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CHAPTER 1 

The Mittag-Leffler Theorem: A Brief History   

 

 

Magnus Gösta Mittag-Leffler was a Swedish Mathematician who contributed immensely 

to the theory of functions. He was born in Stockholm, Sweden and growing up had an 

aptitude for higher mathematics. He continued his formal education at Uppsala and 

became a lecturer. His appointment as a lecturer enabled him to travel abroad for three 

years to continue his studies. In 1873, Magnus Gösta Mittag-Leffler left for Paris, France 

to study with Charles Hermite (a French mathematician who did research on number 

theory, quadratic forms, invariant theory, orthogonal polynomials, elliptic functions and 

algebra). In 1875, heeding to Hermite’s advice, Mittag-Leffler left for Berlin, Germany to 

further his studies and learned from Mathematicians like Karl Weierstrass. Weierstrass’s 

work in complex analysis influenced Mittag-Leffler’s work for many years.  

  

 A year later and in 1877, Mittag-Leffler expanded on Weierstrass’s 1876 

factorization theorem and proved a similar theorem for meromorphic functions, which is 

now associated with Mittag-Leffler’s name. A meromorphic function is one whose 

singularities are poles. The theorem states that given a set of poles, corresponding orders, 

and Laurent coefficients, it is always possible to find a function which is analytic except 

at those poles, with the correct orders and Laurent coefficients, up to the addition of an 

entire function. 

 

The final version of Mittag-Leffler’s theorem was published later in 1884 in the journal 

Acta Mathematics. After serving 45 years as the editor in chief of Acta, Mittag-Leffler 

passed away on July 7, 1927 in Stockholm. This paper focus on the understanding of the 

proof of Mittag-Leffler’s theorem with meromorphic functions and also connects with 

Weierstrass theorem with entire functions. An entire function is analytic everywhere in 

the entire complex plane, and the most common entire function with no zeros has the 

form
 

 
g z

e , where   g z  is any arbitrary entire function. Note that the reciprocal of an 

entire function that has zeros is a meromorphic function, where the reciprocal function 



has a pole where the original function has a zero. To understand how a Mittag-Leffler 

function is created, we first need to review some of the basic ideas in complex analysis.  

The third chapter focus on the proof of Mittag-Leffler’s theorem and Weierstrass 

Theorem using meromorphic functions. We end this paper with an independent proof of 

Weierstrass Theorem which is now known as The Weierstrass Factorization Theorem. 

This approach uses infinite products. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

Basic Definitions and Theorems 

 

 

In order to prove the Mittag-Leffler Theorem, we first review some basic concepts, 

definitions, and theorems which will aid in better understanding the proof of the theorem. 

Most of the proofs of these theorems can be found in any undergraduate text in Complex 

analyses. Note that all functions unless explicitly stated otherwise are complex functions. 

 

Definition: The disc with center at
0 z  and radius  0r   is    0 0 , ;D z r z z z r    . 

 

Definition: The closed disc with center at
0 z  and radius  r  is

   0 0 , ;D z r z z z r    . 

 

Definition: The punctured disc with center at
0 z  and radius  r  is

   0 0 ' , ;0D z r z z z r     . 

 

Definition: The unit disc with center at  0  and radius  1r   is     0,1 ; 1D z z   . 

 

Definition: The circle with center at 
0z and radius r is    0 0 , ;C z r z z z r    . 

 

The following definitions will help to define a region.  



Definition: A subset  S  of   is open if for each point
0 a S ,  0,D a S  for some

  > 0 . 

  

Definition: An open subset of   is connected if it cannot be expressed as a union of 

two nonempty disjoint open sets. 

 

Definition: A region is a nonempty open connected subset of  . 

 

Definition: A function   f z  of the complex variable 𝑧 is analytic at a point
0 z  if 

  0 f z    is differentiable in  0 ,D z  . If the function is analytic, then the function 

is sometimes called regular or holomorphic  H .  

 

In addition, a function is an entire function if  f z  is holomorphic on  .  Since the 

derivative of a polynomial exist everywhere, it follows that every polynomial is an entire 

function. 

