. 

 

4. 

 

 

Continuation of Day 5 Guided Notes 

Lets see how we can take our two dimensional torus and Klein bottle and visualize them 

in a three dimensional space. 

To visualize a torus: 

1. Draw our representation of a 2-torus.  

 

2. Form it into a cylinder by matching the 

“B” edges. 
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3. Stretch the cylinder and attach the “A” edges together to form the doughnut shape: 

 

NOTE: Black space is still drawn by 

student but used black to show contrast 

for the doughnut shape 

To visualize a Klein bottle: 

1. Draw our representation of a Klein 

Bottle. 

2. Form it into a cylinder by matching the 

“B” edges. 

 

 

3. Stretch the cylinder out and start to bend. 4. Put one end through the cylinder and 

connect it to the other end. 

 

 

Since our ability of creating these figures may not be perfect, we can look at these images 

that computers can generate to give us a better understanding. 
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Assignment 3      Name:________________________ 

 

Orientability, Möbius Strip, Klein Bottle  Date:___________    Period:______ 

 

Directions: Answer the following questions about the given Tic Tac Toe board. 

 

 

 

1. What do the symbols on the 

middle board mean? 

The board is like a Klein bottle. 

 

2. What happens if an “X” mark 

gets placed in the middle row, 

middle column of the middle 

board?  

An “X” will appear in the middle 

row, middle column on all the other 

boards. 

 

 

3.  What happens if an “O” make gets placed in the bottom row, right column of the 

middle board? 

 An “O” will be switched to the top row, right column on the boards that are left and right 

of the current board.  Boards in the same middle column will have the “O” place in the 

original position of bottom row/right column. 

4. Why did the X keep the same position everywhere but the O switched from the top row 

to the bottom row? 

The gluing of the above Klein bottle board switches orientation from when moving left to 

right. This means that anything in the top row will switch to the bottom row for adjacent 

boards and vice-versa. The middle row does not change since the position is directly in 

the middle. NOTE: Make sure to inform students that the position of the X does not 

change moving from board to board when it is in the middle row, middle column but the 

orientation of the figure does. Consider the letter T instead of the letter X. When moving 

to boards in other columns, the T will appear upside down in the middle position, middle 

row. The letter X will not show this orientation switch. 
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Partner with another student and play some Klein bottle Tic Tac Toe. If needed, extend 

the sides of the boards to help with how the Klein bottle switches the board. You may use 

your own paper if desired. 

   

   
Find the winning move for the “X” player in the following Tic Tac Toe Klein bottle 

game. All boards are a Klein bottle and in each board there is a winning move. 

5. 

 

6. 

 

7. 

 

8. 

 

9.  

 

10. 
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For each of the following you will be given a mathematical figure and a Klein bottle with 

par of the figure in it. You need to draw the missing part of the figure in the correct 

location of the Klein bottle. 

11. 

 

12. 

 
13. 

 

14. 

 
Using the two blank Klein bottle models below, draw a different Möbius strip on each 

model. Then explain how you know each is a Möbius strip. 

 
 

The key for this to work is that then ends of the strip align with the orientation reversing 

part of the Klein bottle. Student answers could vary, but the previous stated property must 

be present as shown above. 
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Day 7 

 

Objectives:  

• TSW identify a projective plane 

and its properties 

 

Procedures/Strategies: 

• TSW complete bellwork (5mins) 

• TSW review Assignment 3 

(5mins) 

• TSW complete guided notes (30 

mins) 

• TSW complete exit slip (10 mins 

Materials: 

• Guided Notes: Projective Plane 

• Exit Slip 

Assessment Strategies 

(Formative/Summative): 

• Exit Slip 

 

              The bellwork for the lesson is for students to draw a flat torus, a flat Klein bottle, 

and explain what the makes the two figures different.  After bellwork, Assignment 3 

should be reviewed as a class and any questions or concerns should be covered.   

Students will then complete the guided notes worksheet on the projective plane. Students 

will be given the definition of a projective plane. The next part of the guided notes will 

have the students draw the flat versions of the torus and Klein bottle. It is recommended 

that the students should try to draw the topological projective plane based on the given 

definition.  Next, the students will take the topological projective plane and create an 

analogous three dimensional projective space. This was done for the torus and Klein 

bottle, but the topological projective plane is even more abstract. For students to better 

understand the process, explain when the topological projective plane is made into the 

circle topologically by having all of the opposite points on the circle glued together. One 

could describe this as any two points on the end of a diameter of the circle are glued 

together. From the gluing of the opposite points, the circle can be formed into a 

hemisphere that is the geometric projective plane, where the rim has the opposite points 

glued together. When a figure crosses through the rim, its orientation will be switched, 

just as it would be in the topological projective plane. It is important for the student to 

understand how figures move about the geometric projective plane. These concepts will 

be used in the exit slip, as students will have to answer questions that implement critical 

thinking skills about figures moving on the projective plane. Students will be required to 

think of distances on the geometric projective plane and demonstrate an understanding of 

how all opposite points are glued together. This exit slip may require more attention from 

the teacher and grouping of students is suggested.  Groupings of students will promote 

communication about the content and also increase their chances of arriving at the correct 

solutions. 
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Notes       Name:________________________ 

 

Projective Plane     Date:___________    Period:______ 

 

Projective Plane: A projective plane can be represented by a rectangle where both pairs 

of opposite sides change the orientation as a figure travels from one side to another. 

To better understand this definition, we can look at the previous examples of gluing 

planes: 

No pairs switching One pair switching Both pairs switching 

   
Torus Klein bottle Projective plane 

 

We have represented a torus and Klein bottle in three dimensional space, so we can also 

try and do the same with the projective plane. 

 
This is a representation where all opposite points are glued on the circular boundary 

together: A to A’, B to B’, and C to C’ etc. This can then be represented in three 

dimensions by the hemisphere, where the rim or edge is where our opposite points are 

glued. 

What does a figure look like after it crosses through the rim? The figure will have it’s 

right and left sides switched, or its orientation will change. 
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Exit Slip      Name 

 

Projective Plane     Date:___________    Period:______ 

 

Think of a figure living on a projective plane at the pole (in the case for the projective 

plane pictured  below think of the south pole). If a figure left his house on a journey in a 

straight path which brought him back home, at what point would the figure be farthest 

from it’s home? Explain. 

 

No matter which direction the figure 

travels, it will be farthest from the house at 

the rim of the hemi-sphere. As the figure 

crosses the rim, it will come out on the 

“opposite side” and the figure will then be 

getting close to the house. Since the rim is 

where it switches from getting farther from 

the house to getting closer to the house, it 

must be the farthest point from the house. 

 

Two sibling “figures” are ready to move out of their parent’s house. They can move 

anywhere on the projective plane and because they fight all the time they want to be as 

far away as possible from each other. Where could they build their houses so that they are 

as far apart as possible? Explain your answer with sentences and draw a picture on the 

projective plane. 

 

Some student answers will vary but the 

important property for this to work is the 

siblings need to be 90 degrees apart from 

each other.  For instance one answer could 

be one sibling anywhere on the rim while 

the other is on the pole.   Another answer 

would be to have the siblings 90 degrees 

apart on the rim (since on the rim the 

opposite sides are glued making points 180 

degrees away from the same point). 
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Day 8 

 

Objectives:  

• TSW identify a surface and its 

properties 

• TSW distinguish between 

properties of figures 

• TSW identify homogenous figures 

Procedures/Strategies: 

• TSW complete bellwork (10mins) 

• TSW complete guided notes (40 

mins) 

Materials: 

• Guided Notes: Figure Properties 

• Blank Paper and String 

• Beach ball already inflated 

Assessment Strategies 

(Formative/Summative): 

• Assignment 4 (Tomorrow) 

The bellwork for today is for the students to draw the three dimensional 

representation of our three defined figures: the torus, Klein bottle, and projective plane. 