 

Definition: A function   f z  defined on region    is bounded if there exist a real number 

 M    such that   f z M  for all  z . 

 

Definition:    is called a simple arc (or smooth curve) if there exist a parametrization 

 : ,z a b   of   . Where  z  is continuously differentiable and    1 2 z t z t  except 



possibly at the endpoints and   ' 0z t   for any   ,z a b . If     z a z b , then the result 

is a simple closed arc. Also, define     to denote the boundary points and the interior 

points of a simple closed arc and define     to denote only the interior points of a simple 

closed arc. 

 

Definition: A complex sequence is a mapping
 

 :
nss n

s

 . The sequence  

1
 n n

s



 

converges to  s  if   0,     ,N N z   so that  nn N s s     . 

 

Definition: Let    be a region in  . Let  
1

 n n
f




 be a sequence of functions  :nf  . 

If for  z ,   
1n n

f z



 converges, then define  :f   by     lim n

n
f z f z


 . So we say 

that,   nf  converges (pointwise) to  f . 

 

THEOREM 1.  A sequence of function converges pointwise; 
nf f


  if and only if 

 0  and  z  , there exist   ,N N z   such that     nn N f z f z     . 

 

Note that pointwise convergence of a sequence of continuous functions does not guarantee 

that the limit is continuous. 

 

Definition: Let  
1

 n n
f




 be a sequence of functions  :nf   where    is a region in  .

Then  nf  converges uniformly on    to   f z  if  0,  there exist   N N  such that

   ,  nz n N f z f z       . 



 

THEOREM 2. If a sequence of functions converges uniformly to   f z  on   and if

 
1

 n n
f




 are continuous on   , then   f z is continuous on   . 

 

THEOREM 3. A subset  K  of   is compact if and only if  K  is closed and bounded. 

 

Definition: Let  
1

 n n
f




 be a sequence of functions  :nf   where    is a region in  .

Then 
nf  converges locally uniformly to   f z  on    if for all compact subsets,  K  of   , 

nf  converges uniformly on  K . 

 

Note that a sequence of functions is locally uniformly convergent on   if and only if each 

point of   has a neighborhood where the sequence converges uniformly. 

 

THEOREM 4. Let  
1

 n n
f




 converge locally uniformly to   f z on   . If each  

1
 n n

f



 is 

continuous on    then   f z is continuous on   . 

 

Definition: Let  
1

 n n
f




 be a sequence of continuous functions  :nf   where    is a 

region in  . If the sequence of partial sums,    
1

 
n

n n

n

s z f z


  converges for all z in   , 

then the sum of functions
1

 n

n

f




 converges. 

 



Definition: Let  
1

 n n
f




 be a sequence of functions  :nf   where    is a region in . 

If 
1

 n

n

f




  converges, then
1

 n

n

f




  converges absolutely. 

 

THEOREM 5. If
1

 n

n

f




  converges absolutely, then it is convergent. 

 

Weierstrass M-Test.  Let   be a region in  . Let  : ,   1,2,nf n  . If 

1.  ,    ,  n n nn M f z M z        and  

2. 
1

n

n

M




  is convergent.  

Then  
1

 n

n

f z




  converges absolutely and uniformly over   . 

 

Definition: If  f z  is analytic in     ' , ;0 , 0D a r z z a r r       and not 

analytic at  a , then the point  z a is called an isolated singular point of   f z , and the 

function   f z is said to have an isolated singularity at  z a . 

Definition: Let a function   f z be analytic at a point
0 a . It has a zero of order m (or 

multiplicity m) at
0 a  if and only if there is a function   g z , which is analytic at

0 a , such 

that      0 
m

f z z a g z  , where  0 0g a  . 

 

Note that zeros and poles of functions are closely related. In the theory of complex series, 

a powerful tool of studying singularities of a complex function is by Laurent series. We 



also note that the zeros of an analytic function are isolated when the function is not 

identically equal to zero. 

 

Power Series. Let  
0

 n

n

n

f z a z




  be a complex power series where   na  . Let 

 limsup ; 0,1,2,n
nL a n   where  0 L  . Let

1 1 1
 0,  and 

0
R

L

 
    

 
. Then 

1. If  0R   then the series converges locally uniformly and absolutely on

 0,D R . 