Students do not need to describe how the figures come from their flat versions, although 

this could be an enrichment question for those who finish quickly. Extra time was added 

to this bellwork to allow students to display their answers and discuss how to draw each 

figure. Following the bellwork, students will complete the guided notes where they will 

first be introduced to a sphere as a defined figure. The sphere now gives us four defined 

figures that we will refer to throughout the guided notes. Next we will define extrinsic 

and intrinsic properties followed by an activity that demonstrates these properties. 

Students are to take a blank piece of paper and draw a segment of any length, but it is 

recommended that they keep it somewhere near the center. Once the students create the 

segment, they are to curve the paper into a cylinder and then compare planes and 

cylinders. For the intrinsic part, direct students to discuss how we could test if the plane 

and the cylinder have the same intrinsic properties. Students should arrive at the 

conclusion of testing the length of the segments that were created. To test their length, 

measure the segment while on the plane with the string and then do the same to the 

cylinder segment. The outcome will show the segments have the same length, making 

them intrinsically the same. Extrinsically the figures are different, due to the curvature of 

the cylinder and flatness of the plane while looking at the figures from three space. The 

notes will then look at local and global properties, which are defined and followed by 

examples. The examples allow students to determine if figures have similar or different 

local and global properties. It is important to note that these properties are thought of as 

“local geometry” and “global topology”. This may assist students in understanding the 

difference between local and global properties. The next property to be discussed is to 

determine if a surface is considered homogenous. The activity to simulate this property 

uses a beach ball that is already inflated. The students should compare the beach ball to a 

sphere and then discuss if the ball has the same local geometry at all points. After 

arriving at the conclusion that the sphere is homogenous, the students should discuss how 

the ball could be changed in order for it to be nonhomogeneous. Students should be 

directed to deflate the ball, causing the surface to be nonhomogeneous to the sphere 

which can be easily demonstrated. After the activity, make sure to discuss the four figures 

that we have defined and how they are all homogenous.  
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Notes       Name:________________________ 

 

Figure Properties     Date:___________    Period:______ 

 

We have now discussed three specific figures: Torus, Klein bottle, and Projective plane 

A fourth figure that we will discuss is something we are familiar with: Sphere 

IMPORTANT: When referring to the sphere we are only concerned with the surface. We 

are concerned about what it is like to be on the actual surface. 

Drawing a Sphere: 

 

Note: Draw this figure for the students. 

To draw the sphere first draw a circle, 

then the solid arc, and then the dotted 

arc. Use this space to draw multiple 

spheres or even use different strategies. 

 

Now that we have seen our four figures, we can discuss some properties/definitions.  

Intrinsic Property: Intrinsic properties are perceived from being on the surface. If you 

are on a plane, then you perception would be of a two dimensional figure. 

Extrinsic Property: Extrinsic properties are perceived from looking from outside the 

surface. If you are off of the plane, then your perception would be like a 3-D figure 

looking at a 2-D figure. 

Example: Take the paper given to you and draw a line segment on it. Then roll it into a 

cylinder (making sure the segment is completely seen). Draw what you see. 

 
 

Answers may vary 

for students 

What does the above activity show about the intrinsic geometry for the paper and 

cylinder? The segment on the cylinder is the same intrinsically as on the plane paper. We 

know this by taking a string at both endpoints of the segment on the paper and measuring 

the segment on the cylinder to find they have the same measure. Therefore the cylinder 

and the paper are intrinsically the same. 
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What does the above show about the extrinsic geometry for the paper and cylinder? The 

paper no longer looks the same after we turned it into a cylinder. Before it was flat like a 

plane but not it has extrinsic curvature. Looking at it from our viewpoint we can see this 

difference, therefore the pare and cylinder are not extrinsically the same. 

 

Local Property: Local properties deal with small regions on the figure. 

Global Property: Global properties deal with the entire figure, not just a portion. 

Example: Identify if the following pairs of figures have equivalent local geometries 

and/or global topological properties 

Flat Torus and Doughnut Surface Flat Torus and a Plane 

 
 

Local Geometry: Different due to 

curvature on doughnut. 