2. If  R   , the series diverges for all z outside   0,D R . 

R is called the Radius of Convergence for the series. 

 

THEOREM 6. A function   f z  is analytic at
0 a  if and only if    0

0

 
n

n

n

f z c z a




   

with positive radius of convergence. 

 

Definition: Let   : ,a b   be any simple arc and let   f z   be a function defined on

   . If there is a number  L such that   0,  0      so that for any partition

0 1 na z z z b      of   ,a b  with  1 max : 1,j jz z j n    and any choice 

of 1 ,j i jz z 
    , it follows that   1

1

 
n

j j j

j

f z z L 



   , then  L  is called the line 

integral of   f z  along   and is denoted   f z dz
 . 

 

THEOREM 7. Let   be any simple closed curve and let   a  . Then
1

 2dz i
z a





 . 



 

Cauchy-Goursat Theorem. If  f z  is analytic on and within   , then   0f z dz


 . 

 

Cauchy Integral Formula. Let   be a simple closed curve and let  f z  be analytic on 

and within   and  a   then  
 1

2

f z
f a dz

i z a 


 . 

 

Laurent’s Theorem. Let   f z  be analytic in the annular region

 : 0z r z a R     . Then    n n
A




   such that    

n

n

n

f z A z a




  ,

  ; ,z A a r R  . In fact 
 

  
1

,

1

2
n n

C a

f
A d

i a




 





  for any   with r R  . The 

function   f z  can be expanded into a series of the form 

     
1

0

n n

n n

n n

f z A z a A z a
 

 

     , 

where 

   
1

n

n

n

A z a




  is known as the singular part of   f z , and  

   
0

n

n

n

A z a




  is known as the analytic part of f. 

 

Isolated singularity are classified by the singular part of their expansions around the 

singularity.  

 



Definition: The classification of isolated singularities may assume three possible forms:  

1. Removable if singular part is zero – That is  0,  nA n    . 

2. Pole of order m if singular part is finite – If there exist , 0mm A    and

, 0nn m A   . 

3. Essential if singular part is infinite – That is   ,    0mn m n A      . 

 

THEOREM 8. Let
0 0,  let  R z  , let  m be a positive integer, and let   f z be 

analytic on 0 0 z z R   . Then
0 z  is a pole of    of order f z m if and only if 

   
0

0 lim
m

z z
z z f z


  exist and is not equal to zero. 

 

 

Example 1. 

 Find the Laurent series for  
 

1
f z

z z i



 that converges for 0 1z i   . 

Solution: Given  
 

1
f z

z z i



, we can express it as  

1 1 1 1
 .f z

z i z z i i z i

   
    

      
  

Thus,  
  0

1 1 1
  =

1

n

n

z i
f z

z iz i i z i i
i

i





 
     
                

  for  1
z i

i





. Which implies 

that  
   

 
0

1 1
  for 1

n

n
n

f z z i z i
i z i i





   
 
  and can be written as 



 
 

     
1 11

0 0

1
    for 1.

n nn

n
n n

f z z i f z i z i z i
i i

 
 

 

      


   Hence, the Laurent 

series for  f z that converges for 0 1z i    is

         
1 2 31

0

1
nn

n

i
f z i z i i z i z i i z i

z i







          


  . 

 

The next example will be helpful in the understanding of the order of a pole but before 

that, assume   f z  has an isolated pole of order  m  at  a . Then the expansion of   f z is 

 
       

 1 2 1

1 2
0

nm m
nm m

n

A A A A
f z A z a

z az a z a z a


    




      
  

  and so

     
 

 
1

1 11
0

  
nm z

nm
n

A A
g z z a f z A A z a

z az a


 




       


 . If  1g z  exists 

and is not zero, then  1m  , and  1 1 0g z A  . Similarly for       
m

mg z z a f z  , 

which can be expanded as

       
1

1 1

0

 
m n m

m m m n

n

g z A A z a A z a A z a


 

   



        . Therefore

 
 

 

1

1  and  
1 !

m

m m

g a
g a A A

m



  


. 