Local Geometry: Equivalent since both 

are flat surfaces. 

Global Topology: Equivalent since we can 

create the doughnut from the flat torus. 

Global Topology: Different by 

considering how a figure moves different 

globally on each surface. 

 

NOTE: We will think of the geometry of a figure for local properties and the topology of 

a figure for global properties. 

 

 

Homogeneous: A figure is homogenous if the local geometry is the same at all points. 

 

Nonhomogeneous: A figure is nonhomogeneous if the local geometry is not the same 

everywhere. 
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Use the demonstration with the beach ball to answer following questions. 

 

 

  
When the beach ball was fully inflated, was it homogeneous or nonhomogeneous? 

Homogeneous 

 

Which surface previously discussed does the beach ball model? The sphere 

 

What happened to the beach ball as it was deflated? Why? It became nonhomogeneous 

because the local geometry is now different for some parts of the surface. 

 

What are the four homogeneous surfaces that we have discussed so far? 

The sphere, torus, Klein bottle, and projective plane (talk these out with students, have 

them think what the four could be and ask them to justify their answer). 

 

Closed Manifold: Finite, there is no bound to the surface. 

 

Open Manifold: Infinite, the surface spreads without bound. 
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Day 9 

 

Objectives:  

• TSW identify a surface and its 

properties 

• TSW TSW distinguish between 

intrinsic/extrinsic properties, 

local/global properties, and 

open/closed figures 

• TSW identify homogenous figures 

Procedures/Strategies: 

• TSW complete bellwork (5mins) 

• Vocab Flash Cards (10 mins) 

• TSW complete Assignment 4: 

Surface Properties (35 mins) 

Materials: 

• Assignment 4: Figure Properties 

• Rubber bands/Scissors 

• Index Cards 

Assessment Strategies 

(Formative/Summative): 

• Assignment 4 

 

Bellwork for today will be a review of the Tic Tac Toe torus and Klein bottle 

games that have been previously played.  Give students a Tic Tac Toe board for a torus 

and Klein bottle in which they need to determine the wining move for the “X” player. 

Following bellwork, distribute index cards to students and have them copy the 8 

definitions that were introduced yesterday: intrinsic, extrinsic, local, global, 

homogeneous, nonhomogeneous, closed, and open. One side of the index card should 

state the word and the other side should have the definition. Students may elect to include 

examples of images with the definitions to assist in reinforcing the properties. These 

vocabulary cards will be used as a reference for students during today’s assignment and 

also give the students a study reference for their upcoming summative assessment. Have 

each student show that they have completed their vocabulary cards and then proceed to 

give them Assignment 4, a pair of rubber bands, and scissors.  The rubber band and 

scissors will be used for the beginning part of the assignment. This resource should be 

helpful to students who are struggling to visualize what happens intrinsically and 

extrinsically to the rubber band as it is cut and twisted. Students will then answer a series 

of questions on determining if specific figures are open or closed.  The students will be 

asked how to make a figure closed that was previously identified as open. The back side 

of the assignment will give students a description of various figures and ask them to 

determine if they are homogeneous or nonhomogeneous figures. Students will have to 

explain their reasoning and demonstrate their understanding of what it means for a figure 

to be homogeneous. The final section of the assignment gives students pairs of figures 

and asks them to determine if the figures have the same local or global properties. 

Students will again have to state their reasoning and demonstrate understanding. 

Encourage students to use complete sentences when explaining their reasoning. When 

reviewing the assignment the following day, make sure that students explain their 

reasoning or give students the reasoning behind the explanations. This will give students 

a chance to confirm that their reasoning was correct or show that they did not fully 

understand the solution. 
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Assignment 4      Name:________________________ 

 

Figure Properties     Date:___________    Period:______ 

 

Extrinsic vs Intrinsic 

You are given two rubber bands. One of the you leave alone, while the other you cut, 

give a full twist, and then glue back together. Answer the questions that follow. 

 

1.  Do the rubber bands have the same intrinsic topology? Why? Yes, an object on the 

surface would not be able to tell the  difference between the two bands since the full twist 

would not change the orientation of the figures on the band. 

 

2. Do the rubber bands have the same extrinsic topology? Why? No, we can clearly see a 

difference between the two bands. Their topology has changed from cutting and then 

gluing a twist into the second band. 

 

3. How could we form the second band to make the intrinsic and extrinsic topologies 

different? We can only give the second band a half twist. This would cause the 

orientation to change for a figure that is traveling on the band, like a Möbius strip. 

 

Closed vs Open 

For the following figures, state if they are closed or open. 

4. A circle 

Closed 

5. A line 

Open 

6. A two holed doughnut 

Closed 

 

7. A sphere 

Closed 

8. A plane 

Open 

9. An infinitely long 

cylinder 

Open 

 

10. A flat torus 

Closed 

11. Klein Bottle 

Closed 

12. Projective Plane 

Closed 

 

 

13. What could we do to number 5 to change your answer? We can change it to a 

segment, since a line is infinitely long it is open. A segment is finite. 

 

14. What could we do to number 9 to change your answer? We can change it to just a 

bounded cylinder, which would make it finite. 
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Homogeneous vs Nonhomogeneous 

Take each of the following example and explain why they are homogenous or 

nonhomogeneous. 

15. A piece of paper. Homogeneous, the geometry is consistent throughout the surface, 

like a plane or flat torus. 

 

16. A piece of paper crumpled into a ball. Nonhomogeneous, the geometry is different 

throughout each part of the paper. 

 

17. A basketball. Homogeneous, the geometry is consistent throughout the surface, like a 

sphere. 

 

18. A basketball with the air let out (deflated). Nonhomogeneous, the geometry is 

different throughout points of the deflated basketball. 

 

19. A solid hemisphere (like a ball of Play-Doh that is cut in half). Nonhomogeneous, the 

geometry is different on the “flat part” of the hemisphere when compared to the curved 

part. 

 

Local Geometry vs Global Topology 

Draw each of the following figures and then determine if the local geometries and/or 

global topologies are equivalent. Explain your reasoning for each answer. 

 

Solid Sphere and Solid Hemisphere Klein Bottle and Torus (Flat Versions) 

 
 

Local Geometry: Different due to the flat 

space on the hemisphere. 

Local Geometry: Equivalent since both are 

flat surfaces. 

Global Topology: Equivalent since we 

can create a semicircle topologically from 

the sphere by pulling out the flat part. 

Global Topology: Different since the 

orientability between the two figures is 

different.  
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Day 10 

 

Objectives:  

• TSW review previous learning 

objectives for the unit 

Procedures/Strategies: 

• TSW complete bellwork (5mins) 

• TSW review Assignment 4 

(5mins) 

• TSW complete review activity 

(10-15mins) 

• TSW complete review assignment 

(35 mins) 

Materials: 

• Review Assignment  

• Review Activity materials 

(explained below) 

Assessment Strategies 

(Formative/Summative): 

• Review Activity/Assignment 

 

The bellwork question will be another review for the torus and Klein bottle. Give 

the students a figure that is placed on a flat torus and flat Klein bottle. Make sure that the 

figure is going through an edge so that the students have to draw the missing portion of 

the figure in the torus or Klein bottle.  Review Assignment 4 as previously stated in Day 

8. The review activity problems are given below in a worksheet format.  This review is 

intended for students to see the problem and then inform the teacher of their selected 

response.  These problems could be shown using technology such as Plickers, Kahoot, 

Turning Point, or other student response systems. All students should be given adequate 

time to respond and then the correct solution should be discussed.  At the end of the 

activity students should complete the review assignment for the remainder of the class.  