 

Example 2. 

Find the order of the pole at 0 for the function,  
 3

1
 

1
f z

z z



. 

Solution:  



Let    
 

   
 

   2 3

1 2 32

1 1 1
,    ,    

1 1 1
g z zf z g z z f z g z z f z

z z z z z
     

  
. 

Note that    1 20 ,  and 0g g  does not exist, but  3 0 1 0g    . So by theorem 8, there is 

a pole of order 3 at zero. Hence,  
 

3 3

2
 

1
g z

z
 


 and so

 3

1

0 2
 1

2! 2

g
A

 
    . 

 

Proposition 1. Let   f z be analytic on   ;D a r . Assume   f z  has a zero of order m  at 

a  but   0f z   for   ' ,  and 0z D a r r  . Let   be such that  0 r  ; then    

      
 

  ,

1
.

2
C a

f z
dz m

i f z





  

Proof. Let      
m

f z z a g z   where  g z  is analytic on  ;D a r  and   0g a  . Then 

         
1

' '
m m

f z z a g z m z a g z


     and
 

 

 

 

' '
  

f z g z m

f z g z z a
 


. 

So
 

 

 

     , , ,

' '1 1 1 1
     0
2 2 2

C a C a C a

f z g z m
dz dz m dz

i f z i g z z a i z a
  

  

  
            

    and 

by the Cauchy Integral Formula

 ,

1
 2

C a

dz i
z a




 . Therefore                                         

 

 
 

 ,

'1 1
  2  
2 2

C a

f z
dz m i m

i f z i



 

  . 

 

Lemma 1. Let   f z  be analytic at  a  and  n  be a positive integer. If  
 

 
1 

n

f z
f z

z a



 has 

neither a zero nor a pole at  a , then   f z has a zero of order  n  at  a . 

 



Proof. If   0f a  , then  1 f z  has a pole at  z a which is not true by assumption. Thus

  f z  must have a zero at  a . Let  k  be the order of the zero at  a . So

      
k

f z z a g z   and      1 
k n

f z z a g z


  . Since  1 f z  has no zero at  , a k n  

and since  1 f z  has no pole at  , a k n . Thus  k n . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 

The Mittag-Leffler Theorem 

 

Let us recall the definition of meromorphic functions and accumulation points. 

Definition:  A function is meromorphic in a region   if the function is analytic in   

except for poles. More specifically, a function  f z is meromorphic in   if, for every 

point  a , there exists a disc   ,D a    such that either   f z is analytic in the disc 

or else   f z  is analytic in the punctured disc   ,D a    and the isolated singularity is 

a pole. 

 

Definition: The point
0 a  is an accumulation point of A  if for every  0, 

 0,D a A   . 

 

The Mittag-Leffler Theorem. Let 
1 2, , , ,na a a be a sequence of distinct points with 

no accumulation points. Let 
1 2( ), ( ), , ( ),nP x P x P x  be a sequence of polynomials with 

constant terms equal to zero. Then there exists a function  f z , which is analytic in  

except at 
1 2, , , ,na a a where 

na is a pole and the Laurent expansion of  f z  around 

na has singular part
1

 n

n

P
z a

 
 

 
. 

 

Proof.  Let  
1n n

a



 be a sequence in the complex plane with no accumulation points, thus

  0,  0,R D R   can contain only finitely many terms of the sequence. This sequence 

may be renamed so that 1 2 na a a    .  Temporarily assume that
1 0a  , thus 



all  0na  . Then choose a convergent series of positive (real) numbers  
1

 n n
c




 so that 

1

n

n

c




  converges and use the 'nc s as a degree of closeness in the following calculations. 

Let   
1n n

P z



 be the sequence of polynomials with constant terms equal to zero. For 

1,2, ,n   
1

 n

n

P
z a

 
 

 
 has an isolated pole (the order being the order of the 

polynomial) at  0na  . Thus 
1

 n

n

P
z a

 
 

 
 is analytic in  0, nD a  and can be expanded 

into a Taylor Series,

         2

0 1 2

1
    ,       for z D 0,

n n n n k

n k n

n

P b b z b z b z a
z a

 
       

 
. 

This series is absolutely and uniformly convergent on  0,
2

na
D
 
 
 

. Then choose 
ns  

sufficiently large so that the partial sum  
0

 
ns

n j

n j

j

Q z b z


  satisfies

 
1

n n n

n

P Q z c
z a

 
  

 
 for  0,

2

na
z D

 
  

 
. 

Let    
1

1
 j j

j j

h z P Q z
z a





   
       
 . Given any  0R  , there are only finitely many  an

 

in  0,D R  where   h z  has poles. Break up the series into two parts so that

     
2 2

1 1

j j

j j j j

a R a Rj j

h z P Q z P Q z
z a z a 

         
                      
  . Define 

   1

2

1
 

j

j j

a R j

h z P Q z
z a

   
       
  and    2

2

1
 

j

j j

a R j

h z P Q z
z a

   
        

 .  

Then  2 h z  has no singularities in   0,D R and by the Weierstrass M-test, the series is 

absolutely and uniformly convergent on   0,D R . So  2 h z  is an analytic function on



 0,D R . On the other hand,  1 h z  is a finite sum of the form 

       1 1 1 2 2

1 2

1 1 1
k k

k

h z P Q z P Q z P Q z
z a z a z a

              
               

                 

 

where  1 2 , , , 0,2ka a a D R  which is a rational function with  'sja  as poles for

 1,2, ,j k . For each such  ja ,    1

1
 j j

j

h z P f z
z a

 
  

  

 where   jf z  is analytic in a 

disc around  ja . Hence for each  j ,  1 h z  has the form of a Laurent series around  ja  with 

singular part
1

 j

j

P
z a

 
 
  

 . Thus, for any   0,  R h z  has the desired properties for

 1 2 , , ,  D 0,2ka a a R . Since  0R   was arbitrary,  R  may be increased (to infinity) 

and the series for   h z  is a desired function for all  an
 (when

1 a 0 ). If
1 0a  , use the 

previous argument on  
2n n

a



 to construct   h z  satisfying the desired properties for

 
2

 n n
a




 then add 

1

1
 P

z

 
 
 

 to   h z  and the resulting function is as desired. 

 

 

Weierstrass’ theorem was proven first before Mittag-Leffler’s theorem but we will use 

Mittag-Leffler’s theorem to prove the Weierstrass theorem before we give an 

independent proof of the Weierstrass factorization theorem. The next theorem will be 

helpful understanding the Mittag-Leffler’s theorem. 

 

Weierstrass Theorem. Given a sequence of complex numbers
1 2 3 , , ,a a a  with no 

accumulation point and given a sequence of natural numbers
1 2 3 , , ,k k k . There exist an 

entire function   f z in the complex plane such that   ,  1,2,ia i  is a zero of   f z

with multiplicity   ,  1,2,ik i  and there are no other zeros.  



Proof.  

As in the theorem of Mittag-Leffler, let   g z  be a meromorphic function with poles 

 
1j j

a



 and singular part at   as 

j

j

j

k
a

z a
. Pick  

1
 \ j j

a



   . Then for any

 
1

z \ j j
a




 , define     G

z

z g t dt


  , where the path of integration is contained in

  .  G z  is not single-valued but all values differ by an integer multiple of  2 i  by the 

Cauchy Integral formula. Then    
 

G z
h z e  is single valued and, since   G z  is analytic 

at each  z , so is   h z . It needs to be shown that the poles of   h z  can be removed 

so that each  ja  is a zero of order    for jk h z . By Lemma 1, this is accomplished by 

showing that  
 

 
 

j
j k

j

h z
H z

z a



 has no zero or pole at  ja  for  1,2,j   . For each  j ,

  jH z  is analytic on    and
 

 

 

 

 

 
 

 

 

 

1

'

'
 

j j

j

j

k k

j jj j

j j

k

j

k h zh z

z a z aH z kh z

h zH z h z z a

z a




 
  





. But

      ' '  andh z h z G z        '
z

G z g t dt g z


  
   . Hence       'h z h z g z   and

 

 
  

j j

j j

H z k
g z

H z z a


 


. But   g z  has a simple pole at  ja  with singular part  

j

j

k

z a
 

so, subtracting  
j

j

k

z a
 yields a function that can be made analytic at  ja . Thus   jH z  

has neither a pole nor a root at  ja . Thus   H z  is an analytic function with roots only at 

the  'sja  of orders  jk  respectively. 