 

Day 11 

 

Objectives:  

• TSW review previous learning 

objectives for the unit 

Procedures/Strategies: 

• TSW complete summative 

assessment 

• TSW complete missing 

assignments or challenge puzzles 

Materials: 

• Summative Assessment 

Assessment Strategies 

(Formative/Summative): 

• Summative Assessment 

 

There will be no bellwork today.  Students will be given the assessment at the 

beginning of the class and the remainder of the period to complete it.  After the 

assessment students have the above mentioned options to stay occupied.  The test is 

composed of by 3 learning objectives, and each question is labeled (by parenthesis above 

the question number) with the objective it corresponds to and the point total for the 

question. Students are expected to show all work and use complete sentences when 

required. 
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Review Activity Problems 

1. The following is an example of what? 2. The following is an example of what? 

 
 

A. Sphere B. Torus A. Sphere B. Torus 

C. Klein Bottle D. Projective Plane C. Klein Bottle D. Projective Plane 

 

3. The following is an example of what? 4. The following is an example of what? 

 
 

 

A. Sphere B. Torus A. Sphere B. Torus 

C. Klein Bottle D. Projective Plane C. Klein Bottle D. Projective Plane 

 

5. The following is an example of what? 6. The following is an example of what? 

  

A. Sphere B. Torus A. Sphere B. Torus 

C. Klein Bottle D. Projective Plane C. Klein Bottle D. Projective Plane 

 

7. The following is an example of what? 8. The following mathematical figures might 

share which property? 

 

Sphere 

Torus 

Klein Bottle 

Projective Plane 

A. Sphere B. Torus A. Congruent B. Orientable 

C. Klein Bottle D. Projective Plane C. Nonorientable D. Homogeneous 

 

9. Of the following mathematical figures, 

which one is orientable? 

10. Which of the following actions prevents 

figures from being topologically equivalent? 

A. Möbius Strip B. Torus A. Bending B. Stretching 

C. Klein Bottle D. Projective Plane C. Tearing D. Twisting 
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Assessment Review     Name:________________________ 

 

Unit: Topology     Date:___________    Period:______ 

 

Find the winning move for the “X” player in the following Tic Tac Toe torus game. All 

boards are a torus and in each board there is a winning move. 

1. 

 

2. 

 

3. 

 
4. 

 

5. 

 

6. 

 

 

Look at the following pairs of figures and determine if they have the same geometry, 

topology, or have neither the same topology/geometry. 

7. 8. 9. 

  
 

Topology Neither Topology 
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For each of the following you will be given a mathematical figure and a torus with part of 

that figure in it. Draw the missing part of the figure in the correct location of the torus. 

10. 

 

11. 

 
 

For each of the following you will be given a mathematical figure and a Klein bottle with 

part of that figure in it. Draw the missing part of the figure in the correct location on the 

Klein bottle. 

12. 

 

13. 

 
 

Draw each of the following figures and then determine if the local geometries and/or 

global topologies are equivalent. Explain your reasoning for each answer. 

 

14. Sphere and Deflated Beach Ball 15. Torus and Projective Plane 

 
 

Local Geometry: Different due to the 

nonhomogeneous geometry of the beach 

ball. 

Local Geometry: Different due to the 

projective plane being curved and the torus 

being flat. 

Global Topology: Equivalent since we can 

blow air into the beach ball to make a 

sphere. 

Global Topology: Different since the 

orientability between the two figures is 

different.  
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Assessment: Topology    Name:________________________ 

 

       Date:___________ Period:_____ 

I can... 

A. Distinguish between Topology and Geometry 

B. Identify Geometric/Topological properties in mathematical figures 

C. I can use properties of a torus, Klein bottle, and orientability to determine 

relationships amongst mathematical figures. 

Score for each learning objective 

A B C 

 

 

 

  

 

Directions: Make sure to completely answer each question and use complete sentences 

when necessary. You may draw pictures or diagrams to help explain your answer. 

 

For the following, state if the following figures are geometrically or topologically 

equivalent. If they are neither, then state that. 

(1a) (1a) (1a) 

1. 2. 3. 

 
 

 

Topology Geometry Neither 

 

 

(2a) 

4.  Draw a figure that is topologically equivalent and a figure that is not topologically 

equivalent to the following figure. 

Figure Topologically Not Topologically 

 
 

Answers will vary , look for 

figures without a “hole” or 

several “holes. 

 Answers may vary but 

should be similar. 
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(3c) 

5.  Determine the winning move for the “X” player in Tic Tac Toe torus game 

   

(3c) 

6. Determine the winning move for the X player in the following Tic Tac Toe Klein 

bottle game. Explain how you know this is the winning move (a picture may help). 

Student may draw the chart with the extension of the 

board to show how the gluing moves the “X” to create 

a diagonal win. If students do not draw the chart, they 

need to describe how the gluing of the Klein bottle 

creates the X as a winning move. 

 

(4b) 

7. Give an example of two figures which have equivalent global topologies but different 

local geometries. How do you know your figures meet these requirements? You may 

draw pictures if you choose so. 

 

Student answers will vary, but examples include a sphere and deflated sphere, flat torus 

and a doughnut shape, solid sphere and solid hemisphere. Students should discuss what 

makes the shapes topologically the same and how their local geometries differ. 
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(3c) 

8. You are given a mathematical figure in a torus. Complete what the rest of the figure 

will look like in the torus. Then take the same figure and show what happens in a Klein 

bottle. Explain why there is a difference for the figure in the torus compared to the Klein 

bottle.  

  
The difference is due to the Klein bottle being nonorientable. As it passes through the 

edge the orientation of the pentagon is switched. 

 

 

(3c) 

9. Explain how you could make a Möbius strip. Describe what happens to a figure as it 

travels across the surface of the surface of the Möbius strip (refer to the properties of the 

Möbius strip). 

A Möbius strip can be created by taking a band, performing a half twist on the band, and 

then gluing the two ends together. A figure traveling on a Möbius strip will have its 

orientation switch due to then half twist in the band (since it is nonorientable). 

 

 

 

(2a) 

10. Describe why the following figures are topologically different. 

  
The first figure has one “hole”, whereas the second shape has two “holes”. For the shapes 

to be topologically equivalent, you need to tear the figure with one hole at least once and 

then glue it back together in order to create a shape with two holes. Therefore they are 

topologically different. 
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(4b) 

11. Give the correct name for each of the four figures below, 

 

   
Sphere Torus Klein Bottle Projective Plane 

 

(4b) 

12. Use the above names to fill in the chart below. 

 Orientable Nonorientable 

Curved Local 

Geometry 

  

Flat Local 

Geometry 

  

 

(2b) 

13. State which geometric property all of the four above figures have in common? 

Explain what the property means about the figures? 

Homogeneous: Their local geometry is the same for the entire figure. 
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Conclusion 

Topology is a subject that can drive our students to think in an entirely different 

way mathematically. Even though this unit is just an introduction to topology, it still is 

sufficient enough to promote critical and abstract thinking. One of the main goals in a 

mathematics classroom should be to enhance a student’s ability in think critically and to 

solve problems. Although these skills are essential to mathematical reasoning, they are 

also essential to student learning in all disciplines. Improving those skills will improve 

students’ reasoning in all classes. Within this unit, students are consistently engaged in 

activities, assignments, and problems that force them to practice and utilize these skills. 

Students also are given several opportunities to enhance their communication skills with 

respect to mathematical content. Students will consistently have conversation with not 

only the teacher but with other students as well. Topology also introduces students to an 

area of mathematics they did not know existed.  It will deepen various skills and concepts 

students previously used and create a new foundation for abstract thinking. Through 

exercises, students are pushed beyond their previous visual-spatial perception skills. Even 

though this unit is not included in Ohio’s Learning Standards in Mathematics, it does 

promote growth in fundamental mathematical practices that can be achieved by students. 

 

 

 

 

 

 

  

 

 

 

 

 

 



50 
 

Reference 

1. Weeks, J. R. (2002). The Shape of Space(2nd ed.). New York, NY: Marcel Dekker. 


	John Carroll University
	Carroll Collected
	Summer 2017

	An Introduction to Topology for the High School Student
	Nathaniel Ferron
	Recommended Citation


	tmp.1502809822.pdf.Rub3z