 

 

 



CHAPTER 4 

Independent Proof of Weierstrass Theorem  

 

One of the principal activities in complex analysis is to construct holomorphic or 

meromorphic functions with certain prescribed behavior. Infinite products are more 

useful in this sense than infinite sums. In order to give an independent proof of the 

Weierstrass theorem, we first review some advanced concepts, and definitions which will 

aid in better understanding the proof of the theorem. 

 

Definition: An infinite product  
1

 1 n

n

a




  is said to converge if  

1. Only a finite number
1 2

 , , ,
kn n na a a of the  'sna  are equal to -1; 

2. If
0 0N   is so large that

0 1 for ,na n N    then  
0 1

 1
N

n
N

n N

Lim a


 

  exists and 

is nonzero.  

If  
1

 1 n

n

a




  converges, then we define its value to be

   
0

01 1

 1 1
N N

n n
N

n N

a Lim a


 

 
   

 
  . 

 

Definition: Let  p  and define    0 1E z z   and    

2

2
 1

pz z
z

p

pE z z e

 
    

    for 

 1 p  . Then   pE z  is holomorphic on all of   and is called a Weierstrass 

elementary factor. 

Weierstrass Theorem. Let U  be an open subset of  . Let  
1

 n n
a




  be a sequence 

(possibly finite with finite repetition permitted) in  U  with no accumulation point in  U . 



Then there exists an analytic function,   f z on  U  whose zeros are precisely the  'sna  

and the multiplicity of the zeros are the number of times the zero is repeated in the given 

sequence. 

 

The proof of the Weierstrass (Factorization) theorem will be proved after we’ve proven 

some lemma’s to support our claim. Note that, in the theorem of Weierstrass, the 

sequence may repeat. 

 

Lemma 2. If  0 1x   then  1 1 2xx e x    . 

Proof. Assume that x is a real number with  0 1x  , then we show that

 1 1 2xx e x    . Recall that
0

 
!

n
x

n

x
e

n





  and note that

1

1
2 2

1 1
 1,  since ! 2  for 2

! 2

n

n
n n

n j
n

 



 

     . Then
2 0

 1 1
! !

n n
x

n n

x x
x x e

n n

 

 

        

and  
1

2 2

1
 1 1 1 1 1 2

! !

n
x

n n

x
e x x x x x x x

n n

 

 

 
           

 
  . We then have that

 1 1 2xx e x    . 

 

 

Lemma 3. If  , 1n na a  , then the partial product  NP  for  
1

 1 n

n

a




  satisfies

1 1

1

2
 

N N

n n

n n

a a

Ne P e 

   
   
   
   
 

  . 



Proof. By the first part of Lemma 2,  1 na

na e  so   1

1 1

 1

N

n

n n

N N a
a

N n

n n

P a e e 

 


     . 

By the second part of Lemma 2, 2 1 1 2
2

na

n
n

a
a e     so 

  1 1

1 11
2 22

1 1

 1

N N

n n
n

n n

N N a aa

N n

n n

P a e e e 

 

 
      . 

 

 

Lemma 4. If  
1

 1 n

n

a




 converges, then
1

 n

n

a




  converges. 

Proof. By Lemma 3,   1

1

2

1

 1

N

n

n

k a

N n

n

P a e 




   . Since  nP  converges by assumption, it 

is bounded which bounds the partial sums of
1

1
 

2
n

n

a




 . Thus the series
1

 n

n

a




  must 

converge. 

 

 

Lemma 5. Let  na  ,    
1 1

 1 ,  and 1
N N

N n N n

n n

P a P a
 

     . Then  1 1N NP P   . 

Proof. Suppose  na  , and write     1 2 P 1 1 1n Na a a     and

1 2 1 2 1 2 1N N NP a a a a a a a a       . Then   

1 2 1 2 1 3 1 2

1 2 1 2 1 3 1 2

 1

             

              = 1.

N N N

N N

N

P a a a a a a a a a a

a a a a a a a a a a

P

        

       


 



Lemma 6. If the infinite product  
1

 1   n

n

a




 converges, then so does  
1

 1   n

n

a




 . 

Proof. Since the partial products  
1

 1N n

n

P a




   converge, Lemma 4 implies that

1

 n

n

a




 also converges. Thus  lim 0n
n

a


 . Therefore there exists
0 0  so that N k N   

implies  1na   . For
0  k N , let    

0 01 1

 1  and = 1
k k

k n k n

n N n N

Q a Q a
   

    . 

 

 

0

1

1

 For , 1 1 = 1 1

                                                                                              1 1

                               

M
M M

M N N N N k

k NN N

M

N k

k N

Q Q
M N N Q Q Q Q Q a

Q Q

Q a

 

 

 
         

 

  





                                                                =  .M NQ Q

 

The convergence of  kQ  implies the convergence of  kQ . It remains to show that the limit 

of  kQ  is not zero. Since  
0 1

 lim 1 0
n

k
n

k N

a L


 

   , and   lim 1 1n
n

a


  , for large  ,M N ,

  1
N

k

k M

a


  is close to 1. Hence choose M sufficiently large so that  N M implies

 
1 3

 1
2 2

N

k

k M

a


    so    
1 1 1

 - 1 1  and 1 1
2 2 2

N N

k k

k M k M

a a
 

          . Then, by 

Lemma 5,    
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Lemma 7. Let  U  be open. Suppose that  
1

 :n n
f U




 are holomorphic and that

1

 n

n

f




  is locally uniformly convergent. Then the sequence of partial products 

    
1

 1
N

N n

n

F z f z


   converges uniformly on compact sets. In particular, the limit of 

these partial products defines a holomorphic function  on U . Furthermore the function 

vanishes at a point
0 z U if and only if  0 1nf z    for some  n  and the multiplicity of 

the zero at
0 z  is the sum of the multiplicities of the zeros of the functions  1 nf  at

0 z . 

Proof. Let  K  be a compact subset of  U . Then  
1

 n

n

f z




  converges uniformly to 

 F z on  K and   F z  is analytic on  K so   F z is bounded on  K by some constant C . 

Let   NP z  be the Nth-partial product of   
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n

f z




 . By Lemma 3, the partial 

products are bounded on  K by  Ce . Let  0 1   and choose  L  sufficiently large so 
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M

n
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Since    was arbitrary chosen between 0 and 1,  1e   may be made arbitrary close to 

zero. Hence    NP z  is an infinite Cauchy sequence and, because  K  is compact, 

  NP z converges uniformly on  K  and by Lemma 6, we are done. 

 

 

Lemma 8. If  1z  , then  
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 1
p

pE z z


  .                                                            

Proof. Suppose    0 0,  then 1 1 1p E z z z      . Now assume 1p  , 

then the first derivative of Weierstrass elementary factors is, 
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We are now ready to proof Weierstrass (factorization) theorem. 

 

Proof of Weierstrass. Let U  be an open subset of  . Let  
1

 n n
a




  be a sequence 

(possibly finite with finite repetitions permitted) in  U  with no accumulation point in  U .  

If the sequence is finite, that is  1 2 , , , Na a a . Then    
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f z z a

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desired function for any  U . Otherwise consider   U      and transform 

 to U U by the Mobius transformation
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 where  \p U  . Then  U  and the 

accumulation points are all in the finite part of the plane. Then 
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Henceforth refer to   as U U . The accumulation points of   na  are in the boundary of  U , 

so any compact subset of  U  contains only finitely many  'sna . Since  \U  is compact,

ˆ ,   \nn a U    such that ˆ n n nd a a   is minimal. Note that  lim 0n
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To return to the original  U and  
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 n n
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
 use the composition  pf T . 
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